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Abstract

Missing data is always a problem when it comes to data analysis. This

is especially the case in anthropology when sex determination is one of the

primary goals for fossil skull data since many measurements were not available.

We expect to find a classifier that can handle the large amount of missingness

and improve the ability of prediction/classification as well. These are the

objectives of this thesis.

Besides of the crude methods (ignore cases with missingness), three

possible techniques in handling of missing values are discussed: bootstrap

imputation, weighted-averaging classifier and classification trees. All these

methods do make use of all the cases in data and can handle any cases with

missingness.

The diabetes data and fossil skull data are used to compare the per-

formance of different methods regarding to misclassification error rate. Each

method has its own advantages and certain situations under which better per-

formance will be achieved.
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Chapter 1

Introduction

This thesis studies several methods to deal with missing data in the

context of binary classification problem. A typical situation where such data

occurs is anthropology.

Classical methods for binary classification problems include linear re-

gression for classification, linear discriminant analysis, and logistic regression.

All these methods are modeled on associated independent variables. This

needs their values to be available. If some cases in training data contain miss-

ing values on the predictors, they have to be ignored and models are fitted

based on complete cases only. Also if a new instance has missing values, then

no class prediction/classification can be obtained. Thus, these crude methods

suffer from loss of information and lack of accuracy since they discard too

many observations.

Another technical tool used in classification problems is classification

tree, which is a type of supervised learning methods. The attractions of deci-

sion trees are that they have some unique and simple ways to handle missing

values, and if the proportion of missingness is large, the superiority of decision
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trees presents. Some of the most widely used decision tree learning algorithms

are Classification and Regression Trees (CART [1]), ID3(Quinlan, 1986) and

C4.5 (Quinlan, 1993). Like most of machine learning methodologies, classifi-

cation tree algorithms build classification trees on training data and test the

models on validation data. The purpose of classification trees is to predict

the right class of an instance based on the values of its explanatory variables.

There are many different methods used by classification tree algorithms to

handle the situation where missing occurs in predictors. In this work, we will

focus on the CART algorithm and consider the attractive strategy, surrogate

split, adopted in CART to deal with missing values.

To handle missing data problems, many different statistical methods

have been developed. Little and Rubin [5] have summarized the most popular

methods into four categories, one of which is data imputation. Imputation

refers to replace each missing value by some value obtained from a predictive

distribution, which is modeled based on observed data. There is a variety of

imputation methods, the one that is applied to real datasets here is nonpara-

metric bootstrap, which is computer intensive and has been used frequently

in applied statistics. The advantage of bootstrap is its great simplicity. It is

straightforward to apply the bootstrap to derive estimates of standard errors

and confidence intervals. Efron (1994) showed that nonparametric bootstrap

imputation requires no knowledge of the missing-data mechanism and the con-

fidence interval turns out to give convenient and accurate answers. However,

the correctness of imputation methods heavily depends on the model used to

impute values. If the model is not correct, then all the analysis would be

invalid.

A new method is proposed in this thesis, that is, the weighted-averaging
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classifier. The main idea is that we take all of the submodels into account, fit

classical regression for each submodel, predict the category of an instance on

each submodel and then take a weighted average of all the predictions to get

the final class prediction. The weight is chosen to be inversely proportional

to the standard error of each prediction. In conventional methods, we may

consider a single model with all associated predictors, or a smaller model with

less predictors selected according to some criteria, thus, if an instance has

missing value on one predictor, then it will be excluded from the analysis. The

weighted-averaging classifier avoids such problems. As long as the instance has

at least one non-missing value, it could be used to fit some submodels and its

class prediction is obtainable. Thus, from this aspect, this new method in

some sense overcomes the drawback of loss of information and enlarge the

applicable sample size.

The thesis is structured as follows: Chapter 2 introduces the stan-

dard theory of missing data, imputation methods and nonparametric boot-

strap methods to impute missing values. In Chapter 3, the basic concepts

about Classification and Regression Trees (CART), surrogate variables, and

implementation in R are elaborated. Typical methods for binary classifica-

tion problem such as linear regression and logistic regression are discussed

in Chapter 4, as well as formal introduction of the new method weighted-

averaging classifier. Chapter 5 presents methods comparison and empirical

studies. The linear and logistic regression models with all covariates, models

selected by AIC criteria, nonparametric bootstrap to impute missing values,

the surrogate split in CART and the weighted- averaging classifier with dif-

ferent weights are applied to real datasets and the performance is compared.

Chapter 6 concludes the results of empirical studies.
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Chapter 2

Standard Theory of Missing

Data

Missing data can occur for a variety of reasons. For example, in sur-

veys that ask people to report their income, typically, a large proportion of

the respondents refuse to answer. Explicit refusals are only one cause of miss-

ing data. In longitudinal studies, subjects often drop out before the study

is completed because they have moved out of the area, died, no longer see

personal benefit to participating, or do not like the effects of the treatment.

In self-administered surveys, people often skip or forget to answer some of the

questions. Even well-trained interviewers sometimes may neglect to ask some

questions. And sometimes respondents do not know the answer or do not have

the information available to them. Sometimes the question is inapplicable to

some respondents, such as asking unmarried people to rate the quality of their

marriage. Because of all these reasons and many others, anyone who does

statistical analysis will sooner or later meet the problems of missing data.

There are several missingness mechanisms and the concept was formal-
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ized in the theory of Rubin (1976a), through the simple strategy of treating the

missing data indicators as random variables and assigning them a distribution.

Before we briefly introduce different types of missingness mechanisms,

we first define the notations we will use in this chapter. Usually, a data set can

be presented in a 2 dimensional matrix with each row representing a subject

and each column representing a variable. An entry in the matrix is the value of

a variable for some subject. We refer to any data point that has an underlying

value but is not observed as missing data.

We follow the notations in [5]. The full data set is denoted by Y = (yij),

Y =



y11 y12 · · · y1p

y21 y22 · · · y2p
...

...
. . .

...

yn1 yn2 · · · ynp


and the missingness (missing − data indicator matrix) is denoted by M =

(Mij),

M =



M11 M12 · · · M1p

M21 M22 · · · M2p

...
...

. . .
...

Mn1 Mn2 · · · Mnp


where

Mij =


1 if yij is missing

0 otherwise

We use Yobs, Ymiss to denote the observed and missing components of

Y , respectively.
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2.1 Typical Types of Missingness

Statistically, missing data can be categorized into different types. Lit-

tle and Rubin [5] classified the types of missingness into three categories ac-

cording to their different statistical properties: missing completely at random

(MCAR), missing at random (MAR) and not missing at random (NMAR).

As we defined above, the complete data is Y = (yij) and the missing-

data indicator matrix is M = (Mij), with Mij indicating whether the corre-

sponding Yij is missing or not. The missing-data mechanism is characterized

by the conditional distribution of M given Y , say f (M |Y, φ), where φ denotes

unknown parameters.

The three typical types of missingness are:

• Data are missing completely at random (MCAR), if the probability

distribution of missingness does not depend on either the observed values

or the missing values. That is, the distribution of M does not depend

on the value of data Y , i.e.

f(M |Y, φ) = f(M |φ) for all Y, φ.

MCAR means that the probability that an observation is missing is

unrelated to the value of any variable, whether missing or observed. For

example, data that are missing because a researcher dropped the test

tubes or survey participants accidentally skipped questions are likely to

be MCAR. Unfortunately, most missing data are not MCAR.

• Data are missing at random (MAR), if the probability distribution of

missingness depends only on the observed components of Y , that is Yobs,
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and not on the missing values Ymiss. That is,

f(M |Y, φ) = f(M |Yobs, φ) for all Ymiss, φ.

This assumption is less restrictive than MCAR. The data can be con-

sidered as missing at random if the data meet the requirement that miss-

ingness does not depend on the value of Yij after controlling for another

variable. For example, in an income survey, people who are depressed

might be less inclined to report their income, and thus reported income

will be related to depression (one variable in the survey). If within de-

pressed patients the probability of reported income was unrelated to

income level, then the data would be considered as MAR, though not

MCAR.

• Data are not missing at random (NMAR), if the probability distribution

of M depends on the missing values Ymiss in the data matrix Y . That

is,

f(M |Y, φ) = f(M |Yobs, Ymiss, φ).

Some literature also calls it nonignorable missing data. It commonly

occurs when people do not want to reveal something very personal or

unpopular about themselves. For example, if people with lower incomes

are less likely to reveal them on a survey than people with higher incomes.

Whether income is missing or observed is related to its value.

For instance, let us consider the simplest case given in [5]. The data

structure is a univariate random sample for which some units are missing. Let

Y = (y1, . . . , yn)T where yi denotes the value of a random variable for unit i,

7



and let M = (M1, . . . ,Mn) where Mi = 0 if unit i is observed and Mi = 1

if unit i is missing. Suppose the joint distribution of (yi,Mi) is independent

across units, in particular, the probability that a unit is observed does not

depend on the values of Y or M for other units. Then

f(Y,M |θ, ψ) = f(Y |θ)f(M |Y, ψ) =
n∏
i=1

f(yi|θ)
n∏
i=1

f(Mi|yi, ψ) (2.1)

where f(yi|θ) denotes the density of yi indexed by unknown parameter θ,

which is the parameter of interest. ψ is the parameter for the distribution of

M . Thus, in this case, φ = (θ, ψ). And f(Mi|yi, ψ) is usually the density of

a Bernoulli distribution for the binary indicator Mi with probability Pr(Mi =

0|yi, ψ) that yi is missing. If missingness is independent of Y , that is if Pr(Mi =

1|yi, ψ)=ψ, a constant that does not depend on yi, then the missing data

mechanism is MCAR or in this case equivalently MAR. If the missingness

depends on yi, then the mechanism is NMAR since the probability depends

on yi that are missing, assuming that there are some missing values in Y .

Suppose r is the number of cases in the sample with respondence. Some-

time, we might want to carry out analysis on the completed cases and the sam-

ple size is reduced from n to r [5]. For example, if we assume the values are

normally distributed and want to make inferences about the mean, we might

estimate the mean by the sample mean of the r responding units with standard

error s/
√
r, where s is the sample standard deviation of the responding units.

If the missingness mechanism is MCAR or MAR, then the observed cases are

a random subsample of all the cases. This strategy is valid. However, if the

data are NMAR, the analysis based on the responding subsample is generally

biased for the parameter.
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The following definitions and proofs are reproduced from [5], Definition

6.4 and 6.5, pp.119-120.

Theorem 2.1.1. The missing-data mechanism is ignorable for likelihood in-

ference if (1) MAR: the missing data are missing at random; and (2) Dis-

tinctness: the parameters θ and ψ are distinct, in the sense that the joint

parameter space of (θ, ψ) is the product of the parameter space of θ and the

parameter space of ψ.

PROOF. The joint distribution of M and Y can be determined by

f(Y,M |θ, ψ) = f(Y |θ)f(M |Y, ψ), (θ, ψ) ∈ Ωθ,ψ

where Ωθ,ψ is the parameter space of (θ, ψ).

Let f(Y,M |θ, ψ) ≡ f(Yobs, Ymiss,M |θ, ψ) denote the probability or density of

the joint distribution of Yobs, Ymiss and M .

The distribution of the observed data is obtained by the following:

f(Yobs,M |θ, ψ) =

∫
f(Yobs, Ymiss|θ)f(M |Yobs, Ymiss, ψ)dYmiss

The full likelihood of the parameters given the observed information (Yobs,M)

is

Lfull(θ, ψ|Yobs,M) ∝ f(Yobs,M |θ, ψ),

If the distribution of missingness does not depend on the missing data, i.e.

MCAR or MAR holds and θ, ψ are distinct (in the sense that Ωθ,ψ = Ωθ×Ωψ),

then

f(M |Yobs, Ymiss, ψ) = f(M |Yobs, ψ),
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and

f(Yobs,M |θ, ψ) = f(M |Yobs, ψ)

∫
f(Yobs, Ymiss|θ)dYmiss

= f(M |Yobs, ψ)f(Yobs|θ)
(2.2)

Therefore, if θ and ψ are distinct,

Lfull(θ, ψ|Yobs,M) ∝ f(Yobs,M |θ, ψ) ∝ f(Yobs|θ) ∝ Lignored(θ|Yobs),

that is, the likelihood-based inferences for θ from Lfull(θ, ψ|Yobs,M) will be

the same as likelihood-based inferences for θ from Lignored(θ|Yobs). We can

ignore the missing-data mechanism since the simpler likelihood based only on

observed data is proportional to the more complex one that includes also the

missing data-mechanism. �

Theorem 2.1.2. The missing-data mechanism is ignorable for Bayesian in-

ference if (1) MAR: the missing data are missing at random; and (2) The

parameters θ and ψ are a priori independent, that is, the prior distribution

has the form p(θ, ψ) = p(θ)p(ψ).

PROOF. The posterior distribution of θ and ψ is given by

p(θ, ψ|Yobs,M) ∝ Lfull(θ, ψ|Yobs,M)× p(θ, ψ),

Suppose if the conditions in Theorem 2.1.2 hold, we have

p(θ, ψ) = p(θ)p(ψ),
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and

p(θ, ψ|Yobs,M) ∝ Lfull(θ, ψ|Yobs,M)p(θ, ψ)

∝ p(ψ)f(M |Yobs, ψ)p(θ)f(Yobs|θ)

∝ p(ψ)L(ψ|M,Yobs)p(θ)Lignored(θ|Yobs)

∝ p(ψ|M,Yobs)p(θ|Yobs)

Therefore, inference about θ can be only based on the posterior distribution

p(θ|Yobs) ignoring the missing-data mechanism,since the simpler posterior dis-

tribution of θ conditional only on observed data is proportional to the more

complex one that conditional also on missing-data mechanism. �

2.2 Treatment of Missing Data in Statistics

Many different statistical methods have been proposed to deal with

missing data problems. Little and Rubin [5] had summarized the most popular

methods into four categories. In this section, we will give a brief description

of basic approaches to handle missing data.

2.2.1 Procedures Based on Completely Recorded Units

By far, the most simple and common methods are just to ignore the

data with missing values in any one of the variables and analyze the remaining

completely recorded units only. These types of methods are easy to be carried

out, and have been widely adopted (usually by default) in many popular sta-

tistical packages. When only a small amount of missing values presents, these

procedures may be satisfactory.

However, these procedures obviously suffer from loss of information.
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This is especially true if a large proportion of the data contain missing values

on only a few variables, which will produce a larger estimated variance, or in

other words, a more unstable estimation.

It can also lead to serious biases. For example, when low income in-

dividuals are less likely to report their income level and more higher income

subjects are left in the sample, the resulting mean income given by complete

case analysis is biased in favor of higher incomes.

2.2.2 Weighting Methods

Weighting methods have been widely used in survey analysis. An ideal

survey sample should obtain subsamples from different subpopulations with

sample sizes proportional to their corresponding proportions in the whole pop-

ulation, since a sample should represent the whole population well and reflect

the characteristics of the population from which it is drawn. However, in most

situations, researchers can not survey the entire population for two reasons.

First of all, the cost is too high to reach all the subpopulations, so the sam-

ples are less than they should be. In some other cases, the populations are

dynamic in that individuals making up the populations may change over time.

Therefore, some subpopulations would be under-sampled. This means some

data from under-sampled sub-populations are missing.

The essence of weighting methods is to produce weights by which the

non-missing cases are multiplied, in order to account for the cases with missing

values which have been deleted before the analysis. Weighting methods give

larger weights to observations from under-sampled subpopulations to make

the resulting samples more close to the entire population. However, a major
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problem of these methods is that they do not provide ways to obtain appro-

priate variances for estimates. Thus, this drawback precludes these methods

from being generally recommended.

2.2.3 Imputation Methods

Imputation methods refer to replacing each missing value by some value

obtained from a predictive distribution of the missing values. The predictive

distribution for the imputation is modeled based on the observed data. After

imputation, the data can be considered as complete and the standard analysis

can be applied. Many different imputation methods have been developed. We

only review some of them.

• Mean/Mode/Median Imputation. Missing values of some variable are

filled by the mean/mode/median of the variable calculated from the

responding subjects.

The drawback of this method is that it tends to under estimate the

variability of the data since we use mean/mode/median as replacement

values, which are measures of the ”center” of their estimated distribution.

• Regression Imputation. Each missing value is replaced by the predicted

value from a regression of the variable with missing values on complete

variables. The appropriate regression model depends on the type of

the to-be-imputed variable. A probit or logit model is used for binary

variables, Poisson or other count models for integer-valued variables, and

for continuous variables, we normally use OLS or related models.

• Draw Imputation. This method computes the replacement values by

13



a random draw, instead of mean/mode/median, from the distribution

modeling the missing values.

• Multiple Imputation. Instead of filling in a single value for each missing

value, Rubin’s (1987) multiple imputation procedure replaces each miss-

ing value with a set of plausible values that reflect the uncertainty about

the right value to impute. These multiple imputed data sets are then

analyzed by using standard procedures for complete data and combining

the results from these analysis. The advantage of this approach is that

it incorporates and measures imputation uncertainty.

• Resampling Methods. These methods are computer intensive methods

and have been used frequently in applied statistics. The main idea is

that we resample the original data set, and use some imputation method

to create a complete data set, and then analyze it using standard tech-

niques. Repeat this process multiple times, and combine the results.

Two popular and widely used resampling methods are bootstrap and

jackknife.

The correctness of imputation methods heavily depends on the model

used to generate the imputation values. Thus, the model must be “correct“

in some sense. If incorrect data are imputed, all the following analysis will be

wrong.

2.2.4 Model-Based Procedures

A broad class of procedures is generated by defining a model for the

observed data and basing inferences on the likelihood or posterior distribution
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under that model, with parameters estimated by procedures such as maximum

likelihood.

When the probability of missing observations does not depend on the

missing values as in MCAR or MAR data, the missing mechanism could be

ignored for likelihood inference. The objective is to maximize the likelihood

L(θ|Yobs) =

∫
f(Yobs, Ymiss|θ)dYmiss (2.3)

with respect to θ. The distribution of all the data Y can be factored as

f(Y |θ) = f(Yobs, Ymis|θ) = f(Yobs|θ)f(Ymis|Yobs, θ), (2.4)

where f(Yobs|θ) is the density of the observed data Yobs and f(Ymis|Yobs, θ) is

the density of the missing data given the observed data. The corresponding

decomposition of the likelihood is

l(θ|Y ) = l(θ|Yobs, Ymis) = l(θ|Yobs) + ln f(Ymis|Yobs, θ). (2.5)

The objective is to estimate θ by maximizing the incomplete-data log-likelihood

l(θ|Yobs) with respect to θ for fixed Yobs. We could write

l(θ|Yobs) = l(θ|Y )− ln f(Ymis|Yobs, θ). (2.6)

However, in some cases, the latter ln f(Yobs, Ymis|θ) is difficult to be minimized.

Unlike the mean of a normal distribution, the maximum likelihood estimates

with missing data do not have a closed form solution. Instead, the solution

must be found either using numerical methods, such as Newton-Raphson to
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find the maximum of the likelihood.

The advantage of this method are flexibility and availability of estimates

of variance that take into account incompleteness in the data.

2.2.5 Applications: Bootstrap Imputation

In this section, we introduce a type of resampling methods to deal with

missing data: bootstrap imputation. The primary advantage of the nonpara-

metric bootstrap imputation over other imputation methods is that it does

not depend on the missing-data mechanism. Moreover, bootstrap imputation

also successfully incorporates the estimates of uncertainty (variance) associ-

ated with the imputed data.

The basic ideas of nonparametric bootstrap for complete data are as

follows: Let θ̂ be an estimate of a parameter θ based on a random sample

Y = (y1, y2, . . . , yn)T . Suppose Y (b) is a sample of size n obtained from the

original sample Y using simple random sampling with replacement, and θ̂(b) is

the estimate of θ based on sample Y (b) using standard estimation procedures,

where b = 1, 2, . . . , B indexes the drawn sample from Y . Then repeat this

process B times and (θ̂(1), . . . , θ̂(B)) represents the sequence of estimates of

θ. The bootstrap estimate of θ is defined as the average of the B bootstrap

estimates:

θ̂boot =
1

B

B∑
b=1

θ̂(b). (2.7)

The bootstrap estimate of the variance of θ̂ or θ̂boot is

V̂boot =
1

B − 1

B∑
b=1

(θ̂(b) − θ̂boot)2. (2.8)
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Efron (1987) has been shown that V̂boot is a consistent estimate of the variance

of θ̂ or θ̂boot with large samples, i.e. as n and B go to infinity. Thus, a

100(1− α)% bootstrap confidence interval for θ is calculated as follows if the

bootstrap distribution is approximately normal:

CInorm(θ) = θ̂ ± z1−α/2
√
V̂boot (2.9)

where z1−α/2 is the 100(1− α)% percentile of the normal distribution.

Suppose there is a simple random sample Y = (y1, y2, . . . , yn)T , how-

ever, some observations yi are missing. Then the bootstrap estimates

(θ̂(1), . . . , θ̂(B)) are obtained as follows:

For b = 1, 2, . . . , B :

1. Draw a bootstrap sample Y (b) by simple random sampling with replace-

ment from the original incomplete sample Y .

2. Replace the missing values in Y (b) by imputed values calculated from

some imputation procedure Imputation based on the bootstrap sample

Y (b), so that Ŷ (b) = Imputation(Y (b)).

3. Compute the estimate θ̂(b) for the imputed complete data Ŷ (b).

The nonparametric bootstrap method to impute missing values can be

implemented using the following algorithm:

Algorithm:

1. Draw B (e.g. 2000) bootstrap samples.
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2. For each bootstrap sample, b = 1, 2, . . . , B, impute missing values using

the following method:

• Replace missing values by median if the predictor is quantitative

or by mode if the predictor is qualitative. This is also known as

“roughfix ”.

• Apply standard analysis procedures to each imputed bootstrap sam-

ple and obtain the estimate θ̂(b).

3. Repeat Step 2 B times (e.g.B=2000).

4. Compute the bootstrap estimate θ̂boot and the estimate of its variance

V̂boot

5. Study the empirical distribution of the estimates θ̂(b), b = 1, 2, . . . , B.

6. Construct confidence intervals.
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Chapter 3

Classification and Regression

Trees

We start with an introduction of the popular method for tree-based

classification and regression called CART. This thesis work will mainly focus

on classification trees.

3.1 Classification Trees

Classification trees has been around since the 1960s, but computational

requirements limits their use until recently. Breiman et al.(1984) brought

classification trees into the attention of statisticians. In physical anthropology,

classification trees has been considered as an alternative to linear discriminant

analysis [2] when missing data reduce the size of the data set.

Classification trees can be applied to classification problems when the

response variable is categorical with each category representing one target

class. The main purpose of classification trees is to obtain the most accurate
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classification/prediction of an object based on the values of its explanatory

variables.

3.1.1 Splitting A Tree And Decision Process

A binary tree T is split as follows. We start with the root node, which

is equivalent to the predictor space R, and split it into two daughter nodes,

say R1 and R2 according to a related splitting rule which is based on a single

explanatory variable. We further split R1 and R2 into two parts to get R1, R2,

R3, R4, and continue doing this until we have a collection of subsets R1, . . . , Rb

of R as illustrated in Figure 3.1. The terminal nodes form a partition of

R. At each split, the data is partitioned into two mutually exclusive groups,

each of which is as homogeneous as possible. The splitting procedure is then

applied to each group separately. The objective is to partition the response

into homogeneous groups, but also needs to keep the tree small. The size of a

tree equals the number of terminal node.

The way that explanatory variables are used to form splitting rules

depends on their types. For quantitative predictors, the splitting rule is of

the form {xi ≤ s}, and we assign observations with {xi ≤ s} or {xi > s} to

the left or right daughter node respectively . For qualitative predictors, the

splitting rule is based on a category subset C with the form of {xi ∈ C}, and

assign cases with {xi ∈ C} or {xi /∈ C} to the left or right daughter node

respectively. Each terminal subset will be assigned a class label and there may

be two or more terminal nodes having the same class label.

Why binary splits [3]? We might consider multi-way splits into more

than two groups, rather than splitting each node into just two groups at each
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Figure 3.1: Split A Tree
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step (as above). This can sometimes be very useful, but it is not a general

strategy. The problem is that multi-way splits divide the data too quickly,

leaving insufficient data at the next level down. Hence, we would want to

use multi-way splits only when needed. The binary splits are preferred, since

multi-way splits can be achieved by a series of binary splits.

Given a classification tree, the decision for a instance is made as fol-

lows. Beginning from the root node, at each node (including the root), a test

is carried out on some predictor variable, and with the outcome, the instance

is forward to one of the daughter nodes. This process will continue until a

terminal node is reached and this terminal node contains the final classifica-

tion/prediction we will make.

3.1.2 Growing A Classification Tree

We can use decision tree learning algorithms to produce classification

trees from training data. At each split step, a decision tree learning algorithm

searches over all possible splits and pick the best one in terms of the homo-

geneity of nodes. The homogeneity of nodes is measured by impurity, which

takes the value zero for completely homogeneous nodes, and as homogeneity

decreases, the value of impurity increases. Thus, maximizing the homogeneity

of the groups is equivalent to minimizing their impurity measures. There are

many measures of impurity for classification trees. We will discuss some of

them briefly in the next section.

The CART algorithm is one of the popular decision tree learning al-

gorithms and it’s a form of binary recursive partition. At each node, the

algorithm searches through the predictor variables one by one, and for each
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variable, it finds the best split. For example, if we have p measurements or

predictors, then we got p best splits. After that, the algorithm compares the

p single variable splits and selects the best of the best. In order to select the

best split at each node of the tree, the algorithm calculates the reduction in

impurity from parent nodes to daughter nodes for each potential split. The

purpose of the CART algorithm is to maximize this reduction at each step.

In general, four main steps are needed to grow a tree.

1. The first step is to select an appropriate measure of homogeneity or

impurity.

2. The second step is to choose a methodical way to grow a tree and some

stopping rule (for example, we can stop when the number of cases reach-

ing each terminal node is very small, or the observations in each terminal

node are homogeneous enough).

3. The third step is to prune the large tree we grew in the previous step

which will be discussed later. As we prune the tree gradually, a se-

quence of subtrees from the largest to the smallest with root node only

is obtained.

4. The fourth step is to choose the “best” tree according to some criteria.

Our goal is to choose the tree with the smallest size, and also categorizing

the training data effectively.

3.1.3 Impurity Measures

For classification trees, if response variable is categorical taking values

1, 2, . . . , K, and suppose we have partitioned the predictor space into b regions
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R1, R2, . . . , Rb. Conventional algorithm models the response in each region Rm

as a constant cm, which can be expressed as [3]:

f(x) =
b∑

m=1

cmI (X ∈ Rb) , (3.1)

where Rm,m = 1, 2, . . . , b represents the space of b terminal nodes.

For classification trees, impurity measure Qm (T ) is defined in terms of

the proportions of responses in each category. We represent a region Rm with

Nm observations, and let

p̂k|m = p̂mk =
1

Nm

∑
xi∈Rm

I (yi = k) (3.2)

be the proportion of class k observations in node m, k ∈ (1, 2, . . . , K). We use

the short notation p̂mk instead of p̂k|m to denote the estimated probability of

an observation in the class k given that it is in the node m (
K∑
k=1

p̂k|m = 1). We

classify the observations in node m to the majority class k (m) = arg maxk p̂mk.

Define the impurity of a node m as

Qm (T ) =
K∑
k=1

f(p̂mk) (3.3)

Since we would like Qm (T ) = 0 when node m is pure, the impurity function f

must be concave with f(0) = f(1) = 0. Three commonly used criteria Qm (T )

of node impurity are:

1) Gini index:

∑
k 6=k′

p̂mkp̂mk′ =
K∑
k=1

p̂mk (1− p̂mk) = 1−
K∑
k=1

p̂2mk (3.4)
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2) Cross-entropy or deviance:

K∑
k=1

p̂mk log p̂mk (3.5)

3) Misclassification error:

1

Nm

∑
xi∈Rm

I (yi /∈ k (m)) = 1− p̂m,k(m) (3.6)

For the special case, if the response variable only have two categories,

and if p is the proportion in the second class, then these measures are 2p (1− p),

−p log p− (1− p) log (1− p), 1−max (p, 1− p), respectively. They are shown

in Figure 3.2. In this case, all these three have similar properties. They take

minimums at p = 0 and p = 1, and the maximum at p = 0.5. But the cross-

entropy and the Gini index are differentiable, and hence more amenable to

numerical optimization. The CART algorithm adopted the Gini criteria as

the default option for binary response Y .
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Figure 3.2: Node Impurity Measures For Two-class Classification

In addition, cross-entropy and the Gini index are more sensitive to

changes in the node probabilities than the misclassification error. Assume a

two-class classification problem with 400 observations in each class. This is de-

noted by(400/400). Suppose one split would produce two nodes, (300/100) and

(100/300), and an alternative split would produce two nodes with (200/400)

and (200/0). For both splits, the misclassification error rate is 0.25. Although

both of the nodes produced by the former split need to be split further, the

latter split produces only one node that needs further splitting and the other

node that is pure. Both the Gini index and cross-entropy are lower for the

second split. For this reason, in terms of tree construction, either the Gini

index or cross-entropy should be used for the latter split.

As we defined above, for a classification tree, the impurity function

Qm (T ) of a node m could be any one of (2.3)-(2.5). We use mL and mR
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to denote the left and right daughter nodes of m, respectively, and assume a

candidate split s of node m sends a proportion pmL
of the data in m to mL

and pmR
to mR. Define the reduction in impurity to be

∆Q(s,m) = Qm (T )− pmL
QmL

(T )− pmR
QmR

(T ) (3.7)

Then the splitting criterion is that we choose the split s∗ to maximize the

impurity reduction in node m, i.e.,

∆Q(s∗,m) = max
s∈S

∆Q(s,m)

where S is the set of all possible splits for node m.

Suppose we have done some splitting and arrived at a current set of

terminal nodes. Denote the current set of terminal nodes by T̃ , and define

Im(T ) = Qm(T )p(m)

and define the tree impurity Q(T ) by

Q(T ) =
∑
m∈T̃

Im(T ) =
∑
m∈T̃

Qm(T )p(m) (3.8)

It is easy to see that selecting the splits that maximize ∆Q(s,m) is equivalent

to selecting those splits that minimize the overall tree impurity Q(T ). Take

any terminal node t ∈ T̃ and consider a candidate split s, which splits the
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node into tL and tR. Then the resulting new tree T ′ has the impurity

Q(T ′) =
∑
T̃−t

It′(T ) + ItL(T ′) + ItR(T ′)

The decrease in tree impurity is

Q(T )−Q(T ′) = It(T )− ItL(T ′)− ItR(T ′)

This only depends on the node t and split s. Thus, maximizing the decrease in

tree impurity by splits s on node t is equivalent to maximizing the expression

It(T )− ItL(T ′)− ItR(T ′) (3.9)

As we define before, ptL and ptR are the proportions of data in node t to tL

and tR respectively. And we use p(t) to denote the proportion of data in node

t.

ptL =
N(tL)

N(t)
=

N(tL)
N
N(t)
N

=
p(tL)

p(t)
, ptR =

p(tR)

p(t)

Then

ptL + ptR = 1

and Equation 3.9 can be written as

Q(T )−Q(T ′) = It(T )− ItL(T ′)− ItR(T ′)

= Qt(T )p(t)−QtL(T ′)p(tL)−QtR(T ′)p(tR)

= [Qt(T )−QtL(T ′)ptL −QtR(T ′)ptR ]p(t)

= ∆Q(s, t)p(t)
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Since Q(T )−Q(T ′) differs from ∆Q(s, t) only by the factor p(t), so the same

split s∗ maximizes both expressions. Thus, the split selection procedure can

be considered as a repeated attempt to minimize overall tree impurity.

3.1.4 Pruning A Tree

A natural question is how large should we grow a tree? Apparently, a

very large tree might overfit the data, while a small tree may not be able to

capture the important structure of the data. Tree size is a tuning parameter

governing the model’s complexity, and the optimal tree size should be adap-

tively chosen according to the data. One approach to grow a tree using a

splitting criterion is to continue the splitting procedure until the improvement

of homogeneity due to additional splits is less than a pre-specified cutoff, and

then we take this resulting tree as the best tree. For example, the stopping

rule, that is, on finding a criterion for declaring a node terminal, can be defined

as follow: set a threshold β > 0, and state a node m terminal if

max
s∈S

∆Q(s,m) < β (3.10)

However, Breiman et al. [1] points out the weaknesses of this approach.

If β is set too low, then there is too much splitting and the tree is too large.

But, if we increase the value of β, there may be such nodes m satisfying

Equation 3.10. But the descendant nodes mL, mR of m may have splits with

large decreases in impurity. If we declare m terminal, we lose the good splits

on mL or mR.

To get an optimal solution for the problem of finding the best tree,

Breiman et al. [1] introduced three basic ideas.
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(1) The first idea is pruning trees: instead of stopping growth in progress,

we grow an over-large tree and then cut it down. This can be impractica-

ble in terms of computation, since the number of subtrees is usually very

large. To solve this problem, Breiman et al. [1] introduced the second idea of

cost− complexity pruning.

(2) The basic strategy of cost− complexity pruning is that we grow a

large tree T0, stopping the splitting process until the number of observations

reaching each terminal node is small (say 10), and then getting the large tree

pruned upward according to cost − complexity measure until we finally cut

back to the root node.

Before we introduce the definition of cost − complexity, we first give

a brief description of the notations that will be used here. We define that

a branch of T0 is a tree that has one of the internal nodes of T0 as its root

node, and contains all of the subsequent daughter nodes below that node in

T0. A subtree T of T0 shares the root node of T0, but may not share all

the subsequent branches of T0. See Figure 3.3. We also define T̃ to be the

set of terminal nodes of T . As before, the terminal nodes are indexed by m,

m = 1, 2, . . . , b and node m represents the region Rm. Let |T̃ | denotes the

number of terminal nodes in T or the size of the tree T (|T̃ | = b), and define

the risk of classification trees:

R (T ) =
∑
m∈T̃

P (m)Qm (T ) (3.11)

where Qm (T ) measures the impurity of node m in a classification tree which

can be any one in (2.3)-(2.5), and typically, we use the overall misclassification
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Figure 3.3: A tree, Subtree and Branch
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error rate.

We define the cost− complexity criterion [1]

Rα (T ) = R (T ) + α|T̃ | (3.12)

where α(≥ 0) is the complexity parameter. Rα(T ) adds a penalty for complex

trees to the impurity R(T ). The main idea is that for each α, find the subtree

Tα ⊆ T0 which minimizes Rα (T ), that is,

Rα(Tα) = min
T⊆T0

Rα(T ) (3.13)

The tuning parameter α ≥ 0 “ governs the tradeoff between tree size and its

goodness of fit to the data” [3]. If α is small, the penalty for having a large

number of terminal nodes is small and Tα will be large. For example, if α

is zero, T0 is very large such that each terminal node only contains one case,

then every case is classified correctly with misclassification rate R(T0) = 0.

So T0 minimizes R0(T ). As the value of α (or the penalty per terminal node)

increases, the size of tree Tα decreases. So large values of α, smaller subtrees

Tα of T0. For α sufficiently large, the optimal subtree Tα will consist of the

root node only. Brieman et al. [1] had proved the following useful results. For

details, refer to [1].

Theorem 3.1.1. If α2 > α1, the optimal subtree corresponds to α2 is a subtree

of the optimal subtree corresponding to α1.

Theorem 3.1.2. For any value of complexity parameter α, there is a unique
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smallest subtree of T0 that minimizes the cost-complexity. Moreover, there

exists an increasing sequence αk and a positive integer K, such that

−∞ < 0 = α0 < α1 < α2 < · · · < αK < +∞

and the corresponding optimal subtrees

Tα0 ⊃ Tα1 ⊃ Tα2 ⊃ . . . ⊃ TαK
= {root of T0}

where Tα0 ⊃ Tα1 means that Tα1 is a subtree of Tα0 . The sequence

{Tα0 , Tα1 , . . . , Tαm} is also called nested optimal subtrees.

According to Theorem 3.1.1 and Theorem 3.1.2, as we increase α from

0 to large enough, the desired sequence of nested trees of decreasing size is

obtained, beginning with the initial full tree T0 and ending with the root tree

with no split at all. Each tree Tα in the sequence is the best of all trees of

its size with respect to α. It may prune more than one node at a time. For

details, refer to [1] and [7] Chapter 7.

(3) In (2), we have got a decreasing sequence of subtrees Tα0 ⊃ Tα1 ⊃

Tα2 ⊃ . . . ⊃ TαK
= {root of T0}. To complete the process of choosing our

final tree, we need a good way to choose the degree of pruning, that is, select

one of these as the final optimal-sized tree. Breiman et al. [1] came out two

methods: using an independent test sample and cross-validation. If enough

data are available, we can select a random sample from the data set to form a

test sample, and the remainder forms the new training sample. The original
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over-large T0 is grown using the new training sample and pruned upward to

get the decreasing sequence Tα0 ⊃ Tα1 ⊃ Tα2 ⊃ . . . ⊃ TαK
= {root of T0}.

For each tree in the sequence, predict the classifications for the test sample,

and compute the misclassification error or deviance. Take the misclassification

error for instance, for any tree Tαk
in the sequence, if we use N (1) to denote

the total number of cases in the test sample, and N
(1)
ij denote the number of

class j cases in the test sample whose predicted classification by Tαk
is class i.

Then the misclassification error for the tree Tαk
is

Rts(Tαk
) =

∑
i

∑
j N

(1)
ij

N (1)
.

Thus, for the sequence of trees, we can plot the errors or deviance versus α.

This will often have a minimum within the range of trees considered, and we

can choose the smallest tree with error or deviance close to the minimum value.

One drawback of this method is that usually there are not sufficient data to

build good trees based on only a subset of the data. However, this method is

computationally efficient and is preferred when the training sample contains a

large number of cases.

Unless the sample size of the training sample is quite large, cross-

validation is the preferred method. In V -fold cross-validation, we divide the

original training sample, denoted by S, by a random selection into V equally

sized (as nearly as possible) subsets, Sv, v = 1, 2, . . . , V , each containing the

same number of cases. Then we take one part of Sv to form the testing sample

and the remaining V − 1 parts to form the new training sample. The vth

test sample is Sv and the vth new training sample is S(v). Usually, V is taken

as 10 (10-fold cross-validation), so each new training sample contains 9/10 of
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the data. Suppose the minimal cost-complexity sequence of trees based on

the whole training data are {Tαk
}Kk=0, and the corresponding minimal cost-

complexity trees based on V − 1 parts of the data are {T (v)
αk }Kk=0. Suppose

Nij is the total number of class j cases classified as i by Tαk
, and N

(v)
ij is the

number of class j cases in Sv with predicted classification i by T
(v)
αk . Then

Nij =
∑
v

N
(v)
ij .

Each case in S appears in one and only one test sample Sv. Thus, the total

number of class j cases in all test samples is Nj, which is the number of class

j cases in the original training sample S. Then the misclassification error for

tree Tαk
is

RCV (Tαk
) =

∑
i

∑
j Nij

N
,

where N is the total number of cases in S. Comparing to the independent

test sample method, cross-validation is more computationally expensive, but

it uses all cases in the training sample more effectively.

Breiman et al. [1] also suggested the 1 − SE rule to choose the right

sized tree.

Definition 3.1.1. Suppose Tαk0
is the tree with minimum misclassification

error R(.), that is,

R(Tαk0
) = min

αk

R(Tαk
).

Then the tree selected is Tαk′
, where αk′ is the maximum αk satisfying

R(Tαk′
) ≤ R(Tαk0

) + SE(R(Tαk0
))
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The motive of this selection rule is that, in most of the examples, the

misclassification error estimates R(Tαk
) as a function of the tree size will have

a fairly rapid decrease at the initial. After that there is a long, and flat valley

region such that R(Tαk
) is almost constant except for changing up and down

within ±SE range. The standard error of the estimates can calculated for each

size of the tree. See Breiman et al. [1] for details.

3.2 Missing Data in CART

In the tree building process, we split data at each node according to

the value of some variable. This needs the values to be available. In the

decision making process, a test is carried out on some variable at each node.

This, again, requires that the value of that variable be available. Thus, for

classification trees, missing data are a really big concern and we desire to find

optimal solutions to handle missing values. Some treatments of missing data

we discussed in the last chapter can be applied on tree-based models, such as

procedures based on completely recorded units or imputation methods, and

so on. For example, if the number of cases with missing data is less than five

percent of the total number of cases, deleting all cases with missing values may

be a possible choice. Another option is to replace missing data with imputation

values and then apply tree-based procedures on the imputed data. Other than

these methods in statistics, tree-based models have some unique and simple

ways to deal with missing data. Here, we focus on the CART algorithm and

consider the attractive strategy adopted in CART to split cases with missing

values.
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3.2.1 Choosing A Split

Recall that at each step, the CART algorithm tries to find the predictor

and the split rule that gives the maximal reduction in impurity:

∆Q(s,m) = Qm (T )− pmL
QmL

(T )− pmR
QmR

(T ) (3.14)

where Qm(T ) is the impurity of the parent node m, pmL
is the probability of a

case going to the left daughter node of m, pmR
is the probability of a case going

to the right daughter node of m, QmL
(T ) is the impurity of the left daughter

node and QmR
(T ) is the impurity of the right daughter node.

To split the parent node m into two daughter nodes, we require pre-

dictors. If the values of some predictors are missing, the CART algorithm

still select the best split at each step according to Equation 3.14, however,

some terms are somewhat modified. Firstly, the impurity indices QmL
(T )

and QmR
(T ) are calculated only over the observations which are not miss-

ing. Secondly, the two probabilities pmL
and pmR

are also calculated only over

the relevant observations, but they are then adjusted so that they sum to 1.

Thus, for each predictor, we find the optimal split that maximizes the quan-

tity ∆Q(s,m). Then we pick out the best one with the maximum value of

∆Q(s,m) among the optimal splits.

Once a splitting variable and a split point for it have been decided,

what is to be done if the predictor values of some cases are missing? CART

use surrogate variables to allocate the missing cases to the daughter nodes.
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3.2.2 Surrogate Variables

Surrogate splits are chosen to match as well as possible the primary

split. The main idea is that if a case has missing value on the splitting variable,

we consider other predictors as surrogate variables and rank them according

to the measure of agreement. Then assign the case to one of the daughter

nodes using the best surrogate variable. If there are missing data on the

best surrogate variable, the second best surrogate variable is used instead.

And so on. If all surrogate variables of a case are missing, the algorithm has

two options: stop or send the case in the majority direction. This can be

done through defining control parameters in the algorithm. The measure of

agreement is the number of non-missing cases the surrogate split classified the

same way as the primary split variable does, possibly after swapping ‘left’ and

‘right’ for the surrogate. It can be shown in the following Table 3.1.

Table 3.1: The Measure of Agreement
Primary Split left Primary Split right NA

Surrogate Split left N(left,left) N(right,left) a
Surrogate Split right N(left,right) N(right,right) b

Thus, the number of cases going to the same directions, no matter which

split is used, is (N(left,left) +N(right,right)).

3.3 Implementation in R

All the decision-tree learning algorithms share the same ideology but

have different ways to realize it. A simpler and faster realization of CART

in Splus or R is via the library section rpart (Recursive Partitioning and
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Regression Trees) by Terry Therneau and Beth Atkinson [8].

The basic functions needed to grow and prune classification

trees:

• rpart: fit a ‘rpart’ model and grow an over-large tree

• print: print a text version of a tree

• printcp: display complexity parameter (cp) table for fitted ‘rpart’ ob-

ject

• prune: prune the over-large tree to the final optimal subtree based on

cp

The basic steps needed to use rpart:

Step 1. Attach the library so that the functions can be found.

library(rpart)

Step 2. Decide what type of endpoint we have.

• Categorical ⇒ method = ’class’

• Continuous ⇒ method = ’anova’

• Poisson Process/Count ⇒ method = ’poisson’

• Survival ⇒ method = ’exp’

Step 3. Fit the model using the standard Splus modeling language.

fit<-rpart(formula, data, method=’class’...)

39



Step 4. Print a text version of the tree.

print(fit)

Step 5. Prune to the optimal tree.

fit1<-prune(fit,cp)

Step 6. Print a summary which examines each node in depth.

summary(fit1)

Step 7. Plot a standard version of the plot with some basic information.

plot(fit1)

text(fit1,use.n=T)

Model options in rpart:

parms: For classification, the list of optional parameters can contain any of:

• prior– the vector of prior probabilities (positive, sum to 1)

• loss– the lost matrix (zeros on diagonal, positive off-diagonal elements)

• split– the splitting index (‘gini’ or ‘cross-entropy’)

na.action: The default action deletes the observations for which the response

y is missing or all of the predictors are missing, but keeps those in which one

or more predictors are missing.

control: A list of control parameters. The list contains

• minsplit: The minimum number of observations that must exist in a

node, in order for a split to be attempted. The default is 20.
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• minbucket: The minimum number of observations in a terminal node.

This defaults to minsplit/3.

• xval: The number of cross-validation to be done. The default number

is 10.

• cp: Complexity parameter. Any split that does not decrease the overall

lack of fit by a factor of ‘cp’ is not attempted. The main role of this

parameter is to save computing time by pruning off splits that are obvi-

ously not worthwhile. Essentially,the user informs the program that any

split which does not improve the fit by ‘cp’ will likely be pruned off by

cross-validation, and that hence the program need not pursue it.

• maxsurrogate: The maximum number of surrogate splits retained at

each node in the output. (No surrogate that does worse than “go with

the majority” is printed or used). The default is 5.

• usesurrogate: How to use surrogates in the splitting process.

– 0=display only; an observation with a missing value for the primary

split rule is not sent further down the tree.

– 1=use surrogates, in order, to split subjects missing the primary

variable; if all surrogates are missing the observation is not split.

– 2(default)=if all surrogates are missing, then send the observation

in the majority direction.

• surrogatestyle: Controls the selection of a best surrogate.

– 0(default)=use the total number of correct classification for a po-

tential surrogate variable.
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– 1=use the percent correct, calculated over the non-missing values

of the surrogate.

The first option more severely penalizes covariates with a large number

of missing values.
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Chapter 4

Linear Methods and Extensions

for Binary Classification

In this chapter, we will focus on linear methods for binary classifica-

tion problems, when the response variable is categorical and can only take

two possible values. Typical examples of binary responses include disease

status (diseased/not diseased) and survival status (dead/alive). Many linear

techniques have been developed to discriminate observations into two differ-

ent groups, for instance, linear regression, linear discriminant analysis, logistic

regression and so on.

It has been shown that if the response only has two classes, and we code

them -1 and 1, then the intersection of the fitted plane using linear regression

with 0 provides a separating hyperplane, which is the same separating hyper-

plane as given by the linear discriminant analysis, if the prior probabilities

for the two classes are both 1/2, and both classes have the same number of

elements [4]. Thus, in this chapter, we will only review linear regression and

logistic regression. However, a drawback of these two methods is that they
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delete too many observations when missingness is encountered. In the last

part of this chapter, we will define a weighted-averaging classifier to deal with

missing values.

4.1 Linear Regression Model

Linear regression is probably the most widely used regression models.

It is simple, easy to understand, easy to interpret and also easy to use. It

can deal with not only the categorical outcomes also the continuous response

variables.

Suppose we have n observations {yi;xi1, . . . , xip}, i = 1, . . . , n. Mathe-

matically, the linear regression model has the form

yi = β0 + β1xi1 + . . .+ βpxip + εi, i = 1, . . . , n. (4.1)

1. In the above equation, β0, . . . , βp are unknown parameters;

2. ε1, . . . , εn are n random error terms, which are purely due to randomness

and can not be observed.

We could denote linear regression in matrix form



y1

y2

· · ·

yn


︸ ︷︷ ︸

Yn×1

=



1 x11 · · · x1p

1 x21 · · · x1p

· · · · · · · · · · · ·

1 xn1 · · · xnp


︸ ︷︷ ︸

Xn×(p+1)



β0

β1

· · ·

βp


︸ ︷︷ ︸
βp+1×1

+



ε1

ε2

· · ·

εn


︸ ︷︷ ︸

εn×1
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or

Y = Xβ + ε. (4.2)

Several assumptions are made on the error terms, which are called

Guass-Markov (GM) assumptions.

• (A1) E(εi) = 0, i = 1, . . . , n;

• (A2) V ar(εi) = σ2, i = 1, . . . , n and Cov(εi, εj) = 0, 1 ≤ i 6= j ≤ n;

• (A3) ε′is are normally distributed.

Thus, ε1, . . . , εn are independent and follow N(0, σ2).

In matrix form, the GM assumptions can be written as

• (A1) E(ε) = 0n×1 ⇒ E(Y ) = Xβ;

• (A2) V ar(ε) = σ2In×n ⇒ V ar(Y ) = σ2In×n;

• (A3) ε is multivariate normally distributed, which implies that Y is mul-

tivariate normally distributed.

In a word, ε ∼MN(0n×1, σ
2In×n) or Y ∼MN(Xβ, σ2In×n).

4.1.1 Fitting the Linear Regression Model

• Definition of Least Square Estimate (LSE) The loss function

S(β) =
n∑
i=1

(yi−β0−β1xi1−· · ·−βpxip)2 =
n∑
i=1

ε2i = (Y −Xβ)T (Y −Xβ).
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The least square estimate of β = (β0, . . . , βp)
T , denoted by

β̂ = (β̂0, . . . , β̂p)
T , is to minimize the loss function S(β). Mathematically,

β̂ = arg min
β
S(β) = arg min

β
(Y −Xβ)T (Y −Xβ).

• Deriving LSE There are several ways to get the least square estimate for

β. The common way for deriving β̂ is to take the first derivative of S(β),

set it to 0, and solve the equation to get the estimates.

S(β) = (Y −Xβ)T (Y −Xβ) = βTXTXβ − 2Y TXβ + Y TY

Take the first derivative of S(β) with respect to β:

∂S(β)/∂β = 2XTXβ − 2XTY

Set it to 0 and solve the equations

∂S(β)/∂β|β=β̂ = 2XTXβ̂ − 2XTY = 0⇒ β̂ = (XTX)−1XTY.

• Fitted Values Ŷ and Its Standard Error

1. Fitted values Ŷ . The fitted value vector

Ŷ = Xβ̂ = X(XTX)−1XTY = HY.

where H = X(XTX)−1XT
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2. Standard error of Ŷ .

se(Ŷ ) = se(Xβ̂) =

√
X ˆV ar(β̂)XT = σ̂

√
X(XTX)−1XT .

Thus, we need to obtain the estimate σ̂ of σ. An unbiased estima-

tion of σ2 is

σ̂2 =
1

n− 1− p

n∑
i=1

(yi − ŷi)2 =
1

n− 1− p
Y T (I −H)Y.

In R, we can use lm() to fit the linear regression model.

The properties of σ̂2 and β̂ are given in the following theorem

Theorem 4.1.1. Under GM Assumptions A1-A3, we have

1. β̂ ∼MNp+1(β, σ
2(XTX)−1);

2. E(σ̂2) = σ2 and (n− 1− p)σ̂2/σ2 ∼ χ2
n−1−p;

3. β̂ and σ̂2 are independent.

Based on the above results, we could construct confidence interval and

do hypothesis testing for a single parameter or a linear combination of param-

eters in linear regression model.

4.2 Logistic Regression Model

Logistic Regression are mainly used to deal with categorical responses,

especially the binary outcomes. Over the past decade, the logistic regression
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model has become the standard method of analysis in many field, such as

biomedical studies, social sciences and marketing.

4.2.1 Model Setup

In any regression problem the key quantity is the mean value of the

response variable, given the values of predictors, which is expressed as E(Y |x).

In linear regression we assume that this mean may be expressed as a linear

equation in x, such as E(Y |x) = β0 + β1x. This expression implies that it is

possible for E(Y |x) to take any value as x ranges from −∞ to +∞. However,

if the response variable is binary, and the conditional mean lies between 0 and

1, that is 0 ≤ E(Y |x) ≤ 1, and the plot of E(Y |x) versus x is as follows:
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Figure 4.1: Plot of E(Y |x) Versus x

The curve is said to be S − shaped. In this case, the model we will use

is that of the logistic distribution. Because of its extremely flexible and easily

used function in mathematics, logistic regression becomes a standard analysis

method.

For a binary response variable Y and an explanatory variable X, let

π(x) = E(Y |x) = P (Y = 1|X = x) = 1 − P (Y = 0|X = x). The logistic

regression model is

π(x) =
exp (α + βx)

1 + exp (α + βx)
(4.3)
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Equivalently, the log odds, called that logit, has the linear relationship

logit[π(x)] = log
π(x)

1− π(x)
= α + βx (4.4)

Another important difference between the linear and logistic regression

models is the conditional distribution of the response variable. In the linear

regression model, we assume that y = E(Y |x) + ε with ε follows a normal

distribution with mean zero and some constant variance. Then, the conditional

distribution of Y is also a normal distribution with mean E(Y |x) and constant

variance. However, this is not the case when the response variable is binary.

In this situation, y = E(Y |x) + ε = π(x) + ε and if y = 1 then ε = 1 − π(x)

with probability π(x), and if y = 0 then ε = −π(x) with probability 1− π(x).

Therefore, ε has a distribution with zero mean and π(x)(1 − π(x)), so the

conditional distribution of the response variable follows a binomial distribution

with probability π(x).

Like ordinary regression, logistic regression can extend to models with

multiple explanatory variables. For instance, the model for π(x)=P (Y = 1)

at values x=(x1, . . . , xp) of p predictors is

logit[π(x)] = log
π(x)

1− π(x)
= α + β1x1 + β2x2 + · · ·+ βpxp (4.5)

The alternative formula, directly specifying π(x), is

π(x) =
exp (α + β1x1 + β2x2 + · · ·+ βpxp)

1 + exp (α + β1x1 + β2x2 + · · ·+ βpxp)
(4.6)
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4.2.2 Fitting the Logistic Regression Model

Suppose we have the following observations: {yi,mi : xi1, . . . , xip}, i =

1, 2, . . . , n. We assume that

yi ∼ Binomial(mi, πi) (4.7)

with

logit(πi) = log(
πi

1− πi
) = α + β1xi1 + β2xi2 + · · ·+ βpxip = xTi β (4.8)

and y1, . . . , yn are independent. Here xi = (1, . . . , xi1, . . . , xip)
T ,

β = (α, β1, . . . , βp). Equivalently, we have

πi =
exp (xTi β)

1 + exp (xTi β)
(4.9)

With the n observations, our purpose here is to make inference on

β. Since we have a parametric model, the MLE is a natural choice we may

consider. The likelihood function of β is given as

L(β) =
n∏
i=1

Pr(Yi = yi) =
n∏
i=1

(
mi

yi

)
πyii (1− πi)mi−yi

=
n∏
i=1

(
mi

yi

)
(

exp (xTi β)

1 + exp (xTi β)
)yi(

1

1 + exp (xTi β)
)mi−yi
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and the log-likelihood function of β is given as

l(β) =
n∑
i=1

{yi log(πi) + (mi − yi) log(1− πi)}+
n∑
i=1

log

(
mi

yi

)
=

n∑
i=1

{yi log(πi/(1− πi)) + (mi − yi) log(1− πi)}+
n∑
i=1

log

(
mi

yi

)
=

n∑
i=1

{yixTi β −mi log(1 + exp (xTi β))}+
n∑
i=1

log

(
mi

yi

)

The MLE of β is defined as

β̂ = arg maxL(β) = arg max l(β)

The idea of MLE is to find β which makes the observed data most likely.

Here are some useful notations.

1. Score function: S(β) = l′(β), the first derivative of log-likelihood func-

tion with respect to β. Note that

S(β̂) = 0⇒ β̂.

2. Observed Fisher information function: I(β) = −l′′(β) = −S ′(β), minus

the 2nd derivative of the log-likelihood function.

3. Expected Fisher information function: J(β) = E{I(β)}, the expectation

of the observed Fisher information function.

To find β̂, we first find the score function:

S(β) =
n∑
i=1

{yixi −mi
exp (xTi β)

1 + exp (xTi β)
xi} =

n∑
i=1

(yi −miπi)xi
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and then solve the equation S(β̂) = 0 to get β̂. Unfortunately, we can not

find a close form for β̂. To solve the problem, we apply some numeric al-

gorithms: Newton Raphson algorithm and Fisher Scoring algorithm. The

observed Fisher information function

I(β) = −∂S(β)

∂βT
=

n∑
i=1

mi{
exp (xTi β)

1 + exp (xTi β)2
xix

T
i } =

n∑
i=1

miπi(1− πi)xixTi .

Note that J(β) = I(β) = V ar{S(β)}. The iterative way of Newton Raphson

and Fisher Scoring algorithm to calculate β̂

1. Choose a starting value for β(0).

2. Update the value of β by

β(r+1) = β(r) + I(β(r))−1S(β(r)) = β(r) + J(β(r))−1S(β(r)), i = 0, 1, 2, . . . .

3. Iterate until |β(r+1) − β(r)| is quite small.

Note that if β(r+1) − β(r) = 0, then S(β(r)) = 0 and we find β̂. However,

in any computer, it is hard to get β(r+1) = β(r). We can stop the algorithm

if β(r+1) − β(r) is very close to 0. In R, we can use glm() to fit the logistic

regression model.

4.2.3 Statistical Inference

Theorem 4.2.1. When sample size is large, under certain conditions, ap-

proximately

β̂ − β ∼MN(0, I(−1)(β̂)) or β̂ − β ∼MN(0, J (−1)(β̂)).
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Thus, the ML estimators β̂ have a large-sample normal distribution

with estimated covariance matrix

I(−1)(β̂) =
n∑
i=1

miπ̂i(1− π̂i)xixTi

with

π̂i =
exp (xTi β̂)

1 + exp (xTi β̂)
.

The fitted value of P (Y = 1|Xi = xi)is

ˆP (Y = 1|Xi = xi) = π̂i =
exp (xTi β̂)

1 + exp (xTi β̂)
.

To calculate the standard error of the predicted probability, we have to use

the delta method.

Theorem 4.2.2. For some sequence of random variables Xn satisfying

√
n[Xn − θ] D−→ N(0,Σ),

where n is the number of observations and Σ is a covariance matrix. Then

√
n[g(Xn)− g(θ)] D−→ N(0,∇g(θ)T · Σ · ∇g(θ))

for any function g satisfying the property that ∇g(θ) exists and is non-zero

valued. Especially, in univariate terms, if

√
n[Xn − θ] D−→ N(0, σ2),
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then
√
n[g(Xn)− g(θ)] D−→ N(0, σ2[g′(θ)]2)

Thus, the function we used in logistic regression is g(t) = (1+exp(−t))−1.

Applying the delta method, we get

π̂i = g(xTi β̂) = g(linear combination)

se( ˆP (Y = 1|Xi = xi)) = g′(xTi β̂) ∗ se(xTi β̂) = π̂i(1− π̂i) ∗
√
xTi [I(−1)(β̂)]xi

Moreover, we could construct the Confidence Interval and conduct hy-

pothesis testing for a single parameter or a linear combination of parameters.

The output of glm() automatically produce the test statistic for the hypothesis

H0 : βj = 0 and the corresponding p-value based on N(0, 1) distribution. If we

test the hypothesis that some of the coefficients equal to 0, then we can use

likelihood ratio test with the approximate distribution χ2
df . In glm() output,

it does not provide the log-likelihood but the deviance. As mentioned,

l(β) =
n∑
i=1

{yi log(πi) + (mi − yi) log(1− πi)}+
n∑
i=1

log

(
mi

yi

)
.

The deviance of a model is defined to be

D(β̂) = 2
n∑
i=1

{yi log(
yi/mi

π̂i
) + (mi − yi) log(

(mi − yi)/mi

1− π̂i
)},

which is two times log-likelihood difference between the saturated model and

the given model. With the deviance statistics for two nested models, the
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likelihood ratio test statistic

Rn = D( ˆβH0)−D( ˆβHA
).

4.2.4 Model/Variable Selection

When there are missing fields in data, the default option in linear and

logistic regression algorithms is to discard cases with missing values in covari-

ates. This will definitely reduce the sample size and lose information. In such

situation, one plausible strategy is to do model/variable selection according

to some criteria. In this way, the model will become simpler and smaller and

more units in the sample will be included in the analysis. We will cover one

procedure: all-subset selection and two criteria for selecting candidate models:

AIC and BIC.

All-Subset Procedure

In some situations, there are many covariates in data. The true model, or the

model only containing important variables is unknown. Suppose there are p

covariates, then the number of important variables is less than or equal to p.

The main idea of all-subset procedure is that all the possible models with the

number of covariates less than or equal to p will be considered and compared.

Thus, we need to compare

(
p

1

)
+

(
p

2

)
+ · · ·+

(
p

p

)
= 2p − 1

models to obtain the “best” model. For example, if p = 7, there are 27 − 1 =

127 candidate models. Then we pick the “best” one according to some criteria.
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Criteria: AIC and BIC

For model with q covariates, the value of AIC is defined as

AIC = −2 max log(likelihood) + 2(q + 1)

and the value of BIC is defined as

BIC = −2 max log(likelihood) + log(n)(q + 1).

After simplified, the AIC and BIC reduce to the following formulas:

AIC = n log(2deviance) + n+ 2(q + 1)

BIC = n log(2deviance) + n+ log(n)(q + 1).

where deviance is the deviance of model. Among all the candidate models,

AIC and BIC aims to select the model with minimum value of AIC or BIC.

In glm() output, the value of AIC is directly provided. In lm() output,

the deviance of model is provided and the value of AIC or BIC is calculated

according to the formula.

4.3 Weighted-Averaging Classifier

Both linear and logistic regression are modeled on some subset of co-

variates. If there are missing values on the covariates, the default approach

in lm and glm is just to ignore the units and base the analysis on complete

cases only. This will lead to loss of information, lack of efficiency due to dis-
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carding the incomplete cases and biases in estimates when data are missing

in a systematic way. Even a smaller model can be selected according to AIC

or BIC criteria, we believe too many observations have been deleted in these

methods. Furthermore, when it comes to classify any new instance, the con-

ventional regression approaches would be unapplicable if some missing values

exist in the covariates used in the model.

A natural way to make a better use of data with missingness is to con-

sider all-subset possible models. For example, suppose we regress the response

Y on the important covariates X = (X1, X2, . . . , X10), which is also an AIC

optimal model. Assume a subject (in the training data or in the validation

data) has missing values on the first 5 covariates (x1, . . . , x5). If we only con-

sider the model with all of the ten variables, then this subject would either

be eliminated from the analysis (if it is in the training data) or could not

be classified (if it is in the validation data), both of which would sacrifice its

information on the left 5 variables (x6, . . . , x10). However, if we consider all

210 − 1 submodels, then the subject would be either included to fit some sub-

models or its prediction would be obtainable based. In this sense, the available

information of this case has been well used instead of being deleted.

We describe the method we developed here, weighted-averaging clas-

sifier, in a formal way. Weighted-averaging classifier fits all-subset possible

models (except the model only having intercept) and obtain the prediction

of an instance from each submodel. The final prediction of this instance is

defined as weighted averaging the available prediction values. Non-available

predictions are excluded. Since standard error is a common measurement of

the accuracy of a prediction and the smaller the standard errors, the more

reliable the predictions. Therefore, weights are chosen to be functions inverse

58



proportional to standard errors, such as f(se) = 1/(se)2, f(se) = 1/(se), or

f(se) = 1/
√
se. Predictions with smaller standard errors will be assigned

larger weights. The performance of these different functions will be examined

and compared in the empirical studies of next chapter.

Suppose the original full model include p covariates x1, . . . , xp. The

principal procedures to realize the weighted-averaging classifier are described

below:

• Step 1: Fit all 2p − 1 linear regression or logistic regression submodels

on the training data;

• Step 2: Predict a new instance on each model. Denote the (2p − 1)× 1

prediction vector by prd = (prd1, . . . , prd(2p−1))
T . Some of the elements

in prd would be NA, if the instance has missing values on some ex-

planatory variables. This will not influence the analysis since we only

consider the available prediction values. Denote the vector with non-NA

predictions by p̃rd = (prdi1 , . . . , prdik)T . Thus, as long as the instance

has at least one non-missing dependent variables, the procedure contin-

ues to the next step. The extreme case is that if all covariates of the

instance are missing, then we could do nothing since no information of

the instance is konwn.

• Step 3: The corresponding standard error of each prediction forms a

(2p − 1) × 1 vector se = (se1, . . . , se(2p−1))
T . If the prediction is NA,

then its standard error is also NA, which will not be taken into ac-

count. Suppose the non-NA standard error vector is denoted as s̃e =

59



(sei1 , . . . , seik)T . Compute the k × 1 weight vector

W = f(s̃e)/(
k∑
j=1

f(seij)) = (W1, . . . ,Wk)
T .

For example, if f(x) = 1/x, then

W = (1/sei1/
k∑
j=1

(1/seij), . . . , 1/seik/
k∑
j=1

(1/seij))
T

.

• Step 4: Compute the final prediction of the instance using the following

formula:

prdfinal =
k∑
j=1

(Wj · prdij) = W • p̃rd

.

• Step 5: Determine the prediction class. For linear regression, we classify

prdfinal < 0 to the class coded as -1 and prdfinal > 0 to the class coded

as 1. For logistic regression, we classify prdfinal < 0.5 to the class coded

as 0 and prdfinal > 0.5 to the class coded as 1.
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Chapter 5

Comparison of Methods and

Empirical Studies

Five methods of dealing with missingness in binary classification prob-

lems, linear and logistic regression with all important covariates, smaller mod-

els selected according to the AIC criteria, nonparametric bootstrap method to

impute missing values, surrogate split in Classification and Regression Trees

(CART) and weighted-averaging linear and logistic classifiers, have been dis-

cussed in the last three chapters. In this chapter, we will compare these

methods on several data sets regarding to misclassification error.

5.1 Data Sets

The following data sets will be used:

Pima.tr, Pima.te, Pima.tr2

Skull
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5.1.1 Data of Diabetes

The first three data sets of diabetes, “Pima.tr”, “Pima.te”, and “Pima.tr2”

are available in the “MASS” library under R. These data were collected by

the US National Institute of Diabetes and Digestive and Kidney Diseases. A

population of women who were at least 21 years old, of Pima Indian heritage

and living near Phoenix, Arizona, was tested for diabetes according to World

Health Organization criteria.

The training set “Pima.tr” contains 200 subjects, and the testing data

“Pima.te” contains additional 332 subjects, neither of which has missing val-

ues. “Pima.tr2” contains “Pima.tr” plus 100 subjects with missing values in

the explanatory variables. The variables in these three data frames contain:

• “npreg”: number of pregnancies.

• “glu”: plasma glucose concentration in an oral glucose tolerance test.

• “bp”: diastolic blood pressure (mm Hg).

• “skin”: triceps skin fold thickness (mm).

• “bmi”: body mass index (weight in kg/(height in m)2).

• “ped”: diabetes pedigree function.

• “age”: age in years.

• “type”: “Yes” or “No”, for diabetic according to WHO criteria. It is the

response variable.
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5.1.2 Fossil Skull Data

The data of skull comes from Henke’s database of fossil skulls in 1989 [11].

The variables codes are given in the Martin-Saller ([6]) system used by Henke.

Another system is defined by Howells 1973 ([12]). Both are listed below:

• “M1/H-GOL”: Maximum Cranial Length.

• “M8/H-XCD”: Maximum Cranial Breadth.

• “M9/H-FMB”: Minimum Frontal Breadth.

• “M10/H-XFB”: Maximum Frontal Breadth.

• “M17/H-BBH”: Basion-bregma Height.

• “M44/H-EKB”: Biorbital Breadth.

• “M45/H-ZYB”: Bizygomatic Breadth.

• “M46/H-ZMB”: Bimaxilla Breadth.

• “M47”: Facial Height (Nasion-gnathion).

• “M48”: Upper Facial Height(Nasion-alveolare).

• “M49”: Posterior Interorbital Breath.

• “M50”: Anterior Interorbital Breath.

• “M51a”: Orbital Breath (left).

• “M52”: Orbital Height.

• “M54/H-NLB”: Nasal Breadth.
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• “M55/H-NLH”: Nasal Height.

• “M62”: Palatal length.

• “M63/H-MAB”: Palatal Breadth.

• “M66”: Bigonial Breadth.

• “M69”: Mental Height.

• “M70”: Height of Mandibular Ramus.

• “M71”: Breadth of Mandibular Ramus.

The sex in Henke’s database was determined according to [11]. Many

measurements in Henke’s collection are not available. The number of com-

pleted cases with all the above variables non-missing is less than 5. Therefore,

missing values is the biggest concern in the fossil skull data set. To get a

reasonable number of complete training data set, we can only resort to several

variables in the data. The original recommendations of Henke [11] are M1,

M17, M45 or M1, M8, M45 and M52. In [10] and [9], the variables actually

selected are M1 and M45 since the discriminatory value of M8 turned out to be

poor and on the other hand, inclusion of M17 and/or M52 would undesirably

downsize the sample. The choice of M1, M45 will result in the largest sample

size with available Henke’s data. However, this selection was too simple to

definitely lose lots of information in the data. Thus, after compromising num-

ber of associated variables with the completed sample size, we choose Henke’s

recommendation to include M1, M8, M17, M45 and M52 as predictions in the

models.
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5.1.3 Missing Values within the Data Sets

• “Pima.tr2” contains 100 subjects (100/300=33.3%) with missing val-

ues in the explanatory variables. 10-fold cross validation is applied to

“Pima.tr2” and misclassification error is computed.

• In the training data “Pima.tr”, there are no missing values. In order to

compare the abilities to deal with missing values, various proportions,

0%, 5%, 10%, 14.3%, 25%, 30% of missingness are randomly generated

in “Pima.tr”. Apply the 5 methods to the incomplete “Pima.tr” and

calculate misclassification error on the testing data “Pima.te” without

missingness. Repeat this process 100 times and average error rates.

• In the fossil skull data, based on variables M1, M8, M17, M45 and

M52, the data contains a total number of 397 subjects and 250 subjects

(250/397=62.97%) have missing values in one of the five predictors. 11-

fold cross validation is applied and misclassification error is calculated.

The following methods are performed and compared for data “Pima.tr2”,

“Pima.tr” and “Pima.te”.

• Logistic and Linear regression with all covariates.

• Logistic and Linear regression with few covariates. A smaller model is

selected according to AIC criteria.

• Logistic and Linear regression with Bootstrap imputation.

• Classification and Regression Trees (CART).

• Weighted-averaging Logistic and Linear classifiers with weights 1/se2,

1/se and 1/
√
se.
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The following analysis are carried out for the fossil skull data.

• Logistic and Linear regression with M1 and M45 only.

• Logistic and Linear regression with M1, M8, M17, M45 and M52.

• Logistic and Linear regression with few covariates (selected from M1,

M8, M17, M45 and M52). A smaller model is selected according to the

AIC criteria.

• Logistic and Linear regression with Bootstrap imputation.

• Classification and Regression Trees (CART).

• Weighted-averaging Logistic and Linear classifiers with weights 1/se2,

1/se and 1/
√
se.

5.2 Results of Diabetes Data

5.2.1 Results of “Pima.tr2”

The following tables summarize the results of five different methods

mentioned above. CART1 stands for the classification and regression trees

based on minimum cross-validation error criteria and CART2 means the CART

algorithm based on 1-SE rule. 10-fold cross-validation is applied to “Pima.tr2”.

Table 5.1: Methods Comparison on “Pima.tr2”

All Covar AIC Bootstrap

Linear(NO.out of 300) 0.245(200) 0.2239(201) 0.2733(300)

Logistic(NO.out of 300) 0.24(200) 0.2338(201) 0.27(300)
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Table 5.2: Methods Comparison on “Pima.tr2”

CART1 CART2

Misclassification Error(NO.out of 300) 0.29(300) 0.303(300)

Table 5.3: Methods Comparison on “Pima.tr2”

Weighted-Averaging f = 1/se2 1/se 1/
√
se

Linear(NO.out of 300) 0.2933(300) 0.2667(300) 0.2633(300)

Logistic(NO.out of 300) 0.28(300) 0.26(300) 0.2567(300)

The “NO. out of 300” in the bracket of each table is the number of

cases tested in the 10-fold cross-validation process.

The results based on “Pima.tr2” show that the weight 1/
√
se achieved

to have the smallest misclassification errors both for linear and logistic re-

gression. Furthermore, the linear and logistic regression with all covariates or

with AIC criteria have smaller errors than other methods. However, we should

notice that only around 200 out of 300 cases have been tested since 100 cases

include missing values on some explanatory variables. The CART, bootstrap

and weighted-averaging methods did test all the cases and weighted-averaging

classifiers have a better performance.

CART1 and CART2 use surrogate variables by default, which is dis-

cussed in Section 3.3. To see the splitting process more clearly, the R code

and corresponding output are as follows:

> library(rpart)

> library(MASS)
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> set.seed(1204)

> fit<-rpart(type~.,data=Pima.tr2,cp=0.001)

> printcp(fit)

Classification tree:

rpart(formula = type ~ ., data = Pima.tr2, cp = 0.001)

Variables actually used in tree construction:

[1] age bmi glu ped

Root node error: 106/300 = 0.35333

n= 300

CP nsplit rel error xerror xstd

1 0.235849 0 1.00000 1.00000 0.078107

2 0.132075 1 0.76415 0.86792 0.075346

3 0.025157 2 0.63208 0.71698 0.071066

4 0.015723 5 0.55660 0.77358 0.072823

5 0.009434 9 0.47170 0.75472 0.072259

6 0.001000 11 0.45283 0.79245 0.073367

> plotcp(fit)

The last two columns in the cp table are somewhat important.

• The table is printed from the smallest tree (no splits) to the largest one

(11 splits).

• The number of splits is listed, rather than the number of terminal nodes.

The number of terminal nodes (tree size) is always 1+ the number of

splits.
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• The columns xerror and xstd are the scaled misclassification error and

its standard error of the cross-validation, respectively. They are random,

depending on the random partition used in the 10-fold cross-validation

that has been computed within rpart.

• For easier reading, the error columns have been scaled so that the first

node has an error of 1. Since in this example, the model with no splits

must make 106/300 misclassifications, multiply columns 3-5 by 106 to

get a result in terms of absolute error. Computations are done on the

absolute error scale, and printed on relative scale. The complexity pa-

rameter column (CP) has been similarly scaled.
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Figure 5.1: Plot of Complexity Parameter

The complexity parameter (as plotted in Figure 5.1) may then be chosen

to minimize xerror. An alternative procedure is to use the 1-SE rule, the

largest value with xerror within one standard deviation of the minimum. In

this case the 1-SE rule gives 0.71698+0.071066=0.788046, so we choose line

3, a tree with 2 splits and hence size 3. We can examine the pruned tree

(Figure 5.2)

> fit1<-prune(fit,cp=0.03)
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> print(fit1,digits=3)

n= 300

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 300 106 No (0.647 0.353)

2) glu< 128 177 32 No (0.819 0.181) *

3) glu>=128 123 49 Yes (0.398 0.602)

6) bmi< 28.8 28 7 No (0.750 0.250) *

7) bmi>=28.8 95 28 Yes (0.295 0.705) *

> plot(fit1,branch=0.3,uniform=T)

> text(fit1,digits=3)

Figure 5.2: Plot of Pruned Tree
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The summary method, summary.rpart, produce voluminous output.

> summary(fit1)

......

Node number 1: 300 observations, complexity param=0.2358491

predicted class=No expected loss=0.3533333

class counts: 194 106

probabilities: 0.647 0.353

left son=2 (177 obs) right son=3 (123 obs)

Primary splits:

glu < 127.5 to the left, improve=25.704610, (0 missing)

bmi < 27.35 to the left, improve=16.586400, (3 missing)

age < 28.5 to the left, improve=14.360940, (0 missing)

npreg < 6.5 to the left, improve= 9.263027, (0 missing)

skin < 22.5 to the left, improve= 7.920797, (98 missing)

Surrogate splits:

age < 32.5 to the left, agree=0.640, adj=0.122,(0 split)

npreg < 6.5 to the left, agree=0.623, adj=0.081,(0 split)

bp < 77 to the left, agree=0.623, adj=0.081,(0 split)

bmi < 39.15 to the left, agree=0.617, adj=0.065,(0 split)

ped < 1.172 to the left, agree=0.603, adj=0.033,(0 split)

Node number 2: 177 observations

predicted class=No expected loss=0.180791

class counts: 145 32

probabilities: 0.819 0.181
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Node number 3: 123 observations, complexity param=0.1320755

predicted class=Yes expected loss=0.398374

class counts: 49 74

probabilities: 0.398 0.602

left son=6 (28 obs) right son=7 (95 obs)

Primary splits:

bmi < 28.75 to the left, improve=9.240146, (1 missing)

glu < 157.5 to the left, improve=6.373984, (0 missing)

ped < 0.3085 to the left, improve=6.281245, (0 missing)

skin < 20 to the left, improve=4.557608, (42 missing)

age < 27.5 to the left, improve=2.139111, (0 missing)

Surrogate splits:

age < 21.5 to the left, agree=0.779, adj=0.036, (1 split)

Node number 6: 28 observations

predicted class=No expected loss=0.25

class counts: 21 7

probabilities: 0.750 0.250

Node number 7: 95 observations

predicted class=Yes expected loss=0.2947368

class counts: 28 67

probabilities: 0.295 0.705

• There are 194 non-diabetes (class 1) and 106 diabetes (class 2), so the

73



first node has an expected loss of 106/300=0.3533333.

• The improvement is n times the change in impurity index. In this ex-

ample, the largest improvement is for the variable glu, with an improve-

ment of 25.704610. The next best choice is bmi, with an improvement

of 16.586400.

• For node 3, bmi is missing for 1 observation. (5+90)/122=0.779 of the

observations that have both age and bmi agree at their respective splits,

thus age is chosen as the best surrogate for bmi. The adj indicates

how much is gained over simply choosing a “go with the majority” rule

(=94/122). adj is calculated as (95/122-94/122)/(1-94/122)=0.036.

Table 5.4: The Agreement
bmi<28.75 bmi>28.75 NA

age<21.5 5 4 0
age>21.5 23 90 1

5.2.2 Results of “Pima.tr” and “Pima.te”

Main steps of analyzing algorithms:

1. Randomly generate m missing fields out of 1400(= 200×7) in “Pima.tr”.

200 is the number of cases in “Pima.tr” and 7 is the number of variables

(other than the response variable). Thus, in total, there are 1400 fields

in the data. The proportions of missingness (100(m/1400)%) are taken

0%, 5%, 10%, 14.3%, 25% and 30%, respectively.
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2. Apply each method to the new incomplete training data “Pima.tr” and

calculate misclassification errors for the testing data “Pima.te” without

missingness.

3. Repeat the above steps 100 times. Average the 100 errors as the final

results. The corresponding standard errors are also obtained.

Table 5.5: Methods Comparison on “Pima.tr” and “Pima.te”(Logistic)
%(Ave.ComCase) 0% 5%(139.3) 10%(96.51) 14.3%(67.78) 25%(26.35) 30%(11.27)

All Covar(se) 0.1988 0.2039(0.0099) 0.2171(0.0152) 0.2253(0.0193) 0.2878(0.0504) 0.3678(0.0942)

AIC 0.1988 0.2069(0.0101) 0.2177(0.0138) 0.2254(0.0193) 0.2822(0.0491) 0.3249(0.0724)

Bootstrap 0.1988 0.2017(0.0076) 0.2054(0.0074) 0.2075(0.0083) 0.2156(0.0102) 0.2208(0.0116)

CART1 0.2439 0.2543(0.0125) 0.2592(0.0167) 0.2619(0.0255) 0.2686(0.0278) 0.2737(0.0331)

CART2 0.2711 0.2598(0.0146) 0.2636(0.0231) 0.2666(0.0303) 0.2764(0.0367) 0.2826(0.0388)

Wgt-ave- 1
se2

0.2379 0.2360(0.0102) 0.2362(0.0118) 0.2287(0.0151) 0.2661(0.0487) 0.3166(0.0553)

Wgt-ave- 1
se

0.2169 0.2218(0.0104) 0.2253(0.0108) 0.2273(0.0133) 0.2610(0.0505) 0.3054(0.0572)

Wgt-ave- 1√
se

0.2018 0.2144(0.0077) 0.2205(0.0089) 0.2218(0.0118) 0.2576(0.0512) 0.3001(0.0569)

Table 5.6: Methods Comparison on “Pima.tr” and “Pima.te”(Linear)
%(Ave.ComCase) 0% 5%(139.3) 10%(96.51) 14.3%(67.78) 25%(26.35) 30%(11.27)

All Covar(se) 0.2018 0.2057(0.0110) 0.2175(0.0164) 0.2248(0.0189) 0.2638(0.0331) 0.3564(0.0894)

AIC 0.2018 0.2064(0.0110) 0.2179(0.0158) 0.225(0.0193) 0.2634(0.0333) 0.3556(0.0879)

Bootstrap 0.2018 0.2060(0.0076) 0.2080(0.0083) 0.2093(0.0102) 0.2146(0.0100) 0.2196(0.0095)

CART1 0.2439 0.2543(0.0125) 0.2592(0.0167) 0.2619(0.0255) 0.2686(0.0278) 0.2737(0.0331)

CART2 0.2711 0.2598(0.0146) 0.2636(0.0231) 0.2666(0.0303) 0.2764(0.0367) 0.2826(0.0388)

Wgt-ave- 1
se2

0.2469 0.2496(0.0110) 0.2528(0.0129) 0.2579(0.0178) 0.2627(0.0229) 0.2677(0.0238)

Wgt-ave- 1
se

0.2139 0.2277(0.0114) 0.2305(0.0118) 0.2349(0.0153) 0.2414(0.0205) 0.2447(0.0215)

Wgt-ave- 1√
se

0.2038 0.2191(0.0101) 0.2254(0.0108) 0.2269(0.0143) 0.2346(0.0195) 0.2396(0.0212)

The “Ave.ComCase” in the bracket of each table is the average number

of complete cases of the 100 generated incomplete data “Pima.tr”. “se” is the

standard error of the 100 misclassification errors for each proportion.

Logistic regression and linear regression were used in Table 5.5 and

Table 5.6, respectively.

Methods Comparison:

75



1. The last three rows in both tables are the weighted-averaging logistic or

linear classifiers with three different weights. After comparison, we find

that the weight 1/
√
se achieves to have the smallest misclassification

errors and standard errors. Thus, 1/
√
se would be the optimal weight

we should choose. This is consistent with the results of “Pima.tr2” in

the last section.

2. If there are no missing values in “Pima.tr”, that is, the second column

in both tables, model with all covariates, with AIC criteria and model

with bootstrap imputation reduce to the same and they have smaller

misclassification errors 0.1988. 0.1988 ∗ 200 = 66 out of 332 cases are

misclassified while the weighted-averaging logistic classifier with weight

1/
√
se misclassifies 66.9976 = 0.2018 ∗ 332 cases and the corresponding

linear classifier partitioned 67.6616 = 0.2038 ∗ 332 cases into the wrong

groups. The differences are no more than two cases. Thus, the weighted-

averaging classifiers are good competitors to conventional models with all

covariates. The latter is considered as the perfect situation since there is

no missing values at all and all variables are modeled. As the proportion

of missingness increases, the former does even better. If missingness

does exist, a smaller model chosen according to AIC criteria instead of

including all covariates would be more reasonable. It has smaller errors

when the missingness percentage is below 14.3%.

3. In classification problems, the objective is to discriminate observations

into different groups. If some new instance has missing values in ex-

planatory variables, the first two approaches in the tables might not be

applicable. From this point of view, bootstrap imputation, CART and
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weighted-averaging classifiers would be better choice. After comparison

of misclassification errors, the three methods are ranked as follows, boot-

strap imputation, weighted-averaging classifier with 1/
√
se, CART with

minimum validation error, and CART with 1-SE rule.

4. Bootstrap imputation had smaller errors in this analysis which is con-

tradictory to the results of “Pima.tr2” in the last section. The difference

is that the testing data we currently used is “Pima.te”, which does not

contain any missing values. However, in “Pima.tr2”, we use 10-fold cross

validation. There might be missing values in the validation sets. What

was done is that if the validation set has missing field, then pool the

bootstrap training data and validation set together to replace the miss-

ing place by median if the variable is numerical or replace it by mode if

the variable is categorical. In this way, both the training and validation

data are complete. Thus, models with bootstrap imputation is able to

predict any case. However, sometimes, it may be not reasonable to do

imputation. For example, if gender is one of the important explanatory

variables in a study and an new instance is tested with gender missing.

According to the bootstrap imputation algorithm, we use the mode of

gender to replace the missing place. This may be totally wrong, which

has large impact on the final predictions.

5. CART1 and CART2 have unique and simple ways to deal with missing

values, although their misclassification errors are somewhat higher than

other methods. When the proportion of missingness increases to 30%,

the performance of CART is better than that of weighted-averaging lo-

gistic classifiers. If the data contain even more missing values, CART
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can easily handle, on the contrary, weighted-averaging classifiers may be

failure since to estimate certain number of coefficients the data has to

meet some requirements regarding to the number of completed cases.

5.3 Results of “Fossil Skull Data”

If different analytical methods are applied to the fossil skull data with

M1, M8, M17, M45 and M52 as explanatory variables, the results are described

in the following tables. CART1 stands for the classification and regression

trees based on minimum cross-validation error criteria and CART2 means the

CART algorithm based on 1-SE rule. Since the data includes 397 observa-

tions with 147 completed cases, we use 11-fold cross validation to calculate

misclassification error rates.

Table 5.7: Methods Comparison on “Fossil Skull Data”

M1,45 M1,8,17,45,52 AIC Bootstrap

Linear(NO.out of 396) 0.1818(242) 0.1837(147) 0.1837(147) 0.2323(396)

Logit(NO.out of 396) 0.1777(242) 0.1769(147) 0.1769(147) 0.2298(396)

Table 5.8: Methods Comparison on “Fossil Skull Data”

CART1 CART2

Misclassification Error(NO.out of 396) 0.2374(396) 0.2248(396)
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Table 5.9: Methods Comparison on “Fossil Skull Data”

Weighted-Averaging f = 1/se2 1/se 1/
√
se

Linear(NO.out of 396) 0.25(396) 0.2424(396) 0.245(396)

Logistic(NO.out of 396) 0.2525(396) 0.2475(396) 0.2424(396)

1. Table 5.9 also shows that the weight 1/
√
se has the smallest misclassifi-

cation errors than other weights both for linear and logistic regression.

2. In Table 5.8, the first column is the model used in [10] with only M1

and M45 as predictors. Comparing to the model with M1, M8, M17,

M45, M52 and the model with AIC criteria, the error rates are very

close. However, the key disadvantage of these three models is that they

can only be tested on part of the data. 242 for M1 and M45 models

and 132, 147 for the larger models and AIC models, respectively. The

CART, bootstrap and weighted-averaging classifiers have been tested on

all cases.

3. Although the error rates of CART, Bootstrap and weighted-averaging

classifiers are quite close, the CART with 1-SE rule has a better per-

formance in the fossil skull data, followed by bootstrap imputation,

CART with minimum error criterion and weighted-averaging with weight

1/
√
se. Thus, when there is a large amount of missingness in data (e.g.

250/397=62.97% in this case), classification and regression trees would

be a better option.

To compare the results of CART with 1-SE rule, Bootstrap imputa-

tion and weighted-averaging classifier with weight 1/
√
se more clearly, cross
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tabulation are provided.

Table 5.10: CART2 vs. Bootstrap Logistic
XXXXXXXXXXXXXXXXXXXX
CART2

Bootstrap Logit
Female Male

Female 130 39

Male 9 218

Table 5.11: CART2 vs. Weighted-averaging 1/
√
se Logistics

PPPPPPPPPPPPPPP
CART2

Wgt-ave Logit
Female Male

Female 111 58

Male 5 222

Table 5.12: Weighted-averaging 1/
√
se Logistics vs. Bootstrap Logitstic

XXXXXXXXXXXXXXXXXXXX
Bootstrap Logit

Wgt-ave Logit
Female Male

Female 113 26

Male 3 254
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Table 5.13: CART2 vs. Bootstrap Linear
XXXXXXXXXXXXXXXXXXXX
CART2

Bootstrap Linear
Female Male

Female 127 42

Male 9 218

Table 5.14: CART2 vs. Weighted-averaging 1/
√
se Linear

PPPPPPPPPPPPPPP
CART2

Wgt-ave Linear
Female Male

Female 110 59

Male 5 222

Table 5.15: Weighted-averaging 1/
√
se Linear vs. Bootstrap Linear

XXXXXXXXXXXXXXXXXXXX
Bootstrap Linear

Wgt-ave Linear
Female Male

Female 111 25

Male 4 256

The summary of the final optimal tree with 1-SE rule is described as

follows:

> summary(tr.rp2)

......
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Node number 1: 361 observations, complexity param=0.4459459

predicted class=1 expected loss=0.4099723

class counts: 148 213

probabilities: 0.410 0.590

left son=2 (152 obs) right son=3 (209 obs)

Primary splits:

V2 < 187.5 to the left, improve=50.290200, (27 missing)

V5 < 138.5 to the left, improve=21.774910, (138 missing)

V4 < 141.5 to the left, improve=10.264200, (172 missing)

V3 < 144.5 to the left, improve= 4.723763, (26 missing)

V6 < 30.5 to the left, improve= 3.633681, (131 missing)

Surrogate splits:

V3 < 129.5 to the left, agree=0.551, adj=0.007, (16 split)

Node number 2: 152 observations

predicted class=0 expected loss=0.2828947

class counts: 109 43

probabilities: 0.717 0.283

Node number 3: 209 observations

predicted class=1 expected loss=0.1866029

class counts: 39 170

probabilities: 0.187 0.813
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Chapter 6

Conclusion

By the empirical studies in the last chapter, we summarize the following

conclusions.

• Among the three studies, the weight 1/
√
se in weighted-averaging clas-

sifiers tends to have smaller error rate than other weights. Thus, if we

choose to use the weighted-averaging classifier as the analysis method,

1/
√
se should be the optimal weight option.

• The models with all important covariates and models selected according

to the AIC criteria have smaller errors than other methods when the

amount of missingness is moderate. However, the key disadvantage of

these methods is that classification/prediction of a new instance may

not be obtainable if there is missingness in predictors. The objective

of classification problems is to discriminant observations into different

groups. Thus, from this point of view, bootstrap imputation, CART

and weighted-averaging classifier would be better choices. Moreover, as

the proportion of missingness increases and exceeds 25%, the superior
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performance of these three methods appears.

• If we compare the tree methods: bootstrap imputation, CART, and

weighted-averaging classifier with weight 1/
√
se, we would say that boot-

strap imputation sometimes may be unstable and not rationale. When

there’s no missing value in the testing data (study 2), bootstrap performs

the best among the three competitors. When the missingness in data is

not large (study 1), the weighted-averaging classifier performs the best.

When the missingness is very large, as the situation in the fossil skull

data, CART would be the best choice. It misclassified less cases than

other methods.
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[9] Šefčáková A., A new find of upper palaeolithic skull in Slovakia., Anthro-

pologie (Brno) 35(2) (1997), 233.
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