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Abstract

D N A  d o u b le -s tran d  b reak -rep a ir (DSBR) is accom plished  b y  hom olo g o u s 

recom bination  in  m a n y  organism s. In  Escherichia coli, except u n d e r  specia l 

c ircum stances, DSBR w as th o u g h t to re su lt from  b reakage  a n d  re u n io n  of 

p a re n ta l DN A  m olecu les, assisted  by  k n o w n  H o llid ay  junction  p ro cess in g  

p ro te in s  RuvABC a n d  RecG. In  C hapter 2 o f th is thesis, I p rov ide  physica l 

ev id en ce  for a m a jo r a lte rn a tiv e  m echan ism  in  w h ich  rep lica tio n  cop ies 

in fo rm a tio n  fro m  o n e  chrom osom e to a n o th e r  g e n e ra tin g  re c o m b in a n t 

m olecules in vivo. T h is a lternative  m echan ism  can  occur in d ep en d en tly  of 

H o llid a y  junc tion  p ro cess in g  pro teins, req u ire s  D N A  po lym erase  EH, a n d  

p roduces recom bined  D N A  m olecules th a t carry  new ly  replicated  D N A . The 

replicational m echanism  underlies about half the  recom bination of linear D N A  in 

£. coli; the o ther ha lf occurs by  breakage and  reun ion , w hich  is show n to requ ire  

resolvases, and  is replication-independent.

In C hapter 3 o f this thesis, I dissect the role(s) of each of the HJ processing  

p ro te in s  in the con tex t of the  two DSBR pa th w ay s in  £. coli. I find  physical 

evidence that the  R uvA , RuvB, and RuvC proteins all are required  for break-join 

DSBR. In recG cells, break-join recom bination is red u ced  significantly, ind icating  

th a t the  Ruv A B C -dependent break-join m echanism  requires RecG for its optim al 

efficiency. This p rov ides the first direct physical evidence tha t RuvABC an d  RecG 

w o rk  to g e th e r, c a ta ly z in g  b reak -jo in  re c o m b in a tio n  reac tio n s  in vivo. 

In te re s tin g ly , e v e n  th o u g h  there  is a s ig n ifican t decrease  in  b reak -jo in  

recom bina tion  in  recG  cells, the  overall reco m b in a tio n  frequency  rem a in s  

unaffected. This resu lts  from  a  Ruv A B C -dependent replicative m echanism  that 

re s to re s  the reco m b in a tio n  frequency to w ild -ty p e  levels in these  cells. In  

su p p o rt of this, I find  th a t the  absence of any H J processing proteins, lead ing  to 

th e  accum ula tion  o f  u n p ro cessed  reco m b in a tio n  in te rm ed ia tes , p ro m o te s
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replication dram atically . Based on  these results, a m odel is p roposed  in  which 

tw o d istinct DNA in term ediates occur during  DSBR in vivo. O ne is processed 

exclusively by  RuvABC, som etim es acting in  concert w ith  RecG, w hereas the 

o ther is processed  via D N A  synthesis, independen tly  o f a n y  HJ processing 

proteins.
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Chapter 1 

General introduction
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2

H om ologous recom bination  is a process in  w hich  tw o sim ilar DN A m olecules 

exchange pieces. O n ly  D N A  m olecules th a t share  g rea ter th an  80 p e rc en t 

sequence identity  (the criteria for considering m olecules hom ologous w ith  each 

o ther) can  u n d e rg o  hom ologous recom bina tion . N on-hom ologous D N A  

m olecules are  p rev en ted  from  general recom bination  b y  m echanism s th a t a re  

n o t yet fu lly  u nders tood . The exchange can take  place anyw here a long  th e  

leng th  of th e  tw o m olecules and  is thus considered  general. This process is 

precise, such tha t norm ally  no associated dele tion  or add ition  of nucleotides is 

detected  a t the  b o rd ers  of the exchange, p rev en tin g  the  loss of any  genetic  

inform ation (For general reviews,22rg and  M otam edi 1999).

Roles of recombination

Recom bination is essential for m any biological functions in cells an d  is 

hence conserved in  evolution: m any of the recom bination enzym es identified  in  

p rokaryotes have d irec t hom ologues in  h igher eukaryo tes, including  h u m an s 

(K anaar an d  H oeijm akers 1998; Thacker 1999a; T hacker 1999b). O ne of the  

im portan t functions o f recom bination is to  rep a ir  D N A  double-strand  b reaks 

(DSBs) in  cells. DSBs are  com m on DNA lesions th a t arise by  a variety of routes 

in  all living cells (e.g. Skalka 1974; Michel e t al. 1997; M ichel 2000). These lesions 

are also the starting  (or an  interm ediate) substra te  for m any  of the hom ologous 

recom bination reactions tha t occur in cells (Stahl 1986; Keeney et al. 1997; Paques 

a n d  H aber 1999; R osenberg  an d  M otam edi 1999; K ow alczykow ski 2000). 

Because DSBs in terfere w ith  im portant cellular functions (such as replication), 

different m echanism s have evolved for their repair. The m ost accurate m ethod  

for repairing  DSBs is b y  hom ologous recom bination. Recom bination is u sed  to 

sw ap  DNA pieces precisely, such that DSBs are rep a ired  w ithout the loss of any
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3

genetic  in fo rm a tio n  o r a cco m p an y in g  ch ro m o so m al tran s lo c a tio n s . This 

contrasts w ith  an o th er m ethod  for rep a ir in g  DSBs, sim ple liga tion  o f available 

DNA ends, a lso  k n o w n  as non-hom ologous end-jo ining, w hich  o ften  resu lts  in 

significant loss of genetic m aterial an d  gross chrom osom al changes (Tsukam oto 

and  Ikeda 1998; H aber 1999). The rep a ir of DSBs via recom bination, a lso  know n 

as d o u b le -s tra n d  b reak -rep a ir (DSBR), is u se d  b y  m any  o rg an ism s a n d  is 

req u ire d  fo r n o rm a l fu n c tio n in g  o f  cells (K uzm inov  1995; K a n a a r  a n d  

Hoeijm akers 1998; Paques and H aber 1999; Kow alczykow ski 2000).

R ecom bination also operates to p reserve  genom ic stability (e.g. Ellis e t al. 

1995), create n e w  linked  com binations o f alleles, re s ta rt co llapsed  rep lica tion  

forks (rev iew ed in  M ichel 2000), p ro m o te  som e m uta tions in  bacteria  a n d  yeast 

(review ed in  R osenberg  e t al. 1998), ca rry  o u t m ating-type  sw itch ing  in  yeast 

(H aber 1998), a n d  ensu re  p roper seg rega tion  of chrom osom es d u r in g  m eiosis 

(e.g. in  D rosophila  Bopp e t al. 1999; fission  yeast K raw chuk e t al. 1999; a n d  C. 

elegans Zetka e t al. 1999). Thus, its function ing  is essential for m an y  biological 

activities. Excessive recom bination th rea ten s  the in teg rity  of th e  genom e, and  

has been show n  to correlate w ith  p rem a tu re  ag ing  an d  cancer (e.g. Ellis e t al. 

1995; Yu e t al. 1996). The absence of recom bination  decreases cell v iab ility  and  

resistance to D N A  dam aging  agents (such as UV light) and  prevents sy napse  of 

hom ologous chrom osom es in m eiosis th u s  im p ed in g  their p roper segregation . 

Thus a balance b e tw een  factors tha t p rom o te  an d  inh ib it recom bination is critical 

fo r its p ro p er b io log ical functioning  in  cells. M oreover, recom bina tion  fuels 

evolution by  creating  n ew  com binations o f linked  alleles in  the offspring. This is 

a  m ajor source of genetic  variab ility  a n d  g ives o rgan ism s the  p o te n tia l to 

respond  and  a d a p t to their changing environm ent.
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Early m odels for recom bination

T he  q u e s t to  u n d e rs ta n d  th e  m o lecu la r m e c h a n ism s  o f  h o m o lo g o u s 

recom bination has a lo n g  h isto ry  in  science. In fact, recom bina tion  is one of the 

o ld es t subjects in  genetics, its  d iscovery  da ting  b ack  to  1909 (rev iew ed  in  

K uzm inov a n d  S tahl 1999): it  w as in itially  d iscovered  cy to log ically , as the 

exchange of chrom osom e arm s d u rin g  m eiosis. The f irs t genera l m odel for 

hom ologous reco m b in a tio n  em erg ed  follow ing th is  o b se rv a tio n , a n d  later 

becam e k now n  as the  break-jo in  m odel for genetic exchange. Since th a t time, 

tw o  other general m odels for recom bination have been  p ro p o se d  (see F igure 1-1 

a n d  review ed below).

A ccording to th e  break-join  recom bination m odel, exchange betw een  two 

hom ologous chrom osom es occurs w hen  the chrom osom es a re  cu t a t the  same 

site, and the resu lting  pieces are  shuffled  and  ligated, fo rm ing  a h y b rid  molecule 

carry ing  genetic in fo rm atio n  from  bo th  paren tal ch rom osom es (see Figure 1-

1A). A testab le  p red ic tio n  of th is  m odel is th a t th e  p ro d u c t  of th is  type  of 

reco m b in a tio n  sh o u ld  co n ta in  genetic  m ateria l o n ly  f ro m  th e  p a re n ta l 

chrom osom es, w ith  no  req u irem en t for new  DNA synthesis. This is in  contrast 

to  the  type  of recom bina tion  p ro d u c ts  p red ic ted  to  fo rm  b y  th e  o th e r two 

m odels for recom bination  (see below ), w hich invoke chrom osom e duplication  as 

a  necessary step  in genetic exchange.

The second genera l m odel for hom ologous recom bina tion , copy-choice, 

w as proposed by  Belling in  the  1930's (referenced in  K uzm inov  and  Stahl 1999). 

A cco rd ing  to  th is  m o d e l, D N A  rep lica tio n  is u se d  to  reco m b in e  DNA: 

rec o m b in a tio n  o ccu rs  w h e n  th e  rep lica tio n  fo rk s o f  tw o  h o m o lo g o u s 

chrom osom es sw itch  tem pla tes , copying  inform ation fro m  th e  o ther m olecule 

(Figure 1-1C). This m odel p red ic ts th a t recom binant ch rom osom es are  a  hybrid 

of the  two paren tal m olecules, b u t are m ade entirely from  n ew ly  rep licated  DNA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

m aterial. E ven th o u g h  th is  m odel is no longer p u rsu e d , i t  m ad e  a  critical 

contribution to  the  s tu d y  of recom bination (and D N A  replication) b y  connecting 

the processes of rep lication  a n d  recom bination for the  first time.

The b reak -copy  m o d e l for hom ologous recom bina tion  em erg ed  as a 

hybrid  of the tw o afo rem entioned  schemes: a  b reak  in  a  chrom osom e in itiates 

D N A  replication, copy ing  inform ation  from  the hom ologous p a rtn e r (Figure 1-

1B). This im plies th a t recom bination  interm ediates m ay  serve as in itiating signals 

for DNA replication a n d  th a t by  replicating to the  end  of the chrom osom e the 

recom bination even t is com pleted, (i. e. replication com pletes the recom bination 

event.) This w ay , the  reco m b in an t m olecule is a  h y b rid  of o ld  a n d  n ew  

chrom osom al m aterial linked  together a t the site w here  chrom osom e replication 

is initiated (Figure 1-1B).

Overall, the early  m odels of recom bination differ in  the use an d  ex ten t of 

D N A  replication in  form ing  th e  recom binant m olecule: the copy-choice m odel 

proposes th a t chrom osom e replication  recom bines D N A ; the break-copy m odel 

assum es that recom bination  in term ediates initiate replication; and  in  the  break- 

join m odel, chrom osom e replication  is completely ignored  and recom bination is 

though t to occur by  the  cu tting  and  ligation of chrom osom e pieces exclusively. 

Because the three m odels for recom bination m ake specific predictions abou t the 

type  of recom bination p ro d u c ts  form ed by each hypo thesized  m echanism , the 

exam ination of recom bination  p roducts for new  D N A  synthesis could be u sed  to 

d istingu ish  am ong  the  th ree  m odels. Furtherm ore , these pa thw ays m u s t be  

genetically  d istin g u ish ab le ; fo r exam ple, enzym es th a t are u sed  for D N A  

replication are likely to be  requ ired  for break-copy recom bination, w hereas they  

are  predicted  to p lay  no  ro le  in  break-join recom bination. In chap ter 2 of this 

thesis, I tested  these  m odels fo r recom bination in  th e  bacterium  E. coli u sing
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techn iques to iso late  recom binant D N A  from  cells an d  exam in ing  th e m  f o r  

new ly replicated and  old, parental DNA.

T est of the  recom bination  m odels

M eselson  a n d  W eig le  tested  the  th ree  m o d e ls  fo r general reco m b in a tio n . 

(M eselson and  W eigle 1961; review ed in  S tahl 1986) in  E. coli using  b ac te rio p h ag e  

lam bda  (X) as the  D N A  substrate  for recom bina tion . In o rd e r to d e te rm in e  

w hich m echanism (s) operate  in recom bination, they  developed an  assay in  w hich, 

the  in te rv a l o f recom bination  an d  ex ten t o f n e w  D N A  syn thesis c o u ld  b e  

exam ined an d  s tu d ied  sim ultaneously on  th e  sam e D N A  m olecule. O ne o f th e  

advantages of X is th a t it  has a sm all, tractable genom e, w ith m any  w ell-defined  

alleles of genes a long  the  length of its chrom osom e th a t could serve as genetic  

m arkers for de te rm in ing  the in terval of recom bination . R ecom binants can  be 

scored easily, in  d ifferent intervals, a long th e  X chrom osom e, w hile m on ito ring  

new  D N A  synthesis associated w ith  their recom bination.

The detection of new  DNA synthesis is possible because all X v irions have  

a unique density . X packaging is precise (K obayashi e t al. 1982; K obayashi e t al. 

1983) such  th a t exactly a complete X genom e (from  cos, the packaging o rig in , to 

cos) is packaged into a  unit-size pro tein  coat. (This is in  contrast to, for exam ple, 

p h ag e  T4 in  w h ich  th e  ends of the  ch ro m o so m e a re  re d u n d a n t b ecau se  

packaging  incorpora tes chrom osom es th a t a re  la rger th an  the length  o f th e  T4 

genom e by  3% ). This feature of X w as used  b y  M eselson and W eigle to develop  

an  assay in  w hich o ld  a n d  newly replicated D N A  cou ld  be separated  physically  

from  each other. This w as accom plished b y  u sin g  heavy  iso topes of carbon  

(l^C ) an d  n itrogen  (l^N ) to grow  X stocks such  th a t the  DNA and  the p ro te in  

coat of these  phage  w o u ld  be m ade from  th e  h eavy  isotopes. X crosses w ere  

then  perform ed in  E. coli cells grow n in the p resence  of light isotopes, such  th a t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

any  n ew  D N A  o r p ro te in  synthesis w o u ld  incorporate ligh t iso topes. Because X 

h as a  d e fin ed  d en sity , inco rpora tion  o f ligh t nuc leo tides a s  a  re su lt of D N A  

synthesis p rio r to  packag ing  can be detected  in a  density  g rad ie n t of the  progeny 

phage. M oreover, p a ren ta l (heavy) p h ag e  can be d is tin g u ish ed  from  progeny 

(light) p h ag e  based  o n  the ir density : the  paren tal ph ag e  h a v e  h eavy  p ro te in  

coats an d  h eavy  D N A , w hereas all p rogeny  phage have lig h t p ro te in  coats and , 

based  on  the  ex ten t o f replication experienced by D N A  p rio r to  packaging, ligh t 

o r heavy  D N A .

In  these  experim ents, M eselson an d  W eigle w ere  fo rtuna te  to  find a sm all 

subc lass o f p ro g e n y  p h ag e  w hose  chrom osom es h a d  n o t  experienced  an y  

rep lica tion  d u rin g  th e  lytic cycle. T he unrep lica ted  X p ro g e n y  con ta ined  new  

(light) p ro te in  coats (because th e  cross w as done in  th e  p resen ce  of lig h t 

iso to p es), b u t  h e a v y  (H H ) ch rom osom es, and  w ere  th u s  sep a rab le  from  

rep licated  X p ro g en y  w ith  heavy-light (HL) and  light-light (LL) DN A. M eselson 

a n d  W eigle exam ined  the  unrep licated  p rogeny  subclass for recom bination  and  

fo u n d  recom binan t m olecules tha t w ere  m ade  of only  p a ren ta l D N A , indicating 

th a t b reak -jo in  reco m b in a tio n  occurs in  E. coli w h e n  X is u se d  as the  DNA 

substra te . L ater, w ith  the  discovery o f X recom bination  sy stem s (Echols et al. 

1968; S inger an d  W eil 1968; W eil an d  Singer 1968), it becam e a p p a ren t that no 

final conclusions co u ld  be m ade ab o u t the  E. coli reco m b in a tio n  system  from  

these  experim en ts, because  X recom bination  pa thw ays w ere  also  opera ting  in  

these crosses. B ut the  techniques developed  by  M eselson a n d  W eigle p roved to 

b e  c ritic a l fo r m y  an a ly s is  of the  in v o lv e m en t o f re p lic a tio n  in  DN A  

recom bination  in  E. coli (C hapter 2).

F u rth e r  re fin e m e n t to th is techno logy  in  the  fo rm  o f  con tro lling  the 

am o u n t of rep lication  experienced by  X, an d  the use of special X stra ins tha t were 

defective for their ow n  recom bination system s (Russo e t al. 1970; Stahl and  Stahl
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1971a; Stahl an d  Stahl 1971b), led  to the  discovery of experim ental conditions in  

w h ich  u n rep lica ted  p h a g e  p ro g en y  w ere  the s ig n ifican t, o r even  the only , 

p rogeny  recovered  fro m  cells, a n d  the  E. coli reco m b in a tio n  system  the on ly  

p a th w ay  for exchang ing  pieces o f X, chrom osom e (M cM ilin an d  Russo 1972). 

U n d e r these cond itions, X, w as u sed  to  exam ine E. coli recom bination  in  the  

com plete absence of D N A  replication. Collectively, these  experim ents ru led  o u t 

replicative m odels as the  exclusive route  to recom bination an d  p rov ided  physical 

evidence for the  occurrence of break-join recom bination in  E. coli. Even though  

break-copy w as n o t ru le d  o u t as a m echanism  fo r recom bination  (Siegel 1974), 

break-join w as considered  to be the  m ajor route for recom bination  in  E. coli (e.g. 

T haler and  Stahl 1988; W est 1992; Kow alczykow ski e t al. 1994). This view  w as 

fu rth er su p p o rted  b y  th e  discoveries o f endonucleases, w hose  function is to 

specifically cleave recom bina tion  in term ediates a n d  to  com plete  a break-join 

reco m b in a tio n  even t. B ut a p le th o ra  of re c e n t e v id e n ce  p o in ts  to  the  

involvem ent of D N A  rep lica tion  in  recom bination. T his w ill be  discussed in  

deta il below  an d  in  C h ap te r 2 of the thesis. (Also, see the  A pril 2000 issue of 

Trends in Biochemical Sciences for a  com prehensive rev iew  of th is subject as the 

entire issue is dedicated  to  the D N A  replication and  recom bination interface.)

T he RecBCD System  o f R ecom bination  in  E. coli

T he m olecular m echan ism  o f hom ologous recom bina tion  h as been s tu d ied  

extensively in  E. coli. O ver 20 enzym es have been  iden tified  to be involved in  

th is process (review ed in  W est 1992; C lark and Sandler 1994; Kowalczykowski et 

al. 1994; Kow alczykow ski 2000); how ever, only a few  a p p ea r to p lay  key roles in  

the  m ain  pa thw ay  of recom bination  and  DSBR, the RecBCD system  (reviewed in  

E ggleston an d  W est 1996). A  m odel for RecBCD -m ediated recom bination is
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show n in  Figure 1-2. Even though  a  varie ty  of recom bination m odels ex ist for 

this pathw ay, all share the  following features:

1. RecBCD, a  heterom ultim er of RecB, RecC an d  RecD proteins, functions 

as a dou b le-s tran d  D N A  (dsD NA) exonuclease, D N A  helicase, and  A TPase 

(review ed in  Kow alczykowski et al. 1994). The substrate  for RecBCD is a dsD N A  

end  (Figure 1-2A). RecBCD binds to a dsD N A  en d  and travels a long  D N A  

u n id irec tio n a lly , p ro m o tin g  recom bina tion  a t a  low  uniform  rate  u n til  it 

encounters a special octam eric DN A  sequence called Chi (Figure 1-2B), c ro ss

over ho t-spo t in stiga to r (5'GCTGGTGG3') (review ed in  Myers an d  Stahl 1994; 

Rosenberg and  M otam edi 1999).

2. RecBCD can recognize Chi, only if it encounters it from  the GG 3 ' end. 

RecBCD th en  prom otes recom bination a t Chi an d  dow nstream  of Chi b y  its 

helicase /ex o n u c lease  activ ity , generating  sing le-strand  (ss) D N A  m olecules 

w hich  are the substrate for RecA protein  (Figure 1-2C).

3. RecA catalyzes strand-exchange reactions in  £. coli (review ed in  Roca 

and  Cox 1997) as do its hom ologues in eukaryotes (Aravind et al. 1999; Thacker 

1999b). ssD N A  coated w ith  RecA invades a hom ologous duplex (Figure 1-2D), 

form ing a he te rodup lex  recom bination in term ediate  (e.g. a H olliday junction , 

HJ).

4. These interm ediates are substrates for a set of enzymes w hose jobs are 

to process the in term ediate  into a m ature  recom binant DNA (Figure 1-2E an d  F), 

com pleting the recom bination reaction (review ed in  W est 1994).

H olliday  ju n c tio n  (HJ) processing  in  the RecBCD system  

In  E. coli, the  RecBCD system  uses tw o ap p aren tly  independen t pa thw ays to 

process recom bination interm ediates: the RuvABC an d  the RecG (Lloyd 1991; 

review ed in  W est 1994). The RuvABC system  is com posed of RuvA, RuvB and
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RuvC proteins. G enetical and  biochem ical s tud ies suggest that th e  th ree  p ro te ins 

w o rk  to g e th e r , p h y s ic a lly  in te rac t w ith  each  o th e r , an d  fo rm  a  com plex  

(RuvABC) in  v ivo  a n d  in  vitro. ruvA , ruvB, a n d  ruvC  m utan ts d isp lay  th e  sam e 

phenotypes: a  m o d e ra te  decrease in  recom bination  proficiency (as m easu red  by  

conjugational a n d  transductional recom bination  assays) and  resistance to  D N A  

dam aging  agen ts su c h  as UV light (see C h ap te r 3 a n d  Lloyd et al. 1984; Sharpies 

e t al. 1990). T he R u v  phenotype can be rescued  b y  the  expression of one p ro tein , 

RusA (a HJ reso lvase), suggesting th a t ruv  defective strains are deficient for the  

sam e enzym atic  fu n c tio n  (M andal e t al. 1993). In  v itro  experim ents also have  

d em o n stra ted  d ire c t  physical in te rac tion  a n d  cataly tic  sy nergy  b e tw een  the  

different co m p o n en ts  o f the  proposed  RuvABC com plex (H iom  a n d  W est 1995; 

W hitby e t al. 1996; E ggleston e t al. 1997; v a n  G ool e t al. 1998; v a n  G ool e t al. 

1999). T hese d a ta  s tro n g ly  argue  th a t th e  th ree  p ro te in s ac t to g e th e r as a 

complex in  vivo.

The cataly tic  activity  of each su b u n it h as  b een  stud ied  extensively. R uvA  

b inds HJs a n d  re c ru its  RuvB form ing a RuvAB-HJ com plex in  v itro  (H iom  an d  

W est 1995). RuvB  is an  A T P-dependent hexam eric  D N A  helicase, sh o w n  to 

branch-m igrate H Js (via its helicase activity) in  the  presence of R uvA  (H iom  and  

W est 1995). T he b ra n c h  m igration activ ity  o f RuvAB proteins m ay  opera te  to 

stabilize an d  e x te n d  heteroduplex  DN A, as d ep ic ted  in  Figure 1-2 E. R uvC  is a  

H J-spedfic end o n u clease  th a t specifically d e a v e s  the  D N A  strands o f a  four-w ay  

junction (Figure 1-2F), requ ired  for the  reso lu tion  o f HJs (D underdale e t al. 1991; 

Iw asaki e t al. 1991; B ennett et al. 1993). T his activ ity  is though t to  be  critical for 

the  processing o f H Js, a n d  is thus im plicated  strong ly  in  the break-join  p a th w ay  

o f R ecB C D -m ediated DSBR in E. coli (for a v iew  of their role in  DSBR, see W est 

1992; W est 1994; K uzm inov  1996).
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RecG is an  A T P -dependen t junction specific helicase, th o u g h t to opera te  

in d e p e n d e n tly  of the  RuvA BC pro teins. This p ro te in  is im p lica ted  in  HJ 

p rocessing  v ia genetic a n d  biochemical studies. Cells defective for either R uv or 

RecG p ro te in s exhib it a  m ild  decrease in  recom bina tion  proficiency a n d  UV 

resistance, w here  as ruv recG strains display severe recom bination  deficiency and  

UV sensitiv ity  (for a review , see Kuzm inov 1996), characteristic of cells defective 

for hom ologous recom bination  (e.g. recA strains) (L loyd 1991). M oreover, RecG 

is fu nc tiona lly  an a logous to  RuvAB (L loyd an d  S harp ies 1993b; L loyd an d  

S h a rp ies  1993a) a n d  is th o u g h t to p rocess rec o m b in a tio n  in te rm ed ia te s , 

in d ep e n d en tly  b y  reverse  b ran ch  m igration  of HJs (W hitby  e t al. 1993), o r 

p e rh a p s  w ith  the  help  o f an o th er (yet uniden tified) H J-specific endonuclease 

(M andal e t al. 1993).

The evidence p resen ted  in  C hapter 2 challenges the  exclusivity of a break- 

join m echanism  for DSBR in  E. coli and  indicates a n ew  p a th w ay  for recom bining 

D N A , u sing  D N A  rep lication  (e.g. Figure 1-1B). In  C h ap te r 3 , 1 re-evaluate the  

ro le  o f each  HJ p rocessing  p ro te in  in  DSBR in  the contex t of th e  tw o RecBCD- 

m ed ia ted  recom bina tion  p a th w ay s in E. coli an d  d iscover th a t bo th  R uv an d  

RecG p ro te in s  a re  re q u ire d  for the effic ien t o p e ra tio n  o f th e  b reak-jo in  

m echan ism . RecG is req u ire d  for the op tim al efficiency of RuvABC; in  its 

absence few er break-jo in  recom binants are observed. This is the  first evidence 

d em o n stra tin g  a n  in teraction  betw een the tw o m echanism s p rev iously  th o u g h t 

to act independen tly  in  HJ processing.

F u tu re  analysis of the  resu lts  (discussed in  C h ap te r 3) revealed  a new  

m o d el for recom bination , in  w h ich  two d istinct recom bina tion  in term ediates 

occur in  vivo: one is resolved exclusively via the RuvABC acting in  concert w ith  

RecG, w h ile  the o ther is p rocessed  via DN A  rep lication  a n d  independen tly  of 

Ruv or RecG proteins.
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Lambda makes a protein which is a HJ resolvase

In teresting ly , X also encodes a H J p rocessing  pro tein . This w as d iscovered  

serendip itously  by  Lloyd's g roup  w hen  searching for suppressers of ruv A , ruvB, 

o r  ruvC  m u ta tions. T hey  d iscovered  a  gene encoded in  an  E. coli c ryp tic  

lam bdoid  prophage, qsr, w hich is n o t norm ally  expressed in  £. coli (M andal et al.

1993). M ost E. coli s tra ins (e.g. K-12) harbo r a num ber o f d ifferen t defective 

p rophages, w hich  are th o u g h t to have been  acquired follow ing lysogeny  and  

subsequen t m uta tions to essential genes of the  prophage requ ired  for its lytic 

g row th . Defective prophages often are  no t expressed and  perfo rm  no  function 

in  w ild-type E. coli, b u t som etim es can becom e activated follow ing infection by  a  

lam bdoid  phage (review ed in  C am pbell 1996). The expression of this gene, rusA, 

caused  by  a p rom oter-on  m u ta tion  u p stream  of the  reading  fram e, supp ressed  

the  ruv  m utation  (M andal et al. 1993; M ahdi e t al. 1996). The subsequen t cloning 

of the  rusA  an d  the  ne ighboring  open  read in g  fram es revealed  a  rem arkab le  

conservation of genom ic organization  betw een this region of the  £. coli genom e 

an d  a specific region of the  lam bdoid  fam ily of phages. In X, the  correspond ing  

reg ion  is know n  as nin, sp ann ing  n ine  open  read ing  fram es inc lud ing  ninG  or 

rap, w hich  directly corresponds to the  rusA  open reading fram e in  the qsr region 

of E. coli (M ahdi e t al. 1996). The rap gene h a d  been p rev io u sly  sh o w n  to 

func tion  in  recom bination ; how ever n o th in g  w as know n ab o u t its cataly tic  

activ ity  a t th a t tim e (H ollifield e t al. 1987; Stahl et al. 1995). The p u rified  Rap 

p ro te in  of X w as later sh o w n  to behave as a junction-specific endonuclease , 

analogous to the RuvC pro tein  of £. coli (Sharpies e t al. 1998). In  C hap ter 2, w e 

show  th a t in  the presence of nin, the  overall recom bination frequency rem ains 

the  sam e in  ruv recG cells com pared  to rec+, indicating th a t a  n z n -en co d ed  

function (perhaps Rap) substitutes for Ruv a nd  RecG deficiencies.
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T herefore, I ex am in ed  th e  ro le  of R uv  and  RecG p ro te in s  in  DSBR 

independen tly  of ^.-encoded H J reso lu tio n  activity b y  using  p h ag es  th a t carry  a 

dele tion  in  the nin region. This w ay HJ resolution can  occur only  v ia  the  £. coli 

R uv o r RecG system s. As a  fu rth e r n o te , in  o rder to s tu d y  £. coli RecBCD- 

m ed ia ted  recom bination, all th e  phages used  in  this thesis w ere  defective for X 

recom bination system s an d  th e  G am  p ro te in , the  specific in h ib ito r of RecBCD. 

This w ay , recom bination  o f X D N A  c a n  be used  to assay  the  h o s t RecBCD 

system .

T4 recom bination and  rep lica tion

T he in te rconnection  b e tw een  D N A  re p lic a tio n  an d  rec o m b in a tio n  is best 

characterized  in  bacteriophage  T4. E a rly  p ioneering  w o rk  d e m o n s tra te d  the  

d irect in terp lay  betw een D N A  recom bination  an d  replication in  the  life cycle of 

th e  v iru s: norm al D N A  rep lica tio n  re q u ire s  hom ologous reco m b in a tio n

functions (reviewed in  K reuzer 2000). T his w as show n genetically as m utations 

in  phage-encoded  recom bina tion  genes caused  a "D N A -arrest" p h en o ty p e , a 

defect in  w hich replication in itia tes no rm ally , b u t then im m edia te ly  stops (see 

M osig  1998). T his a n d  o th e r  r e s u l ts  w e re  exp la ined  b y  a rep lica tiv e  

recom bination  m odel in  w h ich  3 '-ended  stran d  invasions in to  a hom ologous 

dup lex  form  a D-loop (e.g. F igure  1-2E), w h ich  w as p roposed  to  in itia te  phage 

D N A  replication (M osig e t al. 1984). T hese data  provided  m an y  im p o rtan t clues 

ab o u t the  m olecular m echan ism  of rep lica tive  recom bination . For exam ple, 

chrom osom e ends w ere  sh o w n  to be the p re fe rred  site for m ost recom bination  

events a n d  require extensive D N A  rep lica tion  for the form ation  of recom binant 

chrom osom es (M osig e t al. 1984; M osig 1998). H ow ever, because T4 uses its 

ow n  replication and  recom bination p ro te in s exclusively (not those of £. coli) and  

the T4 recom bination m odel con tradicted  th e  prevailing  break-join m odels a t the
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tim e, it w as suspected  th a t this process w as specific to  T4 a n d  was d ism issed  as a  

general m odel fo r m an y  years. Recently, w ith  th e  accum ulation  of in d irec t 

evidence fo r the  ex istence of replicative reco m b in a tio n  m echanism s in  o th e r  

m odel o rganism s (includ ing  £. coli), the T4-based m odels are  been re-considered  

and  app lied  to  o ther organism s (Bosco and  H aber 1998). Below is a rev iew  of the  

evidence su p p o rtin g  a  replicative recom bination m echanism  in  E. coli.

First evidence for replicative recombination in  E. co li

The p o stu la ted  in v o lv em en t of DNA rep lica tion  in  recom bination  h as a lo n g  

h isto ry  (see above, a n d  referenced in  K uzm inov  a n d  S tahl 1999); how ever th e  

first correlative ev idence, connecting the  tw o processes in  E. coli, d id  n o t em erge 

un til m uch  la ter (Siegel 1974), and  w as largely  ignored . Siegel developed  a n  

e legan t assay , w ith  1974 technology, to  d e tec t n e w  D N A  synthesis w ith in  

fragm ents of X reco m b in an t progeny. H e u se d  A. as the  DNA su b stra te  for 

RecBCD recom bination . Phages, defective for th e ir ow n  recom bination system s 

and  carry in g  a  reco m b in a tio n  ho tspo t for th e  RecBCD p a thw ay , C hi, w ere  

infected in to  E. coli u n d e r  conditions th a t a llow ed  for little  DNA rep lication . 

R ecom binant p h ag e  w ere  isolated and  fragm ents o f the ir D N A  w as exam ined  

for incorpora tion  o f 32P0 4 . H e found th a t D N A  fragm en ts containing th e  C hi 

sequence also h a d  th e  m ost am ount of rad ioactive  label, th u s  correlating D N A  

replication an d  recom bination  on the sam e D N A  m olecule for the first tim e. H e 

p roposed  a replicative recom bination m odel th a t w as tru ly  revolutionary for its 

time: pe rhaps too ad v an ced  to be considered s trong ly  by  h is colleagues a t th a t 

time. H ere is a  d irec t quo te  from  the paper:

"C om patib le  w ith  the data  rep o rted  h e re  is th e  hypothesis

th a t Rec recom bination  occurring  in  th e  absence of norm al
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D N A  duplication  creates an  "origin" for D N A  synthesis a t the 

site o f the  recom bination event. Synthesis proceeds in  either 

or b o th  directions an d  term inates after a  variable distance

The hypothesis th a t D N A  recom bination in term ediates can serve as replication 

"origins" w as su p p o rted  by  these data for the first tim e in  E. coli. U nfortunately , 

th is w ork  w as ra re ly  cited  a n d  the im p o rtan ce  of th is hypo th esis  w as n o t 

investigated  for years to come. Later, the  replicative recom bination hypothesis 

re-em erged (see Sm ith  1991) as new  evidence suggested  the occurrence of th is 

type of replication in  E. coli (e.g. Kogoma 1997).

S u b seq u e n t in d ire c t  ev id en ce  for th e  in v o lv e m e n t of D N A  rep lica tio n  in  

recom bination in  E. coli

In  recent years, a  la rg e  body  of w ork  from  d ifferen t labs h as  suggested  the  

involvem ent of D N A  replication in recom bination  in  E. coli. This is review ed in  

detail in  C hap ter 2; how ever, a  brief sum m ary  of som e of the  im p ortan t results 

and  the roles of im plica ted  recom bination an d  replication pro teins w ill facilitate 

the understand ing  o f C hapters 2 and 3 of the thesis.

R ecom bination-dependent stationary phase m u ta tion

The discovery o f a  recom bination-dependent m u ta tiona l m echanism  opera ting  

in  stationary phase  E. coli has provoked m odels of RecBCD-mediated replicative 

recom bination  (rev iew ed  in  Rosenberg e t al. 1998; L om bardo an d  R osenberg  

1999). In  th is  sy s tem , hom ologous reco m b in a tio n  p ro te in s (such as RecA, 

RecBC, RuvABC) a n d  D N A  Polym erase EH a re  req u ired  for the  m u ta tiona l 

mechanism . The d a ta  can be easily explained b y  m odels in w hich recom bination 

in term ediates, fo rm ed  v ia  the RecABCD system , in itiate  D N A  replication  th a t
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leads to  polym erase errors an d  m utations (see Rosenberg e t al. 1998; Lom bardo 

and  Rosenberg 1999). Because in  this assay m utations are genetically selected, 

th e  d irec t dem onstra tion  o f recom binant DN A  th a t has also experienced new  

D N A  synthesis has n o t been  m ade. Data from  o ther labs have also p rov ided  

su g g e s tiv e  ev idence  for th e  in te rd ep en d en ce  o f D N A  rep lic a tio n  an d  

recom bination  in  E. coli (Courcelle e t al. 1997; Courcelle an d  H anaw alt 1999; 

K uzm inov  and  Stahl 1999); how ever, the d irect dem onstra tion  of rep licated  

recom binants still rem ains. In  C hapter 2, I show  d irect physical evidence of 

recom binant m olecules th a t have also experienced new  D N A  synthesis required 

for th e ir fo rm ation  in  w ild -type  E. coli. I show  th a t th is type of replicative 

recom bina tion  occurs n o rm ally  an d  is responsib le  for ro u g h ly  h a lf  of all 

RecBCD-mediated events.

O v er-rep resen ta tio n  and  asym m etric  d is tr ib u tio n  o f C h i sites in  th e  E. coli 

genom e

As discussed prev iously  (see above), Chi sites are special cis-acting octam eric 

D N A  sequences th a t enhance recom bination only in  the RecBCD system . These 

sites w ere initially discovered by  Stahl's group as m utations in  the sequence of X 

genom e th a t confer be tte r g row th  of the phage in  E. coli (Lam  et al. 1974). 

F u rther characterization  revealed  Chi is recognized  by  RecBCD on ly  if it is 

encoun tered  from  the  3' GG side. The Chi-RecBCD in teraction  m odifies the 

biochem ical activity of the enzym e such that m ore substra te  for recom bination 

(ss DNA) is generated  for RecA -m ediated s tran d  invasion  and  heterodup lex  

form ation (see Figure 1-2 for a  m odel for RecBCD-mediated recom bination).

In terestingly , Chi is over-represented  by  rough ly  4-8 fold in  the  E. coli 

genom e than  w ou ld  be expected by  chance alone. Furtherm ore, these sites are 

d is tr ib u te d  asym m etrically  in  the E. coli chrom osom e (B lattner e t al. 1997):
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app rox im ate ly  tw o  th ird s  of all C hi sites are  s itu a te d  such  th a t they  face the  

orig in  o f replication oriC (review ed in  K ow alczykow ski 2000). These findings can 

be  exp la ined  neatly  by  a  hypo thesis that Chi p ro m o tes  th e  repa ir of co llapsed  

rep lica tio n  forks in  £. coli (K uzm inov 1995). For exam ple, if a b reak  in  the  

tem p la te  occurs, fo rm ing  a  DSB, the  ensuing  re -a ttach m en t of the b ro k en  a rm  

w ith  th e  sister d u p lex  can  occur by  a R ecB C D -C hi-dependen t m ech an ism  

(K uzm inov  1995). This is suggestive of the  ex istence o f a  RecB C D -m ediated 

recom binational repair p a th w ay  used  to res ta rt co llapsed  replication forks in  £. 

coli, connecting the processes of D N A  replication a n d  recom bination.

S tab le  D N A  rep lica tion  (SDR)

O ne of th e  m ost p rovok ing  pieces of evidence su p p o rtin g  the  interplay be tw een  

D N A  rep lica tion  an d  recom bina tion  comes fro m  th e  w ork  of the late  T okyo 

K ogom a. H e w as the  f irs t to  dem onstrate  the  existence of a  D N A  rep lica tion  

m echan ism  tha t opera tes independen tly  of p ro te in  syn thesis an d  the  o rig in  of 

rep lication  (oriC) b u t requires D N A  recom bination pro teins. H is initial discovery, 

th a t w ild-type levels of D N A  replication can occur in  cells defective for oriC, w as 

m ade  in  1970; how ever, h is w ork  w as no t considered  a general m echanism  for 

D N A  rep lica tio n  or reco m b in a tio n  by o th e r re sea rch e rs  u n til m u ch  la te r  

(K ogom a and  L ark 1970). This type of rep lica tio n  is k n o w n  as stab le  D N A  

rep lica tio n  (or SDR), a n d  occurs only under specia l conditions (e.g. d u rin g  the 

SOS response  to D N A  dam age) or in  special m u ta n t E. coli cells (rnhA  m u ta n t 

cells) (review ed in  K ogom a 1997). The involvem ent o f recom bination p ro te in s in  

th is process w as show n genetically: some of the  p ro te in s requ ired  for RecBCD- 

m e d ia te d  recom bina tion  a n d  D N A  rep lica tion  h av e  also b een  show n  to  be  

req u ired  for th is process. K ogom a extended these  observations to p ro p o se  a 

d irec t lin k  betw een rep lication  an d  recom bination in  E. coli. H ow ever, the  d irec t
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dem onstra tion  of recom binant D N A  m olecules th a t have also experienced  D N A  

replication w as n o t m ade.

O f in te rest, tw o  proteins are  req u ired  for this type of rep lica tion : RecA, 

the  E. coli strand-exchange pro tein  (see above an d  Roca an d  Cox 1997), a n d  PriA , 

the  rep lica tion  prim osom e assem bly p ro te in  (review ed in  M arians 2000; Sandler 

and  M arians 2000). A  prim osom e is a g ro u p  of enzym es tha t can u n w in d  dup lex  

D N A  a n d  synthesize short o ligoribonucleotides prim ers on  the D N A  tem pla te , 

req u ired  for D N A  replication. The da ta  genetically connect p ro te ins p rev iously  

characterized for their role in  recom bination to  the  DNA replication process. The 

discovery of SDR and  the genetic characterization of the p ro teins invo lved  in  this 

p rocess p ro m p ted  research in  the  field a n d  provoked  m odels connec ting  D N A  

rep lica tio n  a n d  recom bination  in  E. coli, b acked  by experim en ta l d a ta  (e.g. 

K ogom a 1997).

PriA  p ro te in

The b iochem istry  and  genetics of the P riA  p ro te in  has been s tu d ied  extensively . 

M uch  o f th e  d a ta  suggest a role for P riA -m ed ia ted  D N A  rep lica tio n  in  th e  

form ation of recom binant D N A  (M arians 2000). Again, the d irect dem o n stra tio n  

of th is connection (the isolation of recom binant D N A  that has replicated) h as  n o t 

been  m ade.

PriA  is m ultifunctional w ith  ATPase, helicase and translocase activities, and  

can d irec t the  assem bly of p rim osom es o n  D N A  in term ediates (rev iew ed  in  

M arians 2000; Sandler and  M arians 2000). PriA  appears to be  re q u ire d  for 

various cellular activities. Cells defective for PriA  are sickly, exhibit low  viability  

a n d  sh o w  a  p le th o ra  of o th e r p h e n o ty p e s , inc lud ing  se n s itiv ity  to  D N A  

dam aging  agents (such as UV), constitutive induction of the SOS response, a  tw o- 

th ird  decrease  in  recom bination , a n d  are  defective in  SDR a n d  re -s ta r t of
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collapsed replication forks. The replication an d  recom bination  defects seen  in  

priA  m utan t cells su g g est an  interconnection betw een  the  tw o; how ever, it's n o t 

k n o w n  w hether the  defects in  the  rep lica tion-prom oting  activities of P riA  are  

directly involved in  the  decrease in  recom bination seen  in  these cells.

In terestingly , P riA -m ed ia ted  D N A  rep lica tion  m ay  p lay  a role in  the  

processing of HJs in  vivo. PriA  has a D N A  b in d in g  activ ity  to branched  D N A  

stru c tu re s  (e.g. D -loops), sim ila r to  H o lliday  s tru c tu re s , an d  a  p ro p o se d  

interm ediate of rep licative recom bination (Kogom a 1997). P riA  has been  show n 

to  com pete w ith  H J p ro cessin g  p ro te in  RecG fo r b in d in g  to  b ranched  D N A  

in term ed ia tes in d irec tly  in  v ivo  (Al-Deib et al. 1996) a n d  d irectly  in  v itro  

(M cG lynn et al. 1997). T he in  vivo s tu d y  revealed  th a t suppressers of recG  

m utation , w hich d isp lay  reduced  recom bination an d  D N A  repair, w ere found  in  

the  helicase dom ain  of P riA  protein. Because P riA  w as show n  to have a 3' to  5' 

D N A  helicase ac tiv ity , it  w as p ro p o sed  th a t th is  ac tiv ity  of P riA  inh ib its  

recom bination  a n d  th a t  th is effect is co u n te red  by  RecG in  w ild -type  cells. 

F u rthe r su p p o rt to  th is  m odel cam e w ith  the b iochem ical characterization  of 

D N A  substrates for these tw o proteins: PriA  an d  RecG w ere  show n to com pete 

for binding to a se t of b ran ch ed  DNA structu res (e.g. D -loops) in  vitro. Taken 

together, these da ta  suggest an  intim ate in terp lay  betw een  D N A  replication an d  

recom bination, even  a t the  level of processing o f recom bination  in term ediates. 

In  C hapter 2, w e show  th a t in  the  absence of R uv and  RecG, D N A  replication is 

requ ired  for recom bination, effectively substitu ting  for HJ processing in  vivo. In  

C h a p te r  3, w e  p re s e n t  d a ta  th a t su g g es t tw o  d is tin c t rec o m b in a tio n  

in term ediates occur in  v ivo , one of w hich  is specifically  processed  b y  D N A  

replication, independen tly  of Ruv or RecG proteins.
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F igure  1-1. Three general schem es for recom bination. P le a se  note th a t these 
a re  m o d em  re-in terpretations of the  orig inal m odels. Solid l in e s  rep resen t old 
paren tal DNA; dashed lines represen t new ly  synthesized DN A. A) In break-join 
m o d els , recom bina tion  occurs b y  c u ttin g  a n d  re-liga tion  o f  hom ologous 
m olecules, w ith o u t the invo lvem ent o f any  D N A  synthesis. T he th in  arrow  
represents the  site for an endonucleolytic cleavage of the dup lex  molecule. B) In 
break-copy m odels, recom bination in term ediates initiate rep lica tion  such tha t the 
recom binan t m olecule is a h y b rid  of o ld  an d  new ly  sy n th e s ize d  DN A. C) In 
copy choice m odels, recom bination occurs w hen  the advancing  replication fork 
sw itches tem plates and copies inform ation from  the hom ologous partner. In this 
schem e th e  recom binant m olecule is m ade  entirely  from  n e w ly  syn thesized  
DNA.
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F ig u re  1-2. A m o d e l fo r RecB C D -m ediated rec o m b in a tio n  (adap ted  from  
R osenberg  a n d  H a s tin g s  1991) w here b o th  3' a n d  5 '-en d in g  s tran d s are 
recom binogenic. T he co m p o n en ts  of RecBCD en zy m e  a re  rep resen ted  as 
triangle, square  a n d  circle. U pon  an  encounter w ith  C hi, i t  is p roposed  that the 
regu la to ry  su b u n it o f th e  enzym e, RecD, is e jected , th e reb y  m odify ing  the 
activity  of RecBCD from  a D N A  exonudease to  a D N A  helicase. The helicase 
activity  of RecBCD is p ro p o se d  to  generate ssD N A  w h ich  is the  substra te  for 
RecA enzym e.
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Chapter 2 *

D ouble-strand  b reak -repa ir recom bination  in  E. coli: physical ev idence  fo r a

D N A  replication m echanism  in  vivo

* A version of this chapter has been published: Motamedi, M. R., S. K. Szigety, S. M. 
Rosenberg. 1999. Double-strand break-repair in Escherichia coli: physical evidence for a DNA  
replication mechanism in vivo. Genes & Dev 13: 2889-2903.
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Introduction

D N A  double-strand  b reaks (DSBs) are com m on lesions th a t occur in  all c ells. 

T hey resu lt from  D N A  dam age, from  processing of a rre s ted  rep lica tion  fo rk s  

(Seigneur et al. 1998) a n d  are hypo thesized  to occur as n o rm al in te rm e d ia te s  in  

D N A  replication, (e.g. Skalka 1974; Kuzm inov 1995). Because DSB accumula_tion 

is toxic to cells, m ultiple m echanism s have evolved for the ir repair. H o m o lo g o u s 

recom bination  m ay  be the  exclusive m echanism  for D SB -repair (DSBR_) in  

Escherichia coli, is the dom inan t m echanism  in some eukaryotes includ ing  bakcer's 

yeast, and  is one a lternative  in  m am m als including h u m an s (e.g. H aber 1999). 

S im ple  liga tion  of D N A  e n d s  (non-hom ologous en d -jo in in g ), is a  m_ajor 

a lternative  rep a ir ro u te  in  m am m als w hich  often resu lts  in  loss o f geraetic  

m ateria l and  gross chrom osom e changes (Tsukam oto a n d  Ikeda  1998; H a b e r  

1999). DSBR via recom bination  is conserved in  evolution, as a re  its im p o r ta n t  

p ro teins, and  it is req u ired  for the no rm al functions o f cells (for rev iew , see 

K anaar and Hoeijm akers 1998; H aber 1999). A berrant DSBR could  underlies th e  

excessive recom bination linked  to phenotypes of genetic instab ility , p rem a-tu re  

aging, and cancer (e.g. Ellis e t al. 1995; Yu e t al. 1996).

In  a d d itio n  to i ts  ro les  in  th e  m ain tenance  o f genom ic  s tab illity , 

hom ologous recom bination creates new  cellular and  organ ism al com binatio-n of 

alleles, and  ensures p ro p er segregation  of chrom osom es d u rin g  m eiosis. Im  E. 

co li, th e  RecBCD re c o m b in a tio n  sy s te m  p ro v id e s  n e a r ly  a ll D S B R  

(Kowalczykowski et al. 1994; M yers and  Stahl 1994) and  catalyzes recom bina_tion 

o f th e  lin e a r D N A  in te rm e d ia te s  in  con juga tion  a n d  p h a g e -m e d ia te d  

transduction, two im portan t avenues of genetic exchange be tw een  bacterial c e lls  

(C lark and Sandler 1994; L loyd an d  Low 1996; Rosenberg an d  M otam edi 1999).
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D ouble-strand  b reak-repair is also the  m ajor sexual recom bination rou te  in  y east 

m eiosis (H aber 1998; Sm ith and  N icolas 1998).

Possible sty les o f recom bination  can  be  defined  based o n  th e  p ro p o se d  

in v o lv em en t o f D N A  rep lica tion  (M eselson  a n d  W eigle 1961): B reak-jo in

recom bination  m odels use  no replication. P aren ta l D N A s are cu t a n d  rejoined, 

p ro d u c in g  recom binan t m olecules m ad e  en tire ly  of paren tal D N A . B reak-copy 

m odels use a  fragm en t from  one p a ren ta l m olecule to  prim e rep lica tion  from  a 

hom olog , thereby  p ro d u cin g  recom binan t m olecules w ith  D N A  m ate ria l from  

one p a re n t jo ined  to n ew  DNA carry ing  in fo rm ation  from  the o ther. A  p a radox  

for th e  RecBCD system  is th a t th e  on ly  d irec t physica l ev idence b ea rin g  on  

w h e th er recom bined D N A  is replicated has dem onstra ted  clearly the  existence of 

b reak-jo in  recom binan ts (see below ). H o w ev er th e re  is m oun ting  suggestive , 

b u t  ind irect, ev idence th a t w ou ld  be u n ified  b y  th e  existence of a b reak -copy  

pa thw ay .

The d irec t ev idence  for b reak -jo in  recom bina tion  w as o b ta in ed  u sin g

tech n iq u es in  w h ich  phage  lam b d a  (A.) D N A  is u sed  as a  su b s tra te  for the

bacterial recom bination  system  (M eselson an d  W eigle 1961; M eselson 1964; Stahl

an d  Stahl 1971; M cM ilin and Russo 1972). [A lacking its o w n  recom bina tion

genes recom bines exclusively via a  R ecB C D -dependent m echanism  (L am  e t al.

1974; H en d erso n  a n d  W eil 1975). A is th e  m olecu le  w ith  w h ich  th e  RecBCD

system 's recom bination  hotspot sequence C hi w as discovered.] U sing  density - 
13 15labe led  A ( C  an d  N ) that w ere  a llow ed  to  recom bine in u n lab e led  E. coli, 

th ese  g ro u p s  se p a ra te d  u n rep lica ted  fro m  rep lica ted  A p ro g en y  in  cesium  

fo rm ate  eq u ilib riu m  density  g rad ien ts . T hey  de te rm ined  th a t recom binan ts 

w ere  p resen t am ong  fully  unreplicated m olecules, an d  could even occur u n d e r a 

full block to replication, thereby p rov id ing  d irect physical evidence for RecBCD-
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m ediated  break-join recom bination in  E. coli (McMilin and  Russo 1972; McMilin et 

al. 1974).

A lthough  break-copy m echanism s w ere  n o t excluded  (see Siegel 1974), 

b reak -jo in  w a s  co n sid ered  to  be  th e  m ajo r ro u te  fo r R ecB C D -m ediated 

recom bina tion  (e.g., Thaler and  Stahl 1988; W est 1992; K ow alczykow ski e t al.

1994). The ap p aren t dom inance of break-join w as bolstered b y  the  discoveries of 

endonucleases  specific for the  s trand -exchange  junctions [such as H o lliday  

junc tions (HJs)] w h ich  connect recom bin ing  m olecules (K em per et al. 1984; 

C onno lly  e t  al. 1991; Sharpies e t al. 1998) a n d  by  the  dem o n stra tio n  o f a 

re q u ire m e n t  fo r su c h  enzym es fo r  c o n ju g a tio n a l a n d  tra n sd u c tio n a l 

recom bination  in  E. coli (Lloyd 1991). Such endonucleases are  expected to be 

req u ire d  for com pletion  of break-jo in  even ts, for exam ple, for breaking the  

m olecule indicated  b y  the open arrow  in  Figure 2-1.

M ore recently, good argum ents for w hy  replication  sh o u ld  be a possible 

consequence of RecBCD-mediated recom bination  an d  DSBR in  E. coli have been  

advanced  (Sm ith 1991). H ow ever, m u ch  of the evidence in  apparen t su p p o rt of 

break-copy m odels has been obtained u n d e r special circum stances, and all of it to 

d a te  has b een  in d ire c t (for rev iew , see D iscussion) in  th a t rep lication  an d  

recom bina tion  w ere  n o t d em o n stra ted  to have  occu rred  in  the  sam e D N A  

molecules.

H ere, w e p resen t physical evidence th a t replicational recom bination is a 

m ajo r ro u te  to  DSBR in  E. colif in  a d d itio n  to  th e  e stab lish ed  b reak-jo in  

m echanism . W e u sed  phage X D N A  (lacking the  X recom bination  functions) as 

th e  su b stra te  for RecBCD -m ediated recom bina tion  because w ell-established, 

sensitive m ethods a llow  DNA labeling  and  physical detection  o f new  DNA. X 

h a s  the  ad v an tag es th a t all R ecBCD -m ediated DSBR uses a know n, defined  

break-site  - the  packaging  origin, cos, w h ich  is cleaved d u rin g  DNA packaging
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(Kobayashi e t al. 1982; K obayashi et al. 1983; T haler an d  Stahl 1988) - an d  th a t 

recom binant DN A s are  packaged into phage particles selectively. Using physical 

analysis of the  recom bined  D N A s, we find  th a t a b o u t ha lf of all RecBCD- 

m ediated recom bination of X D N A  occurs by  a  break-join m echanism . W e show  

th a t the H olliday  junc tion  processing  pro te ins of E. coli are required  for th a t 

m echanism , w hereas the  m ajor replicative polym erase, D N A  Polym erase HI (Pol 

III), is no t. W e r e p o r t  the  d iscovery  o f a se co n d  R ecB C D -m ediated  

recom bina tion  m ech an ism  th a t is in d ep e n d en t o f the  H olliday  ju n c tio n  

processing pro teins, a n d  requires DNA Pol HI. This recom bination occurs only 

w hen  DNA replication is perm itted , and produces recom binant molecules th a t all 

con ta in  som e n ew ly  sy n th esized  DNA, d e m o n s tra tin g  a d irect p h y sica l 

association of recom bination  w ith  replication in  the  sam e D N A  molecules. The 

ex ten t of th e  new  D N A  syn thesis is com patib le  w ith  break-copy m o d els  

(alternative d iscussed  below ). This rep licational recom bination  m echan ism  

accounts for about ha lf of all RecBCD-mediated recom bination of X DNA.

The resu lts  d e m o n s tra te  a rep licational recom bina tion  rou te  in  th e  

RecBCD system  of DSBR recom bination in  £. coli, show ing  the existence of the  

rep lica ted  reco m b in an t m olecules d irectly . W e also  show  th a t th e  tw o  

m echanism s, replicational and  break-join recom bination, can be separated.
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Results

Strategy for b lock in g  break-join recombination

We so u g h t to  d e te rm in e  w hether a rep licational m echanism  of recom bination  

occurs in  the  RecBCD system , in  ad d itio n  to  the established break-join  process. 

Because any  p u ta tiv e  replicational recom bination m igh t be easier to detect in  the 

absence of b reak -jo in  events, w e a ttem p ted  to block break-jo in  recom bination. 

W e h y p o th e s iz e d  th a t  b reak -jo in  rec o m b in a tio n  m ig h t h a v e  a u n iq u e  

req u irem en t fo r th e  p ro te in s  th a t p ro ce ss  s tran d -ex ch an g e  reco m b in a tio n  

in term ediates, o r H olliday  junctions, in  E. coli. In Figure 2-1, no te  th a t break-join 

recom bination  ac tually  requ ires tw o DSBs: one to  in itia te  a ttach m en t o f the 

broken m olecule to  a hom olog; and  an o th e r (thin arrow ) to b reak  the  hom olog 

so th a t it can liga te  w ith  the DN A  fragm en t that invaded  it. This second break 

occurs in  a strand-exchange junction (F igure 2-1). A  H olliday  junction  cleaving 

protein , such  as the  E. coli RuvC endonuclease  (Connolly e t al. 1991), m ig h t be 

expected to m ake  this second break in  vivo. Because the E. coli RecBCD system  

uses e ither o f tw o  system s for p rocessing  strand-exchange in te rm ed ia tes , the 

RuvA BC o r th e  R ecG  system s (L lo y d  1991), for p ro c e ss in g  b ra n c h e d  

in te rm ed ia tes , w e  a tte m p te d  to d e te c t R ecBCD -m ediated reco m b in a tio n  of 

phage X D N A  in  the  absence of both  system s, in ruv recG double  m u tan t cells. In 

this paper, a ll th e  possib le  branched in term ediates w ill be referred  to as HJ for 

H olliday junctions an d  o ther b ranched interm ediates.

X red gam  m utants form plaques on E. co li ruv recG strains

O ne m ea su re  o f X recom bination  in  th e  RecBCD system  is the  ab ility  of X 

recom bination-defective strains {X red gam) to form  p laques o n  RecBCD+ E. coli, 

(for review , see Sm ith an d  Stahl 1985) In  RecBCD+ E. coli, X red gam rolling circle
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rep lication  does n o t occur de tectab ly  because RecBCD destroys ro lling  circles. 

[W ild-type X m akes G am  pro tein , a  specific inhibitor o f RecBCD, p reven ting  the  

deg radation  of ro lling  circle in term ediates. In  the absence of X recom bination  

system s, In t an d  Red, the  E. coli RecBCD pathw ay  operates as the  only  m eans for 

reco m b in in g  X D N A.] T he m onom eric X ch ro m o so m es p ro d u c e d  b y  b i

d irectional (theta) rep lica tio n  m u s t recom bine to fo rm  packagab le  substra tes 

[dim ers and  m ultim ers are  packagable w hereas m onom ers are n o t (Feiss a n d  

B ecker 1983). B ecause on ly  th e  host RecBCD p a th w a y  is availab le  for 

recom bination , X red gam  canno t form  plaques on  cells th a t are  recom bination- 

defective such  as recA  n u ll m u ta n t strains. The d a ta  in  Table 2-1 reveal th a t 

unlike  recA strains, ruvA  recG an d  ruvC recG double  m u ta n t cells a llow  p laq u e  

fo rm ation  of th ree  d iffe ren t X red gam strains. This is observed  for ruv recG 

com binations constructed  in  tw o different E. coli genetic backgrounds (Table 2-1; 

M aterials and  M ethods). P laques w ere about the sam e size as those on  isogenic 

rec+ parents, an d  d id  n o t form  on  recA control stra ins (no t show n). These d a ta  

su g g est tha t, un like  recA  stra ins, ruv recG doub le  m u ta n ts  a llo w  RecBCD- 

m ediated  recom bination of phage  X DNA. To be sure th a t this p laque form ation 

reflected recom bination-proficiency, w e m easured  the  frequencies of RecBCD- 

m ed ia ted  X recom bination  in  the  absence of R uv an d  RecG functions u sin g  a 

quantitative assay.

A ssays for the  frequency  o f RecBCD -m ediated recom bination

A s ta n d ard  assay  w as u se d  to  m easure  the  frequency  of R ecB C D -m ediated 

recom bination of X D N A  (Figure 2-2A). As w ith  the experim ents reported  above 

(a n d  in  all ex p e rim e n ts  in  th is  paper) th e  X u se d  a re  red gam  so th a t  

recom bination  is exclusively v ia  the  host RecBCD system . A lso, as described  

above, th is m eans th a t a ll p ro g en y  m ust con ta in  recom binan t chrom osom es
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(w hether these are detectably recom binant, resu lting  from  recom bination events 

be tw een  phages of tw o d ifferen t genotype, or occurred betw een  phages of the 

sam e genotype). To m easu re  th e  frequency of hom ologous recom bination  in  

the  face of this requ irem ent for recom bination, one can p rov ide  an  a lternative  

ro u te  to dim erization (and  packaging) so  th a t any  hom ologous recom bination  

even ts are gratuitous an d  quantifiable. In  the  assay used  here  (m odified  from  

T haler e t al. 1989; R azavy e t al. 1996), d im erization  is achieved  v ia  the  X In t 

system  of site-specific recom bination , an d  gratu itous hom ologous crossovers 

(splices) are  m easured  only from  am ong  the  site-specific recom binants. This 

assay  is sensitive and  the  results correlate w ell w ith  standard  P I transductional 

recom bination assays (Razavy e t al. 1996; Razavy 1997).

In  Figure 2-2A, note th a t site-specific Int-dependent recom bination occurs 

be tw een  tw o half att sites of the recom bining X molecules. These sites have too 

little  sequence iden tity  for hom ologous recom bination. O ne p a ren t is deleted 

from  the  att site leftw ard  (A), w hereas the  o ther carries a de le tion-substitu tion  

(b io l)  from  att r ig h tw ard . T hese n e t dele tions decrease th e  size o f the  X 

chrom osom e, b u t do  n o t a lte r the  size of the  phage capsid , so th a t  phages 

carry ing  the  In t-m ediated recom binan t w ith  no net deletions are d enser than  

e ither p a re n t (m ore D N A  in  the  sam e size capsid). The denser site-specific 

recom binan t can be separa ted  from  bo th  single deletion (parental) phages in  a 

cesium  form ate equilibrium  density  grad ien t (Razavy et al. 1996) (Figure 2-2B), 

a n d  hom ologous exchanges quantified  from  am ong them.

R ecB C D -m ediated  X reco m b in a tio n  is eq u a lly  effic ien t in  rec+ a n d  ruv recG 

ce lls

The am oun t of X recom bination in  ruvC recG cells w as quantified using  the assay 

described  above using  a set of phages illustra ted  in  Figure 2-2A. In Figure 2-3
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(left panel), results from  th ree  independen t experim ents p e rfo rm ed  in  rec+ and  

ruvC recG strains are  su m m arized  in  the nzn+ p an e l ( th e  significance of nin  is 

d iscussed  below). W e observed no  significant d ifference in  the  percentage of X 

recom binants betw een crosses perfo rm ed  in rec+ an d  isogen ic  ruvC recG cells.

The X n in  region encodes a function(s) responsible for approxim ately half the 

recombination in ruvC  recG cells

A  possible reason for the  h ig h  efficiency of X reco m b in a tio n  in  ruv recG cells 

cou ld  be th a t a ^.-encoded H olliday  junction resolvase su b s titu te s  for the E. coli 

R uv or RecG proteins. The nonessen tia l X nin reg ion  en co d es analogs of E. coli 

recom bination proteins inc lud ing  a dem onstrated  reso lvase . R ap (Sharpies e t al. 

1998). W e perform ed sim ilar X crosses w ith phages d e le te d  for th is region. The 

results of three independen t sets of experim ents are d isp lay e d  in  Figure 2-3 (Anin 

panel). W e found  th a t w h e n  th e  n in  region is d e le te d , X reco m b in a tio n  is 

decreased  by  approx im ate ly  h a lf  in  ruvC recG cells c o m p a re d  w ith  the  rec+ 

controls. This suppo rts  the hypo th esis  that a X e n co d e d  fu n c tio n  can resolve 

recom bination  in term ediates in  vivo. H ow ever, it d o e s  n o t add ress how  the 

rem a in in g  half of X reco m b in a tio n  w orks in  ruv recG  cells. To explore the 

m echan ism  of recom bina tion  in  the  absence o f th ese  k n o w n  H J processing  

p ro te in s, an d  m ore specifically , to tes t w hether it is rep lica tio n a l, all of the 

rem ain ing  experim ents p resen ted  w ere  conducted u s in g  X p h ag e  carrying the 

deletion Anin5.

Recom bination in the absence o f RuvC, RecG, and X n in  is  not catalyzed by E. 

coli defective prophage-encoded recombination functions

M ost £. coli K-12 stra ins h a rb o r a num ber of defective  p ro p h ag es, w hich are 

though t to have been  acqu ired  follow ing lysogeny an d  su b seq u en t loss of phage
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functions requ ired  fo r lytic g row th . Defective p ro p h ag es often  are  no t expressed 

an d  p e rfo rm  no  fu n c tio n  in  w ild -type  E. coli, b u t  can  som etim es becom e 

activated  fo llow ing  infection  b y  a lam bdoid  p h ag e  (for rev iew , see C am pbell

1996). The E. coli s tra in  u se d  in  the experim en ts above carries a t least tw o  

defective p ro p h ag es  w ith  k n o w n  recom bination functions, rac an d  qsr. The rac 

p rophage carries th e  recE a n d  recT genes w hich , w h e n  ac tiva ted , can p erfo rm  

R ecA B C -independen t reco m b in a tio n  (C lark  a n d  S a n d le r 1994). T he qsr  

p rophage  carries th e  rusA  gene, w hich is n o t n o rm ally  exp ressed , b u t once 

activated, can reso lve  HJs in  a  m anner sim ilar to R uvC  endonuclease, and  can 

substitute for R uv p ro te ins in vivo (Mahdi e t al. 1996). To test the possibility th a t 

either RecET o r R usA  function substitutes for the E. coli R uv an d  RecG proteins in  

X recom bination , w e  p e rfo rm ed  X crosses (w ith  X A nin , as described  above, 

Figure 2-2) in  cells th a t carry  either a deletion  fo r th e  rac p ro p h ag e  or for the  

rusA  gene. W e observed  no difference in  X recom bina tion  frequency  in  ruvC  

recG an d  ruvC  recG A rac o r ruvC recG A ru sA  cells (Table 2-2). T herefore, 

functions from  these  p ro p h ag es are not responsib le  for the  recom bination in  X 

A nin ruv recG experim ents.

C hi stim u la tes reco m b in a tio n  norm ally  in  the  absence  o f nin , R uvC  and  RecG: 

the RecBCD system  perfo rm s apparen t reso lvase-independen t recom bination

The C hi site (5'GCTGGTGG) prom otes R ecB C D -m ediated recom bination  a n d  

DSBR specifically (Kow alczykowski et al. 1994; M yers an d  Stahl 1994; Eggleston 

and  W est 1996). I t is the  D N A  recognition sequence  of the  RecBCD enzym e 

(Ponticelli e t al. 1985), and  prom otes RecBCD-mediated recom bination in its ow n  

vicinity, ac ting  as a recom bination  ho tspo t. To te s t w h e th e r the  ap p aren tly  

reso lvase-independen t recom bination of X in  ruvC recG cells is norm al RecBCD- 

m ed ia ted  reco m b in a tio n , w e  tested w h e th er C h i s tim u la te s  recom bina tion
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norm ally  in  th e  absence of RuvC a n d  RecG. The frequency of recom bination 

w as quan tified  fro m  X crosses perform ed in  parallel w ith  C hi4" an d  C h i°  phages 

in  rec+ a n d  ruvC recG cells. The da ta  in  Figure 2-3 (Chi4" /0 Anin  panels) show 

tha t C hi p rom o tes recom bination as w ell in  the absence of RuvC  an d  RecG as in 

the ir p resen ce . C h i activ ity  (recom bination  frequency  in  th e  C h i4" c ro ss / 

reco m b in a tio n  frequency  in  the Chi° cross) w as 3.3-, a n d  3.3-fold in  rec+ 

(experim ents 1 and  2) and  3.8- and  3.9-fold in  ruv recG cells (experim ents 1 and 2 

respectively). [These are typical Chi values for recom bination in the  large DNA 

in te rv a l m e a su re d  (R azavy e t al. 1996)]. We conclude th a t C hi-stim ulates 

R ecB C D -m ediated recom bination  norm ally  in  the  absence o f the  k now n  HJ 

processing  p ro te ins. This RecBCD-mediated recom bination is replicational, as 

show n below .

R ecB C D -m ediated  recom bination  in  ruvC  recG cells is rep lica tion - dep en d en t 

and  req u ire s  D N A  polym erase III

W e h y p o th e s iz e d  th a t  rep lica tio n  m ay  he lp  to re so lv e  reco m b in a tio n  

in te rm ed ia tes , p e rh a p s  by m aking  endonucleolytic c leavage unnecessary , as 

illu s tra ted  for b reak-copy  recom bination  in  Figure 2-1 (see also M organ  and 

Severini 1990). If this w ere the case, the recom bination in  the  absence of know n 

HJ processing  pro te ins w ould  be replication-dependent. W e therefore assayed X 

recom bination  in  the  absence of the  know n resolvases (RuvC, RecG and  nin- 

encoded  Rap) a n d  D N A  replication. D N A  replication  w as b locked  using  a 

tem pera tu re-sensitive  allele of dnaE encoding the core enzym e of D N A  Pol IE, 

the  m ajo r rep lica tiv e  po lym erase  o f E. coli (dnaE ts486 ; see M aterials and 

M ethods), a n d  sh ifting  the cells to restrictive tem pera tu re  fo r the  X infections. 

Because th e  In t site-specific recom bination  system  (F igures 2-2 a n d  2-3) is 

tem perature-sensitive, an d  therefore inappropriate, w e used  a d ifferent assay for
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recom bination-proficiency in  these replication-blocked experim ents (m odified 

from  Stahl et al. 1972b, see M aterials and  M ethods). A s discussed, X p ro g e n y  

form ation  requires recom bination. Because X D N A  m ultim ers are  required for 

packag ing  in  RecBCD+ cells, the only route to  m ultim eriza tion , and therefore  

p ro g en y  form ation  of these  In t- phage, is v ia  hom ologous recom bination of 

m onom ers. T herefore, X in fections yield ph ag e  p ro g e n y  on ly  if cells a re  

recom bination-proficient. T hus, if replication is req u ire d  for recom bination 

w hen  the resolvases are absent, no progeny should  be detected  in  the absence of 

replication in  ruv recG cells.
13 15In t  X phages d en sity  labeled  w ith  C a n d  N  w ere  infected in to  

unlabeled E. coli cells that carry  the dnaEts486 allele. A  com plete replication block 

w as achieved by perform ing the experim ents a t h igh  tem pera tu re  (43.5°, F igure 

2-4; M ethods). A ny new  D N A  synthesis w ould  inco rpora te  light nucleotides. 

This can be detected in  a cesium  form ate density g rad ien t of the phage p rogeny  

(Figure 2-4).

In  Figure 2-4A, note the tw o peaks of phage th a t em erge from  infection of 

rec+ cells. The denser peak  represents phage th a t possess heavy protein coats in  

add ition  to their fully heavy (HH) DNA. These are u n ad so rb ed  phage th a t d id  

n o t en ter the light E. coli an d  are n o t p a rt of the  p rogeny . The less dense peak  

rep resen ts phage w ith  lig h t capsids and  un rep lica ted  (HH ) DNA. These are  

phage  progeny  resu lting  from  break-join recom bination  events (this p o in t is 

confirm ed below, and  in Figure 2-6, see below). Because these phage have no  In t 

(site-specific recom bination) system  operative (M aterials an d  M ethods) they  are  

in ferred  to  have resu lted  from  RecBCD -m ediated b reak-jo in  recom bination. 

This is confirm ed in  a para lle l infection of recA  recom bination-defective cells 

(F igure  2-4C), in  w h ich  few  or no  X p ro g e n y  a re  p ro d u c e d  (b ecau se
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recom bination  is requ ired  for packaging). T he absence of lighter peaks confirm s 

th a t th e  replication block w as complete.

Im portan tly , w e  recovered  few  o r n o  p h ag e  progeny  from  ruvC  recG 

cells w h e n  rep lication  w as fully b locked (F igure 4B). These d a ta  d em o n stra te  

th a t recom bination  in  ruvC recG cells req u ires  D N A  replication. Because D N A  

rep lica tio n  w as b locked  by  use of dnaE ts, a  m u ta tio n  of the  s tru c tu ra l gene  

en co d in g  Pol HI, the  da ta  also identify D N A  Pol HI as the polym erase req u ired  

for th is  replication. T hus, the  data  im ply  th a t  recom bination in  the  absence of 

R uvC  an d  RecG is replicational. W e hypo thesize  th a t unresolved recom bination  

in te rm ed ia tes  in  th e  ruv recG cells in itia te  rep lica tion  forks, as in  b reak -co p y  

m o d e ls  (Figure 2-1, F igure  2-5) an d  th a t D N A  replication  to the  e n d  o f the  

chrom osom e can p roduce  recom binant m olecules.

Physical evidence for a break-copy m echanism

F ig u re  2-5 o u tlin es som e specific p red ic tio n s  of break-copy reco m b in a tio n  

m o d e ls . If recom bina tion  occurs b e tw een  d en sity  labeled D N A s (th ick  so lid  

lines, Figure 2-5B-D) in  unlabeled cells, th en  break-copy recom binants th a t occur 

in  th e  center o f th e  chrom osom e sh o u ld  co n ta in  both  heavy , u n re p lic a te d  

p a re n ta l DNA (solid lines Figure 2-5B) an d  new ly-replicated, light D N A  (dashed  

lines F igure 2-5B). E nd  recom binants fo rm ed  by  break-copy co u ld  con ta in  

a lm o st all h eavy  D N A  w ith  just a little  n ew , lig h t DNA (Figure 2-5C). This 

con trasts w ith the p red ic tion  for break-join recom bination, in  w hich even  central 

recom binants sh o u ld  be fully unreplicated, com posed  of fully heavy (H H ) D N A  

(F igure 2-5D).

O u r re su lts  above  suggested  th a t  in  rec+, b reak-jo in  (H H  c e n tra l 

recom binants) sh o u ld  be p resen t (and break-copy  recom binants m ig h t too), b u t 

th a t in  ruv recG, th ere  w o u ld  be no fully  H H  central recom binants. W e tested

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 6

th ese  p red ic tio n s using  a k  reco m b in a tio n  assay (M eselson  1964; S tahl et al. 

1972a; Saw itzke and Stahl 1997) in  w h ich  density-labeled phages recom bine in 

th e  p resen ce  o f light iso to p es in  E. coli in w h ich  a  sm a ll a m o u n t of DNA 

rep lication  is perm itted. The p a rtia l replication-block w as achieved as described 

(Saw itzke an d  Stahl 1997) w ith  th e  add ition  that a  special allele of the E. coli dnaB 

rep lication  helicase gene w as u se d  (grpD55) which blocks use  of the  k  replication 

o rig in  b y  DnaB, bu t allow s n o rm a l E. coli rep lication  (Bull a n d  H ayes 1996) 

(M aterials a n d  M ethods). The p h ag es (Sawitzke and  Stahl 1997) are m arked  such 

th a t recom bination  events occu rring  in  the  center of the  chrom osom e (between 

the J a n d  cl genes, Figure 2-6A) can  be m easured separa tely  from  recom bination 

events occurring  at the righ t e n d  of k  chrom osom e (betw een  the cl a n d  S genes, 

F igure 2-6A). The k  Int (site-specific) system  is inactivated  b y  m u ta tion  such that 

only  RecBCD-m ediated hom ologous recom binants are  m easu red  (Sawitzke and 

Stahl 1997) (Materials and  M ethods).

P rogeny  phage can be se p a ra ted  physically from  (parental) unadsorbed  

phage  b ased  on  their densities. T he unadsorbed phage  occupy  the  densest peak 

of cesium  form ate density  g rad ien ts  (Figure 2-6B an d  C). The cross progenies 

are fu rth e r  separated  based  o n  the  exten t of DNA syn thesis in  each packaged 

D N A  m olecule . M ostly or com plete ly  unrep lica ted  (heavy-heavy , H H ), and  

rep lica ted  (heavy-light, HL, a n d  light-light, LL) p ro g e n y  are  d is tin g u ish ed  

physically  in  this assay (Figure 2-6B and  C). Interm ediate densities are  also seen. 

The a m o u n t of central an d  r ig h t e n d  recom bination is assayed  for each gradient 

fraction (Figure 2-6A, M aterials a n d  M ethods).

R epresen tative  d a ta  p re se n te d  in  Figure 2-6B a n d  C  (and  num erous 

in d e p e n d e n t experim ents th a t  re p e a te d  these resu lts) a llow  the  follow ing 

conclusions:
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(i) The H H  p e a k  from  the  rec+ infection con ta ins central recom binan ts 

(Figure 2-6B, filled, circles). W e conclude th a t these  have arisen via a  break-join 

m echanism , w ithou t extensive synthesis of DNA.

N ote th a t the  n u m b er of central recom binants (filled circles) exceeds the 

n u m b er of end  recom binants (open circles) in  the  H H  p eak  in  rec+ (Figure 2-6B). 

This presum ably  reflects the larger size of the central in terval (betw een 18-22 kb) 

th a n  of the end  in te rv a l (4.8 kb). [We express th e  cen tral in terval as a range 

because the exact p o sitio n  of the fts allele is n o t know n; 18 and  22 kb are  the 

distances betw een the  ends of the /  gene and  the cl m arker (Daniels et al. 1983)].

(ii) There are  essen tia lly  no central recom binants (filled circles) in  the 

heaviest fractions of the  H H  peak  in the ruvC recG infection (Figure 2-6C). N ote 

th a t in  ruvC recG, th ere  are more end (open circles) than  central recom binants in  

the  H H  peak (Figure 2-6C, fractions 24, 25). These d a ta  indicate th a t break-join 

recom bination y ie ld ing  H H  central recom binants does n o t occur appreciab ly  in  

th e  absence of R uvC  a n d  RecG. This su p p o rts  the  conclusions from  resu lts 

sh o w n  in  Figure 2-4, in  w hich  no recom binant p rogeny  w ere p ro d u ced  w hen  

replication w as com pletely blocked in a ruvC recG strain. The presence of even a 

sm all num ber of end  recom binants in the ruvC recG H H  peak (Figure 2-6C) m ay 

seem  inconsistent w ith  the  absence of any  recom binants a t all in  ruv recG cells 

w h en  replication is com plete ly  blocked (Figure 2-4). W e suggest th a t th e  end  

recom binants in  th e  H H  p eak  have probab ly  experienced  a sm all a m o u n t of 

replication, b u t no t enough  to separate them  from  the  H H  peak (see F igure  2- 

5C).

(iii) The cen tral recom binants in  ruvC recG , w h ich  are absent from  the 

H H  peak, are seen here  in  the  HL peak (Figure 2-6C). N ote that alm ost all o f the 

cen tra l recom binants in  ruvC recG are in  the H L  peak. This excess of central 

recom binants in  the  H L  peak  is expected if the  central recom binants are form ed
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b y  replication, suggesting  that recorm bination reactions in itia ted  a t  th e  center are 

com pleted by  replicating  ou t to the • end  of the chrom osom e (F igure 2-5B). This 

resu lt suppo rts  break-copy m odels i (see Figure 2-5, o ther possib ilities discussed 

below) an d  dem onstrates directly tln a t the  recom binant m olecules fo rm ed  in  the 

absence of Ruv and  RecG are replicatied.

Physical evidence for break-copy a n d  break-join recom bination pathw ays in 

rec+ cells

As discussed  above, accum ulation  of central recom binants in  the  H L  peak  of 

ruvC recG cross is expected if re p lic a tio n  is used to form  cen tra l recom binants. 

Inform atively, w e also see this a ccu m u la tio n  of cen tral recom binan ts in  the  HL 

peak  of rec+ c ro sses (F igure  22-6B, com pare  th e  r a t io  o f  c e n t r a l /e n d  

recom binan ts in  the  H L peak  w itth  the  H H  peak). T his is  th e  f irs t direct 

dem onstration  of replicative reco m b in a tio n  in  the RecBCD p a th w a y  in  rec+ cells, 

i.e. the  rep lica ted  D N A  is p r e s e n t  in  the  sam e D N A  m o lecu le s  th a t  have 

recom bined (other evidence re v ie w e d  below). Previous d irec t ev idence bore on 

the existence of the break-join m echtanism  only (McMilin a n d  R usso 1972; Lam  et 

al. 1974, also Figure 2-6B, H H  peak)Q- These data show  th a t a  sign ifican t fraction 

of recom bination in  w ild -type E. ctoli occurs via a rep lica tive  m echan ism  even 

w hen  Ruv and  RecG functions are p«resent.

The ratio  o f c e n tra l/e n d  rec o m b in a n ts  in  the  HL p e ak  is 5.3, o r about 

tw ice th a t  seen  in  th e  H H  p e a k . (2.5), thus im p ly in g  th a t  a b o u t 'h a lf the 

recom bination in  rec+ is replicative. The rough equality  of rep lica tive  an d  break- 

join recom bination w as also inferre*d from  the observation th a t, in  ruv recG cells, 

recom bination  frequency d rops to- half th a t seen in  rec+ (F igure 2-3, Anin) in 

w h ich  no  b reak -jo in  even ts can  occur (Figure 2-4, F ig u re  2-6C), a n d  all 

recom bination is replication-depencBent (Figure 2-4).
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E stim ation o f the  a m o u n t o f D N A  replication associated  w ith  recom bination

A  ro u g h  estim ation  o f th e  a m o u n t of new ly syn thesized  D N A  associated w ith  

recom bination in  the  cross d isp layed  in  Figure 2-6C can  be m ade  as follows. T he 

n u m b er of fractions b e tw ee n  the  fully heavy a n d  fu lly  lig h t show s th a t each  

fraction accounts for a  change of abou t 8.3 percen t in  the  p roportion  of the  D N A  

th a t is heavy or light. If th e  segregation of o ld  a n d  n ew ly  synthesized  s tran d s  

fo llow ing reco m b in a tio n  is conservative (see F igu re  2-5), then  a change o f 1 

fraction  also rep resen ts  a change of 8.3 percen t o f th e  len g th  of the X g e n o m e  

from  heavy  to  ligh t. F or ruvC  recG, the frac tions w ith  a n  excess o f cen tra l 

recom binants (27-32, F igure  2-6C) correspond to  17 to  58 percen t of the  genom e 

be ing  new  (the m o st a b u n d a n t fraction having  ab o u t 50% new  DNA). This is a 

rem arkab le  co rre sp o n d en ce  w ith  the  d istance o f  th e  cen tra l recom bina tion  

even ts (recom bination b e tw een  J and  cl) to the  X r ig h t end . J is betw een 59 a n d  

66 percent of the  X genom e from  the righ t end  (the position  of the Jts m arker is 

unknow n), w h ereas  c l is 17 percen t from  the r ig h t  end . This observation  is 

com patib le  w ith  b reak -co p y  m odels w ith  a  co nserva tive  segregation  of n e w  

strands as p ro p o sed  in  F igure  2-5. Sem iconservative segregation w ould  p roduce  

h a lf  as m uch n ew  D N A . These data  show  th a t n o t on ly  is new  D N A  synthesis 

p resen t d irectly  in  the  sam e D N A  m olecules th a t recom bined , bu t also th a t the  

am o u n t of syn thesis co rresp o n d s to that expected  from  the  cross-over p o in t to 

the  end  of the  ch rom osom e (Figure 2-5B) as in  b reak -copy  m odels (alternatives 

discussed below).

A bsence o f R uvC  an d  R ecG  prom otes rep lica tion  o f X

A n unexpected  b u t  h ig h ly  inform ative re su lt w a s  seen  in  the experim en ts 

perfo rm ed  in  p a ra lle l, sh o w n  in  Figure 2-6B a n d  C . A lthough  the experim en t
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w as p e rfo rm ed  u n d e r  th e  sam e cond itions in  rec+ and  ruvC recG cells, w e 

observed approx im ate ly  135 times m ore phage  w ith  replicated D N A  w hen  the  E. 

coli Ruv an d  RecG reso lu tion  system s w ere  absen t. This w as ca lcu la ted  by  

dividing the a rea  u n d e r the LL peak of th e  ruvC recG g raph  w ith  the  LL peak for 

rec+. (This d ifference is especially apparen t in  th e  LL peaks of the rec+ an d  ruvC  

recG gradients show n  in  Figure 2-6, in  w hich  the titer of LL phage is 8.7 x 10^ and  

1.2 x 106 for rec+ an d  ruvC recG, respectively. W e excluded the  H L peaks from  

these calcu lations because in rec+, som e HL recom binants w ill b e  b reak-jo in  

events b e tw een  H H  an d  light m olecules.) This resu lt w as rep e a te d  in  tw o  

additional experim en ts in  w hich the ex ten t of phage  w ith  rep lica ted  D N A  in  

ruvC recG w as 108 tim es and 74 tim es g rea ter th an  in rec+ cells. These d a ta  

suggest th a t s trand -exchange  (HJ) in te rm ed ia tes , w hich  accum ula te  in  the  

absence of R uv a n d  RecG HJ processing p ro teins, prom ote replication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Discussion

The data show n here  dem onstrate  the following:

(i) RecBCD -m ediated X recom bination in  the  absence of the E. coli R uv 

and  RecG HJ resolution system s is dependent on either a nin-encoded function(s) 

o r  D N A  rep lica tion . Each accounts fo r a p p ro x im ate ly  half o f th e  to ta l 

recom bination in  these cells (Figures 2 -3 ,2 -4 ,2-6A, see above). The nin encoded  

function responsible has no t been identified b u t is likely to be the Rap H olliday  

junction  reso lvase  (Sharp ies e t al. 1998), w h ich  facilitates som e k in d s  of 

recom bination events in  vivo (Hollifield et al. 1987; Stahl et al. 1995).

(ii) X recom bination  in  the absence of the kn o w n  HJ resolution system s 

requires the major replicative polym erase, DN A Pol III (Figure 2-4).

(iii) D irect physical analysis of recom bined D N A  for incorporation of n ew  

(light) isotopes revealed  that break-join recom bination occurs in w ild -type  cells 

(Figures 2-4, 2-6, M cM ilin and  Russo 1972; Stahl e t al. 1972a; McMilin e t al. 1974) 

and  absolutely requires H olliday junction processing pro teins such as Ruv, RecG, 

or the nin function (Figures 2-4, 2-6).

(iv) Both classes o f recom bination u tilize  C hi sites efficiently, so  w e 

suggest tha t there are  tw o pathw ays (and basic m echanism s) of E. coli RecBCD- 

m ediated recom bination and  double-strand break-repair: a  break-join p a th w a y  

th a t requires H olliday  junction resolvases (e.g. see Figure 2-1) and a  rep licative  

pathw ay th a t can operate  independently  of resolvases and  requires D N A  Pol HI. 

W e suggest that these are alternative fates of strand-exchange interm ediates (e.g. 

Figure 2-5).

(v) In  the absence of resolvases, essentially all of the central recom binants 

contain new ly replicated DN A, indicating that th ey  orig inated by a replicational 

recom bination m echanism  (Figure 2-6C).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 2

(vi) Physical analysis of recom b inan ts  in w ild -type cells a lso  revealed a 

substan tia l fraction of replicational recom bination (excess o f H L  o ver H H  central 

recom binan ts) even  w hen  the  reso lvases are p resen t (F igure 2-6B). Therefore 

w e conclude  th a t the replicational recom bination p a th w ay  is a  n o rm al p a rt of 

R ecBCD -m ediated X recom bination, n o t a  special m echanism  th a t occurs only in  

ruvC recG-defective cells. In  rec+ cells, th e  excess of p u ta tiv e  break-copy  (HL 

central) recom bination  relative to  e n d  recom binants in  the  H L p e a k  is tw o-fold 

over th a t  seen  in  the H H  (u n rep lica ted , break-join) p eak  (F igure  2-6B). This 

p rov ides in d ep e n d en t evidence th a t  ab o u t half of R ecB C D -dependent DSBR is 

break-join a n d  the  other half replicative.

(vii) The extent of new  D N A  synthesis in  the rep licational recom bination 

observed  corresponds to the  frac tion  of the  X genom e from  the  crossover p o in t 

to the  X r ig h t en d , in  su p p o rt of conservative  break-copy m o d els  (Figure 2-5, 

a lternatives discussed below).

(viii) D N A  replication is p ro m o te d  dram atically in  the  absence of RuvC 

a n d  R ecG  H J p ro c e ss in g  p r o te in s ,  su g g e s tin g  th a t  s tra n d -e x c h a n g e  

reco m b in a tio n  junctions m ay  act a s  assem bly sites for rep lica tio n  forks (this 

p ro p o sa l w as m ad e  p rev iously  b a s e d  on  data  on  reco m b in a tio n -d ep en d en t 

sta tionary -phase  m utation, H arris e t  al. 1996).

T he  re su lts  sum m arized  a b o v e  p rov ide  a  d irec t d e m o n s tra tio n  (via 

detection  o f rep licated  recom binan t m olecules) of a rep licational recom bination 

ro u te  in  th e  RecBCD system  of DSBR recom bination in  E. coli. The data  also 

sh o w  th a t  th e  rep lica tiona l a n d  b reak -jo in  m echan ism s can  b e  separa ted : 

rep lica tional recom bination is the  o n ly  m echanism  in ruv recG cells (Figures 2-4, 

2-6) w h e re a s  break-jo in  is the  so le  ro u te  w hen  reso lvases a re  p resen t a n d  

rep lica tio n  is b locked  (F igure 2-4). These findings w ill g rea tly  a id  fu rther 

dissections of bo th  RecBCD-mediated DSBR mechanisms.
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Previous evidence

G ro u n d b re a k in g  p re v io u s  w o rk  le d  to  th e  p ro p o sa l o f re p lic a tio n a l 

recom bination  in  E. coli. First, th e  d iscovery  a n d  characterization  of a  D N A  

rep lica tion  m ode  th a t is rep lica tion  o rig in  in d ep en d en t, and  recom bina tion  

pro tein  d ependen t (stable-D N A  replication, o r SDR) is m ost easily unders tood  by 

the  postu late  th a t recom bination  in te rm ed ia tes in itia te  replication, as in  b reak - 

copy m odels (K ogom a 1997). T he ev id en ce  is vo lum inous, im p o rtan t, a n d  

h ighly  suggestive, b u t  is indirect. R ecom bination-related genetic requ irem en ts 

w ere  dem o n stra ted , b u t  D N A  m olecu les th a t  w ere  bo th  recom bined  a n d  

replicated  w ere  not. SDR is n o t a  genera l process because it is seen o n ly  in  

RNaseH-deficient m u tan ts , or d u rin g  an  SOS (D N A  dam age) response (K ogom a

1997).

SDR-like rep lication  w as also observed  very  recently using  phage X. O ne 

X DN A  m olecu le  w as sh o w n  to b e  re p lic a te d  a t  enhanced  levels w h e n  a 

coinfecting X m olecule w as linearized  ("cut"), a n d  th e  enhancem ent req u ire d  

recom bination  p ro te in s (K uzm inov a n d  S tahl 1999). The resu lts dem onstra te  

replication th a t is enhanced  by recom bina tion  p ro te ins and  D N A  dam age. As 

w ith  SDR, the  ev idence  for association  of rep lica tion  and  recom bina tion  is 

ind irect for th ree  reasons: (i) th e  rep lica ted  D N A  w as n o t show n to  have  

recom bined , a n d  reco m b in ed  D N A  sh o w e d  no  evidence of h a v in g  b een  

rep lica ted  (K uzm inov  a n d  S tahl 1999); (ii) n o  req u irem en t for h o m ology  

betw een the cu t m olecule an d  the rep licated  m olecule w as reported; and  (iii) all 

of the recom bination p ro te in s  im plicated  (RecA, RecB, RecF) function dually : in 

recom bination; an d  in  in d u c tio n  o f the  SOS response  (W alker 1996). T hus, 

w h e th e r th is  is SO S -prom oted- o r reco m b in a tio n -p ro m o ted -rep lica tio n  is
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unknow n . R ecom bination  an d  rep lica tion  m ig h t no t have  b e e n  associated 

directly in  the sam e D N A  molecules.

Second, th e  existence of a recom bination  p ro te in -d ep en d en t m u ta tion  

m echanism  opera ting  in  stationary-phase E. coli cells (Harris e t al. 1994; Foster e t 

al. 1996; H arris e t al. 1996) and  requiring D N A  polym erase III (Foster e t al. 1995; 

H arris  e t al. 1997) is also m ost easily  accom m odated  by  m o d e ls  in  w hich  

RecBCD-m ediated DSBR can prim e replication (w hich leads to polym erase error 

and  m u ta tio n  (H arris  e t al. 1994; R osenberg 1997; Lom bardo a n d  R osenberg 

1999). H ere  too , a  d irec t dem onstration of replicated  recom binants has no t yet 

been  m ade. T he generality  of th is m echanism  is also uncerta in  because it is 

observed, so far, on ly  in  stressed an d  starv ing  cells.

T h ird , th e  m ost suggestive p rev io u s evidence su p p o rtin g  a ro le for 

replication in DSBR is tha t the replication prim osom e assem bly p ro te in  PriA  is 

im p o rtan t for rep lica tio n  and  is p a rtia lly  req u ired  for con juga tiona l an d  

transductional recom bination. Its absence causes a roughly  tw o-th irds reduction 

in  recom bination  (K ogom a e t al. 1996). This resu lt is easily  u n d e rs to o d  if 

replication is req u ire d  for about 2 /3  of RecBCD -m ediated recom bination , b u t 

this d id  no t d istingu ish  th is hypothesis from  the possibility th a t P riA , a DNA- 

b in d in g  p ro te in , enhances recom bina tion  in d ep e n d en tly  o f its  action  in  

p rom oting  replication. A lthough the biochem istry  of PriA  is consisten t w ith  a 

role in  p rom oting  replication du ring  recom bination (Liu e t al. 1999), it is no t yet 

know n w hether th a t is the  role of PriA  in  recom bination in vivo.

O ther good  argum ents have been advanced  (e.g. Sm ith 1991; K uzm inov 

1995; Courcelle e t al. 1997).
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T he m echanism  of the  replicatiaonal DSBR recom bination in  E. coli 

Break-copy m echanism s for th_e replicational DSBR such  as the  o n e  show n  in 

Figure 2-5 are strongly s u p p o r te d  by  the  results reported  here. T here  is a  close 

co rrespondence  b e tw een  th e  a m o u n t of n ew ly  sy n th e s ize d  D N A  in  the 

replicational recom binants witlm the  distance from  the crossover p o in t to  the  end 

of the X chrom osom e. This o b se rv a tio n  is com patible w ith  a n d  su p p o rtiv e  of 

break-copy m odels in w hich t h e  n ew  strands segregate conservatively  (Figure 2- 

5). H ow ever, alternatives are p o ss ib le .

A lternative  in terp reta tions

First, in  phage T4, one m ode >of replicational recom bination , ca lled  "join-cut- 

copy", has been dem onstra ted  (Jin add ition  to standard  break-copy a lso  done by 

T4) (M osig 1998). The jo in-crat-copy events proceed  on ly  v ia  le a d in g  s tran d  

synthesis. A n invading  3' en d . synthesizes one new  stran d  from  th e  crossover 

p o in t rig h tw ard  (in d iag ram s su ch  as in  Figure 2-5) an d  th en  a  T 4-encoded 

endonuclease cuts the template-? m olecule on the opposite s tran d  a t th e  crossover 

junction. The 3' end  from  t h i s  nick prim es lead ing  s tran d  sy n th esis  from  the 

crossover po in t leftw ard  (see M osig  1998) This odd  m echan ism  p ro d u ce s  a 

recom binant that contains one n ew  stran d  from  the crossover p o in t rig h tw ard  

a n d  the  o ther new  s tra n d  fr«om the crossover p o in t le ftw ard . A s ye t, no 

recom bination nuclease is k n o w n  to have this function in  E. coli (b u t see C hiu  et 

al. 1997) b u t we cannot ru le  th u s  m echanism  out. Further experim en ts w ill be 

requ ired  to  d istingu ish  b re a k -c o p y  from  join-cut-copy m odes o f rep lica tional 

recom bination, and  to address; m ore directly m odels w ith  conserva tive  versus 

sem iconservative segregation o»f strands.

Second, DNA replication* pausing  has been show n to lead to doub le-strand  

breakage in  £. coli (Seigneur e t al. 1998) in  a process th a t requ ires R u v  proteins.
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C ould  the  role o f rep lica tion  in  recom bination rep o rted  here  be in p roduction  of 

DSBs, w hich are  necessary  for RecBCD to load on to  an d  recom bine DNA? Three 

facts argue against th is idea: first, such DSBs shou ld  no t occur in  cells lacking Ruv 

functions (Seigneur e t  a l. 1998), w hereas o u r req u ire m e n t for rep lication  in  

recom bination is seen  o n ly  in  Ruv- cells (Figures 2-4, 2-6). Second, in X, the cos 

site  is w ell d o cu m en ted  to  be  the DSB site a t w h ich  RecBCD loads, a n d  to be 

req u ire d  ev en  w h e n  D N A  rep lica tion  is a llo w e d  (K obayashi e t al. 1982; 

K obayashi e t al. 1983; K obayashi et al. 1984) (see F igure 2-5). Thus, it  is m ost 

unlikely th a t the  ro le  o f  replication is to  p ro v id e  DSBs. Finally, this postu la te  

does not p red ic t th e  specific absence of break-join (central) recom binants am ong 

un rep lica ted  m olecules in  ruv recG (Figure 2-6C), w hereas break-copy m odels 

do.

S trand  P o larity

N either break-join, n o r  replicative m echanism s b e a r  particu larly  on the po larity  

o f R ecA -m ediated s tran d -in v asio n  th a t creates b i-m olecu lar strand-exchange 

in term ediates (e.g. F igu re  2-5B, C, D). The possib ility  th a t bo th  5' and  3' single

strand  D N A  ends c rea ted  b y  RecBCD can  invade  w as p resen ted  by R osenberg 

an d  H astin g  1991, a n d  su p p o rte d  by  in  v iv o  ev id en ce  of H agem ann an d  

R osenberg  (1991), M iese l a n d  Roth (1996), R azav y  e t al. (1996) a n d  som e 

biochem istry by  D u tre ix  e t  al. (1991), Taylor a n d  Sm ith (1995), Shan e t al. (1997), 

an d  the hypo thesis th a t on ly  3’ ends can invade  (as observed  under different in 

v itro  reaction cond itions (e.g. A nderson and  K ow alczykow ski 1997) a n d  in  an  

unusua l un im olecu lar reac tio n  in vivo (F riedm an-O hana a n d  Cohen 1998) can 

b o th  be acco m m o d ated  b y  o u r observation  o f  ro u g h ly  equal break-join an d  

replicative recom bination . For example, it has b een  hypothesized  th a t 3' end- 

invasions m ig h t p rim e  the  replication in  b reak -copy  m odels w hereas 5' end -
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invasions m igh t le a d  only  to  break-join (H arris e t al. 1996), in accordance w ith  

the ro u g h  e q u a lity  (1:2) o f 3' and  5' h e te ro d u p le x  recom binants o b se rv ed  

prev iously  (H agem ann  a n d  Rosenberg 1991). T hese possibilities w ill req u ire  

further s tu d y  to add ress.

Replicational recom bination in  other organisms

The connection b e tw een  recom bination and  rep lica tion  is best estab lished  in  

bacteriophage T4, in  w h ich  m uch of D N A  rep lica tio n  requires hom ologous 

recom bination functions (D annenberg and  M osig 1981; L uder and  M osig 1982; 

D annenberg a n d  M osig  1983; Form osa and  A lberts 1986). A lthough no  o ther 

system has yet p ro v id ed  as direct a dem onstration  of replicational recom bination 

as the T4 sy s tem  a n d  th e  da ta  for E. coli p re s e n te d  h ere , re p lic a tio n a l  

recom bination  m o d e ls  a re  cu rren tly  ga in ing  favo r in  m u ltip le  sy s tem s in  

including in  yeast (e.g. S trathem  et al. 1995; M orrow  e t al. 1997; Bosco an d  H aber 

1998; H olm es a n d  H aber 1999) and  m am m alian  cells (H arris et al. 1999) Such 

replicational DSBR could  be an  im portant source of nonreciprocal translocations, 

loss of he te rozygosity , telom ere extension, a n d  o ther genom e rea rrangem en ts 

im portan t in  fo rm ation  of hum an  cancers an d  ag ing  (Ellis et al. 1995; Yu e t al. 

1996; N ugen t et al. 1998; H aber 1999).

Why is either R uv or RecG required for conjugational and transductional 

recombination?

In the phage  X assay  system , replication can, in  effect, substitute for the R uv and  

RecG HJ p rocessing  system s of E. coli. H ow ever, this is not observed for the  E. 

coli chrom osom e. D ouble m utants of any  ruv gene w ith  recG are recom bination- 

deficient for E. coli conjugational and  transductional recom bination (Lloyd 1991) 

as if the rep lica tiona l RecBCD-mediated m echanism  cannot substitu te  in  these
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processes (for view s of the  ro les of R uv and RecG in  DSBR, see Lloyd 1991; 

Eggleston a n d  W est 1996; H arris e t al. 1996). Several explanations are possible 

for th is a p p a re n t d iscrepancy . F irst, it  is possib le  th a t  con jugation  a n d  

transduction  are strictly non-replicational events. Second, it is also possible th a t 

for som e reason, DN A  replication  forks assem bled a t recom bination  junctions 

are less processive than  those th a t s ta rt a t a  replication o rig in  (Bosco and  H aber

1998), such th a t the 48 kb A, genom e can be replicated by  recom bination bu t the  

4.5 mb E. coli genom e cannot. A  m ore unifying class of explanation  than  e ither 

of these is p resented  in Figure 2-7.

The replication forks in itia ted  a t recom bination in term ediates should be 

different from  those tha t s ta rt a t  a replication origin in  th a t they  are  associated 

w ith  a H olliday  junction beh ind  the advancing fork (Figure 2-7). The m igration 

of H o llid ay  ju n c tio n -co n ta in in g  rep lica tio n  b u b b les  a ro u n d  the  E. coli 

chrom osom e m ight require  b ranch  m igration pro teins such  as RecG or RuvAB 

(Figure 2-7B, C). A. m ight escape this need  either because the  distance is shorter, 

o r  because som e o ther activ ity  substitu tes for R u v /R ecG -m ed ia ted  b ranch  

m igration of the replication bubble. For example phage D N A  packaging occurs 

concurrently  w ith  RecBCD-m ediated recom bination of the  A. chrom osom e (see 

Figure 2-7A) because the DSB m ade  to  initiate packag ing  is the sam e one for 

RecBCD-loading (Kobayashi e t al. 1984; M yers an d  Stahl 1994). The packaging 

apparatus travels in  the sam e d irection  (rightw ard  F igure 2-7A) as the branch  

m igration th a t w ould  be necessary to m ove the junction righ tw ard . Perhaps the 

packaging appara tu s can m ove the  junctions a t the  forks for A.. A lternatively , 

because a replication bubble w ill n o t encounter any  rep lica tion  term inus in  A. 

DNA (as it w ou ld  in  the E. coli chrom osom e), rep lica tion  forks started  a t a 

recom bination interm ediate cou ld  proceed around the en tire  1 chrom osom e (the 

circle in  Figure 7A) and  the replisom e then  m ight p u sh  the  junction  rightw ard
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(M organ an d  Severin i 1990). For X, the  junc tion  n eed  only m ove p a s t th e  nex t 

p ack ag in g  o rig in  e n c o u n te re d  (cos, F igure  2-7A) to  p roduce  a p ack ag ab le  

replicated recom binant. A lthough, o ther explanations are  also possible, th is one 

a n d  variations on  th e  them e in  Figure 2-7 (see Bosco and  H aber 1998) a re  sim ple  

in  th a t they  do  n o t req u ire  any special p ro p erties  of the  replication assoc ia ted  

w ith  recom bination  th a t  a re  n o t seen for rep lica tion  in  general. T hese m odels 

also m ake testable p red ic tions. Further w o rk  w ill be  required  to  a d d re ss  the  

possibilities raised  b y  findings reported here.

M aterials and  M e th o d s

Bacterial and  p h ag e  s tra in s . All bacterial stra in s u sed  are £. coli K12 deriva tives 

an d  are  listed  in  T able  2-3. N ew  genotypes w ere  constructed u sin g  s ta n d a rd  

phage  P l-m ed ia ted  transduction  (Miller 1992). The presence of recA, recG, ruv A , 

ruvB , and  ruvC  a lle les w as confirm ed by  th e  increased  u ltravio let l ig h t (UV) 

sensitiv ity  p h en o ty p es conferred by  these m u ta tio n s . For all ruv recG d o u b le  

m u tan ts, the p resence  of b o th  alleles w as con firm ed  b y  verifying the  ex trem e 

UV sensitivity characteristic of strains lacking b o th  H olliday junction p rocessing  

system s (Lloyd 1991). The ruvC recG doub le  m u ta n t SMR650 w as co n stru c ted  

from  SMR632 as follow s. First, ruvC53 eda-51::TnlO (Lloyd 1991) w as in tro d u ced  

b y  transduction  w ith  phage  P I  grow n on  CS85. Second, recG258::Tnl O m inikan 

w as in troduced  b y  tran sduction  w ith  P I  g ro w n  on stra in  RDK2655 (L loyd a n d  

Buckm an 1991, ob ta ined  from  R. Kolodner). SMR3124 w as constructed sim ilarly  

except w ith  a d ifferen t ruv. The P I donor for SMR3124 was RDK2641 carry ing  

ruvA59::TnlO  (S hurv in ton  e t al. 1984). SMR3669, a  ruvC recG s tra in  also  lacking  

rusA, w as constructed  by  in troducing  ArusA::kan from  strain AM821 (M ahdi e t 

al. 1996) ruvC53 eda-57::TnlO::cam (ob tained  from  a transductan t of CS85 x P I
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RM 5258), an d  recG162 zib-636::TnlO  (Storm  et al. 1971) in  th a t  o rd e r  into 

SM R 632. The presence o f ArusAv.kan  w as confirm ed by  PC R  as described  

(M ahdi e t al. 1996). The UV sensitiv ity  of the  ruvC recG rusA  s tra in  w as sim ilar 

to  th a t of a ruv recG strain.

S train  SMR4292 lacking th e  rac p rophage w as constructed  b y  transducing  

th e  rac~ Su“ rec+ s tra in  JC11450 w ith  ruvC53 eda-51::TnlO (L loyd a n d  Buckm an 

1991) a n d  recG258::Tnl0minikan  (L loyd a n d  Buckm an 1991). S tra in  SMR4594 

carry in g  th e  tem pera tu re -sensitive  dnaE  allele dnaEts486  w as co n stru c ted  by 

tran sd u c in g  SMR632 w ith  P I  g ro w n  on  SMR540 (lab collection, allele from  R. 

M aurer, Case W estern Reserve U niversity). A  ruvC recG dnaEts s tra in  w as m ade 

by  tran sd u cin g  SMR4594 w ith  ruvC53 eda-51::TnlO (Lloyd a n d  B uckm an 1991) 

an d  recG258::TnlO minikan (L loyd a n d  Buckm an 1991) to m ake SMR4600. The 

recA derivative of SM4594 w as m ad e  by  introducing the  A(srlR-recA)::TnlO  allele 

by  transduction  w ith  P I  g row n o n  SMR624 (Harris et al. 1994).

A  se t of ruvC recG s tra in s in  w h ich  X rep lication  cou ld  b e  b locked  w as 

c re a te d  b y  first ly sogen iz ing  SM R632 w ith  XJtsl5 red3 gam.210 A nin5  Sam7 

[^SR459 (Sawitzke an d  S tahl 1997)], fo llow ed by  tran sd u c tio n  to  kanam ycin  

resistance  w ith  P I g row n on  a grpD 55 malF::TnlO::kan (Bull a n d  H ayes 1996) 

stra in  to  m ake SMR3731. grpD55  is an  allele of dnaB th a t blocks X rep lication  by 

lack of interaction w ith  X O  and  P  replication  proteins, b u t has n o  effect on  £. coli 

rep lication  (Bull and  H ayes 1996). Lysogeny w as confirm ed in  th e  grpD55  strain 

b y  dem onstra ting  im m unity  to a  X imm21 -phage P22 hybrid  th a t  carries the  18 

a n d  22 genes of P22 (equ iva len ts of th e  X O and  P  genes). A  ruvC  recG 

d e riv a tiv e  of SMR3731 w as m a d e  b y  tran sd u cin g  ruvC53 eda57::TnlO::cam  

(ob tained  from  a tran sductan t o f CS85 x P I  RM5258) an d  recG162 zib-636::TnlO 

(Storm  e t al. 1971).
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A phages are e ither from, the ASR collection, o r w ere  gifts from  F.W. Stahl 

o r S. Hayes. A cI857 (18,22) P22 (Bull and  H ayes 1996) w as u sed  as the killer 

p h a g e  for o u r screen  for lysogens in  grpD 55  m u ta n t cells a t 42°. Phage 

genotypes used  in  crosses to m easure  the frequency of recom binants (Figures 2- 

2 a n d  2-3, Table 2-2) are  A Ab527 red3 gam210 cI857 Chi+ C  Anin5 Sam7 (Chi+ nin~)-r 

A Ab527 red3 gam210 cI857 cII68 Anin5 Sam7 (Chi° ninr); A biol Anin5 (Chi+ a n d /o  

nin~) from  (Razavy e t al. 1996), and  A Abl red3 gam210 cI857 Sam7 (nm+); A biol 

(nin+). The phage genotype u sed  for experim ents in  Figure 2-4 w as ASR27, biol 

Anin.5. The phages u se d  in  Figure 2-6 are MMS1816, A J tsl5  int4 red3 gam21Q 

cI857 Anin5; MMS1817, A int4 red3 gam210 Anin5 Sam7, a n d  they  recom bine in 

the  presence of hom oim m une  p rophage MMS2076, A J ts l5  red3 gam210 Anin5 

Sam7, w ith  helper packag ing  functions p rov ided  b y  MMS2084, A Jtsl5 int4 red3 

gam210 imm.434 &nin5 Sam7 (Sawitzke and Stahl 1997).

G row th  of phage stocks an d  E. coli cultures

dnaEts strains w ere g ro w n  a t 28°. ruv recG double  m u tan ts  are  slow grow ing 

a n d  form  sm all colonies, such  tha t cultures are p rone  to accum ulation  of faster 

g row ing  and  larger m u ta n t colonies carrying supp resso r m utations as w ell as 

tru e  reversions (Lloyd a n d  B uckm an 1991; H arris e t al. 1996). ruv recG double 

m u ta n t strains w ere g ro w n  a t 32° to avo id  the accum ula tion  of suppressors 

norm ally  associated w ith  g row ing these strains at h igher tem peratures (H arris et 

al. 1996). The UV an d  d ru g  sensitivity phenotypes of all stra ins were confirm ed 

for cultures used  in  each experim ent (an d /o r for approxim ately  30 colonies from  

a g iv en  cu ltu re). C u ltu re s  w ere  also ro u tin e ly  m o n ito re d  for possib le  

accum ulation of suppresso rs o r revertants as described prev iously  (H arris et al. 

1996).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

X phage stocks (carry ing  light isotopes) w ere  g ro w n , and  p laq u e  assays 

perform ed accord ing  to  s tan d ard  procedures (M urray  1983). Stocks o f X p h ag e  

density  labeled w ith  an d  w ere g row n  acco rd ing  to  procedures o f Stahl 

e t  al. (1972a) on  p ro to troph ic  bacteria, for 12-14 h rs  a t  32°.

D eterm ination  o f recom bina tion  frequency

X crosses to  q u a n tify  the  frequency  of re c o m b in a tio n  w ere  p e rfo rm e d  as 

described p rev iously  (Razavy e t al. 1996), except th a t log  phase  cultures in  w hich  

m ixed infections w ere  carried  ou t w ere g ro w n  a t 32° a n d  10-30 p i of th e  frozen  

bacterial cu ltures in  ou r collection w ere u sed  to  inocu late  the  b ro th  for g row ing  

each culture to  log  phase . A  cesium  form ate  d e n s ity  g rad ien t for each  cross 

lysate w as then  p rep a red , centrifuged to equ ilib rium , a n d  collected as tw o  drop  

fractions in to  1 m l TB each. The titers of p h ag e  in  th e  fractions collected w ere  

determ ined by  p la tin g  the appropria te  d ilu tions of each  fraction on  th e  SuIH+ 

s tra in  KR3a for to ta l p h a g e , and  on  th e  S u II+  s tra in  AFT196 fo r XS + 

recom binants.

X recom bination assay  in  the  absence of D N A  rep lica tio n

Density-labeled (l^C , X red gam nin (ASR27) w ere  infected into E. coli strains 

carrying the  dnaEts allele a t the  non-perm issive tem p era tu re  of 43.5°. Cells w ere 

first grow n at 28° to  2 x 10^ ce ll/m l by  inocu la ting  10-30 p i of the frozen  stock 

into 10 ml of TB w ith  1% yeast extract, 0.2% m altose, a n d  0.01 m g /m l v itam in  B l. 

A dditionally , 25 p g / m l kanam ycin w as a d d e d  to  th is  b ro th  for the  g ro w th  of 

ruv recG strains (to avo id  accum ulation of recG rev e rtan ts  form ed by  tran sposon  

excision). T ypically , 10-13 hours w as re q u ire d  for cells to  reach  th e  co rrect 

density. Cell coun ts of each culture w ere m e a su re d  u s in g  Petrauff H au sse r 

counting cham bers. Cells and  the phage m ixes w ere  th e n  pre-incubated  a t 43.5°
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for 15 m inu tes p rio r to infections. Cells w ere  infected w ith  density -labeled  X a t a 

m ultip lic ity  o f 10 phage  p e r  cell. T he p h ag e  and  cell m ix tu res  w ere  bubbled  

v igo rously  fo r  30 m inu tes, th en  d ilu te d  w ith  4 m l o f p re w a rm e d  TB w ith  

add itions (above), an d  the  m ix tu res w e re  bubb led  fo r a n o th e r  35 m inu tes at 

43.5°. T he cell-phage m ixtures w ere  th e n  d ilu ted  by  ad d in g  5 m l of cooled (4 

degrees) TM  a n d  transferred  to  p recoo led  centrifuge tubes a n d  pelleted . Pellets 

w ere resu sp en d ed  in  2 ml of chilled b ro th  (as above). Lysozym e a n d  chloroform  

w ere ad d ed  to  lyse cells and  release the  phages. Cell debris w as pe lle ted  and  the 

supernatan ts collected.

A  d e n s ity  g rad ien t w as p re p a re d  for each lysa te  (M cM ilin  a n d  Russo 

1972). Tw o d ro p  fractions w ere  collected  in to  1 m l TB a n d  p h a g e  tite rs  w ere 

determ ined  fo r each fraction on  SMR423.

A ssay fo r cen tra l a n d  end  X rec o m b in a n ts  form ed u n d e r  c o n d itio n s  o f partia l 

rep lica tion -b lock .

P artia l re p lic a tio n  block w as a c h iev e d  b y  h o m o im m u n e  rep re ss io n  and  

hetero im m une h e lp e r phage infection, as described (Saw itzke a n d  Stahl 1997), 

except th a t o u r  E. coli strains also carried  the grpD55 m utation . grpD55 encodes a 

DnaB helicase  th a t does n o t in te rac t w ith  th e  X rep lica tion  p ro te in s  (Bull and 

H ayes 1996). In  th e  absence of th is  allele, X rep lication  co u ld  n o t be  blocked 

sufficiently in  ruv recG lysogens to  allow  reso lu tion  of any  u n rep lica ted  phage 

(HH peaks). A lso, the  cells w ere  g ro w n  slow ly a t 32° to  avo id  th e  accum ulation 

of supp resso r m utan ts. R ecom binants w ere  assayed on  stra ins JAS36 an d  JAS38 

as described (Sawitzke and Stahl 1997).
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T able  2-1. Efficiency of p lating  of X red gam on ruv recG deficient E. coli strains

E. coli strains

eop ± SDC

X C hi+ d XChioe X nin~ f

rec+a 1.0 1.0 1.0

ruvA  recGa 1.1 ± 0.3 0.98 ± 0.2 0.96 ± 0.1

ruvC recGa 1.0 ± 0 .1 1.1 ±0.1 1.1 ±0.1

rec+ °̂ 1.0 1.0 1.0

ruv A  rec(j° 0.91 ± 0.3 0.88 ±  0.2 0.91 ± 0.1

ruvC recCfi 0.95 ± 0.1 0.87 ± 0.5 0.86 ± 0.1

a Isogenic derivatives of stra in  FC40 published p reviously  (H arris et al. 
1996)(Table 2).
b  Isogenic derivatives of stra in  SMR632 (Materials and  m ethods, Table 2). 
c Efficiency of p lating  (eop) for each strain  was determ ined  by  dividing the X titer 
o n  the  ruv recG s tra in  by  its tite r on  the  rec+ s tra in . This num ber w as then  
corrected  for the  v iability  of th e  cu ltu res of cells on  w hich  the  plaques w ere 
assayed by  d iv id ing  by  the relative viability of the  strain . The relative viability 
of each strain  w as determ ined  as follows: (viable cell coun t of ruv recG/to ta l cell 
coun t of ruv recG) /  (viable cell count of rec+ / to ta l  cell coun t of rec+). Each 
determ ination  is a m ean (± s tan d a rd  deviation) of 3 in d ep en d en t experim ents in  
w h ich  h u n d red s of p laques w ere  counted. The abso lu te  viability  of the  rec+ 
s tra in s w ere a0.9 ± 0.04, an d  ^0 .7  ±  0.1 cfu /cell coun ted  (m ean ± SE for the  3 
experim ents reported) an d  the rela tive  viabilities w ere  a 0.4 ±  0.1, and ^0.4 ±0 .1  
for their ruvA recG derivatives , an d  a0.4 ± 0.1, and  ^0.4 ± 0.7 for their ruvC recG 
derivatives. These values are as reported  (Lloyd 1991).

Abl453 cl857 Chi+C (The Abl453  deletion rem oves int, red, and  gam.)
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e*. Abl453 c\857 cH68
biol Anin5 (The biol substitution rem oves int, red, and  gam. Anin5  rem oves 

analogs of E. coli recom bination genes, d iscussed  in  the text.)
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T able 2-2. Recom bination of X red gam Anin in  ra c  o r ArusA E. coli stra ins

S tra in3 Expt

Percent0 
hom ologous 

recom bination  
(m ean ±  SD) Strain^ Expt

Percent0 
hom ologous 

recom bination 
(m ean ± SD)

rec+ 1 5.2 ± 0.6 rac rec+ 1 4.0 ± 0.5

2 6.3 ± 0.8 2 4.7 ± 0.4

ruvC  recG 1 2.9 ±  0.3 rac ruvC 1 2.6 ± 0.3
A rusA recG

2 3.2 ±  0.8 2 2.3 ± 0.7

a  These strains are SMR 632 an d  SMR 3669 (Table 2-3). 
b T hese strains are JC11450 an d  SMR 4292 (Table 2-3).
0 Percentages of hom ologous recom bination are calculated as described in  
F igure  2-2 using  C hi° Anin.5 phage (Figure 2-2). R ecom bination is m easured  in  
the  X gam to S interval.
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Table 2-3. Bacterial strains

Strain R elevant p roperties Source o r 
reference

JC11450 rac~ rec+

594 Su" rec+
C600 Suit rec+
AFT196 C600 A(srlR-recA)306::Tnl0
KR3a SuTIT recA
RDK2641 ruvA59::TnlO
CS85 ruvC53 eda-51::TnlO

RDK2655 recG258::Tnl0minikan
RM5258 eda-57::T-nlO::cam
SMR423 C 6 0 0 S u n m  recD1903::Tet hsdrK~mK+
SMR632 594 hsdrk~ rnk+
SMR650 SMR632 ruvC53 eda-51::TnlO recG258:iTnlO

minikan
SMR3124 SMR632 ruvA59::Tn!0 recG258::Tn.l0minikan
AM821 ArusAr.kan
SMR3669 SMR632 ruvC53 eda-57:{TnlO::cam recG162

zib-636::Tn!0 ArusAvkan  
SMR4292 ra c  ruvC53 eda-51::TnlO recG258:iTnl0minikan
SMR4594 SMR632 dnaEts486 zaevJTnlOd-Cam
SMR4600 SMR632 dnaEts486 zaevTTnlOd-Cam ruvC53 eda-

51::TnlO recG258::Tnl0minikan 
SMR4601 SMR632 dnaEts486 zae::TnlOd-Cam A(srlR-

recA)306::Tnl0 
SMR3731 SMR632 grpD55 malF::TnlO::kan (A. Jtsl5  red3

gam210 AninS Sam7)
SMR3732 SMR632 grpD55 malF:'JTnlO::kan recG162

zib636vJTnlO ruvC53 eda57v!TnlO::cam (A. Jtsl5  
red3 gam210 Anin5 Sam7)

A. J. C lark, 
Berkeley 
(W eigle 1966) 
(A ppleyard  1954) 
Lab collection 
Lab collection 
R. K olodner 
R.G. L loyd, via R. 
K olodner 
R. K olodner 
(Foster e t al. 1996) 
Lab collection 
Lab collection 
This w o rk

This w ork  
(M ahdi et al. 1996) 
This w o rk

This w o rk  
This w o rk  
This w o rk

This w o rk

This w o rk

This w ork
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JAS36 C600 (XJtslS red3 gam210 imm434 Anin5 Sam7) (Sawitzke and
Stahl 1997)

JAS38 A(srlR-recA)306::Tnl0 recD1009 (X Jtsl5  red3 (Sawitzke and
gamllO  imm434 Anin5 Sam7) Stahl 1997)

FC40 ara A(lac-pro)YTTl thi RifR [F  lacI33 WlacZ (C aim s and Foster
proAB] 1991)

RSH45 FC40 ruvC53 eda51::Tn!0 (H arris et al. 1996)
recG258::Tnl0minikan

RSH160 FC40 ruvA59::Tn!0 recG258::Tnl0minikan (H arris et al. 1996)
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Figure 2-1. Tw o early  general m odels fo r hom ologous recom bination  (ad ap ted  
from  M eselson a n d  W eigle, 1961). Each lin e  represents dup lex  D N A . D ashed  
lines rep re se n t n ew ly  syn thesized  D N A . Solid  lines rep resen t "old" p a ren ta l 
DN A. HJ p ro cessin g  (th in  arrow ) in d ic a te s  action of HJ reso lu tio n  p ro te in s, 
inc lud ing  a n  endonucleo ly tic  cleavage (su c h  as RuvC perform s) to  b reak  the  
invaded  m olecule (gray) an d  allow  its lig a tio n  to  the black fragm ent. N o  s tran d  
polarities are  show n  because specific p o la ritie s  are no t im plied  by  e ither m odel 
(see Discussion).
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A a t t
A

b io l

Anin

A nin +

Site-specific Homologous
F igure  2-2. D esign  of X crosses u sed  to  m easure  the frequency o f recom bination
in  rec+ a n d  ruv recG cells. (A) T he stra tegy  for th is assay is described  in  the  text. 
S trains a n d  m ethods used are those o f R azavy e t al.(1996). This general d iagram  
show s all o f the  relevant genetic m arkers used . The open  box rep resen ts  either 
o f tw o  d iffe ren t deletions (Ab527 o r Ab2, M aterials and  m ethods) bo th  starting  
from  the  core a tt site  and  rem oving  D N A  to its left. The filled box  represen ts a 
d e le tio n /su b s titu tio n  (biol) s ta rting  from  the  core att site and  rem ov ing  D N A  to 
its r ig h t, re su ltin g  in  a n e t loss o f app rox im ate ly  2 kb of D N A . The arrow  
ind icates the d irection  of the C hi sequence; "+" indicates the w ild -type  copy of 
the  S gene; th e  o ther p a ren t carries Sam 7. Crosses p e rfo rm ed  (F igure 2-3) 
v a rie d  th e  p resen ce /ab sen ce  o f  th e  C hi site, C hi+C, and  of the  nin  dele tion , 
Anin5. All phage  are  red gam, th e  top  phages by  carrying red3 gam llO  m u tan t 
alleles, a n d  the  bo ttom  phages b y  v irtu e  of the biol substitu tion  (see M aterials 
and  m ethods a n d  Razavy et al. 1996 for full genotypes).
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(B) A  representative cesium  form ate equ ilib rium  density  g rad ien t of a cross 
p ro g en y  show ing the denser peak  form ed by  site-specific recom bination, w h ich  
contains neither A n o r biol n e t deletions (fractions 15-20). The next ligh ter peak  
(fractions 21-25) includes the  top  paren tal phage  (A) p lus its S+ reco m b in an t 
derivatives. O pen squares and  filled circles rep resen t to tal phage (Sam7 an d  S+) 
a n d  S + recom binants, respectively. These p laques w ere assayed on SuHI+ recA 
(for "total" phage) and  SuII+ recA (for S+ recom binants) cells, which do  no t allow  
p laq u e  form ation  of p h ag e  w ith  the bio su b s titu tio n  b u t do allow  the  gam  
(am ber)220 carriers to  form  plaques (M aterials and  m ethods). Thus, w e do  n o t 
see the  double-deletion (Abiol) site specific recom binant peak. To calculate th e  
frequency of k  S+ hom ologous recom binants am ong  site-specific recom binants, 
the  tite r  of k S + in  each  fraction (15-20) is d iv id ed  by  the total tite r in  th a t 
fraction, and  the m ean  ± SD for all the fractions in  the  peak  is expressed  as a 
percen tage (Figure 2-3 an d  Table 2-2). The da ta  show n are  from  a cross in  rec+ 
SMR632 cells using Chi° nin+ phage (Materials an d  m ethods).
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F igure  2-3. R ecBCD -pathw ay recom bination o f A, in  the  absence of R uvC  an d  
RecG. T he th ree  b a r  g ra p h s  su m m arize  th e  re su lts  o f th ree  d if fe re n t 
experim ental designs, m easu ring  the efficiency o f X recom bination in  rec+ a n d  
ruvC recG cells. For each design , we u sed  a  d iffe ren t set of phages a n d  the  
re le v a n t X geno type  (n in+ , A nin, and  Anin  C h i+ / ° )  is show n above each  b a r 
g raph . The significance of these genotypes is described  in the  text. E ach b a r 
rep resen ts  the  m ean  percen tage  of hom ologous recom bination  a m o n g  site- 
specific In t-m ed ia ted  recom binants (± SD; calcu lated  as described in  Fig. 2). 
Three independen t experim ents w ere perform ed for nin+ and A nin crosses. Two 
experim en ts w ere  p e rfo rm ed  for the A nin  C h i+ / °  cross. The d e le tio n  A n in  
shortens the  D N A  seg m en t w hose recom bination  is assayed (see Fig. 2), a n d  
therefo re  n ecessarily  decreases the  percen t recom bina tion  re la tive  to  n in + 
crosses. T hus, the  im p o rtan t com parison  fo r b o th  n in + and  Anin  c rosses is 
betw een  presence or absence RuvC RecG in  each.
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Expt 1A n mm n +

Expt 2

□  Expt 3

rec+ ruvC recG rec+ ruvC recG

10 -

5 -

o-L

Chi+/ °  A n i n

T

■
ski.

±1

H  Chi+ 

□  ChP

rec+ ruv recG
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F ig u re  2-4. X P rogeny  fo rm atio n  in  the absence of D N A  rep lication  requ ires 
R u v C /R e c G . X p ro g e n y  fo rm a tio n  w a s  u s e d  to  a ssay  rec o m b in a tio n . 
R eplication w as b locked by  infecting cells th a t carry  a tem perature sensitive allele 
o f the  dnaE  gene w ith  density -labeled  X (XSR27) a t  43.5°C, a t w hich tem pera tu re  
w e  o b ta in  a  com plete  replication-block . T hese  g rap h s rep resen t th e  tite rs  of 
p laq u e  fo rm ing  X in  the  fractions of a  density  g rad ien t obtained fo llow ing each 
infection. The densest fractions are  to  the left o n  each graph . The first peak  in  all 
g rad ien ts  contains u n a d so rb e d  X. These p h ag e  carry  heavy  p ro te in  coats a n d  
h eav y  (H H ) D N A . T hey d id  n o t en ter the lig h t cells a n d  therefore, are  n o t p a rt 
of the  X p rogeny . (A) D ensity  g rad ien t of infection  in  rec+ cells. Two peaks are  
ap p a ren t. T he second  p e a k  contains X p ro g en y  w h ich  have en te red  th e  cell, 
recom bined  an d  packaged . T hese carry  lig h t p ro te in  coats a n d  h eav y  (H H ) 
D N A . N o  o ther peaks are  de tec ted  because o f the  replication block. (B) ruvC  
recG  cells. Few  o r no  X p ro g e n y  are  de tec ted . (C) recA  cells. Few  o r no  X 
p ro g en y  are  detected.
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A Break
terminase

RecBCD
nucleaseprohead

F ig u re  2-5. P red ictions of break-copy an d  b reak -jo in  recom bination  m odels. 
T h e  th ick  lines rep re se n t p a ren ta l D N A  (black a n d  gray). The dashed-lines 
re p re se n t new ly syn thesized  D N A . Specific s tran d -p o la ritie s  are no t ind ica ted  
b*ecause no specificities are  im p lied  by  either m o d e l dep ic ted  (see D iscussion). 
( j \ )  The phage X D N A  m olecule is linearized  d u r in g  D N A  packaging  b y  th e  
em donuclease term inase  (w hite  circle) w hich  re m a in s  b o u n d  to the X left e n d  
a f te r  D N A  cleavage (K obayashi e t al. 1982; K obayash i e t al. 1983). (H exagon  
re p re se n ts  the ph ag e  p ro h e a d  attached  to  te rm in a se  d u r in g  packaging  a n d  
c o n cu rren t DSBR recom bination  (Kobayashi et a l. 1984).) O nly  the rig h t end  is 
av a ilab le  for DSBR (K obayashi e t al. 1982; K obayash i e t al. 1983) w hich beg ins 
w i t h  d e g ra d a t io n  le f tw a rd  b y  RecBCD  e x o n u c le a s e , re v ie w e d  b y  
(IKowalczykowski e t al. 1994; M yers an d  Stahl 1994). (N ote th a t Chi sites [not 
sh o w n ] are recom bina tion  ho tspo ts  in  th is  p a th w a y  because  w hen RecBCD 
reach es Chi, Chi decreases RecBCD nuclease ac tiv ity  allow ing  the DN A there  to  
recom bine  (review ed by  M yers and  Stahl 1994; R osenberg  an d  M otam edi 1999).
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Break-Copy Recombination

rr ■, cP-----
V \ V
♦ to   a

Central End

D Break-Join Recombination

Q — =

0 = _

(B,C,D) In  a b reak -copy  process, the d e g ra d e d  rig h t end in itia tes a  rep lication  
fork(B, C). Sem i-conservative rep lication  o f density  labeled D N A  to th e  end  of 
the  chrom osom e fo llow ed by the conservative  segregation  of th e  n e w  strands 
(shown) w o u ld  p ro d u ce  recom binant m olecules w ith  the follow ing densities: (C) 
E nd recom binants inherit mostly p aren ta l D N A  (and  w ould  be expected  to band  
in  or near the  heavy-heavy  [HH] peak  in  a  density  transfer experim en t (see Fig. 
6B and C). (B) C en tra l recom binants w o u ld  contain  roughly  ha lf p a ren ta l and  
half new ly syn thesized  D N A  (and w o u ld  b a n d  in  the heavy-light [HL] p eak  in  a 
d e n s ity  t r a n s fe r  e x p e rim e n t (see F ig . 6B a n d  C). (D ) In  b reak -jo in , 
recom bination  in te rm ed ia tes are reso lved  b y  the  H olliday  junc tion  reso lu tion  
system s. The recom binan t molecules in h erit only  atom s from  p aren ta l D N A ; no 
new  synthesis is req u ired  to complete th e  recom bination reaction. These central 
recom binants w o u ld  fall into the first few  fractions of the "HH" p eak  in  a  density  
transfer experim en t (see Fig. 6B).
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•  Central O End

Figure  2-6. Extent of DN A  replication in  central and  right-end X recom binants in
crosses w ith  som e rep lication  allow ed in  rec+ and  ruv recG cells. These crosses 
w ere  conducted under p a rtia l replication-block (M aterials and  M ethods) to allow  
visualization of any  break-copy recom binants. If full replication-block is used, no  
H H  peak is visible for ruv recG (Fig. 4JB). (A) The relevant genotypes of phages 
u sed  in  this experim ent. These phage (Sawitzke and  Stahl 1997, see M aterials and  
M ethods) carry  the  nin5  d e le tion  and  are m arked  to allow  selection of / + S+ 
recom binants from  w hich  cen tral (J+ cl S+, clear, filled circle) and  righ t end  (J+ 
cl+ S+, turbid, open  circle) recom binants are enum erated.
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unadsorbed
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(B, C) D ensity  labeled  (-^C , l^ N ) p h ag e  w ere  allow ed to recom bine  u n d e r 
partial replication block (M aterials an d  m ethods) and the progeny centrifuged  to 
equilibrium  in  cesium  form ate density  g radients, which were fractionated. N ote 
th a t the p rogenies b an d  in to  unrep lica ted , heavy-heavy (HH), an d  rep licated , 
heavy-light and  light-light (HL and  LL) peaks. Total X (open squares), an d  J+ S+ 
recom binants w ere  assayed (M aterials an d  m ethods), and  central (filled circle) 
and  righ t end  (open  circle) recom binants counted. The first peak  (leftw ard) in  
these experim ents represen ts u n ad so rb ed  phage  (heavy coats an d  H H  DNA) 
which are n o t p a r t  of the X progeny. (B) D ensity  gradient of the  X cross in  rec+ 
cells. D iscussed in  the text. (C) D ensity  g rad ien t of the X cross in  ruvC recG cells. 
Discussed in  the  text.
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F igu re  2-7. Break-copy m odels illustrated for RecBCD -m ediated recom bination 
o f X (A) an d  £. coli (B, C) genom es. M odel d iscussed  in  the  text. The hexagon  
rep re se n ts  the  p ro h ea d  d u r in g  X D N A  p ack ag in g  from  cos to  cos. The ball 
rep re sen ts  the te rm inase  p ro te in  w hich  linearizes X, b inds th e  p rohead , a n d  
packages the DNA.
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Chapter 3*

Evidence for the occurrence of two distinct RecBCD-m ediated recombination  
intermediates in  vivo: One requires processing via RuvABC, whereas the 

other is processed independently of an endonucleolytic cleavage.

* A version of this chapter is in  preparation to be submitted to Genes & Development.
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Introduction

The faithful passage o f genetic inform ation from  p a re n t to offspring is crucial for 

the  fitness and  su rv iva l o f any  species. It requ ires the  error-free dup lica tion  of 

the  paren tal genom e, b y  D N A  replication, fo llow ed b y  the transm ission of a  n ew  

copy to  the  offspring. A ny  im pedim ent to this p rocess underm ines the su rv iva l 

o f the  species.

D N A  doub le-s trand  breaks (DSBs) occur n a tu ra lly  and frequently in  cells 

(Skalka 1974; K uzm inov  1995; Seigneur e t al. 1998; M ichel 2000). They im p ed e  

D N A  rep lica tion  , a n d  ac t as en try  sites for v a rio u s  D N A  degrad ing  enzym es 

(such as exonucleases) to  the  chrom osom e (M ichel e t al. 1997). The accum ulation  

o f these  lesions th rea tens the  integrity of the genom e, an d  ultim ately causes cell 

death.

O bviously, m echan ism s have evolved to  rep a ir  these lesions. The m ost 

conserva tive  m e th o d  for th e ir repair is v ia  recom bina tion -dependen t D N A  

double-strand  b reak -repa ir (DSBR) (reviewed in  C lark  an d  Sandler 1994; K anaar 

a n d  H oeijm akers 1998; H ab er 1999). This m echan ism  is conservative because  

rep a ir is m ed iated  th ro u g h  the  exchange of in fo rm ation  betw een hom ologous 

m olecules, w ith no  n e t loss of genetic m aterial. T he conservative nature  of DSBR 

is un ique  because, for exam ple, in  another repa ir p a thw ay , non-hom ologous end  

jo in ing , the  DSB is re p a ire d , in d ep en d en tly  o f hom ologous recom bina tion  

pro te ins, by  being physically  connected to any availab le  DNA end (Lobrich e t al. 

1995). This often resu lts in  gross chrom osom al translocations, and  loss of genetic 

in fo rm ation  a t the  b rea k  site (review ed in  T sukam oto  and  Ikeda 1998; H ab er 

1999).

In  the bacterium  Escherichia coli, the d o m in an t rou te  for repairing  DSBs is 

v ia  RecBCD-mediated DSBR (Kowalczykowski e t  al. 1994; Myers and  Stahl 1994;
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K ow alczykow ski 2000). M ost of the  enzym es tha t w ork  in  th is p a th w ay  have 

been  id en tified  (review ed in  L loyd a n d  Low  1996; R osenberg a n d  M otam edi 

1999; K ow alczykow ski 2000). RecA a n d  RecBCD p ro te in s o p e ra te  to  align 

(sy n ap se ) h o m o lo g o u s  m o lecu les, fo rm in g  b i-m o lecu lar reco m b in a tio n  

in te rm ed ia te s , such  as H olliday  ju n c tio n s (HJ). In  E. coli, tw o  apparen tly  

in d e p e n d e n t p a th w ay s  operate  to p rocess D N A  in te rm ed ia tes in to  m atu re  

recom binan t D N A : the  RuvABC a n d  the  RecG system s (L loyd 1991). The 

RuvA B com plex  (m ade of R uvA  a n d  RuvB pro teins) a n d  RecG p ro te in  

specifically b in d  a n d  branch m igra te  HJs m ade  by RecA (Parsons e t al. 1992; 

T saneva e t al. 1992; W hitby et al. 1993). RuvC is an endonuclease, exclusively 

cu tting  D N A  a t four-w ay junctions, p roducing  recom binant m olecules (Connolly 

et al. 1991; Iw asaki e t al. 1991; Bennett e t al. 1993). RuvC has been  show n to w ork 

in  a com plex w ith  R uvA  and RuvB p ro te ins (van Gool et al. 1998), form ing the 

RuvABC resolvasom e in  vitro (van G ool et al. 1999). The catalytic activities of 

the RuvABC com plex are sufficient to b ranch  m igrate and  resolve recom bination 

in term ediates into m ature  recom binant D N A  products (review ed in  W est 1994; 

K uzm inov  1996). RecG is th o u g h t to act in  an  independen t m echanism  for 

p rocessing  recom bination  in te rm ed ia tes in  E. coli (L loyd 1991). Its b ranch  

m ig ra tio n  a c tiv ity  is th o u g h t to  be  su ffic ien t to p rocess recom bina tion  

in term ediates in  v itro  (Lloyd and  Sharpies 1993; W hitby et al. 1993).

H istorically , recom bination-dependent DSBR in  E. coli w as th o u g h t to 

p ro ce ed  b y  th e  b reak ing  an d  re -jo in ing  of D N A  m olecu les (break-join) 

exclusively (M eselson and  Weigle 1961; M eselson 1964; McMilin an d  Russo 1972; 

M cM ilin et al. 1974), w ith  no requ irem ent for DNA synthesis. The discovery of 

HJ-specific p ro te ins, specifically RuvC , su p p o rted  break-join DSBR m odels by 

p rov id ing  the enzym atic activity p red ic ted  for the resolution of HJ interm ediates 

(e.g. T haler a n d  Stahl 1988; Lloyd a n d  Low  1996). H ow ever, recen t evidence
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suggested the  existence o f an  alternate  recom bination-dependent repair pa thw ay , 

one m ediated  v ia  D N A  rep lica tion  (review ed in  K ogom a 1997; Kow alczykow ski 

2000; M arians 2000; M ichel 2000).

The first ex p erim en ta l ev idence su p p o rtin g  th e  hypo thesis th a t D N A  

replication is invo lved  in  RecBCD-m ediated recom bination  cam e in 1974 (Siegel 

1974). Since then, resu lts from  a  variety  of experim ental system s have challenged 

th e  exclusivity of break-jo in  m echanism  as th e  only p a th w ay  for repairing  DSBs 

(review ed in  C hap te r 2). The in tim ate  in te rp lay  b e tw een  D N A  recom bination  

an d  replication w as sh o w n  in  p h ag e  T4 (review ed in  M osig 1998; K reuzer 2000), 

im p lied  genetically  in  E. coli (fo r review s, see K ogom a 1996; K ogom a 1997; 

K uzm inov and  Stahl 1999; L om bardo and  R osenberg 1999; Lom bardo e t al. 1999; 

K ow alczykow ski 2000; M arians 2000), yeast (Bosco a n d  H aber 1998; H olm es and  

H aber 1999; H ores-R ozas and  K olodner 2000) and  m am m alian  cells (for a  review , 

see H arris et al. 1999). In  C h ap te r 2 , 1 d irectly  dem o n stra ted  the  existence of a 

replicative DSBR m echan ism  b y  isolating recom binan t D N A  products th a t have 

undergone new  D N A  syn thesis from  w ild-type E. coli. I used  phage lam bda  (>.) 

as the DNA substra te  fo r RecBCD-mediated DSBR a n d  show ed that a replicative 

m echanism  occurs in  a d d itio n  to  the prev iously  described  break-join p a th w ay  

(see Figure 1). This p a th w a y  requ ires D N A  synthesis (break-copy) by D N A  Pol 

m  a n d  occurs independen tly  of H olliday junction processing  proteins (e.g. in  ruv  

recG cells). I estim ate th a t each pa thw ay  contribu tes to  approxim ately  half of all 

DSBR in  £. coli (C hapter 2).

The involvem ent o f rep lication  in  the  repair o f DSBs has been postu la ted  

before (e.g. Sm ith 1991; K uzm inov  1995; Courcelle e t al. 1997), b u t n o t m uch  is 

k now n  about the m olecu lar de ta ils  of this process. In  £. coli, the discovery an d  

characterization of a recom bination-dependent D N A  replication m echanism  tha t 

operates independen tly  o f the o rig in  of replication (oriC) p rovoked  new  research
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in  th is  field  (rev iew ed  in  K ogom a 1997). This type  of rep lica tio n  (know n as 

stab le-D N A  rep lica tion , SDR) occurs only  in  special m u ta n t E. coli cells (e.g. 

rnhA) o r  d u rin g  the  SOS response  to D N A  dam age. H ere th e  requ irem en t of 

recom bina tion  functions in  p ro m o tin g  th is ty p e  of DNA rep lica tio n  has been 

dem onstra ted  genetically. O f note, the replication prim osom e assem bly protein, 

P riA , a n d  the  strand-exchange recom bination  pro tein , RecA, a re  bo th  required 

for S D R .

PriA  can  b in d  sing le-strand  D N A  and  d irect the assem bly  of replication 

forks on  D N A  in te rm ed ia tes (D-loops) (Liu an d  M arians 1999; Liu et al. 1999; 

M arians 2000), an d  its absence resu lts in  a  tw o-thirds reduction  in  transductional 

an d  conjugational recom bination (Kogom a et al. 1996). From  th is resu lt it can be 

in fe rred  th a t rep lica tiv e  recom b ina tion  is responsib le  fo r tw o -th ird s  of all 

recom bination . H ow ever the  d irec t dem onstra tion  of a recom bined  D N A  that 

has also experienced D N A  synthesis w as no t m ade in  this system . U sing X as the 

D N A  su b s tra te , I iso la ted  rep lica ted  reco m b in an t D N A  m olecu les, thus 

d em onstra ting  the  existence of a replicative repair pa thw ay in  w ild-type E. coli. 

Furtherm ore , I found  th a t this m echanism  is responsible for approx im ate ly  half 

of all DSBR in  E. coli.

Interestingly , the RecG pro tein  has been  show n to com pete  w ith  PriA for 

b in d in g  to  D -loops in  v itro  (M cGlynn e t al. 1997) and  the su p p resse rs  of recG 

m u ta tio n  a re  fo u n d  in  the  PriA  gene (Al-Deib e t al. 1996). D -loops are DNA 

in te rm e d ia te s  fo rm ed  by  the  R ecA -m ed ia ted  p a irin g  o f  a  ssD N A  to a 

hom ologous dup lex ; these  in te rm ed ia tes are  hypo thesized  to  be the  starting  

substra te  for SDR reactions and  to occur du ring  hom ologous recom bination (see 

Figure 3-1). The find ing  th a t PriA  com petes for b inding  to a  D N A  interm ediate 

th a t occurs norm ally  d u rin g  recom bination allow s for the hypo thesis  th a t DNA 

replication  m ay  p lay  a role in  the processing of HJ recom bination interm ediates.
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W e found physical ev idence  th a t replicative rep a ir can  p ro ceed  w ith o u t the  

involvem ent of any  H J processing  proteins (Chapter 2). This find ing  challenges 

the current m odels of DSBR in  E. coli, in  w hich Ruv a n d  RecG system s represen t 

the only pathw ays of reso lv ing  HJ.

In this report, I investigate  the role of each H J processing  p ro tein  in DSBR 

in  £. coli. I use X D N A  as the substrate for recom bination (described in  C hapter 

2), because prev iously  developed  m ethods allow for the  easy  physical detection, 

separation  an d  quan tifica tion  o f recom binant p ro g en y  fo rm ed  by  each DSBR 

p a thw ay  in  vivo. R ecom binan t p rogeny are a ssayed , b o th  physically  a n d  

genetically, from  E. coli strains lacking a HJ processing pro tein . I discover that in  

ruvA, ruvB, ruvC  an d  recG strains, the m ajority of recom bination  occurs v ia  the  

replicative m echanism . The break-join recom binants are  e ither absen t (in Ruv- 

defective strains) or rep re sen t a sm all fraction of to ta l recom bination  (in recG 

cells). For the  first tim e, these  results place RuvABC a n d  RecG in  the sam e 

(break-join) DSBR pathw ay.

Interestingly, these  resu lts also show tha t in  the  absence of RecG protein , 

the  overall recom bination  frequency rem ains un ch an g ed  (com pared  to rec+ ), 

even though the  break-join pa thw ay  is h indered  significantly. This is in  contrast 

to ruvA, ruvB, an d  ruvC  m u tan t cells in w hich overall recom bination is reduced  

to  half of w ild  ty p e . I f in d  th a t in recG cells rep lica tive  recom bination  

com pensates for this decrease in  break-join recom bination; how ever, unlike the  

previously  described break-copy pathw ay (C hapter 2), it  requ ires RuvABC for 

com pletion. T hese re su lts  suggest the occurrence  of tw o  d is tin c t D N A  

interm ediates du ring  DSBR in  vivo: one requires D N A  synthesis by  DN A  Pol m , 

b u t no HJ resolution pro teins; the other is processed exclusively by  RuvABC, b u t 

requires either RecG (break-join) or DNA synthesis (break-copy) to com plete the 

recom bination reaction.
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R esults

X as a tool to  s tu d y  the  RecBCD recom bination  system  in  E. coli 

Bateriophage X p rov ides a pow erfu l tool for studying  the  m olecular m echanism  

of R ecB C D -m ediated recom bination  in  E. coli. Its w ell-estab lished  genetics 

com bined w ith  sensitive m ethods for detecting new ly syn thesized  D N A  m ake it 

an ideal tool to  d irectly  study  the  connection betw een D N A  recom bination  an d  

rep lica tion  in  vivo: new ly  syn thesized  DNA can  be  d e tec ted  on  th e  sam e 

m olecule th a t has undergone recom bination (reviewed in  Stahl 1986; Stahl 1998). 

Because X h as  its ow n recom bination system s, special m u tan t X strains, red gam , 

th a t are  defective for X recom bination, are used so th a t sw ap p in g  betw een  X 

chrom osom es on ly  occurs th ro u g h  the  E. coli RecBCD m ach inery  (Lam  e t al. 

1974; H enderson  and  Weil 1975).

X D N A  packag ing  requ ires d im eric  or m ultim eric  u n its  of X genom e 

connected together in  a  head-to-tail fashion (X m onom ers are  n o t packaged) (for 

review , see Feiss and  Becker 1983). Follow ing X infection, b i-d irectional (0) 

replication occurs and  circular m onom eric X genom es are p roduced . N orm ally , 

m ultim ers a re  p roduced  via rolling circle replication, requ iring  the G am  protein . 

W hen the G am  p ro te in  is absen t (e.g. X red gam), ro lling  circle rep lica tion  is 

inhibited  because RecBCD degrades rolling circles. Therefore, in  RecBCD+ cells, 

the only ro u te  to  dim erization and  packaging of X red gam D N A  is via RecBCD- 

m ediated  recom bination  of m onom eric X chrom osom es into m ultim ers. T hus X 

red gam  p ro g en y  form ation  can be used  as an assay for E. coli recom bination  

(reviewed in  Sm ith an d  Stahl 1985).

A nother advantage of X is th a t during  packaging a D N A  break  is m ade  a t 

a defined site called cos (Kobayashi et al. 1982; Kobayashi et al. 1983; Stahl 1986). 

D uring  packag ing , cos cleavage generates a DSB, w hich  is the  substra te  for all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

R ecB C D -m ediated even ts. O n e  en d  o f the  D N A  is b o u n d  b y  the  p a ck a g in g  

p ro te in , Term inase, b locking  th e  access of RecBCD enzym e, w hereas th e  o ther 

e n d  se rves as the  en try  site  for RecBCD. T hus all recom bination  ev en ts  are  

in itia ted  from  the sam e b reak  site.

Because X packaging  is precise, each  v irion has a  defined density. T his can 

be  u se d  to  detect n ew  D N A  sy n th esis  p h y sica lly  (using  d e n s ity  lab e lin g  

te c h n iq u e s  d escrib ed  in  C h a p te r  2) w h ile  d e te rm in in g  th e  in te rv a l  o f 

recom bina tion  w ith in  th e  sam e D N A  m olecule. This technology a llo w s for 

ex p lo rin g  the in te rp lay  b e tw ee n  rep lica tion  a n d  recom bination  in  th e  £. coli 

RecBCD system . In d eed  m u ch  m echanistic  in sig h t has been  ga ined  fro m  the 

analysis of X recom bination  p ro d u c ts  (e.g. Stahl a n d  Stahl 1971; M cM ilin  an d  

Russo 1972; Stahl et al. 1974; M otam edi e t al. 1999).

R ecom bination  in  the  absence  o f HJ p rocessing  p ro te in s  is R ecB C D -m ediated

P rev iously , I show ed  th a t  in  cells defective for b o th  Ruv an d  RecG functions 

recom bination can occur, is RecBCD-m ediated, b u t  uses a  replicative m echan ism  

(see C hap ter 2).

H ere  I exam ine th e  ro le  of each  HJ p ro cess in g  p ro te in  in  RecBCD- 

m ed ia te d  recom bination in  E. coli. U sing  a s ta n d a rd  X recom bination  assay  

(m od ified  from T haler e t al. 1989; described  in  C h ap te r 2; R azavy e t al. 1996) 

frequency  of R ecB C D -m ediated recom bination  is m easu red  in  m u ta n t £. coli 

s tra ins defective for one H J p rocessing  protein. Briefly, this assay m easu res the  

reco m b in a tio n  frequency  o f tw o  X s tra in s (red gam), defective in  th e ir  ow n  

recom bination system s (see F igure 3-2A). Because X red gam p rogeny  fo rm ation  

req u ires  recom bination (see above for exp lanation), in  o rder to  d e te rm in e  the 

recom bina tion  frequency , a n  a lte rn a tiv e  recom bina tion  (D N A  d im eriza tio n ) 

ro u te  is p ro v id ed  v ia  th e  X s ite -spec ific  In t reco m b in a tio n  sy s te m . (In t
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recom bination  occurs only  at a  specific site , a tt, a n d  is in d ep en d en t o f th e  HJ 

p rocessing  p ro te in s  of E. coli.) This is d o n e  because, in  th is assay , th e  In t- 

recom binants can be physically  separa ted  from  the  res t of X p ro g en y  b ased  on  

their density : they  w ill have the  longest p iece of D N A , com pared  to  all o ther 

recom binants, packaged  into a  X capsid  (see F igure 3-2A). In  a cesium  form ate 

density  g rad ien t, the Int-recom binants ap p ea r in  the densest fractions (first peak) 

and  the frequency  of gratu itous hom ologous recom bination is m easu red  am ong  

them  (C hapter 2).

To te s t w hether recom bination in  cells defective for HJ processing  pro te ins 

is RecBCD -m ediated, I determ ined the effect of Chi, a n  octomeric D N A  sequence 

(5' G C T G G TG G  3 '), w h ich  sp e c if ic a lly  s tim u la te s  R ecB C D -m ed ia ted  

recom bination  in  its vicinity (Stahl an d  S tahl 1977; Ponticelli e t al. 1985; W est 

1992; K ow alczykow ski et al. 1994; M yers a n d  Stahl 1994), on  X recom bination  in  

th is assay. P arallel crosses w ith  C hi+ a n d  Chi° phages (Figure 3-2A) w ere  

perfo rm ed  a n d  the  recom bination frequency w as m easured  in  rec+, ru vA , ruvB, 

ru v C , recG a n d  ruvC  recG cells. F ig u re  3-2B show s th a t C hi p ro m o te s  

recom bina tion  an d  its level of activ ity  (recom bination  frequency in  th e  C h i+ 

c ross/recom bina tion  frequency in  the Chi° cross) is the same in  all s tra in s tested  

(Table 3-1, a lso  see C hap ter 2 for d e ta ile d  descrip tion). I c o n c lu d e  th a t 

recom bination in  cells defective for HJ processing  p ro tein  is RecBCD-mediated.

H a lf  o f a ll R ecB C D -m ediated  X re c o m b in a tio n  req u ire s  R uvA , R uvB , a n d  

RuvC p ro te in s

I p ro v id ed  genetical an d  physical evidence th a t b y  rem oving the HJ p rocessing  

p ro te in s  o f  E. coli, a ll b reak-jo in  e v en ts  a re  e lim ina ted ; th e  re m a in in g  

recom bination  in  ruv recG cells (half of rec+) is replicative (see C hapter 2). Thus, I 

d ev e lo p ed  a n  assay  in  w hich  the  frequency  of replicative recom bina tion  is
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m e a su re d  in d ep en d en tly  o f the  break-jo in  p a th w ay  b y  rem ov ing  the HJ 

processing  proteins. H ere  I m easu red  the frequency of recom bination in  ruvA , 

ruvB, ruvC, and  recG cells a n d  com pared  these values to th e  rec+ and  ruvC recG 

con tro l strains. F igure 3-2B show s th a t the frequency  of recom bination  is 

decreased  by about ha lf (for bo th  C hi+ and  Chi° crosses) in  cells defective for 

R uvA , RuvB, an d  R uvC  p ro te in s  com pared  to rec+. This decrease is also 

observed  for ruvC recG cells here  (Figure 3-2B) and  p rev iously  in  C hapter 2. I 

conclude that half of all recom bination requires RuvABC an d  p ropose that RuvA, 

RuvB, and  RuvC p ro te in s a re  req u ired  for the R ecBCD -m ediated break-join 

p a th w a y  of recom bina tion  in  E. coli, su ppo rting  the  h y p o th es is  th a t these 

p ro te ins act as a com plex in  vivo. This is not su rp rising  especially considering 

th a t RuvC is the only  k now n  E. coli p ro te in  that specifically cleaves HJs (W est 

1994; Kuzm inov 1996) and  its activity requires RuvAB function  in  vivo (Sharpies 

e t al. 1990; Lloyd 1991) an d  its catalytic function is enhanced  by  the presence of 

R uvA  and  RuvB proteins in  v itro  (van Gool et al. 1998; v an  Gool e t al. 1999). In 

experim ents below , I d irectly  test the  involvem ent of R uvA , RuvB, and  RuvC 

pro teins in  break-join recom bination by  physically exam ining the  recom bination 

p roducts recovered from  cells defective for a Ruv protein.

I find  th a t recom bination  frequency in recG cells is approxim ately  the 

sam e as rec+ for bo th  Chi4- a n d  Chi° sets of experim ents (Figure 3-2B). I conclude 

th a t the  absence of RecG p ro te in  has no effect on  the  overall recom bination 

frequency. This m ay be in te rp re ted  tha t RecG plays no role in  the break-join or 

break-copy  pathw ays o f recom bination  in  E. coli. H ow ever, direct physical 

analysis of the recom bination p roducts from recG cells is requ ired  to m ake any 

conclusions about the  n a tu re  of recom bination events in  this strain. We directly 

exam ine the recom bination p roducts recovered from  recG cells in  experim ents 

below .
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Also, no te  th a t recom bina tion  drops to  h a lf of rec+, if any ruv  m u ta tio n  is 

p resen t in  recG s tra ins (see fig u re  2-3C and  C hap te r 2). This suggests th a t ha lf of 

all RecBCD-mediated recom bination  in recG cells is RuvABC dependent. F u rther 

physical analysis o f reco m b in a tio n  p ro d u c ts  fro m  recG  cells is re q u ire d  to 

determ ine the role o f R uv  p ro te in s in  the absence o f RecG.

RecB C D -m ediated re c o m b in a tio n  in  ruvA , ruvB , a n d  ruvC  cells req u ire s  D N A  

syn thesis via D N A  P o l III

Recom bination in  cells defective  for bo th  H J p rocessing  system s, ruvC recG, is 

rep lication-dependent an d  uses D N A  Pol HI. A  m odel in  w hich replication helps 

to process recom bina tion  in te rm ed ia tes is p resen te d  in  Figure 3-1, (m odified  

from  C hapter 2, also see M o rg an  and Severini 1990). H ere, X recom bination  is 

exam ined in  the  absence of R uvA , RuvB, or RuvC p ro te ins (see Figure 3-2B) and  

D N A  replication. If rep lica tion  is  required for recom bination  in ruv m u tan t cells, 

I p red ic t th a t no  reco m b in an t phage shou ld  b e  d e tec ted  w hen  rep lica tio n  is 

blocked.

I assayed X recom bina tion  in  cells lacking a  R uv protein , w hich  also carry  

a tem perature  sensitive  m u ta tio n  in the dnaE gene  (the polym erase su b u n it of 

D N A  Pol EH). I b lo ck ed  X rep lica tion  b y  sh ifting  the  cells to the  restric tive  

tem perature u p o n  infection (see M aterial an d  M ethods). I u sed  X th a t carry  tw o 

deletions, biol an d  nin5, rem o v in g  all X recom bination  functions, inc lud ing  the 

In t system  an d  the X H J p rocessing  protein, Rap (M andal e t al. 1993; Sharp ies et 

al. 1994; M ahdi e t al. 1996), respectively . This w ay , the  recom bination  of X 

chrom osom es can occur only  b y  the E. coli recom bination  pro teins an d  on ly  via 

the break-join p a th w ay  (because replication is blocked). Therefore, in  th is assay, 

X p rogeny form ation  is a  m easu re  of the recom bination  proficiency of the E. coli 

s tra in  in the absence of D N A  replication.
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In  o rd e r  to  d istingu ish  b e tw een  p rogeny  an d  p a ren ta l p h ag e , density- 

labeled  A., g ro w n  in  the presence o f heavy  isotopes ( l^ C  an d  l^ N ), a re  infected 

in to  u n la b e le d  E. coli cells. D u rin g  th e  lytic in fection , a ll p ro g e n y  m u st 

incorpora te  ligh t isotopes from  the m edia. In  a  cesium  form ate density  gradient, 

p rogeny  p h a g e  can be separa ted  from  the  parental u n adso rbed  phage  based  on 

th e ir densities : pa ren ta l ph ag e  w ill be heav ier (denser) th a n  p ro g en y  phage 

because b o th  th e ir capsid  a n d  D N A  a re  m ade  from  the  h e av y  iso topes. In 

contrast, th e  p ro g en y  phage w ill h ave  heavy  DNA (because rep lica tion  is fully 

blocked a t  h ig h  tem perature) packaged  in to  light p ro tein  coats (m ade from  

a n d  iso topes). This a llow s fo r easy  detection  of an y  p ro g en y  phage

follow ing the  lytic infection of A. in  d ifferen t E. coli strains (C hapter 2). A lso, this 

assay  w ill sh o w  w hether a full b lock to replication has been  ach ieved , because 

an y  n ew  D N A  synthesis w o u ld  in co rp o ra te  light n u c leo tid es w h ich  can  be 

detected in  a  density  gradient.

In  F igure  3-3, the density  g rad ien ts of parallel A. infections are  g raphed . 

N ote th a t fractions containing particles w ith  the highest density  are  to the  left of 

each g raph . In  the rec+ g raph  (Figure 3-3D), tw o peaks are  observed . The first 

p eak  from  th e  left represents u n ad so rb ed  parental phage  (phages th a t d id  not 

infect an  E. coli cell), carrying heavy  p ro te in  coats and  heavy (H H ) DN A. [Their 

d en sity  is  id en tica l to th a t o f th e  labe led  phage in  the  sto ck  u se d  for the 

experim ent (Figure 3-3A)]. They a re  n o t p a rt  of the A, p rogeny  b u t  can be used  as 

a density  reference in  the gradient. The nex t sm aller, less-dense peak  (in Figure 

3-3D) rep resen ts  phage progeny  recovered  from  the lytic infection. These phage 

have  fu lly  h eav y  (HH) DN A  packaged  in to  light p ro te in  coats. N o te  th a t the 

absence o f  ligh ter peaks confirm s th a t replication w as fully b locked. I in fer that 

th ese  p h a g e s  a re  fo rm ed  fo llo w in g  th e  R ecA B C D -m ediated  b reak -jo in  

recom bina tion  of m onom eric A. chrom osom es (M cM ilin a n d  R usso  1972). In
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su p p o rt o f th is, parallel infection of recA  (recom bination-deficient) stra in  yields 

no ph ag e  p rogeny  (Figure 3-3B an d  C hap ter 2).

X infections of ruvA , ruvB, a n d  ruvC  cells y ie ld  little o r no  phage progeny 

w h en  rep lica tion  is fully b locked (Figure 3-3E, F, G , respectively). From  these 

data , I infer th a t break-join recom bination requires the  RuvABC proteins. This is 

s im ilar to  the  ruvC recG in fection  in  w hich  p rogeny  fo rm ation  w as show n to 

req u ire  D N A  rep lica tion  (F igure  3-3C, and  C h ap te r 2). T his suggests that 

recom bination in  the absence of any  of the Ruv p ro teins requires D N A  synthesis, 

is replicational. Furtherm ore, th e  enzym e responsible for th is synthesis is DNA 

Pol HI, because replication w as b locked b y  using a tem pera tu re  sensitive allele of 

dnaE gene, encoding the replicative subun it of D N A  Pol HI enzym e.

In  th e  ab sen ce  of RecG, b re a k -jo in  reco m b in a tio n  is s ig n ific an tly  reduced 

c o m p a red  to  rec + : ev id en ce  th a t  RecG  is re q u ire d  fo r  fu ll  efficiency of 

RuvABC

As illu stra ted  in  Figure 3-3H, som e H H  X recom binant p rogeny  are recovered 

from  recG cells, indicating tha t break-join recom bination occurs in  the absence of 

D N A  rep lica tion ; how ever, th e  ex ten t of p ro g en y  fo rm ation  is significantly 

red u ced  com pared  to rec+ cells. T hree sets of in d ep e n d en t experim ents were 

perfo rm ed  w ith  ruvA, ruvB, ruvC, recG an d  rec+ cells an d  in  each case a  progeny 

p eak  w as observed from  the recG infections (unlike the  R uv-defective strains), 

b u t its size w as alw ays sm aller th a n  the  rec+ p ro g en y  peak . I m easured  total 

p rogeny  recovered from  the rec+ an d  recG infections b y  determ in ing  the area of 

the p ro g en y  peaks in Figures 3-3D and  3-3H. Even though  the size of progeny 

p eak s  v a rie d  considerab ly  from  experim en t to  ex p erim en t, I fo u n d  that X 

p rogeny  form ation  is reduced  (the average of three independen t experiments) by 

rough ly  3.5 ± 0.8-fold in recG cells com pared  to the  rec+ control. I conclude that
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som e break-join recom bination  occurs in  the  absence of RecG pro tein , b u t  its 

extent is significantly  reduced  com pared to th e  rec+ control. (Also note th a t the 

recG m utation u sed  in  th is experim ent is a nu ll allele.) This im plies th a t RecG is 

req u ire d  for th e  m ax im u m  efficiency o f R u vA B C -dependen t b reak -jo in  

recom bination. T hus in  the absence of RecG a n d  D N A  replication, R uv ABC- 

dependent break-join recom bination occurs rough ly  3-fold less efficiently (Figure 

3-3H) than w hen  RecG is p resent (Figure 3-3B).

Because the  overall recom bination frequency is unchanged (see F igure 3- 

2B) and  yet there  is a  significant decrease in  break-jo in  recom bination in  recG 

cells (com pared to  the  rec+ control), I hypothesize th a t a  replicational m echanism  

com pensates for the  decrease in break-join recom bination, b ringing  the  overall 

recom bination frequency up  to the rec+ level. The exam ination of recom bination 

products from  recG cells w ill test this hypothesis directly  (see below).

R uvA , RuvB, an d  R uvC  pro teins are all req u ire d  fo r b reak-jo in  recom bination : 

physical ev idence fo r break-copy recom bina tion  in  Ruv-defective stra in s

Recom bination in  the  absence of HJ processing p ro te ins occurs via a break-copy 

rou te  exclusively (C hapter 2), This replicative m echanism  occurs in  ad d itio n  to 

the  break-join p a th w a y  in  rec+ E. coli. In  F igure  3-1, bo th  m echan ism s for 

recom bination a re  dep icted . A ccording to th e  break-copy m odel, rep lica tion  

copies inform ation from  an  intact dup lex  fo llow ing the  pairing  of hom ologous 

m olecules via the  RecABC-dependent pathw ay. Sem i-conservative replication of 

D N A  m olecules to  the  end , followed by  conservative segregation of the  D N A  

s tran d s  (w ith o u t th e  use  o f an endonuclease) w o u ld  p ro d u ce  recom binan t 

m olecules th a t contain  old , parental D N A  linked to new ly  replicated D N A  a t the 

site of synthesis. A  pred ic tion  of this is th a t central recom binants fo rm ed  by  

break-copy recom bination  w ould contain ha lf o ld , paren tal D N A  linked to half
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new ly syn thesized  D N A ; end recom binants w ould  con tain  m ostly  o ld , parental 

D N A  lin k e d  to  a  sm all track  of n e w ly  syn thesized  D N A  a t  th e  en d  of the  

chrom osom e. This is in  contrast to th e  pred iction  of a  b reak-join m odel in  w hich 

bo th  cen tral a n d  end  recom binants w o u ld  be m ade en tire ly  from  unrep lica ted  

parental D N A  (see Figure 3-1, and  C hap ter 2).

I te s ted  these predictions in  ru v  o r recG strains u sing  a  A recom bination  

assay (described  in  detail in  C hap ter 2) in  w hich  the in te rval of recom bination 

and D N A  syn thesis  (incorporating nucleo tides from  the m ed ia) can  be assayed 

sim ultaneously  am ong  progeny phage  (adop ted  from  Saw itzke an d  Stahl 1997). 

D ensity-labeled A (l^C  and l^N ) w ere  infected into unlabeled  E. coli cells (grow n 

in the p resence  o f lig h t isotopes, ^ C  a n d  l^N ) under cond itions th a t allow  for 

som e D N A  rep lica tion  (see M aterials an d  M ethods an d  C h ap te r 2). The phage 

carried genetic m arkers such that recom bination  in the center a n d  en d  interval of 

A chrom osom e could  be scored separately  (Figure 3-4A). Because any  n ew  DNA 

synthesis in co rp o ra te s  light nucleo tides, phage  p ro g en y  c a rry in g  new  DNA 

m ateria l can  be  de tec ted  in  a d e n s ity  g rad ien t. By a llo w in g  for som e D N A  

rep lica tion  to  occur, bo th  b reak -jo in  a n d  break-copy  reco m b in an ts  can be 

exam ined am ong  the  progeny phage.

A  cesiu m  form ate  density  g ra d ie n t w as set u p  for each  cross lysate. 

Progeny A w ere  separa ted  from  p aren ta l unadsorbed  phage: a s  described  above, 

unadsorbed  paren ta l phage contain h eav y  p ro tein  coat w ith  h eavy  D N A  and  are 

found  in  th e  d en sest peak of the  cesium  form ate density  g rad ien t. W ithin  the 

progeny  class, th ree  peaks appear, b a sed  on  the ex ten t o f n ew  D N A  synthesis 

experienced b y  each  DN A  m olecule p rio r to  packaging. D N A  m olecules tha t 

experience no  (or v e ry  little) rep lica tion  a re  found in  the  h eav y -h eav y  (HH) 

progeny  peak . This is followed by  heavy-ligh t (HL) an d  ligh t-ligh t (LL) peaks, 

con tain ing  p h a g e  w ith  increasing am o u n ts  of new ly  sy n th esized  D N A . The
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distribu tion  o f central a n d  end  recom binants w as de te rm ined  for each fraction of 

each progeny peak  in  th e  gradient.

C hapter 2 p ro v id es  d irec t physical evidence for the  occurrence of b reak- 

jo in  recom bination in  rec+ cells by  observing central recom binants under the H H  

p eak  of rec+ g rad ien t. T hese central recom binants con ta in  m ostly heavy  D N A  

a n d  w ere  fo rm ed  b y  th e  c u ttin g  and  re jo in in g  o f p a re n ta l (heavy) D N A  

m olecules, w ith o u t ex tensive  D N A  synthesis, a  p red ic tio n  of the b reak-jo in  

m odel. By con trast, in  ruvC recG infections, I fo u n d  few  central recom binants 

(com pared to en d  recom binants) u n d er the H H  p ro g en y  peak, ind icating  th a t 

break-jo in  recom bina tion , y ie ld ing  central H H  recom binan ts, does n o t occur 

appreciably in  the  absence of R uv an d  RecG proteins. This is consistent w ith  m y  

find ing  that in  the  absence of D N A  replication, no  recom bination  w as observed 

in  ruvC recG cells (Figure 3-3D a n d  Chapter 2).

In th is ch ap te r, I so u g h t to ex tend  the  o b se rv a tio n s in  C hap te r 2 b y  

exam ining the m echan ism  of recom bination in  cells defective for each one of the  

R uv proteins in  tu rn . In  all the  g raphs dep icted  in  F igure 3-4B, the first p eak  

contains u n ad so rb ed  p a ren ta l phage. They are n o t p a rt  of the  A. p rogeny  an d  

on ly  serve as a  d en sity  reference. In the rec+ con tro l infection, I observe H H  

cen tral recom binants (fractions 34-38), as expected , ind icating  tha t break-jo in  

recom bination  occurs n o rm ally  in  E. coli. A lso n o te  th a t central (dark  circle) 

recom binants occur m ore frequently  than end  (open  circle) recom binants. This 

difference m ost likely  reflects the  genetic distance w ith in  each interval: central 

recom binants cou ld  arise  from  recom bination w ith in  18-22 kb of DNA (distance 

from  cl to Jts) w h ereas  end  recom binants span  app rox im ate ly  4.8 kb of D N A  

(distance from  cl to  S gene). See Figure 3-4A for an  illustration.

If all recom bination  in  Ruv-defective stra ins is replicational then  the H H  

cen tra l recom binan ts w o u ld  be  absen t a n d  occu r less frequently  th an  e n d
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recom binants, sim ilar to the ruvC recG in fections (C hapter 2). The rem ain ing  

panels in  F igure  3-4B represent density  g rad ien ts of progeny phage from  ruvA , 

ruvB, an d  ruvC  infections. I observe a lm ost no  central recom binants u n d e r the 

H H  peak o f ruvA  (fractions 48-50), ruvB  (fractions 37-39) and ruvC  (fractions 33- 

35) infections; in  fact 65-85% of the observed recom binants in this peak  (HH) are 

end recom binants in  ruvA , ruvB an d  ruvC  infections. (This is in  con trast to the 

observed frequency  o f end  recom binants u n d e r the  H H  peak of rec+ infection 

(fractions 34-38) in  w h ich  only app rox im ate ly  19% of recom binants are  end  

recom binants.)

I conclude  th a t in  the absence of any  of the  Ruv pro teins, b reak-jo in  

recom bination does n o t occur significantly an d  alm ost all recom bination requires 

DN A  synthesis. This is consistent w ith  th e  p rev ious experim ent th a t in  the  

absence of D N A  replication no p ro g en y  phage  are  detected in  R uv-defective 

strains (see Figure  3-3E, F, G). So, w hy  a re  there  any  (end) recom binants under 

the H H  peak  in  Ruv-defective strains? I t is possib le that the end recom binants 

come from  a sm all am oun t of synthesis a t the  end  of the chrom osom e (C hapter 

2). This sm all track  of new  D N A  is insufficient to create a significant density  

change to m ove  these  phage from  the  H H  peak  (Figure 3-1) an d  rep resen ts  

roughly 8% of th e  entire genome.

Figure 3-4B show s that an  excess of central to end recom binants occurs 

under the H L  p eak  of every cross com pared  to the  H H  or the LL peaks of the 

sam e graph. T his resu lt is identical to th a t seen  in  the ruvC recG double m u tan t 

host (C hapter 2) and  is expected under the  break-copy model (see Figure 3-1 and 

C h ap te r 2 fo r a d e ta iled  ex p lana tion ). A cco rd ing  to th e  m odel, these  

recom binants w o u ld  contain half old, p a ren ta l D N A  and half new , ligh t DN A, 

banding a t the  H L peak  of the gradient.
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Physical evidence that RecG  is  required for the m axim um  efficiency o f the 

Ruv ABC-dependent break-join recom bination

In  th is section , the  rec o m b in a tio n  p ro d u c ts  fro m  a  recG  cross, u s in g  the  

aforem entioned recom bination  assay, w ere exam ined  (Figure 3-4C). C entral and  

end  recom binants w ere sco red  for each fraction of th e  rec+, ruvC, recG, and  ruvC  

recG infection. A s d isc u sse d  a n d  show n above  a n d  in  C hap te r 2, cen tra l 

recom binants w ere  d e te c ted  a n d  found  to occur m ore  frequen tly  th an  end  

recom binants u n d er the H H  p eak  of the rec+ infection, ind icating  that break-join 

recom bination occurs n o rm ally  in  these cells (Figure 3-4C). For ruvC (fractions 

56-58) a n d  ruvC  recG ( frac tio n s  51-53) in fec tio n s, a lm o st no  H H  cen tra l 

recom binants w ere d e tec ted , as p red ic ted  if all recom bina tion  requires D N A  

synthesis in  these strains (Figure 3-4C, also see C hap ter 2 and  Figure 3-4B).

The resu lts in  F igure  3-3H suggest th a t break-jo in  recom bination occurs 

less efficiently in  recG cells com pared  to rec+. This is seen  as a sm aller p rogeny  

peak  recovered  from  recG infections com pared  to rec+• If RecG is requ ired  for 

op tim al b reak -jo in  re c o m b in a tio n , th en  I p re d ic t  th a t  few er H H  c en tra l 

(com pared to end) reco m b in an ts  w ill be o b served  for the  H H  peak  of recG 

infection com pared  to the rec+. [This can be m easu red  as a ratio of central to end  

recom binants found  u n d e r  the  H H  peak for each  in fection  (see Table 3-2).] I 

detect tha t central and  e n d  recom binants occur w ith  equal frequency for the  H H  

peak  of the  recG infection. This is in  con trast to th e  rec+ infection, in  w h ich  

central H H  recom binants occur approxim ately  5 tim es m ore frequently than  end  

recom binants u n d e r the  H H  p e ak  (see Table 3-2). (N ote th a t the ratio  of H H  

central to H H  end  recom binan ts for the rec+ is 4-5 fold h igher th an  the  recG 

infection.) Because this ra tio  can  be used as a m easu re  of the  efficiency of break- 

jo in  recom bination , th is re s u lt  is consisten t w ith  th e  observation  th a t in  the
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com plete  ab sence  o f D N A  rep lication , a  sm aller-than-rec+ p ro g e n y  p eak  is 

recovered from  recG infections (com pare Figures 3-3D, and 3-3H).

These d a ta  (F igure 3-4C) together w ith  the  data  p resen ted  in  F igure  3-3 

indicate th a t RecG is requ ired  for the fu ll efficiency of the R uv A B C -dependent 

break-jo in  recom bina tion : in its absence few er break-join recom binan ts are  

recovered (com pare Figures 3-3D and  3-3H) an d  break-join recom bination  occurs 

less efficiently th a n  rec+ (see Figure 3-4C). D espite this decrease in  b reak-jo in  

recom bination, I f in d  th a t the overall frequency  of recom bination in  recG cells 

rem a in s u n a ffe c te d  (see F igure 3-2B). I p ro p o se  th a t  th e  m a jo r ity  of 

recom bination in  th e  absence of RecG is m ed ia ted  via replication. In  su p p o rt of 

this, I observe th e  accum ulation of cen tra l recom binants u n d e r the  H L  peak  of 

the  graph, in d ica tin g  th a t the central recom binants that are n o t reso lved  by  the  

break-join p a th w ay  are resolved via replication to the end of the chrom osom e.

A bsence o f a n y  o f  the  HJ p ro cess in g  p ro te in s  p rom o tes re p lic a tio n  o f  k  

d ram atically

As show n  in  C h a p te r  2, the absence o f R uvC  an d  RecG p ro te in s  enhances 

rep lica tion  d ram a tica lly  com pared to  th e  rec+ control. H ere I f in d  th e  sam e 

phenotype for cells defective for any one of the  HJ processing pro teins. This can 

be determ ined  b y  calculating the area  u n d e r  the LL peaks of ruvA , ruvB, ruvC  

an d  recG experim en ts an d  com paring th em  to the LL peak o f the co rrespond ing  

rec+ control. I  observe few  or no LL p ro g en y  from  rec+ infections (F igure 3-4B, 

C), in  con trast to  th e  large LL p rogeny  p eak  derived  from  H J-defective hosts. 

This indicates th a t th e  accum ulation o f recom bination in term ediates, caused  by 

th e  absence o f  a n y  of the HJ p ro ce ss in g  p ro te in s, p ro m o tes  rep lica tio n  

dram atically.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

D iscussion

Previously, I show ed th a t th e  RecBCD system  of DSBR recom bination in  £. coli 

operates via tw o parallel m echanism s: one requires D N A  synthesis (break-copy) 

v ia  DNA Pol HI, b u t n o t th e  H J processing proteins, w hile  the  other requires HJ 

processing proteins, b u t occurs independently  of D N A  synthesis (break-join) (see 

C h ap te r 2 an d  F igure  3-1). I hypo thesized  th a t  b o th  m echanism s occur 

s im u lta n e o u s ly , p ro c e s s in g  reco m b in a tio n  in te rm e d ia te s  in to  m a tu re  

recom binant products in  w ild -type  E. coii. In  C hap ter 2, the  predictions of this 

m odel w ere tested  by  exam in ing  the  extent of new  D N A  synthesis associated 

w ith  the form ation  of recom bination  p roducts . I  fo u n d  th a t bo th  types of 

recom bination  p ro d u c t a re  recovered  from  rec+ cells an d  each m echanism  

contributes to approx im ate ly  half of all RecBCD -m ediated DSBR in £. coli. In  

cells defective for H J p ro c e ss in g  (ruvC recG), w e  fo u n d  th a t b reak-jo in  

recom bination is e lim inated , recom bination frequency is red u ced  to half of w ild  

type , and  essentially  all rem a in in g  recom bination req u ire s  DN A  replication  

(Chapter 2).

The d iscovery  o f a  recom bination  m ech an ism  o p e ra tin g  via D N A  

replication and  independen tly  of the HJ processing p ro te in s w as unique because 

o f the  w idely accepted n o tio n  th a t all recom bination even ts in  w ild-type E. coli, 

u n d e r  norm al cond itions, a re  processed by  the  H J p rocessing  pro teins (e.g. 

T haler and  Stahl 1988; K ow alczykow ski e t al. 1994; M yers an d  Stahl 1994; 

Kowalczykowski 2000). In  th is chapter, I  exam ined the  ind iv idua l roles of each 

HJ processing pro tein  in  the  RecBCD-pathway of DSBR in  vivo.

The analysis revealed the  following:
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1. In the absence o f RuvA, RuvB, or RuvC, pro teins, half of all RecBCD-mediated 

X recom bination is elim inated (Figure 3-2B). T he rem ain ing  half requ ires DNA 

replication via D N A  Pol III (Figure 3-3).

2. Replicative recom bination was dem onstrated d irectly  by the  physical analysis 

of recom bination p roducts from  Ruv-defective stra ins. Essentially all break-join 

recom bination  even ts  are  e lim inated  as rev ea led  b y  the absence o f central 

recom binants w ith  H H  DNA (Figure 3-4). N ew  D N A  synthesis w a s  alm ost 

alw ays observed  w ith  central recom binants fo u n d  in  excess (re la tive  to end 

recombinants) u n d e r  the HL progeny peak, dem onstra ting  a replicative origin for 

their form ation.

3. ruvA, ruvB, a n d  ruvC  strains display the sam e phenotype in  our recom bination 

assays (Figures 3-2B, 3-3, 3-4B), supporting the hypothesis tha t the th ree  proteins 

form  a com plex (resolvasom e) in vivo (Kuzm inov 1996; Eggleston e t al. 1997; van 

Gool et al. 1999).

4. In the  absence  of RecG, the  overall recom bina tion  frequency  rem ained  

unchanged com pared  to  the rec+ control (unlike Ruv-defective strains, see Figure 

3-2B), how ever w e found  a significant decrease in  break-join recom bination  in 

these cells (Figures 3-2B, 3-3, 3-4C). This d rop  in  break-join recom bination was 

not as severe as the  ones seen in Ruv-defective strains. Furtherm ore, the  physical 

analysis of recom bination  products from  recG cells for break-join recom bination 

revealed th a t break-jo in  recom bination occurs ab o u t 3-5 fold less efficiently in 

these cells than  th e  rec+ control (Figures 3-3, 3-4C). These data  indicate that the 

Ruv ABC and  RecG pro teins are required  for the  optim al operation  o f RecBCD- 

m ediated b reak-jo in  recom bination: in  the absence of RecG, few er break-join 

recom binants a re  observed.

Even th o u g h  there is a significant decrease in  break-join recom bination, I 

explain the  u n re d u c e d  overall recom bination  frequency  in recG  cells by
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su g g e s tin g  th a t  a  n o v e l R uv  A B C -d ep en d en t re p lic a tio n a l m e c h a n ism  

com pensates fo r th e  decrease  in  break-join recom bina tion  in  recG  cells. In  

su p p o rt of this, I fo u n d  an  excess of central recom binants u n d e r the  H L  p rogeny  

p eak , in d ica tin g  th a t  the  m ajority  of these  recom binan ts are  fo rm ed  b y  a 

re p lic a tiv e  m e c h a n ism . U n lik e  the  p re v io u s ly  d e sc r ib e d  re p lic a tiv e  

recom bination p a th w ay , w hich  does not require  any  HJ processing p ro te in s, the  

o n e  p ro p o sed  in  recG cells, th a t com pensates for the  decrease in  b reak -jo in  

recom bination, requ ires the  Ruv ABC proteins (Figure 3-2C). In  su p p o rt o f th is, I 

found  th a t in  ruv recG cells, the overall recom bination frequency d ro p s  to  h a lf of 

w ild  type an d  a lm ost all break-join recom bination is e lim inated  (C hap ter 2 an d  

Figures 3-2C, 3-4C).

5. I found  th a t th e  absence of any  of the  HJ p rocessing  p ro te in s  enhances 

replication dram atically . A  large LL p rogeny  peak  w as detected  in  the  ruv  o r 

recG infections, b u t th is  w as absen t in  the rec+ infection. I propose the absence of 

an y  of the  HJ p rocessing  pro teins results in  the  accum ulation  of recom bina tion  

in term ediates, w h ich  cou ld  serve as DNA sites for PriA -directed rep lica tion  fork 

assem bly. R eplication  is thus enhanced as m ore assem bly sites accum ulate  in  

cells defective for HJ processing.

The da ta  d iscussed  above provide physical evidence tha t R uv a n d  RecG, 

p rev iously  th o u g h t to  be independen t pa thw ays for processing recom bina tion  

in term ediates (L loyd 1991), w ork  together an d  a re  req u ired  for th e  o p tim a l 

efficiency of b reak -jo in  recom bination  in  E. coli. The d a ta  are su m m a riz e d  

g rap h ica lly  in  F ig u re  3-5 a n d  argue for th e  occu rrence  of tw o  d is tin c t 

recom bination in term ediates: one that requires processing via Ruv ABC, a n d  one 

th a t is p rocessed  in d ep e n d en tly  of Ruv ABC or RecG, an d  uses a  rep lica tive  

m echanism  (see be low  for a m odel). I propose th a t RecG is requ ired  to stabilize 

recom bination  in te rm ed ia te s  (by perhaps ex tend ing  the  h e te ro d u p le x  D N A
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region  v ia  b ran ch  m igration  the HJ to  th e  left) for processing via Ruv ABC such  

th a t in its absence, the  Ruv A BC-m ediated break-join pathw ay operates a t  a  low er 

efficiency.

M odel for th e  ex istence of two d is tin c t recom bination  in term ediates

The data  in  th is  a n d  C hapter 2 can be  reconciled by  proposing th a t tw o  d istinc t 

D N A  in te rm ed ia tes  occur d u rin g  recom bina tion  in  vivo (see F igure 3-5 d a ta  

sum m ary). I h y p o th es ize  th a t each  in te rm ed ia te  has a genetically  d is tin c t 

p a th w ay  for m atu ra tio n : one ("A") in te rm ed ia te  requires p rocessing  v ia  the  

R uv ABC p ro te in s , w hile  the o ther ("B") requ ires neither the RuvABC n o r  the 

RecG, b u t is p rocessed  via a replicative m ode, requiring DN A  Pol DI (see F igure 

3-6).

A ccord ing  to th is m odel, RecG an d  the  replication prim osom e assem bly  

pro tein , PriA , com pete for b ind ing  to th e  sam e ("A") DNA in term ediate  in  vivo. 

RecG an d  PriA  p ro teins have been  sh o w n  directly  to com pete for b in d in g  to  the 

sam e D N A  su b stra te  (D-loops) in  v itro  (M cGlynn et al. 1997) an d  in d irec tly  in  

vivo (Al-Deib e t  al. 1996). I hypo thesize  th a t the outcom e of this com petition  

determ ines the  m echanism  em ployed  for processing of the  in te rm ed ia te  (see 

Figure 3-6 for details). A lthough, P riA  can b in d  to either in term ediate, I  p ropose  

th a t in  the  p resence  of RecG, in te rm ed ia te  "A" is p rocessed  m ostly  v ia  the  

R uv A B C -dependent break-join p a th w ay . In  the  absence of RecG, PriA  can  b in d  

to "A" m ore frequently  and  break-join recom bination is reduced  by  3-5 fold. The 

e n su in g  D N A  P ol I ll-d e p e n d e n t re p lic a tio n  ex tends th e  re c o m b in a tio n  

in te rm e d ia te , b u t  th is  reac tio n  s t i l l  re q u ire s  RuvABC fo r c o m p le tio n  

(recom bination in  ruv recG cells is h a lf  of rec+). Interm ediate B, on  th e  o ther 

hand , is p rocessed  by  a replicative ro u te , requiring  DNA Pol HI, in d ep en d en tly  

of any HJ processing  proteins.
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The evidence th a t suppo rts  the tw o-interm ediate hypothesis is tha t in  ruv  

recG cells, in  the  absence of com petition betw een  RecG an d  PriA, I observe th a t 

overall recom bination d ro p s to half of rec+, im ply ing  th a t half of all events are  

abso lu te ly  R uv A B C -dependent. The p o stu la ted  P riA -dependen t rep licative  

recom bination  p a th w a y , w h ich  opera tes on  "B", can n o t su b s titu te  for all 

recom bination in  the cell. If this w ere no t the case, then  recom bination in  ruv  

recG cells shou ld  be all replicative an d  equal to  rec+. Based on ou r results, it 

seem  plausible th a t one type of recom bination in term ediate  is Ruv ABC-specific 

and  the other is independen t of RuvABC, b u t requires D N A  replication.

Two types o f recom bina tion  in term ediates: s tran d  polarity?

The data  presen ted  above su p p o rt a m odel in  w hich  tw o distinct recom bination 

interm ediates occur in  vivo. These experim ents w ere n o t designed to determ ine 

the  strand  po larity  of the  invad ing  end; how ever, it  is possible th a t the tw o 

recom bination in term ediates represent tw o invad ing  ends (3' and 5')- This idea  

w as proposed b y  R osenberg  and  H astings (1991) and  supported  by  H agem ann 

and  Rosenberg (1991), T aylor and  Sm ith (1995), M iesel and  Roth (1996) and  Shan 

et al (1997). In v itro  resu lts have show n the ability  of RecA protein  to catalyze 

strand-exchange recom bina tion  reactions u sin g  bo th  3' and  5 '-ended s tran d s 

(Dutreix et al. 1991).

Because n o t m u ch  is know n about the structure  of the  DNA interm ediates 

generated d u ring  recom bination  in  vivo, I can n o t exclude that the postu la ted  

recom bination in te rm ed ia tes , "A" and  "B", are form ed v ia  3 '-ended invasions 

only. T hat on ly  3’-e n d e d  invasions are  recom binogenic  is su p p o rte d  by  

num erous in  vitro  experim ents and in  a  unim olecular recom bination reaction in  

vivo (Friedm an-O hana a n d  Cohen 1998). Even though  m y results do no t directly 

a d d re ss  th e  p o la r i ty  q u e s tio n , th ey  do  su g g e s t th e  fo rm ation  of tw o
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recom bination  in term ediates in  vivo. F u rth e r w ork  is req u ired  to  d irectly  test 

w hether th e  tw o  ty p es  of in term ediates are  form ed based on  s tra n d  po larity  of 

the in vad ing  single s tran d  D N A  or o ther factors involved in  the  fo rm ation  o f the 

recom bination in term ediates (such as o ther p ro te ins that m ay  p la y  som e role in 

this process, e.g. RecF, RecR, RecO, etc.).

D ata  fro m  a reco m b in a tio n -d ep en d en t s ta tionary  p h a se  m u tagenesis  

m echanism  o p e ra tin g  in  E. coli com bined  w ith  the  results p re sen te d  here  m ay 

have som e b e a rin g  o n  the po la rity  q u estio n  (for review s, see L om bardo  and  

Rosenberg 1999; L om bardo et al. 1999). In  th is system , a RecABCD- D N A  Pol in 

d e p en d en t m u ta g en e s is  m ech an ism  o p e ra te s  by c rea tin g  +1 fram e-sh ift 

m utations o n  a n  F’ p lasm id , carrying a  -1 lacZ fram e-shift m u ta tio n  (H arris e t al. 

1994). A  rep lica tive  recom bination m echan ism  could accoun t fo r these results 

(Foster e t al. 1995; H arris  et al. 1997). But, im portantly , in  th is sy stem  recG and  

ruvABC  m u ta tio n s  exhibit different pheno types (Foster e t al. 1996; H arris  e t al.

1996). The R uv  p ro te in s are requ ired  for this process w hereas RecG is inhibitory. 

Furtherm ore, genetical evidence dem onstra tes the  involvem ent o f on ly  3' DN A  

ends in  the  m u tag en ic  pathw ay  (Ross e t al. unpub lished  results). If tru e , then  

perhaps th is m u tagen ic  pathw ay represen ts the  Ruv A B C -dependent m echanism  

i.e. in te rm ed ia te  "A". Thus, in  rec+ cells, RecG and  the rep lica tion  prim osom e 

assem bly p ro te in , P riA , com pete for b in d in g  to the p ro p o se d  recom bination  

interm ediate "A" fo rm ed  during  th is process. If PriA b inds, then  Pol HI directed 

syn thesis o f  th e  recom bina tion  in te rm e d ia te  m ay  lead  to  a -1 fram e-sh ift 

m u ta tio n  th a t  re q u ire s  re so lu tio n  v ia  RuvABC. If RecG b in d s , those  

recom bina tion  in te rm ed ia tes  are reso lv ed  w ith o u t the  in v o lv em en t of DN A  

synthesis a n d  therefo re  do n o t resu lt in  the  form ation of lac+ colonies. In  the 

absence of RecG, PriA -directed  rep lication  of the proposed  in te rm ed ia te  occurs 

m ore freq u e n tly  a n d  m ore lac+ co lonies a re  recovered. T he recom bination-
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d ep en d en t s ta tionary  p hase  m utagenesis a n d  th e  resu lts  of this chap ter tak en  

together im ply 3' invasions m ay be Ruv ABC-specific.

Transductional and conjugational recom bination in  E. coli and the role o f  R uv  

and RecG proteins in  their formation

U sing X as the D N A  substra te  for R ecB C D -m ediated recom bination, th e  d a ta  

p resen ted  here  a n d  p rev iously  dem onstrate th a t in  th e  absence of bo th  R uv a n d  

RecG proteins recom bination  still occurs, b u t u ses a  replicative m ode. This is in  

co n tra st to o ther assays for recom bination in  E. coli: ruv recG doub le  m u ta n t  

s tra in s  a re  reco m b in a tio n -d efec tiv e  fo r c o n ju g a tio n a l an d  tra n sd u c tio n a l 

recom bination (L loyd 1991). This discrepancy in  resu lts obtained from  d ifferen t 

recom bination  assays has been  addressed  p rev io u s ly  an d  a general m odel w as 

p re se n te d  (C h a p te r 2). The rep lica tion  fo rk s  in itia ted  a t  re c o m b in a tio n  

in te rm ed ia tes are  s tru c tu ra lly  different th a n  th e  those  in itiated  a t rep lica tio n  

orig ins such th a t a H J is b eh in d  the ad v an c in g  rep lication  fork. If rep lica tive  

recom bination  of a  lin ear p iece of D N A , th e  su b s tra te  for conjugational a n d  

transductiona l recom bination , into the E. coli chrom osom e requires rep lica tion  

(see Kogom a 1997), i t  is possible that RuvAB o r RecG proteins function to b ran ch  

m ig ra te  the HJ (via th e ir  helicase activity) a ro u n d  the  entire chrom osom e (4.5 

M b) in  o rd e r  to  co m p le te  th e  reco m b in a tio n  even t. In  c o n tra s t, th e  X 

chrom osom e is sh o rte r  (48 kb) and b ranch  m ig ra tio n  a round  its chrom osom e 

m ay  p resen t a m u ch  m ore  m anageable topolog ical task. M oreover, a  ^.-specific 

function  m ay  su b s titu te  for the  proposed  ro le  o f RuvAB or RecG p ro te ins in  E. 

coli. For exam ple, as d iscussed  before, the packag ing  m achinery of X, m o v in g  in  

the  sam e direction as the  replication fork, m ay  physically  push  the junction  a long  

th e  rep lica tion  p a th  assis ting  in its re so lu tio n  b y  d riv ing  it  p a s t th e  n e x t 

packaging  orig in , cos (C hapter 2). This w o u ld  create  a packagable, rep lica ted ,
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recom binant p ro g en y  phage. A  detailed  d iscussion  of the m odel is p resen ted  in  

C hapter 2. W hile  o ther explanations o f th e  resu lts  are possib le, th e  m odel 

presented here  m akes testable predictions. M oreover, determ ining the  potential 

role of o ther recom bination proteins such  as RecF, RecR, RecO, and  RecN, in  the 

context of the  tw o  interm ediate m odel, cou ld  greatly  facilitate the understand ing  

of the m olecular details of recom bination in  the  RecBCD system.

M aterials an d  m ethods

Bacterial an d  p h ag e  stra ins

All E. coli stra ins u sed  in this paper are K-12 derivatives and are listed  in  Table 3-

3. S tandard P I-m ed ia ted  transduction w as u sed  to construct new  stra ins (Miller 

1992). SMR650, 3124,4594,4600, 4601,3731, 3732, w ere constructed as described 

in  C hapter 2. The presence of m u ta tions in  recom bination genes recA, ruvA, 

ruvB, ruvC, and recG w as confirm ed b y  the  increase in sensitivity to u ltrav io le t 

(UV) light observed for cells w ith  these m utations. SMR5639,5640, 635, 636 w ere 

constructed b y  transduction  of ruvA200 eda-51::Trd0, ruvB9 zea-3::TnlO, ruvC53 

eda-51::TnlO a n d  recG258::Tnl0minikan from  SMR1549, SMR1552, (H arris e t al.

1996),CS85 (Lloyd 1991) and  RDK2655 (obtained from  R. K olodner v ia  U o y d  and  

Buckman 1991) into SMR632, respectively. SMR5641, 5642 w ere constructed  by  

transduction o f ruvAZOO eda-51::TnlO, ruvB9 zea-3::TnlO, ruvC53 eda-51::TnlO and  

recG258::Tnl0minikan from  SMR1549, SMR1552, (H arris et al. 1996),CS85 (Lloyd 

1991) and  RDK2655 (obtained from  R. K olodner v ia  Lloyd and  B uckm an 1991) 

into SMR4594, respectively. SMR4287,4288, 5643, and  5644 w ere constructed  by  

transduction o f ruvA200 eda-51:'JTnlO, ruvB9 zea-3::Tn!0, ruvC53 eda-51::Tn!0 an d  

recG258::Tnl0minikan from  SMR1549, SMR1552, (H arris et al. 1996),CS85 (Lloyd 

1991) a n d  RDK2655 (obtained from  R. K olodner v ia  Lloyd and  B uckm an 1991)
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into SMR3700, respectively, fo llow ed by  the ir lysogenization  w ith  XJtsl5 red3 

gamllO  Anin5 Sam7 (Sawitzke and  Stahl 1997).

All X strains u se d  in  this report have  been  described p rev iously  in  C hap ter 2 or 

referenced therein .

G row th o f ph ag e  stocks and E. coli cu ltu res

All phage a n d  E. coli strains w ere g row n  according to protocols in  C hap ter 2, or 

referenced therein . Strains carry ing  m utations in  ruv A , ruvB, ruvC, recG o r any 

com bination o f th e  double ruv recG m uta tions w ere g row n a t  32° to  avoid  the 

accum ulation o f suppressers norm ally  seen if these strains a re  g ro w n  a t higher 

(37°) tem pera tu re  (H arris et al. 1996). The UV sensitivity pheno types for ruv A , 

ruvB, ruvC, recG o r ruv recG cu ltu res w ere  checked by  either d irectly  testing the 

culture u sed  in  the  experim ent a n d /o r  testing app rox im ate ly  30-40 colonies 

grow n from  each  culture. (The an tib io tic  resistance of each  cu ltu re  w as also 

tested.) X lig h t and  heavy stocks w ere g row n as described  in  C h ap te r 2 or 

reference w ith in . S tandard p laque assay tests w ere perfo rm ed  as described in  

(M urray 1983).

D eterm ina tion  o f recom bination  frequency

As described prev iously  (Thaler et al. 1989; Razavy et al. 1996, an d  C hapter 2), X 

crosses w ere perfo rm ed  to quantify  the frequency of recom bination in  RecBCD+ 

cells. Strains w ere  grow n to log phase  p rio r to X infection according  to protocols 

in C hapter 2. C rosses w ere carried  o u t according to  p rocedures in  C hapter 2 or 

referenced therein . For each cross lysate, a  cesium  form ate density  grad ien t was 

p repared , sp u n , a n d  collected as tw o  d ro p  fractions in to  TB buffer. T iter of 

phages in  each  fraction  was d e te rm ined  on  appropria te  hosts  as described in 

C hapter 2.
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X recombination assay in  the absence o f D N A  replication

E. coli cells carry ing  a  tem pera tu re  sensitive m u ta tio n  in  the  polym erase su b u n it 

(dnaEts486) of D N A  P o l ID w ere  infected w ith  density-labeled  (l^C , 1 5 ^ ) X a t  the  

non-perm issive tem p era tu re  of 43.5°. W e w ere  able  to  achieve a full b lock  to  

rep lication  u n d e r these  conditions (C hapter 2). T he assay  w as p e rfo rm ed  as 

described prev iously  (C hap ter 2). Phage tite r w as de te rm ined  for each fraction  

b y  plating  an  a pp rop ria te  d ilu tion  on  SMR423.

A ssay for determ in ing  the interval o f recom bination  w hen rep lication  is  

partially blocked

These experim ents (F igure 3-4B, C) w ere p e rfo rm ed  as described in  C h a p te r 2. 

N ote  that again  cells w ere  g row n  to log phase  a t 32° to  avoid  the accum ulation  of 

suppresser m u tan ts . T he p ro toco l w as fo llow ed  exactly  as before (C hap ter 2, 

m odified from  Saw itzke and  Stahl 1997), except th a t the  gradient w as collected as 

one-drop fractions in to  1 m l of TB. Each fraction w as titered  on JAS38 an d  JAS36 

for recom binants (see Table 3-3).
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Table 3-1. T he m easu re  of Chi activity in  cells defective for HJ processing

P ercen t hom ologous Percent hom ologous
recom bination^ recom bination^

Chi+ Chi° Chi activ ity0
(m ean ± SD) (m ean ± SD) (C hi+ /C hi°)

E. coli
Strains3 E xpt #1 Expt #2 Expt #1 Expt #2 Expt #1 E xpt #2

rec+ 21.2 ±  5.0 21.3 ± 3.2 5.0 ±  0.9 6.0 ± 0.6 4.2 3.6

ruvA 11.1 ±  1.9 8.8 ± 1.5 3.2 ±  0.5 2.8 ± 0.5 3.5 3.1

ruvB 10.4 ±  3.0 9.9 ± 1.3 2.9 ±  0.9 3.1 ± 0.4 3.6 3.2

ruvC 8.7 ± 1 .5 8.8 ± 0.9 3.3 ±  0.3 3.4 ± 0.8 2.6 2.6

recG 24.1 ±  2.0 26.6 ± 2.7 6.7 ±  1.2 8.3 ± 0.9 3.6 3.2

ruvC recG 10.4 ± 1.3 9.2 ± 1.4 2.8 ±  0.6 3.1 ± 0.5 3.7 3.0
a  These strains a re  isogenic derivatives of SM R 632 (Table 3-3). 
b Percentages o f hom ologous recom bination are  calculated as described in  F igure 
3-2 and C hap ter 2. C hi+ and  Chi° crosses w ere  perform ed as described in  F igure 
3-2A.
c Chi activity  w as m easu red  as described in  C hap ter 2. Briefly, recom bination  
frequency m e a su re d  in  C hi+ crosses is d iv id e d  b y  recom bination frequency  
m easured in  C hi° crosses.
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T able  3-2. R atio  of central to en d  (C /E ) recom binants m easu red  for the  H H  
peaks of various infections

Ratio o f C /E  
recom binants^ 

for the  H H  peak

Fold decrease0 
in  C /E  ratio  relative to 

rec+

E. coli stra insa Expt #1 ̂ Expt #2 e E x p t# l Expt #2

rec+ 5.2 ± 1.6 4.7 ± 1.3 1.0 1.0

ruvC 0.16 ± 0.4 0.19 ± 0.6 33 25

recG 0.96 ± 0.3 1.1 ± 0.4 5.4 4.3

ruvC recG 0.33 ±  0.7 0.31 ± 0.4 16 15

a All strains a re  isogenic derivatives of p a ren t strains SMR632 (see Table 3-3 and 
M aterials and  M ethods for details.
b Ratio of central to end  (C /E) recom binants w as m easured for each fraction of 
the  H H  p eak s of each  cross. M ean  ra tio  of C /E  for each  H H  p eak  was 
determ ined ± SD.
c Fold decrease in  the ratio of C /E  recom binants in  H H  peaks w as m easured  by 
d iv id ing  the m ean  C /E  ratio of rec+ cross by  the  m ean C /E  ratio  for each tested 
strain. This ratio  indicates the d istribu tion  of recom binants u n d e r the H H  peak 
and  can be u sed  as a  m easure for the efficiency of break-join pathw ay. A  4- to 5- 
fold d rop  in  C /E  ratio is observed for recG cells, 
d  D ata no t graphed . 
e D ata from  Figure 3-4C.
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Table 3-3. Bacterial strains

Strain R elevan t Genotype Source or reference
AFT 196 C600 A(srlR-recA)306::Tnl0
KR3a SuIII+ recA 
RDK2641 ruvA59::TnlO  
CS85 ruvC53 eda-51:\TnlO

RDK2655 recG258::Ti\10minikan 
SR2210 ruvA200 eda-51::TTLL0

RDK1873 ruvB9 zea-3::TnlO 
SMR432 C600 SuH m  recD1903::Tet hsdrKr mK+ 
SMR632 594 hsdrKr mK  
SMR635 SMR632 ruvC53 eda-51::Tn!0 
SMR636 SMR632 recG258::Tnl0minikan 
SMR650 SMR632 ruvC53 eda-51::TnL0 

recG258::Tnl0minikan 
SMR3124 SMR632 ruvA59::Ti\10 recG258::Tnl0minikan 
SMR5639 SMR632 ruvAlOO eda-51:iTidO 
SMR5640 SMR632 ruvB9 zea-3::Tn!0 
SMR4594 SMR632 dnaEts486 zae::TnlOd-cam 
SMR4595 SMR632 dnaEts486 zaeiiTrdOd-cam 

ruvC53 eda-51::TnlO 
SMR4597 SMR632 dnaEts486 zae::TnlOd-cam 

recG258::Tnl Ominikan 
SMR4600 SMR632 dnaEts486 zae::TnlOd-cam ruvC53 eda- 

51::TnlO recG258::Tnl0minikan 
SMR4601 SMR632 dnaEts486 zae::TnlOd-cam 

A(srlR-recA)306::T-nl0 
SMR5641 SMR632 dnaEts486 zae::TnlOd-cam 

ruvAlOO eda-51::TnlO 
SMR5642 SMR632 dnaEts486 zae::TnlOd-cam 

ruvB9 zea-3::TrH0 
SMR3700 SMR632 grpD55 malF::TnlO::kan 
SMR3731 SMR632 grpD55 malF::Tr\10::kan 

( \J ts l5  red3 gam210 Anin5 SamT)
SMR4287 SMR632 grpD55 malF::TnlO::kan 

recG162 zib-636::TnlO  
(k jts l5  red3 gam210 Anin5 SamT)

SMR4288 SMR632 grpD55 malF::TnlO::kan 
ruvC53 eda-57:-TnlO::cam 
(k jts l5  red3 gam210 Anin5 SamT)

SMR3732 SMR632 grpD55 malF:(Ix\10:\kan ruvC53 eda- 
57::TnlO::cam recG162 zib-636::TnlO 
(k jts l5  red3 gam210 Anin5 SamT)

C hapter 2 
C hap ter 2 
R. K olodner 
R. G. L loyd, via 
K olodner 
R. K olodner 
Sargentini v ia  Lloyd 
v ia  K olodner 
R. K olodner 
Lab collection 
Lab collection 
This w ork 
This w ork  
C hap ter 2

C hapter 2 
This w ork  
This w ork  
C hapter 2 
This w ork

This w ork

C hap ter 2

C hapter 2

This w ork

This w ork

C hapter 2 
C hapter 2

This w ork

This w ork

C hap ter 2
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SMR5643

SMR5644

JAS36

JAS38

SMR632 grpD55 malF::TnlO::kan 
ruvAlOO eda-51::TnlO 
(k jts l5  red3 gamllO Anin5 SamT)
SMR632 grpD55 malF::TnlO::kan
ruvB9 zea-3::TnlO
(k jts l5  red3 gamllO Anin5 SamT)
C600 (XJtslS red3 gamllO imm434 Anin5 SamT)

A(srlR-recA)306::Tnl0 recD1009 
(XJtsl5 red3 gamllO imm434 Anin5 SamT)

This w ork

This w ork

(Sawitzke an d  Stahl,
1997)
(Sawitzke an d  Stahl,
1997)
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Replicative
Break-Join Break-copy

End Recombinant

Central recombinant
Figure 3-1. Two m echanism s for RecBCD-mediated DSBR in  E. coli. The thick 
solid  lines represent old, pa ren ta l DNA; the th in  d a sh ed  lines represent new ly  
rep lica ted  DNA. Follow ing the  RecA BCD -dependent synapse  of homologous 
m olecules, DSBR can p ro ceed  v ia  tw o para lle l m echanism s: break-join o r 
replicative (break-copy). (A) The break-join process occurs v ia  the cutting and  
re jo in ing  o f hom ologous m olecules at recom bina tion  junctions w ithout the  
involvem ent of any  n ew  D N A  synthesis. This process form s bo th  central and  
end  recom bination p roducts  th a t are m ade en tire ly  from  paren ta l (thick lines) 
D N A . (B) The rep licative (break-copy) m echan ism  involves the  copying of 
in fo rm atio n  from  an  in ta c t d u p lex  via rep lica tio n  to  fo rm  a recom binant 
m olecule, follow ed by  th e  conservative segregation  of the new ly  synthesized 
D N A  stra n d s  (see K ogom a 1997; C hap ter 2). T h is p rocess form s cen tra l 
recom binan ts that carry  ro u g h ly  half new ly  sy n th esized  D N A  and  half o ld , 
p a ren ta l DNA; the en d  recom binants carry m ostly  p a ren ta l D N A  linked to  a  
short track of newly synthesized  DNA. In experim ents w here  old parental D N A  
is labeled  w ith  heavy iso topes, central recom binants fo rm ed  by  the break-join 
an d  replicative m echanism s can  be separated  from  each o ther based on their 
density  in  a density g radient. The replicative central recom binants will band in  
the  ligh ter fractions of th e  g rad ien t than  the  break-jo in  recom binants. E nd  
recom binants from b o th  break-join and replicative m echanism s will band u n d er 
the H H  peak , because a  sm all change in the density  of the D N A  (as a result of 
incorporating  light nucleotides) is n o t detected in  o u r assay.
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A a t t
i + / °

Anin

bio l Anin +

Site-specific Homologous

Figure  3-2. RecBCD-mediated recom bination  of X red gam in  cells defective for 
R uv o r RecG pro teins. (A) R e lev an t geno type of p h ag es  u se d  in  th is  
recom bination  assay are depicted  h e re  an d  C hapter 2. O pen  boxes rep resen t 
deletions; the top  left open box rep resen ts a deletion (Ab527), rem ov ing  D N A  
from  the  center of att site to  its left. T he open  boxes on  the  r ig h t side  of b o th  
phages rep resen t a deletion (A nin5) th a t rem oves n ine open  re a d in g  fram es, 
includ ing  a X HJ resolving p ro te in  (Sharpies e t al, 1998). In  this assay , an d  all 
o thers described in  this paper, phages u sed  carry  this deletion (Anin5) so tha t the  
processing of recom bination in term ediates w ill be done exclusively v ia  the  £. coli 
proteins. Also, all phages in  this an d  o ther experim ents in  this p ap er are  red gam. 
In th is assay, the top phage carries red3 an d  gam210 m u tan t alleles, w hereas the  
b o ttom  phage carries a d e le tio n /su b s titu tio n  (solid box, A biol) th a t rem oves X 
D N A  from  the center of att site to its  righ t, including red and  gam  genes. Tw o 
d ifferent genotypes of the top phage w ere  used  differing only in  th e  presence of 
Chi, ChiC , in  their DNA sequence. N ote  th a t from  am ong all recom binants, the  
In t-prom oted  events (show n as site-specific) form  the longest piece of DNA. The 
Int-recom binants are isolated from  the  res t of X progeny based o n  the ir density  
(see text), an d  gratuitous hom ologous recom bination is m easured am ong  them .
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Expt #1 Chi+ ■  Expt #1 C hi0 

Expt #2 Chi+ □  Expt #2 Chi°

& n\r-5 20

rec+ ruvA ruvB ruvC recG  ruvC recG

Expt #1

Expt #2

ruvAB  
recG

(B) A bove phages were u sed  to  m easure  the frequency o f recom bination in  cells 
defective for Ruv or RecG pro teins. (The recG m u ta tions u sed  is a nu ll allele.) 
The resu lts  from  two sets of in d ep en d en t C hi+ / °  crosses a re  sum m arized  in  th is 
bar g raph . Each bar represents resu lts from  a  different den sity  gradient. In  total, 
the  frequency  of recom bination w as m easured  four tim es for each stra in  from  
tw o se ts of C hi+ / °  experim ents. The value  for each b a r  is the  m ean percentage 
of hom ologous recom bination am ong  site-specific In t-m ed ia ted  recom binants ± 
s ta n d a rd  deviation  (show n as e rro r bars). (C) The frequency  of recom bination 
for ruvA B  recG strains w as determ ined  using  the above assay. O nly C hi° crosses 
w ere  perfo rm ed  and  the resu lts are  p resen ted  in this g raph . The ruvA  allele u sed  
in  th is  experim ent (ruvA59) is p o la r on  ruvB, therefore, th e  genotype of the  stra in  
is p resen ted  as ruvAB.
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F igu re  3-3. X p rogeny  fo rm ation  in  the absence of R uv o r RecG pro teins w h en  
rep lica tion  is blocked. D ensity-labeled  X red gam Anin.5 (A.SR27; M otam edi e t al, 
1999) w as infected in to  u n lab e led  RecBCD+ E. coli so  th a t X p ro g en y  fo rm ation  
can  be u sed  as an  assay  fo r E. coli recom bination. All stra ins carry  a  tem pera tu re  
sensitive  allele of dnaE gene  (dnaEts486) and  the experim ents w ere  perfo rm ed  a t 
43.5° in  o rder to achieve a  fu ll replication block. Follow ing X infection, lysates 
w ere  collected and  cen trifuged  in  a cesium  form ate density  grad ien t. Each d a ta  
p o in t in  the  g raphs rep resen ts  the  tite r of A. in  the co rrespond ing  fraction o f the  
d en sity  gradient. F ractions contain ing  phage w ith  th e  h ighest density  occur to 
th e  left o f each g raph . T he first p eak  (from  the  left) rep resen ts u n ad so rb ed  X. 
T hese  p h ag e  carry  h e a v y  p ro te in  coats a n d  H H  D N A , therefo re , h av e  the  
h ighest density  in  the  infection  lysate. They are n o t p a r t  of the  X p ro g en y , b u t  
serve as a density  m arker. (A) This is the density  g rad ien t of ou r heavy  phage  
stock u sed  in  the experim ent. These phages are  cen trifuged  directly  in  a  density  
g rad ien t w ithout infecting E. coli. The other panels d isp lay  the  density  profiles of 
p ro g e n y  p h ag e  p ro d u c e d  in  (B ) a  recA  s tra in . B ecause recA  cells a re  
recom bina tion  defective, no  p ro g en y  phage w ere  d e tec ted  (negative control).
(C) a  ruvC  recG s tra in . A s sh o w n  prev iously , few  o r no  p ro g en y  ph ag e  are  
detected . (D) a rec+ strain . The p eak  in  fractions 22-26 contains phages th a t have 
in fec ted  the cell, recom bined  a n d  packaged. They carry  ligh t p ro te in  coats an d  
H H  D N A . N ote th a t n o  o th e r peaks appear, con firm ing  th a t a  full b lock  to 
re p lica tio n  w as ach ieved . (E) ru v A  strain . Few  o r no  ph ag e  p ro g en y  are  
de tec ted . (F) ruvB  s tra in . Few  o r no  phage p ro g en y  are  detected . (G) ruvC  
s tra in . N o  progeny phage  are  detected. (H) recG strain . A  sm all b u t significant 
an d  reproducib le p ro g en y  peak  is detected. N ote th a t the  recG m u ta tion  u sed  in  
th is experim ent is a  nu ll allele.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lo
g 

Ph
ag

e 
T

ite
r

to

unadsorbed
phagffPL

unadsorbed
phagew.A unadsorbed

phage

HH X 
progeny

phage alone recA ruvCrecG
~T

40 10 2010 20 3030 10 20 30 10 20 30
unadsorbed
phage

unadsorbed
phage

unadsorbed
phage

unadsorbed
phageE

ruvB recGruvA ruvC
10 20 30 10

Fraction Number (<— Density)

R
ep

ro
du

ce
d 

wi
th

 
pe

rm
is

si
on

 
of 

th
e 

co
py

ri
gh

t 
ow

ne
r.

 
Fu

rt
he

r 
re

pr
od

uc
tio

n 
pr

oh
ib

ite
d 

w
ith

ou
t 

pe
rm

is
si

on
.



132

•  Central O End

Figure 3-4. A n  assay  to correlate the  ex te n t o f n ew  D N A  syn thesis  w ith  the  
in terval of recom bina tion  in  A. crosses p e rfo rm ed  in  cells defective for Ruv or 
RecG pro teins. The crosses were conducted  u n d e r conditions th a t allow  for som e 
D N A  rep lica tio n  to occur (M aterial a n d  M ethods). D ensity -labeled  A. w ere 
infected in to  un labe led  E. coli cells. The p ro g en y  w ere exam ined genetically, to 
determ ine th e  in terval of recom bination, a n d  physically  to de tec t any  new  DNA 
synthesis (M aterials a n d  M ethods). R ep lica tive  central recom binan ts can be 
d istingu ished  from  break-join central recom binan ts in  a cesium  form ate density  
g rad ien t. (A ) A schem atic  re p re se n ta tio n  of the  p h a g e s  u se d  in  these  
experim ents w ith  the ir relevant geno types (Saw itzke and  S tahl, 1997). These 
phages have  b een  used  previously (C hapter 2, Saw itzke and  S tahl 1997, M aterials 
and  M ethods), are  red gam, and carry a de le tion  for the  ran reg ion  of A, (Anin5). J+ 
S + recom binan ts are  selected (M aterials a n d  M ethods), an d  from  am ong them  
central (J+ cl S +, d a rk  circle) and righ t e n d  (J+ cl+ S+, open circle) recom binants 
are counted.
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(B) Density grad ien t o f cross p rogeny from  rec+, ruvA , ruvB, and  ruvC  cells. The 
top  curves, rep resen ted  b y  o p en  squares, show  the  tite r of to tal X, d a rk  circles
re p re se n t central reco m b in an ts  (J+ cl S+ ), a n d  o p e n  circles re p re se n t end 
recom binants (J+ cl+ S +). The first peak from  the  left rep resen ts u n ad so rb ed  
p h ag e  carrying h eavy  p ro te in s  coats and  H H  D N A ); they  are n o t p a r t  of the 
p ro g en y  phage. T hree p ro g en y  peaks appear: H H , HL, a n d  LL. E ven  though  
these crosses w ere perfo rm ed  u n d e r the sam e conditions for all four stra ins, we 
see few  or no LL p rogeny  in  the  rec+ graph (discussed in  text).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134

C
107

u n a d so rb ed
p h a g e

S  102.

03 107

recG

u n a d so r b e d
p h a g e

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80

ruvC recG
u n a d so r b e d  
p h a g eu n a d so rb ed

10 20 30 40 50 60 70 80 9010010 20 30 40 50 60 70 80 90

Fraction Number
(C) D ensity  gradient of cross p ro g en y  from  rec+, ruvC, recG and  ruvC recG cells. 
This se t of crosses w ere perfo rm ed  independently  of (B), b u t th e  sam e sym bols 
a re  u sed  in  these graphs. N ote  tha t, again, few or no  LL p rogeny  w ere  seen in 
the  rec+ graph.
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Figure 3-5. A  schem atic sum m ary  of data p resen ted  in  C hapter 3. This f ig u re  
dep icts the p ro p o rtio n  of d ifferen t X recom bination p ro d u c ts  recovered f ro m  
rec+, Ruv-defective, R ecG -defective, and  R uv-RecG -defective stra in s and  t t ie  
genetic requirem ents for th e ir form ation. The o p en  rectangles rep resen t tR e 
break-copy recom binan ts w h ich  a re  form ed in d ep e n d en tly  of Ruv or R ecG  
proteins, b u t require D N A  synthesis via DNA Pol IH. T hese constitute half of a l l  
recom binants recovered  from  rec+ and  recG  cells, a n d  are  the on ly  type  o f  
recom binants observed  in  Ruv-defective strains. The black rectangles re p re se n t 
th e  break-jo in  reco m b in an ts  w hose  fo rm ation  re q u ire s  RuvABC fu n c tio n , 
independently  of any  D N A  synthesis. These m ake-up h a lf of all X recom binan ts 
recovered from  rec+ cells (in  the  presence of Ruv a n d  RecG proteins), are n o t  
observed in  Ruv-defective strains, an d  form rough ly  10-20% of all recom binan ts 
seen  in  recG cells. T he g ray  rectangle rep resen ts  rep lica ted  reco m b in a tio n  
products, w hose fo rm ation  requires RuvABC an d  D N A  Pol HI proteins. T h ese  
are  only observed in  recG cells, constituting rough ly  30-40% of all recom binan ts, 
an d  are evidence for a  novel replicational recom bina tion  m echanism  in  th e s e  
cells. These da ta  show  th a t ha lf of recom bination requ ires RuvABC, su g g estin g  
th e  form ation  of a  R uv  ABC-specific recom bina tion  in te rm ed ia te . RecG is 
required  for the  optim al efficiency of Ruv A BC-m ediated break-join pathw ay; i n  
its absence a Ruv A BC -dependent replicational m echanism  substitutes.
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F ig u re  3-6. A  m o d e l for th e  ex is ten ce  of tw o  d is tin c t re c o m b in a tio n  
in term ediates in  v ivo. Two DN A in term ed ia tes are form ed after th e  RecABCD- 
m ed iated  sy n a p se  o f th e  hom ologous m olecu les ("A" an d  "B"). T hese D N A  
in te rm ed ia tes m u s t b e  processed in  o rd e r  to  fo rm  recom binan t m olecu les. I 
p ropose th a t th e  p rocessing  of one of th e  recom bination  in te rm ed ia tes (in this 
case "A") a lw ay s  req u ire s  the  RuvA BC p ro te in s . It m ay  p ro c e e d  v ia  tw o 
m echanism s: in  the  presence of RecG, "A" is stab ilized  (by RecG) fo r p rocessing  
via Ruv A B C -dependen t break-join p a th w ay . H ow ever, because P riA  a n d  RecG 
share b ind ing  affinity  to  similar D N A  in term ediates, I propose th a t b o th  can bind  
to "A", b u t RecG  o u t com petes PriA  norm ally , a n d  thus "A" is p rocessed  b y  the 
break-join p a th w a y  m ore  frequently . If  P riA  gains access to  "A" (e.g. in  the 
absence of RecG), th e n  a  replicative p a th w a y  is in itia ted  to  ex ten d  th e  D N A  
in term ediate , b u t  th e  form ation of a recom bina tion  p ro d u c t still req u ires  the 
RuvABC p ro te in s . T he data  p resen ted  in  th is rep o rt show  th a t in  the  absence 
RecG, overall recom bination  rem ains constan t, b u t there is a  significant decrease 
in  b reak -jo in  recom bina tion . I p ro p o se  th a t  a  P riA -m ed ia ted  p a th w a y  is 
co m p en sa tin g  for th is  decrease in  b reak -jo in  recom bination . W ith o u t the 
com petition  fro m  RecG, PriA  gains access to  th is  D N A  in te rm e d ia te  m ore  
frequently , se ttin g  u p  replication forks. I find  th a t the reso lu tio n  of "A" still 
requires RuvA BC because in ruv recG doub le  m u ta n t cells, recom bination  is half 
of rec+. A lso , in  recG cells, few er b reak -jo in  recom binants a re  ob se rv ed . I 
propose th a t b reak-jo in  recom bination even ts requ ire  RecG to  stabilize the  D N A  
in te rm ed iate  fo r  RuvA BC processing. T he  o th er recom bination  in te rm ed ia te  
("B"), is p rocessed  via a  replicative pa thw ay , requ iring  DNA Pol HI, b u t ne ither of 
the R uv n o r RecG proteins.
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The genera l a im  o f this thesis s tu d y  w as to investigate the  ro le  o f D N A  

replication  in  recom bina tion -dependen t d o u b le -s tran d  b reak-repair (DSBR) in  

th e  bacterium  Escherichia coli. DSBR is accom plished  via R ecB C D -m ediated 

recom bination, w h ich  is also the m ain  p a th w ay  for recom bining linear D N A  in  E. 

coli. H istorically, RecBCD-mediated recom bination  w as though t to occur by  the  

break ing  a n d  re-jo in ing  of hom ologous m olecules, exclusively (e.g. T haler an d  

S tahl 1988; W est 1992; K ow alczykow ski e t  al. 1994; K ow alczykow ski 2000). 

H ow ever, recen tly  a  p le tho ra  of indirect evidence suggested the invo lvem ent of 

D N A  replication in  the  repa ir of broken D N A  chains (e.g. Siegel 1974; K ogom a e t 

al. 1996; C ou rce lle  e t  al. 1997; K ogom a 1997; K uzm inov  a n d  S tah l 1999; 

Lom bardo an d  R osenberg  1999). V arious replicative m odels w ere  hypo thesized  

(e.g. Skalka 1974; Sm ith  1991; K uzm inov 1995; R osenberg  et al. 1996; K ogom a 

1997; K uzm inov  a n d  S tahl 1999); how ever, the  d irec t dem onstra tion  o f new ly  

synthesized D N A  w ith in  a  recom binant m olecule w as never m ade.

In  C h ap te r 2 , 1 tes ted  the replicative DSBR hypothesis, by  u sin g  X as the  

D N A  substra te , a n d  b y  physically  exam in ing  X recom bination  p ro d u c ts  (tha t 

h av e  u n d e r g o n e  RecBCD -m ediated DSBR) for n ew  DNA synthesis. I fo u n d  

genetical an d  physica l evidence th a t in  the absence of HJ p rocessing  p ro te ins, 

Ruv and RecG, RecBCD-mediated repair can occur, b u t requires D N A  replication 

via DNA Pol IQ. N otably , the physical analysis of recom binant D N A  m olecules 

revealed  th a t th e  break-jo in  pa thw ay  is essen tia lly  elim inated, a n d  th a t rep a ir 

p roceeds exclusively  v ia  a  replicative ro u te  in  ruv recG cells. O th e r physical 

evidence (e.g. th e  accum ulation  of central recom binan t under the  H L peak , see 

C hapter 2 for details) also supports this conclusion. These results show  that, w ith  

X as the D N A  substra te , replicative repair can  occur. Endonucleolytic cleavage of 

recom bination in te rm ed ia tes is no t required , b u t ra ther resolution is effected v ia  

th e  h y p o th es ized  conservative  seg rega tion  of rep lica ted  D N A  s tra n d s  (see
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C h ap te r 2 for a m odel). H ow ever, the question  rem ains: D oes th is type of 

rep a ir  also occur in  rec+ cells, or is this a un ique  p a th w ay  activated  in  cells 

deficient for HJ processing?

To answ er th is question , I physically exam ined recom bination products 

from  rec+ E. coli a n d  fo u n d  recom binant m olecules th a t also h ad  experienced 

D N A  synthesis. T his is th e  first direct dem o n stra tio n  o f a  recom bination- 

dependen t replicative rep a ir pa thw ay  in  a non-viral DSBR system . Also, based  

o n  the  physical an d  genetical data , I estimate tha t each pa thw ay  (break-join an d  

replicative) is responsib le  fo r rough ly  half of DSBR in  w ild -type  E. coli. W e 

p roposed  a m odel in  w hich  bo th  mechanisms operate in  parallel for the efficient 

repa ir of DSBs (see C hap ter 2).

A n unexpec ted  observation  w as th a t in  the  absence of HJ processing 

pro teins a dram atic increase in  D NA replication w as observed  (com pared to rec+ 

cells). This resu lt fits w ell w ith  DSBR m odels in  w h ich  D N A  recom bination 

interm ediates initiate replication  forks (e.g. Siegel and  K am el 1974; Skalka 1974; 

K ogom a 1997); th u s  th e  h y p o th es ized  a cc u m u la tio n  o f recom bina tion  

interm ediates in  ruv recG cells m ay lead to a large increase in  DNA replication.

The conclusions p resen ted  above from  C hapter 2 directly  dem onstrate the 

existence of a DSBR m echan ism  th a t operates v ia  D N A  replication, requiring  

D N A  Pol III, w hose m echanism  is different from  the previously  described break- 

join pathw ay. O ur resu lts show  that this m echanism  operates in  addition to the  

break  join pathw ay  a n d  requires different proteins.

The d iscovery  of tw o  genetically d istingu ishable  DSBR m echanism s is 

im portan t, and  m ay  have  a  p ro found  im pact on  de term in ing  the roles of o ther 

recom bination  p ro te in s  in  E. coli. From  am ong th e  over 20 recom bination 

p ro teins that have b een  identified  so far, only a few (e.g. RecA, RecB, RecC, etc.) 

are  though t to have  a significant role in  the RecBCD-mediated DSBR (reviewed
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in  K ow alczykow ski et al. 1994; K ow alczykow ski 2000). O thers a re  considered  

au x ilia ry  a n d  th e ir  role in vivo rem ains undeterm ined . M ost confer on ly  a  slight 

d ecrea se  in  RecBCD -m ediated reco m b in a tio n  w hen  absen t (e. g . L loyd  and  

B uckm an  1995). This fits w ell w ith  th e  hypothesis that their role is in  one of the 

tw o  DSBR p a th w ay s, such  th a t th e ir  absence  results in  a  m in o r decrease  in 

recom bination .

In  one sense, the m ost sign ifican t contribu tions of C h a p te r 2 w ere  the 

d e v e lo p m e n t of physical an d  genetical assays that can be u se d  to  s tu d y  each 

p a th w a y  separately . For exam ple, th e  replicative repair p a th w ay  can  be stud ied  

in d ep e n d en tly  of the break-join p a th w a y  b y  exam ining repa ir in  ruv recG cells; 

a lso  th e  b reak-jo in  pa thw ay  can  b e  s tu d ie d  in  the absence of th e  replicative 

p a th w a y  b y  com pletely  b locking  rep lica tio n  in  ou r cells. F u rth e rm o re , the 

ab ility  to physically  analyze recom bination  products for new  D N A  synthesis is a 

p o w erfu l technology that can be u se d  to tes t predictions of replicative an d  break- 

jo in  m odels directly, and to build  a  de ta iled  m echanistic fram e-w ork for DSBR in 

v ivo . This, com bined w ith  the b iochem ical studies of recom bination  pro teins, 

w ill h a v e  a  g rea t im pact on  o u r cu rre n t v iew s of rep a ir in  E. coli a n d  h igher 

eu k ary o tes .

In  C hap te r 3 ,1 em ployed th ese  techniques to re-exam ine th e  ro le  of each 

HJ p ro cess in g  system  (RuvABC a n d  RecG) independen tly  in  DSBR in  E. coli. 

P re v io u s  d a ta , using  conjugational a n d  tran sductiona l recom bina tion  assays, 

suggested  th a t R uv and RecG rep resen t tw o  independen t (parallel) pa th w ay s for 

p ro ce ss in g  HJs (Lloyd 1991): th e  absence of one system  re su lts  in  a  slight 

d ecrease  in  recom bination , w h e rea s  ruv recG cells are  severe ly  defective  for 

reco m b in a tio n  (sim ilar to  recA  cells). I physically  exam ined  recom bination  

p ro d u c ts  recovered  from  cells defective for a  HJ processing p ro te in  to  determ ine 

the  ro le  of each protein  in  DSBR in  vivo.
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F irs t, I fo u n d  p h y s ic a l a n d  gene tica l e v id e n c e  th a t  b reak -jo in  

reco m b in a tio n  requ ires th e  R uvA B C  pro teins. In  th e  absence  o f any  R uv 

p ro te ins, essentially all break-join recom binants are absen t an d  D N A  replication, 

v ia  D N A  Pol HI, is requ ired  fo r the  rem aining recom bination. This supports the  

hypo thesis that the RuvABC p ro te ins act as a com plex in  v ivo  (supported  in  vitro  

by  H iom  a n d  W est 1995; E ggleston e t al. 1997; van  Gool e t al. 1998; van  Gool e t 

al. 1999), required  for the break-join  DSBR pathw ay.

Second, I found d irect physical evidence th a t RecG is requ ired  for optim al 

efficiency of the Ruv A B C -dependent break-join pa thw ay : in  its absence, break- 

join recom bination is significantly reduced  (3-5 fold). This d irectly  dem onstrates 

th a t  th e  tw o  p rev io u s ly  th o u g h t  in d e p e n d e n t p a th w a y s  fo r p ro cess in g  

re c o m b in a t io n  in te rm e d ia te s  w o rk  to g e th e r  to  c a ta ly z e  b re a k -jo in  

recom bination  reactions. I p ro p o sed  th a t RecG assists th e  RuvABC proteins by  

stab iliz ing  recom bination in te rm ed ia tes for RuvABC processing . A  m olecular 

explanation  for this could be th a t RecG branch m igrates HJs in  a direction (left, as 

sh o w n  in  Figure 1-2D an d  1-2E) th a t extends the  h e te ro d u p lex  D N A  region, 

stab ilizing  the D-loop. This activ ity  is hypothesized to be requ ired  for the optim al 

efficiency of Ruv A B C -dependent break-join recom bination  in  th is thesis. In  its 

absence, few er break-join  recom binan ts  are  de tec ted  as the  D -loop m ay  be 

d ism an tled  by  a b ranch m ig ra tion  activity  that rem oves th e  heteroduplex  region 

(branch  m igration  to the righ t, in  F igure 1-2E). This m eans th a t RecG functions 

by  stabilizing  the HJ an d  p resen tin g  th is substrate for RuvABC resolution. The 

biochem istry  of RecG accom m odates this hypothesis (W hitby e t al. 1993; W hitby 

an d  L loyd 1995): RecG has been  show n  to secure exchanges in itia ted  by  3'-ended 

invasion  via its 3' to 5' helicase activ ity  in  vitro.

T hird , even though  break-jo in  recom bination is significantly  h indered  in  

recG cells, the overall recom bination  frequency rem ains unchanged . I p roposed
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th a t  a  rep licational m echan ism  com pensates fo r th is decrease in  break-join 

recom bination , a n d  sh o w  th a t this novel m echan ism  (operating  only  in  recG  

cells) requires resolution v ia  RuvABC and  D N A  synthesis via DNA Pol HI.

In  C hap ter 3, I su g g est the fo rm ation  o f tw o  d istinct recom bination  

in term ediates in  v ivo (see Figure 3-5): one th a t requires processing via RuvABC 

(in te rm ed ia te  ”A"), a n d  an o th e r th a t is p ro ce ssed  v ia  DNA rep lica tion , 

independen tly  of R uv o r RecG proteins (in term ediate  "B"). I  proposed  that the  

Ruv ABC-specific in te rm ed ia te  is m ost frequen tly  reso lved  via the  break-join 

pa thw ay  w hen RecG is present. In the absence of RecG, the in term ediate can be 

ex tended  by P riA -dependen t D N A  replication, b u t its m aturation  still requires 

th e  RuvABC pro teins. Tw o assum ptions are  m ad e  in  th is model: (i) PriA can 

initiate replication from  recom bination in term ediates (Kogoma et al. 1996; Liu et 

al. 1999), and  (ii) P riA  an d  RecG com pete for b in d in g  to the Ruv ABC-specific 

in term ediate  show n  in v itro  (McGlynn e t al. 1997) a n d  in  vivo (Al-Deib e t  al. 

1996). Both assum ptions are supported  by  resu lts  of others. (For a description, 

see C hap ters 1 a n d  3.) I hypothesize  th a t the  m echanism  em ployed  for 

processing of the in term ediate  depends on  the  outcom e of this com petition. If 

PriA  gains access to  the  Ruv ABC-specific in term ediate  ("A"), then replication is 

u sed  to  copy in form ation  from  the hom ologous partner, b u t resolution requires 

RuvABC; on  the  o th er h a n d  if RecG gains access to  the  in term ediate  ("A"), 

RuvABC resolves the  interm ediate via the break-join pathw ay.

W hat m ig h t b e  th e  n a tu re  of th ese  tw o  ty p es  of reco m b in a tio n  

in term ediates? E ven tho u g h  these experim ents w ere  n o t designed to address 

th is question , I specu la te  th a t the tw o p ro p o se d  in term ediate , "A" and "B", 

re p re se n t th e  s tra n d  p o la rity  of tw o  d iffe re n t in v ad in g  en d s 3' and  5', 

respectively. I base  m y  speculation p a rtly  o n  resu lts  from  a recom bination- 

dependen t m utational m echanism  operating in  E. coli, w hich is Ruv ABC-specific,
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R ecG -inhib ited  (rev iew ed  in  R osenberg  e t al. 1998), a n d  is th o u g h t to  be 

m ediated  v ia  3 '-ended invasion only  (Ross e t al. unpublished  results); and  partly  

on  the  h ig h e r PriA  b ind ing  affin ity  to  junctions w ith  a 5' tails com pared  to 

junctions w ith  3' tails (Nurse e t al. 1999). Both lines of evidence suggest that the 

Ruv ABC-specific interm ediate ("A") is a 3 '-ended single s tran d  D N A  invading  a 

duplex . T his im plies that 5 '-ended  invasions are ta rg e ted  by  PriA  and  enjoy 

replicative DSBR, w here as 3 '-ended invasions are resolved  m ost frequently via 

the break-join pathw ay  w hen RecG is present.

It is also w o rth  noting  th a t D -loops form ed v ia  R ecA -catalyzed strand  

invasion  o ften  span  only a few  h u n d re d  bases. This m ay  be too sm all for the 

assem bly o f the  Pol IH enzyme. D N A  Pol HI is a large m ultim eric  enzym e an d  is 

likely to req u ire  a larger reg ion  of ssD N A  for assem bly a n d  function  than  the 

one availab le  a t a  D-loop. O ne w a y  to  ex tend  the D -loop for D N A  Pol HI 

replication m ay  be to use DNA Pol I as the  first step for replication, extending the 

D-loop a n d  creating  a larger reg ion  for D N A  Pol HI assem bly  an d  replication. 

This idea  can  be tested  by  u sin g  s tra in s  th a t carry a  tem p era tu re  sensitive 

m u ta tion  for D N A  Pol I enzym es. If D N A  Pol I is req u ired  for DN A  Pol i n 

d e p e n d e n t rep lica tion  of X chrom osom e, th en  no reco m b in an ts  shou ld  be 

observed  a t  the  restrictive tem pera tu re , even  if the cells a re  w ild  type for the 

D N A  Pol HI enzym e.

The sophisticated analytical tools available for s tudy ing  DSBR in £. coli are 

n o t available in  o ther organism s. In  th is thesis, I have show n  th a t m uch can be 

learned  ab o u t the m olecular details of th is process by u sing  these tools. Because 

m any of the  £. coli DSBR proteins have d irect hom ologues in  h igher eukaryotes, 

inc lud ing  m an , it is possible th a t the  basic m echanism  o f rep a ir  in  £. coli is 

applicable to  these organisms.
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