
Editor's Note 

Invasions of new territory-by plants, animals, or genes-are an old topic in 
ecology, but hardly obsolete: the spread of pests such as the gypsy moth, exotic 
plants, recurrent and emerging infectious diseases, and genetically engineered 
organisms are important contemporary problems for ecology. For nearly half a 

. . ~~century, reaction-diffusion models have been the main analytic framework for 

Emphasizing9 modeling spatial spread, in part because of the well-developed mathematical theory 
new ideas that tells us how to compute things like the long-term rate of spread and the 

conditions for spatial pattern formation. In this paper, we are given the tools to 

to study the rate of spread for invading organisms in a very different kind of model, 
integrodifference equations. Unlike diffusion equations, these models can accom- 

stimulate research modate leptokurtic (broad-tailed) dispersal patterns, and in such cases they can 
exhibit the accelerating rates of spread that have been observed in some invasions. 

in ecology Of course this does not mean that we should stop using diffusion models, but it 
gives us an alternative with a different set of assumptions that is likely to be more 
accurate when the dispersal pattern of individuals is far from the Gaussian dis- 
tribution implicit in a diffusion model. 
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Abstract 
Models that describe the spread of invading organisms often assume that the 

dispersal distances of propagules are normally distributed. In contrast, measured 
dispersal curves are typically leptokurtic, not normal. In this paper, we consider 
a class of models, integrodifference equations, that directly incorporate detailed 
dispersal data as well as population growth dynamics. We provide explicit formulas 
for the speed of invasion for compensatory growth and for different choices of 
the propagule redistribution kernel and apply these formulas to the spread of D. 
pseudoobscura. We observe that: (1) the speed of invasion of a spreading popu- 
lation is extremely sensitive to the precise shape of the redistribution kernel and, 
in particular, to the tail of the distribution; (2) fat-tailed kernels can generate 
accelerating invasions rather than constant-speed travelling waves; (3) normal 
redistribution kernels (and by inference, many reaction-diffusion models) may 
grossly underestimate rates of spread of invading populations in comparison with 
models that incorporate more realistic leptokurtic distributions; and (4) the relative 
superiority of different redistribution kernels depends, in general, on the precise 
magnitude of the net reproductive rate. The addition of an Allee effect to an 
integrodifference equation may decrease the overall rate of spread. An Allee effect 
may also introduce a critical range; the population must surpass this spatial thresh- 
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old in order to invade successfully. Fat-tailed kernels 
and Allee effects provide alternative explanations for 
the accelerating rates of spread observed for many 
invasions. 

Key words: Allee effect; biological invasions; dispersal; 
integrodifference equations; seed shadows; spatial models. 

Introduction 
Dispersal patterns have been measured for a tre- 

mendous number of organisms, either as seed shadows 
(Okubo and Levin 1989, Carey and Watkinson 1993, 
Willson 1993), plant-disease dispersal gradients (Ki- 
yosawa and Shiyomi 1972, Kable et al. 1980, Lambert 
et al. 1980; McCartney and Bainbridge 1984, Grove 
et al. 1985, Mundt and Leonard 1985, Fitt et al. 1987, 
Mundt 1989), or mark-recapture data (Dobzhansky 
and Wright 1943, Wolfenbarger 1946, 1959, 1975, 
Taylor 1978, Makino et al. 1987). There is tremendous 
variability in these data. At the same time, there is 
one overwhelming regularity: the spatial distribution 
of propagules about a source is typically leptokurtic 
(Bateman 1950, Wallace 1966, Okubo 1980, Howe and 
Westley 1986, Willson 1992), with more propagules 
near the center and in the tails than in a normal dis- 
tribution of comparable mean and variance. Indeed, 
dispersal data are frequently fit with a negative ex- 
ponential curve or with a negative power function 
(McCartney and Bainbridge 1984, Fitt et al. 1987, 
Okubo and Levin 1989, Willson, 1993). 

All too often, this pattern is ignored. Analyses of 
the spread of invading organisms (Okubo 1980, 
Roughgarden 1986, Williamson 1989, Hengeveld 
1994) frequently start with a simple reaction-diffusion 
model with exponential growth and Fickian diffusion. 
This model, introduced by Skellam (1951) to describe 
the spread of muskrats, is at odds with much of the 
dispersal data: individuals are assumed to disperse in 
each direction with equal probability and with the dis- 
persal distance normally (rather than leptokurtically) 
distributed. 

How should one proceed? Mollison (1977) has ar- 
gued for continuous-time models built around prob- 
ability (or contact) distributions for the distance that 
an individual moves. Spatial contact models incor- 
porate a variety of contact distributions, including the 
leptokurtic distributions that are so prevalent in the 
dispersal data. Continuous-time spatial contact models 
have been studied extensively with regard to epidem- 
ics (Kendall 1965, Mollison 1972a, b, Atkinson and 
Reuter 1976, Brown and Carr 1977). The recent ad- 
dition of age structure to these models (van den Bosch 
et al. 1990, Mollison 1991) has, in turn, prompted keen 
ecological interest (Hengeveld 1994). 

There are also discrete-time contact models. These 
models have a remarkably long history. They are at 
the heart of the problem of random flights (Pearson 
1905, Markoff 1912, Chandrasekhar 1943) wherein a 
particle undergoes a sequence of independent and ran- 
dom displacements of given distribution. Slatkin 
(1973), Weinberger (1978, 1982), and Lui (1982a, b, 
1983) used such models to predict changes in gene 
frequency. More recently, they have appeared in pop- 
ulation ecology, as integrodifference equations (Kot 
and Schaffer 1986, Hardin et al. 1990, Kot 1989, 1992, 
Andersen 1991, Hastings and Higgins 1994, Neubert 
et al. 1995) for populations with discrete nonoverlap- 
ping generations and well-defined growth and dis- 
persal stages. 

Some of the best dispersal data occur for monocar- 
pic plants and semelparous insects. Many of these or- 
ganisms have discrete nonoverlapping generations and 
well-defined growth and dispersal stages. We focus, 
therefore, on discrete-time spatial contact models- 
alias integrodifference equations. We are interested in 
the rate of spread of invading organisms. We are par- 
ticularly interested in the sensitivity of the speed of 
invasion to changes in the contact distribution (redis- 
tribution kernel) and to changes in the growth dynam- 
ics. 

In the section Model, we outline a simple discrete- 
time model for the growth and spread of organisms. 
We begin with simple density-dependent growth; we 
incorporate dispersal data directly into the model by 
means of a redistribution kernel. The shape of this 
redistribution kernel has a profound impact on the 
speed of invasion. We summarize various formulas for 
this speed in the Analytic results section. The detailed 
derivation of these formulas is relegated to Appendix 
A. In the section Empirical example, we reexamine 
the insect dispersal data of Dobzhansky and Wright 
(1943) and compare the rates of spread for five distinct 
redistribution kernels that fit this data. Critical depen- 
sation in growth may also have a profound effect on 
the speed and success of invasions. We analyze a trac- 
table model that incorporates such an Allee effect in 
the section Spread with Allee effect and in Appendix 
B. We discuss the implications of our results in the 
Discussion. 

Model 
We begin with a population in which individuals 

grow and disperse, in synchrony, on a continuous one- 
dimensional habitat. There is a sedentary stage and a 
dispersal stage. All growth occurs during the sedentary 
stage; all movement occurs during the dispersal stage. 
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For the sedentary stage, we begin with a simple 
nonlinear difference equation 

Nt+1 =-: f(Nt) (1) 

such as the Beverton-Holt stock-recruitment curve 
(Beverton and Holt 1957, Pielou 1977, Prout 1978) 

R0Nt 
Nt+= 1 + [(Ro - 1)IK]Nt' 

(2) 

or the Ricker (1954) curve 

Nt I Ntexp[r(1 -i).(3) 

In the above equations, Nt is the population level at 
time t, K is the carrying capacity of the environment, 
Ro is the net reproductive rate, and r is the intrinsic 
rate of increase. The exact form off(N,) will not matter 
as long as it is nonnegative and satisfies 

f(N) ' f '(O)N. (4) 

In particular, we assume that there is no Allee effect. 
We will relax this restriction in the section Spread with 
Allee effect. 

Eq. 1 does not account for the dispersion of the 
population. To amend this situation, we let Nt(x) rep- 
resent the population density as a function of space at 
the start of the tth generation. We imagine that change 
occurs in two distinct stages. (1) During the sedentary 
stage, Nt(x) is mapped intof[x, Nt(x)]. Explicit spatial 
dependence, henceforth dropped, reflects clinal (spa- 
tially varying, time-independent) variation in the pa- 
rameters. (2) Progeny then disseminate. We describe 
the details of this movement with a linear integral 
operator that tallies movement from all y to all x. To- 
gether, these two stages yield the integrodifference 
equation 

Nt+I(x) = L k(x, y)f[N,(y)] dy (5) 

for the growth and dispersal of the population on an 
infinite one-dimensional domain. 

The redistribution kernel k(x, y) describes the dis- 
persal of the population. In particular, k(x, y) is the 
probability density function for propagules dispersing 
from a source at position y. The kernel k(x, y) must 
remain nonnegative. It may, however, depend on ab- 
solute location or only on relative distance. In the latter 
case, Eq. 5 features a convolution integral: 

Nt+1(x) = j k(x - y)f[N,(y)] dy. (6) 

We will restrict our attention to convolution integrals 
throughout the remainder of this paper. 

The two assumptions, that the growth function f 
depends only on N, and that the redistribution kernel 
depends only on x - y, imply that the habitat is ho- 
mogeneous and that the growth and dispersal prop- 
erties are the same at each point in space. Methods 
for measuring the relevant ecological data and for es- 
timating the kernel from observed data are discussed 
in Southwood (1978), Silverman (1986), and Tarter 
and Lock (1993). We will say more about the shape 
of redistribution kernels in the sections Analytic re- 
sults and Empirical example. 

Analytic Results 
We have claimed that the exact form of f(N,) in Eq. 

6 does not matter. There is compelling evidence that 
the asymptotic velocity of expansion of a nonlinear 
(differential or integral) model is the same as that of 
its linearization. The continuous-time version of this 
broad principle has been referred to as the linear con- 
jecture (Mollison 1991). It is expected to hold if (a) 
an individual's reproduction in an "occupied" envi- 
ronment is always less than in a "virgin" environment 
(i.e., no critical depensation or Allee effect), and (b) 
the influence of an individual on the environment far 
from its (present) position is negligible (i.e., no long- 
distance density dependence) (van den Bosch et al. 
1990, Mollison 1991). 

For integrodifference equations, this same principle 
would imply that we may infer the velocity of Eq. 6 
from the linear integrodifference equation 

Nt+l(x) = f'(O) k(x - y)NX(y) dy. (7) 

Weinberger (1978, 1982) has proven this result for 
models with monotonically increasing growth func- 
tions. In addition, Eq. 4 guarantees us that the rate of 
spread will be at most that of Eq. 7, even with over- 
compensation (Clark 1990) or scramble competition 
(Hassell 1975). 

Despite this tremendous simplification, integrodif- 
ference equations may still exhibit a wide variety of 
solutions and a wide range of velocities for different 
choices of the redistribution kernel k(x - y). There 
are three important classes of redistribution kernels: 

1. The kernel k(x) has a moment-generating func- 
tion.-That is, the moment-generating function 

M(s) k(x)esx dx (8) 

exists for some interval of s about zero. 
These are kernels with exponentially bounded tails. 

Nonlinear integrodifference equations built with these 
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kernels typically possess travelling wave solutions 
(Weinberger 1978, 1982, Lui 1982a, b, 1983, Kot 
1992). For a given kernel, the minimum speed c of a 
rightward moving wave of invasion will depend upon 
the net reproductive rate Ro [we have taken f'(0) = 
RO; see Eq. 2]. The curve relating these two quantities 
may be written parametrically as 

M' (s) 
c= 

M(s) 
(9a) 

esM'(s)IM(s) 
= 

M(s) (9b) 

(see Appendix A). 
For example, the normal distribution 

k(x) = ex212a2 (10) 

has a moment-generating function of the form 

M(s) = ea2s212 (11) 

In this case, Eqs. 9a, b reduce to 

c = a&2s, (12a) 

Ro = ea 2s212 (12b) 

or, equivalently, to 

c=a c2nR0. (13) 

If one identifies 

r-ln Ro' (14a) 

2 
D- 2' (14b) 

one recaptures the speed of invasion, 

c = 2\/2Tr, (15) 

first derived by Fisher (1937) for the reaction-diffusion 
equation 

-N N(1 N + D 
2N 

(16) at ~ K ax2 

Other kernels (e.g., Neubert et al. 1995) yield other 
speeds of invasion. 

2. The kernel k(x) has finite moments, 

n= J xnk(x) dx, (17) 

of all orders n, but no moment-generating function.- 
These are fat-tailed kernels. Mollison (1972b) has 
shown (for continuous-time models) that kernels lack- 
ing exponentially bounded tails generate asymptoti- 
cally infinite velocities of expansion. We can be quite 

precise about the manner in which infinite velocities 
are reached for integrodifference equations. If the re- 
distribution kernel satisfies a certain technical con- 
dition, (Eq. A.27), the fundamental solution of Eq. 7, 
corresponding to an initial point source of strength No, 
satisfies 

Nt(x) - NoRtk(x), lxl > 1, t ? 1 (18) 

for large x (see Appendix A). If we now define the 
extent of the population as the distance from the source 
where the population first falls below a given thresh- 
old, Nt = N, N sufficiently small, it follows that the 
extent at time t, xt, is given by inverting Eq. 18 for Nt 
= N. That is, the extent is either 

(NoRt) (19) 

with k-I the inverse of k, or zero (if the population is 

always below N). 
For example, a population with redistribution kernel 

k(x) = e (20) 
4 

(see section Empirical example) has a spatial extent 

xt = 2 [(n Ro)t + ln( 41)] (21) 

that grows quadratically with time. The velocity of 
expansion grows linearly with time. 

3. The kernel k(x) has moments that are infinite.- 
These are extremely fat-tailed kernels. So much so, 
that Approximation 18 fails. However, one can still 
make considerable progress in analyzing Eq. 7 using 
Fourier transforms and characteristic functions (see 
Appendix A). For one well-known kernel, Eq. 7 may 
even be solved exactly. The Cauchy distribution, 

k(x) - -r(132 ? x2) (22) 

(with no moments of positive integral order) has a 
fundamental solution, corresponding to a point source 
of strength No. of the form 

Nt(x) = P(2t2 ? x2)NOR. (23) 

In this instance, the spatial extent of the population, 

t N - 2 (24) 

grows faster than geometrically. For f(N) = Nt, or- 
ganisms follow a Levy walk (Weiss 1994). 
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Empirical Example 
One of the earliest quantitative studies of insect dis- 

persal was Dobzhansky and Wright's (1943) study of 
genetically marked Drosophila pseudoobscura. Dob- 
zhansky and Wright analyzed their data in terms of 
the normal distribution, although they realized that the 
actual distribution was leptokurtic. Bateman (1950) 
questioned whether dispersing Drosophila are, in fact, 
normally distributed; he also tested for leptokurtosis. 
Wallace (1966) reanalyzed the Dobzhansky and 
Wright data and showed that they fit a leptokurtic mod- 
el in which the log of the number of recaptured flies 
decreased linearly with the square root of distance 
from the point of release. Taylor (1978) compared the 
effectiveness of eight different models in fitting the 
data and reaffirmed Wallace's result. 

Three of Taylor's curves (5, 6, and 8) integrate to 
infinity (even though there were only a finite number 
of flies released) and cannot be used for redistribution 
kernels. However, the other five curves (1, 2, 3, 4, and 
7) do have finite integrals. These five dispersal curves 
are shown in Fig. 1. The first curve is a parametric 
form of the normal distribution. Curves 2 and 3 were 
used by Wolfenbarger (1946, -1959, 1975) in his ex- 
tensive analyses of dispersal data. Curve 4 is Wallace's 
(1966) model for the dispersal of D. pseudoobscura. 
Finally, curve 7 is a parametric form of the Laplace 
distribution. Curve 4 provides the best fit to the data; 
curve 1 fits the data rather poorly. 

Taylor's models provide us with five plausible de- 
scriptions of lifetime dispersal in Drosophila pseu- 
doobscura. We have normalized these curves and 
formed five redistribution kernels. These kernels ap- 
pear as probability density functions 1, 2, 3, 4, and 7 
in Fig. 1. 

To construct a model for invading drosophilids, we 
must also account for growth. Prout (1978) has ad- 
vocated the use of the Beverton-Holt curve (Eq. 2) as 
a growth model for insects. This curve is consistent 
with the dynamic stability of drosophilid populations 
observed by Thomas et al. (1980), Pomerantz et al. 
(1980), and others. We use the Beverton-Holt curve 
throughout this section. However, two-stage models 
that describe density dependence among both pread- 
ults and adults (Prout and McChesney 1985, Rodri- 
guez 1988) could also be used. 

The actual spread was in two dimensions, but we 
treated the problem as one dimensional for conve- 
nience, and because one-dimensional models typically 
recapitulate the long-term features of axisymmetric 
spread (Murray 1989). In particular, we took the Bev- 
erton-Holt curve (Eq. 2) and combined it with each of 
the five probability density functions in Fig. 1 to form 
five integrodifference equations (not shown, but see 

Eq. 6). Fig. 2 shows the solutions that result from 
iterating each of these five integrodifference equations 
numerically for the same point-source initial condi- 
tion. The solutions are superficially rather similar. 
Models 1, 2, 3, and 7 (the four integrodifference equa- 
tions containing density functions 1, 2, 3, and 7) rap- 
idly generate travelling waves that preserve their shape 
and that move across space with constant velocity. 
However, the solutions for model 4 continue to change, 
both in shape and speed. There are also significant 
differences in spatial scale for all five models. These 
differences are accentuated in Fig. 3. This figure shows 
the extent of each population as a function of time (in 
generations). For models 1, 2, 3, and 7, the spatial 
extent increases linearly with time. The slope of each 
straight line is the speed of invasion (c) for that kernel. 
The spatial extent for model 4 increases quadratically 
with time. 

Probability density functions 1, 2, 3, and 7 have 
exponentially bounded tails. They belong to our first 
class of redistribution kernels. We expect each of these 
kernels to yield models with constant-speed travelling 
waves; our numerical simulations indicate that they 
do. Eqs. 9a, b allow us to compute the speed of in- 
vasion as a function of the net reproductive rate Ro for 
each of these four density functions. These curves are 
displayed in Fig. 4. The speeds of invasion for density 
functions 2 and 3 exceed that of density function 7 
for low values of Ro. However, the speed for density 
function 7 surpasses that for density functions 2 and 
3 at higher net reproductive rates. The best-fitting nor- 
mal distribution provides the lowest estimate of the 
speed of invasion for all of the plotted reproductive 
rates. 

Probability density function 4 is in our second class 
of redistribution kernels. Indeed, it is just Eq. 20 with 
a = 6.730678. There is no longer a constant speed of 
invasion for each value of Ro. Rather, this speed in- 
creases with time. Even so, Eq. 21 provides an accurate 
description of the spatial extent for each time and for 
each value of Ro. For example, Eq. 21 (with a = 
6.730678, Ro = 10.0, No = 50/32767, and N = 0.05) 
provides an excellent fit (see Fig. 5) to the numerically 
computed curve in Fig. 3. 

Spread with Allee Effect 
When the reproductive dynamics exhibit an Allee 

effect (critical depensation) the linear conjecture of 
the Analytic results section no longer holds. In this 
case the wave is no longer "pulled" by the leading 
edge of the wave, but is "pushed" by individuals re- 
producing at higher densities and spilling outwards 
(via the redistribution kernel) at densities sufficient to 
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Model D. pseudoobscura Density Function 
Dispersal k(x) 
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FIG. 1. Dispersal curves and redistribution kernels for D. pseudoobscura. The left half of the figure shows data for the 
number of D. pseudoobscura captured per trap-day and a set of fitted curves. The curves are taken from Taylor (1978). The 
parameters differ from those of Taylor (1978) because of our use of kilometres rather than metres. The curves have similar 
coefficients of determination (R2) but differ significantly in their tails. For each dispersal curve we have also drawn, on the 
right, the corresponding redistribution kernel. To obtain this curve, we mirrored each dispersal curve about the origin and 
divided by the total area underneath the curve so as to generate a probability density function with total area equal to 1. 
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FIG. 2. Simulated solutions to Eq. 6 for each of the five 
redistribution kernels in Fig. 1 and for growth governed by 
the Beverton-Holt curve with Ro = 10.0. Each integrodif- 
ference equation was iterated for 12 generations starting with 
an initial point source of strength No = 50/32 767 centered 
at the origin. The integrodifference equations were integrated 
using a fast-Fourier-transform-assisted implementation of 
the extended trapezoidal rule on a domain of length 50 with 
32768 grid points. Integrodifference equations built with 
density functions 1, 2, 3, and 7 rapidly generate travelling 
waves that preserve their shape and that move across space 
with constant velocity. In contrast, the "wave of invasion" 
in simulation 4 continues to accelerate. 

Overcome the threshold for population growth (Nc) 
(Fig. 6). 

There is no easy general method for calculating this 
spread rate (but see Weinberger 1982, Lui 1983). 
Hence, to highlight the influence of an Allee effect we 
use a piecewise constant approximation to the growth 
function (see horizontal dashed lines in Fig. 6). We 
couple this to a general redistribution kernel. For this 
particular model, it is easy to calculate the spread rate, 
as shown below and in Appendix B. 

We assume that a very large (semi-infinite) area has 
been colonized and that No(x) lies below the Allee 
threshold (Nc) to the left of some point x, and above 
NC to the right of x,. Integrodifference Eq. 6 then sim- 
plifies to 

N,+1(x) = K f k(x -y) dy = KF(x -x,), (25) 

CL~~~~~~~x 

where F(x) is the cumulative distribution function 
(CDF), 

F(x) k(y) dy, (26) 
_00 

and K is the carrying capacity for the population (see 
Fig. 6). Another iteration yields a further translation 
of the function on the right-hand side of Eq. 25. Thus 
the shape of the wave front is given by the cumulative 
distribution function for the kernel. The distance in- 
vaded in one generation, x, - x,, is given by Eq. 25 
as 

F(xt+ -x,) = N, (27) 
K (7 

Fig. 7 shows us that, with the above formula, the pop- 
ulation is spreading (x, - xt+, > 0) if NC < KF(O) and 
is retreating (x, - xt+, < 0) if NC > KF(O). In the case 
of a symmetric kernel [F(O) = 1/2], the range expands 
if the Allee threshold NC is below half the carrying 
capacity and retreats if the Allee threshold is above 
half the carrying capacity. 

We can apply our results to the kernels for D. pseu- 
doobscura plotted in Fig. 1. As motivation for doing 
so, we note that although drosophilids typically exhibit 
compensatory growth, the introduction of sterile males 
may introduce an Allee effect (Prout 1978, Lewis and 
van den Driessche 1993). Given the simplified Allee 
growth dynamics analyzed here, we can easily cal- 
culate the distance invaded per generation for any 

15 

*-* Model 1 
-o eModel 2 

At Model 3 

P 10 ** ---4Model 4 
X o v Model 7 

0 

0 1 2 3 4 5 6 7 8 9 10 11 12 
Generation 

FIG. 3. The extent of each population in Fig. 2 is plotted 
as a function of time. The spatial extent was computed by 
finding the distance from the source where the population 
first reached the threshold N = 0.05. For models 1, 2, 3, and 
7, the spatial extent increases linearly with time. However, 
for model 4, this measure increases as a quadratic function 
of time. 
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FIG. 4. The speed of invasion as a function of the net 
reproductive rate R0 for the four probability density functions 
1, 2, 3, and 7 (see Fig. 1). Each curve was computed using 
parametric Eqs. 9a, b. The best-fitting normal distribution 
(density function 1) provides the lowest estimate of the speed 
of invasion for all plotted reproductive rates. Density func- 
tion 4 was not included in this figure since it generates ac- 
celerating wavefronts rather than constant-speed travelling 
waves. 

threshold NC (as shown in Fig. 8). It is interesting to 
note that while the rank orderings for invasion rates 
are effectively the same as those given in Fig. 4, the 
fat-tailed kernel (Eq. 4) now has a finite invasion 
speed. However, for small thresholds, this speed is 
quite large. 

We now consider a population that initially occupies 
a small interval. We define the population range at 
time t, 2xt, as that length of interval within which the 
population level exceeds the growth threshold Nc; we 
choose the space coordinate so that it is centered on 
the middle of this range. In Appendix B (see also Fig. 
9) we show that the initial range, 2xo, determines 
whether the range increases or decreases with time. 
The critical spatial extent xc, which neither increases 
nor decreases with time, is given by 

F(2x,) = F(0) + N' (28) 
K 

(Fig. 7). A simple method of predicting the success 
of an invasion in terms of the cumulative distribution 
function (Eq. 26), the Allee threshold (N), the car- 
rying capacity (K), and the initial range (2xo) is thus 
to compare F(2xo) with F(0) + NC IK. If F(2xo) is larger, 
then x0 is larger than xc (Fig. 7) and the invasion will 
succeed. Otherwise, the invasion will fail, collapsing 
inwards upon itself. 

In Appendix B we also derive a recurrence rela- 
tionship between xt+, and xt for the Laplace redistri- 

15 
* Numerical Results 

Predicted Values 

E lo 

v0 
CZ) 

. 5 
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0 1 2 3 4 5 6 7 8 9 10 11 12 

Generation 
FIG. 5. A comparison between an analytic approximation 

for the spatial extent of an accelerating invader and the actual 
extent that was observed in numerical simulations. The nu- 
merical values were obtained by simulating Eq. 6 with the 
redistribution kernel (Eq. 20) under conditions described in 
Fig. 2 and with Ro = 10.0, a = 6.730678, and N = 0.05. 
The analytic approximation was Eq. 21 with Ro, o, and N as 
above. The analytic approximation does an excellent job of 
predicting the numerically calculated course of invasion. 

bution kernel. The rate of spread from generation to 
generation is shown in Fig. 10. 

In summary, we note that the invasion will always 
fail if the Allee threshold is too high [NC > KF(O)]. 
However, even with a low Allee threshold, there is a 

0 K- - r----- 

LL 

0 

0 _J 

NC K 

Density (Nt) 
FIG. 6. The Allee growth function f(N,) as a function of 

the population density N,. The function satisfies N,+ = f(N), 
and the diagonal line satisfies N, +, = N,. Note that f (N,) is 
below the diagonal for 0 < N, < N, and that it is above the 
diagonal for N, < N < K. The solution to the difference 
equation N, + I = f (N,) can be obtained graphically by "cob- 
webbing." Note also that populations below N, go extinct, 
while populations initially above N, approach the carrying 
capacity K. The dashed line shows a piecewise constant ap- 
proximation to f. 
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FIG. 7. The cumulative distribution function of the re- 
distribution kernel (Eq. 26) can be used to calculate asymp- 
totic rate of spread per generation (Ax = x,+, - x,) and the 
critical range 2x, that a population must surpass in order to 
invade. Refer to Eqs. 27 and 28. The cumulative distribution 
function in this figure corresponds to the Laplace redistri- 
bution kernel in Fig. 1 (density function 7) with b = 27.8; 
the threshold N,/K has been set to 0.2. As a result, A = 
-0.0330 km, F(0) = 0.5, and 2x, = 0.0184 km. 

spatial threshold for the range (2x,) given by Eq. 28; 
the population must surpass this threshold if the in- 
vasion is to succeed. Also, just past this threshold, the 
invasion starts slowly; it then accelerates before as- 
ymptotically approaching a constant velocity. For a 
successful invasion, the spreading wave front is (as- 
ymptotically) the cumulative distribution function for 
the dispersal kernel. 
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0.81 
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FIG. 8. Cumulative distribution functions for the five D. 
pseudoobscura redistribution kernels of Fig. 1. For an ide- 
alized Allee effect, the rate of spread is determined by the 
abscissa of the point of intersection of the cumulative dis- 
tribution function with the horizontal line of height Nc IK 
(see Fig. 7). Increasing the threshold Nc decreases the rate 
of spread. 

1.0 -- --- - - - - - 
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FIG. 9. The population density at time t + 1, N,+,(x), 

can be derived graphically from the corresponding popula- 
tion density N,(x) at time t. N,(x) = NC determines the po- 
pulation's spatial extent x,. This is used to evaluate two 
horizontally translated cumulative distribution functions, 
F(x + x,) and F(x - x), of the redistribution kernel. Finally, 
Eq. B.2 gives the N,+,(x)/K as the difference between the 
two distribution functions. The redistribution kernel and Al- 
lee threshold NC IK are identical to those in Fig. 6. The spatial 
extent xt was chosen to be 0.0688 km, and thus xt+ = 0.101 
km. 

Aronson and Weinberger (1975) have shown that 
similar thresholds exist for certain classes of reaction- 
diffusion models in one spatial dimension; these 
thresholds have been analyzed geometrically (in two 
spatial dimensions) by Lewis and Kareiva (1993). 

0.05 
x= G(xt) 

E / / xt+1=xt 

0.0 

0.0 x, xt (km) 
0.05 

FIG. 10. A mapping for spatial extent as a function of 
time. G(x,) is the mapping that prescribes the spatial extent 
at time t + 1 in terms of the spatial extent at time t. If xo < 
xc, the range falls to 0, whereas if xo > xc, the rate of spread 
increases and asymptotically approaches a constant velocity. 
Refer to Eqs. B.8 and B. 10. The redistribution kernel, NCIK, 
and xc are as given in Fig. 6. 
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Discussion 
There are several conclusions that follow from the 

general analyses of the Analytic results and Spread 
with Allee effect sections and from the detailed ex- 
ample of the Empirical example section: 

1) The speed of invasion of a spreading population 
is quite sensitive to the shape of the redistribution 
kernel. Kernels with similar coefficients of determi- 
nation will yield dramatically different speeds if they 
differ significantly in their tails. 

This would appear to be an especially vexing prob- 
lem for various model-free curve estimation proce- 
dures. A probability density may, for example, be es- 
timated from a sample by replacing each data-point 
by a kernel function (not to be confused with the re- 
distribution kernel) of fixed window width or band- 
width. This kernel-based estimation procedure is a 
simple generalization of the usual histogram. How- 
ever, because the window width is fixed across the 
entire sample, there is a tendency for spurious noise 
to appear in the tails of the estimates of long-tailed 
distributions (Silverman 1986). If the estimates are 
smoothed to deal with this, essential details in the main 
part of the distribution are often masked. Also, there 
appears to be little difference between commonly cho- 
sen kernels with regard to minimizing mean integrated 
square error (Tarter and Lock 1993). Density esti- 
mation researchers may, as a result, feel that the shape 
of the kernel function is not of crucial importance. 
However, different kernel functions will typically gen- 
erate probability density functions with very different 
tails. 

2) Solutions to integrodifference equations may 
display accelerating rates of spread. Fat-tailed kernels 
that lack exponentially bounded tails give rise to ac- 
celerating invasions. Populations escaping an Allee 
effect may temporarily accelerate prior to attaining a 
constant speed. 

How seriously should one take fat-tailed kernels and 
the resulting prediction of accelerating invasions? One 
reasonable approach is to argue that any infinite tail, 
whether Gaussian or fat, is clearly unrealistic. Any 
reasonable biological model for spread will have an 
upper bound for the distance that one propagule can 
travel. As a result, all reasonable redistribution kernels 
should vanish outside some bounded set, and thus have 
no tail at all. Truncating a tail, in turn, leads us back 
to a constant (though possibly high) speed of invasion. 

More to the point, there is danger in extrapolating 
any set of dispersal data. The D. pseudoobscura data 
in Fig. 1 is for distances of up to 0.38 km. Extrapo- 
lating to distances far beyond this is perilous. 

At the same time, certain groups of organisms do 
appear to have long-tailed redistribution kernels. It is 

common in plant pathology and plant disease epide- 
miology to fit negative power laws to the dispersal of 
air-borne fungal, bacterial, and viral spores. Of 124 
dispersal gradients measured for dry airborne spores 
or pollen and included in the review by Gregory 
(1968), 59 were fit better by a negative power law and 
65 were fit better by a simple exponential model (Fitt 
and McCartney 1986). In a later and more exhaustive 
analysis of 325 data sets, Fitt et al. (1987) conclude 
that there is generally little difference between these 
two models in the goodness of fit to these data, al- 
though gradients for fungi with air-borne spores less 
than 10 pLm in diameter were fit better by power law 
models. 

Fitt et al. (1987) warn against extrapolating spore 
dispersal data outside their observed range, and yet 
the phytopathology literature is replete with discus- 
sions and examples of the importance of long-distance 
dispersal (Aylor 1986, Pedgley 1986, Nagarajan and 
Singh 1990). Minute spores may remain airborne, car- 
ried by the wind, for days. One of the most fascinating 
examples concerns the spread of spores of Puccinia 
graminis var. tritici (the causal agent of wheat stem 
rust) (Roelfs 1985, Aylor 1986, Pedgley 1986). The 
uredial stage of this rust does not survive the winter 
north of Texas and is unable to survive the summer 
in Texas. It persists by spreading northward in spring 
and early summer and southward in late summer and 
fall. In 1923, it spread northward at -54 km/d. In 
1925, on the other hand, rust appeared almost simul- 
taneously over a distance of 970 km, suggesting that 
one massive spore shower may have brought inoculum 
to the entire region. The longest well-documented sin- 
gle movement of urediospores in North America was 
at least 680 km, between two wheat-growing regions 
in Canada separated by forest, lakes, and tundra 
(Roelfs 1985). Other examples include the spread of 
Puccinia polysora (the causal agent of maize rust) 
across Africa from 1949 to 1953 (Rainey 1973), the 
possible introduction of Hemileia vastastrix (the caus- 
al agent of coffee leaf rust) from Angola into Brazil 
by one weather event (Bowden et al. 1971), the sudden 
and rapid spread of coffee rust across South America 
(Schieber 1972, 1975, Waller 1979), the apparent 
transport of urediospores of Puccinia melanocephala 
(the causal agent of sugarcane rust) from the Came- 
roons in West Africa to the Dominican Republic in 
the Caribbean over the course of 9 d (Purdy et al. 
1985), and the subsequent rapid spread of this rust 
throughout the Americas in the next year. 

Minogue (1989) has also argued, on theoretical 
grounds, for the use of the fat-tailed Pareto distribution 
for data that show no convergence toward constant 
estimates of the mean and variance (of dispersal dis- 
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tance) over practical scales of observation. He has also 
emphasized that even when the majority of spores land 
close to the source and only a tiny proportion travel 
long distances, as is common among wind-dispersed 
pathogens, it is that tiny proportion that determines 
the rate of spatial spread. Shaw (1994), in turn, has 
argued that the fat-tailed Cauchy distribution (see Eq. 
22) is just the kind of redistribution kernel that phy- 
topathologists should be studying to understand cer- 
tain unpredictable plant pathogens. 

In the real world, all spreading populations must 
eventually slow down. They may, nonetheless, exhibit 
an initial period in which the range expansion rate is 
increasing and curvilinear. This is the case, for ex- 
ample, with the historical spread of the Japanese beetle 
(Popilliajaponica) and of the European Starling (Stur- 
nus vulgaris) in eastern North America (Elton 1958, 
Hengeveld 1989) as well as for many of the plant 
pathogens that we have mentioned. (See Shigesada et 
al. [1995] for additional examples and for a recent 
discussion of this topic.) One possible explanation for 
accelerating invasions, to be further tested, is that the 
organisms in question are sufficiently vagile as to have 
fat-tailed redistribution kernels. However, an alter- 
native hypothesis is that these populations accelerate 
because of Allee-induced spatial thresholds (see Fig. 
9). 

3) The best-fitting normal redistribution kernel may 
grossly underestimate the speed of invasion of a 
spreading population in comparison with more real- 
istic leptokurtic distributions. Since integrodifference 
equations with normal redistribution kernels typically 
yield the same speeds of invasion as simple reaction- 
diffusion models, it appears that simple reaction-dif- 
fusion models may also grossly underestimate speeds 
of invasion. This is troubling to the extent that reac- 
tion-diffusion models are the most commonly used 
models of spatial spread. 

4) The speed of invasion of a spreading population 
is also dependent on the net reproductive rate for that 
population. Eqs. 9a, b provide us with a recipe for 
computing the speed of invasion as a function of the 
net reproductive rate. Surprisingly, redistribution ker- 
nels that are more effective in spreading a population 
at low net reproductive rate may be less effective at 
high net reproductive rates. This is most clearly seen 
in Fig. 4 where the speeds of invasion of probability 
density functions 2 and 3 (see Fig. 1) exceed that of 
density function 7 at low net reproductive rates but 
lag behind density function 7 at higher net reproduc- 
tive rates. 

Density functions 2 and 3 have relatively high vari- 
ance. Individual propagules move far, on average, but 
they also have a maximum dispersal distance. Ulti- 

mately (at large RO), the population wave speed is con- 
strained by this maximum dispersal distance. For den- 
sity function 7, individual propagules move shorter 
distances, on average. However, there is no maximum 
dispersal distance, and as Ro increases, more and more 
individuals move the long distances permitted by an 
exponentially decaying tail: the speed of the travelling 
wave continues to increase with Ro. 

A number of investigators have studied dispersal in 
which propagules are launched like projectiles. For 
these ballistic dispersers, propagules tend to pile up 
close to the maximum dispersal distance (Buller 1909, 
Beer and Swaine 1977, Neubert et al. 1995). In the 
absence of secondary dispersal, we would thus expect 
that, as the net reproductive rate increases, spread rates 
would increase rapidly and then asymptote out rapidly 
to the maximum dispersal distance per generation. 

A great many ecologists have gone to great lengths 
to collect detailed dispersal data. The previous four 
conclusions suggest just how important these detailed 
data are in determining major differences in rates of 
spread of invading organisms. Finally, integrodiffer- 
ence equations appear to provide an extremely useful 
framework for the analysis of these data. 
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APPENDIX A 
1) We begin with a heuristic derivation of Eqs. 9a, b that 

is similar in spirit to the derivation of the wave speed for 
Fisher's equation (Britton 1986, Murray 1977, 1989). 

Simple travelling waves that are solutions of Eq. 6 and 
that move to the right with velocity c > 0 satisfy 

N,+1 (x) = N,(x - c). (A. 1) 

Near the front of any such wave we have, by Eq. 7 that 

N,(x - c) = Ro f k(x - y)N,(y) dy, (A.2) 

where Ro = f'(O). Since Eq. A.2 is a linear equation, we look 
for the edge of the travelling wave to be exponential, 

N,(x) oc e-- (A.3) 

with s > 0 so that 
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e-sxesc = RoJ k(x - y)e-sY dy. (A.4) 

The simple change of variable 

u-x-y (A.5) 

then yields the characteristic equation 

esc = Ro f k(u)esu du = Ro M(s). (A.6) 

M(s) is the moment-generating function of the kernel k(x) 
(see Eq. 8). 

We are interested in monotonic (rather than oscillatory) 
wave fronts and real (rather than complex) roots s. Real roots 
emerge as a double root at the second-order contact that is 
given by differentiating (Eq. A.6) with respect to s: 

cesc = Ro M'(s). (A.7) 

Combining Eqs. A.6 and A.7, we obtain the parametric rep- 
resentation 

M' (s) 
c = M( (A.8a) 

M(S) 

esM'(s)/M(s) 
? 

M(s) (A.8b) 

for positive s. This curve will typically yield a minimum 
travelling wave speed c for each choice of net reproductive 
rate Ro (Ro > 1). 

Initial conditions with "fat tails" may evolve into trav- 
elling waves with speeds in excess of this minimum trav- 
elling wave speed c. However, if the initial condition has 
compact support (is equal to zero outside some closed bound- 
ed region), the actual speed of propagation will not, in fact, 
be greater than c (Weinberger 1978, 1982). In particular, Eq. 
4 ensures us that linearization (Eq. 7) will provide us with 
an upper bound for the rate of spread of a population gov- 
erned by Eq. 6. Indeed, for any positive number s for which 
M(s) is finite, define 

1 
c(s) = - ln[ROM(s)] (A.9) 

s 

(cf. Eq. A.6). Then, if 

No(x) < Ae-sx (A. 10) 

for some positive constant A, the recursion (Eq. 7) guarantees 
us that 

N,(x) ' Ro M(s)Ae-sx, (A. l 1) 

which we may rewrite as 

N,(x) c Aes[xc(s)I (A. 12) 

Then, by induction, 

N,(x) 'Ae-S[X-C(S)t]. (A. 13) 

Thus, the speed of propagation is bounded above by c(s). 
Initial conditions with compact support permit us to work 
with arbitrary s > 0. Minimizing c(s) with respect to s then 
gives Eqs. A.8a, b. 

For integrodifference equations with overcompensation or 
scramble competition, simple travelling waves may give way 
to travelling cycles or even travelling chaotic solutions (Kot 
1992). However, Eqs. A.8a, b still provide an upper bound 
on the speed of propagation. 

2) The moment-generating function M(s) diverges if the 
redistribution kernel k(x) fails to have exponentially bounded 
tails, and in this case, we no longer expect simple travelling 
waves or other constant speed solutions. However, Eq. 7 is 
still a valid approximation to Eq. 6 at low densities. It is 
natural, therefore, to try to solve Eq. 7, with an initial point 
source of strength No, 

N,+I(x) = Ro f k(x - y)N,(y) dy, (A. 14a) 

No(x) = No0(x), (A.14b) 

directly. 
We introduce the Fourier transform, 

N,(w) = f N,(x)e'ox dx, (A. 15) 

and its inverse 

N,(x) = +1 N,(w)e-x dw, (A.16) 

and use the fact that convolution integrals simplify under 
Fourier transformation. Indeed, upon Fourier transformation, 
Eq. A.14a reduces to 

N,+ 1(X) = Ro k(?) N,(w). (A.17) 

For our particular choice of initial condition, 

R,(w) = No Ro kt(c), (A.18) 

for t ? 1. 
It is often difficult to invert Eq. A.18 directly. Instead, we 

analyze the Fourier transform k(w) and expand the expo- 
nential in this characteristic function in a Taylor series. When 
all of the moments of k(x) are finite, we have the formal 
expansion 

k((o) = e lwxk(x) dx = T ( in)k(x) dx 

(jW)nl Xn _j_n 
= E -I xnk(x) dx = , i (A.19) 

n=O n! n=O n! 
(e.g., Weiss 1994). Eq. A.18 may now be rewritten for- 
mally as 

Nt(w) = No Rt k(w) [ ()njt (A.20) 
n=O n! 

For most kernels that have finite moments of all orders, 
Eq. A.19 is rigorously correct. However, we refer to Eqs. 
A.19 and A.20 as formal expansions because, for certain 
kernels, Eq. A.19 diverges for all nonzero values of w. For- 
tunately, Eq. A.19 can then be interpreted as an asymptotic 
equality in the limit as X goes to zero (Hughes 1995). (See 
Bush [1992] for a useful introduction to the theory of di- 
vergent asymptotic series.) 

Further simplification of Eq. A.20 follows from a multi- 
nomial expansion of the bracketed term (t being an integer). 
However, for the general case, the resulting notation can be 
onerous. We begin, therefore, by showing that Eq. 18 is 
correct for the cases t = 1, 2, 3, provided that the tails of 
the kernel are sufficiently flat (Eq. A.27). 

For t = 1, Eq. A.20 reduces to 

N1(w) = No Ro k(w), (A.21) 

and it follows trivially that 
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N,(x) = No Ro k(x). (A.22) 

For t = 2, Eq. A.20 reduces to 

N2(() = NoR2k(w)) [ 4 An:( ) j (A.23) 
n=O n! 

or 

N2(wo) = NoRo Apn k(w) . (A.24) 
n=-O n 

However, (iwo)nk(w) is just the Fourier transform of (-l)ndnk/ 
dXn. Hence, if we take the inverse transform of Eq. A.24 
termwise, we obtain 

N2(x) = NOR2 J)n dnk] (A.25) 

Since p4' = 1 for a probability density function, this may be 
rewritten as. 

N2(x) = NOR2k(x) [1 + )n !kdn]. (A.26) 

In general, Expansion A.26 is of little use (Papoulis 1962); 
the convergence, if it occurs, is usually too slow to provide 
useful estimates. However, for large x, k(x) decays slower 
than the slowest-decaying exponential (since it has no mo- 
ment generating function) and faster than a negative power 
function (since it does have moments). A great many kernels 
in this class (e.g., Eq. 20) satisfy 

lim [ 1dnk(x) 0 (A.27) 
kx- k(x) dxn 

for n 2 1, so that 

N2(x) - NOR2k(x), lxi > 1. (A.28) 

For t = 3, Eq. A.20 reduces to 

N3((o) = NoR3k((w) [ .n (n j* (A.29) 
n=O n! 

By employing Cauchy's rule for the product of two infinite 
series, we obtain 

~A[e nN (ico)n 
N3(R) = No Io I Pn,mn-m. k(w). (A.30) = 

0n-0 tm=0 \nf 

The new coefficients are, in effect, binomial convolutions of 
the old coefficients. Once again, (iw)nk(w) is just the Fourier 
transform of (-_ )ndnkkdxn. Taking the inverse transform of 
Eq. A.30 termwise, we thus obtain 

N(x) = No R3 E L[ (fL)mn j(-m)n j (A.31) 

or 

N3(x) = NoRok(x){1 + Xn 

(A.32) 

Mercifully, Eq. A.27 still applies, so that 

N3(x) - NoRo k(x), lxl > 1. (A.33) 

We can clearly continue in this manner. For each suc- 
ceeding power of the characteristic function and of the power 
series (Eq. A. 19), we can form a Cauchy product between 
Eq. A. 19 and the preceding power. Admittedly, the coeffi- 
cients in this product will be quite complex, with binomial 

convolutions being replaced by multinomial convolutions, 
but in each instance, if the limit (Eq. A.27) is satisfied, we 
have 

N,(x) - NoRok(x), lxi > 1, t 2 1. (A.34) 

Condition A.27, that the tails of the kernel are sufficiently 
flat, is at the heart of this proof. Ideally, this condition should 
be checked for each candidate redistribution kernel. It is true 
for all the kernels that we have tried that have moments but 
no moment-generating function and that decay monoton- 
ically in the tail. However, it is easy enough to construct 
kernels that oscillate in the tail and that violate Eq. A.27. 

(3) Separate consideration must be given to redistribution 
kernels that have only a finite number of moments, but as- 
ymptotic results in such cases are still based on the char- 
acteristic function. Consider, for example, a redistribution 
kernel that has a stable-law form such that 

k(x)~ l- (A.35) 

for large lxi with [ a scaling parameter and 0 < ot ' 2. It 
can be shown (see Weiss 1994) that for large lxi the depen- 
dence of N,(x) on x is the same as that of k(x). 

This invariance with respect to space is especially clear 
for the Cauchy distribution, 

k(x) =( 2 + ) (A.36) 

which has 

k(co) = e-lxl (A.37) 

as its Fourier transform (characteristic function). In this in- 
stance, Eq. A.18 reduces to 

Nt(co) = NoRte tIlI. (A.38) 

Eq. A.38 can be inverted directly, 

Nt(x) = Pt NoRt (A.39) 
IT([2t2 + X2) 

0 

The preservation of the large lxi dependence of Nt(x) is 
now self-evident. 

APPENDIX B 
We turn our attention to integrodifference equations that 

exhibit the idealized Allee effect of Fig. 6. However, we now 
consider a population that initially occupies a small interval. 
We define the population range at time t, 2x,, as that length 
of interval within which the population level exceeds the 
growth threshold NC and we choose the space coordinate so 
that it is centered on the middle of this range (Fig. 9). For 
the piecewise constant growth dynamics of Fig. 6, we may 
rewrite integrodifference Eq. 6 as 

Nt+,(x) = K f k(x - y) dy. (B. 1) 

A change of variables and integration yields 

Nt+1(x) = K [F(x + xt) - F(x - x)] (B.2) 

where F(x) is the cumulative distribution function (CDF) 
defined in Eq. 26. This method of calculating the solution 
is shown graphically in Fig. 9. Provided that N,+ (x) exceeds 
the threshold for growth (Nc), the new population range 2xt+, 
is given by Eq. B.2 as 
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F(x,+1 + xt) - F(x,- x) = c (B.3) 

The critical spatial extent that neither increases nor decreases 
with time is given by 

F(2xc) = F(O) + (B.4) 
K 

For the Laplace redistribution kernel, 

k(x - y) = -oe-k-YI, (B.5) 
2 

Eq. B.2 yields 

K sinh(oxt) exp(otx), x < -xt 
Nt+1(x) = K[1 - exp(-ox,)cosh(otx)], -x, < x < x,. 

K sinh(oxt) exp(-ox), x > x, 
(B.6) 

If the population is invading (xt+, > xt), 

sinh(otx,) exp(-ox,+) =N, (B.7) 

and 

I 
- [K sinh(ox,)j (B.8) 

maps the spatial extent from generation to generation. This 
mapping can be iterated graphically (see Fig. 10). Alterna- 
tively, if the polulation is retreating (xt+1 < xt), we have that 

1 - exp(-axt) cosh(otxt+,) = Nc (B.9) 
K 

The decrease in spatial extent is then described by the map- 
ping 

xtI = -cosh-I(I - NC) exp(ox,)I. (B.10) 
o [ Kj 
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