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ABSTRACT 

Epidemiology is increasingly recognizing the complexity of the underlying mechanisms 

determining health states. Public health surveillance needs to incorporate this knowledge 

into their regular reporting and analysis cycles. Aggregate data related to a multitude of 

health related states and risk factors is produced and publicly shared by public health 

surveillance. These large stores of aggregate data have the potential to be combined and 

analyzed to capture much of the underlying complexity. The aim of this thesis is to 

advance the methods used in public health surveillance for combining and analyzing 

these disparate sources of aggregate data. Three papers address this aim by focusing on 

(1) developing a sound methodology using funnel plots for the analysis of aggregate 

health data, especially addressing the issues of policy relevant analysis and 

overdispersion, (2) developing a spatial scan statistic capable of identify multiple 

irregularly shaped clusters in aggregate space-time data, and (3) applying the funnel plot 

and spatial scan techniques to childhood immunization surveillance in Alberta. These 

papers conclude that (1) the funnel plot methodology is a robust way of creating policy 

relevant analysis with understandable visualizations in the presence of overdispersion, (2) 

the novel MultScan spatial scan performs well at cluster detection, and (3) sophisticated 

surveillance of childhood immunization can be undertaken accounting for a wide variety 

of determinants using available aggregate data. 
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Chapter 2 of this thesis has been published as D. Dover, D. Schopflocher “Using funnel 
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supervisory author and contributed to the concept formation, interpretation of the results 
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CHAPTER 1: INTRODUCTION 

1.1 MOTIVATION 

The aim of this thesis is to improve the methods used in public health surveillance, in 

particular, methods for analyzing aggregate data. My personal experience in public health 

surveillance over the last twenty years has identified that as an area where the discipline 

can improve substantially. There are now vast quantities of data available covering a 

wide range of social determinants of equity, social determinants of health, risk factors, 

health service use, and health outcomes. Often this data is available only in the form of 

aggregate data for a set of geographies, such as immunization coverage for local health 

services planning areas. My observation has been that these vast stores of data are rarely 

linked together (by geography) so that they can be included in the ongoing monitoring 

and systematic analysis activities that underpin public health surveillance. It is my hope 

that the methods presented in this thesis begin to change that. 

 

1.2 OUTLINE 

This thesis is comprised of three papers in the theme of analysis of aggregate data in 

public health surveillance. This chapter proceeds to provide background and literature 

reviews for each of the three papers. Limitations and current gaps are then discussed. 

Chapter 2 presents the first paper providing a methodology for the use of funnel plots for 

effective visualization of surveillance methods, published in Population Health Metrics. 

Chapter 3 presents the second paper (submitted) developing and evaluating a spatial scan 

statistic (referred to as MultScan). The third paper in Chapter 4 (to be submitted) 

provides a synthesis of these methods with an application of them to childhood 

immunization surveillance in Alberta. Chapter 5 closes the thesis with a summary and 

integration of the results, discussion of potential limitations, and future directions.  
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1.3 BACKGROUND AND AIMS 

Public health is “the science and art of preventing disease, prolonging life and promoting 

health through the organized efforts and informed choices of society, organizations, 

public and private, communities and individuals” (Last, 1998). These organized efforts 

are known as public health interventions. A key component to public health interventions 

is their reliance upon evidence to inform the choice of intervention and its target 

population. Evidence comes from a number of sources, including scientific literature and 

surveillance activities. Public health surveillance, which evolved within the science of 

epidemiology, is the "ongoing, systematic collection, analysis, and interpretation of 

health-related data essential to the planning, implementation, and evaluation of public 

health practice, closely integrated with the timely dissemination to those who need to 

know"(Center for Disease Control (CDC), 1986).  

Public health is a large-scale endeavour. It is rarely if ever possible or feasible to employ 

a single health intervention for an entire population. Instead, smaller subpopulations are 

usually targeted in order to make the practice and delivery of public health possible. One 

consequence is that responsibility for delivery of public health programmes is divided 

between administrative areas. Evaluating public health programme delivery involves 

comparing outcomes within and between administrative areas. The most common method 

for creating administrative units for the delivery of public health is based on geography.  

Data collected through public health surveillance processes on health events or the 

individuals to whom these events occur are generally geocoded (indexed by location) in 

order to allow the examination of geographic variation in disease and health outcomes. 

Beginning early in the history of epidemiology (Graunt’s analysis of the Bills of 

Mortality in the 16th century), counts of deaths due to communicable diseases have been 

aggregated by geographic area and disseminated to decision makers (Choi and Pak, 

2001). This type of data was put to use first in discovering disease causes and 

subsequently in designing and evaluating public health interventions (Choi, 2012). 

Surveillance systems today inform administrators in the planning, implementation and 

delivery of public health programmes in their areas.  
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Individual administrative areas, however well-constructed, may not capture phenomena 

that encompass multiple areas. Recently, analyses of geocoded health data have also 

included methods for the detection of clusters of disease that span multiple administrative 

areas in close geographic proximity. This type of analysis allows for a coordinated public 

health response and avoiding duplication of service delivery. 

Immunization is one area of public health practice that could benefit from the application 

of systematic methods analyzing geographic variation. The wide body of knowledge 

relating to factors influencing childhood immunization is known to regional public health 

practitioners and administrators. Neither this knowledge nor the systematic analysis of 

geographic variability and clustering are systematically and routinely incorporated in 

childhood immunization surveillance systems. 

The goal of this research is to further develop methods for analyzing and interpreting 

geographically aggregated data in public health surveillance. I focus on three specific 

aims: 

 Evolve methods to separate pre-defined administrative areas that have high rates 

of disease (or other health outcomes) from those which have low rates, especially 

when areas differ in population and characteristics related to the causes of disease. 

This aim is addressed with the funnel plot methodology for visualizing and 

accounting for multivariate risk factors in Chapter 2. 

 Determine whether these methods can be extended to determine whether the 

neighbours of an area with an unusual rate are also unusual. This aim is addressed 

in Chapter 3 with the development of a spatial scan method. 

 Demonstrate the utility of these methods for a specific public health issue, in 

particular, childhood immunization. This aim is addressed in Chapter 4, assessing 

childhood immunization after accounting for a suite of known determinants of 

immunization. 

Next, the background and literature around each aim is reviewed. 

  



  

4 

 

1.4 LITERATURE REVIEW 

Visual representation of public health information, especially the inclusion and 

understanding of the effects of known risk factors, is crucial to informed decision making 

for public health interventions. This portion of the literature review will provide an 

overview of key visualization methods used for geographically aggregated data and their 

associated background literature. 

 

1.5 FUNNEL PLOTS 

The visual display of this data is intended to, in a methodologically sound manner, 

rapidly convey the information required for public health decisions. In this section, I 

begin by providing a context around the display of aggregate geographic data. The 

section concludes with a review of the literature on the use of funnel plots in public 

health surveillance.  

 

1.5.1 DISPLAYING SMALL AREA DATA 

The results of analyses conducted on data collected within a surveillance system can be 

used to inform public health policy and planning, to monitor the health status of a 

population, and to stimulate research. A functional surveillance system will provide 

information about the number of health events of specified types that occur within 

specified populations on an ongoing basis and can therefore be used to derive disease and 

health event rates over time in different areas or subpopulations. 

Routine surveillance activities include monitoring rates of disease occurrence and other 

health events in small geographic areas in order to identify anomalies that might have a 

geographic basis and to enable the reporting of such anomalies to administrators in these 

areas. Substantial variability in population sizes in small areas introduces methodological 

challenges in the comparisons of rates as the precision of estimates of these rates depends 

on the size of the population over which they are measured. 
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Several graphical procedures have been proposed for displaying small area rates to 

support the location of anomalous patterns. League plots (Woodall, 2006) and choropleth 

maps (Rogerson and Yamada, 2008) are two common approaches shown in Figure 1-1 

and Figure 1-2, respectively. League plots are an a-spatial display of observed rates (with 

confidence intervals) ordered by those rates. These plots are difficult to interpret 

(Marshall, Mohamnmed and Rouse, 2004) because they encourage interpretation as a 

rank ordering, and these rank orderings are known to have extremely poor statistical 

properties [see for example, (Marshall and Spiegelhalter, 1998; Shen and Louis, 2000)]. 

Choropleth maps of rates apply differential colour schemes to chosen categorizations 

(often quintiles) of observed rates and colour each area on a map according to the 

category of its observed rate. These are also easy to misinterpret because the map reflects 

geographic area rather than population density and because the same data may result in 

maps with very different appearances, since the choice of category is arbitrary (Mazzucco 

et al., 2017). Cartogram versions (Sui and Holt, 2008) of choropleth maps attempt to 

redraw areas in proportion to populations but are often difficult to reconcile to 

geographies and still suffer from the arbitrary category problem. 
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Figure 1-1. League Plot 

 

The league plot orders geographies by rate and displays 95% confidence intervals around each rate. League 

plots naturally draw the viewer’s attention to very high or very low rate values – regardless of the 

variability (confidence interval) of those rates. 
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Figure 1-2. Choropleth Map 

 

The choropleth map assigns each geography a colour based on the value of the rate. It naturally draws the 

eye to high and low rate values – regardless of the associated variability. 

 

1.5.2 FUNNEL PLOTS IN PUBLIC HEALTH SURVEILLANCE – LITERATURE REVIEW 

Funnel plots are an alternative to both league plots and choropleth maps. Funnel plots are 

a form of scatter plot in which observed area rates are plotted against area populations. 

Control limits are then overlaid on the scatter plot [see Figure 1-3(a)]. The control limits 

represent the expected variation in rates assuming that the only source of variation is 

stochastic. The control limits are computed in a fashion very similar to confidence limits 

and exhibit the distinctive funnel shape as a result of the smaller expected variability in 

larger populations. 

Funnel plots were first introduced in meta-analyses where they were originally used to 

determine whether a lack of a particular type of published finding demonstrated the 

presence of a publication bias (Light and Pillemer, 1984; Sterne, Egger and Smith, 2001). 
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This would be indicated by the absence of points in a particular region of the funnel 

(especially an absence of studies with a small sample size and a negative result). 

The funnel plot can also be considered a form of control chart (Woodall, 2006). Control 

charts monitor whether a manufacturing or business process is in control. If analysis 

indicates that the process is currently stable, with only stochastic variation, then data 

from the process will vary within known limits and can be used to predict the future 

performance of the process. If the chart indicates that the data from the process being 

monitored are too variable, analysis of the chart can help determine the sources of 

variation, which might then be eliminated to bring the process back into control. In a 

funnel plot, if rate variation is only stochastic, then an appropriate proportion of the 

points representing area rates will tend to fall within the funnel, and importing control 

chart terminology, the (rate generation) process is considered to be “in control” [see 

Figure 1-3(a)]. Reverting to statistical terminology, the model fit is adequate (where the 

model is of a single stable rate). When many rates fall outside the funnel [see Figure 1-

3(b)], the plot can be described as “overdispersed” and it can be said that the process is 

not in control or the model does not fit the data well. Points lying outside of the funnel 

are triggers to further investigation.  
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Figure 1-3(a). Funnel Plot – In Control 

 

Figure 1-3(b). Funnel Plot – Overdispersion 
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Funnel plots have been adapted to health system performance in various jurisdictions 

where it is assumed that administrators within the health system or institution can 

exercise control over a health event-related process (Spiegelhalter 2005a). Funnel plots 

have been used to monitor a wide variety of institutional outcomes, such as trauma 

mortality by hospital (Kirkham and Bouamra, 2008), lung cancer mortality by Primary 

Care Trust (Nur et al., 2015), colorectal postoperative mortality by National Health 

Service (NHS) Trust (Byrne et al., 2013), and individual cardiologists’ surgical mortality 

rates (Kunadian et al., 2009). Many of the issues in institutional performance monitoring 

are shared by health surveillance in support of public health. Both activities deal with 

small domains, highly variable rates, large differences in population sizes, multiple 

testing issues, ongoing monitoring activities, and dissemination of results to interested 

parties invested with the authority or responsibility to affect change. Funnel plots use in 

epidemiology or population-based surveillance have thus far been limited, with examples 

seen for cancer incidence in municipalities (Mazzucco et al., 2017) and breast and 

cervical cancer screening (Massat et al., 2015).  

 

1.6 SPATIAL SCANS 

This section begins with a brief history and review of the uses of spatial scan statistics in 

public health and epidemiology. The developments in the spatial scanning of predefined 

areas are now reviewed. 

 

1.6.1 THE USE OF GEOGRAPHY IN PUBLIC HEALTH SURVEILLANCE 

Public health surveillance has a number of goals. These high-level goals [adapted from 

(Declich and Carter, 1994)] ) are reviewed with a focus on how geographic data play an 

important role in meeting them.  

The first goal of public health surveillance is the describing of patterns of health states or 

of health service utilization. To do accomplish this, analyses carried out in surveillance 

are based upon the principles of descriptive epidemiology. In particular, many public 
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health surveillance analyses describe health outcomes broken down by person, place, and 

time. Place is normally restricted to geographic location in the practice of public health 

surveillance (Yiannakoulias, 2011), not necessarily accounting for the richness of what a 

place is and what it represents (Tunstall, Shaw and Dorling, 2004). This choice is an 

intentional trade off - while some richness of information is lost, a cost-effective 

systematic disclosure of data is maintained over time. Indeed, the careful use of 

administrative health data aggregated to geographic boundaries was one of many 

contributions made during the inception of public health surveillance by William Farr 

(Langmuir, 1976): registration districts were used in the analysis mortality and 

geographic variation identified key public health actions to be undertaken. This model of 

examining variation in health outcomes by geographic areas continues in public health 

practice today. 

The second goal of public health surveillance is to detect anomalies. Similar to the 

descriptive analysis, anomalies are usually monitored for along person, place and time 

dimensions, with place being operationalized as a geographic boundary. While many 

methods are available for anomaly detection, the most common contemporary approach 

for the monitoring of spatial anomalies is the spatial scan statistic (Yiannakoulias, 2011). 

This approach has been successfully (if rarely) used to point public health officials in the 

direction of identifying a cause of elevated disease rates. Aspects of the geographic 

location are then identified as contributing to the observed disease rates. A prototypical 

example of this was the identification of exposure to the mineral erionite causing 

mesothelioma in Turkey (Neutra, 1990). 

The third goal of public health surveillance is to suggest hypotheses for further research. 

Many epidemiologic hypotheses have been proposed by the examination of public health 

surveillance data at the geographic level. Contemporary examples of risk factors for a 

wide variety of diseases ranging from asthma to cervical cancer to liver cancer have been 

suggested by geographic analysis of health surveillance data (Pearce, 2000). Even as the 

discipline of public health surveillance was being established, geographically defined 

surveillance data was a prominent component of the analyses carried out. During the mid-

1800’s, William Farr’s reporting on cholera included geographies defined by elevation 
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(the miasma theory) and by water supplier (John Snow’s water theory) (Langmuir, 1976). 

Geographically defined data in public health surveillance have provided, and continue to 

provide, substantial contributions to the scientific understanding of population health. 

These many and varied uses of geography in public health surveillance point to the 

importance of developing robust methods for analyzing and visualizing geographically 

aggregated public health surveillance data. 

 

1.6.2 SPATIAL SCANS IN THE PUBLIC HEALTH SURVEILLANCE CONTEXT 

Public health surveillance and epidemiology both benefit from the identification of 

disease and health state geographic clusters. Public health surveillance uses this 

information to intervene and epidemiology uses this information to suggest possible 

causal hypotheses. The use of spatial analysis in public health surveillance dates back to 

John Graunt's neighbourhood analysis of the London Bills of Mortality in the 1600s 

(Choi and Pak, 2001). Analyses did not change substantially until William Farr in the 

1800s began analyzing influenza surveillance data to identify geographic locations with 

an excess of observed to expected cases (Langmuir, 1976). Similar surveillance and 

dissemination activities leading to control measures continue to this day (Walter, 2000). 

For example, weekly influenza surveillance activities at the Alberta Ministry of Health 

compare influenza across different geographic health service zones in the province and 

compare the current to expected counts [see for example (Alberta Health, 2017)]. This 

information is then disseminated to Medical Officers of Health and other public health 

officials across the province. 

While many of the fundamental principles of surveillance have not changed, the tools and 

methods have evolved over time. Cluster detection is now an integral component of 

public health surveillance activities. Spatial scan statistics are a commonly used method 

to detect clusters (Rogerson and Yamada, 2008). A spatial scan statistic is a test statistic 

that (a) searches the data (in this case, geographies) to identify a cluster, and (b) assesses 

the statistical significance of the identified cluster. If the geographic area with the 

potential cluster were known a priori, a statistical comparison would be straightforward 
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between that area and another. Spatial scan methods are more complex because the 

geography defining the cluster is unknown. Scan procedures would ideally search all 

possible geographies finding the area with the largest objective function (commonly the 

likelihood ratio) and hence most likely to be the cluster, and then evaluate the statistical 

significance of that most likely cluster.  

While spatial scans can search point data or aggregated data, this research focuses only 

on spatial scans that search data aggregated over predefined geographic regions as these 

are the most applicable in a public health surveillance context. Before detailing spatial 

scan statics themselves, it is important to first consider the implications of using a “pre-

defined geography”. The defining of boundaries has profound effects on what can be 

analyzed, what the results will be, and the value of said results. Form an analysis 

perspective, the scale of the regions and the choice of groupings of areas at different 

levels affects the findings. This is known as the modifiable areal unit problem (Waller 

and Gotway, 2004). It is possible to find radically different results — high positive 

correlations, no correlation, large negative correlations — through different aggregations 

of smaller areas. Additionally, the scale itself affects results — as there are fewer (larger) 

areas at a higher level, effect measures are attenuated. These results point to how 

fundamental the choice of geographies is.  

Public health surveillance is fundamentally an applied discipline. The choice of 

geographies will need to fit to the requirements of a surveillance system. In particular, 

surveillance systems need to maintain comparability, be cost effective, and be sustainable 

over time. These needs push towards defining geographic regions once (or only a few 

times). This is in tension with the need to tailor geographic boundaries to the scale of the 

health outcome of interest to obtain analytically meaningful results and to the need to 

continuously create complex definitions of place relevant to the outcome of interest 

(Yiannakoulias, 2011). Public health surveillance takes a compromise path. Beginning in 

the 1800’s, William Farr utilized the pre-existing 2,000 registration districts in the 

analysis of the Bills of Mortality and also promoted their use in the census to collect high 

quality denominators (population values) (Langmuir, 1976). This represents using an 

organic, community created definition of an area. This has the advantages of capturing 
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some aspects of place while maintaining its applied value. Considerations are similar 

today, but the processes can differ. As an example, the local geographic areas used in 

Chapter 4 and sub-regionals used in Chapter 2 were created by the Ministry of Health and 

the Health Regions. These geographies were created trying to balance their utility for 

health service planning, their utility for surveillance and reporting, and their having 

somewhat homogeneous populations. While not community created, the concept of place 

continues to be recognized. Boundaries such as these provide the predefined geographies 

that form the basis of spatial scan statistics. 

For predefined geographic units, spatial scans take advantage of distance or adjacency 

information when searching for a cluster. In Kulldorff’s original spatial scan (Kulldorff 

and Nagarwalla, 1995), every possible circle, starting at every area centroid, was 

considered. Once the most likely cluster is identified, the hypothesis that the area has a 

rate higher than the remainder of the areas is tested. The likelihood ratio statistic for the 

most likely cluster is computed, under the assumption of a known geographic choice. 

Then, to account for the multiple testing involved in searching for the most likely cluster, 

Monte Carlo simulation determines the distribution of this test statistic. If the test statistic 

is significant, the identified cluster is considered real.  

By using only distance between centroids of areas, Kulldorff’s spatial scan does not in 

fact guarantee the clusters identified contain adjacent areas. If the areas are extremely 

irregular in their shapes, it is possible that the next closest area, measured by distance to 

the centroid, is not actually adjacent to the first. Other spatial scan techniques do take 

advantage of the graph structure to ensure that clusters are in fact connected. The graph 

structure relates to topologic structure of the geographic areas. Each area is considered a 

vertex, and adjacent areas are connected by an edge. In this way the graph theoretic 

representation of the geographies abstracts away a level of detail, the exact size and shape 

of each area, to represent the map using only the vertices and edges. It also clearly 

defines the problem for cluster detection: to search all possible connected areas (sets of 

vertices joined by edges). Assunção et al., 2006, explicitly use graph theoretic results to 

optimize the search over connected areas. Weights are associated with each edge using 

the difference between area rates in the adjacent vertices. A minimum spanning tree 
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(Gower and Ross, 1969) is then constructed using these weights. A minimum spanning 

tree removes edges from the graph such that there is still a way to reach every connected 

area, but each connection is not maintained. If the weights are unique, there is a unique 

spanning tree created that minimizes the weights (costs of moving between areas). This 

spanning tree is substantially smaller (measured by the number of edges) than the full 

graph, making it computationally feasible to search. 

Kulldorff’s spatial scan transformed the field of cluster identification because this 

approach was the first to meet the three criteria (Waller and Gotway, 2004) of (a) 

identifying the existence of a cluster, (b) identifying the spatial location of the cluster, 

and (c) soundly evaluating the significance of the cluster.  

 

1.6.3 SPATIAL SCAN STATISTICS – LITERATURE REVIEW 

Kulldorff’s original spatial scan (Kulldorff and Nagarwalla, 1995) represents the 

breakthrough in the field of spatial scan statistics in part because the method could 

identify and evaluate circular clusters in a methodologically rigorous way. The use of 

only circular clusters in conjunction with the proof that the likelihood ratio was the 

individually most powerful test resulted in a method that was computationally feasible 

and theoretically sound. The restriction to compact circular clusters is arbitrary and 

limiting in a field as diverse as public health, however. Clusters of health events can be 

conceived to occur in any configuration – for example, long and irregular following a 

river or other geographic feature; starting small and growing outward following an air 

borne dispersal pattern; compact following a point source exposure; completely irregular 

following transmission along a social network. This implies that spatial scan techniques 

applied in public health should be able to detect both irregular and regularly shaped 

clusters. The FlexScan method proposed by Tango and Takahashi (Tango and Takahashi, 

2005) attempts to do this by performing an exhaustive search to detect any possible shape 

of cluster. But exhaustive searching across a large number of geographies quickly 

becomes computationally infeasible (Neill and Moore, 2004; Yiannakoulias, Rosychuk 

and Hodgson, 2007). Thus developments in spatial scans focus on algorithms or 

approaches that increase the computational speed. Increases in speed may trade off with 
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loss of accuracy in the detection of clusters, however. That is, as searches become more 

restrictive, the methods usually become less accurate at cluster detection. Attempts to 

improve spatial scan methods can be categorized into methods that restrict the shape of 

the cluster, restrict the search by penalizing the likelihood ratio, or increase the efficiency 

of the algorithm. 

Shape restrictions have been straightforward to develop. Kulldorff’s original circular 

spatial scan (Kulldorff and Nagarwalla, 1995) was later extended to an elliptical scan 

(Kulldorff et al., 2006). Rectangular scans have also been considered (Neill and Moore, 

2004). The original circular scan performs quite well when the underlying cluster is 

compact or close to compact, but performance (both ability to detect and accuracy) drops 

off dramatically when the underlying cluster is no longer compact [for example (Goujon-

Bellec et al., 2011)]. Fundamentally, when detecting a cluster known a priori to be 

compact, straightforward methods exist today that take advantage of that prior 

knowledge.  

A wide variety of penalization approaches have been proposed. Non-compactness 

penalties on the likelihood ratio that limit the growth of or absolute size of the cluster 

have been proposed (Duczmal, Kulldorff and Huang, 2006; Yiannakoulias, Rosychuk 

and Hodgson, 2007). Depth limiting search rules, restricting how many additional 

geographies would be included in a search, have also been proposed (Yiannakoulias, 

Rosychuk and Hodgson, 2007; Tango, 2008). Search rules can consider the significance 

of rates in individual geographies prior to inclusion in a potential cluster (Tango and 

Takahashi, 2005) or the search can be restricted to a local (rather than global) maximum 

of the likelihood ratio with a length based stopping rule (Yiannakoulias, Rosychuk and 

Hodgson, 2007). All of these methods rely upon arbitrary tuning parameters. 

There have been a number of different algorithms proposed to detect irregularly shaped 

clusters. The upper level set approach (Patil and Taillie, 2004) sorts the data by the 

observed rates and proceeds within each level set (the set of rates higher than a value) to 

evaluate clusters of connected geographies. This can be seen in Figure 1-4 following 

down the dashed lines from the largest to ever smaller observed rates. The method was 

generalized as a minimum spanning tree (Assunção et al., 2006) and is related to the 
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weak version of the linear time subset scanning algorithm (Neill, 2012) that proved the 

optimality of this approach under certain restrictive conditions. An order based search 

sorts the data by the observed z-scores and proceeds to create clusters which are then 

evaluated (Que and Tsui, 2011). A simulated annealing approach (Duczmal and 

Assuncao, 2004) that begins with the most likely cluster from Kulldorff’s circular scan 

has also been proposed. A genetic algorithm with similar performance but improved 

speed compared to the simulated annealing approach has also been developed (Duczmal 

et al., 2007). More recently, Neill (Neill, 2012) has provided a theoretical result proving 

that the likelihood can be maximized in a computationally efficient manner. This 

approach has been implemented as GraphScan (Speakman, McFowland and Neill, 2015). 

The methods described thus far focus on detection of a single cluster. Theoretical 

approaches to multiple cluster detection have been pursued in the literature in a limited 

number of forms. A sequential test to evaluate cluster significance for up to three distinct 

clusters has been developed (Li et al., 2011). This method approaches the problem of 

multiple clusters as an issue of p-value evaluation, and assumes the underlying scan is 

appropriate and can identify non-overlapping clusters. The method is restricted to a small, 

fixed maximum number of clusters (three in the original paper). A theoretically elegant 

approach to multiple cluster detection is to place a prior distribution on the expected 

number of clusters (Wakefield and Kim, 2013). This method then simultaneously 

estimates the number of clusters and their locations and rates. Unfortunately, this method 

suffers from sensitivity to the choice of prior distribution and other tuning parameters. 

Due to their computational complexity and non-standard software requirements, neither 

of these approaches are commonly used in public health surveillance. Current practice 

involves a variation of detecting clusters (Zhang, Assuncao and Kulldorff, 2010) and then 

evaluating each as though it were the only cluster detected. Some approaches list all 

"significant" clusters that are non-overlapping, evaluated in a ordered manner based on 

the likelihood ratio (Kulldorff, 1997); other approaches detect the cluster, remove it from 

the data, and repeat this process until no further significant clusters are detected (Zhang, 

Assuncao and Kulldorff, 2010). These approaches are generally believed to have 

conservative properties, but the performance characteristics are unknown [for example 

(Wakefield and Kim, 2013)] and lack a sound theoretical foundation. 
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Figure 1-5 summarizes the substantive contributions following Kulldorff’s introduction 

of the circular spatial scan statistic. Details of the statistical basis for spatial scans are 

reserved until Chapter 3 when the discussion can involve the new MultScan spatial scan 

developed. 

Figure 1-4. Funnel plot and level sets 
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Figure 1-5. Evolution of Spatial-Temporal Scan Statistics 

Kulldorff’s Circular Spatial Scan
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Tango - irregular

Neill - rectangular

Takahashi – stacked irregular

Patil / Assunção / 
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Wakefield - Bayesian
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Iyengar – growing squares

Zhang – take out
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1.7 CHILDHOOD IMMUNIZATION SURVEILLANCE 

This portion of the literature review will provide an overview of childhood immunization 

in Alberta. It will provide background regarding the delivery of this public health 

intervention in Alberta and summarize key literature regarding factors affecting 

childhood immunization uptake. 

 

1.7.1 BACKGROUND - CHILDHOOD IMMUNIZATION IN ALBERTA 

The routine childhood immunization schedule for Alberta, up to the age of two, is shown 

in Table 1-1. The routine schedule changes over time with the introduction of new 

vaccines or improvements in the timing of the schedule. The schedule in Table 1-1 is as 

of February 2011, to coincide with the study period in Chapter 3. The temporal spacing 

between administrations of the same vaccine and the age at which vaccines are 

administered represent an evidence-based attempt to optimize the child’s immune 

response and minimize adverse reactions within the immunization delivery system. For 

example, MMRV, protecting against measles, mumps, rubella, and varicella (MMRV), is 

given at 12 months of age. MMRV vaccination given prior to 12 months of age does not 

result in a sufficient antibody response (Goh et al., 2007). These immunological 

considerations in conjunction with the practical considerations surrounding vaccine 

delivery in a particular context result in the routine immunization schedule (Institute of 

Medicine, 2013)  
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Table 1-1. Alberta’s Routine Childhood Immunization Schedule to Two Years of 

Age 

 

2 months   DTaP-IPV-Hib1 

 Pneumococcal conjugate (PCV13) 

 Meningococcal conjugate (Men C) 

4 months  DTaP-IPV-Hib 

 Pneumococcal conjugate (PCV13) 

 Meningococcal conjugate (Men C) 

6 months  DTaP-IPV-Hib 

 Pneumococcal conjugate (PCV13) (for high risk children 

only) 

6 months and 

older 

 Influenza2 

12 months  MMRV3 

 Meningococcal conjugate (Men C) 

 Pneumococcal conjugate (PCV13) 

18 months  DTaP-IPV-Hib 

Effective: February 3, 2011 

Note: Each bullet represents one vaccine/injection unless otherwise noted. 

 1 Diphtheria, tetanus, acellular pertussis, polio, haemophilus influenzae type b  

 2 Annually, during influenza season  

 3 Measles, mumps, rubella, and varicella   

Source: http://www.health.alberta.ca/health-info/imm-routine-schedule.html  Accessed February 3, 2012  

http://www.health.alberta.ca/health-info/imm-routine-schedule.html
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1.7.2 CHILDHOOD IMMUNIZATION COVERAGE SURVEILLANCE 

Immunization has been extremely successful in reducing the burden of communicable 

disease morbidity and mortality and is regarded as one of the top ten achievements in 

public health in the 20th century (Center for Disease Control (CDC), 2011). The ability to 

have accurate and timely data on immunization coverage in a population is important for 

two reasons. First, accurate information on coverage allows the identification of areas 

that have low coverage and hence should be targeted for interventions. Second, 

knowledge of immunization coverage can highlight areas at risk of a disease outbreak 

thus permitting informed planning of the public health response. This highlights the 

importance of immunization surveillance in protecting the population’s health. To 

illustrate this importance, I briefly review the potential impact that immunization 

surveillance can have in public health using the recent 2013 measles outbreak in Alberta 

as an example (Suttorp, 2014). Surveillance data and local knowledge were key 

components to planning for the anticipated measles outbreak. Immunization surveillance 

data showed that certain communities had persistently low measles immunization 

coverage. This information, in conjunction with local knowledge and knowledge of 

coverage in surrounding communities, lead to evidence informed planning by the 

regional Medical Officer of Health. When in 2013 the outbreak did in fact occur, it was 

well contained and resulted in a total of only 42 confirmed measles cases (Suttorp, 2014). 

This can be compared to recent outbreaks in Quebec (De Serres et al., 2013) and the 

Netherlands (Woudenberg et al., 2017), where there were 725 and 2,700 cases, 

respectively. Such rapid response and excellent epidemic containment were the product 

of using surveillance data to identify public health risks and plan the public health 

response. 

Public health officials are responsible for protecting the health of the population - this 

mandate clearly extends to protecting the population from vaccine preventable diseases. 

To effectively do this, public health officials must understand immunization coverage and 

determine what interventions are required in which areas. I now review the state of the art 

in immunization surveillance practice. 
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Currently, only the most basic choropleth maps of immunization coverage rates are used 

to inform public health officials (Walter, 2000). While examples of more complex 

analyses of immunization coverage exist in the research literature [for example, (Lieu et 

al., 2015)], a robust methodology meeting the complex, population based, ongoing, 

systematic surveillance needs of public health has not yet been developed.  

To inform the choice of intervention, a surveillance system must assist in explaining 

immunization uptake in the population across geographic administrative areas. 

Knowledge of factors influencing immunization behaviour must be included to 

intelligently inform the type of intervention required. A surveillance system must also be 

able to identify areas where the population is at unusually high risk and simultaneously 

most amenable to intervention. The optimal approaches and methods for explaining 

immunization behaviour, or any health outcome in fact, and identifying spatial clusters 

will come from the research domain. The objective in designing a surveillance system is 

to evaluate these optimal approaches, modifying them as necessary for incorporation into 

a surveillance system.  

 

1.7.3 LITERATURE REVIEW - DETERMINANTS OF CHILDHOOD IMMUNIZATION 

UPTAKE 

1.7.3.1 Behavioural Model of Health Services Use  

I use the Behavioural Model of Health Services Use (Andersen and Newman, 1973; Aday 

and Andersen, 1974) to assist in framing the large number of determinants of 

immunization uptake. This framework was originally developed for the study of families’ 

use of health services. It characterizes relationships between health policy, the health care 

system, characteristics of the population and health service utilization and satisfaction. 

Briefly, the model identifies Predisposing Characterises, Enabling Resources, and Health 

Care System Characteristics that influence Health Care Service Utilization and 

Satisfaction with services. This thesis focuses on the utilization outcome of immunization 

uptake, so there will be no further exploration of the satisfaction element. Figure 1-6 

shows the hypothesized interrelationships between the factors. The Predisposing 

Characteristics represent those characteristics associated with an individual choosing to 
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utilize health care resources or not (Andersen and Newman, 1973). Enabling Resources 

represent those conditions that support the utilization of health care resources when an 

individual is predisposed to do so (Andersen and Newman, 1973). Health Care System 

Characteristics refer to what resources the system has and how it distributes and 

structures those resources for the delivery of health services (Aday and Andersen, 1974). 

This framing of influencing characteristics as Predisposing Characteristics, Enabling 

Resources or Health Care System Characteristics has been useful in many areas [see for 

example (Phillips et al., 1998) for a review], including childhood immunization (Acosta-

Ramírez et al., 2005). Each component is now reviewed, using the model to organize the 

known determinants to childhood immunization (refer to Table 1-2 for a summary). 

1.7.3.2 Predisposing Characteristics 

Predisposing characteristics are those individual or family characteristics that influence 

the decision to immunize. Beliefs – religious, moral, and philosophical – play an 

important part in choosing to attempt to access immunization services (Mills et al., 2005; 

Falagas and Zarkadoulia, 2008; Dubé et al., 2013; Larson et al., 2014; Thomson, 

Robinson and Vallée-Tourangeau, 2016). These beliefs may include the belief that 

immunization is either not allowed or is harmful. Beliefs have been shown to have quite 

large effects in multivariate models (van der Wal et al., 2005).  

The perceptions around risks and benefits are some of the most influential determinants 

of immunization uptake. Perceived vaccine safety (Mills et al., 2005; Falagas and 

Zarkadoulia, 2008; Dubé et al., 2013; MacDonald et al., 2014; Larson et al., 2014; 

Thomson, Robinson and Vallée-Tourangeau, 2016), vaccine effectiveness (Mills et al., 

2005; Falagas and Zarkadoulia, 2008; Dubé et al., 2013; MacDonald et al., 2014; Larson 

et al., 2014; Thomson, Robinson and Vallée-Tourangeau, 2016), and social responsibility 

(Mills et al., 2005; Larson et al., 2014; Thomson, Robinson and Vallée-Tourangeau, 

2016) must be weighed against, for instance, perceived susceptibility to disease (Mills et 

al., 2005; Falagas and Zarkadoulia, 2008; Dubé et al., 2013; MacDonald et al., 2014; 

Larson et al., 2014; Thomson, Robinson and Vallée-Tourangeau, 2016), disease severity 

(Mills et al., 2005; Falagas and Zarkadoulia, 2008; Dubé et al., 2013; MacDonald et al., 

2014; Larson et al., 2014; Thomson, Robinson and Vallée-Tourangeau, 2016), 



  

25 

 

perceptions of fear around needles and the number of needles the child is receiving, and 

perceptions of pain during vaccination (Mills et al., 2005; MacDonald et al., 2014; 

Larson et al., 2014). Illustrating this, “too many needles at once” has been documented as 

having an adjusted odds ratio (OR) of 7.7 (MacDonald et al., 2014) in an Alberta 

multivariate study examining incomplete immunization; this odds ratio was almost twice 

any other odds ratio in the study. Risk-benefits have also been seen as the most influential 

construct in the Americas (Larson et al., 2014). Perceived contraindications to 

immunization (such as recent illness) (Mills et al., 2005; Falagas and Zarkadoulia, 2008; 

Pearce et al., 2008) and past immunization experiences (Mills et al., 2005; Falagas and 

Zarkadoulia, 2008; Dubé et al., 2013; MacDonald et al., 2014; Larson et al., 2014; 

Thomson, Robinson and Vallée-Tourangeau, 2016) are also predisposing factors. 

In households with a single child, immunization is but one of many child health related 

activities that must be attended to. There are additional demands in running a house and 

family that also require attention. In all of these competing demands, time and resources 

must be allocated to immunization. In households with more demands, the likelihood of 

immunization occurring can decline. These competing pressures are magnified when 

there are multiple children in the household (Pearce et al., 2008; MacDonald et al., 2014; 

Larson et al., 2014; de Cantuária Tauil, Sato and Waldman, 2016). This is seen in 

multivariate models capturing this “household chaos” using an indicator of being a 

second or later child. This has a consistent and sizable effect on immunization (Pearson et 

al., 1993; Angelillo et al., 1999; Trauth et al., 2002; Dombkowski, Lantz and Freed, 

2004; Matsumura et al., 2005; Kim et al., 2007; Pearce et al., 2008). The effects of 

competing pressures have the potential to be ameliorated through, for example, access to 

child care (Falagas and Zarkadoulia, 2008; Pearce et al., 2008; MacDonald et al., 2014; 

de Cantuária Tauil, Sato and Waldman, 2016), hence increasing the likelihood of 

accessing immunization.  

1.7.3.3 Enabling Resources 

Socio-economic resources are enabling resources that facilitate access to immunization 

services. Material resources (Mills et al., 2005; Pearce et al., 2008; Larson et al., 2014; 

de Cantuária Tauil, Sato and Waldman, 2016) are usually measured based on an income 



  

26 

 

related variable. Results of the effects of material resources on immunization are mixed 

within Canada [(Lemstra et al., 2007) finding an effect of income while (MacDonald et 

al., 2014) did not] and elsewhere [(Suarez, Simpson and Smith, 1997; Christakis et al., 

2000; Dombkowski, Lantz and Freed, 2004; Zhao, Mokdad and Barker, 2004; Smith and 

Singleton, 2008) found effects of material resources variables while (Pearson et al., 1993; 

Trauth et al., 2002; van der Wal et al., 2005; Kim et al., 2007; Pavlopoulou et al., 2013) 

did not]. Education (Pearce et al., 2008; Larson et al., 2014; de Cantuária Tauil, Sato and 

Waldman, 2016) as a measure of socio-economic resources does not appear empirically 

as significant in most studies considering several factors simultaneously (multivariate 

studies) [(Suarez, Simpson and Smith, 1997; Zhao, Mokdad and Barker, 2004; Pearce et 

al., 2008) found education effects while (Angelillo et al., 1999; Trauth et al., 2002; 

Dombkowski, Lantz and Freed, 2004; Kim et al., 2007; Lemstra et al., 2007; Smith and 

Singleton, 2008; MacDonald et al., 2014; Pavlopoulou et al., 2013) did not]. 

Social supports can provide the opportunity to access immunization services even when 

socio-economic resources are lacking (Pearce et al., 2008; MacDonald et al., 2014; 

Larson et al., 2014; Thomson, Robinson and Vallée-Tourangeau, 2016). Support 

available through a spouse (Pearce et al., 2008; Larson et al., 2014; de Cantuária Tauil, 

Sato and Waldman, 2016), measured as living in a two parent family, is only 

inconsistently related to immunization [(Pearson et al., 1993; Dombkowski, Lantz and 

Freed, 2004; Kim et al., 2007; Pearce et al., 2008) not in (Lemstra et al., 2007; Smith and 

Singleton, 2008; MacDonald et al., 2014)] in multivariate studies. Direct measures of 

self-reported need for social support have not achieved significance (MacDonald et al., 

2014) in relation to immunization outcomes. Supports through ethnic community (Pearce 

et al., 2008; Larson et al., 2014; de Cantuária Tauil, Sato and Waldman, 2016), healthy 

families (Pearce et al., 2008), and caring about at risk household members (MacDonald et 

al., 2014) can all facilitate immunization. The broad social context within which 

immunization is provided and discussed (Dubé et al., 2013; MacDonald et al., 2014; 

Larson et al., 2014; de Cantuária Tauil, Sato and Waldman, 2016) also can support the 

choice to immunize through, for instance, the influence of social norms on behaviours. 
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Direct measures of specific immunization knowledge (Mills et al., 2005; Dubé et al., 

2013; Larson et al., 2014; Thomson, Robinson and Vallée-Tourangeau, 2016) and beliefs 

around vaccine safety (Dubé et al., 2013; Larson et al., 2014) have consistently been 

found an important factor in immunization uptake (Matsumura et al., 2005; MacDonald 

et al., 2014). When knowledge was restricted to knowing the immunization schedule 

(Falagas and Zarkadoulia, 2008), this result was no longer important (Angelillo et al., 

1999). 

Transportation or the location of immunization clinics can present a barrier to 

immunization uptake (Mills et al., 2005; Falagas and Zarkadoulia, 2008; Pearce et al., 

2008; MacDonald et al., 2014; Larson et al., 2014; Thomson, Robinson and Vallée-

Tourangeau, 2016). Results of studies controlling for a variety of factors do not support 

the importance of location and transportation in Alberta (MacDonald et al., 2014). 

The “interaction between patients and providers is the cornerstone of maintaining 

confidence in vaccination” (Dubé et al., 2013) and appears in most reviews of 

determinants (Mills et al., 2005; Falagas and Zarkadoulia, 2008; Dubé et al., 2013; 

MacDonald et al., 2014; Larson et al., 2014; de Cantuária Tauil, Sato and Waldman, 

2016). Having a regular medical provider is statistically significant in studies considering 

several factors simultaneously (Christakis et al., 2000; Dombkowski, Lantz and Freed, 

2004; MacDonald et al., 2014).  

1.7.3.4 Health Care System Characteristics 

Access is regularly cited as a factor in health service utilization, including immunization 

(Mills et al., 2005; Falagas and Zarkadoulia, 2008; Pearce et al., 2008; MacDonald et al., 

2014; Larson et al., 2014; de Cantuária Tauil, Sato and Waldman, 2016; Thomson, 

Robinson and Vallée-Tourangeau, 2016). There is however, limited empirical evidence 

supporting that this affects immunization in Alberta (MacDonald et al., 2014). 

Many other health care system characteristics have been related to immunization uptake. 

Wait times (Falagas and Zarkadoulia, 2008; MacDonald et al., 2014), integration of 

individuals into the health care system (specially, the immunization stream) (Falagas and 

Zarkadoulia, 2008; MacDonald et al., 2014), prompts to action provided by the system 
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(Falagas and Zarkadoulia, 2008; de Cantuária Tauil, Sato and Waldman, 2016; Thomson, 

Robinson and Vallée-Tourangeau, 2016), provider knowledge (Falagas and Zarkadoulia, 

2008; Dubé et al., 2013) and attitudes (Falagas and Zarkadoulia, 2008; Dubé et al., 2013) 

towards immunization, the communication skills and interpersonal interactions with the 

health care system providers (Mills et al., 2005; Falagas and Zarkadoulia, 2008; Dubé et 

al., 2013; Larson et al., 2014), and differences in the organization and implementation of 

different systems to deliver immunization (Larson et al., 2014; de Cantuária Tauil, Sato 

and Waldman, 2016) have all been cited. For example, having recently moved, which 

may represent the ability to integrate into the local health care system after moving from 

one provider’s area to another (Falagas and Zarkadoulia, 2008; MacDonald et al., 2014), 

shows substantive significant results. Comparisons of health care systems and providers 

are rare in the literature with mixed results [(Pavlopoulou et al., 2013) finding an 

association with immunization and (Kim et al., 2007) finding some differences between 

providers].  
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Figure 1-6: Behavioural Model of Health Services Use 

  

From Aday and Andersen (Aday and Andersen, 1974).   
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Table 1-2. Determinants of Childhood Immunization 

 

  

Health Behaviours Model

Category

Determinant

Reviews Multivariate

La
rs
on

Fa
la
ga
s

Ta
ui
l

Th
om
so
n

M
ill
s
Du
be

M
ac
Do
na
ld

Pe
ar
ce

Pre-Disposing Characteristics Beliefs Religion based beliefs   

Prevention/Health related beliefs     

Risk - Benefit Perceived Safety      

Perceived vaccine effectiveness      

Perceived disease severity      

Perceived disease susceptability      

Percevied social responsibility   

Fear of needles / pain   

Perceived Contraindications   

Past Experiences      

Competing Pressures Household chaos    

Childcare    

represent those 

characteristics associated 

with an individual 

making them more or 

less likely to utilize health 

care resources 

(Andersen, Newman, 

1973)
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Table 1-2. –continued- 

 

  

Health Behaviours Model

Category

Determinant

Reviews Multivariate

La
rs
on

Fa
la
ga
s

Ta
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l
Th
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n

M
ill
s
Du
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M
ac
Do
na
ld

Pe
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ce

Enabling Resources Socio-economic resources Material resources    

Education   

Social Supports Social Support    

Single Parent   

Ethnicity   

Psychological wellbeing of parent 

Household member at high risk 

` Social Context Social Norms   

Communication/media environment   

Knowledge of schedule 

of vaccines    

knowledge of safety monitoring  

Transportation      

Relationship with Provider      

represent those 

conditions that support 

the utilization of health 

care resources when an 

individual is predisposed 

to do so (Andersen, 

Newman, 1973)
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Table 1-2. –continued- 

 

 

Health Behaviours Model

Category

Determinant

Reviews Multivariate

La
rs
on

Fa
la
ga
s

Ta
ui
l

Th
om
so
n

M
ill
s
Du
be

M
ac
Do
na
ld

Pe
ar
ce

Healthcare System Characteristics Accessible Convenience of access       

Specific Characteristics Wait times  

Integration  

Prompts   

Provider attitudes towards imm.  

Provider knowledge  

Provider communication skills    

System  

refers to what resources 

the system has and how 

it distributes and 

structures those 

resources for the delivery 

of health care (Aday, 

Andersen 1974)

The multivariate studies are select studies that capture elements across the spectrum of Behavioural Model of Health Service 

Utilization categories. MacDonald is an Alberta study. 
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1.8 SUMMARY OF LIMITATIONS 

1.8.1 FUNNEL PLOTS – LIMITATIONS TO THEIR USE IN PUBLIC HEALTH 

SURVEILLANCE 

Public health surveillance distinguishes itself from institutional performance by the type 

of process being monitored and hence clear recommendations surrounding the use of 

funnel plots are required. Health outcomes are the results of complex causal processes 

where the risk factor prevalence in those processes usually varies across geographies. 

These processes are an integral part of epidemiologic thinking and are used to inform 

public health interventions. An ideal model for routine monitoring of a health outcome of 

interest in health surveillance would begin with a model that fit the data, that is, where 

the rate generation process could be considered to be understood or in control. 

Subsequent monitoring over time could focus on whether the rate generation process 

could be considered to be remaining in control. However, overdispersion is commonly 

observed in geographically aggregated health data. In a funnel plot, overdispersion 

manifests as a relatively large proportion of points outside the control limits. Much of the 

performance measurement literature has focused on statistical adjustments for 

overdispersion [see for example (Spiegelhalter, 2005b; Ohlssen, Sharples and 

Spiegelhalter, 2007)]. These statistical adjustments often take the form of random effects 

models or of variance inflation parameters to widen the control limits. Clear 

recommendations around the use of funnel plots and the associated approach to dealing 

with overdispersion need to be developed for the public health surveillance discipline. 

 

1.8.2 SPATIAL SCAN STATISTICS 

Spatial scan statistics today are limited in their ability to deal with multiple, irregularly 

shaped clusters in space and time. Methods that can balance computational feasibility 

while attempting to improve upon the positive predictive value of identified clusters are 

needed. Ideally, these methods could detect clusters that have irregular shapes in both the 

space and time dimensions. Statistically sound and robust methods to simultaneously 

identify multiple clusters would improve current practice.   
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1.8.3 CHILDHOOD IMMUNIZATION SURVEILLANCE 

To date, no childhood immunization surveillance systems account for the complex 

determinants of childhood immunization. This complexity must be accounted for in 

surveillance activities for the information from a surveillance system to be useful to 

public health professionals.  

 

1.9 OVERVIEW AND CONTEXT FOR STUDY METHODS 

The section provides contextualization and direction for the study methods used in each 

chapter. The approach to developing the funnel plot methodology, the direction and 

motivation behind the creation and evaluation of a spatial scan statistic, and integrating 

these methods in childhood immunization in Alberta are discussed in this section.  

Further specific details of the methods used are included in their respective chapters. 

 

1.9.1 FUNNEL PLOT METHODOLOGY 

Control charts have been adapted to health system performance in various jurisdictions 

where it is assumed that administrators within the health system or institution can 

exercise control over a health event-related process (Spiegelhalter, 2005a). Many of the 

issues in institutional performance monitoring are shared by health surveillance in 

support of public health. Both activities deal with small domains, highly variable rates, 

large differences in population sizes, multiple testing issues, ongoing monitoring 

activities, and dissemination of results to interested parties invested with the authority or 

responsibility to affect change. Public health surveillance distinguishes itself from 

institutional performance by the type of process being monitored. Health outcomes are 

the results of complex causal processes where the risk factor prevalence in those 

processes usually varies across geographies. These processes are an integral part of 

epidemiologic thinking and are used to inform public health interventions.  

An ideal model for routine monitoring of a health outcome of interest in health 

surveillance would begin with a model that fit the data, that is, where the rate generation 

process could be considered to be understood or in control. Subsequent monitoring over 
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time could focus on whether the rate generation process could be considered to be 

remaining in control. However, overdispersion is commonly observed in geographically 

aggregated health data. In a funnel plot, overdispersion manifests as a relatively large 

proportion of points outside the control limits. Much of the performance measurement 

literature has focused on statistical adjustments for overdispersion [see for example 

(Spiegelhalter, 2005b; Ohlssen, Sharples and Spiegelhalter, 2007)]. These statistical 

adjustments often take the form of random effects models or of variance inflation 

parameters to widen the control limits.  

The implications of different statistical adjustments and their logical implications in the 

complex causal structures seen in epidemiologic data will be investigated. Different 

approaches to overdispersion will have different interpretations and implications and 

whether a statistical approach has a meaningful interpretation within a discipline defines 

its utility within that discipline. The appropriateness of statistical adjustment and other 

approaches in a public health surveillance setting from both an “epidemiologic thinking” 

(Rothman, 2002) perspective and a methodology perspective are examined and analytical 

approaches are recommended. These issues are explored in depth in Chapter 2. 

 

1.9.2 DEVELOPING A SPATIAL SCAN STATISTIC 

Maximizing the log likelihood ratio is the commonly accepted gold standard in spatial 

scan statistics. Likelihood ratio based spatial scan techniques appear to suffer from low 

positive predictive values and tend to include areas near the true clusters with even 

slightly elevated rates as a part of the cluster (Tango and Takahashi, 2005; Goujon-Bellec 

et al., 2011). This characteristic appears to be accentuated in many irregularly shaped 

cluster detection techniques.  

I will also consider whether or not a statistic can be motivated from funnel plots. Funnel 

plots were designed to deal with statistical process control and the identification of 

change in a process. Historically, statistical process control methods have performed well 

in small sample situations, suggesting they might provide insights into objective 
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functions for spatial scan statistics that could improve upon the likelihood ratio finite 

sample characteristics.  

The computational issues associated with exhaustive spatial scan techniques are noted 

throughout the literature [see (Yiannakoulias, Rosychuk and Hodgson, 2007; Neill, 2012) 

for recent discussions of the magnitude of the issue]. These issues result in the practical 

inability to use a technique in public health surveillance, although it may remain of 

interest in theoretical research. Many of the methods developed to deal with the issue of 

speed rely on either ad hoc parameters that limit the scope of the search required or 

restrict the search to relatively compact clusters by use of a non-compactness penalty. 

The tuning of the ad hoc parameters would be geography-specific or completely arbitrary, 

resulting in what could be described as a non-reproducible method. The use of a non-

compactness penalty or pre-specified shape negates the philosophical public health 

underpinnings of attempting to identify possibly irregularly shaped clusters. Methods to 

detect irregularly shaped clusters that do not rely upon arbitrary tuning parameters and 

yet are computationally feasible are needed. 

Spatial scan statistics make explicit use of geographic location through adjacency or 

distance in the determination of a cluster. Funnel plots are fundamentally a-spatial in 

nature while potentially identifying specific areas with elevated rates. I now discuss a 

relationship between these approaches to dealing with spatial variability in aggregate data.  

Algorithms in spatial scan statistics have the goal of reducing a computationally 

infeasible exhaustive search to a computationally feasible search while maintaining the 

ability to accurately detect the true cluster. The upper level set (Patil and Taillie, 2004) 

and weak linear time subset scan (Neill, 2012) approach this by ordering the data and 

searching along this ordering followed by the application of a spatial constraint. Both 

order the data by the observed rate in the geographic area. This ordering can be seen 

visually on a funnel plot as following sequentially lower horizontal lines. Figure 1-4 

illustrates a funnel plot with the horizontal lines represent the ordering followed by the 

upper level set and weak linear time subset scanning algorithms. The upper level sets and 

funnel plot contours both describe an ordering of geographies.  
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Drawing upon the concept of ordering and then searching, in particular ordering along the 

data based contours of a funnel plot, I develop a spatial scan statistic. The performance 

characteristics will be evaluated via simulation with details provided in Chapter 3.  

 

1.9.3 APPLICATION TO CHILDHOOD IMMUNIZATION SURVEILLANCE 

It is clear from this review that the factors that influence immunization uptake are many, 

varied, and likely display complex interactions. Contrast this complexity with the current 

surveillance activities. These activities generally produce only a single summary 

measure, such as coverage by age 2 without any accounting for these known 

determinants. Much of the underlying process cannot be examined or understood using 

the current suite of surveillance indicators.  

I argue that it is necessary for public health practitioners to understand the more complex 

and subtle influences on coverage in the geographic areas that they are responsible for. 

Without a full understanding of the factors and levels of factors affecting uptake in their 

geographies, it will be difficult to appropriately target programmes addressing the 

relevant barriers to uptake. It will be impossible to monitor performance. If the 

performance indicators are unable to account for the underlying distribution of 

immunization related factors, understanding the level of performance will be, literally, 

meaningless. Consider an example with two geographic areas, one with a large number of 

religious refusers of immunization and one with no prevalent barriers to immunization. 

Suppose further that both areas reported 70% coverage at age 2 for a childhood vaccine. 

How well is the immunization delivery system performing in these geographic areas? For 

the first area with refusers, 70% could be phenomenal, immunizing everyone who would 

allow it. In contrast, immunizing only 70% of children in the “average” group might be 

considered a very poor outcome. Understanding the levels of performance vis-à-vis a 

rational expectation is important for a performance measure. The type of intervention or 

public health actions (taken or possible) will also differ significantly between these types 

of areas – the first area is likely to be a long term investment in building community trust 

while the second area could benefit from broad campaigns. Understanding the shifts in 

underlying factors and their impact on uptake and effects on interventions is a key 
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surveillance objective. All of this information ultimately leads to improved and better 

public health interventions. 

1.9.3.1 An Approach to Immunization Surveillance 

The study of immunization coverage in Alberta carried out in this thesis should have 

characteristics that make the method portable to the public health surveillance 

environment. Attributes desirable in a surveillance system include simplicity, flexibility, 

high data quality, acceptability, representativeness, timeliness, stability, and cost 

effectiveness (Lee et al., 2010). An approach based on aggregate data from existing 

sources is proposed. Aggregate data offer high quality data themselves, especially from 

existing public health and other related data systems. Many attributes of the underlying 

data will be inherited in the aggregate data, for example, timeliness, representativeness, 

and stability. The use of multiple existing data sources facilitates a simple, acceptable, 

and flexible system. Finally, use of aggregate data is quite cost effective when compared 

to primary data collection. 

The primary outcome of interest, immunization coverage at age 2, is publicly available 

and currently part of an operational surveillance system in Alberta. Coverage by age 2 for 

all of the routine childhood vaccines listed in Table 1-1 are publicly available, at the 

provincial, zone and local area levels of geography since 2008 in the Alberta Ministry of 

Health Interactive Health Data Application (IHDA). 

Going beyond simple measures of coverage, this thesis focuses on adding factors related 

to immunization uptake to the surveillance system in addition to improving the analysis 

of geographic variation. Aggregate data from the Canadian Census and the Canadian 

Community Health Survey (CCHS) have these desirable attributes. Using aggregate data 

to combine outcomes with factors related to utilization at small geographies fits well 

within resource constraints, as it imposes a small marginal cost to the system in terms of 

analysis but no additional costs in terms of primary collection. 

I propose an approach to immunization surveillance that both fits within the resource 

constraints of surveillance systems and simultaneously provides substantially improved 

information for public health decision makers. I propose complementing the funnel plot 
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based approach to understanding geographic variability presented in Chapter 2 with the 

ability to detect multiple, irregularly shaped spatial-temporal clusters using MultScan 

from Chapter 3. This approach is illustrated using Alberta childhood immunization 

coverage data for the four routine doses of DTaP-IPV-Hib measuring coverage at age 2 in 

2012 for the 2010 birth cohort. 

1.9.3.2 Available Data on Determinants of Immunization Uptake 

I now review the factors identified in Table 1-2 that are routinely available in publicly 

accessible data sources. Direct measurement of the concepts is, of course, preferred, but 

proxies or highly correlated factors are also effective at accounting for between area 

variability as described in Chapter 2. The interest is in identifying data that is (a) 

available for the entire province and broken down at the local geographic level to match 

the finest geographic level that the outcome measure DTaP-IPV-Hib coverage at age 2, 

(b) routinely and predictably published at least annually to match the current reporting 

cycle of immunization coverage, (c) of high quality, and (d) already publicly available to 

contain costs and for ease of access. Information on the determinants of immunization 

was identified stemming from three sources: the Canadian Community Health Survey 

(CCHS), the National Household Survey (NHS), and the Alberta Notice of Birth 

database. While these databases have been described in details elsewhere, a brief 

overview of each is now provided.  

The CCHS is a Statistics Canada health survey that has been ongoing since 2001. The 

survey provides provincial samples representative of the age 12 and over population. The 

survey provides data on many measures of health and determinants of health. Modelled 

indicators at the local area level are provided by the Alberta Ministry of Health on their 

public website (Interactive Health Data Application – IHDA). The NHS was the survey 

replacing the long form census in Canada in 2011. Data aggregated to the local area level 

have also been released on the IHDA. Finally, the Alberta Notice of Birth data contain 

information collected on births in the province, including child and maternal outcomes 

and risk factors. Data aggregated to the local area level have also been released on the 

IHDA. Details of which determinants of immunization are available from each source are 

now given. 



  

40 

 

Of the Predisposing Characteristics, competing pressures, measured by the proportion of 

households with 3 or more children, is available at the local area level based upon 

National Household Survey data (further detail on data sources is provided in the next 

section). For beliefs, a proxy measure of Vitamin K uptake, originally from the Alberta 

Notice of Birth forms, is available from the IHDA. Refusing Vitamin K prophylaxis has 

been shown to be strongly associated with under-immunization (Sahni, Lai and 

MacDonald, 2014) and is conjectured to be related to personal or religious beliefs. 

Of the Enabling Resources, the relationship with the provider, measured as having a 

regular family doctor, is obtained from CCHS data. Income quintiles used to measure 

material resources are available from NHS data on the IHDA. While education could be 

used, the consistent insignificant empirical results in multivariate models in Alberta and 

other jurisdictions previously cited lead to not including it in the model.  

Integration with the Health Care System is measured by the proportion of families having 

moved within the last 5 years, available from NHS data on the IHDA. The provision of 

childhood immunization is carried out by public health nurses in Alberta. At the time of 

the study, Alberta Health Services had been newly formed in 2008 and the former nine 

Regional Health Authorities (RHA) were transforming into the current five Zones. To 

best capture the differences in practices, recognizing that organizational change is a slow 

process, differences in system organization and resources use indicators for each of the 

former RHAs. 

 

1.10 INTERRELATIONSHIPS BETWEEN THE MANUSCRIPTS 

The first aim focuses on visualizing and analyzing aggregate data to identify areas with 

high or low rates of disease. Chapter 2 contains my paper clearly delineating a 

methodology for using funnel plots in public health surveillance. The second aim is to 

identify specific geographic clusters of high (or low) rates. The spatial scan method that 

is developed for aim two was inspired by the previous work on funnel plots. Chapter 3 

contains my paper developing and evaluating my novel MultScan method for identifying 

multiple, irregularly shaped clusters in space and time. The funnel plot and spatial scan 
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methods are then brought together to examine childhood immunization from a 

surveillance perspective. Chapter 4 contains my paper analyzing childhood immunization 

using the funnel plot methodology and the MultScan spatial scan statistic, illustrating the 

utility of these methods in public health surveillance. The interrelationships between 

these three papers are explicitly laid out in Figure 1-7. 

 

Figure 1-7. Interrelationships between Papers 
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CHAPTER 2: FUNNEL PLOTS IN PUBLIC HEALTH 

SURVEILLANCE 

 

The following paper has been published as: 

Dover DC, Schopflocher DP. Using funnel plots in public health surveillance. 

Population health metrics. 2011;9(1):1-11. doi:10.1186/1478-7954-9-58. 

This paper develops a deep understanding of the potential utility and methodologic issues 

in the use of funnel plots in public health surveillance. Funnel plots are examined as a 

visualization technique. The concept of overdispersion is then scrutinized and an 

adjustment methodology developed.  
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2.1 ABSTRACT  

2.1.1 BACKGROUND 

Public health surveillance is often concerned with the analysis of health outcomes over 

small areas. Funnel plots have been proposed as a useful tool for assessing and 

visualizing surveillance data, but their full utility has not been appreciated (for example, 

in the incorporation and interpretation of risk factors).   

 

2.1.2 METHODS 

We investigate a way to simultaneously focus funnel plot analyses on direct policy 

implications while visually incorporating model fit and the effects of risk factors. Health 

survey data representing modifiable and nonmodifiable risk factors are used in an 

analysis of 2007 small area motor vehicle mortality rates in Alberta, Canada. 

 

2.1.3 RESULTS 

Small area variations in motor vehicle mortality in Alberta were well explained by the 

suite of modifiable and nonmodifiable risk factors.  Funnel plots of raw rates and of risk 

adjusted rates lead to different conclusions; the analysis process highlights opportunities 

for intervention as risk factors are incorporated into the model. Maps based on funnel plot 

methods identify areas worthy of further investigation.  

 

2.1.4 CONCLUSIONS 

Funnel plots provide a useful tool to explore small area data and to routinely incorporate 

covariate relationships in surveillance analyses. The exploratory process has at each step 

a direct and useful policy-related result. Dealing thoughtfully with statistical 

overdispersion is a cornerstone to fully understanding funnel plots. 
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2.2 BACKGROUND  

According to a widely cited definition proposed by the CDC, “Public Health Surveillance 

is the ongoing, systematic collection, analysis, and interpretation of health data essential 

to the planning, implementation, and evaluation of public health practice, closely 

integrated with the timely dissemination to those who need to know” [1]. The results of 

analyses conducted on data collected within a surveillance system can be used to inform 

public health policy and planning, to monitor the health status of a population, and to 

stimulate research. A functional surveillance system will provide information about the 

number of health events of specified types that occur within specified populations on an 

ongoing basis and can therefore be used to derive disease and health event rates over time 

in different areas (or subpopulations of other types).  

One routine surveillance activity may be to monitor rates of disease occurrence in small 

areas in order to identify anomalies that might have a geographic basis and to enable the 

reporting of such anomalies to authorities in these areas. Substantial variability in 

population sizes in small areas introduces some challenges in the comparisons of rates, 

however, because the precision of estimation of these rates depends on the size of the 

population over which they are measured. 

Several graphical procedures have been proposed for displaying small area rates to 

support the location of anomalous patterns.  League plots [2] and choropleth maps [3] are 

two common approaches. League plots display observed rates (with confidence intervals) 

ordered by those rates.  These plots are difficult to interpret [4] because they encourage 

interpretation as a rank ordering, and rank orderings are known to have extremely poor 

statistical properties [see for example, 5, 6]. Choropleth maps of rates apply differential 

color schemes to chosen categorizations (often quintiles) of observed rates and color each 

area on a map according to the category of its observed rate.  These are also easy to 

misinterpret because the map reflects geographic area rather than population density and 

because the same data may result in maps with very different appearances, since the 

choice of category is arbitrary. Cartogram versions [7] attempt to redraw areas in 

proportion to populations but are often difficult to reconcile to geographies and still 

suffer from the arbitrary category problem. 
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Funnel plots are an alternative to both league plots and choropleth maps. Funnel plots are 

a form of scatter plot in which observed area rates are plotted against area populations. 

Control limits are then overlaid on the scatter plot. The control limits represent the 

expected variation in rates assuming that the only source of variation is stochastic. The 

control limits are computed in a fashion very similar to confidence limits and exhibit the 

distinctive funnel shape as a result of smaller expected variability in larger populations. 

Funnel plots were first introduced in meta-analyses, where they are often used to 

determine whether a lack of a particular type of published findings demonstrates the 

presence of a publication bias [8, 9]. This would be indicated by the absence of points in 

a particular region of the funnel (especially an absence of studies with a small sample 

size and a negative result). 

The funnel plot can also be considered a form of control chart [2]. Control charts monitor 

whether a manufacturing or business process is under control. If analysis indicates that 

the process is currently stable, with only stochastic variation, then data from the process 

will vary within known limits and can be used to predict the future performance of the 

process. If the chart indicates that the data from the process being monitored are too 

variable, analysis of the chart can help determine the sources of variation, which might 

then be eliminated to bring the process back into control. In a funnel plot, if rate variation 

is only random and stochastic, then an appropriate proportion of the points representing 

area rates will tend to fall within the funnel, and importing control chart terminology, we 

might consider the (rate generation) process to be “under control.”  We can also revert to 

statistical terminology and note that the model fit is adequate (where, in this simple case, 

the model is of a single stable rate). When many rates fall outside the funnel, the plot can 

be described as “overdispersed,” and it can be said that the process is not in control or the 

model does not fit the data well.  Control chart terminology has been adapted to health 

system performance in various jurisdictions where it is assumed that managers within a 

health system can exercise control over a health event-related process [11]. Many of the 

issues in institutional performance monitoring are shared by health surveillance in 

support of public health. Both activities deal with small domains, highly variable rates, 
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large differences in population sizes, multiple testing issues, ongoing monitoring 

activities, and dissemination of results to interested parties invested with the authority or 

responsibility to effect change. 

It should also be noted that funnel plots are not limited to representing the model of a 

single stable rate; more complex models can underlie the estimation of the rate or 

quantity of interest [10].  For example, plotted rates can represent the residuals that 

remain after a rate, predicted from the values of relevant covariates using a regression 

model, has been subtracted from the observed rate.  In health services research this 

process is typically called risk adjustment [2, 10, 12]. 

An ideal model for routine monitoring in health surveillance would begin with a model 

that fit the data, that is, where the rate generation process could be considered to be under 

control. Subsequent monitoring over time could focus on whether the rate generation 

process could be considered to be remaining under control.  As well, funnel plots provide 

a natural, graphical method of assumption checking and model diagnostics during the 

model development process itself. At any stage, funnel plots may also locate areas with 

unusually high or low rates (outliers) and this might justify further field epidemiologic or 

research investigations. 

In this paper we demonstrate the use of funnel plots for model development using motor 

vehicle mortality data in Alberta, Canada. We begin by constructing a funnel plot under 

the simple model of a single provincial rate and observe that it shows overdispersion. 

Then we demonstrate a risk adjustment process that largely eliminates this 

overdispersion. Finally, we discuss steps that emerge from the model that might be taken 

by public health decision-makers and discuss its use for routine monitoring.  

We will speak in terms of small geographies, counts, and rates, and comparisons to an 

overall rate as these terms are commonly used in health surveillance. However, it should 

be noted that funnel plots are quite general and can be used for any domain where 

multiple estimates have been made using varying sample sizes. 
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2.3 METHODS 

2.3.1 DATA 

Data are from the province of Alberta, Canada. Alberta is located in Western Canada and 

has a population of 3,600,000 in 2009. The province maintains a publicly-funded 

universally-available health care system. All residents of the province (except the 

military, the Royal Canadian Mounted Police, and federal inmates) are registered with the 

Alberta Health Care Insurance Plan (AHCIP). This Stakeholder Registry contains 

demographic information including addresses and therefore provides a source of 

population estimates by temporal and spatial boundaries. 

Maps are based on the Alberta Regional Health Authorities (RHA), reflecting boundary 

changes introduced in December 2003 and in force until 2009. The small areas analyzed 

are 70 subregional boundaries created specifically for the analysis of health data [13]. 

RHA officials were engaged in the process to insure that the subregions would have 

operational relevance. A population of 20,000 was chosen as a minimum target within 

each subregion in order to ensure that rates would be relatively stable and this target was 

met in almost all cases.  

The Alberta Vital Statistics Death Registry provides demographic information about each 

death in Alberta as well as the cause of death according to International Classification of 

Diseases, 10th revision (ICD-10) codes. The current analysis reports motor vehicle traffic 

death rates during 2007. Motor vehicle traffic deaths were identified as ICD-10 codes 

V30-V89 with .5, V39-V79.4, V86.00, and V86.08.  

Covariates for risk adjustment (seat belt use; drinking and driving; road type and 

utilization) are derived from the 2007 cycle of the Canadian Community Health Survey 

(CCHS), a self-report survey administered annually to approximately 65,000 Canadians 

(5,000 Albertans) by Statistics Canada [14]. Provincial health ministries are granted 

special access to location information for respondents in the CCHS sharefile, making it 

possible to estimate rates at the subregion level by linking CCHS postal codes to 

subregion boundary files and utilizing the CCHS survey weights. 
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Drinking and driving is the self-reported proportion of respondent drivers having driven a 

vehicle after two or more drinks; seat belt use is the self-reported proportion of drivers 

“always” wearing seat belts or passengers “always” wearing seat belts while in the front 

seat. A proxy for road type and utilization was based on the Statistics Canada 

Metropolitan Influence Zone (MIZ), a measure of the influence a major urban center has 

upon outlying areas substantially based upon the percent of the population that commutes 

daily to an urban center. Subregions were assigned the modal MIZ score.  

The population, mortality, and survey data are all aggregated and analyzed at the 70 

subregional boundaries.  

 

2.3.2 FUNNEL PLOTS 

The funnel plots use binomial control limits given by 
ˆ ˆ(1 )

ˆ (1 / 2)
p p

p
n




   where 

( )  is the cumulative inverse normal distribution evaluated for 1- % control limits. 

Other methods for control limit generation could be used, see [10] for a comprehensive 

review. To emphasize, p̂ is fixed at the overall provincial rate as estimated from the data 

and n varies freely. The rate for each subregion is then overlaid on the plot at their actual 

population size and rate.  

The funnel plot control limits are set at 95% and 99.8%. These correspond conceptually 

to the 95% confidence level often used in health services research and to the 3-sigma 

limits commonly used in process control. 

Funnel plots for survey-based measures require a slight modification to account for the 

complex survey design. The population values are scaled by the particular survey 

question design effect to account for the additional variability due to the complex survey 

design [15].  
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2.3.3 FUNNEL PLOT PRINCIPLES FOR MAPPING 

Funnel plots are adapted to mapping through the use of z-scores [3, 16]. The funnel plot 

based z-scores are computed as 
ˆ

ˆ ˆ(1 )

i

i

p p

p p

n




 where p̂ is the provincial rate, ip  is the ith 

subregion rate, and ni is the ith subregion population. Values greater than 2 are color-

coded orange, values greater than 3 are red, values less than -2 are green, and values less 

than -3 are dark green. All other values are color-coded yellow. These z-score cut-offs 

correspond to the 95% and 99.8% control limits in the funnel plot. 

 

2.3.4 RISK ADJUSTMENT 

Risk adjustment was carried out using a judgment-based modeling procedure. Covariates 

that may explain between-region variability in rates were selected a priori. Poisson 

regression on mortality counts with a log(population) offset, a standard method for 

regression on rates, was carried out sequentially including demographic factors (age, 

sex), behavioral risk factors (seat belt use, drinking and driving) and environmental 

factors (proxy for road type and utilization).  The adjusted rate is derived using indirect 

standardization as the product of the provincial crude rate and the ratio of observed to 

expected values from the relevant regression model [17]. Poisson regression methods are 

not discussed in any further detail as the focus of this paper is on the use of funnel plots; 

other sources offer complete discussions of risk adjustment and regression methods [10, 

12]. Pearson goodness-of-fit statistics, in addition to the number of small areas outside 

the control limits, are reported at each stage in the modeling process. 

All analyses were carried out in SAS 9.2. The macro code used to create the funnel plots 

is freely available from the authors.  

 

2.4 RESULTS  

Figure 1 shows the funnel plot of crude motor vehicle mortality rates in Alberta in 2007. 

Of the 70 subregions, 16/70 (23%) fall outside the 95% funnel plot control limits and 
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6/70 (9%) fall outside the 99.8% limits. If the model of a single provincial rate were 

correct (i.e., the rate generation process assumed by the model underlying this plot were 

in control), a funnel plot with 95% control limits could be expected to have three or four 

(out of 70) areas fall outside the limits. The figure shows substantial overdispersion, and 

we can conclude that the model does not fit well. That is, there might be additional 

factors (unmeasured covariates) that differ between subregions contributing to the 

increased variability of rates between subregions.  

 

In searching for a model with a better fit to the data, we begin by adjusting for 

demographic factors, age distribution, and sex. Then, we adjust for two well-known 

behavioral risk factors of motor vehicle mortality for which health surveillance data are 

regularly available: seat belt use and drinking and driving [18]. Finally, the model is 

adjusted for the proxy for road type and utilization. 

Adjusting for age and sex differences between small areas has improved the model fit 

substantially, with the Pearson chi-square goodness of fit now down to 1.55 from 3.78 in 

the raw data. Age distribution and sex are maintained in the model and drinking and 

driving is included. Drinking and driving has little effect on the model: the goodness of 

fit is unchanged and the model p-value for drinking and driving is not significant 

(p=0.41). Removing drinking and driving from the model, the inclusion of seat belt use 

offers a very slight improvement in fit (goodness of fit 1.52), even though it is not 

significant at the alpha=0.05 level in the model (p=0.07). Finally, the proxy for road 

utilization and type is added to the model. There is a substantial improvement in fit and 

seat belt use is now suggestive in the model (p=0.09). Seat belt use is maintained in the 

model based on a combination of its public health policy relevance and its suggestive 

significance level. A final model including age, sex, seat belt use, and proxy for road type 

and utilization is kept, with a goodness of fit of 1.34, 5/70 subregions outside the 95% 

limits, and no subregions outside the 99.8% control limits. A funnel plot of age-sex-seat 

belt use-road adjusted rates is shown in Figure 2. The sequence of models, their goodness 

of fit statistics, and the number of points outside the 95% and 99.8% limits is shown in 

Table 1. Figures 3 through 5 show z-score maps of the unadjusted rates, and Figures 6 
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through 8 show the adjusted rates based on the funnel plot methodology.  Figures 3 and 6 

show the entire province of Alberta. Figures 4 and 7 show expanded views of the areas 

within Edmonton, the major population center in the north of the province. Figures 5 and 

8 show expanded views of the areas within Calgary, the major population center in the 

south. 

We note here that the unadjusted funnel plot in Figure 1 has three points, at 

(approximate) populations 15,000, 25,000 and 85,000, that appear to have very large 

rates as they lie far outside even the 99.8% limits. However, examining the adjusted 

funnel plot in Figure 2, these points are no longer anomalous after adjusting for age, sex, 

seat belt use, and road type and utilization.  

Adjusting for modifiable risk factors, like seat belt use and drinking and driving, leads to 

further applications of funnel plots. Funnel plots showing these risk factors are also 

possible, again opening up for their use in anomaly detection and informing the focus of 

public health interventions or prevention activities. Figure 9 shows the application of the 

funnel plot to the survey results on seat belt use. This funnel plot focuses attention on 

areas that may be different from the provincial average seat belt use rate of 88.9%. Figure 

10 shows the same points, but the funnel plot limits are adjusted to a target seat belt use 

rate of 95% [19] as an example. This visually emphasizes the proportion of subregions in 

the province reaching or not reaching the target level.  

Adjusting for nonmodifiable risk factors also leads to the ability to clearly explain the 

difference between the crude and adjusted rates, and hence the potential impact programs 

could have to those interested in community-level policy and interventions. For example, 

the crude rate of 66 per 100,000 (population near 15,000 in Figure 1) appears quite high. 

Figure 11 shows motor vehicle mortality rate adjusted for only the nonmodifiable risk 

factors age, sex, and road type and utilization. The adjusted rate for the particular 

subregion is now 29 per 100,000 and inside the 95% funnel plot limits. This subregion 

has, compared to other parts of the province, a younger, more male population and rural 

roads with combined effect on motor vehicle mortality rates that can be readily seen. 

These factors are not likely to be affected by policy or intervention.  
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Since the CCHS implements a complex survey design, the funnel plots have been 

adjusted for the design effect of 3.8 for seat belt use in 2007 by multiplying the variance 

term in the control limits by the design effect. All survey related points are randomly 

jiggled in the figures and the axis has been suppressed to protect confidentiality as 

required by Statistics Canada, the statistical agency that owns the data. 

 

2.5 DISCUSSION  

One interesting aspect of the funnel plot in Figure 1 is the substantial number of rates for 

small areas falling outside the funnel plot limits. This overdispersion is not an unusual 

phenomenon in health data [20]. The ability of the funnel plot to clearly show 

overdispersion is, we feel, one of the most useful aspects of the funnel plot. We can 

immediately and visually see that we don’t fully understand the disease process.  This 

judgment should be considerably easier than judgments of the presence or absence of 

publication bias when considering funnel plots of effect sizes from a meta-analysis, 

which depends upon the distribution of points within the funnel limits and is therefore 

quite error prone [21]. 

Funnel plots are therefore extremely useful in focusing analysts’ attention on model 

misspecification. When overdispersion is observed, the key question becomes what to do 

with the apparent overdispersion. Some have advocated the use of statistical correction 

[22, 23] to adjust for overdispersion, either through random effects models, via an 

overdispersion parameter, or both. We feel this should be an approach of last resort only. 

If there is large variability in a health variable being monitored, adjustment via the 

inclusion of missing covariates should be the first line of attack. We note that this 

adjustment need not be directly causally based. For example, if seat belt use data were 

not available, but a similar risk taking behavior variable was, that proxy variable could 

still have served to substantially explain the variability in motor vehicle mortality rates. 

With the plethora of survey and administrative data available today, there is no reason not 

to attempt to understand and model the factors affecting between-region variability 

before resorting to random effects-type models. Also, these blind approaches to 
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overdispersion carry substantial risk in the surveillance arena. In the case of 

misspecification due to a missing covariate, random effects models make the strong 

assumption that the missing covariate value is essentially proportional to the observed 

rate [24]. It is very easy for this not to be the case in practice, as illustrated in our 

example. In fact, had further attempts at adjustment not been made, the interpretation of 

the funnel plot would have pointed public health epidemiologists to the wrong area. The 

purported statistical approach to fixing overdispersion must be used with great caution. 

Echoing Berk et al [25], “one risks an arbitrary correction leading to arbitrary results.” In 

the motor vehicle mortality example, one small area would still have been outside the 

99.8% controls limits if an overdispersion factor had been included, even though our 

analysis shows that this was not any sort of outlier but simply has a poor combination of 

age, sex, seat belt use, and road type. In the analysis presented, the final model shows 

good fit. Had this not been the case, it would have been possible to include random 

effects or an overdispersion factor in the final model. Future surveillance and monitoring 

efforts could continue, keeping the random effects and/or overdispersion value fixed. 

Attempts to dynamically alter the overdispersion parameter or re-predict random effects 

might only mask any real changes over time. 

The funnel plot methodology encourages the use of data from multiple sources. Funnel 

plots in the surveillance domain can rely on aggregate data, making the linking process 

between data sources much easier to facilitate. In our example, we were able to 

seamlessly integrate survey and administrative data sources because they are only 

required to be available at the aggregate subregion level. This also has implications for 

ongoing monitoring: with systems in place to create small area estimates from a variety 

of data sources, ongoing monitoring and creation of future funnel plots should be 

possible. 

Underlying the outlined funnel plot methodology is the choice of method for creating the 

limits. The asymptotic normal approximation was used. This choice may appear unusual 

in light of the fact that, for binary confidence intervals, the use of the asymptotic normal 

approximation is generally not recommended as it can have very poor performance 

characteristics [see 26 for a recent review]. Ongoing research by the authors suggests that 
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it is the opposite case for funnel plots and the asymptotic normal approximation 

outperforms other methods for creating limits. 

The funnel plot methodology was also successfully adapted to a mapping framework. 

The ability to display surveillance data in a geographic context can aid in the 

understanding of that data. The maps, combined with expert knowledge of the areas, can 

generate suggestions as to what factors may explain any residual overdispersion.  

Following the institutional performance literature, funnel plots of disease rates, risk 

factors, or changes in these could also be used as performance measurement tools [10]. 

Using target rates as the funnel plot center line and placing the funnel around them gives 

an indication of how many small areas are likely achieving a public health target. The 

funnel plot of seat belt use rates around a target of 95% in Figure 10 gives a visual 

representation of both the range of seat belt use rates and the number of areas where seat 

belt use is below the target. 

The recommended analysis process employing sequential funnel plots and multiple 

covariates lends itself to identifying opportunities for policy recommendations. For a 

covariate that does enter the model, there is evidence that the covariate varies across the 

province, naturally suggesting that further analysis of this covariate might identify local 

area level intervention and policy opportunities. If a known risk factor does not enter the 

model, a global policy level recommendation may be in order. In our example, drinking 

and driving did not enter the final model, suggesting that policy recommendations could 

be made at the provincial level; while seat belt use, which did enter the final model, lends 

itself to local level interventions. Further consideration of factors as modifiable or 

nonmodifiable facilitates the interpretation of individual small area rates. Adjusting for 

nonmodifiable risk factors allows a clear comparison to crude rates and highlights the 

potential for improvement through modifiable factors. Assessing the modifiable factors 

through their own funnel plots can help target local area level interventions and policy 

initiatives.  

The use of funnel plots and modeling to assess the relationships between potential risk 

factors and outcomes must always be carried out with care. The process described 
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employs an ecological model and carries with it the potential limitations and cautions of 

this type of design [see for example, 27]. Particular care should be taken in interpreting 

the meaning of any coefficients in the model to avoid the ecological fallacy. We have 

framed the process as a surveillance activity where there is usually an evidential basis for 

inclusion of risk factors or proxies for risk factors. Clearly any single ecological 

correlation would be insufficient evidence to justify public health action, but when noted 

in the context of established risk factors, public health activities may be reasonable. 

We envision three key areas for the evolution of the funnel plot in public health 

surveillance. The first area is the integration of the funnel plot into ongoing monitoring 

activities over time. We have touched on issues regarding the use of random effects and 

overdispersion parameters as they relate to repeated applications of a funnel plot over 

time. The questions related to incorporating modeling into a funnel plot-based 

surveillance process (Re-run the model each year with additional data? Hold coefficients 

constant over time? How best to display multiple years of data?) are an area of active 

inquiry. A related area for evolution of the funnel plot is how to appropriately incorporate 

funnel plots into a multilevel model framework. As multiple levels of data are becoming 

available for analysis in surveillance, multilevel models will become more common. 

Finally, funnel plots have a close link to spatial data as they are currently used in public 

health surveillance. The ties, theoretical and applied, to spatial methods provide a large 

area for future contributions. 

 

2.6 CONCLUSIONS  

Funnel plots and their cartographic equivalents provide visually attractive means of 

displaying small area data in health surveillance and other disciplines for the purposes of 

anomaly detection and ongoing monitoring, while accounting for variation in small 

samples. Overdispersion, readily apparent when present in funnel plots, needs to be dealt 

with thoughtfully in the analysis and modeling stages of surveillance to ensure that the 

interpretation of the surveillance data is appropriate. The use of funnel plots in health 
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surveillance modeling activities naturally focuses attention to the level that policy 

recommendations should be made.  
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Figure 2-1. Funnel plot of motor vehicle traffic mortality rates  
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Figure 2-2. Funnel plot of adjusted motor vehicle traffic mortality rates 

 

Motor vehicle mortality rates are adjusted for age, sex, seat belt use, and road type and 

utilization.  
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Figure 2-3. Alberta map of unadjusted z-scores, motor vehicle traffic mortality 

rates   
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Figure 2-4. Edmonton map of unadjusted z-scores, motor vehicle traffic 

mortality rates 

  



  

73 

 

Figure 2-5. Calgary map of unadjusted z-scores, motor vehicle traffic mortality 

rates 
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Figure 2-6. Alberta map of adjusted z-scores, motor vehicle traffic mortality 

rates 
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Figure 2-7. Edmonton map of adjusted z-scores, motor vehicle traffic mortality 

rates 
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Figure 2-8. Calgary map of adjusted z-scores, motor vehicle traffic mortality 

rates 
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Figure 2-9. Funnel plot of seat belt use rates 

 

 

The x-axis values have been suppressed to maintain confidentiality. 
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Figure 2-10. Funnel plot of seat belt use rates centered at target 95% 

 

 

 

The x-axis values have been suppressed to maintain confidentiality. 
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Figure 2-11. Funnel plot adjusted for nonmodifiable risk factors 

 

 

 

Motor vehicle mortality rates are adjusted for age, sex, and road type and utilization. 
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Table 2-1. Modeling between subregion variation in motor vehicle traffic mortality 

rates 

 

    
Scaled Pearson 
goodness of fit* 

Outside 95% 
limits (#) 

Outside 99.8% 
limits (#) 

  
   

  

Unadjusted 3.78 16 6 

  
   

  

Adjusting for: 
  

  

  Age, sex 1.55 9 2 

  Age, sex, drinking and driving 1.55 8 1 

  Age, sex, seat belt use 1.52 7 2 

  
Age, sex, seat belt use, road 
type and utilization 1.34 5 0 

*the scaled Pearson goodness of fit measures is scaled by the degrees of freedom so that the expected 

value of 1 represents good model fit. 
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CHAPTER 3: SPATIAL SCAN STATISTICS 

 

An edited version of the following paper has been submitted for publication as: 

 

Multiple, Irregular, Spatial-Temporal Cluster Identification in Public Health 

Surveillance 

 

Douglas C. Dover 

School of Public Health, University of Alberta, Edmonton, Alberta 

Alberta Ministry of Health, Edmonton, Alberta 

 

This paper develops and evaluates the MultScan spatial scan statistic. First, the funnel 

plot motivation is discussed. The MultScan algorithm for multiple clusters is described, 

along with MultScan-single, a single cluster detection variation. MultScan is evaluated 

through a number of simulations examining different cluster shapes in both space and 

time, differing numbers of clusters, and different underlying disease rates inside and 

outside the cluster. Finally, MultScan is briefly demonstrated on immunization data in 

Alberta. The last section of this Chapter presents a technical description of spatial scan 

statistics. 
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3.1 ABSTRACT  

Spatial scan statistics are important tools in the public health surveillance 

methodologists’ arsenal. The ability to accurately identify clusters of health events and 

inform action is a foundational role in public health surveillance. The most common 

spatial scan methods today use fixed shapes in the spatial or temporal dimensions and 

suffer from low accuracy. A novel spatial scan is proposed based upon insights from 

health performance monitoring. The method can simultaneously detect multiple clusters 

that are irregularly shaped in space and time. Performance is evaluated through 

simulations of public health relevant clustering scenarios and through the application to 

immunization coverage in Alberta, Canada. The new method was able to increase 

accuracy as measured by positive predictive value while maintaining computation speed 

and sensitivity. 

 

3.2 INTRODUCTION 

Cluster detection is widely used in public health surveillance. After reviewing current 

cluster detection techniques, a cluster detection method motivated by statistical process 

control concepts that is capable of rapidly identifying multiple clusters having irregular 

spatial-temporal shapes is proposed. Its performance characteristics are examined through 

simulation and a real data example. 

Identifying geographic clusters of elevated health risk leads to further understanding 

disease aetiologies (Waller and Gotway, 2004), addressing community concerns (Center 

for Disease Control (CDC), 1990; Government of Alberta, 2011), and better targets 

public health interventions (Lieu et al., 2015; Groseclose and Buckeridge, 2017). Spatial 

scan statistics allow public health analysts to identify the location of a geographic cluster 

of excess risk. Accuracy is a key characteristic in any spatial scan method since these 

results help allocate public health resources. If methods erroneously identify a cluster 

larger than the true cluster or identify one when none exist, resources may be diverted 

from real public health issues to address artefactual problems. When methods fail to 
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identify or identify only a portion of the true cluster, insufficient resource allocation may 

lead to the continuance of the health issue.  

The most widely used spatial scan is Kulldorff's (Kulldorff, 1997) circular scan (KSS), a 

method able to simultaneously assess the statistical significance, excess rate, and location 

of a geographic cluster. KSS performs quite well when the underlying cluster is circular, 

but accuracy drops off dramatically when the underlying cluster is no longer compact 

(Goujon-Bellec et al., 2011). Clusters of public health importance occurring in space and 

time will almost certainly be irregularly shaped and temporally dynamic. As the 

underlying exposure changes over time, so will the placement of any excess health 

events. For example, a communicable disease can see localized rates sharply increase and 

then decrease, while geographic clustering of behavioural risk factors will change with 

demographic shifts, changes in social norms, and in response to public health actions.  

While a variety of other spatial shapes have been investigated [ellipses (Kulldorff et al., 

2006), squares (Neill and Moore, 2004)], Tango (Tango and Takahashi, 2012) directly 

addressed the issue of irregularly shaped clusters with an exhaustive search approach and 

many other computationally feasible approaches have since been proposed (Duczmal and 

Assuncao, 2004; Patil and Taillie, 2004; Assunção et al., 2006; Duczmal et al., 2007). 

These spatial shapes have been extended temporally, for example, extending a circle to a 

cylinder in time. Irregular shapes have been analogously extended (Tango and Takahashi, 

2005). A dynamic shape placed in time using rectangular pyramids has also been 

proposed (Iyengar, 2005). This leaves largely unexplored the area of fully irregularly 

shaped spatial-temporal spatial scan methods. 

A common feature to all of these likelihood-based methods is low positive predictive 

value resulting from capturing many geographies that are not part of the true cluster. 

They regularly include neighbouring geographies with only slightly elevated rates in the 

cluster or combine geographies to obtain clusters that are "unrealistically large" and can 

have "peculiar shapes" (Tango, 2008). Methods to deal with these features using arbitrary 

tuning parameters, for example by limiting the search depth (Yiannakoulias, Rosychuk 

and Hodgson, 2007; Tango, 2008) or penalizing the irregularity (Duczmal, Kulldorff and 

Huang, 2006), have only been moderately successful. 
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As the volume of electronically available data continues to increase in public health 

surveillance repositories worldwide, it is becoming common to search for multiple 

clusters to guide public health interventions and programmes. The most common 

approach to assessing more than one cluster is to begin with the most likely cluster and 

then order all other searched clusters by their test statistic. Every subsequent cluster that 

is statistically significant (using the single cluster test values) and has no overlap with 

previously identified significant clusters is considered significant (Zhang, Assuncao and 

Kulldorff, 2010). This is a statistically conservative approach. A sequential approach to 

controlling the significance levels limited to identifying up to three clusters has been 

developed (Li et al., 2011). A Bayesian approach (Wakefield and Kim, 2013) placing a 

prior distribution on the number of clusters correctly addresses the issue of significance 

level for any number of simultaneous clusters but is quite sensitive to the choice of prior. 

Strategies to ensure detection at the correct significance level are still required. 

A spatial-temporal scan method inspired by applications of statistical process control in 

public health surveillance is proposed. It allows the detection of possibly multiple, 

irregularly shaped, spatial or spatial-temporal clusters while using a data-based approach 

to limit the computational burden and increase the positive predictive power. 

Performance is examined through a series of simulations and comparisons to Kulldorff’s 

spatial scan. The method is applied to a real scenario examining childhood immunization 

rates. 

 

3.3 METHODS 

3.3.1 MULTIPLE CLUSTER, MULTIPLE DIRECTION SPATIAL SCAN (MULTSCAN) 

ALGORITHM 

MultScan is a novel cluster detection algorithm motivated by statistical process control 

concepts. These concepts are briefly reviewed and then the proposed algorithm and 

testing methods are described. 
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Statistical process control methods presume that an underlying stable process with some 

statistical variability generates the observed data. This process is then monitored for 

deviations. The funnel plot is a statistical process control tool that is commonly used in 

health system performance monitoring (Spiegelhalter, 2005) and health surveillance 

(Woodall, 2006; Dover and Schopflocher, 2011) to identify anomalous performance or 

health events in pre-defined units, such as hospitals or geographic areas, of varying sizes. 

Funnel plots examine a scatter plot of rates by population, overlaying control limits. 

These control limits are created under the assumption that the observed rates in all 

geographies are generated from a common distribution, analogous to Score tests in 

classical statistics (Poirier, 1995). They represent the range in which observations are 

expected to fall, for different population sizes, assuming that all observations are 

generated from the same underlying process. Using binomial proportions as an example, 

the 95% control limits would be 0 0
0

(1 )r r
r

n


 , where r0 is an overall proportion (either 

observed or a target) and n varies over a relevant range of population sizes (Dover and 

Schopflocher, 2011). Geographies falling outside of the control limits warrant further 

investigation. This provides a natural ordering of the data – those points lying on the 

furthest percentile funnel plot limit are of most interest (the top most control limit in 

Figure 3-1). Viewed another way, standardized scores can be computed as the observed 

proportion minus the expected proportion divided by a standard error. Score z-scores use 

standard errors computed assuming the null hypothesis that proportions are generated 

from the overall proportion and are computed as 
0

0 0(1 )

i

i

r r
z

r r

n





, for each geography i. 

Areas with the largest Score z-scores are of most interest.  
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Figure 3-1. Funnel Plot of 2015 Proportions not immunized with multiple 

contours 

 
Immunization coverage proportions for measles-mumps-rubella at age 2 for Alberta local 

geographic areas in 2015 are shown. Control limits for the four largest and one smallest 

Score z-score values are displayed. 

 

To build clusters, MultScan first sorts the data by Score z-score (refer to Figure 3-1 for a 

visualization of the z-score ordering as funnel plot control limits). By ordering the data, 

the MultScan algorithm is computationally efficient, needing to pass through the data 

only once. Once the data is sorted, clusters are then created and tested. The first 

geography (i.e. that with the largest Score z-score value) defines the first cluster. The 

next geography in order is selected; if it is adjacent to a pre-existing cluster, it is added to 

that cluster and disjoint clusters are combined if they are adjacent; otherwise, it begins a 
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new cluster. At each step there are one or more simultaneously identified clusters. The 

number of clusters at each step can grow or shrink, depending on the adjacency of the 

geographies in that step. The algorithm terminates when a pre-defined stopping rule, such 

as half the population or half the geographies having been scanned, is met. The algorithm 

flow is shown in Figure 3-2. The set of geographies identified jointly is considered – for 

example, if there are three active clusters at a step, the set of three active clusters is the 

most likely set of clusters. The likelihood ratio for each set of clusters is jointly evaluated 

by testing the hypothesis that the rates in the active clusters are different from the rate in 

the remaining geographies. This is a straightforward extension of the original likelihood 

statistic (Jung, 2009; Li et al., 2011).  

 

Figure 3-2. MultScan Algorithm 

 

Order Data 
by funnel plot contour / Score z-score

Select the next area

Is the area adjacent (in space or time) 
to an existing cluster?

Yes: add to that cluster No: start a new cluster

Combine any adjacent clusters

Compute statistic

End if stopping rule reached
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Simultaneous multiple cluster detection requires a modification to the testing framework 

used in spatial scan statistics. Having multiple clusters is equivalent to a model where 

each cluster has its own rate parameter (Jung, 2009). In the general case, an overall test of 

significance would scale the likelihood by the degrees of freedom, in this case the 

number of clusters. This allows direct comparisons of the (scaled) log likelihood between 

steps with different numbers of clusters (parameters). The standard approach to 

significance testing, using Monte Carlo simulation since there is no closed form 

distribution of the likelihood ratio statistics generated under the multiple searches carried 

out in a spatial scan, in conjunction with the extreme value distribution, is performed on 

the scaled likelihood ratio statistics. 

MultScan generalizes the detection of irregular spatial shapes to irregular spatial-

temporal phenomena by defining adjacency in terms of the usual spatial adjacency plus 

adjacency in time. Adjacency is defined in terms of both space and time, so that 

geographies are adjacent if (a) they are in the same time period and geographically 

adjacent, or (b) the same geography is adjacent in time. The MultScan algorithm sorts all 

geography-time data points by their Score z-scores and proceeds in the same fashion as 

the spatial-only case. Clusters can thus be simultaneously detected in different spatial 

locations with different begin and end times and with different patterns of growth. 

To allow a direct comparison to methods that detect only single clusters, a variation of 

MultScan is implemented that, at each step when the set of potential clusters is identified, 

evaluates the likelihood for each potential cluster individually. The single most likely 

cluster is then the single cluster across all potential clusters, across all steps, with the 

largest likelihood ratio. This variant is referred to as MultScan-single. 

 

3.3.2 IMPLEMENTATION DETAILS 

MultScan was set to stop searching once half of the geographies had been considered. 

Clusters were considered statistically significance at the 5% level. Cluster detection, 

simulation, and analyses were all carried out in SAS version 9. Kulldorf’s spatial scan 

and MultScan were both programmed by the author in SAS. 
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3.3.3 SIMULATION SCENARIOS 

Simulations were performed on a fixed 24 by 27 hexagonal grid containing 648 

geographies with varying populations. The population was distributed in geographic 

areas cyclically taking on one of seven values (1,500 to 10,500 in increments of 1,500) 

for a total population of 3,879,000. This structure mimics the magnitude of population 

variation and number of administratively defined geographies likely to be observed in 

public health surveillance practice in Alberta, Canada. Loosely speaking, this is similar to 

census tracts in Alberta. Simulations were performed by varying three dimensions: 

relative risk within the cluster compared to the remainder of the areas, overall disease 

counts, and spatial-temporal cluster configuration.  

In the first dimension, a range of relative risks expected to be seen in health surveillance 

were examined: 1.5, 2.0, and 3.0.  

In the second dimension, annual disease counts of 600, 2,000, 6,000, and 12,000 in the 

total population were examined. These correspond to a range of epidemiologically 

plausible rare disease counts to be examined using a spatial scan, from very rare 

conditions such as multiple sclerosis incidence to relatively more common conditions 

such as all cancer incidence. Counts were simulated using a Poisson model. 

In the third dimension, a variety of cluster configurations were considered. Cluster shapes 

correspond to one of four epidemiologically plausible shapes. Specifically, four shapes 

were used that could correspond to the following mechanisms: (1) O: an O-shaped 

circular, compact cluster – a localized outbreak or point source, (2) V: a compact V-

shaped cluster – an aerially dispersed pathogen, (3) W: a W-shaped cluster – an exposure 

along a geographic feature like a river, and (4) X: a spider-shaped cluster – spread from a 

central person in a social network. Figure 3-3 shows the four shapes. 
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Figure 3-3. Spatial-Temporal Cluster Shapes Simulated 

 

The first configuration was spatial only, placing each of the four shapes in space. This 

was designed to examine the ability to detect different shapes of clusters.  

The second configuration was spatial-temporal, allowing cluster to grow through time. 

For example, the circular cluster begins as only the dark green region (Figure 3-3, top-

left). In the next year, it grew to include the next concentric layer, so the cluster includes 

the dark and medium green areas. In the final year, the cluster included all of the green 

shaded areas.  

The third configuration was spatial only, placing pairs of clusters (O with V, W with X) 

spatially to examine the ability to detect multiple clusters. 

O-shaped cluster 

X-shaped cluster W-shaped cluster 

V-shaped cluster 
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The fourth configuration was spatial-temporal, representing a cluster propagating through 

time. For example, the first year of a compact cluster begins at a central location (Figure 

3-3, dark green), the second year was the area surrounding but not including the first 

location (medium green only), and the next year was the area surrounding but not 

including the areas from the previous year (light green only). As these propagations are 

not adjacent in space or time, they are in fact three distinct space-time clusters.  

Four years of data were used for the simulations of temporal clusters, with clusters 

spanning years two through four. One hundred simulations were carried out for each 

scenario.  

 

3.3.4 PERFORMANCE METRICS 

Performance of both MultScan and MultScan-single was examined from the perspective 

of a public health surveillance user by means of a number of metrics. First, usual power 

and detection power were examined. Usual power is the proportion of simulations in 

which the algorithm identifies a statistically significant cluster using p-values < .05 

cluster and detection power is the proportion of simulations identifying a statistically 

significant cluster that contains at least one geography from the true cluster. High power 

represents the ability of the method to detect a cluster when one exists, without 

considering the accuracy.  Positive predictive value and sensitivity were then examined. 

Positive predictive value is the proportion of the identified geographies that are also part 

of the true cluster. Low positive predictive value implies that the identified cluster has a 

substantial amount of noise because it contains many non-cluster geographies, whereas 

high positive predictive value implies that the identified cluster contains mostly the true 

cluster (although not necessarily all of the true cluster). Sensitivity is the fraction of the 

true cluster that is identified in the detected cluster. High sensitivity means that the 

algorithm is detecting a substantial portion of the true cluster (but possibly also much 

more). The ability to exactly detect clusters was then examined. Finally, to understand 

how MultScan utilizes an unrestricted number of clusters, the number of clusters 

identified was examined. 
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The performance of MultScan was compared to Kulldorff’s spatial scan. Briefly, KSS 

searches for circular clusters and is the de facto gold standard in public health (Goujon-

Bellec et al., 2011). KSS can detect multiple circular clusters by considering non-

overlapping secondary clusters that are significant as the same level as the first cluster. 

When only the original single cluster version of Kulldorff’s method is considered, it is 

referred to as KSS-single. 

Performance characteristics were compared between MultScan-single and KSS-single 

and between MultScan and KSS for the single static cluster and the single growth cluster 

scenarios. MultScan and KSS are compared for the static multiple cluster and the 

propagating cluster configurations. 

Regression analysis on the simulation results was used to compare between methods and 

across simulation dimensions. Regressions were run with each of the performance 

characteristics – usual power, detection power, positive predictive value, sensitivity – as 

outcomes. For each outcome, separate regression models were run for single clusters, for 

multiple clusters, and for propagating clusters. This yields a total of 12 models (4 

characteristics x 3 cluster types). Each regression model used a combined “information” 

dimension to capture the joint effect of the relative risk and disease count on performance 

(see Table 3-1 footnote for formula). Specifically, each regression models included an 

indicator for the type of statistic (MultScan, MultScan-single, KSS, KSS-single), a 

continuous measure of information, an indicator of information greater than three to 

allow for non-linear effects, an indicator of the shape of the cluster(s), an indicator of the 

growth pattern (static, growth, or propagating). All possible interactions between the 

information, the cluster shape, and the cluster growth pattern were considered. Results 

statistically significant at the 5% level and with performance differences of at least 5 

percentage points (for power and sensitivity only) are discussed.  
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Table 3-1. High and Low Information Scenarios 

 

      

  

Cluster Relative Risk 

 

  

1.5 2.0 3.0 

 

Disease 

Count 

                 

600  
0.0 1.4 2.8 

              

2,000  
1.2 2.6 4.0 

              

6,000  
2.3 3.7 5.1 

            

12,000  
3.0 4.4 5.8 

 

      

      Dark green corresponds to high information scenarios and light green to low information scenarios. The 

values in the table are the information values computed as:  

Information is defined as  2log ( 1) 6count RR   . High information is defined as values 3.5 or 

higher. This heuristic is based upon the Wald statistic which has more power with increasing distance in 

the estimate, the (RR-1) term, and disease counts for a fixed population size. The product term is then 

linearized and approximately centred by taking the log and subtracting six.  

 

3.4 RESULTS 

The relative risk and disease count dimensions were combined into a single 

“information” dimension. A cut-point of 3.5 was selected after a visual examination of 

the performance characteristics by information. Values below this are referred to as “low 

information” scenarios and include all scenarios with relative risk 1.5, scenarios with 

relative risk of 2.0 and disease counts of up to 2,000, and the scenario with relative risk of 

3.0 and disease count of 600. Values above the cut-point are referred to as “high 

information” scenarios and include scenarios with relative risk of 2.0 and disease counts 

of 6,000 or more and scenarios with relative risk of 3.0 and disease counts of 2,000 or 

more (see Table 3-1). Linear line segments allowing for one step increase were used in 
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the modelling. Tables 3-2 and 3-3 summarize the results for usual power, positive 

predictive value, and sensitivity.  
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Table 3-2. Simulation Results 

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

1 

Static 

Single 

Cluster 

single 

cluster 

O 

0.01 0.00 0.01 0.11 0.11 0.13 0.18 

1.21 0.19 0.22 0.35 0.40 0.37 0.45 

1.40 0.21 0.25 0.39 0.45 0.40 0.49 

2.31 0.36 0.41 0.57 0.67 0.58 0.70 

2.60 0.40 0.46 0.63 0.74 0.64 0.76 

2.78 0.43 0.49 0.66 0.78 0.67 0.80 

3.01 0.47 0.53 0.71 0.83 0.72 0.85 

3.70 1.00 1.00 0.81 0.96 0.81 0.93 

3.99 1.00 1.00 0.84 0.97 0.83 0.94 

4.39 1.00 1.00 0.88 0.98 0.86 0.96 

5.09 1.00 1.00 0.95 0.99 0.92 0.98 

5.78 1.00 1.00 1.00 1.00 0.98 1.00 

V 

0.01 0.00 0.00 0.02 0.05 0.10 0.14 

1.21 0.18 0.19 0.27 0.28 0.36 0.38 

1.40 0.21 0.22 0.31 0.32 0.40 0.42 

2.31 0.38 0.38 0.50 0.49 0.60 0.60 

2.60 0.43 0.43 0.56 0.54 0.66 0.66 

2.78 0.46 0.46 0.60 0.58 0.70 0.70 

3.01 0.50 0.50 0.65 0.62 0.75 0.74 

3.70 0.96 0.96 0.75 0.70 0.85 0.81 

3.99 0.97 0.96 0.78 0.71 0.87 0.81 

4.39 0.98 0.97 0.83 0.73 0.90 0.81 

5.09 1.00 0.99 0.92 0.75 0.95 0.81 

5.78 1.00 1.00 1.00 0.77 1.00 0.81 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

1 

Static 

Single 

Cluster 

single 

cluster 

X 

0.01 0.00 0.00 0.14 0.14 0.08 0.15 

1.21 0.22 0.24 0.38 0.29 0.27 0.35 

1.40 0.27 0.29 0.41 0.31 0.30 0.38 

2.31 0.51 0.52 0.60 0.42 0.44 0.53 

2.60 0.58 0.60 0.65 0.46 0.49 0.58 

2.78 0.63 0.64 0.69 0.48 0.51 0.61 

3.01 0.68 0.70 0.73 0.51 0.55 0.64 

3.70 1.00 1.00 0.76 0.48 0.71 0.70 

3.99 1.00 1.00 0.79 0.47 0.75 0.71 

4.39 1.00 1.00 0.84 0.47 0.82 0.73 

5.09 1.00 1.00 0.91 0.46 0.92 0.76 

5.78 1.00 0.99 0.99 0.45 1.00 0.79 

W 

0.01 0.00 0.00 0.12 0.15 0.04 0.03 

1.21 0.24 0.24 0.34 0.25 0.22 0.23 

1.40 0.28 0.29 0.37 0.27 0.25 0.26 

2.31 0.52 0.52 0.54 0.35 0.38 0.41 

2.60 0.59 0.59 0.59 0.38 0.43 0.46 

2.78 0.64 0.63 0.62 0.39 0.45 0.49 

3.01 0.70 0.69 0.66 0.41 0.49 0.52 

3.70 1.00 1.00 0.74 0.43 0.69 0.57 

3.99 1.00 1.00 0.78 0.43 0.74 0.59 

4.39 1.00 1.00 0.82 0.44 0.80 0.62 

5.09 1.00 1.00 0.89 0.44 0.91 0.67 

5.78 1.00 0.99 0.96 0.44 1.00 0.71 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

1 

Static 

Single 

Cluster 

multiple 

cluster 

O 

0.01 0.00 0.01 0.26 0.07 0.04 0.18 

1.21 0.13 0.22 0.46 0.31 0.12 0.45 

1.40 0.14 0.25 0.49 0.35 0.13 0.49 

2.31 0.24 0.41 0.65 0.53 0.20 0.70 

2.60 0.27 0.46 0.69 0.59 0.22 0.76 

2.78 0.28 0.49 0.72 0.62 0.23 0.80 

3.01 0.31 0.53 0.76 0.67 0.24 0.85 

3.70 0.91 1.00 0.94 0.75 0.34 0.93 

3.99 0.92 1.00 0.95 0.77 0.42 0.94 

4.39 0.94 1.00 0.96 0.79 0.53 0.96 

5.09 0.96 1.00 0.99 0.84 0.72 0.98 

5.78 0.99 1.00 1.00 0.88 0.91 1.00 

V 

0.01 0.00 0.00 0.05 0.14 0.00 0.13 

1.21 0.12 0.19 0.35 0.28 0.09 0.38 

1.40 0.14 0.22 0.40 0.30 0.11 0.42 

2.31 0.24 0.38 0.63 0.40 0.21 0.61 

2.60 0.27 0.43 0.70 0.43 0.24 0.67 

2.78 0.29 0.46 0.75 0.45 0.26 0.70 

3.01 0.31 0.50 0.80 0.48 0.28 0.75 

3.70 0.88 0.96 0.93 0.57 0.38 0.81 

3.99 0.90 0.96 0.94 0.58 0.46 0.82 

4.39 0.93 0.97 0.96 0.59 0.57 0.82 

5.09 0.97 0.99 0.99 0.61 0.77 0.84 

5.78 1.00 1.00 1.00 0.62 0.97 0.85 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

1 

Static 

Single 

Cluster 

multiple 

cluster 

X 

0.01 0.00 0.00 0.14 0.13 0.00 0.16 

1.21 0.16 0.24 0.46 0.25 0.05 0.35 

1.40 0.19 0.29 0.51 0.27 0.06 0.38 

2.31 0.33 0.52 0.76 0.36 0.11 0.53 

2.60 0.38 0.60 0.83 0.39 0.12 0.58 

2.78 0.41 0.64 0.88 0.41 0.13 0.61 

3.01 0.44 0.70 0.94 0.43 0.14 0.65 

3.70 0.97 1.00 0.95 0.40 0.24 0.71 

3.99 0.98 1.00 0.96 0.41 0.35 0.74 

4.39 0.99 1.00 0.96 0.41 0.49 0.77 

5.09 1.00 1.00 0.97 0.42 0.74 0.82 

5.78 1.00 0.99 0.99 0.42 0.98 0.87 

W 

0.01 0.00 0.00 0.24 0.15 0.01 0.17 

1.21 0.15 0.24 0.50 0.23 0.06 0.32 

1.40 0.18 0.29 0.54 0.25 0.07 0.34 

2.31 0.31 0.52 0.75 0.31 0.10 0.46 

2.60 0.35 0.59 0.81 0.33 0.12 0.50 

2.78 0.38 0.63 0.85 0.34 0.12 0.52 

3.01 0.41 0.69 0.90 0.36 0.13 0.55 

3.70 0.97 1.00 0.96 0.37 0.27 0.64 

3.99 0.98 1.00 0.96 0.37 0.37 0.66 

4.39 0.99 1.00 0.97 0.38 0.51 0.70 

5.09 1.00 1.00 0.98 0.38 0.75 0.76 

5.78 1.00 0.99 0.98 0.39 0.99 0.83 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

1 

Single 

Growth 

Cluster 

single 

cluster 

O 

0.01 0.00 0.02 0.63 0.46 0.22 0.70 

1.21 0.35 0.46 0.76 0.63 0.37 0.78 

1.40 0.41 0.52 0.78 0.66 0.40 0.80 

2.31 0.70 0.85 0.88 0.78 0.51 0.86 

2.60 0.79 0.95 0.91 0.82 0.55 0.88 

2.78 0.85 1.00 0.93 0.85 0.57 0.89 

3.01 0.92 1.00 0.95 0.88 0.60 0.91 

3.70 0.97 1.00 0.94 0.94 0.88 0.90 

3.99 0.98 1.00 0.95 0.95 0.90 0.89 

4.39 0.98 1.00 0.96 0.96 0.92 0.87 

5.09 0.98 1.00 0.97 0.98 0.96 0.85 

5.78 0.99 1.00 0.98 1.00 1.00 0.82 

V 

0.01 0.00 0.00 0.00 0.02 0.00 0.04 

1.21 0.17 0.16 0.23 0.23 0.16 0.31 

1.40 0.20 0.18 0.30 0.26 0.21 0.35 

2.31 0.35 0.32 0.63 0.42 0.44 0.56 

2.60 0.40 0.36 0.73 0.46 0.51 0.62 

2.78 0.43 0.39 0.80 0.50 0.55 0.66 

3.01 0.47 0.42 0.88 0.53 0.61 0.71 

3.70 0.95 0.96 0.90 0.63 0.75 0.73 

3.99 0.96 0.97 0.91 0.64 0.78 0.74 

4.39 0.98 0.98 0.92 0.66 0.83 0.74 

5.09 1.00 1.00 0.94 0.69 0.91 0.75 

5.78 1.00 1.00 0.97 0.72 1.00 0.75 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

1 

Single 

Growth 

Cluster 

single 

cluster 

X 

0.01 0.00 0.00 0.33 0.26 0.00 0.22 

1.21 0.30 0.36 0.58 0.36 0.08 0.38 

1.40 0.36 0.42 0.61 0.37 0.10 0.40 

2.31 0.66 0.75 0.79 0.45 0.21 0.53 

2.60 0.75 0.85 0.85 0.47 0.24 0.57 

2.78 0.81 0.92 0.89 0.48 0.26 0.59 

3.01 0.88 1.00 0.93 0.50 0.29 0.62 

3.70 1.00 1.00 0.91 0.49 0.57 0.63 

3.99 1.00 1.00 0.92 0.49 0.64 0.63 

4.39 1.00 1.00 0.93 0.49 0.73 0.64 

5.09 0.99 0.99 0.95 0.49 0.88 0.65 

5.78 0.99 0.99 0.98 0.50 1.00 0.66 

W 

0.01 0.00 0.00 0.26 0.20 0.03 0.26 

1.21 0.29 0.35 0.52 0.29 0.14 0.39 

1.40 0.34 0.41 0.56 0.30 0.16 0.41 

2.31 0.63 0.72 0.75 0.37 0.24 0.51 

2.60 0.71 0.82 0.81 0.40 0.27 0.54 

2.78 0.77 0.88 0.85 0.41 0.28 0.56 

3.01 0.84 0.96 0.90 0.43 0.30 0.58 

3.70 1.00 1.00 0.89 0.43 0.55 0.60 

3.99 1.00 1.00 0.91 0.44 0.61 0.59 

4.39 1.00 1.00 0.93 0.46 0.70 0.59 

5.09 0.99 0.99 0.96 0.49 0.86 0.57 

5.78 0.99 0.99 0.99 0.51 1.00 0.56 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

1 

Static 

Single 

Cluster 

multiple 

cluster 

O 

0.01 0.03 0.02 0.00 0.28 0.00 0.70 

1.21 0.22 0.46 0.36 0.36 0.07 0.79 

1.40 0.25 0.52 0.41 0.37 0.08 0.81 

2.31 0.40 0.85 0.71 0.43 0.16 0.87 

2.60 0.44 0.95 0.80 0.45 0.19 0.90 

2.78 0.47 1.00 0.86 0.46 0.21 0.91 

3.01 0.51 1.00 0.93 0.47 0.23 0.93 

3.70 0.93 1.00 0.94 0.43 0.53 0.97 

3.99 0.94 1.00 0.95 0.45 0.59 0.97 

4.39 0.96 1.00 0.96 0.47 0.68 0.98 

5.09 0.99 1.00 0.98 0.51 0.84 0.98 

5.78 1.00 1.00 1.00 0.55 1.00 0.98 

V 

0.01 0.00 0.00 0.00 0.04 0.00 0.04 

1.21 0.09 0.16 0.19 0.14 0.04 0.31 

1.40 0.11 0.18 0.25 0.15 0.06 0.35 

2.31 0.19 0.32 0.53 0.22 0.13 0.56 

2.60 0.21 0.36 0.62 0.24 0.15 0.62 

2.78 0.23 0.39 0.68 0.26 0.17 0.66 

3.01 0.24 0.42 0.75 0.27 0.19 0.71 

3.70 0.89 0.96 0.93 0.31 0.33 0.73 

3.99 0.91 0.97 0.94 0.31 0.41 0.75 

4.39 0.94 0.98 0.95 0.32 0.52 0.79 

5.09 0.98 1.00 0.98 0.33 0.72 0.84 

5.78 1.00 1.00 1.00 0.34 0.92 0.90 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

1 

Static 

Single 

Cluster 

multiple 

cluster 

X 

0.01 0.00 0.00 0.25 0.18 0.00 0.19 

1.21 0.20 0.36 0.51 0.26 0.03 0.37 

1.40 0.23 0.42 0.55 0.28 0.03 0.40 

2.31 0.40 0.75 0.75 0.34 0.06 0.54 

2.60 0.46 0.85 0.81 0.36 0.07 0.58 

2.78 0.49 0.92 0.85 0.38 0.08 0.61 

3.01 0.53 1.00 0.89 0.39 0.09 0.65 

3.70 0.97 1.00 0.95 0.36 0.20 0.71 

3.99 0.98 1.00 0.96 0.36 0.31 0.73 

4.39 0.99 1.00 0.97 0.37 0.46 0.76 

5.09 1.00 0.99 0.98 0.37 0.72 0.81 

5.78 1.00 0.99 1.00 0.38 0.98 0.86 

W 

0.01 0.00 0.00 0.06 0.18 0.00 0.37 

1.21 0.17 0.35 0.40 0.22 0.03 0.48 

1.40 0.20 0.41 0.45 0.23 0.04 0.50 

2.31 0.34 0.72 0.71 0.26 0.08 0.59 

2.60 0.39 0.82 0.79 0.27 0.09 0.62 

2.78 0.42 0.88 0.85 0.28 0.10 0.63 

3.01 0.45 0.96 0.91 0.29 0.10 0.65 

3.70 0.96 1.00 0.94 0.31 0.26 0.70 

3.99 0.97 1.00 0.95 0.32 0.36 0.72 

4.39 0.98 1.00 0.96 0.33 0.50 0.75 

5.09 1.00 0.99 0.99 0.35 0.75 0.79 

5.78 1.00 0.99 1.00 0.37 0.99 0.84 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

2 

Static 

Two 

Clusters 

multiple 

cluster 

O V 

0.01 0.00 0.00 0.25 0.26 0.00 0.06 

1.21 0.15 0.26 0.53 0.42 0.04 0.27 

1.40 0.18 0.31 0.57 0.44 0.05 0.30 

2.31 0.33 0.54 0.78 0.56 0.11 0.45 

2.60 0.37 0.61 0.84 0.60 0.13 0.50 

2.78 0.40 0.65 0.89 0.62 0.14 0.53 

3.01 0.44 0.71 0.94 0.65 0.16 0.57 

3.70 0.99 1.00 0.95 0.73 0.29 0.84 

3.99 0.99 1.00 0.96 0.73 0.37 0.85 

4.39 0.99 1.00 0.97 0.73 0.50 0.87 

5.09 0.99 1.00 0.99 0.74 0.71 0.91 

5.78 0.99 1.00 1.00 0.74 0.92 0.94 

W X 

0.01 0.00 0.00 0.25 0.24 0.04 0.06 

1.21 0.21 0.32 0.55 0.31 0.06 0.22 

1.40 0.25 0.38 0.59 0.32 0.06 0.24 

2.31 0.44 0.64 0.82 0.38 0.07 0.36 

2.60 0.50 0.73 0.89 0.40 0.07 0.40 

2.78 0.54 0.78 0.94 0.41 0.07 0.42 

3.01 0.58 0.85 0.99 0.42 0.08 0.45 

3.70 0.99 1.00 0.98 0.40 0.22 0.68 

3.99 0.99 1.00 0.98 0.41 0.32 0.72 

4.39 0.99 1.00 0.98 0.42 0.48 0.77 

5.09 0.99 1.00 0.98 0.44 0.74 0.85 

5.78 0.99 1.00 0.98 0.46 1.00 0.93 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

2 

Two 

Growth 

Clusters 

multiple 

cluster 

O V 

0.01 0.00 0.01 0.27 0.19 0.18 0.58 

1.21 0.21 0.44 0.54 0.34 0.15 0.66 

1.40 0.25 0.51 0.59 0.37 0.14 0.67 

2.31 0.45 0.84 0.80 0.49 0.12 0.72 

2.60 0.51 0.95 0.86 0.52 0.11 0.74 

2.78 0.55 1.00 0.90 0.55 0.11 0.75 

3.01 0.60 1.00 0.95 0.58 0.10 0.76 

3.70 0.97 1.00 0.94 0.51 0.38 0.89 

3.99 0.97 1.00 0.95 0.55 0.44 0.87 

4.39 0.97 1.00 0.97 0.60 0.54 0.85 

5.09 0.97 1.00 0.99 0.69 0.70 0.80 

5.78 0.97 1.00 1.00 0.77 0.86 0.76 

W X 

0.01 0.00 0.00 0.21 0.21 0.00 0.17 

1.21 0.25 0.41 0.51 0.28 0.00 0.28 

1.40 0.29 0.48 0.56 0.29 0.00 0.29 

2.31 0.50 0.82 0.78 0.35 0.03 0.38 

2.60 0.56 0.93 0.86 0.37 0.05 0.40 

2.78 0.60 0.99 0.90 0.38 0.06 0.42 

3.01 0.66 1.00 0.96 0.39 0.07 0.44 

3.70 1.00 1.00 0.96 0.37 0.24 0.62 

3.99 1.00 1.00 0.96 0.38 0.34 0.65 

4.39 1.00 1.00 0.97 0.39 0.49 0.68 

5.09 1.00 1.00 0.98 0.42 0.75 0.73 

5.78 1.00 1.00 0.99 0.44 1.00 0.78 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

3 
Skip 

Cluster 

multiple 

cluster 

O 

0.01 0.00 0.00 0.00 0.00 0.00 0.43 

1.21 0.17 0.34 0.31 0.10 0.07 0.61 

1.40 0.19 0.40 0.37 0.12 0.08 0.64 

2.31 0.34 0.71 0.66 0.21 0.15 0.79 

2.60 0.38 0.81 0.75 0.24 0.17 0.83 

2.78 0.41 0.87 0.81 0.26 0.18 0.86 

3.01 0.44 0.95 0.88 0.28 0.20 0.89 

3.70 0.97 0.99 0.99 0.31 0.39 0.95 

3.99 0.98 0.99 0.99 0.32 0.47 0.96 

4.39 0.98 0.99 1.00 0.32 0.58 0.96 

5.09 1.00 0.99 1.00 0.33 0.78 0.97 

5.78 1.00 0.99 1.00 0.34 0.97 0.98 

V 

0.01 0.07 0.04 0.00 0.00 0.00 0.00 

1.21 0.13 0.11 0.26 0.00 0.06 0.16 

1.40 0.13 0.12 0.31 0.01 0.07 0.19 

2.31 0.18 0.18 0.60 0.10 0.16 0.34 

2.60 0.19 0.20 0.69 0.13 0.19 0.39 

2.78 0.20 0.21 0.75 0.15 0.21 0.42 

3.01 0.21 0.22 0.82 0.17 0.23 0.46 

3.70 0.79 0.82 0.93 0.20 0.35 0.64 

3.99 0.82 0.85 0.94 0.20 0.42 0.67 

4.39 0.88 0.90 0.94 0.21 0.51 0.73 

5.09 0.97 0.97 0.96 0.21 0.68 0.82 

5.78 1.00 1.00 0.98 0.22 0.84 0.91 
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Table 3-2. – continued –  

  

Modelled Performance Metrics 

Usual Power 
Positive Predictive 

Value 
Sensitivity 

MultScan KSS MultScan KSS MultScan KSS 

            

Number 

of 

Clusters 

Growth 

Pattern 

Detection 

Method 
Shape Information 

            

3 
Skip 

Cluster 

multiple 

cluster 

X 

0.01 0.01 0.00 0.00 0.08 0.00 0.02 

1.21 0.13 0.15 0.28 0.20 0.02 0.15 

1.40 0.14 0.17 0.33 0.22 0.03 0.17 

2.31 0.23 0.28 0.62 0.31 0.07 0.26 

2.60 0.26 0.32 0.71 0.34 0.08 0.29 

2.78 0.28 0.34 0.77 0.36 0.08 0.31 

3.01 0.30 0.37 0.84 0.38 0.09 0.33 

3.70 0.91 0.96 0.95 0.41 0.11 0.47 

3.99 0.93 0.97 0.96 0.42 0.21 0.52 

4.39 0.95 0.98 0.97 0.42 0.36 0.58 

5.09 0.98 1.00 0.98 0.43 0.62 0.69 

5.78 1.00 1.00 1.00 0.44 0.87 0.80 

W 

0.01 0.02 0.00 0.00 0.00 0.00 0.17 

1.21 0.13 0.14 0.28 0.12 0.05 0.26 

1.40 0.14 0.16 0.34 0.14 0.06 0.27 

2.31 0.22 0.28 0.63 0.23 0.10 0.34 

2.60 0.25 0.32 0.72 0.26 0.11 0.36 

2.78 0.27 0.34 0.78 0.28 0.12 0.37 

3.01 0.29 0.37 0.85 0.30 0.13 0.39 

3.70 0.91 0.95 0.96 0.33 0.14 0.44 

3.99 0.93 0.96 0.96 0.33 0.24 0.48 

4.39 0.95 0.97 0.97 0.34 0.38 0.54 

5.09 0.99 0.99 0.99 0.35 0.61 0.64 

5.78 1.00 1.00 1.00 0.35 0.84 0.74 
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Table 3-3. Simulation Results Summary 

Cluster 

Configuration 

Method 

Type 
Relative Performance* 

      Usual Power 

Positive 

Predictive 

Value 

Sensitivity 

Single Cluster 

Circular 

Single 

cluster 

KSS superior only 

in low information  

KSS superior 

only in mid-

information static 

circular cluster 

MultScan superior 

in high information;  

(static or 

growth) 

KSS superior in low 

information 

  
Other 

shapes 
Similar 

MultScan 
superior 

MultScan superior 

in high information;  

  
KSS superior in low 

information 

            

  

Circular 

Multiple 

cluster 

KSS superior only 

in low information 
MultScan 
superior 

KSS superior for 

static circular 

cluster; 

  

KSS superior in low 

and middle 

information growth 

cluster 

  

Other 

shapes 

KSS superior only 

in low information 
MultScan 
superior 

MultScan superior 

at highest 

information; 

  
KSS superior in low 

and middle 

information 

 

*bolding of the method name indicates scenarios where that method is broadly superior 
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Table 3-3. – continued --  

Cluster 

Configuration 

Method 

Type 
Relative Performance* 

      Usual Power 

Positive 

Predictive 

Value 

Sensitivity 

Two Clusters 

  
Multiple 

cluster 

KSS superior only 

in low information 
MultScan 
superior 

MultScan superior 

at highest 

information; 

(static or 

growth) 

KSS superior in low 

and middle 

information 

            

Propagating 

Clusters 

  
Multiple 

cluster 
Similar 

MultScan 
superior 

MultScan superior 

in highest 

information 

irregular clusters; 

(three clusters) 
KSS superior in 

remaining scenarios 

            

 

*bolding of the method name indicates scenarios where that method is broadly superior 
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3.4.1 USUAL POWER AND DETECTION POWER 

For configurations of single spatial clusters, MultScan-single and KSS-single performed 

comparably in both static and growth clusters in the high information range. For example, 

Figure 3-4(a) shows usual power for single circular cluster simulations. The solid line 

represents the modelled performance of MultScan-single and the dashed line the 

modelled performance of KSS-single. Both methods showed the expected increasing 

power to detect clusters with increasing information – higher cluster relative risk and/or 

higher disease counts. MultScan-single and KSS-single performed similarly with 100% 

power in the high information scenarios. MultScan methods displayed lower power than 

KSS methods in the low information scenarios. This pattern held for the single static 

cluster configurations and the single growth cluster configurations (for both single and 

multiple cluster methods), as well as the two cluster and propagating cluster 

configurations.  

The spatial-temporal shapes of the clusters appeared to affect power, although it was 

difficult to discern a consistent pattern. Irregular shapes (W, X) had higher power than 

compact shapes for static clusters but spatial-temporal clusters with growth showed 

higher power for KSS-single. MultScan-single has similar power for most growth shapes. 

The results for detection power are virtually identical to the usual power results (not 

shown). 

In summary, the methods showed comparable power in all high information scenarios. In 

low information scenarios, KSS often displayed higher power. 
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Figure 3-4(a). Usual power for a circular static cluster 
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Figure 3-4(b). PPV for MultScan-single static clusters 
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Figure 3-4(c). Sensitivity for an X-shaped static cluster 
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Figure 3-4(d). Number of clusters detected by MultScan 
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MultScan-single for each single static cluster shape. MultScan displayed good positive 

predictive value in low information scenarios and very high positive predictive value in 

all high information scenarios. A similar pattern is seen with the growth clusters, pairs of 
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Across virtually every scenario, MultScan had much higher positive predictive value than 

KSS. The only exception was in the middle information scenarios with the static circular 

cluster where KSS able to outperform MultScan.  

 

3.4.3 SENSITIVITY 

Across all spatial-temporal shapes and for both MultScan and KSS, compact clusters had 

higher sensitivity than irregularly shaped clusters. Higher sensitivity was seen in the 

compact O and V clusters compared to the irregular X and W clusters. MultScan and 

KSS displayed a similar ordering across shapes.  

With single static clusters and growth clusters, a cross-over in the relative performance of 

MultScan and KSS was observed. In the low information scenarios, KSS had higher 

sensitivity. This flipped and MultScan had higher sensitivity by the high information 

scenarios. Figure 3-4(c) illustrates this effect for the X-shaped spatial cluster. 

A similar cross-over effect was seen in the two cluster and propagating scenarios. 

MultScan overtakes or matches KSS in terms of sensitivity again, but only in the highest 

information scenarios. 

 

3.4.4 EXACT DETECTION 

The paucity of exact detection lead to not modelling this outcome. For a static circular 

cluster, the only type that KSS could detect exactly, KSS-single exactly detected an 

average of 30.4% of low and 83.0% of high information simulations; KSS had 

corresponding exact detection of 22.4% and 64.5%. MultScan methods never detected 

more than 1% of clusters exactly in low information scenarios. In a static circular cluster, 

MultScan and MultScan-single had exact detection of 11.6% and 34.4%. For non-circular 

static clusters, MultScan and MultScan-single had exact detection of 12.1% and 23.6%. 

This declined to 2.8% and 10.4% respectively for growth clusters.  MultScan exactly 

detected 4.6% of multiple clusters, <1% of multiple growth clusters, 4.3% of propagating 

clusters. 
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3.4.5 MULTSCAN BEHAVIOUR 

The performance of the MultScan method exhibited an interesting feature in terms of the 

number of clusters detected. In the low information range, MultScan usually detected 

only one cluster. The number of detected clusters then increased beyond the number of 

true clusters, and finally converged back down toward the true number of clusters [Figure 

3-4(d)]. This behaviour occurred regardless of the true number of clusters.  

 

3.4.6 REAL DATA – CHILDHOOD IMMUNIZATION 

To test MultScan and MultScan-single with real data, childhood immunization coverage 

proportions across small geographies in Alberta were examined. Alberta is a province in 

Canada with a population of approximately 4.2 million and 56,000 births in 2015 

(Alberta Ministry of Health, 2017a). Coverage for measles-mumps-rubella at age 2 for 

132 local planning areas (geographies designed for health planning and surveillance) 

were publicly available from the Alberta Ministry of Health’s online tool (Alberta 

Ministry of Health, 2017b). Data were from 2013 to 2015.  

Spatial-temporal scans were carried out looking for areas where the unimmunized 

proportions were highest. MultScan, when scanning for multiple clusters, identified a 

single cluster covering a population of 1,806 children with an unimmunized proportion of 

47.7% (see Figure 3-5). The cluster represents a single rural geography. In contrast, KSS 

identified 10 distinct clusters covering a total population of two year olds of 28,286 with 

an unimmunized proportion of 23.4%. The clusters are geographically dispersed around 

the province in rural north, central and south Alberta. Most clusters spanned all three 

years. 

MultScan-single identified a cluster covering a population of two year olds of 7,645 with 

an unimmunized proportion of 30.7% in the northern portion of the province. The cluster 

beginning in 2013 has two disconnected components, joining geographically in 2014 and 

expanding slightly in 2015. KSS-single identified a larger cluster in the north–west 

portion of the province. It had a population of 9,272 with 26.8% unimmunized spanning 

all three years.  
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Figure 3-5. Clusters of Proportions Not Immunizing for Measles, Alberta, 2013 

to 2015 

 

 

   2013   2014   2015 
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3.5 DISCUSSION 

As recent outbreaks in previously rare diseases have shown, contemporary health 

outbreaks can quickly spread across multiple geographic areas. To date, analytic efforts 

to identify the location, shape, and changes in time in these clusters have been limited, 

which in turn has prevented public health officials from acting with the best information. 

This study demonstrates that MultScan can simultaneously identify multiple clusters that 

change and grow irregularly through time, which means it best mimics the changes that 

naturally occur as clusters shift, expand, and recede.  

MultScan utilizes insights from statistical process control theory in its approach by 

ordering the data by Score z-scores (funnel plot contours). This data driven approach 

likely contributes to the high levels of positive predictive value observed. Other spatial 

scan methods using rankings have met with mixed results. Using a rate based ranking 

algorithm and search, Patil and Taillie performed similarly to other likelihood based 

methods that attempt a modified exhaustive search (Patil and Taillie, 2004). Using an 

algorithm similar to MultScan but relying on Wald z-scores, Que and Tsui showed 

increased positive predictive values but at the cost of much lower sensitivity (Que and 

Tsui, 2011). Both methods maximize the likelihood, but do so relying on ordered data 

without attempting to approximate an exhaustive search. MultScan appears to 

compensate for the loss of sensitivity by virtue of the Score z-scores. Score z-scores 

create a more stable ordering of areas by virtue of the assumption that the variance 

estimate comes from the entire population whereas the variance estimate in Wald z-

scores depends on the more variable observed rates in the small area data. This reinforces 

the suggestion (Tango and Takahashi, 2005; Assunção et al., 2006) that the unchecked 

maximization of the likelihood is the underlying cause of poor positive predictive value 

in many spatial scan methods. While the Score z-score ordering is one of the greatest 

strengths of the MultScan algorithm, it also represents a limitation. The data based 

ordering makes it easy to exclude geographically or temporally adjacent areas because 
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they are ranked further down the list. This likely explains the only adequate levels of 

sensitivity observed.  

Regardless of the shape or number of clusters in space or time, MultScan displayed high 

levels of positive predictive value, virtually always outperforming KSS. As indicated by 

the positive predictive values of 80% to 100% in high information scenarios, MultScan 

identified clusters with very little noise. The high positive predictive values observed are 

likely driven by the interesting way that MultScan arrives at the true number of clusters. 

The simulations found that the algorithm initially overestimates the number of clusters by 

ignoring connecting area with only slightly elevated rates; as it collects more information 

though, these bridge pieces are added into the cluster, and the algorithm detects the exact 

number of clusters. This maintains the utility of the method in public health practice. In 

situations when limited information is available and there are multiple clusters in close 

(but not adjacent) geographic proximity, health professionals will be able to combine the 

MultScan results with epidemiologic and local knowledge to decide how to deploy 

resources in the identified clusters and in the “bridging” areas between them. 

MultScan maintained adequate levels of sensitivity in the simulations. In general, 

MultScan had lower sensitivity in low information scenarios, but its sensitivity rivalled 

and then exceeded KSS as information increased. MultScan displayed levels of usual 

power and detection power comparable to KSS in all high information scenarios. Across 

the low information scenarios, KSS displayed greater power. These low information 

scenarios, comprised of small relative risks and particularly low disease rates, plague all 

cluster detection methods, leading many studies to focus on higher information scenarios 

(Goujon-Bellec et al., 2011). While this may be understandable from a statistical 

perspective, it is important for public health practitioners to note that no method can be 

relied upon in low information scenarios to accurately detect spatial-temporal clusters.  

The types of simulations represent a limitation of this study. The spatial boundaries are 

regular, equally sized, polygons and the population structure follows a fixed pattern. 

Results on regular data may not generalize to real world conditions where, in Alberta for 

example, there are very large rural geographic areas with small populations and large 

urban populations within small geographic boundaries. The simulations have captured 
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variability in population size, as well as a variety of rare health event rates and a set of 

plausible cluster shapes. 

Exactly identifying clusters provides public health professionals with quality information 

to help plan and execute public health interventions. To date, this has been one of the 

greatest limitations of spatial scan statistics; a recent review of five scan statistics 

determined that “none of the methods was ever able to detect the underlying cluster 

exactly, irrespective of the population size, shape or relative risk of the cluster” (Goujon-

Bellec et al., 2011). In contrast to these methods, MultScan and MultScan-single showed 

the ability to exactly detect clusters in high information scenarios. The ability of 

MultScan to exactly identify two changing clusters is a substantial improvement over 

existing methods, although the low exact detection rates are an indication that additional 

research is needed in this area. 

The case study consistently had MultScan based methods identifying clusters with higher 

proportions not immunizing than did the corresponding KSS methods. This finding was 

consistent with the simulation results demonstrating that MultScan had higher positive 

predictive value than KSS. This suggests that the clusters identified by MultScan are 

more likely to contain only the true cluster while the clusters identified by KSS are more 

likely to include areas not actually a part of the true cluster. Public health interventions 

focused on increasing immunization uptake are costly endeavours. Targeting them more 

widely than necessary (e.g. by relying on KSS results) would waste limited public health 

resources. This implies that focusing on areas identified by MultScan would be the most 

effective use of resources. 

 

3.6 CONCLUSION 

As the spatial-temporal shapes and number of clusters will never be known in advance in 

real applications, it is vital to be able to detect multiple, irregularly shaped clusters in 

space and time. The high positive predictive power observed in MultScan allows 

effective allocations of public health resources, although this comes with lower 

sensitivity in some cases. The ability to exactly identify irregularly shaped clusters in 
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both space and time is a characteristic not observed in other methods. MultScan 

represents a useful tool in public health surveillance and applications requiring the 

identification of spatial-temporal clusters. 

 

  



  

121 

 

3.7 APPENDIX – INPUT DATA FILES 

MultScan requires two input datasets, an adjacency matrix and the count data. 

The adjacency matrix is used to identify which geographic areas are adjacent for the 

purposes of grouping areas into geographic clusters. The dataset contains two columns of 

geographic identifiers. The pair of geographies identifies a pair of geographic areas that 

are adjacent to each other. An example of the data used to create the adjacency matrix is 

illustrated in Figure 3-6. In this example, depicted in Figure 3-7, geography 1 is adjacent 

to geographies 2 and 3, but not 4; geography 2 is adjacent to geographies 1 and 3, but not 

4; geography  3 is adjacent to geographies 1, 2, and 3; geography 4 is adjacent to only 

geography 3. Adjacency is defined by sharing a portion of their boundaries. 

Figure 3-6. MultScan Input Dataset: Adjacency 

Geographic Identifier 1 Geographic Identifier 2 

1 2 

1 3 

2 1 

2 3 

3 1 

3 2 

3 4 

4 3 

 …  … 

 

Figure 3-7. Adjacency Example 

 

The count dataset used in MultScan includes a geographic identifier, an optional year 

variable, the count of cases, and the population at risk. The annual population rate and 

1 

4 

 

1 

2 

 

3 
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subsequent annual Score z-scores are created from this data. An example of the data used 

is illustrated in Figure 3-8. 

Figure 3-8. MultScan Input Dataset: Count Data 

Geographic Identifier Year* Count Population 

1 2003 
                   

98  
                       

1,043  

1 2004 
                 

117  
                       

1,218  

1 2005 
                 

132  
                       

1,287  

2 2003 
             

1,217  
                     

11,957  

2 2004 
             

1,246  
                     

12,850  

2 2005 
             

1,329  
                     

13,244  

3 2003 
                 

620  
                       

5,421  

3 2004 
                 

618  
                       

5,344  

3 2005 
                 

661  
                       

5,498  

4 2003 
                 

314  
                       

3,300  

4 2004 
                 

351  
                       

3,428  

4 2005 
                 

401  
                       

3,910  

 …  …  …  … 

 

Kulldorff’s spatial scan uses the same count dataset as MultScan for input, but rather than 

using an adjacency matrix relies on distances from centroids of the geographic areas. 

Centroids are given in latitude and longitude. An example of the centroid dataset is 

shown in Figure 3-9. 
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Figure 3-9. KSS Input Dataset: Geographic Centroids 

Geographic Identifier Latitude Longitude 

1 54.63 -114.61 

2 53.46 -114.87 

3 53.45 -113.48 

4 52.23 -112.02 

 …  …  … 
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3.8 APPENDIX: THE STATISTICAL BASIS FOR SPATIAL SCAN STATISTICS  

Spatial scans determine if a cluster exists, where it is spatially located, and determine its 

statistical significance. This is accomplished in a four step process: 

1. Apply a search algorithm 

2. Compute a test statistic for each set of geographies in the algorithm 

3. Note the most likely cluster, the set of geographies with the largest value of the 

test statistic 

4. Evaluate the statistical significance of the most likely cluster 

 

I begin by reviewing these steps for Kulldorff’s circular spatial scan (Kulldorff and 

Nagarwalla, 1995), and then show how these are modified for the MultScan algorithm. 

 

3.8.1 SEARCH ALGORITHM  

The search algorithm for Kulldorff’s circular spatial scan is an exhaustive search of all 

“circular” clusters of geographies. There is, in the spatial case, a set of n geographies. 

The algorithm starts at the centroid if each geographic region, hence starting with a single 

geography to evaluate the test statistic for. Then, ever larger circles are created until 

another centroid is included, and the test statistic is computed for these geographies. This 

continues until a logical limit is reached, such as half of the population being included in 

the potential cluster.  

It should be noted, that although the algorithm proceeds using circles and centroids of 

geographic regions, this does not ensure that the resulting cluster identified is circular or 

even connected. Since the underlying geographic regions are not circular, an 

agglomeration of them likely will not be as well. In cases with very non-compact 

geographic regions, regions with long spidery shapes for example, it is possible to 

include two geographies that have centroids close together, but are separated by a third 

geographic region that happens to have a thin arm separating the original two 

geographies.  
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The MultScan search algorithms I propose are single pass searches that pre-order the 

geographic regions and then sequentially build potential clusters.  The pre-ordering is 

accomplished by sorting the geographic regions by their Score z-scores.  In sequence, 

each region is then added to an existing cluster if it is adjacent to it, or the region begins a 

new cluster. In the case where the geography connects to two or more potential clusters, 

the now connected clusters merge to become a single cluster. The MultScan algorithm 

stops here at each step, with a set of potential clusters (i.e. there may be more than one 

cluster identified at each step in the algorithm). In the case of the MultScan single 

algorithm (designed to detect only a single cluster), there is an additional sub-search 

where each of the identified potential clusters is examined. 

 

3.8.2 TEST STATISTICS 

Both Kulldorff’s circular scan and MultScan single use similar likelihood ratio statistics 

as the basis for evaluating potential clusters. The derivation of the likelihood used in 

MultScan in the Poisson case follows. 
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The MultScan likelihood derived above is a generalization of Kulldorff’s formulation 

(where only one cluster is searched for, i.e. K=1). The MultScan single algorithm that 

searches for only a single cluster also has K=1. 

The test statistic used by Kulldorff is simply the log likelihood ratio. For MultScan, a 

change is required to the test statistic to account for the fact that there are (potentially) 

multiple clusters being simultaneously evaluated. To do this, I use the fact that minus two 

times the log likelihood ratios is asymptotically has a chi-squared distribution, and scale 

the log likelihood ratio by the degrees of freedom. In this case, the degrees of freedom is 

the number of clusters. So at each step, the test statistic is  LLR
K

 , where K is the 

number of clusters. 

 

3.8.3 EVALUATING STATISTICAL SIGNIFICANCE OF THE MOST LIKELY CLUSTER(S) 

The most likely cluster has the largest value of the test statistic. The next step is to 

determine the statistical significance of the most likely cluster. This is a challenging task, 

because the area being tested is under examination specifically because it had the largest 

value of the test statistic, out of a huge number of test statistics being generated. This is a 

multiple testing issue, similar to “data dredging” in epidemiology. There is no closed 

form for a general spatial scan with varying populations (Glaz, Pozdnyakov and 

Wallenstein, 2009). To deal with these issues, Kulldorff proposed Monte Carlo testing. 

This process involves repeatedly creating a new simulated set of outcomes through 

simulation under the assumption of no clusters and recording the maximum value of the 

test statistic. This creates an empirical distribution for the test statistic and the test 

statistic from the observed data has a significance level equivalent to the percentile the 

observed test statistics fits in. For example, if the observed test statistic is 36, and this is 

the 3rd largest value out of a combined 999 simulations plus the observed, the p-value 

would be 3/1,000 or p=.003. 

The Monte Carlo approach to significance testing is computationally intensive. Each 

simulation is costly in terms of its runtime, and the number of simulations must be large 
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to obtain a reliable distribution of the test statistic. Implementations of Kulldorff’s spatial 

scan usually default to 999 simulations. 

A more computationally feasible approach has been proposed by Abrams et al (Abrams, 

Kleinman and Kulldorff, 2010). This approach uses a parametric distribution, specifically 

the Gumbel distribution. This distribution is an intuitively sensible choice as the Gumbel 

distribution is a distribution of maxima. Other distributions have been considered (Jung, 

2009; Abrams, Kleinman and Kulldorff, 2010), but the Gumbel outperforms all others for 

all forms of spatial scan statistics examined to date. The Gumbel distribution is a two 

parameter distribution, and can be parameterized as a function of the sample mean and 

standard deviation. Thus Monte Carlo simulations under the null are still required, but 

only enough to estimate a mean and standard deviation.  

 

3.8.4 EXTENDING THE SPATIAL SCAN TO INCLUDE COVARIATES 

The same arguments that suggest adjustment for covariates in funnel plots apply to 

adjustment in spatial scanning. Fundamentally, it is a matter of interpretation. In spatial 

scans, the interest is in the identification of geographic regions that are unusual, and 

require further investigation. To be interesting and unusual implies that the cause of the 

unusualness is unknown. In other words, that known factors that affect the outcome of 

interest are already accounted for.  

There are two approaches to accounting for covariates. The first naturally extends the 

distributional assumption in the spatial scans to include covariates. The second approach 

disentangles the modelling step from the spatial scan step. Jung (Jung, 2009) extended 

the Poisson circular spatial scan to Poisson with covariates, and then generalized the 

process to the entire class of generalized linear models. Any familiar regression model – 

logistic, Poisson, normal, exponential – can directly be seen to be able to incorporate the 

cluster concept by including as a covariate an indicator for membership in the potential 

cluster. In fact, Kulldorff’s Poisson and binomial spatial scan statistics are special cases 

of Jung’s framework. In this way, the spatial scan procedure can be seen to compute a 

regression based test statistic at each step of the algorithm. In principle, this process could 
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be extended to any regression framework (not only generalized linear models) including 

models such as the Cox proportional hazards model used in survival analysis. The second 

approach distinguishes between the modelling step and the cluster evaluation step. It is 

the same approach to risk adjustment examined in Chapter 2 on funnel plots and is 

frequently used in spatial scan statistics (Kulldorff et al., 1997). The modelling is carried 

out first, and an adjusted outcome is computed. This adjusted outcome is then the input to 

the spatial scan algorithm. Both the regression method and the two step method for 

including covariates can be used. 
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CHAPTER 4: CHILDHOOD IMMUNIZATION IN ALBERTA 

 

An edited version of the following paper will be submitted as: 

Use of funnel plots and spatial scans to guide immunization surveillance and 

intervention 

Douglas C. Dover 

Shannon MacDonald 

The paper integrates the funnel plot visualizations and adjustment methodology with the 

MultScan spatial scan statistic. These methods are applied to childhood immunization in 

Alberta accounting for a wide variety of factors related to immunization uptake. 
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4.1 ABSTRACT 

4.1.1 BACKGROUND 

Monitoring of childhood immunization coverage is a key tool for public health to control 

vaccine preventable diseases. Understanding which determinants of immunization are 

influential in which geographic areas helps in targeting public health interventions. 

 

4.1.2 DATA  

The routine childhood immunization schedule for DTaP-IPV-Hib is 2, 4, 6, and 18 

months. Coverage for these doses in an Alberta cohort born in 2010 is measured at age 

two. Determinants of immunization measured include families with 3 or more children, 

Vitamin K uptake, recently moved, having a regular family physician, being a single 

parent, income quintile, and immunization provider. All data were publicly available at 

the local planning area geographies in Alberta, Canada from a Government of Alberta 

Open Data website. 

 

4.1.3 METHODS 

Immunization coverage in small geographic areas was visualized using funnel plots. 

Adjustment was carried out using log-binomial regressions accounting for coverage in 

the previous dose. Overdispersion was measured using Pearson's goodness of fit statistic. 

Spatial scans were used to identify any geographic clustering of under- or over-

immunization. 

 

4.1.4 RESULTS 

Substantial overdispersion in coverage was observed in all doses before adjustment. After 

adjustment, the first dose still showed moderate overdispersion. Remarkably, the second 

and third doses showed underdispersion. The fourth dose showed moderate 

overdispersion. After adjustment, there was no geographic clustering of immunization 

coverage in any dose. 
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4.1.5 CONCLUSION 

Childhood immunization coverage, accounting for determinants of immunization, was 

analyzed using funnel plots, regression, and spatial scans. In Alberta, the determinants of 

immunization measured in this study accounted for a substantial portion of the observed 

overdispersion. No geographic clustering was observed after accounting for the 

determinants. This approach to analyzing immunization coverage is cost-effective, 

sustainable, and provides a rich description for public health professionals. 
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4.2 INTRODUCTION 

One of the top ten achievements of public health in the 20th century, immunization has 

been extremely successful in reducing the burden of communicable disease morbidity 

and mortality (Center for Disease Control (CDC), 2011). Vaccine preventable diseases 

with severe clinical outcomes are now rare due to immunization being the norm. Despite, 

or perhaps due to, this success, public health is facing a new challenge in the area of 

immunization – the unexpected decline in vaccine uptake by parents for routine 

childhood immunizations. “Vaccine hesitancy refers to delay in acceptance or refusal of 

vaccines despite availability of vaccine services. Vaccine hesitancy is complex and 

context specific, varying across time, place and vaccines. It is influenced by factors such 

as complacency, convenience and confidence.”  (World Health Organization (WHO), 

2014). Public health officials are responsible for protecting the health of the population, 

this mandate clearly extending to protecting the population from vaccine preventable 

diseases. To effectively do this, public health officials must monitor the variation in and 

determinants of immunization uptake to determine what interventions are required where 

and in what sub-populations. Immunization surveillance systems can, when well 

designed, provide this information. 

For immunization surveillance systems to be widely used by public health officials, they 

need to provide accurate information while still being adaptable to new situations. This 

can be achieved by incorporating five factors into surveillance system design (Lee et al., 

2010). The first is that the surveillance system needs to have a strong theoretical 

framework, which ultimately ensures accurate conclusions and effective public health 

actions. The second is the ability to accurately detect clusters of immunization behavior 

or changes in behavior over time; this sensitivity is critical for responding to changes and 

directing resources where they are most needed. Third, the surveillance system needs to 

be timely in both its data collection and analysis to allow interventions to occur when 

they are still possible and most likely to be effective. Fourth, flexibility in the system to 

incorporate new or local knowledge about immunization behavior ensures that the system 

remains current. Finally, the system needs to be simple to implement. Since surveillance 

activities are resource-limited, any system needs to use methods and processes that are 
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sound and cost effective. Surveillance systems that combine these five factors will be 

used and trusted by public health officials, which in turn creates trust in the communities 

where they are acting.  

To guide public health action, the surveillance system must explain immunization 

coverage in the population across pre-existing geographic administrative areas using 

knowledge of factors influencing immunization behavior. Not only must the system be 

able to identify areas where the population is at unusually high risk, it must also 

simultaneously identify those most amenable to intervention. While examples of complex 

analyses of immunization coverage exist in the research literature (Omer et al., 2008; 

Lieu et al., 2015), a robust methodology meeting the population-based, ongoing, 

systematic surveillance needs of public health officials has yet to be developed.  

We propose an immunization surveillance system based upon geographically aggregated 

data and methods. We examine the system’s ability to explain geographic variation in 

immunization coverage at age two, to identify areas of unusually high or low coverage, 

and to inform public health actions.   

 

4.3 METHODS 

4.3.1 THEORETICAL FRAMEWORK 

We used the Behavioural Model of Health Services Use (Aday and Andersen, 1974) to 

characterize factors affecting immunization uptake into Predisposing Characteristics, 

Enabling Resources, and Health Care System Characteristics. Predisposing 

Characteristics that have been identified in the literature include religious beliefs (Mills et 

al., 2005; van der Wal et al., 2005; Falagas and Zarkadoulia, 2008; Dubé et al., 2013; 

Larson et al., 2014; Thomson, Robinson and Vallée-Tourangeau, 2016), birth order 

(Pearce et al., 2008; MacDonald et al., 2014; Larson et al., 2014; de Cantuária Tauil, 

Sato and Waldman, 2016), and immunization-specific knowledge/beliefs including 

anticipated pain from the immunization event (Mills et al., 2005; MacDonald et al., 2014; 

Larson et al., 2014) and the protective effects of the vaccine (Mills et al., 2005; Falagas 

and Zarkadoulia, 2008; Dubé et al., 2013; MacDonald et al., 2014; Larson et al., 2014; 
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Thomson, Robinson and Vallée-Tourangeau, 2016), direct benefits via protection from 

disease (Larson et al., 2014), indirect benefits from helping others through herd immunity 

(Mills et al., 2005; MacDonald et al., 2014; Larson et al., 2014), and potential adverse 

reactions (Mills et al., 2005; Falagas and Zarkadoulia, 2008; MacDonald et al., 2014; 

Larson et al., 2014; Thomson, Robinson and Vallée-Tourangeau, 2016). Enabling 

Resources such as having a regular medical provider (Mills et al., 2005; Falagas and 

Zarkadoulia, 2008; Dubé et al., 2013; MacDonald et al., 2014; Larson et al., 2014; de 

Cantuária Tauil, Sato and Waldman, 2016), socio-economic resources (Pearce et al., 

2008; Larson et al., 2014; de Cantuária Tauil, Sato and Waldman, 2016), and being a 

two-parent family (Pearce et al., 2008; Larson et al., 2014; de Cantuária Tauil, Sato and 

Waldman, 2016) have all been proposed as factors that support childhood immunization. 

Health Care System Characteristics related to immunization include having recently 

moved (Falagas and Zarkadoulia, 2008; MacDonald et al., 2014), which may represent an 

ability to integrate into the local health care system, and characteristics of the 

immunization provider (Larson et al., 2014; de Cantuária Tauil, Sato and Waldman, 

2016). Many of these factors can vary in prevalence geographically and are thus expected 

to explain some portion of the geographic variation in coverage. 

 

4.3.2 SETTING AND POPULATION 

Alberta, Canada is a province with a population of 4 million (Alberta Ministry of Health, 

2017a) with a universal, publicly funded health care system. Childhood immunization 

programmes are a part of this system and are delivered through public health clinics 

throughout Alberta. We will examine DTaP-IPV-Hib immunization protecting against 

diphtheria, tetanus, pertussis, polio and Haemophilus influenzae type B. The routine 

childhood schedule in Alberta is four doses administered at 2, 4, 6, and 18 months of age 

(also referred to as doses 1 to 4) with coverage at age two being routinely reported.  

We examined immunization coverage at age two for the 2010 birth cohort (50,630 births, 

(Alberta Ministry of Health, 2017a) at a small geographic level. The local geographic 

areas used in this study were the 132 geographies used by the province for the planning, 

delivery, and evaluation of health and health care delivery.  
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4.3.3 DATA SOURCES AND VARIABLES 

Data were obtained from the Alberta Ministry of Health Interactive Health Data 

Application (IHDA) (Alberta Ministry of Health, 2017a). Immunization coverage 

estimates in the IHDA were based on data from Imm/ARI (Alberta’s provincial 

Immunization and Adverse Reactions following Immunization repository). Imm/ARI is a 

population-based repository and is considered complete for publicly funded childhood 

immunizations administered since 2006. Population based coverage at age 2 in 2012 for 

each of four doses of DTaP-IPV-Hib were sequentially analyzed. Provincially, the 

coverage estimates were 92.1, 90.3, 87.9 and 74.6% for 2, 4, 6 and 18 month doses 

respectively. Coverage estimates are based upon time-to-event methodology (Alberta 

Ministry of Health, 2017b) using a birth cohort and estimating the probability of being 

immunized at age 2 (Alberta Ministry of Health, 2017b).  

Data on the factors related to immunization coverage were based on aggregate, publicly 

available measures from the 2012 Canadian Community Health Survey (CCHS), the 

2011 National Household Survey (NHS), and 2006-2012 Alberta Notice of Birth forms. 

The  Canadian Community Health Survey is a national health survey designed to measure 

health and health determinants at the national, provincial and sub-provincial level 

(Béland, 2002). The National Household Survey (NHS) is the optional survey attached to 

the 2011 Canadian census (Hamel and Laniel, 2014). The Alberta Notice of Birth data 

contains information collected on all births in the province (Sahni, Lai and MacDonald, 

2014). All data was publicly available on the Alberta Ministry of Health’s IHDA with 

accompanying documentation.  

The predisposing factor of the percentage of families with three or more children was 

available from the NHS. Refusal of Vitamin K at birth to prevent vitamin K deficiency 

bleeding has been related to vaccine hesitancy (Sahni, Lai and MacDonald, 2014), 

presumably representing similar beliefs to immunization. We used the proportion of live 

births accepting Vitamin K as a proxy measure of vaccine confidence. 
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The enabling resource of having a regular medical provider was available from CCHS. 

Socio-economic resources measured by income quintile and single parent families were 

both available from the NHS.  

Health care system integration was captured from the NHS as the percentage of families 

having moved at least once within the last five years. Characteristics specific to each 

immunization provider are captured using an indicator of the former 2003 Regional 

Health Authority, the structure under which immunization programmes were delivered at 

the time in Alberta. 

 

4.3.4 ANALYTIC METHODS 

The proportion of children immunized for doses at 2, 4, 6, and 18 months in each of the 

132 local areas was examined visually using funnel plots (as described in (Dover and 

Schopflocher, 2011). Funnel plots are scatter plots of the population size by 

immunization proportion with control limits overlaid. The control limits, similar to 

confidence intervals, capture the expected variation in observations assuming the only 

difference between areas is due to population sizes. Points beyond the 95% control limits 

are worthy of further investigation and points beyond the 99.8% control limits are 

considered alerts (Dover and Schopflocher, 2011). In the case of immunization 

proportions, binomial control limits were used. Analytically, the Pearson goodness-of-fit 

statistics was used to quantify any amount of overdispersion. Overdispersion represents 

an excess of variability in the observed data over what would be expected from the 

statistical model used. A value of 1 suggests no overdispersion; values less than 1 suggest 

under-dispersion; and values greater than 1 suggest overdispersion. In public health, the 

most likely cause of this overdispersion is unmeasured covariates (Birkmeyer, 2001; 

Dover and Schopflocher, 2011). Funnel plots were examined for all four doses of DTaP-

IPV-Hib for both the crude immunization proportions as well as the proportions adjusted 

for the factors affecting immunization. 

Adjustment was carried out with ecological log-binomial regressions (Wacholder, 1986) 

on coverage proportions for each dose, sequentially adding the Health Care System 
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Characteristics, Enabling Resources, and Predisposing Characteristics to identify 

overdispersion at each step. The models for doses 2 through 4 included as a covariate the 

previous doses’ coverage proportions, replacing the usual intercept term. In this way, the 

interpretation of the model coefficients is the change in effect between subsequent doses. 

This approach has the advantage of removing the effect of any common unmeasured 

covariates in the analyses of subsequent doses. For example, if there is an unmeasured 

covariate that has the same effect on coverage for each dose, the model for dose 2 would 

have accounted for it through the inclusion of the dose 1 observed proportion in the 

model. If the effect of an unmeasured covariate were to increase for dose 2 (vis-à-vis 

dose 1), this would be observed as increased overdispersion in the dose 2 adjusted model. 

To aid in the interpretation of the relative risks for continuous factors, the relative risks 

are given for a percentage point range depending on the observed range of each factor. 

Model fit was assessed by examining influential observations and the linearity of effects 

assumption by testing quadratic terms for all continuous factors.  

Geographic clusters of over or under-immunization were evaluated using MultScan 

(Chapter 3), a spatial scan statistic capable of simultaneously detecting multiple 

irregularly shaped clusters in small area data. MultScan identifies clusters by passing 

through the data (which is ordered by funnel plot contour values) and creating clusters 

out of adjacent geographic areas. The binomial likelihood was computed for each set of 

clusters and the set of clusters with the maximal value of the likelihood was identified as 

the most likely set of clusters. A Monte Carlo method utilizing the extreme value 

distribution was then used to obtain p-values for the set of clusters, adjusted for the 

number of clusters identified. Spatial scans were carried out for unadjusted and fully 

adjusted coverage proportions for each dose.  

Data management and analyses were carried out in SAS 9.3. Statistical significance was 

evaluated at the p < 0.05 level. Ethical approval was obtained from the Health Research 

Ethics Board at the University of Alberta.  

 

4.4 RESULTS 
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Table 4-1 shows the distribution of the measured factors for the 132 local areas, as well 

as the distribution of dose 1 through 4 coverage proportions.  

The results of the log-binomial regression are given in Table 4-2. No observations had 

undue influence in any of the models. All factors were found to be significant in the dose 

1 regression model. Dose 2 coverage was 97.3% (96.6-98.1) of dose 1 coverage (i.e. it 

was reduced by 2.7%), dose 3 coverage was similar at 98.2% (97.4-99.0) of dose 2, and 

dose 4 coverage dropped to 90.2% (89.0-91.4) of dose 3 coverage.  

Beginning with Health Care System Characteristics, the indicator of the delivery system 

(former regional health authorities) shows significant heterogeneity in effects between 

former regional health authorities, the relative risk between the region with the highest 

dose 1 rate and the region with the lowest rate being 1.075 (95% confidence interval 

1.056, 1.095) in dose 1; these remained unchanged (the factor was not significant) until 

dose 4 when all authorities had varying degrees of decline in immunization coverage and 

the spread between the highest and lowest increased to a ratio of 1.206 (95% CI 1.176, 

1.237). In the proportion of families recently moving, the relative risk across the 60 

percentage point range was 1.036 (95% CI 1.018-1.087) and there was no change in 

impact on immunization coverage after the first dose. Turning to Enabling 

Characteristics, the relative risk for the 20 percentage point range in the proportion of 

individuals with regular family doctors was 1.075 (95% CI 1.058-1.094) in dose 1, an 

additional 1.025 (95% CI 1.005-1.045) increase at the second dose and not changing 

thereafter. The proportion of single parent families displayed a non-linear response in the 

first dose, so a quadratic term was added to the first dose model. Relative risks were less 

than one for single parent family percentages less than 20% or greater than 35%. After 

the first dose, each subsequent dose had an additional (linear) effect with relative risks 

across a 30 percentage point range of 0.979 (95% CI 0.959-0.999), 0.992 (95% CI 0.970-

1.000), and 0.997 (95% CI 0.996-0.998) for doses 2 through 4, respectively. The dose 1 

model captured a U-shaped effect of income quintile, with the richest (IQ5) and poorest 

(IQ1) quintiles showing high coverage. The largest effect was between IQ1 and IQ4 with 

risk of 1.020 (95% CI 1.011-1.029); there were no changes in these effects after dose 1. 

Finally, when examining Predisposing Characteristics, we found that the percentage of 
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families with three or more children had an incremental effect over every subsequent 

dose, lowering the chance of immunization for each subsequent dose with relative risks 

of 0.844 (95% CI 0.813-0.876), 0.944(95% CI 0.906-0.9987), 0.930 (95% CI 0.887-

0.976), and 0.858 (95% CI 0.798-0.922) for doses 1 to 4, respectively, across a 50 

percentage point range. The relative risk of a percentage point increase in Vitamin K 

uptake was 1.072 (95% CI 1.057-1.087) in dose 1. It showed no change in effect until 

dose 4, where it was associated with an additional relative risk of 1.027 (95% CI 1.003-

1.052).  

Funnel plots of the unadjusted coverage proportions and the adjusted coverage 

proportions are shown in Figure 4-1. The large number of points very far outside the 

unadjusted funnels compared to their corresponding adjusted funnel plots graphically 

illustrates the substantial explanatory power of the regression model. The unadjusted dose 

1 model had an overdispersion measure of 12.50, showing approximately 12 times the 

expected variation between areas (Table 4-3). After accounting for the Health Care 

System factors, the overdispersion measure reduced to 7.12 and after accounting for 

Enabling factors and Predisposing Characteristics reduced further to 4.50. The model for 

dose 2 including only the dose 1 coverage proportion showed no evidence of 

overdispersion, with a value of 1.08. Adding of all factors reduced the dose 2 value to 

0.71, indicating a slight amount of under-dispersion; the same pattern is observed in dose 

3 where the overdispersion measure started at 1.01 and ended at 0.54. Dose 4 exhibited a 

different pattern of overdispersion with a value of 7.47 after accounting for only the dose 

3 coverage proportion. Adding Health Care System factors reduced the measure to 2.96 

and adding the remaining factors reduced it to 2.09. 

As the Health Care System Characteristics are added to the model, substantial reductions 

in overdispersion can be seen, particularly in the dose 1 and dose 4 models where the 

overdispersion is reduced by almost half. The Enabling Resources further reduced the 

overdispersion by approximately 20% in doses 2 through 4. The Predisposing 

Characteristics further reduced overdispersion by nearly 20% in dose 1 and 10% in doses 

2 through 4. The dose 1 model has substantial overdispersion present even after 
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adjustment. Remarkably, after adjustment the dose 2 and 3 models show under 

dispersion. The Dose 4 model shows slight overdispersion after adjustment. 

The spatial scan of the unadjusted dose 1 proportions did not find any significant clusters, 

although the most likely cluster was a single local area in the northern part of the 

province. Unadjusted dose 2 and 3 spatial scans each identified a single significant 

cluster, the same northern local area seen in dose 1. The dose 4 result was uninformative, 

identifying a huge connected region covering nearly half of the province. The spatial scan 

results for the adjusted proportions were markedly different: no significant clusters were 

identified for any dose. 

 

4.5 DISCUSSION 

Aggregate models of immunization coverage can account for substantial portions of 

geographic variability in coverage proportions as illustrated with Alberta data. Our 

models confirm the impact of Predisposing Characteristics, Enabling Resources and 

Health Care System Characteristics on coverage across all four childhood doses of DTaP-

IPV-Hib in Alberta.  

The results in this ecologic model generally reflect what is expected from individual level 

models in the literature. For Predisposing Characteristics, Vitamin K acceptance was 

associated with increased vaccine coverage (Sahni, Lai and MacDonald, 2014); a higher 

proportion of families with three or more children was associated with decreased 

coverage (MacDonald et al., 2014). For Enabling Resources, the fraction with family 

doctors was associated with increased coverage (MacDonald et al., 2014) and the effect 

of income quintile was U-shaped (Lemstra et al., 2007; MacDonald et al., 2014). The 

effect of single parent families was unusual, with the inverted U-shaped response curve in 

dose 1: an increasing and then decreasing effect on coverage. Subsequent doses saw 

stronger effects in the expected direction, with lower coverage as the proportion of single 

parent families increased. The reason for this is not clear from this study as we would 

have expected decreasing coverage or no change with higher proportions of single parent 

families (Lemstra et al., 2007; MacDonald et al., 2014). The Health Care System proxy 
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of former regional health authority displayed heterogeneity as expected. The percentage 

of families having moved recently showed the opposite effect than expected (MacDonald 

et al., 2014; Bell, Simmonds and MacDonald, 2015), with increasing mobility associated 

with increasing coverage. It may be that during the relatively prosperous and high growth 

times in the province during the study period, the percentage moving is capturing an 

effect more related to affluence than disconnection with the health care system. This 

result is puzzling, suggesting an avenue for further research.  

Although all factors included in the dose 1 model were significantly related to 

immunization, the funnel plot and overdispersion measure both show that substantial 

overdispersion remained after adjustment. This indicates that there are important aspects 

of dose 1 immunization behavior not captured by the model. This is not surprising as our 

model did not include data on indicators related to perceived benefits (protecting oneself 

or others from disease) or risks (fear of needles, pain, risk of adverse events, 

inconvenience). Previous research has found these factors to have substantial effects on 

immunization coverage proportions. These missing factors could go a long way to 

accounting for the remaining geographic variability in coverage and identifying 

appropriate indicators represents an area for future research.  

The models for doses 2 and 3 show the noteworthy phenomenon of under-dispersion: less 

variability than expected from the statistical model. This suggests that once children have 

been immunized for their first dose, they are more likely than chance would imply to 

return for the second dose and third doses. This means that public health is performing 

well in terms of retention after children enter the immunization system at two months 

until 6 months. This is an extraordinary “win” for public health programmes and 

understanding the reasons for this phenomenon could lead to future interventions with 

improved programme performance.  

The dose 4 model then shows substantial overdispersion even after adjusting for the dose 

3 coverage proportion and accounting for the additional effects of factors acting only on 

the forth dose. Again, this indicates an absence of important factors in the dose 4 model. 

We hypothesize that access and convenience issues play a larger role than in previous 

doses. The DTaP-IPV-Hib schedule in Alberta has the first three doses early after birth 
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(months 2, 4, and 6) and the fourth dose at 18 months. By the time a child is 18 months 

old, routine visits to public health clinics have ended and many parents have likely 

returned to work, creating health care scheduling difficulties(Bell, Simmonds and 

MacDonald, 2015). Since the fourth dose is also the final dose, parents may perceive 

more of the inconveniences of getting the immunization relative to its benefits. 

The spatial scan of immunization coverage identified clusters in the unadjusted coverage 

proportions. However, after adjusting for Predisposing Characteristics, Enabling 

Resources and Health Care System Characteristics, no clusters were detected. This 

implies that the apparent clustering is actually due to clustering of the risk factors rather 

than a geographic anomaly. 

The results of the funnel plots, modelling, and spatial scans all have direct implications 

for public health practice. The substantial reductions in variability between areas when 

Health Care System Characteristics were introduced into the model suggest that 

understanding these characteristics across the province could lead to learnings which, if 

applicable elsewhere, could reduce the disparities in coverage. This is particularly 

apparent in dose 4. The difference between the best and worst performing former regional 

health authorities was an increased relative risk of immunization of 20%. This factor 

accounted for the majority of the overdispersion in both dose 1 and dose 4, substantially 

reducing the overdispersion in each case. The Enabling Resources of having a family 

doctor accounted for a large portion of the overdispersion as did the Predisposing 

Characteristic of higher vitamin K update, and a moderate amount of overdispersion was 

captured by the Predisposing Characteristic of belonging to a family with three or more 

children. The public health implication of each of these observations differs, depending 

upon the type of characteristic. Since the Enabling Resource of having a family doctor 

accounts for a substantial amount of variability, interventions targeting communities with 

low family doctor proportions may be indicated. Similarly, targeting programmes 

providing logistical supports in communities with high proportions of multi-child 

families may be indicated. The Predisposing Characteristic of low vitamin K uptake, and 

possible corresponding concerns over vaccine safety or efficacy, suggest areas where 

public health affecting change is liable to be a long term goal. Such knowledge should be 
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taken into account when assessing the performance of local immunization programmes. 

Interestingly, all factors included in the model accounted for some between region 

variability, as indicated by their statistical significance in the dose 1 model. Had a factor 

affecting individual immunization behaviour had a similar effect across all areas, and 

hence not been significant in explaining between area variability, this factor would 

suggest provincial level programming options. The spatial scan did not identify any 

anomalous clustering of over or under immunization after adjustment. Any identified 

clusters would have warranted further investigation to more fully understand what 

unmeasured effects would be at play. Taken together, these results point to a very 

complex array of factors with unequal distributions across areas in the province calling 

for geographically tailored immunization programmes.   

 

4.6 LIMITATIONS 

While the combination of modelling and visualization of aggregate immunization data 

performs well, this study is not without limitations. Some factors known to contribute to 

vaccination behaviours are not captured in existing data sources. For example, beliefs 

around pain and fear of needles, (see for example, (MacDonald et al., 2014) for an 

Alberta study) are not regularly captured. Even when measures of factors are available, 

they may not be specific. Recent moves from the NHS, as an example, captures moves 

within five years for all households within the geography. A more specific measure 

would capture the number of moves within the last two years for parents of two year olds 

since this is the population of interest and the effect changes across the number of moves 

(Bell, Simmonds and MacDonald, 2015).  

As this study relies upon ecologic analyses, caution around ecologic fallacy must be 

addressed. The factors in the model have been selected based upon existing studies 

carried out with individual level data, removing the possibility of incorrect identification 

of a causal factor. However, the effect estimates themselves should not be interpreted as 

individual but as area level effects. Also, there is the possibility to misinterpret non-

significant risk factors. Non-significant factors in the ecologic model may mean (a) the 
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factors are not related to immunization coverage, or (b) that the factor does not vary 

significantly across the geographic areas studied. The former is unlikely as the factor was 

a priori selected because of a relationship, whereas the latter is quite possible to have 

occurred.  

 

4.7 CONCLUSION 

Surveillance of childhood immunization coverage has historically relied upon measures 

of coverage at a point in time, such as coverage at age two, national targets, or days 

delayed. There have been calls for small area surveillance of immunization coverage 

(Smith and Singleton, 2008), ecologic analyses of immunization data (Omer et al., 2008; 

Lieu et al., 2015), as well as spatial scans applied to immunization data (Omer et al., 

2008; Lieu et al., 2015). These methods provide effective, simple and affordable tools in 

providing evidence to identify which of a very wide array of public health interventions is 

most appropriate in the circumstances.  We have proposed a system integrating the 

visualizations provided by funnel plots to understand the variability between regions, 

with modelling based upon readily available data on factors related to immunization, and 

with spatial scans to identify anomalous areas of over or under immunization. This 

system provides public health professionals a sustainable surveillance system with a rich 

description of the immunization landscape directing effective interventions and 

programmes.  
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Table 4-1. Characteristics of the Geographic Sample 

  Variable n* Mean Std Dev** Minimum Maximum   

  

   

            

  Immunization Coverage             

  
 

Dose 1 132 91.0% 5.3% 65.5% 99.1%   

  
 

Dose 2 132 88.9% 6.3% 59.0% 99.3%   

  
 

Dose 3 132 86.3% 7.1% 51.5% 98.9%   

  
 

Dose 4 132 71.0% 11.1% 34.4% 92.2%   

  

   

            

  System Characteristics             

   
% moved within 5 years 132 43.8% 12.5% 14.7% 86.8%   

  
 

Former Health Authority             

  
 

 

1 10           

   
 

2 5           

   
 

3 29           

   
 

4 19           

  
 

 

5 10           

   
 

6 27           

   
 

7 17           

   
 

8 12           

  
 

 

9 3           

  
 

 
 

            

  Enabling Factors             

   
% of single parent families 132 22.3% 8.1% 0.0% 44.2%   

   
% with regular family doctor 132 80.3% 4.5% 57.6% 89.9%   

  
 

Income Quintile             

   
 

1 (lowest) 32           

   
 

2 32           

   
 

3 26           

  
 

 

4 26           

  
 

 

5 (highest) 16           

   
 

 
            

  Predisposing Characteristics             

   
% with 3+ children 132 19.9% 7.4% 0.0% 50.0%   

   
% Vitamin K uptake 132 99.6% 0.3% 98.1% 100.0%   

                    

  *n refers to the number of local geographic areas in the study 

  
  

  **standard deviation             
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Table 4-2. Summary of Regression Model Building reporting Relative Risks (RR) 

for Ranges 

    Dose 1         

  Parameter RR 
95% confidence 

Interval 
p-value   

  Intercept* 0.944 0.937 0.951 <.0001   

  % with 3+ children 0.844 0.813 0.876 <.0001   

  % Vitamin K uptake 1.072 1.057 1.087 <.0001   

  % moved within 5 years 1.036 1.018 1.055 <.0001   

  % with regular family doctor 1.075 1.058 1.094 <.0001   

  % of single parent families 1.001 1.001 1.002 <.0001   

  Income Quintile** 1.020 1.011 1.029 0.0068   

  Former Health Authority ** 1.075 1.056 1.095 <.0001   

              

 

    Dose 2         

  Parameter RR 
95% confidence 

Interval 
p-value 

  

  Intercept* 0.973 0.966 0.981 <.0001   

  % with 3+ children 0.944 0.906 0.985 0.0073   

  % Vitamin K uptake 0.996 0.983 1.009 0.5538   

  % moved within 5 years 0.991 0.974 1.01 0.3827   

  % with regular family doctor 1.025 1.005 1.045 0.0152   

  % of single parent families 0.979 0.959 0.999 0.0125   

  Income Quintile** 1.005 1.003 1.014 0.2597   

  Former Health Authority ** 1.024 1.007 1.041 0.5651   
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Table 4-2. – continued –  

    Dose 3         

  Parameter RR 
95% confidence 

Interval 
p-value 

  

  Intercept* 0.982 0.974 0.990 <.0001   

  % with 3+ children 0.930 0.887 0.976 0.0030   

  % Vitamin K uptake 1.005 0.990 1.002 0.5270   

  % moved within 5 years 0.991 0.970 1.012 0.2902   

  % with regular family doctor 1.014 0.991 1.037 0.1703   

  % of single parent families 0.992 0.970 1.015 0.0037   

  Income Quintile** 1.009 0.998 1.020 0.4022   

  Former Health Authority ** 1.030 1.006 1.054 0.1291   

              

 

    Dose 4         

  Parameter RR 
95% confidence 

Interval 
p-value   

  Intercept* 0.902 0.890 0.914 <.0001   

  % with 3+ children 0.858 0.798 0.922 <.0001   

  % Vitamin K uptake 1.027 1.003 1.052 0.0282   

  % moved within 5 years 0.999 0.966 1.032 0.9040   

  % with regular family doctor 1.029 0.993 1.066 0.0931   

  % of single parent families 0.914 0.885 0.944 <.0001   

  Income Quintile** 1.024 1.007 1.041 0.7740   

  Former Health Authority ** 1.206 1.176 1.237 <.0001   

              

*Intercept term in Dose 2-4 models is the previous doses’ value 

**relative risks are between the highest and lowest categories 

The relative risk (RR) measures the change in risk over a percentage-point range, given 
by: 

Variable: Percentage-point range 

% with 3+ children 50 

  % Vitamin K uptake 1 

  % moved within 5 years 60 

  % with regular family doctor 20 

  % of single parent families 30 
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Table 4-3. Overdispersion 

 

                        

  

   

Overdispersion Measure   

  

          

  

  

   

Dose 1 

 

Dose 2 

 

Dose 3 

 

Dose 4   

  

 

Factor Added 
to Model  

 
 

 
 

 
 

   

  

         

  

  

 
 

        

  

  NULL Model*     12.50   1.08   1.01   7.47   

  

          

  

  

          

  

  System 
Characteristics 

Former Health 
Authority   

7.76 
  

0.95 
  

0.76 
  

2.96 
  

  
Moved within 

last 5 years   
7.12 

  
0.95 

  
0.77 

  
2.95 

  

  
 

         

  

  
 

         

  

  

Enabling 
Factors 

Single Parent   6.96   0.79   0.62   2.26   

  

Income 
Quintile   

6.96 
  

0.80 
  

0.61 
  

2.23 
  

  

Regular family 
doctor   

5.89 
  

0.76 
  

0.61 
  

2.24 
  

  
 

         

  

  
 

         

  

  
Predisposing 
Characteristics 

3+ children 

  

5.51 

  

0.70 

  

0.54 

  

2.12 

  

  
Vitamin K 

uptake   
4.50 

  
0.71 

  
0.54 

  
2.09 

  

  

          

  

  Final overdispersion   4.50   0.71   0.54   2.09   

                        

 

*Null Model for dose 1 contains only an intercept term; null models for doses 2-4 contain the previous 

doses’ observed value. 
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Figure 4-1. Funnel Plots of unadjusted and adjusted immunization coverage 

 

Dose 1 – Unadjusted 

 

Dose 1 – Adjusted 

 

  

Population Size 

Population Size 
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Figure 4-1. – continued –  

 

Dose 2 – Unadjusted 

 

Dose 2 – Adjusted 

 

  

Population Size 

Population Size 
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Figure 4-1. – continued –  

 

Dose 3 – Unadjusted 

 

Dose 3 – Adjusted 

 

  

Population Size 

Population Size 
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Figure 4-1. – continued –  

 

Dose 4 – Unadjusted 

 

Dose 4 – Adjusted 

 

  

Population Size 

Population Size 
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4.8 APPENDIX: REGRESSION RESULTS 

The relative risk results presented in Table 4-2 are readily interpretable. They are based on transformations of the log-binomial 

regression results, but are made interpretable by computing the relative risk over relevant data ranges for each of the covariates. For 

completeness, the full model results and correlations are shown in Table 4-4 and Table 4-5. 
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Table 4-4. Log-Binomial Regression Results 

      Dose 1 Dose 2 Dose 3 Dose 4 

Parameter     Estimate 
Standard 

Error 
p-

value 
Estimate 

Standard 
Error 

p-
value 

Estimate 
Standard 

Error 
p-

value 
Estimate 

Standard 
Error 

p-
value 

Intercept* -0.0577 0.0035 <.0001 -0.0270 0.0038 <.0001 -0.0182 0.0044 <.0001 -0.1031 0.0068 <.0001 

% with 3+ children -0.0034 0.0004 <.0001 -0.0011 0.0004 0.0073 -0.0014 0.0005 0.0030 -0.0030 0.0007 <.0001 

% Vitamin K uptake 0.0696 0.0070 <.0001 -0.0040 0.0068 0.5538 0.0049 0.0078 0.5270 0.0268 0.0122 0.0282 

% moved within 5 years 0.0006 0.0001 <.0001 -0.0001 0.0002 0.3827 -0.0002 0.0002 0.2902 0.0000 0.0003 0.9040 

% with regular family 
doctor 

0.0036 0.0004 <.0001 0.0012 0.0005 0.0152 0.0008 0.0006 0.1703 0.0015 0.0009 0.0931 

% of single parent families 0.0012 0.0003 <.0001 -0.0006 0.0002 0.0125 -0.0008 0.0003 0.0037 -0.0032 0.0004 <.0001 

% of single parent families 
squared 

-0.0016 0.0004 <.0001                   

Income Quintile 2 -0.0106 0.0039 0.0068 -0.0048 0.0043 0.2597 -0.0041 0.0049 0.4022 -0.0023 0.0079 0.7740 

(reference=1) 3 -0.0110 0.0039 0.0052 -0.0043 0.0044 0.3355 0.0011 0.0049 0.8227 0.0002 0.0076 0.9751 

    4 -0.0198 0.0043 <.0001 -0.0024 0.0045 0.5922 -0.0027 0.0052 0.5987 0.0001 0.0081 0.9932 

    5 -0.0067 0.0039 0.0894 -0.0013 0.0044 0.7715 -0.0088 0.0050 0.0786 -0.0241 0.0078 0.0020 

Former 1 -0.0458 0.0081 <.0001 0.0046 0.0080 0.5651 -0.0136 0.0090 0.1291 -0.1345 0.0156 <.0001 

Health Authority 2 0.0082 0.0060 0.1772 -0.0020 0.0073 0.7803 -0.0136 0.0088 0.1248 -0.1431 0.0172 <.0001 

(reference=3) 4 -0.0069 0.0055 0.2059 -0.0021 0.0064 0.7473 -0.0097 0.0071 0.1738 -0.1872 0.0128 <.0001 

    5 0.0070 0.0074 0.3463 0.0219 0.0069 0.0014 0.0004 0.0081 0.9560 -0.0279 0.0147 0.0582 

    6 0.0006 0.0032 0.8614 0.0150 0.0034 <.0001 -0.0070 0.0038 0.0676 -0.0388 0.0060 <.0001 

    7 0.0266 0.0061 <.0001 0.0111 0.0072 0.1209 0.0020 0.0080 0.8084 -0.0348 0.0129 0.0072 

    8 -0.0141 0.0085 0.0985 0.0027 0.0095 0.7792 -0.0297 0.0112 0.0079 -0.1699 0.0183 <.0001 

    9 -0.0081 0.0096 0.3995 0.0108 0.0090 0.2277 -0.0016 0.0105 0.8785 -0.0753 0.0185 <.0001 
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Table 4-5. Correlation Matrix 

  Dose 1 Dose 2 Dose 3 Dose 4 % with 
regular 
family 
doctor 

% with 3+ 
children 

% of 
single 
parent 

families 

% moved 
within 5 
years 

% Vitamin 
K uptake 

Dose 1 1.00 0.95 0.89 0.68 0.17 -0.38 0.17 0.16 0.24 

Dose 2 0.95 1.00 0.95 0.76 0.21 -0.37 0.07 0.14 0.20 

Dose 3 0.89 0.95 1.00 0.82 0.28 -0.40 0.00 0.15 0.18 

Dose 4 0.68 0.76 0.82 1.00 0.22 -0.38 -0.10 0.16 0.09 

% with regular family doctor 0.17 0.21 0.28 0.22 1.00 0.06 -0.30 -0.05 -0.06 

% with 3+ children -0.38 -0.37 -0.40 -0.38 0.06 1.00 -0.34 -0.42 0.12 

% of single parent families 0.17 0.07 0.00 -0.10 -0.30 -0.34 1.00 0.26 0.11 

% moved within 5 years 0.16 0.14 0.15 0.16 -0.05 -0.42 0.26 1.00 -0.04 

% Vitamin K uptake 0.24 0.20 0.18 0.09 -0.06 0.12 0.11 -0.04 1.00 
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CHAPTER 5: DISCUSSION 

5.1 CONTEXT AND AIM 

The overarching aim of this set of research papers is to advance methods and practice in 

public health surveillance. To better understand how the methods developed and 

proposed in this thesis fit into the current landscape of surveillance methods, I begin by 

placing them within their historical context.  

The Father of Modern surveillance, William Farr (Langmuir, 1976), first identified and 

brought together the underlying concepts of surveillance: standardized data collection, 

taking a population health perspective using rates, comparing the observed to expected, 

interpreting these analyses, and calling for action. While these principles still underlie, 

and in fact largely define, surveillance, much has changed from its origins in 

communicable diseases. In the early 21st century, a shift in focus started to include 

chronic diseases and their risk factors into surveillance activities (Choi, 2012). 

Administrative health data was first used, disease specific registries for cancer came into 

existence, and national health surveys were implemented. These all provided rich, new 

sources of data in public health surveillance. Simultaneously, quantitative methods in 

statistics and epidemiology were also flourishing, leading to the suite of methods in use 

today. Surveillance activities regularly standardize and often use sophisticated methods 

for aberration detection (cumulative sums or segmented regressions in time, spatial scans 

in space). But interestingly, the disparate original data sources underlying our 

surveillance information systems today still have influence over the types of analysis 

routinely undertaken and reported. The methods described in this thesis further refine 

methods in aberration detection (through identification of multiple irregular spatial-

temporal clusters) and bring together the many data silos in a coherent process for 

analysis (funnel plots and the methodology for adjusting), interpretation and reporting 

(founded in the use of funnel plots) the complex health outcomes of importance today. 
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5.2 SUMMARY AND IMPLICATIONS OF RESEARCH 

This thesis has proposed sophisticated analyses of aggregate data for inclusion in to the 

surveillance methods toolkit. The areas of risk factor surveillance and health service 

utilization surveillance are near the frontier of surveillance activities, although the state of 

the art remains simple descriptive statistics. For example, data on  a multitude of risk 

factors are currently available – physical activity, fruit and vegetable consumption, 

drinking behaviours, obesity, and levels of stress are all available from population health 

surveys. Similarly, utilization of hospital resources, emergency department resources, and 

specific programmes like immunization are available from administrative data sources. 

But linking these separate resources is not a part of the norm. My thesis hopes to move 

public health surveillance in that direction by applying sophisticated methods to 

aggregate data. I now summarize how each paper addresses this objective.  

 

5.2.1 FUNNEL PLOT METHODOLOGY FOR PUBLIC HEALTH SURVEILLANCE 

The paper in Chapter 2 examining the use of funnel plots in public health surveillance 

developed two themes, the concept of overdispersion and the policy relevant 

interpretation of geographic variability. Overdispersion can occur when relevant risk 

factors remain unaccounted for. The aggregate data methods developed allow for the 

relatively straightforward accounting for risk factors with an aggregate regression 

methodology. This is of particular utility in public health surveillance where a large 

number of factors are collected across disparate systems i.e. where data is available, but 

often only in an aggregate fashion. The way in which these known factors are included in 

the aggregate regression framework leads directly to public health policy implications. 

When a known factor is not significant in an aggregate regression, this implies that there 

is no between area variability. This implies that policy actions related to this factor 

should be undertaken provincially as all geographic areas are similarly affected. Other 

factors are then examined sequentially, ordered by their amenability to public health 

intervention. In this way, priority factors can be targeted to specific areas. The 

identification of which areas should be targeted can then carried out based upon an 

iterative use the funnel plot methodology. By extending the use of the funnel plot 
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contours to maps, an effective visualization of the geographic distribution emerges. In 

total, the funnel plot methodology provides public health professionals with a rigorous, 

informative analysis process that is easy to implement.  

 

5.2.2 MULTSCAN SPATIAL SCAN STATISTIC 

Having dealt with systematic factors affecting health outcomes in the funnel plot 

methodology, the spatial scan paper in Chapter 3 addressed identification of anomalies in 

geographic areas. Existing cluster detection methods generally rely upon predefined 

shapes – cylinders (Kulldorff et al., 2006), rectangles (Neill and Moore, 2004) – with the 

assumption that the shape of the cluster is the same through time. From a health 

perspective, this means that the cluster is geographically static. This assumption is clearly 

untenable for communicable diseases and unlikely in many other health states. A novel 

feature of MultScan is its ability to identify irregularly shaped clusters in both space and 

time. MultScan also improves the positive predictive value of the detected clusters vis-à-

vis existing methods. This is important to be able to better target public health actions or 

better inform research hypotheses. MultScan accomplishes this improvement to positive 

predictive value using a data driven approach to ordering the data inspired by funnel 

plots. Finally, MultScan uses a methodologically rigorous method to detect simultaneous 

clusters. 

 

5.2.3 IMMUNIZATION SURVEILLANCE 

Geographic variation in immunization coverage for DTaP-IPV-Hib by age two in Alberta 

was examined in the empirical study in Chapter 4. The aggregate model for coverage was 

adjusted for Health Care Systems Characteristics (recent moves, immunization provider), 

Enabling Factors (socio-economic status, having a family doctor, number of parents), and 

Predisposing Characteristics (Vitamin K uptake, number of children). All factors were 

found significantly related to dose 1 coverage, implying public health immunization 

programming aimed at the first dose would need to be geographically tailored. Health 

Care System Characteristics have the highest potential to increase coverage as it 

accounted for a substantial portion of the reduction in overdispersion and is amenable to 
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change. The under dispersion observed in doses 2 and 3 suggests that once children begin 

receiving immunizations, they continue to receive immunizations (with less variability 

than chance would suggest). The dose 4 model displayed substantial overdispersion. The 

Health Care System Characteristics accounted for most of the explained variation, 

suggesting that there is large between provider variability dealing with dose 4. This 

provides the opportunity to learn from those regions that are performing particularly well. 

The remaining overdispersion in dose 1 and dose 4 identified an area for future 

investigation. It may be that known factors that were not included in the model, for 

example, perceptions of risks and benefits like the pain around immunization, account for 

this overdispersion, and it would be of value to collect indicators or identify proxies for 

these factors. The other possibility is that there are a number of unknown factors 

influencing immunization uptake, and the geographic variability might assist in designing 

research to identify those factors. 

The known factors that were accounted for in the analysis of immunization represent a 

substantial contribution to public health surveillance of childhood immunization. The 

factors included represent a wide range of determinants of immunization. For instance, 

vaccine refusers have not been systematically accounted for in previous surveillance 

methods. With the inclusion of vitamin K uptake as a proxy for immunization related 

attitudes, it is now possible to accurately represent the performance of the health 

authority providing immunization services in regions with high numbers of refusers (low 

vitamin K uptake). It is also possible to now scan for clustering of immunization 

behaviour beyond these known determinants that have already been accounted for. 

5.2.4 SUMMARY 

From a broader perspective, applying the funnel plot methodology with the MultScan 

spatial scan methodology provides a deeper understanding of geographic variation in 

immunization in the province. This type of analysis provides an example of what is 

possible with existing data sources in public health surveillance. Currently, immunization 

surveillance does not regularly use such a suite of sophisticated methods and data sources 

in surveillance practice; rather, studies of this scope generally are research projects. By 

shifting the focus from discovery of factors to explanation of variation, a wide range of 
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factors can now be included in our understanding of variability. The process of adjusting 

for these factors highlights a number of things. First, it shows which factors explain what 

proportions of variability in the geographic areas using overdispersion. The residual 

overdispersion highlights areas for surveillance system development or additional 

research, as this represents factors not accounted for in the modelling process. It then 

highlights which factors are amenable to province wide interventions and which factors 

are better approached using targeted methods. Again, insignificant variables in the 

ecologic regression are the same effect across areas while significant factors represent 

underlying differences in the factors. Visualizing these results with funnel plots provides 

and easy to comprehend visualization of the variability, and potential areas to prioritize 

for intervention. Finally, spatial scans such as MultScan provide information on 

geographic clustering due to something other than the factors included in the model. In 

total, this provides a very rich, comprehensive surveillance system that is sustainable and 

cost effective. 

These methods of visualization, analysis and cluster detection all rely upon, and take 

advantage of, surveillance data aggregated to predefined geographic boundaries. This 

thesis focused on gathering many characteristics of each geography. This is a shift from 

the current practice focusing on boundaries alone (Yiannakoulias, 2011). This view of 

geographies having rich characteristics is a step toward a fuller recognition of place. 

Embedding these geographic characteristics into the visualization, analysis, and cluster 

detection in turn compels public health practitioners to carefully consider and interpret 

the results with attention to not just the geographic area, but the compositional and 

contextual characteristics accounted for, and possibly a more holistic view of place. It is 

my hope that the methods described result in more contemplation of the concept of place, 

not just geography, in future public health surveillance endeavours.  

 

5.3 POTENTIAL LIMITATIONS 

There are potential limitations within each of the studies. These limitations range from 

issues with interpretation to data availability to fundamentals related to the method being 

discussed. However, as with any research endeavour, the aim has been to incrementally 
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improve the field. These incremental improvements in methods can improve surveillance 

practices, supporting Langmuir’s assertion that “Good surveillance does not necessarily 

ensure the making of the right decisions, but it reduces the chances of wrong ones” 

(Langmuir and others, 1963). 

 

5.3.1 FUNNEL PLOT METHODOLOGY FOR PUBLIC HEALTH SURVEILLANCE 

I have proposed funnel plots as a statistically robust method for visualizing and 

understanding aggregate data. The most obvious limitation of funnel plots has to do with 

their a-spatial nature. Funnel plots rely upon pre-defined aggregations. Hence, when a 

slight elevation is observed in one area, the funnel plot alone cannot provide useful 

information about the surrounding areas. I have demonstrated this limitation can be 

overcome using supplemental procedures such as spatial scans and maps using funnel 

plot contours.  

Another limitation of the funnel plot methodology relates to the interpretation of results. 

The substantial difference in interpreting the aggregate regression vis-à-vis an individual 

level regression can be a challenge to communicating results to users. This challenge can 

be offset by the clear policy implications that result from the aggregate regression 

methodology.  

Finally, the funnel plot methodology and its interpretations rely upon the modelling and 

interpretation of overdispersion. As with all statistical models, the assumptions of the 

model must be met. It is entirely possible that the unaccounted for overdispersion that is 

observed is due to misspecification of the statistical model. This limitation is not unique 

to the funnel plot methodology outlined. 

 

5.3.2 MULTSCAN SPATIAL SCAN STATISTIC 

MultScan begins by sorting data by the Score z-score. This data-based approach results in 

many of the improved performance characteristics observed with MultScan, but is also 

the source of its primary limitation. The ordering forces and defines the clusters. For 

example, the first area associated with the largest z-score in the list must be included in 
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the multiple clusters identified by MultScan. This lack of ability to flexibly search 

including or excluding any particular area has the potential to reduce the accuracy of 

MultScan. This restricts the set of geographies being considered as clusters. This 

limitation is, I believe, offset by the increases in positive predictive value attained by 

MultScan. MultScan single largely over comes this limitation in the single cluster 

detection case by, at each step going through the sorted data, identifying the single cluster 

with the maximal likelihood of all clusters identified at that step. In this way, any 

spurious z-score that is geographically isolated can be excluded while still identifying a 

true cluster.  

MultScan shares a limitation common with all spatial scan methods using pre-defined 

geographic areas. The scale of the areas may not match the scale of the cluster that is 

trying to be detected. When the cluster occurs at the scale of one or more areas, the 

cluster detection methods will perform as expected and be able to detect the cluster. 

However, if the scale of the cluster is below the scale of the pre-defined geographies 

(within only a part of one area), or if the cluster occurs in multiple areas but not fully 

covering any of them, spatial scan statistics will have great difficulty detecting them 

(Assunção et al., 2006). This can represent a significant challenge in public health 

practice. As the scale shrinks, it is increasingly difficult to obtain reliable data: privacy 

becomes a concern, population denominators are more difficult to accurately estimate, 

attributing cases to exact geographies is error prone, and few risk factors are available at 

very small scales. Spatial scanning when the cluster scale is below the current boundary 

scale will likely be ineffective. Public health practitioners need to be mindful of these 

issues when applying MultScan or any other cluster detection in practice. 

 

5.3.3 IMMUNIZATION SURVEILLANCE 

The availability of factors related to immunization uptake is the greatest limitation in the 

empirical immunization uptake study. The study was restricted to using aggregate, 

already available measures of the factors related to immunization uptake. Measures for 

many determinants of immunization uptake were not available. For example, no 

indicators or related proxies for fear of needles were identified. In other cases, direct 
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measures of factors were not available, but proxy measures were. For example, Vitamin 

K uptake was used as a proxy for immunization related beliefs. The accuracy of the 

regression model results depends upon the level of measurement error in the proxy 

measurement. This will usually underestimate the amount of between area variation 

attributable to the factor. 

The Behavioural Model of Health Services Utilization was originally designed choosing 

constructs that “can be operationalized in social survey research” (Andersen and 

Newman, 1973). It provides a clear categorization and way to describe the factors 

influencing immunization uptake. Having the dimensions of Predisposing Characteristics, 

Enabling Resources and Health Care System Characteristics provides clear, meaningful 

and readily communicated categorizations as well as linking to interventions. However, 

there are a number of other taxonomies that could be employed. Tauil et al use a 

taxonomy very similar to the Behavioural Model of Health Services Utilization with 

Family Features, Parents’ Knowledge and Attitudes, and Health Services dimensions (de 

Cantuária Tauil, Sato and Waldman, 2016). The Vaccine Hesitancy model focuses on 

separating vaccine specific from generic influences, looking at the dimensions of 

Individual/Social Group Influences, Contextual Influences and Vaccine and Vaccination-

Specific Issues (Larson et al., 2014). The social ecological model posits intrapersonal, 

interpersonal, institutional, community and policy levels (Kumar et al., 2012) affecting 

immunization uptake. Thomson et al developed an “intuitive taxonomy”, the “5As”. It 

incorporates the five dimensions of Access, Affordability, Awareness, Acceptance, and 

Activation and is claimed to have “facilitated mutual understanding of the primary 

determinants of suboptimal coverage within inter-sectoral working groups.” (Thomson, 

Robinson and Vallée-Tourangeau, 2016). In terms of communication of analyses and 

results for the purpose of public health action, any of these taxonomies could be 

successfully utilized. In practice, those undertaking the analysis and dissemination will 

have to make the determination of which taxonomy will be best understood by the public 

health professions they wish to inform and who will be taking the public health actions 

based upon this information. 
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5.4 FUTURE RESEARCH 

5.4.1 FUNNEL PLOT METHODOLOGY FOR PUBLIC HEALTH SURVEILLANCE 

A key element of surveillance is that monitoring occurs over time. The funnel plots 

described in this thesis capture variability at only a single point in time. To be more 

broadly useful, the temporal dimension will have to be incorporated. This raises a number 

of interesting issues for future research. Consider first, the residual overdispersion 

observed in the fourth dose of DTaP-IPV-Hib in Alberta. If one were interested in 

performing the same analysis of immunization uptake in the following year, it is unclear 

what the best approach would be. It is possible to completely replicate the study design 

and analysis methods on the next years’ data. This would, in all likelihood, result in a 

similar finding of residual overdispersion. At a high level, this is a useful approach to 

monitoring changes in the effects of factors and the fraction of unexplained 

overdispersion. However, it might be more fruitful to ask a slightly different question, 

along the lines of “Has anything changed?”. In this case, there may be merit to assuming 

that each aggregate geography has a suite of unmeasured factors responsible for the 

residual overdispersion. This could be quantified as the area level residual from the 

regression model. This estimate of the net effect of unmeasured factors could then be 

entered in future analyses as an additional geography specific factor. This shifts the 

question away from identifying the unmeasured factors to identifying unexplained 

changes in the small areas.  

Visualizing funnel plots over time is also an interesting problem. Funnel plots were 

designed as two-dimensional plots. A visual approach to incorporating time into them 

will thus be a challenge. It would be possible to imagine a three-dimensional funnel plot 

created as a stack of regular funnel plots. Geographies could then be identified as 

connected series through the funnel plots. The general adoption of this would require 

specialized software and not be amenable to the two-dimensional reporting common 

place in surveillance today. The issue of interpretation of a time series of funnel plots 

must be addressed. The meaning of being outside of control limits for, say, three years in 

a row and the interpretation of being outside control limits for only one out of three years 

must be clarified in an approach like this. However, replicating a funnel plot is not the 
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only option. A method taking into account the time series nature of the data could also be 

used. For example, CUSUMs – cumulative sums – are commonly used in single series 

outbreak detection (Lawson and Kleinman, 2005). Since CUSUMs change with 

additional time series data, the idea of placing CUSUMs (or similar measures) in funnel 

plots is feasible and could also be investigated. The extension of the funnel plot 

methodology to incorporate time is a promising are for continued research. 

 

5.4.2 MULTSCAN SPATIAL SCAN STATISTIC 

The first step of MultScan is to sort the aggregate data by Score z-score. Geographic 

clusters are then created by sequentially following this sorted list and checking adjacency 

conditions. Generalizing this idea of starting with an a-spatial set and then creating the 

clusters from it, leads to an entire class of potential clustering algorithms. A promising 

future avenue would be the application of sparse data methods, for example, those used to 

identify gene and microarray effects, to the a-spatial data. Clusters could then be created, 

as in MultScan, from the identified areas. One potential approach would be LASSO 

regression. LASSO regression, standing for least absolute shrinkage and selection 

operator, is a sparse data regression method that uses shrinkage to reduce over fitting and 

simultaneously performs covariate selection (Tibshirani, 1996). In epigenetics the 

LASSO is often used to identify the small number of genes that are expressing out of a 

large number of genes tested. Using spatial-temporal units in place of genes, LASSO 

regression has the potential to quickly identify the set of geographies with elevated risk. 

After identification by LASSO regression, these areas could then be formed into 

geographic clusters. This is a well-established method used in sparse data which can be 

generalized for most common distributions (Normal, Binary, Poisson) and can easily 

include covariates. While designed to deal with sparse data and therefore is naturally 

“looking for” the few areas of elevated risk, it may still suffer inefficiency due to not the 

incorporating geographic adjacency information. 

Spatial scanning algorithms like MultScan depend upon the key idea of adjacency. 

Scanning techniques in fact started in adjacency in time (Glaz, Pozdnyakov and 

Wallenstein, 2009) and have since been extended to adjacency in space and time 
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(Kulldorff and Nagarwalla, 1995). It should be possible to extend the algorithm to 

additional dimensions whenever adjacency can be defined. Two public health relevant 

scenarios are briefly considered.  

First, extending form a space-time scan to a space-time-age group scan is considered. 

Spatial scans today deal with age by assuming a constant age effect within space and 

time. This is accomplished using age-standardized rates or by controlling for age in a 

regression framework. Age groups have a natural adjacency: for example, 50-59 is 

clearly adjacent to 60-69 but not 70-79. By adding this additional dimension to the 

MultScan algorithm, clusters in space-time-age groups could be identified. In the same 

way that MultScan can identify a cluster whose shape changes over time, it would also be 

possible to identify changes in the age groups affected over space and time.  

The second instance where adjacency can be well defined is in disease coding. 

International Classification of Disease codes (ICD codes), used in the coding and analysis 

of mortality and morbidity, are hierarchical. It would be possible to have all codes within 

(say) a chapter considered to be adjacent. Similarly, the Anatomical Therapeutic 

Chemical (ATC) classification system is a five level hierarchy designed to classify drugs 

into therapeutic and chemical subgroups (WHO Collaborating Centre for Drug Statistics 

Methodology, no date) could be used to scan for adverse drug reactions. Analysis of 

health outcomes along these lines can identify previously unexpected relationships that 

can be used in public health. 

In each case, the extensions to MultScan for scanning additional dimensions are possible 

because a measure of adjacent-ness can be constructed for each new dimension being 

scanned. Many classification systems and elements of interest in epidemiology and public 

health are hierarchical or otherwise have obvious adjacency measures associated with 

them. This class of problems has been approached previously, for example Kulldorff’s 

spatial scan has been adapted to a hierarchy of ICD codes (Kulldorff, Fang and Walsh, 

2003). While a comprehensive evaluation of this method does not currently exist, it is 

likely to suffer the same issue with poor positive predictive value in hierarchal scanning 

as in spatial scanning. In this case, a MultScan based approach has the potential to 

address this. 
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5.4.3 IMMUNIZATION SURVEILLANCE 

The paper in Chapter 3 examining childhood DTaP-IPV-Hib immunization in Alberta 

illustrates how a rich immunization surveillance system can be created. The study 

focused on one outcome measure, population-level immunization coverage. This is an oft 

reported outcome as herd immunity is a key component to protecting the population from 

a vaccine preventable disease. However, other potential measures are possible. By using 

the funnel plot adjustment methodology, it will be possible to create performance 

measures that previously would have only been possible with expensive data collection at 

the individual level. Consider an example with religious beliefs greatly affecting 

immunization uptake in some geographic areas. It would be "unfair" to include the non-

immunizing children in evaluating the efficiency or efficacy of an immunization 

programme. It would be possible to compute a modified coverage rate, removing this 

unfair component. This modified coverage could then be used to monitor performance 

and compare performance between areas and providers. The approach can be extended to 

more complex immunization related measures such as time to immunization curves and 

total days delayed. This opens a wide array of potential advances in immunization 

surveillance. 
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5.5 CONCLUSION 

Public health surveillance is a fundamental activity in public health. This thesis has 

examined ways to strengthen the public health surveillance of immunization coverage 

through the use of aggregate methods to visualize data using funnel plots, adjusting 

immunization rates for factors with available aggregate data, and identifying areas of 

unusual immunization uptake using MultScan, a novel spatial scan method. Further 

research has been proposed to expand the scope of these projects to encompass more and 

varied measures of immunization performance. Putting these methods into public health 

surveillance practice is the next step. 

 

5.5.1 POST SCRIPT 

At the time of writing, I am pleased to report an active collaboration with an Alberta 

Health Services Zone. This collaboration is designed to translate the childhood 

immunization surveillance methodology from Chapter 4 to regional public health 

surveillance practice. 
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