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Abstract

In cladding design, it is always desirable to achieve optimal utilization of material
while the imposed design constraints are satisfied. This optimization problem is usually
solved by designing cladding profiles that require the minimum amount of material to
cover a given width or by using profiles that provide maximum strength for a given
amount of material.

A numerical procedure, the method of local variation, is developed and tested to
search for optimal cladding profiles that have the maximum resistance to bending stress
and satisfy the coverage requirement for a given amount of material. The loading
condition on the claddirgs is assumed to be pure bending and the maximum compressive
stress on the cladding cross-section is assumed to be less than the critical buckling load.
Thus the objective of the optimization is to obtain cladding profiles that have the
maximum section modulus while satisfying the constraints.

Three different cladding configurations including the doubly symmetrical
corrugated, sandwich and non-symmetrical are considered. Sample results of each case
are discussed and the characteristics of the claddings related to some design parameters

are also presented.
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Chapter 1 Introduction

Because of its strength to weight ratio and ease of erection, corrugated cladding
has been widely used for roofing and siding in building since the late eighteenth century.
In recent years its usage has been extended to flooring system for buildings and bridge
construction1].

In the above applications, the loadings on the cladding can be due to its own
weight, waterproofing, insulation, snow, rain, wind as well as loading during
construction or maintenance. While the last two types of loading are concentrated, the
former are usually considered as uniformly distributed. The general analyses of
corrugated claddings can use either folded plate theory or orthotropic plate theory,
however, for simplicity and design purposes the cladding can be considered simply as a
series of li~".ed beams with each trough acting as a single beam[2]. As the cladding used
to support these loads is long compared to the cross-sectional dimensions, the major
internal stresses are due to bending.

In [3], the cross-sectional profile of a doubly symmetric thin-walled beam under
pure bending was considered. Using a variational formulation, profiles that yield the
maximum section moduli and satisfy a dimensional constraint in width were obtained.
Although these profiles were intended for thin-walled beams, they can be adopted to
cladding design if the cladding has a doubly symmetric profile and is under only pure
bending. This analysis did not consider the possibility of buckling.

Seaburg[4] developed a computer program to determine cladding profiles that

require 2 minimum amount of material(minimum weight) to cover a given width whiig



the cross section also satisfied other constraints such as a maximum permissable stress.
Optimization was accomplished by combining a search technique with non-linear
programming based on the provisions given in the American Iron and Steel
Institute(AISI) Cold-Formed Steel Design Manual[5]. In this analysis post-buckling
behaviour of the cladding was considered as in the AISI specification which incorporates
the concept of effective width design for flat compression elements. In the specifications
the effective width is formulated as a function of the actual compressive stress acting on
the cladding and cladding dimensions.

The goal of both [3] and [4] was to achieve maximum utilization of material by
using the appropriate cladding profiles. The objective of optimization in [3] was
maximigation of beam resistance to bending stress and was weight minimization in [4].
Both of these authors achieved optimization by means of mathematical modelling or
mathematical programming.

The objective of this study is to minimize bending stress due to a pure bending
moment acting on the cladding by designing the appropriate profiles which also satisfy
the imposed dimensional constraints. However, instead of using an analytical approach
to obtain the profiles, a numerical procedure, termed the local variation method, is to be
used. The basic principal of this technique is drawn from the paper by Chernous'Ko[6]
and is essentially a procedure in which the geometry of an initial profile is perturbed in
a systematic way. Any profile that satisfies the required constraints and provides a
higher(or lower) value of the desired property is retained and the perturbation and

calculations are continued on the retained profile. This process of alternating the



geometry is continued until no further improvement can be made. In this way
mathematical modelling of the problem is not necessary as the actual geometry and its
properties are generated and evaluated in an approximate manner.

In [4] the hat-shaped cladding profile was defined by circular arcs and tangent
lines. With this approach, only limited types of profile geometry can be described and
may not be a good approximation of the optimal shape. Because the local variation
method allows the cladding be perturbed to any shape as long as the imposed constraints
are met, the final solution will not be limited to a specific type of geometry.

In this study, the cladding is assumed to be under pure bending and the magnitude
of the maximum compressive stress is assumed always less than the buckling load.
Instead of considering the whole cladding, a single trough of the cladding as shown in
figure 1-1 is considered and treated as a simply supported beam. Although the post-
buckling properties are not considered in this technique, they could be determined with
the AISI provisions.

In the following sections, details and the computer algorithm regarding the local
variation method are presented. The numerical procedures employed are tested by
comparing results with those shown in [3] as well as with some limiting cases. Three
different cladding configurations, including the corrugated, sandwich and non-
symmetrical as shown in figure 1-2, 1-3 and 1-4 are investigated and the general results

concerning the trends shown are discussed.
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Figure 1-1: A trough of a corrugated cladding
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Chapter 2 Numerical Procedure Development

In this chapter, details describing the algorithm of the local variation method are
presented. Findings on verification and characteristics of the numerical procedure are
also discussed.

2.1 Computer Program Development

Consider a cross-section in the x-y plane under pure bending M, parallel to the x

axis which coincides with the centroidal axis of the cladding as shown in figure 2-1.

The maximum stress, o, acting on the cross-section due to the bending is:

x

o=M< @2-1)
X

where ¢ = maximum compressive/tensile stress along the z-axis
I, = area moment of inertia of the cross-section about the centroidal axis

¢ = maximum y distance measured from the centroidal axis to the extreme point

From equation (2-1), the magnitude of o is proportional to the geometric ratio ¢/I;
of the cross-section. Thus to minimize ¢ for a constant M,, it is necessary to maximize
the section modulus Z=1/c.

In designing a cladding profile of constant thickness ¢,, with coverage / and a
contour length u,, it is often desirable to use the optimal profile which has the highest
section modulus while other imposed dimensional constraints such as height are satisfied.
While there arc several techniques which can be used to maximize Z, a numerical
procedure termed the local variational method is employed.

The basic principal of the local variation method is to systematically construct

numerous profiles which satisfy the constraints and the one with the highest section



modulus is selected to be the optimal profile. To obtain the optimal profile, the local
variation method is divided into two steps. At first an approximate profile, the
0 solution, is obtained and based on it the optimal profile is then obtained.

Consider the upper half of an anti-symmetrical profile shown in figure 2-2 which
consists of m(4 in this case) straight segments of equal length Au with its centroidal axis,
the axis of symmetry, coincident with the x-axis. Any geometric changes of the upper
half will result in similar changes in the lower portion so that the centroidal axis is
always the axis of symmetry. Without changing the contour length u., new profiles can
be constructed as shown in figure 2-3 by changing the angle 8 of each segment to 6+Af
or 0-A9 where A0=A0, or keeping 0 at its original value. Thus including the original
position, each segment will have 3 possible positions.

The theoretical number of new profiles that can be constructed depends on the
number of segments employed and the end condition imposed on the left end of the first
segment while the end of the last segment is fixed. Referring to figure 2-4, for 4
segments and including the original profile, the maximum number of new profiles are,
34=81 (free-end), 2x3*=54 (slide-end) or 2x3?=18 (fixed-end). However, as the
coverage constraint must always be satisfied, only the slide-end or fixed-end condition
is allowed. Thus the maximum number of new profiles will either be 54 or 18. For 8
segments, the corresponding number of new profiles are 3'=6551, 2x3'=4374 and
2x3%=1458. The actual number of new profiles depends on the magnitude of Af, chosen

and could be less than the theoretical values when a relatively large Af, is used.



As seen in figure 2-4 for the slide-end condition the coordinate values of point 1

are calculated by:
Y=Yy Au-(x,—x,)? 22)
where x; = constant.

For the fixed-end condition the coordinate values of point 2 are found, depending
on which of the two situations shown in figure 2-5 and 2-6(case 1 and 2 respectively) that

the segments are in, from:

case 1
X,=X,5 + hxsinf 2-3)
- 2-4
¥,=¥y3 + hxcosp -4)
case 2
x,=X,, + hxsinp 23)
- 2-6)
¥,=Yy3 ¥ hxcosp (
where
7. 5% 27
xl3 2
Ty @6
2
h =J pgr- T 000 29)
4



Equations (2-3) to (2-6) are valid only if Au;=Au,. More general equations (2-10) and
(2-11) which equate the length of Au; and Au, may be used to solve for the coordinate

values, x, and y, of point 2. These are:

Au,=(x, %)+ -y)* (2-10)

Buty= a2+ 0y )" @D
However, only one of the two possible locations of point 2 may be found if {2-10) and
(2-11) are solved numerically. On the contrary equations (2-3)and (24) or
(2-5) and (2-6) guarantee that both of the possible locations of 2 are obtained as long as
Au is prescribed to be the same for both segments. Coordinate values of other points are

calculated using:

(2-12)

= ofA 27
x,=%,,,+Auxcos(8, +jxA6)

Yo=Y,y * Auxsin(6, +jxA 6) (2-13)

j=0,z1
At every local variation procedure, sets of maximum 54 or 18 profiles are
constructed for each 4 consecutive segments considered. The profile or which the
variation is based, is replaced by the intermediate profile which has the maximum section
modulus among the set. Based on the intemedia& profile, another set of profiles is
constructed with the same 4 segments and the process of replacing and constructing
profiles is continued until no profile with higher section modulus can be found. The

procedure is shown in figure A-1 in the appendix.
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To determine the section modulus Z, the area moment of inertia /, and the
maximum distance.c must be determined. In this study /, is approximated by summing

the area moiiient of inertia of each segment with respect to the centroidal axis. I, is

calculated from:
»n
1=Y AL (2-14)
n=1 .
t Au’
Al =-—sin’@, +t Auy? (2-15)
12 ne
;=__’~*2’~'l 2-16)

where m = total number of segments
Al = area moment of inertia of a segment above the centroidal axis.

Because cladding profiles are approximated by straight line segments, the value c is
defined as the maximum distance in y direction measured from the centroidal axis to the
end points of the line segments plus material thickness which is half of the cladding
thickness in this case.
2.3 Determination of the Approximate Optimal Solution

To find any so-called O solution, all the segments must be involved in the
variation procedure. For example, given the profile shown previously in figure 2-3 as
the starting profile and not constraining the height of the profiles, a slide-end variation
procedure involving 4 segments with A6=46, at an arbitrary value is used to find the
profile with the highest possible section modulus.(An 8-segment slide-end procedure

would be used if the starting profile has 8 segments.) When no further improvement on

10



Z can be made, A0 is halved(A8=0.5A6,) and the variation procedure is repeated. The
last intermediate profile found, after A6 has been decreased, is the 0 solution. A flow
chart concerning the procedure of obtaining the approximation is shown in figure A-2.

Ideally, the more segments used in finding the 0 solution the closer it will be to
the optimal solution as more profiles can be considered. However, computation time
increases dramatically as the number of segments is increased.

2.4 Determination of Optimal Profile

To determine a better approximation to the optimal solution, the 0 solution is
subdivided into more segments. For example, as shown in figure 2-7, if a 4-segment 0
solution is used, it is doubled to 8 segments. Thus m, the total number of segments
becomes 8, and the length of each segment is reduced from its original length Au, to
0.5Au, by dividing each segment at its mid-point.

Instead of involving all 8 segments in each variation as was done to obtain the 0
solution, only 4 consecutive segments are used. With A@ now at 1/2 of its original value
A6, the variation procedure is first performed on segmest n=1 including segment 2, 3
and 4 then in sequence on n=2,3...m-3. In this manner the profile geometry is changed
locally at each variation because only 4 segments are involved at each time and the others
are left unchanged. In addition, the peocedure is repeated in sequence on segments
n=1,2,3...n-1 after it was performed on segment n because a better profile may not be
able to be constructed until geometry of segments n, n+1, n+2 and n+3 have been
changed. Following this, A@ is again decreased now to 0.25A46, and the above local

variation procedure is repeated until there is no improvement in section modulus when

11



variation procedure has been performed on all m segments. Calculation was terminated
after 32 segments have been used as no significant improvement ( <0.01 %) in Z resulted.
The flow charts which show the procedure employed to obtain the optimal solution and
the compleie local variation method are shown in figures A-3 and A-4.
2.5 Verification of the Numerical Procedure

The local variation method was tested by comparing optimal profiles given in [3]

and shown in figures 2-8 and 2-9 which were obtained using variational calculus. The
axes X and Y are non-dimensional with respect to the contour length, u,.=1. The

profiles shown are an approximation of the plots of the profiles published in [3] because
a numerical description of the profiles is not available. Heights of the profiles in [3]
were not specified prior to calculation but were determined in the process of finding the
optimal profiles.

Figure 2-10 and 2-11 are profiles obtained using the numerical procedure which
satisfy the same dimensional constraints imposed in figures 2-8 and 2-9. They again
represent a quarter of a trough of a doubly symmetrical cladding. The section moduli
of the profiles are also listed and are calculated with respect to their centroidal axes
which, due to symmetry, is the base line of each figure. For each of the profiles
obtained, the starting profile used was a straight line consisting of 4 segments, and the
initial angle of variation A8, was §.1 rads. In terms of section modulus, the results show
that the numerically obtained profiles match closely with the profiles given in [3] for all
values of coverage | an %iso generally match in terms of the predicted shape for cases

including /=0.25 an /.43, Profiles 3, 4 and 5 in figure 2-10 have a section modulus

12



at most 9% higher than the given profiles shown in figure 2-8. This discrepancy may
be due to inaccurate reproduction of the profiles in [3]. While profile 1 in figure 2-9
with u,=5.33 and /=1 cannot be reproduced by the numerical procedure; the trend can
still be seen in figure 2-11. The two solution differ by only 3% in numerical value.
2.6 Characteristics of the Numerical Procedure

In using the technique outlined above to determine optimal profiles, only a few
parameters must be specified to begin. These include the initial angle of variation, Af,,
number of segments used in the starting profile and an initial shape. It is of interest to
ascertain the effect which these initial parameters have on the final answer.

To investigate the effect of Af,, all profiles in figure 2-12 were obtained with the
same contour length, coverage, and starting profile but with different Af,. Although an
unique profile was not obtained as it was expected, the section moduli of the final
profiles were very close. Except for the one obtained with A0,=0.6 rads, about 34°, the
maximum discrepancy in Z among the profiles is less than 0.5% while the maximum
discrepancy in height is 8%.

The insensitivity of section modulus to profile height can be expiained with
reference to equation (2-1) since I, increases as ¢ increases. Thus the overall effect on
section modulus, I/c, will be small. Similar characteristics were observed for other
values of coverage. This implies that a considerably large tolerance is allowed in
reproducing the optimal shape during fabrication as profiles which are in the vicinity of

the optimal profiles have similar section moduli.
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Profiles shown in figure 2-13 were obtained to determine the effect of the number
of segments. Profiles a and b which have a coverage of 0.58 were obtained with a
straight line starting profile with 4 and 8 segments respectively. Their section moduli
are within 0.01% although their geometries do not look similar. Profiles d and e were
obtained by conducting the similar test with /=0.25. Their relative difference in Z is
1.6% and profile d which was obtained with a 4 segment starting profile has a higher
section modulus then profile e. In this case the fact that a 4-segment starting profile
yielded better results than an 8-segment starting profile is due to the shape of the optimal
solution accidentally having a coverage to height ratio of 1:3.

The effect of shape of the starting profile is not significant as long as the
approximate optimal profile are used before calculation of the final profile begins.
Failure to do this can result in determining only a locally optinial solution rather than the
global one desired.

To conclude, it has been determined that the ability of the numerical procedure
to find the optimal profile depends mainly on the number of segments used in the starting
profile to generate the so-called 0 solution profile. In general, the use of a 4-segment
and an 8-segment starting profile will both yield optimal profiles that have a very similar
section modulus except when there are discontinuities (abrupt changes in geometry) in
the optimal solution. As the shape of the optimal profiles cannot be foreseen for many
cases, caution must be taken when using the numerical procedure and the genuineness
of any calculated optimal profiles should be tested by using starting profiles with different

numbers of segments to check the final result.
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Figure 2-4: Possible end conditions
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Figure 2-5: Solution method(case 1) for point 2
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Chapter 3 Symmetrical Claddings

The previous chapter included the description and verification of the local
variation method. Solutions for doubly symmetrical corrugated cladding will be
completed in this chapter. In addition, application of the numerical procedure to other
similar optimization problems including the necessary modifications of the procedure will
be presented.

3.1 Numerical Results for Corrugated Configuration

To demonstrate the usefulness of the optimal profiles, figure 3-1 illustrates s2veral
simple profiles and the optimal profile which has the same contour length and coverage.
The contour length chosen was 1.571 so that a circular profile(3) can also be used for
a coverage of 1. Profiles 1, 2 and 4 correspond to a triangular, a rectangular and the
optimal profiles respectively. Among the four shown, the triangular and the rectangular
profiles have section moduli which are 23% and 18% less than the optimal. The circular
shape which is similar to the optimal is only 5% less. Clearly more effective use of
material is achieved with the use of the optimal profiles.

Profile 1 in figure 3-2 is the approximate shape of a commercially available
corrugated cladding which has been scaled so that its coverage is also 1. Profile 2 is
constrained to have the same height as profile 1 and it shows that a 2% higher section
modulus can be achieved without changing the height constraint. Profiles 2 and 3 are
the optimal profiles obtained with the same contour length and coverage as the
commercial profile but which have different constraints. When the height constraint is

relaxed, profile 3 yields a 4% gain compared to the commercial prefile. Althougha 2%
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or 4% gain may not seem worthwhile, a considerable saving in material cost is possible
in large scale manufacturing.

For a fixed contour length, u,, the shape of the optimal profile is a function of
coverage and height constraints. If the height constraint is relaxed, the profile shape is

governed only by a parameter R defined as the ratio of contour length to coverage.

=< (3'1)

Figure 3-3 shows the profiles with various R values for 4.=1 and ¢.=0.01.
According to [3] profiles with R equal to or larger than 4 have shapes similar to profiles
1 in figures 2-8 and 2-9 whose ratio of material placed horizontally to material placed
vertically is always 1 to 3. All these profiles which have R>4 have the same section
modulus.

The section moduli of profiles shown in figure 3-3 are plotted against their
corresponding R values(up to 4.0) in figure 3-4. For clarity, the corresponding profiles
for some R values used in figure 3-4 are not shown in figure 3-3. From figure 3-4, it is
noted that section modulus increases until a steady value of approximately 3.720% 10°
has been reached. This means, for example, that while for an increase in R from 2.8 to
4.0 the section modulus increases by 0.6% from 3.698x10° to 3.720x10”. The
corresponding reduction in coverage from 0.35 to 0.25 is 31%. Thus with a large
reduction in coverage, little is gained in Z. Obviously for a given contour length, a
moderate value of R should be chosen so that a high section modulus is complemented

with a relatively large coverage.
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3.2 Program Modification and Verification for Sandwich Configuration

The numerical procedure used in optimizing the section modulus of a corrugated
cladding can be modified to solve other similar optimization problems. Consider a
sandwich corrugated cladding as shown in figure 1-3 which is under pure bending M, and
has two flat panels of thickness ¢, welded to the top and bottom of a corrugated cladding,
termed the cladding core.

To determine a cladding core profile that produces the maximum section modulus
for sandwich cladding, the numerical procedure was modified to account for the effect
of the flat panels added to the cladding core’s profile.

By adding an additional term to equation (2-14) to account fer the moment of

inertia contributed by the flat panels yields:

z-_k (32
Yt 0.5¢,
L=Y AL +2tly, (3-3)

3-4
¥,= yw+0‘.5(tc+tp) -4

where y,,..=maximum y coordinate of scgment end points measured from the centroidal
axis. The maximum distance between the centroidal axis and the outermost element, ¢
in equation (2-1), in this case is the maximum y coordinate of the segment end points,
Ymars Plus half of the thickness of the cladding core, O.St; and the thickness of the panel,

1,. As the thickness of the flat panels are set equal, the axis of symmetry is also the
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centroidal axis. Again, due to symmetry, only a quarter of the profile is needed to be

considered in the following.

The modified procedure was tested for some limiting cases because there are no
existing results for verification purposes. Figure 3-5 shows the optimal profiles obtained
with the same u,, £, and ! but different panel thickness, 7,. For clarity, the panels which
are on top of the claddings are not shown. For the limiting case when £,=0, the
resulting cladding core profile is expected to be the same as the corrugated claddings,
obtained in the previous section, with the same u_ and coverage. As expected, the profile
with £,=0 in figure 3-5 is identical to profile 2 in figure 2-10 and yields the same section
modulus.

When 1, increases the profile height also increases as can be seen by considering
equation (3-4). The second term becomes dominant as ¢, increases and the section

modiylus is mainly contributed by the panel. Equation (3-2) reduces to approximately
Z=2y, (3-5)

provided that ¢, is still small in comparison to y,. Asa result as shown in figure 3-5, the
optimal profile will tend to be taller.
3.3 Numerical Results for Sandwich Configuration

It was shown previously that the optimal shapes of the corrugated claddings can
be generalized to be a function of the contour lengti\ to coverage ratio, R, regardless of
cladding thickness. Similar genezalization is not possible for the sandwich configuration
whose optimal shapes depend on both the thickness ratio, R,=1,/t,, and R. To illustrate

the effects of these two parameters, a family of sandwich panels constructed with the
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same volume of material(V ), 0.0 ¢ cubic units in this case, but with different coverages
are shown in figure 3-6. The coniour lengih 3. thickness of the cladding cere were set
respectively to 1 and 0.01 so that the pans? Hiciness and the thickness ratio, change
with the coverage proportional to 1/R. Bz st de spar of the panel is assumed to be
1, the panel thickness can be calvulated &-.

RF-ta0
t=
P 2u

L4

(3-6)

As seen in figure 3-7, tue section modulus of the sandéwich ci:ddings increases with R,
again at a decreasing raiz. Uniike the corrugated ciadding case in which a constant Z
value was obtained with a cymiparatively low R value, a relatively constant section
modulus was not obtained until R approaches 6.0. This implies that one can always
increase the section modulus by choosing a bigger R while ¢, and u, are kept constant.
However, this may not be justified due to the loss in coverage.

Figure 3-8 illustrates the effectiveness of an optimal cladding core profile by
comparing the section moduli obtained based on 5 cladding cores of the same contour
length and thickness but of different shapes. Profiles 1 and 2 are a rectangular and a
triangular profile while profile 4 and 5 are the commercial available profile and the
optimal profile obtained without height constraint(shown in figure 3-2). Profile 3 is the
optimal cladding core obtained with the modified procedure. The thickness ratio is 1 in
all cases. The rectangular profile and the optimal profile yield the ldwest and the highest
section modulus at 1.117x10? and 2.289 x 10? respectively so that a significant gain in

section modulus results if the optimal cladding core is used.
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Although the Z value for the triangular core is only 0.8% less than the optimal
value for this case, this may not hold for sandwich cladding with other thickness ratios
and contour length to coverage ratios. The relative difference in Z among the optimal
and other profiles is a function of the values of R, and R. A large deficiency in Z may
result if the optimal core profile is not used.

Another observation from figure 3-8 is that section modulus is higher for
profile 4, the commercial corrugated profile, compared to profile 5 which is its optimal
cladding profile without sandwich panels with the same contour length and coverage.
This is because the added panels have a greater effect in increasing the section modulus
with profile 4 due to the fact that the flat panel is at a higher location than it is with
profile 5.

Because the thickness ratio R, affects the shape of the cladding core, it is
interesting to note its effect on the section modulus. Suppose a fixed volume of material
is provided to construct a quarter of a sandwich cladding having a given coverage.
Keeping the cladding thickness ¢, constant and depending on the thickness ratio, the
contour length of the core u, is:

_(V-2Rg, 1)
t

[

G-

(4

when the span is 1. For V=0.0143, /=0.43 and ¢,=0.01, figure 3-9 shows profiles
obtained with various values of thickness ratio R, and contour length while figure 3-10
plots their section moduli against R. From figure 3-10 , it is seen that the section

modulus decreased by 48% with the increase of R, from O to 1.0. Because the panel

26



thickness equals to O for R,=0 and Z is at its highest value whe:: R,=0, it can be
concluded that a simple corrugated configuration provides the highest section modulus
of any sandwich configuration for any thickness ratio if a fixed volume of material and
fixed cladding thickness are used. From the trend shown in figure 3-10, the implication
is that if a sandwich configuration with a set cladding thickness is to be used, the panel
thickness should be minimized so that material can be used to increase the contour length

instead of the panel thickness.
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Chapter 4 Non-symmetrical claddings

This chapter is devoted to application of the local variation method te problems
in which the cladding profile is non-symmetrical about the horizontal axis. For example,
if the thickness of the panels for the sandwich configuration shown in figure 1-3 are not
equal or only one panel is used as illustrated in figure 1-4, non-symmetrical profiles will
result. In this chapter, the later case is considered. Due to this non-symmetrical
properties, the location of the centroidal axis can no longer be predicted but has to be
determined at every variation. Because there will be only one axis of symmetry for each
complete profile, half of the profile will be considered instead of a quarter of the profile
as in the doubly symmetrical or sandwich case. The necessary modifications to the
numerical procedure for this application will be discussed in the following together with
the verification of the modified procedure and some sample results.

4.1 Program Modification and Verification for Non-Symmetrical Configuration
The numerical procedure was modified so that the centroidal axis is determined

whenever the cladding geometry is altered during the variation process. In this way the

section modulus can be determined accurately. The y coordinate of the centroidal axis

is found from:

n
Y yaue +ytl
=2l @1)
m
Y Aue+t]

=1

[

As was the case for the sandwich claddings, no existing result can be used to
verify the modified procedure so that limiting cases were used. The profiles obtained
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are expected to vary with the thickness ratio R,, and the coverage. When £,=0, the final
profiles should be symmetrical and are the same as those obtained in chapter 3 for the
doubly symmetrical claddings for the same contour length to coverage ratio R and same
constraints.

Figure 4-1 and 4-2 show the results obtained for the non-symmetrical case using
the modified procedure with #,=2 and ¢,=0 at various R values ranging from 1.2 to 4.0.
The starting profile for all the half profiles obtained was a straight line which was
divided into 4 segments for figure 4-1 and into 8 segments for figure 4-2. The initial
angle of variation Af, was at 0.1 rads for all half profiles and there was no consiraint on
profile height. Both figures show that all half profiles obtained are symmetric about their
centroidal axes which are located at the midpoint of the two extreme points in the y
direction. The column corrugated’ in Table 4-1 lists the section moduli of a half of the
doubly symmetrical profiles shown in figure 3-3. It shows that in terms of the section
modulus, the profiles obtained with a 4-segment starting profile show larger deficiencies
in comparison to results obtained for the corrugatd configuration shown previously in
figure 3-3 than those obtained with an 8-segment starting profile. To obtain the quarter
profiles shown in figure 3-3, a 4-segment profile was used; however this meant that only
2 segments were available for each half of the profile in figure 4-1. This resulted in an
insufficient number of degrees of freedom to obtain good approximate optimal solutions.
With.an 8-segment starting profile which is equivalent to 4 segments per quarter profile,
the obtained section moduli are much closer to those shown in figure 3-3. Figure 4-3

shows the bottom half of each of the profiles in figure 4-2. The shape of profiles with
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low R values are quite comparable to those in figure 3-3, but deviate more and more as
the R value increases. Nevertheless, the section modulus is still very comparable with
a maximum deficiency of 3.3% at R=2.6.

The profiles in figure 4-4 have the same contour length and coverage but with a
different panel thickness. For clarity, the flat panel located at the top of each cladding
is not shown. As the panel thickness increases, the cladding profile deviates further from
its original symmetrical profile. In fact, a level region develops at the bottom part of the
profile as the panel thickness increases. Such phenomena shows that the modified
procedure is functioning properly because the maximum distance ¢ in equation (2-1) is
kept small while a higher area moment of inertia I is attained. The net result is that
high section modulus is obtained.

In summary, the validity of the modified procedure to obtain optimal profiles
without assuming symmetry appears justified. Instead of a 4-segment starting profile,
8 segments should be used to provide sufficient degrees of freedom.

4.2 Numerical Results for Non-Symmetrical Cunfiguration

To investigate the relationship of a profile’s section modulus to its coverage, a
family of non-symmetrical profiles, as shown in figure 4-5, which have the same contour
length and cladding core thickness but different coverage were generated. A fixed
volume of material V, 0.025 cubic units, was used to construct both the cladding and the
flat panel. The cladding thickness and contour length are arbitrary chosen at 0.01 and
2 respectively while the coverage is determined by the contour length to coverage ratio

R. When span is chosen as 1, the panel thickness can be determined from:
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Figure 4-6 shows the section modulus as a function of R up to 4.0. It is noted
that the rate of increase in section modulus decreases with R and an asymptotic value of
approximately 11.20x10? is attained for R=3.4 and R,=0.85. Thus, it can be
concluded that the optimal profile will be essentially a right angle when R>3.4 and
R,=0.85. No further improvement in Z can be made by increasing R for the same
volume of material when ¢, and u, are kept constant. As an illustration for situations
before this limit is reached, figure 4-7 shows the assembled configuration of a non-
symmetrical cladding which has R=2.0 and R,=0.50.

Figure 4-8 compares the shape and section modulus of an optimal profile with that
of three other profiles which are a rectangular(l), a triangular(4) and a symmetrical
corrugased profile(3) previously shown in figure 3-3. All the profiles have the same
contour length and cladding core thickness while R and panel thickness are chosen at 2
and 0.01. As shown, the optimal profile provides the maximum section modulus which
is about 40% higher than the triangular profile and 33% higher than profile 3.
Compared to the rectangular profile, the optimal profile is still 5% better. Considering
the resulting section modulus of profile 3, it can be seen that symmetrical profiles are no
longer optimal for applications in which the centroidal axis does not coincide with the
axis of symmetry. This is true especially when thickness ratio is relatively high(0.2).

Obviously material is under utilized when the optimal profile is not used.
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To investigate the effect of thickness ratio on section modulus, the profiles in
figure 4-9 were constructed for sections with the same volume of material but having
different thickness ratios. Setting the cladding thickness and coverage constant at 0.01
and 1, the contour length u, for a thickness ratio R,, is calculated from:

u, =Z-i—R‘t£ 4-3)

c
The result shows that similar to sandwich claddings, increasing the thickness ratio results
in a drastic decrease of section modulus when ¢, is kept constant(figure 4-10). Because
maximum Z is obtained at R,=0, the symmetrical corrugated configuration again proves
that it is more efficient than either the sandwich or the non-symmetrical configuration for
the same cladding thickness. Shoulﬁ a non-symmetrical cladding of a given 7, be
constructed, the panel thickness should be minimized and more material should be used

to increase u, so that highest section modulus can be obtained.
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Table 4-1: Comparison of section modului for non-symmetrical profiles obtained with
starting profiles with 4 or 8 segments

Z of a quarter profile (10%) Relative difference (%)

wrt Corrugated

R Cor;ggat— 4-segment | 8-segment | 4-segment | 8-segment
12 | 5074 | 4876 | s0s4 | 39 0.4
14 | 6178 | 6090 | 6146 | -14 0.5

| 16 | 6m6 | 6612 | 6608 | 17 | 04
| 18 | 70 | 6990 | 6958 | -02 0.6
“ 20 | 7172 | 7088 | 7150 | -1.2 0.3
22 | 721 | 713 | 70600 | -19 2.9
“ 2.4 73%0 | 6832 | 7314 | -638 0.2
26 | 7402 | 6856 | 7156 | 14 33

| 28 | 7400 [ 670 | 7200 [ 82 2.2
I 30 | 742 | 672 | 730 | 82 14
| 32 | 7430 | 6824 | 7292 | 82 1.9
| 34 | 7400 | 6816 | 728 | 84 2.7
| 36 | 7436 | 6812 | 7380 | -84 0.8
3.8 7440 | 6800 | 7316 | -8.6 1.7

6.804 | 7.324
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Chapter S Conclusion

The method of local variation has been used to obtain optimal profiles of
corrugated, sandwich and non-symmetrical cross sections under pure bending. The
method is relatively straightforward in this application as it involves simple trigonometry
in its formulation. Numerical results were shown to compare favourably with the limited
published results which were obtained using a more analytical approach.

The numerical procedure based on this formulation is easily modified to solve for
different configurations(i.e. simple corrugated to sandwich cross sections) and to include
constraints on the geometry. For example, the consideration of non-symmetrical cases
required an additional subroutine which calculated the centroidal axis for each iteration.
This is, of course, not required for the symmetric cases.

The fundamental limitation of the local variation method is that global optimal
solution is not guaranteed. Solutions obtained could be only locally optimal. However,
the possibility of obtaining the global optimal is increased by first obtaining the
approximate solution.

Selection of the angle of variation in the procedure is somewhat critical. In all
of the sample results shown, the angle of variation A§ was the same for all the segments
at each variation. However during earlier development, it was found that therc were
cases in which the angle of variation Af had to be varied from segment to segment so
that the optimal solution could be obtaired. If a moie refined profile is desired, a

variable A9 may prove advantageous. In general, both the size of the initial value of



variation Af and the shape of the starting profile do not affect the final solution because
a good approximate solution is first obtained.

The numerical procedure as currently formulated is unable to accurately reproduce
solutions with very distinct shape discontinuities. This means that sections with a right
angle are difficult to obtain as the segment may span the point at which the angle occurs.
The number of segments used in the starting profile is also an important consideration.
For example, for the doubly symmetrical claddings smaller section modulus resulted
when 8 instead of 4 segments were used in the starting profile but better solution were
obtained with 8 segments for the non-symmetrical cladding.

The results of the numerical work indicate that of the sections studied that the
doubly symmetric corrugated configuration was the most efficient profile when a fixed
volume of material is used. In addition, the section moduli are relatively insensitive to
small deviations. This implies that large tolerances in profile geometry could be allowed
in actual fabrication.

For all of the three configurations evaluated, the section modulus increases at a
decreasing rate with the contour to coverage ratio R. For both the corrugated and non-
symmetrical claddings when material volume, cladding contour length and cladding
thickness are constant, this means that effectively a constant section modulus is reached
as R increases. Thus caution must be taken not to use too large an R value as little will
be gained in section modulus while the coverage decreases. For the sandwich and non-

symmetrical cases with a given cladding thickness, the panel thickness should be kept at
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a minimum so that as much material as possible can be used to increase the cladding’s
contour length and obtain a higher section modulus.

Although it has been shown that there are cases that the shape and section moduli
of the optimal profiles and some simple profiles such as circular or triangular are all
relatively close in section modulus, this is only for certain special cases. For a more
efficient use of material, the optimal profiles should be considered as an aiternative

before employing the simple profiles.
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Appendix

Computer program flow-charts
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Sample computer Drogram

"This is the program written in BASIC for the non-symmetrical case
'****ﬂ*#*#*****W*******.******************#**#*******#*****************
DECLARE SUB anglecheck (x2#, y2#, x1#, y1#, bata#)
DECLARE SUB approxsol (m#(), dtheta#, jnumseg%, maxintz#)
DECLARE SUB cenaxis (m#(), jnusiég%, ycen#, ymax#)
DECLARE FUNCTION dIx# (x1#, y1#, x2#, y2#, ycen#)
DECLARE SUB ducal (m#(), jnumseg %)

DECLARE SUB figgen (m#(), leng#, wid#, jnumseg%, shape#)
DECLARE SUB fixed412 (m#(), jn%, dtheta#, jnumseg%, intz#)
DECLARE SUB optimalsol (m#(), dtheta#, jnumseg %, maxintz#)
DECLARE SUB segdiv (m#(), jnumseg%, jm%)

DECLARE SUB slide41 (m#(), jn%. dtheta#, jnumseg%, intz#)
DECLARE SUB slide44 (m#(), jn%, dtheta#, jnumseg%, intz#)
DECLARE SUB slide81 (m#(), jn%, dtheta#, jnumseg%, intz#)
DECLARE SUB slide88 (m#(), jn%, dtheta#, jnumseg%, intz#)
DECLARE SUB zcal (m#(), jnumseg%, z#)

DEFINT J
DEFDBL A-1, K-Z
DIM cood(33, 4) 'dimension the coordinate array

*define constants and cladding parameters

’**##*##*#**#*#***##**********#****#*********#********#***********

CONST pi = 3.14159265358979#

CONST length = 2# 'contour length of the cladding
CONST wid = 1# 'width constraints of the cladding
CONST thickness = .01# "thickness of the cladding core
CONST panelthickness = .01#  ‘thickness of the flat panel
CONST xpanel = 1# 'width of the panel

CONST thicknesses = (thickness + panelthickness) / 2

jorder =2 ’number of segments used in the starting profile = 2*jorder
jorderul = 5 "upper limit of jorder

dtheta = .1# ‘initial angle of variation

inihigh = O ’height of the initial profile use O for max possible height

jnumseg = 2 * jorder

*This subroutine returns the coordinate values which describe the shape of
the starting profile and stores the values in the coordinate st cood()
CALL figgen(cood(), length, wid, jnumseg, inihigh)

“This sub routine determines the approximate solution and its section modu's
CALL approxsol(cood(), dtheta, jnumseg, maxintz)
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"This DO LOOP determines the optimal profile and its section modulus
DO UNTIL jorder > = jorderul

jorder = jorder + 1

jnumseg = 2 “ jorder

CALL segdivcood(), jnumseg, 2 “ (jorder - 1))

CALL optimaisol(cood(), dtheta, jnumseg, maxintz)
LOOP

"The folowing statements stores the coordinate array cood() in a file
'and the optimal profile and its section modulus are shown on screen

OPEN "c:\profile.dat" FOR OUTPUT AS #1
FOR i = 1 to jnumseg+1 STEP 1

pl'int "o

FORj = 1to4 STEP |

PRINT #1, cood(i,j);

NEXT j
NEXT i
CLOSE #1
CLS
SCREEN 12
VIEW (130, 20)-(450, 340), , 1
WINDOW (0, 0)-(3, 3)
FOR j = 1 TO jnumseg

LINE (co::4, 1), cood(j, 2))-(cood(j + 1, 1), cood(j + 1, 2)), 6
NEXT j
LOCATE 23
PRINT "Section mosulus z = "; maxintz

SUB anglecheck (x2, y2, x1, yl1, bata)

"This sub-routine calculates the angle of inclination of a segment with respect
"to point x1, yl

’x1, yl = the point of reference

'x2, y2 = the second point of a segment

’bata = angle of inclination

IF ABS(x2 - x1) < 1E-16 THEN
IF y2 -yl > 0 THEN bata = pi / 2
IF y2 - yl < 0 THEN bata = -pi / 2
ELSEIF x2 - x1 <> 0 THEN
bata = ATN((y2 - y1) / (x2 - x1))
IF x2 - x1 < 0 THEN
IF y2 - yl < O THEN bata = -pi + bata
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IFy2-yl > 0 THEN bata = pi + bata
END IF
END IF
END SUB

SUB approxsol (m(), dtheta, jnumseg, maxintz)

*This sub-routine calculates the approximate solution based on the

'starting profile

'w() = cociinate array which will be changed if an intermediate profile exists
‘4theta = angle. + ~+riation

‘jnumseg = number ¢ getent used in the starting profile

CALL zcal(m(), jnumseg, maxintz)
tempmaxintz = maxintz
FOR jhalf = 1 TO 2 STEP 1
dtheta = dtheta / jhalf
SELECT CASE jnumseg
CASE 4
DO
FORj = 1 TO 4 STEP 1
CALL anglecheck(m(, 1), mg, 2), m( + 1, 1), m( + 1, 2), m(, 4))
NEXT j
CALL slide41(m(), 1, dtheta, jnumseg, tempmaxintz)
diff = (tempmaxintz - maxintz) / maxintz
IF diff > 1E-16 THEN maxintz = tempmaxintz
FORj = 1TO4 STEP 1
CALL anglecheck(m(j + 1, 1), m{ + 1, 2), m@, 1), m@, 2), m(j, 4))
NEXT j
CALL slide44(m(), 4, dtheta, jnumseg, tempmaxintz)
diff = (tempmaxintz - maxintz) / maxintz
IF diff > 1E-16 THEN maxintz = tempmaxintz
LOOP UNTIL diff <= 1E-16
CASE 8
DO
FOR;j = 1 TO 8 STEP |
CALL anglecheck(m(j, 1), m@, 2), mG + 1, 1), mG + 1, 2), mG, 4)
NEXT j
CALL slide81(m(), 1, dtheta, jnumseg, tempmaxintz)
diff = (tempmaxintz - maxintz) / maxintz
IF diff > 1E-16 THEN maxintz = tempmaxintz
FORj = 1 TO 8 STEP 1
CALL anglecheck(m(j + 1, 1), m( + 1, 2), m(j, 1), m@, 2), m@, 4))
NEXT j
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CALL slide88(m(), 8, dtheta, jnumseg, tempmaxintz)
diff = (tempmaxi:tz - maxintz) / maxintz
IF diff > 1E-16 THEN maxintz = tempmaxintz
LOOP UNTIL diff <= 1E-16
END SELECT
NEXT jhalf
END SUB

SUB cenaxis (m(), jnumseg, ycen, ymax)

"This sub-routine determines the location of the centroidal axis(ycen) and the
’maximum value of the y coordinate(ymax)

'm() = coordinate array

’ycen = y location of the centrodial axis W.R.T (0,0)

'jnumseg = aumber of segment used in the current profile

ymax = m(jnumseg + 1, 2)
FOR j = 1 TO jnumseg STEP 1
IF ymax < m(j, 2) THEN ymax = m(j, 2)
sumyda = sumyda + (m(, 2) + m( + 1, 2))/ 2 * m(j, 3)
sumda = sumda + m(j, 3)
NEXT j
sumyda = sumyda * thickness + xpanel * panelthickness * (ymax + thicknesses)
sumda = sumda * thickness + xpanel * panelthickness
ycen = sumyda / sumda
END SUB

FUNCTION dIx (x1, yl1, x2, y2, ycen)
"This sub-routine calculates the area moment of inertia of a segment(dIx) wrt
’the calculated centroidal axis(ycen)
’x1, y1, x2, y2 = coordinate values of the segment end points
’ycen = y location of the centroidal axis
disg = (x2-x1)*2 + (y2-yl) " 2
sinsqtheta = (y2-yl) “ 2/ dlsq
barysq = (yl + y2 -2 *ycen) 2/4
dIx = thickness * dlsq * .5 * (dIsq * sinsqtheta / 12 + barysq)
END FUNCTION

SUB ducal (m(), jnumseg)

"This sub-routine calculates the length of each segment
'm() = coordinate array

'jnumseg = number of segments used in the current profile
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FOR j = 1 TO jnumseg STEP 1

m@, 3) = SQR(m(, 1) -mG + 1, 1)) * 2+ (m(, 2) - m( + 1,2)) * 2)
NEXT j
END SUB

SUB figgen (m(), leng, wid, jnumseg, shape)

"This sub-routine generates a profile which consists two equal length segments
'and then divides them evenly into more segments using SUB segdiv()

'm() = the coordinate array to be generated which contains the x,y values of

’ the segment end points

"leng = contour length of the profile

'wid = width of the profile

'jnumseg = number of segments used in the starting profile

'shape = specified height of maximum possible height(0 for maximum possible
*height)

height = SQR(leng * 2 - wid * 2)
IF shape > 0 AND shape < height THEN
theta = ATN(shape / wid)
dl = SQR(leng * 2 - (shape * 2 + wid * 2)) / 2
m(1,1)=0
m(l, 2) = shape
m(3, 1) = wid
m(3,2) =0
m(2, 1) = (m(1, 1) + m(3, 1)) / 2 + dl * SIN(theta)
m(2, 2) = (m(1, 2) + m(3, 2)) / 2 + dl * COS(theta)

ELSE
m(l,1) =0
m(l, 2) = height
m(3, 1) = wid
m3,2)=0

m(2, 1) = (m(1, 1) + m@3, 1)) / 2
m(2, 2) = (m(1,2) + m@3, 2)) /2
END IF
CALL segdiv(m(), jnumseg, 2)
CALL ducal(m(), jnumseg)
IF jnumseg = 8 THEN
CALL segdiv(m(), jnumseg, 4)
CALL ducal(m(), jnumseg)
END IF
END SUB
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SUB fixed412 (m(), jn, dtheta, jnumseg, intz)

*This sub-routine performs the fix-end variation procedure using 4 segments

’by rotating segments 3 and 4

’m() = coordinate array of the profile to be perturbed

’jn = segment number of the first segment of the current 4 segments being perturbed
*dtheta = angle of variation

"jnumseg = number of segment used in the current profile

'intz = section modulus to be returned

DIM coodsol(2), orig(5, 4), jident(2)
jflag = 0
FORj=1TOSSTEP 1
origG, 1) =mGn +j-1, 1)
orig(, 2) =mGn + j- 1, 2)
orig(, 3) = m@Gn + -1, 3)
orig(j, 4) = m(n + j - 1, 4)
NEXT j
FORJ1 =-1TO1STEP |
m(n + 3, 1) = m(n + 4, 1) + orig(4, 3) * COS(orig(4, 4) + J1 * dtheta)
m@n + 3, 2) = m(jn + 4, 2) + orig(4, 3) * SIN(orig(4, 4) + J1 * dtheta)
FORJ2 = -1 TO 1 STEP 1
m@in + 2, 1) = m(jn + 3, 1) + orig(3, 3) * COS(orig(3, 4) + J2 * dtheta)
m(n + 2, 2) = m(jn + 3, 2) + orig(3, 3) * SIN(orig(3, 4) + J2 * dtheta)
lengthsq = (m(in + 2, 1) - m(jn, 1)) * 2 + (m@n + 2, 2) - m(jn, 2)) * 2
lengthsumsq = (m(jn + 1, 3) + m(n, 3)) * 2
fdiff = lengthsumsq - lengthsq
xbar = (m(jn, 1) + m@jn + 2, 1)) / 2
ybar = (m(jn, 2) + m(jn + 2, 2)) / 2
IF fdiff > 1E-16 THEN
hsq = m(jn + 1, 3) * 2 - lengthsq / 4
IF hsq < 0 THEN hsq = m(jn, 3) * 2 - lengthsq / 4
h = SQR(hsq)
IF ABS(m(jn, 1)- m(in + 2, 1)) < 1E-16 THEN
IF m(jn, 2) - m(jn + 2, 2) > 0 THEN alpha = pi/ 2
IF m(jn, 2) - m(jn + 2, 2) < 0 THEN alpha = -pi/ 2
ELSE
alpha = ATN((m(jn, 2) - m(jn + 2, 2)) / (m(jn, 1) - m(jn + 2, 1))
END IF
FORJ3 = 1TO -1 STEP -2
IF 0# <= alpha AND alpha <= pi / 2 THEN
m(jn + 1, 2) = ybar + J3 * h * COS(alpha)
m(jn + 1, 1) = xbar - J3 * h * SIN(alpha)
ELSEIF -pi / 2 <= alpha AND alpha <= 0# THEN
m(n + 1, 2) = ybar + J3 * h * COS(-alpha)
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m@jn + 1, 1) = xbar + J3 * h * SIN(-alpha)
END IF
CALL zcal(m(), jnumseg, z)
IF intz < z THEN
intz =z
jident(1) = J1
jident(2) = J2
coodsol(l) = m(jn + 1, 1)
coodsol(2) = m(jn + 1, 2)
jflag = 1
END IF
NEXT J3
END IF
NEXT J2
NEXT J1
IF jflag = 1 THEN
m(jn + 3, 4) = orig(4, 4) + jident(l) * dtheta
m(jn + 2, 4) = orig(3, 4) + jident(2) * dtheta
m(jn + 3, 1) = m(jn + 4, 1) + orig(4, 3) * COS(m(jn + 3, 4))
m(jn + 3, 2) = m(in + 4, 2) + orig(4, 3) * SIN(m(jn + 3, 4))
m@in + 2, 1) = m(n + 3, 1) + orig(3, 3) * COS(m(jn + 2, 4))
m(jn + 2, 2) = m(jn + 3, 2) + orig(3, 3) * SIN(m(jn + 2, 4))
m(jn + 1, 1) = coodsol(1)
m(jn + 1, 2) = coodsol(2)
CALL anglecheck(m(jn + 1, 1), m(jn + 1, 2), m(jn + 2, 1), m(jn + 2, 2),
m(jn + 1, 4))
CALL anglecheck(m(jn, 1), m(jn, 2), m(jn + 1, 1), mGn + 1, 2), m(jn, 4))
ELSEIF jflag = 0 THEN
FORj =1TOSSTEP 1
m(jn + j - 1, 1) = orig(j, 1)
m@n + j - 1, 2) = orig(j, 2)
m(@n + j - 1, 3) = orig(j, 3)
m(in + j - 1, 4) = orig(j, 4)
NEXT j
END IF
END SUB

SUB optimalsol (m(), dtheta, jnumseg, maxintz)

"This sub-routine obtains the optimal solution by using the appropriate variation
'procedure(mainly the fixed-end procedure) to sets of segment of 4

' m() = coordinate array

' dtheta = angle of variation

' jnumseg = number of segments used in the current profile
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*maxintz = section modulus to be returned

FOR jhalf = 1 TO 2 STEP 1
dtheta = dtheta / jhalf
tempmaxintz = maxintz
FOR j = 1 TO jnumseg STEP 1
CALL anglecheck(m(j, 1), m(j, 2), m(G + 1, 1), m( + 1, 2), m(j, 4))
NEXT j
FOR jlastseg = 1 TO jnumseg - 3 STEP 1
FOR jcurrentseg = 1 TO jlastseg STEP 1
DO
IF jcurrentseg = 1 THEN
CALL slide41(m(), jeurrentseg, dtheta, jnumiseg, tempmaxintz)
diff = (tempmaxintz - maxintz) / maxintz
IF diff > 1E-16 THEN maxintz = tempmaxintz
CALL fixed412(m(), jcurrentseg, dtheta, jnumseg, tempmaxintz)
diff = (tempmaxintz - maxintz) / maxintz
IF diff > 1E-16 THEN maxintz = tempmaxintz
ELSEIF jcurrentseg > 1 AND jcurrentseg < jnumseg THEN
CALL fixed412(m(), jcurrentseg, dtheta, jnumseg, tempmaxintz)
diff = (tempmaxintz - maxintz) / maxintz
IF diff > 1E-16 THEN maxintz = tempmaxintz
ELSEIF jcurrentseg = jnumseg THEN
CALL slide44(m(), jeurrentseg, dtheta, jnumseg, tempmaxintz)
diff = (tempmaxintz - maxintz) / maxintz
IF diff > 1E-16 THEN maxintz = tempmaxintz
CALL fixed412(m(), jcurrentseg, dtheta, jnumseg, tempmaxintz)
diff = (tempmaxintz - maxintz) / maxintz
IF diff > 1E-16 THEN maxintz = tempmaxintz
END IF
LOOP UNTIL diff <= 1E-16
NEXT jcurrentseg
NEXT jlastseg
NEXT jhalf
END SUB

SUB scgdiv (m(), jnumseg, jm)

"This sub-routine divides the number of segment from jm segments to 2*(jm)
'segments

'm() = coordinate array

’jm = number of segments being divided

FORj = jm + 1 TO 2 STEP -!
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m@2*j-1,1) = mgG, 1)
m(2*j - 1’ 2) = m(is 2)
m@2 *j - 1, 3) = m(, 3)
m2 *j - 1, 4) = m(, 4)
NEXT j
FORj = jm + 1 TO 2 STEP -1
m2*j-2,)=m2*j-1,1)+m2*j-3,1)/2
m2*j-2,2)=m2*j-1,2)+m2*j-3,2)/2
NEXT j
CALL ducal(m(), jnumseg)
END SUB

SUB slide41 (m(), jn, dtheta, jnumseg, intz)

"This sub-routine performs the slide-end variation procedure with 4 segments
"by rotating segments 2, 3 and 4

'm() = coordinate array

'in = the starting segment(segment 1)

‘dtheta = angle of variation

'jnumseg = number of segment used in the current profile

‘intz = maximum section modulus being returned

DIM jident(4), orig(5, 4),coodsol
jflag = 0
FORj =1TOS STEP 1
origG, 1) = m(Gn + j -1, 1)
orig(, 2) = m(n +j - 1, 2)
orig(, 3) = m(n +j - 1, 3)
orig(, 4) = m(n + j - 1, 4)
NEXT j
FOR J4 = 1 TO -1 STEP -1
m(n + 3, 1) = m(n + 4, 1) + m(Gn + 3, 3) * COS(m(jn + 3, 4) + J4 * dtheta)
m(jn + 3, 2) = m@n + 4, 2) + m@Gn + 3, 3) * SIN(m(jn + 3, 4) + J4 ¥ dtheta)
FOR J3 = 1 TO -1 STEP -1
m(in + 2, 1) = mGn + 3, 1) + m@Gn + 2,3) * COS(m(jn + 2, 4) + J3 * dtheta)
m(jn + 2, 2) = m@n + 3, 2) + m@n + 2, 3) * SIN(m(jn + 2, 4) + J3 * dtheta)
FORJ2 = 1 TO -1 STEP -1 :
m@n + 1, 1) = mGn + 2, 1) + mGn + 1,3) * COS(m(jn + 1, 4) + J2 * dtheta)
m(n + 1, 2) = m@n + 2, 2) + mGn + 1, 3) * SIN(m(jn + 1, 4) + J2 * dtheta)
IF ABS(m(jn + 1, 1) - m(jn, 1)) <= m(n, 3) THEN
FOR J1 = 1 TO -1 STEP -2
m(jn, 2) = m(jn + 1, 2) + J1 * SQR(m(n, 3) 42 -(m(@n, 1) - m@n + 1, 1))
A 2)
CALL zcal(m(), jnumseg, z)
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IF intz < z THEN
intz = z
jident(1) = J1
jident(2) = J2
jident(3) = J3
jident(4) = J4
coodsol = m(jn, 2)
jflag = 1
END IF
NEXT J1
END IF
NEXT 12
NEXT J3
NEXT J4
IF jflag = 1 THEN
FORj =3 TO 1 STEP -1
m(n + j, 4) = m(jn + j, 4) + jident(j + 1) * dtheta
NEXT j
FORj =3 TO 1STEP-1
m@n + j, 1) = m@n + j + 1, 1) + m@n + j, 3) * COS(m(jn + j, 4))
m@n + j, 2) = m@n + j + 1, 2) + m@n + j, 3) * SIN(m(jn + j, 4))
NEXT j
m(jn, 2) = coodsol
CALL anglecheck(m(jn, 1), m(jn, 2), m(jn + 1, 1), m(in + 1, 2), m(jn, 4))
ELSEIF jflag = 0 THEN
FORj = 1TO S5 STEP |
m(jn + j - 1, 1) = orig(j, 1)
m(jn + j - 1, 2) = orig(j, 2)
m(jn + j - 1, 3) = orig(j, 3)
m(@n + j - 1, 4) = orig(j, 4)
NEXT j
END IF
END SUB

SUB slide44 (m(), jn, dtheta, jnumseg, intz)

"This sub-routine performs the slide-end variation procedure with 4 segments
"by rotating segments 1, 2 and 3

'm() = the array contains the coordinates of each point

’jn = the starting segment(segment 4)

‘dtheta = angle of variation

'jnumseg = number of segment used in the current profile

'intz = section modulus to be returned



DIM jident(4), orig(5, 4), coodsol
jflag = 0
FORj = 1TOS STEP 1
orig(j, 1) = m(n-4 +j, 1)
orig(j, 2) = m(n - 4 + i»2)
Oﬁg(i, 3 = m()” 4 v j’ 3)
origj, 4) = mGa 4 = j, 4)
NEXT j
FORJ1 =1 TO -1 STEP -1
m@n - 2, 1) = m@n - 3, 1) + m@n - 3, 3) * COS(m(jn - 3, 4) + J1 * dtheta)
m(jn - 2, 2) = m(n - 3, 2) + m(n - 3, 3) * SIN(m(jn - 3, 4) + J1 * dtheta)
FOR J2 = 1 TO -1 STEP -1
m@n- 1, 1) = m@n- 2, 1) + m@n - 2, 3) * COS(m(jn - 2, 4) + J2 * dtheta)
m(jn-1,2) = m@n-2,2) + m(n-2,3) * SIN(m(jn - 2, 4) + J2 * dtheta)
FORJ3 = 1 TO -1 STEP -1
m(jn, 1) = m(n - 1, 1) + m(n - 1, 3) * COS(m(jn - 1, 4) + J3 * dtheta)
m(jn, 2) = m@n - 1, 2) + m(n - 1, 3) * SIN(m@n - 1, 4) + J3 * dtheta)
IF ABS(m(jn, 1) - m(jn + 1, 1)) <= m(jn, 3) THEN
FOR J4 = 1 TO -1 STEP -2
m(jn + 1, 2) = m(n, 2) + J4 * SQR(m(jn, 3) *2-(m@n + 1, 1) - m@n, 1))
A 2)
CALL zcal(m(), jnumseg, z)
IF intz < z THEN
intz =z
jident(1) = J1
jident(2) = J2
jident(3) = I3
jident(4) = J4
coodsol = m(jn + 1, 2)
jflag = 1
END IF
NEXT J4
END IF
NEXT J3
NEXT J2
NEXT J1
IF jflag = 1 THEN
FORj = 3TO 1 STEP -1
m(jn - j, 4) = m(jn - j, 4) + jident(4 - j) * dtheta
NEXT j
FORj = 3TO 1 STEP -1
m@n-j + 1, 1) = mGn - j, 1) + m(n - j, 3) * COS(m(n - j, 4))
m@n -j + 1,2) = m@n - j, 2) + m(n - j, 3) * SIN(m(n - j, 4))
NEXT j
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m(n + 1, 2) = coodsol
CALL anglecheck(m(jn + 1, 1), m(in + 1, 2), m(jn, 1), m(jn, 2), m(jn, 4))
ELSEIF jflag = 0 THEN
FORj = 1 TOS STEP 1
m(n - 4 + j, 1) = orig(j, 1)
m(jn - 4 + j, 2) = orig(j, 2)
m(jn - 4 + j, 3) = orig(, 3)
m(jn - 4 + j, 4) = orig(j, 4)
NEXT j
END IF
END SUB

SUB slide81 (m(), jn, dtheta, jnumseg, intz)

"This sub-routine performs the slide-end variation procedure with 8 segments
*by rotating segments 2, 3, 4, 5, 6, 7 and 8

'm() = coordinate array

'jn = starting segment(segment 1)

'dtheta = angle of variation

’jnumseg = number of segment used in the current profile

’intz = maximum section modulus being returned

DIM jident(8), coodsol, orig(9, 4)
jflag =0
FORj =1 TO9 STEP 1
origG, 1) =m@n +j-1, 1)
orig(j, 2) = m@n +j- 1, 2)
orig(j, 3) = m(n + j - 1, 3)
origi, 4) =mGn +j-1,4)
NEXT j
FOR 3 = 1TO -1 STEP -1
m@n + 7, 1) = m(jn + 8, 1) + m@n + 7, 3) * COS(m(jn + 7, 4) + J8 * dtheta)
m@Gn + 7, 2) = m(jn + 8, 2) + m(n + 7, 3) * SIN(m(in + 7, 4) + J8 * dtheta)
FOR J?7 =1 TO -1 STEP -1
m@n + 6, 1) = m(jn + 7, 1) + m(@n + 6, 3) * COS(m(jn + 6, 4) + J7 * dtheta)
m@n + 6, 2) = m(n + 7, 2) + m(n + 6, 3) * SIN(m(in + 6, 4) + J7 * dtheta)
FOR J6 = 1 TO -1 STEP -1
m(jn + 5, 1) = m(n + 6, 1) + m(n + 5, 3) * COS(m(jn + 5, 4) + J6 * dtheta)
m(jn + 5, 2) = m(jn + 6, 2) + m@n + 5, 3) * SIN(m(n + 5, 4) + J6 * dtheta)
FORJS = 1 TO -1 STEP -1
m(jn + 4, 1) = mGn + 5, 1) + m@n + 4, 3) * COS(m(jn + 4, 4) + IS5 * dtheta)
m@n + 4, 2) = m(jn + 5, 2) + m(n + 4, 3) * SIN(m(jn + 4,4) + J5* dtheta)
FOR J4 = 1 TO -1 STEP -1
m(jn + 3, 1) = m(jn + 4, 1) + m@n + 3, 3) * COS(m(jn + 3, 4) + J4 * dtheta)
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m(jn + 3, 2) = m@n + 4, 2) + m(n + 3, 3) * SIN(m@jn + 3, 4) + J4 * dtheta)
FOR J3 = 1 TO -1 STEP -1
m(@n + 2, 1) = m(n + 3, 1) + m(n + 2, 3) * COS(m(jn + 2, 4) + J3 * dtheta)
m(jn + 2, 2) = m(n + 3, 2) + m(n + 2,3) * SIN(m(jn + 2, 4) + J3 * dtheta)
FOR J2 = 1 TO -1 STEP -1
mGn +1,1) =m@n + 2, 1) + m(jn + 1, 3) * COS(m(jn + 1, 4) + J2 * dtheta)
m@n + 1,2) = m(n + 2, 2) + m(jn + 1, 3) * SIN(m(in + 1, 4) + J2 * dtheta)
IF ABS(m(jn + 1, 1) - m(n, 1)) <= m(jn, 3) THEN
FOR J1 = 1 TO -1 STEP -2
m(jn, 2) = m@n + 1, 2) + J1 * SQR(m(n, 3) 42 -(m@n, 1) - m@n + 1, 1))
/' 2)
CALL zcal(m(), jnumseg, z)
IF intz < z THEN
intz =2z
jident(1) = J1
jident(2) = J2
jident(3) = J3
jident(4) = J4
jident(5) =I5
jident(6) = J6
jident(7) = J7
jident(8) = J8
coodsol = m(jn, 2)
jflag = 1
END IF
NEXT J1
END IF
NEXT J2
NEXT I3
NEXT J4
NEXT J5
NEXT 16
NEXT J7
NEXT J8
IF jflag = 1 THEN
FORj = 7TO 1 STEP -|
m(jn + j, 4y = mGn + j, 4) + jident( + 1) * dtheta
NEXT j
FORj = 7TO 1 STEP -1
mGn + j, 1) = mGn + j + 1, 1) + m@n +j, 3) * COS(m(jn + j, 4))
m(jn + j, 2) = mGn + j + 1, 2) + m(n + j, 3) * SIN(m(jn + j, 4))
NEXT j
m(jn, 2) = coodsol
CALL anglecheck(m(jn, 1), m(jn, 2), m(n + 1, 1), m@n + 1, 2), m(n, 4))
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ELSEIF jfiag = 0 THEN
FORj =1TO9 STEP 1
m@n + j - 1, 1) = orig(j, 1)
m@n + j - 1, 2) = orig(j, 2)
mn + j - 1, 3) = orig(j, 3)
m(jn + j - 1, 4) = orig(j, 4)
NEXT j
END IF
END SUB

SUB slide$8 (m(), jn, dtheta, jnumseg, intz)

"This sub-routine performs the slide-end variation procedure with 8 segments
"by rotating segments 1, 2, 3,4, 5, 6 and 7

'm() = coordinate array

'jn = starting segment(segment 8)

'dtheta = angle of variation

'jnumseg = number of segment used in the current profile

’intz = section modulus to be returned

DIM jident(8), orig(9, 4), coodsol
jflag = 0
FORj=1TO9 STEP |
orig(, 1) = m(n-8 +j, 1)
orig(j, 2) = m(jn - 8 + j, 2)
orig(j, 3) = m(n- 8 + j, 3)
Ol'ig(i, 4) = m(jn -8 + j’ 4)
NEXT j
FORJ1 =1TO -1 STEP -1
m@n - 6, 1) = m(jn - 7, 1) + m(n - 7, 3) * COS(m(jn - 7, 4) + J1 * dtheta)
m@n - 6, 2) = m@in - 7, 2) + m(jn - 7, 3) * SIN(m(n - 7, 4) + J1 * dtheta)
FORJ2 = 1 TO -1 STEP -1
m(n - 5, 1) = m(jn - 6, 1) + m(n - 6, 3) * COS(m(jn - 6, 4) + J2 * dtheta)
m(n - 5, 2) = m(jn - 6, 2) + m(n - 6, 3) * SIN(m(jn - 6, 4) + J2 * dtheta)
FOR J3 =1TO -1 STEP -1
m(n - 4, 1) = m(jn - 5, 1) + m(n - 5, 3) * COS(m(jn - 5, 4) + J3 * dtheta)
m(n - 4, 2) = m(jn - 5, 2) + m(jn - 5, 3) * SIN(m(n - 5, 4) + J3 * dtheta)
FOR J4 = 1 TO -1 STEP -1
m(n - 3, 1) = m(jn - 4, 1) + m(jn - 4, 3) * COS(m(jn - 4, 4) + J4 * dtheta)
m(jn - 3, 2) = m(jn - 4, 2) + m(jn - 4, 3) * SIN(m(jn - 4, 4) + J4 * dtheta)
FORJS = 1 TO -1 STEP -1
m(jn - 2, 1) = m(jn - 3, 1) + m(n - 3, 3) * COS(m(jn - 3, 4) + J5 * dtheta)
m(n - 2, 2) = m(jn - 3, 2) + m(jn - 3, 3) * SIN(m(jn - 3, 4) + J5 * dtheta)
FORJ6 = 1 TO -1 STEP -1
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m@n-1,1) = m@n-2, 1) + m@n- 2, 3) * COS(m(jn - 2, 4) + J6 * dtheta)
m(jn - 1, 2) = m@n - 2, 2) + m(n - 2, 3) * SIN(m(jn - 2, 4) + J6 * dtheta)
FOR J7 = 1 TO -1 STEP -1
m(jn, 1) = m@Gn - 1, 1) + mGn - 1, 3) * COS(ma(jn - 1, 4) + 17 * dtheta)
m(jn, 2) = m@n - 1,2) + m@n- 1, 3) * SIN(m(jn - 1, 4) +J7 * dtheta)
IF ABS(m(jn, 1) - mGn + 1, 1)) <= m(n, 3) THEN
FOR J8 = 1 TO -1 STEP -2
m@n + 1, 2) = m(jn, 2) + J8 * SQR(m(jn, 3) 42 -(m@n + 1, 1) - m(n, 1))
A 2)
CALL zcal(m(), jnumseg, z)
IF intz < z THEN
intz =z
jident(1) = J1
jident(2) = J2
jident(3) = J3
jident(4) = J4
jident(S) = IS
jident(6) = J6
jident(7) = J7
jident(8) = J8
coodsol = m(jn + 1, 2)
jflag = 1
END IF
NEXT J8
END IF
NEXT J7
NEXT J6
NEXT JS
NEXT J4
NEXT J3
NEXT 12
NEXT J1
IF jflag = 1 THEN ’change the initial profile to the intermediate profile
FORj = 7TO 1 STEP -1
m(jn - j, 4) = m(n - j, 4) + jident(8 - j) * dtheta
NEXT j
FORj = 7TO 1 STEP -1
mGn-j + 1, 1) = m@n - j, 1) + m@n - j, 3) * COS(mGn - j, 4))
mGn-j + 1,2) = mn - j, 2) + mGn - j, 3) * SIN(m(n - j, 4))
NEXT j
m(jn + 1, 2) = coodsol
CALL anglecheck(m(jn + 1, 1), mGn + 1, 2), m(jn, 1), m(n, 2), m(jn, 4))
ELSEIF jflag = 0 THEN
FORj = 1 TO9 STEP |
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m(n - 8 + j, 1) = orig(j, 1)
m(jn - 8 + j, 2) = orig(j, 2)
m(jn - 8 + j, 3) = orig(j, 3)
m(jn - 8 + j, 4) = orig(j, 4)
NEXT j
END IF
END SUB

SUB zcal (m(), jnumseg, 2z)

*This sub-routine determines the section modulus 1/y by finding:
'y location of the centroidal axis(ycen) - SUB cenaxis()

'Area moment of inertia(sumlIx) - the first FOR loop

"location of the extreme point(c) - the second FOR loop

'm() = coordinate array

‘jnumseg = number of segment used in the current profile

'z = section modulus to be returned

CALL cenaxis(m(), jnumseg, ycen, ymax)
FOR j = 1 TO jnumseg STEP 1
sumlx = sumix + dix(m(, 1), m(, 2), mG + 1, 1), m( + 1, 2), ycen)
NEXT j
ypal = ymax + thicknesses - ycen
sumix = sumlx + panelthickness * xpanel * ypal * 2
¢ = ypal + panelthickness / 2
FORj = 1 TO jnumseg + 1 STEP 1
IF ¢ < ABS(m(j, 2) - ycen) + thickness / 2 THEN ¢ = ABS(m(j, 2) - ycen) +
thickness / 2
NEXT j
z=sumlx/c
END SUB



