National Library
l * I of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a I'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

COLLISION-FREE PATH PLANNING IN THE

THREE-DIMENSIONAL WORK SPACE OF A REVOLUTE ROBOT

BY
OLUWATOLAMISE ADEODU @

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND
RESEARCH IN PARTIAL FUFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE
DEPARTMENT OF MECHANICAL ENGINEERING

EDMONTON, ALBERTA

Fall 19%4

National Library
l * l of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquistions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontaro
K1A ON4 K1A ON4

The au'rior has granted an
irrevocable non-exclusive licence
allowing the Nationai Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to iriterested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontano)

Yous bie Ao Meence

Qur i Notie 1oty xce

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéeque
nationale du Canade de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
these. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-94996-1

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Oluwatolamise Adeodu

TITLE OF THESIS: Collision-Free Path Planning In The Three-
Dimensional Work Space Of A Revolute Robot

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1994

Permission is hereby granted to the University of ARlberta
Library to reproduce rgingle copies of this thesis and to
lend or sell such copies for private, scholarly or

scientific research purposes only.

The author reserves other publication rights, and reither
the thesis nor extensive extracts from it may be grinted or
otherwises reproduced without the author’s written

permission.

204 Michener Park
Edmonton, Alberta
Canada

T6H 4M5

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend
to the Faculty of Graduate Studies and Research for
acceptance, a thesis entitled Collision-Free Path Planning
In The Three-Dimensional Work Spare Of A Revolute Robot
submitted by Oluwatolamise Adeodu in partial ftulfillment of

the requirements for the degree of Master of Science.

. -
/CngAéL/,éQ?éfﬁ»l/

Supervisor: Dr. R.W. Toogood

Z@u,__

Dr. M.GY Faulkner

/:;2‘62— /ijﬁpzx‘?// -

Dr. ©-H. M. Meng

J

Date: ‘“‘ééﬂﬁﬂf q‘%

EBENEZER

The men of Israel went out of Mizpeh and pursued the
Philistines and smote them until they came to a point below
Bethcar. Then Samuel took a stone and set it between Mizpeh

and Shen and called it Ebenezer saying, "Thus far has the

Lord helped us".

PATH PLANNING PAR EXCELLENCE
Trust in the Lord with all your heart and do not lean on
your own understanding. In all your ways acknowledge Him

and He w.ll direct your paths.

1l Sam.7: 11-12 & Pro.3: 5-6

The Book

ABSTRACT

This thesis presents an obstacle avoidance program (OBSTAP)
written for the Mitsubishi RM 101 revolute robot. For a
given robot task which causes collisions with statiocnary
obstacles placed anywhere in the robot’s three-dimensional
work space, OBSTAP guickly detects the collisions and
heuristically plans a path around the obstacles. in the
program, a robot link is shrunk to a line while each obstacle
is grown and described in world space. OBRSTAP alilows for
moderate cluttering of the work space and collision is avoided

for the gripper and all the links of the robot.

ACKNOWLEDGEMENT

I am indebted to several people for their help on this work.
My thanks go to Dr. R.W. Toogood for his patient supervisicn
of the research. He furnished me with careful guidance
especially at the crucial stage of problem formulation. I

am also grateful to the technical staff of the Department of

Mechanical Engineering for their assistance when I got to

testing OBSTAP.

I greatly appreciate the prayerful support of my wife Nike
and of my children Seyi, Ikukun and Kemi. They sustained
me wonderfully especially at those times when the program

rerused to work because of one bug or the other.

Many thanks toc you all!

CHAPTER 1
1.1

CHAPTER 2
2.1
2.2

CHAPTER 3
3.

w w w w
(62 T S VS TN O B S

CHAPTER 4
4.1
4.2

TABLE OF CONTENTS

LITERATURE REVIEW AND THESIS OUTLINE
Literature Review
.1.1 World Modelling
.2 Programming Methods
Potential Field Metnods

=

Work Space Mapping

BoR B P
v W

}-3

Sensing Devices
1.1.6 Path Opcimisation

Thesis Outline

SCOPE OF OBSTAP
The Mitsubishi RM 101 Robot
Uses of OBSTAP

OBSTACLE DETECTION
Geometric Tools
Growth of Obstacles
Instantaneous Robot Position
Collision Checks

Detection Algorithm

PATH PLANNING
Heuristic Search
First Level Path

4.2.1 Cases of Variable Body Joint Angle
4.2.1.1 Collision With a Vertical Near

Side

4.2.1.2 Collisicn With Top or Bottom or

Vertical Far Side
4.2.2 Cases of Fixed Body Joint Angle

4.2.2.1 Gripper Initially Moving Down
4.2.2.2 GQGripper Initially Moving Up

4.2.3 Other Factors For First Level
Second Level Path

[I A

NOOVU I\

[

14
14
17

21
21
23
25
27
33

36
36
37
40

30

44
46
48
48
51

51

CHAPTER 5

(2T 2 R U B I ¥ s W o
N A s W e

CHAPTER 6

REFERENCES

APPENDIX:
Al.
A2.
A3.
A4.
AS.
A6.

TEST RESVLTS AND DISCUSSION
Description of Test Obstacles
Description of Test Tasks
Test Results
Discussion
Recommendation On Safety.

Application of OBSTAP to Other Robots
Limitations of the Heuristic Search

CONCLUSION

OBSTAP USER’S MANUAL

Uses of OBSTAP

Description of Robot Task

Description of Obstacles

Cbstacle Detection Only

Obstacle Detection With Path Planning
Robot Safety and Path Animation

55
55
€62
62
71
78
80
81

82

85

92
92
92
94
96
97
98

Table

Table

Table

Table

Table

Table

Table

Table
Table

o

o Ut nnWm

mod W N

LIST OF TABLES

Denavit-Hartenburg Parameters For
The RM 101

RM 101 Joint Angle Limits and Step
Sizes

Dimensions and Locations of Ungrown
and Unconnected Obstacles
Dimensions and Locations of Ungrown
Connected Obstacles (First Set)
Dimensions and Locations of Ungrown
Connected Obstacles {(Second Set)
Data For Robot Task Files

Test Results (1)

Test Results (2)

Test Results (3)

16

(52]
o

Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

W

[y

N =W,

un

.4

LIST OF FIGURES

Shrinking Gripper and Payload and
Growing Obstacles

Coordinate Frames for the RM 101 Robot
Outlines and Dimensions of the RM 101
Robot Ce e e .o
Stretching a Bar Equally at Both Ends
Growing an Obstacle Represented as a
Cuboid

Checking for Collision Between Two Line
Models

Checking for Collision Between (i) A
Point and a Plane and (ii) A Line and a
Plane

Obstacle Detection Flow Chart

Path Planning Flow Chart

Collision With a Vertical Near Side of
an Obstacle (Robot Body Moving)
Collision With the Top or Bottom or a
Vertical Far Side of an Obstacle (Robot
Body Moving)

Collision With Gripper Moving Down
(Fixed Body Joint Angle)

Collision With Gripper Moving Up

(Fixed Body Joint Angle)

Two Views of Four Unconnected Obstacles
(File OB4.DAT)

Two Views of Six Connected Obstacles
(Set #1, File COB1.DAT)

Two Views of Five Connected Obstacles
{(Set #2, File COB2.DAT)

Test #8 Showing Original Motor File
(TEST12.MOT) and Two Unconnected
Obstacles (OB2.DAT)

V8

15

15
24

24

29

31

32

39

41

45

47

49

56

58

68

Fig.

my
’,J.
WQ

Al:

Test #8 Showing the Planned First Level

Path Around Obstacles OBR2.DAT 69
Test #8 Showing the Flanned Second Level

Path Around Obstacles OB2.DAT 70
Obstacle Descripticn in OBSTAP 4&L

CHAPTER 1

LITERATURE REVIEW AND THESIS OUTLINE

This chapter gives an overview of path planning in
robotics. An introduction to the research described in the

thesis is also given. Reference numbers are written in square

brackets.
1.1 Literature Review

Many accidents have occurred in the application of robots
[1 - 4]. The accidents include collisions with obstacles or
other robots and injury to personnel. Suggestions as to how
accidents could be prevented include ensuring that nothing
stands in the way of a moving robot. This recommendation has
been made especially for robots that have 1ll defined or
complex work spaces [5]. The revolute robot falls into this
category.

However, of necessity, there may be an obstacle in the
work space of a robot. Such an obstacle could be a support
structure or some other robot with which the first has to
cooperate. Rectangular manipulators have well defined work
spaces and there has been a lot of success in obstacle
avoidance with them. The same is not true for the revolute
type [6, p 411]. For revolute manipulators, the bigger part
of research work in obstacle avoidance has concentrated on the
end-effector and payload combination in a two-dimensional
space.

In the following sections, we shall focus c¢n gross
moticns which involve large displacements of robot 1links.
Fine motions are not considered in this thesis.

Many obstacle avoidance methods have been tried. These

methods and their scope will now be discussed. Some of the

references listed report on path planning for fixed robots

-
-

(manipulators) while other references are for mobile robots.
Furthermore, some of the methods only simulate robotic systems

and have not been tested experimentally.

1.1.1 World Modelling

The gripper of a robot can collide with an obstacle in an
infinite number of ways. Thus checking for collisions by
using very small elements of the gripper or obstacle would be
computationally intensive.

The use of simplifying world models to describe objects
in the work space has received much attention in robotics.
Simple lines, surfaces or primitive solids are used to model
the actual physical system. For example, poclygons, polyhedra

and generalized cones have been used to model objects [7 - 9].

A list of edge descriptions for an object has also been
used. This is called the wire frame method. A prchlem with
edge descriptions, however, is that the description is not
unique. Two different objects may have the same wire frame
description. Markowsky and VWesley [10] have suggested that a
list of edge descriptions cannot adequately describe a unique
polyhedron.

Also, to reduce the amount of computaticn, gripper
geometry has been simplified by shrinking it to a point.
Correspondingly obstacles have been grown [11]. This process
is illustrated in two dimensions in Fig. 1.1 (a,b). In (a)
the gripper is initially modelled as a circle while in (b) it
is initially modelled as a rectangle. Relative rotation
between the gripper and obstacle can be permitted in case (a;
because the amount by which the obstacle 1is grown ic
independent of the orientation of the gripper. Initially the
method illustrated in (a) may be considered as being useful

for revolute manipulators.

gripper shrunk to om
a point o1

obstacle

"Circular" aripper

P | & |
J/ T NN LN
: AN

’ .

. / S -
‘ "¢ \\ % i &< -\"v-T
‘ :: \:\.:\.\\) \\ \\
|
X X

(a) "Circular" Gripper Model.

g
"
/!
b+dJ
>

— - Obstacle to N ki y .
, //Tf/ / be qr;wn A /|

‘ arown _——_. S NN
l obstacle I

Y,
- Y ®o°P
’kgripper shrurik
to a point
"rectanaular’
> X gripver >

> X
¢b) "Rectangular " Gripper Model.

Fig. 1.1: Shrinking Gripper and Payload and Growing
Obstacles.

4

However, modelling with circles and spheres is not recommended
for this class of robots. The use of circles in two
dimensions and spheres in three for object representation does
not efficiently represent the available work space. A reason
for this is that only one parameter (a radius) is used in the
process of growing the obstacle. There is no flexibility
regarding the shape and orientation of the grown obstacle
relative to the world axes. Relative rotation is not allowed
in case (b). This has been found to have good application
with rectangular manipulators.

Apart from using world space, obstacles have also been

modelled using what is termed configuration space [12 - 16].

In programs written using the c-space approach, obstacles are
described in terms of varying robot parameters (for example,
link 1lengths for rectangular robots and joint angles for
revolute robots). The method is essentially a mapping of the
surface of an obstacle to a space whose axes are given by the
robot parameters. The fewer the number of parameters, the
simpler the mapped shape is. For example, for a 2 - R robot
the shape obtained for a three-dimensional obstacle will be
like an area. Only points outside of the contour which
defines the area are collisiori-free. The shape obtained will
seem to have volume for a 3 - R robot. Only points outside of
the volume are collision-free. Clearly the shape is very
difficult to visualise for practical manipulators which have
up to six revolute joints.

The use of c¢-space has been more successful with
rectangular robets than for revolute. This is because an
obstacle can be modelled in term of linear dimensions (length,
width and height) just as changes in the configurations of a
rectangular robot are in terms of corresponding linear
dimensions. For collisions involving the payload and gripper
alone, the c-space approach yields a gripper path that is
tangential to the obstacle profile in the vicinity c¢f the

obstacle.

1.1.2 Programming Methods

Three robot programming methods have been developed [6].
They are:
(a) on-line teaching of the robot,
(b) off-line robot programming using a robot-level computer

language,
(c) off-line task-level robot programming.
On-line teaching is the oldest of the methods. By

manually leading the robot through the desired path, the robot
is taught its path for a task (i.e the moves to be made) and
the functions to be performed at specific points along the
path. Using this method, it is easy to make the robot avoid

obstacles such as nearby fixed structures. This is termed
continuous path control. Teach pendants are also used for
point-to-point control. The knot points (or intermediate

points) in the path are generally widely spaced for point-to-
point control and closely spaced for continuous path control.
These knot points are then stored in memory. There are memory
limitations in the case of continuous path control. To
perform the task, the robot then has to play back the stored
information.

On-line teaching is time-consuming. Also, since the
robot is programmed in its work cell, valuable production time
is lost during the process. Furthermore, it does not
facilitate the use of a robot for a variety of tasks which it
is easily capable of doing. Further details on robot teaching
can be found in [17].

Off-line robot programming does not require that the
programmer be near the robot to physically manipulate its
controls. By modelling the system at a remote station, he can
compiles files which can be downloaded to the robot at a later
stage. Off-line programming therefore has the advantage that
it does not cause the loss of valuable production time. Many

computer languages have been used to program robots. Some of

6

these languages have already been applied in industry.
Lozano-Perez [18] and Gruver et al. [19] have given good
overviews of robot-level computer languages. A good
discussion on off-line programming has also been given by Yong
et al. [20]. Developments suggest that BASIC and C are
getting ahead of the other languages used for robotic software
[21, p441].

Robot-level programming has the advantage that a robot
can be easily reprogrammed to carry out other tasks. Another
advantage is that it is possible for the robot to interact
with any sensor in use. However, it has the disadvantage that
the level of expertise required for the programming is high.
Such expertise is not wusually available on a typical shop
floor and acquiring it may be expensive. As high expertise is
not required in the case of on-line teaching.

The third method (task-level programming) can be
distinguished from the second by its more descriptive, less
mathematical nature. It describes the effect of a robot
action on objects placed in the work volume of the robot.
Such a program may have statements which stipulate that the
robot PICK a block, MOVE a specified distance and PLACE the
block relative to another object with some side sl AGAIN3T
side s2. Such a program is simpler and does not require great
expertise in computer programming. In general, the task-level
programs that have been developed so far have been applied to
robot models. Some examples of such programs are given in [22

- 24].
1.1.3 Potential Field Methods

These are numerical modelling methods in which potentials
are built around obstacles. For example, the gripper and an
obstacle may be modelled as being positively charged. The
goal to which the robot is moving is modelled as being

negatively charged. As the obstacle repels the gripper, the

7

goal attracts it. The repulsion experienced by the gripper is
large close to the obstacle. It dies off rapidly as the
separation between the gripper and the obstacle increases.
The attraction or repulsion has been expressed in terms of
different parameters. For instance, Khatib’'s potentials were
in terms of real space while Warren’'s were in c-space [14, 25
- 29].

Potentials have been used with some success. However,
one faces local minima problems in using them. This means the
gripper may fail to reach the goal when the work space is
cluttered with obstacles because it is trapped in a potential
trough between two or more obstacles. Furthermore, for
obstacle avoidance involving all the links of a manipulator
the model runs into the snag of repulsion between the links
because of the same kind of charge placed on them as well as
the obstacle. Yet physically the 1links have to remain
attached at their joints. Also, while the use of circles or
spheres to model the gripper may be reasonable, it is not
realistic to use them for other links which are much longer
[6, p 409]. An improved potential field method has to be used

in such cases.

Other Penalty Functions
Apart from the use of potentials, penalty functions
have been defined in other ways. For example, a safety

function has been proposed for a mobile robot [30]. The

workers quantified safety in terms of local information. The
path tLhey sought was the one that maximised the product of
safety and attraction of the robot towards the goal.

1.1.4 Work Space Mapping
Many methods have been proposed to map out the obstacle-

free subset of the work space of robotic manipulators. Some

of these methods are now described.

Free Space Decomposition

In this method, the free space is divided up into a
finite number of subsets which guarantee that the robot's
configuration constraints are not violated. The subsets are
then searched in turn to achieve path optimisation. Different
shapes have been tried for these subsets. Examples of such

shapes include cylinders and cones [31, 32].

Ouadtrees, Octrees and Topology

In this case, the robot’s work space is divided up into
squares for two-dimensional problems and into cubes for three-
dimensional problems. Each square or cube is further sub-
divided repetitively into four sguares or eight cubes until
the homogenous squares or cubes in the free space can be
determined. The homogeneous squares or cubes are those that
do not overlap with any obstacle in the work cell. Topology
is then employed to find a path between a start point and the
goal within the homogeneous squares or cubes that have been
found. As an example, Mehrotra and Krause [33] used a
quadtree coding method for planning safe paths for a mobile
robot. The smallest quad size used was smaller than the robot
size. Thus the maximum depth ot search in a tree was limited
to the level at which the quad size was the same as that of
the robot. Other workers have reported on their work based on
this method [34 - 36].

Other Mapping Methods

Some other methods have been proposed. One is a method
based on the relative displacements of the objects in the work
volume. Choi et al. have proposed a mapping which transforms
the relative displacements of an object in the work cell of a
robot with respect to a reference object. They suggested that
the generated image points could be used in detecting
interference between the objects and in cbstacle avcidance
{37, 38].

9

Another method is the Voronoi Diagram [39]. The diagram
on which the robot path is based is the locus of points which
are equidistant from two or more obstacles in the immediate
vicinity of a point of interest (the gripper origin say). The
diagram’s nunber of dimensions is one less than the number of
dimensions of the robot work space. Thus a 3-D work space is
mapped to a 2-D diagram.

Overall, potential methods have been found to be
generally faster than mapping methods. On the other hand,
mapping methods are detailed and tend to guarantee that a path
can be found much more than potential methods can. Mapping
mechods do not suffer from the local minima problem faced when
using potentials. As they are based on elemental portions of

the work space, however, they are computationally expensive.

1.1.5 Sensing Devices

It is important to communicate information about the
location of an obstacle to a robot. This is done by employing
sensors or by explicitly stating the location of the obstacle

in terms of a set of axes and time. The sensors which have
been used include: (a) infra red sensors, (b) ultra sonic
sensors and (c¢) vision cameras [40 - 43].

These sensors are usually mounted on the gripper in the

case of manipulators. They can therefore detect possible
collisions of a small part of the robot {(e.g the gripper) with
an obstacle. - The use of sensors when collision is to be

avoided for every link of a robot is clearly a difficult
proposition. To avoid collisions for all the links of the
robot, a very large number of sensors would be required.
Furthermore, sensors are expensive and fragile. They cannot
withstand for long the harsh industrial environment and the
dynamic forces suffered by robot links. If they fail in

operation, damage may be caused to the robot and the sensor as

10

well. In contrast, there are no sensors to be damaged when
using either potential or mapping methods for path planning.

However, sensors are reguired for a robot work cell in

which the obstacles are not static. Potential or mapping

methods will fail in this case.

1.1.6 Path Optimisation

Path optimisation is an important aspect of robotic path
planning. A robot must not just carry out its assigned
task, it must do so efficiently. Using one of the methods
outlined in the preceeding paragraphs, an initial path may be
found. This path, which is called the first level path in

this thesis, usually has many intermediate points between the
start point and goal in comparison with what the path would

have been in an obstacle-free cell. Using some criterion, the

path has to be optimised to obtain a gecond level path which
has fewer intermediate points. In order to optimise the first
level path, the following criteria have been applied: (a)
minimum time, (b) minimum distance, (c¢) minimum energy and (d)
combination methods.

For the minimum time criterion, it is desired that the

robot should get to the goal in the shortest possible time.
Several algorithms have been based on this approach [37,
44 - 461. The minimum time 1is subject to the maximum
allowable torgque or force at the robot joints. This minimum
time sheuld not be too small since excessive joint torques or
forces will be developed. Neither can too great a time period
justify the use of a robot which is meant to ensure increased
productivity. Minimum time algorithms are based on some
intermediate position between these two extremes.

The minimum distance method has also been used by some
workers [47, 48]. Usually, in 2-D, the method entails

enclosing the cobstacles within rectangular regions and moving

11

the payload in a straight line to the closest rectangle
corner. The corner must be one that makes getting the payload
to the goal a possibility. If some other shape (for example
a circle) is used to enclose an obstacle, it will be required
that tue path be tangential to the circle. Visibility graphs
are employed in the minimum distance method [49]. For his
work, Cao [47) applied Bellman’s optimality principle in his
own path planning algorithm applied to the PUMA 560 robot. He
considered only payload collisions in a two-dimensional space.

While the minimum distance approach is basically a
kinematic method, the minimum energy approach takes the
dynamics of the robot system into consideration. This greatly
complicates the optimisation algorithm. The approach has been
applied to simpler robotic systems [50, 51].

Some other methods or a combination of two or more of the
methods listed above have been used or proposed by some
workers. Examples are methods based on design optimisaticn,
time-energy, expert systems, and speed [52 - 56]. Also in
their model, Dupont and Derby proposed a heuristic/free space
method to find workable paths (not necessarily optimal) [57].
Further, variational principles have also been employed [58].
Minimisation of a cost function has been applied to some

industrial SCARA rokots [59]. A method for path planning
based on the optimisation of an integral cost function has
also been proposed [60]. The magnitude of this function is

accumulated from the start of a move to some current position.
This integration method contrasts with the more common
approach of path planning based only on the information

available at the instant that a collision is detected.

It should be noted that using different criteria will
probably not yield exactly the same "optimal" paths for a
given robot task. This arises from the fact that there is an
inter-play of very many conflicting factors. Researchers have

also defined their functions in the way that best fits their

own investications.

1.2 Thesis Outline

From the references given in Section 1.1 it would be
seen, in general, that attempts to solve the path planning
problem in the presence of obstacles have been done for
simpler cases. Examples of such cases are:

(1) consideration ©f planar revolute robots with two or
three joints,

(ii) solution of two-dimensional problems or, if three-
dimensional, restriction of problems to prismatic
manipulators,

(iii) path planning only for the gripper and payload
combination with other links of the robot being
neglected,

(iv) neglecting the possibility of relative rotation
between a robot link and an obstacle when the world
model entails shrinking the former and growing the
latcter.

The work reported in this thesis 1is an extension of
solutions to the path planning problem and a step towards
increased safety in robot work cells. The Mitsubishi RM
101 robot was modelled. A description of this robot will be

given in Section 2.1. Highlights of this research are ag
follows:
(1) consideration of all the five degrees of freedom of

- the revolute robot; rotation at any joint is not

suppressed,

{(ii) consideration of the whole three-dimensiocnal work
space of the robot,

(iii) path planning for the gripper, the payload and all
the links of the robot,

{(iv) consideration of fixed and unconnected chstacles

which mederately clutter the work space,

13

(v) allowing for the possibility of relative rotation
between links and the obstacles,

(vi) modelling a link as a line and an obstacle as a grown
cuboid and employing world space geometry,

(vii) heuristic path planning by prescribing robot motion

around a detected obstacle.

An obstacle avoidance program (OBSTAP) is described in
this thesis. It examines the different possible collisions
that can occur based on actual geometry and plans a path for
such situations. The free space between the start and goal of
a move is not mapped out in any way. OBSTAP falls into the
category of off-line programs written in a robot-level
language. QUICK BASIC was used to code the program.

In the current work, the location of an obstacle is not
communicated to the robot using sensors. As the program is
geometry-based, it is inexpensive in comparison with sensor-
based systems. Obstacles are fixed and information on their
location is supplied by the program user.

The scope of OBSTAP and the obstacle detection method are
detailed in Chapters 2 and 3 respectively. Path planning is
described in Chapter 4 and a discussion on the data compiled
in actual tests of OBSTAP is given in Chapter 5. The
conclusicn from this work is drawn in Chapter 6 while the

Appendix contains a User’s Manual for OBSTAP.

CHAPTER 2

SCOPE OF OBSTAP

2.1 The Mitsubishi RM 101 Robot

This research was carried out on the Mitsubishi RM 103
robot. It is a training robot of the revolute type and it
has five degrees of freedom (yaw articulation excluded).
The reference configuration from which the joint angles are
measured (i.e zero position) and the joint axes are shown in

Fig. 2.1. The world axes X,, Y, and Z, are located at the base

of the robot body. Based on the orientations of the joint
axes, the Denavit - Hartenburg parameters for the RM 101 are
as presented in Table 2.1. How these parameters can be

determined is detailed in the second chapter of [61].

The dimensions of the robot are as shown in Fig. 2.2.
The locations of the stepping motors are also shown. The:
operation of these motors is based on joint-interpolated
control [62, pl0]. This means that the proportion betweern
the rotations at any two joints remains constant from one step
to another during a move. All the joints stert to move and
stop moving at the same time. Wrist pitch and roll are
accomplished by a combination of the rotations of motors 4 and
5. Other joint rotations and the opening or closing of the
gripper are controlled by independent motors.
The limits and angular turn per step for each joint are

given in Table 2.2. Detailed specifications can be found

in [62].

e
>y
=

/

{’“/—2%

X0 ZAW ZS

Fig. 2.1: Coordinate Frares For the RM 101 Robot.

(tAotor 3 .
___;f\} F Motor 6] Motor ‘5
: =) | = —
t {Mo:o')__‘-"'—; E?
ol ! i Y \ ‘ ;i‘i E?;,
=] i i [!
- | RO N =4
i L i e T
! ! Motor 2 "M
[otor 4
1 - J
;e
245 > 5 100

| : !
30 |
4 . | : {
o e A |
“ i —)‘4 1
b e
H ' N .
[N e ddied - :
f f { xx.—,.;;;;.-;.r-'.-.:;,;:j Moror 1 for body
N———— IR P , (1Y
| s ower switch Motor 2 for shoulder
l i ir U‘ j . m : P’/ Moror 3 for elbow
A Motor 4
1 /}. ‘ J Y__f: Moo 5 fP1OT wrst
7 | 50 Msior § for hand
i

211 dirmensions irn rro.

Fig., 2.2: Dutlines and Dimensions cf the PM 101 pPoot.

16

o
1
Uit (¥ o v L v
feo ot G
N o3
o
Ll
'
mt [N Y BN B B
[(SR IRV
qQ - % K
+- -
t
M
a
Dy
Y
¢ O
ot it
m
by it
S - - el
O G (V8] (R4 (S0 I TSN
) :
'™ [N
ced
) N
ty +
M
[\l
Y
. 0
R A o)
. . O iy,
M e » L I ()
Ve O . o S O
o R RN I VPR B VR I I | 1)
|
ol [™) ANA Ly .
M

N O O [. N
™
A T
O S . N
§ v
. o o C
+ . ' '
'
W
0
Y [W [[O
N o) N B -
(B K] o
+ L
l | ' [
w
1
(]
>~ Lt

ol

g
M

i
0
Bt

PN

17

2.2 Uses of OBSTAP

The program OBSTAP has about 8,100 lines of code. It
reguires some 283 kbytes of memory and 1is run in the QUICK
BZSIC environment. OBSTAP can be used for several purposes
which are briefly described in this section. A more detailed
User’s Manual is contained in the Appendix.

The program can be run to enter data which describes the
user-specified moves to be made by the robot. These are
called primary moves in the rest of this thesis to distinguish
them from secondary moves which the program itself generates.
A number of sequential primary moves constitute a task.
OBSTAP can also be run to enter data which describe the

obstacles in the work cell. Any data entered for the first
time is saved so that it need not be entered from the keyboard
for subsequent runs. 1In addition, OBSTAP can be run in order

to carry out obstacle detection with or without path planning
around the detected obstacle. The user also has the option of

compiling the obstacle data being entered for the first time

for animation purposes.

Robot Task Data
A primary move is specified in terms of the start and end

points of the move. Successful path planning around an
obstacle always gets the robot to the end point (or goal) from
the start point. It is not allowed that either of these

points should be lost.

A task of up to twenty primary moves can be handled by
the program. However, when it is to be run on small RAM
machines, fewer primary moves should be considered. This will
help to prevent memory problems. A mere roll or the
opening/closing of the end effector does not constitute a

18

primary move requiring obstacle detection and path planning.
The program user can use one of three methods to compile

the task file data. They are:

(1) entering the gripper coordinates and orientations at
the goals of the primary moves,

(ii) entering the joint angles values at the goals,

(1iii) including the moves in a moitor file [621].

This means that the description of a primary move can be in

terms of either forward kinematics or inverse kinematics. A

motor file consists of control commands specified by the

manufacturers of the RM 101.

Obstacle Data
The data which describes an obstacle can be stored in a
file by running OBSTAP. This is called the obstacle file in

the rest of this thesis. The obstacle is represented in a
simplified form as a cuboid. There are three dimensions
(length, width and height) to work with. In addition, the
sides of the cuboid may be parallel to the world axes or
inclined at some acute angle to them. This means OBSTAP has
much more flexibility in the process of growing obstacles than
is found in using circles or spheres to enclose obstacles.
This flexibility makes for a more efficient use of the robot
work space. The program has been written to handle cases of
moderate cluttering in which up to four obstacles are
scattered within the work space. However, more than four

obstacles were used in testing OBSTAP.

Obstacle Detection Only

The program user may investigate whether or not a
particular primary move will cause a collision. In this case,
OBSTAP does not plan a path around any detected obstacle since
only information on collision is what is wanted. Options are
available for either checking for just one particular move of

interest among a set of primary moves in the task file or

1%

checking for all the moves in the file. When there is a
collision, the information supplied by OBSTAP identifies the
particular primary move, the obstacle, the 1link involved
[upper arm, forearm or gripper] and the particular side of the
obstacle [top, bottom or a vertical side]. In addition, the
joint angle values, the gripper position and the collision

point coordinates are supplied.

Obstacle Detection With Path Planning
Obstacle detection followed by path planning around a
detected obstacle can also be done using OBSTAP. The

program user may choose to observe the planned first level
path as it is determined step by step. In this case the robot
has to be connected to the computer. Alternatively he may
compile motor files for the first level and second level
paths. These can be downloaded to the robot at a later stage.
OBSTAP prompts the user when a path has been found for a
primary move and also returns the time taken to complete

computations for all the primary moves.

Gecometry Simplification
In order to have a simplified geometric model, each

link of the robot is shrunk to a line when carrying out either
obstacle detection alone or path planning around a detected
cbstacle. Correspondingly, the obstacles in the work cell
have to be grown. The geometric relations of lines and planes
are then used in the program to check for collisions. The
default dimension by which obstacles are grown is 50 mm. This
value is based on the largest gripper opening. However, at a

prompt, the user may vary this dimension if he so wishes.

Animation

When the data describing an obstacle is being entered
for the first time, the program user may specify that
animation data should be compiled. No animation routine is

20

contained in OBSTAP itself. However, it can compile work cell
data that can be used in the program ANIM written by Toogood
(63]. The advantage of this to OBSTAP is that prior to
downloading a compiled motor file to the robot, the planned
path can be viewed on a monitor. This will give an indication
of how safe the path is.

CHAPTER 3

OBSTACLE DETECTION

In this chapter, the mathematical expressions on which
obstacle detection in OBSTAP is based are presented. symbols

which are printed bold and 1large represent vectors or

matrices.
3.1 Geometric Tools

Geometric relationships that exist in cartesian world
space between points, lines and planes were used in coding
OBSTAP. The homogeneous matrix forms of these relationships
are detailed in the first chapter of [64]. The relationships
are briefly presented in this section.

A point U which has coordinates x, ¥y and 2z is

represented in the form:

U= [x y z j_]T (3.1)

The superscript T indicates a transpose. The wvalue 1 is
included by convention in the 4 x 4 matrices which are
usually encountered in the analysis of robot systems.

A line L can be defined in terms of two points

U =[x, v, 2, 1]Tand U, = [x, y, 2, 1] on

the line. Let W(a) represent a general point on the line.
We have:

Wia) = 0, + a(0, - UT,) (3.2)

where o is some parameter satisfying - o = o s ©. At the

point U, the value of o is 0 and at U, the value is 1.

A plane P may be defined as a row vector ir terms of

22

its unit normal vector ai + bj + ¢k which is localised at
the point of minimum distance d of the plane from the origin.

We have:

P=1[a b c d] (3.3)

Consider the minimum distance between two lines L, and
L,. Let L, be defined in terms of points U, and U, and a
parameter o. L, is defined in terms of points U, and U, and

a parameter (. Let the distance from a point on the first
line to a point on the second be denoted by D,. When this

distance is minimum we have:

ap,
- 3.4
- 0 (3.4)
ap,
_—t = 3.5)
= 0 (

The minimum distance of the point U (Egn. 3.1) and
the plane P (Egn. 3.3) is the distance between U and the
point of intersection of the plane and the normal from U.

Denoting this intersection point as V we have:

V=U-PUla b ¢ 0]7T (3.6)

Let the distance between U and V be D, in this case.
The point of intersection of the line L (Egn. 3.2) and
plane P (Egn. 3.3) is the point on the line for which we have:

PU (3.7)

a6 =~
P(T, - T,)

Let D, represent the distance between the line and the plane.

23

If o is indeterminate the line and the plane are parallel.

For this situation we have:

Dy > 0 (3.8)

When the line and the plane are not parallel we have:

D, = 0O (3.9)

3.2 Growth of Obstacles

Consider the bar of length L shown in Fig. 3.1. By
being stretched equally at both ends its centroid G is not
displaced. Let each end be displaced by é8L/2. The new

position x’ of an element initially located at a distance x
from the centroid is given by:

8z

x'=x(1 +
(L

This idea was applied to the growth of obstacles in
OBSTAP. Fig. 3.2 shows an obstacle initially having
dimensions 2a, 2b and 2c¢ respectively in the X, Y and 2Z
directions of its centroidal cartesian system. Axis 2Z 1is
parallel to the world 2, axis but respectively axes X and Y
need not be parallel to X, and Y,. Thus the vertical sides of
the obstacle may be inclined at acute angles to X, and Y,. The
position of the centroid with respect to the world origin is
given by coordinates x5, Yy; and zg. The obstacle 1s grown
round about by a growth dimension g,. A vertex of the
obstacle initially having coordinates x, y and z with respect
to the centroid becomes displaced to a new position having

coordinates x’, y‘and z’ also with respect to the centroid.

24

- e S

Fig. 3.1: Stretching a Bar Equally at Both Ends.

New vertex
/position v
i; ———— - ——
q

4

/

/7
/ /

7 v i
¥ fomm=r -y |
Y ; Z 1o
8 | ! ~
G (! ; u
X (5] ' {
s | 1 | ‘/l (
/N ! |
;g i X ; /
/x \ { 1 o"
Q Xo | !
X'= angle between axes X and X, L

X; angle between GV and axis X

(a) Centroidal Axes Relative (b) Obstacle Growth Around

to World Axes. the Centroid.

Fig. 3.2: Growing an Obstacle Represented as a Cuboid.

25
We have:

(x - Xg) (3.10)

/
x' = x + g
x - xg] ¢

Y~ Ys (3.11)

= + +
(AR T
Z27 % (3.12)

/ =

The coordinates of the new position of the vertex with

respect to the world origin, x’'’, y’’ and z'’, are then
given by:
(x” y"” z" 117 = [x.+ A yg+ B zg+ z' 117 (3.13a)

With reference to Fig. 3.2, the values of A and B are as

follows:
1

A= |(x?+ yP) 2| cosly; + ¥, (3.13b)
1

B =|(x?+ y?) 2| sin(y, + ¥,) (3.13¢c)

3.3 Instantaneous Robot Position

Considering a primary move, let 95 represent the set of

joint angles at the start of the move while 99 represents the

26

set at the goal. A general joint angle is represented by 6.
The body joint angle is identified by subscript 1, the
shoulder joint angle by 2 and the elbow joint angle by 3.
Pitch and roll angles have subscripts 4 and 5 respectively.

os = [esl esz 653 654 655} (3.14)
6, = [6, 6, 6, 6., 6.l (3.15)
To implement joint-interpolated control, the joint

angle which will change the most either positively or
negatively is determined at the start of the primary move.
The value of this angle is then varied in steps of + 1 degree
depending on whether the value at the goal is less or greater
than the wvalue at the start. The values of the remaining
joint angles are found by proportion. Consider an example in
which the joint i is to turn the most at the start of a
primary move and n computation steps have been taken without

a collision being detected. We have for the joint:
6, = 6_,;,+ n (3.16)
For any other joint j we have:

8 .- ©

0,= 0, n L3I (3.17)
7 & Bgi - 651’
From the Jjoint angles, all the Denavit-Hartenburg

parameters and the elements of the A matrix for each link
can be determined [61, chapter 2]. The T. matrix which

transforms the world cartesian system to that at the gripper

origin is given by:

27

To= A A, A A A (3.18)

Here subcripts 1, 2 and 3 stand for the body, upper arm and
forearm respectively. The links representing dripper pitch
and roll are denoted by the subscripts 4 and 5 respectively.

Similarly the T matrices which transform the world

axes into the axes at the different joints (Fig. 2.1) are as

follows:

T, = A A A A, (3.19)

T, = A A A (3.20)

T, = A A, (3.21)

T = A (3.22)
The elements T.(1,4), T.(2,4) and T, (3,4) are

respectively the instantaneous x, y and z coordinates of the
gripper origin with respect to the world axes. The
instantaneous x, y and 2z coordinates of the joints are
similarly found. Thus each 1link can be modelled as a
straight line in terms of the coordinates of its extreme

points.
3.4 Collision Checks

From the obstacle data entered for a particular program
run, OBSTAP computes and stores data describing all the six
sides of a grown obstacle as planes. As described in the
last section, the program models the links as straight

28

lines. OBSTAP then uses the geometric relationships given in
Section 3.1 to check for collisions.

A criterion has been set to determine if a collision is
imminent. The criterion is that the least distance between a
1ink and an obstacle should be less than or equal to 16 mm.
This value corresponds approximately to the distance by which
the gripper origin moves when the body turns by 2 degrees with
the arm fully extended. Collision checks are made for each
link and for the faces and edges of each potential obstacle.

There are three main collision types. They are:

(1) collision between a link and an obstacle edge,

(ii) collision between a point (e.g. a joint) and a face,
(iii) collision between a link and a face.

The first case is modelled as collision (or intersection)
between two lines, the second as collision between a point and
a plane and the third as collision between a line and a plane.
Suppose there is a collision for a given robot configuration.
Then for the obstacle face for which computations are being

carried out we have the following necessary but not sufficient

condition:
min(p,, D,, D,) < 16 mm {3.23)
Other special collision cases may arise. Examples of

these special cases include collision between a joint and an
edge or collision between a link and a face parallel to the
link. In coding OBSTAP it was assumed that the probability of
the occurence of such special cases would be very low. It wan
also assumed that even if a special collision case arisesg when
using the program one of the three main collision types listead
above would be able to trap the collision. It was assumed
that the types are general enough.

The links are not modelled as infinitely long lines and

(b) A Case of Untrue Collision.

Fig. 3.3: Checkine for Collision Between
Two Line Models

30

the obstacle faces are not modelled as infinitely large
planes. Because of this, checks are carried out within the
collision routine to confirm whether or not a suspected
collision point (which satisfies Egn. 3.23) is truly a
collision point.

Two lines are shown in Fig. 3.3 to illustrate the first

type of collision. We assume that L, has been defined in
terms of points U, and U, and a parameter o. Similarly L,

has been defined in terms of points U, and U, and a
parameter 8. A suspected collision point between the lines
is truly a collision point providing the values of o and g
at the point satisfy the following inequalities:

0 s a < 1 (3.24)

0 < P < 1 (3.25)

A suspected collision point, which the check proves not
to be a true collision point, and a face of an obstacle are
depicted in Fig. 3.4. The figure also shows a true
collision point. This figure is applicable to the last two
collision types. The areas a,, a,, a, and a, are formed in
each case by joining the point with the four corners of the
face usiﬁg straight lines. If a represents the area of the
face, the following conditions hold.

For an untrue point:

a + a, + a, + a > a (3.26)

a + a, + a, + a, = a (3.27)

3
Suspected point !

(a) No collision.

3
a4
2
Suspected
point
2

{(b) A Case of True Collision.

Fig. 3.4: Checking for Collision Between (i) A Point
and a Plane and (ii) A Line and a Plane.

32

JTeyD) MOTJ UOT309380 AT2e3ISqO :G°f PTd

rrE SRR , g
Iauuetd } surgnos u o = :
T e
o - e — — —
\\\\\
A‘IIII‘Z'/ n.Ol\
X
- X

— X . . . auTINOI
P T~ UOTSTITOD I1®D
< mo\.A.l}\ N.c sA,I./ oo >4 S0 A\é lllllrﬁl\lwr

3 ¥ n N ¥ >
30O PN R BDTS XN T “Usod 3090 [opoH
it

i

]

Td anduT ‘e3ep |
SPoIapTsucoO saalu TTY Atyauceb ai1o3s i

{pAUOEa1 9AQW JUSLIND JO Te0 = () ¢PIISPTSUCO SBTIEISAC [TV .
|

i

!

¢ (SUO JUBLIND) POISPTSUCD SBPTS BTOR3ISAO [TV = GO ¢PSISPTSUCD SHUTT TTY

wun

% S8T0R3ISO MO

80
90
b0 ‘e3ep (e I93uwd

A..\ﬁ.mco COMUUUUU@ U.HUE“WQO UC..Hg = mo {anxgj COA.NW.MHAHQU = NO «.\&C..HOQ ﬂan«UWQWD'D |l e
e 21243 SI = 10 “3[0e3Isqo 3ISITF % MUTT 3ISITF ‘BAQU 3ISIT3 JO 335 = 1d %/
ONEN {SOA=X e
SUT3NOI UTEHN A\uumpw /
N4

SN

33

3.5 Detection Algorithm

Fig. 3.5 is a flow chart depicting the process of
obstacle detection. After the robot task has been defined
and the obstacle data entered, the following steps are taken

in the process of obstacle detection:

(1) Grow the obstacles using the default growth dimension
or the user-specified dimension (Egqn. 3.10 - 3.13).
(I1) Determine geometry data for vertices, edges and faces
of the grown obstacles (Egqn. 3.1 - 3.3).
Consider the robot’s first primary move.

(I1ITI) (1) For the current primary move and robot position,
determine the joint step sizes based on joint-
interpolated control (Egn. 3.14 - 3.17).

(ii) Model links as lines (Egn. 3.18 - 3.22).

(IV) (i) Select a link and an obstacle.
(ii) Select one face of the obstacle.
(iii) Check for all three collision types between the
link and the face (Egn. 3.4 - 3.9, 3.23).

(V) IF there is a suspected collision from step
(IV) (iii),
THEN check that the collision is true
(Eqn. 3.24 - 2.27).

(VI) 1IF there is a suspected collision from step (IV) (iii)
AND IF the collision is proved true in step (V),
THEN

(i) IF the program is being run for obstacle
detection only,
THEN print collision data.

(VII)

34
IF all the primary moves have not been

considered,
THEN select the next primary move and GOTO step

(ITII) (1) ;
ELSEIF all the primary moves have been
considered,
THEN STOP.

(ii) IF the program is being run for the path
planning option,
THEN RETURN to the main routine,
CALL path planner.
On RETURN GOTO step (III) (i).

IF there is no collision from step (IV) (iii) OR IF a
suspected collision from step (IV) (iii) is proved

false in step (V),

THEN
(1) IF all robot links have not been considered for
the current face,
THEN select a new link and GOTO step (IV) (iii).
(ii) IF all robot links have been considered for the

current face but all the obstacle faces have not
been considered for the current robot position,

THEN select a new face and GOTO step (IV) (iii).

(iii) IF all the obstacles have not been considered
for the current robot position,
THEN GOTO step (IV) (i).

(iv) Determine if the goal of the current primary

move has been reached (the current robot

(v)

position and that given by Egqn. 3.15 will be
the same).

IF the goal has not been reached,

THEN move the robot one step and GOTO step
(I1I1) (ii).

IF all the primary moves have not been
considered,

THEN consider next primary move and GOTO step
(III) (i).

ELSEIF all the primary moves have been
considered,

THEN STOP.

When it has been confirmed that a point is truly a
collision point, the collision data is printed for the

current primary move,

for obstacle detection without path planning. Otherwise

path planning is commenced.

chapter.

This is piesented in the next

35

if the user initially chose the option

CHAPTER 4

PATH PLANNING

4.1 Heuristic Search

Path planning in OBSTAP is based on heuristic search in
world space around the detected obstacle. This consists of
trying out a number of possible paths, detailed in Section
4.2, around the detected obstacle. Computations are carried
out for the configuration of the robot relative to the
obstacle along the trial path. A trial path is abandoned once
it is found that a collision would occur along it. A new path
is then sought.

The search is in world space. This is because the
positions to which it is desired to move the robot can be
easily imagined and specified in world space. It would be
more difficult to imagine and specify these positions in scome
other spatial system (such as configuration space or some
transform of the world space).

The path planning routine prescribes ways of moving the
robot past the obstacle. The prescribed trial paths depend on
the position of the robot relative to the obstacle at the time
of collision. They also depend on the initial robot task -
whether or not the body is moving.

Since a collision can occur in an infinite number of
ways, heuristic search in robotic path planning may initially
be considered as being unwieldy. In OBSTAP, however, similar
collisions are grouped together and the rules that are
prescribed are for these groups rather than for individual
collisions. This approach has helped in achieving a
manageable number of IF ... THEN statements in the path
planning routine.

There may be several possible paths around an obstacle.
OBSTAP does not explicitly attempt to find the optimal path

37

out of the set based, for example, on the minimum distance
approach. The program simply seeks a path around the
obstacle. Nevertheless, some optimisation is done in terms of
computation time. As soon as a collision with an obstacle is
detected, collision checks with other potential cbstacles are
abandoned. Path planning around the obstacle in the greatest

danger of collision is commenced. The CPU time required to
find the path is usually much smaller than that for exhaustive
optimum path searches. This approach was taken in coding

OBSTAP Dbecause it was felt that path planning around the
detected obstacle should be regarded as being more paramount
than completing collision computations. We may consider two
obstacles A and B with which collisions may occur during a
primary move. Let us assume that collision with A is more
imminent. It is quite possible that obstacle B which
initially posed a threat no longer does so after planning a
path around A. However, this possibility is not guaranteed.

The methods of searching a few trial paths and of
prescribing collision-dependent rules to move the robot have
parallels in other areas of Engineering. An example of this
is the use o0of rules of thumb in design. Sandgren and
Venkataraman [52] have also proposed a scolution to the path
planning problem in 2-D space by considering only a discrete
set of robot arm and gripper positions. This is reasonable in
the light of the many conflicting factors associated. It can
thus be seen that the approach taken in coding OBSTAP is not

unusual.
4.2 First Level Path

There are three main ways by which a revolute
manipulator that is similar to the RM 101 can move past an
obstacle. Because the body can only rotate about the world Z

axis, the three ways are:

38

(1) for some portion of the other links to be raised above
the obstacle,

(ii) for some portion of the other 1links to be lowered
below the obstacle,

(iii) for the other links to be retracted towards the body.

The first level path is based on the points listed
above. It is impossible to have the body translate past the
obstacle since we are not dealing with a mobile robot in this
case. Fig. 4.1 1is a flow chart showing the broad sub-
divisions of the first level path planner. Details of these
sub-divisions are given in the sections which follow.

The symbol I(U) stands for the inverse kinematic
solution. It is used to determine the Jjoint angles
corresponding to a new gripper position U which is being
tried. The gripper orientation at the current position is
maintained. Thus for the new position being tried, the

elements of U are entered into the T, matrix such that with

1 s 1 = 4 we have:

T (i,4) = OU(1) (4.1)

We let the collision point be P. The joint angles at
the time of collision are respectively 6,,, 6, 81, B, 8y foOr
the body, shoulder, elbow, wrist pitch and wrist roll. Also
at the time of collision, the gripper origin coordinates are
Xgrs Ygr and z,.. The coordinates at the desired gocal for the

primary move are X,, Y, and z,.

*3reyD MOTJ butuueld yjed :1°p

.U..ﬂ.m

.‘__.qx .J/.
f'." uinyay "_
_ . A
k-_..... Jﬂ‘
! |
Ioesn
% urem 30 9TORISqO JuTod JOWD| (et
N mau 3sed anoy 8Jes © 03 aAdW * i
.
, L b
i €0 @— SAUTT PsTRY 41/ BH.\,.VIHL €0
i
TN aseq 10
T - €0 —] SHUTT JaMmO] do3 03 terTRIed orbueyoex 103
~ ﬂ Jaddtab angy saTbue jutol purg
_F/z qr %w
R uoT3oRIISY i < NO.HV.AI = < o
¢ (SUTINCY UOTSTITOD T1BD) 93¥S anow ST = £ T
¢OP1S TEOT3ISA JIB2U YJTIM UOTSTTIOO SI = g0 ¢butaou Apoq 3000y = 10 mum::mam_,

ON =N {S9f = 4

L 1TeD |

—~ e

10

4.2.1 Cases of Variable Body Joint Angle

The upperarm, the forearm and the gripper all move in
the same vertical plane. Without the turning of the body the
gripper cannot reach every part of the work space. Thus, all
the possible motions can be classified into two broad
categories:

(i) rotation at the body joint with or without rotation at
some other joint,

(ii) no rotation at the body joint with rotation at one or
more of the other joints.

Path planning for the first category of robot task is dealt

with in this sub-section.
4.2.1.1 Collision With a Vertical Near Side

Fig. 4.2 depicts the case of a collision with a
vertical side of an obstacle. The sides AB and AD which are
near to the origin O are considered here. Only the plan view
of the obstacle is shown in the figure.

The obstacle must be positioned somehow in the work
space. Many times the table acts as the support, in which
case the path to be planned cannot go below the obstacle. If
the obstacle is suspended it may not be possible to plan a
path which goes over the obstacle. In order to get the
robot links past the obstacle, OBSTAP would do the following

in turn until a path is found:

(i) Link Retraction

(a) Compute joint angles 6 (where 1 s 1 = 5) for
some point E on the obstacle. Point E has coordinates
Xz, ¥Ys and zp such that x; = x,, Y. = Y. and z, = z2,.

[This means OBSTAP carries out the I (E) computation].

(b) Call the cecllision routine to determine if there

(0]

Obstacle

@ Start

Y

@ Start

Obstacle
+ré G

S @ Goal

x| (b) Collision with side AD.

Fig. 4.2:

Collision With the Vertical Near Side

of an Obstacle (Robot Body Moving).

41

(c)

(b)

4?2
would be a collision with another obstacle in moving
the gripper from its current position to point E.

The movement 1is in two stages of 1link retraction
followed by body turn.
IF SAFE, (1) retract links or write lines to PATH1.MOT
such that the joint angles change by
(8z, - 8;,) where 2 = 1 < 5.
(2) Turn robot body alcne or write 1lines to
PATH1 .MOT such that the body joint angle
changes by 65 - 6.
(3) Move the rcobot to the desired goal using

E as a new starting point.

IF UNSAFE, try lowering links.

Lowering Links

Carry out the I(F) computation. Point F hag
coordinates x,, yr and z, such that x, = x,,, ¥y, = Y, and
z = z at obstacle base. Decrease z, if necessary to

ensure that the links are safely below the obstacle and

carry out an updated I (F) computation.

Call the <collision routine to determine 1f there

would be a collision with another obstacle or the work

top in moving the gripper from its current position to

point F.

IF SAFE, (1) Lower the 1links or write 1lines to
PATH1 .MOT such that the Jjoint angles
change by (86, - 6,,) where
1 =1s 5. (Robot bedy does not move) .

(2) Move the robot to the desired goal using
F as a new starting point.

IF UNSAFE, try raising links.

43

(iii) Raising Links

(a) Carry out the I(G) computation. Point G has
coordinates x;, ¥Y; and z; such that X; = X,., ¥Y; = Y. and
2, = z at obstacle top. Increase z; if necessary to

ensure that the links are safely above the obstacle and
carry out an updated I(G) computation.
(b) Call the <collisicn routine to determine if there
would be a collision with another obstacle in moving
the gripper from its current position to point G.
(c) IF SAFE, (1) Raise links or write lines to PATH1.MOT
such that the joint angles change by
(8s, - ©,,) where 1 = i s 5. (Robot body
does not move).
(2) Move the robot to the desired goal using
G as a new starting point.
(d) IF UNSAFE, the user is warned that the rcbot may be
trapped. He is advised to try another growth dimension

for the run.

OBSTAP first attempts to retract links. If it is found
that this would fail, an attempt is made to lower or raise the
links. This doces not confer prime importance on the
retraction process over and above lowering or raising the
links. It is just that one set of computations have to be
done first before the next.

Lowering the links is somewhat tricky. This is because
by merely positioning the gripper below an obstacle, it is not
guaranteed that the upperarm and the forearm are safely under
the obstacle. An obstacle has to be placed very high in the
work space for this condition to exist. Another factor that
complicates path planning by lowering the links 1is that the
table itself becomes a potential obstacle. However, because

the computation for riising the links follows that of lowering

44

them, there is still a way out and the robot can be saved a

possible collision with the table.

4.2.1.2 Collision With Top or Bottom or Vertical
Far Side

Another possibility is that of a collision with the top
or bottom or a vertical side which is far from the origin. A
plan view of such a configuration is shown in Fig. 4.3. In
this case, an attempt is made to move the gripper parallel to
the obtacle top or bottom. The primary move starting from S1
should be considered for the collision involving either the
top or bottom. The primary move starting from S2 should be
considered for the collision involving either side BCJI or
side CDKJ. OBSTAP would do only one of the following:

(1) Top Side (ABCD)

(a) Carry out the I(G) computation as before.

{b) Determine the body joint angle for the obstacle top
corner point D.

(c) Check if there would be a collision with another
obstacle when moving the robot at the body joint
alone until the vertical plane through D is reached.

(d) 1IF SAFE, (1) Move links or write lines to PATH1.MOT

such that joint angles change by
(85, - 6,,) where 2 s 1 s 5.
(Body fixed) .

(2) Move 1links or write lines to PATH1.MOT
such that only the body joint angle
changes by (8,, - 8;).

(3) Move the robot to the desired goal using
D as a new starting point.

(e) IF UNSAFE, try moving past new obstacle (most probably

Goa
(G2
xY
Fig. 4.3:

\ \ / ~e Start (S$2)
\ / / /
\ . /
Robot /
\ /
\ Obstacle };
\
\ \
\ /
‘\ \D,K A cJ
\ /
) \ ,
A
\ o
® .
Goal (G1) Obstacle top is ABCD;

base is HIJK.

~

Collision With the Top or Bottom or a Vertical

Far Side of an Obstacle

(Robot Body Moving) .

45

(ii)
(a)
(b)
(c)

(d)

(e)

(iid)

46

the collision would have occurred with one of its
vertical sides).

Bottom Side (HIJK)

Carry out the I(F) computation as before.

Find the body joint angle for the base corner point K.
Check 1if there would be a collision with another
obstacle when moving the robot at the body joint
alone until the vertical plane through K is reached.
IF SAFE, (1) Move links or write lines to PATH1.MOT
such that joint angles change by
(B - B,;) where 2 s 1 s 5.
(Body fixed).
(2) Move links or write lines to PATH1.MOT
such that only the body joint angle
changes by (8,, - 6,)
(3) Move the robot to the desired goal using
K as a new starting point.
IF UNSAFE, try moving past new obstacle (most probably
the collision would have occurred with one of its

vertical sides).

Vertical Far Side (BCJI or CDKJ)
IF a part of the robot is directly above the obstacle,

THEN treat the case as for top side ABCD above.

IF a2 part of the robot is directly below the obstacle,
THEN treat the case as for bottom side HIJK above.

Cases of Fixed Body Joint Angle

Typical collisions for this category of robhot task are

represented in Figures 4.4 and 4.5. Rectangles LMNO and QRST

are extended sections through the obstacle with which the

47

Obstacle

Fig. 4.4: collision With Gripper Moving Down
{Fixed Body Joint Anale).

48

robot is colliding. They are vertical and in the plane of the

robot 1links. The 2z wvalues for the top and bottom of the

obstacle are known from the geometry data. How the

coordinates of important vertices of the rectangles are

found is specified below.

4.2.2.1 Gripper Initially Moving Down (Fig. 4.4)

OBSTAP would do as follows:

(a)

(b)

Carry out the I(Q) computation. Point O has
coordinates X,, Y. and 2z, such that X; = Xg5, Yo = Ygr

and z, = z at obstacle top.

Increase 2, 1if necessary to ensure that 1links are
safely above the obstacle and carry out an updated

I(0) computation.

Carry out the I (L) computation. Point L has
coordinates x,, y, and 2z, such that X, = X,, Y. = Y,

and z, = 2Z,.

Check for new collisions in moving the gripper to the
goal via points O and L.

IF SAFE, sequentially move the robot or write lines of

incremental secondary moves to PATH1 .MOT for the

following angle changes: (8, - ©6,), (8, - 8.},

(Bgoar,: - 1) where 2 s 1 s 5.

IF UNSAFE, an attempt 1s made to move links as in
Section 4.2.1.2 above (Collision With Top/Bottom) . The

joint angles with the exception of that of the body are
corrected to the wvalues they should be at the goal.
Finally, the body joint angle is similarly corrected.

4.2.2.2 Gripper Initially Moving Up (Fig. 4.5)

Let wus consider a case 1in which the collision has

occurred at the elbow. OBSTAP would do as follows:

2 }\

Robot

Fia. 4.5:

49

Obstacle

1
{
& - - -
n

X ,Y and 2 are the coordinates
of the gripper origin at the time of
collision.

Collision With Gripper Moving up
(Fixed Body Joint Angle) .

(a) Carry out the I(R) computation. Point R has

coordinates X, Yz and z; such that x; = X;., Y& = Y4 and
z, = 2z at obstacle base.

(b) Carry out the I(Q) computation. Point Q has
coordinates x,, Y, and z, such that x, = %, Y, = Yy and
2o = 2Z4.
Increase z, if necessary for cases in which the goal is
below the top o©of the obstacle and carry out an
updated I (Q) computation.

(c) Check for new collisions in moving the gripper to the
goal via points R and Q. (By its not being between the
current position and the goal, R is an aberrant knot

point in this case. It will cause the robot to move

away from the goal rather than towards it in the first

level path. This point will be cleared out in the
second) .
(d) IF SAFE, sequentially move the robot or write lines of

incremental secondary moves to PATH1.MOT for the

following angle changes: (8y; - 6;,), (B8y - 64),
(Bgoa1,i - Boi) where 2 = i s 5.

(e) IF UNSAFE, an attempt is made to move 1links as 1in
Section 4.2.1.2 above (Collision With Top/Bottom). The

joint angles with the exception of that of the body are
corrected to the wvalues they should be at the goal.
Finally, the body joint angle is similarly corrected.

It should be noted that if the work cell has been
moderately cluttered and if the obstacles are dispersed within
the space, UNSAFE conditions will not be very common. This
will lessen the probability of the occurence of a situation in

which the robot will be completely trapped.

51

4.2.3 Other Factors For First Level

The different steps itemised above are carried out by
OBSTAP in planning a path around a detected obstacle. Not
all the steps are carried out for every move for which a
collision is detected. The relevant steps are determined
largely by the kind of move the robot is required to make. If
all the possible steps to plan a path have been tried without
success the user is alerted to the fact that the robot may be
trapped. He is then advised to try using a different growth
dimension.

An important consideration has to do with the accuracy
of the RM 101. If a computed joint angle is close to the
allowed limit for that joint, the robot may crash even if the
value of the angle is legal. To reduce the possibility of
this happening in OBSTAP, new limits were imposed as follows:
body +110°, shoulder 110° and -20°, elbow -10° and -110°,
wrist roll 170° and 10°, wrist pitch +170°. The result of the
imposition of these limits is a reduction in the available
work space.

It is possible that the primary move required of the
robot may involve the opening or closing of the gripper to
help pick up or drop off the payload at knot points. OBSTAP
allows for gripper opening/closing only at the end of a move.
This contrasts with what happens in an obstacle-free
environment in which the gripper would open/close continuously

due to joint interpolated control.

4.3 Second Level Path

The main aim of the second level path planning is the
reduction in the number of first level knot points and an
elimination of unnecessary link movement. Many combinations
of knot points may be tested for a collision-free path. The
following method, called the Local Path Planning Method, was

52

employed in coding the program. A Global Method was also
employed but only as some support for the Local Method.

Local Path Planning Method
Consider the m knot points of the first level path.

which are shown in Fig. 4.6. With the move commencing at
point 1 and ending at point m, the path is broken up into
segments 1 - 2 - 3, 3 - 4 - 5, 5 - 6 - 7 etc. as far as
possible. In the local path planning method, collision checks
are carried out for each segment. If, for instance, it is
found safe to move the robot from point 1 to 3 directly, then
point 2 is eliminated making the number of knot points for the
next iteration equal to (m - 1). One iteration is completed
when all the segments have been considered. The total number
of iterations was set to be 3

after trying different values.

Global Path Planning Method
Fig. 4.7 shows the n knot points for the move after

the 1local path planning has been completed. The move

commences at point 1 and ends at point n. The global path

planning method is as follows:

(a) Starting from point 1, OBSTAP checks if the straight
path from point 1 to point (n - 1) is collision-free.

(b) If the path is collision-free, eliminate knot points 2
to (n - 2) leaving points 1, (n - 1) and n. Then
consider the next move required of the robot.

(¢) If the path is nmnot collision-free, check 1if the
straight path from point 1 to point (n - 2) 1is
collision-free.

(d) If the new path is collision-free, eliminate knot
poiats 2 to (n - 3) leaving points 1, (n - 2), (n - 1)
and n. Then consider the next wmove required of the
robot.

(e) If the new path is not collision-free, check if the

m
(m-1)
(m-3)
(m-2)
Path Segment
Fig. 4.6: Local Path Planning.
n
(n-1)
-
— 4 (n-2)

Fia. 4.7: Global Path Planning.

54

straight path from point 1 to point (n - 3) is

collision-free.
(£) Continue the above process until cecllision checks have

been carried out for knot points 1, 2 and 3 with the

aim of eliminating point 2.

CHAPTER 5

TEST RESULTS AND DISCUSSION

Program OBSTAP was run in the QUICK BASIC environment on
a Gateway 2000 486/33C machine. The results and a discussion
of the tests are presented in this chapter.

5.1 Description of Test Obstacles

Five cuboid-shaped styrofoam blocks were first used as
obstacles in the testing of the program. These blocks were
unconnected with one another and they were scattered within
the work cell. The first three of the obstacles were placed
on the table top. The other two were elevated above the table
so as to be able to observe how OBSTAP would cope with
planning a path around obstacles "floating" in the work space
of the revolute manipulator (Fig. 5.1).

Two complex obstacles were also considered. This was
done so as to find out how OBSTAP would cope with cases of
multiple collisions. The complex obstacles consisted of
attached simple obstacles. As shown in Fig 5.2, the first set
resembled two attached goal posts. The other resembled a
four-legged table (Fig. 5.3). The complexity of the obstacles

was due to one or more of the following factors:

(1) the component simple obstacles were attached to one
another,
(ii) the components were placed close together,

(iii) the components were placed close to the body of the
RM 101.

The dimensions of the ungrown test obstacles and their
positions within the work cell of the robot are given in Table
5.1(a,b,c). The unconnected obstacles were not all present at
the same time when the tests were being carried out. Rather,

what was tested was path planning around

56

(78

~

SoTo¥5S30 PORCOULDIY N0 SO0 sMOT, G f1TS TRTA
* SOTA U
- TROITAN BN ety D
~ - - [ERSEIe: SCREERS »rv
4 -
\ . N
. .
- N ————
), s . N
Poen eEe 7 wls T Bet 4 Sa ey Ao 7
:
o

S = JlLuv Ak R et
R] 1 5 [TV

MOTA JUOTT
oAT3oedsa0g

oo
IRy
a o
[EECIECRETVIENY

T
'3 | v

y

|- -
,4’/’/A=:% == y ¥

: /& = \

(b) Perspective front Kv
view *

i
(a) Perspective plan ;
view

_ o

Fig. 5 2: Two Views of Six Connected Obstacles
(Set %1, File COR1.DAT).

(b} Perspective Front Xy

View Anqle % = 0% and ancle % = 70
L .3
| \ L
{ N
] i
)

| Sl

o

2 |

(a) Perspective Plan .\/
View o): ‘# -
Ancle g/)l: 0" and angie % = 0.

Two Views of Five Connected Cbstacles

(Set #2, File CCB2.DAT) .

Fig. 5.3:

Table 5.1 (a):

Dimensions and Locations of Ungrown
Unconnected Obstacles.

and

Obstacle Dimensions Point #1 Point #2 Point #3
No. (mm) Location Location Location

[{Length] in mm. in mm. in mm.

(Wwidth] [x] [x] [x]

[Height] [v 1 [v] [y 1

[2] [z] [2]

1 126 280 306 280

26 120 120 246

203 0] 0 0

2 136 100 151 135

52 -280 -270 -414

104 o] 0 0

3 140 100 158 22

71 280 320 397

140 0 0 0

4 104 340 382 398

50 -140 -113 -225

180 157 157 157

5 104 286 437 344

180 -176 -76 ~-264

50 157 157 157

File Names and Descriptions (Extension .DAT)
OBST1 (Obstacle 1 only); OB2 (Obstacles 1 and 2);

2 and 3); OB4 (Obstacles 1, 3 and 4) ;

OB3 (Obstacles 1,
OB13 (Obstacles 1 and 3);
OB25 (Obstacles 2 and 5).

OB24 (Obstacles 2 and 4);

Table 5.1 (k) :

Dimensions and Locations cf Ungrown

Connected Obstacles

(First Set) .

60

Obstacle Dimensions Point #1 Point #2 Point #3
No. In The (mm) Location Location Locat ion
Set [Length]} in mm. in mm. in mm,
COB1.DAT [Width) [x] [x 1 [x|
[Height} {y] [y 1l [v I
[=] =] [=]
1 40 320 360 320
40 120 120 160
250 0 0 0
2 180 320 360 320
40 0 0 - 140
40 250 25 250
3 40 320 360 3.0
40 -180 - 180 - 220
290 0 0 0
4 240 €0 320 80
40 ~180 -180 -220
40 160 160 160
5 40 40 80 40
40 -180 180 120
500 0 0 0
6 160 320 560 100
40 0 G 16,05
40 250 _:SU AN
File Name Description (Extension .DAT) -
COE126 Three components from COEl.DLT
Previous # in CORB1.DAT (1,2,6)
Respective New # in COR126 .DRT (1,2,%)
COB345 . Three components from CCEl.DAT

Previous # in CORB1.DAT

(3,

4,%)

Respective New # in COR34% .DLT (1,51, +;

61

Table 5.1(c): Dimensions and Locations of Ungrown
Connected Obstacles (Second Set) .

Obstacle Dimensions Point #1 Point #2 Point #3
No. In The (mm) Location Location Location
Set [Length] in mm. in mm. in mm.
COB2 .DAT [Width] [x] {] (x]
[Height] [yl [y] (v]
[z] [2] [z]
1 40 280 320 280
40 240 240 280
200 0 0 0
2 40 280 320 280
40 400 400 440
200 0 0 0
3 40 70 110 70
40 400 400 440
200 0 0 0
4 40 70 110 70
40 240 240 280
200 0 0 0
5 250 70 320 70
200 240 240 440
4 200 200 . 200 |

File Name Description (Extension .DAT)

COB22 Only the first four components in COB2.DAT.
(identification number of an obstacle being the)
(same in both files)

NCOBZ All five component obstacles in CORB2.DAT were used afrer
being re-ordered in their file.
Previous # in COB2.DAT (1,2,3,4,5). -
Respective new # in NCOB2.DAT (i,4,5,3,2;.

62

different combinations of the obstacles. For some tests
involving the complex obstacles, all the component simple
obstacles in a given set were present. For some other
tests, some of the component obstacles in the set were removed
or the set was rearranged in the work cell. The obstacle
combinations used are given as footnotes below the table.

5.2 Description of Test Tasgks

For the definition of the task required of the robot,
the user of OBSTAP has three options based on inverse
kinematics (type A), joint angles (type B) and a motor file
(type C). Twelve different task files were compiled to test
all three options. Using various combinations of tasks and
obstacles eighteen tests were carried out. The default growth
dimension of 50 mm was used for most of the tests. There was
one type A test, five type B tests and twelve type C tests.

Table 5.2 gives the following details on the task
files: the option type on which each file was based, the
number of primary moves in the original file and the time that
the robot takes to carry out all the moves in the file in the
absence of the colliding obstacles. This time is termed

execution time. It should be noted that executing a task file

is possible only if it is actually a motor file.

5.3 Test Results

These are detailed in Tables 5.3 - 5.5 and Figures
5.4 - 5.6. For each test Table 5.3 gives information on:
{a) the task file,
(b} the corresponding obstacles,
(c) the growth dimension used,
(d) the time taken for OBSTAP to plan a path using the
option in which the first level path is observed step by
step,

63

(e) the CPU time required for the completion of computations
for PATH1.MOT using the option for motor file
compilation,

(f) the CPU time required for the completion of computations
for both PATH1.MOT and PATH2.MOT using the option for
motor file compilation.

Table 5.4 gives information on:

(a) the time reguired to execute PATH1.MOT,

(b) the time required to execute PATH2.MOT,

(c) the number of secondary moves in PATH1.MOT for cases of
full compilation,

(d) the number of secondary moves in PATH2.MOT also for

cases of full compilation.

Five ratios have been defined in order to compare (a) the
second level path and the original task and (b) the second
level path and the first level. The values of these ratios
for each test are given in Table 5.5 and are discussed in
Section 5.4. Some comments are also indicated in the table

for the complex obstacle tests.

Figures 5.4 - 5.6 show animations for test number 8
(task file TEST12.MOT and obstacle file OB2.DAT). The
following are depicted:

(a) the original task file and the test obstacles

(Fig. 5.4),

(b} the planned first level path (Fig. 5.5),
(c) the planned second level path (Fig. 5.6).

Table 5.2: Data For Robot Task Files.

No. Original Option Type No. of Execution
Robot Task Primary | Time (sec)
File Moves

1 TASK1.DAT A 9 N/A

2 MOVE1l .DAT B 3 N/A

3 MOVEZ2 .DAT B 8 N/A

4 MOVE3 .DAT B 3 N/A

5 MOTION1 .MOT C 16 136.0

6 MOTIONZ2 .MOT C 7 28.1

7 MOTION3 .MOT C 12 55.4

8 MOTION4 .MOT cC 8 36.3

S TEST1.MOT C 3 15.6

10 TEST12 .MOT cC 8 56.2

11 TEST2 .MOT C 5 20.5

12 TEST3.MOT cC 6 26 .4
N/A = Not Applicable. Execution times can be determined

only for motor files.

65

Table 5.3: Test Results (1).
Ho.|| Task Obsta- Growth lst PATH1l | PATH
File cles Dim. Level | CPU 182
(Exten-) (mm}) Time Time CPU
(sion) (sec) (sec) | Time
(.DAT) (sec)
1} TASK1 OB13 50 112.1 11.9 38.8
.DAT
2] MOVEL OEST1 S0 43.1 3.7 15.3
.DAT
3 |t MOVE2 OB24 50 71.2 6.4 29.2
.DAT
4)| MOTION1 oB2 50 276.5 22.0 71.9
.MOT
S{| MOTIONZ2 OB25 50 100.2 14.8 40.8
.MOT
6 || MOTION3 OB4 50 154.3 22.4 67.0
.MOT
7|} TEST1 OBST1 50 28 .4 2.0 8.0
.MOT
8 || TEST12 OB2 50 88.3 6.8 18.5
.MOT
91l TEST2 OBST1 50 34.5 2.4 9.7
.MOT
10 | MOVES3 coBl 50 26.7 4.0
.DAT
11| MOVE3 COB126 40 25.3 [154.8
.DAT
12 || MOVEZ3 COB126 50 26.7 3.8
.DAT
13 TEST3 COBR1 40 110.9 17.8 71.5
.MOT
14 f TEST3 CCB1 50 36.9 6.5
.MOT
15 || TESTS3 COB345 50 10¢.3 16.0 44 .2
.MOT
16| MOTIONA coB2 50 5.0
.MOT
17 || MOTTION4 coB2z2 40 10€.3 14.1 43.8
. MOT
18 | MOTIONSG NCOB?2 50 15,1
.MOT

Table 5.3 gives information on:

(a)
(b)
(c)
(d)

(e)

(£)

the
the
the
the

task file,

corresponding obstacles,

growth dimension used,

time taken for OBSTAP to plan a path using the

option in which the first level path alone is observed,

the

time required for the completion of computations for

PATH1 .MOT using the option in which motor files are
compiled,

the time required for the completion of computations for
both PATH1 .MOT and PATH2 .MOT using the option in which
motor files are compiled.

66

Table 5.4: Test Results (2).

I —
Test PATHI1 PATHZ2 No. Of No. Of
Number | Execution| Execution| 82c, Sec.

Time Time Moves Moves
PATH] PATH?2
(sec) (sec)
1 91.7 73.1 68 21
2 37.4 30.7 18 9
3 58.6 51.7 30 19
4 226.4 191.4 99 44
5 82.7 58.5 61 19
6 123.4 80.7 88 19
7 27.1 22.¢ 16 9
8 74.8 65.2 33 15
9 32.1 26.0 18 6
10 22.8
11 78 27
12 22.9
13 80.9 56.0 79 20
14
15 74 .4 53.1 49 18
16 72.7
17 82.9 63.7 51 22
i8

Table 5.4 gives information on:
the time required to execute PATH1.MOT,

the time required to execute PATH2.MOT,

the number of secondary moves in PATH1.MOT for cases
of full compilation,
the number of secondary moves in PATH2 .MOT also for
cases of full compilation.

(a)
{b)
(c)

(d)

67

Table 5.5: Test Results (3).

Test | Ratio Ratio Ratio Ratio Ratio Comment
ﬂﬁb. Rq R R3 Ry Rg
1 N/A 2.33 0.80 0.31 2.26
2 N/A 3.00 0.82 0.50 3.14
3 N/A 2.38 0.88 0.63 3.56
4 1.41 2.75 0.85 0.44 2.27
5 2.08 2.71 0.71 0.31 1.76
6 1.46 1.58 0.65 0.22 1.99
7 1.45 3.00 0.83 0.56 3.00
8 1.16 1.88 0.87 0.45 1.72
9 1.27 1.20 0.81 0.33 3.04
10 N/A * * * * Cl
11 N/A 9.00 0.35 5.12 Cc2
12 N/A * * * * C3
13 2.12 3.33 0.62 0.25 3.02 C4
14 * * * * * CS
15 2.01 3.00 0.71 0.37 1.76
16 * * * * * C6
17 1.76 2.75 C.77 0.43 2.11
18 * * * * * C7
Mean 1.64 2.99 0.78 0.40 2.67
N/A = Not applicable as execution times can be found only for
motor files. * = value not computed; see relevant comment.

Table 5.5 gives information on:

(a) ratio R, of PATH2 .MOT execution time to the execution
time of the original type C robot task file,

(b) ratio R, of the number of secondary moves in PATH2.MOT
to the number of primary moves in the original robot task
file,

(c}) ratio R, of PATH2.MOT execution time to the execution
time of PATH1.MOT,

(d) ratio R, of the number of secondary moves in PATHZ.MOT to
the number of secondary moves PATH1.MOT,

(e) ratio R, of the CPU time required for second level
computations alcne to that for the first level computations

alone,
(f) any relevant comment which is detailed in Section 5.4.

2 68

S h\
8 A
i
: f
2« 7 N A
3 / l \\ ” /7\\ <>

w",HWmi;::i§ﬂ7’ ‘\\:>

(b) Perspective front view

#x Angle% = 0°; Angle @, = 75°

N Y'
1 ¢ - .
i 5 "?3]
"\ ;\ 53/ — P A 5/’})
S
. 6
f ’
‘ : 7
\’- : L ; P
\ - ./ K
M . .\\ ‘ /. .r .
N - =

{a) Perspective plan view

Angle %

Angle ?2

[
[¢)

Fig. 5.4: Test #8 Showing Original Motor File (TEST12.MUT)

and Two Unconnected Obstacles (OB2.DAT). 1, 2, 2

stand for the goal points of the primary moves.
A = Obstacle #1; B = Obstacle #2.

Z B N 0 s

3] LT 1 _: N T~y

|~ 7\/‘2 kA \H \
a

(b) Perspective front view XY
Anale g”l = o° and anale ?72 = 75°,

1 —— T

(oA 5&»
‘ . A 6!\

. | : 7T

e =

- " s o o
ST o~ | .“/ ’/./
] ezg RS

{a) Perspective plan view &__ 8

X
Anale ?1 =0

el 5 a0
and and angle ?2 0.

Fig. 5.5: Test #8 Showing the Planned First Level
Path Around Obstacles OB2.DAT.

|

2

= 4
3 /.i

L

"/

(b) Perspective front view

« ¥

Angle ?1 = Oo; Angle 50? = 75°

L

2 3
1 Y g ? .
3‘. 1‘1*”’1\ .
: [3
pE roR
A A
- \, L /<,
. \"4 2& ‘/’-.“
AN ~. e
g \r__/;_.’-/-' .
(a) Perspective T _, 2 Anale (fl = om
plan view ~— B8 I«nqle% - o

Fig. 5.6:

Path Around Okstacles OB2.DAT.

Test #8 Showing the Planned Second Level

70

71

5.4 Discussion

The results show that OBSTAP can cope excellently with
the case of unconnected obstacles (Tests 1 - 9). The program
copes fairly well with complex obstacles (Tests 10 - 18).
This is supported by the following points:

(a) Program Speed
Test number 6 is taken as an example to discuss the

speed at which OBSTAP runs. The test involves twelve
primary moves in the original motor file and collisions with
all four obstacles placed in the work cell. Despite this, the
CPU time is 22.4 sec. for the completion of computations for
the first level path and 67.0 sec. for the second.
Furthermore, there was no case of the robot keing trapped in
a local minimum between two or more obstacles.

The speed of program execution was not a crucial factor
in this investigation; otherwise a high 1level computer
language would have been used to code OBSTAP instead of QUICK
BASIC. The main goal was to develop a search algorithm to find
a path past an obstacle. The CPU times noted above would have
been smaller still if the program had been written in C or
Pascal. The time taken to complete the first 1level
computations is much smaller than the execution time of 55.4
seconds for the original motor £file (MOTION3.MOT). The
corresponding time for both the first and second levels is not
much greater than the execution time.

The above result may be compared with previous similar
work on the RM 101. Wong [65] investigated path planning for
the robot using a configuration space model written in QUICK
BAS1C. He considered only rotations at the body, shoulder and
elbow joints and treated the forearm and gripper as a single
straight link. He reportsad that for test runs on a 386/33MHz
computer, a path search involving two obstacles took

approximately one minute for one primary move. A search

involving five obstacles took about 8 minutes [65, p. 71].

(b) Agreement of Results for Menu Options 3 and 4

When observing the first level path directly {Option # 3
in the program menu), the time taken in planning a path around
obstacles 1is approximately equal to the sum of PATH1 CPU time
and the PATH1l execution time (Option # 4). This is according
to expectation since the first level time involves both

computation and movement of robot links in step-wise fashion.

(c) Ratios R, and R,

R, 1is the ratio of PATH2.MOT execution time to the
execution time of the original type C robot task file. The
ratio is defined only for tests in which the robot task is
initially described using a motor file. This is because types
A and B task files cannot be downloaded directly to the robot.
Ratio R, is a measure of the increase in the time required for
the completion of a task in the presence of obstacles as
against the case of an obstacle-free work cell. A very large
value of this ratio would mean much greater production (time)
costs for a robot being used in some manufacturing process,
even 1f path planning around some obstacle has been
successfully achieved.

It 1s reasonable to expect that, at best, R, will be
unity. This 1is because path planning arcund an obstacle
increases the number of knot points and the travel
distance/time of the gripper. From the resuilts table, the
mean M, for this ratio is 1.64.

R, is the ratio of the number of secondary moves in
PATH2 .MOT to the number of primary moves in the original task
file. It is defined for all the task file options. Since
path planning around an obstacle must not result in the loss
of any original knot point, its ideal wvalue is clearly unity.
The mean M, for R, 1is 2.99. This value takes 1into

consideration even test 11 for which B, = 9.00 (a wvalue

73

clearly much higher than for the other tests). The value of
ratio R, for test 11 1is extremely high because multiple
collisions occurred in the program for the complex obstacle
set involved. Neglecting test 11, M, = 2.49.

It can therefore be stated that by using OBSTAP for
path planning around obstacles, the number of secondary moves
in the planned path may be more than the number of primary
moves 1in the original task file by an approximate factor of
2.5. The actual value of this factor for a particular test
depends on the number of initial collisions, the number of
obstacles in the work space and the complexity of the

arrangenent of the obstacles.

(d) Ratios R,, R, and R,

R, is the ratio of PATH2.MOT execution time to the
execution time of PATH1.MOT while R, is the ratio of the
number o©of secondary moves in PATH2.MCT to the number of
secondary moves in PATH1.MOT. Both ratios R, and R, described
the gain in carrying cut path planning at the second level.
For a successful second level path, both values must be less
than unity. For the tests, the mean (M,) for ratio R, is 0.78.
Correspondingly for R, we have M, = 0.40. There is a
greater percentage reduction in the number of secondary moves
as compared with the percentage reduction in the execution
times.

Figures 5.5 and 5.6 may be compared to illustrate the
reduction in the number of knot points achieved by carrying
out second level path planning. It can be clearly observed
that the knot point marked K in the first figure was
eliminated in obtaining the second. From Table 5.4 it can
also be observed for test #B8 that the number of secondary
moves 1is reduced from 33 to 15 by carrying out the second
level path planning. However, the kinks at the points marked
L1 and L2 in Fig. 5.5 are not removed in Fig. 5.6. They

remained even after increasing the number of second level

74

iterations to 10 (Section 4.3). This may be because the paths
shown in the figures are only traces of the gripper. It is
possible that the kinks remain because of detected collision
with some other link during second level path planning. The
presence of the kinks even after more iterations may also
indicate that the method used for second level planning is not
exhaustive. Probably more combinations of knot points should
have been tried with the aim of eliminating some more.

R, is the ratio of the CPU time required for second level
computations alone to that required for the first level alone.
With a mean M, = 2.67, this ratio shows that more time is
spent completing the second level computations alone than is
required for the completion of the first level computations
alone. Again excluding the aberrant ratio value of 5.12 for
test 11, we then have M, = 2.47.

(e) The Use of 2 Growth Factor

The method of shrinking robot links and correspondingly
growing obstacles to have a simplified world model has been
proved possible for a revolute robot. The dimension by which
obstacles are grown may be changed from its default value of
50 mm by the program user. This default value was fixed based
cn the largest gripper opening. This dimension or some other
choice by the user is the single value by which all the links
are shrunk. It should be borne in mind that the cross-section
varies along the lengths of the links. Also for a revolute
manipulator, there is normally relative rotation between a
particular link and some object in the work cell during a
move. This means the use of a single parameter for the
shrinking of the 1links is a great simplification o¢f the
physical situation. Nevertheless, the results show that this
simplification did not prove detrimental.

It was discovered, particularly with unconnected
obstacles, that the variability of the growth dimension makes

it possible to find more than one planned path for a given

75

obstacle and primary move. Suppose the retraction of the
links past the obstacle has been achieved by using a
particular dimension. The use of another dimension may result
in the lifting of the links above the obstacle.

The choice of a smaller growth factor may suffice for
path planning if the collision is only a slight touch of an
obstacle, say by the gripper tip. The program user must not
make this factor too small. He has to keep in mind the motor
locations on the robot links to prevent collisions at these
points (Fig. 2.2). The location of motors 3, 4 and 5 made
modelling of the upper arm and the forearm as lines difficult.
The problem was whether or not the dimensions of the motors
should be included in the value by which the links were shrunk
(same as the growth parameter for the obstacles). It was
found that including them tended to make the grown obstacles
too big (i.e. inefficient use of robot work space) while
excluding them meant risking collisions between the motors and
obstacles. This may be area for further work. For instance,
lines which are perpendicular to the lines which represent the
links carrying the motors may be used to model the motors.

A larger growth factor may be used when there is only one
obstacle or perhaps two distant obstacles. That is, the
possibility of obstacles growing into one another or that of
a grown obstacle being too close to the robot body is remote.
However, increasing the factor cannot be done
indiscriminately. This is because doing so may result in
inefficient use of the available work volume and cause the
engulfment of either the start point or goal of a primary move
by a grown cbstacle. Then, although the program user
perceives that the robot should be able to reach these twc
knot points, OBSTAP would always return a collision message.

The need to carefully chose the dimension by which the
obstacles are grown therefore raises the following question:
Given a particular primary move and a particular obstacle, by
what dimension is it best to grow the obstacle? Program

76

OBSTAP does not answer this question. It is left to the user
to supply a reasonable growth dimension. However attempting
to answer this question may be worthwhile research. Thus a
further improvement to OBSTAP may be that the program be made
to automatically select the best growth dimension for a given
ocbstacle and robot move.

(£) Tests With Complex Obstacles

OBSTAP succeeded fairly well in planning paths around
the complex obstacles considered. This was despite the fact
that the robot was hemmed in by the obstacles which were also
placed close together.

Varying the growth dimension was found very useful for
this set of tests. For example tests 13 and 14 show that by
using a growth dimension of 40 mm, path planning could be
fully achieved for task file TEST3.MOT and obstacles COB1.DAT.
By using a value of 50 mm for the same run, the okbstacles had

grown so large tnat the robot crashed (violation of joint

limits) .
Table 5.3 gives the PATH1 CPU time for tests 16 and 18
as 5.0 sec. and 15.1 sec. respectively. These were the

times that elapsed until the end of the second primary move.
The same motor file (MOTION4.MOT) was used for both tests.

The same obstacles were also used. However, the order of
numbering of the obstacles NCCB2.DAT differed from that used
in COB2.DAT. The result shows that the ordering of the

obstacles in their file has an influence on the computation
times. This 1is especially true for connected obstacles
because the collision routine may need to check for collisions
with all the obstacles for a given robot geometry. For
disjointed obstacles, some obstacles may be skipped, thus
making the influence of the ordering less strong. This,
therefore, raises the following guestion: For a given primar/
move and set of obstacles, what is the best ordering of the

77

obstacles in their file? An in-depth lock at this may be
useful.

Two problems were encountered with the complex obstacles.
These were the stack space overflow in QUICK BASIC and the
need to plan a path around an undeteci.ed obstacle.

Stack space overflow may occur in a QUICK BASIC program
if the program has deeply nested or recursive procedures.
With the need to repeatedly check for collisions, OBSTAP
proves to be such a program. Further, multiple collisions
were detected with the connected obstacles. If the overflow
occurred for a given primary move and obstacle geometry, it
was found that by slightly altering the obstacle geometry (say
by using a different growth parameter in another run), the
problem might be averted. This is illustrated by the results
obtained in tests 11 and 12. For the task file MOVE3.DAT and
obstacles COB126.DAT, the use of a growth dimension of 40 mm
yielded more results than when 50 mm was used. In the latter
situation, overflow was encountered. This is another
advantage of the variability of the growth dimension.

OBSTAP was written based on the logic that the robot'’s
planned path will be around the obstacle which has been
detected. When obstacles are connected a situation may arise
in which a path has to be planned around an obstacle which was
not detected. Suppose a given configuration of the robot
causes collisions with more than one obstacle. The obstacle
around which a path is planned is that which is identified
first by the collision routine. This choice may not always be
the best and, in part, it explains the limited applicability
of OBSTAP to connected obstacles.

Comments
Some details are given 1in this paragraph on the
comments indicated in Table 5.5.

(C1) The data is only for the first primary move in the
original robot task file. Stack space overflow occurred

78

during the second.

(C2) Only CPU times are given; not the time for direct
observation of the first level and the motor file
execution times. The on-board controller of the RM 101
perceived a violation of the elbow joint upper limit even
though to the observer and by calculation such a
violation had not yet occurred.

{(C3) The data is for the first primary move; stack space

overflow occurred during the second.

(C4) This run was successful for an obstacle growth
dimension of 40 mm. When 50 mm was tried overflow
occurred.

(C5) The data is for the first three primary moves.

(C6) The data is for the first two primary moves and a
growth dimensicn cf 50 mm. Overflow occurred when 40
mm was tried.

(C7) The data is for a growth dimension of 50 mm and up to
the end of the second primary move. Stack space

overflow was encountered when 40 mm was tried.
5.5 Recommendation On Safety

It was observed while testing program OBSTAP that
occasionally a link would slightly touch an obstacle
followed by a recovery and path planning around the
obstacle. The occasional slight touch of an obstacle was
observed only for two cases: (i) while observing the first
level path directly and (ii) while down-loading the file
PATH1 .MOT. Such touches were not present for the second
level motor file.

Possible reasons for this are as follows:

(1) the RM 101 has positioning accuracy problems,
(11) the maximum step size of +1° was arbitrarily chosen;
it may not be the "best" to use and may need to be

reduced especially in the vicinity of an obstacle,

79

(iii) the permissible minimum distance of 16 mm between the

robot and an obstacle may be small.
Furthermore, a length of 85 mm was used for the gripper in
the program. This is the distance from the wrist to the
middle of the gripper pads (that is the location of the
gripper origin). Some touches occurred with the gripper tip.
This suggests that for path planning purposes it may be be
safer to transfer the gripper axes from where they are
normally located all the way to the gripper tip. A length of
200 mm would have been used if this had been done in coding
OBSTAP.

A link touching an obstacle should not be considered a
big problem. This is because it can be easily rectified by
using a larger growth dimension.

It was also observed that the joints could not exactly
reach their extreme positions based on the robot
specifications. In particular, the elbow joint could not
reach close to the published maximum value of 0° without the
robot crashing. It was the menu option 3, the direct
observation of the first level path, that suffered as a result
of this limitation. The crashing of the robot had to be
prevented. With option 4, the first level path could recover
somewhat frxom what might have caused a <c¢rash in the
corresponding option 3 run. The recovery in the second level
is more prouounced because of the large reduction in the
number of secondary moves associated with the second level
path planning.

It is therefore recommended that the observation of a
path planned by OBSTAP should be done in the following order:
(1) first viewing an animation of the planned first and

second level paths,
(ii) downloading PATH2 .MOT to the robot,
(iii) downloading PATH1.MOT to the robot,
(iv) finally, directly observing the first level path.
This order ensures the greatest safety for the robot.

80

5.6 Application of OBSTAP to Other Robots

The RM 101 for which OBSTAP was written is mainly for
instructional purposes. It is smaller than a typical
industrial robot which is commonly of the revolute type.

Nevertheless, the principles which have been employed
in coding OBSTAP may be applied to other revolute
manipulators. Changes will have to be made to the DH
parameters. In particular link lengths will have to be
i:icreased and joint angle limits will be altered in accordance
with the specification of the robot concerned. Codes for the
forward and inverse kinematics of the industrial robot will be
needed.

The RM 101 has five degrees of freedom (yaw articulation
excluded). In corntrast, considering a 6-R industrial robot,
the gripper will 1likely be capable of yaw articulation.
Therefore, a further modification to OBSTAP will be the use of
six joint angles (instead of five as for the RM 101) to
monitor robot configuration. Yaw occurs for the grippes
alone; since the gripper is already being modelled as a line
in OBSTAP, the application of the program to such a industrial
robot will not entail the addition of more line models.

If the world origin of an industrial robot is located at
the body joint and the axes are positioned as for the RM 101,
it is envisaged that the obstacle specification will require
no modification. However, there are some robots whose world
origins are located at some other points - for example at the
shoulder joint. In this case, a modification will also b«
required because some negative 2Z coordinates may be
permissible. As of now they are not allowed in OBSTAP.

The largest step size has been fixed to be +1° in the
program. The corresponding minimum distance permissible
between any part of the robot and cobstacle is 16 mm. A
smaller step size may have to be used for an industrial rcbot
and the minimum distance criterion correspondingly modified.

81

This 1is because, with the longer links of the industrial
robot, its gripper travel when the arm is fully stretched out
will be much larger than is found for the RM 101. It must
also be noted that for OBSTAP to be applicable, the control of
the industrial robot must be jecint-interpolated as for the RM

101.
5.7 Limitations of the Heuristic Search

The ccding of OBSTAP was based on IF ... THEN
statements. The goal of the program was to consider all the
different ways in which any part of the RM 101 can ccllide
with an obstacle and to prescribe a safe path for the robot.
The test results show that the goal was achieved -
particularly for unconnected obstacles for which OBSTAP was
written.

However, it must be conceded that there may be some
unforseen collision configuration for which the prescribed
path planning rules may fail. An important question therefore
is: Are the prescribed rules sufficient? The configuration
for which such a failure may occur can only be known with the
use of the program. The failure may be used to obtain a

better version of the program.

CHAPTER 6

CONCLUSION

From the work reported in this thesis, the following

can be drawn as a conclusion:

(1) It is possible to use a heuristic world space geometrical
apprcach, such as employed in OBSTAP, to plan paths for a
revolute manipulator which operates on joint-interpolated
control. With such a method, it is possible to prevent
ceo” .sions between any part of the robot and fixed obstacles
pi. -ed in any part of the robot work cell. This is subject to
the assumptions made in this thesis on the placement of

obstacles and collision types.

(2) The approach used in OBSTAP is fast. For the unconnected

obstacles tested, there was no case entrapment of the robot.

(3) The method of shrinking robot links by a single dimensiocon
and correspcndingly growing obstacles by the same amount has
been proved workable for revolute manipulators. This 1is
despite the fact that during a move of such robots there ig
usually relative rotation between the links and the objects in
the work cell. The dimension by which cobstacles are grown can
be wvaried by the program user. This wvariability isa
particularly useful in finding more than one path between

start and goal peoints. This is helpful in complex obstacle
settings.
(4) In guantitative terms, the following were found from

test results which lay within a reasonable range:
(i) Ratio R, which measured the 1increase in the time

required for the completion of a task in the presence

83

of obstacles as against the case of an obstacle-free
work cell had a mean of 1.64.
(ii) Ratio R, which compared the number of secondary moves
in the final motor file and the number of primary moves
in the original task file had a mean of 2.49.
(iii) Ratio R, of PATH2.MOT executicn time to the execution
time of PATH1.MOT had a mean of 0.78.
(iv) Ratio R, of the number of secondary moves in PATH2.MOT
to the number of secondary moves PATH1.MOT had a mean
of 0.40.
(v) Ratio R, had a mean of 2.47, thus showing that more
time was spent completing the second level computations
alone than was required for the completion of the first

level computations alone.

(5) When it was tested the program worked excellently for the
kind of obstacles for which it was written (fixed unattached
obstacles moderately cluttering the work cell). 1In all there
were nine such tests which were designed to test every
subroutine in OBSTAP. Thus it is expected that OBSTAP will be
able to handle other similar collision situations. When it
was tested the program wonrked only fairly well with connected
cbstacles. It therefore needs to be improved for complex
obstacle settings. When there is more than one obstacle in
the work cell, the order in which the obstacles are numbered
in their file has some inflv+~nce on computation times. Some
factors yet to be considered for complex obstacles are the
possibility of concurrent multiple collisions and the need to
plan a path around an undetected obstacle. Such consideration

may help OBSTAP handle complex obstacles more efficiently.

(6) Other problems encountered while testing the program
had to do with stack space overflow and robot positioning
accuracy. OBSTAP was coded in QUICK BASIC. It is expected
that the use of a higher level language will minimise the

81

overflow problem. It is also expected that the application ot
a modified version of the program to some other robot which is

more accurate than the RM 101 will yield better results.

REFERENCES

Harless M and Donath M, "Intelligent Safety System For
Unstructured Human/Robot Interaction", Conference Proc.
Robotics Int. of SME, Vol 2, 1985.

Sugimoto N, "Systematic Robot-Related Accidents And

Standardization of Safety Measures For Robots", Proc.
l4th Int. Symposium on Industrial Robots, IFS (Publ) Ltd,
Kempston, England, 1984, p 131 - 138.

Jones R and Dawson S, "People and Robots: Their Safety
and Reliability", Proc. 7th British Robot Association

Annual Conference, Cambridge, England, May 1984,
p 243 - 258.
Graham J. H, Meagher J.F and Derby S.J, "Safety and

Collision Avoidance System For Industrial Robots",
Conference Record - Industry Applications Society, IEEE
- IAS Annual Meeting, 1984, p 306 - 313.

Kuvin, B.F, "How to Safeguard Welding Robots"”, Welding

Design_& Fabrication, Vol 58, 1985, p 72 - 75.
Lozano-Perez T and Brooks R.A, "Task-Level Manipulator

Programming", Handbook of Industrial Robetics, John
Wiley & Sons, 1985, p 404 - 418.

Lozano-Perez T and Wesley M.A, "An Algorithm For
Planning Collision-Free Paths Among Polyhedral
Obstacles", Communications of the ACM, Vel 22, No 10,
1979, p 560 - 570.

Wesley, M.A et al., "A Geometric Modelling System for
Automated Mechanical Assembly", IBM Journal of Research
and Development, Vol 24, No 1, Jan. 1%$80, p 64 - 74.
Brooks R.A, "Symbolic Reasoning Among 3-D and 2-D
Images", Artificial Intelligence, Vol 17, 1981,

p 285 - 348.

11.

12.

13.

14.

15.

16.

18.

19.

86

Markowsky G and Wesley M.A, "Fleshing Out Wire Frames",
IBM Journal of Research and Develgpment,

Vol 24, No 5, 1980.

Lozano-Perez T, "Automatic Planning of Manipulator
Transfer Movements", JEEE Transactions on Systems,
Man and Cybernetics, SMC 11, No 10, 1981, p 681 - 689.
Ge Q.J and McCarthy J.M, "aAn Algebraic Formulation of
Configuration-Space Obstacles for Spatial Robots",
IEEE Int. Conf.on Robotics and Automation, 1990,

p 1542 - 1547.

Brost R.C, "Computing Metric and Topological Properties
of Configuration-Space Obstacles", IEEE Int. Conf. on
Robotics _and Automation, 1989, p 170 - 176.

Warren C.W, Danos J.C and Mooring B.W, "Approach to
Manipulator Path Planning", Int. Journal of Robotics
Research, Vol 8, No 5, 1989, p 87 - 95.

Branicky M.S and Newman W.S, "Rapid Computation of
Configuration Space Obstacles", IEEE int. Conf. On
Robotics and Automation, 1990, p 304 - 310.
Lozano-Perez T, "Spatial Planning: A Configuration
Space Approach", IEEE Transactions on Computers, C32,
No. 2, 1983,

Deisenroth M.P, "Robot Teaching", Handbook of
Industrial Robotics, John Wiley & Sons, 1985,

p 352 - 365.

Lozano-Perez T, "Robot Programming", Proc. of

the IEEE, July 1983,

Gruver W.A, Soroka B.I, Craig J.J and Turner T.L,
"Evaluation of Commercially Available Robot Programming

Languages", 13th Int. Symposium on Industrial Robots
and_Robots 7, Chicago, April 1983, 12-58 - 12-68.

Yong Y.F, Gleave J.A, Green J.L and Bonney M.(C,
"Off-Line Programming of Robots", Handbook of
Industrial Robotics, John Wiley & Sons, 1985,

p 366 - 380.

21.

22.

23.

24.

25.

26.

28.

29.

30.

87

Shahinpoor M, A Robot Engineering Textbook, Harper &
Row, 1987

Lieberman L.I and Wesley M.A, "AUTOPASS: An Automatic
Programming System For Computer Controlled Mechanical

Assembl,". IBM Journal of Research and Development, Vol
21, No 4, 1977, p 321 - 333.

Lozano YPerez T, "The Design of a Mechanical Assembly
System", M.I.T Al Laboratory, AI TR 397, 1976
Popplestone R.J, Amber A.P and Bellos I, "An
Interpreter For a Language For Describing Assemblies",
Artificial Intelligence, Vol 14, Nco 1, 1980,

p 79 - 107.
Borenstein J and Koren Y, "High-Speed Obstacle
Avoidance for Mobile Robots", Third Int. Symposium on

Intelligent Control, IEEE Systems, Man and Cybernetics
Society, 1988, p 382 - 384.

Cook K.F and Cipra R.J, "Obstacle Detection and
Avoidance Algorithm for a Planar Manipulator", Proc.
15th Design Automation Conference, ASME Design

Engineering Division, 1989, p 353 - 360.

Warren C.W, "Techniques for Autonomous Underwater
Vehicle Route Planning", IEEE Journal of Oceanic
Engineering, Vol 15 No.3, 1990, p 199 - 204.

Khatib ¢, Commande dynamique dan’s 1l’espace _operationnel

des robots manipulateurs en presence

d’obstacles, Doctor Ingenieur Thesis, L’Ecole Nationale

Superieure de 1l’Aeronatique et de 1'Espace, Toulouse,
France, 1980.

Warren C.W, "Global Path Planning Using Artificial
Potential Fields", Proc. IEEE Int. Conference on Robotics
and_Automation, Vol 1, 1989, p 316 - 321.

Elnagar A and Basu A, "Heuristics for Local Path

Planning", Proc. IEEE Int. Conference on Robotics and
Automation, Vol 3, May 1992, p 2481 - 2486.

31.

32.

33.

34.

35.

36.

38.

39.

88

Udupa S.M, Collision Detection and Avoidance in
Computer Controlled Manipulators, PhD Thesis, Dept. of
Electrical Engineering, Califernia Inst. of Tech.,
1977.

Brooks R.A, "Solving the Find-Path Problem Dby

Representing Free Space as Generalized Cones",
M.I.T AT Laboratory, AI Memo 674, 1982.

Mehrotra R and Krause D.M, "Obstacle-Free Path
Planning for Mcbile Robots", 3rd Int. Conf.on Image
Processing and Its Applications, IEE Conf. Publication,
no 307, 1989,p 431 - 435.

Faverjon B, "Obstacle Avoidance Using An Octree in the
Configuration Space of a Manipulator", IEEE _Int.
Conf .on Robotics, 1984, p 504 - 512.

Noborio H, Fukuda S and Arimoto S, "Fast Algorithm for
Building the Octree for a Three-Dimensional Object From

its Multiple Images", Proc. 9th Int. Conf. on Pattern
Recognition, IEEE, 1988, p 860 - 862.

Kampmann P and Schmidt G, "Topologically Structured
Geometric Knowledge Base and Global Trajectory Planning
for The Autoncmcus Mcbile Robot MACROBE", Roboter
Systeme, Vol 5, No 3, 1989, p 149 - 160.

Shin Y.S and Bien Z, "Novel Method of Collision-Free
Trajectory Planning for Two Robot Arms", Proc. IEEE

Int. Conference on Systems, Man and Cybernetics,

Vol 2, 1988, p 791 - 794.

Chei Y.J, Crane C.D, Matthew G.K and Duffy J, "Geometry
of Interference With Application to Obstacle

Avoidarnce", Proc. 2ist Biennial Mechanism_ Conference,

ASME Design Engineering Division, Vel 24, 1990,

p 327 - 336.

Takahashi O and Schilling R.J, "Motion Planning in a
Plane Using Generalized Voronoi Diagrams", IEEE Trans. on

Robotics and Automation, Vol 5 No 2, 1989,
p 143 - 150.

40.

41.

42.

44 .

46.

47 .

48.

49.

89

Evans J, Krishnamurthy B, Pong W, Croston R, Weiman C
and Engelberger G, "Helpmate - A Robotic Materials
Transport System", Robotics, Vol 5 No.3, 1989,

p 251 - 256.

Soldo M.H, "Fusion Without Representation", Proc. of
SPIE: Int. Society for Optical Engineering, Vol 1198,
1989, p 513 - 519.

Ganesh C, Dietz G and Jambor J, "Ultrascnic Sensor-

Bacs »d Motion Control for Robotic Manipulators", Proc.
IEEE Int. Conference on Systems, Man and
Cybernetics, Vol 2, 1983, p 796 - 797.

Wegerif D.G and Rosinski D.J, "Sensor-based Whole-arm

Obstacle Avoidance for Kinematically Redundant Robots”,
Proc. International Society for Optical Engineering, Vol
1828, 1993, p 417 - 426.

Shiller Z and Dubowsky S, "Robot Path Planning With
Obstacles, Actuator, Gripper and bPayload
Constraints", Int. Journal of Robotics Research, Vol 8,

1989, p 3 - 18.
Chien Y.P, "An Algorithmic Approach to the Trajectory
Planning for Multiple Robots", Proc. 22nd Southeastern

Svmposium on System Theory, 1290, p 303 - 307.

De Luca A, Lanari L, Oriola G and Nicolo F,

"Sensitivit Approach to Optimal Spline Robot
Y

Trajectories", Proc. of the 2nd IFAC Symposium, Series
#10, Pergamon Press, 1989, p 505 - 510.
Cao Y, Collision-Free Motion Planning and

Application to the PUMA 560 Manipulator, M.Sc Thesis,

University of Alberta, 1990.
Carrioli L and Diani M, "New Algorithm for the Shortest

Path Search", BAlta - Freguenza, Vol 58, IAN - CNR,
Italy, 1989, p 287 - 291.

Xue Q and Sheu P, "Path Planning for Two Cooperating
Robot Manipulators", Proc. IEEE Int. Workshop on Tocls

for Artificial Intelligence, Oct. 1889, p 649 - 657.

50.

51.

52.

56.

57.

58.

g0

Mayorga R.V, Wong A.K.C and Ma K.S, "Efficient Local
Approach for the Path Generation of Robot

Manipulators", Journal of Robotic Systems, Vol 7, No 1,
1990, p 22 - 55.

Chou L and Song S, "Geometric Work of Manipulators and
Path Planning Based on Minimum Energy Consumption",
Proc. 21st_ Biennial Mechanisim Conference, ASME Design

Engineering Division, Vol 24, 1990, p 315 - 326.

Sandgren E and Venkataraman S, "Rcbot Path Planning and
Obstacle Avoidance - A Design Optimization Approach',
Proc. 15th Design Automation Conference, ASMT Design

Engineering Division, Vol 2, 1989, p 169 - 175.

Kant K and 2Zucker S$.W, "Toward Efficient Trajectory
Planning: The Path-Velocity Decomposition", Int.
Journal of Robotics Research, Vol 5 No. 3, 1886,

p 72 - 88.

Wu C and Jou C, "Study on the Movement Capability of
Rcbot Manipulators", Proc. 28th IEEE Conference on
Decision and Control / Symposium on Adaptive Procesgseq,

Vol 3, 1989, p 2500 - 2505.

Gourdeau R and Schwartz H.M, "Optimal Control of a
Robot Manipualator Using a Weighted Time-Energy Cost
Function", Proc. IEEE _Conferenge on Decisicn and

Control / Symposium on 2ddaptive Processes, Vol 2, 1989,
p 1628 - 1631.

Han J and Shi Z, "Robot Planning by Analogy", ZPRroc.
1988 IEEE Int. Conference on Systems, Man and

Cybernetics, Vol 2, p 781 - 782.
Dupont ¥¢.E and Derby S, "Simple Heuristic Path Planier

for Redundant Robots", Proc., 20th Biennial Mechanism
Conference, ASME Design Engineering Div., 1388,

p 429 - 440.
Ghosh A and Patrikar A.M, "Optimum Path Planning Using

the Method of Local Variations", SME_Technical Paper,

MS1989, p 280 ff.

59.

60.

61.

62.

€3.

64 .

65.

91

Muthuswamy $ and Manocochehri S, "Optical Dynamic Path
Planning for Robot Manipulators", Proc. 20th Biennial

Mechanisms Conference, ASME Design Engineering Div.,
1988, p 517 - 524.
Martin D.P, Baillieul J and Hollerbach J.M, "Rescolution

of Kinematic Redundancy Using Optimization Techrniques"”,
IEEE Transactions on Roboticg and Automation, Vol 5,
1989, p 529 - 533.

Paul R.P, Robot Manipulators: Mathematics, Programming
and Contol, MIT Press, 1981.

Instruction Manual Tor the RM 101 Micro-Robot,

Mitsubishi Electric Corporation.

Toogood R.W, "A Work Cell Animator for Robkotics
Instruction", Computers In Engineering, ASME, Vol 2,
1991, p 361 ff.

Parkin R.E, Applied Robotic Analysis, Prentice-Hall,

1591.
Wong C, Robot Path Planning and Obstacle Avoidance in

Configuration Space, M.Eng Thesis, University of

Alberta, 1983.

APPENDIX: OBSTAP USER’S MANUAL

Some details which could not be included in the second
chapter of the thesis are now given. For the sake of

completeness some ideas which were stated in that chapter are

repeated here.
Al. Uses of OBSTAP

The program OBSTAP has about 8,100 lines of code. It
requires some 283 kbytes of memory and is run in the QUICK
BASIC environment. Thus when OBSTAP is to be run on small RAM
machines few obstacles and robot moves should be considered so
as to prevent memory problems.

OBSTAP can be used for several purposes. It can be run
to enter data which describes either the moves to be made by
the robot or the obstacles in the work cell. Any data entered
for the first time is saved so that it need not be entered
from the the keyboard for subsequent runs. OBSTAP can also be
run in order to carry out obstacle detection with or without
path planning arcund the detected obstacle. The user also has
the option of compiling the obstacle data being entered for
the first time for animation purposes.

In order to input robot task data alone, the user has ©
enter 1 when prompted by the menu screen. To input obstacle
data alone, 2 has to be entered. wtering 3 causes OBSTAP to
detect obstacles without path r-=nning while by entering 4
both obstacle detection and path planning can be done.
Thercvafter the user should simply follow instructions printed

to the screen for the choice he has made.

A2. Description of Robot Task

In specifying a task for the RM 101, it is assumed
that the robeot is initiaily in its standard home position
[62] . A number of distinct moves constitute a task. OBSTAP

33

has been coded to handle up to 20 moves for a given task.
However, because of possible computer wemory limitations, it
is recommended that a task should consist of only a few moves
at a time. The last move for a given task should end at the
home position.
There are three ways in which the user can describe a
move. These are as follows:
(A) To enter the x, y, 2z coordinates and the orientation
of the gripper at the goal knot pocint of all the moves
except the final move.
(B) To encer the joint angles at the end of all the moves
except the final move.
(C) Including the move in a motor file of incremental moves
which is compiled as specified in the robot manual.

It can be seen that choice A is based on the inverse

kinematic approach. Choice B 1is based on forward
Kinematics. Choice C is also based on forward kinematics,
this time using step changes in joint angles. When carrying

out obstacle detection (with or without path planning)
data using options A or B may be entered from the keyboard or
read from files. Data entered from the keyboad is saved in the
file TASK.DAT in the default drive if the data is based on
option A. The data is saved in the file MOVE.DAT if it is
based on option B. In the case of option C, the data must be
contained in a motor file; it cannot be entered from the
keyboard.

It is only with choice C that the opening or closing of
the gripper can be specified. It should be noted, however,
that the mere opening and closing of the gripper is not
recognized by OBSTAP as constituting a move; neither is a
mere rcll of the gripper recognized. A legal move which
necessitates the investigation of obtacle detection must
include motion at one or more of the following joints: body,
shoulder, elbow and wrist-pitch.

It is recommended that the program user should not make

94

any knot point too close to the work top. This is to avoid
the possibility of the work top itself becoming an obstacle
especially for the first level path. All the knot points
should be located at least 40 mm abkove the table.

A3. Description of Obstacles

In OBSTAP, an obstacle is modelled in a simplified form
as a cuboid. In practice, a real obstacle may have a
different shape. 1In this case, the program user will have to
consider a suitable cuboid which envelops the real obstacile.
In order to maximise the use of the robot work space, the
volume of the cuboid should be as small as possible.

It is assumed that the work space 1is moderately
cluttered, that 1is there are at most only a few fixed
obstacles present. The maximum number of obstacles allowed
has been set at four although, while testing OBSTAP, up
to six were tried at a stage. It is also assumed that they
are scattered in the work cell and not bunched up in one spot
or connected to one another. No part of an obstacle may
project below the table top. An obstacle should also be
entirely contained in one quadrant. If an object lies in two
quadrants, for the purpose of modelling, it should be
considered as two cobstacles.

The coordinates of three vertices and the height of an
obstacle are required to describe the obstacle. The
coordinates are taken with respect to the world origin. The
plane which contains the vertices is the lower horizontal
face of the cuboid. Considering the projection of this face
onto the X - Y plane [Fig. Al], vertex 1 is the closest to
the origin. Lines 1-2 and 1-3 represent adjacent edges. The
obstacle data that is entered from the keyboard is saved in
the file OB.DAT in the default drive.

g5

Fig. Al: Obstacle Description in OBSTAP.

86

There are two options for specifying the orientation of
an obstacle relative to the world axes. For a given run
involving a set of two or more obstacles, it is not allowed
that the data of one obstacle is based on option 1 while
that for some other olstacle is based on option 2. Data
for all the obstacles in the set must be based on the same
option. The two options are:

(1) Having the edge 1-2 parallel to the X axis and the edge
1-3 parallel to the Y axis.

(2) A more general case in which the edge 1-2 is at some
acute angle to the X axis; correspondingly, the edge 1-3
is at the same acute angle to the Y axis.

In order to have a simplified model, each link of the
robot is shrunk to a line when carrying out either obstacle
detection alone or path planning around a detected obstacle.
Correspondingly, the obstacles in the work cell have to be
grown. The default dimension by which obstacles are grown is
50 mm. However, at a prompt, the user may vary this
dimension. It is important to ensure that the desired goal
for the robot at the end of a move is not engulfed by or too
close to the grown obstacle for the chosen growth dimension.

For a move in which the collision is a slight touch of an
obstacle by one of the links, a growth dimension smaller than
50 mm may be tried. For direct impacts the growth dimension

may be suitably increased.
A4. Obstacle Detection Only

The user may investigate whether or not a particular
move will cause a collision. In this case, OBSTAP does not
plan a path around any detected obstacle. The names of the
robot task file and the obstacle data have to be supplied.
Alternatively, task and obstacle data could ke entered from
the keyboard. A suitable obstacle growth dimension must

also be supplied.

The user has the options of either checking for just
one particular move of interest among a set of moves in the
task file or checking for all the moves in the fije.
Detailed collision information is normally printed on the
screen. If the user also wants, he may stipulate that hard
copies of the information be printed. Any move for which
such information 1is not supplied should be taken as
collision-free.

The information is printed only for the first possible

collision of a move. It includes the following:
(1) the particular move,
(11) the obstacle involved,

(iii) the link involved [upper arm, forearm or gripper],
(iv) the side of the obstacle {[top, bottom or a
vertical side],
(v) all five joint angles at collision,
(vi) the position of the gripper origin relative to the
world origin,
(vii) the world coordinates of the collision point.
The collision data is wvalid only for the chosen growth
dimension. It 1is possible that some other close robot

configuration may also cause a collision.

AS5. Obstacle Detection With Path Planning

Obstacle detection followed by path planning around a
detected obstacle can also be done using OBSTAP. As in
Section A4 above, the names of the robcoct task file and the
obstacle data file must be supplied or task and obstacle
data must be entered from the keyboard. An obstacle growth
dimension must also be supplied.

The user may choose to observe the planned path step by
step ; it is determined by the program. In this case, the
robot must be connected to the computer. Only the first

level path can be observed.

98

Alternatively, the program user may stipulate that
planned incremental moves be written to motor files which
can be downloaded to the robot at a later stage. For this
option, OBSTAP compiles the file PATH1.MOT for the first
level path and the file PATH2.MOT for the second level path.

The first level path has many more knot points when
compared with the second level path. The first path may
show link fluctuation as program OBSTAP tries to find a path
for the robot around a detected obstacle. The second level
path achieves smoother motion from the start point of a move
to the goal by the elimination of some intermediate knot
points.

Information is printed to the screen that OBSTAP has
found a path for a particular move when computations for
that move are completed. The total times required to
complete computations for (i) the first level path and (ii)
both the first and second 1level paths are also printed.
Only the first level time is printed if the user previously
chose to observe the planned path step by step. It should be
noted that the robot reaction time is included in this
value. Both times (i) and (ii) above are printed if the
user previously chose the compilation of motor files. Robot

reaction time is not included in this case.
A6. Robot Safety and Path Animation

When the data describing an obstacle is being entered
from the keyboard, the program user may specify that
animation data should be compiled. No animation routine is
contained in OBSTAP itself. However, it can compile work
cell data that can be used in the program ANIM written by
Toogood [63]. The compiled data is stored in the file
WKCELL.DAT.

Animaticn of the planned path should be done when the
user plans to compile motor files PATH1 .MOT and PATH2.MOT.

99

It has the advantage that prior to downloading these files to

the robot, the planned paths can be viewed on a monitor. It

is recommended that the observation of a path planned by
OBSTAP should be done in the followinc order:
(1) first viewing an animation of the planned first and

second level paths,
(ii) downloading PATH2.MOT to the robot,
(iii) downloading PATH1.MOT to the robot,
(iv) finally, directly observing the first level path.
This order ensures the greatest safety for the robot.

