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Abstract

The complexity of large industrial engineering systemssaaschemical plants has contin-
ued to increase over the years. As a result, flexible conysiems are required to handle
variation in the operating conditions. Some of the challegglements in the design of
control systems are nonlinearity, disturbances and wamiogytin the process model. In the
classical approach, first the plant model should be linedra the nominal operating point
and then, a robust controller should be designed for thdtieglinear system. However,

the performance of a controller designed by this methodrideates when operation de-
viates from the nominal point. When the distance betweeroffexating region and the

nominal operating point increases, this performance diegien may lead to instability.

In the context of traditional linear control, one method dtve this problem is to con-
sider the impact of nonlinearity as “uncertainty” arouné tiominal model and design a
controller such that the desired performance is satisfiedlfgpossible systems in the un-
certainty set. As the size of uncertainty increases, ceagem occurs and at some point,
it becomes impossible to design a controller that can peosatisfactory performance.

One of the methods proposed to overcome the aforementidmttemings is the so-
called Multiple Model approach. Using Multi Models, locagégigns are performed for
various operating regions and membership functions or arsigory switching scheme is
used to interpolate or switch among the controllers as tlegabting point moves among
local regions. Since the Multiple Model method is a naturdélsion of the linear control
method, it inherits some benefits of linear control such mpkcity of analysis and imple-
mentation. However, all these benefits are valid locallyr é@mple, the multiple model
method may be vulnerable when global stability is taken adoount.

The core objective of this thesis is to develop new toolsudystability of closed-loop



nonlinear systems controlled by local controllers in ortiermprove design of multiple
model control systems. For example, one of the aims of thikveoto investigate how to
determine the region where closed loop system is stablecdnskary objective is to study
the effects of the exogenous signals on stability of suctesys.

To achieve these goals, first, new representations formemlisystems, callegh and
(ap representations, are proposed.(Jnand(4p representations, initial state contributes
to the feedback interconnection as an exogenous input.eTiegsesentations can be used
to develop new tools for non-zero state nonlinear systerssdan the input-output theory.
The (4 and( 4 representations convert a nonlinear system with non-zsialistate into
a combination of a memoryless nonlinearity and a linearesgswith some input signals.
The way initial state is handled by these representatioogiges a novel viewpoint on all
aspects of investigating nonlinear systems.

Using these representations, stability of nonlinear systeith non-zero initial states
can be investigated by the input-output stability meth&ised on this usage, a new frame-
work is developed for the analysis of stability of systemsh®( 4 and{ 45 representations.
For local stability, a method developed to find a pair of lar&as, namelyA andY, where
belonging the initial state td\ implies staying the state insidé. The methods are also
extended to forced systems.

To compute an upper bound on the, £, and L., norms of a class of nonlinear sys-
tems, a new method is proposed based o thend( 4 g representations. Another Method,
which provides tighter bounds, is proposed to find an uppand@n the induced, norm.
Both methods are only applicable to globally Lipschitz eyss. To overcome this restric-
tion, another tool is developed for local conditions, namah upper bound on system
output is derived for bounded input and initial state. Thistmod is restricted to th€
induced norm.

To measure the distance between local systems in multiptehmethod, some re-
searchers have suggested to use the gap metric. Howewertlsare are no straight-forward
method to compute the nonlinear gap metric and using lingamgetric can not guarantee
global stability of the system, the mentioned problem i @tisolved. In this thesis based

on {4 and(ap representations, a method is proposed to compute an uppeddon the



gap metric and the corresponding stability margin for asctE#snonlinear systems.

The minimum gain of an operator is defined, some of its progerre derived and
some computational methods are developed to calculate itiienom gain. Based on the
minimum gain of operators, the large gain theorem is stathd.large gain theorem asserts
that the feedback loop will be stable if the minimum loop gaigreater than one.

To study disturbance attenuation of a closed loop multigrstem, the proposed meth-
ods are utilized. It is assumed that a proportional corra$i used to control the level of
the liquid in one of the tanks. The mathematical model of thenoloop system is derived
using physics of the plant. The gray box identification mdtisoused to identify the model
parameters and the disturbance attenuation of the systameistigated by the proposed

method.
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Chapter 1

Introduction

1.1 Overview of Multi-Model Control Systems

The development of large industrial engineering systeroh si8 chemical plants has lead
to gradual increase in their complexity. In turn, this coexy demands suitable control
systems that should have enough flexibility to be able to leavatiations in the operating
conditions. Nonlinearity, disturbances and uncertaintthe process or its model are three
challenging elements in the design of control systems. Tamsical approach consists of
linearizing the plant model at the nominal operating poimt designing a robust controller
for the resulting linear system. Although excellent restihve been reported in literature,
it is well known that the performance of a controller desajiby this method deteriorates
when operation deviates from the nominal point. This penéomce degradation may lead to
instability when the distance between the operation regimhthe nominal operating point
increases.

To solve this problem in the context of the traditional lineantrol, the impact of non-
linearity has been considered as “uncertainty” around tminal model and based on the
size of nonlinearity, the controller is designed such thatdesired performance is satisfied
for all possible systems in the uncertainty set. It is cléat the size of the uncertainty
increases as the operating point of the system prowls irga kmea. In turn, conservatism
occurs as the size of uncertainty increases. At some polmcomes impossible to design
a controller that can provide satisfactory performance.

Thanks to the fact that the model derived by linearizatioscdbes the process quite ac-
curately in a small region about the linearization pointmsanethods are introduced in the
literature to overcome the aforementioned shortcomingshe so-called gain scheduling
method, local designs are performed for various operaggions and a gain-scheduling

scheme is built to interpolate among the controllers as fferating point moves among



local regions 43] [44] [45] [46]. Although satisfactory results have been reported foresom
applications and gain scheduling is well-accepted amoagtitioners today, this method
suffers from the lack of a theoretical support for globaldgbr.

Another linearization-based method, conceptually simiddéhe gain scheduling method,
is the so-called Multiple Model or Multi Model methodT] [7] [28]. The only difference
with the gain scheduling approach is that the interpolaaubstituted by either member-
ship functions or supervisory switching. In both forms, shétching is done based on the
current states. While in the form of membership functioresdtirrent states of the system
determine the weighting among the local controllers; ingtheervisory form, a supervisor
selects the suitable local controller from a bank of locaitadlers, based on the current
state of the process.

The main advantage of the Multiple Model method is that it izaéural extension of
the linear control method and inherits some benefits of tigeatrol such as simplicity of
analysis and implementation. However, it should be takendncount that all these benefits
are valid locally. When the global behavior of the systemeimg investigated, most of the
advantages are yet to be established. When it comes to gitddality, which is one of
the most important features of a control system, multipleleionethod may be vulnerable.
Some researchers have suggested to use the gap metric torentes distance between
local systemsq] [38]. However, since there are no straight-forward methodsotopute
the nonlinear gap metric and using linear gap metric can natamtee global stability of
the system, the mentioned problem is still unsolved.

The core objective of this thesis is to develop new toolsudystability of closed-loop
nonlinear systems controlled by local controllers. Thiwisay that the aim of our work is
to investigate how to determine the region where a closeul $gstem is stable and to study

the effect of the exogenous signals on stability of suchesgyst

1.2 Structure and Outline of the Thesis

1.2.1 Thesis Overview

In Chapter2, after introducing the notation and presenting some preény results, a new
representation for unforced nonlinear systems, calledthespresentation is proposed.
Having only an input-output structure, thg representation is an equivalent structure of an
unforced nonlinear system, where the initial state is apoasented by an input. Then, the

(4 representation is extended to forced systems.



In the (4 representation and its extended version for forced systernieh is called
(ap representation, a nonlinear system is arranged as a fdeulib@connection of a mem-
oryless nonlinearity and a linear system with the initiagtstas an input signal. The main
difference between this decomposition and traditionakdaen the way the initial state is
dealt with. Here, the initial state contributes to the feskbinterconnection as an exoge-
nous input while in traditional methods, any change in thitirstate is handled by defining
a new operator.

Chapter3, starts by investigating stability of unforced nonlinegstems by thes
representation. Based on operator-theoretic methodswdraeework is developed for
the analysis of stability of nonlinear systems. In the psmsbapproach, since the initial
state is considered as an input, stability of an unforcedimear system can be investigated
by the input-output stability methods and stability of tlenlinear system is interpreted as
the input-output stability of the resulting feedback sgstéJsing classical tools, sufficient
conditions for global and local stability of the system ab¢éained. For local stability, the
notion of stability regionsis introduced and is shown to be useful in applications. Then
local stability of unforced nonlinear systems is studiethvé new definition of region of
attraction, which extends into two regions. Sufficient dbads for local stability in term
of those regions are derived. Some examples are given to gteweffectiveness of the
results. It is important to note that our method does notiredinding a Lyapunov-type
function.

Chapter3 continues by investigating stability of forced nonlinegstems. Both global
stability and local stability of forced nonlinear systemme aonsidered. Using the, and
(ap representations of nonlinear systems, some sufficientitomsl for global and local
stability of forced nonlinear systems are derived.

In Chapter4, the problem of computing thé€, operator norm of a nonlinear system
is considered. Since it is important to quantify the inflleein€ various inputs on various
signals inside the system, this measure has several ajpliicaOne of them is in control
systems, where the attenuation of disturbance signalgusresl. The proposed method can
be optimized based on some selected parameters. The pdofheseems are applicable
to a class of nonlinear systems. However, a method is alsddaa for computing an
upper bound on the inducetl,, norm for systems which are not in this class. To illustrate
the methods, some examples are also given. The weightinigoohés introduced in the
last section of this chapter. The weighting technique canidesl to reduce the intrinsic

conservativism in the aforementioned method. An exampbdsis provided to show the



usage of the weighting technique.

Chapters deals with the computation of the gap metric and stabilitygimefor nonlin-
ear systems. The gap metric, which was introduced to systechsontrol theory by Zames
and El-Sakkaryj5], can be used to measure system uncertainty. For linearitivagiant
(LTI systems, much work has been done to compute the gapgcméthe extension of
the gap metric to larger classes of systems was initiated () vhere the metric is ex-
tended to time-varying linear plants. Later, the parall@jgction operator for nonlinear
systems $] and its relationship to the differential stabilizabiliof nonlinear feedback sys-
tems [L1] paved the road to the extension of the gap metric to a psewetde on nonlinear
operators 13].

Unfortunately, there is no generally applicable methodomhputing the gap metric for
nonlinear systems. In fact, there are only a few examplegerature for the computation
of the gap metric. Moreover, methods used in those exampéekighly dependent upon
the case of interest. This is also the case for the corregmprstability margin which can
be used to determine the ball of uncertainty in the senseecjdip metric.

In Chapters, some upper bounds on the gap metric and the stability margiderived
and based on the methods proposed in Chaptiérese bounds are computed.

In Chapter6, stability of nonlinear systems is studied by a proposedhotkt The
method fits in the context of input-output approach to studglinear systems. This ap-
proach, which was initiated by Popov, Zames, and Sandbertipei 1960s42] [56] [32],
is one of the well-accepted and widely-used methods to sitatyility of systems. In fact,
many of the recent developments in control theory, such lagstacontrol and small-gain
based nonlinear stabilization techniques are the resittssoapproach. Here, systems are
considered as mappings from an input space of functionsaimtmutput space and the well-
behaved input and output signals are considered as memibignsub and output spaces.
Therefore, if the “well-behaved” inputs produce well-bedch outputs, the system is called
stable.

The well-known small-gain theorem is the main contribut@nthe input-output ap-
proach in control theory. According to the small gain theor¢he feedback loop will be
stable if the loop gain is less than one. According to our psepl theorem in Chaptérthe
large gain theorem, the feedback loop will be stable if theimiim loop gain is greater than
one. In Chaptes, first we introduce the minimum gain of operators. Then, a s&ility
condition is derived for feedback systems based on the mimirgains of the open-loop

systems. An example is also provided to illustrate the uségee large gain theorem.



The last chapter, Chaptéris the usage of the methods introduced in Chapieinves-
tigating disturbance attenuation of closed-loop systérhgre is no doubt that disturbance
attenuation is one of the most important objectives in aoged-loop system. Therefore, it
is important to quantify the influence of various inputs orimas signals inside the system
and develop a tool to calculate such gquantities.

The system of interest is a multitank system, consistinguafd tanks placed one above
another. Due to gravity, the liquid flows through the tank$ie Dbjective of the control
system is to control the level of the liquid in the middle tdnkthe flow rate of the liquid
entering to the top tank. We study the effect of a disturbaigeal, which enters through
the output of the plant, on the state of the closed-loop syst&he chapter starts with
the identification of the plant by the gray box method and iooeis by investigating the

disturbance attenuation of the system.

1.2.2 The(s and (45 Representations

The (4 and(4p representations are equivalent structures of nonlinestesys, which in-
volve only an input-output structure. In this setting, thédial states representing initial
conditions is represented as an input. In these represergat nonlinear system is ar-
ranged as a feedback interconnection of a memoryless eaniiy and a linear system
with the initial state as an input signal. Although interaention of a memoryless nonlin-
earity with a linear system has been widely used in litemttine way the initial state is
dealt with is the main difference between our decompositind traditional ones. I
and(4p representations, the initial state contributes to theldaekl interconnection as an
exogenous input while in traditional methods, any changhéninitial state is handled by
defining a new operator.

Consider the following systems:

Ny #(t) = filt, 2 (1)) (1.1)
Nyt d(t) = falt, a(t),u(t)) (1.2)
where f1 and f5 are locally Lipschitz.V; is an unforced system and, is a forced one. In
Chapter2, it is shown thatV, is equivalent to the structure depicted in Flgl(a)and N5 is
equivalent to the ones shown in Figl(b)and Fig.1.1(c) Structures in Figl.1(a)and Fig
1.1(b)are called. 4 representation and the one in Figl(c)is called(4p representation.
The operator®, I', 2 and© are introduced in Chapté& These representations are widely

used in all other chapters of this thesis.
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1.2.3 Stability of Nonlinear Systems

The fact that thel4, and (4p representations convert a nonlinear system with non-zero
initial state to a combination of a memoryless nonlineaaityl a linear system with some
input signals and the way the initial state is handled bydhepresentations provide a
novel viewpoint on all aspects in investigating nonlinegstems. Stability as one of the
challenging issues in design and analysis of nonlineaesystan also be studied by these
new tools. In ChapteB, a new framework is developed for the analysis of stability o
systems by thé 4 and( 45 representations. The effectiveness of this usage is atigghin
the fact that using these representations, stability ofimear systems with non-zero initial
states can be investigated by the input-output stabilitthods and stability is interpreted
as input-output stability of the resulting feedback system

The main contributions of Chapt8rare Theorem8.2.1, 3.2.2 3.2.3 3.2.4 3.3.1, 3.3.2
and3.3.3 Theorems3.2.1and3.2.2provide new methods to check stability in the sense of
Lyapunov for an unforced nonlinear system by norm of somevesit operators; without
finding any Lyapunov-like function. For local stability, @rem3.2.3can be used to find
some local areas) and Y, if the initial statex is in A, then the state will stay ifr.
TheorenB.2.4is asymptotic version of Theore&2.3 Roughly speaking, Theore®3.lis
an extension of Theoref2.1to forced systems. Similarly, Theore®r3.2is the extension

of Theorem3.2.3to forced nonlinear systems. For asymptotic stability o€éa nonlinear



systems in a local sense, Theor8rfi.3provides the aforementione andY regions.

1.2.4 The Induced Norm of Nonlinear Systems

Most of the computational techniques developed for noalirsystems are restricted to a
narrow class of nonlinear systems for which a particulacfiom, e.g. Lyapunov function
or storage function, can be found. Unfortunately, thereoisanstraight-forward method to
find such functions and they can usually be obtained by midlearor P7] [24]. Computing
the £,, operator norm of a nonlinear system is not an exception. ifwtbrk, we propose
a method to compute an upper bound onfhe L, and L., norms of a class of nonlinear
systems. The method is based on¢heand( 4 g representations of nonlinear systems. The
first proposed theorem in this context is Theorérh. 1which provides an upper bound on
inducedZ, norms. The next theorem, Theordni.2gives tighter bound for the cage= 2.
Both theorems suffer from a restrictive condition, namél Theorem3.3.2can be used
to overcome the restriction with the cost of providing ordgdl conditions, i.e. an upper
bound on the system output is derived for bounded input aitidlistate. This method is

restricted tol . induced norm.

1.2.5 The Gap Metric

Stability and performance of feedback control systems ansiderably impacted by model
uncertainty. Unlike the linear time-invariant (LTI) systs, where much work has been
done to study this effect, the topic for nonlinear systengglite immature. The gap metric is
one of the useful tools to investigate the effect of modelkutaenty on control systems. For
LTI systems, it has been shown that a perturbed system caaltized by any controller
which is designed for the nominal system if and only if theahse between the perturbed
system and the nominal system is small in the gap metric. &pengtric is also extended
to a pseudo-metric on nonlinear operatdr8][

The computation of the gap metric for LTI system was develolpg Georgiou 12].
Unlike the LTI system case, there is no generally applicabé¢hod of computing the gap
metric for nonlinear systems. In fact, there are only a feangples in literature for the
computation of the gap metric. Moreover, those methods @gtdyhdependent upon the
case of interest. This is also the case for the corresporsglatglity margin which can be
used to determine the ball of uncertainty in the sense of dpengetric.

In Chapter5, we propose a method to compute the gap metric and the condisyy

stability margin for a class of nonlinear systems. The megtisobased o4, and (4p
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Figure 1.2: The feedback system.

representations. The key results are Theorgrsland5.3.2which provide upper bounds
on the gap metric and the stability margin, respectively. Wse the methods proposed in
Chapter to calculate the bounds. An example is also provided tatititis the effectiveness

of the results and comparison between the direct compuatatid the suggested methods.

1.2.6 Large Gain Theorem

One of the key results in the input-output stability thea@yhe small gain theorem, which
provides a sufficient condition for stability of intercommbed systems. Roughly speaking,
the theorem states that the feedback loop will be stableeifidbp gain is less than one.
For the feedback system depicted in Figz, the small gain theorem states that the closed
loop system is stable if(H;) - v(Hz2) < 1 where~(-) denotes the gain of operators. This
simple rule has been a basis for numerous stabilizatiomigeas such as nonline&f ..
control [15].

In our approach, we first define the minimum gain of an opernatgras

e IHu)||
V(H) = it T (1.3)

whereH : U — Y is an operator(-)r denotes the Truncation operator, the infimum is taken
over allu € U and allT in R* for whichur # 0. Then, some of the properties of the
minimum gain are derived and its computation for some casdscussed. Particularly, it
has been showed that the minimum gain satisfiepdis@ivity and thepositive homogeneity
properties but fails to satisfy the triangle inequalityndlly, the large gain theorem, The-
orem®6.3.], is stated. Roughly speaking, the large gain theorem asget the feedback
loop will be stable if the minimum loop gain is greater thare ofror the feedback system
depicted in Fig.1.2, the large gain theorem states that the closed loop syststabie if
v(Hy) - v(Hy) > 1.

1.2.7 The Multitank System

To show applicability and effectiveness of the proposedhors in Chapted, we apply

Theorem3.3.2to study disturbance attenuation of a closed loop systene syatem of
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Figure 1.3: Configuration of the multi-tank system.

interest, which is called Multitank system, consists oéthtanks placed one above another
and due to gravity, the liquid flows through the tanks. Theteok has a constant cross
section while the other two have variable cross sectionhawrs in Fig. 1.3 A pump

is used to circulate liquid from the supply tank into the upfak. We assume that a
proportional controller is used to control the level of tiguid in the middle tank by the
flow rate of the liquid entering to the top tank.

In chapter?7, which devotes to investigating disturbance attenuatioth@ controlled
Multitank system, first we derive the mathematical modelhef bpen loop system using
physics of the plant. The model, which is nonlinear, cossigtfour parameters that are
depend on the configuration of the system. After running serperiments on the plant
and collecting data, we use the gray box identification nuttioodentify the parameters.
Finally, the disturbance attenuation of the system is itigated by the proposed method in

Theorem3.3.2 A summary of results is presented in TaBl&.

1.3 Contributions

The content of this thesis has been published and presentée following international

journals and conferences:

e Chapter 3: A significant part of this chapter was publishellEih Control Theory &
Applications p0] and IEEE Conference on Decision and Control, San Diego6200
[49].



e Chapter 4. The contents of this chapter were published inrfame Control Con-
ference, New York, 20075¢] and accepted for publication in IEEE Transaction on

Automatic Control 1].

e Chapter 5: The contents of this chapter were published inrfozae Control Confer-
ence, Seattle, 20087].

e Chapter 6: The contents of this chapter were published inrkiane Control Confer-
ence, Seattle, 2008§].

10



Chapter 2

(4 and ¢ 4 g Representations

2.1 Introduction

Almost all dynamical systems encountered in nature arelfojenonlinear characteristics
and linear models are usually used in order to simplify asialyAlthough, for most appli-
cations linear models are accurate enough to be used teespigystems in a small region,
they fail to provide accurate results when larger operateggon is needed to be considered.
In this section, first, we introduce the notation and preseme preliminaries results.
Next, a new representation for unforced nonlinear systealked(4 representation, is in-
troduced. The& 4 representation is an equivalent structure of an unforcedimemr system,
which involves only an input-output structure. The inis&hte is also represented by an in-
put in the( 4 representation. Finally, an elegant extension oftheepresentation to forced

systems, called thé, g representation, is presented.

2.2 Background

In general, nonlinear representations can be classifiedlinte types4]:
e system input-output representation,
e state-space representation, and
e model-free representation.

In the input-output representation, the input-output bedraf a system without any state is
considered. In this representation, systems are assunmeggsngs from an input space of
functions into an output space. Using this approach, onheofell-accepted and widely-
used methods to study stability of systems is develo@&dl [42] [56] [32]. The state-

space representation, on the other hand, highlights siitgstems. In this representation,
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the dynamic of the system is represented by some statedeaffby the inputs and the
output depends on both the states and inp2d$ [[27]. Nonlinear systems, which cannot
be modeled by the mentioned methods, might be representexhtgl-free representations
[4].

In the proposed method, a nonlinear system is arranged &slbdek interconnection
of a memoryless nonlinearity and a linear system with ihgtate as an input signal. The
main difference between our decomposition and traditiomals is in the way initial state
is dealt with. In our method, initial state contributes te thedback interconnection as an
exogenous input while in traditional methods, any changeitial state is handled by defin-
ing a new operator. In our approach, since initial state rswered as an input, stability
of unforced nonlinear system can be investigated by thetioptput stability methods and
stability of the nonlinear system is interpreted as the tirquiput stability of the resulting

feedback system.

2.3 Notation, Preliminaries, and Computation

2.3.1 Notation

Let R andC denote the fields of real and complex numbers, respectif&lydenotes the
space oh x 1 real vectors. The Euclidean normR{ is denoted by - ||. I,,x, denotes the
n x n identity matrix. LHP and RHP stand for left and right halfplaf the complex plane,
respectively. LeBP(c, ¢) denote the open ball with centeand radius with normp, i.e.
BP(c, &) = {z] ||z — ¢l|, < &}. £}, denotes Lebesgyespace of--vector valued functions
on [0, 0], with norm || - || defined ag| f[|, :== ([5° |lf(©)[]? dt)l/p for1 < p < oo and

|| flloo := esssup;cr ||f(t)||. Usuallyr is a finite integer; we drop and write,, instead
of £}. To distinguish among various norm notations, we indichgespace as a subscript
for the norm, such a§- [[r~ or [ - ||z,. Whenever the space is not mentioned, norms with
t argument denote Euclidean normtand withoutt denote theC,, norm wherep is as a
general number or can clearly be understood from the textTkedenotes the Truncation
operator: forf(t), 0 <t < oo, T f(t) = f(¢t) on[0,T], and zero otherwise. We also
denote the truncation of (t) by fr(t) := Tr f(t). For an operatoh : £, — L,, let
vp(A) stand for the induced norm (gain) of the operator defined as

[(Au)7||
0£uct, lurl

Ww(A) = (2.1)

where the supremum is taken overalE £, and all7 in R* for whichur # 0. Lety()\)

denotey,(\) for all 0 < p < oc.
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Definition 2.3.1. Maximum overshoatf a signalz(t) is

]l
Mp = —==— (2.2)
(0
In this thesis, we will frequently use operator gains. Iis $ection, we take a brief look

at some of the computational methods for norms.

2.3.2 Continuous-time, LTI operators

Let g(¢) be the impulse response of a stable linear time invariant) (&ystem. We will
denote byl" the convolution operator defined byz(t)) = fot g(t—7)z(7)dr. To compute
the gain ofl", we use the following lemma that is taken frofj, [page 234 (Table 1):

Lemma 2.3.1. Suppose thal is a linear time-invariant stable operator with impulse re-

sponsg(t) : Rt — R™ ™. Let((s) denotes the Laplace transform gfft). Define

lgiille, Naelle, - llgmlle,
- ”921.”£1 \\922_”51 ngercl 2.3)
lgnillee  llgn2lley -+ llgnnlle,
Then
71(I) = [lglh (2.4a)
Yoo (L) = 190 (2.4b)
Y2(I) = [|G(s) 1o (2.4c)

where|| - ||, denotesH., norm. Some standard algorithms to compute theg-
norm can be found in several references. See for exarbfgle o compute||g;;|z, =
f0°° lgi; (t)|dt for strictly proper systems, any numerical integral appr@tion method,

e.g. rectangular and trapezoidal, can be used.

2.3.3 Autonomous and non-autonomous memoryless nonlinates

In this section, the operator of interest is in the form&dt, x(¢)), where®(-,-) : Rt x
R"™ — R"™. Itis also assumed thdt(¢,0) = 0.

Lemma 2.3.2. Suppose that there exists a constapsuch that
|t z)||p < ppllxllp, Ve e R™, VE>0 (2.5)
theny,(®) < pp.
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Proof. See referencetfl] pp. 40. O

With direct computation, theo-norm,2-norm andl-norm of a memoryless autonomous
nonlinear operator can be found approximately with arbjteeccuracy. MATLAB can also

be used to find the aforementioned norms.

Example 2.3.1.Consider the following memoryless nonlinearity.

D4 (z) —0.2 29 + sin(0.5z2) — sin (0.5 z3)
O(x)=| Po(z) | = | —0.22; +sin(0.521) —sin (0.5 x3)
Ds(x 1 —cos (0.521) + sin(0.5z2)
wherex = [ r1 To X3 ]T. Let

z|2 Va? 4+ a2 + 23
g(wth’xS) . || H o 1 2 3

@@z /BI(wr, w2, w3) + BY(x1, w2, x3) + 3(x1, T, T3)

Using the “fminsearch” command of MATLAB, the minimum gfzq, zo, z3) is 1.2678

and consequently, (®) ~ 15t = 0.7888.
2.3.4 (-operator
Definition 2.3.2. For continuous-time, we define operaforas
Q(z(t)) = eMag (2.6)
whereA € R™*™ with all eigenvalues in LHP and(0) = x(. Similarly, for discrete-time
Qx(t)) == Alxg (2.7)
whereA € R™*™ with all eigenvalues i) andz(0) = zo.
Lemma 2.3.3.1f z;(0) < c0,Vi =1--nthenQ(x) € X,,.

Proof. The proofs for continuous-time and discrete-time are tiheesand only the first one
comes here. Sincg (0) < oo, [|2(0)||, < co. Onthe other hand, because all eigenvalues of
Aare in LHP,||e4t||, < oo, ¥t > 0. SinceQ(z) = eag, [|Qx)(0)]l, < [leX||pllzoll, <

oo. This completes the proof fgr = co. Forp = [1,00), in addition,e4t is a continuous
time signal and vanishes as— oc. Therefore||ef“t||lﬁ’p = [° le|Bdt < oo. We
have|Q(x) e, = f3* lletaolBdt < [° e [bllzolbdt = Jaolly - f5° lle bt =

zoll5 - e, < oo, and consequentlf(x) € L. O

We have the following lemma about the gain(af
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Lemma 2.3.4. For continuous-time, thé€ ,,-gain of 2, which is defined by2(6), is

Yoo() = [leM £.e (2.8)

And for discrete-time, whei@ defined by Z.7),

Yoo () = | A"l (2.9)

Proof. The proofs for continuous-time and discrete-time are tiheesand only the first one

comes here. First we show that'||-__ is an upper bound foy..(Q).

le**zollz, < e llewllwolioo < el ()]l cn (2.10)

Next, we show that this upper bound is achievable for an isigmal. Letx(t) = I,,x, Vt >

0, then||z(t) z.. = 1 and|le?tzol|z.. = |le?t]| ... This completes the proof. O
Lemma 2.3.5. The following equations are true fér:
(M) 19)]lc, = lle*|lz, - |lzol|2 for continuous-time
(i) |12()]le, = 1A le, - |zo]|2 for discrete-time
(i) |Q(2)|z, < lle?||z, - [|zol|1 for continuous-time
(iv) 12(x) e, < [|AY]e, - |lzoll1 for discrete-time

Proof. Since proofs are similar for continuous-time and disctete, we only prove i
and (ii) here.

().

o0

1Q(x0)llZ, = eMao)* (eMwo) dt

o0

xH (e) zg dt

J,
J

_ 330/0 (At) (At)dtl'()

= [le™||Z, zo

A
= Jzoll3 lle™IIZ,

15



(iii).

192(0) 2,

o A
/ e, dt (2.11)
Ooo )
< [ e ool at
0
o At
- Hwoul/o et dt

A
= Jzollulle™lc,
O

Lemma2.3.5gives the2-norm gain of()-operators and an upper bound for tkaorm

gain. Denoting the upper bound of by v,, we have

12(Q) = [le™| , (2.12a)

() = [le™]z, (2.12b)
for continuous-time and

Y2(2) = || A%, (2.12¢)

F1(Q) := [|A|¢, (2.12d)

for discrete-time.

Example 2.3.2. Let

-0.225 —-0.175  0.075  0.525
0.200 —0.400 —0.150  0.200
0.200 —0.400 —0.400  0.200
0.125 —-0.125 —-0.125 —0.625

A=

Fig. 2.1shows]||e?!||, and||A?||«, versust. Computation shows that, () ~ 1.4351 for

continuous-time and.(£2) = 1.2 for discrete-time.
Lemma 2.3.6. For any Q-operator,y..(£2) > 1.

Proof. Since fort = 0, e4* = T and A’ = I. It turns out that|e?!||... > 1 and| A’||, >

1. Consequentlyy, (2) > 1. O
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2.4 (4 Representation
2.4.1 Continuous-time systems
Assume that the nonlinear system of interest is
a(t) = f(t,2(1)) (2.13)

wheref : R™ x R® — R is locally Lipschitz. It is well-known, 27], that stability for
other points or any desired trajectory can be transformedastudy of the stability of the

origin. LetA € R™*™ whose all eigenvalues are in LHP. Define

d(t,z) : RT x R" — R"
O(t,z) = f(t,z) — Az (2.14)

and consequently
&= Az + ®(t,x) (2.15)

The block diagram ofZ.15 is depicted in Fig.2.2. ®(¢,z) is a non-autonomous static

nonlinearity and\ is a linear system with the following state equation.
AN:i=Ax+z (2.16)
It is well-known, e.g. 8], that the response df is

¢
x(t) = e +/ eA(t_T)z(T) dr (2.17)
0
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Figure 2.2: Block diagram for2(15 and @.24).

which reveals thai is not a linear operator for, # 0. Let
t
I':L,— L, T(z(t):= / A (1) dr, (2.18a)
0

and
Q:L, — L, Qa(t) :=eMaz(0) (2.18b)

Since A is a stable matrix, it is easy to prove tHat £, — £,, Q : £, — L, and also
I" are linear autonomous operators dhd af2-operator which is defined in Secti@n3.4

The state space representationsifas

L. [IA%} (2.19)

Let A, denoteA with the initial conditionzy. Therefore,

Mgy (2(t)) := eMtzg + / t AT 2 () dr (2.20)
0

substituting 2.18 and @.20),
Az (2(t)) = Q(o(t)) + T'(2(1)) (2.21)

Since® is static, the structure shown in Fig.2can be represented by its equivalent, which
is depicted in Fig2.3. This representation of the nonlinear system will be refeee to as

the (4 representation with operator ordered [getl’, ©2].

2.4.2 Discrete-time systems

In this case, we assume that the nonlinear system of intisrest

x(t+1)=f(t,z(t+1)) (2.22)
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wheref : Z+ x R"® — R"is locally Lipschitz. LetA ¢ R"*" have all of its eigenvalues

inside the unit circle. Define
O(t,z): ZT x R* - R"
O(t,x) := f(t,x) — Az (2.23)
and consequently
x(t+1) = Ax(t) + ®(t, z(t)) (2.24)
The block diagram of4.24) is depicted in Fig2.2. ®(¢, x) is a static nonlinearity and is
a linear system with the following state equation.
Ax(t+1) = Ax(t) + 2(t) (2.25)

It is well-known, e.g. §], that the response df is
t
o(t) = Almg+ ) A1) (2.26)
1=0

which reveals thad is not a linear operator fory # 0. Let

t
ity — by, T(2(t) = ATz, (2.27a)
=0

and
Q:l,— Ly, Qa(t)) = Alz(0) (2.27b)

Since A is a stable matrix, it is not hard to prove tHat ¢, — ¢,, Q2 : ¢, — ¢, and also
I"is a linear autonomous operator ands af)-operator defined in Sectidh3.4 The state
space representations fbBris ['IA‘ (I)] Let A,, denoteA with the initial condition equals

. Therefore,

t
Ay (2(8)) 1= Almg + > ATI14(1) (2.28)
=0
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substituting 2.27) in (2.28),
Ay (2(1)) = Qz(t)) + T(2(2)) (2.29)

Similar to the continuous-time case, sinkds static, the structure shown in Fig.2 can
be represented by its equivalent, which is depicted in Eig3. This representation of
the discrete nonlinear system will be referenced to ag theepresentation with operator
ordered set of®, T, ].

2.5 (ap Representation
2.5.1 Continuous-time systems
For forced nonlinear systems, suppose that the systemeoésttis
N z(t) = f(t,z(t),u(t)) (2.30)

wheref : R x R®™ x R™ — R"™is locally Lipschitz. LetA € R™"™ andB € R"*™.
Define
O (z,u,t) = f(t,x,u) — Ax — Bu. (2.31)

Let

t
©:L,— Ly, Ou(t) = /O A=) Bu(r) dr, (2.32)

andI’ andS2 be defined in the same formulas asirl@®. The nonlinear system is equivalent
to the structure represented in Fig.4(a) This representation of the nonlinear system is
called the( 4 5 representation with ordered operator [getl’, ©, ©2].

It is important to note that[lﬁ%] and [IA%} are state-space realizations forand
O, respectively. Sincel and B are chosen arbitrary,4 and (45 representations are not
unique. A useful choice for thé,p representation i€3 = 0, which impliesd = 0 and
simplifies the 4 structure as the structure shown in Fig4(b). For forced systems, this

representation is also calléd representation.

2.5.2 Discrete-time systems
Similarly, for a forced nonlinear system with the followistate equation
N: z(t+1) = f(t,x(t),u(t)) (2.33)

wheref : ZT x R® x R™ — R" is locally Lipschitz, letA € R™*" have all of its

eigenvalues inside the unit circle afde R™*™. Define

O(x,u,t) := f(t,z,u) — Ax — Bu. (2.34)
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Let
t
©:l, — Ly, O(u(t) =Y A" Bu(l) (2.35)
=0

andI’ andS2 be defined in the same formulas asariX?/). The nonlinear system is equivalent
to the structure represented in Fig.4(a) This representation of the nonlinear system is
called the( 4 5 representation with ordered operator [detl’, ©, Q].

It is important to note that{ﬁi0 and ['IA‘ (Iﬂ are state-space realizations forand
O, respectively. Sincel and B are chosen arbitrary,4 and (45 representations are not
unique. A useful choice for thé,p representation i€ = 0, which impliesé = 0 and
simplifies the( 4 g structure as the structure shown in Fig4(b). For forced systems, this

representation is also called representation.

21



Chapter 3

Stability

3.1 Introduction

The traditional approach to study stability involves Lyapu methodsZ7] [40] [24]. In
these methods, the notion of stability is restricted to to€d systems and stability efjui-
librium points The analysis requires finding a so-called Lyapunov fun¢tiehose deriva-
tives along the system trajectories must be negative defimitsemi-definite. Finding this
function is usually challenging, thus limiting the apptica of this method.

An alternative way to study the stability of nonlinear systeis the so-calledhput-
output stability approach. The input-output theory of systems im#gted in the 1960s
by G. Zames and |. Sandber§f] [32]. Unlike the Lyapunov method, the input-output
stability theory considers systems as mappings from antigpace of functions into an
output space. This method suffers from a problem similanédtyapunov method. Indeed,
the study of stability in this method involves finding a stggdunction, which is as difficult
to find as a Lyapunov function.

In [35], bridging in some sense the two classical notions of stghihe concept oinput
to state stability (ISSyvas introduced. Roughly speaking, in an ISS system, if thatis
are small, then system trajectories converge to a ball te sggace, whose radius depends
upon the input size, se@3, [34] and the references therein for more details. This notion
differs from the input-output theory mainly in that it takeso account the initial states,
which are ignored in the input-output stability. It is aldffetent from stability in the sense
of Lyapunov because it considers forced systems. Checkm&s is usually very difficult
as it requires finding a so-called ISS Lyapunov function wihy stringent conditions.

Along with the aforementioned three major approachesijligyabf systems, in its var-
ious forms, continues to inspire researchers. Moaotivatedhbyclassical small gain theo-

rem,“nonlinear” small gain theorems are discussedij,[[39], and [L8]. The notion of
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non-uniform in time robust global asymptotic output stiyils introduced in 2] for a
wide class of systems. An extension of the second methodagfuuyov to study the stabil-
ity of infinite-dimensional discrete-time systems is preed in 9.

In this chapter, we study stability of nonlinear systems.ingshe (4 representation
for nonlinear systems, we develop a new framework for théyaisaof stability of systems
based on operator-theoretic methods. In our approacte giitial state is considered as an
input, stability of unforced nonlinear system can be ingased by the input-output stability
methods and stability of the nonlinear system is interpretethe input-output stability of
the resulting feedback system. After decomposing the syssaifficient conditions for
global and local stability of the system are derived usimgsical tools. For local stability,
the notion ofstability regionsis introduced and is shown to be useful in applications. A
method to compute the stability region is also developeds iinportant to note that our
method does not require finding a Lyapunov-type function.

This chapter has two sections. The first section is devotatatiility of unforced sys-
tems. In the first part, th€4 representation is used to provide sufficient conditions for
global stability and global asymptotic stability of unfectnonlinear systems in terms of
conditions on the gain of certain operators. In the secondgbéhe section, local stability
of unforced nonlinear systems is studied with a new defimitibregion of attraction, which
extends into two regions. Sufficient conditions for locallslity in term of those regions
are derived. Some examples are given to show the effectigasfehe results.

In the second section of this chapter, stability of forcedlime@ar system is studied.
This section also consists of two parts. In the first partbglastability and in the second
part local stability of forced nonlinear systems are com@d. Using th€ 4 and(4p rep-
resentations of nonlinear systems, some sufficient camditfor global and local stability

of forced nonlinear systems are derived.

3.2 Unforced Systems
3.2.1 Global Stability

The following theorem provides a sufficient condition foalstity of unforced nonlinear

systems.

Theorem 3.2.1.Given a continuous time system of the fofil® with (4 representation
of [0,T,Q,

(i) if 700(®?) - 700 (T") < 1 then the system is globally stable in sense of Lyapunov.
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(i) if, in addition to (i), 72(®) - 72(I') < 1 then the system is globally asymptotically

stable in sense of Lyapunov.

The following lemma (e.g45] pp. 491), which is a corollary of the Barbalat’s lemma,

will be used in the proof.

Lemma 3.2.1. Consider the functioy : R™ — R. If b, € Loo, andg € L, for some
p € [1,00), thentlim o(t) =0.

Proof.

(i) In this section of the proof all of the norms are eithernorm or£L..-norm, depending
on the case. Because bathandI’ map zero into zero, their biases are zero. According to
Lemma2.3.3 ||zg|| < oo implies thatd € L. According to the small gain theorem, e.g.
[27], 700 (?).70 (T") < 1 implies that all internal signals of the system areCin. To show
that the system is stable in the sense of Lyapunov, it is dntughow that for any givea
there exist$ such that|zo||[r» < 6 = [|z(t)||r» < eforallt > 0. Without loss of gener-
ality, it can be assumed that the normiifi is ||. ||, €.9. B0]. We claim that for any given
€, 9 can be chosen as< %&%ﬁ”@e. To prove this, sincgzo|| < § < %})&;AF) €
then [d(t)]| < Yoo(@)lzo] < (1 — o0(®)e(I)) . Besides [z < |d| + |lw| and
lw]| < Yoo (P) Voo (I')||z||. Therefore||z|| < mﬂdﬂ < e. Since for any given

there exists somé < %&)&MF) ¢, stability is global. It is important to note that since

Yoo () > 1, 700 (®) > 0 @andyso (L) > 0 then%&};‘m <landd <e.

(ii) In this section of proof, all of the norms are eiti&inorm or £;-norm unless it is
clarified. According to lemma&.3.5i), ||zo|| < oo implies that||d|| = ~2(£2).]|zo|| < oo
and consequently € L£o. According to small gain theorem, e.@7, v2(®).72(I') < 1
implies that all internal signals of the system arelin Therefore,x € L., N Lo and
consequently there exists closed Besuch that:(¢) € D for all t. Assuming thatf (z, )

is locally Lipschitz inD, there existg: such that
Voo €D | f(z,t) — f(21,8) oo < pill22 — 2100 3.1)
Takingz; = 0 andzg = z(t)
Va@)eD |[If(z®), )]l < plla(t)]lo (3.2)

Sincex € Lo, [|2(t)||oo < ||| 2., forallt. Substituting in8.2), ||2(t)[|co = || f(x(t),t)|lco <
wllx| 2., forall¢t. Inturn, this means that € £.,. Now, we use the corollary of the Bar-
balat's lemma, i.€3.2.1 Assumingp(t) := ||x(t)||2 = 2T (t)z(t), itis trivial thate € L.
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Sincez € L, we have
o(t) = &7 (t)x(t) + 2T (t)a(t) < o0, Vit (3.3)
which means) € £... On the other hand,

/ () |dt = / ()| 2dt = [Jz]2, < oo (3.4)
0 0

that reveals thap € £,. Corollary 3.2.1implies thattlim ¢(t) = 0 and consequently
tlim x(t) =0. O

Theorem 3.2.2. Given a discrete time system of the for2m2Q) with (4 representation of
[@,T,Q],

(1) if 700(®?) - 700 (I") < 1 then the system is globally stable in sense of Lyapunov.

(i) if, in addition to (i), v2(®) - 72(I') < 1 then the system is globally asymptotically

stable in sense of Lyapunov.

Proof. The proof follows the same lines as the proof of Theofth2and is omitted. It
is important to note that in the discrete-time domaing ¢2 N ¢+, implies thatz(¢) — 0
ast — oo and there is no need for the second part of the proof wheredialary of

Barbalat’'s lemma is used. O

Theorems3.2.1and3.2.2can be used to check the stability of nonlinear systems with
the help of the mentioned computation methods. Moreoxeplays the role of a free
parameter. It is important to note that both theorems stdteignt conditions for stability.
This implies that it is sufficient to find just ond which satisfies the conditions of the
theorems. If such a matrid is found the system is stable even if there exists otler
matrices which fail the conditions. If such a matrxcannot be found or does not exist, the
stability or instability of the system can not be proven gdimese theorems.

To compare the results with LTI systems, consider the fatigwerturbed LTI system
t=(M+AM)z (3.5

Let ®(z) = (M + AM + ol)z wherea > 0. Consequentlyd = —aJ andT defined as
(2.189 or equivalently 2.19. To computey..(I'), Lemma2.3.1can be used. The impulse

response of' is G(s) = —-T andg;;(t) = e~** andg,;(t) = 0 for i # j. Equation 2.3)

S—«

implies||g::(t)|| = 1and||g;;(t)|| = 0fori # j. Consequentlyys(I') = 1 andy.(T') = 1.
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On the other handy, (®) = || M +AM +al||~. According to Theorer3.2.], the stability
condition is|M + AM + al||~ < 1 or equivalently\,.x(M + AM) < —a < 0, where
Amax denotes the maximum eigenvalue. This is to say that therbattan A M should not

move the eigenvalues of the system to RHFwaxis.

Example 3.2.1.Consider the following nonlinear system

i = f(l‘ _ 0.25x1 — 20 — sat(acl) —'Sat(wg) (36)
411 — 329 — sat(x;) — sin(zg)
where satzr) = sgn(x) min(1, |z|) and sgr(-) is the signum function. Let
—0.25 —1.5
=[50 S @

Therefore,

0.5z + 0.52z2 — sat(x;) — sat(z2)

O(x) = f(x) — Az = {0.5351 + 0.5x9 — sat(z1) — sin(z2)

Figure3.1shows the plot of% versus||z|| established at0° randomly chosen points.
Using methods described in Sectidh8.2t0 2.3.4 we havey,(®) = 1, 7. (I') = 0.9531,
72(®) = 1, and (') = 0.8217. SinCevs(P)1oo(I') = 0.9531 < 1, the system is
globally stable. More interestingly(®) v2(I') = 0.8217 < 1 implies that the system is
asymptotically globally stable. To illustrate the systesgponse, the phase portrait as well

as the vector field diagram are depicted in Hg

Remark3.2.1 Itis important to notice that the converse Lyapunov theof2#h[27] guar-
antees that there exists a Lyapunov function for any stafgdtes. However, there is not
a general method to find it. Indeed, the process of finding astrocting a Lyapunov
function can be challenging. For instance, the trivial ¢daid of Lyapunov function, i.e.
V(z) = 3(aa? + B23) wherea, 3 > 0, cannot pass the conditions of Lyapunov functions

in the previous example. To see this,
V(z) = [az1 Bs] - f(2)
= 0250234 (48 — a) x1 xo — 3 B (3.8)
— azy(sat(zy) + sat(xz)) — fxa(sat(xy) + sin(xz))
Apparently, V(x1,0) = az1(0.252; — sat(z;)). For anyz; > max(1,4«), we have

V > 0; thus,V () fails the Lyapunov conditions and cannot be used to provlisgaof

the system.
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Figure 3.1:y2(®) andy,(®) in Example3.2.1

Figure 3.2: Phase portrait for Exam@e2. 1

27



Example 3.2.2. Consider the following nonlinear system

¥ = —2x1 + x2 + sin(0.5z2) — sin (0.5 z3)
X9 = —x1 — w9 +sin(0.5x1) — sin (0.5x3) (3.9)
23 =1—x3—cos(0.5z1) +sin(0.5x2)
-2.0 1.2 0
letA=| -08 —-1.0 O and
0 0 -1.0

—0.2x9 + sin(0.5z2) — sin (0.5 z3)
O(z1,29,23) = | —0.221 +sin(0.521) — sin (0.5 z3) (3.10)
1 —cos (0.5x1) + sin(0.5z2)
Similar to the previous examples, we use the computatiorehaals introduced in Sec-
tion 2.3.1 We plot ”qﬁgjl)”
established a2 x 10° randomly chosen points. As shown in Fig.3, v2(®) ~ 0.8 and
Yoo (®) =~ 0.8. Computation also shows thed(I") ~ 1.000 andv.(I") ~ 1.0005. Since
Yoo (P) Yoo (I') = 0.7938 < 1 and~,(P) (') = 0.7846 < 1, the system is globally

versus||z|| instead of plotting versus;, x2 andzs. plots are

asymptotically stable.

_ f 2
0 5 10 15 20 25 25

(a) 2@z yersus)|z||, (b) 154 versus||o

ll=l2 [EIES

Figure 3.3: Local gains in Exampi2.2

3.2.2 Local Stability

Definition 3.2.1. Given a nonlinear system of the form eith@c(3 or (2.22), we define

the ordered paifA, Y] as follows:
A Y] :={A,TCR"; 2(0) € A= x(t) € T,Vt >0} (3.11)

We will refer to A andY as theA and? regions and collect aJA, Y| pairs of a system in

a set denoted bfa~.
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Acceptable trajectory

Unacceptable trajectory

Unacceptable trajectory
(@) - for time-invariant systems (b)

[A7 T] € SAT . X, [A7 T] € AAT

Figure 3.4: Acceptable and unacceptable trajectories.

Definition 3.2.2. For a given system, ifA, Y] € Say and for anyz(0) € A we have
z(t) — 0 ast — oo thenA andY are called asymptotic regions and we collect all such

pairs inAa~.

Fig. 3.4 shows acceptable and unacceptable trajectories for [Aothf] € Say and
[A, Y] € Aay. As shown in this figure[A, Y] € Say guarantees that the trajectories
starting from inside ofA, such as (1),(2), and (11), will stay insile Therefore, trajec-
tories (5) and (6) can never occur because both trajector@ss the boundary of th¥
region. Notice that there is no guarantee that trajectati@ging inside ofl", such as (7),
stay insideY. The definition ofSay assures that trajectories such as (5) and (6) which
start fromA and go outside off are not possible. An interesting case is (9). This case is
possible for non-autonomous systems but impossible fanamous systems. The reason
is that for autonomous systems we can transfer 0 to anyt = tq. Since this trajectory
passed through\, we can transfer the starting point to any point on the ttajgcwhich
is also insideA. With the new starting poinfA, Y] € Say guarantees that the trajectory
will stay insideY which is not observed by (9). Therefore, for autonomousesyst any
trajectory, which has intersection with, stays insideY. Fig. 3.4(b) is very similar to
Fig. 3.4(a). The only difference is that all trajectories startingn , such as (1) and (2),
terminate at the origin. For autonomous systems, any tajeavhich has a point inside
0 also end at the origin for the same reason explained ealltegrefore, for autonomous
systems, (3), (4) and (10) (and also (5), (6) and (9)) shoglnl tarminate at the origin.

Corollary 3.2.1. If [A, Y] € Say
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e ACT,
e A = T implies thatY is an invariant set for the nonlinear system.

Proposition 3.2.1. Consider a system witfyy representation of®, I', ©2]. Assume thall
is a given bounded subset Bf*, i. e. ||z||, < eforall z € T andp € {2,00}. Let

0<5§%eand

A:={zeR", |z, <} (3.12)
Then[A, T] € Say.
Proof. The proof follows a routine similar to the proof of Theor@&m.1and is omitted. [J
Proposition3.2.1shows a method to computa, Y] regions.

Definition 3.2.3. Local gainy’(®) of a static operato®, wherep € {2, oo}, is the maxi-
mum p-norm gain of the operator for all of the members inside thygoreD, respectively.
ie.

W (@)= sup [12Ct, )]l (3.13)

zep— {0} =l
vVt >0
Theorem 3.2.3. Consider a nonlinear system with state space representaifoeither
(2.13 or (2.22, and let[®,T", Q2] be a4 representation. Lef, > ~..(f2) be a fixed

number and

1 Yoo (£2)
’Yoo(r) (1 - MP

D= {xe]R"fy?O(@) < ) w>o} (3.14a)
Assume thafD is a simply connected subset Df that includes the origin. Lef =

i%fD |z|lc WheredD is the boundary ofD. LetY be a ball insideD centered at the
xre

origin with radiuse < &. i.e.

YT={zeD| |z <€} (3.14b)
and let R
D
A dzeRr| o] <o, 0= 1o 0(®D) (3.14c)
Yoo (€2)
Then,
1. [A, Y] € Sar

30



2. ifzg € A thenMp is the maximum overshoot oft).

Proof. SinceM,, > v»(2), (3.149 reveals that@(@)fyoo(r) < 1. To prove the theorem
we reason by contradiction. Since we assumed that systeroardhterest are locally
Lipschitz, trajectories of the system are continuous. Asrssequence, if: were to leave
T, it should cross the boundary @f. Suppose that crosses the boundary &f att = T,
then || Trz| = ||zr| = e. Since the boundary of is in D, |zr| < ||dr| + [Jwr|| <
D < ’YOO(Q) :YOO(Q)
o0 ()70 +72 (200 (D)l . Thenlarp | < 22— | < 22— <
e. Which contradicts the fact thditzr|| = €. Therefore,xz(t) € Y; Vvt > 0. That is
[A, Y] € Say. To show the second part, frorf.(49, we have% < M,. On
’YOO(Q s -
the other hand|z|| < 58 (@)7 (T llzol| < Myp||zol| O
Theorem 3.2.4.Let [®, T, Q2] be a4 representation for a nonlinear system in the form of
either .13 or (2.22). LetY := {z € R" | ||z|]| < e} and A := {x e R" | ||z| < 0, }. If
[A, T] S S[A,T} andyg@)yg(l“) <1 then[A, T] S A[A,T}-
Proof. Since[A, Y] € Sia vy, any trajectory starting from\ will stay insideY. According

1—5 (‘1) ’Y2 ()
’Yz(

For discrete-time systems, singg (®).7»(T") < 1, ||lz/|¢, < co and as a result(t) €

to the( representation|z||z, < lzo|l2 < oo and consequently € L.
{>. Consequently:(t) — 0 ast — oc. Itturns out thafA, Y] € Aja v).
For continuous-time systems, Corollay2.1should be used. Sincgt) € T for all
t, x € L, and consequently € L5 N L. The proof, which is omitted here, follows the
same outline as the proof of Theorén2. I(ii) with D = T.
U

Corollary 3.2.2. Let[®,T", Q2] be a4 representation for a nonlinear system in the form of
either .13 or (2.22). If there exists a region around the origii wherefyg@)%o(l“) <
1, then the system is locally stable. If in additiqg%’(cb)yg(l“) < 1, then the system is

locally asymptotically stable.

Proof. Sincefyg(CI))fyoo(F) < 1, there exists\f,, > v5,(2) such that'yg(@) < %o;(r) (1-
Vj\}—(f)). Let D be a simply connected subset Dfthat includes the origin. Lef =

i%fD |lz|l« WheredD is the boundary of>. For anye that satisfied) < ¢ < &, A and
xe

T can be constructed a8.(4) andé > 0 in (3.149 can be found. Theore®.2.3guaran-

tees thafA, Y] € Say or equivalently
[2(O) <6 = [lz@®)] <& VE=0 (3.15)

The second part is trivial consequence of TheoBed O
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Corollary 3.2.3. Sufficient condition of stability in Lyapunov LinearizaticMethod
If the linearized system of a nonlinear system is stable,nthrdinear system is locally

asymptotically stable.

Proof. Let A be the linearized part, i.ed = ag(;) o SinceA is stable;y(I') < co and
72(I") < co0. Since®(z) only includes the higher order termsitnthe exists a region around
the originD wherefyg(CI)) and’yzﬁ(@) can be made arbitrarily small. Thus, Coroll&y.2

implies local asymptotic stability of the nonlinear system O

Example 3.2.3.Consider the following nonlinear system.

i = =231 + 12 — /733 + 23/4 (3.16)
B9 = —2x1 + 229 + 23 /10 — 5sin(x2)/2 '

-2 1  —/23/3+ 23 /4 :
Let choosed = { 5 _3 ] then ®(z) = { 52+ 22/10 — Hsin(za)/2 Using

(2.4b and @.8) respectively, v (I') = 0.5378 and~,,(2) = 1. Direct computation, as
discussed in Sectioh.3.3 givesy.(P) = oo, which implies that TheorenB(2.1) can not
be applied. Assume that’p = 1.5, theny2 (@) < %ol(r) (1-— V";}f)) = 0.6197. 7o (®)

is plotted versus: in Fig. 3.5(a)and its junction with the plan? (®) is marked. The

junction determines the boundary Bf as shown in Fig.3.5(c) ~2(®) and its junction
with % are shown in Fig.3.5(b). SinceL.,-norm is used, the largest ball inside,
i.e. T, is the square shown in Fig.5(c) SinceMp = 1.5, the largestA area is another
square insid&" and smaller than it with factat/p, as shown in Fig3.5(c) Theoren3.2.3
guarantees that any trajectory starting from insideill stay insideY. Moreover, sincél
andA are placed inside the region wheyg®),(I") < 1, Theorem3.2.4guarantees that
all trajectories starting fromrd end at the origin. Since the system is autonomous, this is
also the case for all trajectories which has intersectiah wi. System trajectories as well
as some of its responses to various initial conditions apectid in Fig. 3.6. In the first
graph, since the initial states (or one of them) are nak jrstability is not guaranteed and
the system is unstable. For the rest, initial states ar® and consequently, the system is

stable and states terminate at the origin.
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by (b) v2(®) crossed bymlT

V,(N)-Y,(®)<1-

(c) Regions

Figure 3.5: Various regions in Exam#e2.3
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t
(a) System trajectories for Exam3e2.3 (b) Some responses for the system in Example
3.2.3

Figure 3.6: Simulation results for Exam@e2.3
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3.3 Forced Systems
3.3.1 Global Stability

Proposition 3.3.1. For a forced nonlinear system witfy  representation of®, ©,T", ],

if u € &, and~,(®)7,(I') < 1 thenz € X), for any initial statex.

Proof. The proof for discrete-time systems is very similar to thetowous-time case and

is omitted.

Since A is stable,|ed!|z, < oo andu € L, implies that||di|| < ||z, - [|zollp +

Yoo (8)[Ju(t)||p < 0o andd; € L,. On the other hand, sin%H 0 =1,andu € L,
mXm p

thend, € L£,. According to small gain theorem, e.@.7], since input signals to the loop,

‘ |:In><n]
0 p

of the system are iff,,. Therefore;r € £, O

i.e. dy,do, are inL, and

=1,7,(®) -1,(I') < 1implies that all internal signals

Definition 3.3.1. A nonlinear system in the form of eithe?.80 or (2.33 is calledstable

in generalor generally stablef

Ye>0,t> 036, > 0 ”%0)“'; ifﬁ } = llz()] < e (3.17)
In addition, if for anyz, and input that satisfies(t) — 0 ast — oo, the state also satisfies
x(t) — 0 ast — oo, then the system is callesymptotically generally stahle
Any Euclidean norm can be used in the definition but once a nerchosen, it should
be used for all norms. Besides, it is trivial to show that ifyatem is general (asymptotic)

stable using an arbitrary Euclidean norm, the propertystddall Euclidean norms.

Definition 3.3.2. A system is calledt), —(asymptotically) generally stabler &}, — (asymp-

totically) stable in generaif it is (asymptotically) generally stable for inpute &;,.

Lemma 3.3.1. For a generally (asymptotically) stable systemy i 0 then the system is

(asymptotically) stable in sense of Lyapunov.
Proof. The proof follows directly from the definition by taking= 0. O
Lemma 3.3.2.ISS systems are generally stable.

Proof. Considering thafiu||x.. < € implies that there exisis such that|u(t)||, < e for
allt > 0andp € [1,00), this lemma is very similar to Lemma 2.7 i8] and the proof

follows same outline as its proof. O
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Lemma 3.3.3. A generally stable system is ISS stable if and only if theigea classC
functiono; andT" > 0 such thate(¢) < o1 (||u||z,. ) forall ¢ > T

Proof. This lemma is also similar to Lemma 2.7 i#q] and the proof is the same. [

Lemmas3.3.2and3.3.3show that the set of ISS systems is a subset of the set of gener-
ally stable systems but the inverse is not true in generate@dly speaking, for a generally
stable system the condition in Lemr&8.3should be satisfied to guarantee ISS stability.

The following theorem provides a sufficient condition falstity of systems in general.
Theorem 3.3.1.For a forced nonlinear system withy 5 representation of®, ©,T", ],
() If 750(®) - 700 (") < 1 then the system i&,,— globally generally stable.

(i) In addition to (i), if y2(®).72(T") < 1 then the system 8, N X, — globally asymp-

totically generally stable.

Proof. The proof for discrete-time systems is very similar and isttaa.
(i) In this section of the proof, all norms are eith&r-norm or £..-norm depend on the
case. According to Propositidh3.], sinceu € L, thenz € L,. To show that the system

is generally stable, it is enough to show that for any giveéhere existy andn such that

[zolloo <6 } . _
= ||z(t)||ls < eforallt > 0. Choosen > 0 arbitrary. We claim that
[u(t) oo < 10 (@)l e y
for any givene, 4 can be chosen as< — (@Tyﬁ%%ﬁ%% ¢ Toprove,
[zl < flda]l + [lw|
< ldall + Yoo () Yoo (T) (lld2 ]l + [|]])
< Yoo ()20l + [160(O) + Yoo (2) oo (T[]l 4 Yoo (@)oo (T) ||

Yoo (§)0 + [V00 (0) + Yoo (P) Yoo (I')] 16 + Yoo (P) Yoo (I) |||

(Yoo (£2) + 1 [160(©) 4 Yoo (®) Vo0 (I)]) 6 + Yoo (P) 0o (T[]

AN

then|z| < 7“(9)“{(};":3;&‘&?)%"&))5 < e. Since for any given there exists somé,
stability is global.

(i) According to Proposition .3.7), sinceu € L9 N Ly thenxz € Lo N L, and
consequently there exist closed sB{sandD,. such that.(t) € D, andz(t) € D, for all
t. Assuming thatf (z, u, t) is locally Lipschitz in bothw € D, andx € D,, there existg

such that
\V/ZL'l,ZL'Q GD:M \V/’LLGDU, ||f(x27u7t)_f($1>u7t)‘|00 S/LH'I'Q_'I'lHOO (318)
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(a) The circuit (b) Tunnel diode characterization

Figure 3.7: Tunnel diode oscillator in Exam@3e3. 1

Takingz; = 0 andzy = x(t)
Va(t) € Dy, Vu(t) € Du,  [If(2(t), ult), D)oo < pllz(t)loo (3.19)
Sincex € Lo, [|2(t)]|oo < ||z 2., for all t. Substituting in 8.19),

() loo = 1S (), u(t), Do < pll2llz (3.20)

for all t. In turn, this means that € L.,. Consideringr € £, N L andi € L., the rest

of the proof follows same lines of the proof of Theor&m.1(ii) and omitted here. O

Similar to Sectior3.2.1, A and B play the role of free parameters in Propositidi.1
and Theoren3.3.1 Likewise, it is sufficient to find just one pair ¢f and B which satisfies
the conditions of the proposition or the theorem. If suchiaipdound, the proposition or
the theorem can be used even if there exists other paisawid B matrices which fail the
conditions. If such a pair ofi and B cannot be found or does not exist, the proposition or

the theorem cannot be used.

Example 3.3.1. (“Hard” tunnel diode oscillator) ( [37] pp. 446) The network of Fig.
3.7(a)represents a tunnel diode with some associated capacigaccmductance, biased
by a combination of voltage source and resistance. The stptations for this network

may be written as

= —ia— frp(e1), e =&,
A= €1 — Rig - V, ig = %, (321)
where the functiorfrp(e;) represents the tunnel diode branch relation. het= g = ey,

zy = —A=—iy, R=1,L=1,u=Vandfrp() be

o [ —1.7€} + 6.6eF — 8.4e} +3.6e2 0<e; <1.1
i = frofe) = { 0.09¢; otherwise
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which is depicted in Fig3.7(b) Substituting defined states,

b= f(=) :{ ry — frp(ry)

—Tr1— Ty +u

__Of’ _11 , we haved(z) = 0.3 —OfTD(x1)

tion shows thaty,(?) = 7(®) < 0.3, 7(I') < 2.17 and~»(I') = 1.641. Since

ChoosingA = Computa-

Y2(®).72(T") < 1 andy(P?).7(I') < 1, according to Theorer3.3.1, the system is
Lo N L— globally asymptotically generally stable. This means fbatany initial state

and input{u € Lo N L : limy_, o, u — 0}, state is bounded and approachesst — cc.

3.3.2 Local Stability

Theorem 3.3.2.Let[®, O, T, Q] be a4 representation for a nonlinear system. ket 0

and M, > v5(Q2) + 17 () and

(i) o< BB} g

LetD := B>(0,&p) be an open ball insid®. LetD, and D, be the images aP under
|:'[an Onxm:| and |:On><n Onxm

Oan Ome Oan Im><m

open balls inR™ and R™ respectively. Lef, and¢, denote respectively their radius, i.e.
D, =B>(0,&,) andD,, = B*(0,&,). Choose: andé such that) < ¢ < £, and

1~ 72(®)756(T)
oo () + 170 (0) + 7R(®) 7 (1))

If ||ullx, < min(nd,&,) and ||z <4, then

], respectively. Consequentlfp, and D, are also

0<d<

2llx, <e (3.23)

Proof. The proof for discrete-time systems is very similar and igtmd. In this proof,
vector norms are Euclideasv-norm for constant vectors antl,,-norm for time-varying
ones.

It is trivial that M, — 700 () — 7700 (8) < M, + n; thereforey2 ()7 (') < 1. We use
contradiction to prove the theorem. Since we assumed tisédreyg of interest are locally
Lipschitz, system trajectories are continuous. Consdtyénx were to leave the ball with
radiuse, it should cross the boundary of the ball. Suppose thatosses the boundary at

t =T. As aresult||Trz| = ||zr| = €. Sincee < & and||u|| < min (5 ¢, ,) guarantees
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xrr

thatu € D, we have[
ur

] € D and consequently

IN

[dir|l + [Jwr|l

vl + 72 (@)oo () (ldar || + [l22]])

Yoo (O)[uz || + Yoo ()| | + 12 (2) Yoo (D) |27 ]| + 72 (®) Yoo (1) ur |
Yoo (D170l + [0 (©) + Y2 ()00 (D] [[uz || + 72 (@) 700 (D) [l |

Yoo ()3 + [100(8) + 75 ()00 (1)] 78 + Yoo (@) P Yoo (D) |27 |

= (300() + 7 [10(0) + 12(®)700 (D)]) § + 72 (2)7ec (D)2 (3.24)

[z |

ININ A

A

Then

Yoo () + 17 [150(0) + 72 (®) 700 (T)] 2ol
1= 72 (®)70(T) ’
Yoo () + 1 [70(8) + 92 ()70 (T)]
1 =72 ()7 ()
< € (3.25)

e = |lerl <

IN

Which is a contradiction. Therefore;(t) € Y; Vi > 0. That is[A, Y] € Sar.

To show the second part, fron3.22), with some mathematical manipulation, we have
70 () +71[ 70 (©) +72 (8) 700 (T)]
1-7R (®)7ye0 (T)

to (3.29),

< M,. On the other hand, with a very similar procedure

(€2) + 7 [100(8) + 72(®) 700 (1]
1 =12 (®)700(T)

5
] < = [[zol| < Mp||zo]-

O

Theorem 3.3.3.In Theoren8.3.2 if in addition D satisfiesy, (I')vY (®) < 1 Then[A, Y] €
Ajay for {u € o N X : [Jullx,, < min(n6,&)}-

Proof. The proof for discrete-time systems is very similar and istta.

Theorem3.3.2guarantees that\, Y] € Sja yj for all u that satisfies

{ueLonNLoo:||ullg, <min(nd, &)}

xT

which means that stays inY C D,. Since|lu|lz., < &u, u € D, then{ } € D. Ac-

u
cording to Small Gain Theoremy(I').7P () < 1 guarantees that the loopAs internally

stable andr € £ if dy andds are inLy. Sincexy < oo andu € Lo, di anddsy are inLs.
Consequentlyx € L-. By the argument used in the proof of Theor&B.1, it is easy to
show thati € L. Havingx € L5 N L, andz € L, Corollary3.2.1can be used as the
proof of 3.2.1(ii) to show thatr — 0 ast — oc. This shows thafA, T] € Aja v

]
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Figure 3.8: A simplified schematic of CSTR system.

U+ il X,

K, — CSTR“

Figure 3.9: The CSTR system controlled by a proportionatrodier.

Example 3.3.2. Consider an example of continuous-stirred tank reactomsystem
shown in Fig.3.8, where an irreversible, first-order reaction takes placeTR is used to
convert reactants to products. The reactant is fed comgiait a vessel where a chemical
reaction takes place and yields the desired product. Thedeeerated by the chemical
reaction is removed by the coolant medium that is circult#tesligh a jacket. The following
mathematical model is taken from],

&9
I3 A . 2
Ty = —21+ Do(1 —2q)e'"?
)

Gy = —d9 + ByDa(1 — 21)e™ % + B,( — i)

(3.26)

wherez, Z2, andu, are the dimensionless reagent conversion, the temper@uiut),
and the coolant temperature (input), respectively. Thearigal values for the coefficients
areD, = 0.072, ¢ = 20, B, = 8, andjg, = 0.3

Three operating points are considered 3 [One of them is an unstable poini;y =
0,210 = 0.4472, andZoy = 2.7517. Let transfer the origin of the state plane into this
unstable point, which is investigated here. Therefore, fndx, := &1 — 219 andxzy =

To — Z99. We study the closed-loop system which is depicted in Bigwhere Kp = 100

is a proportional controller and is an exogenous input which can be interpreted as sensor
noise or disturbance. This controller can stabilize thesadbloop system locally. In this
example, we want to determine the corresponding local regio

The state equations for closed-loop system are

205 +55.034

= —ay — 0.4472 + 0.072(0.5528 — a1 )e B T17res
oo +oom e oot (3.27)

T = —31.3x9 — 3.5772 4+ 0.576(0.5528 — z1)e 227517+72 + 30u
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[1eQIIIXI]

Figure 3.10: I ”( ”)”“"’ and the boundary db.

I©0alllixl

Figure 3.11: ”qﬁ(fl)”z and the boundary of(T')v,(®) < 1.

[ 181 0357 [o [ ®y(a) -
LetA = 6474 —98.143 } andB = [ 20 } thend(z) = [ Bo(z) } where® () =
20x9+55.034

—0.81x1 — 0.35722 — 0.4472 + 0.072(0.5528 — 21 )e 2517+ and®y(z) = —3.157x2 +
6.474x1 — 3.5772 4 0.576(0.5528 — xl)e%. Computation shows that upper bound
can not be found fofy (®) and~2(®). Therefore, global stability can not be proved. For
the linear systems, computation with the given methodssgivg(I') < 0.5354,~, (") =
0.5423, 750 (0) < 1.221, andy(©2) = 1. Letn = 0.1 andMp = 3 > 70 (2) + 71750 (O).
Since® is independent fromu, D c R2. For this example, sinc® is simply connected
set,D = D. The surface o% as well as the boundary @ is depicted in Fig3.10
Fig. 3. 1lshows”<1|’|(9|”|)”2 and the boundary of,(I")y2(®) < 1. The various subsets &>
are depicted in Fig3.12 The maximum value fot is 0.1519 and consequently the max-
imum value forA is 0.0402. According to Theoren3.3.2 for any inputu which satisfies
|lullz.. < nd = 0.004 and any initial state satisfyinfjr|l.c < ¢ = 0.0402, x is bounded
as||z|lz.. < e = 0.1519. Besides, in addition to the mentioned conditiony i€ L2 and

u — 0 ast — oo thenz — 0 ast — oo, according to Theorer.3.3
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Figure 3.12: Various sets in Exam@e3.2

3.4 Chapter Summary

In this chapter, we have considered stability of nonlingatesms. Our results are applicable
to a variety of nonlinear systems. The suggested methodenkaing stability of nonlinear
systems has significant computational advantage companactvtious work, in the sense
that there is no need to find any Lyapunov-like function.iéhiinsight for our formulation
was provided by a new representation for nonlinear systerhigh transforms a nonlin-
ear system, with non-zero initial state, into a feedbackrggnnection of two operators.
Then, some well-known concepts from input-output theoryenssed to derive sufficient
conditions for stability of the original nonlinear systeRinally, local stability of nonlinear
systems was studied with a new definition of region of ativactSince the new represen-
tation is not unique for a nonlinear system, all suggestethoaks can be optimized based
on the selected parameters in the representation. Thisiaption will be the subject of

future work.
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Chapter 4

Upper bounds

4.1 Introduction

The complex structure of nonlinear systems is the majoraghestin the development of
simple and efficient computational methods to test stgpiibmpute system norms, etc.
As a consequence, a majority of the computational techeiguailable in the literature
are restricted to a narrow class of nonlinear systems fochvaiparticular function, e.g.
Lyapunov function or storage function, can be found by tiadl error 7], [24].

In this chapter, we consider the problem of computing4heperator norm of a non-
linear system, a problem which has remained a challengeeirsyhtems literature. The
importance of this problem originates from the fact thatittikience of various inputs on
various signals inside the system can be quantified by suckasure. One of the appli-
cations of this measure is in control systems, where thewsdt®n of disturbance signals
is required. The subject has attracted considerable mtteftr both linear and nonlinear
systems. For linear systems, computing fhenorm(s) has a well established solution; see,
for example, reference]. For nonlinear systems, however, computation offh@perator
norm continues to be a challenge. &,[the £L..-gain of nonlinear systems is characterized
by means of the value function of an associated variationattlpm. Thel, gain, also
referred to as thé{,, gain of a nonlinear system, can be approximated using sdtag-
tions and the theory of dissipative system$][ This approach is, however, conservative
and finding storage functions is difficult; see al26][for a numerical approximation of the
Hs norm. In [31], a computational method is proposed to computedhenduced norm
for single-input linear systems with saturation.

In this chapter, we propose a method to compute an upper bourde £, £, and
L, norms of a class of continuous-time nonlinear systems. Qathad can be optimized

based on some selected parameters. For systems not inahutiésiclass, a method is also
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provided for computing an upper bound of thg, norm.

This chapter is organized as follows: In sectibfi.1, we propose a method to compute
upper bounds on the induced norm of nonlinear systems anitprtwo illustrative exam-
ples. In sectiont.2, we introduce the weighting method, which can be used tocethe
intrinsic conservativism in the aforementioned method.e&ample is provided to illustrate

the usage of the weighting technique.

4.1.1 The proposed method

In this section, we obtain a computable upper bound for iadumperator norms. We will
use the structure shown in Fig.4(b) namely, thel 4 representation for forced system. In

this structure, it is trivial to show that
lzllz, < llwllz, + ld]lz,

<@ |[ 2] +tale,

Ly (4.1)

+ () [[zollp

<) | %]

Lp

The computation ofy, ('), v,(€2) and~,(®) was discussed in Referenctd].

Lemma 4.1.1. The following equation is true for,u € L,:

.
12| <ol + e, @2)
i [p
Moreover, ifx, u € Lo
- 2
x
el = ot + . @3)
L Lo
Proof. The proof is trivial and is omitted. O

The first part of this lemmad(2), is true for all Banach spaces; however, the second
part is true when the temporal norm4s with the Euclidean 2-norm chosen as the corre-

sponding spatial norm.

Theorem 4.1.1.Let[®, T, Q] be a4 representation for a forced system, If

Yp(D) () <1 (4.4)

then
< %(F)%(q)) . (4.5)



Proof. Substituting 4.2) in (4.1) implies that

]l < 7p(D)vp (@) (]| + [lull) + 7 ()0l (4.6)
Thus
(1 = (D) (@) 2]l < 2 (D) (@) [[]] + ()0 (4.7)
Sincey, (1), (®) < 1,

_wM0(®)
o T @)

which implies @.5). O

P —tu (4.

SO 17l

Inequality @.5) can be used as an upper bound for heinduced norm. It is impor-
tant to note that since thg, representation is not unique, the solution of the following
minimization problem is the lowest upper bound that can kainbd by our method:

() < min % (4.9)
whereI'(s) = [IA%} and®(x,u) = f(z,u) — Az. Unfortunately, there is no existing
method to findA which provides the lowest upper bound. A good strategy iseftnd a
function in MATLAB with input A and outpu% and usdminsearcho minimize
it.

The method provided by Theorel.lis general in the sense of the induced norm,
7p- An interesting case occurs when the temporal nori,isvith the Euclidean 2-norm
chosen as the corresponding spatial norm. The reason is théte mature theory, namely;
H~ optimization, has been developed for linear systems inch&. SupposE is a
continuous-time linear time-invariant stable operatathvimpulse responsg(t) : R* —
R™™ (g(t) : Zt — R™ ™). Let G(s) denote the Laplace transform gft). We have

Y2(I) == [[G ()l (4.10)

In this case, the following theorem provides lower upperrasufor the induced norms
than Theoremt.1.1

Theorem 4.1.2.Let[®,T", Q2] be a4 representation for a forced systei, If vo(I')y2(P) <

1 then
Y2(I)72(P)

= TR Er -

Y2(N)
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Proof. Inequality @.1) implies that

(el = 22(@)lzol)* < (ra(Ta( H[ HD (4.122)

Using @.3),

2)1? = 272(Q)l|zoll[|| + v2(€2)?(|l2o]|?
< () 72(®)? (l«]” + [[ul*) (4.12b)

For simplicity, leta := 5 (T")y2(P)

27 Q a?
ol = 22D o+ 2 e < e, 129
Hence ) )
(Q) a VQ(Q) 2 (0% 2
<|| I = 7=3ll@ll) < ﬁ\lwoll Tzl (4.12d)
Sincea® + v? < (a + b)2 for all a,b > 0, we have
’Yz(Q) a’Yz( ) o
- + 4.12e
Consequently
Y2(I)2(®) 72(€2)
x| < ul| + x (4.12f)
ol < e sl Ty ol
which implies @.11). O

Similarly, the solution of the following minimization prédm is the lowest upper bound

that can be obtained by our method:

. Y2(I)y2(P)
) S e e @)? -

whereI'(s) = [IA%] and®(x,u) = f(z,u) — Az. Equivalently,

9(N) < IHlIl L . (4.14)

\/H sl —A)” -2 72_2(f($>u)—Ax)_1

Example 4.1.1.(RLC circuit with non-ideal inductdrThe network of Fig4.1represents a

RLC circuit with a non-ideal inductor. The inductor has nemeresistance and saturation
characteristic as shown in Fig.2(a) where\ is the flux linkage. The relationship of the
magnetic flux linkage to terminal voltage of an inductor segi by Faraday’s law; hamely

v, (t) = dA(t)/dt. The state equations for this network may be written as
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(1) RS v L

Figure 4.1: RLC circuit in Examplé.1.1

y
y

[y B

'iL

e I
- -

(a) (b)

Figure 4.2: The characteristic of the inductance in Examplel

L A\ di

=A=-"=L 4.15a
L diy, dt (4.153)
dir, A\t ,
kA — 4.15b
dt (dz’L> (v = Rai) (4.15b)
_1 - . - .
where(%) is depicted in Fig4.2(b)versusiy,, and
dVe Ve .
A DA A 4.15
C 7 i 7 ir ( C)
Definingzy := iy, 9 := v andu := 4,
—1
o= (e - o) (ﬁ) (4.15d)
A | |
1
) . -1 05
Let Ry = 5, Ro = 1 andC = 2. AssumingA = 05 -1 , we have
-1
1 — 0520+ (22 —x dA
O(21, 2, 1) = { ! 2+ 2 v (dm) } (4.15¢)
C

We use the computational methods that has been introdudéd]inSince there are three

independent variables i),(®), i.e. z1, z2 andu, we pIotW{’[%“)' [ﬂ
u
il

versus instead of
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@p=1

25
(b)p=2

0.7
0.6r

25

Figure 4.3: Gain of|®(z, )|, versus in Example4.1.1

p

§

plotting versuse;, x andu, as shown in Fig4.3. Therefore;y; (®) ~ 0.50, v2(P) ~ 0.50
and v (®) ~ 0.50. Computation also shows that(I') ~ 1.237, v(I') ~ 1.00 and
Yoo (I') &~ 1.237. Theoremst.1.1and4.1.2imply thaty; (V) < 1.62, y2(N) < 0.577 and
Yo (N) < 1.62, respectively.

There is no doubt that the conditiop (I')v,(P) < 1in TheoremsA.1.1and4.1.2is
restrictive. For example, polynomial systems are exclumethie aforementioned condition.
The following theorem might be used to overcome this shamntng. The result provides

an upper bound on system output for bounded input and isitéé.
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Theorem 4.1.3.Let[®, O, T, Q] be a4 p representation for a nonlinear system. ket 0

and M, > v5(Q2) + 17 () and

o[£ ewn| < HgEO )

LetD := B> (0, rp) be an open ball insid®. Assume thab, andD,, are the images db
under[ Tnxn | Onscm ] and[ O | Onsem },respectively. Thereford), andD,, are
Oan ‘ Ome Oan ‘ [me
also open balls iflR™ and R™ respectively. Let, andr, denote respectively their radius,
ie. D, = B*>(0,r,) andD, = B*(0,r,). Choose: and such that) < ¢ < r, and
1 —792(2)700(T)
Yoo () + 1(7(0) + 7R ()70 (')

If ||u||z., < min(nd,r,)and||zo|ls < 4, then

0<d<

€

x|z <e. (4.17)

Proof. It is trivial that M, — 750 () — 7700(0) < M, + 1; thereforey2 ()7 (') < 1.
We use contradiction to prove the theorem. Since we haveresbthat systems of interest
are locally Lipschitz, system trajectories are continucensequently, if: were to leave
the ball with radius, it should cross the boundary of the ball. Suppose thertosses the
boundary at = 7. As aresult|| T z|| = ||z| = €. Sincee < r, and|ju|| < min (n d,7,)

guarantees that € D,,, we have o € D and consequently

]| < [ldir]l + [wr]]
< Nldir |l + 72 () 700 (D) (N1~ | + [+ )
< Yoo (O) [Jur ]| + Yoo (V)| 20|
+ A2 (D) Yoo (D) |27 | + 72 (@) Yoo (1) | |
< Yoo () [[z0]] + [0 (©) + 72 (®) oo (T)] |||
+ 75 (D)oo (1) |- |
< Y00(2)8 + [100(©) + 72 (®)700 (1)] 76
+ 75 (2) Yoo (1) |- |
= (Y00() + 7 [700(0) + 72 (@)1 (1)]) §
+ 75 (2) 700 (1) |- |

(4.18)
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Then

e = |z
Yoo () + 1 [700(0) + 72 (P) 700 (T)]

< T
T2 (@)700(D) ol
Yoo () 411 [7160(0) + 722(®)100 (T)]
- 1= 22(2) 700 (')
< e (4.19)
Which is a contradiction. Therefore(t) < ¢; Vt > 0, i.e. ||z| < ry. O

Example 4.1.2. Consider a multi-tank system depicted in Fi@4. Suppose that a pro-
portional controller is utilized to adjust the fluid leveltime second tanki, by input flow
g. The problem of interest is to find an upper bound on the gathetlosed loop system

shown in Fig.4.5. The following mathematical model is taken frof®:

dH
G = o (- C1HY)

Uf = ——i—— (CLH}" — o H5?)

cw—+ bw

(4.20)

Homaz

The transfer function of the controller &(s) = Kp. Letx; := Hy — Hyg, 22 =
Hy — Hyg andq = qo — Kp(x2 + u) where Hyy and Hyy are operating points ang is
the corresponding input. It is trivial thagy = C1H;; = C2Hg;. The numerical values
for the coefficients are = 0.25, w = 0.035, Hopmaz = 0.35, b = 0.345, ¢ = 0.1,
Cp = 5.66 x 107, Cy = 5.58 x 1075, ay = 0.29 anday = 0.226 [19]. Suppose

Kp = 107, The state equations for the closed-loop system are

i = ﬁ (g0 — Kp(xg +u) — Cy(x1 + Hig)™)

Ty = m (C1 (1 + Hig)™ — O(wg + Hap)?2) (4.21)
Homax
. I
andz = ( ; > = f(z,u). Let
T2
—0.0072 —0.0114 —0.0114
A_< 0.0094 —0.0118 > B—< 0 > (4.22)
which are linearized parts of(z,u) atz = 0 andu = 0, i.e. A = 8fg(;,u) 0 and
B = . Therefore,
z,u=0

0.00373 + 0.0072x1 — 0.00647(z; + 0.15)%-29

D(z,u) = -5 0.20_ -5 0226 .
( [ 5.06x10 (x1+0'1g?0067+%%%)25122 (w2+0.0934) —0.0094z; 4 0.0117622
(4.23)
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Figure 4.4: Configuration of the multitank systei].

Figure 4.5: Closed loop multitank system.
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Figure 4.6: ”qﬂ( ”)”"" versus||z || oo -

Computation with the methods proposed &0 provides v (I') < 151.3, 70(©) <
0.9756, and~,(2) = 1.036. Letn = 3.0382 which givesMp = 4 > v, () 4+ 1750 (O).
Since® is independent froms, D C R2. ”qﬂ(”)”"" versus||z||~ is depicted in Fig.4.6.
SinceD is independent of,, r, = co. Let us takeD as the region wherjéqﬁ(gf¢ < 0.0023,
i.e. v2(®) = 0.0023. Consequently, = 0.0155. Lete = 0.015 andd = 0.0019 <
%O(Q)Q(fyl%g;)j;‘ég)%o(r)) e. According to Theorend.1.3 for any inputu which satis-
fies||u|| .. < min(nd,r,) = 0.00587 and any initial state satisfyingeo|l.. < J = 0.0019,

x is bounded a§z|| ., < e=0.015.

4.2 Weighting Technique

As shown in the previous section, the proposed methods aedban thel 4 representa-
tion. Adding some weighting on state or input vectors makitég the calculated bounds.
However, there is no general rule which provides useful &g matrices; therefore, they
should be chosen by trial and error. In this section, we sthe\effect of the weighting and
we show the effectiveness by an example.

In the {4 representation for continuous-time systems shown in Eig.let z := W x

whereW,, is nonsingular. Consequently,
& =W, AW, Y2 + W, (W, ') (4.24)

DenotingA := W, AW !, &(z) := W, &(W, 'z), I := {f}l é] andQ(z(t)) = Az,
it is easy to show that ordered operator [detl’, 2] is a4 representation for the weighted
system, i.e. the system with initial staitg := W,y and state:.

Similarly, in the(4p representation shown in Fig.4(a)for continuous-time systems,
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let z := W,x andu := W,u whereWW, andW,, are nonsingular. Consequently,
&= W, AW, Y& + W, BW, Ya + W, (W, e, W, 1) (4.25)

Denoting A := W, AW, ', B := W,BW,; !, ®(z,u) = W,d(W; e, W u), T :=
{%} L6 = [%} andQ(z(t)) := ez, itis trivial to show that ordered operator set
[@,T,0,Q] is a4p representation for the weighted system, i.e. the systeiminfitut 4,
statez and initial statezy. A very similar argument can be made for forced system with
representation.

It is important to note that the mapping — z is different thanu — xz. However,
Theorems4.1.], 4.1.2and4.1.3can be used to find corresponding upper bounds for the
weighted system. Then, using the definitions:pfi andz, the corresponding bounds can
be found for the main system. Suppose that the inequalityddor the weighted system is
1], < Ypou 1], + .20 | E0]l, Wherey, ., and~y, ., are derived by either(8) or (4.129).
Therefore,

il < W | 2]
< Wl lall + W] v ol (4.26)
< W] v Wl el + [[W5 | o Wl lol -

It is important to note that norms used f0i¥7,! || and||W,, || are the corresponding induced

xT

norms. Similarly, if an upper bound obtained for the weighggstem isy(N) then
Y(N) < WA (N) [ Wl (4.27)

There is no method to compufgV,! || and ||W,,|| in general. However, in some special
cases, such as the case where 2-norm is used for the spatiabnthe case where weight-
ing matrices are multiplication of a scalar by the identitgtrix, | W, || and||W, || can be

calculated. The following example illustrates the usage effectiveness of the weighting

technique.

Example 4.2.1. Consider the following nonlinear system

N &1 = —x1 + x2 + 0.5sat(x2) — 0.25sin (1) + 0.25sat(u) (4.28)
" iy = —z1 — 20 + 0.55at(x) — 0.25sin (22) — 0.25u '
: : - -0.9 09
where saf.) is depicted in Fig4.7. Let A = 09 —-11 | Hence,

—0.1z1 4+ 0.1z9 4 0.5 sat(z2) — 0.25 sin (z1) + 0.25 sat(u)

(w1, 22,u) = { —0.121 + 0.1z + 0.5sat(z;) — 0.25sin (z3) — 0.25u

(4.29)
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Figure 4.7: The saturation function $at

Table 4.1: Derived bounds with variolig, (Example4.2.1).

Wi || (V) | 2(N) | 7%0o(N) || (V) | 72(V) | Yo(N)
1.75 1.361 | 0.580 | 3.029 2.382 | 1.015| 5.301
1 1.66 0.71 5.95 1.66 0.71 5.95
2 1.290 | 0.575 2.30 2.58 1.15 4.6

minimum 1.66 0.71 4.6

Let W, = 1.75 andW, = I5xo. Therefore||W || = 1 and|W,|| = 1.75. As shown in
||®@,a)| T
U

)
u
71(®) &~ 0.46, 12(®) ~ 0.5 and.(P) ~ 0.6. Computation also shows that(I') ~
1.253, 72(I) ~ 1.003 and~.(I") ~ 1.253. Thereforesy; (V) < 1.361, v2(N) < 0.58 and
Yoo (N) < 3.029. Using @.27), 71 (N) < 2.382, 72(N) < 1.015 and s (N) < 5.301.

The results obtained for various values@f, are summarized in Tablel As can be seen,

Fig. 4.8 we plot versus instead of plotting versusg,, 2> andu. Therefore,

tighter bounds can be found by trying different values fa weighting matrices.

4.3 Chapter Summary

This chapter offers a contribution to the calculation of eippounds on th€, £, and L
induced operator norms of continuous-time nonlinear systeBased on thé, represen-
tation of nonlinear systems, methods are presented to dentipelaforementioned bounds.
The main limitation of the proposed methods is inequaltyl)(that restricts the usage
of the method for a class of the nonlinear systems and thedreeon choosing the pa-
rameterA. To lessen the restrictions encountered in the computafidine £, norm of a
system, a method is given to compute an upper bound of{heorm of the system output
with respect taC ., norm of the input. This method does not suffer from the presilimita-
tions. In the last section, our methods are improved by teeofia weighting technique on
the (4 representation. An example is provided to show the effenBgs of the weighting

technique.
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Chapter 5

The Gap Metric

5.1 Introduction

Model uncertainty often has a significant effect on stab#itd performance of feedback
control systems. For linear time-invariant (LTI) systemsich work has been done to study
this effect. One important concept used to measure systeertainty is the gap metric
which was introduced to systems and control theory by ZamdsEkSakkary p5]. For
LTI systems, it has been shown that a perturbed system caaltibzed by any controller
which is designed for the nominal system if and only if theahse between the perturbed
system and the nominal system is small in the gap metric. ©hapatation of the gap
metric for LTI systems was developed by Georgitd]]

The extension of the gap metric to larger classes of systeamsnitiated in 0], where
the metric was extended to time-varying linear plants. i.#be parallel projection operator
for nonlinear systemsb] and its relationship to the differential stabilizabilibf nonlinear
feedback systemd ]] paved the road to the extension of the gap metric to a psegtde
on nonlinear operatord §].

Unlike the LTI system case, there is no generally applicaibdhod of computing the
gap metric for nonlinear systems. In fact, there are onlywadgamples in literature for
the computation of the gap metric. Moreover, those methoelkighly dependent upon the
case of interest. This is also the case for the corresporsglatglity margin which can be
used to determine the ball of uncertainty in the sense of dpengetric.

This chapter deals with the computation of the gap metricsaaloility margin for non-
linear systems. We will consider the extension of the gapimigt nonlinear systems given
in [13]. We derive upper bounds on the gap metric and the stabildygim with respect
to the operator norm (gain) of the plant, perturbed systedhcamtroller and based on the

results of Chapted on the upper bound of the gain of nonlinear systems. The stege
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methods are only applicable to a class of nonlinear systemshveatisfy an inequality.

The chapter is organized as follows: In Sect®a, first, we introduce the notation.
Then, the gap metric for the nonlinear systems is introdu¢ee main contribution of this
paper is contained in Sectidn3 where Theorem$.3.1and5.3.2are stated and proved.
These theorems provide upper bounds on the gap metric arsdathidity margin, respec-
tively. In Section5.3, an example is also solved to illustrate the effectivenésiseoresults
and comparison between the direct computation and the steghmethods. Since the lit-
erature suffers from the lack of widely-applicable compotamethods and there are just
a few examples which are highly dependent to the studiedmsstit is indeed hard to
construct example which both satisfies our required camditind is compatible by the

previously suggested methods such as the method usé&din [

5.2 Background

5.2.1 Notation

LetU := £ andY := £ denote input and output signal spaces, respectively. Aimean
time-varying system can be thought of as a possibly unbalngeratordd : D, — Y
whereD,;, C U. The action ofH on anyu € Dy, is denoted byHu. A systemH is called
stableif D;, = U. For an operatoff : U — Y, lety(H) stand for the induced norm (gain)

of the operator defined as

| Hullr
H) := sup
)= 0 Tl
u#0

(5.1)

where the supremum is taken overale U and all7" in R for whichuy # 0. Let,(H)
stand fory(H) in £,. A systemH is calledfinite gain stable (fg-stablelf 70 = 0 and
v(H) < oo.

5.2.2 The Gap Metric
Let [P, C] denote the feedback configuration shown in Figbire This configuration is
standard in literature, e.glLy] and can be described by the following equations.
y1 = Puy
uy = Cyz
(5.2)

Uy = U1 + ug

Yo = Y1 + Y2
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Figure 5.1: The standard feedback configurat{égh('.

where P and C' denote the nominal plant and the controller andand y, are the input
. . U;
and measurement disturbances, respectively. ubet U, y; € Y andw; := for
Yi
i € {0,1,2} andW := U x Y. We assume that the product of the instantaneous gains of
P andC'is less than one. This assumption guarantees the well-pesgaf the feedback
configuration, e.g.J3] [1]. Similar to [13], we assume that the feedback configuration is

always well-posed. The closed-loop operator is defined as
Hpo:W —=WxW, Hpc :wy— (w1, ws). (5.3)
The graph of the plant is
gp:{@u) :ueu,Puey}cw. (5.4)

If the domain ofP is U, the conditionPu € Y is unnecessary. To have compatible notation

with [13], we define the graph af' as follows
gcz{@y) :Cyeu,yey}cw. (5.5)
In some literature, e.d], this graph is also called inverse graph. Let
M:=Gp, N:=Gc. (5.6)
The following operators are useful in the study of the clelegh system stability.
Upgn =1 Hpe, Uy pm :=oHpe (5.7)

wherell; : YW x W — W denote the natural projection onto tile component: € {1,2})
of W x W. Therefore
D = wo = wy
(5.8)
O m 2 wo = wa.
Definition 5.2.1. Parallel Projection[5]
A stable operatoll : £ — £ (with TI0 = 0) is called a parallel projection if for any
r1,T9 € L
I(I1xy + (I — )zg) = Iy (5.9)

where! denotes the identity of.

57



Thus,ITy»- andIl o are parallel projections considering that for any, we € W
H(Hw1 + ([ — H)wg) = [Twy, (5.10)

forll € {HMHNaHNIIM}'
Consider thesummation operator

MmN M XN = W: (m,n)—m+n. (5.12)

The stability of the standard feedback interconnectioy, Fi.1, is equivalent toX z
having an inverse defined on the whole)of which is bounded. In fact, iE A has a
bounded inverse, theE]/}’N = Hpc. It can be shown that a necessary condition for
[P, C] to be stable is thatt and N are closed subsets &Y [5]. Let W, andW, be closed
subsets of a Banach spadé We define
inf{|[(T— I)|w, ||}, T is a causal
5(1/\/1, Wy) 1= bi!'ective map fromV; to Ws
with 70 = 0, (5.12)
oo, if no such operato? exists,
S(W1, W) = maix { 5(W1, Wa), 5(Wo, W) }.
Theorem 5.2.1. Consider the feedback system shown in Bid. Let M := Gp and N\ :=
Ge. Assume thaltP, C1 is fg-stable. Suppose thatis perturbed toP; and M, := Gp;. If

S(M,Ml) < HHMH/\/H_l (5.13)

then[P,, C] is fg-stable. Furthermore

-

14+ 6(M, M)
L= [T 9(M, M)
Proof. See [L3]. O

[Tty ]| < e (5.14)

5.3 Upper bounds on the Gap Metric and the stability margin
In this section, we suggest a method to find an upper boundeogah metric between two
nonlinear systems as well as a method to compute an upped looui (|-

Theorem 5.3.1.Consider nonlinear dynamical systems given by
N: &= f(z,u), xg = 0;

o R (5.15)
N: &= f(&u), do=0.

Let~(N) and~(N) denote their gain respectively. Then
(N, N) < 5(N) +y(N). (5.16)
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Proof. We have

l =2 < ||zl + || 2]

< (V) [lull +~(N) [ull

< (Y(N) + () [Ju]
< (4(N) + (W) m

DefineTJ as

It is trivial that T is bijective. We have

S(N,N) = I -7
-

Al
)

= sup

= sup

Similarly

Consequently,

§(N,N) = max{y(N,N),7(N,N)}

< 5(N) + 6(N).

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

Theorem 5.3.2. Consider the standard feedback configuration depicted gn Fil Sup-

pose thaty(P)y(C) < 1. LetIl v be defined asi(6) and 6.7). Then

(1+2(P) (1 +4(©)

Ml = =5 Ppe)
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Proof. From the feedback configuration, we have

[Jur ] < [luoll +~(C) llyo — w1l
< luoll +~(C) llyoll + ¥(C)y(P) [Juall -

Consequently
1 7(C)
w| < ————— |luol| + ————=—llvol| -
Therefore
u
M \g ol + lln
Y1

< luall +~(P) [Jua

L) 1(O) (1 +~(P)) ol
ST A0n@) "N T TS ey Pl

Sincel|al| < H m

‘ _ 1H9(P) +A(O) (1 +(P))
- 1 —~(C)(P)
)
Yo

)

)
U1

(1 +A(P)(1+7(C))
1 —~y(C)v(P)

On the other hand, EquatioB.g) implies

o] =[]

Thus
u1
(M| = sup [z;} ‘
)
Using (.26
] < CHAONEA(E),

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

O

Example 5.3.1. Consider the feedback configuration of Fif.1. Assume that the plant

is the circuit shown in Fig5.2, where the inductance of the SSR is nonlinear a4 is

defined as Figh.3and R = 10. The state equation of the system is
i(t) = L7 (ui(t) — Rz(t)), =(0) =0
yi(t) = x(t)
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/]-10

-15

Figure 5.3: Inductance of SSR.

wherex(t) := ir(t) andu;(t) := Vi(t). LetC = —c wherec is a positive non-zero
constant. Lell =Y = L... Since the instantaneous gainsfandC' are zero and one,
respectively, the loop is well-posed. First, we will find thE || by a direct method
similar to the solution of Example 1 irlB]. Then, we will compute the upper bound on
| TLpq || by the suggested method.

I. Direct computation:

The feedback equation is

i = L7 (ug + cyo — (10 + ¢)z), 2(0) = 0. (5.31)
We have
Uuo u1 ug + cyog — cx
11 : — = . 5.32
e N 532

Letvg := ug + cyo. For anyuvg, ug = yo gives the mapping with the smallest input norm.

Thereforewy = (1 + ¢)up and

[uo] [uo +cyo — cx]
H

Yo x

= 2
H

Yo x (5.33)

_1+9) vo—cx}

[Tag ]| =

X

'UO|—>|:

= (1 + ¢) x max{||jvg — (vo — cz)|| , lvo — |}
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We now show that|vg — z| = Suppose that for any arbitrary chosen interval

1/10+c'
[0,T], the maximum ofz(¢), which is positive, occurs afy € [0,7]. Then, for any
e > 0, there exists; such that0 < ¢, < to, z(t1) > z(tp) — e and @(ty) > O.
ConsequentlyL~*(vo(t1) — (10 + ¢)z(t1)) > 0. Since sgriL~!(z) = sgnz, vo(t1) >
(10 4+ ¢)x(t1). Thus,vg(ty) > (10 + c)x(tg) — (1 + c)e for anye. Similarly, if the min-
imum of z(t) in [0, T], which is negative, occurs &, for any¢é > 0, there exists; such
thatvy(f1) < (10 + ¢)z(fo) — (1 + c)é. Consequentlyj|voll; > (10 + ¢) ||z 7. To show
that this upper bound ofwy — x|| can be approached arbitrary closely,dgt= 1 for all

t. Itis trivial thatx(t) = (1 — e~ (1+019%) /(10 + ¢). Soljvg| = 1 and

1
|z]| = /10+C-

Consequently, Next, we computd|vg — (vo — cz)||. Trivially,

1
vo = z|| = /10+c'

lvo = (vo —cx)|| < 14 fluo— (cx)| = 1+ & This upper bound can be ap-
proached arbitrarily closely by the inpu§ = 1 for0 < ¢ < T'andvg = —1fort > T.
We havez(t) = (1 — e~ (#0198 /(10 +¢) for 0 < ¢t < T. Thus, (vo — cz)(T) =

— (14 1) + e~ (IH01IT Therefore/|vg || = 1 and|jvg — cz|| = 1+ 35 which implies

that ||vg — (vo — cz)|| = 1 + 5= Consequentiy|TLy || = 1 + 155
Il. The suggested method:

To find v(P), let ®(z,u) = L~} (u — 10z) + 3z/2 andT" := [ —31/2 (1)

computational methods introduced in Sectib.1 Fig. 5.4 shows the plot o '

] . We use the

P (z,u)|
x
u

} H for 2 x 10° randomly chosen input vector. Therefosé®) = 0.7. Using the

o

method introduced in Sectich3.2 we havey(T") = 2/3. Theoremd.1.1implies that

~(P) < 0.639. (5.34)
SinceC = i - i ; 1.639(14c)
= —cis aconstanty(C) = c. Theoremb.3.2implies thatHHMHNH < St

if ¢ < 1.56. Apparently, the obtained upper bound is closer to the helae whenc

approaches zero.

Example 5.3.2. Consider the plant introduced in the previous example. Sspphat the
system is perturbed by time delay That is
. o —1 o —
P - x(t) = L™ (uy(t) — Rx(t)), z(0) =0 (5.35)
y1(t) = x(t — h).
First, we will compute an upper bound on the gap between tirg pl and the perturbation

P, by a direct method similar to the solution of Example 116][ Then, we will compute

the upper bound on the gap by the suggested method.
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Figure 5.4: Gain of|®(z, u)|| versuslog

Il

I. Direct computation:
Let M := Gp; and define a mapping : M — M as

] =L )

j2(t) —z(t = h)| < sup [2(H)]-h
tet—h,t]

Thus

tet—h,t]

SinceL~!(-) is an strictly increasing function,

|(t) — x(t — h)|
< L_l( sup  |u(t) — 10z(t)|) - h
teft—h,t]
< L_l( sup |u(t)|+ sup [10z(1)]) -~
teft—h,t] teft—h,t]
< L_l( sup |u(t)| + sup |10z(?)]) - h.
te[0,t] te[0,t]
Therefore
() = =(t = h)|l-
< ||L7'( sup |u(f)|+ sup [10z(£))|| R
te[0,t] te[0,t] -
< L7 (1t max{|full, , ||zl }) - 7
< 2.2max{lJul, , |} - b
Hence
H[_T”: H.Z'(t)—.%’(t—h)”T <929h.

a0 max{fluall - 2]}~
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-

Consequentlyy(M, M;) < 2.2h. On the other hand, let(t) = 1 on [0, h]. Itis Trivial
that (Pu)(t) = 0.1(1 — e~ '%). For anyw € M, we havew;, = m which is implied by

o[z

Y1
uy
ol
* U
ol L],
ur 20 max{[[u |l , [[Pua, }
_ max{|[* —uill,, [ Puall,}
max{||u1, , [[Pull,}
([ Pu
— max{||wl, , [[Pull,}
= 0.1(1 — 7100,

the time delay inP;. Therefore

—

(M, M) = sup
u1,y170

v

(5.41)

Consequently

—

0.1(1 — e 10" < §(P,P) < 2.2h. (5.42)

Il. The suggested method:

Since P is autonomousy(P) = ~(P,). Using Theoren®.3.1, §(P, P) = 2v(P). Using

(5.39), 6(P, P1) < 1.278. lItis clear that forh > 0.58 the suggested method provides

smaller upper bound than the direct method.

5.4 Chapter Summary

In this chapter, we have considered the computation of thergeric and the corresponding
robust stability margin. Our results are applicable to a<laf a nonlinear systems which
satisfy a given inequality. The suggested methods have gtatipnal advantage compared
to previous work in the sense that they are applicable towmlege of nonlinear systems.
Our methods are based on two inequalities derived for thengeipic and the stability
margin with respect to the gain of the relevant systems. Aamgte is provided to illustrate

the results.
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Chapter 6

The Large Gain Theorem

6.1 Introduction

One of the well-accepted and widely-used methods to stadhflisy of systems is the input-
output approach. It was initiated by Popov, Zames, and Sagdin the 1960s42] [56]
[32]. So far, it has been a fruitful area which has resulted inynafrthe recent develop-
ments in control theory, such as robust control and smatiHgased nonlinear stabilization
techniques. The input-output stability theory considgistesms as mappings from an in-
put space of functions into an output space. In this thedwy,well-behaved input and
output signals are considered as members of input and osfiases. Therefore, if the
“well-behaved” inputs produce well-behaved outputs, tfstesm is called stable.

The main contribution of the input-output stability theanycontrol theory is through
the well-known small-gain theorem. In this context, the tmusable contributions have
also been made by Zames and Sandberg, 8&)[B2]. The small gain theorem says that
the feedback loop will be stable if the loop gain is less thae. dr'his simple rule has been
a basis for numerous stabilization techniques such asneanli{ ., control [15].

Stability of systems, in its various forms, continues t@irs researchers. Motivated by
the classical small gain theorem, “nonlinear gain” smaldlaeorems are discussed in such
references a2[l] [39] [18]. The notion of non-uniform in time robust global asymptoti
output stability was introduced ir2p] for a wide class of systems. A small-gain theorem
for a wide class of feedback systems was proposeddh [n [14], it was shown that for an
open loop unstable system which is closed loop stable thrergast exceed one.

In this chapter, the minimum gain of a system is studied. dlth it has been showed
that the minimum gain is not a horm on space of operators, asteility condition has
been derived for feedback systems based on the minimum §tie open-loop systems.

The chapter is organized as follows. In Secttf, the minimum gain of an operator
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is defined and some of its properties are derived. In Seétigrthe large gain theorem is

stated. An example is also provided to illustrate the usddgeeatheorem.

6.2 Minimum Gain of an Operator

Let 4 : U — Y denote an operator. We define the minimum gaif/cds follows:

) — e M
0#uell  |lur|

(6.1)
where the infimum is taken over all € U and all7 in R* for which ur # 0. Itis
trivial that the minimum gain of an operator is less or eqodtg induced norm. It is also
obvious that if a minimum gain of a system is infinite, thersiunstable. In other words,

the minimum gain of a stable system is always finite. The camevis, however, not true.

Lemma6.2.1. Let M € R"*". DefineH : Xy — Xy asHx := Mz, then
v(H)=o(M). (6.2)

Proof. The proofs for the continuous-time and discrete-time caseshe same and only
the first one is given here. We use the following property efsmallest singular value of

matrices (e.g.97] pp. 21):

M
o(M) = min [|[Mz| = min | xH
Joli=1 w20 ||z

(6.3)

Let M = UXVT be the Singular Value Decomposition (SVD) bf, whereV = [vy,
Vg, ] € R andU, X € R™*™ [57]. Itis well-known thatwv,, is the minimizer of
(6.3), e.q. b7]. Letz € L5, we have

|Ma]? = /0 | M) |2 dt
> / (M2 o (t)]|3 dt (6.4)
= (M)’ / ()| 2 dt = o(M)? ||z
0

which shows that (M) is a lower bound fow(H). To show that it is the greatest lower
bound, letr(t) = 22 e'. We have

l[on]]

o0
2
el = | \
0

[[on

2 %)
dt:/o et | dt = Y, (6.5)
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and

2
dt

e
||

[e'e) 9 e—2t
= [ o g
0 ||| (6.6)

[e'e) —2t
- / lo (Mo |2 < at
0

2
[[on]]

[e.9]
Il = [~ ar e
0

— o (an)]? /0 T et = Y, lo(M)?

Equations §.5) and €.6) imply thatv(H ) is equal tas (M) for some input. This completes
the proof.
]

Lemma 6.2.2.Let®(-,-) : RT x R" — R" (®(+,-) : Z* x R" — R™ in discrete time)

and H be the operator defined as

H:X,— X,; Hax(t):= ot z(t)). (6.7)
Suppose there exists a constaptsuch that

ppllzllp < 1@t 2)[lp, Vo € R", VE =0 (6.8)

theny, < v,(H).

Proof. Letx € L, for p # oo,
\Hol, = /0 1@ (t,2(t)|P dt > /0 2 (o)l dt

o (6.9)
=i [ e de = gl

Forp = oo,

|Hellen = sup [@(t, 2(0)) | > sup s ()]
» (6.10)
= tpsup 2 (O] = pp fl2llz, -
Equations §.9) and 6.10) imply that p, is a lower bound fow(H). This completes the
proof.
]
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Figure 6.1:H5 in Example6.2.1

Example 6.2.1. Memory less Nonlinearitiestet X = L., and consider nonlinear op-
eratorsH; (u) = u? and Hy(.) defined by the graph in the plane shown in FigL We
have

|(Hyu)rl,

H) = inf . —  inf =0. 6.11
v(H) o;egéz:w H”T”&X, o;ﬁgécoo‘u’ ( )

The minimum gain/(Hs) is easily determined from the slope of the graptot

H.
vy = g W07l

—0.5. (6.12)
0#u€Loo HU’T”EOO

Lemma 6.2.3. Let g(¢) be the impulse response of a continuous-time, stable, Lst¢isy
Let G(s) denote the Laplace transform 9ft). Furthermore, assume that there exists a
row in G(s) where all elements are strictly proper, namely there ®ich that for allj,

lim,_.o Gj;(s) = 0. Let H stand for the convolution operator defined by

H(x(t)) = /0 ot — 7)2(r)dr. (6.13)

We have
v(H)=0. (6.14)

Proof. Leta(t) = [1(t) #2(t) -+ @n(t)]”,

R sin(wt) k=1,
ault) = |
0 otherwise
wherei corresponds to the strictly proper rowd#(s) andw > . Let

w| T

2(t) = &(t) — 2 <t - H _) (6.15)

Tl w

where || denotes the floor function of a real number r, which is thedstdnteger less
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!
L7135

€ —

Figure 6.2:|2(t)|.

than or equal tor, namelyvr € R ; |r] := sup{n € Z|n < r}. Itis trivial that

[0
0
ol e 056212,
() = sm(-wt) ith row
L o
0 t> |
and
~ wl| T
le)ll = |a:t) = (1= | 2] T))|
Thus,
(6.16)

.. = sup|sin(wt)| = 1

, 2]
lol2, = |
0
_ 1/2 <t B sméiwt))

0

- (6.18)

Lﬂ' w
Hw&:A | sin(wi)| dt.

To calculate §.18), consider the graph of:(¢)| depicted in Fig6.2. The number of peaks

ISEE]

| sin(wt)|? dt
1212
(6.17)

is |£]. Moreover,
S:/%m@wazg. (6.19)
0 w
Consequently,
w w| 2
lole, = | 7] 5 =[] 5 (6.20)

£ ] Z) implied

™

To calculate the norm of the outpllig||, we can first find the response of the system to input

&(t), namelyj(t), and then obtain the output usingt) = §(t) — 9 (t — |
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by the linearity property of the system arglX5. If we letw — oo, the response of the
system taz(t) approaches to zero. The reason is that the amplitude ofeaiegits of the
i-th row of G(s) approaches to zero at high frequencies. Therefate, . ||(¢)|| = 0
and consequently

Tim|[|y| =0, (6.21)

On the other handg(17) and ©.20 imply
. 1 . 2
Jim e, =y Jim |z, =~ (6.22)
Equations §.16), (6.21) and 6.22) imply
vi(H)=0,1v(H) =0, voo(H) = 0. (6.23)
O

Corollary 6.2.1. The minimum gain of a system with a strictly proper stablegfar func-

tion is zero.

Lemma 6.2.4. Let g(¢) be the impulse response of a continuous-time (discrete)-til
system. Lef(s) (G(z)) denote the Laplace transform (z-transform)y¢f). Furthermore,
assume thatz(s) (G(z)) has at least one zero in the RHP (outside of the unit circlet L

H stand for the convolution operator defined by

H(z(t)) = /0 g(t —7)z(r)dr (6.24)

for continuous-time case and

H(z(t) =Y g(t —1)=(1) (6.25)

for discrete-time one. We have
v(H)=0. (6.26)

Proof. The proofs for the continuous-time and discrete-time caseshe same and only
the first one is given here.
Let 5o be the RHP zero ofi(s), namely there exista) such thatG(s¢)w = 0. If

oo +iwp = so € C, trivially s is also a RHP zero af(s). Let

sot f
u(ty=4"° "~ Tso € R, (6.27)
w e sin (wot) if sp € C.
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Consequently,

U(s) = {w. 8_180 if so € R. (6.28)
. m if Sp € C.
We have
Y(s) G(s) - w- 8_180 if sp € R. (6.29)
VTNGGs) w —2 sy € C. '
(s—00)"+w§

SinceG(s) is assumed to be stablgs) is a stable signal. It is important to note thégs)
does not have a pole a§. The reason is that the polestis canceled by the zero 6f(s)
atsg. Since all poles o¥ (s) are in LHPy(¢) is a decaying signal. On the other han;)
is an unstable signal, rising by time. If we truncate bett) andy(¢) at7’, which is chosen
sufficiently large, the corresponding gain of the systenh lvdlsmall. By increasing’, the
gain can be decreased as much as desired. Therefdig,= 0.

U

Lemma 6.2.5.Let H : D, C U — Y be a possibly unstable operator. LB}, denote the
range of H, namelyR, = {y €Y : y = Hu for someu € Dy, }. Assume thaf{ has a

stable right inverse, i.e., there exists~! : R;, — Dy, such that
H-H'=1 (6.30)

and H ! is stable. Moreover, assume thgtH —!) < co Then

1
v(H) = ———. (6.31)
U0 =Sa
Proof. Lety(t) := Hu(t), which implies that.(t) = H~'y(t). Therefore
1
i) — g Dl Ll
well ||ur||  weDy ||ur|  weDy luzll
lyrll
B 1 B 1
- - -1
sup [[ur|] 15 yrll (6.32)
ey, lyrll wepy,  |lyrll
B 1 B 1
- H-! o -1y
oo Iyl ~ ()
very 1yl
]

Corollary 6.2.2. Unstable, bi-proper, LTI systems
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1. Letg(t) be the impulse response of a continues-time, unstableppep LTI system.

Let H stand for the convolution operator defined by
t
H(z(t)) = / g(t — 7)z(7)dr. (6.33)
0
LetG(s) be the Laplace transform @f¢). We have

v(H) = ||G7(s)||,,. - (6.34)

2. Letg(t) be the impulse response of a discrete-time, unstable tigtpeoper, LTI

system. LeH denote the convolution operator defined by

t

H(z(t) =Y _ gt —1)z(0). (6.35)

=0

LetG(z) be thez-transform ofg(t). We have

v(H) = ||G7H(2)||;. - (6.36)

Proof. The proofs for continuous-time and discrete-time are tiheesand only the first one
comes here.

For bi-proper systems, the inverse system existsylt:= Hu(t), we have

o Dol

u€Xe HuTH
1

= inf ——
uEXe [uz]]
[yr]]

1
sup |ur||
wex. lyrll (6.37)
1
[Jur ||
yex. llyrl|
1
|G~ urp]

sup
wex, yrll

v(H) =

Example 6.2.2. Let
s+ 1
= 6.38
Gs) =~ (6.38)

andH : Dy, C Ly — Lo be an operator defined &.83. Equation 6.36) implies that

v(H) = [|G7H(s)|,L = 1. (6.39)
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For instance, leti(t) := (1 — 2t) e tu_y(t), whereu_; (t) denotes the step function. We

havelU (s) = (5 1y= and consequently’(S) = =7 Which shows thay(t) = e~ u_;(t).

This reveals that(H) < Ile, _ = 1. Itis important to note that there is no input that satis-

Tullz,
< 1. This can be shown by contradiction. Assume there existesoputa € £

Lo

such that:“znf:2 < 1 wherey is the corresponding output. We halg|| < ||a| < oo. On
2

the other handi = G~ . Since||G™~

"5 = 1llall < lgll which is a contradiction.

The minimum gain of operators satisfies thesitivity and thepositive homogeneity

properties. To see this, we have

v(-) >0 (6.40)
and
VM) = it H/\IIH\TH
Fucte ”H | (6.41)
=\ inf 2N w(H)
OZueXe ||ull

However, it can be shown that it fails to satisfy the triarigkequality. For instance, suppose
that /; and H, are memoryless nonlinearities depicted in Q. Itis trivial thatv (H;) =
0, v(Hy) = 0 andv(H; + Hs) = 1. This shows that(H; + Hs) > v(H;) + v(Hs).
Consequently, the minimum gain of an operator is not a noreven a semi-norm on the

space of operators.

H, x H.x (H,+ H,)x
A A
2._
T I
-1 - ! - »
: > X - > X + > x
- -1
(@) H1 (b) Ha (c) Hi + H»

Figure 6.3: The triangle inequality is not satisfiediky).

Lemma 6.2.6.Let H : U — Y denote an operator. Suppose that there exists a nonzero

stable operator’ : R — U such thatH K : R — Y is stable, then(H) < oc.

Proof. Let 0 # r(t) € R such that ¢ Ker(K), thenu(t) = Kr(t) € U, u # 0 and
y(t) = HKr(t) € Y, implied by the stability ofK and HK, respectively. Therefore
lully # 0 and|ully, lylly < oo. Consequentlyy(H) < 4 < oc. O
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~
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Figure 6.4: Stabilizable system.

Corollary 6.2.3. Any system that can be stabilized by a stable system withehdaned
properties in Lemma&.2.6and a structure as shown in either Fig.4(a)or Fig. 6.4(b), has

a finite minimum gain.
Proof. The corollary is based on Lemnta2.6and the proof follows a similar routine as
the proof of the lemma with defining a nékvequalsR® Y in 6.4(a)orR+Yin 6.4(b) O

Theorem 6.2.1. Sub-multiplicative property

LetHy, Hy : X — X be causal operators. Then
v(HyHy) < v(Hy)v(Ha). (6.42)
Proof. Letu € X, we have
| H1Houl| > v(Hy) ||Houl| = v(Hy)v(Hz) [[ul|- (6.43)

Considering the fact that(H, H2) is the infimum gain of thed; Hs, Inequality 6.43
implies 6.42. O

6.3 Large Gain Theorem

In this section, we concentrate on the feedback system slmwig. 6.5 Under mild
conditions onH, and H> (e.g., the product of the instantaneous gains is less thaifilpn
the feedback configuration is guaranteed to be well-posé@ efuations describing this

feedback system, to be known as freedback Equationsre:

€1 =U1 — Y2
e2 = u2 + Y1

(6.44)
y1 = Hiep

Yo = Haes.
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Figure 6.5: The feedback system.

Theorem 6.3.1. Consider the feedback interconnection describeda®4f and shown in

Fig. 6.5 If 1 < v(H1)v(H2) < oo, the feedback system is input-output-stable.

Proof. To show stability of the feedback interconnection, we musisthatu, us € X

imply thateq, es, y1 andys are also inX'. According to the definition of, we have

v(H) |lexr|| < llyazll (6.45)
v(Hs) |lear|| < lly2r |l (6.46)
On the other hand,
Y1T = €27 — uUgT (6.47)
Yor = U1T — €17 (6.48)
Thus,
lyirll < llear|| + [Juar|| (6.49)
lyar|l < llexr|| + [luir]] (6.50)

Substituting 6.45 and 6.46) in (6.49 and ©.50), respectively,

v(Hy) llerr]l < |lear || + [Juar|l (6.51)
v(Hz) |lear]l < |lexr || + [[uar|l (6.52)

Using 6.46) and 6.50, Equation 6.51) implies that
v(Hy)v(Hy) eir| < v(Hz) [lear|| + v(Hz) [|uar|
< lyor|l + v(Hz) [luar|| (6.53)
< llexr || + [luar || + v(Hz) [[uzr ] -

Sincev(Hy)v(Hsy) > 1,

leir] < |urr|l + v(Ha) [luzrl]) - (6.54)

e
V(Hl)V(HQ) -1
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Similarly,

llear|| < (v(Hy) [Jurr || + [Jugr[]) - (6.55)

1
I/(Hl)I/(HQ) —1

Moreover, substitutingg55 and €.54) in (6.49 and 6.50), respectively,

el < S vyt (el + v(2) ) (6.56)
and
lverl < s () el + ). 657)

Hence, the norms dfeir ||, [[127]), [|[y17|| @and|jy2r|| are bounded. If, in additiony;, us €

X, then 6.546.57) must also be satisfied T approachesc. Therefore,

lerll < sy = (hall+ () ual) (6.58)
leoll < 5oz =T WUl + el (659)
ol < g (lall + w(282) ) (6.60)
ool < S ()l + ). (6.61)
Consequentlye;, e2, y1 andys are also inX. 0

Example 6.3.1.Let H; be the convolution operator defined .13 whereg(t) is the
impulse response of

s+1
G(S)_ks—l

wherek € R. Let H, be a memoryless nonlinearity depicted in F§gl As shown in
Example6.2.2 v(H,/k) = 1 which implies thatv(H;) = |k|. On the other hand, we

havev(H;y) = 0.5. Consequently(H,)v(Hs) = 0.5|k|. The large gain theorem, namely
Theorem6.3.1, guarantees that the feedback system is stalpte if 2.

6.4 Chapter Summary

The minimum gain of an operator as well as some of its pragedre introduced. These
properties are useful in the computation of the minimum gémsystem. For instance, it is
shown that the minimum gain of strictly proper, stable, Lyidtems are zero. When it comes

to the metric properties, the minimum gain of an operatds fa satisfy the triangular
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inequality which implies that it is not a metric or a norm iretkpace of operators. Finally,
the so-called large gain theorem is stated and proved. ie@ém implies a new stability
condition for feedback interconnection of nonlinear syste An example is provided to

illustrate the derived stability condition.
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Chapter 7

Disturbance Attenuation: A Case
Study

7.1 Introduction

There is no doubt that disturbance attenuation is one of thet rmportant objectives in any
closed-loop system. Therefore, it is important to quarttiy influence of various inputs on
various signals inside the feedback loop and develop toataltulate such quantities. This
chapter is based on our earlier work presented in Chdpt€he plant of interest is a mul-

titank system consistent of three interconnected tankst, e mathematical model of the
plant is derived using physical relations. Then, the graymethod is used to identify the
parameters of the model. Finally, it is assumed that thet igazontrolled by a proportional

controller and the disturbance attenuation of the closeg-plant is investigated.

7.2 The Multitank System

Liquid level control problems related to multitank systeane commonly encountered in
industrial storage tanks. For instance, steel producimgpemies around the world have
repeatedly confirmed that substantial benefits are gaied diccurate mould level control
in continuous bloom casting. Mould level oscillations teadtir foreign particles and flux
powder into molten metal, resulting in surface defects enfthal product 19].

The multitank system consists of three tanks placed oneeabingther. The top tank
has a constant cross section while the other two have var@bks sections as shown in
Fig. 7.1 A pump is used to circulate liquid from the supply tank int@ tupper tank.
The liquid flows through the tanks due to gravity. The outpifiaes can be controlled by
electrical valves to act as constant or time-varying flovistess. Generally speaking, the

system has four inputs and three outputs. The inputs are tlatee controls and one pump
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Figure 7.1: Configuration of the multitank system

i q The
Kp + Multitank

Figure 7.2: Closed loop multitank system
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u q The +
+ Multitank | X,

Figure 7.3: Block diagram of the identified system

control signal. The three valve controls are driven by appabe Pulse-Width Modulation

(PWM [16]) signals transmitted from the I/O board to the power irsteef, and from the

power interface to the DC motors connected to the valves.pling control signal, which

acts by controlling the speed of the pump motor, is a sequehB&/M pulses configured

and generated by the logic of XILINX chip of the I/O board. Tiwput signals are the
levels of the liquid measured by pressure transducers. igflags are connected to the
analog inputs/outputs of a multipurpose PC 1/O board.

The system states are the liquid levAls, H, andH3. The general objective of the pilot
is to control the liquid levels by four input signals: liquitflow ¢ and valve setting€’;, Cs
andC3. Among various system configurations, our purpose is toroblavel of the middle
tank, i.e. H,, by the liquid inflowq using a proportional controller. We assume ttias
the disturbance (or noise) signal and study the disturbatte@uation of the closed-loop

system. The block diagram of the closed-loop system is tigbio Fig.7.2

7.3 ldentification

The block diagram of the plant is depicted in Fig3. First, a mathematical model of the
plant is developed based on the physics of the process. Wexsgt an experiment to acquire
the step response of the system in order to obtain an appatximodel of the system or
more precisely, an approximate time constants of the systésimg the approximate time
constants, a Random Binary Sequence (RBS) signal is bullagplied to the plantZg].
Finally, the RBS response is divided to two sections; ondéi@eds used to identify the

model and another one to validate the model.

7.3.1 The Mathematical Model

The Bernoulli's law can be applied to find the laminar outflaterof an ideal fluid30]. By

applying mass balance and assuming a laminar outflow, thelndedcribing the dynamics
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Figure 7.4: Geometrical parameters of the tanks

of the process can be obtained.
dv;
d—tl =q—Ci1vVH
dV2
— =C1vH; — Co\/Hy

whereV; andV; are the fluid vqumes in Tank 1 and Tank 2, respectively @nandCs

(7.1)

are the resistances of the output orifices. Hence,

dVi dHy g CLH
dH, dt

dVy dH. (7.2)
oy 4l Qs

dH, dt = G ™ = Co

wherea; = 0.5 andas = 0.5 for laminar flows. For the real system where turbulence and
acceleration of the liquid are not negligible, the outflowerdoes not follow the Bernoulli
law and more general coefficienis andas should be considered §] [30]. The values of

J4- and 52 depend on the shape of the tanks shown in Fig. Since the cross-sectional

area of Tank 1 is constan 511 = aw. For Tank 2, we havédl%l1 = cw + g, —bw.
Therefore,

dh =L (q — C1H"Y)

U - (G - CHSY) 73

277L(LJL

Letxy := Hy — Hyg, x2 := Hy — Hog andq = u + go Where Hyy and Hy( are operating
points andyq is the corresponding input. It is trivial thay = C1H;; = CoHy;. The
numerical values for the coefficients are= 0.25, w = 0.035, Hopae = 0.35, b = 0.345,

¢ = 0.1[19]. Hence, the state equation of the open-loop system is

{%1 = 114.2857 (u + (0.15C7)** — Cy (w1 + 0.15)*) (7.4

i = 0.0035—1-0.0?1)45(:(:2—1-0.1) (Cr(z1 +0.15)* — Cz(wg +0.1)42)
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Figure 7.5: The step response

7.3.2 Data Acquisition

To build an appropriate RBS signal, we need to acquire appiete time constants of the
system. Therefore, we set an experiment to obtain stepmespo The step responses are
depicted in Fig.7.5. Hence, the approximate time constant of the systemare 80s and

9 =~ 150s. We will use the time constants to determine frequency oRB& signal. We
chooseT; = 10sec. To perform the RBS test we need to determine the pass barahwhi

can be calculated from the following formulad]:

KT,

TT

f (7.5)

wherek = 2 ~ 3. We selectf = 0.0612. The produced RBS signal and response of the

system are illustrated in Fig..6.

7.3.3 Data Pre-Processing and Identification

We do the identification and validation for each of the owtmeéparately. After down sam-
pling the data, the mean value of the data should be remowktbaleduce computational
errors, we increase the values of the levels by using cetgmaait. Then, we filter the data
by a low pass filter to attenuate noise. The bandwidth of tseegy is approximately equal

to inverse of the time constant. We choose one decade uppethb bandwidth as cut-off
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Figure 7.6: The RBS response
Table 7.1: The identified parameters.
Parameter Cq Cy o oD
Value 1.432 x 10~% | 1.488 x 10~* | 0.3833 | 0.3341

frequency of the low-pass filter. Therefore,

10T
chut—off = 7_17: = 0.3979
10T,
f2,cut—off = ® = 0.2122
T2

(7.6)

Next, From 1130 data points of the pair of input-output, wease the first 750 points for

identification and the remaining 380 points for validatiowdaemove the mean values of
two set of data. We use the Identification Toolbox of MATLABIdentify Cy, Cs, oy and

as by the gray box method. The identification and validationvearare depicted in Fig.

7.7and7.8, respectively.

The identified values for the mentioned parameters are @ivéable7.1

7.3.4 Disturbance Attenuation

The problem of our interest is to study the disturbance a#ton of the closed loop system

depicted in Figr.2. In order to calculate the disturbance rejection amplitweeneed to find
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the gain of the system from the disturbance signal to theubdttp the methods mentioned

in Section5.3. The state equations of the closed-loop system are

i1 = L (g0 — Kp(za + d) — Cy(z1 + Hi)™) 77
Ty = m (Cr(z1 + Hio)™ — Ca(wa + Ho)*?) 7
Homax

andz = ( o > = f(z,d). To find appropriated and B matrices, we define a

function which calculates, (I') - 7 (®) in a local region

[ﬂ ‘ < 7 for given A and
B in MATLAB. Then usingfminsearchfunction of MATLAB, wéfominimize the function

. Lo . ( —0.0360 —0.0149
with respect tod and B. Choosing# = 0.06, we obtainA = ( 0.0215  —0.0425 >
q>1('rvd)

(132(1', d)

0.0141

andB = < 0.0066

>. Therefore®(x, d) = [ } where

(@ (x,d) = 0.00791 — 0.00266 d 4 0.00346 x5 — 0.0164 (z; + 0.150)°-3833

-+ 0.0360 z; 7.8)
7.8

Po(z,d) = (0.000143 (21 +0.15)%3833 _ 0.00015 (z» Jr0'1)0.3341> »

(0.007 + 0.0345 z5) ™" — 0.0215 z; + 0.0425 5 — 0.00657 d.
Computation with the methods proposed H0][ providesy..(I') < 32.9194, 7,,(0) <
0.2975, andv,(©2) = 1. Letn = 1 which givesy,.(Q) + 17(0) = 1.2975. By
choosing different values fakZ,, andn, different bounds can be obtained. For now, we
chooseM,, = 20. Thereforen2 (®) should satisfy
22 (@) < M, (—M%oJEQ) — 1o0(0)
p 1) 7eo (')

{ﬂ H is depicted in Fig.7.9. Let us takeD as the region where

= 0.0271. (7.9)

oo versus

[®(,d)
x

d

oo

ledle - 0049, ie. 42 (®) = 0.027. Consequently, = 0.049 andry = 0.049.

xr
d'oo

_ _ 12 (®) 700 (T) _ ;
Lete = 0.048 andd = 0.0023 < O T ©) D @) € = 0.0024. According to

Theorem3.3.2 for any inputd which satisfieg|d||z,, < min(nd, ;) = 0.0023 and any

initial state satisfying|zo||cc < ¢ = 0.0023, x is bounded afz||-. < e = 0.048. In other
words, if —2.3mm < d < 2.3mm, 14.77cm < Hjg < 15.23cm and8.77cm < Hyy <
10.23cm then10.2cm < H; < 19.8cm and5.2cm < Hy < 14.8cm.

Now, Letn = 4. Therefore s (Q2) + 77:0(0) = 2.19. By choosingM,, = 22, 72 (®)

should satisfy Y @ )
p — Yoo — Mo
(Mp + n)7voo (L)

7P (@) < = 0.0231. (7.10)
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Table 7.2: Bounds obtained by varioggind M,,.

A [zolloo < [ldllze < N2l <
" no My (inmm)  (inmm)  (in mm)
0.1 8 5.8 0.58 45
0.1 20 5 0.5 50
1 20 2.3 2.3 48
0.06| 3 19 1.7 5 30
4 22 1.4 5.6 30
5 24 0.51 2.6 12
8 38 0.72 5.7 28
10 120 0.4 4.1 48
0.1 2 12.5 1.25 21.5
0.03 1 9 4.58 4.58 38.2
' 10 15 1.13 11.3 16.5
100 130 0.11 11 15

oo

Let D be the region whereZ (®) = 0.023. Hence,% < 0.0302 in D. Thus,
i)
r, = 0.0302 andr; = 0.0302. Lete = 0.03 and
1 —72(2)700(T)

Vo0 (©2) + (700 (0) + 72 (®) 700 (I'))
According to TheorenB.3.2 for any inputd which satisfieg|d||;,, < min(nd,rq) =

0 =0.0013 <

¢ = 0.0014. (7.11)

0.0056 and any initial state satisfyinfjzo||. < ¢ = 0.0013, x is bounded agz|... <
e = 0.03. In other words, if—5.6mm < d < 5.6mm, 14.86cm < H;o < 15.14cm and
9.86cm < Hyg < 10.14cm thenl2cm < Hy < 18cm and7cm < Hy < 13cm.

By choosing other values farand M, other bounds can be obtained. Moreovezan

also be changed to acquire required bounds. For examplg,4ef.03. By minimizing

il

A ( —-0.0204 —-0.0171 > . B= ( 0.0124 > ' (7.12)

Yoo (I') * Yoo (@) In @ local region <7 = 0.03, we obtain

0.0262 —0.0347 0.0001

For this case%
dl

7 = 0.06 cases, some of the results are summarized in TaBle

Vversus

B} H is depicted in Fig.7.1Q For both# = 0.03 and

7.4 Chapter Summary

Based on Theorerd.3.2in Chapter4, a method proposed to study disturbance attenuation

of closed-loop nonlinear systems. The physical plant umd@mination is a multitank
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system. First, the mathematical model of the plant is ddnxseng physical concepts. Then,
the parameters of the model are identified by the gray boxadetfinally, the disturbance

attenuation of the closed-loop plant controlled by a prtipoal controller is investigated.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

In this thesis, different algorithms are developed to peviiecessary tools for designing

multi-model control systems for nonlinear systems. Theomapntributions are:

1. New representations for nonlinear systems, cajle@dnd (45 representations, are
proposed. In thé 4 representation and its extended version for forced systéms
representation, a nonlinear system is arranged as a fdedftecconnection of a
memoryless nonlinearity and a linear system with initiatestas an input signal. Al-
though interconnection of a memoryless nonlinearity witmear system has been
widely used in literature, the way the initial state is dedth is the main difference
between our decomposition and traditional ones.{Anand {45 representations,
the initial state contributes to the feedback interconnacés an exogenous input
while in traditional methods, any change in the initial stet handled by defining
a new operator. Thé4 and(4p representations can be used to develop new tools
for non-zero state nonlinear systems from the input-outipeiory methods, as pre-
sented in this thesis. In other words, the fact that¢heand (4 representations
convert a nonlinear system with non-zero initial state t@malgination of a memo-
ryless nonlinearity and a linear system with some inputaigand the way initial
state is handled by these representations provide a na@wpuint on all aspects of

investigating nonlinear systems.

2. A new framework is developed for the analysis of stabibitgystems by the 4, and
(ap representations. The effectiveness of this usage is atigghin the fact that using
these representations, stability of nonlinear systemis mdn-zero initial states can

be investigated by the input-output stability methods amadbikty is interpreted as
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input-output stability of the resulting feedback systemgecisely, new methods are
proposed to check stability in the sense of Lyapunov for daraed nonlinear system
by norm of some relevant operators, without finding any Lyegwdlike function. For
local stability, a method developed to find some local ardasnd Y, where the
initial statex belonging toA implies the state staying insidé area. The methods

are also extended to forced systems.

. A new method is proposed to compute an upper bound ofthg, and L., norms
of a class of nonlinear systems. The method is based ot tled (4 represen-
tations of nonlinear systems. A method is also proposed tbadmupper bound on
inducedZ, norms. The second method, Theoréri.2 provides tighter bound for
the casep = 2. Both proposed methods suffer from a restrictive conditi@nother
tool is developed to overcome this restriction with the afsproviding only local
conditions, namely, an upper bound on system output for dedimnput and initial

state, and being restricted fy, induced norm.

. Based or{4 and (g representations, methods are proposed to compute an upper
bounds on the gap metric and the corresponding stabilitgim&or a class of non-

linear systems.

. The minimum gain of operators is defined, some of its ptmxare derived and
some computational methods are developed to calculate itienom gain. For ex-
ample, it is shown that the minimum gain satisfies the pdsitiand the positive

homogeneity properties but fails to satisfy the triangkqumality.

. Based on the minimum gain of operators, the large gairréineds stated. The large
gain theorem asserts that the feedback loop will be stathe iminimum loop gain

is greater than one.

. One of the algorithms, which is developed to compute oreuppunds o, norm

of nonlinear systems, is deployed to study disturbanceadtion of a closed loop
system. The system of interest is a multitank system camngisf three tanks placed
one above another. Itis assumed that a proportional ctettielused to control the
level of the liquid in one of the tanks. The mathematical madfehe open loop

system is derived using physics of the plant. The gray bontifieation method is
used to identify the model parameters and the disturbanepuattion of the system

is investigated by the proposed method.
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8.2 Future Work
Some future directions for extending and improving the lissaf this thesis are as follows:

1. Some of the results are already extended to discretensysteis useful to check the

applicability of all results on discrete and multirate gyss.

2. Almost all of the results are developed based on genexsées of nonlinear systems,
ie.
Ny :a(t) = fi(t =(1)) (8.1)

No: i(t) = folt, 2(t), u(t)). (82)

It may be useful to restrict systems to a narrower class. ¥amele, one may obtain

tighter bounds on th€ ., norm of systems by restricting the system of interest to
N3 : @(t) = fut,z(t)) - fo(t, u(t)). (8.3)

3. The(4 and( 4 representations convert a nonlinear system with non-néialistate
to a combination of a memoryless nonlinearity and a lineatesy with some input
signals. The way the initial state is handled by these reptations provides a novel
viewpoint on all aspects in investigating nonlinear systexive have use¢ls and(ap
representations in developing all the results presentédisrthesis. One interesting
work is to use the 4, and (45 representations to study other aspects of nonlinear

systems, such as observability, and develop new tools lmasttbse representations.

4. The tools that are developed in this thesis can be usedtgrdmulti-model control
systems. It would be interesting to design a multi-modelr@system based on the

proposed tools.
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Abstract

The complexity of large industrial engineering systemssaaschemical plants has contin-
ued to increase over the years. As a result, flexible conysiems are required to handle
variation in the operating conditions. Some of the challegglements in the design of
control systems are nonlinearity, disturbances and wamiogytin the process model. In the
classical approach, first the plant model should be linedra the nominal operating point
and then, a robust controller should be designed for thdtieglinear system. However,

the performance of a controller designed by this methodrideates when operation de-
viates from the nominal point. When the distance betweeroffexating region and the

nominal operating point increases, this performance diegien may lead to instability.

In the context of traditional linear control, one method dtve this problem is to con-
sider the impact of nonlinearity as “uncertainty” arouné tiominal model and design a
controller such that the desired performance is satisfiedlfgpossible systems in the un-
certainty set. As the size of uncertainty increases, ceagem occurs and at some point,
it becomes impossible to design a controller that can peosatisfactory performance.

One of the methods proposed to overcome the aforementidmttemings is the so-
called Multiple Model approach. Using Multi Models, locagégigns are performed for
various operating regions and membership functions or arsigory switching scheme is
used to interpolate or switch among the controllers as tlegabting point moves among
local regions. Since the Multiple Model method is a naturdélsion of the linear control
method, it inherits some benefits of linear control such mpkcity of analysis and imple-
mentation. However, all these benefits are valid locallyr é@mple, the multiple model
method may be vulnerable when global stability is taken adoount.

The core objective of this thesis is to develop new toolsudystability of closed-loop



nonlinear systems controlled by local controllers in ortiermprove design of multiple
model control systems. For example, one of the aims of thikveoto investigate how to
determine the region where closed loop system is stablecdnskary objective is to study
the effects of the exogenous signals on stability of suctesys.

To achieve these goals, first, new representations formemlisystems, callegh and
(ap representations, are proposed.(Jnand(4p representations, initial state contributes
to the feedback interconnection as an exogenous input.eTiegsesentations can be used
to develop new tools for non-zero state nonlinear systerssdan the input-output theory.
The (4 and( 4 representations convert a nonlinear system with non-zsialistate into
a combination of a memoryless nonlinearity and a linearesgswith some input signals.
The way initial state is handled by these representatioogiges a novel viewpoint on all
aspects of investigating nonlinear systems.

Using these representations, stability of nonlinear systeith non-zero initial states
can be investigated by the input-output stability meth&ised on this usage, a new frame-
work is developed for the analysis of stability of systemsh®( 4 and{ 45 representations.
For local stability, a method developed to find a pair of lar&as, namelyA andY, where
belonging the initial state td\ implies staying the state insidé. The methods are also
extended to forced systems.

To compute an upper bound on the, £, and L., norms of a class of nonlinear sys-
tems, a new method is proposed based o thend( 4 g representations. Another Method,
which provides tighter bounds, is proposed to find an uppand@n the induced, norm.
Both methods are only applicable to globally Lipschitz eyss. To overcome this restric-
tion, another tool is developed for local conditions, namah upper bound on system
output is derived for bounded input and initial state. Thistmod is restricted to th€
induced norm.

To measure the distance between local systems in multiptehmethod, some re-
searchers have suggested to use the gap metric. Howewertlsare are no straight-forward
method to compute the nonlinear gap metric and using lingamgetric can not guarantee
global stability of the system, the mentioned problem i @tisolved. In this thesis based

on {4 and(ap representations, a method is proposed to compute an uppeddon the



gap metric and the corresponding stability margin for asctE#snonlinear systems.

The minimum gain of an operator is defined, some of its progerre derived and
some computational methods are developed to calculate itiienom gain. Based on the
minimum gain of operators, the large gain theorem is stathd.large gain theorem asserts
that the feedback loop will be stable if the minimum loop gaigreater than one.

To study disturbance attenuation of a closed loop multigrstem, the proposed meth-
ods are utilized. It is assumed that a proportional corra$i used to control the level of
the liquid in one of the tanks. The mathematical model of thenoloop system is derived
using physics of the plant. The gray box identification mdtisoused to identify the model
parameters and the disturbance attenuation of the systameistigated by the proposed

method.
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Nomenclature

B(c,¢)

Ian

LHP
LTI
MATLAB

RBS

The open ball with centerand radiug with normp
Yp(+) forall 0 < p < oo

The induced norm (gain) of the operator
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Chapter 1

Introduction

1.1 Overview of Multi-Model Control Systems

The development of large industrial engineering systeroh si8 chemical plants has lead
to gradual increase in their complexity. In turn, this coexy demands suitable control
systems that should have enough flexibility to be able to leavatiations in the operating
conditions. Nonlinearity, disturbances and uncertaintthe process or its model are three
challenging elements in the design of control systems. Tamsical approach consists of
linearizing the plant model at the nominal operating poimt designing a robust controller
for the resulting linear system. Although excellent restihve been reported in literature,
it is well known that the performance of a controller desajiby this method deteriorates
when operation deviates from the nominal point. This penéomce degradation may lead to
instability when the distance between the operation regimhthe nominal operating point
increases.

To solve this problem in the context of the traditional lineantrol, the impact of non-
linearity has been considered as “uncertainty” around tminal model and based on the
size of nonlinearity, the controller is designed such thatdesired performance is satisfied
for all possible systems in the uncertainty set. It is cléat the size of the uncertainty
increases as the operating point of the system prowls irga kmea. In turn, conservatism
occurs as the size of uncertainty increases. At some polmcomes impossible to design
a controller that can provide satisfactory performance.

Thanks to the fact that the model derived by linearizatioscdbes the process quite ac-
curately in a small region about the linearization pointmsanethods are introduced in the
literature to overcome the aforementioned shortcomingshe so-called gain scheduling
method, local designs are performed for various operaggions and a gain-scheduling

scheme is built to interpolate among the controllers as fferating point moves among



local regions 43] [44] [45] [46]. Although satisfactory results have been reported foresom
applications and gain scheduling is well-accepted amoagtitioners today, this method
suffers from the lack of a theoretical support for globaldgbr.

Another linearization-based method, conceptually simiddéhe gain scheduling method,
is the so-called Multiple Model or Multi Model methodT] [7] [28]. The only difference
with the gain scheduling approach is that the interpolaaubstituted by either member-
ship functions or supervisory switching. In both forms, shétching is done based on the
current states. While in the form of membership functioresdtirrent states of the system
determine the weighting among the local controllers; ingtheervisory form, a supervisor
selects the suitable local controller from a bank of locaitadlers, based on the current
state of the process.

The main advantage of the Multiple Model method is that it izaéural extension of
the linear control method and inherits some benefits of tigeatrol such as simplicity of
analysis and implementation. However, it should be takendncount that all these benefits
are valid locally. When the global behavior of the systemeimg investigated, most of the
advantages are yet to be established. When it comes to gitddality, which is one of
the most important features of a control system, multipleleionethod may be vulnerable.
Some researchers have suggested to use the gap metric torentes distance between
local systemsq] [38]. However, since there are no straight-forward methodsotopute
the nonlinear gap metric and using linear gap metric can natamtee global stability of
the system, the mentioned problem is still unsolved.

The core objective of this thesis is to develop new toolsudystability of closed-loop
nonlinear systems controlled by local controllers. Thiwisay that the aim of our work is
to investigate how to determine the region where a closeul $gstem is stable and to study

the effect of the exogenous signals on stability of suchesgyst

1.2 Structure and Outline of the Thesis

1.2.1 Thesis Overview

In Chapter2, after introducing the notation and presenting some preény results, a new
representation for unforced nonlinear systems, calledthespresentation is proposed.
Having only an input-output structure, thg representation is an equivalent structure of an
unforced nonlinear system, where the initial state is apoasented by an input. Then, the

(4 representation is extended to forced systems.



In the (4 representation and its extended version for forced systernieh is called
(ap representation, a nonlinear system is arranged as a fdeulib@connection of a mem-
oryless nonlinearity and a linear system with the initiagtstas an input signal. The main
difference between this decomposition and traditionakdaen the way the initial state is
dealt with. Here, the initial state contributes to the feskbinterconnection as an exoge-
nous input while in traditional methods, any change in thitirstate is handled by defining
a new operator.

Chapter3, starts by investigating stability of unforced nonlinegstems by thes
representation. Based on operator-theoretic methodswdraeework is developed for
the analysis of stability of nonlinear systems. In the psmsbapproach, since the initial
state is considered as an input, stability of an unforcedimear system can be investigated
by the input-output stability methods and stability of tlenlinear system is interpreted as
the input-output stability of the resulting feedback sgstéJsing classical tools, sufficient
conditions for global and local stability of the system ab¢éained. For local stability, the
notion of stability regionsis introduced and is shown to be useful in applications. Then
local stability of unforced nonlinear systems is studiethvé new definition of region of
attraction, which extends into two regions. Sufficient dbads for local stability in term
of those regions are derived. Some examples are given to gteweffectiveness of the
results. It is important to note that our method does notiredinding a Lyapunov-type
function.

Chapter3 continues by investigating stability of forced nonlinegstems. Both global
stability and local stability of forced nonlinear systemme aonsidered. Using the, and
(ap representations of nonlinear systems, some sufficientitomsl for global and local
stability of forced nonlinear systems are derived.

In Chapter4, the problem of computing thé€, operator norm of a nonlinear system
is considered. Since it is important to quantify the inflleein€ various inputs on various
signals inside the system, this measure has several ajpliicaOne of them is in control
systems, where the attenuation of disturbance signalgusresl. The proposed method can
be optimized based on some selected parameters. The pdofheseems are applicable
to a class of nonlinear systems. However, a method is alsddaa for computing an
upper bound on the inducetl,, norm for systems which are not in this class. To illustrate
the methods, some examples are also given. The weightinigoohés introduced in the
last section of this chapter. The weighting technique canidesl to reduce the intrinsic

conservativism in the aforementioned method. An exampbdsis provided to show the



usage of the weighting technique.

Chapters deals with the computation of the gap metric and stabilitygimefor nonlin-
ear systems. The gap metric, which was introduced to systechsontrol theory by Zames
and El-Sakkaryj5], can be used to measure system uncertainty. For linearitivagiant
(LTI systems, much work has been done to compute the gapgcméthe extension of
the gap metric to larger classes of systems was initiated () vhere the metric is ex-
tended to time-varying linear plants. Later, the parall@jgction operator for nonlinear
systems $] and its relationship to the differential stabilizabiliof nonlinear feedback sys-
tems [L1] paved the road to the extension of the gap metric to a psewetde on nonlinear
operators 13].

Unfortunately, there is no generally applicable methodomhputing the gap metric for
nonlinear systems. In fact, there are only a few examplegerature for the computation
of the gap metric. Moreover, methods used in those exampéekighly dependent upon
the case of interest. This is also the case for the corregmprstability margin which can
be used to determine the ball of uncertainty in the senseecjdip metric.

In Chapters, some upper bounds on the gap metric and the stability margiderived
and based on the methods proposed in Chaptiérese bounds are computed.

In Chapter6, stability of nonlinear systems is studied by a proposedhotkt The
method fits in the context of input-output approach to studglinear systems. This ap-
proach, which was initiated by Popov, Zames, and Sandbertipei 1960s42] [56] [32],
is one of the well-accepted and widely-used methods to sitatyility of systems. In fact,
many of the recent developments in control theory, such lagstacontrol and small-gain
based nonlinear stabilization techniques are the resittssoapproach. Here, systems are
considered as mappings from an input space of functionsaimtmutput space and the well-
behaved input and output signals are considered as memibignsub and output spaces.
Therefore, if the “well-behaved” inputs produce well-bedch outputs, the system is called
stable.

The well-known small-gain theorem is the main contribut@nthe input-output ap-
proach in control theory. According to the small gain theor¢he feedback loop will be
stable if the loop gain is less than one. According to our psepl theorem in Chaptérthe
large gain theorem, the feedback loop will be stable if theimiim loop gain is greater than
one. In Chaptes, first we introduce the minimum gain of operators. Then, a s&ility
condition is derived for feedback systems based on the mimirgains of the open-loop

systems. An example is also provided to illustrate the uségee large gain theorem.



The last chapter, Chaptéris the usage of the methods introduced in Chapieinves-
tigating disturbance attenuation of closed-loop systérhgre is no doubt that disturbance
attenuation is one of the most important objectives in aoged-loop system. Therefore, it
is important to quantify the influence of various inputs orimas signals inside the system
and develop a tool to calculate such gquantities.

The system of interest is a multitank system, consistinguafd tanks placed one above
another. Due to gravity, the liquid flows through the tank$ie Dbjective of the control
system is to control the level of the liquid in the middle tdnkthe flow rate of the liquid
entering to the top tank. We study the effect of a disturbaigeal, which enters through
the output of the plant, on the state of the closed-loop syst&he chapter starts with
the identification of the plant by the gray box method and iooeis by investigating the

disturbance attenuation of the system.

1.2.2 The(s and (45 Representations

The (4 and(4p representations are equivalent structures of nonlinestesys, which in-
volve only an input-output structure. In this setting, thédial states representing initial
conditions is represented as an input. In these represergat nonlinear system is ar-
ranged as a feedback interconnection of a memoryless eaniiy and a linear system
with the initial state as an input signal. Although interaention of a memoryless nonlin-
earity with a linear system has been widely used in litemttine way the initial state is
dealt with is the main difference between our decompositind traditional ones. I
and(4p representations, the initial state contributes to theldaekl interconnection as an
exogenous input while in traditional methods, any changhéninitial state is handled by
defining a new operator.

Consider the following systems:

Ny #(t) = filt, 2 (1)) (1.1)
Nyt d(t) = falt, a(t),u(t)) (1.2)
where f1 and f5 are locally Lipschitz.V; is an unforced system and, is a forced one. In
Chapter2, it is shown thatV, is equivalent to the structure depicted in Flgl(a)and N5 is
equivalent to the ones shown in Figl(b)and Fig.1.1(c) Structures in Figl.1(a)and Fig
1.1(b)are called. 4 representation and the one in Figl(c)is called(4p representation.
The operator®, I', 2 and© are introduced in Chapté& These representations are widely

used in all other chapters of this thesis.
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1.2.3 Stability of Nonlinear Systems

The fact that thel4, and (4p representations convert a nonlinear system with non-zero
initial state to a combination of a memoryless nonlineaaityl a linear system with some
input signals and the way the initial state is handled bydhepresentations provide a
novel viewpoint on all aspects in investigating nonlinegstems. Stability as one of the
challenging issues in design and analysis of nonlineaesystan also be studied by these
new tools. In ChapteB, a new framework is developed for the analysis of stability o
systems by thé 4 and( 45 representations. The effectiveness of this usage is atigghin
the fact that using these representations, stability ofimear systems with non-zero initial
states can be investigated by the input-output stabilitthods and stability is interpreted
as input-output stability of the resulting feedback system

The main contributions of Chapt8rare Theorem8.2.1, 3.2.2 3.2.3 3.2.4 3.3.1, 3.3.2
and3.3.3 Theorems3.2.1and3.2.2provide new methods to check stability in the sense of
Lyapunov for an unforced nonlinear system by norm of somevesit operators; without
finding any Lyapunov-like function. For local stability, @rem3.2.3can be used to find
some local areas) and Y, if the initial statex is in A, then the state will stay ifr.
TheorenB.2.4is asymptotic version of Theore&2.3 Roughly speaking, Theore®3.lis
an extension of Theoref2.1to forced systems. Similarly, Theore®r3.2is the extension

of Theorem3.2.3to forced nonlinear systems. For asymptotic stability o€éa nonlinear



systems in a local sense, Theor8rfi.3provides the aforementione andY regions.

1.2.4 The Induced Norm of Nonlinear Systems

Most of the computational techniques developed for noalirsystems are restricted to a
narrow class of nonlinear systems for which a particulacfiom, e.g. Lyapunov function
or storage function, can be found. Unfortunately, thereoisanstraight-forward method to
find such functions and they can usually be obtained by midlearor P7] [24]. Computing
the £,, operator norm of a nonlinear system is not an exception. ifwtbrk, we propose
a method to compute an upper bound onfhe L, and L., norms of a class of nonlinear
systems. The method is based on¢heand( 4 g representations of nonlinear systems. The
first proposed theorem in this context is Theorérh. 1which provides an upper bound on
inducedZ, norms. The next theorem, Theordni.2gives tighter bound for the cage= 2.
Both theorems suffer from a restrictive condition, namél Theorem3.3.2can be used
to overcome the restriction with the cost of providing ordgdl conditions, i.e. an upper
bound on the system output is derived for bounded input aitidlistate. This method is

restricted tol . induced norm.

1.2.5 The Gap Metric

Stability and performance of feedback control systems ansiderably impacted by model
uncertainty. Unlike the linear time-invariant (LTI) systs, where much work has been
done to study this effect, the topic for nonlinear systengglite immature. The gap metric is
one of the useful tools to investigate the effect of modelkutaenty on control systems. For
LTI systems, it has been shown that a perturbed system caaltized by any controller
which is designed for the nominal system if and only if theahse between the perturbed
system and the nominal system is small in the gap metric. &pengtric is also extended
to a pseudo-metric on nonlinear operatdr8][

The computation of the gap metric for LTI system was develolpg Georgiou 12].
Unlike the LTI system case, there is no generally applicabé¢hod of computing the gap
metric for nonlinear systems. In fact, there are only a feangples in literature for the
computation of the gap metric. Moreover, those methods @gtdyhdependent upon the
case of interest. This is also the case for the corresporsglatglity margin which can be
used to determine the ball of uncertainty in the sense of dpengetric.

In Chapter5, we propose a method to compute the gap metric and the condisyy

stability margin for a class of nonlinear systems. The megtisobased o4, and (4p
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Figure 1.2: The feedback system.

representations. The key results are Theorgrsland5.3.2which provide upper bounds
on the gap metric and the stability margin, respectively. Wse the methods proposed in
Chapter to calculate the bounds. An example is also provided tatititis the effectiveness

of the results and comparison between the direct compuatatid the suggested methods.

1.2.6 Large Gain Theorem

One of the key results in the input-output stability thea@yhe small gain theorem, which
provides a sufficient condition for stability of intercommbed systems. Roughly speaking,
the theorem states that the feedback loop will be stableeifidbp gain is less than one.
For the feedback system depicted in Figz, the small gain theorem states that the closed
loop system is stable if(H;) - v(Hz2) < 1 where~(-) denotes the gain of operators. This
simple rule has been a basis for numerous stabilizatiomigeas such as nonline&f ..
control [15].

In our approach, we first define the minimum gain of an opernatgras

e IHu)||
V(H) = it T (1.3)

whereH : U — Y is an operator(-)r denotes the Truncation operator, the infimum is taken
over allu € U and allT in R* for whichur # 0. Then, some of the properties of the
minimum gain are derived and its computation for some casdscussed. Particularly, it
has been showed that the minimum gain satisfiepdis@ivity and thepositive homogeneity
properties but fails to satisfy the triangle inequalityndlly, the large gain theorem, The-
orem®6.3.], is stated. Roughly speaking, the large gain theorem asget the feedback
loop will be stable if the minimum loop gain is greater thare ofror the feedback system
depicted in Fig.1.2, the large gain theorem states that the closed loop syststabie if
v(Hy) - v(Hy) > 1.

1.2.7 The Multitank System

To show applicability and effectiveness of the proposedhors in Chapted, we apply

Theorem3.3.2to study disturbance attenuation of a closed loop systene syatem of
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interest, which is called Multitank system, consists oéthtanks placed one above another
and due to gravity, the liquid flows through the tanks. Theteok has a constant cross
section while the other two have variable cross sectionhawrs in Fig. 1.3 A pump

is used to circulate liquid from the supply tank into the upfak. We assume that a
proportional controller is used to control the level of tiguid in the middle tank by the
flow rate of the liquid entering to the top tank.

In chapter?7, which devotes to investigating disturbance attenuatioth@ controlled
Multitank system, first we derive the mathematical modelhef bpen loop system using
physics of the plant. The model, which is nonlinear, cossigtfour parameters that are
depend on the configuration of the system. After running serperiments on the plant
and collecting data, we use the gray box identification nuttioodentify the parameters.
Finally, the disturbance attenuation of the system is itigated by the proposed method in

Theorem3.3.2 A summary of results is presented in TaBl&.

1.3 Contributions

The content of this thesis has been published and presentée following international

journals and conferences:

e Chapter 3: A significant part of this chapter was publishellEih Control Theory &
Applications p0] and IEEE Conference on Decision and Control, San Diego6200
[49].



e Chapter 4. The contents of this chapter were published inrfame Control Con-
ference, New York, 20075¢] and accepted for publication in IEEE Transaction on

Automatic Control 1].

e Chapter 5: The contents of this chapter were published inrfozae Control Confer-
ence, Seattle, 20087].

e Chapter 6: The contents of this chapter were published inrkiane Control Confer-
ence, Seattle, 2008§].
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Chapter 2

(4 and ¢ 4 g Representations

2.1 Introduction

Almost all dynamical systems encountered in nature arelfojenonlinear characteristics
and linear models are usually used in order to simplify asialyAlthough, for most appli-
cations linear models are accurate enough to be used teespigystems in a small region,
they fail to provide accurate results when larger operateggon is needed to be considered.
In this section, first, we introduce the notation and preseme preliminaries results.
Next, a new representation for unforced nonlinear systealked(4 representation, is in-
troduced. The& 4 representation is an equivalent structure of an unforcedimemr system,
which involves only an input-output structure. The inis&hte is also represented by an in-
put in the( 4 representation. Finally, an elegant extension oftheepresentation to forced

systems, called thé, g representation, is presented.

2.2 Background

In general, nonlinear representations can be classifiedlinte types4]:
e system input-output representation,
e state-space representation, and
e model-free representation.

In the input-output representation, the input-output bedraf a system without any state is
considered. In this representation, systems are assunmeggsngs from an input space of
functions into an output space. Using this approach, onheofell-accepted and widely-
used methods to study stability of systems is develo@&dl [42] [56] [32]. The state-

space representation, on the other hand, highlights siitgstems. In this representation,
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the dynamic of the system is represented by some statedeaffby the inputs and the
output depends on both the states and inp2d$ [[27]. Nonlinear systems, which cannot
be modeled by the mentioned methods, might be representexhtgl-free representations
[4].

In the proposed method, a nonlinear system is arranged &slbdek interconnection
of a memoryless nonlinearity and a linear system with ihgtate as an input signal. The
main difference between our decomposition and traditiomals is in the way initial state
is dealt with. In our method, initial state contributes te thedback interconnection as an
exogenous input while in traditional methods, any changeitial state is handled by defin-
ing a new operator. In our approach, since initial state rswered as an input, stability
of unforced nonlinear system can be investigated by thetioptput stability methods and
stability of the nonlinear system is interpreted as the tirquiput stability of the resulting

feedback system.

2.3 Notation, Preliminaries, and Computation

2.3.1 Notation

Let R andC denote the fields of real and complex numbers, respectif&lydenotes the
space oh x 1 real vectors. The Euclidean normR{ is denoted by - ||. I,,x, denotes the
n x n identity matrix. LHP and RHP stand for left and right halfplaf the complex plane,
respectively. LeBP(c, ¢) denote the open ball with centeand radius with normp, i.e.
BP(c, &) = {z] ||z — ¢l|, < &}. £}, denotes Lebesgyespace of--vector valued functions
on [0, 0], with norm || - || defined ag| f[|, :== ([5° |lf(©)[]? dt)l/p for1 < p < oo and

|| flloo := esssup;cr ||f(t)||. Usuallyr is a finite integer; we drop and write,, instead
of £}. To distinguish among various norm notations, we indichgespace as a subscript
for the norm, such a§- [[r~ or [ - ||z,. Whenever the space is not mentioned, norms with
t argument denote Euclidean normtand withoutt denote theC,, norm wherep is as a
general number or can clearly be understood from the textTkedenotes the Truncation
operator: forf(t), 0 <t < oo, T f(t) = f(¢t) on[0,T], and zero otherwise. We also
denote the truncation of (t) by fr(t) := Tr f(t). For an operatoh : £, — L,, let
vp(A) stand for the induced norm (gain) of the operator defined as

[(Au)7||
0£uct, lurl

Ww(A) = (2.1)

where the supremum is taken overalE £, and all7 in R* for whichur # 0. Lety()\)

denotey,(\) for all 0 < p < oc.
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Definition 2.3.1. Maximum overshoatf a signalz(t) is

]l
Mp = —==— (2.2)
(0
In this thesis, we will frequently use operator gains. Iis $ection, we take a brief look

at some of the computational methods for norms.

2.3.2 Continuous-time, LTI operators

Let g(¢) be the impulse response of a stable linear time invariant) (&ystem. We will
denote byl" the convolution operator defined byz(t)) = fot g(t—7)z(7)dr. To compute
the gain ofl", we use the following lemma that is taken frofj, [page 234 (Table 1):

Lemma 2.3.1. Suppose thal is a linear time-invariant stable operator with impulse re-

sponsg(t) : Rt — R™ ™. Let((s) denotes the Laplace transform gfft). Define

lgiille, Naelle, - llgmlle,
- ”921.”£1 \\922_”51 ngercl 2.3)
lgnillee  llgn2lley -+ llgnnlle,
Then
71(I) = [lglh (2.4a)
Yoo (L) = 190 (2.4b)
Y2(I) = [|G(s) 1o (2.4c)

where|| - ||, denotesH., norm. Some standard algorithms to compute theg-
norm can be found in several references. See for exarbfgle o compute||g;;|z, =
f0°° lgi; (t)|dt for strictly proper systems, any numerical integral appr@tion method,

e.g. rectangular and trapezoidal, can be used.

2.3.3 Autonomous and non-autonomous memoryless nonlinates

In this section, the operator of interest is in the form&dt, x(¢)), where®(-,-) : Rt x
R"™ — R"™. Itis also assumed thdt(¢,0) = 0.

Lemma 2.3.2. Suppose that there exists a constapsuch that
|t z)||p < ppllxllp, Ve e R™, VE>0 (2.5)
theny,(®) < pp.
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Proof. See referencetfl] pp. 40. O

With direct computation, theo-norm,2-norm andl-norm of a memoryless autonomous
nonlinear operator can be found approximately with arbjteeccuracy. MATLAB can also

be used to find the aforementioned norms.

Example 2.3.1.Consider the following memoryless nonlinearity.

D4 (z) —0.2 29 + sin(0.5z2) — sin (0.5 z3)
O(x)=| Po(z) | = | —0.22; +sin(0.521) —sin (0.5 x3)
Ds(x 1 —cos (0.521) + sin(0.5z2)
wherex = [ r1 To X3 ]T. Let

z|2 Va? 4+ a2 + 23
g(wth’xS) . || H o 1 2 3

@@z /BI(wr, w2, w3) + BY(x1, w2, x3) + 3(x1, T, T3)

Using the “fminsearch” command of MATLAB, the minimum gfzq, zo, z3) is 1.2678

and consequently, (®) ~ 15t = 0.7888.
2.3.4 (-operator
Definition 2.3.2. For continuous-time, we define operaforas
Q(z(t)) = eMag (2.6)
whereA € R™*™ with all eigenvalues in LHP and(0) = x(. Similarly, for discrete-time
Qx(t)) == Alxg (2.7)
whereA € R™*™ with all eigenvalues i) andz(0) = zo.
Lemma 2.3.3.1f z;(0) < c0,Vi =1--nthenQ(x) € X,,.

Proof. The proofs for continuous-time and discrete-time are tiheesand only the first one
comes here. Sincg (0) < oo, [|2(0)||, < co. Onthe other hand, because all eigenvalues of
Aare in LHP,||e4t||, < oo, ¥t > 0. SinceQ(z) = eag, [|Qx)(0)]l, < [leX||pllzoll, <

oo. This completes the proof fgr = co. Forp = [1,00), in addition,e4t is a continuous
time signal and vanishes as— oc. Therefore||ef“t||lﬁ’p = [° le|Bdt < oo. We
have|Q(x) e, = f3* lletaolBdt < [° e [bllzolbdt = Jaolly - f5° lle bt =

zoll5 - e, < oo, and consequentlf(x) € L. O

We have the following lemma about the gain(af
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Lemma 2.3.4. For continuous-time, thé€ ,,-gain of 2, which is defined by2(6), is

Yoo() = [leM £.e (2.8)

And for discrete-time, whei@ defined by Z.7),

Yoo () = | A"l (2.9)

Proof. The proofs for continuous-time and discrete-time are tiheesand only the first one

comes here. First we show that'||-__ is an upper bound foy..(Q).

le**zollz, < e llewllwolioo < el ()]l cn (2.10)

Next, we show that this upper bound is achievable for an isigmal. Letx(t) = I,,x, Vt >

0, then||z(t) z.. = 1 and|le?tzol|z.. = |le?t]| ... This completes the proof. O
Lemma 2.3.5. The following equations are true fér:
(M) 19)]lc, = lle*|lz, - |lzol|2 for continuous-time
(i) |12()]le, = 1A le, - |zo]|2 for discrete-time
(i) |Q(2)|z, < lle?||z, - [|zol|1 for continuous-time
(iv) 12(x) e, < [|AY]e, - |lzoll1 for discrete-time

Proof. Since proofs are similar for continuous-time and disctete, we only prove i
and (ii) here.

().

o0

1Q(x0)llZ, = eMao)* (eMwo) dt

o0

xH (e) zg dt

J,
J

_ 330/0 (At) (At)dtl'()

= [le™||Z, zo

A
= Jzoll3 lle™IIZ,
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(iii).

192(0) 2,

o A
/ e, dt (2.11)
Ooo )
< [ e ool at
0
o At
- Hwoul/o et dt

A
= Jzollulle™lc,
O

Lemma2.3.5gives the2-norm gain of()-operators and an upper bound for tkaorm

gain. Denoting the upper bound of by v,, we have

12(Q) = [le™| , (2.12a)

() = [le™]z, (2.12b)
for continuous-time and

Y2(2) = || A%, (2.12¢)

F1(Q) := [|A|¢, (2.12d)

for discrete-time.

Example 2.3.2. Let

-0.225 —-0.175  0.075  0.525
0.200 —0.400 —0.150  0.200
0.200 —0.400 —0.400  0.200
0.125 —-0.125 —-0.125 —0.625

A=

Fig. 2.1shows]||e?!||, and||A?||«, versust. Computation shows that, () ~ 1.4351 for

continuous-time and.(£2) = 1.2 for discrete-time.
Lemma 2.3.6. For any Q-operator,y..(£2) > 1.

Proof. Since fort = 0, e4* = T and A’ = I. It turns out that|e?!||... > 1 and| A’||, >

1. Consequentlyy, (2) > 1. O
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0 E; 1‘0 1‘5 20 2‘5 30
Figure 2.1:] e s and||A*|» versust in Example2.3.2

2.4 (4 Representation
2.4.1 Continuous-time systems
Assume that the nonlinear system of interest is
a(t) = f(t,2(1)) (2.13)

wheref : R™ x R® — R is locally Lipschitz. It is well-known, 27], that stability for
other points or any desired trajectory can be transformedastudy of the stability of the

origin. LetA € R™*™ whose all eigenvalues are in LHP. Define

d(t,z) : RT x R" — R"
O(t,z) = f(t,z) — Az (2.14)

and consequently
&= Az + ®(t,x) (2.15)

The block diagram ofZ.15 is depicted in Fig.2.2. ®(¢,z) is a non-autonomous static

nonlinearity and\ is a linear system with the following state equation.
AN:i=Ax+z (2.16)
It is well-known, e.g. 8], that the response df is

¢
x(t) = e +/ eA(t_T)z(T) dr (2.17)
0

17
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Figure 2.2: Block diagram for2(15 and @.24).

which reveals thai is not a linear operator for, # 0. Let
t
I':L,— L, T(z(t):= / A (1) dr, (2.18a)
0

and
Q:L, — L, Qa(t) :=eMaz(0) (2.18b)

Since A is a stable matrix, it is easy to prove tHat £, — £,, Q : £, — L, and also
I" are linear autonomous operators dhd af2-operator which is defined in Secti@n3.4

The state space representationsifas

L. [IA%} (2.19)

Let A, denoteA with the initial conditionzy. Therefore,

Mgy (2(t)) := eMtzg + / t AT 2 () dr (2.20)
0

substituting 2.18 and @.20),
Az (2(t)) = Q(o(t)) + T'(2(1)) (2.21)

Since® is static, the structure shown in Fig.2can be represented by its equivalent, which
is depicted in Fig2.3. This representation of the nonlinear system will be refeee to as

the (4 representation with operator ordered [getl’, ©2].

2.4.2 Discrete-time systems

In this case, we assume that the nonlinear system of intisrest

x(t+1)=f(t,z(t+1)) (2.22)

18
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RPN

Figure 2.3: Equivalent block diagram using new operators.

wheref : Z+ x R"® — R"is locally Lipschitz. LetA ¢ R"*" have all of its eigenvalues

inside the unit circle. Define
O(t,z): ZT x R* - R"
O(t,x) := f(t,x) — Az (2.23)
and consequently
x(t+1) = Ax(t) + ®(t, z(t)) (2.24)
The block diagram of4.24) is depicted in Fig2.2. ®(¢, x) is a static nonlinearity and is
a linear system with the following state equation.
Ax(t+1) = Ax(t) + 2(t) (2.25)

It is well-known, e.g. §], that the response df is
t
o(t) = Almg+ ) A1) (2.26)
1=0

which reveals thad is not a linear operator fory # 0. Let

t
ity — by, T(2(t) = ATz, (2.27a)
=0

and
Q:l,— Ly, Qa(t)) = Alz(0) (2.27b)

Since A is a stable matrix, it is not hard to prove tHat ¢, — ¢,, Q2 : ¢, — ¢, and also
I"is a linear autonomous operator ands af)-operator defined in Sectidh3.4 The state
space representations fbBris ['IA‘ (I)] Let A,, denoteA with the initial condition equals

. Therefore,

t
Ay (2(8)) 1= Almg + > ATI14(1) (2.28)
=0
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substituting 2.27) in (2.28),
Ay (2(1)) = Qz(t)) + T(2(2)) (2.29)

Similar to the continuous-time case, sinkds static, the structure shown in Fig.2 can
be represented by its equivalent, which is depicted in Eig3. This representation of
the discrete nonlinear system will be referenced to ag theepresentation with operator
ordered set of®, T, ].

2.5 (ap Representation
2.5.1 Continuous-time systems
For forced nonlinear systems, suppose that the systemeoésttis
N z(t) = f(t,z(t),u(t)) (2.30)

wheref : R x R®™ x R™ — R"™is locally Lipschitz. LetA € R™"™ andB € R"*™.
Define
O (z,u,t) = f(t,x,u) — Ax — Bu. (2.31)

Let

t
©:L,— Ly, Ou(t) = /O A=) Bu(r) dr, (2.32)

andI’ andS2 be defined in the same formulas asirl@®. The nonlinear system is equivalent
to the structure represented in Fig.4(a) This representation of the nonlinear system is
called the( 4 5 representation with ordered operator [getl’, ©, ©2].

It is important to note that[lﬁ%] and [IA%} are state-space realizations forand
O, respectively. Sincel and B are chosen arbitrary,4 and (45 representations are not
unique. A useful choice for thé,p representation i€3 = 0, which impliesd = 0 and
simplifies the 4 structure as the structure shown in Fig4(b). For forced systems, this

representation is also calléd representation.

2.5.2 Discrete-time systems
Similarly, for a forced nonlinear system with the followistate equation
N: z(t+1) = f(t,x(t),u(t)) (2.33)

wheref : ZT x R® x R™ — R" is locally Lipschitz, letA € R™*" have all of its

eigenvalues inside the unit circle afde R™*™. Define

O(x,u,t) := f(t,z,u) — Ax — Bu. (2.34)
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Figure 2.4:(4 and(4p representations for forced systems.

Let
t
©:l, — Ly, O(u(t) =Y A" Bu(l) (2.35)
=0

andI’ andS2 be defined in the same formulas asariX?/). The nonlinear system is equivalent
to the structure represented in Fig.4(a) This representation of the nonlinear system is
called the( 4 5 representation with ordered operator [detl’, ©, Q].

It is important to note that{ﬁi0 and ['IA‘ (Iﬂ are state-space realizations forand
O, respectively. Sincel and B are chosen arbitrary,4 and (45 representations are not
unique. A useful choice for thé,p representation i€ = 0, which impliesé = 0 and
simplifies the( 4 g structure as the structure shown in Fig4(b). For forced systems, this

representation is also called representation.
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Chapter 3

Stability

3.1 Introduction

The traditional approach to study stability involves Lyapu methodsZ7] [40] [24]. In
these methods, the notion of stability is restricted to to€d systems and stability efjui-
librium points The analysis requires finding a so-called Lyapunov fun¢tiehose deriva-
tives along the system trajectories must be negative defimitsemi-definite. Finding this
function is usually challenging, thus limiting the apptica of this method.

An alternative way to study the stability of nonlinear systeis the so-calledhput-
output stability approach. The input-output theory of systems im#gted in the 1960s
by G. Zames and |. Sandber§f] [32]. Unlike the Lyapunov method, the input-output
stability theory considers systems as mappings from antigpace of functions into an
output space. This method suffers from a problem similanédtyapunov method. Indeed,
the study of stability in this method involves finding a stggdunction, which is as difficult
to find as a Lyapunov function.

In [35], bridging in some sense the two classical notions of stghihe concept oinput
to state stability (ISSyvas introduced. Roughly speaking, in an ISS system, if thatis
are small, then system trajectories converge to a ball te sggace, whose radius depends
upon the input size, se@3, [34] and the references therein for more details. This notion
differs from the input-output theory mainly in that it takeso account the initial states,
which are ignored in the input-output stability. It is aldffetent from stability in the sense
of Lyapunov because it considers forced systems. Checkm&s is usually very difficult
as it requires finding a so-called ISS Lyapunov function wihy stringent conditions.

Along with the aforementioned three major approachesijligyabf systems, in its var-
ious forms, continues to inspire researchers. Moaotivatedhbyclassical small gain theo-

rem,“nonlinear” small gain theorems are discussedij,[[39], and [L8]. The notion of
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non-uniform in time robust global asymptotic output stiyils introduced in 2] for a
wide class of systems. An extension of the second methodagfuuyov to study the stabil-
ity of infinite-dimensional discrete-time systems is preed in 9.

In this chapter, we study stability of nonlinear systems.ingshe (4 representation
for nonlinear systems, we develop a new framework for théyaisaof stability of systems
based on operator-theoretic methods. In our approacte giitial state is considered as an
input, stability of unforced nonlinear system can be ingased by the input-output stability
methods and stability of the nonlinear system is interpretethe input-output stability of
the resulting feedback system. After decomposing the syssaifficient conditions for
global and local stability of the system are derived usimgsical tools. For local stability,
the notion ofstability regionsis introduced and is shown to be useful in applications. A
method to compute the stability region is also developeds iinportant to note that our
method does not require finding a Lyapunov-type function.

This chapter has two sections. The first section is devotatatiility of unforced sys-
tems. In the first part, th€4 representation is used to provide sufficient conditions for
global stability and global asymptotic stability of unfectnonlinear systems in terms of
conditions on the gain of certain operators. In the secondgbéhe section, local stability
of unforced nonlinear systems is studied with a new defimitibregion of attraction, which
extends into two regions. Sufficient conditions for locallslity in term of those regions
are derived. Some examples are given to show the effectigasfehe results.

In the second section of this chapter, stability of forcedlime@ar system is studied.
This section also consists of two parts. In the first partbglastability and in the second
part local stability of forced nonlinear systems are com@d. Using th€ 4 and(4p rep-
resentations of nonlinear systems, some sufficient camditfor global and local stability

of forced nonlinear systems are derived.

3.2 Unforced Systems
3.2.1 Global Stability

The following theorem provides a sufficient condition foalstity of unforced nonlinear

systems.

Theorem 3.2.1.Given a continuous time system of the fofil® with (4 representation
of [0,T,Q,

(i) if 700(®?) - 700 (T") < 1 then the system is globally stable in sense of Lyapunov.
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(i) if, in addition to (i), 72(®) - 72(I') < 1 then the system is globally asymptotically

stable in sense of Lyapunov.

The following lemma (e.g45] pp. 491), which is a corollary of the Barbalat’s lemma,

will be used in the proof.

Lemma 3.2.1. Consider the functioy : R™ — R. If b, € Loo, andg € L, for some
p € [1,00), thentlim o(t) =0.

Proof.

(i) In this section of the proof all of the norms are eithernorm or£L..-norm, depending
on the case. Because bathandI’ map zero into zero, their biases are zero. According to
Lemma2.3.3 ||zg|| < oo implies thatd € L. According to the small gain theorem, e.g.
[27], 700 (?).70 (T") < 1 implies that all internal signals of the system areCin. To show
that the system is stable in the sense of Lyapunov, it is dntughow that for any givea
there exist$ such that|zo||[r» < 6 = [|z(t)||r» < eforallt > 0. Without loss of gener-
ality, it can be assumed that the normiifi is ||. ||, €.9. B0]. We claim that for any given
€, 9 can be chosen as< %&%ﬁ”@e. To prove this, sincgzo|| < § < %})&;AF) €
then [d(t)]| < Yoo(@)lzo] < (1 — o0(®)e(I)) . Besides [z < |d| + |lw| and
lw]| < Yoo (P) Voo (I')||z||. Therefore||z|| < mﬂdﬂ < e. Since for any given

there exists somé < %&)&MF) ¢, stability is global. It is important to note that since

Yoo () > 1, 700 (®) > 0 @andyso (L) > 0 then%&};‘m <landd <e.

(ii) In this section of proof, all of the norms are eiti&inorm or £;-norm unless it is
clarified. According to lemma&.3.5i), ||zo|| < oo implies that||d|| = ~2(£2).]|zo|| < oo
and consequently € L£o. According to small gain theorem, e.@7, v2(®).72(I') < 1
implies that all internal signals of the system arelin Therefore,x € L., N Lo and
consequently there exists closed Besuch that:(¢) € D for all t. Assuming thatf (z, )

is locally Lipschitz inD, there existg: such that
Voo €D | f(z,t) — f(21,8) oo < pill22 — 2100 3.1)
Takingz; = 0 andzg = z(t)
Va@)eD |[If(z®), )]l < plla(t)]lo (3.2)

Sincex € Lo, [|2(t)||oo < ||| 2., forallt. Substituting in8.2), ||2(t)[|co = || f(x(t),t)|lco <
wllx| 2., forall¢t. Inturn, this means that € £.,. Now, we use the corollary of the Bar-
balat's lemma, i.€3.2.1 Assumingp(t) := ||x(t)||2 = 2T (t)z(t), itis trivial thate € L.
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Sincez € L, we have
o(t) = &7 (t)x(t) + 2T (t)a(t) < o0, Vit (3.3)
which means) € £... On the other hand,

/ () |dt = / ()| 2dt = [Jz]2, < oo (3.4)
0 0

that reveals thap € £,. Corollary 3.2.1implies thattlim ¢(t) = 0 and consequently
tlim x(t) =0. O

Theorem 3.2.2. Given a discrete time system of the for2m2Q) with (4 representation of
[@,T,Q],

(1) if 700(®?) - 700 (I") < 1 then the system is globally stable in sense of Lyapunov.

(i) if, in addition to (i), v2(®) - 72(I') < 1 then the system is globally asymptotically

stable in sense of Lyapunov.

Proof. The proof follows the same lines as the proof of Theofth2and is omitted. It
is important to note that in the discrete-time domaing ¢2 N ¢+, implies thatz(¢) — 0
ast — oo and there is no need for the second part of the proof wheredialary of

Barbalat’'s lemma is used. O

Theorems3.2.1and3.2.2can be used to check the stability of nonlinear systems with
the help of the mentioned computation methods. Moreoxeplays the role of a free
parameter. It is important to note that both theorems stdteignt conditions for stability.
This implies that it is sufficient to find just ond which satisfies the conditions of the
theorems. If such a matrid is found the system is stable even if there exists otler
matrices which fail the conditions. If such a matrxcannot be found or does not exist, the
stability or instability of the system can not be proven gdimese theorems.

To compare the results with LTI systems, consider the fatigwerturbed LTI system
t=(M+AM)z (3.5

Let ®(z) = (M + AM + ol)z wherea > 0. Consequentlyd = —aJ andT defined as
(2.189 or equivalently 2.19. To computey..(I'), Lemma2.3.1can be used. The impulse

response of' is G(s) = —-T andg;;(t) = e~** andg,;(t) = 0 for i # j. Equation 2.3)

S—«

implies||g::(t)|| = 1and||g;;(t)|| = 0fori # j. Consequentlyys(I') = 1 andy.(T') = 1.

25



On the other handy, (®) = || M +AM +al||~. According to Theorer3.2.], the stability
condition is|M + AM + al||~ < 1 or equivalently\,.x(M + AM) < —a < 0, where
Amax denotes the maximum eigenvalue. This is to say that therbattan A M should not

move the eigenvalues of the system to RHFwaxis.

Example 3.2.1.Consider the following nonlinear system

i = f(l‘ _ 0.25x1 — 20 — sat(acl) —'Sat(wg) (36)
411 — 329 — sat(x;) — sin(zg)
where satzr) = sgn(x) min(1, |z|) and sgr(-) is the signum function. Let
—0.25 —1.5
=[50 S @

Therefore,

0.5z + 0.52z2 — sat(x;) — sat(z2)

O(x) = f(x) — Az = {0.5351 + 0.5x9 — sat(z1) — sin(z2)

Figure3.1shows the plot of% versus||z|| established at0° randomly chosen points.
Using methods described in Sectidh8.2t0 2.3.4 we havey,(®) = 1, 7. (I') = 0.9531,
72(®) = 1, and (') = 0.8217. SinCevs(P)1oo(I') = 0.9531 < 1, the system is
globally stable. More interestingly(®) v2(I') = 0.8217 < 1 implies that the system is
asymptotically globally stable. To illustrate the systesgponse, the phase portrait as well

as the vector field diagram are depicted in Hg

Remark3.2.1 Itis important to notice that the converse Lyapunov theof2#h[27] guar-
antees that there exists a Lyapunov function for any stafgdtes. However, there is not
a general method to find it. Indeed, the process of finding astrocting a Lyapunov
function can be challenging. For instance, the trivial ¢daid of Lyapunov function, i.e.
V(z) = 3(aa? + B23) wherea, 3 > 0, cannot pass the conditions of Lyapunov functions

in the previous example. To see this,
V(z) = [az1 Bs] - f(2)
= 0250234 (48 — a) x1 xo — 3 B (3.8)
— azy(sat(zy) + sat(xz)) — fxa(sat(xy) + sin(xz))
Apparently, V(x1,0) = az1(0.252; — sat(z;)). For anyz; > max(1,4«), we have

V > 0; thus,V () fails the Lyapunov conditions and cannot be used to provlisgaof

the system.
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Figure 3.1:y2(®) andy,(®) in Example3.2.1

Figure 3.2: Phase portrait for Exam@e2. 1
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Example 3.2.2. Consider the following nonlinear system

¥ = —2x1 + x2 + sin(0.5z2) — sin (0.5 z3)
X9 = —x1 — w9 +sin(0.5x1) — sin (0.5x3) (3.9)
23 =1—x3—cos(0.5z1) +sin(0.5x2)
-2.0 1.2 0
letA=| -08 —-1.0 O and
0 0 -1.0

—0.2x9 + sin(0.5z2) — sin (0.5 z3)
O(z1,29,23) = | —0.221 +sin(0.521) — sin (0.5 z3) (3.10)
1 —cos (0.5x1) + sin(0.5z2)
Similar to the previous examples, we use the computatiorehaals introduced in Sec-
tion 2.3.1 We plot ”qﬁgjl)”
established a2 x 10° randomly chosen points. As shown in Fig.3, v2(®) ~ 0.8 and
Yoo (®) =~ 0.8. Computation also shows thed(I") ~ 1.000 andv.(I") ~ 1.0005. Since
Yoo (P) Yoo (I') = 0.7938 < 1 and~,(P) (') = 0.7846 < 1, the system is globally

versus||z|| instead of plotting versus;, x2 andzs. plots are

asymptotically stable.

_ f 2
0 5 10 15 20 25 25

(a) 2@z yersus)|z||, (b) 154 versus||o

ll=l2 [EIES

Figure 3.3: Local gains in Exampi2.2

3.2.2 Local Stability

Definition 3.2.1. Given a nonlinear system of the form eith@c(3 or (2.22), we define

the ordered paifA, Y] as follows:
A Y] :={A,TCR"; 2(0) € A= x(t) € T,Vt >0} (3.11)

We will refer to A andY as theA and? regions and collect aJA, Y| pairs of a system in

a set denoted bfa~.
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Acceptable trajectory

Unacceptable trajectory

Unacceptable trajectory
(@) - for time-invariant systems (b)

[A7 T] € SAT . X, [A7 T] € AAT

Figure 3.4: Acceptable and unacceptable trajectories.

Definition 3.2.2. For a given system, ifA, Y] € Say and for anyz(0) € A we have
z(t) — 0 ast — oo thenA andY are called asymptotic regions and we collect all such

pairs inAa~.

Fig. 3.4 shows acceptable and unacceptable trajectories for [Aothf] € Say and
[A, Y] € Aay. As shown in this figure[A, Y] € Say guarantees that the trajectories
starting from inside ofA, such as (1),(2), and (11), will stay insile Therefore, trajec-
tories (5) and (6) can never occur because both trajector@ss the boundary of th¥
region. Notice that there is no guarantee that trajectati@ging inside ofl", such as (7),
stay insideY. The definition ofSay assures that trajectories such as (5) and (6) which
start fromA and go outside off are not possible. An interesting case is (9). This case is
possible for non-autonomous systems but impossible fanamous systems. The reason
is that for autonomous systems we can transfer 0 to anyt = tq. Since this trajectory
passed through\, we can transfer the starting point to any point on the ttajgcwhich
is also insideA. With the new starting poinfA, Y] € Say guarantees that the trajectory
will stay insideY which is not observed by (9). Therefore, for autonomousesyst any
trajectory, which has intersection with, stays insideY. Fig. 3.4(b) is very similar to
Fig. 3.4(a). The only difference is that all trajectories startingn , such as (1) and (2),
terminate at the origin. For autonomous systems, any tajeavhich has a point inside
0 also end at the origin for the same reason explained ealltegrefore, for autonomous
systems, (3), (4) and (10) (and also (5), (6) and (9)) shoglnl tarminate at the origin.

Corollary 3.2.1. If [A, Y] € Say
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e ACT,
e A = T implies thatY is an invariant set for the nonlinear system.

Proposition 3.2.1. Consider a system witfyy representation of®, I', ©2]. Assume thall
is a given bounded subset Bf*, i. e. ||z||, < eforall z € T andp € {2,00}. Let

0<5§%eand

A:={zeR", |z, <} (3.12)
Then[A, T] € Say.
Proof. The proof follows a routine similar to the proof of Theor@&m.1and is omitted. [J
Proposition3.2.1shows a method to computa, Y] regions.

Definition 3.2.3. Local gainy’(®) of a static operato®, wherep € {2, oo}, is the maxi-
mum p-norm gain of the operator for all of the members inside thygoreD, respectively.
ie.

W (@)= sup [12Ct, )]l (3.13)

zep— {0} =l
vVt >0
Theorem 3.2.3. Consider a nonlinear system with state space representaifoeither
(2.13 or (2.22, and let[®,T", Q2] be a4 representation. Lef, > ~..(f2) be a fixed

number and

1 Yoo (£2)
’Yoo(r) (1 - MP

D= {xe]R"fy?O(@) < ) w>o} (3.14a)
Assume thafD is a simply connected subset Df that includes the origin. Lef =

i%fD |z|lc WheredD is the boundary ofD. LetY be a ball insideD centered at the
xre

origin with radiuse < &. i.e.

YT={zeD| |z <€} (3.14b)
and let R
D
A dzeRr| o] <o, 0= 1o 0(®D) (3.14c)
Yoo (€2)
Then,
1. [A, Y] € Sar
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2. ifzg € A thenMp is the maximum overshoot oft).

Proof. SinceM,, > v»(2), (3.149 reveals that@(@)fyoo(r) < 1. To prove the theorem
we reason by contradiction. Since we assumed that systeroardhterest are locally
Lipschitz, trajectories of the system are continuous. Asrssequence, if: were to leave
T, it should cross the boundary @f. Suppose that crosses the boundary &f att = T,
then || Trz| = ||zr| = e. Since the boundary of is in D, |zr| < ||dr| + [Jwr|| <
D < ’YOO(Q) :YOO(Q)
o0 ()70 +72 (200 (D)l . Thenlarp | < 22— | < 22— <
e. Which contradicts the fact thditzr|| = €. Therefore,xz(t) € Y; Vvt > 0. That is
[A, Y] € Say. To show the second part, frorf.(49, we have% < M,. On
’YOO(Q s -
the other hand|z|| < 58 (@)7 (T llzol| < Myp||zol| O
Theorem 3.2.4.Let [®, T, Q2] be a4 representation for a nonlinear system in the form of
either .13 or (2.22). LetY := {z € R" | ||z|]| < e} and A := {x e R" | ||z| < 0, }. If
[A, T] S S[A,T} andyg@)yg(l“) <1 then[A, T] S A[A,T}-
Proof. Since[A, Y] € Sia vy, any trajectory starting from\ will stay insideY. According

1—5 (‘1) ’Y2 ()
’Yz(

For discrete-time systems, singg (®).7»(T") < 1, ||lz/|¢, < co and as a result(t) €

to the( representation|z||z, < lzo|l2 < oo and consequently € L.
{>. Consequently:(t) — 0 ast — oc. Itturns out thafA, Y] € Aja v).
For continuous-time systems, Corollay2.1should be used. Sincgt) € T for all
t, x € L, and consequently € L5 N L. The proof, which is omitted here, follows the
same outline as the proof of Theorén2. I(ii) with D = T.
U

Corollary 3.2.2. Let[®,T", Q2] be a4 representation for a nonlinear system in the form of
either .13 or (2.22). If there exists a region around the origii wherefyg@)%o(l“) <
1, then the system is locally stable. If in additiqg%’(cb)yg(l“) < 1, then the system is

locally asymptotically stable.

Proof. Sincefyg(CI))fyoo(F) < 1, there exists\f,, > v5,(2) such that'yg(@) < %o;(r) (1-
Vj\}—(f)). Let D be a simply connected subset Dfthat includes the origin. Lef =

i%fD |lz|l« WheredD is the boundary of>. For anye that satisfied) < ¢ < &, A and
xe

T can be constructed a8.(4) andé > 0 in (3.149 can be found. Theore®.2.3guaran-

tees thafA, Y] € Say or equivalently
[2(O) <6 = [lz@®)] <& VE=0 (3.15)

The second part is trivial consequence of TheoBed O
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Corollary 3.2.3. Sufficient condition of stability in Lyapunov LinearizaticMethod
If the linearized system of a nonlinear system is stable,nthrdinear system is locally

asymptotically stable.

Proof. Let A be the linearized part, i.ed = ag(;) o SinceA is stable;y(I') < co and
72(I") < co0. Since®(z) only includes the higher order termsitnthe exists a region around
the originD wherefyg(CI)) and’yzﬁ(@) can be made arbitrarily small. Thus, Coroll&y.2

implies local asymptotic stability of the nonlinear system O

Example 3.2.3.Consider the following nonlinear system.

i = =231 + 12 — /733 + 23/4 (3.16)
B9 = —2x1 + 229 + 23 /10 — 5sin(x2)/2 '

-2 1  —/23/3+ 23 /4 :
Let choosed = { 5 _3 ] then ®(z) = { 52+ 22/10 — Hsin(za)/2 Using

(2.4b and @.8) respectively, v (I') = 0.5378 and~,,(2) = 1. Direct computation, as
discussed in Sectioh.3.3 givesy.(P) = oo, which implies that TheorenB(2.1) can not
be applied. Assume that’p = 1.5, theny2 (@) < %ol(r) (1-— V";}f)) = 0.6197. 7o (®)

is plotted versus: in Fig. 3.5(a)and its junction with the plan? (®) is marked. The

junction determines the boundary Bf as shown in Fig.3.5(c) ~2(®) and its junction
with % are shown in Fig.3.5(b). SinceL.,-norm is used, the largest ball inside,
i.e. T, is the square shown in Fig.5(c) SinceMp = 1.5, the largestA area is another
square insid&" and smaller than it with factat/p, as shown in Fig3.5(c) Theoren3.2.3
guarantees that any trajectory starting from insideill stay insideY. Moreover, sincél
andA are placed inside the region wheyg®),(I") < 1, Theorem3.2.4guarantees that
all trajectories starting fromrd end at the origin. Since the system is autonomous, this is
also the case for all trajectories which has intersectiah wi. System trajectories as well
as some of its responses to various initial conditions apectid in Fig. 3.6. In the first
graph, since the initial states (or one of them) are nak jrstability is not guaranteed and
the system is unstable. For the rest, initial states ar® and consequently, the system is

stable and states terminate at the origin.
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by (b) v2(®) crossed bymlT

V,(N)-Y,(®)<1-

(c) Regions

Figure 3.5: Various regions in Exam#e2.3
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(a) System trajectories for Exam3e2.3 (b) Some responses for the system in Example
3.2.3

Figure 3.6: Simulation results for Exam@e2.3

33



3.3 Forced Systems
3.3.1 Global Stability

Proposition 3.3.1. For a forced nonlinear system witfy  representation of®, ©,T", ],

if u € &, and~,(®)7,(I') < 1 thenz € X), for any initial statex.

Proof. The proof for discrete-time systems is very similar to thetowous-time case and

is omitted.

Since A is stable,|ed!|z, < oo andu € L, implies that||di|| < ||z, - [|zollp +

Yoo (8)[Ju(t)||p < 0o andd; € L,. On the other hand, sin%H 0 =1,andu € L,
mXm p

thend, € L£,. According to small gain theorem, e.@.7], since input signals to the loop,

‘ |:In><n]
0 p

of the system are iff,,. Therefore;r € £, O

i.e. dy,do, are inL, and

=1,7,(®) -1,(I') < 1implies that all internal signals

Definition 3.3.1. A nonlinear system in the form of eithe?.80 or (2.33 is calledstable

in generalor generally stablef

Ye>0,t> 036, > 0 ”%0)“'; ifﬁ } = llz()] < e (3.17)
In addition, if for anyz, and input that satisfies(t) — 0 ast — oo, the state also satisfies
x(t) — 0 ast — oo, then the system is callesymptotically generally stahle
Any Euclidean norm can be used in the definition but once a nerchosen, it should
be used for all norms. Besides, it is trivial to show that ifyatem is general (asymptotic)

stable using an arbitrary Euclidean norm, the propertystddall Euclidean norms.

Definition 3.3.2. A system is calledt), —(asymptotically) generally stabler &}, — (asymp-

totically) stable in generaif it is (asymptotically) generally stable for inpute &;,.

Lemma 3.3.1. For a generally (asymptotically) stable systemy i 0 then the system is

(asymptotically) stable in sense of Lyapunov.
Proof. The proof follows directly from the definition by taking= 0. O
Lemma 3.3.2.ISS systems are generally stable.

Proof. Considering thafiu||x.. < € implies that there exisis such that|u(t)||, < e for
allt > 0andp € [1,00), this lemma is very similar to Lemma 2.7 i8] and the proof

follows same outline as its proof. O
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Lemma 3.3.3. A generally stable system is ISS stable if and only if theigea classC
functiono; andT" > 0 such thate(¢) < o1 (||u||z,. ) forall ¢ > T

Proof. This lemma is also similar to Lemma 2.7 i#q] and the proof is the same. [

Lemmas3.3.2and3.3.3show that the set of ISS systems is a subset of the set of gener-
ally stable systems but the inverse is not true in generate@dly speaking, for a generally
stable system the condition in Lemr&8.3should be satisfied to guarantee ISS stability.

The following theorem provides a sufficient condition falstity of systems in general.
Theorem 3.3.1.For a forced nonlinear system withy 5 representation of®, ©,T", ],
() If 750(®) - 700 (") < 1 then the system i&,,— globally generally stable.

(i) In addition to (i), if y2(®).72(T") < 1 then the system 8, N X, — globally asymp-

totically generally stable.

Proof. The proof for discrete-time systems is very similar and isttaa.
(i) In this section of the proof, all norms are eith&r-norm or £..-norm depend on the
case. According to Propositidh3.], sinceu € L, thenz € L,. To show that the system

is generally stable, it is enough to show that for any giveéhere existy andn such that

[zolloo <6 } . _
= ||z(t)||ls < eforallt > 0. Choosen > 0 arbitrary. We claim that
[u(t) oo < 10 (@)l e y
for any givene, 4 can be chosen as< — (@Tyﬁ%%ﬁ%% ¢ Toprove,
[zl < flda]l + [lw|
< ldall + Yoo () Yoo (T) (lld2 ]l + [|]])
< Yoo ()20l + [160(O) + Yoo (2) oo (T[]l 4 Yoo (@)oo (T) ||

Yoo (§)0 + [V00 (0) + Yoo (P) Yoo (I')] 16 + Yoo (P) Yoo (I) |||

(Yoo (£2) + 1 [160(©) 4 Yoo (®) Vo0 (I)]) 6 + Yoo (P) 0o (T[]

AN

then|z| < 7“(9)“{(};":3;&‘&?)%"&))5 < e. Since for any given there exists somé,
stability is global.

(i) According to Proposition .3.7), sinceu € L9 N Ly thenxz € Lo N L, and
consequently there exist closed sB{sandD,. such that.(t) € D, andz(t) € D, for all
t. Assuming thatf (z, u, t) is locally Lipschitz in bothw € D, andx € D,, there existg

such that
\V/ZL'l,ZL'Q GD:M \V/’LLGDU, ||f(x27u7t)_f($1>u7t)‘|00 S/LH'I'Q_'I'lHOO (318)
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(a) The circuit (b) Tunnel diode characterization

Figure 3.7: Tunnel diode oscillator in Exam@3e3. 1

Takingz; = 0 andzy = x(t)
Va(t) € Dy, Vu(t) € Du,  [If(2(t), ult), D)oo < pllz(t)loo (3.19)
Sincex € Lo, [|2(t)]|oo < ||z 2., for all t. Substituting in 8.19),

() loo = 1S (), u(t), Do < pll2llz (3.20)

for all t. In turn, this means that € L.,. Consideringr € £, N L andi € L., the rest

of the proof follows same lines of the proof of Theor&m.1(ii) and omitted here. O

Similar to Sectior3.2.1, A and B play the role of free parameters in Propositidi.1
and Theoren3.3.1 Likewise, it is sufficient to find just one pair ¢f and B which satisfies
the conditions of the proposition or the theorem. If suchiaipdound, the proposition or
the theorem can be used even if there exists other paisawid B matrices which fail the
conditions. If such a pair ofi and B cannot be found or does not exist, the proposition or

the theorem cannot be used.

Example 3.3.1. (“Hard” tunnel diode oscillator) ( [37] pp. 446) The network of Fig.
3.7(a)represents a tunnel diode with some associated capacigaccmductance, biased
by a combination of voltage source and resistance. The stptations for this network

may be written as

= —ia— frp(e1), e =&,
A= €1 — Rig - V, ig = %, (321)
where the functiorfrp(e;) represents the tunnel diode branch relation. het= g = ey,

zy = —A=—iy, R=1,L=1,u=Vandfrp() be

o [ —1.7€} + 6.6eF — 8.4e} +3.6e2 0<e; <1.1
i = frofe) = { 0.09¢; otherwise
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which is depicted in Fig3.7(b) Substituting defined states,

b= f(=) :{ ry — frp(ry)

—Tr1— Ty +u

__Of’ _11 , we haved(z) = 0.3 —OfTD(x1)

tion shows thaty,(?) = 7(®) < 0.3, 7(I') < 2.17 and~»(I') = 1.641. Since

ChoosingA = Computa-

Y2(®).72(T") < 1 andy(P?).7(I') < 1, according to Theorer3.3.1, the system is
Lo N L— globally asymptotically generally stable. This means fbatany initial state

and input{u € Lo N L : limy_, o, u — 0}, state is bounded and approachesst — cc.

3.3.2 Local Stability

Theorem 3.3.2.Let[®, O, T, Q] be a4 representation for a nonlinear system. ket 0

and M, > v5(Q2) + 17 () and

(i) o< BB} g

LetD := B>(0,&p) be an open ball insid®. LetD, and D, be the images aP under
|:'[an Onxm:| and |:On><n Onxm

Oan Ome Oan Im><m

open balls inR™ and R™ respectively. Lef, and¢, denote respectively their radius, i.e.
D, =B>(0,&,) andD,, = B*(0,&,). Choose: andé such that) < ¢ < £, and

1~ 72(®)756(T)
oo () + 170 (0) + 7R(®) 7 (1))

If ||ullx, < min(nd,&,) and ||z <4, then

], respectively. Consequentlfp, and D, are also

0<d<

2llx, <e (3.23)

Proof. The proof for discrete-time systems is very similar and igtmd. In this proof,
vector norms are Euclideasv-norm for constant vectors antl,,-norm for time-varying
ones.

It is trivial that M, — 700 () — 7700 (8) < M, + n; thereforey2 ()7 (') < 1. We use
contradiction to prove the theorem. Since we assumed tisédreyg of interest are locally
Lipschitz, system trajectories are continuous. Consdtyénx were to leave the ball with
radiuse, it should cross the boundary of the ball. Suppose thatosses the boundary at

t =T. As aresult||Trz| = ||zr| = €. Sincee < & and||u|| < min (5 ¢, ,) guarantees
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xrr

thatu € D, we have[
ur

] € D and consequently

IN

[dir|l + [Jwr|l

vl + 72 (@)oo () (ldar || + [l22]])

Yoo (O)[uz || + Yoo ()| | + 12 (2) Yoo (D) |27 ]| + 72 (®) Yoo (1) ur |
Yoo (D170l + [0 (©) + Y2 ()00 (D] [[uz || + 72 (@) 700 (D) [l |

Yoo ()3 + [100(8) + 75 ()00 (1)] 78 + Yoo (@) P Yoo (D) |27 |

= (300() + 7 [10(0) + 12(®)700 (D)]) § + 72 (2)7ec (D)2 (3.24)

[z |

ININ A

A

Then

Yoo () + 17 [150(0) + 72 (®) 700 (T)] 2ol
1= 72 (®)70(T) ’
Yoo () + 1 [70(8) + 92 ()70 (T)]
1 =72 ()7 ()
< € (3.25)

e = |lerl <

IN

Which is a contradiction. Therefore;(t) € Y; Vi > 0. That is[A, Y] € Sar.

To show the second part, fron3.22), with some mathematical manipulation, we have
70 () +71[ 70 (©) +72 (8) 700 (T)]
1-7R (®)7ye0 (T)

to (3.29),

< M,. On the other hand, with a very similar procedure

(€2) + 7 [100(8) + 72(®) 700 (1]
1 =12 (®)700(T)

5
] < = [[zol| < Mp||zo]-

O

Theorem 3.3.3.In Theoren8.3.2 if in addition D satisfiesy, (I')vY (®) < 1 Then[A, Y] €
Ajay for {u € o N X : [Jullx,, < min(n6,&)}-

Proof. The proof for discrete-time systems is very similar and istta.

Theorem3.3.2guarantees that\, Y] € Sja yj for all u that satisfies

{ueLonNLoo:||ullg, <min(nd, &)}

xT

which means that stays inY C D,. Since|lu|lz., < &u, u € D, then{ } € D. Ac-

u
cording to Small Gain Theoremy(I').7P () < 1 guarantees that the loopAs internally

stable andr € £ if dy andds are inLy. Sincexy < oo andu € Lo, di anddsy are inLs.
Consequentlyx € L-. By the argument used in the proof of Theor&B.1, it is easy to
show thati € L. Havingx € L5 N L, andz € L, Corollary3.2.1can be used as the
proof of 3.2.1(ii) to show thatr — 0 ast — oc. This shows thafA, T] € Aja v

]
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Figure 3.8: A simplified schematic of CSTR system.

U+ il X,

K, — CSTR“

Figure 3.9: The CSTR system controlled by a proportionatrodier.

Example 3.3.2. Consider an example of continuous-stirred tank reactomsystem
shown in Fig.3.8, where an irreversible, first-order reaction takes placeTR is used to
convert reactants to products. The reactant is fed comgiait a vessel where a chemical
reaction takes place and yields the desired product. Thedeeerated by the chemical
reaction is removed by the coolant medium that is circult#tesligh a jacket. The following
mathematical model is taken from],

&9
I3 A . 2
Ty = —21+ Do(1 —2q)e'"?
)

Gy = —d9 + ByDa(1 — 21)e™ % + B,( — i)

(3.26)

wherez, Z2, andu, are the dimensionless reagent conversion, the temper@uiut),
and the coolant temperature (input), respectively. Thearigal values for the coefficients
areD, = 0.072, ¢ = 20, B, = 8, andjg, = 0.3

Three operating points are considered 3 [One of them is an unstable poini;y =
0,210 = 0.4472, andZoy = 2.7517. Let transfer the origin of the state plane into this
unstable point, which is investigated here. Therefore, fndx, := &1 — 219 andxzy =

To — Z99. We study the closed-loop system which is depicted in Bigwhere Kp = 100

is a proportional controller and is an exogenous input which can be interpreted as sensor
noise or disturbance. This controller can stabilize thesadbloop system locally. In this
example, we want to determine the corresponding local regio

The state equations for closed-loop system are

205 +55.034

= —ay — 0.4472 + 0.072(0.5528 — a1 )e B T17res
oo +oom e oot (3.27)

T = —31.3x9 — 3.5772 4+ 0.576(0.5528 — z1)e 227517+72 + 30u
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[1eQIIIXI]

Figure 3.10: I ”( ”)”“"’ and the boundary db.

I©0alllixl

Figure 3.11: ”qﬁ(fl)”z and the boundary of(T')v,(®) < 1.

[ 181 0357 [o [ ®y(a) -
LetA = 6474 —98.143 } andB = [ 20 } thend(z) = [ Bo(z) } where® () =
20x9+55.034

—0.81x1 — 0.35722 — 0.4472 + 0.072(0.5528 — 21 )e 2517+ and®y(z) = —3.157x2 +
6.474x1 — 3.5772 4 0.576(0.5528 — xl)e%. Computation shows that upper bound
can not be found fofy (®) and~2(®). Therefore, global stability can not be proved. For
the linear systems, computation with the given methodssgivg(I') < 0.5354,~, (") =
0.5423, 750 (0) < 1.221, andy(©2) = 1. Letn = 0.1 andMp = 3 > 70 (2) + 71750 (O).
Since® is independent fromu, D c R2. For this example, sinc® is simply connected
set,D = D. The surface o% as well as the boundary @ is depicted in Fig3.10
Fig. 3. 1lshows”<1|’|(9|”|)”2 and the boundary of,(I")y2(®) < 1. The various subsets &>
are depicted in Fig3.12 The maximum value fot is 0.1519 and consequently the max-
imum value forA is 0.0402. According to Theoren3.3.2 for any inputu which satisfies
|lullz.. < nd = 0.004 and any initial state satisfyinfjr|l.c < ¢ = 0.0402, x is bounded
as||z|lz.. < e = 0.1519. Besides, in addition to the mentioned conditiony i€ L2 and

u — 0 ast — oo thenz — 0 ast — oo, according to Theorer.3.3
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J

Figure 3.12: Various sets in Exam@e3.2

3.4 Chapter Summary

In this chapter, we have considered stability of nonlingatesms. Our results are applicable
to a variety of nonlinear systems. The suggested methodenkaing stability of nonlinear
systems has significant computational advantage companactvtious work, in the sense
that there is no need to find any Lyapunov-like function.iéhiinsight for our formulation
was provided by a new representation for nonlinear systerhigh transforms a nonlin-
ear system, with non-zero initial state, into a feedbackrggnnection of two operators.
Then, some well-known concepts from input-output theoryenssed to derive sufficient
conditions for stability of the original nonlinear systeRinally, local stability of nonlinear
systems was studied with a new definition of region of ativactSince the new represen-
tation is not unique for a nonlinear system, all suggestethoaks can be optimized based
on the selected parameters in the representation. Thisiaption will be the subject of

future work.
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Chapter 4

Upper bounds

4.1 Introduction

The complex structure of nonlinear systems is the majoraghestin the development of
simple and efficient computational methods to test stgpiibmpute system norms, etc.
As a consequence, a majority of the computational techeiguailable in the literature
are restricted to a narrow class of nonlinear systems fochvaiparticular function, e.g.
Lyapunov function or storage function, can be found by tiadl error 7], [24].

In this chapter, we consider the problem of computing4heperator norm of a non-
linear system, a problem which has remained a challengeeirsyhtems literature. The
importance of this problem originates from the fact thatittikience of various inputs on
various signals inside the system can be quantified by suckasure. One of the appli-
cations of this measure is in control systems, where thewsdt®n of disturbance signals
is required. The subject has attracted considerable mtteftr both linear and nonlinear
systems. For linear systems, computing fhenorm(s) has a well established solution; see,
for example, reference]. For nonlinear systems, however, computation offh@perator
norm continues to be a challenge. &,[the £L..-gain of nonlinear systems is characterized
by means of the value function of an associated variationattlpm. Thel, gain, also
referred to as thé{,, gain of a nonlinear system, can be approximated using sdtag-
tions and the theory of dissipative system$][ This approach is, however, conservative
and finding storage functions is difficult; see al26][for a numerical approximation of the
Hs norm. In [31], a computational method is proposed to computedhenduced norm
for single-input linear systems with saturation.

In this chapter, we propose a method to compute an upper bourde £, £, and
L, norms of a class of continuous-time nonlinear systems. Qathad can be optimized

based on some selected parameters. For systems not inahutiésiclass, a method is also

42



provided for computing an upper bound of thg, norm.

This chapter is organized as follows: In sectibfi.1, we propose a method to compute
upper bounds on the induced norm of nonlinear systems anitprtwo illustrative exam-
ples. In sectiont.2, we introduce the weighting method, which can be used tocethe
intrinsic conservativism in the aforementioned method.e&ample is provided to illustrate

the usage of the weighting technique.

4.1.1 The proposed method

In this section, we obtain a computable upper bound for iadumperator norms. We will
use the structure shown in Fig.4(b) namely, thel 4 representation for forced system. In

this structure, it is trivial to show that
lzllz, < llwllz, + ld]lz,

<@ |[ 2] +tale,

Ly (4.1)

+ () [[zollp

<) | %]

Lp

The computation ofy, ('), v,(€2) and~,(®) was discussed in Referenctd].

Lemma 4.1.1. The following equation is true for,u € L,:

.
12| <ol + e, @2)
i [p
Moreover, ifx, u € Lo
- 2
x
el = ot + . @3)
L Lo
Proof. The proof is trivial and is omitted. O

The first part of this lemmad(2), is true for all Banach spaces; however, the second
part is true when the temporal norm4s with the Euclidean 2-norm chosen as the corre-

sponding spatial norm.

Theorem 4.1.1.Let[®, T, Q] be a4 representation for a forced system, If

Yp(D) () <1 (4.4)

then
< %(F)%(q)) . (4.5)



Proof. Substituting 4.2) in (4.1) implies that

]l < 7p(D)vp (@) (]| + [lull) + 7 ()0l (4.6)
Thus
(1 = (D) (@) 2]l < 2 (D) (@) [[]] + ()0 (4.7)
Sincey, (1), (®) < 1,

_wM0(®)
o T @)

which implies @.5). O

P —tu (4.

SO 17l

Inequality @.5) can be used as an upper bound for heinduced norm. It is impor-
tant to note that since thg, representation is not unique, the solution of the following
minimization problem is the lowest upper bound that can kainbd by our method:

() < min % (4.9)
whereI'(s) = [IA%} and®(x,u) = f(z,u) — Az. Unfortunately, there is no existing
method to findA which provides the lowest upper bound. A good strategy iseftnd a
function in MATLAB with input A and outpu% and usdminsearcho minimize
it.

The method provided by Theorel.lis general in the sense of the induced norm,
7p- An interesting case occurs when the temporal nori,isvith the Euclidean 2-norm
chosen as the corresponding spatial norm. The reason is théte mature theory, namely;
H~ optimization, has been developed for linear systems inch&. SupposE is a
continuous-time linear time-invariant stable operatathvimpulse responsg(t) : R* —
R™™ (g(t) : Zt — R™ ™). Let G(s) denote the Laplace transform gft). We have

Y2(I) == [[G ()l (4.10)

In this case, the following theorem provides lower upperrasufor the induced norms
than Theoremt.1.1

Theorem 4.1.2.Let[®,T", Q2] be a4 representation for a forced systei, If vo(I')y2(P) <

1 then
Y2(I)72(P)

= TR Er -

Y2(N)
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Proof. Inequality @.1) implies that

(el = 22(@)lzol)* < (ra(Ta( H[ HD (4.122)

Using @.3),

2)1? = 272(Q)l|zoll[|| + v2(€2)?(|l2o]|?
< () 72(®)? (l«]” + [[ul*) (4.12b)

For simplicity, leta := 5 (T")y2(P)

27 Q a?
ol = 22D o+ 2 e < e, 129
Hence ) )
(Q) a VQ(Q) 2 (0% 2
<|| I = 7=3ll@ll) < ﬁ\lwoll Tzl (4.12d)
Sincea® + v? < (a + b)2 for all a,b > 0, we have
’Yz(Q) a’Yz( ) o
- + 4.12e
Consequently
Y2(I)2(®) 72(€2)
x| < ul| + x (4.12f)
ol < e sl Ty ol
which implies @.11). O

Similarly, the solution of the following minimization prédm is the lowest upper bound

that can be obtained by our method:

. Y2(I)y2(P)
) S e e @)? -

whereI'(s) = [IA%] and®(x,u) = f(z,u) — Az. Equivalently,

9(N) < IHlIl L . (4.14)

\/H sl —A)” -2 72_2(f($>u)—Ax)_1

Example 4.1.1.(RLC circuit with non-ideal inductdrThe network of Fig4.1represents a

RLC circuit with a non-ideal inductor. The inductor has nemeresistance and saturation
characteristic as shown in Fig.2(a) where\ is the flux linkage. The relationship of the
magnetic flux linkage to terminal voltage of an inductor segi by Faraday’s law; hamely

v, (t) = dA(t)/dt. The state equations for this network may be written as

45



(1) RS v L

Figure 4.1: RLC circuit in Examplé.1.1
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Figure 4.2: The characteristic of the inductance in Examplel

L A\ di

=A=-"=L 4.15a
L diy, dt (4.153)
dir, A\t ,
kA — 4.15b
dt (dz’L> (v = Rai) (4.15b)
_1 - . - .
where(%) is depicted in Fig4.2(b)versusiy,, and
dVe Ve .
A DA A 4.15
C 7 i 7 ir ( C)
Definingzy := iy, 9 := v andu := 4,
—1
o= (e - o) (ﬁ) (4.15d)
A | |
1
) . -1 05
Let Ry = 5, Ro = 1 andC = 2. AssumingA = 05 -1 , we have
-1
1 — 0520+ (22 —x dA
O(21, 2, 1) = { ! 2+ 2 v (dm) } (4.15¢)
C

We use the computational methods that has been introdudéd]inSince there are three

independent variables i),(®), i.e. z1, z2 andu, we pIotW{’[%“)' [ﬂ
u
il

versus instead of
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Figure 4.3: Gain of|®(z, )|, versus in Example4.1.1

p

§

plotting versuse;, x andu, as shown in Fig4.3. Therefore;y; (®) ~ 0.50, v2(P) ~ 0.50
and v (®) ~ 0.50. Computation also shows that(I') ~ 1.237, v(I') ~ 1.00 and
Yoo (I') &~ 1.237. Theoremst.1.1and4.1.2imply thaty; (V) < 1.62, y2(N) < 0.577 and
Yo (N) < 1.62, respectively.

There is no doubt that the conditiop (I')v,(P) < 1in TheoremsA.1.1and4.1.2is
restrictive. For example, polynomial systems are exclumethie aforementioned condition.
The following theorem might be used to overcome this shamntng. The result provides

an upper bound on system output for bounded input and isitéé.
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Theorem 4.1.3.Let[®, O, T, Q] be a4 p representation for a nonlinear system. ket 0

and M, > v5(Q2) + 17 () and

o[£ ewn| < HgEO )

LetD := B> (0, rp) be an open ball insid®. Assume thab, andD,, are the images db
under[ Tnxn | Onscm ] and[ O | Onsem },respectively. Thereford), andD,, are
Oan ‘ Ome Oan ‘ [me
also open balls iflR™ and R™ respectively. Let, andr, denote respectively their radius,
ie. D, = B*>(0,r,) andD, = B*(0,r,). Choose: and such that) < ¢ < r, and
1 —792(2)700(T)
Yoo () + 1(7(0) + 7R ()70 (')

If ||u||z., < min(nd,r,)and||zo|ls < 4, then

0<d<

€

x|z <e. (4.17)

Proof. It is trivial that M, — 750 () — 7700(0) < M, + 1; thereforey2 ()7 (') < 1.
We use contradiction to prove the theorem. Since we haveresbthat systems of interest
are locally Lipschitz, system trajectories are continucensequently, if: were to leave
the ball with radius, it should cross the boundary of the ball. Suppose thertosses the
boundary at = 7. As aresult|| T z|| = ||z| = €. Sincee < r, and|ju|| < min (n d,7,)

guarantees that € D,,, we have o € D and consequently

]| < [ldir]l + [wr]]
< Nldir |l + 72 () 700 (D) (N1~ | + [+ )
< Yoo (O) [Jur ]| + Yoo (V)| 20|
+ A2 (D) Yoo (D) |27 | + 72 (@) Yoo (1) | |
< Yoo () [[z0]] + [0 (©) + 72 (®) oo (T)] |||
+ 75 (D)oo (1) |- |
< Y00(2)8 + [100(©) + 72 (®)700 (1)] 76
+ 75 (2) Yoo (1) |- |
= (Y00() + 7 [700(0) + 72 (@)1 (1)]) §
+ 75 (2) 700 (1) |- |

(4.18)
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Then

e = |z
Yoo () + 1 [700(0) + 72 (P) 700 (T)]

< T
T2 (@)700(D) ol
Yoo () 411 [7160(0) + 722(®)100 (T)]
- 1= 22(2) 700 (')
< e (4.19)
Which is a contradiction. Therefore(t) < ¢; Vt > 0, i.e. ||z| < ry. O

Example 4.1.2. Consider a multi-tank system depicted in Fi@4. Suppose that a pro-
portional controller is utilized to adjust the fluid leveltime second tanki, by input flow
g. The problem of interest is to find an upper bound on the gathetlosed loop system

shown in Fig.4.5. The following mathematical model is taken frof®:

dH
G = o (- C1HY)

Uf = ——i—— (CLH}" — o H5?)

cw—+ bw

(4.20)

Homaz

The transfer function of the controller &(s) = Kp. Letx; := Hy — Hyg, 22 =
Hy — Hyg andq = qo — Kp(x2 + u) where Hyy and Hyy are operating points ang is
the corresponding input. It is trivial thagy = C1H;; = C2Hg;. The numerical values
for the coefficients are = 0.25, w = 0.035, Hopmaz = 0.35, b = 0.345, ¢ = 0.1,
Cp = 5.66 x 107, Cy = 5.58 x 1075, ay = 0.29 anday = 0.226 [19]. Suppose

Kp = 107, The state equations for the closed-loop system are

i = ﬁ (g0 — Kp(xg +u) — Cy(x1 + Hig)™)

Ty = m (C1 (1 + Hig)™ — O(wg + Hap)?2) (4.21)
Homax
. I
andz = ( ; > = f(z,u). Let
T2
—0.0072 —0.0114 —0.0114
A_< 0.0094 —0.0118 > B—< 0 > (4.22)
which are linearized parts of(z,u) atz = 0 andu = 0, i.e. A = 8fg(;,u) 0 and
B = . Therefore,
z,u=0

0.00373 + 0.0072x1 — 0.00647(z; + 0.15)%-29

D(z,u) = -5 0.20_ -5 0226 .
( [ 5.06x10 (x1+0'1g?0067+%%%)25122 (w2+0.0934) —0.0094z; 4 0.0117622
(4.23)
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Figure 4.4: Configuration of the multitank systei].

Figure 4.5: Closed loop multitank system.
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Figure 4.6: ”qﬂ( ”)”"" versus||z || oo -

Computation with the methods proposed &0 provides v (I') < 151.3, 70(©) <
0.9756, and~,(2) = 1.036. Letn = 3.0382 which givesMp = 4 > v, () 4+ 1750 (O).
Since® is independent froms, D C R2. ”qﬂ(”)”"" versus||z||~ is depicted in Fig.4.6.
SinceD is independent of,, r, = co. Let us takeD as the region wherjéqﬁ(gf¢ < 0.0023,
i.e. v2(®) = 0.0023. Consequently, = 0.0155. Lete = 0.015 andd = 0.0019 <
%O(Q)Q(fyl%g;)j;‘ég)%o(r)) e. According to Theorend.1.3 for any inputu which satis-
fies||u|| .. < min(nd,r,) = 0.00587 and any initial state satisfyingeo|l.. < J = 0.0019,

x is bounded a§z|| ., < e=0.015.

4.2 Weighting Technique

As shown in the previous section, the proposed methods aedban thel 4 representa-
tion. Adding some weighting on state or input vectors makitég the calculated bounds.
However, there is no general rule which provides useful &g matrices; therefore, they
should be chosen by trial and error. In this section, we sthe\effect of the weighting and
we show the effectiveness by an example.

In the {4 representation for continuous-time systems shown in Eig.let z := W x

whereW,, is nonsingular. Consequently,
& =W, AW, Y2 + W, (W, ') (4.24)

DenotingA := W, AW !, &(z) := W, &(W, 'z), I := {f}l é] andQ(z(t)) = Az,
it is easy to show that ordered operator [detl’, 2] is a4 representation for the weighted
system, i.e. the system with initial staitg := W,y and state:.

Similarly, in the(4p representation shown in Fig.4(a)for continuous-time systems,
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let z := W,x andu := W,u whereWW, andW,, are nonsingular. Consequently,
&= W, AW, Y& + W, BW, Ya + W, (W, e, W, 1) (4.25)

Denoting A := W, AW, ', B := W,BW,; !, ®(z,u) = W,d(W; e, W u), T :=
{%} L6 = [%} andQ(z(t)) := ez, itis trivial to show that ordered operator set
[@,T,0,Q] is a4p representation for the weighted system, i.e. the systeiminfitut 4,
statez and initial statezy. A very similar argument can be made for forced system with
representation.

It is important to note that the mapping — z is different thanu — xz. However,
Theorems4.1.], 4.1.2and4.1.3can be used to find corresponding upper bounds for the
weighted system. Then, using the definitions:pfi andz, the corresponding bounds can
be found for the main system. Suppose that the inequalityddor the weighted system is
1], < Ypou 1], + .20 | E0]l, Wherey, ., and~y, ., are derived by either(8) or (4.129).
Therefore,

il < W | 2]
< Wl lall + W] v ol (4.26)
< W] v Wl el + [[W5 | o Wl lol -

It is important to note that norms used f0i¥7,! || and||W,, || are the corresponding induced

xT

norms. Similarly, if an upper bound obtained for the weighggstem isy(N) then
Y(N) < WA (N) [ Wl (4.27)

There is no method to compufgV,! || and ||W,,|| in general. However, in some special
cases, such as the case where 2-norm is used for the spatiabnthe case where weight-
ing matrices are multiplication of a scalar by the identitgtrix, | W, || and||W, || can be

calculated. The following example illustrates the usage effectiveness of the weighting

technique.

Example 4.2.1. Consider the following nonlinear system

N &1 = —x1 + x2 + 0.5sat(x2) — 0.25sin (1) + 0.25sat(u) (4.28)
" iy = —z1 — 20 + 0.55at(x) — 0.25sin (22) — 0.25u '
: : - -0.9 09
where saf.) is depicted in Fig4.7. Let A = 09 —-11 | Hence,

—0.1z1 4+ 0.1z9 4 0.5 sat(z2) — 0.25 sin (z1) + 0.25 sat(u)

(w1, 22,u) = { —0.121 + 0.1z + 0.5sat(z;) — 0.25sin (z3) — 0.25u

(4.29)
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Figure 4.7: The saturation function $at

Table 4.1: Derived bounds with variolig, (Example4.2.1).

Wi || (V) | 2(N) | 7%0o(N) || (V) | 72(V) | Yo(N)
1.75 1.361 | 0.580 | 3.029 2.382 | 1.015| 5.301
1 1.66 0.71 5.95 1.66 0.71 5.95
2 1.290 | 0.575 2.30 2.58 1.15 4.6

minimum 1.66 0.71 4.6

Let W, = 1.75 andW, = I5xo. Therefore||W || = 1 and|W,|| = 1.75. As shown in
||®@,a)| T
U

)
u
71(®) &~ 0.46, 12(®) ~ 0.5 and.(P) ~ 0.6. Computation also shows that(I') ~
1.253, 72(I) ~ 1.003 and~.(I") ~ 1.253. Thereforesy; (V) < 1.361, v2(N) < 0.58 and
Yoo (N) < 3.029. Using @.27), 71 (N) < 2.382, 72(N) < 1.015 and s (N) < 5.301.

The results obtained for various values@f, are summarized in Tablel As can be seen,

Fig. 4.8 we plot versus instead of plotting versusg,, 2> andu. Therefore,

tighter bounds can be found by trying different values fa weighting matrices.

4.3 Chapter Summary

This chapter offers a contribution to the calculation of eippounds on th€, £, and L
induced operator norms of continuous-time nonlinear systeBased on thé, represen-
tation of nonlinear systems, methods are presented to dentipelaforementioned bounds.
The main limitation of the proposed methods is inequaltyl)(that restricts the usage
of the method for a class of the nonlinear systems and thedreeon choosing the pa-
rameterA. To lessen the restrictions encountered in the computafidine £, norm of a
system, a method is given to compute an upper bound of{heorm of the system output
with respect taC ., norm of the input. This method does not suffer from the presilimita-
tions. In the last section, our methods are improved by teeofia weighting technique on
the (4 representation. An example is provided to show the effenBgs of the weighting

technique.
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Chapter 5

The Gap Metric

5.1 Introduction

Model uncertainty often has a significant effect on stab#itd performance of feedback
control systems. For linear time-invariant (LTI) systemsich work has been done to study
this effect. One important concept used to measure systeertainty is the gap metric
which was introduced to systems and control theory by ZamdsEkSakkary p5]. For
LTI systems, it has been shown that a perturbed system caaltibzed by any controller
which is designed for the nominal system if and only if theahse between the perturbed
system and the nominal system is small in the gap metric. ©hapatation of the gap
metric for LTI systems was developed by Georgitd]]

The extension of the gap metric to larger classes of systeamsnitiated in 0], where
the metric was extended to time-varying linear plants. i.#be parallel projection operator
for nonlinear systemsb] and its relationship to the differential stabilizabilibf nonlinear
feedback systemd ]] paved the road to the extension of the gap metric to a psegtde
on nonlinear operatord §].

Unlike the LTI system case, there is no generally applicaibdhod of computing the
gap metric for nonlinear systems. In fact, there are onlywadgamples in literature for
the computation of the gap metric. Moreover, those methoelkighly dependent upon the
case of interest. This is also the case for the corresporsglatglity margin which can be
used to determine the ball of uncertainty in the sense of dpengetric.

This chapter deals with the computation of the gap metricsaaloility margin for non-
linear systems. We will consider the extension of the gapimigt nonlinear systems given
in [13]. We derive upper bounds on the gap metric and the stabildygim with respect
to the operator norm (gain) of the plant, perturbed systedhcamtroller and based on the

results of Chapted on the upper bound of the gain of nonlinear systems. The stege
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methods are only applicable to a class of nonlinear systemshveatisfy an inequality.

The chapter is organized as follows: In Sect®a, first, we introduce the notation.
Then, the gap metric for the nonlinear systems is introdu¢ee main contribution of this
paper is contained in Sectidn3 where Theorem$.3.1and5.3.2are stated and proved.
These theorems provide upper bounds on the gap metric arsdathidity margin, respec-
tively. In Section5.3, an example is also solved to illustrate the effectivenésiseoresults
and comparison between the direct computation and the steghmethods. Since the lit-
erature suffers from the lack of widely-applicable compotamethods and there are just
a few examples which are highly dependent to the studiedmsstit is indeed hard to
construct example which both satisfies our required camditind is compatible by the

previously suggested methods such as the method usé&din [

5.2 Background

5.2.1 Notation

LetU := £ andY := £ denote input and output signal spaces, respectively. Aimean
time-varying system can be thought of as a possibly unbalngeratordd : D, — Y
whereD,;, C U. The action ofH on anyu € Dy, is denoted byHu. A systemH is called
stableif D;, = U. For an operatoff : U — Y, lety(H) stand for the induced norm (gain)

of the operator defined as

| Hullr
H) := sup
)= 0 Tl
u#0

(5.1)

where the supremum is taken overale U and all7" in R for whichuy # 0. Let,(H)
stand fory(H) in £,. A systemH is calledfinite gain stable (fg-stablelf 70 = 0 and
v(H) < oo.

5.2.2 The Gap Metric
Let [P, C] denote the feedback configuration shown in Figbire This configuration is
standard in literature, e.glLy] and can be described by the following equations.
y1 = Puy
uy = Cyz
(5.2)

Uy = U1 + ug

Yo = Y1 + Y2
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Figure 5.1: The standard feedback configurat{égh('.

where P and C' denote the nominal plant and the controller andand y, are the input
. . U;
and measurement disturbances, respectively. ubet U, y; € Y andw; := for
Yi
i € {0,1,2} andW := U x Y. We assume that the product of the instantaneous gains of
P andC'is less than one. This assumption guarantees the well-pesgaf the feedback
configuration, e.g.J3] [1]. Similar to [13], we assume that the feedback configuration is

always well-posed. The closed-loop operator is defined as
Hpo:W —=WxW, Hpc :wy— (w1, ws). (5.3)
The graph of the plant is
gp:{@u) :ueu,Puey}cw. (5.4)

If the domain ofP is U, the conditionPu € Y is unnecessary. To have compatible notation

with [13], we define the graph af' as follows
gcz{@y) :Cyeu,yey}cw. (5.5)
In some literature, e.d], this graph is also called inverse graph. Let
M:=Gp, N:=Gc. (5.6)
The following operators are useful in the study of the clelegh system stability.
Upgn =1 Hpe, Uy pm :=oHpe (5.7)

wherell; : YW x W — W denote the natural projection onto tile component: € {1,2})
of W x W. Therefore
D = wo = wy
(5.8)
O m 2 wo = wa.
Definition 5.2.1. Parallel Projection[5]
A stable operatoll : £ — £ (with TI0 = 0) is called a parallel projection if for any
r1,T9 € L
I(I1xy + (I — )zg) = Iy (5.9)

where! denotes the identity of.
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Thus,ITy»- andIl o are parallel projections considering that for any, we € W
H(Hw1 + ([ — H)wg) = [Twy, (5.10)

forll € {HMHNaHNIIM}'
Consider thesummation operator

MmN M XN = W: (m,n)—m+n. (5.12)

The stability of the standard feedback interconnectioy, Fi.1, is equivalent toX z
having an inverse defined on the whole)of which is bounded. In fact, iE A has a
bounded inverse, theE]/}’N = Hpc. It can be shown that a necessary condition for
[P, C] to be stable is thatt and N are closed subsets &Y [5]. Let W, andW, be closed
subsets of a Banach spadé We define
inf{|[(T— I)|w, ||}, T is a causal
5(1/\/1, Wy) 1= bi!'ective map fromV; to Ws
with 70 = 0, (5.12)
oo, if no such operato? exists,
S(W1, W) = maix { 5(W1, Wa), 5(Wo, W) }.
Theorem 5.2.1. Consider the feedback system shown in Bid. Let M := Gp and N\ :=
Ge. Assume thaltP, C1 is fg-stable. Suppose thatis perturbed toP; and M, := Gp;. If

S(M,Ml) < HHMH/\/H_l (5.13)

then[P,, C] is fg-stable. Furthermore

-

14+ 6(M, M)
L= [T 9(M, M)
Proof. See [L3]. O

[Tty ]| < e (5.14)

5.3 Upper bounds on the Gap Metric and the stability margin
In this section, we suggest a method to find an upper boundeogah metric between two
nonlinear systems as well as a method to compute an upped looui (|-

Theorem 5.3.1.Consider nonlinear dynamical systems given by
N: &= f(z,u), xg = 0;

o R (5.15)
N: &= f(&u), do=0.

Let~(N) and~(N) denote their gain respectively. Then
(N, N) < 5(N) +y(N). (5.16)
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Proof. We have

l =2 < ||zl + || 2]

< (V) [lull +~(N) [ull

< (Y(N) + () [Ju]
< (4(N) + (W) m

DefineTJ as

It is trivial that T is bijective. We have

S(N,N) = I -7
-

Al
)

= sup

= sup

Similarly

Consequently,

§(N,N) = max{y(N,N),7(N,N)}

< 5(N) + 6(N).

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

Theorem 5.3.2. Consider the standard feedback configuration depicted gn Fil Sup-

pose thaty(P)y(C) < 1. LetIl v be defined asi(6) and 6.7). Then

(1+2(P) (1 +4(©)

Ml = =5 Ppe)
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Proof. From the feedback configuration, we have

[Jur ] < [luoll +~(C) llyo — w1l
< luoll +~(C) llyoll + ¥(C)y(P) [Juall -

Consequently
1 7(C)
w| < ————— |luol| + ————=—llvol| -
Therefore
u
M \g ol + lln
Y1

< luall +~(P) [Jua

L) 1(O) (1 +~(P)) ol
ST A0n@) "N T TS ey Pl

Sincel|al| < H m

‘ _ 1H9(P) +A(O) (1 +(P))
- 1 —~(C)(P)
)
Yo

)

)
U1

(1 +A(P)(1+7(C))
1 —~y(C)v(P)

On the other hand, EquatioB.g) implies

o] =[]

Thus
u1
(M| = sup [z;} ‘
)
Using (.26
] < CHAONEA(E),

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

O

Example 5.3.1. Consider the feedback configuration of Fif.1. Assume that the plant

is the circuit shown in Fig5.2, where the inductance of the SSR is nonlinear a4 is

defined as Figh.3and R = 10. The state equation of the system is
i(t) = L7 (ui(t) — Rz(t)), =(0) =0
yi(t) = x(t)
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Figure 5.3: Inductance of SSR.

wherex(t) := ir(t) andu;(t) := Vi(t). LetC = —c wherec is a positive non-zero
constant. Lell =Y = L... Since the instantaneous gainsfandC' are zero and one,
respectively, the loop is well-posed. First, we will find thE || by a direct method
similar to the solution of Example 1 irlB]. Then, we will compute the upper bound on
| TLpq || by the suggested method.

I. Direct computation:

The feedback equation is

i = L7 (ug + cyo — (10 + ¢)z), 2(0) = 0. (5.31)
We have
Uuo u1 ug + cyog — cx
11 : — = . 5.32
e N 532

Letvg := ug + cyo. For anyuvg, ug = yo gives the mapping with the smallest input norm.

Thereforewy = (1 + ¢)up and

[uo] [uo +cyo — cx]
H

Yo x

= 2
H

Yo x (5.33)

_1+9) vo—cx}

[Tag ]| =

X

'UO|—>|:

= (1 + ¢) x max{||jvg — (vo — cz)|| , lvo — |}
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We now show that|vg — z| = Suppose that for any arbitrary chosen interval

1/10+c'
[0,T], the maximum ofz(¢), which is positive, occurs afy € [0,7]. Then, for any
e > 0, there exists; such that0 < ¢, < to, z(t1) > z(tp) — e and @(ty) > O.
ConsequentlyL~*(vo(t1) — (10 + ¢)z(t1)) > 0. Since sgriL~!(z) = sgnz, vo(t1) >
(10 4+ ¢)x(t1). Thus,vg(ty) > (10 + c)x(tg) — (1 + c)e for anye. Similarly, if the min-
imum of z(t) in [0, T], which is negative, occurs &, for any¢é > 0, there exists; such
thatvy(f1) < (10 + ¢)z(fo) — (1 + c)é. Consequentlyj|voll; > (10 + ¢) ||z 7. To show
that this upper bound ofwy — x|| can be approached arbitrary closely,dgt= 1 for all

t. Itis trivial thatx(t) = (1 — e~ (1+019%) /(10 + ¢). Soljvg| = 1 and

1
|z]| = /10+C-

Consequently, Next, we computd|vg — (vo — cz)||. Trivially,

1
vo = z|| = /10+c'

lvo = (vo —cx)|| < 14 fluo— (cx)| = 1+ & This upper bound can be ap-
proached arbitrarily closely by the inpu§ = 1 for0 < ¢ < T'andvg = —1fort > T.
We havez(t) = (1 — e~ (#0198 /(10 +¢) for 0 < ¢t < T. Thus, (vo — cz)(T) =

— (14 1) + e~ (IH01IT Therefore/|vg || = 1 and|jvg — cz|| = 1+ 35 which implies

that ||vg — (vo — cz)|| = 1 + 5= Consequentiy|TLy || = 1 + 155
Il. The suggested method:

To find v(P), let ®(z,u) = L~} (u — 10z) + 3z/2 andT" := [ —31/2 (1)

computational methods introduced in Sectib.1 Fig. 5.4 shows the plot o '

] . We use the

P (z,u)|
x
u

} H for 2 x 10° randomly chosen input vector. Therefosé®) = 0.7. Using the

o

method introduced in Sectich3.2 we havey(T") = 2/3. Theoremd.1.1implies that

~(P) < 0.639. (5.34)
SinceC = i - i ; 1.639(14c)
= —cis aconstanty(C) = c. Theoremb.3.2implies thatHHMHNH < St

if ¢ < 1.56. Apparently, the obtained upper bound is closer to the helae whenc

approaches zero.

Example 5.3.2. Consider the plant introduced in the previous example. Sspphat the
system is perturbed by time delay That is
. o —1 o —
P - x(t) = L™ (uy(t) — Rx(t)), z(0) =0 (5.35)
y1(t) = x(t — h).
First, we will compute an upper bound on the gap between tirg pl and the perturbation

P, by a direct method similar to the solution of Example 116][ Then, we will compute

the upper bound on the gap by the suggested method.
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Figure 5.4: Gain of|®(z, u)|| versuslog

Il

I. Direct computation:
Let M := Gp; and define a mapping : M — M as

] =L )

j2(t) —z(t = h)| < sup [2(H)]-h
tet—h,t]

Thus

tet—h,t]

SinceL~!(-) is an strictly increasing function,

|(t) — x(t — h)|
< L_l( sup  |u(t) — 10z(t)|) - h
teft—h,t]
< L_l( sup |u(t)|+ sup [10z(1)]) -~
teft—h,t] teft—h,t]
< L_l( sup |u(t)| + sup |10z(?)]) - h.
te[0,t] te[0,t]
Therefore
() = =(t = h)|l-
< ||L7'( sup |u(f)|+ sup [10z(£))|| R
te[0,t] te[0,t] -
< L7 (1t max{|full, , ||zl }) - 7
< 2.2max{lJul, , |} - b
Hence
H[_T”: H.Z'(t)—.%’(t—h)”T <929h.

a0 max{fluall - 2]}~

63

< sup |L7'(u(f) — 10z(2))| - h.

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)



-

Consequentlyy(M, M;) < 2.2h. On the other hand, let(t) = 1 on [0, h]. Itis Trivial
that (Pu)(t) = 0.1(1 — e~ '%). For anyw € M, we havew;, = m which is implied by

o[z

Y1
uy
ol
* U
ol L],
ur 20 max{[[u |l , [[Pua, }
_ max{|[* —uill,, [ Puall,}
max{||u1, , [[Pull,}
([ Pu
— max{||wl, , [[Pull,}
= 0.1(1 — 7100,

the time delay inP;. Therefore

—

(M, M) = sup
u1,y170

v

(5.41)

Consequently

—

0.1(1 — e 10" < §(P,P) < 2.2h. (5.42)

Il. The suggested method:

Since P is autonomousy(P) = ~(P,). Using Theoren®.3.1, §(P, P) = 2v(P). Using

(5.39), 6(P, P1) < 1.278. lItis clear that forh > 0.58 the suggested method provides

smaller upper bound than the direct method.

5.4 Chapter Summary

In this chapter, we have considered the computation of thergeric and the corresponding
robust stability margin. Our results are applicable to a<laf a nonlinear systems which
satisfy a given inequality. The suggested methods have gtatipnal advantage compared
to previous work in the sense that they are applicable towmlege of nonlinear systems.
Our methods are based on two inequalities derived for thengeipic and the stability
margin with respect to the gain of the relevant systems. Aamgte is provided to illustrate

the results.
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Chapter 6

The Large Gain Theorem

6.1 Introduction

One of the well-accepted and widely-used methods to stadhflisy of systems is the input-
output approach. It was initiated by Popov, Zames, and Sagdin the 1960s42] [56]
[32]. So far, it has been a fruitful area which has resulted inynafrthe recent develop-
ments in control theory, such as robust control and smatiHgased nonlinear stabilization
techniques. The input-output stability theory considgistesms as mappings from an in-
put space of functions into an output space. In this thedwy,well-behaved input and
output signals are considered as members of input and osfiases. Therefore, if the
“well-behaved” inputs produce well-behaved outputs, tfstesm is called stable.

The main contribution of the input-output stability theanycontrol theory is through
the well-known small-gain theorem. In this context, the tmusable contributions have
also been made by Zames and Sandberg, 8&)[B2]. The small gain theorem says that
the feedback loop will be stable if the loop gain is less thae. dr'his simple rule has been
a basis for numerous stabilization techniques such asneanli{ ., control [15].

Stability of systems, in its various forms, continues t@irs researchers. Motivated by
the classical small gain theorem, “nonlinear gain” smaldlaeorems are discussed in such
references a2[l] [39] [18]. The notion of non-uniform in time robust global asymptoti
output stability was introduced ir2p] for a wide class of systems. A small-gain theorem
for a wide class of feedback systems was proposeddh [n [14], it was shown that for an
open loop unstable system which is closed loop stable thrergast exceed one.

In this chapter, the minimum gain of a system is studied. dlth it has been showed
that the minimum gain is not a horm on space of operators, asteility condition has
been derived for feedback systems based on the minimum §tie open-loop systems.

The chapter is organized as follows. In Secttf, the minimum gain of an operator
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is defined and some of its properties are derived. In Seétigrthe large gain theorem is

stated. An example is also provided to illustrate the usddgeeatheorem.

6.2 Minimum Gain of an Operator

Let 4 : U — Y denote an operator. We define the minimum gaif/cds follows:

) — e M
0#uell  |lur|

(6.1)
where the infimum is taken over all € U and all7 in R* for which ur # 0. Itis
trivial that the minimum gain of an operator is less or eqodtg induced norm. It is also
obvious that if a minimum gain of a system is infinite, thersiunstable. In other words,

the minimum gain of a stable system is always finite. The camevis, however, not true.

Lemma6.2.1. Let M € R"*". DefineH : Xy — Xy asHx := Mz, then
v(H)=o(M). (6.2)

Proof. The proofs for the continuous-time and discrete-time caseshe same and only
the first one is given here. We use the following property efsmallest singular value of

matrices (e.g.97] pp. 21):

M
o(M) = min [|[Mz| = min | xH
Joli=1 w20 ||z

(6.3)

Let M = UXVT be the Singular Value Decomposition (SVD) bf, whereV = [vy,
Vg, ] € R andU, X € R™*™ [57]. Itis well-known thatwv,, is the minimizer of
(6.3), e.q. b7]. Letz € L5, we have

|Ma]? = /0 | M) |2 dt
> / (M2 o (t)]|3 dt (6.4)
= (M)’ / ()| 2 dt = o(M)? ||z
0

which shows that (M) is a lower bound fow(H). To show that it is the greatest lower
bound, letr(t) = 22 e'. We have

l[on]]

o0
2
el = | \
0

[[on

2 %)
dt:/o et | dt = Y, (6.5)
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and

2
dt

e
||

[e'e) 9 e—2t
= [ o g
0 ||| (6.6)

[e'e) —2t
- / lo (Mo |2 < at
0

2
[[on]]

[e.9]
Il = [~ ar e
0

— o (an)]? /0 T et = Y, lo(M)?

Equations §.5) and €.6) imply thatv(H ) is equal tas (M) for some input. This completes
the proof.
]

Lemma 6.2.2.Let®(-,-) : RT x R" — R" (®(+,-) : Z* x R" — R™ in discrete time)

and H be the operator defined as

H:X,— X,; Hax(t):= ot z(t)). (6.7)
Suppose there exists a constaptsuch that

ppllzllp < 1@t 2)[lp, Vo € R", VE =0 (6.8)

theny, < v,(H).

Proof. Letx € L, for p # oo,
\Hol, = /0 1@ (t,2(t)|P dt > /0 2 (o)l dt

o (6.9)
=i [ e de = gl

Forp = oo,

|Hellen = sup [@(t, 2(0)) | > sup s ()]
» (6.10)
= tpsup 2 (O] = pp fl2llz, -
Equations §.9) and 6.10) imply that p, is a lower bound fow(H). This completes the
proof.
]
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Figure 6.1:H5 in Example6.2.1

Example 6.2.1. Memory less Nonlinearitiestet X = L., and consider nonlinear op-
eratorsH; (u) = u? and Hy(.) defined by the graph in the plane shown in FigL We
have

|(Hyu)rl,

H) = inf . —  inf =0. 6.11
v(H) o;egéz:w H”T”&X, o;ﬁgécoo‘u’ ( )

The minimum gain/(Hs) is easily determined from the slope of the graptot

H.
vy = g W07l

—0.5. (6.12)
0#u€Loo HU’T”EOO

Lemma 6.2.3. Let g(¢) be the impulse response of a continuous-time, stable, Lst¢isy
Let G(s) denote the Laplace transform 9ft). Furthermore, assume that there exists a
row in G(s) where all elements are strictly proper, namely there ®ich that for allj,

lim,_.o Gj;(s) = 0. Let H stand for the convolution operator defined by

H(x(t)) = /0 ot — 7)2(r)dr. (6.13)

We have
v(H)=0. (6.14)

Proof. Leta(t) = [1(t) #2(t) -+ @n(t)]”,

R sin(wt) k=1,
ault) = |
0 otherwise
wherei corresponds to the strictly proper rowd#(s) andw > . Let

w| T

2(t) = &(t) — 2 <t - H _) (6.15)

Tl w

where || denotes the floor function of a real number r, which is thedstdnteger less
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!
L7135

€ —

Figure 6.2:|2(t)|.

than or equal tor, namelyvr € R ; |r] := sup{n € Z|n < r}. Itis trivial that

[0
0
ol e 056212,
() = sm(-wt) ith row
L o
0 t> |
and
~ wl| T
le)ll = |a:t) = (1= | 2] T))|
Thus,
(6.16)

.. = sup|sin(wt)| = 1

, 2]
lol2, = |
0
_ 1/2 <t B sméiwt))

0

- (6.18)

Lﬂ' w
Hw&:A | sin(wi)| dt.

To calculate §.18), consider the graph of:(¢)| depicted in Fig6.2. The number of peaks

ISEE]

| sin(wt)|? dt
1212
(6.17)

is |£]. Moreover,
S:/%m@wazg. (6.19)
0 w
Consequently,
w w| 2
lole, = | 7] 5 =[] 5 (6.20)

£ ] Z) implied

™

To calculate the norm of the outpllig||, we can first find the response of the system to input

&(t), namelyj(t), and then obtain the output usingt) = §(t) — 9 (t — |
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by the linearity property of the system arglX5. If we letw — oo, the response of the
system taz(t) approaches to zero. The reason is that the amplitude ofeaiegits of the
i-th row of G(s) approaches to zero at high frequencies. Therefate, . ||(¢)|| = 0
and consequently

Tim|[|y| =0, (6.21)

On the other handg(17) and ©.20 imply
. 1 . 2
Jim e, =y Jim |z, =~ (6.22)
Equations §.16), (6.21) and 6.22) imply
vi(H)=0,1v(H) =0, voo(H) = 0. (6.23)
O

Corollary 6.2.1. The minimum gain of a system with a strictly proper stablegfar func-

tion is zero.

Lemma 6.2.4. Let g(¢) be the impulse response of a continuous-time (discrete)-til
system. Lef(s) (G(z)) denote the Laplace transform (z-transform)y¢f). Furthermore,
assume thatz(s) (G(z)) has at least one zero in the RHP (outside of the unit circlet L

H stand for the convolution operator defined by

H(z(t)) = /0 g(t —7)z(r)dr (6.24)

for continuous-time case and

H(z(t) =Y g(t —1)=(1) (6.25)

for discrete-time one. We have
v(H)=0. (6.26)

Proof. The proofs for the continuous-time and discrete-time caseshe same and only
the first one is given here.
Let 5o be the RHP zero ofi(s), namely there exista) such thatG(s¢)w = 0. If

oo +iwp = so € C, trivially s is also a RHP zero af(s). Let

sot f
u(ty=4"° "~ Tso € R, (6.27)
w e sin (wot) if sp € C.
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Consequently,

U(s) = {w. 8_180 if so € R. (6.28)
. m if Sp € C.
We have
Y(s) G(s) - w- 8_180 if sp € R. (6.29)
VTNGGs) w —2 sy € C. '
(s—00)"+w§

SinceG(s) is assumed to be stablgs) is a stable signal. It is important to note thégs)
does not have a pole a§. The reason is that the polestis canceled by the zero 6f(s)
atsg. Since all poles o¥ (s) are in LHPy(¢) is a decaying signal. On the other han;)
is an unstable signal, rising by time. If we truncate bett) andy(¢) at7’, which is chosen
sufficiently large, the corresponding gain of the systenh lvdlsmall. By increasing’, the
gain can be decreased as much as desired. Therefdig,= 0.

U

Lemma 6.2.5.Let H : D, C U — Y be a possibly unstable operator. LB}, denote the
range of H, namelyR, = {y €Y : y = Hu for someu € Dy, }. Assume thaf{ has a

stable right inverse, i.e., there exists~! : R;, — Dy, such that
H-H'=1 (6.30)

and H ! is stable. Moreover, assume thgtH —!) < co Then

1
v(H) = ———. (6.31)
U0 =Sa
Proof. Lety(t) := Hu(t), which implies that.(t) = H~'y(t). Therefore
1
i) — g Dl Ll
well ||ur||  weDy ||ur|  weDy luzll
lyrll
B 1 B 1
- - -1
sup [[ur|] 15 yrll (6.32)
ey, lyrll wepy,  |lyrll
B 1 B 1
- H-! o -1y
oo Iyl ~ ()
very 1yl
]

Corollary 6.2.2. Unstable, bi-proper, LTI systems
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1. Letg(t) be the impulse response of a continues-time, unstableppep LTI system.

Let H stand for the convolution operator defined by
t
H(z(t)) = / g(t — 7)z(7)dr. (6.33)
0
LetG(s) be the Laplace transform @f¢). We have

v(H) = ||G7(s)||,,. - (6.34)

2. Letg(t) be the impulse response of a discrete-time, unstable tigtpeoper, LTI

system. LeH denote the convolution operator defined by

t

H(z(t) =Y _ gt —1)z(0). (6.35)

=0

LetG(z) be thez-transform ofg(t). We have

v(H) = ||G7H(2)||;. - (6.36)

Proof. The proofs for continuous-time and discrete-time are tiheesand only the first one
comes here.

For bi-proper systems, the inverse system existsylt:= Hu(t), we have

o Dol

u€Xe HuTH
1

= inf ——
uEXe [uz]]
[yr]]

1
sup |ur||
wex. lyrll (6.37)
1
[Jur ||
yex. llyrl|
1
|G~ urp]

sup
wex, yrll

v(H) =

Example 6.2.2. Let
s+ 1
= 6.38
Gs) =~ (6.38)

andH : Dy, C Ly — Lo be an operator defined &.83. Equation 6.36) implies that

v(H) = [|G7H(s)|,L = 1. (6.39)
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For instance, leti(t) := (1 — 2t) e tu_y(t), whereu_; (t) denotes the step function. We

havelU (s) = (5 1y= and consequently’(S) = =7 Which shows thay(t) = e~ u_;(t).

This reveals that(H) < Ile, _ = 1. Itis important to note that there is no input that satis-

Tullz,
< 1. This can be shown by contradiction. Assume there existesoputa € £

Lo

such that:“znf:2 < 1 wherey is the corresponding output. We halg|| < ||a| < oo. On
2

the other handi = G~ . Since||G™~

"5 = 1llall < lgll which is a contradiction.

The minimum gain of operators satisfies thesitivity and thepositive homogeneity

properties. To see this, we have

v(-) >0 (6.40)
and
VM) = it H/\IIH\TH
Fucte ”H | (6.41)
=\ inf 2N w(H)
OZueXe ||ull

However, it can be shown that it fails to satisfy the triarigkequality. For instance, suppose
that /; and H, are memoryless nonlinearities depicted in Q. Itis trivial thatv (H;) =
0, v(Hy) = 0 andv(H; + Hs) = 1. This shows that(H; + Hs) > v(H;) + v(Hs).
Consequently, the minimum gain of an operator is not a noreven a semi-norm on the

space of operators.

H, x H.x (H,+ H,)x
A A
2._
T I
-1 - ! - »
: > X - > X + > x
- -1
(@) H1 (b) Ha (c) Hi + H»

Figure 6.3: The triangle inequality is not satisfiediky).

Lemma 6.2.6.Let H : U — Y denote an operator. Suppose that there exists a nonzero

stable operator’ : R — U such thatH K : R — Y is stable, then(H) < oc.

Proof. Let 0 # r(t) € R such that ¢ Ker(K), thenu(t) = Kr(t) € U, u # 0 and
y(t) = HKr(t) € Y, implied by the stability ofK and HK, respectively. Therefore
lully # 0 and|ully, lylly < oo. Consequentlyy(H) < 4 < oc. O
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~
;
~
;

(a) (b)

Figure 6.4: Stabilizable system.

Corollary 6.2.3. Any system that can be stabilized by a stable system withehdaned
properties in Lemma&.2.6and a structure as shown in either Fig.4(a)or Fig. 6.4(b), has

a finite minimum gain.
Proof. The corollary is based on Lemnta2.6and the proof follows a similar routine as
the proof of the lemma with defining a nékvequalsR® Y in 6.4(a)orR+Yin 6.4(b) O

Theorem 6.2.1. Sub-multiplicative property

LetHy, Hy : X — X be causal operators. Then
v(HyHy) < v(Hy)v(Ha). (6.42)
Proof. Letu € X, we have
| H1Houl| > v(Hy) ||Houl| = v(Hy)v(Hz) [[ul|- (6.43)

Considering the fact that(H, H2) is the infimum gain of thed; Hs, Inequality 6.43
implies 6.42. O

6.3 Large Gain Theorem

In this section, we concentrate on the feedback system slmwig. 6.5 Under mild
conditions onH, and H> (e.g., the product of the instantaneous gains is less thaifilpn
the feedback configuration is guaranteed to be well-posé@ efuations describing this

feedback system, to be known as freedback Equationsre:

€1 =U1 — Y2
e2 = u2 + Y1

(6.44)
y1 = Hiep

Yo = Haes.
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y2He‘|‘u2
H, "

Figure 6.5: The feedback system.

Theorem 6.3.1. Consider the feedback interconnection describeda®4f and shown in

Fig. 6.5 If 1 < v(H1)v(H2) < oo, the feedback system is input-output-stable.

Proof. To show stability of the feedback interconnection, we musisthatu, us € X

imply thateq, es, y1 andys are also inX'. According to the definition of, we have

v(H) |lexr|| < llyazll (6.45)
v(Hs) |lear|| < lly2r |l (6.46)
On the other hand,
Y1T = €27 — uUgT (6.47)
Yor = U1T — €17 (6.48)
Thus,
lyirll < llear|| + [Juar|| (6.49)
lyar|l < llexr|| + [luir]] (6.50)

Substituting 6.45 and 6.46) in (6.49 and ©.50), respectively,

v(Hy) llerr]l < |lear || + [Juar|l (6.51)
v(Hz) |lear]l < |lexr || + [[uar|l (6.52)

Using 6.46) and 6.50, Equation 6.51) implies that
v(Hy)v(Hy) eir| < v(Hz) [lear|| + v(Hz) [|uar|
< lyor|l + v(Hz) [luar|| (6.53)
< llexr || + [luar || + v(Hz) [[uzr ] -

Sincev(Hy)v(Hsy) > 1,

leir] < |urr|l + v(Ha) [luzrl]) - (6.54)

e
V(Hl)V(HQ) -1
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Similarly,

llear|| < (v(Hy) [Jurr || + [Jugr[]) - (6.55)

1
I/(Hl)I/(HQ) —1

Moreover, substitutingg55 and €.54) in (6.49 and 6.50), respectively,

el < S vyt (el + v(2) ) (6.56)
and
lverl < s () el + ). 657)

Hence, the norms dfeir ||, [[127]), [|[y17|| @and|jy2r|| are bounded. If, in additiony;, us €

X, then 6.546.57) must also be satisfied T approachesc. Therefore,

lerll < sy = (hall+ () ual) (6.58)
leoll < 5oz =T WUl + el (659)
ol < g (lall + w(282) ) (6.60)
ool < S ()l + ). (6.61)
Consequentlye;, e2, y1 andys are also inX. 0

Example 6.3.1.Let H; be the convolution operator defined .13 whereg(t) is the
impulse response of

s+1
G(S)_ks—l

wherek € R. Let H, be a memoryless nonlinearity depicted in F§gl As shown in
Example6.2.2 v(H,/k) = 1 which implies thatv(H;) = |k|. On the other hand, we

havev(H;y) = 0.5. Consequently(H,)v(Hs) = 0.5|k|. The large gain theorem, namely
Theorem6.3.1, guarantees that the feedback system is stalpte if 2.

6.4 Chapter Summary

The minimum gain of an operator as well as some of its pragedre introduced. These
properties are useful in the computation of the minimum gémsystem. For instance, it is
shown that the minimum gain of strictly proper, stable, Lyidtems are zero. When it comes

to the metric properties, the minimum gain of an operatds fa satisfy the triangular
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inequality which implies that it is not a metric or a norm iretkpace of operators. Finally,
the so-called large gain theorem is stated and proved. ie@ém implies a new stability
condition for feedback interconnection of nonlinear syste An example is provided to

illustrate the derived stability condition.
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Chapter 7

Disturbance Attenuation: A Case
Study

7.1 Introduction

There is no doubt that disturbance attenuation is one of thet rmportant objectives in any
closed-loop system. Therefore, it is important to quarttiy influence of various inputs on
various signals inside the feedback loop and develop toataltulate such quantities. This
chapter is based on our earlier work presented in Chdpt€he plant of interest is a mul-

titank system consistent of three interconnected tankst, e mathematical model of the
plant is derived using physical relations. Then, the graymethod is used to identify the
parameters of the model. Finally, it is assumed that thet igazontrolled by a proportional

controller and the disturbance attenuation of the closeg-plant is investigated.

7.2 The Multitank System

Liquid level control problems related to multitank systeane commonly encountered in
industrial storage tanks. For instance, steel producimgpemies around the world have
repeatedly confirmed that substantial benefits are gaied diccurate mould level control
in continuous bloom casting. Mould level oscillations teadtir foreign particles and flux
powder into molten metal, resulting in surface defects enfthal product 19].

The multitank system consists of three tanks placed oneeabingther. The top tank
has a constant cross section while the other two have var@bks sections as shown in
Fig. 7.1 A pump is used to circulate liquid from the supply tank int@ tupper tank.
The liquid flows through the tanks due to gravity. The outpifiaes can be controlled by
electrical valves to act as constant or time-varying flovistess. Generally speaking, the

system has four inputs and three outputs. The inputs are tlatee controls and one pump
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DC pump C;
1

Figure 7.1: Configuration of the multitank system

i q The
Kp + Multitank

Figure 7.2: Closed loop multitank system
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u q The +
+ Multitank | X,

Figure 7.3: Block diagram of the identified system

control signal. The three valve controls are driven by appabe Pulse-Width Modulation

(PWM [16]) signals transmitted from the I/O board to the power irsteef, and from the

power interface to the DC motors connected to the valves.pling control signal, which

acts by controlling the speed of the pump motor, is a sequehB&/M pulses configured

and generated by the logic of XILINX chip of the I/O board. Tiwput signals are the
levels of the liquid measured by pressure transducers. igflags are connected to the
analog inputs/outputs of a multipurpose PC 1/O board.

The system states are the liquid levAls, H, andH3. The general objective of the pilot
is to control the liquid levels by four input signals: liquitflow ¢ and valve setting€’;, Cs
andC3. Among various system configurations, our purpose is toroblavel of the middle
tank, i.e. H,, by the liquid inflowq using a proportional controller. We assume ttias
the disturbance (or noise) signal and study the disturbatte@uation of the closed-loop

system. The block diagram of the closed-loop system is tigbio Fig.7.2

7.3 ldentification

The block diagram of the plant is depicted in Fig3. First, a mathematical model of the
plant is developed based on the physics of the process. Wexsgt an experiment to acquire
the step response of the system in order to obtain an appatximodel of the system or
more precisely, an approximate time constants of the systésimg the approximate time
constants, a Random Binary Sequence (RBS) signal is bullagplied to the plantZg].
Finally, the RBS response is divided to two sections; ondéi@eds used to identify the

model and another one to validate the model.

7.3.1 The Mathematical Model

The Bernoulli's law can be applied to find the laminar outflaterof an ideal fluid30]. By

applying mass balance and assuming a laminar outflow, thelndedcribing the dynamics
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Hznax=35

/(v=3. 5

A
e=10

Figure 7.4: Geometrical parameters of the tanks

of the process can be obtained.
dv;
d—tl =q—Ci1vVH
dV2
— =C1vH; — Co\/Hy

whereV; andV; are the fluid vqumes in Tank 1 and Tank 2, respectively @nandCs

(7.1)

are the resistances of the output orifices. Hence,

dVi dHy g CLH
dH, dt

dVy dH. (7.2)
oy 4l Qs

dH, dt = G ™ = Co

wherea; = 0.5 andas = 0.5 for laminar flows. For the real system where turbulence and
acceleration of the liquid are not negligible, the outflowerdoes not follow the Bernoulli
law and more general coefficienis andas should be considered §] [30]. The values of

J4- and 52 depend on the shape of the tanks shown in Fig. Since the cross-sectional

area of Tank 1 is constan 511 = aw. For Tank 2, we havédl%l1 = cw + g, —bw.
Therefore,

dh =L (q — C1H"Y)

U - (G - CHSY) 73

277L(LJL

Letxy := Hy — Hyg, x2 := Hy — Hog andq = u + go Where Hyy and Hy( are operating
points andyq is the corresponding input. It is trivial thay = C1H;; = CoHy;. The
numerical values for the coefficients are= 0.25, w = 0.035, Hopae = 0.35, b = 0.345,

¢ = 0.1[19]. Hence, the state equation of the open-loop system is

{%1 = 114.2857 (u + (0.15C7)** — Cy (w1 + 0.15)*) (7.4

i = 0.0035—1-0.0?1)45(:(:2—1-0.1) (Cr(z1 +0.15)* — Cz(wg +0.1)42)
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Figure 7.5: The step response

7.3.2 Data Acquisition

To build an appropriate RBS signal, we need to acquire appiete time constants of the
system. Therefore, we set an experiment to obtain stepmespo The step responses are
depicted in Fig.7.5. Hence, the approximate time constant of the systemare 80s and

9 =~ 150s. We will use the time constants to determine frequency oRB& signal. We
chooseT; = 10sec. To perform the RBS test we need to determine the pass barahwhi

can be calculated from the following formulad]:

KT,

TT

f (7.5)

wherek = 2 ~ 3. We selectf = 0.0612. The produced RBS signal and response of the

system are illustrated in Fig..6.

7.3.3 Data Pre-Processing and Identification

We do the identification and validation for each of the owtmeéparately. After down sam-
pling the data, the mean value of the data should be remowktbaleduce computational
errors, we increase the values of the levels by using cetgmaait. Then, we filter the data
by a low pass filter to attenuate noise. The bandwidth of tseegy is approximately equal

to inverse of the time constant. We choose one decade uppethb bandwidth as cut-off
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Figure 7.6: The RBS response
Table 7.1: The identified parameters.
Parameter Cq Cy o oD
Value 1.432 x 10~% | 1.488 x 10~* | 0.3833 | 0.3341

frequency of the low-pass filter. Therefore,

10T
chut—off = 7_17: = 0.3979
10T,
f2,cut—off = ® = 0.2122
T2

(7.6)

Next, From 1130 data points of the pair of input-output, wease the first 750 points for

identification and the remaining 380 points for validatiowdaemove the mean values of
two set of data. We use the Identification Toolbox of MATLABIdentify Cy, Cs, oy and

as by the gray box method. The identification and validationvearare depicted in Fig.

7.7and7.8, respectively.

The identified values for the mentioned parameters are @ivéable7.1

7.3.4 Disturbance Attenuation

The problem of our interest is to study the disturbance a#ton of the closed loop system

depicted in Figr.2. In order to calculate the disturbance rejection amplitweeneed to find
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the gain of the system from the disturbance signal to theubdttp the methods mentioned

in Section5.3. The state equations of the closed-loop system are

i1 = L (g0 — Kp(za + d) — Cy(z1 + Hi)™) 77
Ty = m (Cr(z1 + Hio)™ — Ca(wa + Ho)*?) 7
Homax

andz = ( o > = f(z,d). To find appropriated and B matrices, we define a

function which calculates, (I') - 7 (®) in a local region

[ﬂ ‘ < 7 for given A and
B in MATLAB. Then usingfminsearchfunction of MATLAB, wéfominimize the function

. Lo . ( —0.0360 —0.0149
with respect tod and B. Choosing# = 0.06, we obtainA = ( 0.0215  —0.0425 >
q>1('rvd)

(132(1', d)

0.0141

andB = < 0.0066

>. Therefore®(x, d) = [ } where

(@ (x,d) = 0.00791 — 0.00266 d 4 0.00346 x5 — 0.0164 (z; + 0.150)°-3833

-+ 0.0360 z; 7.8)
7.8

Po(z,d) = (0.000143 (21 +0.15)%3833 _ 0.00015 (z» Jr0'1)0.3341> »

(0.007 + 0.0345 z5) ™" — 0.0215 z; + 0.0425 5 — 0.00657 d.
Computation with the methods proposed H0][ providesy..(I') < 32.9194, 7,,(0) <
0.2975, andv,(©2) = 1. Letn = 1 which givesy,.(Q) + 17(0) = 1.2975. By
choosing different values fakZ,, andn, different bounds can be obtained. For now, we
chooseM,, = 20. Thereforen2 (®) should satisfy
22 (@) < M, (—M%oJEQ) — 1o0(0)
p 1) 7eo (')

{ﬂ H is depicted in Fig.7.9. Let us takeD as the region where

= 0.0271. (7.9)

oo versus

[®(,d)
x

d

oo

ledle - 0049, ie. 42 (®) = 0.027. Consequently, = 0.049 andry = 0.049.

xr
d'oo

_ _ 12 (®) 700 (T) _ ;
Lete = 0.048 andd = 0.0023 < O T ©) D @) € = 0.0024. According to

Theorem3.3.2 for any inputd which satisfieg|d||z,, < min(nd, ;) = 0.0023 and any

initial state satisfying|zo||cc < ¢ = 0.0023, x is bounded afz||-. < e = 0.048. In other
words, if —2.3mm < d < 2.3mm, 14.77cm < Hjg < 15.23cm and8.77cm < Hyy <
10.23cm then10.2cm < H; < 19.8cm and5.2cm < Hy < 14.8cm.

Now, Letn = 4. Therefore s (Q2) + 77:0(0) = 2.19. By choosingM,, = 22, 72 (®)

should satisfy Y @ )
p — Yoo — Mo
(Mp + n)7voo (L)

7P (@) < = 0.0231. (7.10)
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Table 7.2: Bounds obtained by varioggind M,,.

A [zolloo < [ldllze < N2l <
" no My (inmm)  (inmm)  (in mm)
0.1 8 5.8 0.58 45
0.1 20 5 0.5 50
1 20 2.3 2.3 48
0.06| 3 19 1.7 5 30
4 22 1.4 5.6 30
5 24 0.51 2.6 12
8 38 0.72 5.7 28
10 120 0.4 4.1 48
0.1 2 12.5 1.25 21.5
0.03 1 9 4.58 4.58 38.2
' 10 15 1.13 11.3 16.5
100 130 0.11 11 15

oo

Let D be the region whereZ (®) = 0.023. Hence,% < 0.0302 in D. Thus,
i)
r, = 0.0302 andr; = 0.0302. Lete = 0.03 and
1 —72(2)700(T)

Vo0 (©2) + (700 (0) + 72 (®) 700 (I'))
According to TheorenB.3.2 for any inputd which satisfieg|d||;,, < min(nd,rq) =

0 =0.0013 <

¢ = 0.0014. (7.11)

0.0056 and any initial state satisfyinfjzo||. < ¢ = 0.0013, x is bounded agz|... <
e = 0.03. In other words, if—5.6mm < d < 5.6mm, 14.86cm < H;o < 15.14cm and
9.86cm < Hyg < 10.14cm thenl2cm < Hy < 18cm and7cm < Hy < 13cm.

By choosing other values farand M, other bounds can be obtained. Moreovezan

also be changed to acquire required bounds. For examplg,4ef.03. By minimizing

il

A ( —-0.0204 —-0.0171 > . B= ( 0.0124 > ' (7.12)

Yoo (I') * Yoo (@) In @ local region <7 = 0.03, we obtain

0.0262 —0.0347 0.0001

For this case%
dl

7 = 0.06 cases, some of the results are summarized in TaBle

Vversus

B} H is depicted in Fig.7.1Q For both# = 0.03 and

7.4 Chapter Summary

Based on Theorerd.3.2in Chapter4, a method proposed to study disturbance attenuation

of closed-loop nonlinear systems. The physical plant umd@mination is a multitank
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system. First, the mathematical model of the plant is ddnxseng physical concepts. Then,
the parameters of the model are identified by the gray boxadetfinally, the disturbance

attenuation of the closed-loop plant controlled by a prtipoal controller is investigated.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

In this thesis, different algorithms are developed to peviiecessary tools for designing

multi-model control systems for nonlinear systems. Theomapntributions are:

1. New representations for nonlinear systems, cajle@dnd (45 representations, are
proposed. In thé 4 representation and its extended version for forced systéms
representation, a nonlinear system is arranged as a fdedftecconnection of a
memoryless nonlinearity and a linear system with initiatestas an input signal. Al-
though interconnection of a memoryless nonlinearity witmear system has been
widely used in literature, the way the initial state is dedth is the main difference
between our decomposition and traditional ones.{Anand {45 representations,
the initial state contributes to the feedback interconnacés an exogenous input
while in traditional methods, any change in the initial stet handled by defining
a new operator. Thé4 and(4p representations can be used to develop new tools
for non-zero state nonlinear systems from the input-outipeiory methods, as pre-
sented in this thesis. In other words, the fact that¢heand (4 representations
convert a nonlinear system with non-zero initial state t@malgination of a memo-
ryless nonlinearity and a linear system with some inputaigand the way initial
state is handled by these representations provide a na@wpuint on all aspects of

investigating nonlinear systems.

2. A new framework is developed for the analysis of stabibitgystems by the 4, and
(ap representations. The effectiveness of this usage is atigghin the fact that using
these representations, stability of nonlinear systemis mdn-zero initial states can

be investigated by the input-output stability methods amadbikty is interpreted as
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input-output stability of the resulting feedback systemgecisely, new methods are
proposed to check stability in the sense of Lyapunov for daraed nonlinear system
by norm of some relevant operators, without finding any Lyegwdlike function. For
local stability, a method developed to find some local ardasnd Y, where the
initial statex belonging toA implies the state staying insidé area. The methods

are also extended to forced systems.

. A new method is proposed to compute an upper bound ofthg, and L., norms
of a class of nonlinear systems. The method is based ot tled (4 represen-
tations of nonlinear systems. A method is also proposed tbadmupper bound on
inducedZ, norms. The second method, Theoréri.2 provides tighter bound for
the casep = 2. Both proposed methods suffer from a restrictive conditi@nother
tool is developed to overcome this restriction with the afsproviding only local
conditions, namely, an upper bound on system output for dedimnput and initial

state, and being restricted fy, induced norm.

. Based or{4 and (g representations, methods are proposed to compute an upper
bounds on the gap metric and the corresponding stabilitgim&or a class of non-

linear systems.

. The minimum gain of operators is defined, some of its ptmxare derived and
some computational methods are developed to calculate itienom gain. For ex-
ample, it is shown that the minimum gain satisfies the pdsitiand the positive

homogeneity properties but fails to satisfy the triangkqumality.

. Based on the minimum gain of operators, the large gairréineds stated. The large
gain theorem asserts that the feedback loop will be stathe iminimum loop gain

is greater than one.

. One of the algorithms, which is developed to compute oreuppunds o, norm

of nonlinear systems, is deployed to study disturbanceadtion of a closed loop
system. The system of interest is a multitank system camngisf three tanks placed
one above another. Itis assumed that a proportional ctettielused to control the
level of the liquid in one of the tanks. The mathematical madfehe open loop

system is derived using physics of the plant. The gray bontifieation method is
used to identify the model parameters and the disturbanepuattion of the system

is investigated by the proposed method.
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8.2 Future Work
Some future directions for extending and improving the lissaf this thesis are as follows:

1. Some of the results are already extended to discretensysteis useful to check the

applicability of all results on discrete and multirate gyss.

2. Almost all of the results are developed based on genexsées of nonlinear systems,
ie.
Ny :a(t) = fi(t =(1)) (8.1)

No: i(t) = folt, 2(t), u(t)). (82)

It may be useful to restrict systems to a narrower class. ¥amele, one may obtain

tighter bounds on th€ ., norm of systems by restricting the system of interest to
N3 : @(t) = fut,z(t)) - fo(t, u(t)). (8.3)

3. The(4 and( 4 representations convert a nonlinear system with non-néialistate
to a combination of a memoryless nonlinearity and a lineatesy with some input
signals. The way the initial state is handled by these reptations provides a novel
viewpoint on all aspects in investigating nonlinear systexive have use¢ls and(ap
representations in developing all the results presentédisrthesis. One interesting
work is to use the 4, and (45 representations to study other aspects of nonlinear

systems, such as observability, and develop new tools lmasttbse representations.

4. The tools that are developed in this thesis can be usedtgrdmulti-model control
systems. It would be interesting to design a multi-modelr@system based on the

proposed tools.
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