
In-silico Methods for Drug Discovery: Applications of Molecular Dynamics, Drug

Docking, and Machine Learning

by

Rajeev Jaundoo

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Biomedical Engineering

University of Alberta

© Rajeev Jaundoo, 2024

ii

Abstract

Drug discovery is a venture that is costly in both time and money. In-silico methods

are a core part of biomedical research, from traditional tools such as drug docking

and molecular dynamics to newer machine learning frameworks, all of which are

more efficient in both time and cost compared to wholly experimental approaches.

This thesis highlights 3 separate studies that reflect the past, present, and future

of in-silico research, starting with the development of novel platelet activated

ligands for the purpose of targeted drug delivery using traditional tools such as

drug docking and simulated annealing. The second study demonstrated how

machine learning was used for classification of drug activity (agonist, antagonist,

or non-binder) towards a group of macromolecules all within the nuclear receptor

family. Finally, the third study used machine learning in a regression task to predict

bioelectric potentials and ion channel activity of a cellular network to serve as a

replacement for another in-silico application, reducing the computational

resources required for these predictions and providing the ability to scale to larger

cell networks with ease. Development of newer, more advanced in-silico tools

increases the accuracy of drug treatment predictions, leading to more effective

therapeutics and lower rates of failure during pre-clinical as well as clinical phases.

Not only that, but computational methods excel at drug repurposing, a process in

which existing pharmaceuticals are used for indications not originally intended.

Bioinformatic techniques and machine learning take advantage of the substantial

iii

amount of biological, pharmacological, etc. data available to identify adverse and

beneficial interactions that would otherwise be missed. Overall, in-silico

techniques are performed in tandem with in-vitro and in-vivo experiments, used to

validate computational predictions, during various phases of drug discovery and

repurposing, making them a core part of biomedical research at large.

iv

Preface

All in-vitro data from Chapter 1 was obtained from the CSTS Health Care

company, including the FASTA sequences of all platelet activated ligands (PALs)

outside of PAL1, which was obtained from Butterfield et al. (2019). All in-silico

modeling was performed by myself in Chapter 1, and for all other chapters I

performed all research and generated all results. The following is a list of

publications related to this thesis.

Jaundoo, R., & Craddock, T. J. (2020). DRUGPATH: the drug gene pathway meta-

database. International Journal of Molecular Sciences, 21(9), 3171.

Jaundoo, R., Bohmann, J., Gutierrez, G. E., Klimas, N., Broderick, G., & Craddock,

T. J. (2020). Towards a Treatment for Gulf War Illness: A Consensus

Docking Approach. Military Medicine, 185(Supplement_1), 554-561.

Jaundoo, R., Bohmann, J., Gutierrez, G. E., Klimas, N., Broderick, G., & Craddock,

T. J. (2018). Using a consensus docking approach to predict adverse drug

reactions in combination drug therapies for gulf war illness. International

Journal of Molecular Sciences, 19(11), 3355.

v

Acknowledgments

First and foremost, I would like to express my gratitude towards both my

supervisor, Professor Jack Tuszynski, as well as my co-supervisor, Professor

Travis Craddock, for the mentoring and support throughout my studies.

Additionally, I would like to thank Professor Russ Greiner for serving on my

committee and lending his expertise in machine learning.

vi

Table of Contents

Abstract .. ii

Preface .. iv

Acknowledgments .. v

Table of Contents .. vi

List of Tables ... xi

List of Figures .. xvii

List of Abbreviations ... xxiii

Introduction .. 1

Chapter 1: Using Platelet Activated Ligands for Targeted Drug Delivery 6

1.1 Introduction .. 6

1.2 Methods ... 9

1.2.1 Generating 3D Structures .. 10

1.2.2 Simulated Annealing .. 11

1.2.3 Drug Docking ... 13

1.3 Results ... 17

1.4 Discussion .. 25

1.5 Conclusion ... 26

vii

Chapter 2: Supervised Machine Learning for Drug-Action Classification 29

2.1 Introduction .. 29

2.1.1 Objectives .. 31

Objective 1 ... 32

Objective 2 ... 32

2.1.2 Machine Learning .. 32

2.1.3 Related Work ... 33

2.2 Methods ... 36

2.2.1 Compounds.. 41

2.2.2 Data Augmentation .. 41

2.2.3 Feature Generation .. 44

2.2.4 Importing Data into RapidMiner Studio .. 45

2.2.5 Machine Learning .. 46

2.2.5.1 Cross-Validation .. 46

2.2.5.2 Feature Selection .. 48

2.2.5.3 Decision Tree .. 49

2.2.5.4 Naive Bayes .. 52

2.2.5.5 Neural Network .. 55

viii

2.2.5.6 Random Forest .. 59

2.2.5.7 Support Vector Machine .. 60

2.2.5.8 Performance Assessment ... 62

2.3 Results ... 63

2.3.1 Performance: AR ... 64

2.3.2 Performance: ER ... 66

2.3.3 Performance: GR ... 68

2.3.4 Performance: PR ... 70

2.3.5 Summary ... 71

2.4 Discussion .. 75

2.5 Conclusion ... 81

Chapter 3: Replacing Bioelectric Dynamics Modeling using Regression-based

Machine Learning ... 84

3.1 Introduction .. 84

3.1.1 BETSE ... 86

3.1.2 Objectives .. 96

3.1.3 Related Work ... 97

3.2 Methods ... 99

ix

3.2.1 BETSE ... 99

3.2.2 Machine Learning .. 101

3.2.2.1 Linear Regression ... 102

3.2.2.2 Bayesian Ridge ... 102

3.2.2.3 Decision Tree .. 104

3.2.2.4 K-Nearest Neighbors ... 106

3.2.2.5 Multi-Layer Perceptron .. 107

3.2.2.6 Random Forest .. 109

3.2.2.7 Support Vector Regression ... 110

3.2.2.8 Super Learner ... 111

3.2.2.9 Validation ... 113

3.3 Results ... 116

3.3.1 Objective 1 ... 116

3.3.2 Objective 2 ... 116

3.3.3 Objective 3 ... 118

3.4 Discussion .. 118

3.5 Conclusion ... 121

Discussion and Conclusions .. 125

x

Bibliography ... 132

Appendix .. 149

xi

List of Tables

Table 1.1: FASTA sequences of PAL1, PAL2, PALs 1-11A, and CFL. 10

Table 1.2: Parameters used during all phases of SA. .. 13

Table 1.3: All parameters used during docking of PAL1, PAL2, PALs 1-11A, and

PF4 to CSA. ... 16

Table 1.4: Normalized scores of the in-silico docking results and in-vitro binding

affinities obtained from CSTS Health Care. All units were originally in kcal/mol and

are ordered from best/lowest to worst/highest in-silico binding affinity. 22

Table 1.5: The ranking of the docked and experimental ligands, ordered from best

to worst. Note that the in-vitro binding of PF4 was not performed by CSTS Health

Care, but is a natural high affinity ligand to GAGs and would therefore be the

strongest binder.. 24

Table 2.1: The total number of agonists, antagonists, and decoys obtained for

each receptor. .. 37

Table 2.2: The cost matrix used in this chapter. ... 40

Table 2.3: Total time used to perform conformation generation on the Compute

Canada Graham platform. All times are rounded to the nearest minute (m) or hour

(h). .. 43

Table 2.4: Total number of agonists within the training and validation datasets

before and after conformation generation. ... 44

xii

Table 2.5: Total number of antagonists within the training and validation datasets

before and after conformation generation. ... 44

Table 2.6: Total time used for conformation generation on the Compute Canada

Graham platform. All times are rounded to the nearest minute (m) or hour (h). . 44

Table 2.7: Total number of agonists, antagonists, and decoys within the training

and validation datasets for each receptor after data augmentation. 46

Table 2.8: Example of k-fold CV where k = 3 and the training dataset, X, is split

into x1, x2, x3 subsets. The final performance of the learner is an average of all

scores over all folds. ... 47

Table 2.9: The baseline percentages for all receptors. The decoy class contains

the largest number of entries over all classes for all receptors, so it was used to

calculate these percentages. .. 63

Table 2.10: DECTRE. Run-time: 3 minutes 33 seconds. Performance: 92.73%.

 ... 64

Table 2.11: NAIBAY. Run-time: 1 minute 9 seconds. Performance: 94.64%. 65

Table 2.12: NEUNET. Run-time: 6 hours 34 minutes 37 seconds. Performance:

94.09%. .. 65

Table 2.13: RANFOR. Run-time: 2 hours 21 minutes 18 seconds. Performance:

91.41%. .. 65

Table 2.14: SVM. Run-time: 1 day 16 hours 47 minutes 47 seconds. Performance:

77.83%. .. 65

xiii

Table 2.15: DECTRE. Run-time: 13 minutes 39 seconds. Performance: 92.61%.

 ... 66

Table 2.16: NAIBAY. Run-time: 2 minutes 25 seconds. Performance: 90.51%. 67

Table 2.17: NEUNET. Run-time: 21 hours 38 minutes 12 seconds. Performance:

95.59%. .. 67

Table 2.18: RANFOR. Run-time: 8 hours 1 minute 19 seconds. Performance:

83.43%. .. 67

Table 2.19: SVM. Run-time: 15 days 12 hours 40 minutes 35 seconds.

Performance: 81.39%. .. 67

Table 2.20: DECTRE. Run-time: 1 minute 35 seconds. Performance: 96.08%. . 68

Table 2.21: NAIBAY. Run-time: 1 minute 6 seconds. Performance: 96.02%. 68

Table 2.22: NEUNET. Run-time: 8 hours 46 minutes 1 second. Performance:

96.32%. .. 69

Table 2.23: RANFOR. Run-time: 4 hours 20 minutes 41 seconds. Performance:

96.03%. .. 69

Table 2.24: SVM. Run-time: 13 days 22 hours 40 minutes 27 seconds.

Performance: 80.93%. .. 69

Table 2.25: DECTRE. Run-time: 2 minutes 58 seconds. Performance: 99.92%.

 ... 70

Table 2.26: NAIBAY. Run-time: 1 minute. Performance: 99.91%. 70

xiv

Table 2.27: NEUNET. Run-time: 4 hours 14 minutes 59 seconds. Performance:

98.64%. .. 71

Table 2.28: RANFOR. Run-time: 1 hour 19 minutes 57 seconds. Performance:

99.87%. .. 71

Table 2.29: SVM. Run-time: 6 days 2 hours 55 minutes 33 seconds. Performance:

91.36%. .. 71

Table 2.30: Performance of all learners on all receptors. 72

Table 2.31: Total run-time of all learners on all receptors. The format used is

day:hour:minute:second. .. 74

Table 2.32: Average class precision of the agonist, antagonist, and decoys classes

for all learners on all receptors. .. 74

Table 2.33: Average class recall of the agonist, antagonist, and decoys classes

for all learners on all receptors. .. 74

Table 2.34: Average class precision of all learners on all receptors. 74

Table 2.35: Average class recall of all learners on all receptors. 75

Table 3.1: List of all BETSE configuration options that were randomized. 101

Table 3.2: Objective 1 performance of all models over all metrics. Highlighted

entries signify the model with the best performance for that metric/column. 116

Table 3.3: Objective 1 R2 performance of each learner within the SUPLRN on 10-

fold CV. .. 116

xv

Table 3.4: Objective 2 performance of all models over all metrics. Highlighted

entries signify the model with the best performance for that metric/column. The

following parameters were modified from their defaults: MLP’s max_iter was set

to 99,999 from 200; SVR’s max_iter was set to 75,000 from -1 (no limit); Within

the SUPLRN: DECTRE’s max_depth was set to 50 from None (no limit);

RANFOR’s max_depth was set to 50 from None (no limit); SVR’s max_iter was

set to 50,000; MLP’s max_iter was set to 3,000. .. 117

Table 3.5: Objective 2 R2 performance of each learner within the SUPLRN on 10-

fold CV. .. 117

Table 3.6: Objective 3 performance of all models over all metrics. Highlighted

entries signify the model with the best performance for that metric/column. The

following parameters were modified from their defaults: MLP’s max_iter was set

to 99,999 from 200; SVR’s max_iter was set to 250,000 from -1 (no limit). Within

the SUPLRN: MLP’s max_iter was set to 3,000; RANFOR’s max_depth was set

to 50 from None (no limit); SVR’s max_iter was set to 250,000. 118

Table 3.7: Objective 3 R2 performance of each learner within the SUPLRN on 10-

fold CV. .. 118

Appendix Table 1: All 435 features generated from MOE. The code represents the

name of the feature, the class denotes whether the given feature is a 2D, internal

3d (i3D) or external 3d (x3D) type. ... 149

xvi

Appendix Table 2: Parameters and their corresponding values used during the

conformational search of each compound's fragments. 167

Appendix Table 3: Parameters used in RapidMiner Studio for feature selection.

Note that all settings were kept to the defaults. .. 168

Appendix Table 4: Parameters used in RapidMiner Studio for the DECTRE

learner. Note that all settings were kept to the defaults. 168

Appendix Table 5: Parameters used in RapidMiner Studio for the NAIBAY

classifier. Note that all settings were kept to the defaults. 168

Appendix Table 6: Parameters used in RapidMiner Studio for the NEUNET

learner. Note that all settings were kept to the defaults. 169

Appendix Table 7: Parameters used in RapidMiner Studio for the RANFOR

learner. Note that all settings were kept to the defaults. 169

Appendix Table 8: Parameters used in RapidMiner Studio for the SVM (LibSVM)

algorithm. Note that all settings were kept to the defaults. 170

xvii

List of Figures

Figure 1.1: The structure of CSA after each of the 4 phases of SA, color coded to

show its electrostatic energy. The color range indicates a net charge from -40

elementary charges (red) to 0 (white) to +40 elementary charges (blue). 19

Figure 1.2: PAL1, PAL2, PALs 1-11A, CFL, and PF4 docked to the phase IV

structure of CSA. Each ligand is color coded where red areas are more

electronegative, white areas are neutral, and blue areas are more electropositive.

 ... 21

Figure 1.3: Graph displaying the in-vitro binding affinities of PAL1, PAL2, PALs 1-

11A, and CFL to CSA on the x-axis while the corresponding in-silico docked values

of each ligand were placed on the y-axis. Note that because CSTS Health Care

did not perform an in-vitro binding of PF4 to CSA, this ligand was not shown. The

Pearson R was 0.50. .. 23

Figure 2.1: An overview of the ML workflow used. ... 39

Figure 2.2: The RapidMiner Studio process used during ML. 40

Figure 2.3: Testosterone SMILES string (left) and its corresponding 3-D structure

(right). ... 41

Figure 2.4: Architecture of the Forward Selection operator in RapidMiner Studio.

Starting from the top, the operator “Forward Selection” contains the “Cross

Validation” operator, which in turn was comprised of training and validation

phases. The “Classifier” operator is one of DECTRE, NAIBAY, NEUNET,

xviii

RANFOR, or SVM. The “exa” port refers to the example set, or input data, the

“mod” port is the output model obtained from a given operator, “tes” is the test or

validation subset for the current fold of CV, the “unl” port is for unlabeled data,

“lab” is labelled data, and the “per” port is the estimated performance of the model.

 ... 49

Figure 2.5: An example DECTRE where classification is performed based on the

input drug’s molecular weight, number of aromatic rings, and/or the total number

of carbon atoms. For example, any drug that weighs more than 350 Da and

contains more than 2 aromatic rings is classified as a decoy, while any drug ≤350

Da is classified as an agonist. .. 52

Figure 2.6: An overview of a NEUNET consisting of 1 hidden layer and 3 possible

output classes. ... 56

Figure 2.7: The transformation of neurons from a previous layer to the current one,

for example from the input to a hidden layer, is performed by calculating the sum

of the product between the weights ({𝑤1, 𝑤2, 𝑤3}) and value of each neuron

({𝑥1, 𝑥2, 𝑥3}) and the bias (𝑏), followed by the use of an activation function (𝑓): 𝑥𝑖 =

𝑓(𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏). ... 57

Figure 2.8: RANFOR uses multiple DECTREs to perform classification, where the

majority vote is used. In this example, 2 DECTREs predict green while only one

predicts red, making green the predicted output. ... 60

xix

Figure 2.9: SVM constructs a hyperplane that separates 2 classes from one

another, where the maximum size of the margins is based on the closest points

from each class. Here, both class A (blue) and B (orange) have one point on the

margin of their respective side while all other points fall behind the calculated

margins. ... 62

Figure 2.10: The performance of each model compared to the ground truth (TRUE)

in classifying agonists, antagonists, and decoys for AR. All models had similar

performance in classifying decoys, while SVM had more FNs for agonist and

antagonist prediction in comparison. .. 64

Figure 2.11: The performance of each model compared to the ground truth (TRUE)

in classifying agonists, antagonists, and decoys for ER. All models had similar

performance to TRUE in classifying decoys, while DECTRE, RANFOR, and SVM

both had more FNs for the antagonist class. NAIBAY and NEUNET had similar

performance to TRUE in regard to antagonist prediction, while DECTRE was

overlapping with TRUE for agonist prediction. ... 66

Figure 2.12: The performance of each model compared to the ground truth (TRUE)

in classifying agonists, antagonists, and decoys for GR. DECTRE, NAIBAY, and

NEUNET overlapped with TRUE for agonists and decoys, while all models were

shown to have similar performance in antagonist prediction. SVM had more FNs

for the agonist class, and inversely, more FPs for decoys. 68

xx

Figure 2.13: The performance of each model compared to the ground truth (TRUE)

in classifying agonists, antagonists, and decoys for PR. Most of the models

overlapped with TRUE on all classes, the exception being SVM with more FNs for

agonists and antagonists. ... 70

Figure 2.14: The performance of all models over all receptors, with the average

performance of each model on AR, ER, GR, and PR shown in teal with dashed

lines. All models performed best on PR while the worst performance of DECTRE,

NAIBAY, and RANFOR were all on ER. Both NEUNET and SVM had their lowest

performance on AR. ... 72

Figure 2.15: The total training/run-time (in seconds) of the models, with and

without the inclusion of SVM, over all receptors. The average time of each model

on AR, ER, GR, and PR are shown in teal with dashed lines. 73

Figure 3.1: A) BETSE generates an irregular Voronoi diagram-based cell grid to

place cells in while the environment grid underneath is represented by evenly

spaced homogeneous squares (Pietak & Levin, 2016). The size of the

environment grid, specified in the input configuration file, determines the total

number of cells. B) The “Cell center” within each cell, represented by a red ▲, is

where properties such as ion concentration and intracellular voltage are defined.

Additionally, the membrane perimeter for each cell is divided into segments, where

the midpoint for each membrane segment (represented by a blue ★) is where Vmem

is calculated. This image was obtained without modification from Figure 2 in Pietak

xxi

& Levin (2016) which was published under the terms of the Creative Commons

Attribution License (CC-BY); https://creativecommons.org/licenses/by/4.0. 87

Figure 3.2: Diagram of a 2-cell network adopted from Figure 4C of Pietak & Levin

(2016) that models the electrical system used to calculate Vmem between cells in

BETSE, where Vmem = Vintra - Vextra. QA and QB represent the total ionic charges of

their respective cells, which is calculated in part using the inner (VA, VB) and

environmental (Vo) voltages, corresponding to Vintra and Vextra. Cm represents the

capacitance, which determines how much charge can be stored (Kaiser,

1992/2012), of the cellular membranes between each cell and the extracellular

environment. Finally, the self-capacitance, defined as the amount of charge stored

on each cell and the environment per applied unit voltage, is represented by Csa,

Csb, and Cso respectively (Pietak & Levin, 2016). ... 89

Figure 3.3: The normal and tangent vectors of each membrane segment (a-f) for

a given cell. Normal unit vectors are represented by the orange arrows while the

tangent vectors are shown using blue arrows. The cell midpoint is represented by

the yellow triangle. This figure was based on supplementary Figures 3A and 3D

from Pietak & Levin (2016). .. 93

Figure 3.4: A group of 3 cells used to describe the Laplacian operator, adopted

from supplementary Figure 4 of Pietak & Levin (2016). There are a total of 3

gradient fluxes: 1) 𝐹𝑎𝑏 between cell 𝑎 and cell 𝑏, 2) 𝐹𝑎𝑐 between cell 𝑎 and cell 𝑐,

and 3) 𝐹𝑏𝑐 between cell 𝑏 and cell 𝑐. ... 94

xxii

Figure 3.5: KNN plots all training data on an 𝑛-dimensional plot, where 𝑛 is the

total number of features. In the above example, 𝑛 = 2 and there are a total of 2

classes: A (blue) and B (orange). The green point with the ? above it represents

an input whose value will be predicted from the 𝐾 nearest neighbors closest to it,

measured using the Euclidean distance metric. ... 107

Figure 3.6: SVR constructs a hyperplane that best approximates the relationship

between the input features and ground truth values. Predicted values should be

at most ±𝜀 deviations above/below the hyperplane, although the slack variables,

ζ and ζ*, exist to penalize those that fall outside the epsilon-tube. 110

Figure 3.7: SUPLRN as defined by van der Laan et al. (2007). The learners were

first trained on the entire training dataset and then set aside. 𝑘-fold CV was then

performed for each learner, where their performance on each fold was stored in

the Z matrix. A meta-learner was then used on the Z matrix to calculate the weight

of each learner for the optimal combination that either maximized a scoring

function or minimized a loss function, depending on which was chosen. Finally,

these weights were then applied to the learners trained on the entire training set

originally, which produced the learned model. Image taken directly from van der

Laan et al. (2007), Figure 1. ... 112

xxiii

List of Abbreviations

ADP Adenosine Diphosphate

APOL Atomic Polarizabilities

AR Androgen Receptor

ASG 2-Deoxy-2-Acetamido-Beta-D-Galactose-4-Sulfate

BAYRID Bayesian Ridge

BEN BioElectric Network

BETSE Bioelectric Tissue Simulation Engine

CA2+ Calcium Ion

CART Classification and Regression Trees

CFL Charge Free Ligand

CL- Chloride Ion

CSA Chondroitin Sulfate A

CV Cross-Validation

DECTRE Decision Tree

DRUGPATH Drug-Gene-Pathway

DUD-E Database of Useful Decoys: Enhanced

ECFP Extended-Connectivity Fingerprint

E_ELE Electrostatic Potential Energy

ER Estrogen Receptor

FCHARGE Formal Charges

FN False Negative

FP False Positive

GAG Glycosaminoglycan

GB/VI Generalized Born Solvation Mode

GC4 4-Deoxy-beta-D-Glucopyranuronic Acid

GCU Alpha-D-Glucopyranuronic Acid

GF Growth Factor

GJ Gap Junction

GR Glucocorticoid Receptor

HS Heparan Sulfate

ITC Isothermal Titration Calorimetry

K+ Potassium Ion

KNN K-Nearest Neighbors

LBD Ligand Binding Domain

LINREG Linear Regression

LXR-BETA Liver X Receptor Beta

MAE Mean Absolute Error

MAPE Mean Absolute Percent Error

xxiv

MEDAE Median Absolute Error

MD Molecular Dynamics

ML Machine Learning

MLP Multi-Layer Perceptron

MOE Molecular Operating Environment

MSE Mean Square Error

MV Millivolts

NA+ Sodium Ion

NAIBAY Naïve Bayes

NAMD Nanoscale Molecular Dynamics

NEUNET Neural Network

NMR Nuclear Magnetic Resonance

PAL Platelet Activated Ligand

PDB Protein Data Bank

PF4 Platelet Factor 4

PR Progesterone Receptor

QSAR Quantitative Structure-Activity Relationship

R2 Coefficient of Determination

RBF Radial Basis Function

RANFOR Random Forest

RMSD Root Mean Square Distance

RMSE Root Mean Square Error

ROC-AUC Area Under the Receiver Operator Characteristics

SA Simulated Annealing

SDF Structure Data File

SMILES Simplified Molecular-Input Line-Entry System

SUPLRN Super Learner

SVM Support Vector Machine

SVR Support Vector Regression

TN True Negative

TP True Positive

TSV Tab-Separated Value

USD United States Dollars

VDW van der Waals

VMEM Transmembrane Potential

1

Introduction

Computational, or in-silico, tools and methods have long been a part of biomedical

research, starting as early as the 1960s with bioinformatic techniques being used

for prediction of protein sequences and the explosion of popularity in the early

2000s of simulation-based approaches (Hagen, 2000; Noble, 2002). These

methods tend to not only be faster and less costly compared to their in-vivo and

in-vitro counterparts, but also allow for predictions and discoveries to be made by

integrating the vast amount of existing biological and medical data available today

(Durrant & McCammon, 2012; Ekins et al., 2007). The development of a novel

pharmaceutical costs approximately $1-2 billion United States Dollars (USD) and

takes anywhere from 10-15 years from start (target identification) to finish (clinical

use), which involves target selection, compound screening, preclinical validation,

and clinical trials (Chan et al., 2019; Sun et al., 2022). Preclinical validation

includes in-vivo experiments involving animal models such as mice or rats that

require maintenance including food and regular cleaning of the animals’ living

conditions, as well as the usage of anesthetics or tranquilizers during invasive

procedures (Robinson et al., 2019). The time and rising costs of these animal

models, estimated to be over $300,000 USD in 2019 (Van Norman, 2019), serve

as another barrier for approval of a drug to market. For the pharmaceuticals that

do reach clinical trials, costs continue to rise with the development of an

2

Alzheimer’s drug for example costing $79 million USD for phase one, $141 million

for phase 2, and $462 million for phases 3 and 4 (Cummings et al., 2021).

Furthermore, there is an incredibly high failure rate for drug candidates; 90% of

drugs that are able to make it to clinical trials fail during phases 1, 2, or 3, and this

rate is even higher when candidates that fail preclinical stages are counted (Sun

et al., 2022). The current drug development process can be summarized as being

costly and time consuming considering the extremely high failure rate of drug

candidates.

With this in mind, in-silico methods are playing an increasingly important role

within drug design and discovery due to their efficiency in both cost and time, not

to mention the ability to take advantage of scientific literature, health records, and

the abundant amount of biomedical data available. For instance, the drug-gene-

pathway (DRUGPATH) meta-database consolidates numerous databases such

as the Food and Drug Administration’s National Drug Code directory,

ConsensusPathDB, and the Toxin and Toxin-Target Database among others in

order to predict adverse drug interactions (Jaundoo & Craddock, 2020). In-silico

systems biology approaches such as these are also useful for drug repurposing,

where the off-target interactions of existing pharmaceuticals can be leveraged

towards diseases or any application other than what was originally intended.

Repurposing not only provides patients with novel treatments that may otherwise

3

not exist, but it additionally allows pharmaceutical companies to potentially save a

therapeutic that has failed in one domain (Palve et al., 2021).

The overarching focus of this thesis was the use of various in-silico methods

to perform drug discovery, specifically, utilizing techniques such as drug docking,

molecular dynamics (MD), and machine learning (ML) to ultimately improve drug

treatment predictions in diseases such as cancer. Developing more accurate

computational tools and methods would not only lead to potentially more effective

pharmaceuticals with less side effects, but it would also drastically reduce the

costs of drug development because it would filter candidates destined to fail in

later stages. The first chapter focuses on research performed using the more

traditional MD and drug docking computational methods to model novel platelet

activated ligands (PALs) for the purpose of targeted drug delivery. This involved

building all structures, both receptor and ligands, in the Molecular Operating

Environment (MOE) application, the use of MD to obtain a pose, or conformation,

of the receptor likely to be found in-vivo, normalization of the predicted binding

affinities of the docked ligands and experimental values obtained from the CSTS

Health Care company (Toronto) for comparison, and evaluation of the in-silico

results to determine how to best optimize PALs. The second chapter follows with

the current state of the field transitioning to using ML as a supplement to these

traditional methods, where ML models were trained to classify pharmaceuticals

based on their chemical properties, allowing researchers to efficiently screen drug

4

libraries used during early-stage drug discovery for further drug docking and other

types of computational modeling. Here, several different ML algorithms were

trained in classifying pharmaceuticals that act as either activators, blockers, or

non-binders for a set of receptors to determine the one best suited for the task.

This entire process included data augmentation to boost the total number of

pharmaceuticals within each class, using MOE to calculate hundreds of features

for all pharmaceuticals, feature selection to discard irrelevant features, and

training using the RapidMiner Studio application. Finally, the third chapter

demonstrates how ML was utilized to predict properties from interactions that

occur within cellular networks, replacing an existing in-silico application in the

process. The Bioelectric Tissue Simulation Engine (BETSE) application (Pietak &

Levin, 2016) was first used to simulate thousands of different cellular networks to

generate a comprehensive amount of data regarding membrane potentials and

ion channel flux. Next, ML was performed with a total of 8 different types of

learners, including a meta-learner made up of 5 base learners. The trained ML

models were then evaluated to determine the one(s) best suited for predicting ion

channel concentrations as well as membrane potentials, providing a more efficient

and scalable method compared to BETSE.

These 3 chapters provided an insight into both conventional and modern

computational drug discovery, exhibiting their ability to integrate the existing

knowledgebase of chemical, physical, and biomedical data to predict and model

5

various interactions (e.g., peptide-peptide) and other biological activity (e.g., ion

channels). Not only that, but in-silico methods were used in collaboration with in-

vitro experiments, allowing researchers in both domains to benefit.

6

Chapter 1: Using Platelet Activated Ligands

for Targeted Drug Delivery

1.1 Introduction

Platelets are a special type of blood cell that act as first responders in tissue injury

and play crucial roles in wound healing, cancer progression, and metastasis (Jurk

& Kehrel, 2005; Schwarz et al., 2020). That being said, tumor cells also secrete

platelet activators such as adenosine diphosphate (ADP) and thrombin in order to

activate platelets (Palacios-Acedo et al., 2019). Once activated, platelets bind to

these tumor cells and serve as a protective measure against shear stress and

apoptosis by adhering to the site of action and creating a provisional stromal matrix

both rich in sequestered growth factors (GFs) as well as angiogenesis-regulating

proteins located in the platelets’ alpha-granules, one of 3 types of secretory

granules that contain proteins that facilitate the adhesive process among other

functions (Italiano et al., 2008; Schwarz et al., 2020). This behavior of

sequestering GFs and releasing them on tumor sites makes platelets the perfect

carrier for anti-tumor therapeutics. Ideally, platelets would allow drugs to be

delivered without any interaction with other organs, avoiding off-target

interactions, better known as side effects.

Klement et al. (2009) had described previously that the sequestration of

growth regulators in platelets within cancer conditions is a selective process and

7

occurs through the interaction of growth regulators with glycosaminoglycans

(GAGs), which are sulphated, negatively charged polysaccharides located within

the platelet alpha-granules (Zhang et al., 2020). Moreover, there are 2 main types

of GAGs: heparan sulfate (HS) and chondroitin sulfate (L. Zhang, 2010). Binding

and sequestration via GAG-binding domains preserves both the integrity and

functions of the proteins, and additionally, prevents ligand activation and signaling

(Italiano et al., 2008; Klement et al., 2009, 2015). This GAG-binding process

inspired a strategy to develop PALs, which are peptides that mimic the GAG-

binding domain and can be used to anchor a drug to a given GAG, ultimately

leading to the sequestration of the drug within platelet alpha-granules without

receptor binding. Platelet sequestration protects the drug from plasma proteases

and degradation, extending the half-life to that of a platelet, approximately 4-7

days.

Off-target interactions have long plagued the field of drug discovery,

leading to issues with efficacy and toxicity. Small molecule drugs are known to

bind anywhere from 6-11 different targets minimum outside of their intended

pharmacological target, and this number may be even larger due to the fact

pharmaceutical companies only test a small subset of potential targets during

preclinical trials (Rao et al., 2019). Consequently, when attempting to bring a drug

candidate to market, one of the most common points of failure during testing is

either high accumulation of the drug within off-target organs, or alternatively, poor

8

accumulation within the intended organs (Zhao et al., 2020). The usage of PALs

for drug delivery would alleviate this issue, saving millions of dollars in costs as

well as valuable research and development time.

 In this chapter, peptides derived from a PAL FASTA sequence previously

published by Butterfield et al. (2010) were built using the MOE application to model

their interactions with the GAG chondroitin sulfate A (CSA). There was a total of

13 unique PALs modeled in-silico: PAL1 was the original high affinity peptide to

CSA obtained from Butterfield et al. (2010), PAL2 was created by the CSTS Health

Care company by scrambling the sequence of PAL1, and the 11 mutant peptides,

known as PALs 1-11A, were created by CSTS Health Care through alanine

mutagenesis. In-vitro experiments from CSTS Health Care confirmed the binding

of both PAL1 and PAL2 to CSA, and furthermore, the conjugation of a large protein

to these PALs did not prevent binding, leading to the possibility of anchoring a

drug for the purpose of targeted drug delivery. The goal of this study was to

establish an in-silico model that allows for the evaluation of the interactions

between the PALs and CSA, which would allow for future optimization of these

PALs and ultimately identify the one best suited for binding and transporting

therapeutics. This would allow a given therapeutic to be attached to a PAL, which

itself would bind to a GAG such as CSA, allowing it to be sequestered within

platelet alpha-granules and then transported to a target site as in the case of tumor

cell-induced platelet activation for example.

9

1.2 Methods

As an overview, MOE (version 2019.01) was used to generate the 3D structures

of PAL1, PAL2, and the mutant PALs 1-11A from their FASTA sequences.

Additionally, the FASTA sequence for a charge free ligand (CFL) was also

obtained from CSTS Health Care, which served as a control during their in-vitro

experiments as a weak binder to CSA. The Protein Data Bank (PDB) online

database was used to obtain the template structure for CSA (PDB ID: 1C4S) as

well as for the complete structure of platelet factor 4 (PF4; PDB ID: 1F9Q), a

protein stored in platelet alpha-granules with a high natural affinity to GAGs such

as chondroitin sulfate and HS (Kowalska et al., 2010). Once all 3D structures were

built, an MD technique known as simulated annealing (SA) was used to determine

the lowest energy pose, or conformation, of CSA assumed to be found in-vivo

within the physiologically relevant tissues. Afterwards, PAL1, PAL2, PALs 1-11A,

CFL, and PF4 were docked to this lowest energy conformation of CSA to identify

their bound positions on the structure. Finally, the contribution of the individual

forces involved in each of the bound ligands to CSA structures was evaluated.

10

Table 1.1: FASTA sequences of PAL1, PAL2, PALs 1-11A, and CFL.
Peptide Amino Acid Sequence

PAL1 ERRIWFPYRRF

PAL2 RFRWPYRIREF

PAL1A ARRIWFPYRRF

PAL2A EARIWFPYRRF

PAL3A ERAIWFPYRRF

PAL4A ERRAWFPYRRF

PAL5A ERRIAFPYRRF

PAL6A ERRIWAPYRRF

PAL7A ERRIWFAYRRF

PAL8A ERRIWFPARRF

PAL9A ERRIWFPYARF

PAL10A ERRIWFPYRAF

PAL11A ERRIWFPYRRA

CFL EGGIWFPYGGF

1.2.1 Generating 3D Structures

The FASTA sequences for each of the PAL1, PAL2, PALs 1-11A, and CFL were

imported into MOE, where their 3D structures were constructed using the Protein

Builder tool that utilized chemical and physical properties of the amino acids to

determine their in-silico structures. The in-vivo or in-vitro structures of the PALs

and CFL were unknown as the short length of peptides such as these poses a

challenge in obtaining stable structures experimentally (Aldas-Bulos & Plisson,

2023). CSA was built using the 1C4S structure as a starting point to generate a

34-unit alternating chain of 4-Deoxy-beta-D-glucopyranuronic acid (GC4; A), 2-

Deoxy-2-Acetamido-beta-D-Galactose-4-Sulfate (ASG; B), alpha-D-

Glucopyranuronic acid (GCU; C), and finally ASG again. 1C4S contained the 6

11

units GC4-ASG-GCU-ASG-GC4-ASG (A-B-C-B-A-B) and using MOE’s Builder

tool, this chain was continued until it reached a total of 34 units so it would reflect

the in-vitro experimental conditions from CSTS Health Care; A-B-C-B-A-B-A-B-C-

B-A-B-A-B-C-B-A-B-A-B-C-B-A-B-A-B-C-B-A-B-A-B-C-B. Once all structures

were complete, they were then processed using the default settings of QuikPrep,

a toolkit in MOE that performed energy minimization using a combination of the

steepest descent, conjugate gradient, and truncated newton methods depending

on whether the gradient was calculated as high, small, or reasonable respectively

using the Amber ff10 force field. Moreover, QuikPrep added all hydrogens, polar

and non-polar, and removed all waters. It is important to note that although CFL

is neutral by design, it had to undergo this preparation and become charged,

otherwise docking to CSA would have failed.

1.2.2 Simulated Annealing

MOE also served as an interface to the Nanoscale Molecular Dynamics (NAMD;

version 2.13) application, which was used to perform all MD simulations. MD is a

technique in which Newtonian physics is used to calculate simple approximations

of atomic movement, which includes the forces originating from interactions

between bonded and non-bonded atoms (Durrant & McCammon, 2011). Both

chemical bonds and atomic angles are simulated via virtual springs, while non-

bonded forces emerge from van der Waals (vdW) and electrostatic interactions,

12

modeled using the Lennard-Jones potential and Coulomb’s law, respectively

(Durrant & McCammon, 2011).

Due to the fact that CSA was built starting from a template structure, a

technique known as SA was employed to remedy any optimization problems. This

is a local search algorithm that increases the chance a structure will overcome

conformations corresponding to the local minima on the potential energy surface,

and instead obtain the global minima conformation (Gendreau & Potvin, 2010).

SA involves first heating up a structure within a high temperature environment and

then performing all subsequent simulations in gradually cooler environments to

determine the structure’s final conformation (Hatmal & Taha, 2017). SA was

performed in this chapter by running 4 consecutive simulations, each with distinct

temperature phases: I) 295.15K, II) 310.00K, III) 400.00K, and IV) 295.15K.

Except for temperature, the parameters of each simulation were kept the same;

see Table 1.2 for details. The default Amber ff10 force field was used, the pH was

set to 7.35 to keep consistent with the previous in-vitro experiments of CSA from

CSTS Health Care, and the structure was simulated within water. The temperature

within each phase was also kept consistent throughout the entire simulation,

meaning there were no heating up or cooling down periods, and no pressure was

applied within any of the simulations.

13

Table 1.2: Parameters used during all phases of SA.
Parameter Value

Timestep 2.0

pH 7.35

Steps per Cycle 25

1.2.3 Drug Docking

Drug docking is a technique that simulates the binding of a ligand, a drug for

example, to a receptor such as a protein or other macromolecule. Docking

involves 2 processes: sampling, where the conformational space, the possible 3D

arrangement of atoms, of the ligand are explored so that the second process,

scoring, can calculate the estimated binding affinity, or strength of the bond, of

each bound conformation to the receptor (Crampon et al., 2022). There are a

variety of sampling strategies, but here the triangle matcher algorithm was used

that systematically aligns triplets of ligand atoms with alpha spheres on the

receptor, which are triplets of receptor atoms identified during the site finder

process to determine active sites (Chemical Computing Group, 2019a). The

London 𝛿G scoring function was used to estimate binding affinity. Empirical

methods such as London 𝛿G are a function of components such as hydrogen

bonds as well as ionic, hydrophobic, and hydrophilic interactions among others,

the values of which are determined using regression analysis on experimental

data (Crampon et al., 2022).

14

Drug docking of PAL1, PAL2, mutant PALs 1-11A, CFL, and PF4 to CSA

was performed using MOE. While induced fit docking was selected, a process

where the side chains of both the receptor and the ligand are kept flexible during

docking, CSA was instead kept entirely rigid while the ligands were kept flexible.

This was due to issues with the MOE application labeling the entire CSA structure

as a backbone, possibly stemming from converting the structure from MOE →

NAMD (for SA) → MOE (for QuickPrep).

Furthermore, instead of specifying a binding region on CSA, all ligands

were allowed to bind to any region on the receptor in a method known as blind

docking (Hetényi & van der Spoel, 2002). The default parameters in MOE were

used for docking except for the number of refinement poses, which was increased

from 5 to 30 in order to increase the likelihood of obtaining the lowest energy

conformation of each ligand. During docking, the placement process is used to

generate poses of the docked ligand using the specified placement method, in this

case triangle matcher. Once all poses were generated, the placement scoring

function, London 𝛿G, was then utilized to estimate the binding affinity of each pose

to the receptor.

15

Equation 1.1: The London 𝛿G scoring function utilized during the
placement process of docking to estimate the binding energy of the ligand
to the receptor. Here, 𝒄 is the average gain or loss from rotational and

translational entropy, 𝑬𝒇𝒍𝒆𝒙 represents the energy stemming from the loss

of ligand flexibility, 𝒄𝑯𝑩 and 𝒄𝑴 are ideals of hydrogen bond energy and
metal ligation respectively, 𝒇𝑯𝑩 and 𝒇𝑴 are both values within [𝟎, 𝟏] that
measure the geometric faults of hydrogen bonds and metal ligations
respectively, and finally, 𝑫𝒊 is a variable that represents the desolvation
energy of atom 𝒊 (Chemical Computing Group, 2019a).

𝛿𝐺 = 𝑐 + 𝐸𝑓𝑙𝑒𝑥 + ∑ 𝑐𝐻𝐵𝑓𝐻𝐵 + ∑ 𝑐𝑀𝑓𝑀 + ∑ 𝛿𝐷𝑖

𝑎𝑡𝑜𝑚𝑠 𝑖𝑚−𝑙𝑖𝑔ℎ−𝑏𝑜𝑛𝑑𝑠

After docking, the refinement process was performed to further improve the

poses generated within the placement process. This involved the use of a

molecular mechanics forcefield, specifically Amber10, and the final scoring of

these refined poses was estimated using the Generalized Born solvation mode

(GB/VI). Force field scoring functions such as GB/VI are derived from molecular

force fields, in this case both MMFF94x and AMBER99, and calculate binding

affinity using the sum of vdW interactions, electrostatics, and entropy terms

(Chemical Computing Group, 2019a).

16

Equation 1.2: The GBVI/WSA 𝛿G forcefield-based scoring function that
estimates the binding affinity of the docked ligand to the receptor. Here, 𝒄
represents the average gain or loss from rotational and translational
entropy, 𝜶 and 𝜷 are forcefield-dependent constants that were determined
during training, 𝑬𝑪𝒐𝒖𝒍 and 𝑬𝒔𝒐𝒍 represent the coulomb and solvent
electrostatic terms respectively, 𝑬𝒗𝒅𝑾 is the vdW forces, and 𝑺𝑨𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 is

the surface area (Chemical Computing Group, 2019b).

𝛿𝐺 ≈ 𝑐 + 𝛼 [
2

3
(𝛿𝐸𝐶𝑜𝑢𝑙 + 𝛿𝐸𝑠𝑜𝑙) + 𝛿𝐸𝑣𝑑𝑊 + 𝛽𝛿𝑆𝐴𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑]

Table 1.3: All parameters used during docking of PAL1, PAL2, PALs 1-11A,
and PF4 to CSA.
Parameter Value

Placement (Method) Triangle Matcher

Placement (Score) London 𝛿G

Placement (Poses) 30

Refinement (Method) Induced Fit

Refinement (Score) GBVI/WSA dG

Refinement (Poses) 30

Once MOE finished docking, Equation 1.3 below was used to normalize

both the calculated binding affinities from MOE as well as the in-vitro experimental

values from CSTS Health Care.

Equation 1.3: Formula used to normalize the binding affinities of both in-
silico and in-vitro experimental values so they can be compared. ∆𝑮 is the

binding affinity, 𝑲 is the Boltzmann constant, 𝑻 is the temperature, and ∆𝑮̅̅ ̅̅
is the normalized value.

𝑍−1 = ∑ 𝑒𝑥𝑝 (
−∆𝐺𝑖

𝐾𝑇
)

𝑁

𝑖=1

∆𝐺̅̅ ̅̅ = 𝑍−1 × ∑ (∆𝐺𝑖 × exp (
−∆𝐺𝑖

𝐾𝑇
))

𝑁

𝑖=1

17

1.3 Results

Phase I SA of CSA (temperature: 295.15K) ran for a total of 12.97 ns, phase II

(temperature: 310.00K) for 9.33 ns, phase III (temperature: 400.00K) for 10.04 ns,

and the total simulation time for phase IV (temperature: 295.15K) was 10.47 ns.

Figure 1.1 displays CSA at each phase, including the final phase IV structure that

was used for drug docking which is color coded to display the electrostatic energy;

red identifies areas that are more electronegative, white refers to neutral areas,

and blue areas are more electropositive. The final phase IV CSA was shown to be

mainly electronegative, and its conformation contained a small notch towards the

center of an otherwise straight structure.

18

Phase I

Phase II

19

Phase III

Phase IV

Figure 1.1: The structure of CSA after each of the 4 phases of SA, color
coded to show its electrostatic energy. The color range indicates a net
charge from -40 elementary charges (red) to 0 (white) to +40 elementary
charges (blue).

After MD was completed, drug docking of PAL1, PAL2, mutant PALs 1-

11A, CFL, and PF4 to the phase IV conformation of CSA resulted in 30 total

docked poses for each of these ligands, where the lowest energy docked ligand

was used to determine its preferred binding location on the CSA receptor. Most of

20

the ligands were bound around or to the central notch of the CSA structure, except

for PAL9A that preferred the left-most side; see Figure 1.2.

21

1A

2A

3A

4A

5A

6A

7A

8A

9A

10A

11A

CFL

PAL1

PAL2

PF4

Figure 1.2: PAL1, PAL2, PALs 1-11A, CFL, and PF4 docked to the phase IV
structure of CSA. Each ligand is color coded where red areas are more
electronegative, white areas are neutral, and blue areas are more
electropositive.

22

The normalized binding affinities from MOE and in-vitro experimental

results are shown in Table 1.4. The Pearson R correlation between in-vitro and in-

silico was approximately 0.50.

Table 1.4: Normalized scores of the in-silico docking results and in-vitro
binding affinities obtained from CSTS Health Care. All units were originally
in kcal/mol and are ordered from best/lowest to worst/highest in-silico
binding affinity.
Ligand ∆𝑮̅̅ ̅̅ (In-silico) ∆𝑮̅̅ ̅̅ (In-vitro)

PF4 -17.48 N/A

PAL6A -11.39 -8.23

PAL4A -11.15 -5.39

PAL10A -11.13 -6.15

PAL5A -10.89 -6.32

PAL1 -10.84 -6.85

PAL8A -10.74 -6.45

PAL2 -10.66 -6.88

PAL7A -10.62 -3.32

PAL1A -10.38 -4.48

PAL3A -10.36 -7.14

PAL11A -10.10 -4.60

PAL9A -10.06 -6.18

PAL2A -9.63 -5.41

CFL -8.71 -4.33

23

Figure 1.3: Graph displaying the in-vitro binding affinities of PAL1, PAL2,
PALs 1-11A, and CFL to CSA on the x-axis while the corresponding in-silico
docked values of each ligand were placed on the y-axis. Note that because
CSTS Health Care did not perform an in-vitro binding of PF4 to CSA, this
ligand was not shown. The Pearson R was 0.50.

Additionally, the ranking of both the in-silico and in-vitro results are shown

below, ordered from lowest to highest binding affinity for comparison.

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

In
-s

il
ic

o
 V

al
u

es

In-vitro Values

Normalized Binding Affinities: In-vitro vs In-silico

24

Table 1.5: The ranking of the docked and experimental ligands, ordered
from best to worst. Note that the in-vitro binding of PF4 was not performed
by CSTS Health Care, but is a natural high affinity ligand to GAGs and would
therefore be the strongest binder.
Rank In-silico In-vitro

1 PF4 PF4*

2 PAL6A PAL6A

3 PAL4A PAL3A

4 PAL10A PAL2

5 PAL5A PAL1

6 PAL1 PAL8A

7 PAL8A PAL5A

8 PAL2 PAL9A

9 PAL7A PAL10A

10 PAL1A PAL2A

11 PAL3A PAL4A

12 PAL11A PAL11A

13 PAL9A PAL1A

14 PAL2A CFL

15 CFL PAL7A

The interacting charges between each ligand:CSA complex were also

evaluated, and the total charge, defined as the sum of formal charges (FCharge),

ranged between -1 and 7: PAL1A was 4, PALs 2-11A were within the 2-3 range,

CFL was -1, and PF4 had a charge of 7. For electrostatic potential energy (E_ele)

most of the ligands were within the -300 to -400 kcal/mol range, the greatest

exceptions being CFL which was approximately -8 kcal/mol, and PF4 was

approximately -786 kcal/mol. The sum of the atomic polarizabilities (apol) for each

of the docked ligands were mostly between 238 and 247, CFL was in the 184

range, PAL1 and PAL2 were both approximately 252, and PF4 was approximately

1105.

25

1.4 Discussion

The SA phase IV structure of CSA was shown to uncoil from its phase I

conformation, was mostly electronegative, and had a notch towards the center.

During drug docking on the entire structure, this notch was found to be the

preferred binding region for all ligands with the exception of PAL9A. The docking

results showed PF4 had the highest affinity by far, with PALs 6A, 4A, and 5A

trailing behind, and then PAL1 in fifth place. PAL2 was in seventh place, trailing

behind PAL10A. As expected, CFL was in last place as a control ligand, which

was consistent with the in-vitro results from CSTS Health Care. Electrostatic

analysis using MOE confirmed that positively charged amino acid residues, mostly

arginines, of the PALs formed ionic bonds with the negatively charged sulfate

groups in CSA. That being said, the structure of the CSA:PAL1 model did not

support an equal contribution of the 4 arginine side chains; instead, only arginines

with spatial proximity to the sulfate groups on CSA promoted binding. These

results suggest that modifying PAL to change the position of the arginines would

allow it to better accommodate the sulfate groups on CSA during binding,

improving the overall PAL:CSA affinity.

 Comparison of the in-vitro and in-silico binding affinity rankings to CSA

showed similarities; both PAL6A (rank: 2) and PAL11A (rank: 12) were

consistently ranked between docking and experimental results, with PAL1 and

PAL8A being within 1 rank of each another as well. The in-silico results showed

26

that CFL was the weakest binder as expected, however, in-vitro PAL7A was

shown to be the worst binder to CSA. This was explained by CSTS Health Care

stating that the proline being in the seventh position within PAL7A’s FASTA

sequence may have destabilized the structure or have positioned it in an

unfavorable conformation that led to undetectable binding during isothermal

titration calorimetry (ITC). Finally, PF4 was docked to CSA as a control for the in-

silico results, and it met expectations as the strongest binder seeing as it has a

natural affinity for negatively GAGs such as CSA.

1.5 Conclusion

The goal of this study was to develop a computational model of PALs obtained

from CSTS Health Care derived from a high affinity PAL previously published by

Butterfield et al. (2010). Establishing an in-silico model would allow for future

research into PAL optimization for the purpose of targeted drug delivery with

minimal to no off-target interactions. Here, the drug would be anchored to a PAL,

which mimics the GAG binding domain, allowing it to be sequestered into the

platelet alpha-granules and finally transported to the site of action. The PAL

sequence obtained from Butterfield et al. (2010), known as PAL1, was their

highest affinity peptide to CSA and it served as the base for the PAL2 as well as

mutant PALs 1-11A sequences modeled within this study.

27

 Multiple in-silico techniques were utilized in order to model and evaluate

the interactions between the various PALs and CSA. First, 3D structures were built

from the FASTA sequences of PAL1, PAL2, the 11 mutant PALs, and the control

ligand, CFL. Moreover, the protein structure of PF4 was downloaded from the PDB

in addition to a template structure for CSA that was used as a starting point for

creating a 34-unit peptide. Next, a method known as SA was performed in 4

phases to obtain a low energy conformation of CSA that would most likely be found

in-vivo. Finally, drug docking was performed between PAL1, PAL2, the mutant

PALs, CFL, and PF4 to the phase IV conformation of CSA to evaluate both the

electrostatic energies that contributed to binding as well as the rank of the ligands

from strongest to weakest binders.

The computational methods used in this chapter, specifically homology

modeling of CSA, MD/SA, and drug docking allowed for the evaluation of

PAL:CSA binding. Furthermore, using the knowledge gained from this study, novel

PALs can now be designed and tested in-silico, providing a more flexible and cost-

efficient platform than a wholly experimental approach. In conclusion, the results

show that PF4 and CFL had the highest and lowest affinity for CSA, which was

expected. Evaluation of the electrostatic interactions between the PALs and CSA

showed that the interactions between the negatively charged sulfate groups on

CSA and the positively charged arginines on the PALs were responsible for

binding. Future optimizations of PAL will include rearranging the position of the

28

arginines on PAL to better accommodate the sulfate groups on CSA, leading to a

stronger binding affinity of the PAL:CSA complex.

The computational methods utilized in this chapter have been around for

decades, the first instances of both drug docking as well as MD of biomolecules

were performed in the late 1970s (Karplus, 2003; Amaro et al., 2018). Newer

techniques have shifted towards using ML methods to make predictions regarding

biological processes using data obtained from published studies, databases, and

repositories. The following chapter explores how ML can be used to classify a

given therapeutic’s action (activator, blocker, or non-binder) towards a receptor,

involving processes such as data augmentation, feature selection, and training

and validation of the ML models.

29

Chapter 2: Supervised Machine Learning for

Drug-Action Classification

2.1 Introduction

As discussed previously, there are various in-silico techniques used during the

development of a novel therapeutic such as homology modeling, MD/SA, and drug

docking. More recent advances in the field have shifted towards utilizing ML for

various tasks including predicting both the binding affinity as well as the bound

conformation of a ligand to a receptor (Yang et al., 2022; Isert et al., 2023), rapid

screening of drug libraries for specific properties such as those that meet Lipinski’s

rule-of-5 for example (Cáceres et al., 2020), predicting the 3D structure of proteins

from their amino acid sequences (e.g., AlphaFold), and so on. The availability of

large amounts of biomedical data also allows researchers to focus on areas that

have traditionally received relatively less attention, and in this chapter the focus

was on drug-action prediction. A drug, defined here as any chemical that induces

a biological response, can serve as an agonist (activator) or an antagonist

(blocker) to a receptor such as a protein for instance (Neubig et al., 2003). More

formally, an agonist is any drug that induces a biological response when binding

to a protein, and antagonists reduce or block the action of any other drug, often

agonists, by occupying the binding region on their target protein (Neubig et al.,

2003).

30

The idea of 1-drug-1-target is no longer viable; complex diseases such as

cancer involve numerous pathways and proteins, and pharmaceuticals designed

to target multiple receptors have been shown to be more effective and efficient

compared to those with high specificity to their targets (Kabir & Muth, 2022). This

is collaborated in part by mouse knockout studies that have shown only 10% of all

targetable genes are effective as individual targets (Kabir & Muth, 2022), or in

other words, the majority of mouse genes need to be targeted in conjunction with

other genes to be viable as a therapeutic target. That being said, whether its 1-

drug-1-target or 1-drug-multiple-targets (polypharmacology), drug-action

prediction towards a target is necessary to identify adverse drug interactions,

better known as side effects, for a proposed therapy. These predictions are

specifically important for performing as well as identifying potential side effects of

drug repurposing, where an existing market-approved drug is used to treat a

disease or indication not originally intended, especially when 2 or more

pharmaceuticals are combined into a single treatment. Furthermore, predicting

whether a drug would be an agonist or antagonist to a given target allows

researchers to quickly filter drug libraries, often containing millions of chemicals,

during early-stage drug discovery.

In this chapter, a series of ML models were trained to classify a given drug

as an agonist, antagonist, or a non-binder, otherwise known as a decoy, to a set

of receptors: the androgen (AR), estrogen (ER), glucocorticoid (GR), or

31

progesterone (PR) type 1 nuclear receptors. Only full agonists were considered

because they are able to elicit the highest possible biological response from the

receptor upon binding and activation, unlike partial and irreversible agonists

(Pleuvry, 2004). For antagonists, competitive and non-competitive were

considered valid because both types bind to the protein in the same manner, the

main difference being that competitive antagonists can be displaced from the

protein's binding region with a high enough concentration of an agonist, whereas

non-competitive antagonists cannot (Pleuvry, 2004). Decoy drugs were defined as

those that simply did not have any known affinity to the specified receptors.

2.1.1 Objectives

Supervised ML models were trained to predict whether a drug would be an

agonist, antagonist, or decoy to each of the AR, ER, GR, or PR targets. There

were 2 objectives for this thesis: 1) train separate ML models for each receptor

with better classification accuracy, or performance, than baseline; defined as

accuracy of simply classifying every drug as being part of the majority class, and

2) identify the ML model for each receptor with the best performance out of 5

popular learners: decision tree (DECTRE), naive Bayes (NAIBAY), neural net

(NEUNET), random forest (RANFOR), and support vector machine (SVM).

32

Objective 1

The goal of the first objective was to develop a total of 5 ML models for each target:

AR, ER, GR, and PR, which were chosen due to being well characterized in

literature, meaning they have many known agonists, antagonists, and decoys

available for training the DECTRE, NAIBAY, NEUNET, RANFOR, and SVM

learners.

Objective 2

Once the ML models were trained for each receptor, the performance of each

were compared to determine the best model for AR, ER, GR, and PR separately.

The goal was to determine the learner with the best balance of performance and

efficiency, specifically the time required for training, which would allow this method

to be extended to other receptors beyond the ones utilized here.

2.1.2 Machine Learning

The overarching goal of ML is to utilize data in order to make predictions. In this

chapter, supervised learning was used, a method where a training dataset

consisting of labeled examples is provided to a learner so its underlying equations

can determine the parameters that would allow it to accurately predict unseen

data. The validation dataset, consisting of novel examples, is then used to assess

the performance of the newly trained model (Dwork et al., 2015; El Naqa &

Murphy, 2015; Learned-Miller, 2014). Each receptor had their own training and

33

validation datasets; a tab-separated value (TSV) file with the first column

containing the drug names, and every subsequent column containing features, or

characteristics about each drug such as its molecular weight, total number of

aromatic rings, total number of atoms, and so on, with the exception of the final

column that specified the label, or class each drug belonged to: agonist,

antagonist, or decoy.

2.1.3 Related Work

Li et al. (2015) compared the performance of the NAIBAY, k-nearest neighbors

(KNN), recursive partitioning, and SVM supervised ML models in identifying liver

X receptor beta (LXR-beta) selective agonists from non-selective agonists. Using

a training set of 176 compounds comprised of 69 selective and 107 non-selective

agonists, a total of 324 trained models were developed using the abovementioned

learners (Li et al., 2015). Note that the MOE and PaDEL-Descriptor applications

were used to generate a total of 962 combined features for each agonist in the

training dataset. The top 15 models, identified from an initial validation set of 58

compounds (22 selective, 36 non-selective), were assessed for a final time using

a secondary validation dataset consisting of 73 selective LXR-beta agonists and

3 non-selective agonists, 76 novel compounds in total (Li et al., 2015). Of these

15 top models, 3 were able to classify selective and non-selective agonists in the

secondary validation set with a performance greater than the baseline

performance of 96.05%, calculated as the number of entries in the largest class

34

divided by the total number of entries. Overall, while SVM had the best

performance over other models at 97.37%, the large skew towards selective LXR-

beta agonists within the secondary validation set may not reflect the actual

performance of the models in classifying selective versus non-selective agonists

of this receptor.

 Asako and Uesawa (2017) utilized supervised ML to predict ER agonists,

specifically environmental pollutants that disrupt the endocrine system and lead to

issues in reproduction and growth. In this study the authors developed a novel

learner based on RANFOR, an ensemble learner that uses multiple DECTREs to

make predictions, to identify chemicals that specifically target the ER ligand

binding domain (LBD; Asako & Uesawa, 2017). The Tox21 Data Challenge 2014

library of 8,733 known ER-LBD binders was split 50:50 for training and validation,

where a total of 4,071 features were generated for each chemical using a

combination of the MOE 2013.08, MarvinView 6.0.0, and Dragon 6 applications.

These features included a count of the various chemical groups (e.g., aromatic

hydroxyls, phenol/enol/carboxyl OH), bond donor information (e.g., H-bond donor

capacity), pH related features (e.g., lipophilicity under pH = 5.5), and molecular

descriptors such as mass and surface area. Similar to Li et al. (2015) above, the

first validation set was used for model selection while another consisting of 599

ER-LBD binding chemicals assessed the final performance of the single selected

model (Asako & Uesawa, 2017). Here, the area under the receiver operator

35

characteristics (ROC-AUC) curve estimated that the performance of the selected

model was 0.87, a metric in which a value of 1 signifies perfect classification

accuracy and 0 indicates none (Asako & Uesawa, 2017).

 Similarly, Russo et al. (2018) also focused on detection of endocrine

disrupting environmental pollutants that bound to ER. Here, the Bernoulli NAIBAY,

AdaBoost DECTRE, RANFOR, SVM, and deep NEUNET learners were trained

using a dataset of 24,305 compounds amassed from several sources including

Tox21 and CERAPP (Russo et al., 2018). In addition to chemical features such as

molecular weight and the number of aromatic rings for instance, the molecular

fingerprint of each chemical was also generated, which is a string of characters

that describes the structure. For example, a variation of the Morgan algorithm is

used to derive the extended-connectivity fingerprint (ECFP) of molecules such as

butyramide for instance, where its ECFP of “-1708545601” describes the atoms,

bonds, and connectivity of the structure (Rogers & Hahn, 2010). The performance

of all models was evaluated using several scoring metrics including ROC-AUC,

described above, as well as F1 score, precision, and recall, all of which utilize the

terms: true positive (TP), true negative (TN), false positive (FP), and false negative

(FN). For example, when attempting to identify people who are sick with a disease,

mistakenly classifying a healthy person as sick would be a FP while the inverse,

classifying a sick person as healthy, would be a FN. In the same vein, correctly

classifying a healthy person as healthy or a sick person as sick would be a TN and

36

TP respectively. The performance of all scoring metrics for each learner was

normalized to [0,1] and the mean was calculated to obtain the final score and

subsequent ranking of each learner, from best to worst: RANFOR, deep NEUNET,

SVM, Bernoulli NAIBAY, and AdaBoost DECTRE (Russo et al., 2018).

Equation 2.1: The equation for calculating precision (Russo et al., 2018).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Equation 2.2: The equation for calculating recall (Russo et al., 2018).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

2.2 Methods

An overview of the methods are shown in Figure 2.1. Published literature was first

used to find agonists and antagonists for each receptor, while decoy drugs were

obtained from the Database of Useful Decoys: Enhanced (DUD-E; Mysinger et al.,

2012). Next, the agonists, antagonists, and decoys for every receptor were split in

half to create a separate training and validation dataset for AR, ER, GR, and PR.

In cases with an odd number of drugs, the remainder drug was placed into the

training dataset. Due to the fact there were few agonists and antagonists available

for each receptor (≤100 on average) compared to the number of decoys (>14,000),

a process known as data augmentation was performed to generate various

37

conformations of the agonists and antagonists for each receptor, which only

affected properties related to the 3D configuration of their atoms such as

polarizability and dipole moments, to bolster these numbers. Once data

augmentation was completed, the MOE application was then used to generate the

properties, otherwise known as features, of each drug in the training dataset. This

included features such as the number of aromatic rings, Lipinski's rule-of-5

violations, and rotatable bonds, as well as the potential and solvation energies

among others. Appendix Table 1 lists all features.

Table 2.1: The total number of agonists, antagonists, and decoys obtained
for each receptor.
Receptor # Agonists # Antagonists # Decoys

AR 106 18 14,503

ER 62 28 20,818

GR 44 10 15,185

PR 45 7 15,814

RapidMiner Studio (version 9.6; Mierswa & Klinkenberg, 2020) was used

to perform ML, where a process known as cross-validation (CV) was used to train

each of the DECTRE, NAIBAY, NEUNET, RANFOR, and SVM learners. During

each iteration of CV, feature selection was performed where the most useful, or

relevant, features were kept and the rest were filtered so as not to be used during

training, which reduced training time and potentially increased performance (Hall

& Smith, 1998; Lee & Lee, 2006). Finally, the performance of all trained models in

classifying novel agonist, antagonist, and decoy drugs within the validation dataset

38

was assessed. The RapidMiner Studio process used in this chapter is shown in

Figure 2.2.

39

Figure 2.1: An overview of the ML workflow used.

40

Figure 2.2: The RapidMiner Studio process used during ML.

The cost matrix is used to set the penalty for misclassification by the learner

during training for a given class. In this chapter all classes were treated the same,

meaning the penalty for misclassifying an agonist, antagonist, or decoy drug was

exactly the same as the others; see Table 2.2. The reward for correctly

classification was 1 while the penalty for misclassification was −1.

Table 2.2: The cost matrix used in this chapter.
 Agonist Antagonist Decoy

Agonist 1 -1 -1

Antagonist -1 1 -1

Decoy -1 -1 1

41

2.2.1 Compounds

Published literature as well as expert-curated databases such as the Protein Data

Bank (PDB), DrugBank, ChEMBL, and ChemSpider were used to obtain agonists

and antagonists for all targets: AR, ER, GR, and PR. The simplified molecular-

input line-entry system (SMILES) string was downloaded for each drug, which

represents the atoms and stereochemistry of a chemical structure (O’Boyle, 2012);

see Figure 2.3. This format was chosen only because it was the most readily

available option for all agonist and antagonist drugs.

Figure 2.3: Testosterone SMILES string (left) and its corresponding 3-D
structure (right).

Decoy compounds for each receptor were obtained from DUD-E (Mysinger

et al., 2012), which served as training data for the decoy group. These decoys

were in structure data file (SDF) format (Dalby et al., 1992) which can represent

either the 2D or 3D coordinates of all atoms in a compound.

2.2.2 Data Augmentation

The limited number of agonists and antagonists obtained for each receptor, often

less than 100 in total, created a risk of overfitting, where a model performs poorly

42

on novel data (e.g., the validation dataset) because the training data was not

representative of the actual population (Mutasa et al., 2020). To alleviate this

issue, a process known as data augmentation was performed where new entries

are generated from existing ones (Lemley et al., 2017), and in this case, MOE was

used to generate numerous conformations of each agonist and antagonist via the

“Conformation Import” tool. This process was only performed for the agonists and

antagonists since there were already thousands of decoys available for each

receptor.

MOE generated conformations using 5 main steps. First, acids or bases

that have previously been (de)protonated were corrected, and then filtering was

performed where drugs that did not meet specific thresholds and/or violated

certain rules such as Lipinski's rule-of-5 were removed (Chemical Computing

Group, 2019a). Each drug was then broken into overlapping fragments where the

conformation(s) of these individual fragments were determined using a stochastic

conformational search (Chemical Computing Group, 2019a), the parameters of

which are shown in Appendix Table 2.

43

Table 2.6: Total time used for conformation generation on the Compute
Canada Graham platform. All times are rounded to the nearest minute (m)
or hour (h).
 Time (Agonists) Time (Antagonists)

AR 1h, 32m 5m

ER 19m 49m

GR 1h, 23m 2m

PR 29m 2m

Table 2.3: Total time used to perform conformation generation on the
Compute Canada Graham platform. All times are rounded to the nearest
minute (m) or hour (h).

 Time (Agonists) Time (Antagonists)

AR 1h, 32m 5m

ER 19m 49m

GR 1h, 23m 2m

PR 29m 2m

The individual fragments of various conformations were put back together

to create numerous conformations of the original drug, and the vdW energy of

each conformation was calculated to filter those with bad contacts between atoms

(Chemical Computing Group, 2019a). Finally, the strain energies were calculated

and, along with the conformations, were written to the output file (Chemical

Computing Group, 2019a).

44

Table 2.4: Total number of agonists within the training and validation
datasets before and after conformation generation.
 Training Validation

 Before After Before After

AR 53 2198 53 1579

ER 31 1440 31 1417

GR 22 4014 22 3437

PR 23 1434 22 799

Table 2.5: Total number of antagonists within the training and validation
datasets before and after conformation generation.
 Training Validation

 Before After Before After

AR 9 588 9 853

ER 14 2370 14 1337

GR 5 542 5 477

PR 4 584 3 258

Table 2.6: Total time used for conformation generation on the Compute
Canada Graham platform. All times are rounded to the nearest minute (m)
or hour (h).
 Time (Agonists) Time (Antagonists)

AR 1h, 32m 5m

ER 19m 49m

GR 1h, 23m 2m

PR 29m 2m

2.2.3 Feature Generation

Features are properties or characteristics that describe a given agonist,

antagonist, or decoy such as its molecular weight, number of

hydrogen/carbon/nitrogen/etc. atoms, and potential energy that allows a trained

model to differentiate between classes. MOE was used to calculate a total of 435

45

features for all agonists, antagonists, and decoys via the QuaSAR-Descriptor

utility, which included (a) 2D (e.g., number of acidic, aromatic, H-bond donor,

heavy, etc. atoms; number of single, rotatable, triple, etc. bonds; molecular weight;

vdW volume and surface area; etc.), (b) internal 3D (i3D; e.g., total, potential,

electronic, electrostatic, etc. energy; polar surface area; surface rugosity; etc.), (c)

external 3D (x3D; e.g., dipole moment, principal moment of inertia, non-bonded

interaction energy, etc.), and (d) protein (e.g., net charge; hydrophobicity;

accessible surface area, volume, etc.) descriptors (Chemical Computing Group,

2019a).

2.2.4 Importing Data into RapidMiner Studio

Once the training and validation datasets for AR, ER, GR, and PR were finalized,

they were imported into RapidMiner Studio. Figure 2.2 shows an overview of the

ML process, which contains an operator named “Replace Missing Va…” that

expands to "Replace Missing Values''. During feature generation, some features

were unable to be computed for certain drugs and consequently had blank or

missing values, which posed an issue for learners such as NEUNET. To mitigate

this, all entries with missing values were replaced with −1, a unique value that did

not occur elsewhere. Other methods for handling missing values included the

removal of the drug from the dataset as well as replacement using the mean or

median value of the corresponding feature. Neither of these were ideal, as there

was no guarantee that the feature associated with the missing value would have

46

been chosen during the feature selection process, leading to the removal of an

otherwise valid drug. Furthermore, the use of −1 for only missing values avoided

overlap between calculated and missing data unlike the median or mean, which

may have led to inconsistencies between features. For example, in the training

dataset for AR the mean number of carbon atoms was 18.4 and the median was

19, which would have conflicted with any drug weighing <216 Daltons (Da) or <228

Da respectively, seeing as a single carbon atom has a weight of 12.01 Da (de

Laeter et al., 2003).

2.2.5 Machine Learning

Training of the DECTRE, NAIBAY, NEUNET, RANFOR, and SVM learners was

completed using external 𝑘-fold CV where 𝑘 = 10.

Table 2.7: Total number of agonists, antagonists, and decoys within the
training and validation datasets for each receptor after data augmentation.
Receptor Training Validation

AR 10,036 9,687

ER 14,224 13,160

GR 12,148 11,509

PR 9,924 8,967

2.2.5.1 Cross-Validation

𝑘-fold CV is a data resampling method that reduces the likelihood of overfitting by

training and validating multiple models based on different subsets of the entire

47

training dataset. First, the training dataset 𝑋 was first split into 𝑘 equally sized

subsets, {𝑥1, 𝑥2, … , 𝑥𝑘}, and the learner was then trained using 𝑘-1 subsets,

{𝑥1, 𝑥2, … , 𝑥𝑘−1}, where the last subset, 𝑥𝑘, was used as the validation set. This

process occurred 𝑘 number of times such that each subset was used for validation

exactly once. Finally, the performance of each model on their corresponding

iteration, otherwise known as a fold, was averaged into a final score (Refaeilzadeh

et al., 2009; Mierswa & Klinkenberg, 2020). Note that the output model produced

by RapidMiner Studio was based on the average performance of each model

within every fold. Stratified sampling was used where both the training and

validation subsets used in each fold contained approximately the same proportion

of classes as the entire training dataset (Mierswa & Klinkenberg, 2020). For

instance, the PR training dataset was comprised of approximately 14.5% agonists,

5.9% antagonists, and 79.7% decoys, which was kept largely intact within each

training and validation subset created during each fold of CV. Table 2.8 contains

an example of 3-fold CV.

Table 2.8: Example of 𝒌-fold CV where 𝒌 = 3 and the training dataset, 𝑿, is
split into {𝒙𝟏, 𝒙𝟐, 𝒙𝟑} subsets. The final performance of the learner is an
average of all scores over all folds.

Fold Training Validation Score

1 {𝑥1, 𝑥2} { 𝑥3} 𝑠1

2 {𝑥1, 𝑥3} { 𝑥2} 𝑠2

3 {𝑥2, 𝑥3} { 𝑥1} 𝑠3

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =

𝑠1 + 𝑠2 + 𝑠3

3

48

2.2.5.2 Feature Selection

Feature selection is a process used to identify and remove irrelevant features from

the training dataset, which leads to a reduction of noise and can increase

performance by allowing the learner to more easily distinguish relationships

between the remaining features and classes (Hall & Smith, 1998). The forward

selection algorithm was used to perform feature selection, which occurred

internally within each fold of 𝑘-fold CV before training. Starting from an empty set,

𝐹 = {}, every feature was evaluated individually using 5-fold CV and the one that

best classified agonists, antagonists, and decoys was added to the feature set,

𝐹 = {𝑓1} (Reif & Shafait, 2014). Next, 𝐹 was coupled with every other feature (e.g.,

{𝑓1, 𝑓2}, {𝑓1, 𝑓3}, {𝑓1, 𝑓4}, etc.) to again determine which combination yielded the best

performance. Feature set 𝐹, for example 𝐹 = {𝑓1, 𝑓3}, was then continuously

combined with all remaining features until either all features were evaluated, or

the classification performance plateaued after a specified number of iterations,

kept as the default value of 1 in this chapter (Reif & Shafait, 2014). The final set

of features, 𝐹 = {𝑓1, 𝑓3, 𝑓6, 𝑓87, 𝑓103, … } for instance, were the ones kept while the

rest of the features were discarded. The parameters used by RapidMiner Studio

for feature selection can be found in Appendix Table 3.

 In RapidMiner Studio the “Forward Selection” operator was a nested one

containing the “Cross Validation” operator, which in turn was comprised of a

training and validation phase; see Figure 2.4.

49

Figure 2.4: Architecture of the Forward Selection operator in RapidMiner
Studio. Starting from the top, the operator “Forward Selection” contains
the “Cross Validation” operator, which in turn was comprised of training
and validation phases. The “Classifier” operator is one of DECTRE,
NAIBAY, NEUNET, RANFOR, or SVM. The “exa” port refers to the example
set, or input data, the “mod” port is the output model obtained from a given
operator, “tes” is the test or validation subset for the current fold of CV, the
“unl” port is for unlabeled data, “lab” is labelled data, and the “per” port is
the estimated performance of the model.

2.2.5.3 Decision Tree

A DECTRE is a tree-like structure with a root, or the starting point for classification,

that has attached branches, which represent decisions stemming from features,

which contain many nodes, each of which route the query drug based on a specific

50

threshold for a given feature, that eventually terminate at leaves, where

classification occurs (Mierswa & Klinkenberg, 2020); see Figure 2.5. For instance,

in RapidMiner Studio the construction of a DECTRE from a training dataset starts

with using the gain ratio criterion to select the best feature for splitting. All possible

splits for every feature are first evaluated, for example the number of Lipinski rule-

of-5 violations, 𝑋 = {0,1,2,3}, and the number of carbon atoms, 𝑌 = {4, 5, 6, 7}. The

midpoints of all feature values are then used as thresholds for splits (Mierswa &

Klinkenberg), in this case {0.5, 1.5, 2.5} and {4.5, 5.5, 6.5} respectively, where the

gain ratio of each threshold split (e.g., drugs with ≤0.5 Lipinski rule-of-5 violations

versus those with >0.5, drugs with ≤4.5 number of carbon atoms versus those with

>4.5, etc.) is calculated. The feature and threshold with the best or highest gain

ratio is chosen as the first split, and then this process is recursively repeated until

either all features have been evaluated or a stopping criterion, such as the

maximum depth of the tree, is met (Mierswa & Klinkenberg, 2020; Mori, 2002).

51

Equation 2.3: The gain ratio of each potential split (𝑺) for a given feature is
evaluated to identify the one with the best, or highest, value. Here, 𝒅

represents the drugs (agonist, antagonist, decoy) in each group (𝑺𝒊), such
as the ≤0.5 Lipinski rule-of-5 violations versus >0.5 groups for example, and
freq(𝒅, 𝑺), 𝑺𝒊, and |𝑺𝒊| represent the total number of drugs within 𝑺 and the
𝒊th group of 𝑺. All equations below were obtained from Mori (2002).

gain_ratio =
gain(𝑑, 𝑆)

split_info(𝑆)

gain(𝑑, 𝐶) = entropy(𝑑, 𝑆) − entropyp(𝑑, 𝑆)

entropy(𝑑, 𝐶) = −𝑝(𝑑|𝑆) × 𝑙𝑜𝑔2(𝑝(𝑑|𝑆))

𝑝(𝑑|𝐶) =
freq(𝑑, 𝑆)

|𝑆|

entropyp(𝑑, 𝐶) = ∑ (
𝑆𝑖

𝑆
× entropy(𝑑, 𝑆𝑖))

𝑖

split_info = − ∑ (
|𝑆𝑖|

|𝑆|
× 𝑙𝑜𝑔2 (

|𝑆𝑖|

|𝑆|
))

𝑖

52

Figure 2.5: An example DECTRE where classification is performed based
on the input drug’s molecular weight, number of aromatic rings, and/or the
total number of carbon atoms. For example, any drug that weighs more
than 350 Da and contains more than 2 aromatic rings is classified as a
decoy, while any drug ≤350 Da is classified as an agonist.

2.2.5.4 Naive Bayes

NAIBAY is based on Bayes’ theorem with the assumption that all features within

the training dataset are independent of one another (Zhang, 2004), see Equation

2.4. The trained model provides the prior, or probability, of each class within the

training dataset, as well as the conditional probability, the probability of observing

each feature within every class. Using the PR training dataset as an example, the

priors are P(agonist) = 0.14, P(antagonist) = 0.06, and P(decoy) = 0.80, which

was calculated by dividing the total number of entries within each class by the total

53

number of entries in the entire dataset. Additionally, the mean and standard

deviation of each feature within each class was calculated since gaussian NAIBAY

was used, which assumed the feature values all followed a normal or gaussian

distribution (Pedregosa et al., 2011); see Equation 2.4G.

54

Equation 2.4: A) Bayes’ theorem is the basis for the B) NAIBAY classifier
that maps the relationship between a given class (𝒚) and dependent feature
vector ({𝒙𝟏, … , 𝒙𝒏}). This equation can be simplified (C-E), where F) the
estimated class is determined by calculating the product between the prior
(𝑷(𝒚)) of each class and the likelihood (𝑷(𝒙𝒊|𝒚)) of each feature, and the best
or highest value is used for prediction. G) Gaussian NAIBAY was used,
which defines the likelihood of a feature within a class. Equation A was
obtained from Zhang (2004) and equations B-G were obtained from
https://scikit-learn.org/stable/modules/naive_bayes.html (Pedregosa et al.,
2011).

A) 𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)

B) 𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)𝑃(𝑥1, … , 𝑥𝑛|𝑦)

𝑃(𝑥1, … , 𝑥𝑛)

C) 𝑃(𝑥1, … , 𝑥𝑛|𝑦) = 𝑃(𝑥𝑖|𝑦)

D) 𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛

𝑖=1

𝑃(𝑥1, … , 𝑥𝑛)

E) 𝑃(𝑦|𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)

𝑛

𝑖=1

F) �̂� = arg max
𝑦

𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)

𝑛

𝑖=1

G)
𝑃(𝑥𝑖|𝑦) =

1

√2𝜋𝜎𝑦
2

𝑒𝑥𝑝
(−

(𝑥𝑖−𝜇𝑦)
2

2𝜎𝑦
2)

To classify a drug containing 30 carbon atoms and a molecular weight of

420 Da for example, the mean and standard deviation of these features for each

class are used: 𝜇carbon atoms(agonist) = 24.13, 𝜎carbon atoms(agonist) = 3.04, and so

on. For each class, the product of the prior and likelihood of each feature occurring

https://scikit-learn.org/stable/modules/naive_bayes.html#naive-bayes

55

in this class are calculated: 𝑃(agonist|carbon atoms = 30) = 𝑃(agonist) ×

𝑃(carbon atoms = 30|agonist) = 0.14 × 0.02 = 0.00,

𝑃(antagonist|carbon atoms = 30) = 0.06 × 0.46 = 0.03, etc., and the highest

probability is used to determine the predicted class.

2.2.5.5 Neural Network

The NEUNET learner was inspired by the human brain, where it utilizes what are

known as neurons to send and/or receive information to other neurons in the

system and perform classification (Svozil et al., 1997; Mierswa & Klinkenberg,

2020). A NEUNET is comprised of 3 types of layers: an input layer with as many

neurons as there are features, each representing a value for each feature, hidden

layer(s) that processes input from all neurons within previous layers using weights

as well as an activation function, and finally an output layer where classification is

performed (Karsoliya, 2012; Mierswa & Klinkenberg, 2020). Structurally, every

neuron in a given layer is connected to all neurons in the following layer (Karsoliya,

2012). Multiple hidden layers can be specified, but in this chapter a total of 2

hidden layers was used, the default value from RapidMiner Studio 9.6.

56

Figure 2.6: An overview of a NEUNET consisting of 1 hidden layer and 3
possible output classes.

 For a training dataset with a total of 𝑚 features, let the corresponding

feature value set be 𝐹 = {𝑥1, 𝑥2, … , 𝑥𝑚}. Note that RapidMiner Studio normalized

all feature values to be [−1,1] since the sigmoid activation function was used,

which maps input values to (0,1). This avoided potential issues such as

correlations between features that would have otherwise been missed if each

feature operated on their own scale (e.g., number of carbon atoms = [18, 27],

molecular weight = [272.39, 521.44]). Each one of these feature values was

represented as one neuron within the input layer.

57

Equation 2.5: Equation used to normalize feature values for the NEUNET
learner. 𝒙𝒊 corresponds to the value of a given feature, and 𝑭𝒎𝒊𝒏 and 𝑭𝒎𝒂𝒙
represent the minimum and maximum values within feature set 𝑭
respectively. This equation was taken from RapidMiner Studio
https://github.com/rapidminer/rapidminer-
studio/blob/7124551801923decfe2c0e077e329a1686087c12/src/main/java/c
om/rapidminer/operator/learner/functions/neuralnet/InputNode.java#L54.

𝑥𝑖 − 𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥

 Next, all neurons within the input layer are passed to each neuron in the

first hidden layer, where their values are transformed using weights

({𝑤1, 𝑤2, … 𝑤𝑚}) and a bias (𝑏) that serves as a scalar: 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑚𝑥𝑚 +

𝑏, followed by the activation function shown in Equation 2.6 (Pedregosa et al.,

2011). The weights and biases are initially set as random values but are later

optimized during backpropagation (Mierswa & Klinkenberg, 2020).

Figure 2.7: The transformation of neurons from a previous layer to the
current one, for example from the input to a hidden layer, is performed by
calculating the sum of the product between the weights ({𝒘𝟏, 𝒘𝟐, 𝒘𝟑}) and
value of each neuron ({𝒙𝟏, 𝒙𝟐, 𝒙𝟑}) and the bias (𝒃), followed by the use of an

activation function (𝒇): 𝒙𝒊 = 𝒇(𝒘𝟏𝒙𝟏 + 𝒘𝟐𝒙𝟐 + 𝒘𝟑𝒙𝟑 + 𝒃).

https://github.com/rapidminer/rapidminer-studio/blob/7124551801923decfe2c0e077e329a1686087c12/src/main/java/com/rapidminer/operator/learner/functions/neuralnet/InputNode.java#L54
https://github.com/rapidminer/rapidminer-studio/blob/7124551801923decfe2c0e077e329a1686087c12/src/main/java/com/rapidminer/operator/learner/functions/neuralnet/InputNode.java#L54
https://github.com/rapidminer/rapidminer-studio/blob/7124551801923decfe2c0e077e329a1686087c12/src/main/java/com/rapidminer/operator/learner/functions/neuralnet/InputNode.java#L54

58

Equation 2.6: The sigmoid activation function (Erb, 1993; Svozil et al., 1997;
Mierswa & Klinkenberg, 2020).

𝑓(𝑥) =
1

1 + 𝑒−𝑥

 The output layer receives data from the final hidden layer and utilizes an

activation function, in this case the sigmoid function again, to perform classification

(Mierswa & Klinkenberg, 2020). For example, a value [0, 0.3] could refer to

agonists, [0.4, 0.6] for antagonists, and [0.7, 1.0] for decoys. At this point

classification has occurred for the first time, and the error function quantifies how

far away the predicted value is from the ground truth.

To minimize error, a process known as backpropagation was used to

optimize the weights and biases from all hidden layers, starting from the final and

ending at the first (Mierswa & Klinkenberg, 2020). A gradient descent algorithm

was used to calculate the direction of steepest ascent, or gradient, of the error

from every weight and bias (Haji & Abdulazeez, 2021; Mierswa & Klinkenberg,

2020). Each weight was then adjusted to reduce the overall error of the network,

or in other words, move in the opposite direction of the gradient (Haji &

Abdulazeez, 2021). This process was repeated until either the specified number

of training cycles, 200 by default, was reached or the error falls below the error

epsilon threshold: 0.0001.

59

Equation 2.7: Error function used by RapidMiner Studio 9.6 for NEUNET,
where 𝒚 corresponds to the correct value, �̂� refers to the predicted output
value, and 𝑭𝒎𝒂𝒙 is the maximum output value, 1 for the sigmoid function
(Mierswa & Klinkenberg, 2020).

𝑦 − �̂�

𝐹𝑚𝑎𝑥

2.2.5.6 Random Forest

RANFOR is an ensemble method which utilizes multiple DECTREs to perform

prediction, with RapidMiner Studio utilizing 100 trees by default (Mierswa &

Klinkenberg, 2020). Bootstrap sampling was used to build each DECTRE within

the ensemble, a process where samples of the training dataset are randomly

drawn with replacement, allowing them to be used again. Once all DECTREs were

built, RANFOR determined the predicted class by selecting the one in which the

majority of DECTREs predicted (Mierswa & Klinkenberg, 2020); see Figure 2.8.

60

Figure 2.8: RANFOR uses multiple DECTREs to perform classification,
where the majority vote is used. In this example, 2 DECTREs predict green
while only one predicts red, making green the predicted output.

2.2.5.7 Support Vector Machine

The SVM learner implemented in RapidMiner Studio was based on the LIBSVM

library (Chang & Lin, 2019). The radial basis function (rbf) kernel was used to

perform classification, a non-linear kernel that maps training data onto an 𝑛-

dimensional space, where 𝑛 represents the total number of features, to determine

the optimal hyperplane that maximizes the margin between the closest points of

each class, or simply put, best separates 2 classes from one another (Mierswa &

Klinkenberg, 2020; Pedregosa et al., 2011); see Figure 2.9.

61

Equation 2.8: The goal of SVM is to determine the weights (𝒘) and bias (𝒃)
that maximizes the margin between the closest points of both classes,

which is performed by minimizing 𝒘𝑻𝒘 (Pedregosa et al., 2011).
Additionally, a penalty (𝜻) is applied for misclassification with 𝑪 serving as
a scalar that determines the strength of the penalty (Pedregosa et al., 2011).
Equations obtained from https://scikit-
learn.org/stable/modules/svm.html#svc (Pedregosa et al., 2011).

min
𝑤,𝑏,𝜁

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜁𝑖

𝑛

𝑖=1

In order to handle multiple classes, a one-against-one approach was used

where
𝑛(𝑛−1)

2
 total SVM models were generated, 𝑛 being the total number of

classes, and the majority vote from all SVMs was used to perform prediction

(Chang & Lin, 2019), similar to RANFOR. In this chapter, a total of 3 models were

generated: 1) agonist versus antagonist, 2) agonist versus decoy, and 3)

antagonist versus decoy.

https://scikit-learn.org/stable/modules/svm.html#svc
https://scikit-learn.org/stable/modules/svm.html#svc

62

Figure 2.9: SVM constructs a hyperplane that separates 2 classes from one
another, where the maximum size of the margins is based on the closest
points from each class. Here, both class A (blue) and B (orange) have one
point on the margin of their respective side while all other points fall behind
the calculated margins.

2.2.5.8 Performance Assessment

Completion of CV generated a trained ML model for each learner, where its

performance in classifying agonist, antagonist, and decoy drugs was assessed

using the validation dataset. Note that each receptor’s dataset was split in half for

the training dataset, used during CV to train each learner, and the validation

dataset, which comprised of novel examples never seen by any of the models.

63

2.3 Results

The performance of DECTRE, NAIBAY, NEUNET, RANFOR, and SVM learners

for each receptor's dataset are shown below, which also includes the selected

features and total runtime as well. However, in order to properly assess the

performance of these 5 classifiers, the baseline percentages for each receptor are

shown in Table 2.9. The baseline percentage is defined as the total number of

entries in the largest class divided by the total number of entries across all classes.

In the ER validation dataset for example, there are 1,417 agonists, 1,337

antagonists, and 10,405 decoys. Since decoys are the largest class, the baseline

percentage would be
decoys

agonists + antagonists + decoys
 or

10405

1417 + 1337 + 10405
, which is

approximately 0.79. This means that classifying all drugs as decoys, regardless of

their features, will result in performance of 79%. Consequently, the performance

of all models should always be better than baseline, otherwise its classification

accuracy is no better than simply placing all queries into the largest class.

Table 2.9: The baseline percentages for all receptors. The decoy class
contains the largest number of entries over all classes for all receptors, so
it was used to calculate these percentages.

Receptor Baseline Percentage

AR 75%

ER 79%

GR 66%

PR 88%

64

The following sections display each of the DECTRE, NAIBAY, NEUNET,

RANFOR, and SVM learners’ results on the validation set for each of AR, ER, GR,

and PR. This includes the precision (defined in Equation 2.1) and recall (defined

in Equation 2.2) metrics.

2.3.1 Performance: AR

Figure 2.10: The performance of each model compared to the ground truth
(TRUE) in classifying agonists, antagonists, and decoys for AR. All models
had similar performance in classifying decoys, while SVM had more FNs
for agonist and antagonist prediction in comparison.

Table 2.10: DECTRE. Run-time: 3 minutes 33 seconds. Performance:
92.73%.

 True Agonist True Antag. True Decoy Precision

Pred. Agonist 1415 239 0 85.55%

Pred. Antag. 85 313 0 78.64%

Pred. Decoy 79 301 7254 95.02%

Recall 89.61% 39.69% 100.00%

0

1000

2000

3000

4000

5000

6000

7000

8000

Agonist Antagonist Decoy

AR

DECTRE NAIBAY NEUNET RANFOR SVM TRUE

65

Table 2.11: NAIBAY. Run-time: 1 minute 9 seconds. Performance: 94.64%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 1434 243 2 85.41%

Pred. Antag. 67 482 1 87.64%

Pred. Decoy 78 128 7251 97.24%

Recall 90.82% 56.51% 99.96%

Table 2.12: NEUNET. Run-time: 6 hours 34 minutes 37 seconds.
Performance: 94.09%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 1492 218 0 87.25%

Pred. Antag. 84 370 2 81.14%

Pred. Decoy 3 265 7252 96.44%

Recall 94.49% 43.38% 99.97%

Table 2.13: RANFOR. Run-time: 2 hours 21 minutes 18 seconds.
Performance: 91.41%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 1232 184 2 86.88%

Pred. Antag. 347 370 0 51.60%

Pred. Decoy 0 299 7252 96.04%

Recall 78.02% 43.38% 99.97%

Table 2.14: SVM. Run-time: 1 day 16 hours 47 minutes 47 seconds.
Performance: 77.83%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 286 0 1 99.65%

Pred. Antag. 0 0 0 00.00%

Pred. Decoy 1293 853 7253 77.17%

Recall 18.11% 00.00% 99.99%

66

2.3.2 Performance: ER

Figure 2.11: The performance of each model compared to the ground truth
(TRUE) in classifying agonists, antagonists, and decoys for ER. All models
had similar performance to TRUE in classifying decoys, while DECTRE,
RANFOR, and SVM both had more FNs for the antagonist class. NAIBAY
and NEUNET had similar performance to TRUE in regard to antagonist
prediction, while DECTRE was overlapping with TRUE for agonist
prediction.

Table 2.15: DECTRE. Run-time: 13 minutes 39 seconds. Performance:
92.61%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 1283 405 1 75.96%

Pred. Antag. 122 504 4 80.00%

Pred. Decoy 12 428 10400 95.94%

Recall 90.54% 37.70% 99.95%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Agonist Antagonist Decoy

ER

DECTRE NAIBAY NEUNET RANFOR SVM TRUE

67

Table 2.16: NAIBAY. Run-time: 2 minutes 25 seconds. Performance:
90.51%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 336 55 0 85.93%

Pred. Antag. 1081 1176 7 51.94%

Pred. Decoy 0 106 10398 98.99%

Recall 23.71% 87.96% 99.93%

Table 2.17: NEUNET. Run-time: 21 hours 38 minutes 12 seconds.
Performance: 95.59%.

 True Agonist True Antag. True Decoy Precision

Pred. Agonist 965 40 0 96.02%

Pred. Antag. 452 1213 4 72.68%

Pred. Decoy 0 84 10401 99.20%

Recall 68.10% 90.73% 99.96%

Table 2.18: RANFOR. Run-time: 8 hours 1 minute 19 seconds. Performance:
83.43%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 171 36 0 82.61%

Pred. Antag. 1198 406 4 25.25%

Pred. Decoy 48 895 10401 91.69%

Recall 12.07% 30.37% 99.96%

Table 2.19: SVM. Run-time: 15 days 12 hours 40 minutes 35 seconds.
Performance: 81.39%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 58 5 0 92.06%

Pred. Antag. 2 250 3 98.04%

Pred. Decoy 1357 1082 10402 81.01%

Recall 04.09% 18.70% 99.97%

68

2.3.3 Performance: GR

Figure 2.12: The performance of each model compared to the ground truth
(TRUE) in classifying agonists, antagonists, and decoys for GR. DECTRE,
NAIBAY, and NEUNET overlapped with TRUE for agonists and decoys,
while all models were shown to have similar performance in antagonist
prediction. SVM had more FNs for the agonist class, and inversely, more
FPs for decoys.

Table 2.20: DECTRE. Run-time: 1 minute 35 seconds. Performance: 96.08%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 3437 16 0 99.54%

Pred. Antag. 0 26 0 100.00%

Pred. Decoy 0 435 7594 94.58%

Recall 100.00% 05.45% 100.00%

Table 2.21: NAIBAY. Run-time: 1 minute 6 seconds. Performance: 96.02%.

 True Agonist True Antag. True Decoy Precision

Pred. Agonist 3437 283 1 92.37%

Pred. Antag. 0 26 6 81.25%

Pred. Decoy 0 168 7587 97.83%

Recall 100.00% 05.45% 99.91%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Agonist Antagonist Decoy

GR

DECTRE NAIBAY NEUNET RANFOR SVM TRUE

69

Table 2.22: NEUNET. Run-time: 8 hours 46 minutes 1 second. Performance:
96.32%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 3437 0 6 99.83%

Pred. Antag. 0 59 0 100.00%

Pred. Decoy 0 418 7588 94.78%

Recall 100.00% 12.37% 99.92%

Table 2.23: RANFOR. Run-time: 4 hours 20 minutes 41 seconds.
Performance: 96.03%.

 True Agonist True Antag. True Decoy Precision

Pred. Agonist 3437 16 6 99.36%

Pred. Antag. 0 26 0 100.00%

Pred. Decoy 0 435 7588 94.58%

Recall 100.00% 05.45% 99.92%

Table 2.24: SVM. Run-time: 13 days 22 hours 40 minutes 27 seconds.
Performance: 80.93%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 252 0 6 97.67%

Pred. Antag. 0 0 1 00.00%

Pred. Decoy 1165 1337 10398 80.60%

Recall 17.78% 00.00% 99.93%

70

2.3.4 Performance: PR

Figure 2.13: The performance of each model compared to the ground truth
(TRUE) in classifying agonists, antagonists, and decoys for PR. Most of the
models overlapped with TRUE on all classes, the exception being SVM with
more FNs for agonists and antagonists.

Table 2.25: DECTRE. Run-time: 2 minutes 58 seconds. Performance:
99.92%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 793 0 0 100.00%

Pred. Antag. 6 258 1 97.36%

Pred. Decoy 0 0 7908 100.00%

Recall 99.25% 100.00% 99.99%

Table 2.26: NAIBAY. Run-time: 1 minute. Performance: 99.91%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 795 0 3 99.62%

Pred. Antag. 0 258 1 99.61%

Pred. Decoy 4 0 7905 99.95%

Recall 99.50% 100.00% 99.95%

0

1000

2000

3000

4000

5000

6000

7000

8000

Agonist Antagonist Decoy

PR

DECTRE NAIBAY NEUNET RANFOR SVM TRUE

71

Table 2.27: NEUNET. Run-time: 4 hours 14 minutes 59 seconds.
Performance: 98.64%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 789 112 0 87.57%

Pred. Antag. 6 146 0 96.05%

Pred. Decoy 4 0 7909 99.95%

Recall 98.75% 56.59% 100.00%

Table 2.28: RANFOR. Run-time: 1 hour 19 minutes 57 seconds.
Performance: 99.87%.

 True Agonist True Antag. True Decoy Precision

Pred. Agonist 789 0 1 99.87%

Pred. Antag. 6 258 1 97.36%

Pred. Decoy 4 0 7907 99.95%

Recall 98.75% 100.00% 99.97%

Table 2.29: SVM. Run-time: 6 days 2 hours 55 minutes 33 seconds.
Performance: 91.36%.
 True Agonist True Antag. True Decoy Precision

Pred. Agonist 184 0 0 100.00%

Pred. Antag. 46 100 2 67.57%

Pred. Decoy 569 158 7907 91.58%

Recall 23.03% 38.76% 99.97%

2.3.5 Summary

A summary of each learner’s performance on every receptor is shown in Table

2.30 while Table 2.31 displays the total time it took each learner to complete

training. In regard to classification performance, NEUNET was shown to be the

most performant while SVM was least accurate in classifying agonists,

antagonists, and decoys. For total run-time, the NAIBAY classifier was fastest

while SVM was the slowest.

72

Figure 2.14: The performance of all models over all receptors, with the
average performance of each model on AR, ER, GR, and PR shown in teal
with dashed lines. All models performed best on PR while the worst
performance of DECTRE, NAIBAY, and RANFOR were all on ER. Both
NEUNET and SVM had their lowest performance on AR.

Table 2.30: Performance of all learners on all receptors.
 DECTRE NAIBAY NEUNET RANFOR SVM

AR 92.73% 94.64% 94.04% 91.41% 77.83%

ER 92.61% 90.51% 95.59% 83.43% 81.39%

GR 96.08% 96.02% 96.32% 96.03% 80.93%

PR 99.92% 99.91% 98.64% 99.87% 91.36%

Average 95.34% 95.27% 96.16% 92.69% 82.88%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

DECTRE NAIBAY NEUNET RANFOR SVM

Performance

AR ER GR PR Average

73

Figure 2.15: The total training/run-time (in seconds) of the models, with and
without the inclusion of SVM, over all receptors. The average time of each
model on AR, ER, GR, and PR are shown in teal with dashed lines.

0

200000

400000

600000

800000

1000000

1200000

1400000

DECTRE NAIBAY NEUNET RANFOR SVM

Training Time

AR ER GR PR Average

0

10000

20000

30000

40000

50000

60000

70000

80000

DECTRE NAIBAY NEUNET RANFOR

Training Time (without SVM)

AR ER GR PR Average

74

Table 2.31: Total run-time of all learners on all receptors. The format used
is day:hour:minute:second.
 DECTRE NAIBAY NEUNET RANFOR SVM

AR 00:00:03:33 00:00:01:09 00:06:34:47 00:02:21:18 01:16:47:47

ER 00:00:13:39 00:00:02:25 00:21:38:12 00:08:01:19 15:12:40:35

GR 00:00:01:35 00:00:01:06 00:08:46:01 00:04:20:41 13:22:40:27

PR 00:00:02:58 00:00:01:00 00:04:14:59 00:01:19:57 06:02:55:33

Average 00:00:05:27 00:00:01:25 00:10:18:30 00:04:03:49 09:07:46:06

Table 2.32: Average class precision of the agonist, antagonist, and decoys
classes for all learners on all receptors.
 Agonist Antagonist Decoy

AR 88.95% 59.80% 92.38%

ER 86.52% 65.58% 93.37%

GR 97.75% 76.25% 92.47%

PR 97.41% 91.59% 98.29%

Average 92.66% 73.31% 94.13%

Table 2.33: Average class recall of the agonist, antagonist, and decoys
classes for all learners on all receptors.
 Agonist Antagonist Decoy

AR 74.21% 36.59% 99.98%

ER 39.70% 53.09% 99.95%

GR 83.56% 05.74% 99.94%

PR 83.86% 79.07% 99.98%

Average 70.33% 43.62% 99.96%

Table 2.34: Average class precision of all learners on all receptors.
 DECTRE NAIBAY NEUNET RANFOR SVM

AR 86.40% 90.10% 88.28% 78.17% 58.94%

ER 83.97% 78.95% 89.30% 66.52% 90.37%

GR 98.04% 90.48% 98.20% 97.98% 59.42%

PR 99.12% 99.73% 94.52% 99.06% 86.38%

Average 91.88% 89.82% 92.58% 85.43% 73.78%

75

Table 2.35: Average class recall of all learners on all receptors.
 DECTRE NAIBAY NEUNET RANFOR SVM

AR 75.43% 82.43% 79.28% 73.79% 39.37%

ER 76.06% 70.53% 86.26% 47.47% 40.92%

GR 68.48% 68.45% 70.76% 68.46% 39.24%

PR 99.75% 99.82% 85.11% 99.57% 53.92%

Average 79.93% 80.31% 80.35% 72.32% 43.36%

2.4 Discussion

Overall, NEUNET had the best average classification performance of the 5

learners, while RANFOR was second best, NAIBAY was third, DECTRE was

fourth, and SVM was the worst. Using a 2-tailed paired samples t-test where any

value with 𝑝 < 0.05 was considered to be significant, the performance of NEUNET

over all receptors was not statistically significant compared to RANFOR (𝑝 =

0.33), NAIBAY (𝑝 = 0.58), or DECTRE (𝑝 = 0.43). Similarly, there was no

significant difference between DECTRE and NAIBAY (𝑝 = 0.94), DECTRE and

RANFOR (𝑝 = 0.31), or NAIBAY and RANFOR (𝑝 = 0.22). Only the performance

of SVM was found to be significant compared to DECTRE (𝑝 = 0.00), NAIBAY

(𝑝 = 0.01), NEUNET (𝑝 = 0.01), and RANFOR (𝑝 = 0.04). In terms of class

precision, a measure of the number of drugs classified as an agonist, antagonist,

or decoy that were correctly identified as such, the antagonist class had the

worst/lowest percentage. In other words, drugs classified as antagonists were

more likely to be FPs compared to the other classes. In the AR validation set for

76

instance, approximately 40% of all drugs classified as antagonists were actually

agonists or decoys; see Table 2.32. Class recall is the number of drugs correctly

classified as an agonist, antagonist, or decoy, accounting for FNs. Regarding

average class recall (Table 2.33), decoys had the highest percentage while the

antagonists had the lowest, meaning 99.96% of all decoys over all receptors were

correctly identified for instance. Furthermore, NEUNET was shown to have the

highest average class recall, with DECTRE following, then NAIBAY, RANFOR in

fourth, and SVM with the lowest. Examining each class individually, Table 2.32

and Table 2.33 show that all 5 learners had difficulty in predicting antagonists,

which may be due to a number of factors; for one, there were less antagonists

available for all receptors than both the agonist and antagonist classes, which may

have prevented proper training. Additionally, the differences between agonists and

antagonists may be very subtle or inconsistent, making differentiation between the

2 arduous. Regarding baseline, the accuracy of every classifier on all receptors

were (often significantly) above the baseline percentages shown in Table 2.9,

demonstrating the viability of this method in classifying the agonists, antagonists,

and decoys of AR, ER, GR, and PR.

While Li et al. (2015) concluded that the SVM classifier was best suited for

predicting agonists of LXR-beta, our results show that SVM did not provide any

advantages over the other classifiers used; in fact, on ER and GR it required a

vast amount of computational resources to train, an issue no other learner faced.

77

Moreover, Li et al. (2015) trained their models to discriminate between selective

and non-selective agonists using a training set comprised of 234 entries with a

validation set of 58, and a total of 962 features were calculated using both the

MOE and PaDEL-Descriptor programs. In comparison, this chapter specified 3

classes and the training and validation datasets were kept as balanced as

possible, with only MOE being used to calculate a total of 435 features for each

agonist/antagonist/decoy. Additionally, Li et al. (2015) did not use CV for training,

but rather generated a total of 324 models from the SVM, NAIBAY, recursive

partitioning, and KNN learners, and then used another validation set of 76

selective and non-selective agonists to determine the top 10 best performing

models. While the performance of the models produced by Li et al. (2015) was

≥90%, similar to the results in this study, the validation set in Li et al. (2015) was

small compared to the hundreds of examples used here which provided a more

comprehensive evaluation of classification performance. Feature selection was

also another major difference, where the forward algorithm was used during each

iteration of CV to identify the best set of features, but Li et al. (2015) kept features

that were correlated with the selective ratio values of all LXR agonists, defined as

the IC50 of a given agonist to LXR-alpha divided by the IC50 of the agonist to

LXR-beta (Li et al., 2015). Although this method of feature selection is based on

experimental values, it does require this data to either be available in published

literature or from the experimenters themselves, which is not always the case.

78

Asako and Uesawa (2017) developed their own classifier based on the

RANFOR learner to predict environmental pollutants that act as ER agonists and

affect the endocrine system. The training set was comprised of 8,733 chemicals,

which was split 50:50 into training and validation datasets (Asako & Uesawa,

2017). Similar to Li et al., Asako and Uesawa's (2017) method was to generate

numerous models and evaluate their performance using a final validation set,

made up of 599 chemicals in this case, to identify the best ones. There was a total

of 4,071 features calculated using the Dragon, MOE, and Marvin applications, and

the most important ones were determined using a combination of each feature's

split ranking, or the number of times this feature was used when partitioning the

DECTREs that make up the RANFOR, as well as the chi-squared value of the

feature's likelihood ratio, otherwise known as a G2 value (Asako & Uesawa, 2017).

Overall, Asako and Uesawa's (2017) final model achieved a ROC-AUC value of

87% by generating a total of 1,050 models and then identifying the most

performant one through a series of evaluations. In this chapter, RANFOR had an

average classification accuracy of 83.43% for ER, its lowest percentage over all

receptors; see Table 2.18.

Russo et al. (2018) utilized Bernoulli NAIBAY, AdaBoost DECTRE,

RANFOR, SVM, and deep NEUNET learners to also identify endocrine disrupting

ER agonists. Russo et al.'s training set was comprised of 24,305 compounds while

the validation set was made up of 227 compounds, and a total of 197 features

79

were used during training, which included descriptors such as number of carbons,

number of aromatic rings, etc. as well as a molecular fingerprint from the

ChemoTyper program. Russo et al. (2018) used 5-fold CV for training each

learner, and the best performing learner was RANFOR, followed by deep

NEUNET, SVM, Bernoulli NAIBAY, and then AdaBoost DECTRE (Russo et al.,

2018). In comparison, the results from this chapter showed that the rank of best

to worst classifier for ER was NEUNET, DECTRE, NAIBAY, RANFOR, and then

SVM. The difference in rankings may be due to a few factors; for one, Russo et

al. (2018) focused specifically on endocrine disrupting agonists only, while the goal

of this chapter was to classify all types of agonists. Russo et al. also used multiple

training sets from different sources such as Tox21, ChEMBL, and CERAPP, where

separate models were generated for each dataset, which varied in terms of ratio

of active to inactive agonists among other things. Moreover, Russo et al. (2018)

used a larger training dataset with a validation set that was about 0.93% its size,

whereas in this chapter, the training and validation datasets were kept balanced.

The datasets from both Asako and Uesawa (2017) and Russo et al. (2018)

were comprised of mostly or entirely endocrine disrupting ER agonists, a subset

of all ER agonists involving toxic chemicals such as environmental pollutants.

These many thousands of agonists were left out of this chapter to ensure the

trained models were able to identify all types of agonists rather than skewing

towards toxic ones. In regard to feature selection, forward selection is a greedy

80

method, meaning it only kept the best 𝑘 feature subset(s) from previous iterations

(Reif & Shafait, 2014), where 𝑘 = 1 in this chapter. While only keeping the single

best subset from each iteration sped up computation time, a disadvantage is that

a better feature subset may have been overlooked (Reif & Shafait, 2014).

Moreover, the 435 features included metrics such as HOMO and LUMO energies,

which describe the highest occupied molecular orbital and the lowest occupied

molecular order respectively, whose values such as -6.5 or -5.4 may not seem

meaningful at first glance. That being said, HOMO and LUMO energies can in fact

be used to compare and contrast agonists, antagonists, and decoys because the

same algorithm was used to calculate the values, allowing drug X's HOMO energy

of -6.5 to be compared to drug Y's HOMO energy of -5.4 for instance. A truism

within the field is “garbage in, garbage out”, referring to the fact a ML model can

only ever be as good as the data used to train it. While there are numerous

databases and resources on pharmaceuticals such as DrugBank or Therapeutic

Target DB for instance, data augmentation in the form of conformation generation

was required since only a small number of druggable agonists and antagonists

were found for AR, ER, GR, and PR. The biggest limitation of this study was that

a significant portion of the agonist and antagonist classes were required to be

generated in-silico instead of being obtained from experimental results within

literature. Nevertheless, even if 2 or more conformations were detected as the

same drug it would not have contaminated the performance assessment since the

81

training and validation datasets were completely separated before data

augmentation was performed. In other words, all potential duplicates for a given

drug would either exist in the training or validation dataset, but not in both at the

same time.

2.5 Conclusion

In this chapter, the area of drug-action prediction was explored, where the

DECTRE, NAIBAY, NEUNET, RANFOR, and SVM supervised ML models were

trained to classify compounds as either an agonist, antagonist, or decoy for each

of the AR, ER, GR, and PR proteins. The main objective was to determine a given

drug's behavior towards a receptor, which has uses in polypharmacology such as

prediction of side effects for a given drug therapy as well as identifying targets for

drug repurposing. Additionally, drug-action prediction allows for easier filtering of

drug libraries for computational simulations such as drug docking and MD. The

secondary objective was to compare the performance of all 5 models for each

receptor to determine the one best suited for this task. The results showed that all

models were able to exceed the baseline accuracies for every learner on each

receptor, demonstrating that these models performed better than simply placing

all drugs into the largest class. Additionally, no statistical difference was found

between any of the top 3 models: NEUNET and DECTRE (𝑝 = 0.43), NEUNET

and NAIBAY (𝑝 = 0.58), and NAIBAY and DECTRE (𝑝 = 0.94), meaning none of

82

these models were significantly different to one another in classifying agonist,

antagonist, and decoy drugs. That being said, the training time for both DECTRE

and NAIBAY was measured in minutes for all receptors, far less compared to

NEUNET, which took approximately 4 hours (on PR) at the least and 21.5 hours

(on ER) at most.

Future work will include improving the accuracy of classifying antagonist

compounds, which was found to be generally poor in comparison to the agonists

and decoys. This can be accomplished by obtaining more antagonist compounds

using natural language processing to automatically review published literature as

well as generating more features for the compounds, which may provide enough

information to the given classifiers to properly differentiate antagonists from the

other classes. The paradigm shift from traditional in-silico tools to ML allows

researchers to utilize the vast amounts of biomedical data available to accomplish

tasks such as drug-action prediction that was performed in this chapter. Overall,

the considerable benefit of having trained ML models is that any given drug can

be classified within seconds as an agonist, antagonist, or decoy of AR, ER, GR,

or PR without needing to perform further modeling (e.g., QSAR) or use costly

and/or computationally intensive software.

The next chapter also involves the usage of ML, this time to investigate

bioelectric signaling of cells. This work was based on data generated by BETSE,

an application that utilizes matrix-based differential equations to model the

83

connections between cells and ion channel activity among other cellular

processes. While the ML models generated in this chapter were independently

created as standalone classifiers, the regression-based ML models in the next

chapter were trained to replace the main functionalities of BETSE, allowing

predictions to be made more efficiently as well as on larger cell networks without

requiring the use of a supercomputer or cluster.

84

Chapter 3: Replacing Bioelectric Dynamics

Modeling using Regression-based Machine

Learning

3.1 Introduction

Previously, in-silico tools such as MD/SA, used to obtain the lowest energy

conformation of CSA, and drug docking, a process that simulates the binding of a

ligand to a target, were used to optimize PALs for the purpose of targeted drug

delivery. These types of methodologies have been around for decades and are an

essential part of the current drug discovery process. However, recent

computational methods have moved towards ML in order to take advantage of the

vast amounts of biomedical data available, for example, training classifiers to

determine whether a drug is an agonist, antagonist, or decoy to each of 4

receptors as shown in the preceding chapter. That all being said, there are few

traditional or modern tools that focus on modeling bioelectricity, which is used by

cells to communicate with one another and is involved with numerous processes

including cell proliferation, programmed cell death or apoptosis, and tumor

suppression (Pietak & Levin, 2016; Srivastava et al., 2021). Bioelectrical dynamics

of non-neuronal cells can be explored in-silico using the BETSE program (Pietak

& Levin, 2016), which models gap junction (GJ) and ion channel activity of all cells

85

within a network to predict the cytosolic and extracellular concentrations of sodium

(Na+), potassium (K+), chloride (Cl-) and calcium (Ca2+) ions, as well as each cell’s

transmembrane potential (Vmem), or the difference in electrical potential between

the cytosol and extracellular medium (Pietak & Levin, 2016; Pietak & Levin, 2017).

Vmem is used by cells to form networks or circuits with one another, where they can

regulate stem cell differentiation, the development and repair of organs and limbs,

and the growth of tumors, as well as accomplish tasks such as the opening and

closing voltage-gated ion channels (Pietak & Levin, 2016; Silver & Nelson, 2018).

The Vmem of a given cell, measured in millivolts (mV), affects, and is in turn affected

by, the ion concentration. For instance, if a cell contains more negative chloride

ions (Cl-) than positive sodium ions (Na+), the Vmem will be more polarized and vice

versa. Furthermore, Vmem plays a role in diseases such as cancer, where studies

have found that tumor cells are generally more depolarized compared to healthy

ones, and not only that, but in-vitro experiments have demonstrated that returning

these depolarized cancer cells back to a healthy Vmem can prevent and even

reverse tumorigenesis in some cases (Srivastava et al., 2021; Tuszynski et al.,

2017).

 Bioelectric medicine is currently United States Food and Drug

Administration approved for treatment of Parkinson’s disease, epilepsy, chronic

pain, and depression. For these cases an electrode is surgically implanted into the

target area within a patient, such as the brain, spinal cord, or on a nerve, and it is

86

programmed to send a specific pattern of electrical pulses to stimulate the target

for treatment (Lee et al., 2020). As more research is being done in bioelectricity

and cellular networks in general, in-silico methods must also keep pace. On that

front, BETSE has been validated to be able to predict both the Vmem and

intracellular ion concentrations of Xenopus oocytes with only <10% difference

from experimental values using a simulation consisting of 35 cells in total (Pietak

& Levin, 2016), and furthermore, the ability of BETSE to model ion channel activity

can be leveraged for drug discovery as well. Ion channels are remodeled in cancer

cells to enhance the cancer’s ability to proliferate; in both breast and prostate

cancers the Ca2+ and Na+ channels are upregulated, while in thyroid cancer K+

channels are downregulated (Haworth & Brackenbury, 2019; Peters et al., 2017;

Wang et al., 2018). The membrane diffusion constants as well as initial

extracellular and intracellular concentrations of Na+, K+, Cl-, and Ca2+ can be

modified for a given BETSE simulation, allowing researchers to examine how

different values affect the overall ion concentration and Vmem of the network at

various times.

3.1.1 BETSE

BETSE takes an input configuration file containing parameters such as initial

extracellular and intracellular Na+, K+, Cl-, and Ca2+ concentrations as well as

diffusion constants, total simulation time, temperature and pressure of the

network, and so on. The output provides the average Vmem of the entire network

87

as well as each cell at every timestep (e.g., 1 second, 2 seconds, etc.), including

the average ion concentrations of Na+, K+, Cl-, and Ca2+ for the entire network. To

model the bioelectric signaling of a cellular network, BETSE generates an irregular

Voronoi diagram-based cell grid and places it on top of the environmental grid,

made up of evenly spaced homogenous square cells (Pietak & Levin, 2016). See

Figure 3.1 below.

Figure 3.1: A) BETSE generates an irregular Voronoi diagram-based cell
grid to place cells in while the environment grid underneath is represented
by evenly spaced homogeneous squares (Pietak & Levin, 2016). The size of
the environment grid, specified in the input configuration file, determines
the total number of cells. B) The “Cell center” within each cell, represented
by a red ▲, is where properties such as ion concentration and intracellular
voltage are defined. Additionally, the membrane perimeter for each cell is
divided into segments, where the midpoint for each membrane segment

(represented by a blue ★) is where Vmem is calculated. This image was

obtained without modification from Figure 2 in Pietak & Levin (2016) which
was published under the terms of the Creative Commons Attribution
License (CC-BY); https://creativecommons.org/licenses/by/4.0.

https://creativecommons.org/licenses/by/4.0

88

The center point of each cell on the cell grid, and also of each square on

the environmental grid (see Figure 3.1B), are where differential equations are

applied and solved during a simulation to calculate scalar properties that are

defined only by their magnitude such as ion concentration, charge, and voltage,

as well as vector properties that are defined by both their magnitude and direction

such as electric field (e.g., across a GJ) and mass flux (e.g., ion flux) between

neighboring cells for instance (Pietak & Levin, 2016). Every cell on the cell grid

also has its own volume as well as perimeter, which represents the cell membrane

that can further be separated into individual membrane segments, each having

their own properties such as Vmem. Moreover, each of these cell membrane

segments are connected to a neighboring cell membrane segment via a GJ. The

ion concentration, intracellular charge, and intracellular voltage properties are

defined on both the cell center points and midpoints of cell membrane segments

on the cell grid, and also on the center points of each square on the environmental

grid (Pietak & Levin, 2016). Other properties including Vmem, ion flux, and electric

field are defined on cell membrane midpoints on the cell grid as well as on the

midpoints between the center points of 2 neighboring squares on the

environmental grid (Pietak & Levin, 2016).

89

𝑄𝐴 = 𝐶𝑚(𝑉𝐴 − 𝑉𝑜) + 𝐶𝑠𝑎𝑉𝐴

𝑄𝐵 = 𝐶𝑚(𝑉𝐵 − 𝑉𝑜) + 𝐶𝑠𝑏𝑉𝐵

𝑄𝑜 = 𝐶𝑚(𝑉𝑜 − 𝑉𝐴) + (𝑉𝑜 − 𝑉𝐵) + 𝐶𝑠𝑜𝑉𝑜

Figure 3.2: Diagram of a 2-cell network adopted from Figure 4C of Pietak &
Levin (2016) that models the electrical system used to calculate Vmem
between cells in BETSE, where Vmem = Vintra - Vextra. QA and QB represent the
total ionic charges of their respective cells, which is calculated in part using
the inner (VA, VB) and environmental (Vo) voltages, corresponding to Vintra
and Vextra. Cm represents the capacitance, which determines how much
charge can be stored (Kaiser, 1992/2012), of the cellular membranes
between each cell and the extracellular environment. Finally, the self-
capacitance, defined as the amount of charge stored on each cell and the
environment per applied unit voltage, is represented by Csa, Csb, and Cso
respectively (Pietak & Levin, 2016).

BETSE uses the Nernst-Planck equation to estimate the concentration of

ions transporting through GJs while ion pumps are modeled using Michaelis-

Menten enzyme kinetic relations. Additionally, Vmem is calculated using the

90

Maxwell Capacitance Matrix (Pietak & Levin, 2016); see Figure 3.2 and Equation

3.1.

Equation 3.1: The Maxwell Capacitance matrix is used to relate the set of
net ionic charges (𝑸) and their corresponding voltages (𝑽). A) If the voltages
(𝑽𝑨, 𝑽𝑩, 𝑽𝒐) are known, then charges are calculated using its product with
the Maxwell Capacitance matrix, which includes the self-capacitances of
each cell (𝑪𝒔𝒂, 𝑪𝒔𝒃) and the environment (𝑪𝒔𝒐), as well as their membranes

(𝑪𝒎). B) This also works vice versa, where the voltages are calculated using
the product of the inverse Maxwell Capacitance matrix and the net cellular
and environmental ionic charges. All equations were obtained from Pietak
& Levin (2016), Equation 19.

A)

[
𝑄𝐴

𝑄𝐵

𝑄𝑜

] = [

𝐶𝑚 + 𝐶𝑠𝑎 0 −𝐶𝑚

0 𝐶𝑚 + 𝐶𝑠𝑏 −𝐶𝑚

−𝐶𝑚 −𝐶𝑚 2𝐶𝑚 + 𝐶𝑠𝑜

] [
𝑉𝐴

𝑉𝐵

𝑉𝑜

]

 �̅� = 𝑀�̅�

B) �̅� = 𝑀inv�̅�

The gradient, divergence, and the Laplace differential operators are defined

by BETSE on both the environment and cell grid to calculate the scalar and vector

properties. The gradient operator is used to calculate the change of scalar

properties over a given space, such as the Ca2+ concentration between

neighboring cells, and on the cell grid there are 3 different types: 1) cell to

environment, 2) cell to cell, and 3) intracellular (Pietak & Levin, 2016). First, trans-

membrane gradients involve scalar properties (ion concentration, voltage, etc.)

that are calculated using a nearest-neighbor interpolation scheme where

91

midpoints of each cell membrane segment interface with the center points of

squares on the environmental grid (Pietak & Levin, 2016). These types of

gradients are used to exchange information between a cell and its local

environment, where a weighing function is used to assign the mole transfer

between cell and environmental grids for a given mass flux (Pietak & Levin, 2016).

See Equation 3.2.

Equation 3.2: Trans-membrane gradient for a scalar property 𝒔 (e.g., ion
concentration) defined on the environmental point 𝒋 and cell membrane

midpoint 𝒌 with membrane thickness 𝒅𝒎𝒆𝒎 on the cell grid. This equation
was obtained from Pietak & Levin (2016), Supplementary Equation 4.

𝛻𝑠𝑗𝑘 =
(𝑠𝑗 − 𝑠𝑘)

𝑑𝑚𝑒𝑚

Second, membrane midpoints are also used for inter-cellular gradients on

the cell grid, allowing BETSE to calculate how scalar properties change between

neighboring cells, see Equation 3.3.

92

Equation 3.3: Inter-cellular gradient for a scalar property 𝒔 between the
center point 𝒂 of cell 𝒙 and center point 𝒃 on neighboring cell 𝒚 that are

separated by distance 𝒅𝒂𝒃 on the cell grid. Both 𝒕𝒈𝒋𝒙
 and 𝒕𝒈𝒋𝒚

 represent the

tangent vectors of the gap junctions between the respective cells. These
equations were obtained from Pietak & Levin (2016), Supplementary
Equations 2 and 3.

𝐹𝑎𝑏 =
(𝑠𝑏 − 𝑠𝑎)

𝑑𝑎𝑏

𝛻𝑠𝑎𝑏 = 𝐹𝑎𝑏𝑡𝑔𝑗𝑥
+ 𝐹𝑎𝑏𝑡𝑔𝑗𝑦

Finally, intra-membrane gradients calculate the lateral change of a scalar

property on the cell grid, the Na+ ion channel concentration for example, between

points on an individual cellular membrane (Pietak & Levin, 2016), see Equation

3.4.

Equation 3.4: Intra-membrane gradient for a scalar property 𝒔 between

vertices 𝒑 and 𝒒 on an individual cell that are separated by distance 𝒅𝒑𝒒 on

the cell grid. This equation was obtained from Pietak & Levin (2016),
Supplementary Equation 5.

𝛻𝑠𝑝𝑞 =
(𝑠𝑞 − 𝑠𝑝)

𝑑𝑝𝑞

On the environmental grid, x-axis and y-axis gradients were calculated

using the central difference formula to estimate first derivatives in space for points

defined on the 𝑗th row and the 𝑘th column on the grid with uniform spacing, 𝑑𝑔𝑟𝑖𝑑,

between each square (Pietak & Levin, 2016); Equation 3.5.

93

Equation 3.5: X-axis and y-axis gradients on the environmental grid with

points defined on the 𝒋𝒕𝒉 row and 𝒌𝒕𝒉 column on a grid with 𝒅𝒈𝒓𝒊𝒅 spacing.

This equation was obtained from Pietak & Levin (2016), Supplementary
Equations 10 and 11.

𝛿𝑠(𝑥𝑗 , 𝑦𝑖)

𝛿𝑥
⇒

𝑠(𝑥𝑗+1, 𝑦𝑖) − 𝑠(𝑥𝑗−1, 𝑦𝑖)

2𝑑𝑔𝑟𝑖𝑑

𝛿𝑠(𝑥, 𝑦)

𝛿𝑦
⇒

𝑠(𝑥𝑗 , 𝑦𝑖+1) − 𝑠(𝑥𝑗 , 𝑦𝑖−1)

2𝑑𝑔𝑟𝑖𝑑

The divergence operator measures the amount of outflow flow of a vector

from every point over space, such as the flux of K+ ions from a cell for instance;

See Equation 3.6, which is similar to the equation used to calculate the divergence

on the environmental grid as well (Pietak & Levin, 2016).

Figure 3.3: The normal and tangent vectors of each membrane segment (a-
f) for a given cell. Normal unit vectors are represented by the orange arrows
while the tangent vectors are shown using blue arrows. The cell midpoint
is represented by the yellow triangle. This figure was based on
supplementary Figures 3A and 3D from Pietak & Levin (2016).

94

Equation 3.6: Divergence of a given vector property 𝑷 for cell 𝒄 on the cell
grid. The property (𝑷) defined at the midpoint (𝒎; 𝑷𝒎) on a given cell

membrane segment is multiplied with the unit vector of 𝑷 normal to the
membrane, 𝒏𝒎𝒆𝒎𝒎

, and the cell membrane’s surface area, 𝝈𝒎𝒆𝒎𝒎
, to obtain

the net flux for that membrane segment. Next, the net flux of every
membrane segment is summed, and the result is divided by the cell volume,
𝒗𝒐𝒍𝒄𝒆𝒍𝒍𝒄

. This equation was adapted from Pietak & Levin (2016),

Supplementary Equation 6.

𝛻 × 𝑃𝑐 =
𝛴(𝑃𝑚 × 𝑛𝑚𝑒𝑚𝑚

𝜎𝑚𝑒𝑚𝑚
)

𝑣𝑜𝑙𝑐𝑒𝑙𝑙𝑐

The Laplacian is the divergence of a given scalar property, or in other

words, the outward flow of ion concentration or voltage for instance to other points

on the environment and cell grids; see Figure 3.4, Equation 3.7, and Equation 3.8.

Figure 3.4: A group of 3 cells used to describe the Laplacian operator,
adopted from supplementary Figure 4 of Pietak & Levin (2016). There are a
total of 3 gradient fluxes: 1) 𝑭𝒂𝒃 between cell 𝒂 and cell 𝒃, 2) 𝑭𝒂𝒄 between
cell 𝒂 and cell 𝒄, and 3) 𝑭𝒃𝒄 between cell 𝒃 and cell 𝒄.

95

Equation 3.7: The Laplacian of a scalar property 𝒔 at cell 𝒂 from Figure 3.4
for example, begins with calculating the gradient fluxes 𝑭𝒂𝒃 and 𝑭𝒂𝒄

between neighboring cells 𝒃 and 𝒄 respectively. This involves the normal
unit vectors of each flux from their corresponding cell to the neighboring
one (e.g., 𝒏𝒙𝒂𝒃

, 𝒏𝒚𝒂𝒄
) as well as the surface area between the shared

membrane between cell a and cell 𝒃 (𝝈𝒂𝒃), and cell 𝒂 and cell 𝒄 (𝝈𝒂𝒄). These
equations were obtained from Pietak & Levin (2016), Supplementary
Equation 7.

𝐹𝑎𝑏 ̇ 𝑛𝑎𝑏𝜎𝑎𝑏 = (
𝑠𝑏 − 𝑠𝑎

𝑑𝑎𝑏
)𝜎𝑎𝑏𝑛𝑥𝑎𝑏

+ (
𝑠𝑏 − 𝑠𝑎

𝑑𝑎𝑏
)𝜎𝑎𝑏𝑛𝑦𝑎𝑏

)

𝐹𝑎𝑐 ̇ 𝑛𝑎𝑐𝜎𝑎𝑐 = (
𝑠𝑐 − 𝑠𝑎

𝑑𝑎𝑐
)𝜎𝑎𝑐𝑛𝑥𝑎𝑐

+ (
𝑠𝑐 − 𝑠𝑎

𝑑𝑎𝑐
)𝜎𝑎𝑐𝑛𝑦𝑎𝑐

)

Equation 3.8: Divergence of scalar property 𝒔 at cell 𝒂 on the cell grid is
calculated by summing the components obtained from Equation 3.7 and
dividing the result by 𝒗𝒐𝒍𝒂, the volume of cell 𝒂. These equations were
obtained from Pietak & Levin (2016), Supplementary Equation 8.

𝛻2𝑠𝑎 = 𝐴𝑠𝑎 + 𝐵𝑠𝑏 + 𝐶𝑠𝑐

𝐴 =
−2𝜎𝑎𝑏(𝑛𝑥𝑎𝑏

+ 𝑛𝑦𝑎𝑏
) 𝑑𝑎𝑐 − 2𝜎𝑎𝑐(𝑛𝑥𝑎𝑐

+ 𝑛𝑦𝑎𝑐
) 𝑑𝑎𝑏

𝑑𝑎𝑐𝑑𝑎𝑏𝑣𝑜𝑙𝑎

𝐵 =
𝜎𝑎𝑏(𝑛𝑥𝑎𝑏

+ 𝑛𝑦𝑎𝑏
)

𝑑𝑎𝑏𝑣𝑜𝑙𝑎

𝐶 =
𝜎𝑎𝑐(𝑛𝑥𝑎𝑐

+ 𝑛𝑦𝑎𝑐
)

𝑑𝑎𝑐𝑣𝑜𝑙𝑎

 For the environmental grid, BETSE calculates the Laplacian in a similar

manner to the process for the cell grid described above (Pietak & Levin, 2016),

see Equation 3.9.

96

Equation 3.9: The equation BETSE uses to calculate the Laplacian of a
scalar property 𝒔 defined on the midpoint (𝒊, 𝒋) of a given square on the
environmental grid with 𝒅𝒈𝒓𝒊𝒅 length spacing between all squares. Defined

in Pietak & Levin (2016), Supplementary Equation 12.

𝛻2𝑠(𝑥, 𝑦) = (
𝑠𝑖+1,𝑗 − 𝑠𝑖𝑗

𝑑𝑔𝑟𝑖𝑑
) + (

𝑠𝑖−1,𝑗 − 𝑠𝑖𝑗

𝑑𝑔𝑟𝑖𝑑
) + (

𝑠𝑖,𝑗+1 − 𝑠𝑖𝑗

𝑑𝑔𝑟𝑖𝑑
) + (

𝑠𝑖,𝑗−1 − 𝑠𝑖𝑗

𝑑𝑔𝑟𝑖𝑑
)

 Overall, BETSE utilizes matrix-based differential equations to calculate

Vmem and various other equations to determine scalar (e.g., ion concentration,

voltage) and vector (e.g., mass flux and electric field) properties during a

simulation. These methods can require a considerable amount of computational

resources depending on parameters such as the size of the environment grid,

specified simulation time, timestep, and so on, all of which limit the network that

can be modeled.

3.1.2 Objectives

Due to the computational resources required for BETSE, especially with larger

simulations, the goal of this study was to develop ML models that replace the main

functions of BETSE. This was accomplished through 3 objectives:

1) Predict the Vmem of the entire cellular network at a given time.

2) Predict the Vmem of each individual cell within the cellular network at a given

time.

97

3) Predict the ion concentrations of Na+, K+, Cl-, and Ca2+ of the entire cellular

network at a given time.

For all objectives the goal was to be able to predict the target value(s) at a

particular time within the BETSE simulation, measured in seconds. More

specifically, the goal of objective 1 was to predict the average Vmem of the entire

cellular network, objective 2 focused on predicting the Vmem of each individual cell,

and objective 3 aimed to predict average ion concentrations of the entire network,

which has applications in drug discovery of ion agonists and antagonists for

instance. Supervised learning was performed using training and validation

datasets comprised of output from BETSE, with performance being assessed

using multiple performance metrics: coefficient of determination (R2), mean square

error (MSE), mean absolute error (MAE), and median absolute error (MEDAE).

Ideally, training and validation would include only experimental in-vitro or in-vivo

data stemming from cell networks in a variety of conditions including up/down-

regulated levels of Na+/K+/Cl-/Ca2+, differing number of cells in each experiment,

and assorted membrane diffusion constants of Na+/K+/Cl-/Ca2+, but this was not

available in published literature.

3.1.3 Related Work

Manicka and Levin (2019) developed BioElectric Network (BEN), an in-silico

application used to simulate bioelectric signaling and functions as a minimal

98

version of BETSE. BEN models bioelectric communication between non-neuronal

cells, providing a better understanding of basal cognition and synthetic biology as

well as aiding in the development of regenerative medicine (Manicka & Levin,

2019). As an overview, BEN utilizes a layered approach where cells in each layer

have roles; the first and last layers are the input and output layers respectively,

while each of the middle layers perform a variety of functions such as the sensory

layer that obtains signals directly from the environmental grid and sends it to the

inter-neuron layers (Manicka & Levin, 2019). BEN models a variety of biological

entities, including GJs that connect any 2 cells, electrodiffusion, a Na-K pump, and

the Na+, K+, and Cl- ions. Similar to BETSE, cells are placed on top of an

environmental grid where electrodiffusion is calculated via the Nernst-Planck

equation while transmembrane ion flux is calculated using the Goldman-Hodgkin-

Katz equation (Manicka & Levin, 2019). Furthermore, chemical-gated ion

channels are modeled using a sigmoid function that maps the concentration of the

relevant signaling molecule to the maximum permeability of its corresponding ion

channel. BEN has 2 types of learnable parameters: weight and bias. Weight

regulates the effect Vmem has on the network as well as determines the voltage-

gating of GJs, where lower values diminish Vmem and signal concentration within

a cell while positive values increase them. Bias is responsible for regulating signal

flux, specifically determining the threshold where signal concentration switches

direction of change (Manicka & Levin, 2019). Unfortunately, in-vitro validation was

99

unable to be performed because there are no current methods in which generic

cells can be used to quantify how non-neural tissues process information in the

context of basal cognition (Manicka & Levin, 2019).

3.2 Methods

As an overview, BETSE simulations with randomized parameters were first run to

generate data for the training and validation datasets. Next, the scikit-learn Python

library (Pedregosa et al., 2011) was then used to train the Bayesian ridge

(BAYRID), DECTRE, KNN, linear regression (LINREG), multi-level perceptron

(MLP), RANFOR, and support vector regression (SVR) learners. Additionally, the

mlens Python module (Flennerhag, 2018) was used to implement the super

learner (SUPLRN) as defined by van der Laan et al. (2007), which is an ensemble

method that incorporates various base learners to perform regression. Finally, the

performance of each model on the validation dataset was estimated using the

MAE, MEDAE, MSE, and R2 metrics.

3.2.1 BETSE

The parameters of a given BETSE simulation are defined using a YAML formatted

configuration file, which included total initialization and simulation time, Na+, K+,

Cl-, and Ca2+ ion concentrations, diffusion constants, environment grid size,

timestep, and so on. To build models that can perform in a variety of conditions,

100

Python scripts were first written to generate configuration files with randomized

values for the parameters shown in Table 3.1. Note that the total simulation time

was set to 100 seconds for every configuration file, ensuring all simulations were

simulated for the same amount time to provide an equivalent amount of data.

Additionally, BETSE performed an initialization run before the actual simulation

phase to generate the cell cluster and bring the network to cell resting Vmem.

Next, these configuration files were used to run BETSE simulations on the

Compute Canada supercomputing platform, where a total of 14,891 BETSE runs

were used for objective 1 to predict the Vmem of an entire cellular network. For

objectives 2 and 3, a total of 26,924 BETSE simulations were run to provide

additional data. There were 2 types of output files BETSE produced: 1) the

“ExportedData.csv” file provided the average Vmem of the entire cellular network at

each time within the simulation (e.g., 1 second, 2 seconds, etc.) as well as the

average ion concentrations for Na+, Ca2+, Cl-, and K+ within each cell among other

parameters such as membrane permeabilities, and 2) the

“Vmem2D_TextExport.csv” files provided the x and y coordinates of each cell

within the network along with their Vmem at every given time point.

101

Table 3.1: List of all BETSE configuration options that were randomized.
Option Description

comp grid size Size of the environment grid

cytosolic Na+ concentration Intracellular sodium ion concentration

cytosolic K+ concentration Intracellular potassium ion
concentration

cytosolic Cl- concentration Intracellular chloride ion concentration

cytosolic Ca2+ concentration Intracellular calcium ion concentration

Dm_Na Transmembrane diffusion constant for
the sodium ion

Dm_K Transmembrane diffusion constant for
the potassium ion

Dm_Cl Transmembrane diffusion constant for
the chloride ion

Dm_Ca Transmembrane diffusion constant for
the calcium ion

extracellular Na+ concentration Extracellular sodium ion concentration

extracellular K+ concentration Extracellular potassium ion
concentration

extracellular Cl- concentration Extracellular chloride ion concentration

extracellular Ca2+ concentration Extracellular calcium ion concentration

time step Time step for the initialization phase

time step Time step for the simulation phase

3.2.2 Machine Learning

ML was completed using the scikit-learn program, using the mlens module that

implements the SUPLRN framework defined by van der Laan et al. (2007). A total

of 8 learners were used: BAYRID, DECTRE, KNN, LINREG, MLP, RANFOR,

SVR, and additionally, a SUPLRN was composed of 5 base learners: DECTRE,

LINREG, RANFOR, MLP, and SVR.

102

3.2.2.1 Linear Regression

In general, regression learners attempt to find a linear relationship between the

target values (e.g., Vmem) and the feature values (e.g., intracellular/extracellular

ion concentrations). In scikit-learn this learner was implemented as ordinary least

squares LINREG, where the feature weights, otherwise known as coefficients,

were calculated to minimize the sum of squares between the model’s predicted

values and the ground truth values from the training dataset (Pedregosa et al.,

2011). Note that there was no offset used.

Equation 3.10: For a training dataset 𝑿 and a total of 𝒑 features with
coefficients 𝒘 = (𝒘𝟏, 𝒘𝟐, … , 𝒘𝒑), LINREG attempts to find the coefficients

that lead to the minimum sum of squares between the predicted (𝑿𝒘) and
ground truth values. This equation was taken from the scikit-learn user
guide https://scikit-learn.org/stable/modules/linear_model.html#ordinary-
least-squares (Pedregosa et al., 2011).

𝑚𝑖𝑛𝑤||𝑋𝑤 − 𝑦||2
2

3.2.2.2 Bayesian Ridge

Bayesian regression techniques utilize probabilistic models and allow for the

inclusion of regularization parameters, which are used to penalize the complexity

of a model and consequently helps protect against overfitting (Pedregosa et al.,

2011). Model complexity is linked to the number of features used during training

as well as their magnitudes, measured by weights. For non-Bayesian regression,

penalties such as ridge regularization, otherwise known as the L2 penalty, utilize

https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares

103

the sum of squares of the coefficient array 𝑤 to calculate complexity, ||𝑤||2
2, with

a positive correlation between the L2 penalty value and model complexity

(Kernbach & Staartjes, 2021). Ridge regression attempts to determine the feature

weights, 𝑤, that minimizes both the sum of squares between the model’s predicted

and ground truth values, as well as the sum of squares of the complexity

parameter 𝛼, specified by the user, and the estimated feature weights array

(Pedregosa et al., 2011); see Equation 3.11.

Equation 3.11: Ridge regression is LINREG with ridge regularization, or the
L2 penalty, on the right-hand side. The L2 penalty uses 𝜶 as a complexity
parameter that controls the amount of shrinkage for the coefficient array 𝒘
(Pedregosa et al., 2011). As 𝜶 increases the coefficients become smaller,
leading to more robust models (Pedregosa et al., 2011). It is important to
note that a model can be underfit if 𝜶 becomes too large and the weights
shrink too much. This equation was taken from the scikit-learn user guide
https://scikit-learn.org/stable/modules/linear_model.html#regression
(Pedregosa et al., 2011).

𝑚𝑖𝑛𝑤||𝑋𝑤 − 𝑦||2
2 + 𝛼||𝑤||2

2

On the other hand, BAYRID estimates a probability distribution for 𝑤 with

precision 𝜆−1. The ground truth values, 𝑦, are assumed to be Gaussian distributed

around the training data with their applied feature weights, 𝑋𝑤 (Pedregosa et al.,

2011); see Equation 3.12. Bayesian regression in general has the advantage of

being able to adapt to the training data since parameters such as 𝛼 and 𝜆, both

used for regularization, are both estimated during learning using the training data

(Pedregosa et al., 2011).

https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares

104

Equation 3.12: A) Bayesian regression generates a probability distribution
for the feature weights (𝒘), with 𝜶 serving as a regularization parameter. B)
The prior for 𝒘 is given by a spherical Gaussian distribution, while gamma
distributions are used for priors over both 𝜶 and 𝝀 (Pedregosa et al., 2011).
This equation was taken from the scikit-learn user guide https://scikit-
learn.org/stable/modules/linear_model.html#bayesian-ridge-regression
(Pedregosa et al., 2011).

A) 𝑝(𝑦│𝑋, 𝑤, 𝛼) = 𝑁(𝑦|𝑋𝑤, 𝛼)

B) 𝑝(𝑤|𝜆) = 𝑁(𝑤|0, 𝜆−1𝐼𝑝)

3.2.2.3 Decision Tree

DECTREs utilize an upside-down tree-like hierarchy, and simply put, work as a

flowchart where complex decisions are broken into numerous smaller, simpler

decisions that are easier to interpret (Xu et al., 2005). The root node is the starting

point and contains all data, the internal nodes are where binary decisions based

on certain criteria or thresholds are made, and finally, terminal or leaf nodes are

where the target values are predicted (Xu et al., 2005). While there are multiple

algorithms available for generating DECTREs, scikit-learn specifically implements

a performance optimized version of the classification and regression trees (CART)

algorithm (Pedregosa et al., 2011).

The process of generating a regression tree starts with the data 𝑄𝑚 located

at node 𝑚 with a total of 𝑛𝑚 samples. For a given feature 𝑗 and a threshold 𝑡𝑚, the

https://scikit-learn.org/stable/modules/linear_model.html#bayesian-ridge-regression
https://scikit-learn.org/stable/modules/linear_model.html#bayesian-ridge-regression

105

candidate split 𝜃 = (𝑗, 𝑡𝑚) partitions the data into left (𝑄𝑚
𝑙𝑒𝑓𝑡

) and right (𝑄𝑚
𝑟𝑖𝑔ℎ𝑡

)

subsets (Pedregosa et al., 2011). The quality of this split is then evaluated using

a loss function, in this case MSE, to determine the best candidate. This entire

process is performed recursively for every internal node until all samples at node

𝑚 have been evaluated, or the maximum depth has been reached, 𝑛𝑚 <

𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠, where 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is defined as the minimum number of samples

required for a split to take place (Pedregosa et al., 2011).

Equation 3.13: The equations used to partition the data 𝑸𝒎 located at node
𝒎 into A) left and B) right subsets. For regressor trees the quality of this
split is evaluated using the MSE loss function to determine whether it will
be chosen. These equations were taken from the scikit-learn user guide
https://scikit-learn.org/stable/modules/tree.html#mathematical-formulation
(Pedregosa et al., 2011).

A) 𝑄𝑚
𝑙𝑒𝑓𝑡

(𝜃) = {(𝑥, 𝑦) | 𝑥𝑗 ≤ 𝑡𝑚}

B) 𝑄𝑚
𝑟𝑖𝑔ℎ𝑡

(𝜃) = 𝑄𝑚\ 𝑄𝑚
𝑙𝑒𝑓𝑡

(𝜃)

Equation 3.14: Equation of the MSE, used to determine the best candidate
split θ. The variable �̅� is the predicted value, 𝒚 is the ground truth value,

and 𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔 is the total number of data samples available. This equation

was obtained from the scikit-learn user guide https://scikit-
learn.org/stable/modules/model_evaluation.html#mean-squared-error
(Pedregosa et al., 2011).

𝑀𝑆𝐸(𝑦, �̅�) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ (𝑦𝑖 − �̅�𝑖)

2

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

https://scikit-learn.org/stable/modules/tree.html#mathematical-formulation
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error

106

3.2.2.4 K-Nearest Neighbors

KNN is a non-parametric learner that utilizes a distance metric to determine the 𝐾

number of closest points for a given input, 𝑥𝑖, and calculates its value based on

these neighbors (Kramer, 2013; Pedregosa et al., 2011). In KNN regression, the

predicted value for 𝑥𝑖 is calculated using the mean value of its 𝐾-nearest neighbors

(Kramer, 2013), where 𝐾 = 5 in this chapter. Additionally, the Euclidean distance

metric with L2 normalization was used to determine the neighboring points

(Pedregosa et al., 2011).

Equation 3.15: Given the training dataset {(𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐), … , (𝒙𝒊, 𝒚𝒊)}, the
value for a given input, 𝒙𝒊, is calculated using the mean of its 𝑲-nearest
neighboring points, represented by set 𝑵𝑲(𝒙𝒊). The variable 𝒚𝒊 is the ground
truth value in which the neighboring points are closest to. This equation
was adapted from Kramer (2013), Equation 2.4.

𝐹𝐾𝑁𝑁(𝑥𝑖) =
1

𝐾
∑ 𝑦𝑖

𝑖∈𝑁𝐾(𝑥𝑖)

107

Figure 3.5: KNN plots all training data on an 𝒏-dimensional plot, where 𝒏 is
the total number of features. In the above example, 𝒏 = 𝟐 and there are a
total of 2 classes: A (blue) and B (orange). The green point with the ? above

it represents an input whose value will be predicted from the 𝑲 nearest
neighbors closest to it, measured using the Euclidean distance metric.

3.2.2.5 Multi-Layer Perceptron

The MLP learner was inspired by the human brain, utilizing neurons, or nodes that

contain data such as feature values, to both relay and receive information to/from

neurons in other layers in order to make a prediction. As an overview, the MLP

learns the function 𝑓(⋅): 𝑅𝑚 → 𝑅𝑜 given the features 𝑋 = { 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚}, where

𝑚 and 𝑜 represent the number of dimensions for the input and output sets

respectively (Pedregosa et al., 2011). There are a total of 3 different types of

layers: input, hidden, and output. The input layer is comprised of neurons that

each contain a feature value 𝑥𝑖 that is passed onto the hidden layer(s), where each

neuron in a given hidden layer applies a set of weights to the neurons from the

108

previous one such that 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ + 𝑤𝑚𝑥𝑚 + 𝑏, where 𝑏 is a bias

that serves as a scalar (Pedregosa et al., 2011). This is followed with the use of

an activation function, in this case the rectified linear unit function 𝑓(𝑥) =

 𝑚𝑎𝑥(0, 𝑥) that returns zero for any negative 𝑥 or the value of 𝑥 as-is if it is positive

(Pedregosa et al., 2011). These values from the final hidden layer are then passed

to the output layer, where the predicted output value is given.

However, the process does not end here; backpropagation is used to

determine the optimal weights and biases that minimizes the MSE between the

predicted and ground truth values (Pedregosa et al., 2011). Backpropagation

starts by utilizing a loss function, in this case MSE, to quantify how far away the

predicted value from the output layer is from the ground truth. This loss value is

then used to calculate the amount of error each neuron within every hidden layer

contributes, starting from the final layer and working towards the first (Cilimkovic,

2015). Afterwards, the weights of all neurons are updated using the adam solver,

a stochastic gradient-based optimizer, which minimizes the overall MSE of the

model (Cilimkovic, 2015; Pedregosa et al., 2011). The performance of the model

is then checked again using the loss function, and backpropagation is repeated

until either the maximum number of iterations is met, or the loss does not improve

by a given tolerance for a specified number of iterations (Cilimkovic, 2015;

Pedregosa et al., 2011).

109

Equation 3.16: A) An example function for 𝒇 that contains one hidden layer.
The variable 𝑾𝟏 represents the weights of all feature values within the input

layer, 𝑾𝟐 are the weights of all feature values within the hidden layer, and
𝒃𝟏 and 𝒃𝟐 are the bias values for the hidden and output layers respectively.
This equation was obtained from the scikit-learn user guide https://scikit-
learn.org/stable/modules/neural_networks_supervised.html#mathematical
-formulation (Pedregosa et al., 2011). B) The activation function 𝒈 which is
the rectified linear unit function scikit-learn uses by default for MLP
regression. This equation was obtained from the scikit-learn
documentation for the MLP Regressor learner https://scikit-
learn.org/stable/modules/generated/sklearn.neural_network.MLPRegresso
r.html (Pedregosa et al., 2011).

A) 𝑓(𝑥) = 𝑊2𝑔(𝑊1
𝑇𝑥 + 𝑏1) + 𝑏2

B) 𝑔(𝑧) = 𝑚𝑎𝑥(0, 𝑧)

3.2.2.6 Random Forest

RANFOR is an ensemble method that utilizes multiple DECTREs to perform

prediction. Each DECTRE is trained using sub-datasets generated from a process

known as bootstrap sampling, where samples of the training dataset are randomly

drawn with replacement, allowing them to be used again. Section 3.2.2.3

describes how DECTREs are built. Moreover, for each individual DECTRE, the

best split was determined from a randomly selected feature, and the quality of the

split was measured using the MSE metric (Pedregosa et al., 2011). Once all

DECTREs have been built, RANFOR calculates the average of the ensemble to

determine the predicted value (Pedregosa et al., 2011).

https://scikit-learn.org/stable/modules/neural_networks_supervised.html#mathematical-formulation
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#mathematical-formulation
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#mathematical-formulation
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn-neural-network-mlpregressor
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn-neural-network-mlpregressor
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn-neural-network-mlpregressor

110

3.2.2.7 Support Vector Regression

SVR, specifically epsilon-SVR, utilizes the hyperparameter 𝜀 to define what is

known as the epsilon-tube, a hyperplane with a width of a single 𝜀 deviation on top

and bottom (Pedregosa et al., 2011). The hyperplane is generated such that

predicted values should not go beyond an 𝜀 deviation from the ground truth values,

however, the slack variables 𝜁 and 𝜁∗ are used as penalties for those that fall

above and below the epsilon-tube respectively (Pedregosa et al., 2011; Zhang &

O’Donnell, 2020). Fundamentally, SVR aims to generate the narrowest possible

epsilon-tube with all predicted values lying inside. In this chapter, SVR with the rbf

kernel was used.

Figure 3.6: SVR constructs a hyperplane that best approximates the
relationship between the input features and ground truth values. Predicted
values should be at most ±𝜺 deviations above/below the hyperplane,
although the slack variables, ζ and ζ*, exist to penalize those that fall
outside the epsilon-tube.

111

Equation 3.17: Given the training values {𝒙𝟏, … , 𝒙𝒏} and ground truth values

{𝒚𝟏, … , 𝒚𝒏}, SVR calculates the optimal weights (𝒘) and bias (𝒃) that
generates the narrowest possible epsilon-tube with the smallest possible
slack variables above (𝜻) and below (𝜻∗) the tube (Pedregosa et al., 2011). 𝑪
is a hyperparameter used for regularization, which helps protect against
overfitting. These equations were taken from the scikit-learn user guide
https://scikit-learn.org/stable/modules/svm.html#svr (Pedregosa et al.,
2011).

𝑚𝑖𝑛𝑤,𝑏,𝜁𝑖,𝜁𝑖
∗[

1

2
𝑤𝑇𝑤 + 𝐶 ∑(𝜁𝑖 + 𝜁𝑖

∗)

𝑛

𝑖 = 1

]

3.2.2.8 Super Learner

The SUPLRN is an ensemble method that utilizes multiple learners to perform

prediction, and in this thesis the DECTRE, LINREG, RANFOR, SVR, and MLP

base learners were chosen. The process of generating a SUPLRN model was first

outlined by van der Laan et al. (2007), and an overview of the entire process is

shown in Figure 3.7.

https://scikit-learn.org/stable/modules/svm.html#svr

112

Figure 3.7: SUPLRN as defined by van der Laan et al. (2007). The learners
were first trained on the entire training dataset and then set aside. 𝒌-fold
CV was then performed for each learner, where their performance on each
fold was stored in the Z matrix. A meta-learner was then used on the Z
matrix to calculate the weight of each learner for the optimal combination
that either maximized a scoring function or minimized a loss function,
depending on which was chosen. Finally, these weights were then applied
to the learners trained on the entire training set originally, which produced
the learned model. Image taken directly from van der Laan et al. (2007),
Figure 1.

First, the set of all learners, denoted by 𝐿, were trained on the entire training

dataset. Next, external CV was performed for every learner using the R2

performance metric, which has an output range of (−∞, 1]. A score of 1 indicates

the independent variables (feature values) explain all the variance of the

dependent variable (Vmem for instance), while a score of 0, considered a soft lower

113

bound, indicates none of the variance between the feature values and Vmem or ion

concentrations are explained by the model. In other words, for any score between

0 and 1 there is some percentage of variance explained by the trained model,

while any value ≤0 indicates the model is unable to perform prediction with any

degree of accuracy (Chicco et al., 2021).

In the case of the SUPLRN, the performance of every learner on each fold

was placed into what is known as a Z-matrix with dimensions 𝑘 by 𝐿,

corresponding to the total number of folds used during CV, 10 in this case, by the

total number of base learners, which was 5. Once CV was completed, a meta-

learner, LINREG, was used to calculate the weights of each learner within the Z-

matrix that best optimized the overall CV performance. The calculated weights

determined how much input each learner has in the trained model; for instance, if

SVR has a weight of 0.2, DECTRE has 0.3, and MLP has 0.7, then 70% of the

SUPLRN prediction will be done by MLP, 20% by DECTRE, and 20% by SVR.

Finally, the last step was to apply these weights to the learners initially trained on

the entire training set, and the SUPLRN model was generated (van der Laan et

al., 2007).

3.2.2.9 Validation

Performance was assessed using the validation dataset where the MAE,

otherwise known as the L1 loss function, MSE or L2 loss function, median absolute

error (MEDAE), and the coefficient of determination, or R2, performance metrics

114

were all utilized. MSE’s usage of the squared error between each predicted and

ground truth value leads to the magnification of outliers, a problem that other

metrics do not share. Both MAE and MEDAE handle outliers far better in

comparison, with MEDAE being especially robust (Pedregosa et al., 2011) due to

its usage of the median rather than taking into account all values like the other

metrics. R2 measures how well the independent variables, in this case the

features, explain the amount of variance within the model (Pedregosa et al., 2011).

While R2 has an output value range of (−∞, 1], anything ≤0 signifies the model

explains none of the variance between the independent and dependent variables,

making 0 the soft lower boundary (Chicco et al., 2021). Consequently, the output

range of R2 can be considered [0,1], where all negative values were simplified to

0 without losing meaning (Chicco et al., 2021).

Equation 3.18: MAE, otherwise known as the L1 loss metric, is calculated
by summing the absolute value of the difference between the ground truth
(𝒚) and the predicted values (�̂�) for all samples in the validation set (𝒏). The
goal is to minimize the loss, so the best possible value is 0. This equation
was obtained from the scikit-learn user guide https://scikit-
learn.org/stable/modules/model_evaluation.html#mean-absolute-error
(Pedregosa et al., 2011).

𝑀𝐴𝐸(𝑦, �̂�) =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=0

https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error

115

Equation 3.19: MSE, otherwise known as the L2 loss metric, is calculated
by summing the squared difference between the ground truth value (𝒚) and
the predicted values (ŷ) for all samples in the validation set (𝒏). The goal is
to minimize the loss, so the best possible value is 0. This equation was
obtained from the scikit-learn user guide https://scikit-
learn.org/stable/modules/model_evaluation.html#mean-squared-error
(Pedregosa et al., 2011).

𝑀𝑆𝐸(𝑦, �̂�) =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=0

Equation 3.20: MEDAE is determined by finding the median of a set of
values, each of which correspond to the difference between the ground
truth (𝒚) and predicted (ŷ) values for all samples within the validation set,
the total number being 𝒏. The best possible value is 0. This equation was
obtained from the scikit-learn user guide https://scikit-
learn.org/stable/modules/model_evaluation.html#mean-absolute-error
(Pedregosa et al., 2011).

𝑀𝐸𝐷𝐴𝐸(𝑦, �̂�) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦1 − �̂�1|, … , |𝑦𝑛 − �̂�𝑛|)

Equation 3.21: R2 is calculated by subtracting from 1 the sum of the squared
difference between all ground truth (𝒚) values from the predicted (ŷ) values,
divided by the sum of the squared difference between the ground truth and
the mean (ȳ) of all validation values. The total number of entries within the
validation set is represented by 𝒏. The best possible value is 1. This
equation was obtained from the scikit-learn user guide https://scikit-
learn.org/stable/modules/model_evaluation.html#r2-score (Pedregosa et
al., 2011).

𝑅2(𝑦, �̂�) = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error
https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score
https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score

116

3.3 Results

3.3.1 Objective 1

Table 3.2: Objective 1 performance of all models over all metrics.
Highlighted entries signify the model with the best performance for that
metric/column.

Model MAE MSE MEDAE R2

BAYRID 21.91 936.46 16.60 0.57

DECTRE 2.35 67.00 0.00 0.97

KNN 2.25 56.10 0.00 0.97

LINREG 21.91 936.46 16.60 0.57

MLP 4.24 64.72 1.40 0.97

RANFOR 2.07 48.84 0.00 0.98

SVR 6.49 123.32 3.44 0.94

SUPLRN 3.15 53.81 0.76 0.98

Table 3.3: Objective 1 R2 performance of each learner within the SUPLRN
on 10-fold CV.
Learner Score Standard Deviation

DECTRE 0.97 0.00

LINREG 0.57 0.00

MLP 0.96 0.00

RANFOR 0.98 0.00

SVR 0.94 0.00

3.3.2 Objective 2

For objectives 2 and 3 a total of 26,817 BETSE simulations were used.

117

Table 3.4: Objective 2 performance of all models over all metrics.
Highlighted entries signify the model with the best performance for that
metric/column. The following parameters were modified from their defaults:
MLP’s max_iter was set to 99,999 from 200; SVR’s max_iter was set to
75,000 from -1 (no limit); Within the SUPLRN: DECTRE’s max_depth was
set to 50 from None (no limit); RANFOR’s max_depth was set to 50 from
None (no limit); SVR’s max_iter was set to 50,000; MLP’s max_iter was set
to 3,000.

Model MAE MSE MEDAE R2

BAYRID 3.56E+124 1.27E+249 3.56E+124 0.00

DECTRE 0.91 2880.39 0.01 0.31

KNN 4.99 103.28 1.70 0.92

LINREG 1.55E+125 3.93E+250 1.27E+125 0.00

MLP 9.60 3050.36 5.98 0.27

RANFOR 16.59 3191.34 16.07 0.23

SVR 34.07 4291.04 34.66 0.00

SUPLRN 5.46 2946.66 2.39 0.29

Table 3.5: Objective 2 R2 performance of each learner within the SUPLRN
on 10-fold CV.
Learner Score Standard Deviation

DECTRE 0.86 0.00

LINREG 0.38 0.00

MLP 0.87 0.00

RANFOR 0.92 0.00

SVR 0.30 0.02

118

3.3.3 Objective 3

Table 3.6: Objective 3 performance of all models over all metrics.
Highlighted entries signify the model with the best performance for that
metric/column. The following parameters were modified from their defaults:
MLP’s max_iter was set to 99,999 from 200; SVR’s max_iter was set to
250,000 from -1 (no limit). Within the SUPLRN: MLP’s max_iter was set to
3,000; RANFOR’s max_depth was set to 50 from None (no limit); SVR’s
max_iter was set to 250,000.

Model MAE MSE MEDAE R2

BAYRID 2.88 19.45 1.98 0.97

DECTRE 0.22 0.90 0.06 1.00

KNN 0.65 3.33 0.06 1.00

LINREG 2.88 19.45 1.98 0.97

MLP 1.57 6.58 0.91 0.99

RANFOR 0.20 0.57 0.03 1.00

SVR 3.25 19.64 2.80 0.97

SUPLRN 0.17 0.47 0.04 1.00

Table 3.7: Objective 3 R2 performance of each learner within the SUPLRN
on 10-fold CV.
Learner Score Standard Deviation

DECTRE 1.00 0.00

LINREG 0.97 0.00

MLP 0.99 0.00

RANFOR 1.00 0.00

SVR 0.98 0.00

3.4 Discussion

ML models corresponding to BAYRID, DECTRE, KNN, LINREG, MLP, RANFOR,

SVR, and SUPLRN were trained to complete 3 separate objectives. Objective 1

focused on predicting the average Vmem of an entire network of cells, objective 2

119

was to predict the Vmem of each individual cell within the network, and finally,

objective 3 was to predict the average ion concentration for Na+, K+, Cl-, and Ca2+

of the entire cellular network. The SUPLRN was comprised of the DECTRE,

LINREG, MLP, RANFOR, and SVR learners. Note that a 2-tailed paired samples

t-test was used to compare the models from each objective, where any value with

𝑝 < 0.05 was considered significant.

 For objective 1, LINREG and BAYRID, both linear learners, were shown to

have the worst performance of all models. Conversely, RANFOR had the best

performance over all metrics, where DECTRE and KNN matched its MEDAE

score, and SUPLRN had the same R2 score. The t-test between RANFOR and

DECTRE (𝑝 = 0.30) showed no significant difference between the models, while

RANFOR and KNN (𝑝 = 0.00) as well as RANFOR and SUPLRN (𝑝 = 0.00)

demonstrated that the performance of these models was significantly different.

The same was found between DECTRE, KNN, and SUPLRN, 𝑝 = 0.00 for every

pair. Outside of the linear learners, SVR was also found to be particularly sensitive

to outliers as shown by its MSE score. Additionally, the performance of each base

learner within the SUPLRN regarding 10-fold CV are shown in Table 3.3. Here,

the performance of the trained models within the SUPLRN are reflective of their

individual counterparts (shown in Table 3.2), with DECTRE and RANFOR

performing best and LINREG being the worst.

120

In objective 2, DECTRE had the best MAE and MEDAE scores while KNN

was the most performant model over MSE and R2; see Table 3.5. The

performance of these models was not found to be significantly different (𝑝 = 0.36)

to each other. BAYRID and LINREG were again the worst performing models over

all metrics, demonstrating linear learners were not suited for Vmem prediction using

BETSE data. Unlike objective 1 previously, the R2 scores of the models within the

SUPLRN did not reflect the ranking of their individual counterparts, with RANFOR

having the best performance on 10-fold CV, SVR performing the worst after

LINREG, and MLP and DECTRE’s scores being within 0.01 of each other.

Finally, in objective 3 the SUPLRN was found to be most performant over

the MAE and MSE metrics, RANFOR had the best MEDAE score (by 0.01 over

SUPLRN), and SUPLRN, RANFOR, DECTRE, and KNN all had equivalent R2

values. Here, the performance of the SUPLRN was found to be significant

compared to each of the RANFOR (𝑝 = 0.00), DECTRE (𝑝 = 0.00), and KNN (𝑝 =

0.00) models. Moreover, there was no significant statistical difference between the

performance of DECTRE and RANFOR (𝑝 = 0.11), while all other 2-tailed paired

samples t-tests between DECTRE and KNN (𝑝 = 0.01) as well as RANFOR and

KNN (𝑝 = 0.04) were significant. While BAYRID and LINREG continued to lag

behind the others, in this objective SVR performed the worst over all metrics

except for R2, where all 3 of these models had the same score. Within the

SUPLRN, LINREG was in last place, within 0.01 of SVR, which itself was the same

121

amount away from MLP, and DECTRE and RANFOR obtained perfect R2 scores

over 10-fold CV.

Overall, the results show linear models did not perform well in any of the

objectives, while tree-based models such as DECTRE and RANFOR performed

well in Vmem and ion concentration prediction within objectives 1 and 3. In objective

2, the performance of DECTRE and KNN was found to not be significantly

different, meaning either model would be appropriate for predicting the Vmem of

each individual cell within a network. On average, the performance of all models

was worse in objective 2 compared to the others; for example, the mean MSE

score was approximately 2743.85 (excluding BAYRID and LINREG) compared to

285.84 in objective 1 and 8.80 in objective 3, and the mean R2 score was 0.25 in

objective 2 compared to 0.87 and 0.99 for objectives 1 and 3 respectively.

Moreover, these averages also demonstrate that the models tended to perform

best in objective 3.

3.5 Conclusion

The goal of this study was to utilize ML to replicate the functionality of BETSE, a

program that simulates bioelectric signaling of cellular networks via GJs, the

activity of the Na+, K+, Cl-, and Ca2+ ion channels, and the Vmem of each cell within

the network. Bioelectricity is used in a myriad of ways; for instance, cells use Vmem

to communicate and form networks with one another as well as to regulate

122

processes such as the growth of tumors, stem cell differentiation, and the control

of voltage-gated ion channels to name a few (Pietak & Levin, 2016; Silver &

Nelson, 2018). The ability to configure parameters in BETSE such as membrane

diffusion constants as well as the initial extracellular and intracellular ion

concentrations of Na+, K+, Cl-, and Ca2+, all of which ultimately affect Vmem, allow

for a variety of cellular networks to be modeled. This is useful because diseases

such as cancer up/downregulate ion channels in order to proliferate (Haworth &

Brackenbury, 2019), while Tuszynski et al. (2017) has shown in-vitro that bringing

cancer-state depolarized cells back to a healthy-state Vmem can prevent and even

reverse tumorigenesis in some cases.

All models were trained and validated using data generated from BETSE,

where the configuration files had randomized values for specific parameters (e.g.,

size of the environmental grid). This is one of the limitations of this study, seeing

as the trained ML models can only ever be as good as BETSE, which itself

simulates in-vivo conditions. In other words, all trained models were 2 degrees

away from reality; the degree of error from ML to BETSE, and then the degree of

error of BETSE from in-vivo conditions. Furthermore, scikit-learn does not always

handle large data efficiently, often requiring the entire training dataset to be loaded

into memory during training. This can lead to memory usage in the hundreds of

gigabytes depending on the learner, number of features, and number of examples

in the dataset, and while the “partial_fit” method is available for incremental

123

learning, this only covers a small subset of all available learners (Buitinck et al.,

2013).

In conclusion, 8 ML models were trained for each of the 3 objectives and

their performance was compared to determine the best model for each task. Here,

RANFOR was the most performant over all MAE, MEDAE, MSE, and R2 metrics

in objective 1, the performance of DECTRE and KNN, each with the best score in

half of all scoring metrics, was found to not be statistically significant in objective

2, and SUPLRN had the best MAE and MSE scores along with an equivalent R2

score to DECTRE, KNN, and RANFOR in objective 3. Future work in bioelectric

signal modeling will incorporate other parameters of cellular networks such as

temperature and pressure, as well as more fine-grained properties of cells such

as the surface area of GJs for instance. It may also be possible to obtain

experimental data from published literature as bioelectric signaling becomes more

of a focus. Similar to the trained classifiers in Chapter 2, used to determine

whether a given drug is an agonist, antagonist, or decoy to the AR, ER, GR, and

PR nuclear receptors, the advantage of ML is that it provides a cost-efficient

method of prediction in context of both time and computational resources. The

models generated in this chapter allow numerous cellular networks, each with

varied parameters, to be predicted while only requiring a fraction of the

computational power needed to run a single BETSE simulation. This additionally

has the advantage of being able to scale to larger networks that BETSE would not

124

be able to handle due to limitations on computer memory. These advantages apply

to BEN as well, a more minimalistic version of BETSE developed by Manicka and

Levin (2019) that also utilizes differential equations for estimating processes such

as ion flux or electrodiffusion.

125

Discussion and Conclusions

In this thesis, various applications of in-silico drug discovery were explored,

starting with classical methodologies such as drug docking and MD/SA. While

these techniques have been around for decades, they are still the go-to for

designing novel therapeutics, as in the case PAL modeling shown in Chapter 1.

This study was performed in collaboration with CSTS Health Care to develop novel

PALs that bind pharmaceuticals, for example a cancer drug, and allow for

precision drug delivery to tissues via platelet sequestration. The 3D structures of

PAL and PAL-derived PALs were generated using their FASTA sequences, while

the receptor, CSA, was created in-silico using a template structure to build from.

A 4-phase SA technique was then used on CSA to obtain its lowest energy

conformation, followed with blind docking of the PALs to this structure.

Electrostatic analysis of the docked ligands revealed that the arginines on PAL

interfered with sulfate groups on CSA during binding. Future development and

optimizations of PAL will include relocation of these amino acids to better

accommodate CSA, ultimately leading to better binding affinity of the PAL:CSA

complex.

Chapter 2 involved the use of ML to train a series of classifiers that

determined whether a given drug was an agonist, antagonist, or decoy to the AR,

ER, GR, and PR nuclear receptors. This chapter highlighted how scientific

literature can be leveraged to build new tools while also mitigating a pitfall of ML,

126

not having enough data for training and validation. This issue was remedied using

data augmentation, which generated additional agonists and antagonists for each

receptor using existing ones as templates. However, this solution added a layer of

uncertainty because the generated structures may not reflect actual agonists and

antagonists, which could have degraded the performance of the trained models.

A total of 5 models were compared, where NAIBAY had the best performance on

AR, NEUNET for ER and GR, and the classification accuracy of DECTRE and

NAIBAY were within 0.01% of each other for PR. A 2-tailed paired samples t-test

showed no significance between NEUNET, which had the highest average

accuracy over all receptors, and DECTRE, NAIBAY, and RANFOR. While these

models were found to be statistically significant to SVM, which had the worst

performance over all receptors, the DECTRE, NAIBAY, and RANFOR models

were not statistically significant to one other.

Chapter 3 focused on modeling bioelectricity, an area that has historically

received relatively little attention. The BETSE application, developed by Pietak

and Levin (2016), simulates GJs and ion channels of cells to predict the cytosolic

and extracellular concentrations of Na+, K+, Cl-, and Ca2+ ions, which in turn

provides the Vmem of each cell within the network. Cells utilize Vmem to form circuits

with one another, allowing them to regulate a host of processes including the

growth of tumors and the opening and closing of voltage-gated ion channels.

Using experimentally obtained membrane ion permeabilities as well as

127

extracellular Na+, K+, and Cl- of Xenopus oocytes, BETSE was shown to predict

the Vmem and intracellular ion concentrations with <10% difference to their in-vitro

values (Pietak & Levin, 2016). That being said, a given BETSE simulation can be

time consuming and computationally expensive, especially when simulating larger

networks. ML models were generated based on BETSE data to predict 1) the Vmem

of a cellular network, as well as 2) each individual cell within the network, and

additionally, 3) the average Na+, K+, Cl-, and Ca2+ concentrations. Similar to

Chapter 2, the training data here was completely based on in-silico results which

presented an extra layer of uncertainty compared to using experimental data

directly. Tree-based models such as DECTRE and RANFOR performed well over

these objectives, while BAYRID and LINREG, both linear models, did not. In

particular, the performance of DECTRE was found to not be significantly different

to either RANFOR or KNN in objectives 1 and 2, where these models were among

the top performers. In objective 3 RANFOR marginally had the best MEDAE value

over the SUPLRN model, which had the lowest MAE and MSE scores and also

tied with DECTRE, KNN, and RANFOR in the R2 scoring metric. Here, the

performance between DECTRE and RANFOR were not statistically significant

either.

Advances in computational power and storage in addition to the

development of numerous learning algorithms have led to an immense growth in

the usage of ML for biomedical research. In this thesis ML was used for both

128

classification and regression tasks, providing a cost and resource effective method

for drug activity as well as bioelectric and ion channel concentration prediction.

Within the pharmaceutical industry, ML has been integrated into various stages of

drug discovery including target selection and validation, lead discovery, and even

preclinical and clinical development through biomarker and drug

response/pharmacological predictions (Patel et al., 2020; Vamathevan et al.,

2019). While newer ML methodologies have many benefits, existing in-silico tools

are still a critical part of the drug discovery process and likely will not be replaced

for quite some time due to the lack of data, especially high quality or expert

curated, in many areas. Chapter 3 was a prime example of this issue, where large

amounts of experimentally validated bioelectric data were not readily available,

requiring the use of BETSE instead.

To date there have been over 70 therapeutics brought to market with

computational techniques playing a variety of roles in each (Sabe et al., 2021). In

the case of Imatinib for example, drug docking of various chemical libraries was

performed against Bcr-Abl tyrosine kinase for lead identification. Furthermore,

drug docking was also utilized during the development of Selinexor to identify

exportin-1 inhibitors, and for Vaborbactam, both drug docking as well as MD were

performed to determine beta-lactamase inhibitors (Dhillon, 2018; Sabe et al.,

2021; Syed, 2019). Moreover, the exorbitant cost and time needed to develop a

therapeutic from scratch and bring it to market has led to the process of drug

129

repurposing as an alternative, with a few examples being sildenafil, originally

designed for angina and then repurposed to treat erectile dysfunction,

mifepristone, which was first approved for abortion and found later to work as a

treatment for Cushing’s syndrome, and topiramate, whose original indication of

epilepsy was later expanded to include migraines as well (Akhoon et al., 2019).

Bioinformatic and ML techniques are especially able to take advantage of protein,

genomic, pharmacological, etc. databases to identify novel interactions for the

objective of drug repurposing. DRUGPATH for instance incorporates several

expert-curated resources to provide a meta-database that maps interactions

between drugs, genes, targets, and biological pathways to predict adverse drug

interactions (Jaundoo & Craddock, 2020). Likewise, comboFM is a ML framework

developed by Julkunen et al. (2020) that utilizes a factorization machine, used for

non-linear learning of large data, to determine viable drug combinations and

dosages for preclinical studies such as cancer cell lines.

Future work will involve the additional use of ML to replace more in-silico

tools within drug discovery such as NAMD for instance, which was used in Chapter

2 to perform MD. Here, natural language processing could be utilized to extract

experimental data from published literature about various protein families, and

additionally, databases containing already performed MD simulations such as

MoDEL (T. Meyer et al., 2010) would be used for training and validation. A similar

process could be used to generate ML models that predict the docked pose(s) of

130

a given drug to a receptor, with the addition of integrating chemical and physical

properties of pharmaceuticals including molecular weight, number of H-bond

donors and acceptors, and water solubility for example to increase performance.

As more in-vivo and in-vitro data become available, in-silico tools will be able to

integrate this data to produce increasingly accurate models. This may allow

computational models to eventually replace mammalian animal studies, which are

costly and have various issues including a lack of reliability between various

animal species and strains, poor translation of animal data to human trials, and

ethical concerns such as prolonged conditions of pain and suffering as well as the

requirement to euthanize animals after experimentation (Freires et al., 2016;

Robinson et al., 2019).

In conclusion, in-silico tools and methods are a core part of modern-day

biomedical research at large, allowing researchers to model and simulate

biological processes that would otherwise be costly, time consuming, or

improbable in-vitro or in-vivo. For instance, conventional in-silico methods such as

molecular docking and MD have been shown to play valuable roles, both past and

present, in drug discovery as well as repurposing. Additionally, the vast amount of

biomedical data available in databases, repositories, and published literature

enables ML and informatics methods to predict ligand:target affinity, protein

structure and dynamics, and moreover, identify various drug-drug, drug-target,

and protein-protein interactions that would otherwise be unknown. The accuracy

131

of in-silico models and predictions will continue to increase as the field progresses,

leading to reduced costs and faster development within the drug discovery

process, more effective therapeutics and treatments with fewer side effects, and

ultimately, better outcomes for patients.

132

Bibliography

Akhoon, B. A., Tiwari, H., & Nargotra, A. (2019). In silico drug design methods

for drug repurposing. In In Silico Drug Design (pp. 47–84). Elsevier.

http://dx.doi.org/10.1016/b978-0-12-816125-8.00003-1

Aldas-Bulos, V. D., & Plisson, F. (2023). Benchmarking protein structure

predictors to assist machine learning-guided peptide discovery. Digital

Discovery, 2(4), 981–993. https://doi.org/10.1039/d3dd00045a

Amaro, R. E., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., Miao, Y., &

Smith, J. C. (2018). Ensemble docking in drug discovery. Biophysical

Journal, 114(10), 2271–2278. https://doi.org/10.1016/j.bpj.2018.02.038

Asako, Y., & Uesawa, Y. (2017). High-Performance prediction of human

estrogen receptor agonists based on chemical structures. Molecules,

22(4), 675. https://doi.org/10.3390/molecules22040675

Ben-Hur, A., & Weston, J. (2009). A user’s guide to support vector machines. In

Methods in Molecular Biology (pp. 223–239). Humana Press.

http://dx.doi.org/10.1007/978-1-60327-241-4_13

Berrar, D. (2019). Cross-Validation. In Encyclopedia of Bioinformatics and

Computational Biology (pp. 542–545). Elsevier.

http://dx.doi.org/10.1016/b978-0-12-809633-8.20349-x

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O.,

Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R.,

133

Vanderplas, J., Joly, A., Holt, B., & Varoquaux, G. (2013, September 1).

API design for machine learning software: Experiences from the scikit-

learn project. arXiv.Org. https://arxiv.org/abs/1309.0238

Butterfield, K. C., Caplan, M., & Panitch, A. (2010). Identification and sequence

composition characterization of chondroitin sulfate-binding peptides

through peptide array screening. Biochemistry, 49(7), 1549–1555.

https://doi.org/10.1021/bi9021044

Cáceres, E. L., Tudor, M., & Cheng, A. C. (2020). Deep learning approaches in

predicting ADMET properties. Future Medicinal Chemistry, 12(22), 1995–

1999. https://doi.org/10.4155/fmc-2020-0259

Cervera, J., Alcaraz, A., & Mafe, S. (2016). Bioelectrical signals and ion

channels in the modeling of multicellular patterns and cancer biophysics.

Scientific Reports, 6(1). https://doi.org/10.1038/srep20403

Chan, H. C. S., Shan, H., Dahoun, T., Vogel, H., & Yuan, S. (2019). Advancing

drug discovery via artificial intelligence. Trends in Pharmacological

Sciences, 40(8), 592–604. https://doi.org/10.1016/j.tips.2019.06.004

Chang, C.-C., & Lin, C.-J. (2019). LIBSVM: A Library for Support Vector

Machines. https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf.

Chemical Computing Group. (2019a). MOE User Guide.

Chemical Computing Group. (2019b). Molecular Operating Environment (MOE).

2019.01.

134

Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination

R-squared is more informative than SMAPE, MAE, MAPE, MSE and

RMSE in regression analysis evaluation. PeerJ Computer Science, 7,

e623. https://doi.org/10.7717/peerj-cs.623

Cilimkovic, M. (2015). Neural networks and back propagation algorithm. Institute

of Technology Blanchardstown, 15(1).

Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. A. (2022).

Machine-learning methods for ligand–protein molecular docking. Drug

Discovery Today, 27(1), 151–164.

https://doi.org/10.1016/j.drudis.2021.09.007

Cummings, J. L., Goldman, D. P., Simmons‐Stern, N. R., & Ponton, E. (2021).

The costs of developing treatments for Alzheimer’s disease: A

retrospective exploration. Alzheimer’s & Dementia, 18(3), 469–477.

https://doi.org/10.1002/alz.12450

Dalby, A., Nourse, J. G., Hounshell, W. D., Gushurst, A. K. I., Grier, D. L.,

Leland, B. A., & Laufer, J. (1992). Description of several chemical

structure file formats used by computer programs developed at Molecular

Design Limited. Journal of Chemical Information and Computer Sciences,

32(3), 244–255. https://doi.org/10.1021/ci00007a012

de Laeter, J. R., Böhlke, J. K., De Bièvre, P., Hidaka, H., Peiser, H. S., Rosman,

K. J. R., & Taylor, P. D. P. (2003). Atomic weights of the elements.

135

Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry,

75(6), 683–800. https://doi.org/10.1351/pac200375060683

Dhillon, S. (2018). Meropenem/Vaborbactam: A review in complicated urinary

tract infections. Drugs, 78(12), 1259–1270.

https://doi.org/10.1007/s40265-018-0966-7

Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and

drug discovery. BMC Biology, 9(1). https://doi.org/10.1186/1741-7007-9-

71

Durrant, J. D., & McCammon, J. A. (2012). AutoClickChem: Click chemistry in

Silico. PLoS Computational Biology, 8(3), e1002397.

https://doi.org/10.1371/journal.pcbi.1002397

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., & Roth, A. (2015).

Generalization in adaptive data analysis and holdout reuse. Advances in

Neural Information Processing Systems, 28.

Ekins, S., Mestres, J., & Testa, B. (2007). In silico pharmacology for drug

discovery: Methods for virtual ligand screening and profiling. British

Journal of Pharmacology, 152(1), 9–20.

https://doi.org/10.1038/sj.bjp.0707305

El Naqa, I., & Murphy, M. J. (2015). What is machine learning? In Machine

Learning in Radiation Oncology (pp. 3–11). Springer International

Publishing. http://dx.doi.org/10.1007/978-3-319-18305-3_1

136

Erb, R. J. (1993). Introduction to backpropagation neural network computation.

Pharmaceutical Research, 10(2), 165–170.

https://doi.org/10.1023/A:1018966222807

Freires, I. A., Sardi, J. de C. O., de Castro, R. D., & Rosalen, P. L. (2016).

Alternative animal and non-animal models for drug discovery and

development: Bonus or burden? Pharmaceutical Research, 34(4), 681–

686. https://doi.org/10.1007/s11095-016-2069-z

Gendreau, M., & Potvin, J. Y. (Eds.). (2010). Handbook of metaheuristics (Vol. 2,

p. 9). Springer.

Ghahramani, Z. (2003). Unsupervised Learning. In Summer school on machine

learning (pp. 72–112). Springer.

Goodall, G. J., & Wickramasinghe, V. O. (2020). RNA in cancer. Nature Reviews

Cancer, 21(1), 22–36. https://doi.org/10.1038/s41568-020-00306-0

Hagen, J. B. (2000). The origins of bioinformatics. Nature Reviews Genetics,

1(3), 231–236. https://doi.org/10.1038/35042090

Haji, S. H., & Abdulazeez, A. M. (2021). Comparison of Optimization Techniques

Based on Gradient Descent Algorithm: A Review. PalArch’s Journal of

Archaeology of Egypt/Egyptology, 18(4), 2715–2743.

Hall, M. A., & Smith, L. A. (1998). Practical feature subset selection for machine

learning (C. McDonald, Ed.; pp. 181–191). Springer.

137

Hatmal, M. M., & Taha, M. O. (2017). Simulated annealing molecular dynamics

and ligand–receptor contacts analysis for pharmacophore modeling.

Future Medicinal Chemistry, 9(11), 1141–1159.

https://doi.org/10.4155/fmc-2017-0061

Haworth, A. S., & Brackenbury, W. J. (2019). Emerging roles for multifunctional

ion channel auxiliary subunits in cancer. Cell Calcium, 80, 125–140.

https://doi.org/10.1016/j.ceca.2019.04.005

Hetényi, C., & van der Spoel, D. (2002). Efficient docking of peptides to proteins

without prior knowledge of the binding site. Protein Science, 11(7), 1729–

1737. https://doi.org/10.1110/ps.0202302

Isert, C., Atz, K., & Schneider, G. (2023). Structure-based drug design with

geometric deep learning. Current Opinion in Structural Biology, 79,

102548. https://doi.org/10.1016/j.sbi.2023.102548

Italiano, J. E., Jr, Richardson, J. L., Patel-Hett, S., Battinelli, E., Zaslavsky, A.,

Short, S., Ryeom, S., Folkman, J., & Klement, G. L. (2008). Angiogenesis

is regulated by a novel mechanism: Pro- and antiangiogenic proteins are

organized into separate platelet α granules and differentially released.

Blood, 111(3), 1227–1233. https://doi.org/10.1182/blood-2007-09-113837

Jaundoo, R., & Craddock, T. J. A. (2020). DRUGPATH: The drug gene pathway

meta-database. International Journal of Molecular Sciences, 21(9), 3171.

https://doi.org/10.3390/ijms21093171

138

Julkunen, H., Cichonska, A., Gautam, P., Szedmak, S., Douat, J., Pahikkala, T.,

Aittokallio, T., & Rousu, J. (2020). Leveraging multi-way interactions for

systematic prediction of pre-clinical drug combination effects. Nature

Communications, 11(1). https://doi.org/10.1038/s41467-020-19950-z

Jurk, K., & Kehrel, B. E. (2005). Platelets: Physiology and biochemistry.

Seminars in Thrombosis and Hemostasis, 31(04), 381–392.

https://doi.org/10.1055/s-2005-916671

Kabir, A., & Muth, A. (2022). Polypharmacology: The science of multi-targeting

molecules. Pharmacological Research, 176, 106055.

https://doi.org/10.1016/j.phrs.2021.106055

Kaiser, C. J. (2012). The Capacitor Handbook (1st ed.). Springer. (Original work

published 1992)

Karplus, M. (2003). Molecular dynamics of biological macromolecules: A brief

history and perspective. Biopolymers, 68(3), 350–358.

https://doi.org/10.1002/bip.10266

Karsoliya, S. (2012). Approximating number of hidden layer neurons in multiple

hidden layer BPNN architecture. International Journal of Engineering

Trends and Technology, 3(6), 714–717.

Klement, G. L., Yip, T.-T., Cassiola, F., Kikuchi, L., Cervi, D., Podust, V., Italiano,

J. E., Wheatley, E., Abou-Slaybi, A., Bender, E., Almog, N., Kieran, M. W.,

& Folkman, J. (2009). Platelets actively sequester angiogenesis

139

regulators. Blood, 113(12), 2835–2842. https://doi.org/10.1182/blood-

2008-06-159541

Klusowski, J. M. (2019). Analyzing CART. arXiv, 1906.10086.

https://doi.org/10.48550/arXiv.1906.10086

Kowalska, M. A., Rauova, L., & Poncz, M. (2010). Role of the platelet chemokine

platelet factor 4 (PF4) in hemostasis and thrombosis. Thrombosis

Research, 125(4), 292–296.

https://doi.org/10.1016/j.thromres.2009.11.023

Kramer, O. (2013). K-Nearest neighbors. In Dimensionality Reduction with

Unsupervised Nearest Neighbors (pp. 13–23). Springer.

http://dx.doi.org/10.1007/978-3-642-38652-7_2

Kramer, S., Widmer, G., Pfahringer, B., & de Groeve, M. (2000). Prediction of

ordinal classes using regression trees. In Lecture Notes in Computer

Science (pp. 426–434). Springer Berlin Heidelberg.

http://dx.doi.org/10.1007/3-540-39963-1_45

Kumar, A., & Jain, M. (2020). Ensemble learning for AI developers. Apress.

http://dx.doi.org/10.1007/978-1-4842-5940-5

Learned-Miller, E., G. (2014). Introduction to supervised learning.

Lee, C., & Lee, G. G. (2006). Information gain and divergence-based feature

selection for machine learning-based text categorization. Information

140

Processing & Management, 42(1), 155–165.

https://doi.org/10.1016/j.ipm.2004.08.006

Lee, S. K., Jeakins, G. S., Tukiainen, A., Hewage, E., & Armitage, O. E. (2020).

Next-Generation bioelectric medicine: Harnessing the therapeutic

potential of neural implants. Bioelectricity, 2(4), 321–327.

https://doi.org/10.1089/bioe.2020.0044

Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). Smart augmentation learning

an optimal data augmentation strategy. IEEE Access, 5, 5858–5869.

https://doi.org/10.1109/access.2017.2696121

Manicka, S., & Levin, M. (2019). Modeling somatic computation with non-neural

bioelectric networks. Scientific Reports, 9(1).

https://doi.org/10.1038/s41598-019-54859-8

Meyer, D. (2009). Support Vector Machines: The Interface to libsvm in package

e1071.

Meyer, T., D’Abramo, M., Hospital, A., Rueda, M., Ferrer-Costa, C., Pérez, A.,

Carrillo, O., Camps, J., Fenollosa, C., Repchevsky, D., Gelpí, J. L., &

Orozco, M. (2010). MoDEL (molecular dynamics extended library):

A Database of atomistic molecular dynamics trajectories. Structure,

18(11), 1399–1409. https://doi.org/10.1016/j.str.2010.07.013

Mierswa, I., & Klinkenberg, R. (2020). RapidMiner Studio (version 9.6).

141

Mori, T. (2002). Information gain ratio as term weight. Proceedings of the 19th

International Conference on Computational Linguistics.

http://dx.doi.org/10.3115/1072228.1072246

Mutasa, S., Sun, S., & Ha, R. (2020). Understanding artificial intelligence based

radiology studies: What is overfitting? Clinical Imaging, 65, 96–99.

https://doi.org/10.1016/j.clinimag.2020.04.025

Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An

introduction to decision tree modeling. Journal of Chemometrics, 18(6),

275–285. https://doi.org/10.1002/cem.873

Mysinger, M. M., Carchia, M., Irwin, John. J., & Shoichet, B. K. (2012). Directory

of useful decoys, enhanced (DUD-E): Better ligands and decoys for better

benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594.

https://doi.org/10.1021/jm300687e

Neubig, R. R., Spedding, M., Kenakin, T., & Christopoulos, A. (2003).

International Union of Pharmacology Committee on Receptor

Nomenclature and Drug Classification. XXXVIII. Update on terms and

symbols in quantitative pharmacology. Pharmacological Reviews, 55(4),

597–606. https://doi.org/10.1124/pr.55.4.4

Noble, D. (2002). The rise of computational biology. Nature Reviews Molecular

Cell Biology, 3(6), 459–463. https://doi.org/10.1038/nrm810

142

O’Boyle, N. M. (2012). Towards a Universal SMILES representation - A standard

method to generate canonical SMILES based on the InChI. Journal of

Cheminformatics, 4(1), 1–14. https://doi.org/10.1186/1758-2946-4-22

Palve, V., Liao, Y., Remsing Rix, L. L., & Rix, U. (2021). Turning liabilities into

opportunities: Off-target based drug repurposing in cancer. Seminars in

Cancer Biology, 68, 209–229.

https://doi.org/10.1016/j.semcancer.2020.02.003

Patel, L., Shukla, T., Huang, X., Ussery, D. W., & Wang, S. (2020). Machine

learning methods in drug discovery. Molecules, 25(22), 5277.

https://doi.org/10.3390/molecules25225277

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,

Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É.

(2011). Scikit-learn: Machine learning in python. Journal of Machine

Learning Research, 12(85), 2825–2830.

Peters, A. A., Jamaludin, S. y N., Yapa, K. T. D. S., Chalmers, S., Wiegmans, A.

P., Lim, H. F., Milevskiy, M. J. G., Azimi, I., Davis, F. M., Northwood, K.

S., Pera, E., Marcial, D. L., Dray, E., Waterhouse, N. J., Cabot, P. J.,

Gonda, T. J., Kenny, P. A., Brown, M. A., Khanna, K. K., … Monteith, G.

R. (2017). Oncosis and apoptosis induction by activation of an

143

overexpressed ion channel in breast cancer cells. Oncogene, 36(46),

6490–6500. https://doi.org/10.1038/onc.2017.234

Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi,

R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M.

C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B.,

Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable

molecular dynamics on CPU and GPU architectures with NAMD. The

Journal of Chemical Physics, 153(4), 044130.

https://doi.org/10.1063/5.0014475

Pietak, A., & Levin, M. (2016). Exploring instructive physiological signaling with

the bioelectric tissue simulation engine. Frontiers in Bioengineering and

Biotechnology, 4. https://doi.org/10.3389/fbioe.2016.00055

Pietak, A., & Levin, M. (2017). Bioelectric gene and reaction networks:

Computational modelling of genetic, biochemical and bioelectrical

dynamics in pattern regulation. Journal of The Royal Society Interface,

14(134), 20170425. https://doi.org/10.1098/rsif.2017.0425

Pleuvry, B. J. (2004). Receptors, agonists and antagonists. Anaesthesia &

Intensive Care Medicine, 5(10), 350–352.

https://doi.org/10.1383/anes.5.10.350.52312

144

Polley, E. C., & van der Laan, M. J. (2010). Super learner in prediction.

Collection of Biostatistics Research Archive.

https://doi.org/https://biostats.bepress.com/ucbbiostat/paper266

Rao, M. S., Gupta, R., Liguori, M. J., Hu, M., Huang, X., Mantena, S. R.,

Mittelstadt, S. W., Blomme, E. A. G., & Van Vleet, T. R. (2019). Novel

computational approach to predict off-target interactions for small

molecules. Frontiers in Big Data, 2.

https://doi.org/10.3389/fdata.2019.00025

Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-Validation. In Encyclopedia of

Database Systems (pp. 532–538). Springer US.

http://dx.doi.org/10.1007/978-0-387-39940-9_565

Reif, M., & Shafait, F. (2014). Efficient feature size reduction via predictive

forward selection. Pattern Recognition, 47(4), 1664–1673.

https://doi.org/10.1016/j.patcog.2013.10.009

Robinson, N. B., Krieger, K., Khan, F. M., Huffman, W., Chang, M., Naik, A.,

Yongle, R., Hameed, I., Krieger, K., Girardi, L. N., & Gaudino, M. (2019).

The current state of animal models in research: A review. International

Journal of Surgery, 72, 9–13. https://doi.org/10.1016/j.ijsu.2019.10.015

Rogers, D., & Hahn, M. (2010). Extended-Connectivity fingerprints. Journal of

Chemical Information and Modeling, 50(5), 742–754.

https://doi.org/10.1021/ci100050t

145

Russo, D. P., Zorn, K. M., Clark, A. M., Zhu, H., & Ekins, S. (2018). Comparing

multiple machine learning algorithms and metrics for estrogen receptor

binding prediction. Molecular Pharmaceutics, 15(10), 4361–4370.

https://doi.org/10.1021/acs.molpharmaceut.8b00546

Sabe, V. T., Ntombela, T., Jhamba, L. A., Maguire, G. E. M., Govender, T.,

Naicker, T., & Kruger, H. G. (2021). Current trends in computer aided

drug design and a highlight of drugs discovered via computational

techniques: A review. European Journal of Medicinal Chemistry, 224,

113705. https://doi.org/10.1016/j.ejmech.2021.113705

Schwarz, S., Gockel, L. M., Naggi, A., Barash, U., Gobec, M., Bendas, G., &

Schlesinger, M. (2020). Glycosaminoglycans as tools to decipher the

platelet tumor cell interaction: A focus on p-selectin. Molecules, 25(5),

1039. https://doi.org/10.3390/molecules25051039

Silver, B. B., & Nelson, C. M. (2018). The Bioelectric Code: Reprogramming

Cancer and Aging From the Interface of Mechanical and Chemical

Microenvironments. Frontiers in Cell and Developmental Biology, 6.

https://doi.org/10.3389/fcell.2018.00021

Srivastava, P., Kane, A., Harrison, C., & Levin, M. (2021). A meta-analysis of

bioelectric data in cancer, embryogenesis, and regeneration.

Bioelectricity, 3(1), 42–67. https://doi.org/10.1089/bioe.2019.0034

146

Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug

development fails and how to improve it? Acta Pharmaceutica Sinica B,

12(7), 3049–3062. https://doi.org/10.1016/j.apsb.2022.02.002

Suthaharan, S. (2016). Support vector machine. In Machine Learning Models

and Algorithms for Big Data Classification (pp. 207–235). Springer US.

http://dx.doi.org/10.1007/978-1-4899-7641-3_9

Svozil, D., Kvasnicka, V., & Pospichal, J. (1997). Introduction to multi-layer feed-

forward neural networks. Chemometrics and Intelligent Laboratory

Systems, 39(1), 43–62. https://doi.org/10.1016/s0169-7439(97)00061-0

Syed, Y. Y. (2019). Selinexor: First global approval. Drugs, 79(13), 1485–1494.

https://doi.org/10.1007/s40265-019-01188-9

Tuszynski, J., Tilli, T. M., & Levin, M. (2017). Ion channel and neurotransmitter

modulators as electroceutical approaches to the control of cancer. Current

Pharmaceutical Design, 23(32), 4827–4841.

https://doi.org/10.2174/1381612823666170530105837

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li,

B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications

of machine learning in drug discovery and development. Nature Reviews

Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-

0024-5

147

van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner.

Statistical Applications in Genetics and Molecular Biology, 6(1).

https://doi.org/10.2202/1544-6115.1309

Van Norman, G. A. (2019). Limitations of animal studies for predicting toxicity in

clinical trials. JACC: Basic to Translational Science, 4(7), 845–854.

https://doi.org/10.1016/j.jacbts.2019.10.008

Wang, J., Lu, Z., Wu, C., Li, Y., Kong, Y., Zhou, R., Shi, K., Guo, J., Li, N., Liu,

J., Song, W., Wang, H., Zhu, M., & Xu, H. (2018). Evaluation of the

anticancer and anti-metastasis effects of novel synthetic sodium channel

blockers in prostate cancer cells in vitro and in vivo. The Prostate, 79(1),

62–72. https://doi.org/10.1002/pros.23711

Xu, M., Watanachaturaporn, P., Varshney, P., & Arora, M. (2005). Decision tree

regression for soft classification of remote sensing data. Remote Sensing

of Environment, 97(3), 322–336. https://doi.org/10.1016/j.rse.2005.05.008

Yang, C., Chen, E. A., & Zhang, Y. (2022). Protein–Ligand docking in the

machine-learning era. Molecules, 27(14), 4568.

https://doi.org/10.3390/molecules27144568

Zhang, H. (2004). The Optimality of Naive Bayes. The Florida AI Research

Society.

148

Zhang, L. (2010). Glycosaminoglycan (GAG) biosynthesis and gag-binding

proteins. In Progress in Molecular Biology and Translational Science (pp.

1–17). Elsevier. http://dx.doi.org/10.1016/s1877-1173(10)93001-9

Zhang, X., Lin, L., Huang, H., & Linhardt, R. J. (2019). Chemoenzymatic

synthesis of glycosaminoglycans. Accounts of Chemical Research, 53(2),

335–346. https://doi.org/10.1021/acs.accounts.9b00420

Zhao, Z., Ukidve, A., Kim, J., & Mitragotri, S. (2020). Targeting strategies for

tissue-specific drug delivery. Cell, 181(1), 151–167.

https://doi.org/10.1016/j.cell.2020.02.001

149

Appendix

Appendix Table 1: All 435 features generated from MOE. The code
represents the name of the feature, the class denotes whether the given
feature is a 2D, internal 3d (i3D) or external 3d (x3D) type.

Code Class Description

AM1_dipole i3D Dipole moment

AM1_E i3D Total energy (kcal/mol)

AM1_Eele i3D Electronic energy (kcal/mol)

AM1_HF i3D Heat of formation (kcal)

AM1_HOMO i3D HOMO energy (eV)

AM1_IP i3D Ionization potential (eV)

AM1_LUMO i3D LUMO energy (eV)

apol 2D Sum of atomic polarizabilities

ASA i3D Water accessible surface area

ASA+ i3D Positive accessible surface area

ASA- i3D Negative accessible surface area

ASA_H i3D Total hydrophobic surface area

ASA_P i3D Total polar surface area

ast_fraglike 2D Astex Fragment-like Test

ast_fraglike_ext 2D Astex Fragment-like Test (Extended)

ast_violation 2D Astex Fragment-like Violation Count

ast_violation_ext 2D Astex Fragment-like Violation Count (Extended)

a_acc 2D Number of H-bond acceptor atoms

a_acid 2D Number of acidic atoms

a_aro 2D Number of aromatic atoms

150

a_base 2D Number of basic atoms

a_count 2D Number of atoms

a_don 2D Number of H-bond donor atoms

a_donacc 2D Number of H-bond donor + acceptor atoms

a_heavy 2D Number of heavy atoms

a_hyd 2D Number of hydrophobic atoms

a_IC 2D Atom information content (total)

a_ICM 2D Atom information content (mean)

a_nB 2D Number of boron atoms

a_nBr 2D Number of bromine atoms

a_nC 2D Number of carbon atoms

a_nCl 2D Number of chlorine atoms

a_nF 2D Number of fluorine atoms

a_nH 2D Number of hydrogen atoms

a_nI 2D Number of iodine atoms

a_nN 2D Number of nitrogen atoms

a_nO 2D Number of oxygen atoms

a_nP 2D Number of phosphorus atoms

a_nS 2D Number of sulfur atoms

balabanJ 2D Balaban averaged distance sum connectivity

BCUT_PEOE_0 2D PEOE Charge BCUT (0/3)

BCUT_PEOE_1 2D PEOE Charge BCUT (1/3)

BCUT_PEOE_2 2D PEOE Charge BCUT (2/3)

BCUT_PEOE_3 2D PEOE Charge BCUT (3/3)

BCUT_SLOGP_0 2D LogP BCUT (0/3)

151

BCUT_SLOGP_1 2D LogP BCUT (1/3)

BCUT_SLOGP_2 2D LogP BCUT (2/3)

BCUT_SLOGP_3 2D LogP BCUT (3/3)

BCUT_SMR_0 2D Molar Refractivity BCUT (0/3)

BCUT_SMR_1 2D Molar Refractivity BCUT (1/3)

BCUT_SMR_2 2D Molar Refractivity BCUT (2/3)

BCUT_SMR_3 2D Molar Refractivity BCUT (3/3)

bpol 2D Difference of bonded atom polarizabilities

b_1rotN 2D Number of rotatable single bonds

b_1rotR 2D Fraction of rotatable single bonds

b_ar 2D Number of aromatic bonds

b_count 2D Number of bonds

b_double 2D Number of double bonds

b_heavy 2D Number of heavy-heavy bonds

b_max1len 2D Maximum single-bond chain length

b_rotN 2D Number of rotatable bonds

b_rotR 2D Fraction of rotatable bonds

b_single 2D Number of single bonds

b_triple 2D Number of triple bonds

CASA+ i3D Charge-weighted positive surface area

CASA- i3D Charge-weighted negative surface area

chi0 2D Atomic connectivity index (order 0)

chi0v 2D Atomic valence connectivity index (order 0)

chi0v_C 2D Carbon valence connectivity index (order 0)

chi0_C 2D Carbon connectivity index (order 0)

152

chi1 2D Atomic connectivity index (order 1)

chi1v 2D Atomic valence connectivity index (order 1)

chi1v_C 2D Carbon valence connectivity index (order 1)

chi1_C 2D Carbon connectivity index (order 1)

chiral 2D Number of chiral centers

chiral_u 2D Number of unconstrained chiral centers

DASA i3D Absolute difference in surface area

DCASA i3D Absolute difference in charge-weighted areas

dens i3D Mass density (AMU/A^3)

density 2D Mass density (AMU/A**3)

diameter 2D Largest vertex eccentricity in graph

dipole i3D Dipole moment

dipoleX x3D Dipole moment (X)

dipoleY x3D Dipole moment (Y)

dipoleZ x3D Dipole moment (Z)

E i3D Potential Energy

E_ang i3D Angle Bend Energy

E_ele i3D Electrostatic energy

E_nb i3D Non-bonded energy

E_oop i3D Out-of-plane Energy

E_rele x3D Electrostatic Interaction Energy

E_rnb x3D Non-bonded Interaction Energy

E_rsol x3D Solvation Correction Difference

E_rvdw x3D Van der Waals Interaction Energy

E_sol i3D Solvation energy

153

E_stb i3D Stretch-bend energy

E_str i3D Bond stretch energy

E_strain i3D E minus energy of local minimum

E_tor i3D Torsion energy

E_vdw i3D Van der Waals energy

FASA+ i3D Fractional positive accessible surface area

FASA- i3D Fractional negative accessible surface area

FASA_H i3D Fractional hydrophobic surface area

FASA_P i3D Fractional polar surface area

FCASA+ i3D Fractional charge-weighted positive surface area

FCASA- i3D Fractional charge-weighted negative surface area

FCharge 2D Sum of formal charges

GCUT_PEOE_0 2D PEOE Charge GCUT (0/3)

GCUT_PEOE_1 2D PEOE Charge GCUT (1/3)

GCUT_PEOE_2 2D PEOE Charge GCUT (2/3)

GCUT_PEOE_3 2D PEOE Charge GCUT (3/3)

GCUT_SLOGP_0 2D LogP GCUT (0/3)

GCUT_SLOGP_1 2D LogP GCUT (1/3)

GCUT_SLOGP_2 2D LogP GCUT (2/3)

GCUT_SLOGP_3 2D LogP GCUT (3/3)

GCUT_SMR_0 2D Molar Refractivity GCUT (0/3)

GCUT_SMR_1 2D Molar Refractivity GCUT (1/3)

GCUT_SMR_2 2D Molar Refractivity GCUT (2/3)

GCUT_SMR_3 2D Molar Refractivity GCUT (3/3)

glob i3D Molecular globularity

154

h_ema 2D Sum of EHT acceptor strengths

h_emd 2D Sum of EHT donor strengths

h_emd_C 2D Sum of EHT carbon donor strengths

h_logD 2D Octanol/water distribution coefficient (pH=7)

h_logP 2D Octanol/water partition coefficient

h_logS 2D Log solubility in water

h_log_dbo 2D Sum of log (1 + d-bond orders)

h_log_pbo 2D Sum of log (1 + p-bond orders)

h_mr 2D Molar Refractivity

h_pavgQ 2D Average total charge (pH=7)

h_pKa 2D Acidity (pH=7)

h_pKb 2D Basicity (pH=7)

h_pstates 2D Entropic state count (pH=7)

h_pstrain 2D Protonation state strain energy (pH=7)

Kier1 2D First kappa shape index

Kier2 2D Second kappa shape index

Kier3 2D Third kappa shape index

KierA1 2D First alpha modified shape index

KierA2 2D Second alpha modified shape index

KierA3 2D Third alpha modified shape index

KierFlex 2D Molecular flexibility

lip_acc 2D Lipinski Acceptor Count

lip_don 2D Lipinski Donor Count

lip_druglike 2D Lipinski Druglike Test

lip_violation 2D Lipinski Violation Count

155

logP(o/w) 2D Log octanol/water partition coefficient

logS 2D Log Solubility in Water

MNDO_dipole i3D Dipole moment

MNDO_E i3D Total energy (kcal/mol)

MNDO_Eele i3D Electronic energy (kcal/mol)

MNDO_HF i3D Heat of formation (kcal)

MNDO_HOMO i3D HOMO energy (eV)

MNDO_IP i3D Ionization potential (eV)

MNDO_LUMO i3D LUMO energy (eV)

mr 2D Molar refractivity

mutagenic 2D Mutagenicity

nmol 2D Number of molecules

npr1 i3D Normalized PMI ratio (1) (pmi1 / pmi3)

npr2 i3D Normalized PMI ratio (2) (pmi2 / pmi3)

opr_brigid 2D Oprea Rigid Bond Count

opr_leadlike 2D Oprea Leadlike Test

opr_nring 2D Oprea Ring Count

opr_nrot 2D Oprea Rotatable Bond Count

opr_violation 2D Oprea Violation Count

PC+ 2D Total positive partial charge

PC- 2D Total negative partial charge

PEOE_PC+ 2D Total positive partial charge

PEOE_PC- 2D Total negative partial charge

PEOE_RPC+ 2D Relative positive partial charge

PEOE_RPC- 2D Relative negative partial charge

156

PEOE_VSA+0 2D Total positive 0 vdw surface area

PEOE_VSA+1 2D Total positive 1 vdw surface area

PEOE_VSA+2 2D Total positive 2 vdw surface area

PEOE_VSA+3 2D Total positive 3 vdw surface area

PEOE_VSA+4 2D Total positive 4 vdw surface area

PEOE_VSA+5 2D Total positive 5 vdw surface area

PEOE_VSA+6 2D Total positive 6 vdw surface area

PEOE_VSA-0 2D Total negative 0 vdw surface area

PEOE_VSA-1 2D Total negative 1 vdw surface area

PEOE_VSA-2 2D Total negative 2 vdw surface area

PEOE_VSA-3 2D Total negative 3 vdw surface area

PEOE_VSA-4 2D Total negative 4 vdw surface area

PEOE_VSA-5 2D Total negative 5 vdw surface area

PEOE_VSA-6 2D Total negative 6 vdw surface area

PEOE_VSA_FHYD 2D Fractional hydrophobic vdw surface area

PEOE_VSA_FNEG 2D Fractional negative vdw surface area

PEOE_VSA_FPNEG 2D Fractional polar negative vdw surface area

PEOE_VSA_FPOL 2D Fractional polar vdw surface area

PEOE_VSA_FPOS 2D Fractional positive vdw surface area

PEOE_VSA_FPPOS 2D Fractional polar positive vdw surface area

PEOE_VSA_HYD 2D Total hydrophobic vdw surface area

PEOE_VSA_NEG 2D Total negative vdw surface area

PEOE_VSA_PNEG 2D Total polar negative vdw surface area

PEOE_VSA_POL 2D Total polar vdw surface area

PEOE_VSA_POS 2D Total positive vdw surface area

157

PEOE_VSA_PPOS 2D Total polar positive vdw surface area

petitjean 2D (diameter - radius) / diameter

petitjeanSC 2D (diameter - radius) / radius

PM3_dipole i3D Dipole moment

PM3_E i3D Total energy (kcal/mol)

PM3_Eele i3D Electronic energy (kcal/mol)

PM3_HF i3D Heat of formation (kcal)

PM3_HOMO i3D HOMO energy (eV)

PM3_IP i3D Ionization potential (eV)

PM3_LUMO i3D LUMO energy (eV)

pmi i3D Principal moment of inertia

pmi1 i3D Principal moment of inertia (1)

pmi2 i3D Principal moment of inertia (2)

pmi3 i3D Principal moment of inertia (3)

pmiX x3D Principal moment of inertia (X)

pmiY x3D Principal moment of inertia (Y)

pmiZ x3D Principal moment of inertia (Z)

pro_app_charge Protein Protein Charge at Debye Length

pro_asa_hph Protein Hydrophilic Surface Area

pro_asa_hyd Protein Hydrophobic Surface Area

pro_asa_vdw Protein Accessible Surface Area (Water Probe)

pro_coeff_280 Protein Extinction coefficient at 280 nm

pro_coeff_diff Protein Diffusion Coefficient

pro_coeff_fric Protein Frictional Coefficient

pro_debye Protein Debye Screening Length

158

pro_dipole_moment Protein Protein Dipole Moment

pro_eccen Protein Protein Eccentricity

pro_helicity Protein Protein Helix Ratio

pro_henry Protein Henry's Function f(ka)

pro_hyd_moment Protein Hydrophobicity Moment

pro_mass Protein Protein Mass in kDa

pro_mobility Protein Protein Mobility

pro_net_charge Protein Protein Net Charge

pro_patch_cdr_hyd Protein Area of hydrophobic protein patch(es) near CDRs

pro_patch_cdr_hyd_1 Protein Area of largest hydrophobic protein patch(es) near CDRs

pro_patch_cdr_hyd_2 Protein

Area of 2 largest hydrophobic protein patch(es) near

CDRs

pro_patch_cdr_hyd_3 Protein

Area of 3 largest hydrophobic protein patch(es) near

CDRs

pro_patch_cdr_hyd_4 Protein

Area of 4 largest hydrophobic protein patch(es) near

CDRs

pro_patch_cdr_hyd_5 Protein

Area of 5 largest hydrophobic protein patch(es) near

CDRs

pro_patch_cdr_hyd_n Protein Count of hydrophobic protein patch(es) near CDRs

pro_patch_cdr_ion Protein Area of ionic protein patch(es) near CDRs

pro_patch_cdr_ion_1 Protein Area of largest ionic protein patch(es) near CDRs

pro_patch_cdr_ion_2 Protein Area of 2 largest ionic protein patch(es) near CDRs

pro_patch_cdr_ion_3 Protein Area of 3 largest ionic protein patch(es) near CDRs

pro_patch_cdr_ion_4 Protein Area of 4 largest ionic protein patch(es) near CDRs

pro_patch_cdr_ion_5 Protein Area of 5 largest ionic protein patch(es) near CDRs

159

pro_patch_cdr_ion_n Protein Count of ionic protein patch(es) near CDRs

pro_patch_cdr_neg Protein Area of negative protein patch(es) near CDRs

pro_patch_cdr_neg_1 Protein Area of largest negative protein patch(es) near CDRs

pro_patch_cdr_neg_2 Protein Area of 2 largest negative protein patch(es) near CDRs

pro_patch_cdr_neg_3 Protein Area of 3 largest negative protein patch(es) near CDRs

pro_patch_cdr_neg_4 Protein Area of 4 largest negative protein patch(es) near CDRs

pro_patch_cdr_neg_5 Protein Area of 5 largest negative protein patch(es) near CDRs

pro_patch_cdr_neg_n Protein Count of negative protein patch(es) near CDRs

pro_patch_cdr_pos Protein Area of positive protein patch(es) near CDRs

pro_patch_cdr_pos_1 Protein Area of largest positive protein patch(es) near CDRs

pro_patch_cdr_pos_2 Protein Area of 2 largest positive protein patch(es) near CDRs

pro_patch_cdr_pos_3 Protein Area of 3 largest positive protein patch(es) near CDRs

pro_patch_cdr_pos_4 Protein Area of 4 largest positive protein patch(es) near CDRs

pro_patch_cdr_pos_5 Protein Area of 5 largest positive protein patch(es) near CDRs

pro_patch_cdr_pos_n Protein Count of positive protein patch(es) near CDRs

pro_patch_hyd Protein Area of hydrophobic protein patch(es)

pro_patch_hyd_1 Protein Area of largest hydrophobic protein patch(es)

pro_patch_hyd_2 Protein Area of 2 largest hydrophobic protein patch(es)

pro_patch_hyd_3 Protein Area of 3 largest hydrophobic protein patch(es)

pro_patch_hyd_4 Protein Area of 4 largest hydrophobic protein patch(es)

pro_patch_hyd_5 Protein Area of 5 largest hydrophobic protein patch(es)

pro_patch_hyd_n Protein Count of hydrophobic protein patch(es)

pro_patch_ion Protein Area of ionic protein patch(es)

pro_patch_ion_1 Protein Area of largest ionic protein patch(es)

pro_patch_ion_2 Protein Area of 2 largest ionic protein patch(es)

160

pro_patch_ion_3 Protein Area of 3 largest ionic protein patch(es)

pro_patch_ion_4 Protein Area of 4 largest ionic protein patch(es)

pro_patch_ion_5 Protein Area of 5 largest ionic protein patch(es)

pro_patch_ion_n Protein Count of ionic protein patch(es)

pro_patch_neg Protein Area of negative protein patch(es)

pro_patch_neg_1 Protein Area of largest negative protein patch(es)

pro_patch_neg_2 Protein Area of 2 largest negative protein patch(es)

pro_patch_neg_3 Protein Area of 3 largest negative protein patch(es)

pro_patch_neg_4 Protein Area of 4 largest negative protein patch(es)

pro_patch_neg_5 Protein Area of 5 largest negative protein patch(es)

pro_patch_neg_n Protein Count of negative protein patch(es)

pro_patch_pos Protein Area of positive protein patch(es)

pro_patch_pos_1 Protein Area of largest positive protein patch(es)

pro_patch_pos_2 Protein Area of 2 largest positive protein patch(es)

pro_patch_pos_3 Protein Area of 3 largest positive protein patch(es)

pro_patch_pos_4 Protein Area of 4 largest positive protein patch(es)

pro_patch_pos_5 Protein Area of 5 largest positive protein patch(es)

pro_patch_pos_n Protein Count of positive protein patch(es)

pro_pI_3D Protein Structure-based pI Prediction

pro_pI_seq Protein Sequence-based pI Prediction

pro_r_gyr Protein Radius of Gyration

pro_r_solv Protein Hydrodynamic Radius

pro_sed_const Protein Sedimentation Constant

pro_volume Protein Protein Volume

pro_zdipole Protein Zeta Dipole Moment

161

pro_zeta Protein Zeta potential at Debye Length

pro_zquadrupole Protein Zeta Quadrupole Moment

Q_PC+ 2D Total positive partial charge

Q_PC- 2D Total negative partial charge

Q_RPC+ 2D Relative positive partial charge

Q_RPC- 2D Relative negative partial charge

Q_VSA_FHYD 2D Fractional hydrophobic vdw surface area

Q_VSA_FNEG 2D Fractional negative vdw surface area

Q_VSA_FPNEG 2D Fractional polar negative vdw surface area

Q_VSA_FPOL 2D Fractional polar vdw surface area

Q_VSA_FPOS 2D Fractional positive vdw surface area

Q_VSA_FPPOS 2D Fractional polar positive vdw surface area

Q_VSA_HYD 2D Total hydrophobic vdw surface area

Q_VSA_NEG 2D Total negative vdw surface area

Q_VSA_PNEG 2D Total polar negative vdw surface area

Q_VSA_POL 2D Total polar vdw surface area

Q_VSA_POS 2D Total positive vdw surface area

Q_VSA_PPOS 2D Total polar positive vdw surface area

radius 2D Smallest vertex eccentricity in graph

reactive 2D Reactivity

rgyr i3D Radius of gyration

rings 2D Number of rings

RPC+ 2D Relative positive partial charge

RPC- 2D Relative negative partial charge

rsynth 2D Synthetic Feasibility

162

SlogP 2D Log Octanol/Water Partition Coefficient

SlogP_VSA0 2D Bin 0 SlogP (-10 ,-0.40]

SlogP_VSA1 2D Bin 1 SlogP (-0.40,-0.20]

SlogP_VSA2 2D Bin 2 SlogP (-0.20, 0.00]

SlogP_VSA3 2D Bin 3 SlogP (0.00, 0.10]

SlogP_VSA4 2D Bin 4 SlogP (0.10, 0.15]

SlogP_VSA5 2D Bin 5 SlogP (0.15, 0.20]

SlogP_VSA6 2D Bin 6 SlogP (0.20, 0.25]

SlogP_VSA7 2D Bin 7 SlogP (0.25, 0.30]

SlogP_VSA8 2D Bin 8 SlogP (0.30, 0.40]

SlogP_VSA9 2D Bin 9 SlogP (0.40,10]

SMR 2D Molar Refractivity

SMR_VSA0 2D Bin 0 SMR (0.000,0.110]

SMR_VSA1 2D Bin 1 SMR (0.110,0.260]

SMR_VSA2 2D Bin 2 SMR (0.260,0.350]

SMR_VSA3 2D Bin 3 SMR (0.350,0.390]

SMR_VSA4 2D Bin 4 SMR (0.390,0.440]

SMR_VSA5 2D Bin 5 SMR (0.440,0.485]

SMR_VSA6 2D Bin 6 SMR (0.485,0.560]

SMR_VSA7 2D Bin 7 SMR (0.560,10]

std_dim1 i3D Standard dimension 1

std_dim2 i3D Standard dimension 2

std_dim3 i3D Standard dimension 3

TPSA 2D Topological Polar Surface Area (A**2)

VAdjEq 2D Vertex adjacency information (equal)

163

VAdjMa 2D Vertex adjacency information (mag)

VDistEq 2D Vertex distance equality index

VDistMa 2D Vertex distance magnitude index

vdw_area 2D Van der Waals surface area (A**2)

vdw_vol 2D Van der Waals volume (A**3)

vol i3D Van der Waals volume

VSA i3D Van der Waals surface area

vsa_acc 2D VDW acceptor surface area (A**2)

vsa_acid 2D VDW acidic surface area (A**2)

vsa_base 2D VDW basic surface area (A**2)

vsa_don 2D VDW donor surface area (A**2)

vsa_hyd 2D VDW hydrophobe surface area (A**2)

vsa_other 2D VDW other surface area (A**2)

vsa_pol 2D VDW polar surface area (A**2)

vsurf_A i3D Amphiphilic moment

vsurf_CP i3D Critical packing parameter

vsurf_CW1 i3D Capacity factor at -0.2

vsurf_CW2 i3D Capacity factor at -0.5

vsurf_CW3 i3D Capacity factor at -1.0

vsurf_CW4 i3D Capacity factor at -2.0

vsurf_CW5 i3D Capacity factor at -3.0

vsurf_CW6 i3D Capacity factor at -4.0

vsurf_CW7 i3D Capacity factor at -5.0

vsurf_CW8 i3D Capacity factor at -6.0

vsurf_D1 i3D Hydrophobic volume at -0.2

164

vsurf_D2 i3D Hydrophobic volume at -0.4

vsurf_D3 i3D Hydrophobic volume at -0.6

vsurf_D4 i3D Hydrophobic volume at -0.8

vsurf_D5 i3D Hydrophobic volume at -1.0

vsurf_D6 i3D Hydrophobic volume at -1.2

vsurf_D7 i3D Hydrophobic volume at -1.4

vsurf_D8 i3D Hydrophobic volume at -1.6

vsurf_DD12 i3D vsurf_EDmin1, vsurf_EDmin2 distance

vsurf_DD13 i3D vsurf_EDmin1, vsurf_EDmin3 distance

vsurf_DD23 i3D vsurf_EDmin2, vsurf_EDmin3 distance

vsurf_DW12 i3D vsurf_EWmin1, vsurf_EWmin2 distance

vsurf_DW13 i3D vsurf_EWmin1, vsurf_EWmin3 distance

vsurf_DW23 i3D vsurf_EWmin2, vsurf_EWmin3 distance

vsurf_EDmin1 i3D Lowest hydrophobic energy

vsurf_EDmin2 i3D 2nd lowest hydrophobic energy

vsurf_EDmin3 i3D 3rd lowest hydrophobic energy

vsurf_EWmin1 i3D Lowest hydrophilic energy

vsurf_EWmin2 i3D 2nd lowest hydrophilic energy

vsurf_EWmin3 i3D 3rd lowest hydrophilic energy

vsurf_G i3D Surface globularity

vsurf_HB1 i3D H-bond donor capacity at -0.2

vsurf_HB2 i3D H-bond donor capacity at -0.5

vsurf_HB3 i3D H-bond donor capacity at -1.0

vsurf_HB4 i3D H-bond donor capacity at -2.0

vsurf_HB5 i3D H-bond donor capacity at -3.0

165

vsurf_HB6 i3D H-bond donor capacity at -4.0

vsurf_HB7 i3D H-bond donor capacity at -5.0

vsurf_HB8 i3D H-bond donor capacity at -6.0

vsurf_HL1 i3D First hydrophilic-lipophilic balance

vsurf_HL2 i3D Second hydrophilic-lipophilic balance

vsurf_ID1 i3D Hydrophobic integy moment at -0.2

vsurf_ID2 i3D Hydrophobic integy moment at -0.4

vsurf_ID3 i3D Hydrophobic integy moment at -0.6

vsurf_ID4 i3D Hydrophobic integy moment at -0.8

vsurf_ID5 i3D Hydrophobic integy moment at -1.0

vsurf_ID6 i3D Hydrophobic integy moment at -1.2

vsurf_ID7 i3D Hydrophobic integy moment at -1.4

vsurf_ID8 i3D Hydrophobic integy moment at -1.6

vsurf_IW1 i3D Hydrophilic integy moment at -0.2

vsurf_IW2 i3D Hydrophilic integy moment at -0.5

vsurf_IW3 i3D Hydrophilic integy moment at -1.0

vsurf_IW4 i3D Hydrophilic integy moment at -2.0

vsurf_IW5 i3D Hydrophilic integy moment at -3.0

vsurf_IW6 i3D Hydrophilic integy moment at -4.0

vsurf_IW7 i3D Hydrophilic integy moment at -5.0

vsurf_IW8 i3D Hydrophilic integy moment at -6.0

vsurf_R i3D Surface rugosity

vsurf_S i3D Interaction field area

vsurf_V i3D Interaction field volume

vsurf_W1 i3D Hydrophilic volume at -0.2

166

vsurf_W2 i3D Hydrophilic volume at -0.5

vsurf_W3 i3D Hydrophilic volume at -1.0

vsurf_W4 i3D Hydrophilic volume at -2.0

vsurf_W5 i3D Hydrophilic volume at -3.0

vsurf_W6 i3D Hydrophilic volume at -4.0

vsurf_W7 i3D Hydrophilic volume at -5.0

vsurf_W8 i3D Hydrophilic volume at -6.0

vsurf_Wp1 i3D Polar volume at -0.2

vsurf_Wp2 i3D Polar volume at -0.5

vsurf_Wp3 i3D Polar volume at -1.0

vsurf_Wp4 i3D Polar volume at -2.0

vsurf_Wp5 i3D Polar volume at -3.0

vsurf_Wp6 i3D Polar volume at -4.0

vsurf_Wp7 i3D Polar volume at -5.0

vsurf_Wp8 i3D Polar volume at -6.0

Weight 2D Molecular weight (CRC)

weinerPath 2D Weiner path number

weinerPol 2D Weiner polarity number

zagreb 2D Zagreb index

167

Appendix Table 2: Parameters and their corresponding values used during
the conformational search of each compound's fragments.
Parameter Value Description

mmFailureLimit 30 “Maximum number of
tries the algorithm has to
generate a new
conformation before
stopping” (Chemical
Computing Group,
2019a)

mmSuperposeRMSD 0.15 “If the root mean square
distance (RMSD)
between 2 conformations
is less than or equal to
this value, the
conformations are
considered to be the
same” (Chemical
Computing Group,
2019a)

mmGradientTestMM 0.01 “If the RMS gradient falls
below this value then
energy minimization will
stop” (Chemical
Computing Group,
2019a)

mmStrainLimit 7 “Any conformation whose
strain energy is above
this value is rejected”
(Chemical Computing
Group, 2019a)

168

Appendix Table 3: Parameters used in RapidMiner Studio for feature
selection. Note that all settings were kept to the defaults.
Parameter Value

selection direction forward

limit generations without improval true

generations without improval 1

limit number of generations false

keep best 1

maximum number of generations 10

normalize weights true

use local random seed false

local random seed 1992

user result individual selection false

show population plotter false

plot generations 10

constraint draw range false

draw dominated points true

maximal fitness Infinity

Appendix Table 4: Parameters used in RapidMiner Studio for the DECTRE
learner. Note that all settings were kept to the defaults.

Parameter Value

criterion gain_ratio

maximal depth 10

apply pruning true

confidence 0.1

apply prepruning true

minimal gain 0.01

minimal leaf size 2

minimal size for split 4

number of prepruning alternatives 3

Appendix Table 5: Parameters used in RapidMiner Studio for the NAIBAY
classifier. Note that all settings were kept to the defaults.

Parameter Value

laplace correction true

169

Appendix Table 6: Parameters used in RapidMiner Studio for the NEUNET
learner. Note that all settings were kept to the defaults.

hidden layers 2

training cycles 200

learning rate 0.01

momentum 0.9

decay false

shuffle true

normalize true

error epsilon 1.0E-4

use local random seed false

local random seed 1992

Appendix Table 7: Parameters used in RapidMiner Studio for the RANFOR
learner. Note that all settings were kept to the defaults.

Parameter Value

number of trees 100

criterion gain_ratio

maximal depth 10

apply prepruning false

minimal gain 0.01

minimal leaf size 2

minimal size for split 4

number of prepruning alternatives 3

apply pruning false

confidence 0.1

random splits false

guess subset ratio true

subset ratio 0.2

voting strategy confidence vote

use local random seed false

local random seed 1992

enable parallel execution true

170

Appendix Table 8: Parameters used in RapidMiner Studio for the SVM
(LibSVM) algorithm. Note that all settings were kept to the defaults.
svm type C-SVC

kernel type rbf

degree 3

gamma 0.0

coef0 0.0

C 0.0

nu 0.5

cache size 80

epsilon 0.001

p 0.1

class weights list

shrinking true

calculate confidences false

confidences for multiclass true

	Abstract
	Preface
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Chapter 1: Using Platelet Activated Ligands for Targeted Drug Delivery
	1.1 Introduction
	1.2 Methods
	1.2.1 Generating 3D Structures
	1.2.2 Simulated Annealing
	1.2.3 Drug Docking

	1.3 Results
	1.4 Discussion
	1.5 Conclusion

	Chapter 2: Supervised Machine Learning for Drug-Action Classification
	Chapter 2:
	2.1 Introduction
	2.1.1 Objectives
	Objective 1
	Objective 2

	2.1.2 Machine Learning
	2.1.3 Related Work

	2.2 Methods
	2.2.1 Compounds
	2.2.2 Data Augmentation
	2.2.3 Feature Generation
	2.2.4 Importing Data into RapidMiner Studio
	2.2.5 Machine Learning
	2.2.5.1 Cross-Validation
	2.2.5.2 Feature Selection
	2.2.5.3 Decision Tree
	2.2.5.4 Naive Bayes
	2.2.5.5 Neural Network
	2.2.5.6 Random Forest
	2.2.5.7 Support Vector Machine
	2.2.5.8 Performance Assessment

	2.3 Results
	2.3.1 Performance: AR
	2.3.2 Performance: ER
	2.3.3 Performance: GR
	2.3.4 Performance: PR
	2.3.5 Summary

	2.4 Discussion
	2.5 Conclusion

	Chapter 3: Replacing Bioelectric Dynamics Modeling using Regression-based Machine Learning
	Chapter 3:
	3.1 Introduction
	3.1.1 BETSE
	3.1.2 Objectives
	3.1.3 Related Work

	3.2 Methods
	3.2.1 BETSE
	3.2.2 Machine Learning
	3.2.2.1 Linear Regression
	3.2.2.2 Bayesian Ridge
	3.2.2.3 Decision Tree
	3.2.2.4 K-Nearest Neighbors
	3.2.2.5 Multi-Layer Perceptron
	3.2.2.6 Random Forest
	3.2.2.7 Support Vector Regression
	3.2.2.8 Super Learner
	3.2.2.9 Validation

	3.3 Results
	3.3.1 Objective 1
	3.3.2 Objective 2
	3.3.3 Objective 3

	3.4 Discussion
	3.5 Conclusion
	Discussion and Conclusions
	Bibliography
	Appendix

