30841

NATIONAL LIBRARY S | alauomf-:ous NATIONALE
- OTTAWA | 5 . OTTAWA

-

NmsoF Aumon..§.7.(?—."z.€.4/.'.._. .'.ﬁkif‘/?./.’.ﬁ)t;l. .
.TITLE OF msrs.%(.ﬂ‘.&«z.(. RRT VYN Expenimedts

.f\ L .b.w,..'.-.’tlf.‘.c...'..4/.(./1(,1-./.‘ S.p:.s.‘f.‘:‘—’.m...'

O LR E R AR KRR LR A

' 'DEGREE FOR wHICH 'mBsrs WAS Pnesemn 7§

. YEAR THIS oacnee mmn.../..f.?.?...............‘
' Perlission is ‘hereby granted to THE ‘NATIORAL LIBRARY

3(!’ CANADA to -lcrofill this thesis and to lend or sell copies

. of the fill . .

- The author reserves other publication rights, end

‘neither the thesis nor extensive extrects fro- it ny be
‘printed or otherwise reproduced without the euthor's

written per-ission o . -

- (Simed.)‘,.%/:ﬁ

: 'PBMBNT AWRBSS‘

/.206/ #w,y...?.‘./..a.
/Vac,/uis Was/\/ 78"737

NL-91 (~lO-68) '

" Canadian Theses Division
Cataloguing Branch

INFORMATION TO USERS

THIS DISSERTATION HAS BEEN
MICROFILMED EXACTLY ‘AS RECEIVED -

This copx‘was.produced from a micro-
fiche copy of the original. document.

. The quality of the copy is heavily"

dependent upon the quatity of the
original thesis submitted for. -
microfilming. "Every-effort has

.been made to ensure the highest .
: ._-quality of reproduction possible.

- PLEASE NOTE: Some paggs.may:have.‘
. indistinct print. Filmed as - '

received. -

P

National Library of Canéda '

' Ottawa, Canada - . .KIA ON4 T

v

AVIS AUX USAGERS

)

LA THESEA ETE MICROFILMEE -
_TELLE QUE NOUS L'AVONS RECUE

Cette copie a &té faite 3 partir
d‘une microfiche du document

original. L& qualité de 1a copie

dépend grandement de -1a qualité .
de 1a thase soumise pour le

microfilmage. Nous avons tout -
fait pour assurer upe qualite
- superieure de.repre_duction-t

" NOTA BENE: - La qualité d'impression

de. certaines pages peut-laissér & ;

_ “désirer. Microfilmee telle qug
" 'nous 1'avons regue. &

Division des. theses canadienries
Direction du catalogage :
Biblioth8que nationale du Canada

. Ottawa, Canada - ~ KIA ON4

‘f"/&

THE UNIVERSITY OF ALBERTA

AL MENORY EXPERIHENTS ON THE UNIX SYSTEN ~ -

VIRTU
‘ S A - Y
R SR ! - " - \
A STEVEN P. SUTPHEN . '
| S ¥ razsxs
suauxwrzo 0 THE FACULTY or GRlDUATE srunxzs ssb RESEARCE

RTIAL PUL!’ILHEF‘I‘ oF THE RBQUIBB!BHTS FPOR: THE D‘EGREE

CIN P
“oF unswxn or SCIB!CE

DEPARTHENT OF COBPUTING SCIENCE

' EDMONTON, ALBERTA

© . FALL, 1976

S : L o
THE UNIVERSITY OF ALBERTA

PACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and
_reccllend to the Paculty of Graduate Studies and Research
'for acceptance, a. thesis entitled "Virtual uelory
Experilents an the UNII systel", subnitted by Steven Forest
.,'Sutphen in partial fulfillent of the requirelents for the

Yoo

. degree of Haster of Science., : oo - .i' ,

.C...'...l........ 9 80 0000

(1 Supervisor

. : | /4/1/

‘, Dated __.‘..‘;./.»F.".@.-..... 1976-)

Abstract

An algorithn is developed to convert UNIX froa a swap-

‘ping ‘system to a paging systen. The nlgorithn isabroken

down into four_stens'coneisting of: separatien of -the inj

-

struction.and data addréss spaces, providing for discontinu-

ous proceSses‘in pnysical wainstore, paging out ~only those
portions " of a*process uhich‘hnve chinged' ihde'lest_vfitten
- ta backing storage, and finally ar1ouih€#?

.processes to run. Each of these stages has advantages and
disadvantages. The tontines as-vell as the data structures
which wneed to be nodified are described aiong vith the

lodifiCatibns. An ilpottant concept, held throughont these

| expérilents,. .is that at the conclusxon of ilplenenting each‘

stage, the ‘systen vill be usable and should be tested before - -

ilplelenting ‘the’ folioving step. , ¬her unifying con-
straint’is that the vnodifications are 'cntefnlly planned,

“that is, they were not ilplenent?d and then written about

_but vice-yersa. Since uuxx .is a- well-structured, ‘clean

-opetating' systel the ‘nbove technigue aids in keeping ,the

system clean and vellﬁstructnred. To aid in understanding

the changes described, as vell as their need, detailed dis- -

cussion of ‘the hardvate capahilities of the PpP -11/45 is

given, as well aS‘ a ~discnssion éf the current systea

spftvare. An abstract, and crossefeference of each routine

in the operating systea is provided in the Appendix.

':.%;é

iii

partially logded_

Acknowledgeneni

4

I would like to thank my supervisor, D;t T.A. 'narslqnd,

for his support and quiﬁance thtBughoui the préparation of

-

this thesis. .
-

I acknowledge the.sﬁpport‘provided Re by the Depaﬁtlént'

of - Conputihg Science, in the form of a teaching assistant-

ship. ’ .

.Han} thanks to the_innule:able"graduate students here at
the hniversity of Alberta, who have provide& healthy discus-
sioné over the yéars; thanks_glso to Xen Thompson of Bell

Laboratories, who provided the basis for this wvork.

iv ' L "“ <

Table of Contents = .

'I I'“ttOdUCtion--.§o..’(....--o‘-.u;--..;-...-.--,_'....,..‘.-.

.

II The softwaré....OIOOQOD.:.'.'.......;.....-........l.

-

2.1 Introductionl..O.'...Ql...'..“..“..,...‘......l.!..-l

LN

2.2 In Thé Beginninq-.....-....c‘..0‘.!’..-...-:......0.

{

2-3cr°'inq up...lr’on;v.n...h‘...’............:...-‘...n.
2. u Trans.ogri’ication..' ; L B B B T B B B BN B B B B N B Y N R B Y BN
2. 5 Haxing Prien“. L N] ... L 20 3K BB B L B B NN) ' ® 9 %9 0O 5 00 000 ..l. L)

2.6 'aiting 1“ the ‘1ngs.......'..l..'.......'...'...

2.7 Departing This 'orld.'.:;uohovOﬂloqu...!c.o.n....a'oo.'

.y

;
4

ol \, .
.

CIIX The aarﬁvurii.....4...............................
3.1 Inttoduction......é‘..,.......Q{s......t.........
3.2 Processor uodes....Ff\;.ﬂt..u.ﬂ..;;.;kl...L...;.,
3.3 Relocation.,.x......@.;\i};i..;..;;..;.7};.;.....
3.4 Page besctibtorinegiéterq‘}2ng!.;.f.....a..rf.;.;

3.“-1 lCCGSs Coht:ol.;.,&.-.OQOCOODO;;.3..-oo.‘....

3.‘“. 2 Statisatics Infotl&tion- eowveasvese .io s enowegroevoe,

Iv The '.ew .s‘oftv‘gre.......V-.-..‘........-.'...-.....'....‘..

“01 Int?oddétiqd.fu‘;;uc"-..Q‘o‘.‘..quc.oco.-oocoo.;..occto--

4.2 Stage I Seﬁiraté_lﬁstrnctidn and Data Spaces.....

8.3 Stage 11 Disconfinuityfof User Prdcessek..,;.....

\ 4

14
18

20}
23

25

28
28

- 29

35
39
39
82

4a

8

45
51

ar

4.8 Stage III Paging Processes................;.;;..,
“.5 stage vaaging seg.‘ents O..‘.I.O.‘.-.‘....l.l....

~

v canCIUSion-..--o.-;-aoo--....---o‘ro-........'..-.....

5.1 Results......nc..‘-.c...\.'l......n.ncococnootncnod

5.2 PurtherﬂaesearCh.QOO....;.Qo....y..-‘....-...-o.'.l

Reﬁrences..-o-'ooo-.-’1010.0’.-..0.cicoc..c‘--occ'oooo‘oc-a
App.endix 1 - SYSte. structqres ...‘....;...-...l‘.l..‘..l

A o -
Appendix 2 - Kernel Routine Abstractscccde...

vi

56

62

69
69
71

75 .

17

82

H,

List of Pigures

Physical Memory for Two Processes;“&.L........
The User-Structure T A P
Construction of a PhYsic@l Address ...ceveececccnaas

Page Deébripgor'ﬂegistgr (PDR) ;;;.........,.......;

vii

[

.

Plovw of the Life Of a Process e.qccecescesceadececes 7

12
13
38
41

Chapter I
Introduction - o
. L. ’\,,/r_"

AP _ .. e
UNIX is-a contemporary operating systen\ght@%*rkhs on a
series - of - modern. lini/lidiconpnters.f I%” isM;;mogeneral- .
. ')— s r/-- \:\y;‘ﬁ - .
purpose, multi-user, interactive- gpyra'_ \\§§‘;e| for the
v;v

.Digital Bquiplent Corporgtigg PD ’JQSfHO 45 and 11/70
conputers" (Ritchie 197#) Thgiprinexiiﬁfht ef the thesis

is to explore the lelory nenageibnt aspecéts of UNIX. Chapter
_jII examines UNIX as it currently exists,- Chapter III ex-
plores the hardware. }hat it runs on, and Chapter IV sets:
'forth'seieral experiments which could'be perforled ‘on ~ ONIX
'to transforl it from a swapping systel to a paging systel.
In order to provide a sound b351s for discussion of cer-
tain operating systel concepts, it is necessary first to in-
-troduce and define some of the contemporary ter-inology._ In
UNIX 'an.'inage' is defined as a conpnter execution environ-
'lent. It inclndes the memory contents, the ‘current 'generad
: registers, the status of open files, the current dlrectory
and the‘like..hn image is the current state of .a ‘virtual-
;conputer'..vNorlally there are lnltipie virtua14conpnters in
main store and perhaps.a fev on backing store (i.e. svapped_
' out).thheireal.nachine, as it is'a nniprocessor,'is'cmﬂahle.
of executinglonly;one_of these;inages at a time. The execn-
tion.iof an inaoe is called a 'proce553 while the processor
is.executing‘on'behalf of a process the 1lage -ust reside
conpletely in main store. Dnring the execution of other
processes the inage vill remain in main store unless an .ac~ .

1

tive, htgher-priority process forces it to be swapped iin
“its entirety)'toibackino store (usually a'fixed-head disk)".
The above is a conceptuai'defiuition of a 'swapping systea',
thqtlis, a svappihg_systen reguires?anvingge:to be complete-
.ly loaded in main store or coupletelyrunloaded onto backingf
store. A.'pugingnsysten',von'the.other‘hand, requires-ouly
‘the active -portion (or vorking set'benning (1968)5.of'an in—‘
-age be loaded in nain store for the execution of it to pro-
ceed. & d15cuss1on of the above terls, and an overyiev‘.of,
uelory lanageleut techniques,'are locatedyiutﬂadnicx (1974);
The uSer'S'portion'of-an:ilage 'islldivided Viuto three
' 1oqical ‘piéces. f The progranm text (oxr iustructionf seguent y
begins at location.zero of~the‘virtue1 address space. Dur—
inq execution, the ~text 'seglent may optlonally be write-
\rotected, in ‘which case a single copy of !t is shared along'
all processes executing the same progral. At the first 8K
byte ('K' used in this way v111 ‘mean 1020 ,itens throughout;
'thej thesis) boundary‘aboye_the text_segleut iﬁ»tue virtualf
A aduress space peuins.the data seglent. It is 'writAble.,as_
vell as'readable,'and can be eiponded by_a”systeu‘coll.f At
the highest virtual address possible (64K bytes) starts . the
stack seglenta- It expauds 'autOIoticaliy .dounwero'es the
hardware's stack poxnter fluctuates * l '

To do input/output, lanage files, find the tiue of day,

or to perforl.various other activities, a-process lust call.

* The above two paragraphs were paraphrased from Ritchie
(1978) to maintain consistency in the defipitions. - :

on the snpervisor{ po:tion of UNIX. These calls are termed
'syste- calls' (1-pi?:7£?;a via the SYS instructions) and
they qail'dn.the ‘kermel®' of UNIX. The kernel consists of
the code and .data'iiich aré>feqnired‘to.iﬂterf;cé betveen
:the hqrduargland thebuseh' software. LIt perforas several
;functions} including scheduling the CPU, 'swapping\‘user
procésses, léading nev processes, maintaining a clock queue,
Ai-plélentinq' a} file systea on all disks, and actin§ as an
interface to the vatious inpnt/output devices.

All entries to the kernel (exgépt one during the
bootstrappinb) are throagh a hardvare mechanisa calléd a
v'trap;-- Pach input/output device; as~vell as each type of -
.CPU exéeptional condition, has,its ovn.uniqué trap veétor..
The operation of a trap is as follows- _ o

1) . Push the old progral connter (PC—register 7 desig-
nated R7), and thg old p:pcqﬁsqr status word (PS) onto
the néw (kernel-mode) staék‘ ;pointed to- by R6, the
stack—pointer(sp)). ' S ‘

2). Pick up new PC, PS fron trap vectot in the kernel-

'mode data space.

.In the above disénssioh'a-nevvte;nivas introduced, 'kerhel—
lddé';' éDP 11/45's and 11/70's are c#pabie of executing in
thtee lodes{ ke;pel, snpetyisOt-qnd'nser (PDP 11/80's have
_only kernel and user nodes). llthongh the kernel (nucleus)
of UIIX alvays executes in kernel-mode the two terls (ketnel*

an& kernel-lode) have different connotations and the latter_-

¢

% SIS is another name for the TRAP instruction.

A

1; alvays spdcitied with a hyphdh in tha uheaic.z
The curzent {and previonsi node ot the CPO is kept in-

tno PS. sidce a nev pPS is 1oadod dnring a trap. tho mode of

the cpv can “be auitched through - the trap - nechaqislv,f;lg?a'

ek

ul!x. ul; exceptional conditiona trap into ketnel«node,':'

vhere they are handled by various kernel routines._ ls

old PS and old gs varetﬂ;ved by the iutcrtupt, the lachine
r
nay be. restOtetho its previons stato. j) [" e; f??é;‘i'

i One furthut important aspect ‘of UNIX, vhich is qpsential

3’

io" nderstanding the thesis, is that there are Ro 'oonttol

‘bYocks"® depended on,py aynten galls uhich U;Ee pa:tiatlx

‘lqintained by:* “or containbd in the user process. Ganerally

,the property of that process ana feu testrictions ar« placed

on the data structures uithin th@t address space._ Contrast-.

ing systems,. those vhbch do hava pontrol plocks in- the.nse:

‘space, include DEC-DOS1Y, Digital (1971: and 0S/360, IB!

(1973).

deSctibed elbewhere tho ‘thesis nust ptovide ongf. The fol- '4

N ;-.

louing chapter is a detailed description of the portions ,off

CoNEX which are ralcvaut to. thc thesis. Chaptet III ex&;inqs, '

c e

spenkinq, the coutents of a user process' address space 3@;0 : o

since the uwIx - opetating , sjstai‘i 15 'ina§eqnatgiy:ﬂt

'“the ne-ory -anagelent hurdvare of a POP 11745 and hou 1t is,'

_nsed by. UlIx. Chaptet v presants a number of expefi-ents“
which conld be potforled on UIII, qiven the available .

:hardva:e.:_ Pinully, results and setcral suggestions—i?r"

-fﬁ:ther researgh are stated in Chaptor v.

-
"\
SR

e

A

f‘*‘l
B Rt

Chapter IX

The Softwvare

g.i gtgodgcgiog
A necessary prerequialte to the appreciation of the sys—
‘ten designerfs _concept»vof UNIX (as distinct fron a user's
viewpoint) is a thorough familiarity with the introduction
.to rUNI!J._Ritchie‘(197u), since it provides an overall'vdew ‘
~of.the systea and 3 necessary hackground to the features
discussed here after;'VUNIx has grown from a‘hulble birth on

'a PDPT to an elegant useful system on PDP11/40's, #5's and

' 70's. The main goals of the system designers” vere to provide =

m"a comfortable relationship with the machine and with ex;'
ploring- ideas and inveutions-exploitation in operating‘sys—

teas", thchle (197&). Because of these goals, and the 1h—'

clusion of selected notions from other systems, UNIX is an -

"interesting subject for study by systenm des1gners. Various-f
* elenents of the systenm .wh1ch relate to Chapter Iv, vhere

some experilents in suapping/paging are. developed, are. stu-

—_

died here. Ouly the pertinent lodules will be exalined. The

elelents not d1scussed are the flle subsysten, the operatloni‘

of indlvzdual 1aput/output drivers, and several s1-p1e ut;l-'.f
(>‘ 1ty functlons (such as fetchlng the current tine and date)..

The chapter is organized around a 'day in the life' of a
process, 'startxng from the IOlent of its' conception,7
through its birth, transfiguratlon; \and death. AThe trau—ir-
‘scending ' functions of: memory ‘hanagelent, schedullng, ;na>;

e

N

e

)

suepping‘to and from backingfstore are covered. Items dis-
cussed include the structures-involved in each fnnction‘and
other snhroutines‘calied"npon to inplenent the primitive.
Pigure 1 is provided to aid in the description of the life
of a process. The centerline of the'figure- represents the
process executing in VnOrnal usersnode,'nhile theé various
sxde trips represent the tasks performed by the kernel. Theq
dotted arrovs_ indlcate ~actions _Vthh cause state ‘transi-

trpns. For exanple, the';child entering- the ZOHBIE state

' causes the - parent to be avakened. The reader is referred to.

,’/

Appendix 2 for a conplete hr1ef ahstract and cross reference

~of the systen nodnles.;pp‘*"

. ~

,.)

221n_L§es.nus

\\ ' When the systen is 1n1tialized (durlng the bootstrapplng'

!

| /etc/inlt. The nost relevant fnnct1on vhlch igi ‘ perfornsA S

,operation), ‘thep fzrst process is created 1n an ad hoc way.}e :
f There are tvo phases to the first process.. At flrst it

creates. a second process (referred to as the in1t proceSS),»”7'

and. thereafter 1t beconmes. the svapplng process.:.The deta115~

of the svapping process are dzscnssed in Sectxon 2. 6, and.f o

the ;g;t process is. d1scnssed here. The ;g;gffproce55>,con;”;

sists of the execntxon _of ‘the inage stored.in,the'filehb

1s the creation and na1ntenance of a process for each ternl—"

' nal on the systes. These proceSSes are'_called the' logon

’1isteners,h becanse they llsten to the - ternlnals associated

Hlth then and vait nntil soneone types in his Iogon-nale.'ns

-_

. ' o 7
§ . - -S
, [|
parent - ¢hild =
. i yl
' __break | 1 exec
estabur] . N :
" jtoo large?j-yes-|send | | destroy |
o 1 ~ 1isignall jold image |
no | . .
expand . | : { load |
"¢ make process | ; | _new image 1 -
~Jlarger-copy to | | - o
< 1 _larger .spage | i -) R
1 : | - _ o
Jcopy stack to |<---| jvait for an event
: jtop of area 1 | ' -
g I |- |=->_swtch = |
} |_copyseg_| | Isave kernel stack]|
| : | {pointer (savu)]
| | S R :
] | |- (idle)-->|
"~} clear [{--—=—=-| (I | , 1.
‘|nev area} | | ~ jnone_| select |
| |_clearseg_| | ‘ready jprocess |
1 | _—
| - | ¢=mmmmmmms IRUH i%1
: i event completed
| ' .« .
vait__| 1
{ . jrestore stack | -
| {~————smem- | ipointer (retu}l
" jchild| Isleepj<. 1
jdead?]-no-—---| . {
| ; : 1 exit
. yes’ : ~ | : .
1 . « . {clear signals, close]
{read child user-struct}f . ifiles, free storage,|
fadd child CPU times |- - |copy user-struct to |
|proc-struct = 0 Ijbuffer . : 1
jrelease buffer i dees : L
| 4 "]J208BIE_state | .
Y leseccscccssecnencasees>| _
| —_
| DEAD

Flov Diagram of the

Life of a Process

Pigure 1

“the creation and execution is. t&pical of all processes (that"

is, these processes use no Spec1al privileges) it vould be‘p

appropriate-to examine the details -fron an internal, or

'systen ,vieu.- Actually there are two‘systen primitives ls—

N

sued to- arrxve at. the pOint of being a logon. listener; Tﬂ@‘

‘first prilitive exeCuted is called fork()*, and is described\

'in_this~section. The other prinitrve 1s named exec() and is
described in Section 2 b,

When the fork() prin1t1ve is executed by a process, two
.returns are made by the systel, one . for the original process
(the parent) and one for the new process (the child). ‘This
operation ‘is generally called sab-tasking or forking. The
tvo processes have lndependent copies of mainstore and share

open files. The only difference between the two retnrns is

‘the value of the function: for the child the function value.

is zero, while for the parent it 1s the process: ID of the
child. the notion of the’ fork() prilitlve vas borrowed from

the Berkeley Tine~5haring systen, Dentsch (1965) . ‘The

y

.\\

' renainder of the Section vill describe the internal flow

needed to obtain tvo processes fron one, or vhat a process

really is to the Systel.

~ The first level systes prinitive handler, -trap(), uses

the 'prlnﬁkive nasber’ (Operand of the systel call) as an

index into 2a table of entry-point addreSSes (sysent[]) of"

the'bvarious prilitives. In the case of fork, the entering

+« The fork primitive and other primitives mentioned in the
thesis are descrxhed in "OUNIX Programmer's uanual" Thompson

rontine is naled; éuite appronriately fork(). After check-
ing' to see if room in the process table exists for a new
procese. fork() calls . the 1ogica1 function | newproc () .

Nevproc() is the function vhich actually turns one process‘
into tvo, by returning tvice, the first time directly vith a
'return value of zero. 'The- second return, for the newlyx
'created proceSs;,is much more indirect and,_sincevit manipu-.
_1ates ilportant‘sfstenidata structures, it vill be discnesed
in more detail; | \ 3 .. - ,. -
. The.prineifunction of'newproc() is to generate a copy ef
the data .structures,vhich‘describe a‘prccess. Thennost'in-
. portant structure, and the one froa which ail otherx’strnc-'
tures may .be located is the 'proc-strnéture'; The prccees
‘table contains all: active and inactive proc—structures. The
\-proc-structnre contains the 1nforlation required to return a
‘process to maipstore after it has been swapped out. The
items: vhich are copied from the parent's proc-structnre into‘
the child's are:' the ‘user 4id; -the controlling terlinal_w
descriptpr pointer; and:a pointer to the descriptor of tne'r
lsharable'text.portion ef tte,precess. .If-the:sharable text ;
p6rtion' exists,, the counts qt “the number of procesees-

currentiy abie.to access it on the disk and in lain memory
'are‘increnen‘ . It is ilportant to note that the lainstore"b
count can :Sfely be incremented because the text ,1s
guaranteed to\5be loaded. The operation of the kernel

depends on the text being ioaded, as wvell as 'éeveral other

principles.

~ The fundanentnl"principles vhich newproc(), as well as

‘other routlnes depend on are exalined in d etnil here. First

'jand nost ilportnnt, the kernel routines rely - n the fact

that their execution is continuous. The tern tcontinuous ex-"

-

10

ecution' GOes not inply that interrupts 'such - as‘ the clock'..

'.and other 1/0 devices are not fielded, bnt that the execu—-

 tion of the.lnterrnpt handlers' leaves the kernel proceSS'

unaffected. That is, it is not possible for a process
- switch to occur when in kernel node (unless the kernel pro-
cess explicitly asks for a switch by calling swtch()). It'is

also not'pOSSible for a kernel-mode process to be swapped

out. Pinally it is not possible for the kernel-mode process

to be nodified by the I/0 event because all 1/0 is synchro—
nous at the process level. :

The second »fnndnnental presise ‘npon' wvhich newproc()
depends is' that a proéess isbconpletely londed.nhile it is

running. 3ven in kernel-mode the process is completely load-

ed, and sSo newproc() may increnent the mainstore use connf ‘

‘of the text portion of a ptocess.

The final concept vhich nevproc() depends on is the con-
tinuity of the physical nenory ‘image of a process. The copy-
ing nechanisn (copyseg()) in neuproc() depends on the fact
that the 'nser-strnctnre' (vhich is pointed to by p_ addr in
the proc-strncture), data, and stack are. physically adjacent
in mainstore althoughfthe addressing of them in nser-node is
qulte often discontinnons. ror exanple, in rignre 2 if pro-

cess 'A' addresses segnent 3.4 (address 064000 octal) it

)
7 : 3
A‘) ,-‘\" . . , o
s? W g

vould receive a 'bus error' signal from the systen, yet that
address physically exists and is access%d by the usen-

A . to “
process as segmént 6.4 (address 0144000). .
The term 'user-structure' introduced inﬁthe last -paéa—

2l

graph . requires some note“explandtion. “This structure con- -
tains descriptive infornation about the process vhich'“bvns
*'the structure, Since there is one -and only one. user-

structure for each process the;Struqture lay,be_‘thouqht of

as an extension of the proc-structure. The major reason for
.placing data items in the usef-structure, binstead -of jusf
having a larger proc-structure, *is that the proc-structure
'is resident, always using up valuable lqins£0te, whilev the

user-structure is attached to the text and data of the pro-

. \ . .) . . ,
cess and is swvapped in and out with it. Pigqure 3 contains

the portions of the user-structure which are relevant to the

thesis. The complete commented structure is given in Appen- -

dix 1, aldnq\vith a coamented p:oc-sttucﬁu:e.

‘A :brief introduction .to the PDP 11/“5'5 ' nenory-

lanagelent un1t (HHU) is given here to explain sone of the.

notions of the previons patagtaph._<rhe hardvare unit which

"

perforas memory mapping is referred to as a MNU. It is cape-

~ ble of mapping memory differently depending on the nmode of

'the>Alec @ There are three modes possible on a PDP11/u5-

kernel-laa!““~tke least restrictiie node; supervisor-noda -
restrxcted i!%fraction 'set, not nseh much in ONIX; and the

\m‘ .
user-mode - th@i'pst restricted lode. Thé ‘norsal execution '

1"

User-Node Address

| © Segment numbers
| (octal radix)
v : S
I 1o
], Text - |}
{shared by |
fprocess 'A' |
jand "B’]
R o .
_ 1.4 ‘
o | . ’ o ‘
User-struct.| <-- Not addressable --->
for process | . by the process.:
'A' l . B
' B B
1 . LN
| Data and A ‘
| Bss for | _
| process 'A* | 2
Toeess | i
1. 3.4
‘ , | 6.4.
. process | -
ll' ". l
Stack !
3 1

.

| User-struct.

 Physical Memory for Tw§ Processes

' Shq:ing'a Common Text?Séglent

o .riqu:e_2

4

|for process |
o 'B'
N
2.0 ' o s
' { Data and.
| Bss for
| process *'A*
: /| N .
e |
5.4 | L :
| process
|-~ vBpt?
|.. Stack.
| R ;
VFLAI‘v

12

struct user {

int u_rsav{2]; /% save rS ré6 wvhen exchanging
: » c - stacks »/ .
int u_fsav[25]; - /% save fp registers ./ :
char u_segflg; /= flag for 10; user or kernel
. "~ address space »/ :
char . u_error; /% return error code x/
“char . a_uid; /* effective user id »/
char u_gid; /» effective group id a/
char u_ruid; /*% real user id »/
char u_rgid; /% teal group id »/
int - uw_procp; - /%= pointer to proc structure */
~char sxu_base; /% base address for IO %/
char = sxu_count; /¢ bytes remaining for IO =/
, char " wu_offset[2]; /% offset in file for IQ %/
int -u_uisa[8]; /» prototype of segmentation
' o addresses (PAR'S) x/ -
int. ~u_uisd{8]; /% prototype of segmentation
v ' . - - descriptors (PDR's) x»/
-int ‘u_ofile{ NOFILE]; /» pointers to file structures
‘ . R of open files x/ .
/int u_arg(5];: /% arguments to system call t/
int u_tsize; /* text size (x68) =x/
int « - u_dsize; - /% data size (x64) x/
int u_ssize; /* stack size (w68) x/
© int u»qsav[Z]; ' /» label variable for guits and
o N _interrupts =/
int ca_ ssav[zj /* label variable for suapping x/
int signal[NSIG], /» disposition of signals #*/
int u_utile-- /= this process® user time ~/
int u_stime; . /% this process! system time =/
- int u_cutime(2]; . /* sum of children's utimes x/
int] cstine[Z]. /% sum of children's stimes %/
~int xu_ar0; ' /% address of users ‘saved. RO. */
Vi3 kernel stack per user extends from u + USIZB*64
x backvard not to reach here =/ ' - :
} oup -

User - strncture

Pigure 3

13

(relevant subset)

executing its tert and data areas) and kernel-mode (to exe-
cute systel prilitives). 'For each of the three modes there
exists a set of lapplng registers, referred to as the memory

’
‘-anagelent registers. These registers. provide relocation and

‘protection forﬂinstruction and data fetches performed by the

CPU.,'Por a lere coiplete_description of the MNU see Chapter
Crrr. - |

| ‘After dolng various odd initielizetions, such as finding
; _unigue,precess‘id, increlenting Open—file counts, setting
the state~cf'the process ito RON/LOADED, vand saving the

parent ‘process id, two copies of the calling process are

“"made. The user-q;rncture,'deta'Section, and stack are copied'

° into = a second space, either in mainstore (if there is roen)
or swapped out to'the disk and marked as‘swapped. 1ﬂgglloc()

allocates ‘the memory required (data size + stack size +

user-structure size (USIZE)) on a first fit basis, from the

' list of available space, 'coresap'. If there is not enough
. main lelory. space is?;Ilocated 'on; the svepping disk by
passxng the disk map 'svapnap' to nalloc(). Nevproc()‘then
returns to. the caller, fork(b, with a return value of‘ zero

to indicate the parent. When the newvly created process is

scheduled for execntion it also returns to fork(), but sincev

it conpletes the retnrn through sutch‘) (the process

‘scheduler) it vill return a value of one, identifying itself'

as the chila.

2.3 growipg Up

14

Processes are capable of growing larger via tvo dif-
ferent -iethods: firstly tnrough automatic stack expansion,

 secondly by calling the systel primitive break(). The

" break () prilitive differs enough from the automatic stack

expansion that it vill be discussed separately.~As stack ex-
pansion isv the silpler of »the tvo'fnnctions it'vill be
described first. o .

When the-address of a data vord is outside the - current

bounds of the MNU, a nenbry-nanegelent trap is generated by

the hardware;j_After the user‘s'registers'are s&ved,,-execu-i
'tion is transferred to the 'trap' handler, vhich deterlineS'
- »uhether a stack overflow _caused the problel. The process'

. stack poxnter is conpared with its current nininnl_value

15

(n sSize), whiéh is kept.in the user—structnre. If the stack o

pointer is less than u_ ssize then a stack overflow must have

~occurred. If no Qtack overflou occurred an error .signal is
sent = to the running process, to indicate an addre551ng vio-

letion. If the interrnpt vas cansed by a stack overflov the

1nstruction being executed {’ backed up,and.additional stack

space. is allocated he{ore the process is alloved to proceed.
.Por the sake of efficiency the allocation proceeds 1n ‘a

rather~vstrange order. Pirst ‘the fprocess' user memory

lanagelent registers are set up by estabur () (eStahlish-ugern

registers). Estabur() checks to See-vhetherethe-additional
- _ _) : :

size can be accommodated. The rnles_'of.'ecconnodqtion,:are:

the text, data and stack portions must all start on segment:

(4 vord) boundaries, must not overlap, . and must fit_ in

eight segments total. If the above rules are’ not violated

"the memory-management register skeletons are built in ﬁhe-

user-structure >under’tbe names 'u_usia" and 'u_usia'. If
the'process will no ;onger fit, estebur() will return an ef-
ror,velue;ef -ieus one, and. vili set ‘'u_error' to the
'ENOMEN' error ;alde. Providing estabur () vas able to com-
plete its _Pask the routine expand() is called to expand the
size of the process. The lechanics of expand(j parallel

those of newproc() to some extent. If there is room in main

memory for a second, larger copy of the process (as deter-‘

mined by lalloc()) it iS'copgs to that area. If not, .the

process is swapped out to disk with the new larger size.

When it is svapped back in, a returh from expand () iill be

simulated by swtch(), and the mainstore inage_will be the

correct size. The new space ie added physically above user's

- - stack. Since the stack expands doﬁnvard the new spaée_should
be beLev'the current‘stack.; Therefore the 'stack must be
copied to the top of the allocated memory. Successive calls
to copyseg(), vhich viilfcopy thirty-two words . of physicel
ielory each» eall, are uSed to love-the stack to its proper
lplace;’~rihally the_last.ilportant act which traﬁ(f'perforns
is. to: sef the nev stack area to zero, so'the user may not
read the garbage (private—protected? data) left in nmesmory.
_Successxve calls to clearseg(), which cleare thirty-tve

vords of physical nelory each call, are uSed" to bverwrite

the sensitive data. Because of the. large overhead in expand—

ing the stack, it is ‘inc:eased by tventy 32-word chunks

€

16

N

(i.e. SINCR = 640 votdsy each time the stack overflovs.

; The second lethod of changing the size of a brocess'
-fhéhory " image is the break() ptinxtive, vhich is capable of
: both.expénéion and comtraction. The break() primitive 1is
" sbreak() in the kérnel tb*avgid dxsastronS‘confgsion'vith
the p;~g~ operator in the sce 1anguage. After feiching the

parameter . (from u.u nrg[O]). which is the new data size re-

quired, estabur() is called to determine 1f,the process wvill

-2 . L ' o
fit ‘in the limits of the NMU. If not, an . immediate return:

is made. The data-size variable . 'u.u_ﬁsize' is then re-
placed by the paraseter and the_algorithn splits into two

streams depending on vhether the process is expanding or

cgntracting. If it is gtoving larger the steps followed are

the same as in the stack expanéion ,algorith- explained

',above:. expand () is calléd'to get more spacé added above theg

17

-stack; copyseg() is called to copy thé stack.up to the top

of . allocatéd space; and clearseg() is called to clear the

nev space. If the ptdcess is getting s-aller, the elelents"

- of the"ilgorithn are almost teversed. First the stack.is
‘copied down onto the data area vhich is tb_be freed.. Then

'expand() 1s called to. free up the top of,ne-ory~where part

zgof the stack.vas. Bxpand() silply calls"-irgé()~to add 'the

:_freed spnce to- 'corelap'. the uainstotejfiép'sto:age nap."
uenory lay he ad&ed only at the top:ofgthe"data‘ space.

jor at the- botton of the stack space.liiléo, lelory ‘may be

1~greleased only fron the top of the data area. These tuo facts |

- make dynalic allocation/deallocatidn of data areas clnns1erﬁ

than is usually desirable.

2.3 Trapsmedrification v -

- The major system primitive exec (file, argt, -.arg2, ...,
argn) <:eQueSt5'1hev§ysten to load the file_halgd by 'file',

and to commence its execution. Execution always starts at

virtual location zero. The érgqlents are passed on to the

 nevly created lgndry image on the newly created stack. The
calling process'ileiory image is overlayed Q} the new file's
‘}lage, and is completely lost. All open files ;andv 'pipeé'
’re-ain_ dpen and unchanged acroés exec() c61ls., fipes are
~input/output devices vhicﬁ consist simply. 6f softvare

buffers.* See ' Ritchie (197&) for a complete explanation of

pipes. Ignored signals remain ignored across exec() calls,”
b '

but 'éaughtv signals are reset to their default values. Be-
_cause the catching routine will ao 1onget exisi afterfdthe
'c0lp1etloﬁ of ' the exec () prilitive, caught siqnals -ust be
reset. A brief explgnatxon»of the exec() routine will. qive
a better understanding of the data structhres ﬁ#nipdlated
Aduring the destxnction of the old process ilage, and -§h§

floading of “the pev one.

RtE

' The fi:st task is to deterline vhether the file» to " be .

.loaded exigts and is executable by the calling user. If

'jthe test is unsuccessful _ exec() will teturn to the callet.' ,.1

‘,OtherviSe, the argnlents to the nev process ilage are copied

into a dxsk buffer and then the first font vords ot the - file

are,'readu in. These four vords contain the type flag, text |

3

‘size, data size, and bss size respectively. Estabur() is.

Co called to check vhether the specxfied lee will fit in 32KA

words,.the total v1rtua1 address space of a nuser proqra-;
If the precedlng check is affirlative a final COllltlent is

nade to load the newv inage~ othervlse, an error retnrn is

nade. ' Before .the-‘nev.xnage,ls_loaded the. old one must be.

unloaded. A call to xfree (). is made to free up the process'

possession of a text_segnent. A1l of the mainstore of the

calling process is then freed'by calling expand () with the

”size: of "the user-structqre,'thereby freeing everything but
the strnctnre.‘ | ‘

Theitext'portion of the‘hnev process .ilage is loaded
first.'. Routine xalloc() is called to flnd the text for the

newv process image. There are four scenarios. followed . to

find the texti_ Pirst and sxlplest, is that no ‘text portion\

[N

exists for the new process ilage. In this case xalloc() sim-

ply retarns. ' The second and thitd cases are related in that

both requlre the text to be in use by another process. " In

the second case not. only is another process us1ng it, bnt it

. is currently loaded.. Thns talloc(). Sllpl] 1ncre-ents theh

lenory and use connts in the descrlptor of the text, and
places a pointer to the descriptor 1n the proc—strncture for

the process. If ‘the text is not loaded it nust first be

) " loaded and ‘,he counts then increlented. ‘ 'The- fonrth case en- .'

19

talls a bit lore vork. ¥o process is using the text! and';f‘

therefore a copy of it does not exist on the sxapping disk.g.:hip.f

-

Xalloc() calls expand() (vhich lay have to svap the processh.'”

|

o . ') . . |

out anc‘ﬁack‘id) to generate a region for fhe text portion.
After .the tekt is read into the newly generated region from
‘the file being loaded, the text is svappe& out to disk. Pi-
hally xsuap() is called to svap'the text_back into‘nainstcre

in tWe proper place and with the proper flags set.

. Once the text has'been'established properly -in memory

the neﬁ process image is expanded to its final size, the to-

'tal of the user~structure, data size,i'and initial stack,

"siZe. The data and stack areas are initialized to zero, and

_'the 1n1t1a11zed data is read 1nto the data area. rinally
';'thé' paraneters to the-nev,;.cgewtre copied:ontb the stack,
band‘Varlous housekeeplng ltens (such as setting the user ia,
clearlng 51gnals, and clearlng reglsters) are conpletedf

The prilxtive then exlts to the new process ,1lage _starting

"at location Zero, because the prqgra-'counter (register

vseven) was cleared.

The net effect of the freelng,‘allocating, clearlng, andf
‘capying is to 1nsta11 a nev process ilage in lainstore._ In

rsection 2 6 the svappinq port1on of the above algorith- v111’

‘be dlscnssed 1n -ore detall.'

'zémsinsw

This sectxon deals vxth the scbeduling of the CPU among
,"the,; awaxtlng processes. i The process—switching routine

‘ ‘5fswtch() is called fron various routxnes in the .systel,_ in-

20

‘"]cluding the clock handler,‘the trap() handler, and other_"

 jsyste| ron;ines vhxch vish to allow an event to occur before-"'

returning to their caller. To schedule the central proces-

_sor among active processes, the clock handler calls svteh()

every second, provided the processor was in the user-mode

21

prior to the <clock interrupt. The important fact to note

here is that the systenm wili not do.a process svitch when
'execntinq systen code unless that code explicitlf asks it ro
do so. The uninterrupfed execution of. the kermel is ex-
: trelely basic to the structure of the systenm, and removes
' _nuch of_the:need for locking eritioal seetions of code.‘ 1f
a_uSer program spends a large percentaqe of its time execut-

ing systel,prinitives the.probability that' the clock will

tick while it is in user-mode is quite small. Since it is

‘not desirable in a tilesharing environment for a single pro- .

cess to.jlonopolize the processor, the trap handler trap()
calls swtch() ‘every fifteenth systen prilitive execnted by
-one process. The other calls to swtch() are made by a ter-

l.-inatlng process, or by subroutines wvhich must vait idly for

7'an v event. SOne typlcal events inclnde conpletion of

lnput/outpnt, co-pletion of a lelory svap, or vaiting for a

,prearranged period of time to elapse.

Now. that the means of entering svtch() have been esta-
’blished n"explanation of its executien 1s in order. 'Tbe

:first 1tel attended to is the- seying of the kernel-stack

“level in the’nser—strncfnre,.iiarn call io‘savn(). When the

| process isereschednled' for. execnfion-these” registers w111‘
-'be restored: by retu() to retnrn the kernel—stack to its pre-“

' vions.state.. ‘As the old process is to be abandoned, a te--'

porary stack is set up for swtch(), in user-structure of
process ‘zero ‘(the scheduler's, see next sechion).g A new
rprocess is selected‘frOI the process ,tablel on a highest
priority,' round -robin basis. The priority of a process is
| deterlxned by tuo factors. PirstA if the process is ‘in

- user-mode itS'.priority is the systeas constant 100, pius a

_ﬁser alterable variable u.u_nice in the range of 0 to 20. -

- The higher the priopify yalﬁe the lower the priority. If a

system primitive has been waiting for an’ &vent then=:the
jpriorxty of the process for which the prilitive is being ex-
 ecuted 1s deterlined fairly arbitrarily by the valtxng
routine. These priorities are usually quite high (for exam-
‘,ple; thle‘walting for a swvap . to conplete, the priority is
set to -100). If there.are.no processes vishing to be run,
‘the\processor will be placed in: the vait state via a call to

1dle(). ‘ anef a process has been selected to be rnn, its

user-structure 1is placed (through lanipulation of “the

lehory-lahegelent :registers) at location 01«0000, and the

kerhel's stackspointer»is retorned :tb-. the user-structure

22

via retu(). The -enory—lanagelent _registers for the nev .

user process‘are bullt fron he skeleton registers in the

»

nses—structnre. | rhe skeleton vas placed in -the user-

struotnre'previously by estabnr(). Pinally-svtch() retnrns,
- vhich inditectly restarts the ‘aser ptocess vhere it left

off. SVtch() will schednle only loaded processes for pro-

cessor usage, and therefore needs an 1ndependent agent to

load and unload processes_fron'the svapping' -ediuh.’ This

agent is described in the next section.

| 2.6 ¥aiting in the Wings

" The scheduler is the only process vhich executes in the

kernel-mode all of its life. It is also the first process

created during system initialization, and never cdlpleteS-

its task. Essentially its goal'eoneists ofrkeeping main-
‘'store full of processeés which vish.te use the central pro;
Cessor. The siiplified‘algorithi is: see'whether any pro-
cess wants to be svapped in; éwap.odt'precesses until there
is roon;:evep~in the deserving process; fepeat forever. Ac-

tually there exists a one-second wait on the clock so that

N

the scheduler, the highest priority process,-dees not mono-

polize the processer.- A fev details of the above algorithn

need be exalined for later discussions.
‘The ~ process table tproct (recall that the proc-

structure, an element in the ‘proc-table', contains all the

information abouf'e swapped—eut process) is searched for the .

- process wvhich hesAbeen svapped out for the longest time. If.

no runnable processesﬂare svepped out, ihen-,Sched() -will
vait dntil some other system routine avakens it, indicating

':there may be . so-e work\to do." When a 'swapped-ent runnabie

process - is found. lalloc() is called to deterline the avai-.

23

labillty of free nenory.: If there is enongh -to fit the

swapped—out process into, then it is silply svapped in, .as

described later. Othervise lelory lust be freed up to -ac-

.eo-eedete ~it. Pirst sched() 1ooks to see if there are any.

»

currently resident processes which are vaiting for an event,
nndl therefore do not reqnire'the resources of the central
processor. If any are found they are svnpped ont and the
routine starts over with its search of the process teble.
If no lenory has been fonnd by the tvo previous lethods, the
prOCess table is searched again, for the oldest process in

Memory. If the" oldest process has been loaded for at least

tvo seconds, and the process to be swapped in has been on

disk for at least three seconds, then the oldest process is

‘swapped ont. ' The schednling routine then starts over again

scanning the process table to find a process to svap in.

Once enough nelory has been found and allocated - throngh

nalloc()‘ the new process is-svapped;in."rirst a check is

t_'nadeito‘deternine vhether the text portion of the ‘newv. pro—i

cess is. alrendy avniiable in lenory; If so, it 'is linked
to; othervise,‘it is read into the newvly _nllocnted'_nenorj;
The user afea, data area, and _[%tnc_t of the process.are
svapped infasvone chunk, amnd the space they_occnpied'on disk
is freed..: The 'base address of the nser?strnctnre'(and
vtherefore the vhole process) is stored in the proc-structure
.for the svapped “in process, and a flag is set to indicate
that thevprocess is 1oaded. Ihile the process vas suapped

nt, the base-address pointer vas nsed to indicate vhere .on

. the*disk the process vas stored._ The swapping-out algorithn ’

‘details are discnssed later in this Section.

T There are a few inportant points vhich lust be nentioned

about the_svapping—in-rontine. Pirst it will be noted that |

24

sched() does not check to see whether the process wvould fit
if the text and the rest of the process vere separated.

There is no particular reason that the check could not be

.made, and it would cause very little o&erhead. Secondly,

.process priority does not enter into the "scheduling ‘algo-

ritha, - which makes for a sinple‘aigorithn,-hnt'doesn't'giée'

as nuch pover to the priority mechanisas as it light. _Ho-

tice also that the scheduler operates independently of thef

rest of the systen (except the clock and the disk routines).

Being~ so independent nakes.for a~c1ean, easy-to-nnderstand‘

' schednler.

when a .process is scheduled for svapping out, a11 of it

.“is svapped out.- The text portion is not vritten out to disk

”“'b(its lain lenory is freed if the current process vas_ the

last loaded process using it) as there alvays exists a good,

valid copy of it on disk. The rest of the process is written

out to disk in one large chunk. Space-is llocated for. it;

by nalloc(), hefore it is. written out.. The final notion to
be e-phasized here is that nothing in the process' user-
'structure is changed. The only itens changed are 1ocated in
'dﬁhe process table and indicate - the loaded - unloaded state

_ of the process.

‘2 7 partigg This gi;g

The terlination of a process cones in‘ tio <asynchronons

‘parts-7 the death of the child (hy invoking the prinitive«[
,exit(). heing killed by a parent. or hy sone abnornal condi-f

-

25

tion), and the informing of the parent of the child's death.

These tvo functions are performed by the'rontines exit() and

wait() respectively.: The reader ~vill.note-thnt these are

the routines which implement the systen prinitives of the

L)

same name. First the exit() 'rontine Qill fbe,,discussed,

although it does not necessarily have to be the first

routine called.

Exit() is either called explicitly or'by default, via a

return from the top most levelvof'a 'C' program. In ®ither

.case the execution is»the.snie. ‘The firSt_deed accomplished

26

is to clear all sionnls vhich the soon-to-be-defunct process. -

vas intending to catch. 1ll open files for the process ‘are

then closed, and theitext'seglentlof.the process'unlinked.

 If the carrent process. was'the last process .linked to the"

.tert“"‘its lelory 'on disk as rwell as in lainstore is"

relensed. "The' volatile portions of lelory - (the user-

structure, data area, ‘and stack) are then fteed np, and the‘3'

nserfstrnCtnre_is‘copied into a disk buffer to‘be saved for -

the parent. The process status is éetito_iouBIB, and the

addressfpointer in thevprocess table is"set to the- address”

of ‘the disk buffer. FPinally the process tahle is searchedp‘_

'and the parent of the deceased, if it has been wniting for a

. proce38~ to 'die, is inforned of the inlinent dool of theA..

.child., Also any children vhich :thei deceased process had

»;created are adopted by tneigi‘~ process (proceSs #2).-
ihen the parent of a child issnes a vait() prinitive

(the jni; ptocess sits in an infinite loo\\\issuing vaits),u-'}

the child may finally be reloved fron the record books (the
book is’ the »proc-table). If the parent waits before the
death of a child the systenm uiil suspend the parent's ac-~
tiv1ty'_unti1 a child dies. Once a child has died the wait

‘goes into action to tell the parent about it First the

user~structnre is read in from the disk buffer vhere exit(f

jplaced it. The CPU, system, and elapsed times for the chilad

‘are added onto the' parent's tines (stored in the user-

structure)..-The process'table entry for the dead process
’iis set to zero, and the baffer for thebuser-structure is
“freed up. 'Pinally the‘arqnnent.te erit() is returned to the
parent, as a status indicetor; .
The inportant item to note here is that the parent can-

. not .stop its child telporarily.‘ It also cannot exaline the

child" vhile it is rnnning. The only nethod of conlnnication

hetween' the parent ‘and its children is through pipes. In

27

the next chapter, ‘the nnu vill be discnssed, to provide- a’

‘ firl base for the nnderstanding of Chapter Iv vhere the con=~

- ‘cepts explained in:the current chapter are used.

QChapter III

The Hardware -

3.1 Introduction 2 | o
The memory-management unit of the PDP 11/45 provides
both‘ access-control and virtnal—address lapplng, for each -

memory reference initiated by the central p:%cessor. As
vith most le-ory--appihg'.nhits, addreSSes\(g;aerated by
direct memory access (DHA) devices are not affected 'by -the
napplng device. The Dynaaic Address Translatlon unlt of the
sfsten 360 Model 67, IBN (1967); is another device of this

genre. FPor a review of several other paging/seénenting

machines see Randell (1968). A descrlption of the HMU of

‘the PDP 11/85 is giren, in Digital (1972), a naintenance, .

. manuoal, and also in D1gita1 (1975). A general characterls-
tic of ne-ory-lanageaent devxces is their ability to provide
a aechanisn for executing several different prograas re-
' ferencing the .same virtual address, bnt occupying dlstinct‘
sphysical addresses. - The facilities- provided by the PDP
11/&5's nelory-lanagelent 'unit include: a separate leaory-_
'”lapping lechanisa for each of three processor modes; access

~control on a per-seglent basis, and stat1stics-gathering'

-vcapabilities.' These facilities are provided for the systen'-'

; designer but their use is not aandatory. UIIX, for exaaple,
does not nse the statistics-gatherinq portion of the unit at
all. l variety of systeas aay be constrncted usiag the

‘aeaory-lanagelent hardware, from the lost prilitive IIEIOtY‘

28

resident single—uéer‘syste-, to an elaborate paging nulti~‘

user kernel-domain systen, Spler (1973), and Spier (19733)',

ONIX 11es sonevhere between these tvo extreles.

The first section of the chapter discnsses vhich of the

‘sir ‘different sets of uapping/accgss-éontrol information

structures will be selected for'a.particdlat- nenory refer~ -

ence. In the second sectlon, the algorithm for the for-a~

tion of a physxcal.gddf%ss frol a virtual\address_and 3“,;37

foramation structure; will be explained. In the fonrth'sec‘

tion the various levels of access-control and statistics-

gathering information will be explainéd. Throughout;the‘

chapter, exﬁlples frqn UNIX will show hov it currentlj‘ uses
various aspects of the hardwvare. . |

»

3.2 Processor Modes

' The paraneters (relocation and access-control 1nfo;-aa'

‘tion) used .for -any particular address Atranélation _é:e
selected from six sets oﬁ paraleters by threé' itemas: the
~current node of the processor (kernel, supervxsor, or user).

the'datg space enable bit; and the type of reference (in-

strnction or dati). The various modes iﬁ'vhich the central

proceSsor_is caéabLe of executing prograss vill be discussed
first. ' - |

"The central processor of a PDP 11/85 is capable of exe-

‘cuting inéirnctibns'in'threé differént’-odes- kérhel,'superf'

visor, and user. The cnrrent and " previous modes are‘ re-

taxned in the progran statns vord. - To differentiate between

29

three modes requires twvo bits 6f information, which are ca-

pable of four values. The one-Zero combination.is not used

and causes a trap if’a prbgral ever generates it. The rea-
son for this sonevhat‘stfahgé situation (i.e. why the one-
zefo’conbiﬁation?) is to provide some protection. These
bits in the prograns statﬁs word are capable of being'cleared
only by loading a new progtal status wvord (and prograes

“ countet) from a trap vector. Therefore control may only be

péssed‘outwérd to less priviléged modes, by setting these

bits; from kernel-mode (00)., to supervisor (01) and to the
least priiileged'usér-lode (11) . |

When in kernel-mode t?e‘lachine is capable of executing
certain,privileéed or critiéai inéténcﬁions. These instruc-
tions vould cause problels in systeam ‘integrity if their
.Qsage vere undisciplined. A few exalples.aret set;prio:ity

levél the processor; 'haltf the prpcessbr; ‘vait' for an
dfudff o .

I/d interrupt; and ‘reset! all inpht/output;devices.- One

‘other feature of the.iketnelcnodé which makes it more
pfivileged,- is the 'jéctoring' of gll'lbrpceSSor ‘and
“inpnt/ontpnt traps.thtbqqhithé keinelldgta--enbry—iahagéleht
set. . ?hat is, the new.ppégrgq cQunter>aﬁﬁ prbgtal status
vbrd are‘confained“in'a‘tvo—yofd 'veétbn‘ relocated .through

the kernmel data space, The new prograns stifus»vord may, of

éogrse, have 1t$ current mode Set‘td:either-kérnel, supervi-

‘sor, or user mode. Because of this the kernel-mode program

has'coﬁtrol‘oier All_serviCe'tbutines but may pass it on to

" the _othér modes if the"sitnétion_varrants-it. Since the

30

31

‘kernel-mode is given tBQSevpririlegeS‘by_the hsrdware it is

‘nornaliy used to implement the loﬁest'lével of an opérat;ng

system, connonly referred to ﬁa " the ‘kernel"" Spooner_'

(1971). UNIx uses exclusively the kernel-lode to implement

‘all input/output drivers, clock vatchers, trap handlers, andu

all of the systen prlnxtives. As UNIX is written in a high.

\.;1sve1 language, 'C', whichv is ﬁot'féapable of producxng

privileged Lnstructxons,'nany of the pr1v11eges provided by

the hardvare are regulated. An nnalogy lay be drawn to the';'

- Burroughs B5700 systea, Organick (1973). ‘The 55700.systel

uses software protectxon_sipce no hardwarerprotootion'éxists-'

on the~Burroﬁ§hs ladhine;’

The snpervisor and user -odes of the, central processor

are the sale as far as hardware privileges ‘are. concerned.'
‘The only hardware difference betueen' then ,;“15{1 vhich_
‘napping-register set is nsed, and uhich stack ﬁointer is’ to,
be used. .Each of the three lodes has’ its oun stack pointer“v

'(register six) and the current processor node specifies

vhich.one to use.- Jnst because there' sro insignxficant.t .

7.harduare dlfferences betueep user and supervisor lodes does,i'

not 1'91Y that the! must Perforl sililar fnnctions. Ihf"u

' fact, in a. SOPhisticated environlent the supertisor-node may

f'ﬁo‘ used- to' i-ple-ent high level input/ontput, .'co..anf;ffn '

routiues,_ or real ti-e' processes. UIIX avoids the issuo L

'conpletely by never using the supervisor-node,'ag. UlIx ,vas

-intended to be capahle of heing run on. PDP 11/60'5, vhich do _

Awnot have that -ode, rhns. in UIII the kernel—node addréss”

ré ﬂ;

- 1-virtua1 address space. In theory, the proqral may be npbhto

'space contains all the code for the systea priaitives, as

vell as. the‘ﬂsensit1Ve data structuresa, The user-aode is

used for thq'axecution of user processes and is \relapped~

each. tile a new process is schednled tor execution.

32

" The' second factor used in deteraining which of the ‘six

sets‘ of relocation and access—control inforaation to selecr_ -
for a particnlar neiory reference, is the knovledge of thef

tYPe of reference‘ i e., is it a data or instruction refer—_d

ence? The use of the separation of data and instrnctions is“;'

optional and -nust be enabled by settlng a blt ih a statns‘i

regisfer. It lay be enabled for any coabination of proce5¢d

sorA nodes (kernel, supervisor, and/ur nser) hy ‘setting one

-.'bit on for each . node to be enahled., The current yersionf of

. UNIX alvays 1eaves this feature disabled, bnt there are ru-.

_aors that Version 6 has separate instrnction and data spaces

in the kernel—lode, rerentz (1975) e One light vonder about:

'the advantages of enabling the separate data space. “ The
N

i la1n lotivation is space-‘a pnre procednre need occnpy only :

the 1nstruction space while pnre data (that vhich is not'ex— _

ecuted) need only occnpy the data space. !hen the dataAand

T‘;instruction spaces are separate (that is non-overlapping:forf

'i”the ‘most part) a larger prOgraa may be accoanodated in?tne..-

N

"”itwice as large, but it is rarely achieved in the real vorld."
_{The Second possible aotivation for separatinq the instruc-

;tion and. data spaces is to provide executgﬁonly protection. f

* The Cu8or tnrns ont to have heen correct. ,“n'

'.(register 7) to be 1ncrenented (by two) during the fetching-

r the.'I' space or tpt° space is used.. To give a. better under~f'

If the pure code of a proprietary program resides 'bniy in

the inStruction space,.then it may be executed but cannot be.

\

"read or vritten by a user progral.

i

"33,

Any memory reference vhich causes ‘the 'progtanf counter .

of a nainstore vord, 1s considered an instruction fetch .and

,_1s perforhed through one of. the I space register sets. Alli
other. lainstore references are lapped through one of the 'D'j‘
lspace register sets. The set-selected is deterlined by the;
icurrent lode (user, supervisdr, or kernel) of the processor,f

as explained previously. The aforelentioned rule is very

general, and 1nc1udes all cases of fetches perforled through

the, 'I' space, hut doesn't give a very good feel for vhen

‘;_'fetched_;through the 11 space. If the instruction ‘requires

B
. operands' are to . be accessed through the 'I' space or 'D'

'any“operands~they aust also ‘be located. ;-Ihether these

spkce depends on the addressing lode bits in the instruc-
. K‘h__qlt' .

'Astanding of the difference ‘a description of the various'i':
“‘tVflenory referegfes v111 be given. ‘For each instruction -exe-t‘”‘
1Cuted the instruction itSelf lust be fetched fro: lainstore,'-)

:vhich;_xnorelentsnithe prograa ,counter and is\\\herefore

"tion,. and the register specified. Por an explanation of the'”.

forig

..h111/45 Processor Bandbook', Diqital (1975).

. Register node (mode 0) accesses the operands directly in’

of. PDP AR 105tru¢tions see Chapter III ‘of ‘the Ceppp. U

":the’_harduarel‘registers. and‘therefore uses.neither-the {i!ﬂ”pvf.V

. space or the 'D' space. Node 1 (regiSter deferred) uses the

value in the register designated to access the operand in

the~ﬁpf~space.° Auto increhent hode'(aode 2) is -.capable ' of

' u51ng either 'D' space or 'I' space; The‘forier is used if

the. reg1ster specifled is zero through 511, but. theo.latter

is . used 1f the reglster spec1f1ed is seven, s1nce it 1s the

progran counter, and ‘1ncrenented;}- When the progran

: counter ﬁish used wlth lode two the constructlon is called.
'1nled1ate'.sxnce the data used 1nned1ate1y follovs the ihé
r‘structlon. Auto '1ncrelent deferred (lode 3) is 51l1lar to

'node 2, An that 1f registers Zero through six are spec1fied,

the 1nd1rect address 1s fetched from the 'D' space, whlle if

34

“Treqlster seven 1s spec1fied the address is fetched fro- the'

1T space.- The data in- auto-xncrenent«deferred mode . is al- .

ways accessed through the 'D' space nenory lanagelent paral-"'

_eters. , Auto decrenent (lode n) and auto decrelent deferred;h?

bf(aode 5) do not increhent the progran connter and- thereforei

' ar”~ a11 acconpllshed through the " data space. The use of re-
"jglster seven in either of these constructzons is not’ en-.
"Acouraged, f dzsaster 'lay result.' The final tvo -odes
”.ﬁ5nioperate qulte sllilarly,‘lndexed (node 6) and 1ndexed de-

”'errred ’(-ode 7), both obtain the lndex via a. direct refer-

'ence to the progran counter ‘which 18 then increlented.

Wd‘Therefore the 1ndex is obtalﬁed fro- the instruct;on space,

o but the 1ndirect address (only in lode seven) and the _data

;are -apped through the. 'D' Space..

!

There are two other types of -elory references which are"

";§3r£orled on PDP 11's: input/output direct memory access

references, énd traps. As nmentioned before, ' traps are

mapped through the kernel data space. If the data space is

not enabled the mapping is perforsed through the ipstruction

space. The other type bf meRmOrY :eference‘ is done by 1I1/0

"devices . which are capable. of transferring information’

"directly to and from mainstore, without processor interven-

tion. The key word here is 'direct'; that is, these memory -

5references do not pass through the MMU, but ere real phyei—

", cal memory transfers.” Therefore the systeam primitives which

initiate the input/output operhtion nust place the phfsidal'

. address of the buffer in the device's bus-eddfess‘register.

In UNIX ihis is quite easily acconplished because the kernel

'address sbace, vhere the I/0 buffers reside, is lapped into”

physical memory on a one-to-one basis..

'T6 summarize the above section, -one of six different '

sets bf felocatioh and access.control information paraqeters
:1s selected by the -ode of the processor (kernel, sﬁpervi-
'sor, ~or nser) and the type of the reference (instruction. or
.datd). Each set of patanetets vcontalns eight double-wvorad
peirS'vhlch describe the relocation and eECess allowved for a
- periicnlat page of storage. The next sectioﬁ-describes fhe
}leéhaniSi used to select the relocation inforlation..and_how

it is used to form a real or physical address.

v§;§~Re;ocation

"~ When e'nenory ;éference is generated by the ~processor.

71

35

the memory management unit first selects ome of six sets of

Y

relocation and ‘access-control parameters. The selection

lechenisp'has been described in the previous sec¢tion. These

sets each contain .etght double-vord pqirs.vhieh‘describe
eight memory pages. The words of the pairs are called the
page address register (PAR) and the page'aeeeriptot register
(PDR). The relocation inforpation is- contalned in the PAR,
" while the PDR contains the access conttol and statistics in-
forlation.’ This section will describe the selection and wuse

"of the PAR to generate a real addresg from a virtuval ad-

dress. :Bven though the PDR is selected via the sa-e” method
as. the PAR and they are -used as a pair, the PDR and its-

‘functxons will be descrlbed in the next sectioh;"_as Jit

'dlffers con51derab1y fro- the PAB.

As lentloned above each set of relocating reglsters con-

tains eight PAR'S and eight PDR'ﬁST The cnnrent v1rtna1 ad-
£

. dress is used to select .which one the elght PAR's ‘ vill

be 'used for any partlcular addresskttanslatlon.v The three ‘

high order bits, referred to as the active pageA_field, ere

used to select one of the elght poss1b1e PARs. -The:efOre if-

’ the three high order b1ts are 101, for exalple, the fifth

PAR vill be used. Bach oﬁ‘theseeeight,:eglste:s éebtains

36

the relocation information for One.'paQe' (ﬂK—vOtdS)'of- the',--

virtual—address space. This: ilplles that a. proqral lay have

at most eight data and eight instrnction pages, capable of.

addressing 32K vords total, The page_address.register‘conQA'

tains the base‘eddress of the pa§e in real physical ieloty.

The base address is tvelve bits long and is positloned in

the . lower :tvelve bits‘of the'PAR. Figure 4 shovs the con-
‘struction of a physical address fron a virtual address. In
brief, the process is-as follows' the PAR is selected by the
dactlve page field of the virtual'address,pthe- block nunber
(bits 6-12) of the virtual address are added to the contents
of ‘the selected PAR, and the resulting sum is concatenated
'to the displacement in the block (the lov order six bits) of
the v1rtua1 address. The result of the ,algorithn - is an

elghteen b1t physical address.

There are a fev implications of the uechanisn vhich are'

" not 'apparent at a" cursory élance. uost-inpOrtant is the'

Justification for adding the base (value. of PAR) to the
pblock number. In other nachiues,.£3r example the IBN 360/67,

IBM (1967), the base is simply appended to the displacement,

.saving: 32 nanoseconds, the time requxred for the addition.n

The advantages of the lethod used on the PDP 11/45 are that

pages do. not have to start ou physical page boundarzes- they

need start only ‘on 32-word ‘ hlock boundaries. _ "s

'-represents a considerahle saving in fragnentation of nenory,

+as pages are quite large (8096 vords) coupared to blocks (32

'_words). | A secondbfeature Of-the Schele is that’the reloca-
tion registers are kept in high speed storage (physically in
: the lenory nanagelent unit), which reduces the translatlon
time to 90 nanosecouds per reference. Because'of«the short

.translation tile, more exotic pieces.of»hardvare, such as

associative arraysinare not regulredrto’laintain*'the speed-

37

15 1312 06 05

virtual ’] | Block
1]

| Displacement
Address (VA) | APF | Number (BN) | in plock (DIB)
. : { : .

| 1 |
' - | | |
Selects 1 1 |
{ PAR/PDR L —E
| ‘ . | |
. |
| ' ' g | i
v 15 12 11 : 0 | |
PlRo.l/////////l, PAF O i : |
PAR1 I/////////I PAF 1 - (N {
o ¥ : L . 1 1 i
.I . S || [
i . |
| . [N I
| : . ' 11 |
PAR? | ///7//7///7/71) S PAR 7 [S |
' 1 | : : 1 1 |
. S | A
s | | |
I S | i
| [| i
}- >| 12 bit <~ {
| adder | S K
T 3
4 , I i
18-Bit 17.. ' A _§*5 Y 0
‘Physical IPabe Block lulber (PB!) | - DIB |
1

- Address A

N

e v’, R ¢bnst:ﬁction‘of an 18-bit
ST : o 'ph,giggl Address

:”rigdre 4

P

38

"them in the address.spaces'of supervisor and.nser:lodes.‘Be-

active page field- in the virtnal address. Each of-thesec

o

IAs these ite-s- are separable they vill be described in

'separatepsections._j.rirst the'uaccesSfCOntrolv infornation'

,of, the PDr. By convention, stacks on the PDP11 expand to--

y

at some acceptabie vaiue.“Finaliy, these registers exist in

the norlal physical-address space of the machine, and there-

fore may be protected from: nser.prograls by not including

~cause they occupy the same physical page as the input/outpnt

device registers they are so protected

3 4 Page Descriptgg ggistgrs (DR)
In parallel vith the relocation described in the last

_section, ‘access—control‘-infornation'is checked and statis-

tics are accumulated for the accessed page. The information

and the statistics are maintained in the PDRS. As with the

PARs, there are eight PDR's, one of wvhich is selected by the

PDR's contains statistics and access-control infor-ation.

will be described. |

Ass.e—s...en&rsl

The -ain function of the PDR is to provide page-length,.

39

page-expansion, and access-control infor-ation. _Pages are_"

of<warjgb1e length and lay have fron one - to 128 bIOCks of

32 vwo

page, and the size it lnst be for a continuons virtual-'

s in then.‘ This i-plies that the naxinnn size of a

address space, is 32 x 128 = noss words. The current allov-: ;

able size of a page is contained in thev page—length field

.

“major types of access ares

A

vard lower addresses' therefore, ‘the designers of the MMU

provided the capahility for dovnvard expansion as vell as:::>
_the norlal upvard expansion of data areas. . The capability.
~is contained in the expand dovnvard bit; if it is turned on,
then ‘the page—length field is the lovest block number. uhich.
pis. a valid address.g To snlaarize the page length field'

usage, a qnote fron the "PDP 11/%5 Processor Handbook“ ‘is

provided: . .
"l Length Error occurs uhen the Block lnaber (BY)
‘of the virtual - address (VA) is greater than the
'Page Length Pield (er), if the page expands ap- .
-lvards, or if the page expands downvards, vhen. thei

. BN is 1ess than the PLr.,

‘when a length error occnrs, the cnrrent instrnction As

aborted, and a trap is aade to the uun trap vector. -

_The second piece of inforlation~§h the pnr deteraines o

0 R

loved in this page.. The three

vhat type of accesses(are_

?
&

nonexistent), 'read only access (abort any urite a‘.elpts),

; and fnll access (page may be both vritten and read)._ A

vfonrth 'access type exists throngh the nse of the 'I' space,
v‘-nalely execute only access.} ‘Three ninor qnantifiers are ad—
.'dedq‘to ‘these. basic -odes to. aid in/gathering statistics of_~
page nsage. The varions conhinatioﬁs are listed in Pignre 5.2
A’The difference hetween an abort and a trap is that the in- “
.strnction is conpleted oR a trap condition, bnt is stopped,

'fperhaps partially conpleted, on an abort.ﬁ Thns traps are

\

access (page not resident, ori

S

) 41
_15_18 | g 7.65 43 0
I | P 1 { I |
t//{ Page length Pield SN/ ////lBDI ACF {
.l. /- 11 l | 1

Page Length Pield - The nusber of 32—uord chnnks vhich

' the selected page is allowed to access. It is
compared to the Block Number of the current virt»
ual address. .

Y

" 'A - Set wheh an access to this page met the trap condition
specified in the Access Control Pield (ACP).

"W - Set if this page has been written into since the PDP/~
PDR vas last vritten into. -

BD - Expansion Direction; ED=0 =>«expand upvard; ED=1 =>
expand. dovnward. ’

o ACP ~ Access Control Pield--possible valnes and their
definitions follows]]

[

value ' Description unctioﬁ
000 © non-resident o ahort all accesses
001 read4only‘and : abort on write attelpt- leloryélauage—’
o trap ment trap on read U -
' 010 readéohly_ , abort on vrite attelpt
011 unused . abort all accesses-teserved fdr future -
100 - - read/urite and “ne-oty-lanagenent trap npon coipietienvA
: trap - - . . of a read or: vrite » .
101 read/uritechnd ne-ory-lanagelent ttap npon coipleiidi'
- ‘trap on write -.of a vrite : o :
110 _:ead/yrite ~uhano syste- trap/ahort action- _
111 - unused #F | 3fahort all accesses-reserved for future,-

b S use

Page Descriptor Register (PDR)
rignre 5 .

A

~

used for statistics gathering, and aborts hindor disallowed

accesses.

3.4.2 statistics Informatiop -

In each PDR there are: tvo bits vhich log usage informa-

ition “about the page described. The 'W' or written-into bit

‘is always active, and vill advise the system, if interrogat-

ed, wvhether tne page has been altered since the page
descriptor segister was last‘npdated, The ‘*'W! 'bit is a
read-only bit (as is the 'A* bit discussed later) which is
setlsheneve;;the page is altetsd, and is cleared whenevo:
the page address or page descriptor register is updated. In
) diskqswapping applications the 'w' bit can be used to deter*
mine vhether a page marked for removal from -ainstore (by

some paging algorithm) needs to be revritten to disk, or

tnat>.the copy on disk and in lelory are the same, inplyingT

'.that the copy in nainstore may silply Dbe overwritten.‘

42

A second bit of infornation provided by. the ienoryv.:

nanagelent_ unit to aid in paging applications is the atten-

the lelory—nanagelent trap conditions is trne because of a

TffitiOn or 'A' bit. TMis read-only bit is set whenever any of o

particnlar;page accoss. these arions trap conditions \arel*f

specified in theiaccQSS—control field describéd in Fi@nre 5. .
" The option of vhether the trap is taken is 1ndependent of -

the setting of the bit ia the PDR, since the trap nnst be -

. enabled by a bit in statns registet 0. Thus the*'l' bit can

" be used as - a ‘thas this page been teferenced' indicator,;

3

P —

TN

withgut the overhead of the trap. The 'aAv .bit, gives the

’

systeas designer auch latitude in the paging algorithm used,
by allowing him to interrogate the bit vith various stra-
tegies. Once the 'W' and 'ar bpits have been recorded, the
sxlplest way to clear- thel is to vrite the PDR back into jt-

self.

UNIX currently doeén't use either of these bits;”in

fact, it. blindlj writes all pages to be svapped out to the

‘disk. Because the data portion of a process does' not. exist’

on the swapping disk, wvhile the process is in main s%ore,

‘all of the pages nust be’written vhen the process is svapped

out. This makes for a silple, although sonevhat inefficient

algorithn. The next chapter outlines the steps reguired to

1nprove UNIX's usage of the quite powerfnl ne-ory~lanaqelent

<un1t.

43

Ve

.Chapter Iv

The New Softwvare

4.1 Introduction

A number of experilents vhich could be perforled on UNIX
to - restructure it into what is conventionally terned a pag-v'
ing systenm are described here. The motivation for the ex-
tension is that the hardware is capable of doing more vork
than it currently does. The terl hardware here means of
course. the WMMU. The additional nork refers to the capabili-
ties of the MMU vhich are not - .currently being exploited. -
'_These include separation of instrnction and data spaces, us-
ing the statistics inforlation which the unit provides- and
-,loading progranms into,non-contiguous physical lenory.

The chapter is the crux of the thesis, and discusses

some of the pos51ble experilents vhich conld be perforned on »'

UNIX. The restructuring of UNIX to a paging systel can »be

broken down into four -independent phases or stages. The
chapter is subdivided into sections representing these '
.stages.‘ In each section the advantages of perforning the
~described -odifications will be given, as vell Qas detailed.
descriptions of owhat nust be changed and vhy it nust. Toi
_understand the intricaCies of these changes, -a detailed

“;knoﬁledge of the operation of Uqu, as vell as a co-plete

'knowledge of the hardvare of the MNU are reguired. The‘~tvoji

‘preceding chapters' have provided the necessary background

- for and understanding of the hardware capabilities, and vere.

a5

45

tnecessary because no- other adequate descriptions exist. ‘
thhough the four stages of developlent proposed uust; .
be conpleted in order‘ they ure independent to the extent:,i
‘that vhen each stage has been conpleted a' vorking systea ili
will exista,-‘Iﬁi brief the : sectionSJ to be- covered are:
separate the '1nstruction aué"'daue'.spaces'. provide,»for;
,discontinuuus pﬂYsical lainsture ilages of uses processes.g
.keep an . iuage of user process on disk to reduce revritef
‘ tine- and finally bring in user segnents only as they are
:‘iueeded (alloving a process to run vithout being totally
floaded). TheSe ‘four stages are of incteasing difficulty to”
H‘Jilpleuent, and the foutth Stege reqnires changes to so nany~ i

' fsystens routines it is doubtful that ilpleqentation is var-f

'l,vranted. The order in 'uhich these are 1isted above andtg.f-f

"f:described belov 18 the easiest lethod of ilplelenting then';l
in fa.ct. the last tvo stages ate very dependent on tt.pre‘_‘,mq‘

'fV1ous staqes being inplelente&. .:[5' e ;;cﬁ,‘;ﬂg<>=v

ngxmuwmwm
Perhaps the nost obvious portiou of the unu which UNIXTQJ.ff}

neglects to utilize is the sepqxation of the iustruction ands:;gj;i

data spaces.,The nain advantage of havinq the jinstnnctiong

“and data spaces separate is that prograns lay be up_to'tvice

}as large as they could be vithout the,separationf;'

very little vork on. the part of fhe syste. progr ller'."‘"" .

'actual routines which need to be revritten or uodified “aud R

“tue structures vhich lust he nodified towacconlodate the_

wﬂf separate instrnction and data space featnre.;;b

. a6

‘change are described in detail later in the section.

_ Although the address space of alnost any conpnter ‘could_,g,“
’ _be' separated into independent instrnction and data spaces,7A L
~ this was ‘not done on nost previons lachines : the ndvan-;o”'

_ tages didn't outveigh ‘the disedVautages. The turning of the -

~ tide canme on the PDP11 series computers vhen the need for "ef:'f

latger_ nainstore- than could be addressed with sixteen bits ‘

3arose. The problel is lorc pronounced on. the PDP11 than on

lost other sixteen-bit lachéfed DGCause thé BDP11 is byte-fF

addressable, effectively 1eav1ng it only fif*een bits to ads'

ﬂdress lenory. This lilits the size of proggans and data .to

'32x words (2 hytes/word)- As the dasigners< of the pnp11<y_

~series felt 32K vas a severe 1ilitation then bnilt hardware*w',f

°~.¢to separate the instrnction and data speces of their top**wf'-}i

;ieof-the line' conputers, the PDP11/QS'S and ?0911/70'3. Be-:ff e

1[sides prOViding up to twice the size of progr;- that can beffw[;f'

nr7protection, execute-only, which .eans that not only cnu theliff

”ép?that the - hardvare is capable otjdistingnishin betveen in-f

'ﬂ;;fstrnctions anﬁ data. UIII.:a_ngno nse of ﬁhis lechaniSl-

;fi3acco-nodated,; the separation -also provides a new type off?ffnf

d”d,fexecutable portion of a proqral be proteeted fron beingj:v
‘:inlvritten into or read fron. bnt also that gennine data cmnnotf;,.'

'ﬂt?be execnted.'either by accident or _alice. Dospite the factl R

5UNII is nade to rnn on handcare—lilited PDP1§/%O'S as nell;v-

as ’45'5. and 70's. rbe PDP1I/QO series do&s not have the '

R

The advanteges of a sepatate instrnction and date space{.

are, in brief: potentially it'can double the size of a 'pro—‘l
granm which can be run; it provides execute protectlon {(and -

non—execute protect1on) The.overhead induced (or dlsadvan—

tages of .using the featnre) is relatirely s;all; Basicaliy»

the overhead is in_a small amount of extra storage ' required
{16 words) in each process' user-structure,’andwthe'slightly
longer amount of central processor tlle required to switch

processes. The colponents in UNIX Uthh need to he changed

are the kernel, -linkeditor- (and associated files €.9..

51ze(I) and nm(I)) and’ the debuggers. “The kernel needs to be
N

.changed. for the obV1ous reason that 1t 1s the heart of the

-latter. The hanges to be lade in the kernel w111 be ex-

plalned later in complete detall.

"The only\systen structure vhich needs to be lodlfied to.

: acconpllsh separatlon of nser-instructlon and data spaces is

 t1oned the strncture is svapped ogt uith the rest of a pro-»

"~ structure wvere alvays re51dent then the 1ncrease might be-

‘the user-structnre.- It. contains. space for ~the prototype-
lenory-nanagenent registers..-There' 1s exactly one nser-::

-structure for each process in the systel. As prevxonsly men-

‘cess, vhen a ‘Svap 1s lade. Therefore an extra sixteen vords

added to it vill not be a very critical 1ncrease. (If tne.

Acone cr1tica1 1n some’ appllcations). As the user-structure
does not reszde 1n the nser's address space (see quure 2 of,

Chapter II) the -c11ente1e vho do not use the separate ad- y

.

' t_dress spaces cannot Clall that the 'feature' 1s cansing them

47 -

_nnwarranted injnstice. The new space 1n the nser-structure , -

| nanaQelent register' protdtypes are: estabur() {(establish

k3

in the next paragraph.

vill be used for the ‘nelorj management prototypes, eight
vords for the imstruction space PAR's and eight words for

the PDR's. How these vords are filled'and used is described

The two main ,routines'.vhich< nanipulate the memory

.user reglsters) and sureg() (sv1tch user registers). Basi-

cally estabur() calcnlates the offsets requlred by the HHU

to allow the user to address his text, data and stack.
sureg() then’ adds 1n the hase address (recall that the pro-
gram is contlguous so only one. ~-base . 15, requ1red) of the

current locatnon of _the process and places the’ reSults 1n

the actual memory’ lanagelent reglsters.. These‘two- rontlnes‘

must be changed to allou for separate 1nstruction and data

48

- .spaces as there are sxxteen elelents to. fill 1nstead of -

. elght. Sureg() is qnxte easy to change since only the nulber~-

of reglsters loaded lust be 1ncreased fron eight to sixteen.

Ii can of conrse be- assuned that the sixteen prototype ele- ‘

nents have been properly set up for this rdut1ne.

'__1nstruct10n and data spaces. Plrst a paraleter should be ad-;~f~

-Estabur() reqnlres a few'changes to acconlodate Separate

'.ded to 1ndicate the user's desire to separate the instrnc-ﬂ?ﬁff -

-‘tlon space. Because two routlnes call estabur() dnr‘"q the_‘fpugf

execution of a ptocess, as- well as exec() durnng thu 1n;-_t'

tiallzatlon of the lelory lanagelent reglsters. the separa-‘
tion paraletar lnst resxde ‘in the more. perlanent nser-f

structure. These tvo rontines, sbreak() (the systel prili-

-

tive to expand and contract data'areas) and trap() (vhen it
expands the stack) have no other method of deterlining
whether the 1nstruct10n and data spaces are separate. Bxec()

can f1nd out by investigating the 'laglc' number in vord

zero of an executable file and should.be modified to change
’ ‘

"u_sep according to its value. The magic number could have

the’ value 0411 (cnrrently the loader 14 (1) places 0307 for .

normal f11es and ou1o for reentrant read-only text files in

the laglc nnlber). Addlng a new paraneter to the loader

would" enable the user to spec1fy that he wants to separate
‘instructions. Because a.nevv'naglc"nunber is to be added

(as well as relocating the data to‘start at address zero),

several ut111t1es lust be changed to recognize it. dnong
thel are the debuggers, 51ze(I), and nm(I) (an external name

locaton).

49

Theffirst’iten in estabur() to be changed is the method

‘of checkinq to see vhether the new llarger?) process will

:still f1t in lelory. The algorlthl lnst be " changed to re-

‘flect’ the »valne of the u sep“flag. The text-filling algo-

rithl need not be changed, bnt»'if‘ instrnction and. data

o spaces _are separated the anused instruction space tegisters |
' should be filled w1th Zero, - pernitting no access. This' fil—
ip;;ng vlll convenxently nove the pointers so that when the
‘;data space-iS‘filled nextf-it §111 be placed‘in 'the:~prope;._
'!array elenents.l if’the data.and instnuctions'are not td'se*‘

'separated, the f1nal action of estabur() will be to copy the

lnstrnction-registet prototypes into the data-register pro-

-

e

totypes. As can be seen, from the above»detailed changes, a
vell-vritten operating systeam is pleasantly simple to modi-
fy. . ‘

Besides these two routines which deal directly with the

segmentation regisiets there are a few incidental details to

be taken care of before instruction and data spaces can be
separated. of course, one of these is that ‘the- separation
must be turned on (by setting the le-ory—nanagelent status

register to fonr) during the initialization of UNIX. It can

be done either in the assesmbly . languaqe» start-up routine

start(y; or in the first 'C* language routine entered at in-
1t1a112at10n tile, main() . The other change vwhich is re-
qulred concerns the trap handf‘t for systen calls. Trap ()

must be capable of fetching data itels from both the im-

struction space and fhe databspace; Foilqwing is an example

'

of the calling procedere for a_systen primitive:

s

_times: .txt : /place followving words: in I space

g " mov 2(sp)sA - /store user parameter in list
sys indr;:B '~ /issue indirect systeam primitive,
: /pointing to real systea call
rts PC ' ~ /return

» .data , - /force to D (Bpace
B: ~ s8ys times /real systep call, interpteted
] /by trap() .
A: oo : /parameter

-

In the above example the'adﬂxess_df fB' must be fetched

from the instrnctioh spdce; ihile'fhe actnal'systen call'ahd

its atgulent lust be £etched frou the data space. To facili-

tate this (there is a silple, well-defined algorithl) e newc

| asselbly langnage snb:ontine must be added to fetcgi vords

50

from the instruction space. Trap() . will then have to be

revritten to ilplelent the reqnired algorithl. Pundanentai—

ly the algoritha proceeds as. follous: if the progral counter~

must Dbe increlented to skip over the data 1tel then fetch

the data from the instruction space, and»othervise frol the

data space.

This stage of experimentation vith _memory “seglentation
in UNIX has been described in detail to give the reader some

notion of the silplicity of changlng a vell-structured

operating Systel.'-The other three stages vill not be

‘ described in as lnch detail to avoid needlessiy confusing

the reader.

L 4

5.3 Stgge igcogtiggitz _; gse Processgs
Chapter II descrihed the relatively lengthy process of

vexpandlng a user process._rhe main cause of the inefficiency

is the sinple fact that a nser process -nst occupy a single.

continuous lelory area. A lethod to\alleviate this and other

problens, derived fron the designers' principle ‘of forcing

processes to be"contignous in physicaL aelory. not to be'

51

‘.'confused vith the noraally—fragaented user address space, isig;'53~*'

erplained here.’r

The advantages of 311°'109 processes to occnpr ‘nonr:fﬁjjﬁfii

- tignons lainstore (that 18, to ha'e lainstore lanagea onjf$7”ﬁ“”
leglent basis) are actually twofold' first. it provides al\ : .
easier method of perfor-ing process expansions, and Second1;{ﬁ4:3

wore processes can fit into a fragmented memory. The first

23
R

v:j;the size ‘of _the pieces ~to be allocated is snall

advantage allows the processf expansion algorithm to be

-~

‘'would be sonething Iiie_thetfolloving:

1) allocate'the newv Saaéé (it must be broken up into

segments nérging' the new data (or stacx) with the old. -

"one)- by calling malloc().

2) copy the old"partially full segment into a new

‘larger one.
3) clear the rest of the new space.
4) free up the pattial segment. 4

—~

The new algorithm guarantees that the largest piece

whlch needs to be copied’is less than 8K vords, as opposed .

rewritten in a ndch more efficient manner. The neu algorithn

52

to. the whole process. The second benefit attained by nanag-z

1ng nalnstore on a segaent rather than a process*basis 1s N

present in nenory.\Because each allocation of mainstore is

at nost BK bytes, (the length of the longest possible seg-

?',:v

that a larger nunber of processes . may be silultaneously‘

.‘nent) as. opposed to a conplete process (which nornally occn—’

s pies ‘more than one seg-ent) lore processes shonld fit\t As
erl, the |

| v;likellhood of filling ap a hole is better. The reader shonld:'

"jalso recall that the purpose of these changes is to convert_:

1nvo_a paging operating systen, and ome of the‘ steps

- nanipnlate discontinuous user. processes.

Unfortnnately this stage of ilplenentation besides hav—

‘aafﬁing sone }very strong points in its favor also has a few

ih[;uhigh ».ust;‘bec inplenented is the restrncturing of qux to

negative aspects. The main problem has "to- do with

input/ontput. As normal input/output is'done'by copying , the

53

data to and fron kernel buffers (using MFPD/MTPD) there is

no problem with it. The buffers reside in fixed 1ocations inf:
.the kernel and therefore each buffer is a continuous portion

of physxcal memory. - The proble- exists only in the case of

physical input/output. This node (as ilpleaented for all
block type devices: disks, tapes, etc.) uses the user's

physioal mainstore as the »sonroe/destination -region. That

is, the .physical input/output routine (physio()) simulates
the MMU (recall that in the 11/“5 series the input/output
does: not go throngh the lelory aanagelent unit), and then

sets up the device to do the inpnt/output to the user's phy-i'

sical leaory. Becanse the devices on the PDP11 are not capa-

" * ble (because of hardvare design) of perforling data—chaining

. solution to the problea would be to generate an ‘error when

operations, physical inpnt/ontpnt,cannot occur aoross non-

contiguous segaent '(bnffer) boundaries. Therefore the

phy31o() routine must check for thea, and take sone a1terna-p~

_tive action (for exanple, allocate a ‘contiguous dynanic

buffer 1arge enongh and then copy data) Of course a simple

it arises.r The only other negative aspect-of stage tvwo is

,the slightly higher overhead in aanaging' and nanipnlating-'
the larger nuaber of lainstore chunks..rhe OVerhead is qnite”

small, conpared to the - present lanipnlation.l -

"v The changes reguired to implement . step tvo apply to only

a few systea routines. IO!G,Of the systen support‘(ntility)

routines need to be changed. The tontines in the UlIx kernel
vhxch nust - be nodified are those nost closely connected to
the memory nanagenent nnit; sureg(), estabur(). sched () ,

lalloc(). xsvap(). xfree(). erpand(f. ‘xalloc(), and

- xccdec () . Although there _seem . to . be a. large number of
routines and therefore a sizeable task, 1t is not as bad ase

it looks. -The task may be broken down into -four_nsnbtasks:'

swapping in, register copying (to give a process control‘of

" the CPU), allocation (deallocation) prilitives and alloca-

tlon (deallocatlon) .support routines. The nost ba51c of -

~ these - subtasks is the lainstore nllocation/deallocatlon

~ problem, so it will be discussed first.

As UNIX is cnrrently vrltten, ell the lainstore for a
’process is contignons and thereforevis obtained from the

-systen pool in one chunk. This staqe of 1lp1e-enting a seg-

nenting systea in UNIX decrees. that ‘the space for a process
ust be handled on a per segnent basis, vhich inplies that |

_estabur() ‘cannot exist in its cnrrent state. Bstebur() per-'

forls tvo - fnnctions~ it checks to see if a process vill £it

54

;thhin the .constraints of the herdware (eight data and/or - -

text segnents and uxthin th. physical nein store bounds) and

:also fills wup the prototype segnentation registers (as if"‘

allocated nelory Here contignous). Bstahnr() should be splxt-

ap. into its two fnnctions and the fnnction of filling the

‘lenory-lanegelent tegister prototype shonld be. left to the..t

'lenory-alloceting rontines. Therefore there shonld be a nev

‘Krontine vritten to ellocate -enory for a process (on a seg-~'ek

sent basis) and fill the prototypes at the same time. In the
same respect, the ienory-nanagenent-prototypes should be ad-

justed to reflect memory 'uhen it is freed. The nmal-

loc () /afree() routines are used - by other routines in the ‘

55

_eysten; and -must therefore remain unchanged but the data

structures ﬁhich they work on (corelap) must be accessed by
“the nev routine. - : |
The svapping-in process, as performed by sched(), nmust

" be modified to reflect the notion of noncontinuity. Cur-

.rently. sched () checks only to see if there'is- a Chunk of

uainstoré large’ enOugh for ‘the whole process. Obviously

sched () must be nodlfied to find the pieces of main store -

"vhxch the process requires. As the lelory—nanagelent'proto-

_ types exist in the user-structure uhicb is (visely) " swvapped

out with the process, sched () has no uethod of deterlining

W
uhether the fraglents of mesory 'thh exist are capable _of

holding a process (the entire process must be res;dent for.

it to be executable - in stage four this restriction is

lifted). To aid the scheduler (of lainstore) therefore, a

" new data. structure lust be -aintained. This structure (ei-f'

ther pointed to or appended to the proc-structure) wvould in-

clude a byte containinq the current length ‘of each of the
'~sixteen possible segnents. rhis s-all (eigbt word) - structure“
'is all that is requlred for a new schedulinq algorithn to be

-written. of course, nany algorith-s could be- constructed to

'-pack as much as possible into the available space.. The' new

el.)ta structure vill be nintained by the allocation/dealld- |

cation routines.

The allocating/deallocating-snpport (xswap ()« xfree() ,

«..) must be ohanged to reflect the modifications perfornod‘

on the allocating routine. The checking roantine wil) have to .

be ‘called to see if the proposed (by the user) expansion

vill fit. Then the actual memory will have to be allocated,

and the memory nanagonent register prototypes filled. Be-

cause of the new structure of a process!' mainstore image,

(it wiL@astill be contiguous on disk vhen swapped out), the
amount of inforlatidn vhich needs .to be moved aroupd in
storage as a process expands is minimal. |

The final routine which requireS" nodification is

sureg().ﬁ_vhioh copies tpe:prOtotype registers into the real.

' harduore redistorsL Currently, the base address Of the pro-
. cess is addéo iinto the registets as they\are copied. As
there are lany bases (one for each seglent) and the real ad-
dresses are contained in the prototypes, the addition.is not
required The prototypes lay simply be copied to the real
registers. '

Ptovision for nonoontigﬁous-processes is a. large step,
land deviates fro- ‘the intended structure of UNIX~ It is be-

cause of this deviation that the chanqes are SO inVolved.

: Providing -fot noncontignons.ptocesses is a major Chdnge in

the structnre of the systel and is difficult to perfor. be-

cause of it. As vill he seen in the next staqeo changesv

56

" which are planned (or anticipated) -are ' more easily 1np1e-f =

mented.

4.4 stage III Paging Processes

Stage three of experimentation on UNIX'S memory manage-

57

A-gnt' structuré brings UNIX one large step gldserito vhat 15» _

classically ternmed a paging system. There are three interre-
lated aspects of the changes required to accomplish step

three. rir.tfj e 530f each existing process will be kept

on the sua . §: ;second; the process' image will not

necessarlr : 5‘ 's (it vill be broken up into seg-

fs to be svapped'&ﬁt xhe written-into bit vill be ~exa-ined
. to deternmine vhethet the lainstore copy is the same as the
one on disk. The last feature does for »data -areas what

'text! seglenis ﬂid for instructions. One itenm whichushould

be noted here is that a process will still be completely

loaded in mainstore before it is allowed to run. . Removal of

the fipal restriction is discussed in the next séction;f

The inherent advantage of this step is quite obvious -

ot cuts dovn the amount of data traffic on the swapping

medium. If the svapping disk is also hééd for otber data

_items (for exa-ple. on' our syste- the temporary files share

the Swapping disk), it will lessen disk access - contention.

Also the slalier' nulber of data bytes“transferted will
reduce the‘traffic on the’ﬂlIBUS, and. therefore speed up
maimstore - bperations~ (for exalple 1nstrnction and data

‘fetches). Besides these advantages there: are-a few disad-~-

SN

58

)

vantages. Additional inforletion about each process will'._“

have to be kept and manipulated in nainstore. The exact na- -

ture of the 1nforlation will be described later‘ The fact to

note here is that the data will occupy nainstore {there can

be a total of only' 1;8K words on a 11/45) and will have' to‘.

"beb constantly lanipulated by the systen, thereby stealing

valuable CPU resonrces. The real question lies ‘in. whether

‘Fhe advantages outvelgh the dlsadvantages. Unfortunately

there is no practlcal vay of deterlinlng the answer. vithout

actual i-pleleptation ana benchlerk tests»(gnlte arsizeabled :

‘ ’ .
task). o ‘

e

The additional data structures' reQuired to ilple:ent;.s_

stage three o will contain' 1) the conposite written-intof 3

bltS. and 2) the suapping disk addresses of the sxxteen pos-.

 sible segnents. The written«into bits (one for each of the:

possible data segnents, eight total) desiqnate whether therfﬁ

lalnstore copy of a Seglent 1s 1dentica1 to the one on disk,]b'”

and therefore vhether it needs to be written out on a swap.'fd

“The second strncture (thirty-tvo vords 1ong, two for each5«~’fﬂ

'seglent) contains pointers to the areas on disk which are_fe'TV

reserved for each seg-ent. As the lethods of lanipnlatinq ff; :

‘Hhe sedbnd structure ate 1nhere?tly silpler ‘they will be -

_discussed/first..

The sxxteen disk—area po;uters relain conStant as 1ongf?

as the size of the process does not change. Only vhen a pto-

cess expands (throngh autonatic stack expansion, the break()

‘prilitive, or "by the exec() primitive) or'contrasts (via

A

'5lﬁﬂfshorter,: is nnch harderi“

ﬂ-'}fPDR's are gﬁe vritten gnto

..‘h

'f‘the break()n- exit()' exec() prilitives) need these

. 59

‘pointers be. altered. As -ost disks are capable of beiag ad~,a

idressed in 512—byte chnnks (sectors), the pointers need only‘ﬁa

a.address these chunks. These are~the sane sized inforaatxondk

strnctures as are ourrently uaintained, iﬂ} 'svapla‘

e'nalloc() and nfree(). These rootines may still be used tofﬂ

'lalntaln the available space on the swapping disk. ln 1ndi—;f

“i ty (doesn't exist on: disk). It could be done by filling that;¥
fslot in the pointer data structure with ninns one. Thed~
| length of a seglent (they can be fron 64 bytes to 8& bytesi]
glong) codid be deterlined ;tOI the text, data, and stackfa

"sizes ang?the separation flag, but for efficiency's sake :9“%“

' separate sixtéen vords should contain the length. nhen a

. process is svapped ont, the lengtl.-of-seglent array ~can be

P

g suapped out vith it, if- there is so-e vay to qet it in.;ij"d‘g

”*f.;pointer to its disk address is in the pernanently—residentﬁ

;Qﬁlethod already exists to bring in the nSer-strncture.z,e:.a ;}f"'

'ﬂsﬁfproc~strncture. Therefore if the user:strnctnre vere SHappedjf;'

f.fan first, along with the length-of-seq;ent array, the whole-r}h

>ﬂf};process could then he found and svapped 1n.,fﬂlﬁ‘,1f;-v"“

The second data itel required for stage three, althonghifVJfﬁ

f~;btt in ‘the PDR cannot be vritten‘(see Chapter III). it lnst5,d7

IFE*:be saved, in a conposite;nanner, each ti-e the P!R's and/or‘»

'Tot,only are the PAR'S and3

_nipulate.,ls the vritten-intoﬁhiﬂ'

"”PDR's written each ti-e the Cpudis schednled to anothet userf}“

:°1:vtitten-int0 bit.

T

(through swtch()). bnt also dnring procegl expansion. and’

~»..even‘ the ﬂavice -uea- (vhich troats physicgl lelory as. an> ‘

"”1nput/output device). Thete ate even lOre subtle probléis4
'i‘juhen xnput is done fron a block ﬂevice (e.g. disk or magnet-
S e tape) ‘the inforuation received is ‘copied fr°' ‘kernel’

;-'ffbuffers to the nser's bﬂﬁfer Vith a rontine called

3copyseg(). Copyseq() copies 1nforlation ardnnd using the

"“supervisor*no&e seguentation registers. (The only place in

'UﬂIx where thay are nsed exaapt clearseg())., beééuse the

7jsnpetvxsor*uoaa ragistets_ ace used tha written-into bit in
ﬁllthe user's PDR doesn't autoaatically get set. Physica1

,’“Hlnpnt/ontput ,115 another cnlprit'“ it doe§ input/outpnt

ﬂxnectly toffrou the user's nenoty vithout the uuu. There-
- e

"?fore the vritten~1nto bit uould have to be si-ulated in '
L f;phxslo(). lll of the s-all ke:nel rontines vhich lova.sihgle ‘
 fuords or. bytes‘ into the uset space nsa the uTPD (nove-to-\

%.;previonSQdata) instrnction, 1 uhich . properly sets "ghéQl-“

‘-, |

'rhe~ wajor. mutine vhich is. 1nvcuvea in the svapping is

. ‘sched (). , vhi.c:h wonld reqnite nodification. %ecall, 1n sec-

. tion u 3 smhea() was lodiﬁied to :ead in (and vrite ont)

noncontignovs processes.. It is a relntively sinple task td
 ladi£y sched() to chect the conposité Vrittegrinto bit -for g

o each segnent before writing 1t ont.vl nev ﬁwappinq-ont algo-‘

'tithl conld b% developed to svap;?nt those‘ ‘processes vhich

‘have nodifiad the least nunba‘lo seglents firJl (of coutse.'

“-the cnrrent tine~based algorithu uould.still be. the -ajqrj.

.,__,<<‘...

3.
?

AL
A
A

factog/{Z svapping a process. out). A newv scheduler could be

‘3deieloped which 'vould contlnuously swap out segnents wvhich

have been wrxtten 1nto. Th}s is’ the -ethod used in some

'operatlng syste-s, 1ncludiﬂg the chhlgan Tern1na1 Systel on

UﬁIBUS,and-ieuory enedgh@that it would not be ‘advisable to.

fdata area). Bxpandd) enconnters the same pr;

’

. the IBH 360/67 (370/168,...) Alexander (1972) . These 1oq}a—

~.

Are-orient ‘the systel to thenﬂ The sflplef demand scheie

'currently used v%yld be luch more suitable on PDP 11's. The

demand schele stops the process, and then svaps it out (or
ensures that. the disk and lainstore copies are the same).
-,

Nevp:oc() aﬁd exec() are tvo routlnes which | would hnve

: be lodlfied in a similer manner to- 1lp1enent paglng.

'These tvo rontines both expand (and in the case of 'exec().

‘ the case of neupﬂoc(), copy of a process’ is made the d1sk

space, reqnxred lust “be: allocated (deallocated). A sev‘j

@ PR . o TR _ P

copy to it. . - Lt D

~,subrout1ne 1s tegg;red to, lanlpulate the disk space,k“eqaﬁ'

head..wrltes‘ vquld ppobably degrade the perfotmance of *the

-e'contract) thé size of a process. when the size ch’nge (dr 1n"

61

The flnal iajor elelent 'whiéﬁl needs-'cheﬁginéz‘is‘etﬁe'-f

' expand() rontine.“ It is 'called by trap() (to expand the

:stack) and the break() prinitive (;o expand or aontract the'

f.txons) gs exec() and nevproc() which vere previonsly dis-

: t"' ‘ . . Co e e ‘: . ' ,%W . S : “')'

cussed. :*1; AR

4-". "r -) ' v'n‘ N S o '.‘

ihen stage three Kes'xbeen' conptefed, pra@esses vill
4 r v j .

'fT st&ll have to be fully loaded fo tun- the next section dealsa

o - v" '-‘ X '

LS =
“ R

r ‘ .
« [)

‘;ets (and solu—"

.

L
-

-

with this restriction.

4.5 Stage IV Paging Segments
Stage four exanines the finaltprobiel in making ONIX a

paging (segnenting) systel; that‘offnot requiring a process’

to be conpletely loaded before enabling it to r£'n. Hodify—

ing ONIX ﬁo\be a ggging s;sten is what the chapter (and the

the51s) set dq; to:acegqpllsh. Befoq‘.julpxng into the ac-
e :

%
tual 1|§1elenta,ion some of its advan%nges and disadvantages

i1l be' stigateda
31%

- al"".l“‘

62

The ﬁkiie iptivatidn in’ ilplenenting stage four' may be'»i

acaden‘d in nature since it provides vety few advantages to

thﬁ user, and has many aspects which are disadvantages to

tured operetinq sySten wtitten in a high level language 'it'

-vis both béﬁbficial to students and easy for stndents to ex-

aline the elements uhich lake it work. If stage four vere
o
ilplelented 1t vonld provide anothet elelent to be exelined

and studied. Also, the nore sophisticated students wonld be

" bdth % the user and the- systen. When the lodification_is.ex—' :1
,alinedlfron an acadenic’vievpoint there are many oenefitsvtof o

| be gained by its ilplelentntion-‘rAs.Uqu'is aevell'SE!qu -

yrovided with -a base to test i@i&ons segle!t replacenent al— -

: ,/d
gorlthls.;7T§E uixx systen rnns on a lachine vhich %5 cheap

--'-odify and, test varions ideas.« The actnal (non-acade-ic)

benefits gained by i-ple-enting the foutth step are as fol-.v

. E -

M
' enongh that alggst any nniversity canfafford to let the stuw w

, dent have (on aﬁenporu}; hasis) his ovn s‘ysten on which to -

lows. Host inpoitant'is the fact that if a process doesn't
have‘to be completely loaded to run, larger processes may be
run thén vonld othervise fit on the machine (limited of

~ counrse by the address space ot the lachine){ These days th;sq

| ;1s not a strong ‘point as memory prices are rapidly fall#n
'ﬁTov buy enough memory v acconlodate the largest po 1b1¥
process (32 K bytes of 1nstruction and 32 X bytes of ta)
_costs around five thousand dollars, or approxinately five to
ten percent of thé cost of the whole systel. The‘second ad-
--;vadtagé is ‘that‘ more vorking sets of_processes oon,fit in
v laihstore than Can‘entire procésses.{ Por a}*diSdussion‘}of
,vo:kihg sotsf sée'Dennipg'(1968). Keeping onlf the vorking
s‘etS': in main éelor'y vould lessen the number of paginQow_a-
. tionsf.requirdﬁ to run all of the available ptoceSses. Tte;-
| effectivness vould have to be deternined experinentaly. AOne
'site-‘~to qote here is that a single PDP 11 instruction lay
',;fefetonce-up.to six seglents, tvo in the in;truction space

-and :four in the : data. 'space;. .'An *anple follows (the ad-

: dtasses ame absolute and are for reference onl,)-uk
A

W .‘ 't-‘ tx)-

e

01777§ lov asrc.BASt /ctosses sé"hnt bonndaty
‘030000 src: s1- . /indixect address of sonrce
0A0000 ast: 41 . - /indirect address of
R - - ' destination o
. -050000 s1: x - .- - /attual source A :
060000 at: y C /a'ctnal destination '

s

-.;Bven thowgh the above exalple is contrived it shows that the
‘ wotking set of a PDP11 progran nay be a large percentage o¥f
'-.,1_the.sixtoen possible seg-ents. inother exa-plq sof~ this f.

‘.\.-v-
. S A

64

phenonenon is the IBM 360/67, which can access eight pages
vith one 1nstruction. The final argument in favor of imple-
menting step four is 'tnat it reduces the amount of
inp;t/ontpnt done to therpaging disk.. X proper1ydrunning
paging algorithm would not bring segments into memory which
tere not subsequently used. | | |
The major disadvantege of irplelenting the'fourth stage
is the increased overhead assoc‘ated with the bookkeeping _b
reguired to deternine the vorking set: of a process. Not onlyf .
does the sqkten have to establish use-counts. fhtrmhe seg-. ‘
-ents, but: also there is increased overhead in getgnq;t%b},,;# o
switch processes frequently, because the current pro Iﬁi@?;_z

v
- e

iqulres a nev ‘segment to be swapped in. anoe;er added s,h%g

f‘hg :,ﬁ' “{\\
~overhead is in deternining vhether a trapped reference to ﬁ% R

segment is caused by a reference to non-existent -enory, or
because that segment sinply is not 1oaded‘§orhis is espe-
cially stlcky vith the stack seglent(s) as ﬁh." allowv ‘au-v
'tolatic expansion. The final disadvantage of ilplelenting
step four is the added complexity and size of the systen.
As the kernelvis'alﬁays resident and useS'only the kernel-
'lode -enory—lanaqenent registers 1t is linited to 32K bytes

of data or instructions. This lay becone a liliting factor

o in the colplexity of algorithls vhich - can be ilplelented.

An interesting experilent would be a conversion to a two-

level supervisoi using the snpervisor—;ode of the PDP11/IS. .
9 =
As lainstore is quite cheap the second level conld remain

'resident in the .lanner pf the kernel, ,ns‘it ibnldvzreqnire

- .
woo

~an almost couplete rewriting of the systeu "(the principles’

A
and functions it perforas could remain the same) it vill not
Y
be discussed fqrther here. n '

The actuul implementation of stage four affects quite a .

few routines (in a consistent uuhner) and therefore vill be

65

discussed in-prlnciple rather than in detaid. Curreutbyx'

there are three types of puge faults: 'stack expansion

vfaults, and two types of non-@xistent memory !aults, the two

types are handled diff.erd&#@y,,wi The first type is 'expected"

by a lacbine-languuge systenm routine, that is, 1t vill only
cause an error indicator to be sent to the originating pro-
cess, rather than seuding a signal.: Expected segueut fuults
| are norually associated Hlth the systeu perforaing some ser-
vice for the user ‘in the uSer's ueuory, for exulple copyi‘b

-

, systeu 1nput/output buffers to or frou the user's datu area.

The ’pcond type of Seguent fault is uog}ully ‘concerned vith

- a bug in - a user's progrul (for exafple, array subscript
bounds exceeded or xucorrect pointer used) uud cuusqi'u sig-

nal (vhich cun be trupped or 1gnored,by the user) to be sent

'f;a';geach tiue a ueuory uuuageuent trup 1s cuused), the first

T”i? fuct vhich ghould be deteruined 1s uhother u sequent npeeds

‘r
\,}’

ess vhich cun use it.~ .

S%ui.;.ched

’{:%m%}" he iuplifﬁ

‘“.

. * ’ A "%‘

to the user process‘ In all three of. these cases . (that is,

.¢6- be suupped 1p. If it does, then the swappet shqild be‘
1jilud to.lfurt the suup ung.;heu the CPu resource should be

ﬁ‘bf i;@: siuple procedure are ‘very ' sub-,

| SN
g

: tle uud cuuse@‘ ggﬁrobleus vith the uature of systeu .

’
Ly

. b . _
routines. One lajor 1lp11catiol by that the CPU may be

'rescheduled vithout an explicit call to swtch(). Two. exam-

"ples of problels lie in the lachine—language support. If tis

"“.syste- was prepared to catch _the fault (for exa-pletln "
g .

- fubyte()),'th§~priority.of the CPU will - have been set to

seven (non—interrnptible) to allevlate the lOCklng problenm

.(it ie in a critical‘section). Therefore, vhen the process

_is restarted, ‘'nofault' (the variable which indicates a

routine is prepared to catch Qennine non-eristent <lelory

' faults) and the processor priority must be re-establxshed.
properly; currently, it is notihone since other faults never

happen."_The' nnjor portion- of the change vould be in the

swtcn() rontine. Another portionsie the copyseg () rontine.

Thié»'systei subroutine (nsed to copy aronnd expandinq seg-

|ents, etc.) tenporarily changes the previous lode of the
:CPU to systelelode. If a pa lissing fanlt occnrred here

the old prograp statuq lnst be‘javed and restored pg,gerly.

' lnother najor. problel (ilplying that g\ ronttne or

frontines need HB be loditied) has to do Iith forking. Recall

] .
'.Athat n&hproc() (section 24 2) expected the process which

‘ 'vcalled it to he co:pletely loaded, ;o it conld -ake a copy

'of it (nsing copyseq())., s the process is not now

gunranteed to be colpletely loaded, nevproc() lnst be nodi-'

66

‘fied to acconnt for it (by causing each seg-ent to be -

suagpea in and‘%then dnplicated). A sililar problel exists"
‘\ -

jvith sharnd 'texﬂ&,sognents- the lainstore usage connt be-

"cones ;eaﬁiiiiiil.dﬁﬁv

l qnired pages)..

-

A lethod of locking a process so ‘that it will not be

scheduled by the CPU must be developed and used any time a

-process is vaiting for a seglent to be swapped in. Mso the

.swapping algorithm (sched()) should be nodified tolpr0ce§s"

: working sets instead of processes. The pager has acc"s to

flags which indicate vhether a segment has been referenced,p

or urittpn into. For each process these bits should be sam-

pled periodically and noted. The exact nature of the sam-

pling and use of the resqlts (that is, which paging algo-

rithe should be used) are left to the person d01ng the il-‘

plenentation, as many tradeoffs ;xist, qnd lost likely ex-

perinents should be perforned to determine the best ethod.

- 67

Por ggsnrvey of various paginq algorigtns see any of tﬁ”\\

A : U :*5
several articles o%ﬁ’he snbjed& (for exalbie, Belady (1966)

or Demning (1970))- ¥y

A final problel area is. the reqnired ability to lock.

pages in nenory, either for efficiency (for exalple. the

stack page) or necessity (the profile array lnst be in -ain-

| store vhenever a process with profiling turned on is ruan-

,ning). Basically the -ain problen here is‘deter-ining vhen a

_lockipq problel is the profile prinitive (tﬂﬂlook in the re- ”?}r
. i ﬂﬁﬂv'

<y
e

o Q itage of ponvef#ing UlIx to a paging systel have been con-

J

page .should be 1ocked, and providing a data strncture to do.

L3

!ost of the lajor itens to be oonsidered in the finel

: siﬁered.v nnch 1atitnde has heen' qiven to the systens

. £,

_fit. One rountine. vhich needs some changes becanse of the.<7

s

68

,designer (iﬁplenentor)'in the fourth‘stage,5and yet he is -

directed to the main problem areas and is given the basic
structure of the solutions to the ‘problems. The'<prob1ens
_ disquséed_ do not cover all of the ftfiviol'(or.not—sot1

t;ivial) details as they vould'causo the discuséion to be-~-

come too lengthy and pedantiC. Alsq there is'little.hope of

being able to idgntify all of the potentidl problen areas,.

in a task of this magnitude, without actnally trying to 1n-p

: plenent it.-
have beeowconvqrtéd to a paging (with segmehts) systel. uosi
of the rewards gained (at least by the latter stagés) ‘will
" be sinply' in providing a well-structured base for studies

.'into ptging systels, which is. siqnificanx for tvo najor rea-

-sons.. rirst UNIX is a very 'clearly' strnctured operatingl

systen, and these phases, if ilplelonted along the linss.

~_described in the chapter, vill telain 'cleag' This alone

“would provide a good base for stndents study. operating'

- systea principles. But there 13 the added feature of it be-

“'..

ing done on a naching vhich is atfotdable. that 1s.f"oqé
| which is nqt go large and expensive that hands—on experience4
'1--ust be denled tor reasons of econonic 1nfeasibiliry.

|

When the four phases hayeo been i-plelonted ONIX nill

Chapter V

* _ Conclusion

2-1 Results o

The' purpose of the thesis J;s to exaaine'the feasibility
of convertinq ONIX to a paging systel, aud also to provide a
firm basic understanding of the internal structure of UNIX.
As ‘was showa in Chapter Iv, several experiments in the area
‘of virtual lelory may be° perforned on UNIX v1thout conplete—
ly changing ‘the structure of UNIX. For the most part these
| various experiments, or stages,'can‘be ilplelented vithout
:changing the userfsnconception or interface to the operatinq
'system. Because the user of the.sjstel need‘n;t be avare ofv
.the changes, as_various sfeps are iupleuented, thel#olune of
‘ Qoftware which ueeds’to be altered"or rewritten is reduced.
.'Quite often changes in the internal structure of an operat—
1nq systea alter the user interface, requiring 1arge volunes
of softvare to be -odified, costing luch time and money.

UII_‘vas origiually vritten in a clean vell—structured

: lauuer;” in a high-level lauquage. rhe cleau structuf@'of

equx has beeu laiutaiued 1n thel experilents described in
Chapter Iv. Because S} ehe 1aherent structure aud -odulari-vf
_,ty of UIII the aforeleutioned -odifications are easier than !
" they. uould ‘be on. a uore conventional loOSely-structnred ‘
| ,systel,@ rhe advautages of uodularity ‘and a clean, vell-
_disciplined operatiug systeu (or prOgrals in general) are‘

'-giveu in Keruighau (1974) aud Dahl (1912} auong others.
w y - o _

£

Perhaps the nost ilpottent‘acbieielent of the thesis |is
to denonstfete that with some foresight and in-depth
- analysis of a uell—struqtnred operating systel. guidelines
may Dbe ‘dtawn up to nodify the eystel.invarlanner vhich is
consistent vith the origioal form. The guideiines (or in

séne cases deta11ed explanations) which vere drawn up in

Chapter Iv are not to be taken lightly. that is, by follow—

ing thel a progranler could ‘safely modify UNIX in the
prescribed nanner, but unless they are taken in hand the
sysﬁgl, as vell as the ptogralner, would suffer. uuch time

vas _spent -in conprehending the UNIX systeu, which is distri-

buted vithout conlents or an internal operations descrip—'

tion. Appendix 2 was generated to aid students, ptogra--ers'

70

and anyone else. who is exploring the internal operation of_;'

Al

o Perfotling a lajor nodification to a large operating

'systen is ‘pot. an easy task, no d%tter hov vell-vrltten or

how lodnlar(fhat system is. Before the lodification is ac-

tually. attelpted ggkin—depth stndy of the current algorithls

:and.conlnnications structnres -ust be lade.- Chaptet II gave
a description of the portions of UIII vhich vonld be affect-
'[ed by the ptoposed ‘change. - For testing purposes ‘and ease. of

1nplelentation the conversion from a svapping to a paging

'-systen was partitione%‘;lto fout separate stages. Lfter

eech stage has been 1np1enented a co-plete and tunnahle sys-

}_te- vill have heen generated and it should be checked out'

».Hbef§ ' ontinuing on €0 the re-aining stages. The experi—

ments ontlined in'Chabter-IV are not the only possible ' ex-

perilents, as vill be shown in the_next section.’

_ 5.2 FPurther Researg

Although a working knowledge of the whole OUNIX system’

vas obtained during the prepatation of Appendix 2, only a

small fraction of the opetatinq system vas explored in de-
tail in the thesis. The readet may have surnised that
several other expetilents could be perfor-ed on the systeu.

The remaining experiments can be broken down-into three ca-

tegories: 1) efficieney, vlaking UNIX. more efficient, 2)
’\security, finding and exalining security leaks and patching

theh up, and 3) diversity, exten&inq UNIX to 4Ag re for

use_r:‘s. q _

Allost'éince the concept of an operatingLSys£e| vas de- -

71

fined the users of'operating syste-s have clamoured for iore,e

effiﬁiency, feeling that their job vould rip faster ,on the

. [
tbare' machine. The”%sers .vere correct . (as individnals, not;

~'as a gronp) in- alnost%all eases;‘;nclud§n9 UlIx. Although
nost 'of the overhead in an’ operating ‘System is caused by
. trying to protect one user fron another, usnally the .over-
head is higher than nee& be. Hithin Uqu there are seyeral

- areas ulich shonld be investigated, and experinents Ato

- correct then generated. -vhen a context switch (i. e. e 3

chanqe of ptocessor lode, and the saving/restoration of the

machine state) is done,,cnrrently all the registers sust bef.

seved*anq”reethedg_ Since the P§P11/§5~does npt“provide ';ﬁ

" ‘-‘. .

instruction to save all the registers at once, it wmust be

accoiplished slowvly by sucEeSsive store operationss To help

alleviate this problen, the de51gners of the PDP11/845 pro-

Vlded two register sets, switchable by a bit in the Ps.

L) _)
=Hhether UNIX could use the two register sets should be in-
S B :

" vestigated and possiely implemented. ‘The major difficulty

is,in accessing user parameters to systea calls. Another

1ne£ficiency-in UNIX concerns the fact that it}is written in

a eigh-ievel 1an§uage. The problea is'not the'langqage;-bnt
its support by\the hardvaré.. Currently, procedure calls are
.'expensive, again becanse the.registers must be saved. Tvo
soiutions' to the problem could be investigated. rirst re-
.call.that:the PDP11 series of.eaehihes is capable of han-
'dling memories of varying speeds. ‘The register save and re-
.'store ('csav()' and 'cret()) conld be. placed in high—speed
store to" decrease the time spent executing ;hel. Also other
routines uhich are coaputationally bound could be placed
there. The:» second solution jis more exotic- re-
Qnicroprogranning the CPU to- inclnde the required instruc-
btions. ' This vould be -an interesting project for the ‘adven-

tprons. other possible experilents in the aTea of efficien-

cy'riaélude" qnening disk accesses vith arions algorithas
anrrently first-cole-first-served); ovetlapping seeks andi
{f data © transfers (the drives will allov this) ; lodifying ‘the -
"ischeduling algoritha- profiling the systen to find vhere it .

ispends its tiae and exalining the'code for possible inprove--

N
T

:lents. SRR } SR '-,2I‘

72

.,provide a useehle tinesharing systen.- This gonl was ler:j"

e'as a tilesharing systel there ere several difficulties in.f2'

_ _ . *
Another lujor aspect of UNIX vhrch could be 1nvestigated

'is that of systel securlty. Although UNIX seels to be rela-

t1ve1y secnte no proof of the security exists. Because

thpte 1s no accounting schele in UIIX (can you snell a pro-

ject here?) very fev users have any reason to -!crash"bthe

' systen.', A contenpornry problen ‘in the acedenic'world is

proving that certain‘ operating systels ere .seeureb~ ONIX

voald be a good candidate for{;a study of this nature.

.'several of the arrny bounds of systel structutes are‘ not

=echecked ‘vhen elenents ate' ad(gﬁ (Por exalple corelap[]

bounds are not checked by nfree() when it is adding free;

-spece. if main store becones sufficiently frag-ented the ar= .
‘7}ray v111 overflow 1ts bonnds.)r Various problens like the
:array-subscript proble- nust be discovered and corrected to-d'

'have a secu;e, reliable systen.;

Very 1itt1e ettention was qiven herein to the diversity;:‘

| of OlIx. ﬁhen uuxx was iritten the nain criterion vas toi:;”"“'f;
"with 'outstanding success.\ llthough nlrx perforns Very vell

fattelptiug rea1~tine applicatious under the eysten.kﬁghge“f =

'difficulties could be defined and the‘ systen oriented toV

‘solving real—tine problons. 2 few suggestions as to the na-“uf'“

“ture of problens vhich vould be encountered are'- a‘!fnster,;

\

' -lore flexihle #ethod - of sending interrupts fro- kerne13‘“":”w
’inPnt/output device drivers to user prograls nedds to hef'

Tfotnuluted and iuplenented- 1uput operations in a. user yro-3fjﬂ_
: D 'ngngfﬁﬁ t&v;yyﬂJ'

. o N | »
gram agst he conditional in certain cases (i.¢ ‘the read()
vill return wlth>*a_ Zero length if no inpnt currently ex-

fists); pipes should allov awnechqni§- for '$énding -epd-of-

" files vithout élosing'thé pipe; an&gfinaliy‘a fvo-level sjs-,.

tem structure using the supervisor aode of the -achine could

“be developed to aid real-tile applicationsark'

The Qbove sugqestions cover only a small nulber of pos-'
_sible aSpects of onIx which could be exploreg and inproved

‘ upon. - Since UNIX is an easy-toonse 'systen tﬂere will ,be

(and is) an- intetest 1n laking lt lore flexible.

'S "h::f¥:5 ‘ o S

74

> T
o : o Eoferences o : K ' ,
e’ o

fAlexandeﬁ u., (1972), "Organizntion and features of the
- Nichigan' ‘terminal systea", AFIPS Conference Proceed-
- ings,- SJCC, vol,,QO, PPpP- 585—591. o , “
. .. l-\ o . ’ . ' "'.‘“ ~“' .{,'.‘\. ' : . . k“e’w ':/'
*;Betady, L., (1966),-"1 study of RepIncalent llgorithns for a Uy

Virtual Storage Computer™, IBN Systens Journal, vol. !ﬁi
Ano. 24 pp..282—288. = . o

'Dahl, o., Dijkstra, E., and Hoare, C.,. (1978, .Structur a.~»'
gg g! ;ng Acadelic Press, London and iororx,q1.7'. '

*Dennlng, P., (1968). "The iorking Set - uodel for Prqgrnnr
Behnvior" Collunications of the ACH, vol. 11, no. 5,
pp. 323-333' ﬂay. L " v . o .

‘U

) .Donning, P., (1970); "V1rtunl uelory", ConpntinngSurveys;f”';;
7. vol. 2, no. 3, pp."ﬂ53~189- s .]

”l'Deutsch, L., and Lalpson, B. (1965), "SDS w*"'!30 Tile-shating
~'system Preliminary Reference Janual®, 90C.x 30.10.10,.. .o
Project GEHIB. Univegpity of SnllfOttia ax? Berkeley, '

April. N A P, . _
L " : - ¢« o . ~v “N) . .., .
'q'Digital Bqnip,ent Corporation (fﬁ?l),,nigk peérat , §zsté! o
.~ Hmomitor. =-Prodrampers gndggg " qu;11«oao‘ A-D, Hay-' i,
-«:'nard, uassachusetts. . e g AP S

Digital Bgnipnent Corpo;gtibn (1972). | "Kz -C e ngggrx{'ﬁgf:
oY Ndnagement TUnit g;ggenagcg gg_ggl Dnc-11 ERT -Do S

A uaynard, Hasgach e V;.

‘ﬂ“Dlgital Equiplent COrpornt g (1975), PDP - 11 4 §495£1Q£1§2§6?f
/%5 Processor - dbook, 1975 Bdition, naynard Hag=
sachusetts. 4 CARRURY: e Y A

. ,‘ - . "‘v-

Perentz, (1975), UlIx nevsletter" vol. 1, ‘.‘ 1, Jnly, Phy-”‘
sics ' Dept., Brooklyn College of CUl!, Brooklyn, l.!., -

112107 C s ,
IBM (1967), . IBN §1§£§:£§§2 Hodel - 67 Fumctjopal’
- - - Characterigtics, Poram A27-2719, Interpational- aniness S

uachines Lorporation, xingston, Nevw. !otk..';

. IBN. (1973). 1B8"Srsten/3s0 operating Systen: . : 1
A S, - --International ', ‘Business. !nchines, - Pora "

GC28-6628-9, Ponghkeepsie, l.!., 12602. . N

Ty

. | ‘,‘ o ‘ : ” . - 4_') ' B) . Vi . i.,.,‘s: ’
S Keriighan, .B., and Plauger, P., - (1973), The ;lglggt of
o Programeing -§_t_"ﬂ,g.‘ Published by McGraw-Hill Inc. for
Bell Telephone boratories, Inqatpbrated. _

Madnick, S., Donovas, J.. (1978), operating §1.§_g!§ Chapter
3. PP- . 105-@98, BcGraw-Hill, Inc.,ﬁnev York, New !otk,

o 7.

Ca J’nrganick.& g (19'73) _usicgs _1§_u mt_ish m e

L w 570 oo s « ACH uonograph J.es, lcadelic"'l B
v ;;',\:;’ . <Pre 'York an London, 1973. o : : AR 2
) e 7’ 1 :

h‘ :‘*ln'htle]:l. B. pnd Kuchner, C.. (1968) v "Dynanic Storage Allo- -
A {',:‘: ‘cation Systels" caca, ‘Vol. 11, qo. S, pps 297- 306,

-

1

Ritchi & DL, (1973) . "C. Refet%nee Hanual", p&bllshea in. 'Da'- e
cuments “for Use ntp the BNIX Tine-sharing Systeu_ <Y
Sixth Bditiq}, Sect% pp. __1-30. fu' . e e

""rhe{ ux 'Pile Shar—?’f" R
‘“ ?’3 5—375,"..Jﬂy.

,Ritchie, D.‘fi’n& "fhonpson. Koo h Pug:
J.ng*Systel"" (‘;qcu. .Vol. 17, iq,n)

S o ..
‘ SQier, M. (1973), "iu uodpl Ilplelént ’tfan‘ 'M.‘lﬁ;otective e
e Domains", Intex:national ‘Journal on,') * and Infor- I -
. lation Sc:.ence.s, Yol. 2,&. 3,) B l, & 229,, o
,\ . > o i o R o
> Spiet, !!,. ‘Bastings, T Cutlary. D.- (19’!3§$"’ "u Bxperinen--:
KL SRR X 3 Inplelentatiog

of the ’Keinellno-ain’t “h& tecture®, -

", R Fourth Symposium on* 0perht Syst M Principles, .
., * .. . Operating -Systess R&igﬂ,; ﬁIGO'PS, Vol Py no..a, pp.,; o
;\&u 5 ~8=21, Oct 1973.- N ,
:' " . . % :A. ‘
f‘: W 5pooner, C., (4971) ’ "A 'S ftﬁa . rchitectul:,e fqr éh& 70'5° *
P R Part I._~- The Gener lp'.ch" gSoftware - Prd’ctice 8 :
&r ‘g 3xpgriewe9 vol. 1, nog ¢ gff- : 5-37-..1 = R
‘rhonpson, K., .and Ritcﬂue, Dy’ (19>5) s UREK g;g.gm!_g;','_s_".‘
’» - . Napgal Bell 're.lephone Laboratorias, th” Bdition, Nay
ST 1975, - , o _
O .) . . ,‘ .,‘»}‘ : .
o ‘r . v . o [} _l.' -
o‘.- ‘._ o 3 -‘,:‘ - “ . i ; .’ ‘4 -
h 3 *, '

udi e o . | .
A ;y)) | : »'j";,-.‘ o . 5
_'Q.y : : o C g
b‘- Appendix 1 2k
‘ ., System Structures o B
* PR > w’u . ' : o . ".‘!J' ,
. u + , ;h\ ’) -@\ . . v ¢ . e,
* . -] ’ .
W g The Ptoc strnctpre : &b
' .'\ ’; : . . C ',‘ .

One strncture is allocated per. active process.
nteded about’ the process.while. the process may be . .

Othep per p}ocess- data

- all - data.
swapped out.

L svxpped out uith thq procuss.' o
'strucﬁ. p;oc'ﬁ > L
O BT S
.o chat‘ stdt" 4;’5‘? -*

A , ‘char. flag. R4 S
.. - - char ﬁuprl, n “mf -r;p
: .. ‘char '+ ~p-sig; " iy - Wami g
. 5. ‘char - pdnid ,
LT .. i oy
' "gv:.-'.chan- g%‘tile'”
S imt P_bkyp:
S % p2gid;
w{.~ P_pPpids dg
g T *int . p_addr;’ ‘v
- :at‘qw,,p_size- AN ize
» 'v , ,i t p_vchan;: ﬁ £
N T »p_textp; - e . poin
}ptoc[lPRQC], ‘Q 2 . _
1at codes ¢/<§ DR)
e taefine ‘SSLEEP 1. s slee
e $defipe SWAIT 2%~ ° ' /«.Slee
r'*: #define SRON 3 .- . ‘/# unn
anfine SIBL B - te
I) ncess
s”f-'. L. T/winter
i ﬁgf T terlina
S K : . s Do
3 /q flag codes t/ . R .
: #define SLOAD OT1- - E /t in ¢
q;vtdofine sSYs “ 02 . /% Schedu
$define SLOCK ~ 04 ° . /% proce
Qaefipe SSWAP ,019_; o /tproce
AT
7

It contains

- (user-strugture) is
: - @’% &
A
- N |3 4

:ity. negative is high t/
-number sent to process t(d

WA, wsed. to direct tty

*/

s Ya’ f8ident time for scheduling a/)
/¥, colitrolling tty ok

4. nn{que Meocess id, »/

,/# process id of. patent «/

% /e addtess of svappiﬂle image t/

o§ svappable image »/
t .process’ iagawaiting g/

tei to text strhctnre 4:/

¢ .’,. ‘ Lo : .‘. A y ’4'_,. _.‘.? |
ping on*&i’gb prior u:/gg S
ping on_ lov: priori / &5
ing-%/ ', »
reediate stn,b in . o
.creation %/ . e
sediate state" in L :
tion t/ ' e .. 4
oro t/“ a

N

ling process #/

s cannot be- swapped t/
Ls heinq suapped Oﬂtt/
/i : S
A

A R R
o e L

-~ 11

Pext-structure

: 78
W

' .
R .
N B N
R
VA .
'0‘ . .

. 0

One structure is allocated pRr pure pgqceedure -(réad4ohij),

on the svapping device. %

struct text

{

|‘.]

texi(ursxr].

\
., . ~ e
. .

N

int

inw .
“int o
thar = -

har

ith'”

X

x daddtfv;w

X caddt-

X _size;
ax_iptr;

x_count;

x_ccount;

* R S

» disk address of segnent *}

“/t ainstore address, if loaded ;)
- /® 8iz (=68). /. : : _
/& inode -of prototype x/ . "

J

/* reference count x/

./¢ nnnbe: of 1oaded references ®/

"ﬁr

gL o o r : | » 79

xnode-struqture

' The I node 13 the focus of all file activity in UNIX. There

is a unique 1inode ‘allocated for each active file, each .
current directory,’ each tounted-on.file, text file, and the
root. ln inode is 'nahed' by 1ts dev/inulber pnir. -

N

,sfiucf"lnqdé ST L :

{ . L e
, Char = iiflag; , L '
« char. - ,i countn . /» reference connt «/
| Wi idevy /+ Yevice vhere inode resides +/
@ int *° i number; . A% i number,: 1-to-1 vith C
L ﬁ ' A . dev.tce address t/
v imt 0 . i_mode; @ - : fu&f‘
_ ' ~char i_nlink; = . /+ directory entties #/ b I
- - char' i_uid; "t /% ouner s/ ‘ e
» - char i gid" /*» group of owner 7/ o
. . char :d sizel; - /+ mast ‘gignificant of size t/ n
- 'char ti size1:™— - /& least sig =/ A -
-int 1 addr[B]: /% device addresses consti-
‘o e : ‘M;f?ﬂtnt%gs g file »/ £ .
Lo B o0 int i lastt.f S t “logical block fead
p'! e . (fot read—ahead) '/ .
Lt } 1node[lIIODB]a ,?. o ;
- ; ™ . I ‘ “ *3 n ',.‘ f:s\'?" . "4 ' » "..‘ {

T jstlage. %/ . ;

. ‘Mgefine itogx 01)k odc 18 lockea <y R
ok tdefine’ IUPD . 02 ; - /# inodgshas been modified =/
0 Mefine IACC. 04 o /% inodbt&:cess time. to be AT
L s, L hpdate{& AR RO ugﬁ,

: 'faefinquaounr*~01o I - e inode ™ lounted ‘On a/

#define IWANT 020 « . * '#% some process waiting onm 10ck ./
” -‘-#define ITBXT 0&9‘ P (Z) /# tnoad is pnre tex; prqxotype */
/t lodes t/ . k T “‘“ T f; '
define IALLOC 1’100000 ¥ .‘# tile iq usea t/ L
“8define IFFNT 060000 .' + type of file =/ w@ ‘“
. ‘#define- ' .IFDIR 0ROGQO /s directory s/ = -)
. #define *:, IPCHR . 020080 /4 chayacter- special o
#define- | IPBIK.Y osoooo /% 'block special, 0 is r.gnxhr ./

.,Mefine ILA moooo
4#dcfine ISGID -0 000

* saef] ”"e; TEXEC

: .;/b latgtuada:essing algoritha. ./ .
V. e ‘Bet. user: 16 on o;ccution_t/’

“#3efine ISUID , 04000

Mefine 1‘sv-rt ""-o ooo
; ' pe, mngp .omq

."Jf.n‘,. J#"y

S e »~
;’ﬂ‘!lw‘_: 0200, -4~
0100 -

fg | | Y o

¢ -
. . . . Cy

rheAUser-structure

/’One nsen—strncture 'is allocated péf process. It contains 611*3
of the per process data that doesn't need to be referenced
- while the process is svapped out. <he user-structure is. S
B«64 bytes 1long; resides ate: virtual-kernel location .
.0140000; contains the system stack- bet process;. and points -
*to ‘the. proc-stru for the--same process, -~ - T ”é“‘“;f

e | , ‘ v 7‘ - 7 ‘ .'. LE
. .. h . . . ‘
3 | R T A ey

struct user {

int u_rsav{2]; /% save rS.rG vhen exchanging
Al stacks s/ Y &
int a fsav[ZS]. /% save .fp r!gﬁﬂtdgs */ .,
char u segflg. L e flag for user or kerndl - %
L L address space &/ .
3 : char, “u e:ror- 4 /% feturn error code »/ RS é’r
L char u_aidsy » effective user igd o# . LIS
. char .a gid- : 5 effective’ groug,xd BT AT W
. . th .d;ruid:} ‘i"/t n:g -nser id ¢/’ 'h‘Jﬁ} o
. cha - ¥ - % Tedl $roup 14 &/, '
e int ¢ o /%jpointer-to proc strnctnte_ ¢/
char . /e hase‘aeres for 10 /. .. R
- - char™’) /% bytes telainiug for IO »/. -
. . char . su_o settzj; D4 offse in file for I0' s/ -
& o gt Y el - /a'po ntefite inode of cnrrhnt
”ﬁ[\t L ,.ﬁﬁ Y S - direﬁtgt] V- P
A chg'r,j“;’-"@m_._, }g[DIR‘SIZJ /aicart ¢, pathnane co-po-nent %/
: . char: 7 squ_ai ". " Murcent, poipter to inode s/ f-
- "~ struct A{i;ﬁ"“ IR /'.cnréent directory entry -/
- : P o n 1no-‘”x* 5 ‘ Tegal
.. .ghar u nm[DIRSIZJ. T . R S
.) udemt; " _ ' ‘
" int _ﬁhit; e inode of patent directory of
. : dirp =/ _
. int - u uisn[ﬂ]grgj /% prototype of s ‘:g-entation .
- S _ . - . -addresses. (PARNB) 8/ = - 7
RN § R | nisd[a]. .) prototype of segmentation
o R K descriptors (PDR!'s) &/ -
D “int . n ofiln[lorIL!] /% pointers to file. strnctnres‘
: A Lo of open files »/ . K
R Cint- u arg[S]. : *~/b atgnlnnts o systed cgll */ S
oo nt -’ »~q.ts ze; /% text ai;e')" t/) R
ST -;,.{;pt'-»;w dtiza-ﬁ‘.__,;%. , ddta . fig .¢%¢.M!q_‘yg
: '.-”~;jf’£ﬂ!'; jn ssize; . /% stack sita (*sn) %/ st
‘fg:"inti}»}'ﬂ ganvtzdr /% l3bel” varfable. for, uits nnd /"‘&

”iﬂtei;pptqvt{

ine: */ ,
cess aystel €iwe / M@‘,
. childs' wtimes . LN

N

/t kernel stack per u - :
‘backvard: aot to Wch here */ . oot

.. « ¥, S
}“‘{;; SRR % SN

Cint

int

int
char
char

T

. c&tile[Z]: /% Sum Sf 'childs' stimes =/

su_arl; - -~ /% address of users sav«d RO #/

u prof(u];' /# profile arguments »/
u_nice; t\\yit scheflaling parameter t/

.u dsl + another one »/ .

ends £ron Q4+ usrzn:sa

LR

: ' . .
. M . T]

.,_‘:_ . H . T ‘ ' | . ,’
v e "% ‘ o , » ‘- » bt | : @" f
SO T ‘ et N
1L | %Mmﬂi& 2 . v e

Kernel Routine Abstracts.
¥ T 3
Thé routines vhiz%.abfine tﬁ’&ﬁgtnel'°£ UNIX are described
. herein. - The format of the dedcription is as. follovs. Pirst
.~ the calling sequeBce is giveam is.standard 'C' notation, vith
. . the “ﬁffiiétéfsJ”rﬁﬁfﬁgénteﬂ“byftjlbdlic*nths;~¥o:¢etllplef~
" "bmap («ip.bn) -the roytine 'bmap? is! led vith. tvb parame-
© ters; . "=ip' ‘a poffiter to an inod®htructure, and ‘Pn'- an
* integer block-nusber«< Folloving the calling sequence is a
brief descriptios of the function of the particular roatine,
and it return yslues. - Which file the routime resides in is
then pfovided as "an index fnto the Source code,. as well as a
1ist of the routiles’¥pich ‘dKe called. The UNIX systea as L
distributed has 811 p¥ethe #6urce for the kernel in directo- 4y
vy yYusr/sys/ken, 8hji_ LReYy are readdble by anyone. The - final
‘jtem ' in the descgiption is a list of the structures (from ;
Jusrysys) vhich are 'referenced. (r) or . modified (m). The ip- .
pendix will be most ugeful to the student wvho is attempting <
aprehend the UNIX source code for the first tiese,- :
thoWgh it is A helpthl'“ifpssw reference to eveg the
seasoned UNIX guru, e T o

ftly executing user has *mode’ access.

access (sl
: If the

pfatied by inode pointed to by 'ip! (the - s
Ywhys does) them return(0}; jotherwise - - -
-~ BACCES, ‘and retura(l). . .7 =

g.u error £ : R e
sides in f!}‘»‘fio;c';’lnﬂ,c&lls'q,tfsgfiﬁ'J‘J;Jﬁg?;, o
tractures used are user(r,w). ' filesys(r), and
o R D

e e dﬂ#"'w-'_w S
. ’ﬁl@ﬁk}on;hqtiep‘!dgv!;,reth:n~b1¢dk”;pointer:_f.
to meyory bugfér far, block. if buffer space eéxists;oy . .-
‘wise retarn (0)4eid set u.u_erzor <-:ENOSPRC. " =~ '
in tilgF1alloc.c'; and calls getfs, sleep, . -
,ﬂaﬁlFﬁlﬁﬂfﬁgfb&ﬁb19¢ki,P:dev;gﬁnkguﬁ,;~ o
© clrbuff”” ‘structures - used . are:: ' .

L1 :

“backap)
ST A

m'bavrite(¢bp) . .
‘ Starts an outpnt operation &escribed by ‘buf?

e

g bcopy(:fron,*to.count) ‘ ‘
Copies ' 'count' 1ntegers (o: pointers) . froi]@itaa

B)

-8
eE

LR

»badblock(tfp,bno,dev) :
Checks to see if block number *bpo' is- ‘within the

—— user limits ona device 'dev'. The snperblock for

‘dev' is pointed to by ‘'sfp°.

Resides in file *alloc.c';. and calls prdey.i. The

" only sttucture nsed is filesys(r).

Y. a

structure pointed o by ‘bp'. The completion of
the operation is” a4t wvaited for. '

- Resides in file 'bip.cV; and calls bwrite. . The

only strnctnre qsed is buf(l).

X A'K' -

. pointed to by *from' to area pointed to by Sto'.
This should be a machine instruction. :
Resides in file ‘'subr.c'; and c¢alls #o other
routines. '_ o .‘;? B

hdwrite(tbp)

structure pdinted to by ‘bpl'. If the operation vas
. for a tape it is started inlediatly as tapes are
" sequential devices.

brelse. rhe only structnte jused is buf(r,-).

bflnsh(dev) = T o

Quetes the;’ ntput “operation described by buf -
in

B v ,Places'block nunber 'bn‘ into 1aodoc structnrgf
j';*lﬁ"ﬁ:i - pointed to by Yip*. This lay entail changing inode.
7 ' struycture to a large file from a small one. If-
-~ v £ile grows ‘too larqa :Sqderror <= !PBIG. :
. " Resides ‘im - tllc Teg
; -{bdvrite,f ‘bread, and. brelse.. Structuroa
%;iinodcc:.n). nser(r,i). and buf(:,n). SIRN

83

Resides in file 'biouc'-v and iballs.~bavr1te : d,i'

Start vfitihg out a11 vrite behind blocks for dev— |
”j - .ice *'dev' (or all devices if 'dev' = NODEV). -
S Resides in file 'hio.c': and calls splé, notavail,

*5, 'yburite and 8p10.' an(t.n) is the only structure
-) ' .sed. . . ‘ " , ‘_,‘,‘ o ‘
_ binitQ) | ‘g;.y{. N
s Initialize 'hfre_,,' y Btrﬁctn:e, build and ini--
0 “rtialize bnfﬁur : clear all opcn £1ags for
P . - block devices. ' . - .
| A/ - Resides ia file- 'b:lo.c'- ‘and, calls ‘brelse. ' Struct =
‘ ' | tures used are:- buf (-). devtab (-), gnd bﬁevsw (t). :
hlap(tip.bn) | RN ST

r.Ct Al cills;g;ilioc,}ﬁlf'
4 are.‘w;,

=
routine to r
'dev!,” A bu

. . in block ‘'blkno' froa
' . for the data is found and
checked to see if it ady contains the correct
block. . If not then vords are read in from the
device, and the. process sleeps until input is com-
pleté. A pointer to the bnf structure is returned
. .to the caller. . _
. Regides in file 'bio.c'; and calls qetblk, *stra~.

igﬁy

84

tegy and iovait.:' ‘The only structure used is
.. ~buf(r,m). : o e : ’
breada(dev.hlkno rablkno) ' S,
_ Block device read ahead routine. Block 'blkno* is
: ' read in from device 'dev' and vaited for. The read’
* Y of block 'rablkno' is started, but not vaited forfh

" This is used to speed up sequential inputs, such
- as directory searches. A pointer to the ,'buf'
. - structure is returned to the caller.
3 .- Resides im file 'bio.c'; and calls Incore, getblk,
sStrategy, brelse, htead “and iovait. The only
. structure used is buf(r,m). LT ‘

' brelse(*bp) .
-~ Rechains buf strnctnre pcinted to by 'bp' back. on
the. availfible list. Processes vere waiting for
.an availa A y Are waked up.
S <« Resides’ “ehi ; &nd calls vakeup and
. sp].ﬁ._ ’rl;e‘ ftmct ’e- sed ss buf (t,,l)‘m
» bvrite(*hp) T

Itites the buffer . pointed to by 'bp' long ‘to the
device ‘described by APp* buf structure. If not

o

disabled by ASYNC flag. ntpnt is vgited for. and

buffer released.
' Resgides in file 'bio.c'; and calls iowait, msgrqr

;o

tegy, brelse and 'geterror. . The only st:ugtnreﬂé._

used is buf(t.l)a . \ N ’
o o ‘ i '. . ‘. P 't .. .
cFKir() T . N '."b t . -.«' .~ S
. Sys on pti-itive to change ﬂsers current A*tectory
: "the one sapecified ia'u.u_dirp. Pirst desiteq.

directory is found and inode Iinserted - in tables =
‘Brior " return (u.udprror <= B‘prIR) if nop ex- .
istent, not diroctory. or. not executable b this,[S

e ER pser. The mev\inode. pointet is entered in . cdir

and inode is unlocked.- .- e

}’}.;f;,;:‘ﬁiﬂ k;ﬂédes in file’ 'sysn.c'- and calls uchar, ga 91,

prele, -and - access. strnctntas nSed rg*,}“

. udﬂr(r,l). and 1nodqgr.l)"' o

choﬁn()

cinit()

14

o cleatseg(tseg)

Ay .
T .

T e

- routines. - Strnctutes - &w are:

by *seg'. ¥seg*. is the real se¥

A

,‘ '
N o
¥ AR , L N
Systena prinitive to change ‘the mode of an 1ndla

describing file filename, which is passed as a:

parameter in u.u_dirp. Tha ‘mode of a file deter-
mines whether qaa can tead, write or execute the

file.
Resides in file “sysn c" and calls owvmer, and

iput. Structires used are: inode(n), and user(r)."

' System primitive to change the owner of “a ‘file.

The 'current user must be the -owner of the file in
question. The name of the file is pointed to by
u.y_dirp, and the ne& ovher is ‘pointed to by
u.u_arg{1]. " o $

Resides in file 'sysﬂ.c" and calls owner, suser,

and iput. Structures umed. arg. inodé(-), user (rj .

Cooe s TN - !
v

. 9 H A .m ‘4
Initialize cfteelist sttuctute, and clear all
. flags for all of the tew

gype devices in the

systen.

Resides in - file, 'tty.dAf7 nd “&alls no .other

9davsv(t). e T e

Clears tho’seglent (32 vorg:
address/64)

. Resides in. fiie 'mch.s'; uind,'calls' no other

-y

routinea..‘ T S T ety

clock(&hv sp,rl,qps,ro,pc,ps)

o e
. : 7 .. . N
..Routine is entered via: a- clodk fiﬂ!grnét.' Punc-

tions: ' keeps track of clo tiiés- updates fron

panel 1light display. does c¥]llouts (executes cer- .

s after timer queue elements expire);

tain funcid
ofile; npdates nser time, system time,

npdates

and red¥ time; wakesup ! bolts'; wvakesup.'runin® .
if sleeping: if ih user svitchs tasks: incre-

ments priority to max of:

‘Resides in ‘file 'clock.c'; aud calﬁs displgy,” in- -

!esides in fi}e '3132 c"» and caﬂls getf. and

T R ._,

cblock(-), and

85

LN

-~

“.*/5\

N

ecape; spll, spl5, natenp, isslg, ‘psig, savfp, and
wteh. ~ Structures- used ‘ares - callont(r.l).
' olt(m) , tile(l)..f_ c;lto(t.l). . uSeL{C.m) s -
thoc!r-l). ana rnnin- T & T é-g.~¢
, SySten entry fon close[II] p:initive.,. loses file L;w?u
- poimted . to - by file dasariptor ‘index passed: in% .
. Wall, arO[rO]. u&jor work i's done by closef(fio.c).' 5:‘.

- 86

~.

closef. = Structures need‘ are: user (r,m)

file(r).

| closef(tfp) . ‘
Close file described by 'file' structure pointed
to by 'fp'. Closing decrements count of closes

‘and removes inode if- count indicates no more users
of this file. If file was a pipe, changes node of
"~ inode to indicate not read or write, and wakes up

i cnt and iplev. - ' -
ReSides in file 'fio.c'- and calls closei, and .
‘vakeup. Structures nsed ~are: file(r,-), ‘and

inode(q). Ly oL A
closei(tip,rv) ' ' ' e i '
: Calls the close rontiue of device pointed to by
. inode structure *ip'. Jrv! is the second argulent L
passed to the device's close routine. The 1inode .
* is then removéed from the inode table by iput. -
Resides in file ‘fio.c'; and. calLs iput. Strqg-

+ - tures used arey cdevgv(r),‘ 1node(r) and
edevsv(r)- T N T : , T e
‘ ' . i '.H_' . L o
clrbuf(*bp) S ' .
. Buffer pointed to bg buf structqre 'bp! is cleared .
' - - to zerp. J@& N .
A sResides " ip file Ty c'-ﬁ'endP eNils no’ other”
’ rentines. The only structure ns 113 buf (cf .
o . ﬂ’-‘; : a\ S

»copyin(*a1,*azclen) v I i |
3L n

~ .Copies 'len' b{tes fron area pointed t! ' .
« ‘user space, 0 area- pointed to by ‘a2 'ketnel o
8P&C&. '. .
" Resides in file _'lch.s'- 'nd calls o other

' routines. . . L , . :
R S 7;-5 v ‘ ge. e
copyont(ha].ta2 len) : E "A S e ,
.. . Copies.flen'. bytqs fron aroa pudnted to by 'a1' in

kernel spuce, to area pointed to by '32' 1n'03en,49? -

. space. . s : «eﬁﬁkn" s

- Resides in 'tile 'lc5~s': and - calls ‘mo. ,gthet e

S ;,rontindb. _ e ‘ e
- Lt w»f-i?iﬂz' = <.l'p:~oaz;‘#:‘v’ui;w.' dffﬁ'f;f;_iﬂ

copyseg(*hi.eaz)._’ﬂ
- . Coples-a segueut (32 o 3) from’ area pOintedn "
‘hy tal! to area: pointe ‘20 by *a2'i Both addresses;;lf-f
are, considered as teal- segment addresses (real ad-"

. ._~dtbul/54).. ‘the: 11745 this sove is! perfot-edﬂga;
.. . «through the: ! stel' ltgleutation registers. L e
..t Resides - in £ le Yuek 83 and calls ‘no - o{:her ‘

core () . ‘ : ’
' e : vuakes a,j e ilage on file ‘care' of current
' n ’director; ‘#f possible and returns (1), elsq return
T zeros fha order of a core image is user structure.
folloved by the core iaage exc] uding the non vtit~
" ablée text. portion. .
- - Resides ip file ‘vsig.c's and calls -estabur; S wpie
.tei, itrunc, access, nmaknode, ‘namei, and iput. .
‘jStructures used are. uset(r,n), proc(r)., '

cpass () . ‘ ' ’ ' ' AN
. Returas a character from the current user area,“
pointed to by: u.u_base, “or returns -1 if u.u _cqunt
> 0. or if a memory fault occurred during characte; :
. fetch. aulted then-u.u_error <- BPAULP®. . . .+
 Resides iu-flle *subr.c'; and calls fubyte.“Tbe;,‘~¢

K

eSO l‘ . only structute ‘dged is user(r,a) AR

2% ' - B ‘ ‘ _ » h‘”ﬂ

gr& Cteat() . -',,'. '..." A .

?ﬁﬁ AR : *Systta*en;r for creatiou of ® file.,f Creates ‘ﬂ-

fi"' R +file ﬁ‘l tpo%nted to byl ucu_dirp of mode

| S - . ‘Ut arg * ride 15 algo opan:g:tor. uriting and . -

P I truncated. ‘Pile dvesn't have be wr: tahle to . be T s
BECRE ;1" writteh on.unless if qxisted before &alli | . .

<7 Resi es in file‘'sys2.¢'; and calls uaaa&,“ nchat,'@~‘,:
... makndla, . and opea1.~ The only sttuctur& used A ex
| ;r__ user(r), S ,J{.'H' ' I '@.-,H e

A M crot(*bp,oct) ST o T oo o
: .rrints on. IP onsole the device artor ingoraatioa_"
‘fEoh . the - f% stnucture pointed to by 'bp', andw'
T L * device. err,pr“\' octv.)
gfiv,ﬁgA Besides {0 U file- 'ptf.c'- anc!"'l calls prdev.and’?4;~
o printﬁu !he only structure°used 13 buf(r).; S et

devst t(thp,&evloc,devblk;hbcoa) ’ PRI e
a‘i An I/0° opa&atiou is: statted on the disk at addtessf{i,i;f
*ﬂavloct ““The - operation ‘is’ dcgptibed by “buf . ..
‘.,; _”'¢s££ tr -'bg" ‘apd takes place on- iloc*&fﬂevhlk' e
'wi#.ﬁ;kqstaes in file fBio.ct'; and’ 18 no.‘other . - -
rohtinesr;g;, ?he oniy structure ed. tp buf(r)._g~;;a}~*

displly() T: .) - ,ﬂ SRR,
s Displays oa the frout nan lights the, ccnteuts of»i%fy,

S 'word: addressed | by: the;cénaola switches. If. ‘bit "y

. zero, {8 off thén' d;spl 't kernel wode ‘wordp_ ‘else ..

- -display use?'addreSsed 3 R T AT

88

‘ ~dpadd(xdv.su) . o ')
. . 2dds. the si gle vord CIaw! to the double vord

’ pointed to qer.. :
. 'Resides in ile _'-ch.s'° nd calls no other

B :ontinen.‘A , o .
' Y;Q C ;3 .’”

o

. Q,..y,' .
“i-dpc-p(a1;a2 b1 ha) S : I
L The double words at, a2) and (b1 b2) are conpared.,«

.~ Returms. +512, +512, or 0. depeqding on: the resnlt
" of -the coupatison..,>- » o
Resides in file !-ch.s'- and calls no other : 3

DETEECE _Systen prinitive to duplicute open file nescrip-‘ st
- Lo tors. ‘Basically this. routine - simply 1ocu%¢s the
T first enpty slot” in u.u_vfilef j and stores the ad- 3
g dness “of .. .the file atrncture pointeﬁ ta° by g
T Qe rg[1] dn ite : e R
Dl ““les des im file' ‘sfsB.c" and c#lis getf cnd utal— o
‘*»"ﬁ;”.,v‘_ oc. Strucgntes nsea are. file(u) and nser(:,n)..‘iﬁf- L
L B b L
%stabur(nt,nd.ns) coL e " : R e
s . The atgnlants q:e the siae o: the text. dafu.: and
.o stack reGpectively. . A check is made to see if.the.
' ’process. described: by at, nd, and‘ns yilll fit AN

~© - the avatlable addresing. space;. then offsets are b
SRR T o "generated for the sedhent. tmble.» ‘the ~pleges a:é'**““‘_
g fitted: o together ia” Q. the tollowing otder- & ERI
LY text(negative atfset from p_addar),’ d. segnée ‘data # R
e segmedt, and .the stack is placed .at the to of tha IS
;‘yﬁ’\,'._"w‘vaddress space,;expanding downward. If qpe pﬁocess‘“;.A o
e © v yill-onot fit then . u_error <~ ENOREM. T
“t | pesides in file - n.c'; and calls 4gaﬁg, and
‘“&usqrqq. Seq’.ntu nsod are. nser(r.n).,p..h‘ ,

.». -

S , la ilpleleatatioﬁ of. tht ntec(;l) systpi' priui*
~ :.}: tive. described. in.the UNIX -annua. ‘. Removes
Lo e old lalorz ilago. gett lbw one, aud~ntatts 1t tnn~¢~u~7
| 2 ‘at.-Location: fqrop v i - AR
;:, . nos des i file: *ﬁg;f.c'; and cnlls nalei,, “sleep;. Ly
: o -gethlky: accqaxm@i gﬁi nh;te, :eadi, gstabnrf- R
; - xfree, xalloc, exptnlg sarseg; -snworaz. subytéy .
;iput. ‘wakeup,’ . and" b brelse.T" txuctures uspd are:
"wfginoﬁéltjl). usqr(r.l), txhcnt(r.n)f*ana bnt(ri.H-f

process is removed fros the process table (see
vait). '

Resides in file *'sysi.c'; and calls closef, iput,
xfree, svtch, malloc, getblk, 'bcopy, bvrite,
sfree, vakeup, and panic (if there is no init pro-
cess) . Structures used are user(r,m), and
proc (r,n) . .

expand (nevsize)

falloc ()

fork ()

Expands the current process to size ‘nevwsize'.
T?his is dome with an in memory copy if there is
enough room, othervise it swaps the image to ‘disk

vith nev size. ’ If the nev size is smaller than

the old size then the difference is freed.

Resides in file 'slp.c'; and - calls nfree, savu,
malloc, Xxswvap, svtch, copyseg, retu and sureg.
Structures used are proc(r,m), and user(r,m).

Get space in file descriptor array maintained by

. the system. If an emtry is found then initialize

it and return”pointer to it. Otherwise table is
full so repott to main comsole, return null, and

a.u_error <- ENFPILE. . R
Resides in file *fio.c'; and calls ufalloc, -and

printf. Structures used are user (m) and file(r,m).

\
System entry to create a nev process (if rooa,
else error (u.u_error <- EAGAIN) return) and re-
turns from both new process and the old process.
Returns child's process id to parent and child.
Parent réturms to ‘pc'+2, child returns to ‘pc'.
Resides in file ‘'sysl.c'; and calls newproc.
Structures used are: proc(r), user (m). - : :

. .
free (dev,blkaddr)

fsfqt()

2dds block 'blkaddr' to free list on device *dev',
set flag for future update of super-block on that

device. : >

Resides in file ‘'alloc.c'; and calls badblock,
getblk, getfs, sleep, bcopy, burite, '‘and wakeup.
Structures used are: filsys(r,m), buf(r,m), anmnd
inode(r,n). ‘ ‘

System primitive to return, in user " provided
buffer pointed to by u.u_arg[0], the inode struc-
ture of file 'file descriptor' passed in r0.

Resides in file ‘'sys3.c'; and calls getf, and

statl. Structures used are: user(r), and file(r).

«

89

fubyte(v address)

Pick up the byte at user address ‘'v_address'; if
this address exists then return the word found;

else return -1. .
Resides in file ‘'mch.s'; and calls no \other

routines.

fuword (v_address) .

Pick up a word at user address . 'v_address'; if
this address exists return the vord found; else
return -1. ' .

Resideg in file ‘'mch.sig and calls no &ther
routines. /

getblk(dev,blkno)

A buffer is obtained to do I/o on device ‘dev'. 1
pointer to the describing buf structure is re-
turned. Buffers for device 'dev' are checked to
see if block 'blkng' already resides 'in main

" 90

store. If this is the' case, it is returned, ‘e¢lse, .

a buffer is obtained from the freelist. This
buffer. is rechaingﬂ to the device and its pointer

Return address of file descriptor for open file

npumber 'f'. . Return =zéro, and set u.u_error <-

EBADF if this file number is not open.

Resides in file ‘'fio.c'; and calls no other .

routines. The only strnctute used by this routine
is. nser(r,l). el _

returned.
Resides in file 'blo.c'- and. calls spl6, sleep,
spl0, notavail and bwrite. The only structnre used
is bnf(r,l). : -

getc (xqe) w , ks
Returns the character (eight bits) from the next
queue element pointed to hy 'ge' Returas -1 if

thé quepe is eapty.

Resides in file ‘'mch. s'- and ca;ls ‘no other
routines. Uses structure clist(l). &

qeterrot(:bp) ‘ ' ' v
The 'user' error indication is turned on if an er- .
ror has occurred during the I/0 operation.
described by buf structure pointed to by ‘'bp‘. o
Resides. in file ‘'bio.c'; and calls no other
routines. Structures - nsed are buf(r) and
user (m) . ' ' : . v :

getf (f)

getfs (dev)

getgia ()

getmdev ()

' getpid ()
getsvit()

getuid ()

gtile(f

Get file systen déscriptor from mount table for
device 'dev'. .

Resides in file 'alloc.c'- and calls prdev and
panic. Structures used are: mount (c, m),
filsys(r,m) and buf (r). , -

-

Systel‘prinitivé vhich returns current and real

group identification nuaber from wu.u_gid and

u.u_rgid, to the user in ro.
Resides in " file 'sys3.c'; and calls no other

‘routines. The only'strncture used is user(r,m).

Interhal-suhroutine used by snount(éys3.c) ‘and

sumount (sys3.c) to obtain device number of the .

device to be mounted or dismounted.

Resides in file 'sys3.c'; and call@ uchar, namei,
and iput. Structures used are! inode(r), and
user (r,n).

Systel primitive vhich returns the process id of
the calling process.

Resides in file ‘'sysid.c’'; and calls no other
. routines. The only structure used is user(r,m).

Systena prinitivebwhich réturns the contents of the |

svitch register to the user in ro.

‘Resides 1?f'file 'sys3.c'; and calls no other:
h

routines.’ The only structure used is user(s).

System primitive which returns current and real
user identification - number from wu.u_uid and
ga.u_ruid, to the user in ro.

Resides in 'file 'sys3.c'; and calls no other
routines. The only structure <used is

'iser(r,n).

Systea ptlliti'e which returns the time of day in~

r0, and r1.

Resides in file 'sys8.c'; and calls no. other
routines. Structures used are: user(m) and
time(r). ' ' - : S :

91

ialloc (dev) ' ST Dow

Get am 1node sttucture (2 free inode). from device'
'dev'. . When no more free inodes exist ‘on that

device a panic Will be initiated.
'Resides in file ‘alloc.c'; and calls getfs, sleep,

iget, printf, iput, bread, brelse, panic, and’
vakeap. Structures nsed are: ‘filsys(r.m) ,

inode(r,n), and but(r). i

idle() ' '
Wait loop for machine when nothing else is being

done. If the wait instrnctiog;conpletes, idle re-
turns to caller..

Resides in file 'lch.s'; and cel;s no other

routines.

ifree(dev ino) . :
‘ Remove inode 'ino! from device tdev': add. this

inode to list of free inodes on device if list not
full, and device is not busy.

. Resides in file 'alloc.c'; and calls getfs. The

. only structure used is : filsys(n).

iget(laj dev,ino) ' ‘ .
Returns pointer to 1node structure of inode *ino!
on device ‘'maj.dev’. If inode sought is not in

inode table then space for it is acquired; and it '

is - read in from disk. . Variable Naxip is im
routine for monitoring purposes only. .

Resides in file 'iget.c'; and calls sleep, panic,
bread, lrem, and bdrelse. . strnctures nsed are:
inode (r,m), mount(r) and buf(r,m). _

iinit Q)

persanent buffer for super- block in user memory.

Resides in file ‘'alloc.g'; and calls bread,

getblk, bcopy, panic, and brelse. Structures used
‘are: user(r), lonnt(l)a time(m), and filsys(r,r).

incote(dev,blkho) : ,
Checks buffer queues for device 'dev' to see if
block number t'blkno! is already in memory. If it
is then its buffer pointer is returned.:
Resides in file 'bio.c'; and calls no other
rontines.‘ Structures used are bdevsvw(r) : and
buf (r). ' ' ' ‘ , .

incupc(pc,tprof)

Increments the member of the profile ‘array vhichq

corresponds to 'pc', if the element is vithin
range, as defined by 'profe.

Resides in file 'ach.8'; and calls no othet'

[}

Nount root device, cleen ap snper— block, and ~get

92

N . . Lo . . - ['. . . '.'n) . ”'.‘ N

- L a . i

ook T : . = : . R

R N . - . S
A B | = . . - ' . .

| rontinos. The only sttucthrqvnsed iy usor(r).ﬁf“‘

" iodone(:bp) " ' o LG e e
: =61qnals that an - I/o operation has been conpletod
by setting the done flag in bnf structure pointed’

to by 'bhp'. If the: initiating process is vaiting'.-:"

- for 1/0 it is waked up. - Nl

© 93

. Resides in file ‘'bio.c'; ° and’ cnlls brelse and .
. vakeup. The only strnctnre used is bng(t,.). |

~ o
}ionove(ibp,off,an,flng)

‘Copies inforlabion to. and f:on snpetvisor bnfférs
- for readi, and writei routines. ‘toff? is offset

. from the start of buffer pointed to by *'bp?, rantr

nuaber of bytes are transférred.-'flag' Geternines
direction of transfer. -

Resides in file ‘rdwri. c'; and cails copyin, cbpy-:-

" out, dpadd, cpass, and passc. Structnres used are:
-buf(:), and. nser(r,l).- ‘

iowait(tbp) ‘ ' :

‘Waits fot the ptevionsly*initiated I/o described
by buf structure pointed to by 'bpt'.

Resides in file 'bio.c'; and calls spls, 8leep,
spl0 and getorror. The only strnctnre nsed is
bllf (t) « - . H B .

iput (+ip) -
inode table. This should he done after the use .of

. the node has ceased so .the inode table will not
" get full. Inode is only removed 4if *i_count!® de- .

‘crements to zero. File is removed from device by
‘trunc(), if the number of 1links to it are zero.

Resides in file 'iget.c'; and calls itrunc, ifree,

iupdat, and prele.~ The only strnctnre referenced

. issig()
~ Returns signal number if enabled, zero-if not.

- - Resides in file ‘'sig.c'; and calls no otherl
routine. Structnres used are' proc(r), nser(t)..

itrnnc(tip) . ' ' '
fo Remove the contents of a file from disk. Dir‘%tory
nntry and imode describing it are loft on’ the

4 Set file to zero length.
dél

~and brelse. ‘Structures used are:. inodpj‘,n)fand

buf(r,nm).

.Releases an inode, poihteé to by 'ip' fron the

in file 'iget.c'; and calls brtnd,'.ftee. .

'V‘Checks if the current signal in p-sig is enabled..3'

’_iupéat(oip,ttine)

ki1 (Y

-

-Copies inode pointed to by 'ip' out to the hevibe

it resides on with updatdd access/update times.

Resides ih t!le tiget.c'; and calls getfs, bread,
ldiv, 1lrem; "and bvrite. Strnctntes nsed are:

in94°_(¥,éan_z,_,_§94_ .bv!_,(r_z!), .

'Systel“%ntry to nake a nevw 1ink to s existing
ig

file. Routine looks up inode of file de nated in
u.u_dirp, and verifjes o.k. If the link name is

' found or other errdbrs happen u.u_error <- EEXIST.

If no errors are found then increment 1link count
of existing file and add qftry to specified direc-

- tory«
" Resides in file 'sysz c'; and calls -uchar, namei,
‘suser, iput, amnd wdix. strnctures 'nsed are:

user (r,m), and inode(r,-).

lrel(hv.lv,div)

iain()'; s S A
. Pirst routine entered at IPL tildy Initializes

Returns the remainder of the 32 bit cgpcatenatiOn

of 'hw.lv' divided by 'div' -
- Resides in file 'lch.s" and cqlls no other
-~ routines. o S :

2 &
A o

W

the systea, Clears memory,. reports’ Afze of mepory,

"initializes svap space, ‘starts 1ockj? sets up

first process. sets up init proc ss and execntes
it. - | .

Resides in. file 'lain.c'-! and calls c-7;¢
printf, mfree, fuword, sureg, winit,:binit, ii

iget, newproc, copyout, sched, and expand.sztrnc--

tures used are: user(l), proc(n),@rootdit(l), and

'_inode(l). Lo

@

hd

94

Y

Systel p:ilitive to - send a signal ‘%0 a. process.
‘ The UID'S of the sendingjand receiving ptocesses
: ~ - must be the same or the sending ‘process -aust be
* " ‘the super user, for the primitive fo have any ef-,
. fect. ‘The signal to Dbe sent is . passed in\
u.u_arg(0] . :
. - Resides in file 'sysfd.c'; . and calls snébrro and
psignal. Structures used are: proc(r), and
user(r,l). : ' ‘ s : o o ‘
;ldif(hw,lw,div) : Y | R .
‘Returns the qnotient of the 32 bit concatenation
" of thv.lw' divided by ‘div'. - e
Resides in file ‘mch.s';. and calls.'nd_ other
routi‘e’. ' . A) . i
‘link(). '

vlaknode(node)

‘Hakes a node in the direétory systel. Builds an

"~ inode of nmode ‘mode! and ' enters name/inode in

3

.directory u.u_pdir.

Resides ‘in file"iget.c5: and ‘calls ialloc, and

95

wdir. Structures used are: user (r), and

inofe(c,my. . .

“.lalloc(tiap,size) :

‘iQF(ta,tb)

Pinds in map . poinied. to by 'nap" a block of.

storage of size 'size‘, deletes it from the free
list 4in map, and returns its address (real ad-
dtQIU/6a), If no space can be found then zero is
returned. : . : S :

Resides in file ‘malloc.c'; and calls no" other
routines. The only stracture dsed is ‘map(r,m).

Returns the maximum of the characters pointed to

-by *a' and *'b'. . ; ‘L
Resides in file ‘rdwri.ct'; and calls no other

‘routines. - ‘ | S

nlfree(ylap,size,dddf)

-Keeps a 1list (map which is pointed to by 'map’) of |
free storage. §pis subroutine adds size 'size!
-blocks to locatio ~address ‘*addr' (given 4in real
- and adjacent_blockg are merged.
Resides in file 'malloc.c?; and calls no . other

. win(sa,sb)

. akiod ()

“u.u_error .<- EEXIST. If everything is all right

address/64). These are kept in ascending order

routines. The only structare used is map(r,m).

Returns the minimun of th\e‘charactets~ pointed' to
Ry *a' and 'b'. o n .
Resides. in file ‘rdwri.c'; and calls no other

-routines.

.QSystelféﬁtry for aknod[II) priiitive. Checks to:

see that the caller is Super user, and that the
file does not already exist. If an error is found

then makmode is called to make the noder The

. hame of the new node is passed. in wu.u_dirp.
rResides in file *sys2.c'; and calls uchar, suser,

‘namei, maknode, and iput. Structures used are:

user (r,m) an«_l inode(r,s).

-,

namei(xfunc,flag)

4

N

nevproc)

An internal systeam routine to get an inode for
file name retrieved by executing function ‘func’.
This function is usually either 'schar' (for sys-
tem names) or 'uchar' (for names in user space).
'flag'=0 if name is sought; 1 if name 1is to Dbe
created; and 2 if name is to be deleted. Return
is incremented, locked inode or null if name 1is
not found.

Resides in file 'namei.c'; and calls iget, access,
1div, brelse, bread, bmap, bcopy, and iput. Struc-
tures gsed are: inode(r,m), . user (r,m), and
buf (r,m) . t

Generates a new process as a copy of the current
process. The nev copy is placed either in memory
if room or is swvapped onto the disk. Returns
tvice, once for parent process (return a zero) and
opce for the child (return a one).

Resides in file 'slp.c'; and calls panic, savu,

malloc, xswap, and copysegq. Structures used are:

. user (r,m), text(r,a), proc(r,m), file(m).

nice ()

nodév()

noéys()

Systea primitive for setting prqgess' priority.
Users (unless super user) may only decrease prior-
ity by giving a positive number in ro.

Resides in file 'sysl.c'; and calls suser. The

only structure used is user (r,m) .

‘Sets u.u_error <- NODEV and eturns. -Used for en-
‘tries in conf.c (cdevsv and bdevsw) if this type

of access is alwvays an error.
Resides in - file ‘'subr.c'; ,and calls no other
roupines, The only structure used is user(sm).

Called if a use:~attélpts an 111.9&1 éyétel call

(one that does not exist). Prints out primitive:

- number of attespt on ipl comsole, and returns with

u.u_ error <- 100.

. Resides in file 'trap.c'; and calls printf. The

only structure used by this routine is user (m) .

notavail(*bp)

Unchains the buffer pointed to by ‘bp' from the

" available list.

- 'Resides in file 'bio.c*; and calls sp16. The only

structure used is hnf(r,l).

>

96

S

nseg (n)

Returns the number of segments in 'n' bytes;
(n+127)>>7.

‘Resides in file ‘'main.c'; and 'salls no other

routines..

nulldev()

nullsys()

open ()

‘'Does nothing but return. Used for null entties in

conf.c (bdevsv and cdevswv).
Resides in file ‘'subr.c'; and calls no other
routines. »

Called if systgn routine is a no operation, this
routine does nothing. This is usually used for
0ld system entry points wvhich no longer exist.
Resides in file ‘trap.c'; ~and calls 'no other
routines.

Systeam entry for opening an inode. This is. the
user interface and reads in inode describing file

of name pointed to by wu.u_dirp. This inode 1is

then passed to openl with a mode of u.u_arg[1]+1.

Resides in file 'sys2.c'; and calls namei, opent,.

and uchar. The only structure used is user(r,m).

, §P9n1(tip.-ode,trf) ' \

Opens (via openi) inode pointed to by 'ip*' . This
inode is opened with mode ‘*mode'. If 'trf' is 2

" (i.e. just created) themn check mode to seerif

0.k., initialize inode and fill file structure.
If 'trf' is zoro then truncate length of file to
zero before initializing 4inode and fillinq file
structure.

Resides in file 'sys2.c'; and calls access, openi,
iput, itrunc, prele, and falloc. Structures used
are: inode(r,m), file(m), and user (L) .

openi(*ip,ru)

Y

owner () .

Calls open toutine for device pointed to by inode
structure pointed to by 'ip'. ‘rv' is passed as
second argument to open ‘routine ('dev' is the
first argument). o :

Resides in file 'fio.c'; and calls device open
routine via c(b)devsv. Structures used are:

" inode(r), user (m), cdevsv(r), and bdevsw(r).

Checks to see if this user owns file named in
u.u_dirp. ~ Return ome if user is owvner or super
user, zero in all other cases.

Resides in file 'fio.c'; and calls saser, nalei

97

panic (=s)

passc (¢)

and ipat. Structures used ' ‘are. user(r) and
inode(r).) N
. ’V' .
Y
Outputs panic message to i 1 cansoXe and appends
string pointed to by 's'ﬂﬁfﬂhé.ppdate function is

then performed, -and -thd kernel..stack pointer is
finally the machine

saved in variable.!kimiprés
is placed in an éndlegidd oop.

Resides in‘f_}ei‘Ptgiqggfih 111s update, printf,
and idlezf’ fu’- wwﬁﬁﬁ’ R o .

' Places the chabacter jijgin the currel’t user area,

&

updating “u.u_kase, n.u_count, and u.u_offset[].
Returns zero if everything is all.right, and re-
turns -1 if coumt is exausted or a memory fault

-occurs, in the latter case u.u_error <- EFAULT.

physio (»st

A

Resides in file 'subr.c'; and calls subyte. The
only structure used is user(r,m).

rat,sbp,dev,rw) . _ .
A nonstandard length (9256 words) I1/0 operation is

performed on device ‘'dev'. The routine actually

used to do the 1/0 is pointed to by *'strat'. The
parameters used in the operation are passed to
this routine in the user stracture.

Resides in file 'bio.c'; and -calls splé, sleep,
1shift, sstrat, wakeup and geterror. Structures

‘used are user (r) apd buf(m) .

pipe()

System primitive to set up input/output pipé

descriptors - for a process. - An 'inode' is

.allocated on *'rootdev', and file descriptors are

- generated for input and output. The user file

- ‘plock (#ip)

&

N\

table for these descriptors is returned . to the
user im registers r1(write) and ro0 (read).
Resides in file 'pipe.c'; and calls ialloc, falloc
and iput. Structures used are: inode (m), user (m)
and file(m). ' ’

_ ' <
Internal routine to lock out multiple- use of .
cosmon pipe pointed to by inode tip'. The calling
process will wait antil *inode' is unlocked; then
it will lock it to keep out others. '
Resides in file 'pipe.c'; and calls sleep. The
only structure used is inode(r,m). ,

N

98

prdev (asstr,dev) ’
Prints string pointed to by ‘'str!’ along with
. major/sinor device ‘dev' on IPL console.
Resides in file 'prf.c'; and calls printf. Uses

structure dev(r).
prgle (=ip)

pointed to by 'ip'.
Resides in file 'pipe.c'; and calls vakeup. The
only gtrncture‘used is: inode(r,m).

printf(*flt,x1,x2,...,19,xa.xb.xc)
This is a limited version of the more general
printf routine ased by users., This version in-
cludes format codes d,1,0,¢, and®s. - There 1is a
maxisum of tvelve arguments. It is used to prin
urgent messages on the IPL terninal. ,
. Resides in file 'prf.c'; and calls putchar, and

printn.
- printn(n,Db) A (F | {

Print number 'n' in base 'b', strip leading

zeroes. . - . .
Resides in file 'prf.c*'; and calls printn, 1div,

and puatchar.

<

Systea primitive to set !%Aand turn on profiling
of the prograa counter. U.u_prof{] are initialized
from user arguments u.u_arg J. . '
Resides in file 'sysG.c'; and calls na other
routines. The only structure used is user(r,m).

profil ()

psig() - : , . _
Issue signal p_sig to the current process. If the

user has trapped signal then save current pc and
ps and return to user at subroutine address speci-
fied in the trap. If not trapped dump memory 1if
appropriate. If core is dumped then add 200 to
signal number and retuarn (exit to another pro-
cess) . :

Resides in file 'sig.c'; and calls suword, .core,
and. exit. Structures used are: user (r,m) , and

'proc(q).

psignal (xp,sig) « o ‘ ‘ . '
: - , Issues signal 'sig' to process pointed to by 'p'.
If process is wakting (p_stat == SWAIT) then set’
_Btat to SRUN, clear p_wchan, and wvakeup all pro-
cess' waiting on ‘runout’. : o '
" Besides -in file 'sig.c'; and calls vakeup. Struc-
_tures used are: proc(r,m), and runout (ry,m).

Pipe unlocking routine. OUndoes a 'plockivon inodé"

99

putc (c,=qge)

putchar (c)

rdvr (mode)

Places character ‘€' onto queue described by ‘qe‘.
Returns 2zero 0.k., non zero if there wvas a
problea, such l1ist full.

Resides in file ‘'mch.s'; and calls no other

routineés. The only structure used -is clist(s).

Ooutputs character ‘c' to ipl console termsinal, un-

less svitch register is all zeroes.
Resides in file ‘prf.c'; and calls putchar.

Places I/0 parameters fetched froa file descriptor

L:::;g;)re, into user structure. Either the inode
wvrite handler (readi, wvritei, depending -om

read ()

‘ reﬁdi(tip)

readp (#£p)

‘mode'), or the pipe handler (readp, vritep,
depending on 'mode’) iswcalled.
Resides in file 'sys2.c'; and calls getf, readp,
wvritep, readi, writei, and dpadd. Structures used
are file(r,m), and user(r,s). -

System entry for teadinq from I/0 units. All this
routine does is call rdvr wvith a mode of read.
Resides in file 'sys2.c'; and calls rdvr.

-

Reads from device (file) described by inode point-
ed to by 'ip'. If ‘the device is a character type
then one line is returned oy calling indirectly
(through cdevsv) the device handler. If the dev-
jce is a block device enmough blocks are read to
satisfy the count in u.u_count, or until an end-
of-file is reached; this is done by 'bread’.

Resides in file ‘'rdvri.c'; and calls breada,

1shift, =in, dptsp, bmap, bdread, iomove, and’

brelse. Structures used are: user(r,m), inode(r),
buf (r), and cdevsv(r).

100

Internal routine to read a pipe described by
. 'file! structure pointed to by 'fp'. If the pipe

is empty the process vill vait until data is en-
tered (writep). The' available data vill then Dbe
returned to the caller until his buffer is full,
or the pipe becomes empty. : ‘
Resides in' file 'pipe.c'; and calls plock, vakeup,
sleep, readi and prele. Structures used are:
file(r,m), inode(r,m) and user(r,m). ‘

reta (su)

EE S .

rexit()

* .

seifﬁ().{

savu (yu) .

-

sbtedk()

2

schar ()

sched ()

’

N . K '
Changes current user pointerx (Virtaal address

0180000) to be the pointer to ‘u'. Swvitches the

current user of the cpu. - .
Resides in file ‘'sch.s'; and calls no other
routines. The only structure used is user(r).

4. \
“ ,

. 101

System priditive eatry point of ‘'exit'. . Calls

‘exit', to terminate the curreat process, after”
fetching the return code froa. user raegister zero.

Resides in file ‘'sysi.c'; and calls exit. . The
" only s)

cture used is user(r). o
N\ ' o Cee R

Saves the floating poiit registers‘of’the ‘curreat
user, 4im u.u_fsav[25]. Thigs is only done yvhen

™
Ly

there is to be a process svitch* etter an inter-

rupt. .
Resides inm tile 1'lch.s'; - aad ‘cells no other
rou}inel.‘_jhegenly structure used is user (m).

'. o b : -. . .-".“.. &
Saves stack poiiter, and r5 (local stack pointery
into 'user' structure pointed to by ‘'u', :

Resides in file ‘'ach.s'; and calls 'no ‘othet .

routines. The only structnte used is user(n).

‘: '.. ?‘—.

Syhten prilitive (break[II]) to set the top 1oce- :

tion of: - the current process’ data“area t6 the

value passed in w.u_arg{0]). This rougine~ -allo-

cates, and d4eallocates semory as needed. “To do

this the stack must be copied to a . new physical-"

position in memory, as it is alvezs adjacent, phy-

sically. to the data area. - L

Resides in file 'sysl.c'; and cellq nseg, esiabnt;

copyseq, . expand, and clearseg., Structures nsed

are: uset(r,l), and proc(t,e). o o e

o A

Returns ‘the neit character of ditectory name

. poiated to by uw.u_dirp. This cherectar 1‘ fetcned ,

fron kernel space. ..
Resides in file ‘namei.c'; end calls- no other
, routines. The only strncture used ig user(r,l).-«

J‘e_ "
: -

Schednles a mnev process to -be rum (on the“ cpu,
svaps process' into and out of pemory if required.

. Algoritha used is longest in ->"outi longest out
-> 41in; no priorities are examined vap tise.
Usually called in conjnnction-vg;h vakeqp-bf ‘ra-

VR
=

»

A

seek ()

setgid()

setuid ()

B

102

pin'. This routine is concerned only with keeping
memory full of process' ready to run. It doesn't
svitch between running process'.

Resides in file 'slp.c'; and calls sleep, nalloc,

spl6, spl0, xswvap, swvap, nfree, and panic. Struc-
tures uged are: proc(r,m) , runin(r,n), and
text(r,m). :

Systea -entry for seek[II] primitive. Seek adjusts
offsets, and sizes of inode and file structures
causing the next I/0 to reposition the device. 1If
device is pipe then u.u_error <- ESPIPE.

Besides in file ‘'sys2.c'; and calls getf,
inode(r,n) and dpadd. Structures used are:
filegqr,m), and user(r,m). . '

System primitive which sets the current process'
group id, and real group id (in u.u_gid, u.u_rgid)
to the.contents of r0. If the user is not the
,Super user, aind if the argqument is not the real
group id, then no setting occurs.

Resides in file 'sys3.c'; and calls suser. The
only structure used is user(r,s).

Ssystea” primitive wvhich sets the current process’

user id, and real user id (in u.u_uid, w.u_uid) to-

the contents of r0. If the user is not the super
user, and if the argument is not the real user id,
then no setting occurs. C '

Resides in file 'sys3.c'; and calls saser. The
only structure used is user(r,m).

signal (atp,siq)

sléep(*chin,prio) ; ' -
Places current process in the dormant state until
a ‘vakeup' is performed on variable pointed to by .

Issues signal 'sig' to all process'. vith teletype
nasber 'ntp'.’ R : ’
gesides in file 'sig.c'; and calls psignal. The
only structure used is proc (r,m). ‘

)

schan', at which time the process vill be

rescheduled at priority 'prio'. As sleep stores

information in process structures a single process

should never be put to sleep more than omce, vhich

is ‘possible in interrupt handlers.

Resides in file .-*'slp.c'; and calls issig, splo,
vakeup, - -aretu and swtch. Structures used are:
runin (r,m) user (m), and proc(m). '

sadate ()

smount ()

spl?()

ssig()

'sslep() '

. stat()

System primitive to set the last-modified-date
field for file u.u_dirp. The date used is passed
in r0, r1 from the caller. » :

Resides in file 'sysl.c'; and calls owner, iupdat,
and iput. Structures used are: user(r) and
inode(m). - - '

System primitive to mount a special file (device)
on a file named in u.u_dirp. Device cannot be
already mounted, nor can the file on which it is

103

to be mounted be a special file, or in use at this |

time. After an entry in the mount table is found
and initialized, the super block is read in and
initialized. Finally .the irode is marked as
mounted and not locked. ' ,

Resides in file ‘'sys3.c'; and calls achar,
getmdev, namei, bread, brelse, bcopy, iput, prele

‘and getblk. Structures used are: user (r,n),

filsys(r,m), mount(r,m), buf(r) and inode(r,m).

Set system (machine) priority level to '?'. Prior-
ity zero allowvs all interrupts, and priority seven
does not allov any. » : .
Resides .in file ‘'mch.s'; and calls no other
routines. ') o

»

Systea primitive (signal{II]) to set nb for catch-
ing or ignoring - signals. This routine replaces
u.u_signalfw.u_arg{0]] with u.u_arg{1], if signal

is valid and not Kill signal. The old value of

u.u_signal{] is returned to the user. : ,
Resides in file ‘'sys8.c'; and calls no other

routines. Structures used are: user(r,m), gnd '

proc(m) .

‘System primitive (sleep{II]) forcing the current

process. into a dormant state for r0 seconds. This

user is queued up on tout[] and then sleep(slp.c].

is called with tout #5 wait event.

Resides in file 'sys2.c'; and calls spl7, splo,
dpcmp, sleep, and dpadad. Structures used are:
time(r), user(r), and tont(r,m).

Systea primitive (stat[II]) to return, in user

provided buffer pointed to by u.u_arg{1], the con--

tents of the inode describing the file pointed to
by u.u_arg{0]. \ : ;o '

g

!

- stat1()

W

- stime()

Resides in- file 'sys3.c'; and callé auchar, nanmei,
stat1, amnd iput. Structures used are: user(r),

‘and inode(r). _ /

‘This internal routine does the actual information

copy for routines fstat[sys3.c] and stat[sys3.c].

Resides in file 'sys3.c'; and calls iupdat, bread,

irem, 1div, suvord, and brelse. Structures used

~are: buf(c,m), ‘time(r) and inode(r).

Systea primitive (stime[II]) which sets the time
of day clock to the value passed in r0-ri, if and
only if the user is the super user.

Resides in file 'sys3.c'; and calls suser, and
vakeup. " Structures used are: time(m), and
user(r}. . .. '

subyte(tva.bjtey

sulonnt()

- sureg ()

: suse:(k

Store byte tbyte! at address 'va', in user space.
If location exists return zero, else -1. '
Resides " in - file ‘'mch.s'; and calls no other
routines. . ‘

Systea.prinmitive (unount[II]) to unmount a special'

file pointed to by u.u_arg[0]. After checking to
make sure device was mounted and not busy, the
inode pointing to the file which the device was
pounted on is marked as not - mounted, and it is

released. The buffer for the super block is also

released. S _ :
Resides in file 'sys3.c'; and calls updat,

getmdev, ‘iput, and.brelse. Structures used are:

user (r,m), inode(r,m), and mount(r,m).

Sets up user's segment réqisters from u;u_uisa[BJ'

+ p_addr, and also user segment descriptor froa
u.n_nisd[8]3.. ‘ § '

Resides in file ‘'main.c'; and calls no other

routines. ' Structures = used are: user(r.m),
proc(r,m), and text(r). : - R

' return zero and u.u_error <- EPERN.

Resides in file ‘'fio.c'; and calls no other

routines. The only structure used is user(r,v).

104

‘Rqturns one ‘if current user is super user, else -

suword (sva,vord)

"’ swap (blkno, *coreaddr,count,rdflg)

swtch{()

“sync()

syéent[]

»

timeout (s#fun,arg,time) -

tiles()

105

Internal routine to store word 'vofd' in address
tva' in user space. If the address exists then
return zero, else return -1. \

Resides in file ‘'mch.s'; and caiis no other

routines.

Perforas the I/0 required to swvap a process in or

'rdflg' and takes place vwith '‘count! words being
transferred between block 'blkno' and memory ad-
dress '‘coreaddr'. Retyrns fion zero if an I/Q error

occurred. .
Resides in file 'bio.c'; and calls sleep, stra-

tegy and wvakeup. The only structure use is
buf (n) . '

" out' of memory. The direction is dete;:inad by

Do a procéss switch' to the highest priority load-

ed process wishing to run. Round robin scheduling
is performed on process' of the same priority.
BResides in file 'slp.c'; and calls savu, retu)\

idle, aretu and sureg. Structures used are:)

proc{r,m), and user (r,®).

System primitive (sync[II]) vhich causes an update
of super block on all mounted devices.
Resides in file 'sys&.c'; and calls update.

A table of ‘the addresses of the system entry
points _and - their argument counts. This table is

- used by 'trap' to call system primitives.
' Resides id.file 'gsysent.c'; and calls everything.

To place an itesm onjthé'cailoat list. When time

. ttime' has expired fuaction tfan' will be called:

vith argument ‘'arg'. BEWARE: callout array is pnot
checked for overflowlltl! : '

cupc, vakeup, psig, issig, savfp, and svtch.
Structures nsgd are callo(r,m) and callout(r,m).

ISyStei pfilifive (tiies[II]) vhich returns, *1n

user hu:fer-pointed‘to-by.u.n_arg[O],,real, user,

and. system times used by the calling process.

Resides in file ‘clock.c'; ani'calls'disélay; in- -

Resides in file 'sysf8.c'; and calls suvord. The -

~only structure gsed is user(r,m)-

trap (dev, sp.r1,hps,r0,pc,ps)

trapl(s£()) |
Calls systea primitive passed as an argulent.
This call may be incorporated into trap.c at a fu-

uchar ()

-

qfilloct)

'-:nnlink()

Handles all processor traps. ‘'Dev' is the trap
number (0 =bus error, ..., 9= segment violation);
'sp' is 0l1ld stack pointer; ‘rt' is old rt1; the new

-pS is in 'nps'; 'r0*' is the o0ld r0; ‘'pc' and 'ps!

are the old pc and ps respectively. This routine
does error checking, signal sending, and parameter
gathering for the various types of traps. It also
forces a process switch if 15 system galls have
been made by the current process vithout an inter-
vening sleep.

Resides in file ‘trap.c'; and calls savfp, .psig-

‘'nal, fuword, backup, estabur, expand, copyseg,

106

sysent, idle, clearseg, savu, issig, psig, swtch,

printf, panic, and trapi. Structures used are:
proc(c,m), and nser(r,n)., .

1]

ture date.

Resides in file 'trap.c'; and calls savu.

Returns next character of directqry name pointed
to by geu_ dirp..- .This character is fetched from
user space, and.is returned as -1 if there vas a
mesory fault trap takem because of the fetch.

Resides in file 'namei.c'; and calls fubyte. The

only structure used is nser(t,l).

rind an eapty slot in user's open filé'aarray,

u.u_ofile. If none can be found . (max of 15) then-

returns -1 and sets u.u_ ertor <~ B!rILB' else ‘re-

turns slot nuamber..
Resides 7in file 'fio.c'; and calls,_np other

» routines.3 Tbe only strncture qsed is user(r,ly..

. fSystel ptinitive (unlink(II]) to unlink a directo-

ry entry from as inode. Inode number of directory

- entry is clgqared to zero, imdicating free directo-

ry entry. Link count of inode is decremented, and
'if count goes to zero the inode and its associated -

‘.

blocks are freed.. The name of the file is passed

in v.uw dirp, and it will only be unlinked if the

current user has the proper perlission.“

'Resides in file ‘'sysd.c'; and calls prele,'»nchar.

namei, iget, panic, suser, ..writei, and ipat.

Structnros used are° user(t,l), and inode(t,n).

update ()

~vai£})

Write out super block _for each mounted devicé.
Write out each modified inode in the inode table.

107

Resides in file 'alloc.c'; and calls burite, iup-

dat, prele, bflush, getblk, and bcopy. Structures
used are: updlock(r.m)., buf (r) , mount(r) ,
inode(r,m), and filsys(r,mn). _ '

-

Systea ériliﬁiié“(iiiffii])_tbjiait'fbr the com-

pletion of one of the children of a process. If
no children exist them return u.u_error <- ECHILD.

Removes process table entry for child when it
‘dies, and updates process times of parent to indi-

cate time used by the child. Also frees up ‘user'

structure left on disk by ‘exit()'. : .
Resides in file 'sysi.c'; and calls bread, afree,

_ dpadd, brelse, and sleep. Structures used are:

vakeup(*ch

proc(c,m), buf(r), and user(c,m).
an) _ |
This is done through a linear search of the proc|]
table. When a process is avakened, ‘'runout! is

also' avakened, causing the scheduler to schedule

this process if it is doing nothing else..

'Resides in file 'slp.c'; and calls wakeup. Struc-
" tures used are: proc(r,m), runrun{(m) , and

. wdir («ip)

i

runout (r,m) .

o

Nakes a directory emtry for inpdé \pbintéd to by
1ip?, ‘and releases inode 'ip' from memory buffer. .
Resides in file ‘*iget.c'; and calls writei, and

4lrite§.n.n;cq@ﬁtuﬁyteggto-tilqzog device pointe@'
to by inode ‘'ip'. Will write as wany blocks as
‘are reguired to exhaust the count, “ran out of

memory, or f£fill the device.

Wakes up all process' sleobing‘on variable ‘chan'. .

ipat. . Structures used are: user(r,m), and '
inpde(r). T L L S

“writél)- A S S E
Systes primitive (vrite{II)) to write to I/0 dev-

- o - ices.or pipes. Calls rdwr wvith a mode of write t
" do0 actual setup and execution of write. . = -
. - Resides in file 'sys2.c'; and calls rdwr..
. writei(sip) - . ” |

| Besides in file ‘rdwri.c'; and calls 1aiv, mim,

_bmap, getblk, bread, - iomove, brelse, bawvrite,

bdwrite, lshift, and dpcmp. Structures used are:
‘ inoQo(t;l)..c&evstlr),.and ntpt(:,l).“ o

L

3

& . °

[

writep (+£p)

'file' structure pointed to by 'fp'. If the pipe
/is'full then the process will wait wuntil it is
emptied by.a feadp. After a chunk of data is writ-
. ten.into the pipe the reading process will be
"awakened if Sleeping. .
Resides in file 'pipe,c'; and calls plock, prele,
_writei, min, and, wakeup. Structures used are:
inode(r,m), file(r) and user(r,m). '

xalloc (ip) & e _ _ *
Internal routine to set up text segmént of a pro-

Internal routine to vtfte thg ‘pipe described by .

108

cess. If it. is already being used then it is a -

simple matter to update the use counter; other-.

vise, space.in the text table must be found, ini-
tialized, and a copy of the text svapped out.

Resides in file *text.c'; and calls panic, malloc,
expand, estabur, readi, swap, savu, xsvap, and

svtch. Structures used are: text(r,m), proc(r,m),

and user (r,m) .

.xccded(#xp) : . _ o S -
Decrements the count of the number of process! in
main store wvhich are using the tegt segment point-

ed to by 'xp'. If count goes to zero, the segment

is removed from main store.

Resides in file 'text.c'; and calls Anfreé. The

only structure used is,text(:,n)..

xfree () S ‘ o S ' '

o Internal routine to free links to a . text segment
vhen a process terminates. If this user vas the
'last user of a text segment then the segient is
3 removed. froas the svapping disk and main memory.

~ Resides in file 'text.c'; and calls xccdec, anfree,

-'and iput. Structures used are: user (r), proc(m),

‘and text(r). :
x8¥ap (sp, £lag, size)

by " 'p', of size ‘'size' (or p_size if 'size'=0).

After allocating space on disk, process is written
to swap device and the main store it occupied is
_released. . Process ! .
Tge¥ ust paged out) and process address,
, 48 set to disk addregs, finally process

ory space availidbple now. .

igeg\.lc . L PN 'y !

.nv. runout(t'.) .

;. Internal routine1toAsuap'outfa;prdce#s,pointed_'to'

is set to not Mpaded. The variable
d up to inf§ga ‘sched () that

ext.c?; and "Sefls -a11og,lpaﬁic,'
ree, and vakeup. Structures used

ess scheduling time, p_time, is set

