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Abstract

The complexity of large industrial engineering systems such as chemical plants has contin-

ued to increase over the years. As a result, flexible control systems are required to handle

variation in the operating conditions. Some of the challenging elements in the design of

control systems are nonlinearity, disturbances and uncertainty in the process model. In the

classical approach, first the plant model should be linearized at the nominal operating point

and then, a robust controller should be designed for the resulting linear system. However,

the performance of a controller designed by this method deteriorates when operation de-

viates from the nominal point. When the distance between theoperating region and the

nominal operating point increases, this performance degradation may lead to instability.

In the context of traditional linear control, one method to solve this problem is to con-

sider the impact of nonlinearity as “uncertainty” around the nominal model and design a

controller such that the desired performance is satisfied for all possible systems in the un-

certainty set. As the size of uncertainty increases, conservatism occurs and at some point,

it becomes impossible to design a controller that can provide satisfactory performance.

One of the methods proposed to overcome the aforementioned shortcomings is the so-

called Multiple Model approach. Using Multi Models, local designs are performed for

various operating regions and membership functions or a supervisory switching scheme is

used to interpolate or switch among the controllers as the operating point moves among

local regions. Since the Multiple Model method is a natural extension of the linear control

method, it inherits some benefits of linear control such as simplicity of analysis and imple-

mentation. However, all these benefits are valid locally. For example, the multiple model

method may be vulnerable when global stability is taken intoaccount.

The core objective of this thesis is to develop new tools to study stability of closed-loop



nonlinear systems controlled by local controllers in orderto improve design of multiple

model control systems. For example, one of the aims of this work is to investigate how to

determine the region where closed loop system is stable. A secondary objective is to study

the effects of the exogenous signals on stability of such systems.

To achieve these goals, first, new representations for nonlinear systems, calledζA and

ζAB representations, are proposed. InζA andζAB representations, initial state contributes

to the feedback interconnection as an exogenous input. These representations can be used

to develop new tools for non-zero state nonlinear systems based on the input-output theory.

TheζA andζAB representations convert a nonlinear system with non-zero initial state into

a combination of a memoryless nonlinearity and a linear system with some input signals.

The way initial state is handled by these representations provides a novel viewpoint on all

aspects of investigating nonlinear systems.

Using these representations, stability of nonlinear systems with non-zero initial states

can be investigated by the input-output stability methods.Based on this usage, a new frame-

work is developed for the analysis of stability of systems bytheζA andζAB representations.

For local stability, a method developed to find a pair of localareas, namely∆ andΥ, where

belonging the initial state to∆ implies staying the state insideΥ. The methods are also

extended to forced systems.

To compute an upper bound on theL1, L2 andL∞ norms of a class of nonlinear sys-

tems, a new method is proposed based on theζA andζAB representations. Another Method,

which provides tighter bounds, is proposed to find an upper bound on the inducedL2 norm.

Both methods are only applicable to globally Lipschitz systems. To overcome this restric-

tion, another tool is developed for local conditions, namely, an upper bound on system

output is derived for bounded input and initial state. This method is restricted to theL∞

induced norm.

To measure the distance between local systems in multiple model method, some re-

searchers have suggested to use the gap metric. However, since there are no straight-forward

method to compute the nonlinear gap metric and using linear gap metric can not guarantee

global stability of the system, the mentioned problem is still unsolved. In this thesis based

on ζA andζAB representations, a method is proposed to compute an upper bounds on the



gap metric and the corresponding stability margin for a class of nonlinear systems.

The minimum gain of an operator is defined, some of its properties are derived and

some computational methods are developed to calculate the minimum gain. Based on the

minimum gain of operators, the large gain theorem is stated.The large gain theorem asserts

that the feedback loop will be stable if the minimum loop gainis greater than one.

To study disturbance attenuation of a closed loop multitanksystem, the proposed meth-

ods are utilized. It is assumed that a proportional controller is used to control the level of

the liquid in one of the tanks. The mathematical model of the open loop system is derived

using physics of the plant. The gray box identification method is used to identify the model

parameters and the disturbance attenuation of the system isinvestigated by the proposed

method.
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Chapter 1

Introduction

1.1 Overview of Multi-Model Control Systems

The development of large industrial engineering systems such as chemical plants has lead

to gradual increase in their complexity. In turn, this complexity demands suitable control

systems that should have enough flexibility to be able to handle variations in the operating

conditions. Nonlinearity, disturbances and uncertainty in the process or its model are three

challenging elements in the design of control systems. The classical approach consists of

linearizing the plant model at the nominal operating point and designing a robust controller

for the resulting linear system. Although excellent results have been reported in literature,

it is well known that the performance of a controller designed by this method deteriorates

when operation deviates from the nominal point. This performance degradation may lead to

instability when the distance between the operation regionand the nominal operating point

increases.

To solve this problem in the context of the traditional linear control, the impact of non-

linearity has been considered as “uncertainty” around the nominal model and based on the

size of nonlinearity, the controller is designed such that the desired performance is satisfied

for all possible systems in the uncertainty set. It is clear that the size of the uncertainty

increases as the operating point of the system prowls in a large area. In turn, conservatism

occurs as the size of uncertainty increases. At some point, it becomes impossible to design

a controller that can provide satisfactory performance.

Thanks to the fact that the model derived by linearization describes the process quite ac-

curately in a small region about the linearization point, some methods are introduced in the

literature to overcome the aforementioned shortcomings. In the so-called gain scheduling

method, local designs are performed for various operation regions and a gain-scheduling

scheme is built to interpolate among the controllers as the operating point moves among

1



local regions [43] [44] [45] [46]. Although satisfactory results have been reported for some

applications and gain scheduling is well-accepted among practitioners today, this method

suffers from the lack of a theoretical support for global behavior.

Another linearization-based method, conceptually similar to the gain scheduling method,

is the so-called Multiple Model or Multi Model method [17] [7] [28]. The only difference

with the gain scheduling approach is that the interpolationis substituted by either member-

ship functions or supervisory switching. In both forms, theswitching is done based on the

current states. While in the form of membership functions the current states of the system

determine the weighting among the local controllers; in thesupervisory form, a supervisor

selects the suitable local controller from a bank of local controllers, based on the current

state of the process.

The main advantage of the Multiple Model method is that it is anatural extension of

the linear control method and inherits some benefits of linear control such as simplicity of

analysis and implementation. However, it should be taken into account that all these benefits

are valid locally. When the global behavior of the system is being investigated, most of the

advantages are yet to be established. When it comes to globalstability, which is one of

the most important features of a control system, multiple model method may be vulnerable.

Some researchers have suggested to use the gap metric to measure the distance between

local systems [9] [38]. However, since there are no straight-forward methods to compute

the nonlinear gap metric and using linear gap metric can not guarantee global stability of

the system, the mentioned problem is still unsolved.

The core objective of this thesis is to develop new tools to study stability of closed-loop

nonlinear systems controlled by local controllers. This isto say that the aim of our work is

to investigate how to determine the region where a closed loop system is stable and to study

the effect of the exogenous signals on stability of such systems.

1.2 Structure and Outline of the Thesis

1.2.1 Thesis Overview

In Chapter2, after introducing the notation and presenting some preliminary results, a new

representation for unforced nonlinear systems, called theζA representation is proposed.

Having only an input-output structure, theζA representation is an equivalent structure of an

unforced nonlinear system, where the initial state is also represented by an input. Then, the

ζA representation is extended to forced systems.

2



In the ζA representation and its extended version for forced systems, which is called

ζAB representation, a nonlinear system is arranged as a feedback interconnection of a mem-

oryless nonlinearity and a linear system with the initial state as an input signal. The main

difference between this decomposition and traditional ones is in the way the initial state is

dealt with. Here, the initial state contributes to the feedback interconnection as an exoge-

nous input while in traditional methods, any change in the initial state is handled by defining

a new operator.

Chapter3, starts by investigating stability of unforced nonlinear systems by theζA

representation. Based on operator-theoretic methods, a new framework is developed for

the analysis of stability of nonlinear systems. In the proposed approach, since the initial

state is considered as an input, stability of an unforced nonlinear system can be investigated

by the input-output stability methods and stability of the nonlinear system is interpreted as

the input-output stability of the resulting feedback system. Using classical tools, sufficient

conditions for global and local stability of the system are obtained. For local stability, the

notion of stability regionsis introduced and is shown to be useful in applications. Then,

local stability of unforced nonlinear systems is studied with a new definition of region of

attraction, which extends into two regions. Sufficient conditions for local stability in term

of those regions are derived. Some examples are given to showthe effectiveness of the

results. It is important to note that our method does not require finding a Lyapunov-type

function.

Chapter3 continues by investigating stability of forced nonlinear systems. Both global

stability and local stability of forced nonlinear systems are considered. Using theζA and

ζAB representations of nonlinear systems, some sufficient conditions for global and local

stability of forced nonlinear systems are derived.

In Chapter4, the problem of computing theLp operator norm of a nonlinear system

is considered. Since it is important to quantify the influence of various inputs on various

signals inside the system, this measure has several applications. One of them is in control

systems, where the attenuation of disturbance signals is required. The proposed method can

be optimized based on some selected parameters. The proposed theorems are applicable

to a class of nonlinear systems. However, a method is also provided for computing an

upper bound on the inducedL∞ norm for systems which are not in this class. To illustrate

the methods, some examples are also given. The weighting method is introduced in the

last section of this chapter. The weighting technique can beused to reduce the intrinsic

conservativism in the aforementioned method. An example isalso provided to show the

3



usage of the weighting technique.

Chapter5 deals with the computation of the gap metric and stability margin for nonlin-

ear systems. The gap metric, which was introduced to systemsand control theory by Zames

and El-Sakkary [55], can be used to measure system uncertainty. For linear time-invariant

(LTI) systems, much work has been done to compute the gap metric. The extension of

the gap metric to larger classes of systems was initiated in [10], where the metric is ex-

tended to time-varying linear plants. Later, the parallel projection operator for nonlinear

systems [5] and its relationship to the differential stabilizabilityof nonlinear feedback sys-

tems [11] paved the road to the extension of the gap metric to a pseudo-metric on nonlinear

operators [13].

Unfortunately, there is no generally applicable method of computing the gap metric for

nonlinear systems. In fact, there are only a few examples in literature for the computation

of the gap metric. Moreover, methods used in those examples are highly dependent upon

the case of interest. This is also the case for the corresponding stability margin which can

be used to determine the ball of uncertainty in the sense of the gap metric.

In Chapter5, some upper bounds on the gap metric and the stability marginare derived

and based on the methods proposed in Chapter4, these bounds are computed.

In Chapter6, stability of nonlinear systems is studied by a proposed method. The

method fits in the context of input-output approach to study nonlinear systems. This ap-

proach, which was initiated by Popov, Zames, and Sandberg, in the 1960s [42] [56] [32],

is one of the well-accepted and widely-used methods to studystability of systems. In fact,

many of the recent developments in control theory, such as robust control and small-gain

based nonlinear stabilization techniques are the results of this approach. Here, systems are

considered as mappings from an input space of functions intoan output space and the well-

behaved input and output signals are considered as members of input and output spaces.

Therefore, if the “well-behaved” inputs produce well-behaved outputs, the system is called

stable.

The well-known small-gain theorem is the main contributionof the input-output ap-

proach in control theory. According to the small gain theorem, the feedback loop will be

stable if the loop gain is less than one. According to our proposed theorem in Chapter6, the

large gain theorem, the feedback loop will be stable if the minimum loop gain is greater than

one. In Chapter6, first we introduce the minimum gain of operators. Then, a newstability

condition is derived for feedback systems based on the minimum gains of the open-loop

systems. An example is also provided to illustrate the usageof the large gain theorem.
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The last chapter, Chapter7, is the usage of the methods introduced in Chapter4 in inves-

tigating disturbance attenuation of closed-loop systems.There is no doubt that disturbance

attenuation is one of the most important objectives in any closed-loop system. Therefore, it

is important to quantify the influence of various inputs on various signals inside the system

and develop a tool to calculate such quantities.

The system of interest is a multitank system, consisting of three tanks placed one above

another. Due to gravity, the liquid flows through the tanks. The objective of the control

system is to control the level of the liquid in the middle tankby the flow rate of the liquid

entering to the top tank. We study the effect of a disturbancesignal, which enters through

the output of the plant, on the state of the closed-loop system. The chapter starts with

the identification of the plant by the gray box method and continues by investigating the

disturbance attenuation of the system.

1.2.2 TheζA and ζAB Representations

The ζA andζAB representations are equivalent structures of nonlinear systems, which in-

volve only an input-output structure. In this setting, the initial states representing initial

conditions is represented as an input. In these representations, a nonlinear system is ar-

ranged as a feedback interconnection of a memoryless nonlinearity and a linear system

with the initial state as an input signal. Although interconnection of a memoryless nonlin-

earity with a linear system has been widely used in literature, the way the initial state is

dealt with is the main difference between our decompositionand traditional ones. InζA

andζAB representations, the initial state contributes to the feedback interconnection as an

exogenous input while in traditional methods, any change inthe initial state is handled by

defining a new operator.

Consider the following systems:

N1 : ẋ(t) = f1(t, x(t)) (1.1)

N2 : ẋ(t) = f2(t, x(t), u(t)) (1.2)

wheref1 andf2 are locally Lipschitz.N1 is an unforced system andN2 is a forced one. In

Chapter2, it is shown thatN1 is equivalent to the structure depicted in Fig.1.1(a)andN2 is

equivalent to the ones shown in Fig.1.1(b)and Fig.1.1(c). Structures in Fig.1.1(a)and Fig

1.1(b)are calledζA representation and the one in Fig.1.1(c) is calledζAB representation.

The operatorsΦ, Γ, Ω andΘ are introduced in Chapter2. These representations are widely

used in all other chapters of this thesis.
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Figure 1.1:ζA andζAB representations.

1.2.3 Stability of Nonlinear Systems

The fact that theζA and ζAB representations convert a nonlinear system with non-zero

initial state to a combination of a memoryless nonlinearityand a linear system with some

input signals and the way the initial state is handled by these representations provide a

novel viewpoint on all aspects in investigating nonlinear systems. Stability as one of the

challenging issues in design and analysis of nonlinear systems can also be studied by these

new tools. In Chapter3, a new framework is developed for the analysis of stability of

systems by theζA andζAB representations. The effectiveness of this usage is originated in

the fact that using these representations, stability of nonlinear systems with non-zero initial

states can be investigated by the input-output stability methods and stability is interpreted

as input-output stability of the resulting feedback systems.

The main contributions of Chapter3 are Theorems3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.3.1, 3.3.2

and3.3.3. Theorems3.2.1and3.2.2provide new methods to check stability in the sense of

Lyapunov for an unforced nonlinear system by norm of some relevant operators; without

finding any Lyapunov-like function. For local stability, Theorem3.2.3can be used to find

some local areas,∆ andΥ, if the initial statex0 is in ∆, then the state will stay inΥ.

Theorem3.2.4is asymptotic version of Theorem3.2.3. Roughly speaking, Theorem3.3.1is

an extension of Theorem3.2.1to forced systems. Similarly, Theorem3.3.2is the extension

of Theorem3.2.3to forced nonlinear systems. For asymptotic stability of forced nonlinear
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systems in a local sense, Theorem3.3.3provides the aforementioned∆ andΥ regions.

1.2.4 The Induced Norm of Nonlinear Systems

Most of the computational techniques developed for nonlinear systems are restricted to a

narrow class of nonlinear systems for which a particular function, e.g. Lyapunov function

or storage function, can be found. Unfortunately, there is not a straight-forward method to

find such functions and they can usually be obtained by trial and error [27] [24]. Computing

theLp operator norm of a nonlinear system is not an exception. In this work, we propose

a method to compute an upper bound on theL1, L2 andL∞ norms of a class of nonlinear

systems. The method is based on theζA andζAB representations of nonlinear systems. The

first proposed theorem in this context is Theorem4.1.1which provides an upper bound on

inducedLp norms. The next theorem, Theorem4.1.2gives tighter bound for the casep = 2.

Both theorems suffer from a restrictive condition, namely4.4. Theorem3.3.2can be used

to overcome the restriction with the cost of providing only local conditions, i.e. an upper

bound on the system output is derived for bounded input and initial state. This method is

restricted toL∞ induced norm.

1.2.5 The Gap Metric

Stability and performance of feedback control systems are considerably impacted by model

uncertainty. Unlike the linear time-invariant (LTI) systems, where much work has been

done to study this effect, the topic for nonlinear systems isquite immature. The gap metric is

one of the useful tools to investigate the effect of model uncertainty on control systems. For

LTI systems, it has been shown that a perturbed system can be stabilized by any controller

which is designed for the nominal system if and only if the distance between the perturbed

system and the nominal system is small in the gap metric. The gap metric is also extended

to a pseudo-metric on nonlinear operators [13].

The computation of the gap metric for LTI system was developed by Georgiou [12].

Unlike the LTI system case, there is no generally applicablemethod of computing the gap

metric for nonlinear systems. In fact, there are only a few examples in literature for the

computation of the gap metric. Moreover, those methods are highly dependent upon the

case of interest. This is also the case for the correspondingstability margin which can be

used to determine the ball of uncertainty in the sense of the gap metric.

In Chapter5, we propose a method to compute the gap metric and the corresponding

stability margin for a class of nonlinear systems. The method is based onζA and ζAB
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Figure 1.2: The feedback system.

representations. The key results are Theorems5.3.1and5.3.2which provide upper bounds

on the gap metric and the stability margin, respectively. Weuse the methods proposed in

Chapter4 to calculate the bounds. An example is also provided to illustrate the effectiveness

of the results and comparison between the direct computation and the suggested methods.

1.2.6 Large Gain Theorem

One of the key results in the input-output stability theory is the small gain theorem, which

provides a sufficient condition for stability of interconnected systems. Roughly speaking,

the theorem states that the feedback loop will be stable if the loop gain is less than one.

For the feedback system depicted in Fig.1.2, the small gain theorem states that the closed

loop system is stable ifγ(H1) · γ(H2) < 1 whereγ(·) denotes the gain of operators. This

simple rule has been a basis for numerous stabilization techniques such as nonlinearH∞

control [15].

In our approach, we first define the minimum gain of an operatorν(·) as

ν(H) = inf
06=u∈U

‖(Hu)T ‖
‖uT ‖

(1.3)

whereH : U → Y is an operator,(·)T denotes the Truncation operator, the infimum is taken

over all u ∈ U and allT in R+ for which uT 6= 0. Then, some of the properties of the

minimum gain are derived and its computation for some cases is discussed. Particularly, it

has been showed that the minimum gain satisfies thepositivityand thepositive homogeneity

properties but fails to satisfy the triangle inequality. Finally, the large gain theorem, The-

orem6.3.1, is stated. Roughly speaking, the large gain theorem asserts that the feedback

loop will be stable if the minimum loop gain is greater than one. For the feedback system

depicted in Fig.1.2, the large gain theorem states that the closed loop system isstable if

ν(H1) · ν(H2) > 1.

1.2.7 The Multitank System

To show applicability and effectiveness of the proposed methods in Chapter4, we apply

Theorem3.3.2 to study disturbance attenuation of a closed loop system. The system of
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interest, which is called Multitank system, consists of three tanks placed one above another

and due to gravity, the liquid flows through the tanks. The toptank has a constant cross

section while the other two have variable cross sections as shown in Fig. 1.3. A pump

is used to circulate liquid from the supply tank into the upper tank. We assume that a

proportional controller is used to control the level of the liquid in the middle tank by the

flow rate of the liquid entering to the top tank.

In chapter7, which devotes to investigating disturbance attenuation of the controlled

Multitank system, first we derive the mathematical model of the open loop system using

physics of the plant. The model, which is nonlinear, consists of four parameters that are

depend on the configuration of the system. After running someexperiments on the plant

and collecting data, we use the gray box identification method to identify the parameters.

Finally, the disturbance attenuation of the system is investigated by the proposed method in

Theorem3.3.2. A summary of results is presented in Table7.2.

1.3 Contributions

The content of this thesis has been published and presented in the following international

journals and conferences:

• Chapter 3: A significant part of this chapter was published inIET Control Theory &

Applications [50] and IEEE Conference on Decision and Control, San Diego, 2006

[49].
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• Chapter 4: The contents of this chapter were published in American Control Con-

ference, New York, 2007 [54] and accepted for publication in IEEE Transaction on

Automatic Control [51].

• Chapter 5: The contents of this chapter were published in American Control Confer-

ence, Seattle, 2008 [52].

• Chapter 6: The contents of this chapter were published in American Control Confer-

ence, Seattle, 2008 [53].
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Chapter 2

ζA and ζAB Representations

2.1 Introduction

Almost all dynamical systems encountered in nature are ruled by nonlinear characteristics

and linear models are usually used in order to simplify analysis. Although, for most appli-

cations linear models are accurate enough to be used to represent systems in a small region,

they fail to provide accurate results when larger operatingregion is needed to be considered.

In this section, first, we introduce the notation and presentsome preliminaries results.

Next, a new representation for unforced nonlinear systems,calledζA representation, is in-

troduced. TheζA representation is an equivalent structure of an unforced nonlinear system,

which involves only an input-output structure. The initialstate is also represented by an in-

put in theζA representation. Finally, an elegant extension of theζA representation to forced

systems, called theζAB representation, is presented.

2.2 Background

In general, nonlinear representations can be classified into three types [4]:

• system input-output representation,

• state-space representation, and

• model-free representation.

In the input-output representation, the input-output behavior of a system without any state is

considered. In this representation, systems are assumed asmappings from an input space of

functions into an output space. Using this approach, one of the well-accepted and widely-

used methods to study stability of systems is developed [27] [42] [56] [32]. The state-

space representation, on the other hand, highlights statesof systems. In this representation,
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the dynamic of the system is represented by some states affected by the inputs and the

output depends on both the states and inputs [24] [27]. Nonlinear systems, which cannot

be modeled by the mentioned methods, might be represented bymodel-free representations

[4].

In the proposed method, a nonlinear system is arranged as a feedback interconnection

of a memoryless nonlinearity and a linear system with initial state as an input signal. The

main difference between our decomposition and traditionalones is in the way initial state

is dealt with. In our method, initial state contributes to the feedback interconnection as an

exogenous input while in traditional methods, any change ininitial state is handled by defin-

ing a new operator. In our approach, since initial state is considered as an input, stability

of unforced nonlinear system can be investigated by the input-output stability methods and

stability of the nonlinear system is interpreted as the input-output stability of the resulting

feedback system.

2.3 Notation, Preliminaries, and Computation

2.3.1 Notation

Let R andC denote the fields of real and complex numbers, respectively.Rn denotes the

space ofn×1 real vectors. The Euclidean norm inRn is denoted by‖ ·‖. In×n denotes the

n×n identity matrix. LHP and RHP stand for left and right half plan of the complex plane,

respectively. LetBp(c, ξ) denote the open ball with centerc and radiusξ with normp, i.e.

B
p(c, ξ) := {x| ‖x− c‖p < ξ}. Lr

p denotes Lebesguep-space ofr-vector valued functions

on [0,∞], with norm‖ · ‖ defined as‖f‖p :=
(∫ ∞

0 ‖f(t)‖p dt
)1/p

for 1 ≤ p ≤ ∞ and

‖f‖∞ := esssupt∈R ‖f(t)‖. Usuallyr is a finite integer; we dropr and writeLp instead

of Lr
p. To distinguish among various norm notations, we indicate the space as a subscript

for the norm, such as‖ · ‖Rn or ‖ · ‖Lp . Whenever the space is not mentioned, norms with

t argument denote Euclidean norm att and withoutt denote theLp norm wherep is as a

general number or can clearly be understood from the text. Let TT denotes the Truncation

operator: forf(t) , 0 ≤ t < ∞, TT f(t) = f(t) on [0, T ], and zero otherwise. We also

denote the truncation off(t) by fT (t) := TT f(t). For an operatorλ : Lp → Lp, let

γp(λ) stand for the induced norm (gain) of the operator defined as

γp(λ) := sup
0 6= u∈Lp

‖(λu)T ‖
‖uT ‖

(2.1)

where the supremum is taken over allu ∈ Lp and allT in R+ for whichuT 6= 0. Let γ(λ)

denoteγp(λ) for all 0 < p ≤ ∞.
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Definition 2.3.1. Maximum overshootof a signalx(t) is

MP :=
‖x‖L∞

‖x(0)‖∞
(2.2)

In this thesis, we will frequently use operator gains. In this section, we take a brief look

at some of the computational methods for norms.

2.3.2 Continuous-time, LTI operators

Let g(t) be the impulse response of a stable linear time invariant (LTI) system. We will

denote byΓ the convolution operator defined byΓ(z(t)) =
∫ t
0 g(t− τ)z(τ)dτ . To compute

the gain ofΓ, we use the following lemma that is taken from [2], page 234 (Table 1):

Lemma 2.3.1. Suppose thatΓ is a linear time-invariant stable operator with impulse re-

sponseg(t) : R+ → Rn×n. LetG(s) denotes the Laplace transform ofg(t). Define

g̃n×n :=











‖g11‖L1 ‖g12‖L1 · · · ‖g1n‖L1

‖g21‖L1 ‖g22‖L1 · · · ‖g2n‖L1

...
...

. ..
...

‖gn1‖L1 ‖gn2‖L1 · · · ‖gnn‖L1











(2.3)

Then

γ1(Γ) = ‖g̃‖1 (2.4a)

γ∞(Γ) = ‖g̃‖∞ (2.4b)

γ2(Γ) = ‖G(s)‖H∞ (2.4c)

where‖ · ‖H∞ denotesH∞ norm. Some standard algorithms to compute theH∞-

norm can be found in several references. See for example [57]. To compute‖gij‖L1 =
∫ ∞
0 |gij(t)|dt for strictly proper systems, any numerical integral approximation method,

e.g. rectangular and trapezoidal, can be used.

2.3.3 Autonomous and non-autonomous memoryless nonlinearities

In this section, the operator of interest is in the form ofΦ(t, x(t)), whereΦ(·, ·) : R+ ×
Rn → Rn. It is also assumed thatΦ(t, 0) = 0.

Lemma 2.3.2. Suppose that there exists a constantµp such that

‖Φ(t, x)‖p ≤ µp‖x‖p, ∀x ∈ R
n, ∀t ≥ 0 (2.5)

thenγp(Φ) ≤ µp.
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Proof. See reference [41] pp. 40.

With direct computation, the∞-norm,2-norm and1-norm of a memoryless autonomous

nonlinear operator can be found approximately with arbitrary accuracy. MATLAB can also

be used to find the aforementioned norms.

Example 2.3.1.Consider the following memoryless nonlinearity.

Φ(x) =





Φ1(x)
Φ2(x)
Φ3(x)



 =





−0.2x2 + sin(0.5x2) − sin (0.5x3)
−0.2x1 + sin(0.5x1) − sin (0.5x3)

1 − cos (0.5x1) + sin(0.5x2)





wherex =
[

x1 x2 x3

]T
. Let

g(x1, x2, x3) :=
‖x‖2

‖Φ(x)‖2
=

√

x2
1 + x2

2 + x2
3

√

Φ2
1(x1, x2, x3) + Φ2

2(x1, x2, x3) + Φ2
3(x1, x2, x3)

.

Using the “fminsearch” command of MATLAB, the minimum ofg(x1, x2, x3) is 1.2678

and consequentlyγ2(Φ) ≈ 1
1.2678 = 0.7888.

2.3.4 Ω-operator

Definition 2.3.2. For continuous-time, we define operatorΩ as

Ω(x(t)) := eAtx0 (2.6)

whereA ∈ Rn×n with all eigenvalues in LHP andx(0) = x0. Similarly, for discrete-time

Ω(x(t)) := Atx0 (2.7)

whereA ∈ Rn×n with all eigenvalues inD andx(0) = x0.

Lemma 2.3.3. If xi(0) < ∞ ,∀i = 1 · ·n thenΩ(x) ∈ Xp.

Proof. The proofs for continuous-time and discrete-time are the same and only the first one

comes here. Sincexi(0) < ∞, ‖x(0)‖p < ∞. On the other hand, because all eigenvalues of

A are in LHP,‖eAt‖p < ∞, ∀t ≥ 0. SinceΩ(x) = eAtx0, ‖Ω(x)(t)‖p < ‖eAt‖p‖x0‖p <

∞. This completes the proof forp = ∞. Forp = [1,∞), in addition,eAt is a continuous

time signal and vanishes ast → ∞. Therefore‖eAt‖p
Lp

=
∫ ∞
0 ‖eAt‖p

pdt < ∞. We

have‖Ω(x)‖Lp =
∫ ∞
0 ‖eAtx0‖p

pdt ≤
∫ ∞
0 ‖eAt‖p

p‖x0‖p
pdt = ‖x0‖p

p ·
∫ ∞
0 ‖eAt‖p

pdt =

‖x0‖p
p · ‖eAt‖p

Lp
< ∞, and consequently,Ω(x) ∈ Lp.

We have the following lemma about the gain ofΩ.
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Lemma 2.3.4. For continuous-time, theL∞-gain ofΩ, which is defined by (2.6), is

γ∞(Ω) = ‖eAt‖L∞ (2.8)

And for discrete-time, whereΩ defined by (2.7),

γ∞(Ω) = ‖At‖ℓ∞ (2.9)

Proof. The proofs for continuous-time and discrete-time are the same and only the first one

comes here. First we show that‖eAt‖L∞ is an upper bound forγ∞(Ω).

‖eAtx0‖L∞ ≤ ‖eAt‖L∞‖x0‖∞ ≤ ‖eAt‖L∞‖x(t)‖L∞ (2.10)

Next, we show that this upper bound is achievable for an inputsignal. Letx(t) = In×n ∀t ≥
0, then‖x(t)‖L∞ = 1 and‖eAtx0‖L∞ = ‖eAt‖L∞ . This completes the proof.

Lemma 2.3.5. The following equations are true forΩ:

(i) ‖Ω(x)‖L2 = ‖eAt‖L2 · ‖x0‖2 for continuous-time

(ii) ‖Ω(x)‖ℓ2 = ‖At‖ℓ2 · ‖x0‖2 for discrete-time

(iii) ‖Ω(x)‖L1 ≤ ‖eAt‖L1 · ‖x0‖1 for continuous-time

(iv) ‖Ω(x)‖ℓ1 ≤ ‖At‖ℓ1 · ‖x0‖1 for discrete-time

Proof. Since proofs are similar for continuous-time and discrete-time, we only prove (i)

and (iii ) here.

(i).

‖Ω(x0)‖2
L2

=

∫ ∞

0
(eAtx0)

∗ (eAtx0) dt

=

∫ ∞

0
x∗

0 (eAt)∗ (eAt)x0 dt

= x∗
0

∫ ∞

0
(eAt)∗ (eAt) dt x0

= x∗
0 ‖eAt‖2

L2
x0

= ‖x0‖2
2 ‖eAt‖2

L2
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(iii ).

‖Ω(x0)‖L1 =

∫ ∞

0
‖eAtx0‖1 dt (2.11)

≤
∫ ∞

0
‖eAt‖1‖x0‖1 dt

= ‖x0‖1

∫ ∞

0
‖eAt‖1 dt

= ‖x0‖1‖eAt‖L1

Lemma2.3.5gives the2-norm gain ofΩ-operators and an upper bound for the1-norm

gain. Denoting the upper bound ofγ1 by γ̂1, we have

γ2(Ω) = ‖eAt‖L2 (2.12a)

γ̂1(Ω) := ‖eAt‖L1 (2.12b)

for continuous-time and

γ2(Ω) = ‖At‖ℓ2 (2.12c)

γ̂1(Ω) := ‖At‖ℓ1 (2.12d)

for discrete-time.

Example 2.3.2.Let

A =









−0.225 −0.175 0.075 0.525
0.200 −0.400 −0.150 0.200
0.200 −0.400 −0.400 0.200
0.125 −0.125 −0.125 −0.625









Fig. 2.1shows‖eAt‖∞ and‖At‖∞ versust. Computation shows thatγ∞(Ω) ≈ 1.4351 for

continuous-time andγ∞(Ω) = 1.2 for discrete-time.

Lemma 2.3.6. For anyΩ-operator,γ∞(Ω) ≥ 1.

Proof. Since fort = 0, eAt = I andAt = I. It turns out that‖eAt‖L∞ ≥ 1 and‖At‖ℓ∞ ≥
1. Consequently,γ∞(Ω) ≥ 1.
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Figure 2.1:‖eAt‖∞ and‖At‖∞ versust in Example2.3.2.

2.4 ζA Representation

2.4.1 Continuous-time systems

Assume that the nonlinear system of interest is

ẋ(t) = f(t, x(t)) (2.13)

wheref : R+ × Rn → Rn is locally Lipschitz. It is well-known, [27], that stability for

other points or any desired trajectory can be transformed tothe study of the stability of the

origin. LetA ∈ Rn×n whose all eigenvalues are in LHP. Define

Φ(t, x) : R+ ×R
n → R

n

Φ(t, x) := f(t, x) − Ax (2.14)

and consequently

ẋ = Ax + Φ(t, x) (2.15)

The block diagram of (2.15) is depicted in Fig.2.2. Φ(t, x) is a non-autonomous static

nonlinearity andΛ is a linear system with the following state equation.

Λ : ẋ = Ax + z (2.16)

It is well-known, e.g. [3], that the response ofΛ is

x(t) = eAtx0 +

∫ t

0
eA(t−τ)z(τ) dτ (2.17)
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Figure 2.2: Block diagram for (2.15) and (2.24).

which reveals thatΛ is not a linear operator forx0 6= 0. Let

Γ : Lp → Lp, Γ(z(t)) :=

∫ t

0
eA(t−τ)z(τ) dτ, (2.18a)

and

Ω : Lp → Lp, Ω(x(t)) := eAtx(0) (2.18b)

SinceA is a stable matrix, it is easy to prove thatΓ : Lp → Lp, Ω : Lp → Lp and also

Γ are linear autonomous operators andΩ is aΩ-operator which is defined in Section2.3.4.

The state space representations forΓ is

Γ :

[

A
I

I
0

]

(2.19)

Let Λx0 denoteΛ with the initial conditionx0. Therefore,

Λx0(z(t)) := eAtx0 +

∫ t

0
eA(t−τ)z(τ) dτ (2.20)

substituting (2.18) and (2.20),

Λx0(z(t)) = Ω(x0(t)) + Γ(z(t)) (2.21)

SinceΦ is static, the structure shown in Fig.2.2can be represented by its equivalent, which

is depicted in Fig.2.3. This representation of the nonlinear system will be referenced to as

theζA representation with operator ordered set[Φ,Γ,Ω].

2.4.2 Discrete-time systems

In this case, we assume that the nonlinear system of interestis

x(t + 1) = f(t, x(t + 1)) (2.22)
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Figure 2.3: Equivalent block diagram using new operators.

wheref : Z+ ×Rn → Rn is locally Lipschitz. LetA ∈ Rn×n have all of its eigenvalues

inside the unit circle. Define

Φ(t, x) : Z+ ×R
n → R

n

Φ(t, x) := f(t, x) − Ax (2.23)

and consequently

x(t + 1) = Ax(t) + Φ(t, x(t)) (2.24)

The block diagram of (2.24) is depicted in Fig.2.2. Φ(t, x) is a static nonlinearity andΛ is

a linear system with the following state equation.

Λ : x(t + 1) = Ax(t) + z(t) (2.25)

It is well-known, e.g. [8], that the response ofΛ is

x(t) = At x0 +

t
∑

l=0

At−l−1z(l) (2.26)

which reveals thatΛ is not a linear operator forx0 6= 0. Let

Γ : ℓp → ℓp, Γ(z(t)) :=
t

∑

l=0

At−l−1z(l), (2.27a)

and

Ω : ℓp → ℓp, Ω(x(t)) := Atx(0) (2.27b)

SinceA is a stable matrix, it is not hard to prove thatΓ : ℓp → ℓp, Ω : ℓp → ℓp and also

Γ is a linear autonomous operator andΩ is aΩ-operator defined in Section2.3.4. The state

space representations forΓ is

[

A
I

I
0

]

. Let Λx0 denoteΛ with the initial condition equals

x0. Therefore,

Λx0(z(t)) := At x0 +
t

∑

l=0

At−l−1z(l) (2.28)
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substituting (2.27) in (2.28),

Λx0(z(t)) = Ω(x(t)) + Γ(z(t)) (2.29)

Similar to the continuous-time case, sinceΦ is static, the structure shown in Fig.2.2 can

be represented by its equivalent, which is depicted in Fig.2.3. This representation of

the discrete nonlinear system will be referenced to as theζA representation with operator

ordered set of[Φ,Γ,Ω].

2.5 ζAB Representation

2.5.1 Continuous-time systems

For forced nonlinear systems, suppose that the system of interest is

N : ẋ(t) = f(t, x(t), u(t)) (2.30)

wheref : R × Rn × Rm → Rn is locally Lipschitz. LetA ∈ Rn×n andB ∈ Rn×m.

Define

Φ(x, u, t) := f(t, x, u) − Ax − Bu. (2.31)

Let

Θ : Lp → Lp, Θ(u(t)) :=

∫ t

0
eA(t−τ)Bu(τ) dτ, (2.32)

andΓ andΩ be defined in the same formulas as in (2.18). The nonlinear system is equivalent

to the structure represented in Fig.2.4(a). This representation of the nonlinear system is

called theζAB representation with ordered operator set[Φ,Γ,Θ,Ω].

It is important to note that

[

A
I

I
0

]

and

[

A
I

B
0

]

are state-space realizations forΓ and

Θ, respectively. SinceA andB are chosen arbitrary,ζA andζAB representations are not

unique. A useful choice for theζAB representation isB = 0, which impliesθ = 0 and

simplifies theζAB structure as the structure shown in Fig.2.4(b). For forced systems, this

representation is also calledζA representation.

2.5.2 Discrete-time systems

Similarly, for a forced nonlinear system with the followingstate equation

N : x(t + 1) = f(t, x(t), u(t)) (2.33)

wheref : Z+ × Rn × Rm → Rn is locally Lipschitz, letA ∈ Rn×n have all of its

eigenvalues inside the unit circle andB ∈ Rn×m. Define

Φ(x, u, t) := f(t, x, u) − Ax − Bu. (2.34)
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Figure 2.4:ζA andζAB representations for forced systems.

Let

Θ : ℓp → ℓp, Θ(u(t)) :=

t
∑

l=0

At−l−1Bu(l) (2.35)

andΓ andΩ be defined in the same formulas as in (2.27). The nonlinear system is equivalent

to the structure represented in Fig.2.4(a). This representation of the nonlinear system is

called theζAB representation with ordered operator set[Φ,Γ,Θ,Ω].

It is important to note that

[

A
I

I
0

]

and

[

A
I

B
0

]

are state-space realizations forΓ and

Θ, respectively. SinceA andB are chosen arbitrary,ζA andζAB representations are not

unique. A useful choice for theζAB representation isB = 0, which impliesθ = 0 and

simplifies theζAB structure as the structure shown in Fig.2.4(b). For forced systems, this

representation is also calledζA representation.
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Chapter 3

Stability

3.1 Introduction

The traditional approach to study stability involves Lyapunov methods [27] [40] [24]. In

these methods, the notion of stability is restricted to unforced systems and stability ofequi-

librium points. The analysis requires finding a so-called Lyapunov function, whose deriva-

tives along the system trajectories must be negative definite, or semi-definite. Finding this

function is usually challenging, thus limiting the application of this method.

An alternative way to study the stability of nonlinear systems is the so-calledinput-

output stability approach. The input-output theory of systems wasinitiated in the 1960s

by G. Zames and I. Sandberg [56] [32]. Unlike the Lyapunov method, the input-output

stability theory considers systems as mappings from an input space of functions into an

output space. This method suffers from a problem similar to the Lyapunov method. Indeed,

the study of stability in this method involves finding a storage function, which is as difficult

to find as a Lyapunov function.

In [35], bridging in some sense the two classical notions of stability, the concept ofinput

to state stability (ISS)was introduced. Roughly speaking, in an ISS system, if the inputs

are small, then system trajectories converge to a ball in state space, whose radius depends

upon the input size, see [33], [34] and the references therein for more details. This notion

differs from the input-output theory mainly in that it takesinto account the initial states,

which are ignored in the input-output stability. It is also different from stability in the sense

of Lyapunov because it considers forced systems. Checking for ISS is usually very difficult

as it requires finding a so-called ISS Lyapunov function withvery stringent conditions.

Along with the aforementioned three major approaches, stability of systems, in its var-

ious forms, continues to inspire researchers. Motivated bythe classical small gain theo-

rem,“nonlinear” small gain theorems are discussed in [21], [39], and [18]. The notion of
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non-uniform in time robust global asymptotic output stability is introduced in [22] for a

wide class of systems. An extension of the second method of Lyapunov to study the stabil-

ity of infinite-dimensional discrete-time systems is presented in [29].

In this chapter, we study stability of nonlinear systems. Using theζA representation

for nonlinear systems, we develop a new framework for the analysis of stability of systems

based on operator-theoretic methods. In our approach, since initial state is considered as an

input, stability of unforced nonlinear system can be investigated by the input-output stability

methods and stability of the nonlinear system is interpreted as the input-output stability of

the resulting feedback system. After decomposing the system, sufficient conditions for

global and local stability of the system are derived using classical tools. For local stability,

the notion ofstability regionsis introduced and is shown to be useful in applications. A

method to compute the stability region is also developed. Itis important to note that our

method does not require finding a Lyapunov-type function.

This chapter has two sections. The first section is devoted tostability of unforced sys-

tems. In the first part, theζA representation is used to provide sufficient conditions for

global stability and global asymptotic stability of unforced nonlinear systems in terms of

conditions on the gain of certain operators. In the second part of the section, local stability

of unforced nonlinear systems is studied with a new definition of region of attraction, which

extends into two regions. Sufficient conditions for local stability in term of those regions

are derived. Some examples are given to show the effectiveness of the results.

In the second section of this chapter, stability of forced nonlinear system is studied.

This section also consists of two parts. In the first part, global stability and in the second

part local stability of forced nonlinear systems are considered. Using theζA andζAB rep-

resentations of nonlinear systems, some sufficient conditions for global and local stability

of forced nonlinear systems are derived.

3.2 Unforced Systems

3.2.1 Global Stability

The following theorem provides a sufficient condition for stability of unforced nonlinear

systems.

Theorem 3.2.1.Given a continuous time system of the form (2.13) with ζA representation

of [Φ,Γ,Ω],

(i) if γ∞(Φ) · γ∞(Γ) < 1 then the system is globally stable in sense of Lyapunov.
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(ii) if, in addition to (i), γ2(Φ) · γ2(Γ) < 1 then the system is globally asymptotically

stable in sense of Lyapunov.

The following lemma (e.g [25] pp. 491), which is a corollary of the Barbalat’s lemma,

will be used in the proof.

Lemma 3.2.1. Consider the functionφ : R+ → R. If φ, φ̇ ∈ L∞, andφ ∈ Lp for some

p ∈ [1,∞), then lim
t→∞

φ(t) = 0.

Proof.

(i) In this section of the proof all of the norms are either∞-norm orL∞-norm, depending

on the case. Because bothΩ andΓ map zero into zero, their biases are zero. According to

Lemma2.3.3, ‖x0‖ < ∞ implies thatd ∈ L∞. According to the small gain theorem, e.g.

[27], γ∞(Φ).γ∞(Γ) < 1 implies that all internal signals of the system are inL∞. To show

that the system is stable in the sense of Lyapunov, it is enough to show that for any givenǫ

there existsδ such that‖x0‖Rn < δ =⇒ ‖x(t)‖Rn < ǫ for all t ≥ 0. Without loss of gener-

ality, it can be assumed that the norm inRn is ‖.‖∞, e.g. [40]. We claim that for any given

ǫ, δ can be chosen asδ < 1−γ∞(Φ)γ∞(Γ)
γ∞(Ω) ǫ. To prove this, since‖x0‖ < δ < 1−γ∞(Φ)γ∞(Γ)

γ∞(Ω) ǫ

then‖d(t)‖ ≤ γ∞(Ω)‖x0‖ < (1 − γ∞(Φ)γ∞(Γ)) ǫ. Besides,‖x‖ ≤ ‖d‖ + ‖w‖ and

‖w‖ ≤ γ∞(Φ)γ∞(Γ)‖x‖. Therefore‖x‖ ≤ 1
(1−γ∞(Φ)γ∞(Γ))‖d‖ < ǫ. Since for any givenǫ

there exists someδ < 1−γ∞(Φ)γ∞(Γ)
γ∞(Ω) ǫ, stability is global. It is important to note that since

γ∞(Ω) ≥ 1, γ∞(Φ) ≥ 0 andγ∞(Γ) ≥ 0 then 1−γ∞(Φ)γ∞(Γ)
γ∞(Ω) ≤ 1 andδ ≤ ǫ.

(ii) In this section of proof, all of the norms are either2-norm orL2-norm unless it is

clarified. According to lemma2.3.5(i), ‖x0‖ < ∞ implies that‖d‖ = γ2(Ω).‖x0‖ < ∞
and consequentlyd ∈ L2. According to small gain theorem, e.g. [27], γ2(Φ).γ2(Γ) < 1

implies that all internal signals of the system are inL2. Therefore,x ∈ L∞ ∩ L2 and

consequently there exists closed setD such thatx(t) ∈ D for all t. Assuming thatf(x, t)

is locally Lipschitz inD, there existsµ such that

∀ x1, x2 ∈ D ‖f(x2, t) − f(x1, t)‖∞ ≤ µ‖x2 − x1‖∞ (3.1)

Takingx1 = 0 andx2 = x(t)

∀ x(t) ∈ D ‖f(x(t), t)‖∞ ≤ µ‖x(t)‖∞ (3.2)

Sincex ∈ L∞, ‖x(t)‖∞ ≤ ‖x‖L∞ for all t. Substituting in (3.2), ‖ẋ(t)‖∞ = ‖f(x(t), t)‖∞ ≤
µ‖x‖L∞ for all t. In turn, this means thaṫx ∈ L∞. Now, we use the corollary of the Bar-

balat’s lemma, i.e.3.2.1. Assumingφ(t) := ‖x(t)‖2
2 = xT (t)x(t), it is trivial thatφ ∈ L∞.
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Sinceẋ ∈ L∞, we have

φ̇(t) = ẋT (t)x(t) + xT (t)ẋ(t) < ∞, ∀ t (3.3)

which meansφ̇ ∈ L∞. On the other hand,

∫ ∞

0
|φ(t)|dt =

∫ ∞

0
‖x(t)‖2

2dt = ‖x‖2
L2

< ∞ (3.4)

that reveals thatφ ∈ L1. Corollary 3.2.1 implies that lim
t→∞

φ(t) = 0 and consequently

lim
t→∞

x(t) = 0.

Theorem 3.2.2.Given a discrete time system of the form (2.22) with ζA representation of

[Φ,Γ,Ω],

(i) if γ∞(Φ) · γ∞(Γ) < 1 then the system is globally stable in sense of Lyapunov.

(ii) if, in addition to (i), γ2(Φ) · γ2(Γ) < 1 then the system is globally asymptotically

stable in sense of Lyapunov.

Proof. The proof follows the same lines as the proof of Theorem3.2.2and is omitted. It

is important to note that in the discrete-time domain,x ∈ ℓ2 ∩ ℓ∞ implies thatx(t) → 0

as t → ∞ and there is no need for the second part of the proof where the corollary of

Barbalat’s lemma is used.

Theorems3.2.1and3.2.2can be used to check the stability of nonlinear systems with

the help of the mentioned computation methods. Moreover,A plays the role of a free

parameter. It is important to note that both theorems state sufficient conditions for stability.

This implies that it is sufficient to find just oneA which satisfies the conditions of the

theorems. If such a matrixA is found the system is stable even if there exists otherA

matrices which fail the conditions. If such a matrixA cannot be found or does not exist, the

stability or instability of the system can not be proven using these theorems.

To compare the results with LTI systems, consider the following perturbed LTI system

ẋ = (M + ∆M)x (3.5)

Let Φ(x) = (M + ∆M + αI)x whereα > 0. Consequently,A = −αI andΓ defined as

(2.18a) or equivalently (2.19). To computeγ∞(Γ), Lemma2.3.1can be used. The impulse

response ofΓ is G(s) = 1
s−αI andgii(t) = e−αt andgij(t) = 0 for i 6= j. Equation (2.3)

implies‖g̃ii(t)‖ = 1 and‖g̃ij(t)‖ = 0 for i 6= j. Consequently,γ2(Γ) = 1
α andγ∞(Γ) = 1.
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On the other hand,γ∞(Φ) = ‖M+∆M+αI‖∞. According to Theorem3.2.1, the stability

condition is‖M + ∆M + αI‖∞ < 1 or equivalentlyλmax(M + ∆M) < −α < 0, where

λmax denotes the maximum eigenvalue. This is to say that the perturbation∆M should not

move the eigenvalues of the system to RHP orjω axis.

Example 3.2.1.Consider the following nonlinear system

ẋ = f(x) =

{

0.25x1 − x2 − sat(x1) − sat(x2)

4x1 − 3x2 − sat(x1) − sin(x2)
(3.6)

where sat(x) = sgn(x) min(1, |x|) and sgn(·) is the signum function. Let

A =

[

−0.25 −1.5
3.5 −3.5

]

. (3.7)

Therefore,

Φ(x) = f(x) − Ax =

{

0.5x1 + 0.5x2 − sat(x1) − sat(x2)

0.5x1 + 0.5x2 − sat(x1) − sin(x2)
.

Figure3.1shows the plot of‖Φ(x)‖
‖x‖ versus‖x‖ established at106 randomly chosen points.

Using methods described in Sections2.3.2to 2.3.4, we haveγ∞(Φ) = 1, γ∞(Γ) = 0.9531,

γ2(Φ) = 1, andγ2(Γ) = 0.8217. Sinceγ∞(Φ) γ∞(Γ) = 0.9531 < 1, the system is

globally stable. More interestingly,γ2(Φ) γ2(Γ) = 0.8217 < 1 implies that the system is

asymptotically globally stable. To illustrate the system response, the phase portrait as well

as the vector field diagram are depicted in Fig.3.2.

Remark3.2.1. It is important to notice that the converse Lyapunov theorem[24] [27] guar-

antees that there exists a Lyapunov function for any stable system. However, there is not

a general method to find it. Indeed, the process of finding or constructing a Lyapunov

function can be challenging. For instance, the trivial candidate of Lyapunov function, i.e.

V (x) = 1
2(α x2

1 + β x2
2) whereα, β > 0, cannot pass the conditions of Lyapunov functions

in the previous example. To see this,

V̇ (x) = [αx1 βx2] · f(x)

= 0.25α x2
1 + (4β − α)x1 x2 − 3βx2

2

− α x1(sat(x1) + sat(x2)) − β x2(sat(x1) + sin(x2))

(3.8)

Apparently, V̇ (x1, 0) = αx1(0.25x1 − sat(x1)). For anyx1 > max(1, 4α), we have

V̇ > 0; thus,V (x) fails the Lyapunov conditions and cannot be used to prove stability of

the system.
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(a) ‖Φ(x)‖2

‖x‖2

versus‖x‖2

(b) ‖Φ(x)‖∞
‖x‖∞

versus‖x‖∞

Figure 3.1:γ2(Φ) andγ∞(Φ) in Example3.2.1.
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Figure 3.2: Phase portrait for Example3.2.1.
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Example 3.2.2.Consider the following nonlinear system






ẋ1 = −2x1 + x2 + sin(0.5x2) − sin (0.5x3)
ẋ2 = −x1 − x2 + sin(0.5x1) − sin (0.5x3)
ẋ3 = 1 − x3 − cos (0.5x1) + sin(0.5x2)

(3.9)

Let A =





−2.0 1.2 0
−0.8 −1.0 0

0 0 −1.0



 and

Φ(x1, x2, x3) =





−0.2x2 + sin(0.5x2) − sin (0.5x3)
−0.2x1 + sin(0.5x1) − sin (0.5x3)

1 − cos (0.5x1) + sin(0.5x2)



 (3.10)

Similar to the previous examples, we use the computational methods introduced in Sec-

tion 2.3.1. We plot ‖Φ(x)‖
‖x‖ versus‖x‖ instead of plotting versusx1, x2 andx3. plots are

established at2 × 106 randomly chosen points. As shown in Fig.3.3, γ2(Φ) ≈ 0.8 and

γ∞(Φ) ≈ 0.8. Computation also shows thatγ2(Γ) ≈ 1.000 andγ∞(Γ) ≈ 1.0005. Since

γ∞(Φ) γ∞(Γ) = 0.7938 < 1 and γ2(Φ) γ2(Γ) = 0.7846 < 1, the system is globally

asymptotically stable.

(a) ‖Φ(x)‖2

‖x‖2

versus‖x‖2 (b) ‖Φ(x)‖∞
‖x‖∞

versus‖x‖∞

Figure 3.3: Local gains in Example3.2.2.

3.2.2 Local Stability

Definition 3.2.1. Given a nonlinear system of the form either (2.13) or (2.22), we define

the ordered pair[∆,Υ] as follows:

[∆,Υ] := {∆,Υ ⊂ R
n; x(0) ∈ ∆ ⇒ x(t) ∈ Υ,∀t ≥ 0} (3.11)

We will refer to∆ andΥ as the∆ andΥ regions and collect all[∆,Υ] pairs of a system in

a set denoted byS∆Υ.
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Figure 3.4: Acceptable and unacceptable trajectories.

Definition 3.2.2. For a given system, if[∆,Υ] ∈ S∆Υ and for anyx(0) ∈ ∆ we have

x(t) → 0 ast → ∞ then∆ andΥ are called asymptotic regions and we collect all such

pairs inA∆Υ.

Fig. 3.4 shows acceptable and unacceptable trajectories for both[∆,Υ] ∈ S∆Υ and

[∆,Υ] ∈ A∆Υ. As shown in this figure,[∆,Υ] ∈ S∆Υ guarantees that the trajectories

starting from inside of∆, such as (1),(2), and (11), will stay insideΥ. Therefore, trajec-

tories (5) and (6) can never occur because both trajectoriescross the boundary of theΥ

region. Notice that there is no guarantee that trajectoriesstarting inside ofΥ, such as (7),

stay insideΥ. The definition ofS∆Υ assures that trajectories such as (5) and (6) which

start from∆ and go outside ofΥ are not possible. An interesting case is (9). This case is

possible for non-autonomous systems but impossible for autonomous systems. The reason

is that for autonomous systems we can transfert = 0 to anyt = t0. Since this trajectory

passed through∆, we can transfer the starting point to any point on the trajectory which

is also inside∆. With the new starting point,[∆,Υ] ∈ S∆Υ guarantees that the trajectory

will stay insideΥ which is not observed by (9). Therefore, for autonomous systems, any

trajectory, which has intersection with∆, stays insideΥ. Fig. 3.4(b) is very similar to

Fig. 3.4(a). The only difference is that all trajectories starting from δ, such as (1) and (2),

terminate at the origin. For autonomous systems, any trajectory which has a point inside

δ also end at the origin for the same reason explained earlier.Therefore, for autonomous

systems, (3), (4) and (10) (and also (5), (6) and (9)) should also terminate at the origin.

Corollary 3.2.1. If [∆,Υ] ∈ S∆Υ
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• ∆ ⊂ Υ,

• ∆ = Υ implies thatΥ is an invariant set for the nonlinear system.

Proposition 3.2.1. Consider a system withζA representation of[Φ,Γ,Ω]. Assume thatΥ

is a given bounded subset ofRn, i. e. ‖x‖p < ǫ for all x ∈ Υ and p ∈ {2,∞}. Let

0 < δ ≤ 1−γp(Φ)γp(Γ)
γp(Ω) ǫ and

∆ := {x ∈ R
n , ‖x‖p < δ} (3.12)

Then[∆,Υ] ∈ S∆Υ.

Proof. The proof follows a routine similar to the proof of Theorem3.2.1and is omitted.

Proposition3.2.1shows a method to compute[∆,Υ] regions.

Definition 3.2.3. Local gainγD
p (Φ) of a static operatorΦ, wherep ∈ {2,∞}, is the maxi-

mump-norm gain of the operator for all of the members inside the regionD, respectively.

i.e.

γD
p (Φ) = sup

x ∈ D − {0}
∀t ≥ 0

‖Φ(t, x)‖p

‖x‖p
(3.13)

Theorem 3.2.3. Consider a nonlinear system with state space representation of either

(2.13) or (2.22), and let [Φ,Γ,Ω] be a ζA representation. LetMp > γ∞(Ω) be a fixed

number and

D̂ :=







x ∈ R
n | γD̂

∞(Φ) <
1

γ∞(Γ)
(1 − γ∞(Ω)

MP
) ∀t ≥ 0







(3.14a)

Assume thatD is a simply connected subset of̂D that includes the origin. Letξ =

inf
x∈∂D

‖x‖∞ where∂D is the boundary ofD. Let Υ be a ball insideD centered at the

origin with radiusǫ < ξ. i.e.

Υ = {x ∈ D | ‖x‖∞ < ǫ} (3.14b)

and let

∆ :=

{

x ∈ R
n | ‖x‖ < δ, δ :=

1 − γD̂
∞(Φ)γ∞(Γ)

γ∞(Ω)
ǫ

}

(3.14c)

Then,

1. [∆,Υ] ∈ S∆Υ
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2. if x0 ∈ ∆ thenMP is the maximum overshoot ofx(t).

Proof. SinceMp > γ∞(Ω), (3.14a) reveals thatγD̂
∞(Φ)γ∞(Γ) < 1. To prove the theorem

we reason by contradiction. Since we assumed that systems ofour interest are locally

Lipschitz, trajectories of the system are continuous. As a consequence, ifx were to leave

Υ, it should cross the boundary ofΥ. Suppose thatx crosses the boundary ofΥ at t = T ;

then‖TT x‖ = ‖xT ‖ = ǫ. Since the boundary ofΥ is in D, ‖xT ‖ ≤ ‖dT ‖ + ‖wT ‖ ≤
γ∞(Ω)‖x0‖+ γD̂

∞(Φ)γ∞(Γ)‖xT ‖. Then‖xT ‖ ≤ γ∞(Ω)

1−γD̂
∞(Φ)γ∞(Γ)

‖x0‖ < γ∞(Ω)

1−γD̂
∞(Φ)γ∞(Γ)

δ <

ǫ. Which contradicts the fact that‖xT ‖ = ǫ. Therefore,x(t) ∈ Υ; ∀t ≥ 0. That is

[∆,Υ] ∈ S∆Υ. To show the second part, from (3.14a), we have γ∞(Ω)

1−γD̂
∞(Φ)γ∞(Γ)

< Mp. On

the other hand,‖x‖ ≤ γ∞(Ω)

1−γD̂
∞(Φ)γ∞(Γ)

‖x0‖ < Mp‖x0‖

Theorem 3.2.4.Let [Φ,Γ,Ω] be aζA representation for a nonlinear system in the form of

either (2.13) or (2.22). LetΥ := {x ∈ Rn | ‖x‖ < ǫ} and∆ := {x ∈ Rn | ‖x‖ < δ, }. If

[∆,Υ] ∈ S[∆,Υ] andγΥ
2 (Φ).γ2(Γ) < 1 then[∆,Υ] ∈ A[∆,Υ].

Proof. Since[∆,Υ] ∈ S[∆,Υ], any trajectory starting from∆ will stay insideΥ. According

to theζA representation,‖x‖L2 <
1−γΥ

2 (Φ) γ2(Γ)
γ2(Ω) ‖x0‖2 < ∞ and consequentlyx ∈ L2.

For discrete-time systems, sinceγΥ
2 (Φ).γ2(Γ) < 1, ‖x‖ℓ2 < ∞ and as a resultx(t) ∈

ℓ2. Consequentlyx(t) → 0 ast → ∞. It turns out that[∆,Υ] ∈ A[∆,Υ].

For continuous-time systems, Corollary3.2.1should be used. Sincex(t) ∈ Υ for all

t, x ∈ L∞ and consequentlyx ∈ L2 ∩ L∞. The proof, which is omitted here, follows the

same outline as the proof of Theorem3.2.1(ii) with D ≡ Υ.

Corollary 3.2.2. Let [Φ,Γ,Ω] be aζA representation for a nonlinear system in the form of

either (2.13) or (2.22). If there exists a region around the origin̂D whereγD̂
∞(Φ)γ∞(Γ) <

1, then the system is locally stable. If in additionγD̂
2 (Φ)γ2(Γ) < 1, then the system is

locally asymptotically stable.

Proof. SinceγD̂
∞(Φ)γ∞(Γ) < 1, there existsMp > γ∞(Ω) such thatγD̂

∞(Φ) < 1
γ∞(Γ) (1−

γ∞(Ω)
MP

). Let D be a simply connected subset ofD̂ that includes the origin. Letξ =

inf
x∈∂D

‖x‖∞ where∂D is the boundary ofD. For anyǫ that satisfies0 < ǫ < ξ, ∆ and

Υ can be constructed as (3.14) andδ > 0 in (3.14c) can be found. Theorem3.2.3guaran-

tees that[∆,Υ] ∈ S∆Υ or equivalently

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ǫ, ∀t ≥ 0 (3.15)

The second part is trivial consequence of Theorem3.2.4.

31



Corollary 3.2.3. Sufficient condition of stability in Lyapunov Linearization Method

If the linearized system of a nonlinear system is stable, thenonlinear system is locally

asymptotically stable.

Proof. Let A be the linearized part, i.e.A = ∂f(x)
∂x

∣

∣

∣

x=0
. SinceA is stable,γ∞(Γ) < ∞ and

γ2(Γ) < ∞. SinceΦ(x) only includes the higher order terms inx, the exists a region around

the originD̂ whereγD̂
∞(Φ) andγD̂

2 (Φ) can be made arbitrarily small. Thus, Corollary3.2.2

implies local asymptotic stability of the nonlinear system.

Example 3.2.3.Consider the following nonlinear system.
{

ẋ1 = −2x1 + x2 −
√

x3
1/3 + x2

2/4
ẋ2 = −2x1 + 2x2 + x2

1/10 − 5 sin(x2)/2
(3.16)

Let chooseA =

[

−2 1
−2 −3

]

then Φ(x) =

{

−
√

x3
1/3 + x2

2/4
+5x2 + x2

1/10 − 5 sin(x2)/2
. Using

(2.4b) and (2.8) respectively,γ∞(Γ) = 0.5378 andγ∞(Ω) = 1. Direct computation, as

discussed in Section2.3.3, givesγ∞(Φ) = ∞, which implies that Theorem (3.2.1) can not

be applied. Assume thatMP = 1.5, thenγD
∞(Φ) < 1

γ∞(Γ) (1 − γ∞(Ω)
Mp

) = 0.6197. γ∞(Φ)

is plotted versusx in Fig. 3.5(a)and its junction with the planγD
∞(Φ) is marked. The

junction determines the boundary ofD, as shown in Fig.3.5(c). γ2(Φ) and its junction

with 1
γ2(Γ) are shown in Fig.3.5(b). SinceL∞-norm is used, the largest ball insideD,

i.e. Υ, is the square shown in Fig.3.5(c). SinceMP = 1.5, the largest∆ area is another

square insideΥ and smaller than it with factorMP , as shown in Fig.3.5(c). Theorem3.2.3

guarantees that any trajectory starting from inside∆ will stay insideΥ. Moreover, sinceΥ

and∆ are placed inside the region whereγ2(Φ)γ2(Γ) < 1, Theorem3.2.4guarantees that

all trajectories starting from∆ end at the origin. Since the system is autonomous, this is

also the case for all trajectories which has intersection with ∆. System trajectories as well

as some of its responses to various initial conditions are depicted in Fig. 3.6. In the first

graph, since the initial states (or one of them) are not in∆, stability is not guaranteed and

the system is unstable. For the rest, initial states are in∆ and consequently, the system is

stable and states terminate at the origin.

32



−6−4−20246

−5

0

5

0

2

4

6

8

x
1

x
2

γ ∞
(Φ

) Boundary of D

x
2

(a) γ∞(Φ) crossed by
1

γ2(Γ)

(

1 − γ∞(Ω)
Mp

)

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6
0

2

4

6

8

x
1

x
2

γ 2(Φ
)

Boundary of γ
2
(Φ) γ

2
(Γ)<1

(b) γ2(Φ) crossed by 1
γ2(Γ)

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x
1

x 2

ϒ

∆

D

γ
2
(Γ).γ

2
(Φ)<1

(c) Regions
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Figure 3.6: Simulation results for Example3.2.3.
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3.3 Forced Systems

3.3.1 Global Stability

Proposition 3.3.1. For a forced nonlinear system withζAB representation of[Φ,Θ,Γ,Ω],

if u ∈ Xp andγp(Φ)γp(Γ) < 1 thenx ∈ Xp for any initial statex0.

Proof. The proof for discrete-time systems is very similar to the continuous-time case and

is omitted.

SinceA is stable,‖eAt‖Lp < ∞ andu ∈ Lp implies that‖d1‖ ≤ ‖eAt‖Lp · ‖x0‖p +

γ∞(θ)‖u(t)‖p < ∞ andd1 ∈ Lp. On the other hand, since

∥

∥

∥

∥

[

0

Im×m

]∥

∥

∥

∥

p

= 1, andu ∈ Lp

thend2 ∈ Lp. According to small gain theorem, e.g. [27], since input signals to the loop,

i.e. d1,d2, are inLp and

∥

∥

∥

∥

[

In×n

0

]∥

∥

∥

∥

p

= 1, γp(Φ) ·γp(Γ) < 1 implies that all internal signals

of the system are inLp. Therefore,x ∈ Lp

Definition 3.3.1. A nonlinear system in the form of either (2.30) or (2.33) is calledstable

in generalor generally stableif

∀ǫ > 0, t ≥ 0 ∃δ, η > 0;
‖x0‖ < δ

‖u(t)‖ < ηδ

}

⇒ ‖x(t)‖ < ǫ (3.17)

In addition, if for anyx0 and input that satisfiesu(t) → 0 ast → ∞, the state also satisfies

x(t) → 0 ast → ∞, then the system is calledasymptotically generally stable.

Any Euclidean norm can be used in the definition but once a normis chosen, it should

be used for all norms. Besides, it is trivial to show that if a system is general (asymptotic)

stable using an arbitrary Euclidean norm, the property holds for all Euclidean norms.

Definition 3.3.2. A system is calledXp−(asymptotically) generally stableorXp− (asymp-

totically) stable in generalif it is (asymptotically) generally stable for inputu ∈ Xp.

Lemma 3.3.1. For a generally (asymptotically) stable system, ifu = 0 then the system is

(asymptotically) stable in sense of Lyapunov.

Proof. The proof follows directly from the definition by takingu = 0.

Lemma 3.3.2. ISS systems are generally stable.

Proof. Considering that‖u‖X∞ < ǫ1 implies that there existsǫ2 such that‖u(t)‖p < ǫ2 for

all t > 0 andp ∈ [1,∞), this lemma is very similar to Lemma 2.7 in [36] and the proof

follows same outline as its proof.
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Lemma 3.3.3. A generally stable system is ISS stable if and only if there exists a classK
functionσ1 andT > 0 such thatx(t) ≤ σ1(‖u‖L∞) for all t > T .

Proof. This lemma is also similar to Lemma 2.7 in [36] and the proof is the same.

Lemmas3.3.2and3.3.3show that the set of ISS systems is a subset of the set of gener-

ally stable systems but the inverse is not true in general. Generally speaking, for a generally

stable system the condition in Lemma3.3.3should be satisfied to guarantee ISS stability.

The following theorem provides a sufficient condition for stability of systems in general.

Theorem 3.3.1.For a forced nonlinear system withζAB representation of[Φ,Θ,Γ,Ω],

(i) If γ∞(Φ) · γ∞(Γ) < 1 then the system isX∞− globally generally stable.

(ii) In addition to (i), if γ2(Φ).γ2(Γ) < 1 then the system isX2 ∩ X∞− globally asymp-

totically generally stable.

Proof. The proof for discrete-time systems is very similar and is omitted.

(i) In this section of the proof, all norms are either∞-norm orL∞-norm depend on the

case. According to Proposition3.3.1, sinceu ∈ L∞ thenx ∈ L∞. To show that the system

is generally stable, it is enough to show that for any givenǫ there existδ andη such that
‖x0‖∞ < δ

‖u(t)‖∞ < ηδ

}

⇒ ‖x(t)‖∞ < ǫ for all t ≥ 0. Chooseη > 0 arbitrary. We claim that

for any givenǫ, δ can be chosen asδ < 1−γ∞(Φ)γ∞(Γ)
η(γ∞(Θ)+γ∞(Φ)γ∞(Γ))+γ∞(Ω)ǫ. To prove,

‖x‖ ≤ ‖d1‖ + ‖w‖

≤ ‖d1‖ + γ∞(Φ)γ∞(Γ)(‖d2‖ + ‖x‖)

≤ γ∞(Ω)‖x0‖ + [γ∞(Θ) + γ∞(Φ)γ∞(Γ)]‖u‖ + γ∞(Φ)γ∞(Γ)‖x‖

< γ∞(Ω)δ + [γ∞(Θ) + γ∞(Φ)γ∞ (Γ)] ηδ + γ∞(Φ)γ∞(Γ)‖x‖

< (γ∞(Ω) + η [γ∞(Θ) + γ∞(Φ)γ∞ (Γ)]) δ + γ∞(Φ)γ∞(Γ)‖x‖

then‖x‖ < γ∞(Ω)+η(γ∞(Θ)+γ∞(Φ)γ∞(Γ))
1−γ∞(Φ)γ∞(Γ) δ < ǫ. Since for any givenǫ there exists someδ,

stability is global.

(ii) According to Proposition (3.3.1), sinceu ∈ L2 ∩ L∞ then x ∈ L2 ∩ L∞ and

consequently there exist closed setsDu andDx such thatu(t) ∈ Du andx(t) ∈ Dx for all

t. Assuming thatf(x, u, t) is locally Lipschitz in bothu ∈ Du andx ∈ Dx, there existsµ

such that

∀ x1, x2 ∈ Dx, ∀ u ∈ Du, ‖f(x2, u, t) − f(x1, u, t)‖∞ ≤ µ‖x2 − x1‖∞ (3.18)
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Figure 3.7: Tunnel diode oscillator in Example3.3.1.

Takingx1 = 0 andx2 = x(t)

∀ x(t) ∈ Dx, ∀ u(t) ∈ Du, ‖f(x(t), u(t), t)‖∞ ≤ µ‖x(t)‖∞ (3.19)

Sincex ∈ L∞, ‖x(t)‖∞ ≤ ‖x‖L∞ for all t. Substituting in (3.19),

‖ẋ(t)‖∞ = ‖f(x(t), u(t), t)‖∞ ≤ µ‖x‖L∞ (3.20)

for all t. In turn, this means thaṫx ∈ L∞. Consideringx ∈ L2 ∩ L∞ andẋ ∈ L∞, the rest

of the proof follows same lines of the proof of Theorem3.2.1(ii) and omitted here.

Similar to Section3.2.1, A andB play the role of free parameters in Proposition3.3.1

and Theorem3.3.1. Likewise, it is sufficient to find just one pair ofA andB which satisfies

the conditions of the proposition or the theorem. If such a pair is found, the proposition or

the theorem can be used even if there exists other pairs ofA andB matrices which fail the

conditions. If such a pair ofA andB cannot be found or does not exist, the proposition or

the theorem cannot be used.

Example 3.3.1. (“Hard” tunnel diode oscillator) ( [37] pp. 446) The network of Fig.

3.7(a)represents a tunnel diode with some associated capacitanceand inductance, biased

by a combination of voltage source and resistance. The stateequations for this network

may be written as

q̇ = −i2 − fTD(e1), e1 = q
C ,

λ̇ = e1 − Ri2 − V, i2 = λ
L ,

(3.21)

where the functionfTD(e1) represents the tunnel diode branch relation. Letx1 := q = e1,

x2 := −λ = −i2, R = 1, L = 1, u = V andfTD(·) be

i = fTD(e1) =

{

−1.7e5
1 + 6.6e4

1 − 8.4e3
1 + 3.6e2

1 0 < e1 ≤ 1.1
0.09e1 otherwise
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which is depicted in Fig.3.7(b). Substituting defined states,

ẋ = f(x) =

{

x2 − fTD(x1)
−x1 − x2 + u

ChoosingA =

[

−0.3 1
−1 −1

]

, we haveΦ(x) =

(

0.3x1 − fTD(x1)
0

)

. Computa-

tion shows thatγ∞(Φ) = γ2(Φ) < 0.3, γ∞(Γ) < 2.17 and γ2(Γ) = 1.641. Since

γ2(Φ).γ2(Γ) < 1 and γ∞(Φ).γ∞(Γ) < 1, according to Theorem3.3.1, the system is

L2 ∩ L∞− globally asymptotically generally stable. This means thatfor any initial state

and input{u ∈ L2 ∩ L∞ : limt→∞ u → 0}, state is bounded and approaches0 ast → ∞.

3.3.2 Local Stability

Theorem 3.3.2.Let [Φ,Θ,Γ,Ω] be aζAB representation for a nonlinear system. Letη > 0

andMp > γ∞(Ω) + ηγ∞(θ) and

D̂ :=

{[

x
u

]

∈ R
n+m

∣

∣

∣

∣

γD̂
∞ (Φ) <

Mp − γ∞(Ω) − ηγ∞(θ)

(Mp + η)γ∞(Γ)

}

(3.22)

LetD := B
∞(o, ξD) be an open ball insidêD. LetDx andDu be the images ofD under

[

In×n

0m×n

0n×m

0m×m

]

and

[

0n×n

0m×n

0n×m

Im×m

]

, respectively. Consequently,Dx and Du are also

open balls inRn andRm respectively. Letξx and ξu denote respectively their radius, i.e.

Dx = B
∞(0, ξx) andDu = B

∞(0, ξu). Chooseǫ andδ such that0 < ǫ < ξx and

0 < δ ≤ 1 − γD
∞(Φ)γ∞(Γ)

γ∞(Ω) + η(γ∞(Θ) + γD
∞(Φ)γ∞(Γ))

ǫ

If ‖u‖X∞ < min (η δ, ξu) and‖x0‖∞ ≤ δ, then

‖x‖X∞ < ǫ (3.23)

Proof. The proof for discrete-time systems is very similar and is omitted. In this proof,

vector norms are Euclidean∞-norm for constant vectors andX∞-norm for time-varying

ones.

It is trivial that Mp − γ∞(Ω) − ηγ∞(θ) < Mp + η; thereforeγD
∞(Φ)γ∞(Γ) < 1. We use

contradiction to prove the theorem. Since we assumed that systems of interest are locally

Lipschitz, system trajectories are continuous. Consequently, if x were to leave the ball with

radiusǫ, it should cross the boundary of the ball. Suppose thatx crosses the boundary at

t = T . As a result,‖TT x‖ = ‖xT ‖ = ǫ. Sinceǫ < ξx and‖u‖ < min (η δ, ξu) guarantees
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thatu ∈ Du, we have

[

xT

uT

]

∈ D and consequently

‖xT ‖ ≤ ‖d1T ‖ + ‖wT ‖

≤ ‖d1T ‖ + γD
∞(Φ)γ∞(Γ)(‖d2T ‖ + ‖xT ‖)

≤ γ∞(Θ)‖uT ‖ + γ∞(Ω)‖x0‖ + γD
∞(Φ)γ∞(Γ)‖xT ‖ + γD

∞(Φ)γ∞(Γ)‖uT ‖

≤ γ∞(Ω)‖x0‖ + [γ∞(Θ) + γD
∞(Φ)γ∞(Γ)]‖uT ‖ + γD

∞(Φ)γ∞(Γ)‖xT ‖

< γ∞(Ω)δ +
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

ηδ + γ∞(Φ)Dγ∞(Γ)‖xT ‖

=
(

γ∞(Ω) + η
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

])

δ + γD
∞(Φ)γ∞(Γ)‖xT ‖ (3.24)

Then

ǫ = ‖xT ‖ <
γ∞(Ω) + η

[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

‖x0‖

≤ γ∞(Ω) + η
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

δ

≤ ǫ (3.25)

Which is a contradiction. Therefore,x(t) ∈ Υ; ∀t ≥ 0. That is [∆,Υ] ∈ S∆Υ.

To show the second part, from (3.22), with some mathematical manipulation, we have
γ∞(Ω)+η[γ∞(Θ)+γD

∞(Φ)γ∞(Γ)]
1−γD

∞(Φ)γ∞(Γ)
≤ Mp. On the other hand, with a very similar procedure

to (3.25),

‖x‖ <
γ∞(Ω) + η

[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

‖x0‖ ≤ Mp‖x0‖.

Theorem 3.3.3.In Theorem3.3.2, if in additionD satisfiesγ2(Γ)γD
2 (Φ) < 1 Then[∆,Υ] ∈

A[∆,Υ] for {u ∈ X2 ∩ X∞ : ‖u‖X∞ < min (η δ, ξu)}.

Proof. The proof for discrete-time systems is very similar and is omitted.

Theorem3.3.2guarantees that[∆,Υ] ∈ S[∆,Υ] for all u that satisfies

{u ∈ L2 ∩ L∞ : ‖u‖L∞ < min (η δ, ξu)}

which means thatx stays inΥ ⊂ Dx. Since‖u‖L∞ < ξu, u ∈ Du then

[

x

u

]

∈ D. Ac-

cording to Small Gain Theorem,γ2(Γ).γD
2 (Φ) < 1 guarantees that the loop isL2 internally

stable andx ∈ L2 if d1 andd2 are inL2. Sincex0 < ∞ andu ∈ L2, d1 andd2 are inL2.

Consequently,x ∈ L2. By the argument used in the proof of Theorem3.3.1, it is easy to

show thatẋ ∈ L∞. Havingx ∈ L2 ∩ L∞ andẋ ∈ L∞, Corollary3.2.1can be used as the

proof of3.2.1(ii) to show thatx → 0 ast → ∞. This shows that[∆,Υ] ∈ A[∆,Υ].
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Figure 3.8: A simplified schematic of CSTR system.
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Figure 3.9: The CSTR system controlled by a proportional controller.

Example 3.3.2. Consider an example of continuous-stirred tank reactor (CSTR) system

shown in Fig.3.8, where an irreversible, first-order reaction takes place. CSTR is used to

convert reactants to products. The reactant is fed constantly into a vessel where a chemical

reaction takes place and yields the desired product. The heat generated by the chemical

reaction is removed by the coolant medium that is circulatedthrough a jacket. The following

mathematical model is taken from [47],










˙̂x1 = −x̂1 + Da(1 − x̂1)e

x̂2

1+
x̂2
ϕ

˙̂x2 = −x̂2 + BhDa(1 − x̂1)e

x̂2

1+
x̂2
ϕ + βh(û − x̂2)

(3.26)

wherex̂1, x̂2, andû1 are the dimensionless reagent conversion, the temperature(output),

and the coolant temperature (input), respectively. The numerical values for the coefficients

areDa = 0.072, ϕ = 20, Bh = 8, andβh = 0.3

Three operating points are considered in [9]. One of them is an unstable point,û10 =

0, x̂10 = 0.4472, and x̂20 = 2.7517. Let transfer the origin of the state plane into this

unstable point, which is investigated here. Therefore, we definex1 := x̂1 − x̂10 andx2 =

x̂2 − x̂20. We study the closed-loop system which is depicted in Fig.3.9whereKP = 100

is a proportional controller andu is an exogenous input which can be interpreted as sensor

noise or disturbance. This controller can stabilize the closed-loop system locally. In this

example, we want to determine the corresponding local region.

The state equations for closed-loop system are






ẋ1 = −x1 − 0.4472 + 0.072(0.5528 − x1)e
20x2+55.034
22.7517+x2

ẋ2 = −31.3x2 − 3.5772 + 0.576(0.5528 − x1)e
20x2+55.034
22.7517+x2 + 30u

(3.27)
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‖x‖2
and the boundary ofγ2(Γ)γ2(Φ) < 1.

LetA =

[

−1.81 0.357
−6.474 −28.143

]

andB =

[

0
30

]

thenΦ(x) =

[

Φ1(x)
Φ2(x)

]

whereΦ1(x) =

−0.81x1 − 0.357x2 − 0.4472 + 0.072(0.5528 − x1)e
20x2+55.034
22.7517+x2 andΦ2(x) = −3.157x2 +

6.474x1 − 3.5772 + 0.576(0.5528 −x1)e
20x2+55.034
22.7517+x2 . Computation shows that upper bound

can not be found forγ∞(Φ) andγ2(Φ). Therefore, global stability can not be proved. For

the linear systems, computation with the given methods gives γ∞(Γ) < 0.5354, γ2(Γ) =

0.5423, γ∞(Θ) < 1.221, andγ∞(Ω) = 1. Let η = 0.1 andMP = 3 > γ∞(Ω) + ηγ∞(Θ).

SinceΦ is independent fromu, D̂ ⊂ R2. For this example, sincêD is simply connected

set,D̂ = D. The surface of‖Φ(x)‖∞
‖x‖∞

as well as the boundary ofD is depicted in Fig.3.10.

Fig. 3.11shows‖Φ(x)‖2

‖x‖2
and the boundary ofγ2(Γ)γ2(Φ) < 1. The various subsets ofR2

are depicted in Fig.3.12. The maximum value forǫ is 0.1519 and consequently the max-

imum value for∆ is 0.0402. According to Theorem3.3.2, for any inputu which satisfies

‖u‖L∞ < ηδ = 0.004 and any initial state satisfying‖x0‖∞ < δ = 0.0402, x is bounded

as‖x‖L∞ < ǫ = 0.1519. Besides, in addition to the mentioned condition, ifu ∈ L2 and

u → 0 ast → ∞ thenx → 0 ast → ∞, according to Theorem3.3.3.
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Figure 3.12: Various sets in Example3.3.2.

3.4 Chapter Summary

In this chapter, we have considered stability of nonlinear systems. Our results are applicable

to a variety of nonlinear systems. The suggested method of checking stability of nonlinear

systems has significant computational advantage compared to previous work, in the sense

that there is no need to find any Lyapunov-like function. Initial insight for our formulation

was provided by a new representation for nonlinear systems,which transforms a nonlin-

ear system, with non-zero initial state, into a feedback interconnection of two operators.

Then, some well-known concepts from input-output theory were used to derive sufficient

conditions for stability of the original nonlinear system.Finally, local stability of nonlinear

systems was studied with a new definition of region of attraction. Since the new represen-

tation is not unique for a nonlinear system, all suggested methods can be optimized based

on the selected parameters in the representation. This optimization will be the subject of

future work.
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Chapter 4

Upper bounds

4.1 Introduction

The complex structure of nonlinear systems is the major obstacle in the development of

simple and efficient computational methods to test stability, compute system norms, etc.

As a consequence, a majority of the computational techniques available in the literature

are restricted to a narrow class of nonlinear systems for which a particular function, e.g.

Lyapunov function or storage function, can be found by trialand error [27], [24].

In this chapter, we consider the problem of computing theLp operator norm of a non-

linear system, a problem which has remained a challenge in the systems literature. The

importance of this problem originates from the fact that theinfluence of various inputs on

various signals inside the system can be quantified by such a measure. One of the appli-

cations of this measure is in control systems, where the attenuation of disturbance signals

is required. The subject has attracted considerable attention for both linear and nonlinear

systems. For linear systems, computing theLp norm(s) has a well established solution; see,

for example, reference [2]. For nonlinear systems, however, computation of theLp operator

norm continues to be a challenge. In [6], theL∞-gain of nonlinear systems is characterized

by means of the value function of an associated variational problem. TheL2 gain, also

referred to as theH∞ gain of a nonlinear system, can be approximated using storage func-

tions and the theory of dissipative systems [48]. This approach is, however, conservative

and finding storage functions is difficult; see also [20] for a numerical approximation of the

H∞ norm. In [31], a computational method is proposed to compute theL2 induced norm

for single-input linear systems with saturation.

In this chapter, we propose a method to compute an upper boundon theL1, L2 and

L∞ norms of a class of continuous-time nonlinear systems. Our method can be optimized

based on some selected parameters. For systems not includedin this class, a method is also
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provided for computing an upper bound of theL∞ norm.

This chapter is organized as follows: In section4.1.1, we propose a method to compute

upper bounds on the induced norm of nonlinear systems and provide two illustrative exam-

ples. In section4.2, we introduce the weighting method, which can be used to reduce the

intrinsic conservativism in the aforementioned method. Anexample is provided to illustrate

the usage of the weighting technique.

4.1.1 The proposed method

In this section, we obtain a computable upper bound for induced operator norms. We will

use the structure shown in Fig.2.4(b); namely, theζA representation for forced system. In

this structure, it is trivial to show that

‖x‖Lp ≤ ‖w‖Lp + ‖d‖Lp

≤ γp(Γ)γp(Φ)

∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

Lp

+ ‖d‖Lp

≤ γp(Γ)γp(Φ)

∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

Lp

+ γp(Ω)‖x0‖p

(4.1)

The computation ofγp(Γ), γp(Ω) andγp(Φ) was discussed in Reference [49].

Lemma 4.1.1. The following equation is true forx, u ∈ Lp:

∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

Lp

≤ ‖x‖Lp + ‖u‖Lp (4.2)

Moreover, ifx, u ∈ L2
∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

2

L2

= ‖x‖2
L2

+ ‖u‖2
L2

. (4.3)

Proof. The proof is trivial and is omitted.

The first part of this lemma, (4.2), is true for all Banach spaces; however, the second

part is true when the temporal norm isL2 with the Euclidean 2-norm chosen as the corre-

sponding spatial norm.

Theorem 4.1.1.Let [Φ,Γ,Ω] be aζA representation for a forced system,N . If

γp(Γ)γp(Φ) < 1 (4.4)

then

γp(N) ≤ γp(Γ)γp(Φ)

1 − γp(Γ)γp(Φ)
. (4.5)
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Proof. Substituting (4.2) in (4.1) implies that

‖x‖ ≤ γp(Γ)γp(Φ) (‖x‖ + ‖u‖) + γp(Ω)‖x0‖. (4.6)

Thus

(1 − γp(Γ)γp(Φ))‖x‖ ≤ γp(Γ)γp(Φ)‖u‖ + γp(Ω)‖x0‖. (4.7)

Sinceγp(Γ)γp(Φ) < 1,

‖x‖ ≤ γp(Γ)γp(Φ)

1 − γp(Γ)γp(Φ)
‖u‖ +

γp(Ω)

1 − γp(Γ)γp(Φ)
‖x0‖ (4.8)

which implies (4.5).

Inequality (4.5) can be used as an upper bound for theLp induced norm. It is impor-

tant to note that since theζA representation is not unique, the solution of the following

minimization problem is the lowest upper bound that can be obtained by our method:

γp(N) ≤ min
A

γp(Γ)γp(Φ)

1 − γp(Γ)γp(Φ)
(4.9)

whereΓ(s) =

[

A
I

I
0

]

andΦ(x, u) = f(x, u) − Ax. Unfortunately, there is no existing

method to findA which provides the lowest upper bound. A good strategy is to define a

function in MATLAB with input A and output γp(Γ)γp(Φ)
1−γp(Γ)γp(Φ) and usefminsearchto minimize

it.

The method provided by Theorem4.1.1 is general in the sense of the induced norm,

γp. An interesting case occurs when the temporal norm isL2 with the Euclidean 2-norm

chosen as the corresponding spatial norm. The reason is thata quite mature theory, namely;

H∞ optimization, has been developed for linear systems in thiscase. SupposeΓ is a

continuous-time linear time-invariant stable operator with impulse responseg(t) : R+ →
Rn×n (g(t) : Z+ → Rn×n). Let G(s) denote the Laplace transform ofg(t). We have

γ2(Γ) := ‖G(s)‖H∞
(4.10)

In this case, the following theorem provides lower upper bounds for the induced normγ2

than Theorem4.1.1.

Theorem 4.1.2.Let[Φ,Γ,Ω] be aζA representation for a forced system,N . If γ2(Γ)γ2(Φ) <

1 then

γ2(N) ≤ γ2(Γ)γ2(Φ)
√

1 − γ2(Γ)2γ2(Φ)2
. (4.11)
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Proof. Inequality (4.1) implies that

(‖x‖ − γ2(Ω)‖x0‖)2 ≤
(

γ2(Γ)γ2(Φ)

∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

)2

(4.12a)

Using (4.3),

‖x‖2 − 2γ2(Ω)‖x0‖‖x‖ + γ2(Ω)2‖x0‖2

≤ γ2(Γ)2γ2(Φ)2
(

‖x‖2 + ‖u‖2
)

(4.12b)

For simplicity, letα := γ2(Γ)γ2(Φ)

‖x‖2 − 2γ2(Ω)

1 − α2
‖x0‖‖x‖ +

γ2(Ω)2

1 − α2
‖x0‖2 ≤ α2

1 − α2
‖u‖2. (4.12c)

Hence
(

‖x‖ − γ2(Ω)

1 − α2
‖x0‖

)2

≤ α2γ2(Ω)2

(1 − α2)2
‖x0‖2 +

α2

1 − α2
‖u‖2. (4.12d)

Sincea2 + b2 ≤ (a + b)2 for all a, b ≥ 0, we have

‖x‖ − γ2(Ω)

1 − α2
‖x0‖ ≤ αγ2(Ω)

(1 − α2)
‖x0‖ +

α√
1 − α2

‖u‖ (4.12e)

Consequently

‖x‖ ≤ γ2(Γ)γ2(Φ)
√

1 − γ2(Γ)2γ2(Φ)2
‖u‖ +

γ2(Ω)

1 − γ2(Γ)γ2(Φ)
‖x0‖ (4.12f)

which implies (4.11).

Similarly, the solution of the following minimization problem is the lowest upper bound

that can be obtained by our method:

γ2(N) ≤ min
A

γ2(Γ)γ2(Φ)
√

1 − γ2(Γ)2γ2(Φ)2
(4.13)

whereΓ(s) =

[

A
I

I
0

]

andΦ(x, u) = f(x, u) − Ax. Equivalently,

γ2(N) ≤ min
A

1
√

∥

∥

∥
(sI − A)−1

∥

∥

∥

−2

H∞

γ−2
2 (f(x, u) − Ax) − 1

. (4.14)

Example 4.1.1.(RLC circuit with non-ideal inductor) The network of Fig.4.1represents a

RLC circuit with a non-ideal inductor. The inductor has nonzero resistance and saturation

characteristic as shown in Fig.4.2(a), whereλ is the flux linkage. The relationship of the

magnetic flux linkage to terminal voltage of an inductor is given by Faraday’s law; namely

vL(t) = dλ(t)/dt. The state equations for this network may be written as
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Figure 4.1: RLC circuit in Example4.1.1.
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Figure 4.2: The characteristic of the inductance in Example4.1.1.

vL = λ̇ =
dλ

diL

diL
dt

(4.15a)

diL
dt

=

(

dλ

diL

)−1

(vC − R2iL) (4.15b)

where
(

dλ
diL

)−1
is depicted in Fig.4.2(b)versusiL, and

C
dVC

dt
= i − VC

R1
− iL. (4.15c)

Definingx1 := iL, x2 := vC andu := i,
{

ẋ1 = (x2 − R2x1)
(

dλ
dx1

)−1

ẋ2 = u
C − x2

R1C − x1
C

. (4.15d)

Let R1 = 1
2 , R2 = 1 andC = 2. AssumingA =

[

−1 0.5
−0.5 −1

]

, we have

Φ(x1, x2, u) =

[

x1 − 0.5x2 + (x2 − x1)
(

dλ
dx1

)−1

u
C

]

. (4.15e)

We use the computational methods that has been introduced in[49]. Since there are three

independent variables inγp(Φ), i.e. x1, x2 andu, we plot ‖Φ(x,u)‖
∥

∥

∥

∥

∥

∥

[

x

u

]
∥

∥

∥

∥

∥

∥

versus

∥

∥

∥

∥

[

x

u

]
∥

∥

∥

∥

instead of
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(a) p = 1

(b) p = 2

(c) p = ∞

Figure 4.3: Gain of‖Φ(x, u)‖p versus

∥

∥

∥

∥

[

x

u

]
∥

∥

∥

∥

p

in Example4.1.1.

plotting versusx1, x2 andu, as shown in Fig.4.3. Therefore,γ1(Φ) ≈ 0.50, γ2(Φ) ≈ 0.50

and γ∞(Φ) ≈ 0.50. Computation also shows thatγ1(Γ) ≈ 1.237, γ2(Γ) ≈ 1.00 and

γ∞(Γ) ≈ 1.237. Theorems4.1.1and4.1.2imply thatγ1(N) ≤ 1.62, γ2(N) ≤ 0.577 and

γ∞(N) ≤ 1.62, respectively.

There is no doubt that the conditionγp(Γ)γp(Φ) < 1 in Theorems4.1.1and4.1.2is

restrictive. For example, polynomial systems are excludedby the aforementioned condition.

The following theorem might be used to overcome this shortcoming. The result provides

an upper bound on system output for bounded input and initialstate.
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Theorem 4.1.3.Let [Φ,Θ,Γ,Ω] be aζAB representation for a nonlinear system. Letη > 0

andMp > γ∞(Ω) + ηγ∞(θ) and

D̂ :=

{[

x
u

]

∈ R
n+m

∣

∣

∣

∣

γD̂
∞ (Φ) <

Mp − γ∞(Ω) − ηγ∞(θ)

(Mp + η)γ∞(Γ)

}

. (4.16)

LetD := B
∞(0, rD) be an open ball insidêD. Assume thatDx andDu are the images ofD

under

[

In×n 0n×m

0m×n 0m×m

]

and

[

0n×n 0n×m

0m×n Im×m

]

, respectively. Therefore,Dx andDu are

also open balls inRn andRm respectively. Letrx andru denote respectively their radius,

i.e. Dx = B
∞(0, rx) andDu = B

∞(0, ru). Chooseǫ andδ such that0 < ǫ < rx and

0 < δ ≤ 1 − γD
∞(Φ)γ∞(Γ)

γ∞(Ω) + η(γ∞(Θ) + γD
∞(Φ)γ∞(Γ))

ǫ

If ‖u‖L∞ < min (η δ, ru) and‖x0‖∞ ≤ δ, then

‖x‖L∞ < ǫ. (4.17)

Proof. It is trivial that Mp − γ∞(Ω) − ηγ∞(θ) < Mp + η; thereforeγD
∞(Φ)γ∞(Γ) < 1.

We use contradiction to prove the theorem. Since we have assumed that systems of interest

are locally Lipschitz, system trajectories are continuous. Consequently, ifx were to leave

the ball with radiusǫ, it should cross the boundary of the ball. Suppose thatx crosses the

boundary att = τ . As a result,‖Tτx‖ = ‖x‖τ = ǫ. Sinceǫ < rx and‖u‖ < min (η δ, ru)

guarantees thatu ∈ Du, we have

[

xτ

uτ

]

∈ D and consequently

‖xτ‖ ≤ ‖d1τ‖ + ‖wτ‖

≤ ‖d1τ‖ + γD
∞(Φ)γ∞(Γ)(‖d2τ‖ + ‖xτ‖)

≤ γ∞(Θ)‖uτ‖ + γ∞(Ω)‖x0‖

+ γD
∞(Φ)γ∞(Γ)‖xτ‖ + γD

∞(Φ)γ∞(Γ)‖uτ‖

≤ γ∞(Ω)‖x0‖ + [γ∞(Θ) + γD
∞(Φ)γ∞(Γ)]‖uτ‖

+ γD
∞(Φ)γ∞(Γ)‖xτ‖

< γ∞(Ω)δ +
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

ηδ

+ γD
∞(Φ)γ∞(Γ)‖xτ‖

=
(

γ∞(Ω) + η
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

])

δ

+ γD
∞(Φ)γ∞(Γ)‖xτ‖

(4.18)
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Then

ǫ = ‖xτ‖

<
γ∞(Ω) + η

[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

‖x0‖

≤ γ∞(Ω) + η
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

δ

≤ ǫ (4.19)

Which is a contradiction. Therefore,x(t) < ǫ; ∀t ≥ 0, i.e. ‖x‖ < rx.

Example 4.1.2. Consider a multi-tank system depicted in Fig.4.4. Suppose that a pro-

portional controller is utilized to adjust the fluid level inthe second tankH2 by input flow

q. The problem of interest is to find an upper bound on the gain ofthe closed loop system

shown in Fig.4.5. The following mathematical model is taken from [19]:






dH1
dt = 1

aw (q − C1H
α1
1 )

dH2
dt = 1

cw+
H2

H2max
bw

(C1H
α1
1 − C2H

α2
2 )

(4.20)

The transfer function of the controller isK(s) = KP . Let x1 := H1 − H10, x2 :=

H2 − H20 andq = q0 − KP (x2 + u) whereH10 andH20 are operating points andq0 is

the corresponding input. It is trivial thatq0 = C1H
α1
10 = C2H

α2
20 . The numerical values

for the coefficients area = 0.25, w = 0.035, H2max = 0.35, b = 0.345, c = 0.1,

C1 = 5.66 × 10−5, C2 = 5.58 × 10−5, α1 = 0.29 and α2 = 0.226 [19]. Suppose

KP = 10−5. The state equations for the closed-loop system are






ẋ1 = 1
aw (q0 − KP (x2 + u) − C1(x1 + H10)

α1)

ẋ2 = 1

cw+
x2+H20
H2max

bw
(C1(x1 + H10)

α1 − C2(x2 + H20)
α2)

(4.21)

andẋ =

(

ẋ1

ẋ2

)

= f(x, u). Let

A =

(

−0.0072 −0.0114
0.0094 −0.0118

)

, B =

(

−0.0114
0

)

, (4.22)

which are linearized parts off(x, u) at x = 0 andu = 0, i.e. A = ∂f(x,u)
∂x

∣

∣

∣

x,u=0
and

B = ∂f(x,u)
∂u

∣

∣

∣

x,u=0
. Therefore,

Φ(x, u) =

[

0.00373 + 0.0072x1 − 0.00647(x1 + 0.15)0.29

5.66×10−5(x1+0.15)0.29−5.58×10−5(x2+0.0934)0.226

0.0067+0.0345x2
− 0.0094x1 + 0.01176x2

]

.

(4.23)
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Figure 4.4: Configuration of the multitank system [19].
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Figure 4.5: Closed loop multitank system.
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Figure 4.6:‖Φ(x)‖∞
‖x‖∞

versus‖x‖∞.

Computation with the methods proposed in [50] provides γ∞(Γ) < 151.3, γ∞(Θ) <

0.9756, andγ∞(Ω) = 1.036. Let η = 3.0382 which givesMP = 4 > γ∞(Ω) + ηγ∞(Θ).

SinceΦ is independent fromu, D̂ ⊂ R2. ‖Φ(x)‖∞
‖x‖∞

versus‖x‖∞ is depicted in Fig.4.6.

SinceD̂ is independent ofu, ru = ∞. Let us takeD̂ as the region where‖Φ(x)‖∞
‖x‖∞

< 0.0023,

i.e. γD
∞(Φ) = 0.0023. Consequentlyrx = 0.0155. Let ǫ = 0.015 andδ = 0.0019 ≤

1−γD
∞(Φ)γ∞(Γ)

γ∞(Ω)+η(γ∞(Θ)+γD
∞(Φ)γ∞(Γ))

ǫ. According to Theorem4.1.3, for any inputu which satis-

fies‖u‖L∞ < min(ηδ, ru) = 0.00587 and any initial state satisfying‖x0‖∞ < δ = 0.0019,

x is bounded as‖x‖L∞ < ǫ = 0.015.

4.2 Weighting Technique

As shown in the previous section, the proposed methods are based on theζA representa-

tion. Adding some weighting on state or input vectors may tighten the calculated bounds.

However, there is no general rule which provides useful weighting matrices; therefore, they

should be chosen by trial and error. In this section, we studythe effect of the weighting and

we show the effectiveness by an example.

In theζA representation for continuous-time systems shown in Fig.2.3, let x̂ := Wxx

whereWx is nonsingular. Consequently,

˙̂x = WxAW−1
x x̂ + WxΦ(W−1

x x̂) (4.24)

DenotingÂ := WxAW−1
x , Φ̂(x) := WxΦ(W−1

x x), Γ̂ :=

[

Â
I

I
0

]

andΩ(x(t)) := eÂtx0,

it is easy to show that ordered operator set[Φ̂, Γ̂, Ω̂] is aζA representation for the weighted

system, i.e. the system with initial statex̂0 := Wxx0 and statêx.

Similarly, in theζAB representation shown in Fig.2.4(a)for continuous-time systems,
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let x̂ := Wxx andû := Wuu whereWx andWu are nonsingular. Consequently,

˙̂x = WxAW−1
x x̂ + WxBW−1

u û + WxΦ(W−1
x x̂,W−1

u û) (4.25)

DenotingÂ := WxAW−1
x , B̂ := WxBW−1

u , Φ̂(x, u) := WxΦ(W−1
x x,W−1

u u), Γ̂ :=
[

Â
I

I
0

]

, Θ̂ :=

[

Â
I

B̂
0

]

andΩ(x(t)) := eÂtx0, it is trivial to show that ordered operator set

[Φ̂, Γ̂, Θ̂, Ω̂] is aζAB representation for the weighted system, i.e. the system with input û,

statex̂ and initial statêx0. A very similar argument can be made for forced system withζA

representation.

It is important to note that the mappinĝu → x̂ is different thanu → x. However,

Theorems4.1.1, 4.1.2and4.1.3can be used to find corresponding upper bounds for the

weighted system. Then, using the definitions ofx̂, û andx̂0, the corresponding bounds can

be found for the main system. Suppose that the inequality found for the weighted system is

‖x̂‖p ≤ γp,u ‖û‖p + γp,x0 ‖x̂0‖p whereγp,u andγp,x0 are derived by either (4.8) or (4.12f).

Therefore,

‖x‖ ≤
∥

∥W−1
x

∥

∥ ‖x̂‖

≤
∥

∥W−1
x

∥

∥ γu ‖û‖ +
∥

∥W−1
x

∥

∥ γx0 ‖x̂0‖

≤
∥

∥W−1
x

∥

∥ γu ‖Wu‖ ‖u‖ +
∥

∥W−1
x

∥

∥ γx0 ‖Wx‖ ‖x0‖ .

(4.26)

It is important to note that norms used for
∥

∥W−1
x

∥

∥ and‖Wu‖ are the corresponding induced

norms. Similarly, if an upper bound obtained for the weighted system isγ(N̂) then

γ(N) ≤
∥

∥W−1
x

∥

∥ γ(N̂ ) ‖Wu‖ . (4.27)

There is no method to compute
∥

∥W−1
x

∥

∥ and‖Wu‖ in general. However, in some special

cases, such as the case where 2-norm is used for the spatial norm or the case where weight-

ing matrices are multiplication of a scalar by the identity matrix,
∥

∥W−1
x

∥

∥ and‖Wu‖ can be

calculated. The following example illustrates the usage and effectiveness of the weighting

technique.

Example 4.2.1.Consider the following nonlinear system

N :

{

ẋ1 = −x1 + x2 + 0.5sat(x2) − 0.25 sin (x1) + 0.25sat(u)

ẋ2 = −x1 − x2 + 0.5sat(x1) − 0.25 sin (x2) − 0.25u
(4.28)

where sat(·) is depicted in Fig.4.7. Let A =

[

−0.9 0.9
−0.9 −1.1

]

. Hence,

Φ(x1, x2, u) =

[

−0.1x1 + 0.1x2 + 0.5 sat(x2) − 0.25 sin (x1) + 0.25 sat(u)
−0.1x1 + 0.1x2 + 0.5sat(x1) − 0.25 sin (x2) − 0.25u

]

.

(4.29)

52



x

sat(x)
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1

-1

-1

Figure 4.7: The saturation function sat(·).

Table 4.1: Derived bounds with variousWu (Example4.2.1).

Wu γ1(N̂) γ2(N̂) γ∞(N̂) γ1(N) γ2(N) γ∞(N)

1.75 1.361 0.580 3.029 2.382 1.015 5.301
1 1.66 0.71 5.95 1.66 0.71 5.95
2 1.290 0.575 2.30 2.58 1.15 4.6

minimum 1.66 0.71 4.6

Let Wu = 1.75 andWx = I2×2. Therefore,
∥

∥W−1
x

∥

∥ = 1 and‖Wu‖ = 1.75. As shown in

Fig. 4.8, we plot
‖Φ̂(x̂,û)‖
∥

∥

∥

∥

∥

∥

[

x̂

û

]
∥

∥

∥

∥

∥

∥

versus

∥

∥

∥

∥

[

x̂

û

]
∥

∥

∥

∥

instead of plotting versuŝx1, x̂2 andû. Therefore,

γ1(Φ̂) ≈ 0.46, γ2(Φ̂) ≈ 0.5 andγ∞(Φ̂) ≈ 0.6. Computation also shows thatγ1(Γ̂) ≈
1.253, γ2(Γ̂) ≈ 1.003 andγ∞(Γ̂) ≈ 1.253. Therefore,γ1(N̂) ≤ 1.361, γ2(N̂) ≤ 0.58 and

γ∞(N̂) ≤ 3.029. Using (4.27), γ1(N) ≤ 2.382, γ2(N) ≤ 1.015 andγ∞(N) ≤ 5.301.

The results obtained for various values ofWu are summarized in Table4.1. As can be seen,

tighter bounds can be found by trying different values for the weighting matrices.

4.3 Chapter Summary

This chapter offers a contribution to the calculation of upper bounds on theL1, L2 andL∞

induced operator norms of continuous-time nonlinear systems. Based on theζA represen-

tation of nonlinear systems, methods are presented to compute the aforementioned bounds.

The main limitation of the proposed methods is inequality (4.4) that restricts the usage

of the method for a class of the nonlinear systems and the freedom on choosing the pa-

rameterA. To lessen the restrictions encountered in the computationof theL∞ norm of a

system, a method is given to compute an upper bound on theL∞ norm of the system output

with respect toL∞ norm of the input. This method does not suffer from the previous limita-

tions. In the last section, our methods are improved by the use of a weighting technique on

the ζA representation. An example is provided to show the effectiveness of the weighting

technique.
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(a) p = 1

(b) p = 2

(c) p = ∞

Figure 4.8: Gain of
∥

∥

∥
Φ̂(x̂, û)

∥

∥

∥

p
versus

∥

∥

∥

∥

[

x̂

û

]
∥

∥

∥

∥

p

in Example4.2.1for Wu = 1.75.
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Chapter 5

The Gap Metric

5.1 Introduction

Model uncertainty often has a significant effect on stability and performance of feedback

control systems. For linear time-invariant (LTI) systems,much work has been done to study

this effect. One important concept used to measure system uncertainty is the gap metric

which was introduced to systems and control theory by Zames and El-Sakkary [55]. For

LTI systems, it has been shown that a perturbed system can be stabilized by any controller

which is designed for the nominal system if and only if the distance between the perturbed

system and the nominal system is small in the gap metric. The computation of the gap

metric for LTI systems was developed by Georgiou [12].

The extension of the gap metric to larger classes of systems was initiated in [10], where

the metric was extended to time-varying linear plants. Later, the parallel projection operator

for nonlinear systems [5] and its relationship to the differential stabilizabilityof nonlinear

feedback systems [11] paved the road to the extension of the gap metric to a pseudo-metric

on nonlinear operators [13].

Unlike the LTI system case, there is no generally applicablemethod of computing the

gap metric for nonlinear systems. In fact, there are only a few examples in literature for

the computation of the gap metric. Moreover, those methods are highly dependent upon the

case of interest. This is also the case for the correspondingstability margin which can be

used to determine the ball of uncertainty in the sense of the gap metric.

This chapter deals with the computation of the gap metric andstability margin for non-

linear systems. We will consider the extension of the gap metric to nonlinear systems given

in [13]. We derive upper bounds on the gap metric and the stability margin with respect

to the operator norm (gain) of the plant, perturbed system and controller and based on the

results of Chapter4 on the upper bound of the gain of nonlinear systems. The suggested
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methods are only applicable to a class of nonlinear systems which satisfy an inequality.

The chapter is organized as follows: In Section5.2, first, we introduce the notation.

Then, the gap metric for the nonlinear systems is introduced. The main contribution of this

paper is contained in Section5.3 where Theorems5.3.1and5.3.2are stated and proved.

These theorems provide upper bounds on the gap metric and thestability margin, respec-

tively. In Section5.3, an example is also solved to illustrate the effectiveness of the results

and comparison between the direct computation and the suggested methods. Since the lit-

erature suffers from the lack of widely-applicable computation methods and there are just

a few examples which are highly dependent to the studied systems, it is indeed hard to

construct example which both satisfies our required condition and is compatible by the

previously suggested methods such as the method used in [13].

5.2 Background

5.2.1 Notation

Let U := L andY := L denote input and output signal spaces, respectively. A nonlinear

time-varying system can be thought of as a possibly unbounded operatorH : Dh → Y

whereDh ⊆ U. The action ofH on anyu ∈ Dh is denoted byHu. A systemH is called

stableif Dh = U. For an operatorH : U → Y , let γ(H) stand for the induced norm (gain)

of the operator defined as

γ(H) := sup
u ∈ U

u 6=0

‖Hu‖T

‖u‖T
(5.1)

where the supremum is taken over allu ∈ U and allT in R+ for whichuT 6= 0. Let γp(H)

stand forγ(H) in Lp. A systemH is calledfinite gain stable (fg-stable)if H0 = 0 and

γ(H) < ∞.

5.2.2 The Gap Metric

Let [P,C] denote the feedback configuration shown in Figure5.1. This configuration is

standard in literature, e.g. [13] and can be described by the following equations.

y1 = Pu1

u2 = Cy2

u0 = u1 + u2

y0 = y1 + y2

(5.2)
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P
u0 u1

y0u2
C

y2

+
-

+

-

y1

Figure 5.1: The standard feedback configuration,[P,C].

whereP andC denote the nominal plant and the controller andu0 andy0 are the input

and measurement disturbances, respectively. Letui ∈ U, yi ∈ Y and wi :=

[

ui

yi

]

for

i ∈ {0, 1, 2} andW := U × Y. We assume that the product of the instantaneous gains of

P andC is less than one. This assumption guarantees the well-posedness of the feedback

configuration, e.g. [13] [1]. Similar to [13], we assume that the feedback configuration is

always well-posed. The closed-loop operator is defined as

HP,C : W → W ×W , HP,C : w0 7→ (w1, w2). (5.3)

The graph of the plant is

GP =

{(

u

Pu

)

: u ∈ U, Pu ∈ Y

}

⊂ W. (5.4)

If the domain ofP is U , the conditionPu ∈ Y is unnecessary. To have compatible notation

with [13], we define the graph ofC as follows

GC =

{(

Cy

y

)

: Cy ∈ U, y ∈ Y

}

⊂ W. (5.5)

In some literature, e.g [5], this graph is also called inverse graph. Let

M := GP , N := GC . (5.6)

The following operators are useful in the study of the closed-loop system stability.

ΠM||N := Π1HP,C , ΠN||M := Π2HP,C (5.7)

whereΠi : W×W → W denote the natural projection onto theith component(i ∈ {1, 2})
of W ×W. Therefore

ΠM||N : w0 7→ w1

ΠN||M : w0 7→ w2.
(5.8)

Definition 5.2.1. Parallel Projection[5]

A stable operatorΠ : L → L (with Π0 = 0) is called a parallel projection if for any

x1, x2 ∈ L
Π(Πx1 + (I − Π)x2) = Πx1 (5.9)

whereI denotes the identity onL.
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Thus,ΠM||N andΠN||M are parallel projections considering that for anyw1, w2 ∈ W

Π(Πw1 + (I − Π)w2) = Πw1, (5.10)

for Π ∈
{

ΠM||N ,ΠN||M

}

.

Consider thesummation operator

ΣM,N : M×N → W : (m,n) 7→ m + n. (5.11)

The stability of the standard feedback interconnection, Fig. 5.1, is equivalent toΣM,N

having an inverse defined on the whole ofW which is bounded. In fact, ifΣM,N has a

bounded inverse, thenΣ−1
M,N = HP,C . It can be shown that a necessary condition for

[P,C] to be stable is thatM andN are closed subsets ofW [5]. Let W1 andW2 be closed

subsets of a Banach spaceW. We define

~δ(W1,W2) :=























inf{‖(T − I)|W1‖}, T is a causal

bijective map fromW1 to W2

with T0 = 0,

∞, if no such operatorT exists,

δ(W1,W2) = max
{

~δ(W1,W2), ~δ(W2,W1)
}

.

(5.12)

Theorem 5.2.1.Consider the feedback system shown in Fig.5.1. LetM := GP andN :=

GC . Assume that[P,C] is fg-stable. Suppose thatP is perturbed toP1 andM1 := GP 1. If

~δ(M,M1) <
∥

∥ΠM||N

∥

∥

−1
(5.13)

then[P1, C] is fg-stable. Furthermore

∥

∥ΠM1||N

∥

∥ <
∥

∥ΠM||N

∥

∥

1 + ~δ(M,M1)

1 −
∥

∥ΠM||N

∥

∥~δ(M,M1)
. (5.14)

Proof. See [13].

5.3 Upper bounds on the Gap Metric and the stability margin

In this section, we suggest a method to find an upper bound on the gap metric between two

nonlinear systems as well as a method to compute an upper bound onΠM||N .

Theorem 5.3.1.Consider nonlinear dynamical systems given by

N : ẋ = f(x, u) , x0 = 0;

N̂ : ˙̂x = f̂(x̂, u) , x̂0 = 0.
(5.15)

Letγ(N) andγ(N̂) denote their gain respectively. Then

δ(N, N̂ ) ≤ γ(N) + γ(N̂ ). (5.16)
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Proof. We have

‖x − x̂‖ ≤ ‖x‖ + ‖x̂‖

≤ γ(N) ‖u‖ + γ(N̂ ) ‖u‖

≤
(

γ(N) + γ(N̂)
)

‖u‖

≤
(

γ(N) + γ(N̂)
)

∥

∥

∥

∥

[

u

x

]∥

∥

∥

∥

.

(5.17)

DefineT as

T

[

u

x

]

:=

[

u

x̂

]

. (5.18)

It is trivial thatT is bijective. We have

~δ(N, N̂) = ‖I − T‖

= sup

∥

∥

∥

∥

(I − T)

[

u

x

]
∥

∥

∥

∥

∥

∥

∥

∥

[

u

x

]∥

∥

∥

∥

= sup

∥

∥

∥

∥

[

u − u

x − x̂

]
∥

∥

∥

∥

∥

∥

∥

∥

[

u

x

]∥

∥

∥

∥

= sup
‖x − x̂‖
∥

∥

∥

∥

[

u

x

]∥

∥

∥

∥

≤ γ(N) + γ(N̂) using (5.17) (5.19)

Similarly

~δ(N̂ ,N) ≤ γ(N) + γ(N̂). (5.20)

Consequently,

δ(N, N̂ ) = max{~γ(N, N̂ ), ~γ(N̂ ,N)}

≤ δ(N) + δ(N̂ ). (5.21)

Theorem 5.3.2.Consider the standard feedback configuration depicted in Fig. 5.1. Sup-

pose thatγ(P )γ(C) < 1. LetΠM||N be defined as (5.6) and (5.7). Then

∥

∥ΠM||N

∥

∥ ≤
(

1 + γ(P )
)(

1 + γ(C)
)

1 − γ(P )γ(C)
. (5.22)
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Proof. From the feedback configuration, we have

‖u1‖ ≤ ‖u0‖ + γ(C) ‖y0 − y1‖

≤ ‖u0‖ + γ(C) ‖y0‖ + γ(C)γ(P ) ‖u1‖ .
(5.23)

Consequently

‖u1‖ ≤ 1

1 − γ(C)γ(P )
‖u0‖ +

γ(C)

1 − γ(C)γ(P )
‖y0‖ . (5.24)

Therefore
∥

∥

∥

∥

[

u1

y1

]
∥

∥

∥

∥

≤ ‖u1‖ + ‖y1‖

≤ ‖u1‖ + γ(P ) ‖u1‖

≤ 1 + γ(P )

1 − γ(C)γ(P )
‖u0‖ +

γ(C)
(

1 + γ(P )
)

1 − γ(C)γ(P )
‖y0‖ .

(5.25)

Since‖a‖ ≤
∥

∥

∥

∥

[

a

b

]∥

∥

∥

∥

,

∥

∥

∥

∥

[

u1

y1

]
∥

∥

∥

∥

≤ 1 + γ(P ) + γ(C)
(

1 + γ(P )
)

1 − γ(C)γ(P )

∥

∥

∥

∥

[

u0

y0

]
∥

∥

∥

∥

=

(

1 + γ(P )
)(

1 + γ(C)
)

1 − γ(C)γ(P )

∥

∥

∥

∥

[

u0

y0

]
∥

∥

∥

∥

.

(5.26)

On the other hand, Equation (5.8) implies

ΠM||N

[

u0

y0

]

=

[

u1

y1

]

. (5.27)

Thus

∥

∥ΠM||N

∥

∥ = sup
∥

∥

∥

∥

∥

∥

[

u0

y0

]
∥

∥

∥

∥

∥

∥

6=0

∥

∥

∥

∥

[

u1

y1

]∥

∥

∥

∥

∥

∥

∥

∥

[

u0

y0

]
∥

∥

∥

∥

. (5.28)

Using (5.26)
∥

∥ΠM||N

∥

∥ ≤
(

1 + γ(P )
)(

1 + γ(C)
)

1 − γ(C)γ(P )
. (5.29)

Example 5.3.1. Consider the feedback configuration of Fig.5.1. Assume that the plant

is the circuit shown in Fig.5.2, where the inductance of the SSR is nonlinear andL(·) is

defined as Fig.5.3andR = 10. The state equation of the system is

ẋ(t) = L−1(u1(t) − Rx(t)), x(0) = 0

y1(t) = x(t)
(5.30)
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Figure 5.2:P in Example5.3.1.
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Figure 5.3: Inductance of SSR.

wherex(t) := iL(t) andu1(t) := Vs(t). Let C = −c wherec is a positive non-zero

constant. LetU = Y = L∞. Since the instantaneous gains ofP andC are zero and one,

respectively, the loop is well-posed. First, we will find the
∥

∥ΠM||N

∥

∥ by a direct method

similar to the solution of Example 1 in [13]. Then, we will compute the upper bound on
∥

∥ΠM||N

∥

∥ by the suggested method.

I. Direct computation:

The feedback equation is

ẋ = L−1(u0 + cy0 − (10 + c)x), x(0) = 0. (5.31)

We have

ΠM||N :

[

u0

y0

]

7→
[

u1

y1

]

=

[

u0 + cy0 − cx

x

]

. (5.32)

Let v0 := u0 + cy0. For anyv0, u0 = y0 gives the mapping with the smallest input norm.

Therefore,v0 = (1 + c)u0 and

∥

∥ΠM||N

∥

∥ =

∥

∥

∥

∥

[

u0

y0

]

7→
[

u0 + cy0 − cx

x

]∥

∥

∥

∥

=

∥

∥

∥

∥

[

u0

y0

]

7→
[

v0 − cx

x

]
∥

∥

∥

∥

= (1 + c)

∥

∥

∥

∥

v0 7→
[

v0 − cx

x

]
∥

∥

∥

∥

= (1 + c) × max{
∥

∥v0 7→
(

v0 − cx
)∥

∥ , ‖v0 7→ x‖}.

(5.33)
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We now show that‖v0 7→ x‖ = 1/10+c. Suppose that for any arbitrary chosen interval

[0, T ], the maximum ofx(t), which is positive, occurs att0 ∈ [0, T ]. Then, for any

ǫ > 0, there existst1 such that0 < t1 < t0, x(t1) > x(t0) − ǫ and ẋ(t1) > 0.

Consequently,L−1
(

v0(t1) − (10 + c)x(t1)
)

> 0. Since sgnL−1(x) = sgnx, v0(t1) >

(10 + c)x(t1). Thus,v0(t1) > (10 + c)x(t0) − (1 + c)ǫ for any ǫ. Similarly, if the min-

imum of x(t) in [0, T ], which is negative, occurs att́0, for any ǫ́ > 0, there existśt1 such

thatv0(t́1) < (10 + c)x(t́0) − (1 + c)ǫ́. Consequently,‖v0‖T ≥ (10 + c) ‖x‖T . To show

that this upper bound on‖v0 7→ x‖ can be approached arbitrary closely, letv0 = 1 for all

t. It is trivial that x(t) =
(

1 − e−(1+0.1c)t
)

/(10 + c). So‖v0‖ = 1 and‖x‖ = 1/10+c.

Consequently,‖v0 7→ x‖ = 1/10+c. Next, we compute
∥

∥v0 7→
(

v0 − cx
)
∥

∥. Trivially,
∥

∥v0 7→
(

v0 − cx
)
∥

∥ ≤ 1 + ‖v0 7→ (cx)‖ = 1 + c
10+c . This upper bound can be ap-

proached arbitrarily closely by the inputv0 = 1 for 0 ≤ t < T andv0 = −1 for t ≥ T .

We havex(t) =
(

1 − e−(1+0.1c)t
)

/(10 + c) for 0 ≤ t < T . Thus,
(

v0 − cx
)

(T ) =

−(1+ c
10+c)+ e−(1+0.1c)T . Therefore,‖v0‖ = 1 and‖v0 − cx‖ = 1+ c

10+c which implies

that
∥

∥v0 7→
(

v0 − cx
)
∥

∥ = 1 + c
10+c . Consequently,

∥

∥ΠM||N

∥

∥ = 1 + c
10+c .

II. The suggested method:

To find γ(P ), let Φ(x, u) = L−1(u − 10x) + 3x/2 andΓ :=

[ −3/2 1

1 0

]

. We use the

computational methods introduced in Section2.3.1. Fig. 5.4 shows the plot of‖Φ(x,u)‖
∥

∥

∥

∥

∥

∥

[

x

u

]
∥

∥

∥

∥

∥

∥

versus

∥

∥

∥

∥

[

x

u

]∥

∥

∥

∥

for 2× 106 randomly chosen input vector. Therefore,γ(Φ) = 0.7. Using the

method introduced in Section2.3.2, we haveγ(Γ) = 2/3. Theorem4.1.1implies that

γ(P ) ≤ 0.639. (5.34)

SinceC = −c is a constant,γ(C) = c. Theorem5.3.2implies that
∥

∥ΠM||N

∥

∥ ≤ 1.639(1+c)
1−0.639 c

if c < 1.56. Apparently, the obtained upper bound is closer to the actual value whenc

approaches zero.

Example 5.3.2.Consider the plant introduced in the previous example. Suppose that the

system is perturbed by time delayh. That is

P1 :

{

ẋ(t) = L−1(u1(t) − Rx(t)), x(0) = 0

y1(t) = x(t − h).
(5.35)

First, we will compute an upper bound on the gap between the plantP and the perturbation

P1 by a direct method similar to the solution of Example 1 in [13]. Then, we will compute

the upper bound on the gap by the suggested method.
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Figure 5.4: Gain of‖Φ(x, u)‖ versuslog

∥

∥

∥

∥

[

x

u

]∥

∥

∥

∥

.

I. Direct computation:

LetM1 := GP 1 and define a mappingT : M → M1 as

T

[

u1(t)

x(t)

]

=

[

u1(t)

x(t − h)

]

. (5.36)

Thus

|x(t) − x(t − h)| ≤ sup
t̂∈[t−h,t]

|ẋ(t̂)| · h

≤ sup
t̂∈[t−h,t]

|L−1
(

u(t̂) − 10x(t̂)
)

| · h.
(5.37)

SinceL−1(·) is an strictly increasing function,

|x(t) − x(t − h)|

≤ L−1
(

sup
t̂∈[t−h,t]

|u(t̂) − 10x(t̂)|
)

· h

≤ L−1
(

sup
t̂∈[t−h,t]

|u(t̂)| + sup
t̂∈[t−h,t]

|10x(t̂)|
)

· h

≤ L−1
(

sup
t̂∈[0,t]

|u(t̂)| + sup
t̂∈[0,t]

|10x(t̂)|
)

· h.

(5.38)

Therefore

‖x(t) − x(t − h)‖τ

≤
∥

∥

∥

∥

∥

L−1
(

sup
t̂∈[0,t]

|u(t̂)| + sup
t̂∈[0,t]

|10x(t̂)|
)

∥

∥

∥

∥

∥

τ

· h

≤ L−1
(

11max{‖u‖τ , ‖x‖τ}
)

· h

≤ 2.2max{‖u‖τ , ‖x‖τ} · h.

(5.39)

Hence

‖I − T‖ = sup
τ,‖u1‖τ 6=0

‖x(t) − x(t − h)‖τ

max{‖u1‖τ , ‖x‖τ}
≤ 2.2h. (5.40)
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Consequently,~δ(M,M1) ≤ 2.2h. On the other hand, letu(t) = 1 on [0, h]. It is Trivial

that(Pu)(t) = 0.1(1 − e−10t). For anyw ∈ M1, we havewh =

[∗
0

]

which is implied by

the time delay inP1. Therefore

~δ(M,M1) = sup
u1,y1 6=0

∥

∥

∥

∥

(T − I)

[

u1

y1

]∥

∥

∥

∥

∥

∥

∥

∥

[

u1

y1

]
∥

∥

∥

∥

≥ sup
u1,y1 6=0

∥

∥

∥

∥

[∗
0

]

−
[

u1

Pu1

]∥

∥

∥

∥

h

max{‖u1‖h , ‖Pu1‖h}

=
max{‖∗ − u1‖h , ‖Pu1‖h}

max{‖u1‖h , ‖Pu1‖h}

≥ ‖Pu1‖h

max{‖u1‖h , ‖Pu1‖h}
= 0.1(1 − e−10h).

(5.41)

Consequently

0.1(1 − e−10h) ≤ ~δ(P,P1) ≤ 2.2h. (5.42)

II. The suggested method:

SinceP is autonomous,γ(P ) = γ(P1). Using Theorem5.3.1, ~δ(P,P1) = 2γ(P ). Using

(5.34), ~δ(P,P1) ≤ 1.278. It is clear that forh > 0.58 the suggested method provides

smaller upper bound than the direct method.

5.4 Chapter Summary

In this chapter, we have considered the computation of the gap metric and the corresponding

robust stability margin. Our results are applicable to a class of a nonlinear systems which

satisfy a given inequality. The suggested methods have computational advantage compared

to previous work in the sense that they are applicable to wider range of nonlinear systems.

Our methods are based on two inequalities derived for the gapmetric and the stability

margin with respect to the gain of the relevant systems. An example is provided to illustrate

the results.
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Chapter 6

The Large Gain Theorem

6.1 Introduction

One of the well-accepted and widely-used methods to study stability of systems is the input-

output approach. It was initiated by Popov, Zames, and Sandberg, in the 1960s [42] [56]

[32]. So far, it has been a fruitful area which has resulted in many of the recent develop-

ments in control theory, such as robust control and small-gain based nonlinear stabilization

techniques. The input-output stability theory considers systems as mappings from an in-

put space of functions into an output space. In this theory, the well-behaved input and

output signals are considered as members of input and outputspaces. Therefore, if the

“well-behaved” inputs produce well-behaved outputs, the system is called stable.

The main contribution of the input-output stability theoryin control theory is through

the well-known small-gain theorem. In this context, the most notable contributions have

also been made by Zames and Sandberg, e.g. [56] [32]. The small gain theorem says that

the feedback loop will be stable if the loop gain is less than one. This simple rule has been

a basis for numerous stabilization techniques such as nonlinearH∞ control [15].

Stability of systems, in its various forms, continues to inspire researchers. Motivated by

the classical small gain theorem, “nonlinear gain” small gain theorems are discussed in such

references as [21] [39] [18]. The notion of non-uniform in time robust global asymptotic

output stability was introduced in [22] for a wide class of systems. A small-gain theorem

for a wide class of feedback systems was proposed in [23]. In [14], it was shown that for an

open loop unstable system which is closed loop stable the gain must exceed one.

In this chapter, the minimum gain of a system is studied. Although it has been showed

that the minimum gain is not a norm on space of operators, a newstability condition has

been derived for feedback systems based on the minimum gain of the open-loop systems.

The chapter is organized as follows. In Section6.2, the minimum gain of an operator
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is defined and some of its properties are derived. In Section6.3, the large gain theorem is

stated. An example is also provided to illustrate the usage of the theorem.

6.2 Minimum Gain of an Operator

Let H : U → Y denote an operator. We define the minimum gain ofH as follows:

ν(H) = inf
06=u∈U

‖(Hu)T ‖
‖uT ‖

(6.1)

where the infimum is taken over allu ∈ U and all T in R+ for which uT 6= 0. It is

trivial that the minimum gain of an operator is less or equal to its induced norm. It is also

obvious that if a minimum gain of a system is infinite, then it is unstable. In other words,

the minimum gain of a stable system is always finite. The converse is, however, not true.

Lemma 6.2.1. LetM ∈ Rn×n. DefineH : X2 → X2 asHx := Mx, then

ν(H) = σ(M). (6.2)

Proof. The proofs for the continuous-time and discrete-time casesare the same and only

the first one is given here. We use the following property of the smallest singular value of

matrices (e.g. [57] pp. 21):

σ(M) = min
‖x‖=1

‖Mx‖ = min
x 6=0

‖Mx‖
‖x‖ . (6.3)

Let M = UΣV T be the Singular Value Decomposition (SVD) ofM , whereV = [v1,

v2, · · · , vn] ∈ Rn×n andU,Σ ∈ Rn×n [57]. It is well-known thatvn is the minimizer of

(6.3), e.g. [57]. Let x ∈ L2, we have

‖Mx‖2 =

∫ ∞

0
‖Mx(t)‖2

2 dt

≥
∫ ∞

0
σ(M)2 ‖x(t)‖2

2 dt

= σ(M)2
∫ ∞

0
‖x(t)‖2

2 dt = σ(M)2 ‖x‖2

(6.4)

which shows thatσ(M) is a lower bound forν(H). To show that it is the greatest lower

bound, letx(t) = vn

‖vn‖
e−t. We have

‖x‖2 =

∫ ∞

0

∥

∥

∥

∥

vn

‖vn‖
e−t

∥

∥

∥

∥

2

dt =

∫ ∞

0

∥

∥e−t
∥

∥

2
dt = 1/2 (6.5)
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and

‖Mx‖2 =

∫ ∞

0

∥

∥

∥

∥

M
vn

‖vn‖
e−t

∥

∥

∥

∥

2

dt

=

∫ ∞

0
‖Mvn‖2 e−2t

‖vn‖2 dt

=

∫ ∞

0
‖σ(M)vn‖2 e−2t

‖vn‖2 dt

= ‖σ(M)‖2
∫ ∞

0
e−2t dt = 1/2 ‖σ(M)‖2 .

(6.6)

Equations (6.5) and (6.6) imply thatν(H) is equal toσ(M) for some input. This completes

the proof.

Lemma 6.2.2. Let Φ(·, ·) : R+ × Rn → Rn (Φ(·, ·) : Z+ × Rn → Rn in discrete time)

andH be the operator defined as

H : Xp → Xp ; Hx(t) := Φ(t, x(t)). (6.7)

Suppose there exists a constantµp such that

µp‖x‖p ≤ ‖Φ(t, x)‖p, ∀x ∈ R
n, ∀t ≥ 0 (6.8)

thenµp ≤ νp(H).

Proof. Let x ∈ Lp, for p 6= ∞,

‖Hx‖p
Lp

=

∫ ∞

0
‖Φ(t, x(t))‖p dt ≥

∫ ∞

0
µp

p ‖x(t)‖p dt

= µp
p

∫ ∞

0
‖x(t)‖p dt = µp

p ‖x‖p
Lp

.

(6.9)

Forp = ∞,

‖Hx‖L∞ = sup
t

‖Φ(t, x(t))‖ ≥ sup
t

µp ‖x(t)‖

= µp sup
t

‖x(t)‖ = µp ‖x‖p
L∞

.
(6.10)

Equations (6.9) and (6.10) imply that µp is a lower bound forν(H). This completes the

proof.
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Figure 6.1:H2 in Example6.2.1.

Example 6.2.1. Memory less Nonlinearities:Let X = L∞, and consider nonlinear op-

eratorsH1(u) = u2 andH2(.) defined by the graph in the plane shown in Fig.6.1. We

have

ν(H1) = inf
06=u∈L∞

‖(H1u)T ‖L∞

‖uT ‖L∞

= inf
06=u∈L∞

|u| = 0. (6.11)

The minimum gainν(H2) is easily determined from the slope of the graph ofH2.

ν(H2) = inf
06=u∈L∞

‖(H2u)T ‖L∞

‖uT ‖L∞

= 0.5. (6.12)

Lemma 6.2.3. Let g(t) be the impulse response of a continuous-time, stable, LTI system.

Let G(s) denote the Laplace transform ofg(t). Furthermore, assume that there exists a

row in G(s) where all elements are strictly proper, namely there isi such that for allj,

lims→∞ Gij(s) = 0. LetH stand for the convolution operator defined by

H(z(t)) =

∫ t

0
g(t − τ)z(τ)dτ. (6.13)

We have

ν(H) = 0. (6.14)

Proof. Let x̂(t) = [x̂1(t) x̂2(t) · · · x̂n(t)]T ,

x̂k(t) =

{

sin(ωt) k = i,

0 otherwise.

wherei corresponds to the strictly proper row inG(s) andω ≥ π. Let

x(t) := x̂(t) − x̂
(

t −
⌊ω

π

⌋ π

ω

)

(6.15)

where⌊r⌋ denotes the floor function of a real number r, which is the largest integer less
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Figure 6.2:|x̂(t)|.

than or equal tor, namely∀r ∈ R ; ⌊r⌋ := sup{n ∈ Z|n ≤ r}. It is trivial that

x(t) =











































































0
0
...

sin(ωt)
...
0





















ith row
0 ≤ t ≤

⌊

ω
π

⌋

,

0 t >
⌊

ω
π

⌋

.

and

‖x(t)‖ =
∣

∣

∣
x̂i(t) − x̂i

(

t −
⌊ω

π

⌋ π

ω

)∣

∣

∣

Thus,

‖x‖L∞
= sup

t
| sin(ωt)| = 1 (6.16)

‖x‖2
L2

=

∫ ⌊ω
π
⌋ π

ω

0
| sin(ωt)|2 dt

= 1/2

(

t − sin (2ωt)

2ω

)
∣

∣

∣

∣

⌊ω
π
⌋ π

ω

0

=
⌊ω

π

⌋ π

2ω
− sin

(

2π⌊ω
π ⌋

)

4ω

(6.17)

‖x‖L1
=

∫ ⌊ω
π
⌋ π

ω

0
| sin(ωt)| dt. (6.18)

To calculate (6.18), consider the graph of|x̂(t)| depicted in Fig.6.2. The number of peaks

is
⌊

ω
π

⌋

. Moreover,

S =

∫ π
ω

0
sin (ωt) dt =

2

ω
. (6.19)

Consequently,

‖x‖L1
=

⌊ω

π

⌋

S =
⌊ω

π

⌋ 2

ω
. (6.20)

To calculate the norm of the output‖y‖, we can first find the response of the system to input

x̂(t), namelyŷ(t), and then obtain the output usingy(t) = ŷ(t) − ŷ
(

t −
⌊

ω
π

⌋

π
ω

)

implied
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by the linearity property of the system and (6.15). If we let ω → ∞, the response of the

system tôx(t) approaches to zero. The reason is that the amplitude of all elements of the

i-th row of G(s) approaches to zero at high frequencies. Therefore,limw→∞ ‖ŷ(t)‖ = 0

and consequently

lim
w→∞

‖y‖ = 0. (6.21)

On the other hand, (6.17) and (6.20) imply

lim
w→∞

‖x‖L2
= 1/2, lim

w→∞
‖x‖L1

=
2

π
. (6.22)

Equations (6.16), (6.21) and (6.22) imply

ν1(H) = 0, ν2(H) = 0, ν∞(H) = 0. (6.23)

Corollary 6.2.1. The minimum gain of a system with a strictly proper stable transfer func-

tion is zero.

Lemma 6.2.4. Let g(t) be the impulse response of a continuous-time (discrete-time) LTI

system. LetG(s) (G(z)) denote the Laplace transform (z-transform) ofg(t). Furthermore,

assume thatG(s) (G(z)) has at least one zero in the RHP (outside of the unit circle). Let

H stand for the convolution operator defined by

H(z(t)) =

∫ t

0
g(t − τ)z(τ)dτ (6.24)

for continuous-time case and

H(z(t)) =
t

∑

l=0

g(t − l)z(l) (6.25)

for discrete-time one. We have

ν(H) = 0. (6.26)

Proof. The proofs for the continuous-time and discrete-time casesare the same and only

the first one is given here.

Let s0 be the RHP zero ofG(s), namely there existsw such thatG(s0)w = 0. If

σ0 + iω0 = s0 ∈ C, trivially s∗0 is also a RHP zero ofG(s). Let

u(t) =

{

w es0t if s0 ∈ R,

w eσ0t sin (ω0t) if s0 ∈ C.
(6.27)
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Consequently,

U(s) =

{

w · 1
s−s0

if s0 ∈ R.

w · ω0

(s−σ0)2+ω2
0

if s0 ∈ C.
(6.28)

We have

Y (s) =

{

G(s) · w · 1
s−s0

if s0 ∈ R.

G(s) · w · ω0

(s−σ0)
2+ω2

0

if s0 ∈ C.
(6.29)

SinceG(s) is assumed to be stable,Y (s) is a stable signal. It is important to note thatY (s)

does not have a pole ats0. The reason is that the pole ats0 is canceled by the zero ofG(s)

ats0. Since all poles ofY (s) are in LHP,y(t) is a decaying signal. On the other hand,u(t)

is an unstable signal, rising by time. If we truncate bothu(t) andy(t) atT , which is chosen

sufficiently large, the corresponding gain of the system will be small. By increasingT , the

gain can be decreased as much as desired. Therefore,ν(H) = 0.

Lemma 6.2.5. Let H : Dh ⊆ U → Y be a possibly unstable operator. LetRh denote the

range ofH, namelyRh = {y ∈ Y : y = Hu for someu ∈ Dh}. Assume thatH has a

stable right inverse, i.e., there existsH−1 : Rh → Dh such that

H · H−1 = I (6.30)

andH−1 is stable. Moreover, assume thatγ(H−1) < ∞ Then

ν(H) =
1

γ(H−1)
. (6.31)

Proof. Let y(t) := Hu(t), which implies thatu(t) = H−1y(t). Therefore

ν(H) = inf
u∈U

‖yT ‖
‖uT ‖

= inf
u∈Dh

‖yT ‖
‖uT ‖

= inf
u∈Dh

1
‖uT ‖
‖yT ‖

=
1

sup
u∈Dh

‖uT ‖
‖yT ‖

=
1

sup
u∈Dh

‖H−1yT ‖
‖yT ‖

=
1

sup
y∈Rh

‖H−1yT ‖
‖yT ‖

=
1

γ(H−1)
.

(6.32)

Corollary 6.2.2. Unstable, bi-proper, LTI systems
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1. Letg(t) be the impulse response of a continues-time, unstable, bi-proper, LTI system.

LetH stand for the convolution operator defined by

H(z(t)) =

∫ t

0
g(t − τ)z(τ)dτ. (6.33)

LetG(s) be the Laplace transform ofg(t). We have

ν(H) =
∥

∥G−1(s)
∥

∥

−1

H∞
. (6.34)

2. Let g(t) be the impulse response of a discrete-time, unstable, strictly proper, LTI

system. LetH denote the convolution operator defined by

H(z(t)) =

t
∑

l=0

g(t − l)z(l). (6.35)

LetG(z) be thez-transform ofg(t). We have

ν(H) =
∥

∥G−1(z)
∥

∥

−1

H∞
. (6.36)

Proof. The proofs for continuous-time and discrete-time are the same and only the first one

comes here.

For bi-proper systems, the inverse system exists. Lety(t) := Hu(t), we have

ν(H) = inf
u∈Xe

‖yT ‖
‖uT ‖

= inf
u∈Xe

1
‖uT ‖
‖yT ‖

=
1

sup
u∈Xe

‖uT ‖
‖yT‖

=
1

sup
y∈Xe

‖uT ‖
‖yT ‖

=
1

sup
u∈Xe

‖G−1uT ‖
‖yT‖

.

(6.37)

Example 6.2.2.Let

G(s) =
s + 1

s − 1
(6.38)

andH : Dh ⊂ L2 → L2 be an operator defined as (6.33). Equation (6.36) implies that

ν(H) =
∥

∥G−1(s)
∥

∥

−1

H∞
= 1. (6.39)
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For instance, letu(t) := (1 − 2t) e−t u−1(t), whereu−1(t) denotes the step function. We

haveU(s) = s−1
(s+1)2

and consequentlyY (S) = 1
s+1 which shows thaty(t) = e−t u−1(t).

This reveals thatν(H) ≤ ‖y‖L2
‖u‖L2

= 1. It is important to note that there is no input that satis-

fies
‖y‖L2
‖u‖L2

< 1. This can be shown by contradiction. Assume there exists some inputû ∈ Le
2

such that
‖ŷ‖L2
‖û‖L2

< 1 whereŷ is the corresponding output. We have‖ŷ‖ < ‖û‖ < ∞. On

the other hand,̂u = G−1 ŷ. Since
∥

∥G−1
∥

∥

H∞
= 1 ‖û‖ ≤ ‖ŷ‖ which is a contradiction.

The minimum gain of operators satisfies thepositivity and thepositive homogeneity

properties. To see this, we have

ν(·) ≥ 0 (6.40)

and

ν(λH) = inf
06=u∈Xe

‖λHu‖
‖u‖

= |λ| inf
06=u∈Xe

‖Hu‖
‖u‖ = |λ| ν(H)

(6.41)

However, it can be shown that it fails to satisfy the triangleinequality. For instance, suppose

thatH1 andH2 are memoryless nonlinearities depicted in Fig.6.3. It is trivial thatν(H1) =

0, ν(H2) = 0 andν(H1 + H2) = 1. This shows thatν(H1 + H2) > ν(H1) + ν(H2).

Consequently, the minimum gain of an operator is not a norm oreven a semi-norm on the

space of operators.

x

H x1

-1

-1

(a) H1

x
1

1

H x2

(b) H2

x
1

2

( )H1 + H x2

(c) H1 + H2

Figure 6.3: The triangle inequality is not satisfied byν(·).

Lemma 6.2.6. Let H : U → Y denote an operator. Suppose that there exists a nonzero

stable operatorK : R → U such thatHK : R → Y is stable, thenν(H) < ∞.

Proof. Let 0 6= r(t) ∈ R such thatr /∈ Ker(K), thenu(t) = K r(t) ∈ U, u 6= 0 and

y(t) = HK r(t) ∈ Y, implied by the stability ofK and HK, respectively. Therefore

‖u‖U 6= 0 and‖u‖U , ‖y‖Y < ∞. Consequently,ν(H) ≤ ‖y‖
Y

‖u‖
U

< ∞.
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Figure 6.4: Stabilizable system.

Corollary 6.2.3. Any system that can be stabilized by a stable system with the mentioned

properties in Lemma6.2.6and a structure as shown in either Fig.6.4(a)or Fig. 6.4(b), has

a finite minimum gain.

Proof. The corollary is based on Lemma6.2.6and the proof follows a similar routine as

the proof of the lemma with defining a newR equalsR⊕Y in 6.4(a)or R+Y in 6.4(b).

Theorem 6.2.1.Sub-multiplicative property

LetH1,H2 : X → X be causal operators. Then

ν(H1H2) ≤ ν(H1)ν(H2). (6.42)

Proof. Let u ∈ X , we have

‖H1H2u‖ ≥ ν(H1) ‖H2u‖ ≥ ν(H1)ν(H2) ‖u‖ . (6.43)

Considering the fact thatν(H1H2) is the infimum gain of theH1H2, Inequality (6.43)

implies (6.42).

6.3 Large Gain Theorem

In this section, we concentrate on the feedback system shownin Fig. 6.5. Under mild

conditions onH1 andH2 (e.g., the product of the instantaneous gains is less than one [1]),

the feedback configuration is guaranteed to be well-posed. The equations describing this

feedback system, to be known as theFeedback Equations, are:

e1 = u1 − y2

e2 = u2 + y1

y1 = H1e1

y2 = H2e2.

(6.44)
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Figure 6.5: The feedback system.

Theorem 6.3.1.Consider the feedback interconnection described by (6.44) and shown in

Fig. 6.5. If 1 < ν(H1)ν(H2) < ∞, the feedback system is input-output-stable.

Proof. To show stability of the feedback interconnection, we must show thatu1, u2 ∈ X
imply thate1, e2, y1 andy2 are also inX . According to the definition ofν, we have

ν(H1) ‖e1T ‖ ≤ ‖y1T ‖ (6.45)

ν(H2) ‖e2T ‖ ≤ ‖y2T ‖ (6.46)

On the other hand,

y1T = e2T − u2T (6.47)

y2T = u1T − e1T (6.48)

Thus,

‖y1T ‖ ≤ ‖e2T ‖ + ‖u2T ‖ (6.49)

‖y2T ‖ ≤ ‖e1T ‖ + ‖u1T ‖ (6.50)

Substituting (6.45) and (6.46) in (6.49) and (6.50), respectively,

ν(H1) ‖e1T ‖ ≤ ‖e2T ‖ + ‖u2T ‖ (6.51)

ν(H2) ‖e2T ‖ ≤ ‖e1T ‖ + ‖u1T ‖ (6.52)

Using (6.46) and (6.50), Equation (6.51) implies that

ν(H2)ν(H1) ‖e1T ‖ ≤ ν(H2) ‖e2T ‖ + ν(H2) ‖u2T ‖

≤ ‖y2T ‖ + ν(H2) ‖u2T ‖

≤ ‖e1T ‖ + ‖u1T ‖ + ν(H2) ‖u2T ‖ .

(6.53)

Sinceν(H1)ν(H2) > 1,

‖e1T ‖ ≤ 1

ν(H1)ν(H2) − 1
(‖u1T ‖ + ν(H2) ‖u2T ‖) . (6.54)
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Similarly,

‖e2T ‖ ≤ 1

ν(H1)ν(H2) − 1
(ν(H1) ‖u1T ‖ + ‖u2T ‖) . (6.55)

Moreover, substituting (6.55) and (6.54) in (6.49) and (6.50), respectively,

‖y1T ‖ ≤ ν(H1)

ν(H1)ν(H2) − 1
(‖u1T ‖ + ν(H2) ‖u2T ‖) (6.56)

and

‖y2T‖ ≤ ν(H2)

ν(H1)ν(H2) − 1
(ν(H1) ‖u1T ‖ + ‖u2T ‖) . (6.57)

Hence, the norms of‖e1T ‖, ‖12T ‖, ‖y1T ‖ and‖y2T ‖ are bounded. If, in addition,u1, u2 ∈
X , then (6.54-6.57) must also be satisfied ifT approaches∞. Therefore,

‖e1‖ ≤ 1

ν(H1)ν(H2) − 1
(‖u1‖ + ν(H2) ‖u2‖) (6.58)

‖e2‖ ≤ 1

ν(H1)ν(H2) − 1
(ν(H1) ‖u1‖ + ‖u2‖) (6.59)

‖y1‖ ≤ ν(H1)

ν(H1)ν(H2) − 1
(‖u1‖ + ν(H2) ‖u2‖) (6.60)

‖y2‖ ≤ ν(H2)

ν(H1)ν(H2) − 1
(ν(H1) ‖u1‖ + ‖u2‖) . (6.61)

Consequently,e1, e2, y1 andy2 are also inX .

Example 6.3.1. Let H1 be the convolution operator defined by (6.13) whereg(t) is the

impulse response of

G(s) = k
s + 1

s − 1

wherek ∈ R. Let H2 be a memoryless nonlinearity depicted in Fig.6.1. As shown in

Example6.2.2, ν(H1/k) = 1 which implies thatν(H1) = |k|. On the other hand, we

haveν(H2) = 0.5. Consequentlyν(H1)ν(H2) = 0.5|k|. The large gain theorem, namely

Theorem6.3.1, guarantees that the feedback system is stable if|k| > 2.

6.4 Chapter Summary

The minimum gain of an operator as well as some of its properties are introduced. These

properties are useful in the computation of the minimum gainof a system. For instance, it is

shown that the minimum gain of strictly proper, stable, LTI systems are zero. When it comes

to the metric properties, the minimum gain of an operator fails to satisfy the triangular
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inequality which implies that it is not a metric or a norm in the space of operators. Finally,

the so-called large gain theorem is stated and proved. This theorem implies a new stability

condition for feedback interconnection of nonlinear systems. An example is provided to

illustrate the derived stability condition.
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Chapter 7

Disturbance Attenuation: A Case
Study

7.1 Introduction

There is no doubt that disturbance attenuation is one of the most important objectives in any

closed-loop system. Therefore, it is important to quantifythe influence of various inputs on

various signals inside the feedback loop and develop tools to calculate such quantities. This

chapter is based on our earlier work presented in Chapter4. The plant of interest is a mul-

titank system consistent of three interconnected tanks. First, the mathematical model of the

plant is derived using physical relations. Then, the gray box method is used to identify the

parameters of the model. Finally, it is assumed that the plant is controlled by a proportional

controller and the disturbance attenuation of the closed-loop plant is investigated.

7.2 The Multitank System

Liquid level control problems related to multitank systemsare commonly encountered in

industrial storage tanks. For instance, steel producing companies around the world have

repeatedly confirmed that substantial benefits are gained from accurate mould level control

in continuous bloom casting. Mould level oscillations tendto stir foreign particles and flux

powder into molten metal, resulting in surface defects in the final product [19].

The multitank system consists of three tanks placed one above another. The top tank

has a constant cross section while the other two have variable cross sections as shown in

Fig. 7.1. A pump is used to circulate liquid from the supply tank into the upper tank.

The liquid flows through the tanks due to gravity. The output orifices can be controlled by

electrical valves to act as constant or time-varying flow resistors. Generally speaking, the

system has four inputs and three outputs. The inputs are three valve controls and one pump
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Figure 7.1: Configuration of the multitank system

Figure 7.2: Closed loop multitank system
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Figure 7.3: Block diagram of the identified system

control signal. The three valve controls are driven by appropriate Pulse-Width Modulation

(PWM [16]) signals transmitted from the I/O board to the power interface, and from the

power interface to the DC motors connected to the valves. Thepump control signal, which

acts by controlling the speed of the pump motor, is a sequenceof PWM pulses configured

and generated by the logic of XILINX chip of the I/O board. Theoutput signals are the

levels of the liquid measured by pressure transducers. All signals are connected to the

analog inputs/outputs of a multipurpose PC I/O board.

The system states are the liquid levelsH1, H2 andH3. The general objective of the pilot

is to control the liquid levels by four input signals: liquidinflow q and valve settingsC1, C2

andC3. Among various system configurations, our purpose is to control level of the middle

tank, i.e. H2, by the liquid inflowq using a proportional controller. We assume thatd is

the disturbance (or noise) signal and study the disturbanceattenuation of the closed-loop

system. The block diagram of the closed-loop system is depicted in Fig.7.2.

7.3 Identification

The block diagram of the plant is depicted in Fig.7.3. First, a mathematical model of the

plant is developed based on the physics of the process. Next,we set an experiment to acquire

the step response of the system in order to obtain an approximate model of the system or

more precisely, an approximate time constants of the system. Using the approximate time

constants, a Random Binary Sequence (RBS) signal is built and applied to the plant [26].

Finally, the RBS response is divided to two sections; one section is used to identify the

model and another one to validate the model.

7.3.1 The Mathematical Model

The Bernoulli’s law can be applied to find the laminar outflow rate of an ideal fluid [30]. By

applying mass balance and assuming a laminar outflow, the model describing the dynamics
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Figure 7.4: Geometrical parameters of the tanks

of the process can be obtained.










dV1

dt
= q − C1

√

H1

dV2

dt
= C1

√

H1 − C2

√

H2

(7.1)

whereV1 andV2 are the fluid volumes in Tank 1 and Tank 2, respectively andC1 andC2

are the resistances of the output orifices. Hence,














dV1

dH1

dH1

dt
= q − C1H1

α1

dV2

dH2

dH2

dt
= C1H1

α1 − C2H2
α2

(7.2)

whereα1 = 0.5 andα2 = 0.5 for laminar flows. For the real system where turbulence and

acceleration of the liquid are not negligible, the outflow rate does not follow the Bernoulli

law and more general coefficientsα1 andα2 should be considered [19] [30]. The values of
dV1
dH1

and dV2
dH2

depend on the shape of the tanks shown in Fig.7.4. Since the cross-sectional

area of Tank 1 is constant,dV1
dH1

= aw. For Tank 2, we havedV1
dH1

= cw + H2
H2max

bw.

Therefore,






dH1
dt = 1

aw (q − C1H
α1
1 )

dH2
dt = 1

cw+
H2

H2max
bw

(C1H
α1
1 − C2H

α2
2 )

(7.3)

Let x1 := H1 − H10, x2 := H2 − H20 andq = u + q0 whereH10 andH20 are operating

points andq0 is the corresponding input. It is trivial thatq0 = C1H
α1
10 = C2H

α2
20 . The

numerical values for the coefficients area = 0.25, w = 0.035, H2max = 0.35, b = 0.345,

c = 0.1 [19]. Hence, the state equation of the open-loop system is
{

dx1
dt = 114.2857 (u + (0.15C1)

α1 − C1(x1 + 0.15)α1)
dx2
dt = 1

0.0035+0.0345(x2+0.1) (C1(x1 + 0.15)α1 − C2(x2 + 0.1)α2)
(7.4)
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Figure 7.5: The step response

7.3.2 Data Acquisition

To build an appropriate RBS signal, we need to acquire approximate time constants of the

system. Therefore, we set an experiment to obtain step responses. The step responses are

depicted in Fig.7.5. Hence, the approximate time constant of the system areτ1 ≈ 80s and

τ2 ≈ 150s. We will use the time constants to determine frequency of theRBS signal. We

chooseTs = 10 sec. To perform the RBS test we need to determine the pass band which

can be calculated from the following formula [26]:

f =
kTs

τπ
(7.5)

wherek = 2 ∼ 3. We selectf = 0.0612. The produced RBS signal and response of the

system are illustrated in Fig.7.6.

7.3.3 Data Pre-Processing and Identification

We do the identification and validation for each of the outputs separately. After down sam-

pling the data, the mean value of the data should be removed and to reduce computational

errors, we increase the values of the levels by using centimeter unit. Then, we filter the data

by a low pass filter to attenuate noise. The bandwidth of the system is approximately equal

to inverse of the time constant. We choose one decade upper than the bandwidth as cut-off
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Figure 7.6: The RBS response

Table 7.1: The identified parameters.

Parameter C1 C2 α1 α2

Value 1.432 × 10−4 1.488 × 10−4 0.3833 0.3341

frequency of the low-pass filter. Therefore,

f1,cut−off =
10Ts

τ1π
= 0.3979

f2,cut−off =
10Ts

τ2π
= 0.2122

(7.6)

Next, From 1130 data points of the pair of input-output, we choose the first 750 points for

identification and the remaining 380 points for validation and remove the mean values of

two set of data. We use the Identification Toolbox of MATLAB toidentify C1, C2, α1 and

α2 by the gray box method. The identification and validation curves are depicted in Fig.

7.7and7.8, respectively.

The identified values for the mentioned parameters are givenin Table7.1.

7.3.4 Disturbance Attenuation

The problem of our interest is to study the disturbance attenuation of the closed loop system

depicted in Fig.7.2. In order to calculate the disturbance rejection amplitude, we need to find
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Figure 7.7: Identification
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the gain of the system from the disturbance signal to the output by the methods mentioned

in Section5.3. The state equations of the closed-loop system are






ẋ1 = 1
aw (q0 − KP (x2 + d) − C1(x1 + H10)

α1)

ẋ2 = 1

cw+
x2+H20
H2max

bw
(C1(x1 + H10)

α1 − C2(x2 + H20)
α2)

(7.7)

and ẋ =

(

ẋ1

ẋ2

)

= f(x, d). To find appropriateA and B matrices, we define a

function which calculatesγ∞(Γ) · γ∞(Φ) in a local region

∥

∥

∥

∥

[

x

d

]∥

∥

∥

∥

∞

≤ r̂ for givenA and

B in MATLAB. Then usingfminsearchfunction of MATLAB, we minimize the function

with respect toA andB. Choosingr̂ = 0.06, we obtainA =

(

−0.0360 −0.0149
0.0215 −0.0425

)

andB =

(

0.0141
0.0066

)

. Therefore,Φ(x, d) =

[

Φ1(x, d)
Φ2(x, d)

]

where































Φ1(x, d) = 0.00791 − 0.00266 d + 0.00346 x2 − 0.0164 (x1 + 0.150)0.3833

+ 0.0360 x1

Φ2(x, d) =
(

0.000143 (x1 + 0.15)0.3833 − 0.00015 (x2 + 0.1)0.3341
)

×

(0.007 + 0.0345 x2 )−1 − 0.0215 x1 + 0.0425 x2 − 0.00657 d.

(7.8)

Computation with the methods proposed in [50] providesγ∞(Γ) < 32.9194, γ∞(Θ) <

0.2975, andγ∞(Ω) = 1. Let η = 1 which givesγ∞(Ω) + ηγ∞(Θ) = 1.2975. By

choosing different values forMp andη, different bounds can be obtained. For now, we

chooseMp = 20. Therefore,γD
∞(Φ) should satisfy

γD
∞(Φ) <

Mp − γ∞(Ω) − ηγ∞(θ)

(Mp + η)γ∞(Γ)
= 0.0271. (7.9)

‖Φ(x,d)‖∞
∥

∥

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∥

∥

∞

versus

∥

∥

∥

∥

[

x

d

]∥

∥

∥

∥

∞

is depicted in Fig.7.9. Let us takeD as the region where

‖Φ(x,d)‖∞
∥

∥

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∥

∥

∞

< 0.049, i.e. γD
∞(Φ) = 0.027. Consequentlyrx = 0.049 and rd = 0.049.

Let ǫ = 0.048 andδ = 0.0023 ≤ 1−γD
∞(Φ)γ∞(Γ)

γ∞(Ω)+η(γ∞(Θ)+γD
∞(Φ)γ∞(Γ))

ǫ = 0.0024. According to

Theorem3.3.2, for any inputd which satisfies‖d‖L∞ < min(ηδ, rd) = 0.0023 and any

initial state satisfying‖x0‖∞ < δ = 0.0023, x is bounded as‖x‖L∞ < ǫ = 0.048. In other

words, if−2.3mm ≤ d ≤ 2.3mm, 14.77cm ≤ H10 ≤ 15.23cm and8.77cm ≤ H20 ≤
10.23cm then10.2cm≤ H1 ≤ 19.8cm and5.2cm≤ H2 ≤ 14.8cm.

Now, Letη = 4. Therefore,γ∞(Ω) + ηγ∞(Θ) = 2.19. By choosingMp = 22, γD
∞(Φ)

should satisfy

γD
∞(Φ) <

Mp − γ∞(Ω) − ηγ∞(θ)

(Mp + η)γ∞(Γ)
= 0.0231. (7.10)
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Table 7.2: Bounds obtained by variousη andMp.

r̂ η Mp
‖x0‖∞ < ‖d‖L∞ < ‖x‖L∞ <
(in mm) (in mm) (in mm)

0.06

0.1 8 5.8 0.58 45
0.1 20 5 0.5 50
1 20 2.3 2.3 48
3 19 1.7 5 30
4 22 1.4 5.6 30
5 24 0.51 2.6 12
8 38 0.72 5.7 28
10 120 0.4 4.1 48

0.03

0.1 2 12.5 1.25 21.5
1 9 4.58 4.58 38.2
10 15 1.13 11.3 16.5
100 130 0.11 11 15

Let D be the region whereγD
∞(Φ) = 0.023. Hence,‖Φ(x,d)‖∞

∥

∥

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∥

∥

∞

< 0.0302 in D. Thus,

rx = 0.0302 andrd = 0.0302. Let ǫ = 0.03 and

δ = 0.0013 ≤ 1 − γD
∞(Φ)γ∞(Γ)

γ∞(Ω) + η(γ∞(Θ) + γD
∞(Φ)γ∞(Γ))

ǫ = 0.0014. (7.11)

According to Theorem3.3.2, for any inputd which satisfies‖d‖L∞ < min(ηδ, rd) =

0.0056 and any initial state satisfying‖x0‖∞ < δ = 0.0013, x is bounded as‖x‖L∞ <

ǫ = 0.03. In other words, if−5.6mm ≤ d ≤ 5.6mm, 14.86cm ≤ H10 ≤ 15.14cm and

9.86cm≤ H20 ≤ 10.14cm then12cm≤ H1 ≤ 18cm and7cm≤ H2 ≤ 13cm.

By choosing other values forη andMp, other bounds can be obtained. Moreover,r̂ can

also be changed to acquire required bounds. For example, letr̂ = 0.03. By minimizing

γ∞(Γ) · γ∞(Φ) in a local region

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∞

≤ r̂ = 0.03, we obtain

A =

(

−0.0204 −0.0171
0.0262 −0.0347

)

, B =

(

0.0124
0.0001

)

. (7.12)

For this case,‖Φ(x,d)‖∞
∥

∥

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∥

∥

∞

versus

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∞

is depicted in Fig.7.10. For bothr̂ = 0.03 and

r̂ = 0.06 cases, some of the results are summarized in Table7.2.

7.4 Chapter Summary

Based on Theorem3.3.2in Chapter4, a method proposed to study disturbance attenuation

of closed-loop nonlinear systems. The physical plant underexamination is a multitank
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system. First, the mathematical model of the plant is derived using physical concepts. Then,

the parameters of the model are identified by the gray box method. Finally, the disturbance

attenuation of the closed-loop plant controlled by a proportional controller is investigated.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

In this thesis, different algorithms are developed to provide necessary tools for designing

multi-model control systems for nonlinear systems. The major contributions are:

1. New representations for nonlinear systems, calledζA andζAB representations, are

proposed. In theζA representation and its extended version for forced systems, ζAB

representation, a nonlinear system is arranged as a feedback interconnection of a

memoryless nonlinearity and a linear system with initial state as an input signal. Al-

though interconnection of a memoryless nonlinearity with alinear system has been

widely used in literature, the way the initial state is dealtwith is the main difference

between our decomposition and traditional ones. InζA and ζAB representations,

the initial state contributes to the feedback interconnection as an exogenous input

while in traditional methods, any change in the initial state is handled by defining

a new operator. TheζA andζAB representations can be used to develop new tools

for non-zero state nonlinear systems from the input-outputtheory methods, as pre-

sented in this thesis. In other words, the fact that theζA and ζAB representations

convert a nonlinear system with non-zero initial state to a combination of a memo-

ryless nonlinearity and a linear system with some input signals and the way initial

state is handled by these representations provide a novel viewpoint on all aspects of

investigating nonlinear systems.

2. A new framework is developed for the analysis of stabilityof systems by theζA and

ζAB representations. The effectiveness of this usage is originated in the fact that using

these representations, stability of nonlinear systems with non-zero initial states can

be investigated by the input-output stability methods and stability is interpreted as
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input-output stability of the resulting feedback systems.Precisely, new methods are

proposed to check stability in the sense of Lyapunov for an unforced nonlinear system

by norm of some relevant operators, without finding any Lyapunov-like function. For

local stability, a method developed to find some local areas,∆ and Υ, where the

initial statex0 belonging to∆ implies the state staying insideΥ area. The methods

are also extended to forced systems.

3. A new method is proposed to compute an upper bound on theL1, L2 andL∞ norms

of a class of nonlinear systems. The method is based on theζA andζAB represen-

tations of nonlinear systems. A method is also proposed to find an upper bound on

inducedLp norms. The second method, Theorem4.1.2, provides tighter bound for

the casep = 2. Both proposed methods suffer from a restrictive condition. Another

tool is developed to overcome this restriction with the costof providing only local

conditions, namely, an upper bound on system output for bounded input and initial

state, and being restricted toL∞ induced norm.

4. Based onζA andζAB representations, methods are proposed to compute an upper

bounds on the gap metric and the corresponding stability margin for a class of non-

linear systems.

5. The minimum gain of operators is defined, some of its properties are derived and

some computational methods are developed to calculate the minimum gain. For ex-

ample, it is shown that the minimum gain satisfies the positivity and the positive

homogeneity properties but fails to satisfy the triangle inequality.

6. Based on the minimum gain of operators, the large gain theorem is stated. The large

gain theorem asserts that the feedback loop will be stable ifthe minimum loop gain

is greater than one.

7. One of the algorithms, which is developed to compute on upper bounds onL∞ norm

of nonlinear systems, is deployed to study disturbance attenuation of a closed loop

system. The system of interest is a multitank system consisting of three tanks placed

one above another. It is assumed that a proportional controller is used to control the

level of the liquid in one of the tanks. The mathematical model of the open loop

system is derived using physics of the plant. The gray box identification method is

used to identify the model parameters and the disturbance attenuation of the system

is investigated by the proposed method.
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8.2 Future Work

Some future directions for extending and improving the results of this thesis are as follows:

1. Some of the results are already extended to discrete systems. It is useful to check the

applicability of all results on discrete and multirate systems.

2. Almost all of the results are developed based on general classes of nonlinear systems,

i.e.

N1 : ẋ(t) = f1(t, x(t)) (8.1)

N2 : ẋ(t) = f2(t, x(t), u(t)). (8.2)

It may be useful to restrict systems to a narrower class. For example, one may obtain

tighter bounds on theL∞ norm of systems by restricting the system of interest to

N3 : ẋ(t) = f1(t, x(t)) · f2(t, u(t)). (8.3)

3. TheζA andζAB representations convert a nonlinear system with non-zero initial state

to a combination of a memoryless nonlinearity and a linear system with some input

signals. The way the initial state is handled by these representations provides a novel

viewpoint on all aspects in investigating nonlinear systems. We have usedζA andζAB

representations in developing all the results presented inthis thesis. One interesting

work is to use theζA and ζAB representations to study other aspects of nonlinear

systems, such as observability, and develop new tools basedon these representations.

4. The tools that are developed in this thesis can be used to design multi-model control

systems. It would be interesting to design a multi-model control system based on the

proposed tools.
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Abstract

The complexity of large industrial engineering systems such as chemical plants has contin-

ued to increase over the years. As a result, flexible control systems are required to handle

variation in the operating conditions. Some of the challenging elements in the design of

control systems are nonlinearity, disturbances and uncertainty in the process model. In the

classical approach, first the plant model should be linearized at the nominal operating point

and then, a robust controller should be designed for the resulting linear system. However,

the performance of a controller designed by this method deteriorates when operation de-

viates from the nominal point. When the distance between theoperating region and the

nominal operating point increases, this performance degradation may lead to instability.

In the context of traditional linear control, one method to solve this problem is to con-

sider the impact of nonlinearity as “uncertainty” around the nominal model and design a

controller such that the desired performance is satisfied for all possible systems in the un-

certainty set. As the size of uncertainty increases, conservatism occurs and at some point,

it becomes impossible to design a controller that can provide satisfactory performance.

One of the methods proposed to overcome the aforementioned shortcomings is the so-

called Multiple Model approach. Using Multi Models, local designs are performed for

various operating regions and membership functions or a supervisory switching scheme is

used to interpolate or switch among the controllers as the operating point moves among

local regions. Since the Multiple Model method is a natural extension of the linear control

method, it inherits some benefits of linear control such as simplicity of analysis and imple-

mentation. However, all these benefits are valid locally. For example, the multiple model

method may be vulnerable when global stability is taken intoaccount.

The core objective of this thesis is to develop new tools to study stability of closed-loop



nonlinear systems controlled by local controllers in orderto improve design of multiple

model control systems. For example, one of the aims of this work is to investigate how to

determine the region where closed loop system is stable. A secondary objective is to study

the effects of the exogenous signals on stability of such systems.

To achieve these goals, first, new representations for nonlinear systems, calledζA and

ζAB representations, are proposed. InζA andζAB representations, initial state contributes

to the feedback interconnection as an exogenous input. These representations can be used

to develop new tools for non-zero state nonlinear systems based on the input-output theory.

TheζA andζAB representations convert a nonlinear system with non-zero initial state into

a combination of a memoryless nonlinearity and a linear system with some input signals.

The way initial state is handled by these representations provides a novel viewpoint on all

aspects of investigating nonlinear systems.

Using these representations, stability of nonlinear systems with non-zero initial states

can be investigated by the input-output stability methods.Based on this usage, a new frame-

work is developed for the analysis of stability of systems bytheζA andζAB representations.

For local stability, a method developed to find a pair of localareas, namely∆ andΥ, where

belonging the initial state to∆ implies staying the state insideΥ. The methods are also

extended to forced systems.

To compute an upper bound on theL1, L2 andL∞ norms of a class of nonlinear sys-

tems, a new method is proposed based on theζA andζAB representations. Another Method,

which provides tighter bounds, is proposed to find an upper bound on the inducedL2 norm.

Both methods are only applicable to globally Lipschitz systems. To overcome this restric-

tion, another tool is developed for local conditions, namely, an upper bound on system

output is derived for bounded input and initial state. This method is restricted to theL∞

induced norm.

To measure the distance between local systems in multiple model method, some re-

searchers have suggested to use the gap metric. However, since there are no straight-forward

method to compute the nonlinear gap metric and using linear gap metric can not guarantee

global stability of the system, the mentioned problem is still unsolved. In this thesis based

on ζA andζAB representations, a method is proposed to compute an upper bounds on the



gap metric and the corresponding stability margin for a class of nonlinear systems.

The minimum gain of an operator is defined, some of its properties are derived and

some computational methods are developed to calculate the minimum gain. Based on the

minimum gain of operators, the large gain theorem is stated.The large gain theorem asserts

that the feedback loop will be stable if the minimum loop gainis greater than one.

To study disturbance attenuation of a closed loop multitanksystem, the proposed meth-

ods are utilized. It is assumed that a proportional controller is used to control the level of

the liquid in one of the tanks. The mathematical model of the open loop system is derived

using physics of the plant. The gray box identification method is used to identify the model

parameters and the disturbance attenuation of the system isinvestigated by the proposed

method.
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Chapter 1

Introduction

1.1 Overview of Multi-Model Control Systems

The development of large industrial engineering systems such as chemical plants has lead

to gradual increase in their complexity. In turn, this complexity demands suitable control

systems that should have enough flexibility to be able to handle variations in the operating

conditions. Nonlinearity, disturbances and uncertainty in the process or its model are three

challenging elements in the design of control systems. The classical approach consists of

linearizing the plant model at the nominal operating point and designing a robust controller

for the resulting linear system. Although excellent results have been reported in literature,

it is well known that the performance of a controller designed by this method deteriorates

when operation deviates from the nominal point. This performance degradation may lead to

instability when the distance between the operation regionand the nominal operating point

increases.

To solve this problem in the context of the traditional linear control, the impact of non-

linearity has been considered as “uncertainty” around the nominal model and based on the

size of nonlinearity, the controller is designed such that the desired performance is satisfied

for all possible systems in the uncertainty set. It is clear that the size of the uncertainty

increases as the operating point of the system prowls in a large area. In turn, conservatism

occurs as the size of uncertainty increases. At some point, it becomes impossible to design

a controller that can provide satisfactory performance.

Thanks to the fact that the model derived by linearization describes the process quite ac-

curately in a small region about the linearization point, some methods are introduced in the

literature to overcome the aforementioned shortcomings. In the so-called gain scheduling

method, local designs are performed for various operation regions and a gain-scheduling

scheme is built to interpolate among the controllers as the operating point moves among
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local regions [43] [44] [45] [46]. Although satisfactory results have been reported for some

applications and gain scheduling is well-accepted among practitioners today, this method

suffers from the lack of a theoretical support for global behavior.

Another linearization-based method, conceptually similar to the gain scheduling method,

is the so-called Multiple Model or Multi Model method [17] [7] [28]. The only difference

with the gain scheduling approach is that the interpolationis substituted by either member-

ship functions or supervisory switching. In both forms, theswitching is done based on the

current states. While in the form of membership functions the current states of the system

determine the weighting among the local controllers; in thesupervisory form, a supervisor

selects the suitable local controller from a bank of local controllers, based on the current

state of the process.

The main advantage of the Multiple Model method is that it is anatural extension of

the linear control method and inherits some benefits of linear control such as simplicity of

analysis and implementation. However, it should be taken into account that all these benefits

are valid locally. When the global behavior of the system is being investigated, most of the

advantages are yet to be established. When it comes to globalstability, which is one of

the most important features of a control system, multiple model method may be vulnerable.

Some researchers have suggested to use the gap metric to measure the distance between

local systems [9] [38]. However, since there are no straight-forward methods to compute

the nonlinear gap metric and using linear gap metric can not guarantee global stability of

the system, the mentioned problem is still unsolved.

The core objective of this thesis is to develop new tools to study stability of closed-loop

nonlinear systems controlled by local controllers. This isto say that the aim of our work is

to investigate how to determine the region where a closed loop system is stable and to study

the effect of the exogenous signals on stability of such systems.

1.2 Structure and Outline of the Thesis

1.2.1 Thesis Overview

In Chapter2, after introducing the notation and presenting some preliminary results, a new

representation for unforced nonlinear systems, called theζA representation is proposed.

Having only an input-output structure, theζA representation is an equivalent structure of an

unforced nonlinear system, where the initial state is also represented by an input. Then, the

ζA representation is extended to forced systems.
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In the ζA representation and its extended version for forced systems, which is called

ζAB representation, a nonlinear system is arranged as a feedback interconnection of a mem-

oryless nonlinearity and a linear system with the initial state as an input signal. The main

difference between this decomposition and traditional ones is in the way the initial state is

dealt with. Here, the initial state contributes to the feedback interconnection as an exoge-

nous input while in traditional methods, any change in the initial state is handled by defining

a new operator.

Chapter3, starts by investigating stability of unforced nonlinear systems by theζA

representation. Based on operator-theoretic methods, a new framework is developed for

the analysis of stability of nonlinear systems. In the proposed approach, since the initial

state is considered as an input, stability of an unforced nonlinear system can be investigated

by the input-output stability methods and stability of the nonlinear system is interpreted as

the input-output stability of the resulting feedback system. Using classical tools, sufficient

conditions for global and local stability of the system are obtained. For local stability, the

notion of stability regionsis introduced and is shown to be useful in applications. Then,

local stability of unforced nonlinear systems is studied with a new definition of region of

attraction, which extends into two regions. Sufficient conditions for local stability in term

of those regions are derived. Some examples are given to showthe effectiveness of the

results. It is important to note that our method does not require finding a Lyapunov-type

function.

Chapter3 continues by investigating stability of forced nonlinear systems. Both global

stability and local stability of forced nonlinear systems are considered. Using theζA and

ζAB representations of nonlinear systems, some sufficient conditions for global and local

stability of forced nonlinear systems are derived.

In Chapter4, the problem of computing theLp operator norm of a nonlinear system

is considered. Since it is important to quantify the influence of various inputs on various

signals inside the system, this measure has several applications. One of them is in control

systems, where the attenuation of disturbance signals is required. The proposed method can

be optimized based on some selected parameters. The proposed theorems are applicable

to a class of nonlinear systems. However, a method is also provided for computing an

upper bound on the inducedL∞ norm for systems which are not in this class. To illustrate

the methods, some examples are also given. The weighting method is introduced in the

last section of this chapter. The weighting technique can beused to reduce the intrinsic

conservativism in the aforementioned method. An example isalso provided to show the
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usage of the weighting technique.

Chapter5 deals with the computation of the gap metric and stability margin for nonlin-

ear systems. The gap metric, which was introduced to systemsand control theory by Zames

and El-Sakkary [55], can be used to measure system uncertainty. For linear time-invariant

(LTI) systems, much work has been done to compute the gap metric. The extension of

the gap metric to larger classes of systems was initiated in [10], where the metric is ex-

tended to time-varying linear plants. Later, the parallel projection operator for nonlinear

systems [5] and its relationship to the differential stabilizabilityof nonlinear feedback sys-

tems [11] paved the road to the extension of the gap metric to a pseudo-metric on nonlinear

operators [13].

Unfortunately, there is no generally applicable method of computing the gap metric for

nonlinear systems. In fact, there are only a few examples in literature for the computation

of the gap metric. Moreover, methods used in those examples are highly dependent upon

the case of interest. This is also the case for the corresponding stability margin which can

be used to determine the ball of uncertainty in the sense of the gap metric.

In Chapter5, some upper bounds on the gap metric and the stability marginare derived

and based on the methods proposed in Chapter4, these bounds are computed.

In Chapter6, stability of nonlinear systems is studied by a proposed method. The

method fits in the context of input-output approach to study nonlinear systems. This ap-

proach, which was initiated by Popov, Zames, and Sandberg, in the 1960s [42] [56] [32],

is one of the well-accepted and widely-used methods to studystability of systems. In fact,

many of the recent developments in control theory, such as robust control and small-gain

based nonlinear stabilization techniques are the results of this approach. Here, systems are

considered as mappings from an input space of functions intoan output space and the well-

behaved input and output signals are considered as members of input and output spaces.

Therefore, if the “well-behaved” inputs produce well-behaved outputs, the system is called

stable.

The well-known small-gain theorem is the main contributionof the input-output ap-

proach in control theory. According to the small gain theorem, the feedback loop will be

stable if the loop gain is less than one. According to our proposed theorem in Chapter6, the

large gain theorem, the feedback loop will be stable if the minimum loop gain is greater than

one. In Chapter6, first we introduce the minimum gain of operators. Then, a newstability

condition is derived for feedback systems based on the minimum gains of the open-loop

systems. An example is also provided to illustrate the usageof the large gain theorem.
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The last chapter, Chapter7, is the usage of the methods introduced in Chapter4 in inves-

tigating disturbance attenuation of closed-loop systems.There is no doubt that disturbance

attenuation is one of the most important objectives in any closed-loop system. Therefore, it

is important to quantify the influence of various inputs on various signals inside the system

and develop a tool to calculate such quantities.

The system of interest is a multitank system, consisting of three tanks placed one above

another. Due to gravity, the liquid flows through the tanks. The objective of the control

system is to control the level of the liquid in the middle tankby the flow rate of the liquid

entering to the top tank. We study the effect of a disturbancesignal, which enters through

the output of the plant, on the state of the closed-loop system. The chapter starts with

the identification of the plant by the gray box method and continues by investigating the

disturbance attenuation of the system.

1.2.2 TheζA and ζAB Representations

The ζA andζAB representations are equivalent structures of nonlinear systems, which in-

volve only an input-output structure. In this setting, the initial states representing initial

conditions is represented as an input. In these representations, a nonlinear system is ar-

ranged as a feedback interconnection of a memoryless nonlinearity and a linear system

with the initial state as an input signal. Although interconnection of a memoryless nonlin-

earity with a linear system has been widely used in literature, the way the initial state is

dealt with is the main difference between our decompositionand traditional ones. InζA

andζAB representations, the initial state contributes to the feedback interconnection as an

exogenous input while in traditional methods, any change inthe initial state is handled by

defining a new operator.

Consider the following systems:

N1 : ẋ(t) = f1(t, x(t)) (1.1)

N2 : ẋ(t) = f2(t, x(t), u(t)) (1.2)

wheref1 andf2 are locally Lipschitz.N1 is an unforced system andN2 is a forced one. In

Chapter2, it is shown thatN1 is equivalent to the structure depicted in Fig.1.1(a)andN2 is

equivalent to the ones shown in Fig.1.1(b)and Fig.1.1(c). Structures in Fig.1.1(a)and Fig

1.1(b)are calledζA representation and the one in Fig.1.1(c) is calledζAB representation.

The operatorsΦ, Γ, Ω andΘ are introduced in Chapter2. These representations are widely

used in all other chapters of this thesis.
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Figure 1.1:ζA andζAB representations.

1.2.3 Stability of Nonlinear Systems

The fact that theζA and ζAB representations convert a nonlinear system with non-zero

initial state to a combination of a memoryless nonlinearityand a linear system with some

input signals and the way the initial state is handled by these representations provide a

novel viewpoint on all aspects in investigating nonlinear systems. Stability as one of the

challenging issues in design and analysis of nonlinear systems can also be studied by these

new tools. In Chapter3, a new framework is developed for the analysis of stability of

systems by theζA andζAB representations. The effectiveness of this usage is originated in

the fact that using these representations, stability of nonlinear systems with non-zero initial

states can be investigated by the input-output stability methods and stability is interpreted

as input-output stability of the resulting feedback systems.

The main contributions of Chapter3 are Theorems3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.3.1, 3.3.2

and3.3.3. Theorems3.2.1and3.2.2provide new methods to check stability in the sense of

Lyapunov for an unforced nonlinear system by norm of some relevant operators; without

finding any Lyapunov-like function. For local stability, Theorem3.2.3can be used to find

some local areas,∆ andΥ, if the initial statex0 is in ∆, then the state will stay inΥ.

Theorem3.2.4is asymptotic version of Theorem3.2.3. Roughly speaking, Theorem3.3.1is

an extension of Theorem3.2.1to forced systems. Similarly, Theorem3.3.2is the extension

of Theorem3.2.3to forced nonlinear systems. For asymptotic stability of forced nonlinear
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systems in a local sense, Theorem3.3.3provides the aforementioned∆ andΥ regions.

1.2.4 The Induced Norm of Nonlinear Systems

Most of the computational techniques developed for nonlinear systems are restricted to a

narrow class of nonlinear systems for which a particular function, e.g. Lyapunov function

or storage function, can be found. Unfortunately, there is not a straight-forward method to

find such functions and they can usually be obtained by trial and error [27] [24]. Computing

theLp operator norm of a nonlinear system is not an exception. In this work, we propose

a method to compute an upper bound on theL1, L2 andL∞ norms of a class of nonlinear

systems. The method is based on theζA andζAB representations of nonlinear systems. The

first proposed theorem in this context is Theorem4.1.1which provides an upper bound on

inducedLp norms. The next theorem, Theorem4.1.2gives tighter bound for the casep = 2.

Both theorems suffer from a restrictive condition, namely4.4. Theorem3.3.2can be used

to overcome the restriction with the cost of providing only local conditions, i.e. an upper

bound on the system output is derived for bounded input and initial state. This method is

restricted toL∞ induced norm.

1.2.5 The Gap Metric

Stability and performance of feedback control systems are considerably impacted by model

uncertainty. Unlike the linear time-invariant (LTI) systems, where much work has been

done to study this effect, the topic for nonlinear systems isquite immature. The gap metric is

one of the useful tools to investigate the effect of model uncertainty on control systems. For

LTI systems, it has been shown that a perturbed system can be stabilized by any controller

which is designed for the nominal system if and only if the distance between the perturbed

system and the nominal system is small in the gap metric. The gap metric is also extended

to a pseudo-metric on nonlinear operators [13].

The computation of the gap metric for LTI system was developed by Georgiou [12].

Unlike the LTI system case, there is no generally applicablemethod of computing the gap

metric for nonlinear systems. In fact, there are only a few examples in literature for the

computation of the gap metric. Moreover, those methods are highly dependent upon the

case of interest. This is also the case for the correspondingstability margin which can be

used to determine the ball of uncertainty in the sense of the gap metric.

In Chapter5, we propose a method to compute the gap metric and the corresponding

stability margin for a class of nonlinear systems. The method is based onζA and ζAB
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Figure 1.2: The feedback system.

representations. The key results are Theorems5.3.1and5.3.2which provide upper bounds

on the gap metric and the stability margin, respectively. Weuse the methods proposed in

Chapter4 to calculate the bounds. An example is also provided to illustrate the effectiveness

of the results and comparison between the direct computation and the suggested methods.

1.2.6 Large Gain Theorem

One of the key results in the input-output stability theory is the small gain theorem, which

provides a sufficient condition for stability of interconnected systems. Roughly speaking,

the theorem states that the feedback loop will be stable if the loop gain is less than one.

For the feedback system depicted in Fig.1.2, the small gain theorem states that the closed

loop system is stable ifγ(H1) · γ(H2) < 1 whereγ(·) denotes the gain of operators. This

simple rule has been a basis for numerous stabilization techniques such as nonlinearH∞

control [15].

In our approach, we first define the minimum gain of an operatorν(·) as

ν(H) = inf
06=u∈U

‖(Hu)T ‖
‖uT ‖

(1.3)

whereH : U → Y is an operator,(·)T denotes the Truncation operator, the infimum is taken

over all u ∈ U and allT in R+ for which uT 6= 0. Then, some of the properties of the

minimum gain are derived and its computation for some cases is discussed. Particularly, it

has been showed that the minimum gain satisfies thepositivityand thepositive homogeneity

properties but fails to satisfy the triangle inequality. Finally, the large gain theorem, The-

orem6.3.1, is stated. Roughly speaking, the large gain theorem asserts that the feedback

loop will be stable if the minimum loop gain is greater than one. For the feedback system

depicted in Fig.1.2, the large gain theorem states that the closed loop system isstable if

ν(H1) · ν(H2) > 1.

1.2.7 The Multitank System

To show applicability and effectiveness of the proposed methods in Chapter4, we apply

Theorem3.3.2 to study disturbance attenuation of a closed loop system. The system of
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Figure 1.3: Configuration of the multi-tank system.

interest, which is called Multitank system, consists of three tanks placed one above another

and due to gravity, the liquid flows through the tanks. The toptank has a constant cross

section while the other two have variable cross sections as shown in Fig. 1.3. A pump

is used to circulate liquid from the supply tank into the upper tank. We assume that a

proportional controller is used to control the level of the liquid in the middle tank by the

flow rate of the liquid entering to the top tank.

In chapter7, which devotes to investigating disturbance attenuation of the controlled

Multitank system, first we derive the mathematical model of the open loop system using

physics of the plant. The model, which is nonlinear, consists of four parameters that are

depend on the configuration of the system. After running someexperiments on the plant

and collecting data, we use the gray box identification method to identify the parameters.

Finally, the disturbance attenuation of the system is investigated by the proposed method in

Theorem3.3.2. A summary of results is presented in Table7.2.

1.3 Contributions

The content of this thesis has been published and presented in the following international

journals and conferences:

• Chapter 3: A significant part of this chapter was published inIET Control Theory &

Applications [50] and IEEE Conference on Decision and Control, San Diego, 2006

[49].
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• Chapter 4: The contents of this chapter were published in American Control Con-

ference, New York, 2007 [54] and accepted for publication in IEEE Transaction on

Automatic Control [51].

• Chapter 5: The contents of this chapter were published in American Control Confer-

ence, Seattle, 2008 [52].

• Chapter 6: The contents of this chapter were published in American Control Confer-

ence, Seattle, 2008 [53].
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Chapter 2

ζA and ζAB Representations

2.1 Introduction

Almost all dynamical systems encountered in nature are ruled by nonlinear characteristics

and linear models are usually used in order to simplify analysis. Although, for most appli-

cations linear models are accurate enough to be used to represent systems in a small region,

they fail to provide accurate results when larger operatingregion is needed to be considered.

In this section, first, we introduce the notation and presentsome preliminaries results.

Next, a new representation for unforced nonlinear systems,calledζA representation, is in-

troduced. TheζA representation is an equivalent structure of an unforced nonlinear system,

which involves only an input-output structure. The initialstate is also represented by an in-

put in theζA representation. Finally, an elegant extension of theζA representation to forced

systems, called theζAB representation, is presented.

2.2 Background

In general, nonlinear representations can be classified into three types [4]:

• system input-output representation,

• state-space representation, and

• model-free representation.

In the input-output representation, the input-output behavior of a system without any state is

considered. In this representation, systems are assumed asmappings from an input space of

functions into an output space. Using this approach, one of the well-accepted and widely-

used methods to study stability of systems is developed [27] [42] [56] [32]. The state-

space representation, on the other hand, highlights statesof systems. In this representation,
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the dynamic of the system is represented by some states affected by the inputs and the

output depends on both the states and inputs [24] [27]. Nonlinear systems, which cannot

be modeled by the mentioned methods, might be represented bymodel-free representations

[4].

In the proposed method, a nonlinear system is arranged as a feedback interconnection

of a memoryless nonlinearity and a linear system with initial state as an input signal. The

main difference between our decomposition and traditionalones is in the way initial state

is dealt with. In our method, initial state contributes to the feedback interconnection as an

exogenous input while in traditional methods, any change ininitial state is handled by defin-

ing a new operator. In our approach, since initial state is considered as an input, stability

of unforced nonlinear system can be investigated by the input-output stability methods and

stability of the nonlinear system is interpreted as the input-output stability of the resulting

feedback system.

2.3 Notation, Preliminaries, and Computation

2.3.1 Notation

Let R andC denote the fields of real and complex numbers, respectively.Rn denotes the

space ofn×1 real vectors. The Euclidean norm inRn is denoted by‖ ·‖. In×n denotes the

n×n identity matrix. LHP and RHP stand for left and right half plan of the complex plane,

respectively. LetBp(c, ξ) denote the open ball with centerc and radiusξ with normp, i.e.

B
p(c, ξ) := {x| ‖x− c‖p < ξ}. Lr

p denotes Lebesguep-space ofr-vector valued functions

on [0,∞], with norm‖ · ‖ defined as‖f‖p :=
(∫ ∞

0 ‖f(t)‖p dt
)1/p

for 1 ≤ p ≤ ∞ and

‖f‖∞ := esssupt∈R ‖f(t)‖. Usuallyr is a finite integer; we dropr and writeLp instead

of Lr
p. To distinguish among various norm notations, we indicate the space as a subscript

for the norm, such as‖ · ‖Rn or ‖ · ‖Lp . Whenever the space is not mentioned, norms with

t argument denote Euclidean norm att and withoutt denote theLp norm wherep is as a

general number or can clearly be understood from the text. Let TT denotes the Truncation

operator: forf(t) , 0 ≤ t < ∞, TT f(t) = f(t) on [0, T ], and zero otherwise. We also

denote the truncation off(t) by fT (t) := TT f(t). For an operatorλ : Lp → Lp, let

γp(λ) stand for the induced norm (gain) of the operator defined as

γp(λ) := sup
0 6= u∈Lp

‖(λu)T ‖
‖uT ‖

(2.1)

where the supremum is taken over allu ∈ Lp and allT in R+ for whichuT 6= 0. Let γ(λ)

denoteγp(λ) for all 0 < p ≤ ∞.
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Definition 2.3.1. Maximum overshootof a signalx(t) is

MP :=
‖x‖L∞

‖x(0)‖∞
(2.2)

In this thesis, we will frequently use operator gains. In this section, we take a brief look

at some of the computational methods for norms.

2.3.2 Continuous-time, LTI operators

Let g(t) be the impulse response of a stable linear time invariant (LTI) system. We will

denote byΓ the convolution operator defined byΓ(z(t)) =
∫ t
0 g(t− τ)z(τ)dτ . To compute

the gain ofΓ, we use the following lemma that is taken from [2], page 234 (Table 1):

Lemma 2.3.1. Suppose thatΓ is a linear time-invariant stable operator with impulse re-

sponseg(t) : R+ → Rn×n. LetG(s) denotes the Laplace transform ofg(t). Define

g̃n×n :=











‖g11‖L1 ‖g12‖L1 · · · ‖g1n‖L1

‖g21‖L1 ‖g22‖L1 · · · ‖g2n‖L1

...
...

. ..
...

‖gn1‖L1 ‖gn2‖L1 · · · ‖gnn‖L1











(2.3)

Then

γ1(Γ) = ‖g̃‖1 (2.4a)

γ∞(Γ) = ‖g̃‖∞ (2.4b)

γ2(Γ) = ‖G(s)‖H∞ (2.4c)

where‖ · ‖H∞ denotesH∞ norm. Some standard algorithms to compute theH∞-

norm can be found in several references. See for example [57]. To compute‖gij‖L1 =
∫ ∞
0 |gij(t)|dt for strictly proper systems, any numerical integral approximation method,

e.g. rectangular and trapezoidal, can be used.

2.3.3 Autonomous and non-autonomous memoryless nonlinearities

In this section, the operator of interest is in the form ofΦ(t, x(t)), whereΦ(·, ·) : R+ ×
Rn → Rn. It is also assumed thatΦ(t, 0) = 0.

Lemma 2.3.2. Suppose that there exists a constantµp such that

‖Φ(t, x)‖p ≤ µp‖x‖p, ∀x ∈ R
n, ∀t ≥ 0 (2.5)

thenγp(Φ) ≤ µp.
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Proof. See reference [41] pp. 40.

With direct computation, the∞-norm,2-norm and1-norm of a memoryless autonomous

nonlinear operator can be found approximately with arbitrary accuracy. MATLAB can also

be used to find the aforementioned norms.

Example 2.3.1.Consider the following memoryless nonlinearity.

Φ(x) =





Φ1(x)
Φ2(x)
Φ3(x)



 =





−0.2x2 + sin(0.5x2) − sin (0.5x3)
−0.2x1 + sin(0.5x1) − sin (0.5x3)

1 − cos (0.5x1) + sin(0.5x2)





wherex =
[

x1 x2 x3

]T
. Let

g(x1, x2, x3) :=
‖x‖2

‖Φ(x)‖2
=

√

x2
1 + x2

2 + x2
3

√

Φ2
1(x1, x2, x3) + Φ2

2(x1, x2, x3) + Φ2
3(x1, x2, x3)

.

Using the “fminsearch” command of MATLAB, the minimum ofg(x1, x2, x3) is 1.2678

and consequentlyγ2(Φ) ≈ 1
1.2678 = 0.7888.

2.3.4 Ω-operator

Definition 2.3.2. For continuous-time, we define operatorΩ as

Ω(x(t)) := eAtx0 (2.6)

whereA ∈ Rn×n with all eigenvalues in LHP andx(0) = x0. Similarly, for discrete-time

Ω(x(t)) := Atx0 (2.7)

whereA ∈ Rn×n with all eigenvalues inD andx(0) = x0.

Lemma 2.3.3. If xi(0) < ∞ ,∀i = 1 · ·n thenΩ(x) ∈ Xp.

Proof. The proofs for continuous-time and discrete-time are the same and only the first one

comes here. Sincexi(0) < ∞, ‖x(0)‖p < ∞. On the other hand, because all eigenvalues of

A are in LHP,‖eAt‖p < ∞, ∀t ≥ 0. SinceΩ(x) = eAtx0, ‖Ω(x)(t)‖p < ‖eAt‖p‖x0‖p <

∞. This completes the proof forp = ∞. Forp = [1,∞), in addition,eAt is a continuous

time signal and vanishes ast → ∞. Therefore‖eAt‖p
Lp

=
∫ ∞
0 ‖eAt‖p

pdt < ∞. We

have‖Ω(x)‖Lp =
∫ ∞
0 ‖eAtx0‖p

pdt ≤
∫ ∞
0 ‖eAt‖p

p‖x0‖p
pdt = ‖x0‖p

p ·
∫ ∞
0 ‖eAt‖p

pdt =

‖x0‖p
p · ‖eAt‖p

Lp
< ∞, and consequently,Ω(x) ∈ Lp.

We have the following lemma about the gain ofΩ.
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Lemma 2.3.4. For continuous-time, theL∞-gain ofΩ, which is defined by (2.6), is

γ∞(Ω) = ‖eAt‖L∞ (2.8)

And for discrete-time, whereΩ defined by (2.7),

γ∞(Ω) = ‖At‖ℓ∞ (2.9)

Proof. The proofs for continuous-time and discrete-time are the same and only the first one

comes here. First we show that‖eAt‖L∞ is an upper bound forγ∞(Ω).

‖eAtx0‖L∞ ≤ ‖eAt‖L∞‖x0‖∞ ≤ ‖eAt‖L∞‖x(t)‖L∞ (2.10)

Next, we show that this upper bound is achievable for an inputsignal. Letx(t) = In×n ∀t ≥
0, then‖x(t)‖L∞ = 1 and‖eAtx0‖L∞ = ‖eAt‖L∞ . This completes the proof.

Lemma 2.3.5. The following equations are true forΩ:

(i) ‖Ω(x)‖L2 = ‖eAt‖L2 · ‖x0‖2 for continuous-time

(ii) ‖Ω(x)‖ℓ2 = ‖At‖ℓ2 · ‖x0‖2 for discrete-time

(iii) ‖Ω(x)‖L1 ≤ ‖eAt‖L1 · ‖x0‖1 for continuous-time

(iv) ‖Ω(x)‖ℓ1 ≤ ‖At‖ℓ1 · ‖x0‖1 for discrete-time

Proof. Since proofs are similar for continuous-time and discrete-time, we only prove (i)

and (iii ) here.

(i).

‖Ω(x0)‖2
L2

=

∫ ∞

0
(eAtx0)

∗ (eAtx0) dt

=

∫ ∞

0
x∗

0 (eAt)∗ (eAt)x0 dt

= x∗
0

∫ ∞

0
(eAt)∗ (eAt) dt x0

= x∗
0 ‖eAt‖2

L2
x0

= ‖x0‖2
2 ‖eAt‖2

L2
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(iii ).

‖Ω(x0)‖L1 =

∫ ∞

0
‖eAtx0‖1 dt (2.11)

≤
∫ ∞

0
‖eAt‖1‖x0‖1 dt

= ‖x0‖1

∫ ∞

0
‖eAt‖1 dt

= ‖x0‖1‖eAt‖L1

Lemma2.3.5gives the2-norm gain ofΩ-operators and an upper bound for the1-norm

gain. Denoting the upper bound ofγ1 by γ̂1, we have

γ2(Ω) = ‖eAt‖L2 (2.12a)

γ̂1(Ω) := ‖eAt‖L1 (2.12b)

for continuous-time and

γ2(Ω) = ‖At‖ℓ2 (2.12c)

γ̂1(Ω) := ‖At‖ℓ1 (2.12d)

for discrete-time.

Example 2.3.2.Let

A =









−0.225 −0.175 0.075 0.525
0.200 −0.400 −0.150 0.200
0.200 −0.400 −0.400 0.200
0.125 −0.125 −0.125 −0.625









Fig. 2.1shows‖eAt‖∞ and‖At‖∞ versust. Computation shows thatγ∞(Ω) ≈ 1.4351 for

continuous-time andγ∞(Ω) = 1.2 for discrete-time.

Lemma 2.3.6. For anyΩ-operator,γ∞(Ω) ≥ 1.

Proof. Since fort = 0, eAt = I andAt = I. It turns out that‖eAt‖L∞ ≥ 1 and‖At‖ℓ∞ ≥
1. Consequently,γ∞(Ω) ≥ 1.
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Figure 2.1:‖eAt‖∞ and‖At‖∞ versust in Example2.3.2.

2.4 ζA Representation

2.4.1 Continuous-time systems

Assume that the nonlinear system of interest is

ẋ(t) = f(t, x(t)) (2.13)

wheref : R+ × Rn → Rn is locally Lipschitz. It is well-known, [27], that stability for

other points or any desired trajectory can be transformed tothe study of the stability of the

origin. LetA ∈ Rn×n whose all eigenvalues are in LHP. Define

Φ(t, x) : R+ ×R
n → R

n

Φ(t, x) := f(t, x) − Ax (2.14)

and consequently

ẋ = Ax + Φ(t, x) (2.15)

The block diagram of (2.15) is depicted in Fig.2.2. Φ(t, x) is a non-autonomous static

nonlinearity andΛ is a linear system with the following state equation.

Λ : ẋ = Ax + z (2.16)

It is well-known, e.g. [3], that the response ofΛ is

x(t) = eAtx0 +

∫ t

0
eA(t−τ)z(τ) dτ (2.17)
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Figure 2.2: Block diagram for (2.15) and (2.24).

which reveals thatΛ is not a linear operator forx0 6= 0. Let

Γ : Lp → Lp, Γ(z(t)) :=

∫ t

0
eA(t−τ)z(τ) dτ, (2.18a)

and

Ω : Lp → Lp, Ω(x(t)) := eAtx(0) (2.18b)

SinceA is a stable matrix, it is easy to prove thatΓ : Lp → Lp, Ω : Lp → Lp and also

Γ are linear autonomous operators andΩ is aΩ-operator which is defined in Section2.3.4.

The state space representations forΓ is

Γ :

[

A
I

I
0

]

(2.19)

Let Λx0 denoteΛ with the initial conditionx0. Therefore,

Λx0(z(t)) := eAtx0 +

∫ t

0
eA(t−τ)z(τ) dτ (2.20)

substituting (2.18) and (2.20),

Λx0(z(t)) = Ω(x0(t)) + Γ(z(t)) (2.21)

SinceΦ is static, the structure shown in Fig.2.2can be represented by its equivalent, which

is depicted in Fig.2.3. This representation of the nonlinear system will be referenced to as

theζA representation with operator ordered set[Φ,Γ,Ω].

2.4.2 Discrete-time systems

In this case, we assume that the nonlinear system of interestis

x(t + 1) = f(t, x(t + 1)) (2.22)
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Figure 2.3: Equivalent block diagram using new operators.

wheref : Z+ ×Rn → Rn is locally Lipschitz. LetA ∈ Rn×n have all of its eigenvalues

inside the unit circle. Define

Φ(t, x) : Z+ ×R
n → R

n

Φ(t, x) := f(t, x) − Ax (2.23)

and consequently

x(t + 1) = Ax(t) + Φ(t, x(t)) (2.24)

The block diagram of (2.24) is depicted in Fig.2.2. Φ(t, x) is a static nonlinearity andΛ is

a linear system with the following state equation.

Λ : x(t + 1) = Ax(t) + z(t) (2.25)

It is well-known, e.g. [8], that the response ofΛ is

x(t) = At x0 +

t
∑

l=0

At−l−1z(l) (2.26)

which reveals thatΛ is not a linear operator forx0 6= 0. Let

Γ : ℓp → ℓp, Γ(z(t)) :=
t

∑

l=0

At−l−1z(l), (2.27a)

and

Ω : ℓp → ℓp, Ω(x(t)) := Atx(0) (2.27b)

SinceA is a stable matrix, it is not hard to prove thatΓ : ℓp → ℓp, Ω : ℓp → ℓp and also

Γ is a linear autonomous operator andΩ is aΩ-operator defined in Section2.3.4. The state

space representations forΓ is

[

A
I

I
0

]

. Let Λx0 denoteΛ with the initial condition equals

x0. Therefore,

Λx0(z(t)) := At x0 +
t

∑

l=0

At−l−1z(l) (2.28)
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substituting (2.27) in (2.28),

Λx0(z(t)) = Ω(x(t)) + Γ(z(t)) (2.29)

Similar to the continuous-time case, sinceΦ is static, the structure shown in Fig.2.2 can

be represented by its equivalent, which is depicted in Fig.2.3. This representation of

the discrete nonlinear system will be referenced to as theζA representation with operator

ordered set of[Φ,Γ,Ω].

2.5 ζAB Representation

2.5.1 Continuous-time systems

For forced nonlinear systems, suppose that the system of interest is

N : ẋ(t) = f(t, x(t), u(t)) (2.30)

wheref : R × Rn × Rm → Rn is locally Lipschitz. LetA ∈ Rn×n andB ∈ Rn×m.

Define

Φ(x, u, t) := f(t, x, u) − Ax − Bu. (2.31)

Let

Θ : Lp → Lp, Θ(u(t)) :=

∫ t

0
eA(t−τ)Bu(τ) dτ, (2.32)

andΓ andΩ be defined in the same formulas as in (2.18). The nonlinear system is equivalent

to the structure represented in Fig.2.4(a). This representation of the nonlinear system is

called theζAB representation with ordered operator set[Φ,Γ,Θ,Ω].

It is important to note that

[

A
I

I
0

]

and

[

A
I

B
0

]

are state-space realizations forΓ and

Θ, respectively. SinceA andB are chosen arbitrary,ζA andζAB representations are not

unique. A useful choice for theζAB representation isB = 0, which impliesθ = 0 and

simplifies theζAB structure as the structure shown in Fig.2.4(b). For forced systems, this

representation is also calledζA representation.

2.5.2 Discrete-time systems

Similarly, for a forced nonlinear system with the followingstate equation

N : x(t + 1) = f(t, x(t), u(t)) (2.33)

wheref : Z+ × Rn × Rm → Rn is locally Lipschitz, letA ∈ Rn×n have all of its

eigenvalues inside the unit circle andB ∈ Rn×m. Define

Φ(x, u, t) := f(t, x, u) − Ax − Bu. (2.34)
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Figure 2.4:ζA andζAB representations for forced systems.

Let

Θ : ℓp → ℓp, Θ(u(t)) :=

t
∑

l=0

At−l−1Bu(l) (2.35)

andΓ andΩ be defined in the same formulas as in (2.27). The nonlinear system is equivalent

to the structure represented in Fig.2.4(a). This representation of the nonlinear system is

called theζAB representation with ordered operator set[Φ,Γ,Θ,Ω].

It is important to note that

[

A
I

I
0

]

and

[

A
I

B
0

]

are state-space realizations forΓ and

Θ, respectively. SinceA andB are chosen arbitrary,ζA andζAB representations are not

unique. A useful choice for theζAB representation isB = 0, which impliesθ = 0 and

simplifies theζAB structure as the structure shown in Fig.2.4(b). For forced systems, this

representation is also calledζA representation.
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Chapter 3

Stability

3.1 Introduction

The traditional approach to study stability involves Lyapunov methods [27] [40] [24]. In

these methods, the notion of stability is restricted to unforced systems and stability ofequi-

librium points. The analysis requires finding a so-called Lyapunov function, whose deriva-

tives along the system trajectories must be negative definite, or semi-definite. Finding this

function is usually challenging, thus limiting the application of this method.

An alternative way to study the stability of nonlinear systems is the so-calledinput-

output stability approach. The input-output theory of systems wasinitiated in the 1960s

by G. Zames and I. Sandberg [56] [32]. Unlike the Lyapunov method, the input-output

stability theory considers systems as mappings from an input space of functions into an

output space. This method suffers from a problem similar to the Lyapunov method. Indeed,

the study of stability in this method involves finding a storage function, which is as difficult

to find as a Lyapunov function.

In [35], bridging in some sense the two classical notions of stability, the concept ofinput

to state stability (ISS)was introduced. Roughly speaking, in an ISS system, if the inputs

are small, then system trajectories converge to a ball in state space, whose radius depends

upon the input size, see [33], [34] and the references therein for more details. This notion

differs from the input-output theory mainly in that it takesinto account the initial states,

which are ignored in the input-output stability. It is also different from stability in the sense

of Lyapunov because it considers forced systems. Checking for ISS is usually very difficult

as it requires finding a so-called ISS Lyapunov function withvery stringent conditions.

Along with the aforementioned three major approaches, stability of systems, in its var-

ious forms, continues to inspire researchers. Motivated bythe classical small gain theo-

rem,“nonlinear” small gain theorems are discussed in [21], [39], and [18]. The notion of
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non-uniform in time robust global asymptotic output stability is introduced in [22] for a

wide class of systems. An extension of the second method of Lyapunov to study the stabil-

ity of infinite-dimensional discrete-time systems is presented in [29].

In this chapter, we study stability of nonlinear systems. Using theζA representation

for nonlinear systems, we develop a new framework for the analysis of stability of systems

based on operator-theoretic methods. In our approach, since initial state is considered as an

input, stability of unforced nonlinear system can be investigated by the input-output stability

methods and stability of the nonlinear system is interpreted as the input-output stability of

the resulting feedback system. After decomposing the system, sufficient conditions for

global and local stability of the system are derived using classical tools. For local stability,

the notion ofstability regionsis introduced and is shown to be useful in applications. A

method to compute the stability region is also developed. Itis important to note that our

method does not require finding a Lyapunov-type function.

This chapter has two sections. The first section is devoted tostability of unforced sys-

tems. In the first part, theζA representation is used to provide sufficient conditions for

global stability and global asymptotic stability of unforced nonlinear systems in terms of

conditions on the gain of certain operators. In the second part of the section, local stability

of unforced nonlinear systems is studied with a new definition of region of attraction, which

extends into two regions. Sufficient conditions for local stability in term of those regions

are derived. Some examples are given to show the effectiveness of the results.

In the second section of this chapter, stability of forced nonlinear system is studied.

This section also consists of two parts. In the first part, global stability and in the second

part local stability of forced nonlinear systems are considered. Using theζA andζAB rep-

resentations of nonlinear systems, some sufficient conditions for global and local stability

of forced nonlinear systems are derived.

3.2 Unforced Systems

3.2.1 Global Stability

The following theorem provides a sufficient condition for stability of unforced nonlinear

systems.

Theorem 3.2.1.Given a continuous time system of the form (2.13) with ζA representation

of [Φ,Γ,Ω],

(i) if γ∞(Φ) · γ∞(Γ) < 1 then the system is globally stable in sense of Lyapunov.
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(ii) if, in addition to (i), γ2(Φ) · γ2(Γ) < 1 then the system is globally asymptotically

stable in sense of Lyapunov.

The following lemma (e.g [25] pp. 491), which is a corollary of the Barbalat’s lemma,

will be used in the proof.

Lemma 3.2.1. Consider the functionφ : R+ → R. If φ, φ̇ ∈ L∞, andφ ∈ Lp for some

p ∈ [1,∞), then lim
t→∞

φ(t) = 0.

Proof.

(i) In this section of the proof all of the norms are either∞-norm orL∞-norm, depending

on the case. Because bothΩ andΓ map zero into zero, their biases are zero. According to

Lemma2.3.3, ‖x0‖ < ∞ implies thatd ∈ L∞. According to the small gain theorem, e.g.

[27], γ∞(Φ).γ∞(Γ) < 1 implies that all internal signals of the system are inL∞. To show

that the system is stable in the sense of Lyapunov, it is enough to show that for any givenǫ

there existsδ such that‖x0‖Rn < δ =⇒ ‖x(t)‖Rn < ǫ for all t ≥ 0. Without loss of gener-

ality, it can be assumed that the norm inRn is ‖.‖∞, e.g. [40]. We claim that for any given

ǫ, δ can be chosen asδ < 1−γ∞(Φ)γ∞(Γ)
γ∞(Ω) ǫ. To prove this, since‖x0‖ < δ < 1−γ∞(Φ)γ∞(Γ)

γ∞(Ω) ǫ

then‖d(t)‖ ≤ γ∞(Ω)‖x0‖ < (1 − γ∞(Φ)γ∞(Γ)) ǫ. Besides,‖x‖ ≤ ‖d‖ + ‖w‖ and

‖w‖ ≤ γ∞(Φ)γ∞(Γ)‖x‖. Therefore‖x‖ ≤ 1
(1−γ∞(Φ)γ∞(Γ))‖d‖ < ǫ. Since for any givenǫ

there exists someδ < 1−γ∞(Φ)γ∞(Γ)
γ∞(Ω) ǫ, stability is global. It is important to note that since

γ∞(Ω) ≥ 1, γ∞(Φ) ≥ 0 andγ∞(Γ) ≥ 0 then 1−γ∞(Φ)γ∞(Γ)
γ∞(Ω) ≤ 1 andδ ≤ ǫ.

(ii) In this section of proof, all of the norms are either2-norm orL2-norm unless it is

clarified. According to lemma2.3.5(i), ‖x0‖ < ∞ implies that‖d‖ = γ2(Ω).‖x0‖ < ∞
and consequentlyd ∈ L2. According to small gain theorem, e.g. [27], γ2(Φ).γ2(Γ) < 1

implies that all internal signals of the system are inL2. Therefore,x ∈ L∞ ∩ L2 and

consequently there exists closed setD such thatx(t) ∈ D for all t. Assuming thatf(x, t)

is locally Lipschitz inD, there existsµ such that

∀ x1, x2 ∈ D ‖f(x2, t) − f(x1, t)‖∞ ≤ µ‖x2 − x1‖∞ (3.1)

Takingx1 = 0 andx2 = x(t)

∀ x(t) ∈ D ‖f(x(t), t)‖∞ ≤ µ‖x(t)‖∞ (3.2)

Sincex ∈ L∞, ‖x(t)‖∞ ≤ ‖x‖L∞ for all t. Substituting in (3.2), ‖ẋ(t)‖∞ = ‖f(x(t), t)‖∞ ≤
µ‖x‖L∞ for all t. In turn, this means thaṫx ∈ L∞. Now, we use the corollary of the Bar-

balat’s lemma, i.e.3.2.1. Assumingφ(t) := ‖x(t)‖2
2 = xT (t)x(t), it is trivial thatφ ∈ L∞.
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Sinceẋ ∈ L∞, we have

φ̇(t) = ẋT (t)x(t) + xT (t)ẋ(t) < ∞, ∀ t (3.3)

which meansφ̇ ∈ L∞. On the other hand,

∫ ∞

0
|φ(t)|dt =

∫ ∞

0
‖x(t)‖2

2dt = ‖x‖2
L2

< ∞ (3.4)

that reveals thatφ ∈ L1. Corollary 3.2.1 implies that lim
t→∞

φ(t) = 0 and consequently

lim
t→∞

x(t) = 0.

Theorem 3.2.2.Given a discrete time system of the form (2.22) with ζA representation of

[Φ,Γ,Ω],

(i) if γ∞(Φ) · γ∞(Γ) < 1 then the system is globally stable in sense of Lyapunov.

(ii) if, in addition to (i), γ2(Φ) · γ2(Γ) < 1 then the system is globally asymptotically

stable in sense of Lyapunov.

Proof. The proof follows the same lines as the proof of Theorem3.2.2and is omitted. It

is important to note that in the discrete-time domain,x ∈ ℓ2 ∩ ℓ∞ implies thatx(t) → 0

as t → ∞ and there is no need for the second part of the proof where the corollary of

Barbalat’s lemma is used.

Theorems3.2.1and3.2.2can be used to check the stability of nonlinear systems with

the help of the mentioned computation methods. Moreover,A plays the role of a free

parameter. It is important to note that both theorems state sufficient conditions for stability.

This implies that it is sufficient to find just oneA which satisfies the conditions of the

theorems. If such a matrixA is found the system is stable even if there exists otherA

matrices which fail the conditions. If such a matrixA cannot be found or does not exist, the

stability or instability of the system can not be proven using these theorems.

To compare the results with LTI systems, consider the following perturbed LTI system

ẋ = (M + ∆M)x (3.5)

Let Φ(x) = (M + ∆M + αI)x whereα > 0. Consequently,A = −αI andΓ defined as

(2.18a) or equivalently (2.19). To computeγ∞(Γ), Lemma2.3.1can be used. The impulse

response ofΓ is G(s) = 1
s−αI andgii(t) = e−αt andgij(t) = 0 for i 6= j. Equation (2.3)

implies‖g̃ii(t)‖ = 1 and‖g̃ij(t)‖ = 0 for i 6= j. Consequently,γ2(Γ) = 1
α andγ∞(Γ) = 1.
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On the other hand,γ∞(Φ) = ‖M+∆M+αI‖∞. According to Theorem3.2.1, the stability

condition is‖M + ∆M + αI‖∞ < 1 or equivalentlyλmax(M + ∆M) < −α < 0, where

λmax denotes the maximum eigenvalue. This is to say that the perturbation∆M should not

move the eigenvalues of the system to RHP orjω axis.

Example 3.2.1.Consider the following nonlinear system

ẋ = f(x) =

{

0.25x1 − x2 − sat(x1) − sat(x2)

4x1 − 3x2 − sat(x1) − sin(x2)
(3.6)

where sat(x) = sgn(x) min(1, |x|) and sgn(·) is the signum function. Let

A =

[

−0.25 −1.5
3.5 −3.5

]

. (3.7)

Therefore,

Φ(x) = f(x) − Ax =

{

0.5x1 + 0.5x2 − sat(x1) − sat(x2)

0.5x1 + 0.5x2 − sat(x1) − sin(x2)
.

Figure3.1shows the plot of‖Φ(x)‖
‖x‖ versus‖x‖ established at106 randomly chosen points.

Using methods described in Sections2.3.2to 2.3.4, we haveγ∞(Φ) = 1, γ∞(Γ) = 0.9531,

γ2(Φ) = 1, andγ2(Γ) = 0.8217. Sinceγ∞(Φ) γ∞(Γ) = 0.9531 < 1, the system is

globally stable. More interestingly,γ2(Φ) γ2(Γ) = 0.8217 < 1 implies that the system is

asymptotically globally stable. To illustrate the system response, the phase portrait as well

as the vector field diagram are depicted in Fig.3.2.

Remark3.2.1. It is important to notice that the converse Lyapunov theorem[24] [27] guar-

antees that there exists a Lyapunov function for any stable system. However, there is not

a general method to find it. Indeed, the process of finding or constructing a Lyapunov

function can be challenging. For instance, the trivial candidate of Lyapunov function, i.e.

V (x) = 1
2(α x2

1 + β x2
2) whereα, β > 0, cannot pass the conditions of Lyapunov functions

in the previous example. To see this,

V̇ (x) = [αx1 βx2] · f(x)

= 0.25α x2
1 + (4β − α)x1 x2 − 3βx2

2

− α x1(sat(x1) + sat(x2)) − β x2(sat(x1) + sin(x2))

(3.8)

Apparently, V̇ (x1, 0) = αx1(0.25x1 − sat(x1)). For anyx1 > max(1, 4α), we have

V̇ > 0; thus,V (x) fails the Lyapunov conditions and cannot be used to prove stability of

the system.
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(a) ‖Φ(x)‖2

‖x‖2

versus‖x‖2

(b) ‖Φ(x)‖∞
‖x‖∞

versus‖x‖∞

Figure 3.1:γ2(Φ) andγ∞(Φ) in Example3.2.1.
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0

1

2
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Figure 3.2: Phase portrait for Example3.2.1.
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Example 3.2.2.Consider the following nonlinear system






ẋ1 = −2x1 + x2 + sin(0.5x2) − sin (0.5x3)
ẋ2 = −x1 − x2 + sin(0.5x1) − sin (0.5x3)
ẋ3 = 1 − x3 − cos (0.5x1) + sin(0.5x2)

(3.9)

Let A =





−2.0 1.2 0
−0.8 −1.0 0

0 0 −1.0



 and

Φ(x1, x2, x3) =





−0.2x2 + sin(0.5x2) − sin (0.5x3)
−0.2x1 + sin(0.5x1) − sin (0.5x3)

1 − cos (0.5x1) + sin(0.5x2)



 (3.10)

Similar to the previous examples, we use the computational methods introduced in Sec-

tion 2.3.1. We plot ‖Φ(x)‖
‖x‖ versus‖x‖ instead of plotting versusx1, x2 andx3. plots are

established at2 × 106 randomly chosen points. As shown in Fig.3.3, γ2(Φ) ≈ 0.8 and

γ∞(Φ) ≈ 0.8. Computation also shows thatγ2(Γ) ≈ 1.000 andγ∞(Γ) ≈ 1.0005. Since

γ∞(Φ) γ∞(Γ) = 0.7938 < 1 and γ2(Φ) γ2(Γ) = 0.7846 < 1, the system is globally

asymptotically stable.

(a) ‖Φ(x)‖2

‖x‖2

versus‖x‖2 (b) ‖Φ(x)‖∞
‖x‖∞

versus‖x‖∞

Figure 3.3: Local gains in Example3.2.2.

3.2.2 Local Stability

Definition 3.2.1. Given a nonlinear system of the form either (2.13) or (2.22), we define

the ordered pair[∆,Υ] as follows:

[∆,Υ] := {∆,Υ ⊂ R
n; x(0) ∈ ∆ ⇒ x(t) ∈ Υ,∀t ≥ 0} (3.11)

We will refer to∆ andΥ as the∆ andΥ regions and collect all[∆,Υ] pairs of a system in

a set denoted byS∆Υ.
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(1)

(3)

(4)

(5)

(6)
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(11)

(2)
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(7)

[∆,Υ] ∈ S∆Υ [∆,Υ] ∈ A∆Υ

Figure 3.4: Acceptable and unacceptable trajectories.

Definition 3.2.2. For a given system, if[∆,Υ] ∈ S∆Υ and for anyx(0) ∈ ∆ we have

x(t) → 0 ast → ∞ then∆ andΥ are called asymptotic regions and we collect all such

pairs inA∆Υ.

Fig. 3.4 shows acceptable and unacceptable trajectories for both[∆,Υ] ∈ S∆Υ and

[∆,Υ] ∈ A∆Υ. As shown in this figure,[∆,Υ] ∈ S∆Υ guarantees that the trajectories

starting from inside of∆, such as (1),(2), and (11), will stay insideΥ. Therefore, trajec-

tories (5) and (6) can never occur because both trajectoriescross the boundary of theΥ

region. Notice that there is no guarantee that trajectoriesstarting inside ofΥ, such as (7),

stay insideΥ. The definition ofS∆Υ assures that trajectories such as (5) and (6) which

start from∆ and go outside ofΥ are not possible. An interesting case is (9). This case is

possible for non-autonomous systems but impossible for autonomous systems. The reason

is that for autonomous systems we can transfert = 0 to anyt = t0. Since this trajectory

passed through∆, we can transfer the starting point to any point on the trajectory which

is also inside∆. With the new starting point,[∆,Υ] ∈ S∆Υ guarantees that the trajectory

will stay insideΥ which is not observed by (9). Therefore, for autonomous systems, any

trajectory, which has intersection with∆, stays insideΥ. Fig. 3.4(b) is very similar to

Fig. 3.4(a). The only difference is that all trajectories starting from δ, such as (1) and (2),

terminate at the origin. For autonomous systems, any trajectory which has a point inside

δ also end at the origin for the same reason explained earlier.Therefore, for autonomous

systems, (3), (4) and (10) (and also (5), (6) and (9)) should also terminate at the origin.

Corollary 3.2.1. If [∆,Υ] ∈ S∆Υ
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• ∆ ⊂ Υ,

• ∆ = Υ implies thatΥ is an invariant set for the nonlinear system.

Proposition 3.2.1. Consider a system withζA representation of[Φ,Γ,Ω]. Assume thatΥ

is a given bounded subset ofRn, i. e. ‖x‖p < ǫ for all x ∈ Υ and p ∈ {2,∞}. Let

0 < δ ≤ 1−γp(Φ)γp(Γ)
γp(Ω) ǫ and

∆ := {x ∈ R
n , ‖x‖p < δ} (3.12)

Then[∆,Υ] ∈ S∆Υ.

Proof. The proof follows a routine similar to the proof of Theorem3.2.1and is omitted.

Proposition3.2.1shows a method to compute[∆,Υ] regions.

Definition 3.2.3. Local gainγD
p (Φ) of a static operatorΦ, wherep ∈ {2,∞}, is the maxi-

mump-norm gain of the operator for all of the members inside the regionD, respectively.

i.e.

γD
p (Φ) = sup

x ∈ D − {0}
∀t ≥ 0

‖Φ(t, x)‖p

‖x‖p
(3.13)

Theorem 3.2.3. Consider a nonlinear system with state space representation of either

(2.13) or (2.22), and let [Φ,Γ,Ω] be a ζA representation. LetMp > γ∞(Ω) be a fixed

number and

D̂ :=







x ∈ R
n | γD̂

∞(Φ) <
1

γ∞(Γ)
(1 − γ∞(Ω)

MP
) ∀t ≥ 0







(3.14a)

Assume thatD is a simply connected subset of̂D that includes the origin. Letξ =

inf
x∈∂D

‖x‖∞ where∂D is the boundary ofD. Let Υ be a ball insideD centered at the

origin with radiusǫ < ξ. i.e.

Υ = {x ∈ D | ‖x‖∞ < ǫ} (3.14b)

and let

∆ :=

{

x ∈ R
n | ‖x‖ < δ, δ :=

1 − γD̂
∞(Φ)γ∞(Γ)

γ∞(Ω)
ǫ

}

(3.14c)

Then,

1. [∆,Υ] ∈ S∆Υ
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2. if x0 ∈ ∆ thenMP is the maximum overshoot ofx(t).

Proof. SinceMp > γ∞(Ω), (3.14a) reveals thatγD̂
∞(Φ)γ∞(Γ) < 1. To prove the theorem

we reason by contradiction. Since we assumed that systems ofour interest are locally

Lipschitz, trajectories of the system are continuous. As a consequence, ifx were to leave

Υ, it should cross the boundary ofΥ. Suppose thatx crosses the boundary ofΥ at t = T ;

then‖TT x‖ = ‖xT ‖ = ǫ. Since the boundary ofΥ is in D, ‖xT ‖ ≤ ‖dT ‖ + ‖wT ‖ ≤
γ∞(Ω)‖x0‖+ γD̂

∞(Φ)γ∞(Γ)‖xT ‖. Then‖xT ‖ ≤ γ∞(Ω)

1−γD̂
∞(Φ)γ∞(Γ)

‖x0‖ < γ∞(Ω)

1−γD̂
∞(Φ)γ∞(Γ)

δ <

ǫ. Which contradicts the fact that‖xT ‖ = ǫ. Therefore,x(t) ∈ Υ; ∀t ≥ 0. That is

[∆,Υ] ∈ S∆Υ. To show the second part, from (3.14a), we have γ∞(Ω)

1−γD̂
∞(Φ)γ∞(Γ)

< Mp. On

the other hand,‖x‖ ≤ γ∞(Ω)

1−γD̂
∞(Φ)γ∞(Γ)

‖x0‖ < Mp‖x0‖

Theorem 3.2.4.Let [Φ,Γ,Ω] be aζA representation for a nonlinear system in the form of

either (2.13) or (2.22). LetΥ := {x ∈ Rn | ‖x‖ < ǫ} and∆ := {x ∈ Rn | ‖x‖ < δ, }. If

[∆,Υ] ∈ S[∆,Υ] andγΥ
2 (Φ).γ2(Γ) < 1 then[∆,Υ] ∈ A[∆,Υ].

Proof. Since[∆,Υ] ∈ S[∆,Υ], any trajectory starting from∆ will stay insideΥ. According

to theζA representation,‖x‖L2 <
1−γΥ

2 (Φ) γ2(Γ)
γ2(Ω) ‖x0‖2 < ∞ and consequentlyx ∈ L2.

For discrete-time systems, sinceγΥ
2 (Φ).γ2(Γ) < 1, ‖x‖ℓ2 < ∞ and as a resultx(t) ∈

ℓ2. Consequentlyx(t) → 0 ast → ∞. It turns out that[∆,Υ] ∈ A[∆,Υ].

For continuous-time systems, Corollary3.2.1should be used. Sincex(t) ∈ Υ for all

t, x ∈ L∞ and consequentlyx ∈ L2 ∩ L∞. The proof, which is omitted here, follows the

same outline as the proof of Theorem3.2.1(ii) with D ≡ Υ.

Corollary 3.2.2. Let [Φ,Γ,Ω] be aζA representation for a nonlinear system in the form of

either (2.13) or (2.22). If there exists a region around the origin̂D whereγD̂
∞(Φ)γ∞(Γ) <

1, then the system is locally stable. If in additionγD̂
2 (Φ)γ2(Γ) < 1, then the system is

locally asymptotically stable.

Proof. SinceγD̂
∞(Φ)γ∞(Γ) < 1, there existsMp > γ∞(Ω) such thatγD̂

∞(Φ) < 1
γ∞(Γ) (1−

γ∞(Ω)
MP

). Let D be a simply connected subset ofD̂ that includes the origin. Letξ =

inf
x∈∂D

‖x‖∞ where∂D is the boundary ofD. For anyǫ that satisfies0 < ǫ < ξ, ∆ and

Υ can be constructed as (3.14) andδ > 0 in (3.14c) can be found. Theorem3.2.3guaran-

tees that[∆,Υ] ∈ S∆Υ or equivalently

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ǫ, ∀t ≥ 0 (3.15)

The second part is trivial consequence of Theorem3.2.4.
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Corollary 3.2.3. Sufficient condition of stability in Lyapunov Linearization Method

If the linearized system of a nonlinear system is stable, thenonlinear system is locally

asymptotically stable.

Proof. Let A be the linearized part, i.e.A = ∂f(x)
∂x

∣

∣

∣

x=0
. SinceA is stable,γ∞(Γ) < ∞ and

γ2(Γ) < ∞. SinceΦ(x) only includes the higher order terms inx, the exists a region around

the originD̂ whereγD̂
∞(Φ) andγD̂

2 (Φ) can be made arbitrarily small. Thus, Corollary3.2.2

implies local asymptotic stability of the nonlinear system.

Example 3.2.3.Consider the following nonlinear system.
{

ẋ1 = −2x1 + x2 −
√

x3
1/3 + x2

2/4
ẋ2 = −2x1 + 2x2 + x2

1/10 − 5 sin(x2)/2
(3.16)

Let chooseA =

[

−2 1
−2 −3

]

then Φ(x) =

{

−
√

x3
1/3 + x2

2/4
+5x2 + x2

1/10 − 5 sin(x2)/2
. Using

(2.4b) and (2.8) respectively,γ∞(Γ) = 0.5378 andγ∞(Ω) = 1. Direct computation, as

discussed in Section2.3.3, givesγ∞(Φ) = ∞, which implies that Theorem (3.2.1) can not

be applied. Assume thatMP = 1.5, thenγD
∞(Φ) < 1

γ∞(Γ) (1 − γ∞(Ω)
Mp

) = 0.6197. γ∞(Φ)

is plotted versusx in Fig. 3.5(a)and its junction with the planγD
∞(Φ) is marked. The

junction determines the boundary ofD, as shown in Fig.3.5(c). γ2(Φ) and its junction

with 1
γ2(Γ) are shown in Fig.3.5(b). SinceL∞-norm is used, the largest ball insideD,

i.e. Υ, is the square shown in Fig.3.5(c). SinceMP = 1.5, the largest∆ area is another

square insideΥ and smaller than it with factorMP , as shown in Fig.3.5(c). Theorem3.2.3

guarantees that any trajectory starting from inside∆ will stay insideΥ. Moreover, sinceΥ

and∆ are placed inside the region whereγ2(Φ)γ2(Γ) < 1, Theorem3.2.4guarantees that

all trajectories starting from∆ end at the origin. Since the system is autonomous, this is

also the case for all trajectories which has intersection with ∆. System trajectories as well

as some of its responses to various initial conditions are depicted in Fig. 3.6. In the first

graph, since the initial states (or one of them) are not in∆, stability is not guaranteed and

the system is unstable. For the rest, initial states are in∆ and consequently, the system is

stable and states terminate at the origin.
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Figure 3.5: Various regions in Example3.2.3
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Figure 3.6: Simulation results for Example3.2.3.
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3.3 Forced Systems

3.3.1 Global Stability

Proposition 3.3.1. For a forced nonlinear system withζAB representation of[Φ,Θ,Γ,Ω],

if u ∈ Xp andγp(Φ)γp(Γ) < 1 thenx ∈ Xp for any initial statex0.

Proof. The proof for discrete-time systems is very similar to the continuous-time case and

is omitted.

SinceA is stable,‖eAt‖Lp < ∞ andu ∈ Lp implies that‖d1‖ ≤ ‖eAt‖Lp · ‖x0‖p +

γ∞(θ)‖u(t)‖p < ∞ andd1 ∈ Lp. On the other hand, since

∥

∥

∥

∥

[

0

Im×m

]∥

∥

∥

∥

p

= 1, andu ∈ Lp

thend2 ∈ Lp. According to small gain theorem, e.g. [27], since input signals to the loop,

i.e. d1,d2, are inLp and

∥

∥

∥

∥

[

In×n

0

]∥

∥

∥

∥

p

= 1, γp(Φ) ·γp(Γ) < 1 implies that all internal signals

of the system are inLp. Therefore,x ∈ Lp

Definition 3.3.1. A nonlinear system in the form of either (2.30) or (2.33) is calledstable

in generalor generally stableif

∀ǫ > 0, t ≥ 0 ∃δ, η > 0;
‖x0‖ < δ

‖u(t)‖ < ηδ

}

⇒ ‖x(t)‖ < ǫ (3.17)

In addition, if for anyx0 and input that satisfiesu(t) → 0 ast → ∞, the state also satisfies

x(t) → 0 ast → ∞, then the system is calledasymptotically generally stable.

Any Euclidean norm can be used in the definition but once a normis chosen, it should

be used for all norms. Besides, it is trivial to show that if a system is general (asymptotic)

stable using an arbitrary Euclidean norm, the property holds for all Euclidean norms.

Definition 3.3.2. A system is calledXp−(asymptotically) generally stableorXp− (asymp-

totically) stable in generalif it is (asymptotically) generally stable for inputu ∈ Xp.

Lemma 3.3.1. For a generally (asymptotically) stable system, ifu = 0 then the system is

(asymptotically) stable in sense of Lyapunov.

Proof. The proof follows directly from the definition by takingu = 0.

Lemma 3.3.2. ISS systems are generally stable.

Proof. Considering that‖u‖X∞ < ǫ1 implies that there existsǫ2 such that‖u(t)‖p < ǫ2 for

all t > 0 andp ∈ [1,∞), this lemma is very similar to Lemma 2.7 in [36] and the proof

follows same outline as its proof.
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Lemma 3.3.3. A generally stable system is ISS stable if and only if there exists a classK
functionσ1 andT > 0 such thatx(t) ≤ σ1(‖u‖L∞) for all t > T .

Proof. This lemma is also similar to Lemma 2.7 in [36] and the proof is the same.

Lemmas3.3.2and3.3.3show that the set of ISS systems is a subset of the set of gener-

ally stable systems but the inverse is not true in general. Generally speaking, for a generally

stable system the condition in Lemma3.3.3should be satisfied to guarantee ISS stability.

The following theorem provides a sufficient condition for stability of systems in general.

Theorem 3.3.1.For a forced nonlinear system withζAB representation of[Φ,Θ,Γ,Ω],

(i) If γ∞(Φ) · γ∞(Γ) < 1 then the system isX∞− globally generally stable.

(ii) In addition to (i), if γ2(Φ).γ2(Γ) < 1 then the system isX2 ∩ X∞− globally asymp-

totically generally stable.

Proof. The proof for discrete-time systems is very similar and is omitted.

(i) In this section of the proof, all norms are either∞-norm orL∞-norm depend on the

case. According to Proposition3.3.1, sinceu ∈ L∞ thenx ∈ L∞. To show that the system

is generally stable, it is enough to show that for any givenǫ there existδ andη such that
‖x0‖∞ < δ

‖u(t)‖∞ < ηδ

}

⇒ ‖x(t)‖∞ < ǫ for all t ≥ 0. Chooseη > 0 arbitrary. We claim that

for any givenǫ, δ can be chosen asδ < 1−γ∞(Φ)γ∞(Γ)
η(γ∞(Θ)+γ∞(Φ)γ∞(Γ))+γ∞(Ω)ǫ. To prove,

‖x‖ ≤ ‖d1‖ + ‖w‖

≤ ‖d1‖ + γ∞(Φ)γ∞(Γ)(‖d2‖ + ‖x‖)

≤ γ∞(Ω)‖x0‖ + [γ∞(Θ) + γ∞(Φ)γ∞(Γ)]‖u‖ + γ∞(Φ)γ∞(Γ)‖x‖

< γ∞(Ω)δ + [γ∞(Θ) + γ∞(Φ)γ∞ (Γ)] ηδ + γ∞(Φ)γ∞(Γ)‖x‖

< (γ∞(Ω) + η [γ∞(Θ) + γ∞(Φ)γ∞ (Γ)]) δ + γ∞(Φ)γ∞(Γ)‖x‖

then‖x‖ < γ∞(Ω)+η(γ∞(Θ)+γ∞(Φ)γ∞(Γ))
1−γ∞(Φ)γ∞(Γ) δ < ǫ. Since for any givenǫ there exists someδ,

stability is global.

(ii) According to Proposition (3.3.1), sinceu ∈ L2 ∩ L∞ then x ∈ L2 ∩ L∞ and

consequently there exist closed setsDu andDx such thatu(t) ∈ Du andx(t) ∈ Dx for all

t. Assuming thatf(x, u, t) is locally Lipschitz in bothu ∈ Du andx ∈ Dx, there existsµ

such that

∀ x1, x2 ∈ Dx, ∀ u ∈ Du, ‖f(x2, u, t) − f(x1, u, t)‖∞ ≤ µ‖x2 − x1‖∞ (3.18)
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Figure 3.7: Tunnel diode oscillator in Example3.3.1.

Takingx1 = 0 andx2 = x(t)

∀ x(t) ∈ Dx, ∀ u(t) ∈ Du, ‖f(x(t), u(t), t)‖∞ ≤ µ‖x(t)‖∞ (3.19)

Sincex ∈ L∞, ‖x(t)‖∞ ≤ ‖x‖L∞ for all t. Substituting in (3.19),

‖ẋ(t)‖∞ = ‖f(x(t), u(t), t)‖∞ ≤ µ‖x‖L∞ (3.20)

for all t. In turn, this means thaṫx ∈ L∞. Consideringx ∈ L2 ∩ L∞ andẋ ∈ L∞, the rest

of the proof follows same lines of the proof of Theorem3.2.1(ii) and omitted here.

Similar to Section3.2.1, A andB play the role of free parameters in Proposition3.3.1

and Theorem3.3.1. Likewise, it is sufficient to find just one pair ofA andB which satisfies

the conditions of the proposition or the theorem. If such a pair is found, the proposition or

the theorem can be used even if there exists other pairs ofA andB matrices which fail the

conditions. If such a pair ofA andB cannot be found or does not exist, the proposition or

the theorem cannot be used.

Example 3.3.1. (“Hard” tunnel diode oscillator) ( [37] pp. 446) The network of Fig.

3.7(a)represents a tunnel diode with some associated capacitanceand inductance, biased

by a combination of voltage source and resistance. The stateequations for this network

may be written as

q̇ = −i2 − fTD(e1), e1 = q
C ,

λ̇ = e1 − Ri2 − V, i2 = λ
L ,

(3.21)

where the functionfTD(e1) represents the tunnel diode branch relation. Letx1 := q = e1,

x2 := −λ = −i2, R = 1, L = 1, u = V andfTD(·) be

i = fTD(e1) =

{

−1.7e5
1 + 6.6e4

1 − 8.4e3
1 + 3.6e2

1 0 < e1 ≤ 1.1
0.09e1 otherwise
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which is depicted in Fig.3.7(b). Substituting defined states,

ẋ = f(x) =

{

x2 − fTD(x1)
−x1 − x2 + u

ChoosingA =

[

−0.3 1
−1 −1

]

, we haveΦ(x) =

(

0.3x1 − fTD(x1)
0

)

. Computa-

tion shows thatγ∞(Φ) = γ2(Φ) < 0.3, γ∞(Γ) < 2.17 and γ2(Γ) = 1.641. Since

γ2(Φ).γ2(Γ) < 1 and γ∞(Φ).γ∞(Γ) < 1, according to Theorem3.3.1, the system is

L2 ∩ L∞− globally asymptotically generally stable. This means thatfor any initial state

and input{u ∈ L2 ∩ L∞ : limt→∞ u → 0}, state is bounded and approaches0 ast → ∞.

3.3.2 Local Stability

Theorem 3.3.2.Let [Φ,Θ,Γ,Ω] be aζAB representation for a nonlinear system. Letη > 0

andMp > γ∞(Ω) + ηγ∞(θ) and

D̂ :=

{[

x
u

]

∈ R
n+m

∣

∣

∣

∣

γD̂
∞ (Φ) <

Mp − γ∞(Ω) − ηγ∞(θ)

(Mp + η)γ∞(Γ)

}

(3.22)

LetD := B
∞(o, ξD) be an open ball insidêD. LetDx andDu be the images ofD under

[

In×n

0m×n

0n×m

0m×m

]

and

[

0n×n

0m×n

0n×m

Im×m

]

, respectively. Consequently,Dx and Du are also

open balls inRn andRm respectively. Letξx and ξu denote respectively their radius, i.e.

Dx = B
∞(0, ξx) andDu = B

∞(0, ξu). Chooseǫ andδ such that0 < ǫ < ξx and

0 < δ ≤ 1 − γD
∞(Φ)γ∞(Γ)

γ∞(Ω) + η(γ∞(Θ) + γD
∞(Φ)γ∞(Γ))

ǫ

If ‖u‖X∞ < min (η δ, ξu) and‖x0‖∞ ≤ δ, then

‖x‖X∞ < ǫ (3.23)

Proof. The proof for discrete-time systems is very similar and is omitted. In this proof,

vector norms are Euclidean∞-norm for constant vectors andX∞-norm for time-varying

ones.

It is trivial that Mp − γ∞(Ω) − ηγ∞(θ) < Mp + η; thereforeγD
∞(Φ)γ∞(Γ) < 1. We use

contradiction to prove the theorem. Since we assumed that systems of interest are locally

Lipschitz, system trajectories are continuous. Consequently, if x were to leave the ball with

radiusǫ, it should cross the boundary of the ball. Suppose thatx crosses the boundary at

t = T . As a result,‖TT x‖ = ‖xT ‖ = ǫ. Sinceǫ < ξx and‖u‖ < min (η δ, ξu) guarantees
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thatu ∈ Du, we have

[

xT

uT

]

∈ D and consequently

‖xT ‖ ≤ ‖d1T ‖ + ‖wT ‖

≤ ‖d1T ‖ + γD
∞(Φ)γ∞(Γ)(‖d2T ‖ + ‖xT ‖)

≤ γ∞(Θ)‖uT ‖ + γ∞(Ω)‖x0‖ + γD
∞(Φ)γ∞(Γ)‖xT ‖ + γD

∞(Φ)γ∞(Γ)‖uT ‖

≤ γ∞(Ω)‖x0‖ + [γ∞(Θ) + γD
∞(Φ)γ∞(Γ)]‖uT ‖ + γD

∞(Φ)γ∞(Γ)‖xT ‖

< γ∞(Ω)δ +
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

ηδ + γ∞(Φ)Dγ∞(Γ)‖xT ‖

=
(

γ∞(Ω) + η
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

])

δ + γD
∞(Φ)γ∞(Γ)‖xT ‖ (3.24)

Then

ǫ = ‖xT ‖ <
γ∞(Ω) + η

[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

‖x0‖

≤ γ∞(Ω) + η
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

δ

≤ ǫ (3.25)

Which is a contradiction. Therefore,x(t) ∈ Υ; ∀t ≥ 0. That is [∆,Υ] ∈ S∆Υ.

To show the second part, from (3.22), with some mathematical manipulation, we have
γ∞(Ω)+η[γ∞(Θ)+γD

∞(Φ)γ∞(Γ)]
1−γD

∞(Φ)γ∞(Γ)
≤ Mp. On the other hand, with a very similar procedure

to (3.25),

‖x‖ <
γ∞(Ω) + η

[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

‖x0‖ ≤ Mp‖x0‖.

Theorem 3.3.3.In Theorem3.3.2, if in additionD satisfiesγ2(Γ)γD
2 (Φ) < 1 Then[∆,Υ] ∈

A[∆,Υ] for {u ∈ X2 ∩ X∞ : ‖u‖X∞ < min (η δ, ξu)}.

Proof. The proof for discrete-time systems is very similar and is omitted.

Theorem3.3.2guarantees that[∆,Υ] ∈ S[∆,Υ] for all u that satisfies

{u ∈ L2 ∩ L∞ : ‖u‖L∞ < min (η δ, ξu)}

which means thatx stays inΥ ⊂ Dx. Since‖u‖L∞ < ξu, u ∈ Du then

[

x

u

]

∈ D. Ac-

cording to Small Gain Theorem,γ2(Γ).γD
2 (Φ) < 1 guarantees that the loop isL2 internally

stable andx ∈ L2 if d1 andd2 are inL2. Sincex0 < ∞ andu ∈ L2, d1 andd2 are inL2.

Consequently,x ∈ L2. By the argument used in the proof of Theorem3.3.1, it is easy to

show thatẋ ∈ L∞. Havingx ∈ L2 ∩ L∞ andẋ ∈ L∞, Corollary3.2.1can be used as the

proof of3.2.1(ii) to show thatx → 0 ast → ∞. This shows that[∆,Υ] ∈ A[∆,Υ].
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Figure 3.8: A simplified schematic of CSTR system.

CSTRKP

x2u u

Figure 3.9: The CSTR system controlled by a proportional controller.

Example 3.3.2. Consider an example of continuous-stirred tank reactor (CSTR) system

shown in Fig.3.8, where an irreversible, first-order reaction takes place. CSTR is used to

convert reactants to products. The reactant is fed constantly into a vessel where a chemical

reaction takes place and yields the desired product. The heat generated by the chemical

reaction is removed by the coolant medium that is circulatedthrough a jacket. The following

mathematical model is taken from [47],










˙̂x1 = −x̂1 + Da(1 − x̂1)e

x̂2

1+
x̂2
ϕ

˙̂x2 = −x̂2 + BhDa(1 − x̂1)e

x̂2

1+
x̂2
ϕ + βh(û − x̂2)

(3.26)

wherex̂1, x̂2, andû1 are the dimensionless reagent conversion, the temperature(output),

and the coolant temperature (input), respectively. The numerical values for the coefficients

areDa = 0.072, ϕ = 20, Bh = 8, andβh = 0.3

Three operating points are considered in [9]. One of them is an unstable point,û10 =

0, x̂10 = 0.4472, and x̂20 = 2.7517. Let transfer the origin of the state plane into this

unstable point, which is investigated here. Therefore, we definex1 := x̂1 − x̂10 andx2 =

x̂2 − x̂20. We study the closed-loop system which is depicted in Fig.3.9whereKP = 100

is a proportional controller andu is an exogenous input which can be interpreted as sensor

noise or disturbance. This controller can stabilize the closed-loop system locally. In this

example, we want to determine the corresponding local region.

The state equations for closed-loop system are






ẋ1 = −x1 − 0.4472 + 0.072(0.5528 − x1)e
20x2+55.034
22.7517+x2

ẋ2 = −31.3x2 − 3.5772 + 0.576(0.5528 − x1)e
20x2+55.034
22.7517+x2 + 30u

(3.27)
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‖x‖2
and the boundary ofγ2(Γ)γ2(Φ) < 1.

LetA =

[

−1.81 0.357
−6.474 −28.143

]

andB =

[

0
30

]

thenΦ(x) =

[

Φ1(x)
Φ2(x)

]

whereΦ1(x) =

−0.81x1 − 0.357x2 − 0.4472 + 0.072(0.5528 − x1)e
20x2+55.034
22.7517+x2 andΦ2(x) = −3.157x2 +

6.474x1 − 3.5772 + 0.576(0.5528 −x1)e
20x2+55.034
22.7517+x2 . Computation shows that upper bound

can not be found forγ∞(Φ) andγ2(Φ). Therefore, global stability can not be proved. For

the linear systems, computation with the given methods gives γ∞(Γ) < 0.5354, γ2(Γ) =

0.5423, γ∞(Θ) < 1.221, andγ∞(Ω) = 1. Let η = 0.1 andMP = 3 > γ∞(Ω) + ηγ∞(Θ).

SinceΦ is independent fromu, D̂ ⊂ R2. For this example, sincêD is simply connected

set,D̂ = D. The surface of‖Φ(x)‖∞
‖x‖∞

as well as the boundary ofD is depicted in Fig.3.10.

Fig. 3.11shows‖Φ(x)‖2

‖x‖2
and the boundary ofγ2(Γ)γ2(Φ) < 1. The various subsets ofR2

are depicted in Fig.3.12. The maximum value forǫ is 0.1519 and consequently the max-

imum value for∆ is 0.0402. According to Theorem3.3.2, for any inputu which satisfies

‖u‖L∞ < ηδ = 0.004 and any initial state satisfying‖x0‖∞ < δ = 0.0402, x is bounded

as‖x‖L∞ < ǫ = 0.1519. Besides, in addition to the mentioned condition, ifu ∈ L2 and

u → 0 ast → ∞ thenx → 0 ast → ∞, according to Theorem3.3.3.
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3.4 Chapter Summary

In this chapter, we have considered stability of nonlinear systems. Our results are applicable

to a variety of nonlinear systems. The suggested method of checking stability of nonlinear

systems has significant computational advantage compared to previous work, in the sense

that there is no need to find any Lyapunov-like function. Initial insight for our formulation

was provided by a new representation for nonlinear systems,which transforms a nonlin-

ear system, with non-zero initial state, into a feedback interconnection of two operators.

Then, some well-known concepts from input-output theory were used to derive sufficient

conditions for stability of the original nonlinear system.Finally, local stability of nonlinear

systems was studied with a new definition of region of attraction. Since the new represen-

tation is not unique for a nonlinear system, all suggested methods can be optimized based

on the selected parameters in the representation. This optimization will be the subject of

future work.
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Chapter 4

Upper bounds

4.1 Introduction

The complex structure of nonlinear systems is the major obstacle in the development of

simple and efficient computational methods to test stability, compute system norms, etc.

As a consequence, a majority of the computational techniques available in the literature

are restricted to a narrow class of nonlinear systems for which a particular function, e.g.

Lyapunov function or storage function, can be found by trialand error [27], [24].

In this chapter, we consider the problem of computing theLp operator norm of a non-

linear system, a problem which has remained a challenge in the systems literature. The

importance of this problem originates from the fact that theinfluence of various inputs on

various signals inside the system can be quantified by such a measure. One of the appli-

cations of this measure is in control systems, where the attenuation of disturbance signals

is required. The subject has attracted considerable attention for both linear and nonlinear

systems. For linear systems, computing theLp norm(s) has a well established solution; see,

for example, reference [2]. For nonlinear systems, however, computation of theLp operator

norm continues to be a challenge. In [6], theL∞-gain of nonlinear systems is characterized

by means of the value function of an associated variational problem. TheL2 gain, also

referred to as theH∞ gain of a nonlinear system, can be approximated using storage func-

tions and the theory of dissipative systems [48]. This approach is, however, conservative

and finding storage functions is difficult; see also [20] for a numerical approximation of the

H∞ norm. In [31], a computational method is proposed to compute theL2 induced norm

for single-input linear systems with saturation.

In this chapter, we propose a method to compute an upper boundon theL1, L2 and

L∞ norms of a class of continuous-time nonlinear systems. Our method can be optimized

based on some selected parameters. For systems not includedin this class, a method is also
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provided for computing an upper bound of theL∞ norm.

This chapter is organized as follows: In section4.1.1, we propose a method to compute

upper bounds on the induced norm of nonlinear systems and provide two illustrative exam-

ples. In section4.2, we introduce the weighting method, which can be used to reduce the

intrinsic conservativism in the aforementioned method. Anexample is provided to illustrate

the usage of the weighting technique.

4.1.1 The proposed method

In this section, we obtain a computable upper bound for induced operator norms. We will

use the structure shown in Fig.2.4(b); namely, theζA representation for forced system. In

this structure, it is trivial to show that

‖x‖Lp ≤ ‖w‖Lp + ‖d‖Lp

≤ γp(Γ)γp(Φ)

∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

Lp

+ ‖d‖Lp

≤ γp(Γ)γp(Φ)

∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

Lp

+ γp(Ω)‖x0‖p

(4.1)

The computation ofγp(Γ), γp(Ω) andγp(Φ) was discussed in Reference [49].

Lemma 4.1.1. The following equation is true forx, u ∈ Lp:

∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

Lp

≤ ‖x‖Lp + ‖u‖Lp (4.2)

Moreover, ifx, u ∈ L2
∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

2

L2

= ‖x‖2
L2

+ ‖u‖2
L2

. (4.3)

Proof. The proof is trivial and is omitted.

The first part of this lemma, (4.2), is true for all Banach spaces; however, the second

part is true when the temporal norm isL2 with the Euclidean 2-norm chosen as the corre-

sponding spatial norm.

Theorem 4.1.1.Let [Φ,Γ,Ω] be aζA representation for a forced system,N . If

γp(Γ)γp(Φ) < 1 (4.4)

then

γp(N) ≤ γp(Γ)γp(Φ)

1 − γp(Γ)γp(Φ)
. (4.5)
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Proof. Substituting (4.2) in (4.1) implies that

‖x‖ ≤ γp(Γ)γp(Φ) (‖x‖ + ‖u‖) + γp(Ω)‖x0‖. (4.6)

Thus

(1 − γp(Γ)γp(Φ))‖x‖ ≤ γp(Γ)γp(Φ)‖u‖ + γp(Ω)‖x0‖. (4.7)

Sinceγp(Γ)γp(Φ) < 1,

‖x‖ ≤ γp(Γ)γp(Φ)

1 − γp(Γ)γp(Φ)
‖u‖ +

γp(Ω)

1 − γp(Γ)γp(Φ)
‖x0‖ (4.8)

which implies (4.5).

Inequality (4.5) can be used as an upper bound for theLp induced norm. It is impor-

tant to note that since theζA representation is not unique, the solution of the following

minimization problem is the lowest upper bound that can be obtained by our method:

γp(N) ≤ min
A

γp(Γ)γp(Φ)

1 − γp(Γ)γp(Φ)
(4.9)

whereΓ(s) =

[

A
I

I
0

]

andΦ(x, u) = f(x, u) − Ax. Unfortunately, there is no existing

method to findA which provides the lowest upper bound. A good strategy is to define a

function in MATLAB with input A and output γp(Γ)γp(Φ)
1−γp(Γ)γp(Φ) and usefminsearchto minimize

it.

The method provided by Theorem4.1.1 is general in the sense of the induced norm,

γp. An interesting case occurs when the temporal norm isL2 with the Euclidean 2-norm

chosen as the corresponding spatial norm. The reason is thata quite mature theory, namely;

H∞ optimization, has been developed for linear systems in thiscase. SupposeΓ is a

continuous-time linear time-invariant stable operator with impulse responseg(t) : R+ →
Rn×n (g(t) : Z+ → Rn×n). Let G(s) denote the Laplace transform ofg(t). We have

γ2(Γ) := ‖G(s)‖H∞
(4.10)

In this case, the following theorem provides lower upper bounds for the induced normγ2

than Theorem4.1.1.

Theorem 4.1.2.Let[Φ,Γ,Ω] be aζA representation for a forced system,N . If γ2(Γ)γ2(Φ) <

1 then

γ2(N) ≤ γ2(Γ)γ2(Φ)
√

1 − γ2(Γ)2γ2(Φ)2
. (4.11)
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Proof. Inequality (4.1) implies that

(‖x‖ − γ2(Ω)‖x0‖)2 ≤
(

γ2(Γ)γ2(Φ)

∥

∥

∥

∥

[

x
u

]
∥

∥

∥

∥

)2

(4.12a)

Using (4.3),

‖x‖2 − 2γ2(Ω)‖x0‖‖x‖ + γ2(Ω)2‖x0‖2

≤ γ2(Γ)2γ2(Φ)2
(

‖x‖2 + ‖u‖2
)

(4.12b)

For simplicity, letα := γ2(Γ)γ2(Φ)

‖x‖2 − 2γ2(Ω)

1 − α2
‖x0‖‖x‖ +

γ2(Ω)2

1 − α2
‖x0‖2 ≤ α2

1 − α2
‖u‖2. (4.12c)

Hence
(

‖x‖ − γ2(Ω)

1 − α2
‖x0‖

)2

≤ α2γ2(Ω)2

(1 − α2)2
‖x0‖2 +

α2

1 − α2
‖u‖2. (4.12d)

Sincea2 + b2 ≤ (a + b)2 for all a, b ≥ 0, we have

‖x‖ − γ2(Ω)

1 − α2
‖x0‖ ≤ αγ2(Ω)

(1 − α2)
‖x0‖ +

α√
1 − α2

‖u‖ (4.12e)

Consequently

‖x‖ ≤ γ2(Γ)γ2(Φ)
√

1 − γ2(Γ)2γ2(Φ)2
‖u‖ +

γ2(Ω)

1 − γ2(Γ)γ2(Φ)
‖x0‖ (4.12f)

which implies (4.11).

Similarly, the solution of the following minimization problem is the lowest upper bound

that can be obtained by our method:

γ2(N) ≤ min
A

γ2(Γ)γ2(Φ)
√

1 − γ2(Γ)2γ2(Φ)2
(4.13)

whereΓ(s) =

[

A
I

I
0

]

andΦ(x, u) = f(x, u) − Ax. Equivalently,

γ2(N) ≤ min
A

1
√

∥

∥

∥
(sI − A)−1

∥

∥

∥

−2

H∞

γ−2
2 (f(x, u) − Ax) − 1

. (4.14)

Example 4.1.1.(RLC circuit with non-ideal inductor) The network of Fig.4.1represents a

RLC circuit with a non-ideal inductor. The inductor has nonzero resistance and saturation

characteristic as shown in Fig.4.2(a), whereλ is the flux linkage. The relationship of the

magnetic flux linkage to terminal voltage of an inductor is given by Faraday’s law; namely

vL(t) = dλ(t)/dt. The state equations for this network may be written as
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i(t) R1

L

C

l

vC

q R2

iL

Figure 4.1: RLC circuit in Example4.1.1.
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(
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1
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(b)

Figure 4.2: The characteristic of the inductance in Example4.1.1.

vL = λ̇ =
dλ

diL

diL
dt

(4.15a)

diL
dt

=

(

dλ

diL

)−1

(vC − R2iL) (4.15b)

where
(

dλ
diL

)−1
is depicted in Fig.4.2(b)versusiL, and

C
dVC

dt
= i − VC

R1
− iL. (4.15c)

Definingx1 := iL, x2 := vC andu := i,
{

ẋ1 = (x2 − R2x1)
(

dλ
dx1

)−1

ẋ2 = u
C − x2

R1C − x1
C

. (4.15d)

Let R1 = 1
2 , R2 = 1 andC = 2. AssumingA =

[

−1 0.5
−0.5 −1

]

, we have

Φ(x1, x2, u) =

[

x1 − 0.5x2 + (x2 − x1)
(

dλ
dx1

)−1

u
C

]

. (4.15e)

We use the computational methods that has been introduced in[49]. Since there are three

independent variables inγp(Φ), i.e. x1, x2 andu, we plot ‖Φ(x,u)‖
∥

∥

∥

∥

∥

∥

[

x

u

]
∥

∥

∥

∥

∥

∥

versus

∥

∥

∥

∥

[

x

u

]
∥

∥

∥

∥

instead of
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(a) p = 1

(b) p = 2

(c) p = ∞

Figure 4.3: Gain of‖Φ(x, u)‖p versus

∥

∥

∥

∥

[

x

u

]
∥

∥

∥

∥

p

in Example4.1.1.

plotting versusx1, x2 andu, as shown in Fig.4.3. Therefore,γ1(Φ) ≈ 0.50, γ2(Φ) ≈ 0.50

and γ∞(Φ) ≈ 0.50. Computation also shows thatγ1(Γ) ≈ 1.237, γ2(Γ) ≈ 1.00 and

γ∞(Γ) ≈ 1.237. Theorems4.1.1and4.1.2imply thatγ1(N) ≤ 1.62, γ2(N) ≤ 0.577 and

γ∞(N) ≤ 1.62, respectively.

There is no doubt that the conditionγp(Γ)γp(Φ) < 1 in Theorems4.1.1and4.1.2is

restrictive. For example, polynomial systems are excludedby the aforementioned condition.

The following theorem might be used to overcome this shortcoming. The result provides

an upper bound on system output for bounded input and initialstate.
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Theorem 4.1.3.Let [Φ,Θ,Γ,Ω] be aζAB representation for a nonlinear system. Letη > 0

andMp > γ∞(Ω) + ηγ∞(θ) and

D̂ :=

{[

x
u

]

∈ R
n+m

∣

∣

∣

∣

γD̂
∞ (Φ) <

Mp − γ∞(Ω) − ηγ∞(θ)

(Mp + η)γ∞(Γ)

}

. (4.16)

LetD := B
∞(0, rD) be an open ball insidêD. Assume thatDx andDu are the images ofD

under

[

In×n 0n×m

0m×n 0m×m

]

and

[

0n×n 0n×m

0m×n Im×m

]

, respectively. Therefore,Dx andDu are

also open balls inRn andRm respectively. Letrx andru denote respectively their radius,

i.e. Dx = B
∞(0, rx) andDu = B

∞(0, ru). Chooseǫ andδ such that0 < ǫ < rx and

0 < δ ≤ 1 − γD
∞(Φ)γ∞(Γ)

γ∞(Ω) + η(γ∞(Θ) + γD
∞(Φ)γ∞(Γ))

ǫ

If ‖u‖L∞ < min (η δ, ru) and‖x0‖∞ ≤ δ, then

‖x‖L∞ < ǫ. (4.17)

Proof. It is trivial that Mp − γ∞(Ω) − ηγ∞(θ) < Mp + η; thereforeγD
∞(Φ)γ∞(Γ) < 1.

We use contradiction to prove the theorem. Since we have assumed that systems of interest

are locally Lipschitz, system trajectories are continuous. Consequently, ifx were to leave

the ball with radiusǫ, it should cross the boundary of the ball. Suppose thatx crosses the

boundary att = τ . As a result,‖Tτx‖ = ‖x‖τ = ǫ. Sinceǫ < rx and‖u‖ < min (η δ, ru)

guarantees thatu ∈ Du, we have

[

xτ

uτ

]

∈ D and consequently

‖xτ‖ ≤ ‖d1τ‖ + ‖wτ‖

≤ ‖d1τ‖ + γD
∞(Φ)γ∞(Γ)(‖d2τ‖ + ‖xτ‖)

≤ γ∞(Θ)‖uτ‖ + γ∞(Ω)‖x0‖

+ γD
∞(Φ)γ∞(Γ)‖xτ‖ + γD

∞(Φ)γ∞(Γ)‖uτ‖

≤ γ∞(Ω)‖x0‖ + [γ∞(Θ) + γD
∞(Φ)γ∞(Γ)]‖uτ‖

+ γD
∞(Φ)γ∞(Γ)‖xτ‖

< γ∞(Ω)δ +
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

ηδ

+ γD
∞(Φ)γ∞(Γ)‖xτ‖

=
(

γ∞(Ω) + η
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

])

δ

+ γD
∞(Φ)γ∞(Γ)‖xτ‖

(4.18)
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Then

ǫ = ‖xτ‖

<
γ∞(Ω) + η

[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

‖x0‖

≤ γ∞(Ω) + η
[

γ∞(Θ) + γD
∞(Φ)γ∞ (Γ)

]

1 − γD
∞(Φ)γ∞(Γ)

δ

≤ ǫ (4.19)

Which is a contradiction. Therefore,x(t) < ǫ; ∀t ≥ 0, i.e. ‖x‖ < rx.

Example 4.1.2. Consider a multi-tank system depicted in Fig.4.4. Suppose that a pro-

portional controller is utilized to adjust the fluid level inthe second tankH2 by input flow

q. The problem of interest is to find an upper bound on the gain ofthe closed loop system

shown in Fig.4.5. The following mathematical model is taken from [19]:






dH1
dt = 1

aw (q − C1H
α1
1 )

dH2
dt = 1

cw+
H2

H2max
bw

(C1H
α1
1 − C2H

α2
2 )

(4.20)

The transfer function of the controller isK(s) = KP . Let x1 := H1 − H10, x2 :=

H2 − H20 andq = q0 − KP (x2 + u) whereH10 andH20 are operating points andq0 is

the corresponding input. It is trivial thatq0 = C1H
α1
10 = C2H

α2
20 . The numerical values

for the coefficients area = 0.25, w = 0.035, H2max = 0.35, b = 0.345, c = 0.1,

C1 = 5.66 × 10−5, C2 = 5.58 × 10−5, α1 = 0.29 and α2 = 0.226 [19]. Suppose

KP = 10−5. The state equations for the closed-loop system are






ẋ1 = 1
aw (q0 − KP (x2 + u) − C1(x1 + H10)

α1)

ẋ2 = 1

cw+
x2+H20
H2max

bw
(C1(x1 + H10)

α1 − C2(x2 + H20)
α2)

(4.21)

andẋ =

(

ẋ1

ẋ2

)

= f(x, u). Let

A =

(

−0.0072 −0.0114
0.0094 −0.0118

)

, B =

(

−0.0114
0

)

, (4.22)

which are linearized parts off(x, u) at x = 0 andu = 0, i.e. A = ∂f(x,u)
∂x

∣

∣

∣

x,u=0
and

B = ∂f(x,u)
∂u

∣

∣

∣

x,u=0
. Therefore,

Φ(x, u) =

[

0.00373 + 0.0072x1 − 0.00647(x1 + 0.15)0.29

5.66×10−5(x1+0.15)0.29−5.58×10−5(x2+0.0934)0.226

0.0067+0.0345x2
− 0.0094x1 + 0.01176x2

]

.

(4.23)
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Figure 4.4: Configuration of the multitank system [19].

Three TankKP

H2
u q H2,0

x2

q0

Figure 4.5: Closed loop multitank system.
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Figure 4.6:‖Φ(x)‖∞
‖x‖∞

versus‖x‖∞.

Computation with the methods proposed in [50] provides γ∞(Γ) < 151.3, γ∞(Θ) <

0.9756, andγ∞(Ω) = 1.036. Let η = 3.0382 which givesMP = 4 > γ∞(Ω) + ηγ∞(Θ).

SinceΦ is independent fromu, D̂ ⊂ R2. ‖Φ(x)‖∞
‖x‖∞

versus‖x‖∞ is depicted in Fig.4.6.

SinceD̂ is independent ofu, ru = ∞. Let us takeD̂ as the region where‖Φ(x)‖∞
‖x‖∞

< 0.0023,

i.e. γD
∞(Φ) = 0.0023. Consequentlyrx = 0.0155. Let ǫ = 0.015 andδ = 0.0019 ≤

1−γD
∞(Φ)γ∞(Γ)

γ∞(Ω)+η(γ∞(Θ)+γD
∞(Φ)γ∞(Γ))

ǫ. According to Theorem4.1.3, for any inputu which satis-

fies‖u‖L∞ < min(ηδ, ru) = 0.00587 and any initial state satisfying‖x0‖∞ < δ = 0.0019,

x is bounded as‖x‖L∞ < ǫ = 0.015.

4.2 Weighting Technique

As shown in the previous section, the proposed methods are based on theζA representa-

tion. Adding some weighting on state or input vectors may tighten the calculated bounds.

However, there is no general rule which provides useful weighting matrices; therefore, they

should be chosen by trial and error. In this section, we studythe effect of the weighting and

we show the effectiveness by an example.

In theζA representation for continuous-time systems shown in Fig.2.3, let x̂ := Wxx

whereWx is nonsingular. Consequently,

˙̂x = WxAW−1
x x̂ + WxΦ(W−1

x x̂) (4.24)

DenotingÂ := WxAW−1
x , Φ̂(x) := WxΦ(W−1

x x), Γ̂ :=

[

Â
I

I
0

]

andΩ(x(t)) := eÂtx0,

it is easy to show that ordered operator set[Φ̂, Γ̂, Ω̂] is aζA representation for the weighted

system, i.e. the system with initial statex̂0 := Wxx0 and statêx.

Similarly, in theζAB representation shown in Fig.2.4(a)for continuous-time systems,
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let x̂ := Wxx andû := Wuu whereWx andWu are nonsingular. Consequently,

˙̂x = WxAW−1
x x̂ + WxBW−1

u û + WxΦ(W−1
x x̂,W−1

u û) (4.25)

DenotingÂ := WxAW−1
x , B̂ := WxBW−1

u , Φ̂(x, u) := WxΦ(W−1
x x,W−1

u u), Γ̂ :=
[

Â
I

I
0

]

, Θ̂ :=

[

Â
I

B̂
0

]

andΩ(x(t)) := eÂtx0, it is trivial to show that ordered operator set

[Φ̂, Γ̂, Θ̂, Ω̂] is aζAB representation for the weighted system, i.e. the system with input û,

statex̂ and initial statêx0. A very similar argument can be made for forced system withζA

representation.

It is important to note that the mappinĝu → x̂ is different thanu → x. However,

Theorems4.1.1, 4.1.2and4.1.3can be used to find corresponding upper bounds for the

weighted system. Then, using the definitions ofx̂, û andx̂0, the corresponding bounds can

be found for the main system. Suppose that the inequality found for the weighted system is

‖x̂‖p ≤ γp,u ‖û‖p + γp,x0 ‖x̂0‖p whereγp,u andγp,x0 are derived by either (4.8) or (4.12f).

Therefore,

‖x‖ ≤
∥

∥W−1
x

∥

∥ ‖x̂‖

≤
∥

∥W−1
x

∥

∥ γu ‖û‖ +
∥

∥W−1
x

∥

∥ γx0 ‖x̂0‖

≤
∥

∥W−1
x

∥

∥ γu ‖Wu‖ ‖u‖ +
∥

∥W−1
x

∥

∥ γx0 ‖Wx‖ ‖x0‖ .

(4.26)

It is important to note that norms used for
∥

∥W−1
x

∥

∥ and‖Wu‖ are the corresponding induced

norms. Similarly, if an upper bound obtained for the weighted system isγ(N̂) then

γ(N) ≤
∥

∥W−1
x

∥

∥ γ(N̂ ) ‖Wu‖ . (4.27)

There is no method to compute
∥

∥W−1
x

∥

∥ and‖Wu‖ in general. However, in some special

cases, such as the case where 2-norm is used for the spatial norm or the case where weight-

ing matrices are multiplication of a scalar by the identity matrix,
∥

∥W−1
x

∥

∥ and‖Wu‖ can be

calculated. The following example illustrates the usage and effectiveness of the weighting

technique.

Example 4.2.1.Consider the following nonlinear system

N :

{

ẋ1 = −x1 + x2 + 0.5sat(x2) − 0.25 sin (x1) + 0.25sat(u)

ẋ2 = −x1 − x2 + 0.5sat(x1) − 0.25 sin (x2) − 0.25u
(4.28)

where sat(·) is depicted in Fig.4.7. Let A =

[

−0.9 0.9
−0.9 −1.1

]

. Hence,

Φ(x1, x2, u) =

[

−0.1x1 + 0.1x2 + 0.5 sat(x2) − 0.25 sin (x1) + 0.25 sat(u)
−0.1x1 + 0.1x2 + 0.5sat(x1) − 0.25 sin (x2) − 0.25u

]

.

(4.29)
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x

sat(x)
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1

-1
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Figure 4.7: The saturation function sat(·).

Table 4.1: Derived bounds with variousWu (Example4.2.1).

Wu γ1(N̂) γ2(N̂) γ∞(N̂) γ1(N) γ2(N) γ∞(N)

1.75 1.361 0.580 3.029 2.382 1.015 5.301
1 1.66 0.71 5.95 1.66 0.71 5.95
2 1.290 0.575 2.30 2.58 1.15 4.6

minimum 1.66 0.71 4.6

Let Wu = 1.75 andWx = I2×2. Therefore,
∥

∥W−1
x

∥

∥ = 1 and‖Wu‖ = 1.75. As shown in

Fig. 4.8, we plot
‖Φ̂(x̂,û)‖
∥

∥

∥

∥

∥

∥

[

x̂

û

]
∥

∥

∥

∥

∥

∥

versus

∥

∥

∥

∥

[

x̂

û

]
∥

∥

∥

∥

instead of plotting versuŝx1, x̂2 andû. Therefore,

γ1(Φ̂) ≈ 0.46, γ2(Φ̂) ≈ 0.5 andγ∞(Φ̂) ≈ 0.6. Computation also shows thatγ1(Γ̂) ≈
1.253, γ2(Γ̂) ≈ 1.003 andγ∞(Γ̂) ≈ 1.253. Therefore,γ1(N̂) ≤ 1.361, γ2(N̂) ≤ 0.58 and

γ∞(N̂) ≤ 3.029. Using (4.27), γ1(N) ≤ 2.382, γ2(N) ≤ 1.015 andγ∞(N) ≤ 5.301.

The results obtained for various values ofWu are summarized in Table4.1. As can be seen,

tighter bounds can be found by trying different values for the weighting matrices.

4.3 Chapter Summary

This chapter offers a contribution to the calculation of upper bounds on theL1, L2 andL∞

induced operator norms of continuous-time nonlinear systems. Based on theζA represen-

tation of nonlinear systems, methods are presented to compute the aforementioned bounds.

The main limitation of the proposed methods is inequality (4.4) that restricts the usage

of the method for a class of the nonlinear systems and the freedom on choosing the pa-

rameterA. To lessen the restrictions encountered in the computationof theL∞ norm of a

system, a method is given to compute an upper bound on theL∞ norm of the system output

with respect toL∞ norm of the input. This method does not suffer from the previous limita-

tions. In the last section, our methods are improved by the use of a weighting technique on

the ζA representation. An example is provided to show the effectiveness of the weighting

technique.
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(a) p = 1

(b) p = 2

(c) p = ∞

Figure 4.8: Gain of
∥

∥

∥
Φ̂(x̂, û)

∥

∥

∥

p
versus

∥

∥

∥

∥

[

x̂

û

]
∥

∥

∥

∥

p

in Example4.2.1for Wu = 1.75.
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Chapter 5

The Gap Metric

5.1 Introduction

Model uncertainty often has a significant effect on stability and performance of feedback

control systems. For linear time-invariant (LTI) systems,much work has been done to study

this effect. One important concept used to measure system uncertainty is the gap metric

which was introduced to systems and control theory by Zames and El-Sakkary [55]. For

LTI systems, it has been shown that a perturbed system can be stabilized by any controller

which is designed for the nominal system if and only if the distance between the perturbed

system and the nominal system is small in the gap metric. The computation of the gap

metric for LTI systems was developed by Georgiou [12].

The extension of the gap metric to larger classes of systems was initiated in [10], where

the metric was extended to time-varying linear plants. Later, the parallel projection operator

for nonlinear systems [5] and its relationship to the differential stabilizabilityof nonlinear

feedback systems [11] paved the road to the extension of the gap metric to a pseudo-metric

on nonlinear operators [13].

Unlike the LTI system case, there is no generally applicablemethod of computing the

gap metric for nonlinear systems. In fact, there are only a few examples in literature for

the computation of the gap metric. Moreover, those methods are highly dependent upon the

case of interest. This is also the case for the correspondingstability margin which can be

used to determine the ball of uncertainty in the sense of the gap metric.

This chapter deals with the computation of the gap metric andstability margin for non-

linear systems. We will consider the extension of the gap metric to nonlinear systems given

in [13]. We derive upper bounds on the gap metric and the stability margin with respect

to the operator norm (gain) of the plant, perturbed system and controller and based on the

results of Chapter4 on the upper bound of the gain of nonlinear systems. The suggested
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methods are only applicable to a class of nonlinear systems which satisfy an inequality.

The chapter is organized as follows: In Section5.2, first, we introduce the notation.

Then, the gap metric for the nonlinear systems is introduced. The main contribution of this

paper is contained in Section5.3 where Theorems5.3.1and5.3.2are stated and proved.

These theorems provide upper bounds on the gap metric and thestability margin, respec-

tively. In Section5.3, an example is also solved to illustrate the effectiveness of the results

and comparison between the direct computation and the suggested methods. Since the lit-

erature suffers from the lack of widely-applicable computation methods and there are just

a few examples which are highly dependent to the studied systems, it is indeed hard to

construct example which both satisfies our required condition and is compatible by the

previously suggested methods such as the method used in [13].

5.2 Background

5.2.1 Notation

Let U := L andY := L denote input and output signal spaces, respectively. A nonlinear

time-varying system can be thought of as a possibly unbounded operatorH : Dh → Y

whereDh ⊆ U. The action ofH on anyu ∈ Dh is denoted byHu. A systemH is called

stableif Dh = U. For an operatorH : U → Y , let γ(H) stand for the induced norm (gain)

of the operator defined as

γ(H) := sup
u ∈ U

u 6=0

‖Hu‖T

‖u‖T
(5.1)

where the supremum is taken over allu ∈ U and allT in R+ for whichuT 6= 0. Let γp(H)

stand forγ(H) in Lp. A systemH is calledfinite gain stable (fg-stable)if H0 = 0 and

γ(H) < ∞.

5.2.2 The Gap Metric

Let [P,C] denote the feedback configuration shown in Figure5.1. This configuration is

standard in literature, e.g. [13] and can be described by the following equations.

y1 = Pu1

u2 = Cy2

u0 = u1 + u2

y0 = y1 + y2

(5.2)
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Figure 5.1: The standard feedback configuration,[P,C].

whereP andC denote the nominal plant and the controller andu0 andy0 are the input

and measurement disturbances, respectively. Letui ∈ U, yi ∈ Y and wi :=

[

ui

yi

]

for

i ∈ {0, 1, 2} andW := U × Y. We assume that the product of the instantaneous gains of

P andC is less than one. This assumption guarantees the well-posedness of the feedback

configuration, e.g. [13] [1]. Similar to [13], we assume that the feedback configuration is

always well-posed. The closed-loop operator is defined as

HP,C : W → W ×W , HP,C : w0 7→ (w1, w2). (5.3)

The graph of the plant is

GP =

{(

u

Pu

)

: u ∈ U, Pu ∈ Y

}

⊂ W. (5.4)

If the domain ofP is U , the conditionPu ∈ Y is unnecessary. To have compatible notation

with [13], we define the graph ofC as follows

GC =

{(

Cy

y

)

: Cy ∈ U, y ∈ Y

}

⊂ W. (5.5)

In some literature, e.g [5], this graph is also called inverse graph. Let

M := GP , N := GC . (5.6)

The following operators are useful in the study of the closed-loop system stability.

ΠM||N := Π1HP,C , ΠN||M := Π2HP,C (5.7)

whereΠi : W×W → W denote the natural projection onto theith component(i ∈ {1, 2})
of W ×W. Therefore

ΠM||N : w0 7→ w1

ΠN||M : w0 7→ w2.
(5.8)

Definition 5.2.1. Parallel Projection[5]

A stable operatorΠ : L → L (with Π0 = 0) is called a parallel projection if for any

x1, x2 ∈ L
Π(Πx1 + (I − Π)x2) = Πx1 (5.9)

whereI denotes the identity onL.
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Thus,ΠM||N andΠN||M are parallel projections considering that for anyw1, w2 ∈ W

Π(Πw1 + (I − Π)w2) = Πw1, (5.10)

for Π ∈
{

ΠM||N ,ΠN||M

}

.

Consider thesummation operator

ΣM,N : M×N → W : (m,n) 7→ m + n. (5.11)

The stability of the standard feedback interconnection, Fig. 5.1, is equivalent toΣM,N

having an inverse defined on the whole ofW which is bounded. In fact, ifΣM,N has a

bounded inverse, thenΣ−1
M,N = HP,C . It can be shown that a necessary condition for

[P,C] to be stable is thatM andN are closed subsets ofW [5]. Let W1 andW2 be closed

subsets of a Banach spaceW. We define

~δ(W1,W2) :=























inf{‖(T − I)|W1‖}, T is a causal

bijective map fromW1 to W2

with T0 = 0,

∞, if no such operatorT exists,

δ(W1,W2) = max
{

~δ(W1,W2), ~δ(W2,W1)
}

.

(5.12)

Theorem 5.2.1.Consider the feedback system shown in Fig.5.1. LetM := GP andN :=

GC . Assume that[P,C] is fg-stable. Suppose thatP is perturbed toP1 andM1 := GP 1. If

~δ(M,M1) <
∥

∥ΠM||N

∥

∥

−1
(5.13)

then[P1, C] is fg-stable. Furthermore

∥

∥ΠM1||N

∥

∥ <
∥

∥ΠM||N

∥

∥

1 + ~δ(M,M1)

1 −
∥

∥ΠM||N

∥

∥~δ(M,M1)
. (5.14)

Proof. See [13].

5.3 Upper bounds on the Gap Metric and the stability margin

In this section, we suggest a method to find an upper bound on the gap metric between two

nonlinear systems as well as a method to compute an upper bound onΠM||N .

Theorem 5.3.1.Consider nonlinear dynamical systems given by

N : ẋ = f(x, u) , x0 = 0;

N̂ : ˙̂x = f̂(x̂, u) , x̂0 = 0.
(5.15)

Letγ(N) andγ(N̂) denote their gain respectively. Then

δ(N, N̂ ) ≤ γ(N) + γ(N̂ ). (5.16)
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Proof. We have

‖x − x̂‖ ≤ ‖x‖ + ‖x̂‖

≤ γ(N) ‖u‖ + γ(N̂ ) ‖u‖

≤
(

γ(N) + γ(N̂)
)

‖u‖

≤
(

γ(N) + γ(N̂)
)

∥

∥

∥

∥

[

u

x

]∥

∥

∥

∥

.

(5.17)

DefineT as

T

[

u

x

]

:=

[

u

x̂

]

. (5.18)

It is trivial thatT is bijective. We have

~δ(N, N̂) = ‖I − T‖

= sup

∥

∥

∥

∥

(I − T)

[

u

x

]
∥

∥

∥

∥

∥

∥

∥

∥

[

u

x

]∥

∥

∥

∥

= sup

∥

∥

∥

∥

[

u − u

x − x̂

]
∥

∥

∥

∥

∥

∥

∥

∥

[

u

x

]∥

∥

∥

∥

= sup
‖x − x̂‖
∥

∥

∥

∥

[

u

x

]∥

∥

∥

∥

≤ γ(N) + γ(N̂) using (5.17) (5.19)

Similarly

~δ(N̂ ,N) ≤ γ(N) + γ(N̂). (5.20)

Consequently,

δ(N, N̂ ) = max{~γ(N, N̂ ), ~γ(N̂ ,N)}

≤ δ(N) + δ(N̂ ). (5.21)

Theorem 5.3.2.Consider the standard feedback configuration depicted in Fig. 5.1. Sup-

pose thatγ(P )γ(C) < 1. LetΠM||N be defined as (5.6) and (5.7). Then

∥

∥ΠM||N

∥

∥ ≤
(

1 + γ(P )
)(

1 + γ(C)
)

1 − γ(P )γ(C)
. (5.22)
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Proof. From the feedback configuration, we have

‖u1‖ ≤ ‖u0‖ + γ(C) ‖y0 − y1‖

≤ ‖u0‖ + γ(C) ‖y0‖ + γ(C)γ(P ) ‖u1‖ .
(5.23)

Consequently

‖u1‖ ≤ 1

1 − γ(C)γ(P )
‖u0‖ +

γ(C)

1 − γ(C)γ(P )
‖y0‖ . (5.24)

Therefore
∥

∥

∥

∥

[

u1

y1

]
∥

∥

∥

∥

≤ ‖u1‖ + ‖y1‖

≤ ‖u1‖ + γ(P ) ‖u1‖

≤ 1 + γ(P )

1 − γ(C)γ(P )
‖u0‖ +

γ(C)
(

1 + γ(P )
)

1 − γ(C)γ(P )
‖y0‖ .

(5.25)

Since‖a‖ ≤
∥

∥

∥

∥

[

a

b

]∥

∥

∥

∥

,

∥

∥

∥

∥

[

u1

y1

]
∥

∥

∥

∥

≤ 1 + γ(P ) + γ(C)
(

1 + γ(P )
)

1 − γ(C)γ(P )

∥

∥

∥

∥

[

u0

y0

]
∥

∥

∥

∥

=

(

1 + γ(P )
)(

1 + γ(C)
)

1 − γ(C)γ(P )

∥

∥

∥

∥

[

u0

y0

]
∥

∥

∥

∥

.

(5.26)

On the other hand, Equation (5.8) implies

ΠM||N

[

u0

y0

]

=

[

u1

y1

]

. (5.27)

Thus

∥

∥ΠM||N

∥

∥ = sup
∥

∥

∥

∥

∥

∥

[

u0

y0

]
∥

∥

∥

∥

∥

∥

6=0

∥

∥

∥

∥

[

u1

y1

]∥

∥

∥

∥

∥

∥

∥

∥

[

u0

y0

]
∥

∥

∥

∥

. (5.28)

Using (5.26)
∥

∥ΠM||N

∥

∥ ≤
(

1 + γ(P )
)(

1 + γ(C)
)

1 − γ(C)γ(P )
. (5.29)

Example 5.3.1. Consider the feedback configuration of Fig.5.1. Assume that the plant

is the circuit shown in Fig.5.2, where the inductance of the SSR is nonlinear andL(·) is

defined as Fig.5.3andR = 10. The state equation of the system is

ẋ(t) = L−1(u1(t) − Rx(t)), x(0) = 0

y1(t) = x(t)
(5.30)
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Figure 5.3: Inductance of SSR.

wherex(t) := iL(t) andu1(t) := Vs(t). Let C = −c wherec is a positive non-zero

constant. LetU = Y = L∞. Since the instantaneous gains ofP andC are zero and one,

respectively, the loop is well-posed. First, we will find the
∥

∥ΠM||N

∥

∥ by a direct method

similar to the solution of Example 1 in [13]. Then, we will compute the upper bound on
∥

∥ΠM||N

∥

∥ by the suggested method.

I. Direct computation:

The feedback equation is

ẋ = L−1(u0 + cy0 − (10 + c)x), x(0) = 0. (5.31)

We have

ΠM||N :

[

u0

y0

]

7→
[

u1

y1

]

=

[

u0 + cy0 − cx

x

]

. (5.32)

Let v0 := u0 + cy0. For anyv0, u0 = y0 gives the mapping with the smallest input norm.

Therefore,v0 = (1 + c)u0 and

∥

∥ΠM||N

∥

∥ =

∥

∥

∥

∥

[

u0

y0

]

7→
[

u0 + cy0 − cx

x

]∥

∥

∥

∥

=

∥

∥

∥

∥

[

u0

y0

]

7→
[

v0 − cx

x

]
∥

∥

∥

∥

= (1 + c)

∥

∥

∥

∥

v0 7→
[

v0 − cx

x

]
∥

∥

∥

∥

= (1 + c) × max{
∥

∥v0 7→
(

v0 − cx
)∥

∥ , ‖v0 7→ x‖}.

(5.33)
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We now show that‖v0 7→ x‖ = 1/10+c. Suppose that for any arbitrary chosen interval

[0, T ], the maximum ofx(t), which is positive, occurs att0 ∈ [0, T ]. Then, for any

ǫ > 0, there existst1 such that0 < t1 < t0, x(t1) > x(t0) − ǫ and ẋ(t1) > 0.

Consequently,L−1
(

v0(t1) − (10 + c)x(t1)
)

> 0. Since sgnL−1(x) = sgnx, v0(t1) >

(10 + c)x(t1). Thus,v0(t1) > (10 + c)x(t0) − (1 + c)ǫ for any ǫ. Similarly, if the min-

imum of x(t) in [0, T ], which is negative, occurs att́0, for any ǫ́ > 0, there existśt1 such

thatv0(t́1) < (10 + c)x(t́0) − (1 + c)ǫ́. Consequently,‖v0‖T ≥ (10 + c) ‖x‖T . To show

that this upper bound on‖v0 7→ x‖ can be approached arbitrary closely, letv0 = 1 for all

t. It is trivial that x(t) =
(

1 − e−(1+0.1c)t
)

/(10 + c). So‖v0‖ = 1 and‖x‖ = 1/10+c.

Consequently,‖v0 7→ x‖ = 1/10+c. Next, we compute
∥

∥v0 7→
(

v0 − cx
)
∥

∥. Trivially,
∥

∥v0 7→
(

v0 − cx
)
∥

∥ ≤ 1 + ‖v0 7→ (cx)‖ = 1 + c
10+c . This upper bound can be ap-

proached arbitrarily closely by the inputv0 = 1 for 0 ≤ t < T andv0 = −1 for t ≥ T .

We havex(t) =
(

1 − e−(1+0.1c)t
)

/(10 + c) for 0 ≤ t < T . Thus,
(

v0 − cx
)

(T ) =

−(1+ c
10+c)+ e−(1+0.1c)T . Therefore,‖v0‖ = 1 and‖v0 − cx‖ = 1+ c

10+c which implies

that
∥

∥v0 7→
(

v0 − cx
)
∥

∥ = 1 + c
10+c . Consequently,

∥

∥ΠM||N

∥

∥ = 1 + c
10+c .

II. The suggested method:

To find γ(P ), let Φ(x, u) = L−1(u − 10x) + 3x/2 andΓ :=

[ −3/2 1

1 0

]

. We use the

computational methods introduced in Section2.3.1. Fig. 5.4 shows the plot of‖Φ(x,u)‖
∥

∥

∥

∥

∥

∥

[

x

u

]
∥

∥

∥

∥

∥

∥

versus

∥

∥

∥

∥

[

x

u

]∥

∥

∥

∥

for 2× 106 randomly chosen input vector. Therefore,γ(Φ) = 0.7. Using the

method introduced in Section2.3.2, we haveγ(Γ) = 2/3. Theorem4.1.1implies that

γ(P ) ≤ 0.639. (5.34)

SinceC = −c is a constant,γ(C) = c. Theorem5.3.2implies that
∥

∥ΠM||N

∥

∥ ≤ 1.639(1+c)
1−0.639 c

if c < 1.56. Apparently, the obtained upper bound is closer to the actual value whenc

approaches zero.

Example 5.3.2.Consider the plant introduced in the previous example. Suppose that the

system is perturbed by time delayh. That is

P1 :

{

ẋ(t) = L−1(u1(t) − Rx(t)), x(0) = 0

y1(t) = x(t − h).
(5.35)

First, we will compute an upper bound on the gap between the plantP and the perturbation

P1 by a direct method similar to the solution of Example 1 in [13]. Then, we will compute

the upper bound on the gap by the suggested method.
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∥

∥

∥

∥

[

x

u

]∥

∥

∥

∥

.

I. Direct computation:

LetM1 := GP 1 and define a mappingT : M → M1 as

T

[

u1(t)

x(t)

]

=

[

u1(t)

x(t − h)

]

. (5.36)

Thus

|x(t) − x(t − h)| ≤ sup
t̂∈[t−h,t]

|ẋ(t̂)| · h

≤ sup
t̂∈[t−h,t]

|L−1
(

u(t̂) − 10x(t̂)
)

| · h.
(5.37)

SinceL−1(·) is an strictly increasing function,

|x(t) − x(t − h)|

≤ L−1
(

sup
t̂∈[t−h,t]

|u(t̂) − 10x(t̂)|
)

· h

≤ L−1
(

sup
t̂∈[t−h,t]

|u(t̂)| + sup
t̂∈[t−h,t]

|10x(t̂)|
)

· h

≤ L−1
(

sup
t̂∈[0,t]

|u(t̂)| + sup
t̂∈[0,t]

|10x(t̂)|
)

· h.

(5.38)

Therefore

‖x(t) − x(t − h)‖τ

≤
∥

∥

∥

∥

∥

L−1
(

sup
t̂∈[0,t]

|u(t̂)| + sup
t̂∈[0,t]

|10x(t̂)|
)

∥

∥

∥

∥

∥

τ

· h

≤ L−1
(

11max{‖u‖τ , ‖x‖τ}
)

· h

≤ 2.2max{‖u‖τ , ‖x‖τ} · h.

(5.39)

Hence

‖I − T‖ = sup
τ,‖u1‖τ 6=0

‖x(t) − x(t − h)‖τ

max{‖u1‖τ , ‖x‖τ}
≤ 2.2h. (5.40)
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Consequently,~δ(M,M1) ≤ 2.2h. On the other hand, letu(t) = 1 on [0, h]. It is Trivial

that(Pu)(t) = 0.1(1 − e−10t). For anyw ∈ M1, we havewh =

[∗
0

]

which is implied by

the time delay inP1. Therefore

~δ(M,M1) = sup
u1,y1 6=0

∥

∥

∥

∥

(T − I)

[

u1

y1

]∥

∥

∥

∥

∥

∥

∥

∥

[

u1

y1

]
∥

∥

∥

∥

≥ sup
u1,y1 6=0

∥

∥

∥

∥

[∗
0

]

−
[

u1

Pu1

]∥

∥

∥

∥

h

max{‖u1‖h , ‖Pu1‖h}

=
max{‖∗ − u1‖h , ‖Pu1‖h}

max{‖u1‖h , ‖Pu1‖h}

≥ ‖Pu1‖h

max{‖u1‖h , ‖Pu1‖h}
= 0.1(1 − e−10h).

(5.41)

Consequently

0.1(1 − e−10h) ≤ ~δ(P,P1) ≤ 2.2h. (5.42)

II. The suggested method:

SinceP is autonomous,γ(P ) = γ(P1). Using Theorem5.3.1, ~δ(P,P1) = 2γ(P ). Using

(5.34), ~δ(P,P1) ≤ 1.278. It is clear that forh > 0.58 the suggested method provides

smaller upper bound than the direct method.

5.4 Chapter Summary

In this chapter, we have considered the computation of the gap metric and the corresponding

robust stability margin. Our results are applicable to a class of a nonlinear systems which

satisfy a given inequality. The suggested methods have computational advantage compared

to previous work in the sense that they are applicable to wider range of nonlinear systems.

Our methods are based on two inequalities derived for the gapmetric and the stability

margin with respect to the gain of the relevant systems. An example is provided to illustrate

the results.
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Chapter 6

The Large Gain Theorem

6.1 Introduction

One of the well-accepted and widely-used methods to study stability of systems is the input-

output approach. It was initiated by Popov, Zames, and Sandberg, in the 1960s [42] [56]

[32]. So far, it has been a fruitful area which has resulted in many of the recent develop-

ments in control theory, such as robust control and small-gain based nonlinear stabilization

techniques. The input-output stability theory considers systems as mappings from an in-

put space of functions into an output space. In this theory, the well-behaved input and

output signals are considered as members of input and outputspaces. Therefore, if the

“well-behaved” inputs produce well-behaved outputs, the system is called stable.

The main contribution of the input-output stability theoryin control theory is through

the well-known small-gain theorem. In this context, the most notable contributions have

also been made by Zames and Sandberg, e.g. [56] [32]. The small gain theorem says that

the feedback loop will be stable if the loop gain is less than one. This simple rule has been

a basis for numerous stabilization techniques such as nonlinearH∞ control [15].

Stability of systems, in its various forms, continues to inspire researchers. Motivated by

the classical small gain theorem, “nonlinear gain” small gain theorems are discussed in such

references as [21] [39] [18]. The notion of non-uniform in time robust global asymptotic

output stability was introduced in [22] for a wide class of systems. A small-gain theorem

for a wide class of feedback systems was proposed in [23]. In [14], it was shown that for an

open loop unstable system which is closed loop stable the gain must exceed one.

In this chapter, the minimum gain of a system is studied. Although it has been showed

that the minimum gain is not a norm on space of operators, a newstability condition has

been derived for feedback systems based on the minimum gain of the open-loop systems.

The chapter is organized as follows. In Section6.2, the minimum gain of an operator
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is defined and some of its properties are derived. In Section6.3, the large gain theorem is

stated. An example is also provided to illustrate the usage of the theorem.

6.2 Minimum Gain of an Operator

Let H : U → Y denote an operator. We define the minimum gain ofH as follows:

ν(H) = inf
06=u∈U

‖(Hu)T ‖
‖uT ‖

(6.1)

where the infimum is taken over allu ∈ U and all T in R+ for which uT 6= 0. It is

trivial that the minimum gain of an operator is less or equal to its induced norm. It is also

obvious that if a minimum gain of a system is infinite, then it is unstable. In other words,

the minimum gain of a stable system is always finite. The converse is, however, not true.

Lemma 6.2.1. LetM ∈ Rn×n. DefineH : X2 → X2 asHx := Mx, then

ν(H) = σ(M). (6.2)

Proof. The proofs for the continuous-time and discrete-time casesare the same and only

the first one is given here. We use the following property of the smallest singular value of

matrices (e.g. [57] pp. 21):

σ(M) = min
‖x‖=1

‖Mx‖ = min
x 6=0

‖Mx‖
‖x‖ . (6.3)

Let M = UΣV T be the Singular Value Decomposition (SVD) ofM , whereV = [v1,

v2, · · · , vn] ∈ Rn×n andU,Σ ∈ Rn×n [57]. It is well-known thatvn is the minimizer of

(6.3), e.g. [57]. Let x ∈ L2, we have

‖Mx‖2 =

∫ ∞

0
‖Mx(t)‖2

2 dt

≥
∫ ∞

0
σ(M)2 ‖x(t)‖2

2 dt

= σ(M)2
∫ ∞

0
‖x(t)‖2

2 dt = σ(M)2 ‖x‖2

(6.4)

which shows thatσ(M) is a lower bound forν(H). To show that it is the greatest lower

bound, letx(t) = vn

‖vn‖
e−t. We have

‖x‖2 =

∫ ∞

0

∥

∥

∥

∥

vn

‖vn‖
e−t

∥

∥

∥

∥

2

dt =

∫ ∞

0

∥

∥e−t
∥

∥

2
dt = 1/2 (6.5)
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and

‖Mx‖2 =

∫ ∞

0

∥

∥

∥

∥

M
vn

‖vn‖
e−t

∥

∥

∥

∥

2

dt

=

∫ ∞

0
‖Mvn‖2 e−2t

‖vn‖2 dt

=

∫ ∞

0
‖σ(M)vn‖2 e−2t

‖vn‖2 dt

= ‖σ(M)‖2
∫ ∞

0
e−2t dt = 1/2 ‖σ(M)‖2 .

(6.6)

Equations (6.5) and (6.6) imply thatν(H) is equal toσ(M) for some input. This completes

the proof.

Lemma 6.2.2. Let Φ(·, ·) : R+ × Rn → Rn (Φ(·, ·) : Z+ × Rn → Rn in discrete time)

andH be the operator defined as

H : Xp → Xp ; Hx(t) := Φ(t, x(t)). (6.7)

Suppose there exists a constantµp such that

µp‖x‖p ≤ ‖Φ(t, x)‖p, ∀x ∈ R
n, ∀t ≥ 0 (6.8)

thenµp ≤ νp(H).

Proof. Let x ∈ Lp, for p 6= ∞,

‖Hx‖p
Lp

=

∫ ∞

0
‖Φ(t, x(t))‖p dt ≥

∫ ∞

0
µp

p ‖x(t)‖p dt

= µp
p

∫ ∞

0
‖x(t)‖p dt = µp

p ‖x‖p
Lp

.

(6.9)

Forp = ∞,

‖Hx‖L∞ = sup
t

‖Φ(t, x(t))‖ ≥ sup
t

µp ‖x(t)‖

= µp sup
t

‖x(t)‖ = µp ‖x‖p
L∞

.
(6.10)

Equations (6.9) and (6.10) imply that µp is a lower bound forν(H). This completes the

proof.
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Figure 6.1:H2 in Example6.2.1.

Example 6.2.1. Memory less Nonlinearities:Let X = L∞, and consider nonlinear op-

eratorsH1(u) = u2 andH2(.) defined by the graph in the plane shown in Fig.6.1. We

have

ν(H1) = inf
06=u∈L∞

‖(H1u)T ‖L∞

‖uT ‖L∞

= inf
06=u∈L∞

|u| = 0. (6.11)

The minimum gainν(H2) is easily determined from the slope of the graph ofH2.

ν(H2) = inf
06=u∈L∞

‖(H2u)T ‖L∞

‖uT ‖L∞

= 0.5. (6.12)

Lemma 6.2.3. Let g(t) be the impulse response of a continuous-time, stable, LTI system.

Let G(s) denote the Laplace transform ofg(t). Furthermore, assume that there exists a

row in G(s) where all elements are strictly proper, namely there isi such that for allj,

lims→∞ Gij(s) = 0. LetH stand for the convolution operator defined by

H(z(t)) =

∫ t

0
g(t − τ)z(τ)dτ. (6.13)

We have

ν(H) = 0. (6.14)

Proof. Let x̂(t) = [x̂1(t) x̂2(t) · · · x̂n(t)]T ,

x̂k(t) =

{

sin(ωt) k = i,

0 otherwise.

wherei corresponds to the strictly proper row inG(s) andω ≥ π. Let

x(t) := x̂(t) − x̂
(

t −
⌊ω

π

⌋ π

ω

)

(6.15)

where⌊r⌋ denotes the floor function of a real number r, which is the largest integer less
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Figure 6.2:|x̂(t)|.

than or equal tor, namely∀r ∈ R ; ⌊r⌋ := sup{n ∈ Z|n ≤ r}. It is trivial that

x(t) =


















































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





















0
0
...

sin(ωt)
...
0





















ith row
0 ≤ t ≤

⌊

ω
π

⌋

,

0 t >
⌊

ω
π

⌋

.

and

‖x(t)‖ =
∣

∣

∣
x̂i(t) − x̂i

(

t −
⌊ω

π

⌋ π

ω

)∣

∣

∣

Thus,

‖x‖L∞
= sup

t
| sin(ωt)| = 1 (6.16)

‖x‖2
L2

=

∫ ⌊ω
π
⌋ π

ω

0
| sin(ωt)|2 dt

= 1/2

(

t − sin (2ωt)

2ω

)
∣

∣

∣

∣

⌊ω
π
⌋ π

ω

0

=
⌊ω

π

⌋ π

2ω
− sin

(

2π⌊ω
π ⌋

)

4ω

(6.17)

‖x‖L1
=

∫ ⌊ω
π
⌋ π

ω

0
| sin(ωt)| dt. (6.18)

To calculate (6.18), consider the graph of|x̂(t)| depicted in Fig.6.2. The number of peaks

is
⌊

ω
π

⌋

. Moreover,

S =

∫ π
ω

0
sin (ωt) dt =

2

ω
. (6.19)

Consequently,

‖x‖L1
=

⌊ω

π

⌋

S =
⌊ω

π

⌋ 2

ω
. (6.20)

To calculate the norm of the output‖y‖, we can first find the response of the system to input

x̂(t), namelyŷ(t), and then obtain the output usingy(t) = ŷ(t) − ŷ
(

t −
⌊

ω
π

⌋

π
ω

)

implied
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by the linearity property of the system and (6.15). If we let ω → ∞, the response of the

system tôx(t) approaches to zero. The reason is that the amplitude of all elements of the

i-th row of G(s) approaches to zero at high frequencies. Therefore,limw→∞ ‖ŷ(t)‖ = 0

and consequently

lim
w→∞

‖y‖ = 0. (6.21)

On the other hand, (6.17) and (6.20) imply

lim
w→∞

‖x‖L2
= 1/2, lim

w→∞
‖x‖L1

=
2

π
. (6.22)

Equations (6.16), (6.21) and (6.22) imply

ν1(H) = 0, ν2(H) = 0, ν∞(H) = 0. (6.23)

Corollary 6.2.1. The minimum gain of a system with a strictly proper stable transfer func-

tion is zero.

Lemma 6.2.4. Let g(t) be the impulse response of a continuous-time (discrete-time) LTI

system. LetG(s) (G(z)) denote the Laplace transform (z-transform) ofg(t). Furthermore,

assume thatG(s) (G(z)) has at least one zero in the RHP (outside of the unit circle). Let

H stand for the convolution operator defined by

H(z(t)) =

∫ t

0
g(t − τ)z(τ)dτ (6.24)

for continuous-time case and

H(z(t)) =
t

∑

l=0

g(t − l)z(l) (6.25)

for discrete-time one. We have

ν(H) = 0. (6.26)

Proof. The proofs for the continuous-time and discrete-time casesare the same and only

the first one is given here.

Let s0 be the RHP zero ofG(s), namely there existsw such thatG(s0)w = 0. If

σ0 + iω0 = s0 ∈ C, trivially s∗0 is also a RHP zero ofG(s). Let

u(t) =

{

w es0t if s0 ∈ R,

w eσ0t sin (ω0t) if s0 ∈ C.
(6.27)
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Consequently,

U(s) =

{

w · 1
s−s0

if s0 ∈ R.

w · ω0

(s−σ0)2+ω2
0

if s0 ∈ C.
(6.28)

We have

Y (s) =

{

G(s) · w · 1
s−s0

if s0 ∈ R.

G(s) · w · ω0

(s−σ0)
2+ω2

0

if s0 ∈ C.
(6.29)

SinceG(s) is assumed to be stable,Y (s) is a stable signal. It is important to note thatY (s)

does not have a pole ats0. The reason is that the pole ats0 is canceled by the zero ofG(s)

ats0. Since all poles ofY (s) are in LHP,y(t) is a decaying signal. On the other hand,u(t)

is an unstable signal, rising by time. If we truncate bothu(t) andy(t) atT , which is chosen

sufficiently large, the corresponding gain of the system will be small. By increasingT , the

gain can be decreased as much as desired. Therefore,ν(H) = 0.

Lemma 6.2.5. Let H : Dh ⊆ U → Y be a possibly unstable operator. LetRh denote the

range ofH, namelyRh = {y ∈ Y : y = Hu for someu ∈ Dh}. Assume thatH has a

stable right inverse, i.e., there existsH−1 : Rh → Dh such that

H · H−1 = I (6.30)

andH−1 is stable. Moreover, assume thatγ(H−1) < ∞ Then

ν(H) =
1

γ(H−1)
. (6.31)

Proof. Let y(t) := Hu(t), which implies thatu(t) = H−1y(t). Therefore

ν(H) = inf
u∈U

‖yT ‖
‖uT ‖

= inf
u∈Dh

‖yT ‖
‖uT ‖

= inf
u∈Dh

1
‖uT ‖
‖yT ‖

=
1

sup
u∈Dh

‖uT ‖
‖yT ‖

=
1

sup
u∈Dh

‖H−1yT ‖
‖yT ‖

=
1

sup
y∈Rh

‖H−1yT ‖
‖yT ‖

=
1

γ(H−1)
.

(6.32)

Corollary 6.2.2. Unstable, bi-proper, LTI systems
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1. Letg(t) be the impulse response of a continues-time, unstable, bi-proper, LTI system.

LetH stand for the convolution operator defined by

H(z(t)) =

∫ t

0
g(t − τ)z(τ)dτ. (6.33)

LetG(s) be the Laplace transform ofg(t). We have

ν(H) =
∥

∥G−1(s)
∥

∥

−1

H∞
. (6.34)

2. Let g(t) be the impulse response of a discrete-time, unstable, strictly proper, LTI

system. LetH denote the convolution operator defined by

H(z(t)) =

t
∑

l=0

g(t − l)z(l). (6.35)

LetG(z) be thez-transform ofg(t). We have

ν(H) =
∥

∥G−1(z)
∥

∥

−1

H∞
. (6.36)

Proof. The proofs for continuous-time and discrete-time are the same and only the first one

comes here.

For bi-proper systems, the inverse system exists. Lety(t) := Hu(t), we have

ν(H) = inf
u∈Xe

‖yT ‖
‖uT ‖

= inf
u∈Xe

1
‖uT ‖
‖yT ‖

=
1

sup
u∈Xe

‖uT ‖
‖yT‖

=
1

sup
y∈Xe

‖uT ‖
‖yT ‖

=
1

sup
u∈Xe

‖G−1uT ‖
‖yT‖

.

(6.37)

Example 6.2.2.Let

G(s) =
s + 1

s − 1
(6.38)

andH : Dh ⊂ L2 → L2 be an operator defined as (6.33). Equation (6.36) implies that

ν(H) =
∥

∥G−1(s)
∥

∥

−1

H∞
= 1. (6.39)
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For instance, letu(t) := (1 − 2t) e−t u−1(t), whereu−1(t) denotes the step function. We

haveU(s) = s−1
(s+1)2

and consequentlyY (S) = 1
s+1 which shows thaty(t) = e−t u−1(t).

This reveals thatν(H) ≤ ‖y‖L2
‖u‖L2

= 1. It is important to note that there is no input that satis-

fies
‖y‖L2
‖u‖L2

< 1. This can be shown by contradiction. Assume there exists some inputû ∈ Le
2

such that
‖ŷ‖L2
‖û‖L2

< 1 whereŷ is the corresponding output. We have‖ŷ‖ < ‖û‖ < ∞. On

the other hand,̂u = G−1 ŷ. Since
∥

∥G−1
∥

∥

H∞
= 1 ‖û‖ ≤ ‖ŷ‖ which is a contradiction.

The minimum gain of operators satisfies thepositivity and thepositive homogeneity

properties. To see this, we have

ν(·) ≥ 0 (6.40)

and

ν(λH) = inf
06=u∈Xe

‖λHu‖
‖u‖

= |λ| inf
06=u∈Xe

‖Hu‖
‖u‖ = |λ| ν(H)

(6.41)

However, it can be shown that it fails to satisfy the triangleinequality. For instance, suppose

thatH1 andH2 are memoryless nonlinearities depicted in Fig.6.3. It is trivial thatν(H1) =

0, ν(H2) = 0 andν(H1 + H2) = 1. This shows thatν(H1 + H2) > ν(H1) + ν(H2).

Consequently, the minimum gain of an operator is not a norm oreven a semi-norm on the

space of operators.

x

H x1

-1

-1

(a) H1

x
1

1

H x2

(b) H2

x
1

2

( )H1 + H x2

(c) H1 + H2

Figure 6.3: The triangle inequality is not satisfied byν(·).

Lemma 6.2.6. Let H : U → Y denote an operator. Suppose that there exists a nonzero

stable operatorK : R → U such thatHK : R → Y is stable, thenν(H) < ∞.

Proof. Let 0 6= r(t) ∈ R such thatr /∈ Ker(K), thenu(t) = K r(t) ∈ U, u 6= 0 and

y(t) = HK r(t) ∈ Y, implied by the stability ofK and HK, respectively. Therefore

‖u‖U 6= 0 and‖u‖U , ‖y‖Y < ∞. Consequently,ν(H) ≤ ‖y‖
Y

‖u‖
U

< ∞.
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Figure 6.4: Stabilizable system.

Corollary 6.2.3. Any system that can be stabilized by a stable system with the mentioned

properties in Lemma6.2.6and a structure as shown in either Fig.6.4(a)or Fig. 6.4(b), has

a finite minimum gain.

Proof. The corollary is based on Lemma6.2.6and the proof follows a similar routine as

the proof of the lemma with defining a newR equalsR⊕Y in 6.4(a)or R+Y in 6.4(b).

Theorem 6.2.1.Sub-multiplicative property

LetH1,H2 : X → X be causal operators. Then

ν(H1H2) ≤ ν(H1)ν(H2). (6.42)

Proof. Let u ∈ X , we have

‖H1H2u‖ ≥ ν(H1) ‖H2u‖ ≥ ν(H1)ν(H2) ‖u‖ . (6.43)

Considering the fact thatν(H1H2) is the infimum gain of theH1H2, Inequality (6.43)

implies (6.42).

6.3 Large Gain Theorem

In this section, we concentrate on the feedback system shownin Fig. 6.5. Under mild

conditions onH1 andH2 (e.g., the product of the instantaneous gains is less than one [1]),

the feedback configuration is guaranteed to be well-posed. The equations describing this

feedback system, to be known as theFeedback Equations, are:

e1 = u1 − y2

e2 = u2 + y1

y1 = H1e1

y2 = H2e2.

(6.44)
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Figure 6.5: The feedback system.

Theorem 6.3.1.Consider the feedback interconnection described by (6.44) and shown in

Fig. 6.5. If 1 < ν(H1)ν(H2) < ∞, the feedback system is input-output-stable.

Proof. To show stability of the feedback interconnection, we must show thatu1, u2 ∈ X
imply thate1, e2, y1 andy2 are also inX . According to the definition ofν, we have

ν(H1) ‖e1T ‖ ≤ ‖y1T ‖ (6.45)

ν(H2) ‖e2T ‖ ≤ ‖y2T ‖ (6.46)

On the other hand,

y1T = e2T − u2T (6.47)

y2T = u1T − e1T (6.48)

Thus,

‖y1T ‖ ≤ ‖e2T ‖ + ‖u2T ‖ (6.49)

‖y2T ‖ ≤ ‖e1T ‖ + ‖u1T ‖ (6.50)

Substituting (6.45) and (6.46) in (6.49) and (6.50), respectively,

ν(H1) ‖e1T ‖ ≤ ‖e2T ‖ + ‖u2T ‖ (6.51)

ν(H2) ‖e2T ‖ ≤ ‖e1T ‖ + ‖u1T ‖ (6.52)

Using (6.46) and (6.50), Equation (6.51) implies that

ν(H2)ν(H1) ‖e1T ‖ ≤ ν(H2) ‖e2T ‖ + ν(H2) ‖u2T ‖

≤ ‖y2T ‖ + ν(H2) ‖u2T ‖

≤ ‖e1T ‖ + ‖u1T ‖ + ν(H2) ‖u2T ‖ .

(6.53)

Sinceν(H1)ν(H2) > 1,

‖e1T ‖ ≤ 1

ν(H1)ν(H2) − 1
(‖u1T ‖ + ν(H2) ‖u2T ‖) . (6.54)
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Similarly,

‖e2T ‖ ≤ 1

ν(H1)ν(H2) − 1
(ν(H1) ‖u1T ‖ + ‖u2T ‖) . (6.55)

Moreover, substituting (6.55) and (6.54) in (6.49) and (6.50), respectively,

‖y1T ‖ ≤ ν(H1)

ν(H1)ν(H2) − 1
(‖u1T ‖ + ν(H2) ‖u2T ‖) (6.56)

and

‖y2T‖ ≤ ν(H2)

ν(H1)ν(H2) − 1
(ν(H1) ‖u1T ‖ + ‖u2T ‖) . (6.57)

Hence, the norms of‖e1T ‖, ‖12T ‖, ‖y1T ‖ and‖y2T ‖ are bounded. If, in addition,u1, u2 ∈
X , then (6.54-6.57) must also be satisfied ifT approaches∞. Therefore,

‖e1‖ ≤ 1

ν(H1)ν(H2) − 1
(‖u1‖ + ν(H2) ‖u2‖) (6.58)

‖e2‖ ≤ 1

ν(H1)ν(H2) − 1
(ν(H1) ‖u1‖ + ‖u2‖) (6.59)

‖y1‖ ≤ ν(H1)

ν(H1)ν(H2) − 1
(‖u1‖ + ν(H2) ‖u2‖) (6.60)

‖y2‖ ≤ ν(H2)

ν(H1)ν(H2) − 1
(ν(H1) ‖u1‖ + ‖u2‖) . (6.61)

Consequently,e1, e2, y1 andy2 are also inX .

Example 6.3.1. Let H1 be the convolution operator defined by (6.13) whereg(t) is the

impulse response of

G(s) = k
s + 1

s − 1

wherek ∈ R. Let H2 be a memoryless nonlinearity depicted in Fig.6.1. As shown in

Example6.2.2, ν(H1/k) = 1 which implies thatν(H1) = |k|. On the other hand, we

haveν(H2) = 0.5. Consequentlyν(H1)ν(H2) = 0.5|k|. The large gain theorem, namely

Theorem6.3.1, guarantees that the feedback system is stable if|k| > 2.

6.4 Chapter Summary

The minimum gain of an operator as well as some of its properties are introduced. These

properties are useful in the computation of the minimum gainof a system. For instance, it is

shown that the minimum gain of strictly proper, stable, LTI systems are zero. When it comes

to the metric properties, the minimum gain of an operator fails to satisfy the triangular
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inequality which implies that it is not a metric or a norm in the space of operators. Finally,

the so-called large gain theorem is stated and proved. This theorem implies a new stability

condition for feedback interconnection of nonlinear systems. An example is provided to

illustrate the derived stability condition.
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Chapter 7

Disturbance Attenuation: A Case
Study

7.1 Introduction

There is no doubt that disturbance attenuation is one of the most important objectives in any

closed-loop system. Therefore, it is important to quantifythe influence of various inputs on

various signals inside the feedback loop and develop tools to calculate such quantities. This

chapter is based on our earlier work presented in Chapter4. The plant of interest is a mul-

titank system consistent of three interconnected tanks. First, the mathematical model of the

plant is derived using physical relations. Then, the gray box method is used to identify the

parameters of the model. Finally, it is assumed that the plant is controlled by a proportional

controller and the disturbance attenuation of the closed-loop plant is investigated.

7.2 The Multitank System

Liquid level control problems related to multitank systemsare commonly encountered in

industrial storage tanks. For instance, steel producing companies around the world have

repeatedly confirmed that substantial benefits are gained from accurate mould level control

in continuous bloom casting. Mould level oscillations tendto stir foreign particles and flux

powder into molten metal, resulting in surface defects in the final product [19].

The multitank system consists of three tanks placed one above another. The top tank

has a constant cross section while the other two have variable cross sections as shown in

Fig. 7.1. A pump is used to circulate liquid from the supply tank into the upper tank.

The liquid flows through the tanks due to gravity. The output orifices can be controlled by

electrical valves to act as constant or time-varying flow resistors. Generally speaking, the

system has four inputs and three outputs. The inputs are three valve controls and one pump
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Figure 7.1: Configuration of the multitank system

Figure 7.2: Closed loop multitank system
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Figure 7.3: Block diagram of the identified system

control signal. The three valve controls are driven by appropriate Pulse-Width Modulation

(PWM [16]) signals transmitted from the I/O board to the power interface, and from the

power interface to the DC motors connected to the valves. Thepump control signal, which

acts by controlling the speed of the pump motor, is a sequenceof PWM pulses configured

and generated by the logic of XILINX chip of the I/O board. Theoutput signals are the

levels of the liquid measured by pressure transducers. All signals are connected to the

analog inputs/outputs of a multipurpose PC I/O board.

The system states are the liquid levelsH1, H2 andH3. The general objective of the pilot

is to control the liquid levels by four input signals: liquidinflow q and valve settingsC1, C2

andC3. Among various system configurations, our purpose is to control level of the middle

tank, i.e. H2, by the liquid inflowq using a proportional controller. We assume thatd is

the disturbance (or noise) signal and study the disturbanceattenuation of the closed-loop

system. The block diagram of the closed-loop system is depicted in Fig.7.2.

7.3 Identification

The block diagram of the plant is depicted in Fig.7.3. First, a mathematical model of the

plant is developed based on the physics of the process. Next,we set an experiment to acquire

the step response of the system in order to obtain an approximate model of the system or

more precisely, an approximate time constants of the system. Using the approximate time

constants, a Random Binary Sequence (RBS) signal is built and applied to the plant [26].

Finally, the RBS response is divided to two sections; one section is used to identify the

model and another one to validate the model.

7.3.1 The Mathematical Model

The Bernoulli’s law can be applied to find the laminar outflow rate of an ideal fluid [30]. By

applying mass balance and assuming a laminar outflow, the model describing the dynamics
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Figure 7.4: Geometrical parameters of the tanks

of the process can be obtained.










dV1

dt
= q − C1

√

H1

dV2

dt
= C1

√

H1 − C2

√

H2

(7.1)

whereV1 andV2 are the fluid volumes in Tank 1 and Tank 2, respectively andC1 andC2

are the resistances of the output orifices. Hence,














dV1

dH1

dH1

dt
= q − C1H1

α1

dV2

dH2

dH2

dt
= C1H1

α1 − C2H2
α2

(7.2)

whereα1 = 0.5 andα2 = 0.5 for laminar flows. For the real system where turbulence and

acceleration of the liquid are not negligible, the outflow rate does not follow the Bernoulli

law and more general coefficientsα1 andα2 should be considered [19] [30]. The values of
dV1
dH1

and dV2
dH2

depend on the shape of the tanks shown in Fig.7.4. Since the cross-sectional

area of Tank 1 is constant,dV1
dH1

= aw. For Tank 2, we havedV1
dH1

= cw + H2
H2max

bw.

Therefore,






dH1
dt = 1

aw (q − C1H
α1
1 )

dH2
dt = 1

cw+
H2

H2max
bw

(C1H
α1
1 − C2H

α2
2 )

(7.3)

Let x1 := H1 − H10, x2 := H2 − H20 andq = u + q0 whereH10 andH20 are operating

points andq0 is the corresponding input. It is trivial thatq0 = C1H
α1
10 = C2H

α2
20 . The

numerical values for the coefficients area = 0.25, w = 0.035, H2max = 0.35, b = 0.345,

c = 0.1 [19]. Hence, the state equation of the open-loop system is
{

dx1
dt = 114.2857 (u + (0.15C1)

α1 − C1(x1 + 0.15)α1)
dx2
dt = 1

0.0035+0.0345(x2+0.1) (C1(x1 + 0.15)α1 − C2(x2 + 0.1)α2)
(7.4)
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Figure 7.5: The step response

7.3.2 Data Acquisition

To build an appropriate RBS signal, we need to acquire approximate time constants of the

system. Therefore, we set an experiment to obtain step responses. The step responses are

depicted in Fig.7.5. Hence, the approximate time constant of the system areτ1 ≈ 80s and

τ2 ≈ 150s. We will use the time constants to determine frequency of theRBS signal. We

chooseTs = 10 sec. To perform the RBS test we need to determine the pass band which

can be calculated from the following formula [26]:

f =
kTs

τπ
(7.5)

wherek = 2 ∼ 3. We selectf = 0.0612. The produced RBS signal and response of the

system are illustrated in Fig.7.6.

7.3.3 Data Pre-Processing and Identification

We do the identification and validation for each of the outputs separately. After down sam-

pling the data, the mean value of the data should be removed and to reduce computational

errors, we increase the values of the levels by using centimeter unit. Then, we filter the data

by a low pass filter to attenuate noise. The bandwidth of the system is approximately equal

to inverse of the time constant. We choose one decade upper than the bandwidth as cut-off
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Figure 7.6: The RBS response

Table 7.1: The identified parameters.

Parameter C1 C2 α1 α2

Value 1.432 × 10−4 1.488 × 10−4 0.3833 0.3341

frequency of the low-pass filter. Therefore,

f1,cut−off =
10Ts

τ1π
= 0.3979

f2,cut−off =
10Ts

τ2π
= 0.2122

(7.6)

Next, From 1130 data points of the pair of input-output, we choose the first 750 points for

identification and the remaining 380 points for validation and remove the mean values of

two set of data. We use the Identification Toolbox of MATLAB toidentify C1, C2, α1 and

α2 by the gray box method. The identification and validation curves are depicted in Fig.

7.7and7.8, respectively.

The identified values for the mentioned parameters are givenin Table7.1.

7.3.4 Disturbance Attenuation

The problem of our interest is to study the disturbance attenuation of the closed loop system

depicted in Fig.7.2. In order to calculate the disturbance rejection amplitude, we need to find
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the gain of the system from the disturbance signal to the output by the methods mentioned

in Section5.3. The state equations of the closed-loop system are






ẋ1 = 1
aw (q0 − KP (x2 + d) − C1(x1 + H10)

α1)

ẋ2 = 1

cw+
x2+H20
H2max

bw
(C1(x1 + H10)

α1 − C2(x2 + H20)
α2)

(7.7)

and ẋ =

(

ẋ1

ẋ2

)

= f(x, d). To find appropriateA and B matrices, we define a

function which calculatesγ∞(Γ) · γ∞(Φ) in a local region

∥

∥

∥

∥

[

x

d

]∥

∥

∥

∥

∞

≤ r̂ for givenA and

B in MATLAB. Then usingfminsearchfunction of MATLAB, we minimize the function

with respect toA andB. Choosingr̂ = 0.06, we obtainA =

(

−0.0360 −0.0149
0.0215 −0.0425

)

andB =

(

0.0141
0.0066

)

. Therefore,Φ(x, d) =

[

Φ1(x, d)
Φ2(x, d)

]

where































Φ1(x, d) = 0.00791 − 0.00266 d + 0.00346 x2 − 0.0164 (x1 + 0.150)0.3833

+ 0.0360 x1

Φ2(x, d) =
(

0.000143 (x1 + 0.15)0.3833 − 0.00015 (x2 + 0.1)0.3341
)

×

(0.007 + 0.0345 x2 )−1 − 0.0215 x1 + 0.0425 x2 − 0.00657 d.

(7.8)

Computation with the methods proposed in [50] providesγ∞(Γ) < 32.9194, γ∞(Θ) <

0.2975, andγ∞(Ω) = 1. Let η = 1 which givesγ∞(Ω) + ηγ∞(Θ) = 1.2975. By

choosing different values forMp andη, different bounds can be obtained. For now, we

chooseMp = 20. Therefore,γD
∞(Φ) should satisfy

γD
∞(Φ) <

Mp − γ∞(Ω) − ηγ∞(θ)

(Mp + η)γ∞(Γ)
= 0.0271. (7.9)

‖Φ(x,d)‖∞
∥

∥

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∥

∥

∞

versus

∥

∥

∥

∥

[

x

d

]∥

∥

∥

∥

∞

is depicted in Fig.7.9. Let us takeD as the region where

‖Φ(x,d)‖∞
∥

∥

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∥

∥

∞

< 0.049, i.e. γD
∞(Φ) = 0.027. Consequentlyrx = 0.049 and rd = 0.049.

Let ǫ = 0.048 andδ = 0.0023 ≤ 1−γD
∞(Φ)γ∞(Γ)

γ∞(Ω)+η(γ∞(Θ)+γD
∞(Φ)γ∞(Γ))

ǫ = 0.0024. According to

Theorem3.3.2, for any inputd which satisfies‖d‖L∞ < min(ηδ, rd) = 0.0023 and any

initial state satisfying‖x0‖∞ < δ = 0.0023, x is bounded as‖x‖L∞ < ǫ = 0.048. In other

words, if−2.3mm ≤ d ≤ 2.3mm, 14.77cm ≤ H10 ≤ 15.23cm and8.77cm ≤ H20 ≤
10.23cm then10.2cm≤ H1 ≤ 19.8cm and5.2cm≤ H2 ≤ 14.8cm.

Now, Letη = 4. Therefore,γ∞(Ω) + ηγ∞(Θ) = 2.19. By choosingMp = 22, γD
∞(Φ)

should satisfy

γD
∞(Φ) <

Mp − γ∞(Ω) − ηγ∞(θ)

(Mp + η)γ∞(Γ)
= 0.0231. (7.10)
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Table 7.2: Bounds obtained by variousη andMp.

r̂ η Mp
‖x0‖∞ < ‖d‖L∞ < ‖x‖L∞ <
(in mm) (in mm) (in mm)

0.06

0.1 8 5.8 0.58 45
0.1 20 5 0.5 50
1 20 2.3 2.3 48
3 19 1.7 5 30
4 22 1.4 5.6 30
5 24 0.51 2.6 12
8 38 0.72 5.7 28
10 120 0.4 4.1 48

0.03

0.1 2 12.5 1.25 21.5
1 9 4.58 4.58 38.2
10 15 1.13 11.3 16.5
100 130 0.11 11 15

Let D be the region whereγD
∞(Φ) = 0.023. Hence,‖Φ(x,d)‖∞

∥

∥

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∥

∥

∞

< 0.0302 in D. Thus,

rx = 0.0302 andrd = 0.0302. Let ǫ = 0.03 and

δ = 0.0013 ≤ 1 − γD
∞(Φ)γ∞(Γ)

γ∞(Ω) + η(γ∞(Θ) + γD
∞(Φ)γ∞(Γ))

ǫ = 0.0014. (7.11)

According to Theorem3.3.2, for any inputd which satisfies‖d‖L∞ < min(ηδ, rd) =

0.0056 and any initial state satisfying‖x0‖∞ < δ = 0.0013, x is bounded as‖x‖L∞ <

ǫ = 0.03. In other words, if−5.6mm ≤ d ≤ 5.6mm, 14.86cm ≤ H10 ≤ 15.14cm and

9.86cm≤ H20 ≤ 10.14cm then12cm≤ H1 ≤ 18cm and7cm≤ H2 ≤ 13cm.

By choosing other values forη andMp, other bounds can be obtained. Moreover,r̂ can

also be changed to acquire required bounds. For example, letr̂ = 0.03. By minimizing

γ∞(Γ) · γ∞(Φ) in a local region

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∞

≤ r̂ = 0.03, we obtain

A =

(

−0.0204 −0.0171
0.0262 −0.0347

)

, B =

(

0.0124
0.0001

)

. (7.12)

For this case,‖Φ(x,d)‖∞
∥

∥

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∥

∥

∞

versus

∥

∥

∥

∥

[

x

d

]
∥

∥

∥

∥

∞

is depicted in Fig.7.10. For bothr̂ = 0.03 and

r̂ = 0.06 cases, some of the results are summarized in Table7.2.

7.4 Chapter Summary

Based on Theorem3.3.2in Chapter4, a method proposed to study disturbance attenuation

of closed-loop nonlinear systems. The physical plant underexamination is a multitank
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system. First, the mathematical model of the plant is derived using physical concepts. Then,

the parameters of the model are identified by the gray box method. Finally, the disturbance

attenuation of the closed-loop plant controlled by a proportional controller is investigated.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

In this thesis, different algorithms are developed to provide necessary tools for designing

multi-model control systems for nonlinear systems. The major contributions are:

1. New representations for nonlinear systems, calledζA andζAB representations, are

proposed. In theζA representation and its extended version for forced systems, ζAB

representation, a nonlinear system is arranged as a feedback interconnection of a

memoryless nonlinearity and a linear system with initial state as an input signal. Al-

though interconnection of a memoryless nonlinearity with alinear system has been

widely used in literature, the way the initial state is dealtwith is the main difference

between our decomposition and traditional ones. InζA and ζAB representations,

the initial state contributes to the feedback interconnection as an exogenous input

while in traditional methods, any change in the initial state is handled by defining

a new operator. TheζA andζAB representations can be used to develop new tools

for non-zero state nonlinear systems from the input-outputtheory methods, as pre-

sented in this thesis. In other words, the fact that theζA and ζAB representations

convert a nonlinear system with non-zero initial state to a combination of a memo-

ryless nonlinearity and a linear system with some input signals and the way initial

state is handled by these representations provide a novel viewpoint on all aspects of

investigating nonlinear systems.

2. A new framework is developed for the analysis of stabilityof systems by theζA and

ζAB representations. The effectiveness of this usage is originated in the fact that using

these representations, stability of nonlinear systems with non-zero initial states can

be investigated by the input-output stability methods and stability is interpreted as
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input-output stability of the resulting feedback systems.Precisely, new methods are

proposed to check stability in the sense of Lyapunov for an unforced nonlinear system

by norm of some relevant operators, without finding any Lyapunov-like function. For

local stability, a method developed to find some local areas,∆ and Υ, where the

initial statex0 belonging to∆ implies the state staying insideΥ area. The methods

are also extended to forced systems.

3. A new method is proposed to compute an upper bound on theL1, L2 andL∞ norms

of a class of nonlinear systems. The method is based on theζA andζAB represen-

tations of nonlinear systems. A method is also proposed to find an upper bound on

inducedLp norms. The second method, Theorem4.1.2, provides tighter bound for

the casep = 2. Both proposed methods suffer from a restrictive condition. Another

tool is developed to overcome this restriction with the costof providing only local

conditions, namely, an upper bound on system output for bounded input and initial

state, and being restricted toL∞ induced norm.

4. Based onζA andζAB representations, methods are proposed to compute an upper

bounds on the gap metric and the corresponding stability margin for a class of non-

linear systems.

5. The minimum gain of operators is defined, some of its properties are derived and

some computational methods are developed to calculate the minimum gain. For ex-

ample, it is shown that the minimum gain satisfies the positivity and the positive

homogeneity properties but fails to satisfy the triangle inequality.

6. Based on the minimum gain of operators, the large gain theorem is stated. The large

gain theorem asserts that the feedback loop will be stable ifthe minimum loop gain

is greater than one.

7. One of the algorithms, which is developed to compute on upper bounds onL∞ norm

of nonlinear systems, is deployed to study disturbance attenuation of a closed loop

system. The system of interest is a multitank system consisting of three tanks placed

one above another. It is assumed that a proportional controller is used to control the

level of the liquid in one of the tanks. The mathematical model of the open loop

system is derived using physics of the plant. The gray box identification method is

used to identify the model parameters and the disturbance attenuation of the system

is investigated by the proposed method.
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8.2 Future Work

Some future directions for extending and improving the results of this thesis are as follows:

1. Some of the results are already extended to discrete systems. It is useful to check the

applicability of all results on discrete and multirate systems.

2. Almost all of the results are developed based on general classes of nonlinear systems,

i.e.

N1 : ẋ(t) = f1(t, x(t)) (8.1)

N2 : ẋ(t) = f2(t, x(t), u(t)). (8.2)

It may be useful to restrict systems to a narrower class. For example, one may obtain

tighter bounds on theL∞ norm of systems by restricting the system of interest to

N3 : ẋ(t) = f1(t, x(t)) · f2(t, u(t)). (8.3)

3. TheζA andζAB representations convert a nonlinear system with non-zero initial state

to a combination of a memoryless nonlinearity and a linear system with some input

signals. The way the initial state is handled by these representations provides a novel

viewpoint on all aspects in investigating nonlinear systems. We have usedζA andζAB

representations in developing all the results presented inthis thesis. One interesting

work is to use theζA and ζAB representations to study other aspects of nonlinear

systems, such as observability, and develop new tools basedon these representations.

4. The tools that are developed in this thesis can be used to design multi-model control

systems. It would be interesting to design a multi-model control system based on the

proposed tools.
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