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RELIABILITY MODELLING OF A LARGE COMPUTER SYSTEM
ABSTRACT

This thesis presents a new 30 state gencralized Markov state space model that
can be used to predict the frequency and duration of the operating and failed states that
occur in a computer systemn and the performance characteristics of the distinctive cyclic
patterns of operation and failure that occur in a given computer system. Based on the
generalized model, the evolution equations for the probability of the various system failed
states caused by hardware, software, operator and analyst ecrrors exhibited by the
Aiberta Government’s Computer Center’s VM-based system are developed and
presented in detail. The proposed models can be used to predict the cyclic transitions
between the failure and operational states of a computer system and the processes it

controls, given the outage statistics of a given computer system.
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CHAPTER I
INTRODUCTION

Society is dependent upon the use of computerized technology to perform many
tasks in its personal, commercial and industrial sectors (e.g., can you imagine a bank
today operating without a computer system?). Society’s use and dependence on digital
computer systems is increasing (e.g., total computerized flight of Air France’s A320
airbus). Digital computer systems are required to operate as economically as possible
and provide society with assurances of continuity and quality of service. Failure to meet
these assurances can quickly eradicate the economic benefits of computer technology.
These assurances pose many questions for society when a computer system’s
performance is curtailed. The questions often posed are:

(a) What level of computer system reliability is adequate?

(b) How does a computer system fail?

(c) What are the causcs of a computer system’s failure?

(d) How long will the computer system be down?

(e) How often does the computer system go down?

(f) What is the cost of a computer failure to society?

(g) Can the cost of computerized technology be justified?
To answer some of these questions, it is necessary to define what is a “computer
system”.
1.1 Definition of a computer system

A computer system consists of many physical devices such as the central
processing unit (CPU), memory, printers, terminals, direct access storage devices
(DASD), keyboards, cables, etc. that are interconnected to form a “system”. These
physical devices are collectively labelled as “hardware”. The “software” of a computer
system are the instructions (written in various computer languages) that form various
computer programs which link the various hardware devices together to form an operating

system and permit the use of other application computer programs to perform various
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tasks as dictated by the users of the system.
1.2 Computer system failures

A computer system failure occurs when the system is not available to the user.
This failure is primarily due to hardware or software failures [3,2,3] that curtail or limit the
performance of ihe computer system. A hardware failure of a computer system occurs
when a problem (e.g., main storage unit (MSU) thermal check) arises in the CPU and/or
its support systems (e.g., the MSU and/or the CPU power supply) so that the CPU does
not operate correctly or at all, resulting in a computer interruption. A software failure of a
computer system occurs when a problem (e.g., a computer system gets “hung up” in a
wail state) arises in the operating system resulting in the computer system not
completing what the user requested of it. A computer system could aiso fail due to a
problem with the system’s power supply, however, this is rarely a problem today as most
large computer systems have uninterruptible power supplies (UPS) to ensure continuous
power flow to their system.

When a computer system fails, there are various means of restoring the system to
a full or partial operating state. For example, when the operating system detects a
problem (e.g., an abnormal program end) in an application program, it may be able to
perform a “restart” from a known set of conditions so that the program will run to
completion. However, if the problem originates within the operating system, it may be
necessary to perform an initial program load (IPL) which involves the process of reloading
the operating system to return the computer sysiem to an operational state. The
complexity of these restoration activities has a significant impact on the duration of
computer system interruptions.

The reliability of a computer system is defined as the probability that the system
will perform adequately for the desired period of time when operating in a given
environment.  One of the key reliability random variables that characterize each computer

system mode of failure (e.g., hardwarc, software and the people who operate and
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program the system) is the hazard rate. This is defined as the number of observed
failures caused by that particular mode of computer system failure per unit of
operating time. For example, a compute. system’s hardware is composed of many
electronic devices (e.g., integrated circuits) and mechanical devices (e.g., motors).
Studies on these components have shown that their hazard rate varies with time in 2
pattern that is somewhat shaped like a bathtub as illustrated in Figure 1.1. When the
hazard rate is constant, it is called a *failure rate"[1].

»

INFANT
LIFE USEFUL LIFE WEAR-OUT
PERIOD PERICD PERIOD

HAZARD RATE A(t)

Increasing

Constant Hazard Rate |} | Hozard
=

Figure 1.1 Hazard rate A (t) for typical computer hardware.

The initial period in the life cycle of a computer system’s hardware nas a high
hazard rate and is classified as the infant life period or burn-in period of the life cycle
of electronic conponents and the “bedding-in” period for mechanical devices. This
high initial hazard rate is usually due to manufacturing and assembly defects. The
initial period is followed by a constant failure rate period which is referred to as the
“useful” life period. Then, the wear-cut period follows where the failure rate
increases significantly with time.

The constant failure rate period for a computer system may not be achieved for
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some years after the installation of a system due to problems with the initial desigr
concepts not being completely correct or due 1o an unexpectedly long burn-in period where
the system defects are not completely identified and remedied. The constant failure rai¢
period may be far from constant with variations caused by different usage of the system or
other disturbance factors ‘¢.g., stress levels cu IC’s, environmental changes, etc.). These
factors are very difficult to incorporate into any computer system performance model.

When a computer sysicm is designed, the manufacturer estimates the reliability of
the hardware devices used. The evaluation process is based on the hazard rates obtained
from field data of the individual devices (e.g., CPU, printer) and the individual components
of these devices. The invlividual component hazard rates take into account stress factors
specified by the design parameters on ambient temperature, voitage, and power ratings
derived from the environment in which the devices will work. Other factors that computer
manufacturers consider in calculating hardware reliability of a computer system are the
known deficiencies in the design, production, use and maintenance of the computer
system. The reliability of a computer component can be greatly affected by the storage
time. The storage time is the amount of time that a component is not in use (e.g., sitting
on a shelf). Some IC’s have a significant failure rate when they are not in use. The
modelling techniques required to evaluate the performance of a computer system
consisting of millions of components is an extremely difficult and involved process.

The evaluation of computer software reliability involves a different set of
considerations than hardware reliability (e.g., the hazard rate “bathtub” curve). First,
software failures are primarily due to design errors with producticn, use, and maintenance
factors being negligible. An exception to this statement is corrections made to a computer
program which may cause future computer system interruptions.  The concept of repair is
not directly applicable to correcting erroneous software.  Instead, software is redesigned
to improve reliability only if it removes the original error(s) and introduces no others.

The software reliability is a function of the effort put into detecting and correcting efrors
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which can lead to computer system failures when a program step or path which has an
error in it is executed. The external environment does not affect software reliability
except where it affects program input and output devices (e.g., faulty user terminal,
printers stalling, etc.).

The reliability of the personnel who operate and program computer systems is a
difficult parameter to evaluate but can be estimated empirically from the number of
computer system interruptions they cause. The reliability of these personnel and thus the
computer system reliability depends on the amount and level of training the people have
received.

1.3 Computer cyclic patterns of operation

When all the causes of computer system interruptions are considered individually
or collectively, a computer system will exhibit distinctive cyclic patterns of performance.
The system will be in an operational state (i.e., up state) for certain period of time (e.g.,
“m” hours) and then, as a result of a failure, be in a down state for another period
of time (e.g., “r” hours). The computer system is then restored o an operational state
following remedial actions to remove the effects of the failure. These cyclic patierns are

illustrated in Figure 1.2.

i — ith cydle T ; — ith duration in down state |
M j — ith dwrstioninup state  tbf; — ith time between faihwes

COMPUTER ' 7
JMPUTE tbfl—+ tbf, .|. tbfy ——fe-tbf
uP
Iy
l’l mz 'y ¢ ms m4
COMPUTER
SYSTEM
DOW N —plomns

Figure 1.2. Computer system cyclic operational states



The mean up time after restoration (i.e., MUT) of a computer system is defined as:

MUT= 1 2 m; (1)

n i=1

The mean down time (i.e., MDT) of a computer system is defined as:

n
MDT = L 2 r; 2
n =i

There is almost a denumerably infinite number of factor. that affect the
nerformance of a computer system which cannot be incorporated into any practical model
without an extremely sophisticated and detailed outage reporting system. These are not
maintained in the computer industry today. In order to develop practical computer system
performance models, it is necessary to study in detail the computer interruption patierns
as captured by existing computer system outage reporting systems. The unique causes of
a given computer system’s interruptions can be defined by analysing the restoration -
repair processes that were required to restore a particular computer system to a fully or
partially operating state. A knowledge of these computer system cyclic failure - renewal
processes can be obtained from a detailed statistical analysis of existing interruption-
outage reporting systems which log the failure and operating states of a given computer
system as a function of time. A detailed statistical analysis of a computer system’s
primary performance variables (e.g. MUT, MDT, “failure rates”,“time between failures”,
individual “down” iimes and “up” times, etc. .) provides a knowledge base for the
development of detailed computer system performance models. Such models are the

subject of this thesis.



1.4 Thesis Objective

This thesis is directed at developing a generalized model of the performance of a
large digital computer system that accounts for the frequency and duration of complete
computer system failures (i.c., requiring an IPL to restore the system to a fully
operational state). Problems resulting in restricted computer operational states are not
included in the generalized model. The interruption reports of any computer system can
in many cases provide the necessary statistical characteristics of the state wvariables
necessary to evaluate computer performance. This thesis will present a new 30 state
generalized Markov state space model based on the information/management data bases
of the Alberta Government Computer Center's VM-based system. The evolution
equations for the probability of the various system failed states caused by hardware,
software, operator and analyst errors exhibited by the Alberta Government Computer
Center’'s VM-based system will be developed and presented in detail. The proposed
models can be used to predict the cyclic transitions b:tween total system failures and the
operational states of a given computer system znd the processes it controls. The
methodology presented in this thesis will provide a basis for custom modelling of any
computer system’s performance based on its inu: rruption reports.
1.5 Scope of Thesis

Chapters II and IIl will descrite b2 data base in detail and present the results of
preliminary statistical analysis of th: %ey performance variables to determine if the
computer system exhibits distinctive jaiterns of operation. In Chapter IV a general
model based on the results of the statistical analysis will be presented. Chapters V 1o
VIII will present the individual Markov models for each computer failure mode (i.c.,
hardware, software, unknown, analyst and operator). Chapter IX will present the Markov

model for the assessment of the overall reliability performance of the Alberta
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Government  Computer Center's VM-based system.  Chapter X will present the

conclusions and discussions of the thesis.
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CHAPTER II
COMPUTER SITE DATA BASE

2.1 Description of information/management computer data base
The computer system that was studied in this thesis was the Alberta Government

Central Computer Center VM operating system computer. This computer system became
operational in September 1983 and utilized an Amdahl 470/V8 CPU. On October 51, 1986
the CPU was updated to an IBM 3081K CPU. The management of the computer system
implemented an information/management data base to keep track of the system operation.
The information/management data base ot the computer sysiem had two components, a
change form report and a problem report. The change form reports covered any proposed
changes to the sysiem configuration, hardware or software, or system operation and the
implementation and results of the change. The problem reports covered any deviation in
equipment or computer system operation from what is normally expected and what was
done to identify and correct the problem if possible. The problem reports contained the
information required to evaluate the computer system's perfomance.
2.2 Computer system problem reports

The problem reports were set up to provide the management or other interested
people with the maximum amount of information on what was happening on the computer
system at a glance. The heading of the report iricludes the record identification number and
a brief problem description. The first page of the report has the data divided into five
categories:

(1) Problem Reporter Data: this includes the person reporting, date, time, and

nature of the problem and its impact on the system.
(2) Problem Status Data: this includes who is assigned to the problem and their
progress on the problem.

(3) Problem Close Data: this covers the resolution of the problem.
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(4) Interested Privilege Classes: who has access to the problem reports
(5) Problem Suppiemental D ~: Other information on the problem.
The second page of the report contains the:
1) Detail Data: which includes the Description Text of the problem and the
Resolution it of the problem if it was solved.

2) Journalized Problem Data: a summary of the problem report.

2.3 Identification of the causes of computer system problems
The problem reports were analyzed in some detail and it was decided that the
problem report data base would be partitioned on the basis of what caused the problem
rather than the type of problem. This decision would yield more information about the
operation of the computer system. For example, a problem caused by an incorrect system
operator action is more descriptive of system operation than saying that there was a
software problem. The reports were separated into the categories based on what caused
the probiem. the five categories chosen were:
(1) Hardware: any problem caused by the hardware of the computer system.
(2) Software: any problem caused by the software of the computer system.
(3) Operator: any problem caused by the operators of the computer system.
(4) Analyst: any problem caused by the computer system analysts.
(5) Unknown: any problem for which the cause was not known.
A category for problems caused by power system was not included because this computer
system has an UPS (i.e., an uninterruptible power supply) and there were no problems
recorded to date.
The problem report data base was further analyzed to determine the means of
restoration following a computer system problem. The majority of problems have no major

impact on the performance of the computer system (e.g., console lights on, system still
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operational) while other problems resulted in restricted computer system operation. The
problem report data base was partitioned into two distinct regions to identify those
problems which caused a computer system failure and those which caused restricted
system operation and/or were minor problems. The number of problems and computer

system failures (i.e., requiring an IPL) arc shown in Tabie 2.1.

Table 2.1 Number of computer problems versus means of restoration (1985-1986)

NUMBER OF NUMBER OF NUMBER OF
PROBLEM REPORTS IPL’S NON-IPL’S
224 44 180!

NOTE: (1) Non-IPL’ includes all minor problems and problems whose occurrence
results in restricted computer operation.
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CHAPTER III
STATISTICAL METHODOLOGY

3.1 Introduction

The key parameters necessary to model the reliability of a computer sy stem are
the “time to failure” and the “restoration time” variables for each problem category. A
detailed study of these variables and the cyclic failure-renewal processes exhibited by
a computer system will define the statistical characteristics of the system’s operational
and failed states which are necessary for performance modelling.

3.2 Statistical representation of the “time to faiiure” variable with
kn~wn statistical distributions

An initial statistical objective of this thesis was to represent the computer system
reliability variable “ time to failure” by a known statistical distribution (e.g.,
exponential, normal, Weibull, etc.). If the “time to failure” variable for each problem
category can be represented by known statistical probability density functions, then
the performance of a computer system can be modelled by existing reliability models.
Frequency histograms of the “time to failure” variable for the major problem areas,
namely; system, hardware, software and unknown causes are shown in Figures 3.1
to 3.4, respectively, to provide a visual basis for possible pattern matching with

known statistical distributions.

An examination of the clusiering patterns exhibited in all the frequency
histograms revealed that the problem report data base could be stratified into five
distinct periods of continuous computer operation following a distinctive failure
mode. The selected periods or operational time zones are defined in Table 3.1. The
computer system operational time zone boundaries were selected to accommodate all
modes of computer system failures (i.e., hardware failures, software failures,
unknown failures, analyst errors and operator errors) and are shown in Figures 3.1 to
3.4.



Table 3.1 Definition of computer system distinctive operating periods in weeks.

TIME ZONE OPERATIONAL TIME ZONE
NUMBER BOUNDARIES IN WEEKS
1 0- 4
2 4- 8
3 8-16
4 16 - 32
5 32+
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Figure 3.1 Frequency histogram of the time to the next system failure caused by all problems
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Figure 3.4 Frequency histogram of the time to the next system failure caused by unknown problems.

The expected value of the time to failure variable (i.e., MTTF or mean time to failurc)
was calculated for each problem category and represents the time the computer system
was operational until the next defined problem failure occured. For example, the
expected value of computer system operation following each hardware failure was
approximately 9.25 weeks (i.e., 1533.84 hours).

Statistical analysis of the computer system’s operational states to obtain the
expected value of the duration highlighted a major problem.. The MTTF shown in
Figures 3.1 to 3.4 did not adequately characterize the central tendency of the data due to
the data’s large variance and numerous modes over the range monitored. This range of
data precluded known statistical distributions (e.g., Weibull, log normal, normal, etc.)
from being used to represent the data. The initial attempts to represent the variables by
traditional statistical probability density functions failed due to the multimodal nature of

the ‘:me to failure variable.
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3.2 Search for time dependent failure patterns in problem report data base

The statistical analysis of the Alberta Government’s computer center’s VM based
system was then directed at examining the various computer system problems to
d=termine whether they exhibited distinctive failure patterns as a function of time (ie.,
time dependency of the time to failure data). The first time of occurrence stratification of
the problem data base was by the hour of the day. A frequency histogram of the number of
problems that occurred in 1985 and 1986 versus the time of day the events occurred are

shown in Figures 3.5 and 3.6, respectively.

30
] operator
7 lyst
25 1985 Analys
B Unknown
20 B software
B Hardware
15

Number of Problems

.......

1234567 8 9101112131415161718192021222324
Hour of Day

Figure 3.5 Number of problems that occurred in 1985 versus the hour of the day in which
they occurred.
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Figure 3.6 Number of problems that occurred in 1986 versus the hour of the day in which they
occurred.

An examination of Figures 3.5 and 3.6 reveals that the number of problems that curtail
the performance of the computer system vary significantly from year to year and from hour
to hour. The frequency distributions of the various categories of problems exhibited
multimodal tendencies which are extremely difficult to model statistically. No readily
visible patterns of occurrence are evident when the various failure modes of the computer
system are correlated with the hour of the day in which the failure mode occurred.

The second stratification of the data base was by the day of the week in which the
problem occurred. A frequency histogram of the number of categorized problems that
occurred in 1985 and 1986 versus the day of the week are shown in Figures 3.7 and 3.8,

respectively.
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Figure 3.7 Number of problems that occurred in 1985 versus the day of week in which
they occurred.
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Figure 3.8 Number of problems that occurred in 1986 versus the day of week in which
they occurred.
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The stratification of the problem report data base by the hour of the day and the day of
the week in which the problem occurred provided no distinctive statistical patterns of
occurrence over the two year period (i.e., 1985-1986).

3.3 Chronological order arrangement of time to failure variable

In the development of histograms, no attention was given to the order in which events
occurred (e.g., data clustered into class intervals). The statistical question that was
addressed next was: “Does the “time to failure” variable exhibit distinctive operating
cycles?” To answer this question, the time to the next problem category was plotted as a
function of its chronoiogical order of occurrence for hardware, software, sysiem and

unknown problems and is shown in Figures 3.9 to 3.12, respectively.
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Figure 3.9 Time to the next system failure caused by hardware problems.
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Figure 3.12 Time to the next system failure caused by unknown problems.

An examination of Figures 9 to 12 reveals distinctive operating patterns for all
problem categories. It appears that once this computer system has been operational for a
specified duration (e.g., x hours) before a given problem curtails its performance, the
next  sequential computer system operational period (e.g., Yy hours) after the
computer system restoration activities have been completed, will be significantly less
than the previous computer operational period (i.e., y << x). An operating cycle of a long
operational period followed by one or more operational periods of shorter duration was
consistently observed during the study period.

These observations are characteristic of a Markov process in which the computer
system resides within an operational state for a certain period of time, then faili and is
restored to another operating state of another time period. This cyclic performance

continues with distinct probabilistic transitions between opersting states and failed
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states. Once the computer system fails, then the primary questions that must be
answered are:

(1) what is the duration of the failed state?

(2) are there distinctive patterns associated with computer system restoration

activities?
(3) can the duration of the failed states be represcnted by known statistical
distributions?

Answers 10 these questions will provide a basis for the development of a Markov model

of the performance of the Government of Alberta’s computer system.
3.4 Statistical representation of the “restoration time” variable with known
statistical distributions
Frequency histograms of the “restoration time” variable for system, hardware,
software and unknown causes are shown in Figures 3.13 to 3.16, respectively, to provide

a visual basis for possible pattern matching with known statistical distributions.
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Figure 3.13 Computer system restoration duration following any failure category
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Figure 3.16 Computer system restoration duration following a hardware failure

The key statistical characteristic exhibited by the “restoration time” -ariables
was that the expected duration of restoration activities were orders of magnitude less
than the “time to failure” variable for each problem category. The “restoration time”
variables were positively skewed with a number of observations significantly removed
from the distribution mean and this characteristic is difficult to represent by known
statistical distributions and techniques (e.g., transformation of variables).

3.6 Discussion of statistical results

The key reliability variables for all problem categories “time to failure” and

“restoration time” could not be represented adequately by %nown statistical distributions

due to the problematic nature of the data. The primarily multimodal nature of these
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variables prevented the use of existing reliability models which arec based on known
statistical distributions.

The “time to failure” variables exhibited distinctive operating cyclies which can be
modelled by a Markov model where the transition rates between operating states can
reflect these statistical characteristics. The expected values of the “restoration time”
were confined to a short interval (e.g., O - 60 minutes) compared with the “time to failure”
variable (e.g., 371 to 1658 hours) and these statistical characteristics can be included in a

Markov model, the subject of the next . .pter.
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CHAPTER IV
GENERALIZED MARKOV MOx i

4.1 Introduction

The statistical analysis of the Alberta Government’s computer center’s VM based
system’s problem report data base revealed a distinctive operating pattern for the
computer system. An operating cycle of a long operating period followed by one or more
shorter operating periods of shorter duration was observed in the monitored data. These
observations formed the basis of a generalized failure Markov model.
4.2 State space diagram

The state of the computer system at any given point in time was assumed to be
characterized by a set of “operational” states of varying durations and another set of
repair/restoration states in which the computer system is in a “failed” state. A set of five
operational states was defined. The number assigned to each operational state (ie., its
time zone number as shown in Table 4.1) defines the duration of computer system
operation. For example, if the computer system resides in state 1, then the computer
system will be operational for only a period ranging from O to 4 weeks; in state 2, the
computer system will be operational for a period ranging from 4 to 8 weeks, etc. The
higher the operational state number, the longer the duration of computer system
operation.

Table 4.1 Defimtion of computer system operating intervals in weeks and their
corresponding time zone number

TIME ZONE GPERATIONAL TIME ZONE
—NUMBER. _BOUNDARIES [N WEEKS

0- 4
4- 8
8-16
16- 32
32+

(P -y S
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The possible cyclic state transitions from a given operational state to a failed
state and then to a another operational state is shown in the generalized siate space

diagram of a computer system in Figure 4.1.

LEGEND - FAILED STATES jan

jth computer
i {or @- system failed
v state _

| M _ith computer system §

M operational state

Figure 4.1 State space diagram for generalized Markov modei.
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The repair/restoration rate p value was defined from the inverse of the average of the
duration of all the failures. The repair/restoration states were characterized by an
average repair/restoration rate for all failed states because the duration in the
repair/restoration state was significantly smaller than the duration in an operational state.
If the duration of the failed states were of the same magnitude as the operational states,
then each failed state would be characterized by a unique repair/restoration rate u ; as

opposed to a single value .

The transition rates in the general model are polarized (i.c., giving the direction to the
next operating state in the life cycle of the computer system). The transition rates shown
in Figure 4.1 are rigidly defined in the following manner:

i - the ith computer system operating state prior to a computer system failure

j - the jth computer system operating state immediately following a
repair/restoration state which was entered into from state i.

The transition between operating states must always pass through a repair/restoration
state.

The departure rate A i-j from a particular up state was defined as the pumber of
transitions that occur from the source state to the destination state divided by the total
number of transitions that originate from that state and this is multiplied by the
empirically determined failure rate for the state.

The steady state probabilities of occupying each state in closcd form for the 30 state
generalized model can be solved by a frequency balance approach where the sum of the
frequencies of departure from a given state must equal the sum of the frequencies of entry
into the given state[1]. The frequency of departure from a given state is equal to the
steady state probability of the state, times the sum of the transition rates departing from

that state. The frequency of entry into a given state from another state is equal to the
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probability of the other state, times the directional transitional rate linking the given state
(i.e., the process in time goes from the other state to the given state). The total frequency
of entry into a given state is equal to the sum of all frequencies entering the given state.
For example, the frequency balance equation for state 1 is given by the following

expression:

For each state in the state space diagram shown in Figure 4.1, a frequency balance
equation can be expressed resulting in a set of 30 frequency balance equations. In order to
solve for the steady state probabilities of occupying each state an additional constraining
equation is required. This constraining equation expresses the fundamental relationship
that the sum of all the state probabilities must be equal to one.

The set of 30 frequency balance equations are shown in Appendi>. A. The generalized
solution of these equations in closed form is presented in the Appendix A due to the
length of the closed form solutions for each state probability.

4.3 Application of the generalized Markov model

The generalized solution for the steady state probabilities for all 30 states contains
all the possible states of computer system operation and the transitions between these
states through restoration states. The transition rates between the various operational
states will be evaluated for each computer system failure mode. The number of transitions
between the various operational states for a given failure mode is significantly less than
the generalized state space diagram. The remaining chapters (i.e., Chapters V 1o IX) of
this thesis will focus on presenting the state space diagrams, the frequency balance
equations and the closed form solutions of the steady state probabilities of the operational
states for each failure mode (i.e., hardware, software, unknown, analyst and operator and
the aggregate of all failure modes) of the Alberta Government Computer Center’'s VM-

based system.
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CHAPTER V
HARDWARE FAILURE MARKOV MODEL

5.1 Introduction

The analysis of the computer system hardware failure data contained in the problem
report data base was directed at separating those hardware problems which resulted in
restricted computer system operation and those which curtailed the performance of the
system completely. To demonstrate the difference between problems that caused
restricted system operation and those that caused a computer system failure, a sample of

problems that have occurred are tabulated in Table 5.1

Table 5.1 Sample of hardware problems and their impact on computer system performance

DESCRIPTION OF DESCRIPTION OF
——HARDWAREPROBLEM  COMPUTER SYSTEM OPERATION
1. equipment check on 718 drum restricted
2. keyboard locked out restricted
3. error light 2 on C48 controller restricted
4. soft machine check recording disabled restricted
S. terminal has a blank screen restricted
6. interfaces not disabled on bad director restricted
7. machine check/supervisor damage on Amdah! V8 system failure
8. power check on V8 system failure
9. main storage unit thermal check on V8 system failure

10. locked out of YM system failure
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5.2 State space diagram for hardware failures only
Only those hardware failures that caused computer system failures t0 occur are
considered in the state space diagram. The actual time of occurrence of these failures, the
duration of the outage and the time to the next hardware failure (i.c., TTF) arc shown in

Table 5.2.

Table 5.2 Problem report data base for hardware failures

DATE TIME OF DURATION TIME OF TTF

OF OCCURRENCE _OUTAGE _(minutes) =~ RESTORATION _ (howss) |
November 3, 1984 8:00 131 10:11 -
January 8, 1985 7:45 37 8:22 1581.57
Janvary 29, 1985 10:11 12 10:23 505.82
January 29, 1985 18:07 26 18:33 7.73
April 19, 1985 5:00 40 5:40 1906.54
July 13, 1985 1:42 12 1:54 2036.03
September 5, 1985 3:36 60 4:36 1297.78
September 24, 1985 8:55 17 9:12 460.32
February 26, 1986 10:30 14 10:44 3721.30
March 31, 1986 12:24 70 13:34 793.67
April 27, 1986 20:14 66 21:20 654.67
April 28, 1986 21:10 86 22:36 23.83
October 31, 1986 13:08 49 13:57 4454.53
November 9, 1986 7:30 61 8:31 209.55
May 18, 1987 11:21 4 11:25 4490.83
June 23, 23, 1987 10:54 306 16:00 863.48

A graphical representation of the time to the next hardware failure is shown in
Figure 5.1. It is evident from the Figure 5.1 that hardware failures follow a distinctive
operating pattern. This pattern can be expressed in the form of a state space diagram
shown in Figure 5.3 which is based on the generalized state space diagram presented in
Chapter 4.
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Figure 5.1 Time to the next hardware failure in chronological order.

In an examination of the chronological order of computer system operational times, the
computer system operated in the following sequential time zones following each hardware
failure:

3-1-1-3-3-2-1-4-2-1-1-4-1-4-2]
This sequence defines the transitions between operating states. Note the number of
transitions between operating states is significantly less than the generalized model
where all possible transitions between all possible operating states is considered.
Because many of the transitions of the general model did not occur, a much simpler model
can be developed to model hardware failures. Based on the observed transitions between
the various operating states, a state space diagram can be ceastructed to model hardware

failures and their impact on cciu:pater system performance evaluated.
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When the computer system’s performance is curtailed by a hardware failure, it is
necessary to restore the system to a fully operational state, if possible, by various
restoration activities (e.g., repair, replacement, system reconfiguration, etc.).  The
frequency histogram of the duration the computer is in a failed state following a hardware
failure is shown in Figure 5.2. The mean duration of restoration/repair activities is 57.33

minutes and defines the restoration/repair rate.

-8
1

| MEAN HARDWARE FAILURE DOWN TIME = 5733 minutes

7]
%

b
1

FREQUENCY OF OCCURRENCE
N

0 10 20 30 40 S0 60 70 80 90 100110120130310

DURATION IN MINUTES REQUIRED TO RESTORE THE
COMPUTER SYSTEM TO A FULLY OPERATIONAL STATE
(HARDWARE FAILURE RESTORATION DURATION)

Figure 5.2 Computer system restoration duration following a hardware failure

Based on the observed transitions between operating states and the duration of
restoration activities following a hardware failure, a state space diagram of the dynamic

process can be constructed as shown in Figure 5.3.
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Figure 5.3 State space diagram for hardware failure Markov model.

The required operational states are one through four and the down states are specified

from the observed transitions between the operational states. For example, down state
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number 9 is needed to accommodate the transition from operational state 3 to operational
state 2, however, down state 8 in the general model is not required because there is no
observed transition from operational state 2 to operational state 3.
5.3 Evaluation of steady state “state” probabilities in a closed form solution

The 13 state Markov model state probabilities can be solved by a frequency balance
approach. The initial step is to define the frequency balance equations for each state in

the state space diagram. These equations are listed as follows:

Pl()\.n+ )\13+)\.14)=p.(P7+P17+P23+P26) (1)
P2 (Ag1) =1 (Pg+ Pyg) @

P3 (A3 + Agz+Ag3) = (Prg+ Pog) Q)
Pg(Agr+ Agg) = (Pp) @
Pr(n) =Py }»21 (5)

Po(u) =Py )\'32 ()

P16 () =Py Ay @

P17 () =P3hg 8)
Pro()=Pghg ®

Pya () =Py Ay (10)

Py3 () =Pg Mgy an
Pys () =Py Ay (12)

Pyg (1) =P3hs3 (13)
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An additional equation is required for the solution of the steady state probabilities.
This equation states that the sum of all the probabilities of ail the states shown in Figure

5.3 is equal to one or in mathematical form can be expressed as:
Py+Py+P3+Py+ P7+ Pg+ Pig+Py7+ Pig+ Pyy+ Pra+ Pyg+ Pyg =10 (14)

The solution of the above equations by various traditional methods (e.g., matrix
inversion) is extremely difficult, messy and time consuming particularly when the steady
state solutions are expressed in closed form. To overcome these difficulties, equation (14)
can be expressed in terms of the ratio of probabilities with the base probability equal to
state 1 as follows:

P1( 1+Py/Py + P3Py + PyPy + P7/Py + Py/Py + P1g/P1+ P17/P1 + .
P19/Pq + Pyy/Py + Py3/Py + Ppg/Py + Prg/Py )=1.0 1%

The individual probability ratios shown in equation (15) can be evaluated from the
frequency balance equations (i.c., continual substitution and back substitution until the
probability ratio is evaluated).  Once the probability ratios of equation (15) have been
evaluated, then the probability of state 1 can be evaluated. In order to simplify the final

form of the solution for Py, the following constants will be defined:

A=)y + g (16}

B=Agyy+ Mg a7z
C=(A3zM3/A) + (Mg hy4/B) (18)
D=p A (19

E=p B (20)
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The final form of the solution for Py can be expressed in terms of the above
constants and a set of “state probability constants™ as defined in Table 5.3.

Table 5.3  State probability constants (A(i))

STATE STATE PROBABILITY CONSTANT
(i) A
2 Crhyy
3 Aia/A
4 A14/B
7 c/u
9 M3 As/D
16 )\.13/ n
17 A3 A3,/D
19 A4 Ngo/E
22 )\-14/ 1}
23 Mg Mgy/E
26 Aa/w
28 M3h3/D

The steady state probability Py is defined by the following equation:

P1= 1

n
1+ 2 AG)
i=2
The probability of occupying any other state P;is given by:

P;= P, AG) (22)

(2D
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5.4 Evaluation of Markov model parameters

The key parameters required to evaluate the steady state probabilities of the
hardware Markov model are the repair/restoration rate and the state transitional rates as
shown in Figure 5.3. The mean time the computer sysiem resides in each operational
state and the number of departures from that state are shown in Table 5.4.

Table 5.4 Mean duration of system operation in each state and number of transitions from
a given state

STATE MEAN DURATION IN STATE NUMBER OF TRANSITIONS

NUMBER (hours) ~FROM THE GIVEN STATE
1 310.32 6
2 984.9%; 2
3 1841.38 3
4 4222.22 3

The rate of departure from a given state )‘1 is defined as follows:

Aj= _total pumber of transiticus from state i

total duration in state

= 1.0 / mean duration in state i 23)
The individual directional transition rates }\.“ from a given state ito another operational

state jthrough a restoration state is defined as:
}‘-ﬁ = AiPGy) (24)

where: P(i,j) = probability of a transition from state ito j
P(i,j) is defined as follows:
P(ij) = _number of transitions from statejtoj (25)

total number of transitions from state i
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The individual transition rates of the hardware state space diagram are listed in Table S.5

Table 5.5 Individual hardware transition rates between operating states

TRANSITION RATE VALUE (departures/hour) x 106
A 1074.160000
M3 537.080000
M4 1611.240000
M 1015.279900
Aat 181.023650
A3 181.023650
Aa3 181.023650
My 78.947409
A 157.894810

The restoration rate n is defined as the reciprocal of she mean time to restore the
computer system to a fully operational state and is equal to 1.0465116 restorations per
hour for hardware failures.
5.5 Calculation of the frequency and duration of computer system operation

The performance of a computer system is usually quantified by two variables; i.c.,
the probabilit; .. * the computer system is operational and the frequency of departurcs
from its operauonal state. Based on the transition rates between operational states and
the restoration rate, the probability of occupying any of the states contained in the state
space diagram (i.e., shown in Figure 5.3) can be evaluated from equations 21 and 22.

The quantitative rcsults of the steady state “state”, probabilities are shown in Table 5.6.



-40-

Table 5.6  State probabilities for hardware Markov model

STATE STATE PROBABILITY
(i) P(i)
1 0.094200752
2 0.124579770
3 0.139742340
4 0.640848640
7 0.000120862
9 0.000024172
16 0.000048344
17 0.000024172
19 0.000096689
22 0.900145034
23 0.000048345
26 0.000096689
28 0.000024172

The probability of being in an operational state is equal to the sum of the

probabilities of occupying all operational states and can be expressed mathematically as:

P(operational) = P; + Py + P3+ P4 (26)
= 0.999371510
The frequency of departures from the operational states is equal to the sum of the
frequency of departure from each individual operating state and can be expressed as

tollows:
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f down = P1( )\11 + )\'13 + }\14) + Py( }Vll) +P3( )\.31 + )\.32 + )\.33 ) 4 e
+ Pyhgy + M3) @n

= 0.00065771342 outages or occurrences/hour
= 5.76456 outages caused by hardware failures/year
5.6 Discussion of hardware failure Markov model
Based on the obscived hardware failure patterns, this chapter has presented a 13
state Markov model for evaluating the impact of hardware failures on the performance of
the Government of Alberta’s Central VM-based computer system. The evolution
equations of the steady state “state” probabilities in closed form were presenicd. The
detailed frequency balance equations of the Markov model which is required for the
solution of the state equations are also presented. The actual state transition rates are
presented. Based on the evolution equations and the state transition rates, the
probability of the computer system being operatinnal was calculated and the frequency of
computer hardware system outages per year was evaluated.
The next chapters VI to IX will present the Markov models for software, unknown,
“analyst and operator” and system failures, respectively, based on the generalized

Markov model presented in chapter IV.
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CHAPTER VI
SOFTWARE FAILURE MARKOV MODEL

6.1 introduction

The analysis of the computer system software failure data contained in the problem
report data base was directed at separating those software problems which resulted in
restricted computer system operation and those which curtailed the performance of the
system completely. To demonstrate the difference between problems that caused
restricted system operation and those that caused a computer system failure, a sample of

problems that have occurred are tabulated in Table 6.1

Table 6.1 Sample of software problems and their impact on computer system performance

DESCRIPTION OF DESCRIPTION OF
SOFTWARE PROBLEM COMPUTER SYSTEM OPERATION
1. DiSKACNT has noted an error restricted
2. BDIRMAINT not logged restricted
3. bad return code for SYSDUMP1 restricted
4. Qreader has error 24 restricted
5. number of CCCPROP logfiles is incorrect restricted
6. system temporary space full restricted
7. CP abend - console Jocked system failure
8. CP abend - system recovered by VSAFE system failure
9. system failure code DSP001 system failure
10. VM resiarted itself and cut a dump system failure

-

$.2 State space diagram for software failures only

Only those software failures that caused computer system failures tc occur are
considered in the state space diagram. The actual time of occurrence of these failures, the
time of outage, the duration of the outage and the time to the next software failure (i.e.,

TTF) are shown in Table 6.2.



-43-

Table 6.2 Problem report data base for software failures.

DATE TIME OF DURATION TIME OF TTF
OF OCCURRENCE _GUTAGE (minutes) RESTORATION _(houyrs)
December 14, 1984 9:39 2 9:41 -
May 21, 1985 13:06 2 13:08 3795.42
August 14, 1985 16:25 1 16:26 2043.28
September 27, 1985 17:03 5 17:08 1056.62
October 2, 1985 15:51 8 15:59 118.72
April 24, 1986 16:21 7 16:28 4896.37
April 25, 1986 8:01 20 8:21 15.55
June 23, 1986 10:06 51 10:57 1417.75
June 30, 1986 00:00 188 3:08 157.05
November 4, 1986 15:07 12 15:19 3059.98
January 12, 1987 9:01 1 9:02 1649.70
January 13, 1987 9:24 1 9:25 24.37

A graphical representation of the time to the next software failure is shown in Figure
6.1. It is evident from the Figure 6.1 that software failures follow a distinctive operating
pattern. This pattern can be expressed in the form of a state space diagram shown in
Figure 6.3 which is based on the generalized state space diagram presented in Chapter 4.

In an examination of the chronological order of computer system operational times,
the computer system operated in the following sequential time zones following cach
software failure:

4-3-2-1-4-1-3-1-4-3-1]

This sequence defines the transitions between operating states. Note the number of
transitions between operating states is significantly less thin the generalized model
where all possible transitions between all possible operating states is considered.
Because many of the transitions of the general model did not occur, a much simpler model

can be developed to model software failures.
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Figure 6.1 Time to the next software failure in chronological order.

Based on the observed transitions between the various operating states, a state space
diagram can be constructed to model software failures and their impact on computer
system performance evaluated.

When the computer system’s performance is curtailed by a software failure, it is
necessary to restore the system to a fully operational state, if possible, by various
restoration activities (e.g., [IPL’ing, using an old version of the software, upgrading the
software, etc.). The frequency histogram of the duration the computer is in a failed
state following a software failure is shown in Figure 6.2. The mean value of the
duration of restoration/repair activities is 26.91 minutes which defines the

restoration/repair rate.
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Figure 6.2 Computer system restoration duraticn following a software failure

Based on the observed transitions between operating states and the duration of
restoration activities following a software failure, a state space diagram of the dynamic

process can be constructed as shown in Figure 6.3.

The required operational states are one through four and the down states are specified
from the observed transitions between the operational states. For example, down siate
number 9 is needed to accommodate the transition from operational state 3 to operational
state 2, however, down state 8 in the general model is noi required because there is no

observed transition from operational state 2 to operational state 3.
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Figure 6.3 State space diagram for software failure Markov model.

6.3 Evaluation of steady state “state” probabilities in a closed form solution
The 11 state Markov model state probabilities can be solved by a frequency balance
approach. The initial step is to define the frequency balance equations for each state in

the state space diagram. These equations are listed as follows:

Py A3+ A1q) = (Pr+ Py + Py3) M

Py (Agp) =p (Py) @)
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P3A3g+ A3z ) =u (Ppy + Prg) 3
Pg(Agr+ Ag3)=n (P )
Py () =Py Ay (5)
Pg(n)=P3 }\32 (6)

Py (n)=PgAys ™

F,., m)=P Ay 8

Py7 () =P3 Ay 9)

Pyp () =Py Ay (10)

P23 () =Pghg ()

An additional equation is requirea for the solution of the steady state probabilitics.
This equation states that the sum of all the probabilities of all the states shown in Figure

6.3 is equal to one or in mathematical form can be expressed as:
Pj+Py+Py+Py+ P7+Pg+ Py +Pig+ Py7 + Py2 + Py3 =10 (12)

The solution of the above equations by various traditional methods (e.g., matrix
inversion) is extremely difficult, messy and time consuming particularly when the steady
state solutions are expressed in closed form. To overcome these difficulties, equation (12)
can be expressed in terms of the ratio of probabilities with the base probability equal to

state 1 as follows:
Pl(l +Py/Py + P3/Py + P4/Py + P7/P) + Pg/Py + P11/Py + Pig/Pp + oo
P17/P1 + P22/Pl + P23/P1 )=1.0 (13)
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The individual probability ratios sn. -'n :a equatic? (13) can be evaluated from the
frequency balance cquations (i.c., continual substitutior :ed back s:ostitution until the
probability ratio is evaluated). Once the probability raiios of equation (13) have been
evaluated, then the probability of state 1 can be evaluated. In order to simplify the final

form of the solution for Py, the following constants will be defined:

A=h3+ Agy 14
B=Ag+ A3 (15)
C=( M3/A) + (Ag3Ag4/AB) (16)
Dou B an

The final form of the solution for P; can be expressed in terms of the above
constants and a set of “state probability constants” as defined in Table 6.3.

Table 6.3  State probability constants (A(i))

STATE STATE PROBABILITY CONSTANT
—i AG)
2 M€l Ay
3 C
4 A4/ B
7 A C/ou
9 A/ u
1 M3Ma/ D
16 }\.13/ n
17 Ac/ n
2 Mgl w

23 MaAgy/ D
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The steady state probability P; is defined by the following equation:

Py = 1
n (18)
1+ 2 A()
i=2
The probability of occupying any other state P; is given by:
P;= P, A(i) (19

6.4 Evaluation of Markov model parameters

The key parameters required to evaluate the steady state probabilities of the
software Markov model are the repair/restoration rate and the state transitional rates as
shown in Figure 6.3. The mean time the computer system resides in each operational

state and the number of departures from that state are shown in Table 6.4.

Table 6.4 Mean duration of system operation in each state and number of transitions from
a given state

STATE MEAN DURATION IN STATE NUMBER OF TRANSITIONS

NUMBER {hours) —FROM THE GIVEN STATE
1 78.92 3
2 1056.62 1
3 1703.58 3
4 3917.26 3

The rate of departure from a given state }\.. is defined as follows:

)\1 - ] | ¢ it g € i
total duration in state

= 1.0 / mean duration in state i (20)
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The individual directional transition rates A.“ from a given state ito another operational

state jthrough a restoration state is defined as:

)\-ij = )‘1 P(ij) 1)

where: P(i,j) = probability of a transition from state ito j
P(ij) is defined as follows:
P(i,j) = _pumber of trapsitions from state j to j 22

total number of transitions from state i

The individual transition rates of the software state space diagram are listed in Table 6.5

Table 6.5 Individual software transition rates between operating states

TRANSITION RATE. VALUE (departures/hour) x 10°6
M3 4223.552600
Ma 8447.105200
o 946.414030
A3y 391.333520
A3 195.666760
M1 85.093564
A2 170.187120

The restoration rate p is defined as the reciprocal of the mean time to restore the
computer system to a fully operational state and is equal to 2.2297297 restorations per

hour for software failures.
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6.5 Calculation of the frequency and duration of computer system operation

The performance of a computer system is usually quantified by two variables; i.c.,
the probability that the computer system is operational and the frequency of departures
from its operational state. Based on the transition rates between operational states and
the restoration rate, the probability of occupying any of the states contained in the state
space diagram (i.e., shown in Figure 6.3) can be evaluated from equations 18 and 19.

The quantitative results of the steady state “state” probabilities are shown in Table 6.6.

Table 6.6  State probabilities for software Markov model.

STATE STATE PROBABILITY
i PG)

1 0.018394357000

2 0.063846469000

3 0.308816850000

4 0.608659700000

7 0.000027099784

9 0.000027099784

1 0.000046456773
16 0.000034842579
17 0.000054199568
22 0.000069685159
23 0.000023228386

The probability of being in an operational state is equal to the sum of the

probabilities of occupying all operational states and can be expressed mathematically as:

P(operational) = Py + Py + P3+ P4 (23)
= 0.99971738
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The frequency of departures from the operational states is equal to the sum of the
frequency of d: parture from each individual operating state and can be expressed as

follows:

I down = P?;(A'l:& + )"14 ) + Py Ml) +P3( x31+ Agz ) I

+ Pyhgy+ Ag3 ) (24)

= 0.00063014845 outages or occurrences/hour
= 5.5201004 outages caused by software failures/year
6.6 Discussion of software failure Markov model
Based on the observed software failure patterns, this chapter has presented an 11
state Markov model for evaluating the frequency and duration of software failures of
the Government of Alberta’s Central Computer Center’s VM-based computer system.
The software Markov model was characterized by 11 states being observed out of the
possible 30 generalized states. The MTTF of software failures was 1657.7 hours and
was longer than hardware failures (i.e., 1533.8 hours). However, the mean software
restoration duration of 26.91 minutes was significantly less than the mean hardware
failure restoration activities of 57.33 minutes. Based on the evolution equations
developed in this chapter and the observed state transition rates, the probability of the
computer system being operational was calculated and the frequency of computer

system software outages per year was evaluated.
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CHAPTER VII
UNKNOWN FAILURE MARKOV MODEL

7.1 Introduction

The analysis of the computer system unknown failure data contained in the problem
report data base was directed at separating those unknown problems which resulted in
restricted computer system operation and those which curtailed the performance of the
system completely. To demonstrate the difference between problems that  caused
restricted system operation and those that caused a computer system failure, a sample of

problems that have occurred are tabulated in Table 7.1.

Table 7.1 Sample of unknown problems and their impact on computer system performance

DESCRIPTION OF

DESCRIPTION OF COMPUTER SYSTEM
UNKNOWN PROBLEM OPERATION

1. incorrect volser mounted for SYSDUMP1 restricted

2. bad return code from AUTOLOG for VMAP restricted

3. shutdown command didn’t work for VM restricted

4. VMSMFWEEK tried to run for the second time restricted

5. PASSTHRU link CALVM didn’t activate at IPL restricted

6. console log for PASSTHRU missing restricted

7. system in 100% supervision state system failure

8. users unable to logon to VM system failure

9. VM directory unavailable system failure
19. CNVA crashed and re-IPLed itself system failure
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7.2 State space diagram for unknown failures only

Only those unknown failures that caused computer system failures to occur are
considered in the state si;ace diagram. The actual time of occurrence of these failures, the
duration of the outage and the time to the next unknown failure (i.e., TTF) are shown in
Table 7.2.

Table 7.2 Problem report data base for unknown failures

DATE TIME OF DURATION TIME OF TTF

OF OCCURRENCE OUTAGE _(minutes) = RESTORATION (hours)
December 9, 1984 23:20 8 23:28 -
January 22, 1985 10:37 12 10:49 1043.15
January 24, 1985 17:33 1 17:34 54.73
January 29, 1985 16:00 1 16:01 118.43
February 12, 1985 13:00 S 13:05 332.98
February 28, 1985 16:00 6 16:06 386.92
March S, 1985 15:28 7 15:35 119.37
June 6, 1985 8:58 10 9:08 2225.38
July 12, 1985 16:47 13 17:00 871.65
Sceptember 26, 1985 13:30 2 13:32 1820.50
October 21, 1985 13:34 20 13:54 600.03
February 3, 1986 9:44 37 10:21 2515.83
February 27, 1986 10:17 25 10:42 575.93
March 10, 1986 00:42 4 00:46 254.00
March 27, 1986 19:41 10 19:51 426.92
May 30, 1986 17:23 16 17:39 1533.53
September 29, 1986 6:55 8 7:03 2917.27
nothing before August 7, 1987 7480.95+

A graphical representation of the time to the next unknown failure is shown in Figure
7.1. It is evident from the Figure 7.1 that unknown failures follow a distinctive operating
pattern. This pattern can be expressed in the form of a state space diagram shown in

Figure 7.3 which is based on the generalized state space diagram presented in Chapter 4.



-55-

1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17

ith OPERATIONAL STATE IN CHRONOLOGICAL
ORDER OF OCCURRENCE

W

S
.- 8000 ;
:g& ........ . I|984“98ﬂ .....
n . i
O tn 6000 + g 0
m:s : A LEGEND | '
o . _ -
EEU [] - ith OPERATIONAL | MTTF = 1369.27 hours
33; 4000 TIME ZONE NUMBER . 4
&Qc H
Er-3
oy ; °
S 22 2000 : 3
s ;
cz ot

=% 4 Y 2

z:.g S — ° a ; :
Ecw 0 a y =
Tt
252
a®8

-l

(=]

[T

Figure 7.1 Time to the next unknown failure in chronological order.

In an examination of the chronological order of computer system operational times, the
computer system operated in the following sequential time zones following cach unknown
failure:

2-1-1-1-1-1-3-2-3-1-3-1-1-1-3-4-5]
This sequence defines the transitions between operating states. Note the number of
transitions between operaling states is significantly less than the gencralized model
where all possible transitions between all possible operating states is considered.
Because many of the transitions of the general model did not occur, a much simpler model
can be developed to model unknown failures. Based on the observed transitions between
the various operating states, a state space diagram can be constructed to model unknown

failures and their impact on computer system performance evaluated.
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When the computer system’s performance is curtailed by an unknown failure, it is
necessary to restore the system to a fully operational state, if possible, by various
restoration  activities (e.g., replacement, system reconfiguration, IPL’ing, using an old
version of the software, upgradng the software, etc.). The frequency histogram of the
duration the computer is in a failed state following an unknown failure is shown in Figure
7.2. The expected value of the duration of restoration/repair activities is 11.06 minutes

and defines the restoration/repair rate.

{1984-1987}

S Vund RS NEAN UNKNOUN FAILURE
..... DOMN TINE = 11.06 minutes

FREQUENCY OF OCCURRENCE
H
L

0 10 15 20 25 30
DURATION IR MINUTES REQUIRED TO RESTORE THE
COMPUTER SYSTEM TO A FULLY OPERATIONAL STATE
(UNKNOWN FAILURE RESTORATION DURATION)

Figure 7.2 Computer system restoration duration following an unkrown failure.
Based on the observed transitions between operating states and the duration of
restoration activities following an unknown failure and the assumption of a transition from
state 5 to state 1 to allow the development of a closed system, a state space diagram of

the dynamic process can be constructed as shown in Figure 7.3.
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Figure 7.3 State space diagram for unknown failure Markov model.

The required operational states are 1 through 5 and the down states are specified from
the observed transitions between the operational states. For example, down state
number 10 is needed to accommodate the transition from operational state 3 to
operational state 4, however, down state 11 in the general model is not required because

there is no observed transition from operational state 4 to operational state 3.
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7.3 Evaluation of steady state “state” probabilities in a closed form solution

The 14 state Markov model state probabilities can be solved by a frequency balance
approach.  Th: initial step is to define the frequency balance equations for each state in

th= sizle spree diagram. These equations are listed as follows:

Pi(Ajg+ Nq3)=u(Py+ Pig+ P74+ Py M
P2(Ag1+ Ay =1 (P) @
P3(A3p+ A2+ A3q) = (Pg+ Py 3)
Pg(Ags) = (Pyp @
Ps(Asy) =n (P )

P7(n) =Py Ay (6)

Pg(u) =P Ay3 ™
Pg(n)=P3A3 @)
Pyo()=P3Asy ©)

Pia(n) =Pyl (10)

P1a () =Ps Agy m

Pis () =P A3 12)
P17()=P3hy (13)

Pyg () =Py Apy (14)



An additional equation is required for the solution of the steady state probabilitics.
This equation states that the sum of all the probabilities of all the states shown in Figure

7.3 is equal to one or in mathematical form can be expressed as:

P1+ P2+ P3+ P4+ P5+ P7+ P8+ P9+ P10+ P12+ Pl4+ Pl6+...
e b P17+ P26 =10 (15)

The solution of the above equations by various traditional methods (c.g.. matrix
inversion) is extremely difficult, messy and time consuming particularly when the stcady
state solutions are expressed in closed form. To overcome these difficulties, cquation (15)
can be expressed in terms of the ratio of probabilities with the base probability equal 0
state 1 as follows:

P1( 1+ Py/Py+ PyP; + Py/P;+ Ps/P| + Py/P; + Pg/Py+ Py/Py+ ...
P1o/P1 +P12/P1 + P14/P + P1g/Py + P17/P 1 + Pyg/P;) = 1.0 (16)

The individual probability raiios shown in equation (16) can be evaluated froma the
frequency balance equations (i.e., continual substitution and back substitution until the
probability ratio is evaluated). Once the probability ratios of equation (16) have been
evaluated, then the probability of state 1 can be evaluated. In order to simplify the final

form of the solution for Py, the following constants will be defined:
A=hyi+ Aap+ Ay 17)
B=Agy [ ((Agp+ Ag3) (18)

C=MA3/ (A - AyB) (19)
D=BC (20)
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The final form of the solution for Py can be expressed in terms of the above
constants and a set of “state probability constants” as defined in Table 7.3.

Table 7.3 State probability constants (A(i))

STATE STATE PROBABILITY CONSTANT
(M Ali)
2 D
3 C
4 Chgg [ Mgs
5 Chaq / Asy
7 D)‘ql/ u
8 D )\13/ 1]
9 C)\.32/ u
10 Chyl u
12 Chaq/
14 CAyy/ u
16 A/
17 CA3q/ w
26 )“11/ )

The steady state probability Py is defined by the following equation:

Py= i

n
1+ 2 A(i)
i=2

(21)

The probability of occupying any other state P; is given by:
P;=P; A() (22)



-61-
7.4 Evaluation of Markov model parameters

The key parameters required to evaluate ihe steady state probabilitics of the
unknown Markov model are the repair/restoration rate and the state transitional rates as
shown in Figure 7.3. The mean time the computer system resides in each operational
state and the number of departures from that state are shown in Table 7.4.

Table 7.4 Mean duration of system operation in each state and number of transitions trom
a given state

STATE =~ MEAN DURATION IN STATE ~ NUMBER OF TRANSITIONS
NUMBE (hours) FROM THE GIVEN STATE
318.81

9
957.40 2
4
1

2023.81
2917.27
7480.95

"N a W N

The rate of departure from a given state )‘1 is defined as follows:

A; = _total number of trapsitions from state i
total duration in state

= 1.0 / mean duration in state i 23)
The individual directional transition rates )\.u from a given state ito another operational

state jthrough a restoration state is defined as:
)‘vﬁ = 7\1 P(iyj) (24)

where: P(i,j) = probability of a transition from state ito j

P(.j) is defined as follows:
P(i,j) = __number of transiticas from statejtoj (25)

total number of transitions from state i



The individual transition rates of the unknown state space diagram are listed in Table 7.5

Table 7.5 Individual unknown transition rates beiween operating states.

TRANSITION RATE_ VALUE (departures/hour) x 106
M 1792.367
M3 1344.275
A 522,248
M3 522.248
A 247.059
A3 123.529
Ay 123.529
Ms 342.786
Asy 133.673

The restoration rate p is defined as the reciprocal of the mean time to restore the
computer system to a fully operational state and is equal to 5.423728814 restorations per
hour for unknown failures.
7.5 Calculation of the frequency and duratior of computer system operation

The performance of a computer system is usually quantified by two variables; i.e.,
the probability that the computer system is operational and the frequency of departures
from its operational state. Based on the transition rates between operational states and
the restoration rate, the probability of occupying any of the states contained in the state
space diagram (i.., shown in Figure 7.3) can be evaluated from equations 21 and 22.

The quantitative results of the steady state “state” probabilities are shown in Table 7.6.
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Table 7.¢  State probabilities for unknown Markov model

STATE STATE PROBABILITY
i PG)
1 0.118039573
2 0.043405150
3 0.367009766
4 0.132258765
5 0.339159970
7 0.000004179
8 0.000004179
9 0.000008359
10 0.000008359
12 0.000008359
14 0.000008359
16 0.000029256
17 0.000016718
26 0.000039008

The probability of being in an operational state is equal to the sum of the

probabilities of occupying all operational states and can be expressed mathematically as:
P(operational) = Py + Py + P3+ P4+ Ps (26)
= 0.99987322
The frequency of departures from the operational states is equal to the sum of the
frequency of departure from each individual operating state and can be expressed as

follows:



-64-

f down = Py( >\'11 + A-13) + Pyl )\/Zl"' )\.23) +P3( )\'31 3+ )\.34) S JO
+ P4(Ng5) + Ps(Agp) @7

= 0.00068760336 outages or occurrences/hour
= 6.0234055 outages caused by unknown failures/year
7.6 Discussion of unknown failure Markov model

Based on the observed unknown failure patterns, this chapter has presented a 14
state Markov model for evaluating the frequency and duration of unknown failures of the
Government of Alberta’s Central Computer Center's VM-based computer system. The
mcan daration of “restoration” activities was 11.06 minutes and was significantly less
than the duration required for hardware and software failures. The restoration activities of
unknown failure events involved many types of restoration activities (e.g., hardware
replacement, software changes, etc.) to restore the computer system to a fully operational
state. However, the original cause of the computer system outage was still unknown and
classified accordingly.

The evolution equations of the steady state “state” probabilities in closed form
were presented. The detailed frequency balance equations of the Markov model for
unknown failures were presented and are required for the solution of the state probability
cquations. Based on these evolution equations and the actual state transition rates, the
probability of the computer system being operational was calculated and the frequency of

unknown sysitem outages per year was evaluated.
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CHAPTER VIII
SYSTEM ANALYSTS' AND SYSTEM OPERATORS® FAILURE MARKOV
MODELS

8.1 Introduction

This chapter presents the Markov models for the problems that were caused by the
computer system analysts and the computer system operators. There were few observed
problems due to these causes and therefore the amount of data is limited.
8.2 State space diagram for system analysts’ failures only

Only those system analysts problems that caused computer system failures to occur
are considered in the state space diagram. The actual time of occurrence of these failures,
the duration of the outage and the time to the next system analysts' failure (i.e., TTF) are
shown in Table 8.1.

Table 8.1 Problem report data base for system analysts’ failures.

DATE TIME OF DURATION TIME OF TTF
OF OCCURRENCE OUTAGE _(minutes)  RESTORATION _(houms)
November 18, 1984 13:18 53 14:11 -
April 21, 1985 9:00 151 11:31 3690.82
December 14, 1985 16:06 27 16:33 5692.58
February 20, 1987 10:58 30 11:28 10386.42
April 12, 1987 9:00 68 10:08 1221.53

There are too few failures to see if there is a pattern similar to the pattern that was
evident for the hardware or software failures. However, the failures can be expressed in
the form of a state space diagram shown in Figure 8.1 which is based on the generalized
state space diagram presented in Chapter V.

An examination of the chronological order of computer system operational times,
reveals the computer system operated in the following sequential time zones following

each system analysts failure: [4-5-5-2). This sequence defines the transitions
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between operating states. Note the number of transitions between operating states is
significantly less than the generalized model where all possible transitions between all
possible operating states is considered. Because many of the transitions of the general
model did not occur, a much simpler model can be developed to model system analysts’
failures.

Based on the observed transitions between operating states and the duration of
restoration activities following a system analysts’ failure and the assumption of a
transition from state 2 to state 4 to allow the development of a closed system, a state

space diagram of the dynamic process can be constructed as shown in Figure 8.1.

COMPUTER SYSTEM ANALYSTS FAILURE
S STATE SPACE DIAGRAM o
LEGEND - FAILED STATES LEGEND- OPERATIOHAL STATES ‘

_jth computer , ///// ith computer system
OR system failed state

//‘/]// eperational state

Figure 8.1 State space diagram for system analysts’ failure Markov model.

The required operational states are 2, 4 and 5 and the down states are specified
from the observed transitions between the operational states. For example, down state
number 18 is needed to accommodate the transition from operational state 2 to
operational state 4, however, down state 19 in the general model is not required

because there is no observed transition from operational state 4 to operational state 2.
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8.3 Evaluation of steady state “state” probabilities in a closed form solution

The 7 state Markov model state probabilities can be solved by a frequency balance
approach. The initial step is to define the frequency balance equations for each state in

the state space diagram. These equations are listed as follows:

Py(A2q)=p(Pps) (1)
Py(Ags)=p(Pg) &)
Ps(Asy+ hgs) = (Pyy + P3g) 3)
Piy(n) =Py Ays (4)
Pig(u) =Py Ay (5)

Pys () =Ps sy (6)

P39 () =PsAss @)

An additional equation is required for the solution of the steady state probabilities.
This equation states that the sum of all the probabilities of all the states shown in Figure

8.1 1s equal to one or in mathematical form can be expressed as:
P2+P4+P5+P12+P18+P25+P30 =10 (8)

The sclution of the above equations by various traditional methods (e.g., matrix
inversion) is extremely difficult, messy and time consuming particularly when the steady
state solutions are expressed in closed form. To overcome these diificuities, equation (8)
can be expressed in terms of the ratio of probabilities with the base probability equal to

state 2 as follows:

Pz(l + Pg/Py + P5/P2 + P1o/Py + P18/P2 + Pyg/Py + P3g/P3 )= 10 (9)
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The individual probability ratios shown in equation (9) can be evaluated from the
frequency balance equations (i.e., continual substitution and back substitution vniil the
probability ratio is evaluated). Once the probability ratios of equation (9) have been

evaluated, then the probability of state 2 can be evaluated.

The final form of the solution for Py can be expressed in terms of a set of “state
probability constants” as defined in Table 8.2.
Table 8.2  State probability constants (A(i})
STATE STATE PROBABILITY CONSTANT
S — Al
4 Aol Mgs
® Aoyl hsy
2 Aadln
18 Mdln
25 Agdln
30 Ass Aagln dsy

The steady state probability P is defined by the following equation:
Py= 1

n
1+ ZA(i)
i=4

(10)

The probability of occupying any other state P; is given by:

P;= P, A() (1)
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8.4 Evaluation of Markov model parameters

The key parameters required to evaluate the steady state probabilities of the system
analysts Markov model are the repair/restoration rate and the state transitional rates as
shown in Figure 8.1. The mean time the computer system resides in each operational

state and the number of departures from that state are shown in Table 8.3.

Table 8.3 Mean duration of system operation in each state and number of traasitions from

a given state

STATE MEAN DURATION IN STATE NUMBER OF TRANSITIONS
NUMBER  _ {bours) —FROM THE GIVEN STATE
2 1221.53 1
4 3690.82 1
5 8039.5 2

The rate of departure from a given state )"i is defined as follows:
}"i = total | [ ¢ iti [ e

total duration in state

= 1.0/ mean duration in state i (12)

The individual directional transition rates A’ij from a given state i to another operational
state jthrough a restoration state is defined as:

Ajj = A PG (13)

where: PXi,j) - probability of a transition from state ito j

P(i,j) is defined as follows:

P(,j) = _number of transitions fromstate itoj {14)

total number of transitions from state i

The individual transition rates of the system analysts state space diagram are listed in

Tatle 8.4.
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Table 8.4 Individual system analysts’ transition rates between operating states

TRANSITION RATE VALUE (departures/hour) x 10°6
}"24 818.645460
}\’45 270.942500
}\'52 62.192922
}\’55 62.192922

The restoration rate W is defined as the reciprocal of the mean time to restore the
computer system to a fully operational state and is equal to 0.8695621 restorations per
hour for system analysts failures.
8.5 Calculation of the frequency and duration of computer system operation

The performance of 2 computer system is usually quantified by two variables; i.c.,
the probability that the computer system is operational and the frequency of departures
from its operational state. Based on the transition rates beiween operational states and
the restoration rate, the probability of occupying any of the states contained in the state
space diagram (i.e., shown in Figure 8.1) can be evaluated from equations 10 and 11.

The quantitative results of the steady state “state” probabilities are shown in Table 8.5.

Table 8.5 State probabilities for system analysts’ Markov model

STATE STATE PROBABILITY
D i)
2 ¢.058179315000
4 0.175787230000
S 9.765814350000
12 0.600054772468
18 0.000054772468
25 0.000054772468

30 0.000054772468
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The probability of being in an operational state is equal to the sum of the

probabilities of occupying all operational states and can be expressed inathematically as

P(operational) = Py + P4+ Pg (15)
= 0.99978091
The frequency of departures from the operational states is equal to the sum of the
frequency of departure from each individual operating state and can be expressed as

follows:

F down = P2( A2q) + Pa(Mgs) +Pt Ay + Ags ) (16)

= 0.00019051293 ontages or occurrences/hour
= 1.6688932 outages caused by system analysts’ failures/year

8.6 Discussion of “system analysts’ failure Markov model

Based on the observed system analysts' failure patterns, this chapter has presented
a Markov model for evaluating the impact of systew: analysts’ failures on the performarnce
of the Governuaent of Alberta's Central Computer Cenier's VM based computer system.
The evolution equations of the steady state “state” probabilities in closed form were
presented. The detailed frequency balance equations of the Markov model which is
required for the solution of the state equations are also presented. The actual state
transition rates are presented. Based on the evolution equations and the state transition
rates, the probability of the computer system being operational was calculated and the

frequency of computer system analysts' systcra outages per year was evaluated.
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8.7 State space diagram for system operators’ failures only

Only those system operators’ problems that caused computer system failures to occur
are considered in the state space diagram. The actual time of occurrence of these failures,
the duration of the outage and the time to the next system operators’ failure (i.e., TTF)
are shown in Table 8.6.

Table 8.6 Problem report data base for system operators failures.

DATE TIME OF DURATION TIMF, OF TTF
_OF OCCURRENCE OUTAGE _(minutes) ~ RESTORATION  _(hous) .
July 17, 1984 1:21 21 1:42 -
August 27, 1986 3:55 S 4:00 18506.22
October 6, 1986 2:12 3 2:15 958.20
nothing before August 7, 1987 7317.75+

There are too few failures to see if there is a pattern similar to the pattern that was
evident for the hardware or software failures. However, the failures can be expressed in
the form of a state space diagram shown in Figure 8.2 which is based on the generalized

state space diagram presented in Chapter 4.

An examination of the chronological order of computer system operational times,
reveals the computer system operated in ihe following sequenual time zones following
each system operators’ failure: [ 5 - 2 - 5] This sequence defines the transitions between
operating states. Note the number of transitions between operating states is significantly
less than the generalized model where all possible transitions between all possible
operating states is considered. Because many of the trensitions of the general model did
not occur, a much simpler model can be developed to model system operators’ failures.

Based on the observed transitions between operating states and the duration of
restoration activities following a system operators’ failure, a state space diagram of the

dynamic process can be constructed as shown in Figure 8.2.
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B COMPUTER SYSTEM UPERATGRS FAILUE g
Lo STATE SPACE DIAGRAM S
LEGEND - FAILED STATES | LEGEND- OPERATIONAL ATS

R , _jth computer i | _ ith computer system
0 system failed state operational state ;

Figure 8.2 State space diagram for system operators failure Markov model.
The required operational states are 2 and 5 and the down states are specified from the
observed traasitions between the cperational states. For example, down state number 24

1s needed to accommodate the transition from operational state 2 to operational state 5.

8.8 Evaluvation of steady state “state” probabilities in a closed form solution
The 4 state Markov model state probabilities can be solved by a frequency balance
approach. The initial step is to define the frequency balance equations for each state in

the state space diagram. These equations are listed as follows:

P2(Ags) =1 (Pps) (an
P5(Asy)=p(Py) (18)
Pya ) =Py Ags (19)

P25 (1) =Pshsy (20)
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An additional equation is required for the solution of the steady state probabilities.
This equation states that the sum of all the probabilities of all the states shown in Figure

8.2 is equal to one oi in mathematical form can be expressed as:

Py+ Pg + Pyg+ Pyg = 1.0 21)

The solution of the above equations by various traditional methods (e.g., matrix
inversion) is extremely difficult, messy and time consuming particularly when the steady
state solutions are expressed in closed form. To overcome these difficulties, equation (21)
can be expressed in terms of the ratio of probabilities with the base probability equal to
state 2 as follows:

Py(1 + Pg/Py + Py4/Py + Py5/Py )= 1.0 (22)

The individual probability ratios shown in equation (22) can be evaluated from the
frequency balance equations (i.e., continual substitution and back substitution until the
probability ratio is evaluated). Once the probability ratios of equation (22) have been

evaluated, then the probability of state 2 can be evaluated.

Tie final form of the solution for Py can be expressed in terms of a set of “state
probability constants” as defined in Table 8.7.

Table 8.7 State probability constants (A(i)).

STATE STATE PR:BABILITY CONSTANT
) Al
5 Aol Mgy
24 )\25/ M
28 }\.25/ H

The steady state probability P is defined by the following equation:
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Py= 1
n (23)
1+ E Ad)
i=5
The probability of occupying any other state P; is given by:
P, = P, A(i) 29)

8.9 Evaluation of Markov model parameters

The key parameters required to evaluate the steady state probabilities of the system
operators’ Markov model are the repair/restoration rate and the state transitional rates
as shown in Figure 8.2 The mean time the computer system resides in each operational
state and the number cf departurss from that state are shown in Table 8.8.

Table 8.8 Mean duraticn of system operation in each state and number of transitions from

a given state.
STATE MEAN DURATION IN STATE NUMBER OF TRANSITIONS
NUMBER (hows) —FROM THE GIVEN STATE
2 958.20 1
5 12911.99 1

The rate of departure from a given state ki is defined as follows:
}vi = _total number of transitions from state i
total duration in state
= 1.0/ mean duration in state i (25)

The individual directional transition rates }"ij from a given state i to another operational
state jthrough a restoration state is defined as:

)“ij - A PGi,j) (26)

where: P(i,j) = probability of a transition from state i to j



PAi,j) is defined as follows:

Pi,j) = _pumber of transitions from state j to j (27

totul number of transitions from state i

The individual transition rates of the system operutors’ state space diagram are listed in

Table 8.9.

Table 8.9 Individual system operators’ transitios © «: i between operating states.
TRANSITION RATE VALLE . departures/houn) x 1076
)"ZS 1643.623460
}"52 77.447425

The restoration rate W is defined as the reciprocal of the mean time to restore the
computer system to a fully operational state and is equal to 15.0 restorations per hour for

system operators’ failures.

8.10 Calculation of the frequency and duration of computer system operation

The performance of a computer system is usually quantified by two variables; i.e.,
the probability that the computer sysiem is operational and the frequency of depariures
from its operational state. Based on the transition rates between operational states and
the restoration rate, the probability of occupying any of the states contained in the state
space diagram (i.e., shown in Figure 8.2) can be evaluated from equations 23 and 24.

The quantitative results of the steady state “state” probabilities are shown in Table 8.10.
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Table 8.10 State probabilities for system operators’ Markev model

STATE STATE PROBABILITY
—m i)
2 0.0690827690000
S 0.9309076180000
24 0.0000048064265
25 0.0000048064265

The probability of being in an operational state is equal to the sum of the
probabiliiies of occupying all operational states and can be expressed mathematically as:
P(operatioral) = Py + Pg= 0.99999038 (28)
The frequency of departures from the operational states is equal to the sum of the

frequency of departure from each individual operating state and can be expressed as

follows:
f doun = P2( Aas) +Ps(hsy) (29)
= 0.00014419279 outages or occurrences/hour
= 1.2631289 outages caused by system operators failures/year
8.10 Discussion of system cperators’ failure Markov model
Based on the observed system operators failure patterns, this chapter has
presented a 7 state Markov model for evaluating the frequency and duration of sysien
analysts’ failures of the Government of Alberta’s Central Computer Center's VM-based
computer system. The evolution equations of the steady state “state” probabilities in
closed form were presented. Based on the evolution equations and the aciual state
transition rates, the probability of the computer system being operational was calculated
and the frequency of computer system operators’ system outages pe: year was evaluated.
In comparison with the other modes of computer system failure, the system
analysts’ and operator MTTF was significantly greater than the other modes of failure

and the frequency of failures significantly less.
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CHAPTER IX
COMPUTER SYSTEM MARKOV MODEL

9.1 Introduction

The analysis of the overall computer system performance will be based on the
obscrved statistical failure patterns of all the causes of system failure acting together.
Prior to constructing a model of the performance of the computer system, it was necessary
to determine if the key reliability variables “time to failure” and “time to restore”
characterizing the overall operation of the computer system could be represented by
known statistical distributions which would enable the use of existing reliability models.

9.2 Statistical representation of the duration of computer system operational
states

A frequency histogram of the duration of computer system operation during the

period 1984-1987 is shown in Figure 9.1.  The mode of the distribution is the one week

30 R R H
g 1984-1987
E 25 =1 l—'l r-1
& 7 izl EH——of
> :

20 o .
' " SR LEGEND BF o
Q m —~ith cperational time zone ... . .. .
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> |
S 10 —
w MTTF = 2.41 weeks
S (... I
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"4
(V'S

0

1 2 3 4 S 6 7 8 9 10 11
TIME TO THE NEXT SYSTEM FAILURE IN WEEKS

Figure 9.1 Time to the next computer system failure.
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interval. The mear time to computer system failure is 2.41 weeks. The distribution is
multimodal in natre which cannot be readily represented by known  statistical
distributions required by existing reliability models.
9.3 Chronological order arrangement of computer system time to failure

In the development of histograms, no attention is given 10 the order in which cvents
occur (e.g., data clustered into class intervals). The statistical question that was
addressed next was: “Does the “time to computer system failure™ wvariable exaibit
distinctive operating cycles?” To answer this question, the time to the next computer
system’s failure was plotied as a funciion of its chronological order of occurrence as

shown in Figure 9.2.
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Figure 9.2 Time to the next computer system failure in chronological order.
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An examination of Figurc 9.2 reveals distinctive operating patterns similar to those
presented for hardware, software, unknown failures in the previous chapters. [t appears
that once this computer systern has been operational for a specified duration (e.g., x
hours) before a given problem curtails its performance, the next sequential computer
system operational period (e.g., y hours) after the computer system resioration
activitics have been completed, will be significantly less than the previous computer
operational period (i.e., y << x). An operating cycle of a long operational period followed
by one or more wperational periods of shorter duration was consistently observed during
the study period.

These observations are characteristic of a Markov process in which the computer
system resides within an operational state for a certain period of time, then fails and is
restored to another operating state whose duration of existence is significantly different
from its predecessor in most cases. This cyclic performance continues with distinct

probabilistic transitions between operating states and failed states.

9.4 Statistical representation of the duration of computer system failure states
Once the computer system has failed, then the primary questions that must be
answered are:
(1) what is the duration of the failed states of the computer system?
(2) are there distinctive patterns associated with a computer system restoration

activities?

(3) can the duration of the failed states be represented by known statistical
distributions?

Answers to these questions will provide a basis for the development of a Markov model
of the performance of the Government of Alberta’s computer system. The frequency
histogram of the duration of repair/restoration activities required to restore the ccmputer

system to a fully operational state is shown in Figure 9.3.
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Figure 9.3 Frequency histogram of the duration of repair/restoration activities required 10
restore the computer system to a fully operational state.

The mean computer system duration in a failed state is 24.67 minutes which is orders
of magnitude less than the “time to failure” variable of 404.88 hours.. The “computer
system restoration time” variable is positively skewed with a number of observations
significantly removed from the distribution mean and this characteristic is difficult to
represent by known statistical distributions and techniques (e.g., transformation of

variables).

9.5 State space diagram for all computer system failures
Based on the observed transitions between operaling states and the duration of
restoration activities following a computer system failure, a state space diagram of the

dynamic process can be constructed as shown in Figure 9.4.
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Figure 9.4 Staie space diagram for computer system failure Markov model.

The observed -~omputer system operational states are operational states 1,2 and 3.
and the transitions between operating states pass through failed states. For example,
down state number 9 is needed to accommodate the transition from opcrational state 3 to
operational state 2, however, down state 8 in the general model is not required because

there was no observed transiiion from operational state 2 to operational state 3.
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9.6 Evaluation of steady state “state” probabilities in a closed form solution

The steady state “siate” probabilities of the 9 state Markov model can be solved
by a frequency balance approach. The initial step is to define the frequency balance
cquations for cach state in the state space diagram. These equations are listed as

follows:
Py (A + M2+ Ag3) =u (Pyt Py + Pg) o)
Py( Agp+Ap2) =1 (Pg+ P+ Pyy) @
P3(Agp+A3p) =u (Prg) 3)
Pgn) =P }\12 C)
P7 () =Py Ay ®)
Po () =P3A3; ©
P16 ®)=P1 Ag3 W)
Pi7(n)=P;3 )\'31 3
Pye ) =Py Ay ©
P27 (W) =Pyl (10)

An additional equation is required for the solution of the steady state probabilities.
This equation states that the sum of all the probabilities of all the states shown in Figure

9.4 is equal to one or in mathematical form can be expressed as:
P1+P2+P3+P6+P7+P9+P16+P17+P26+P27=1.0 n)

The solution of the above equations by various traditional methods (e.g., matrix

inversion) is extremely difficult, messy and time consuming particularly when the steady
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state solutions are expressed in closed form. To overcome these difficultics, equation (11)
can be expressed in terms of the ratio of probabilitics with the base probability equal o

state 1 as follows:
Pl( 1+ PZ/PI + P3,/P1 + P6/P1 + P7/P1 + P9/P1 + Pldpl + PZG/PI R RO
+ P17/P 1+ Pyq/Py)= 10 (12)

The individual probability ratios shown in equation (12) can be evaluated from the
frequency balance equations (i.e., continual substitution and back substitution until the
probability ratio is evaluated). Once the probability ratios of equation (12} have been
evaluated, then the probability of state 1 can be evaluated. The final form of the solution
for Py can be expressed in terms of the above constants and a set of “state probability
constanis™ as defined in Table 9.1.

Table 9.1  State probability constants (A(i))

STATE STATE PROBABILITY CONSTANT
(i) Al
2 Ma+ Ay 1 Mgy

3 A/ Asp
6 )\12/ K

7 M2+ A3 /u
9 )\:13 m

16 A3 /u

17 A31AQ) [u

26 )\-11 M

27 AQ) [u
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The steady state probability P is defined by the following equation:

P]_ = 1
n (13)
1+ 2 A(i)
i=2
The probability of occupying any other staie Pjis given by:
Py= Py Ad) (14)

9.7 Evsaluation of Markov model parameters

The key parameters required to evaluatc the steady state probabilities of the
hardware Markov model are the repair/restoration rate and the state transitional rates as
shown in Figure 9.4. The mean time the computer system resides in each operational

state and the number of departures from that state are shown in Table 9.2.

Table 9.2 Mean duration of system operation in each state and number of transitions from
a given state

STATE MEAN DURATION IN STATE NUMBER OF TRANSITIONS

NUMBER —(hours) _FROM THE GIVEN STATE
1 228.54000 34
2 939.78125 8
3 1464.64 2

The rate of departure from a given state 7\., is defined as follows:

A= _total number of trapsitions from state i

total duration in state

= 1.0 / mean duration in state i (15)
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The individual directional transition rates )\.“ from a given state i 1o another operational

state jthrough a restoraticn state is defined as:

Mg =i Paid) (16)

where: P(ij) = probability of a transition from state ito j

P(i ) is defined as foillows:

P(i,j) = __number of transitions from state j to j )
total number of transitions from state i

The individual transition rates of the computer system state space diagram are listed in

Table 9.3.

Table 9.3 Individval computer system transition rates between operating states

TRANSITION RATE VALUE (departures/hour) x 106
M 3314.12460
M2 795.38992
M3 265.12997
My 931.06773
M 133.00967
A 341.38081
M 341.38081

The restoration rate p is defined as the reciprocal of the mean time to restore the
computer system 10 a fully operational state and is equal to 2.431761825 restorations per

hour for computer system failures.
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9.8 Calculation ©of the frequency and duration of computer system
operation

The performance of a computer system is usually quantified by two variables:
i.e., the probability that the computer system is operational and the frequency of
departures from its operational state. Based on the transition rates between operational
states and the restoration rate, the probability of occupying any of the states contained
in the state space diagram (i.e., shown in Figure 9.4) can be evaluated from equations
13 and 14. The quantitative results of the steady state “state” provabilities are shown in
Table 9.4.

Table 9.4 State probabilities for system Markov model

STATE STATE PROBABILITY
— P(i)
1 0.418879612
2 0.417479176
3 0.162659316
6 0.000137009
7 0.000159844
9 0.000022835
16 0.000045670
17 0.000022835
26 0.000570870
27 0.000022835

The probability of being in an operational state is equal to the sum of the

probabilities of occupying all operational states and can be expressed mathematically as:

P(operational) = Py + Py + P3 (18)
= 0.999018104



-88-

The frequency of departures from the operational states is equal o the sum of the
frequency of departure from each individual cperating states and can be expressed as

follows:

fdown = Pl( )\-u + )\12 + )\.13) +P2( )\.22 + )‘.21) + P3( )\.32) (19)

0.002387737 outages or occurrences/hour

i

20.91657714 computer system outages/year
9.9 Discussion of computer system Markov model

Based on the observed computer system failure patterns caused simultancously by
hardware, software, unknown, and “analyst and operator” failures, this chapter has
presented a 10 state Markov modei for evaluating the overall performance of the
Government of Alberta’s Central Computer Center’s VM-based computer system.  The
evolution equations of the steady state “state” probabilities in closed form were
presented. Based on the developed evolution equations and the actual state transition
rates, the probability of the computer system being operational was calculated and the
frequency of computer system “outages per year” evaluated. The mean time o a
computer system failure (i.e., 404.88 hours) was significantly less than the individual
modes of failure (e.g., hardware failures - 1533.84 hours) contributing to the overall

system performance.
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CHAPTER X
CONCLUSIONS

The reliability research activities conducted in this thesis were directed at
statistically analysing the problem reports of the Alberta Governmeni’s Central
computer Center VM system and modelling the operational characteristics of this
system. The problem reports identified the major modes of computer system failures,
namely, hardware, software, unknown, analyst and operator failures. The categories
were identified by the management of the system as the major causes of computer
system interruptions. For each mode of failure, the time of the occurrence of the event
and the duration of restoration activities required to restore the computer system to a
fully operational state were recorded.

Initially, the key reliability variables (i.e., “time to failure” and “time to restore™)
associated with eacl. mode of computer system failure were analysed statistically to
determine  whether existing probability density functions (e.g., exponential, normal,
Weibull, etc.) could be used to represent these varialles. If these variables could be
statistically represented, then existing reliability models could be used to predict the
reliability performance of the central computer system. It was concluded after a detailed
analysis that the key reliability variables (i.e., time to failure, restoration duration)
could not adequately be represented by known unimodal statistical distributions
because the primary reliability variables were multimodal in nature. The primary
multimodal nature of these variables prevented the use of existing reliability models
which are based on known statistical distributions. It was concluded that the “time to
failure” (i.e., operational time) variables were orders of magnitude greater than the
“restoration time following a computer interruption” for all modes of failure.

Frequency histograms of the “time to failure” variable for each mode of failure were
plotted in their chronological order of their occurrence to determine if the order in which
failures occur exhibit any characteristic patterns. The resulting studies revealed
distinctive operating patterns for all modes of computer system failure. The transitions
of system operation were distinctive, ie., the transitions between successive
operating stales were from an operational state whose residence time was long to
another operational time whose residence time was significantly  less than the
previous operating state.



Based on the statistical analysis of the “time to failure™ variables for cach mode of
computer sysiem failure, a generalized 30 state Markov model was developed which
had five distinctive operating states and 25 restoration states. All the possible
transitions between the five operating states passed through a restoration state which
was charecterized by a constant rate of departure {rom that state because the expected
values of the “restoration time” were confined to a short interval (e.g., 0 - 60 minutes)
compared with the “time to failure” variable (e.g., 371 to 1658 hours). Based on the
“frequency balance approach’, the closed form solutions of the stecady state
probabilities for all 30 states containing all the possible states of computer system
operation and the transitions between these states through restoration states was
evaluated and are presented in detail in Appendix A.

For each mode of computer system failure (i.e., hardware, software, unknown,
analyst and operator) the actual direction of the transitions between the five operational
states were observed. It was concluded that the actual number of transitions between
the five operational states were significantly less than the generalized model during the
study period between 1984 and 1987. Reduced order Markov models for each failure
mode were developed and were presented in the form state space diagrams. For each
model, the closed form steady state probabilities of occupying each state were cvaluated
by the frequency balance approach and presented in the thesis. The detailed frequency
balance equations of each Markov model are also presented. The actual state transition
rates are presented. Based on the evolution equations and the state transition rates,
the probability of the computer system being operational was calculated and the
frequency of computer system outages caused by the various modes of failures per year
was evaluated.

A Markov model for the overall computer system reliability performance was
developed and presented in the thesis. The results of the model provide a basis for
reliability cost-reliability worth studies of any computer system. In these studies the
cost of downtime can be used to determine if the reliability of the system can be
significantly improved (i.e., optimization of the closed form state probability tquations).
The individual Markov models of each failure mode provide a basis for assessing the

impact of each failure mode on the overall performance of the computer system.
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The Markov models presented for each failure mode are valid only for the study
period and the obscrved state transitions that were exhibited by the Government of
Alberta’s Central computing VM system. The observed state transitions that did not
occur were assumed to be zero. However, the generaiized Markov model provides the
means of readily including these transitions if they are observed and can be applied
any comiputer system.

The generalized Markov model can be applied to any computer system to cvaluaie
statistical performance characteristics. ~ The statistical methodology, and ‘ne
cessary performance variables required for the model are described in detail in the
.esis.  The frequency balance approach, based on the generalized state space
transition diagram and the observed transition rates exhibited by a system, was
illustrated to enable the development of custom computerized models for various
computer systems and the prediction of steady state frequency and duration of computer

system interruptions and operation.
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APPENDIX A
GENERALIZED COMPUTER SYSTEM MARKOV FAILURE MODEL

A.1 Introduction

The generalized solution for the steady state probabilities for all 30 states
presented in the generalized Markov state space diagram shown in Figure 4.1 of
Chapter IV contains all the possible states of computer system operation and the
transitions betwecn these states through restoration states. The transition rates
between the various operational states have been evaluated for each computer system
faiture mode of the Alberta Government Computer Center’s VM based system. This
section of the thesis will present the frequency balance equations in detail that are
required to evaluate the steady state “state” probabilities in closed form.  The 30
state generalized state space diagram shown in Figure 4.1 of Chapter IV is repeated
in this section as shown in Figure A.1 to readily illustrate the development of the
frequency balance equations for each state. This section also presents the closed form
solutions for each state of the generalized Markov failure model.
A.2 Evaluation of steady state “state” probabilities in 1 closed form solution

The 30 state Markov mode! state probabilities can be solved by a frequency
balance approach. The initial step is to define the frequency balance equations for each
state in the state space diagram shown in Figure A.1. For each state, the rate of
departure from that state must be equal to the rate of entry of all other states
contained in the state space diagram. The frequency of departure for a given state is
equal to the probability of occupying that state times the sum of the transition rates
departing from that state. The frequency of entry into a givep state from another state
is equal 10 the probability of the other state linking th. given state times the
transition rate between the two states. The total frequency of entry into a given state

is thc sum of the frequencies of all states linking the given state.
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LEGEND - FAILED STATES 26 LEGEND-OPERATIONAL STATES B
Jth computer +! _ ith computer system
: /////// operstional state

- system failed

Figure A.1 State space diagram for generalized Markov failure model.
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PyAp# Mo+ M3+ Mg+ AMgg) = (Pp+ Prg+ P+ Po3+ Pr9 (D)
Pz ()\.21 + )\nz + )\.23 + )\.24 + )\.25) =u (P6 +Pg + Pig+ st + P27) 2)

P3 ()\.31 + )\.32 + )\.33 + }\.34 + ;\.35) =pn (Ps + Pu + Pl6 + P21 + st) 3
Py (}\.41 + )\.42 + )\.43 + )\.44 + }\45) =u (PIO + P13 + P18 + pZZ + P29) )]

Ps ()\.51 + }\-52 + }\.53 + )\.54 + )\.55) =N (Plz + Pls + on + P24 + P30) 5

Pg () =Py Ay ()
Py(n) =Py Ay @)
Pg(n) =Py A3 ®
Po(u) =P3 A3 O
P1o () = P3 Az (10)
Pyy(u) =Py )\143 (1)
Pra @) =Pghys (12)
P13 @) =PsAsq a3
P14 @) = Pshsy a4
Pys () =P Ags (15)
P16 1) =Py M3 (16)

P17 () =P3 Ay an
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Pyg (k) = Py Ay (18)
Pyo () =Pyhg (19)
Po (1) = P3 Ass (20)
P21 (1) =Ps Ag3 21
Py(n)=P; )\14 (22)
Pa3 () =Pghg (23)
Paa (W) =Py Mg 24
P25 () =PsAs; (25)
Pyg 1) =PiAy (26)
Py7 () =Pyl 27
Pys () =P3As3 (28)
Po () =Pg Ay (29)
P3o () =P5Ass (30)

An additional equation is required for the solution of the steady state probabilitics.
This equation states that the sum of all the probabilities of all the states shown in
Figure A.1 is equal to one or in mathematical form can be expressed as:
Pi+Py+P3+Pg+P5+Pg+ Py+Pg+Pg+tPrg+ P+ 212+
Pi3+Pyq+Pis+ Pig+ Py7+Pig+ Pio+ Prgt+ Pap+Pyy+..

P33+ Pyq+ Pys+ Pyg+ Py7+ Prg+ Prg+ P3g = 1.0 (31
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The solution of the above equations by various traditional methods (e.g., matrix
inversion) is extremely difficult, messy and time consuming particularly when the
steady state solutions are expressed in closed form. To overcome these difficulties,
equation (31) can be expressed in terms of the ratio of probabilities with the base

probability equal to state 1 as follows:
Pi( 14 Py/Py+ P3Py + Py/Py + P5/Py +Pg/P; + P7/P; + Pg/Pq +.....
Pg/Pj + Pyg/Py + Py1/Pq + P1p/Py + Pya/Py + Pyg/Py + P1g/Py + .
P¢/P1 + P17/P1 + P1g/Py + P1o/Py + Pyg/Py + Pyy/Py + Pyy/Py + ..
P,3/P1 + Pyy/Py + Pag/Py + Ppg/Py + P2y/Py + Pyg/Pq + P2g/Py + ...
P3p/P1) =10 32)

The individual probability ratios shown in equation (32) can be evaluated from the
frequency balance equations (i.e., continual substitution and back substitution until the
probability ratio is evaluated). Once the probability ratios of equation (32) have been
evaluated, then the probability of state 1 can be evaluated. In order to simplify the

final form of the solution for Py, the following constants will be defined:

A= )\-51 + }\.52 + )\.53 + }\54 (33)
B=NAgy+ Ap+ Aga+ Ags 34)
C= )\.31 + )\/32 + )\.34 + )\.35 35)

D=Ay1+ Mgzt Mg+ Ags (36)

E=(AMg +AsaMs) / (AB - Asghys) 37
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F=(AMyg +hsqDys) [ (AB - Agghys)
G=(ANyq +AsqR35) [ (AB = Asqhys)
H=MAj3 +ENg3 + A5z Ajs/A + EAs3 Ags/A
[=M3 + FAg3 + As3Aos/A + F As3 Ags/A
J=C-G Mg -As3has/A - GAszAgs/A
K=E+GH/J

L=F+GI/J

M= )\.12 + }\.32H/J + )\.42!( + )\.52(}\.15 /A + e
HA35/AJ + AygsK/A)

N=D - A’SZ MS/A - )\.52 )\.35[/AJ - )\52)\.45 L/A - ...
)\/32[/.] - }\45L

O=H/J+MI/NJ

R=E+FM/N+GO

S=As/A+AsM/AN + A3s0/A + AgsR/A

The final form of the solution for Py can be expressed in terms of the above

constants and a set of “state probability constants” as defined in Table A.1.

(38)

(39)

(40)

“n

42

(43)

(44)

(45)

(46)

@n

(48)

(49)
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Table A.1  State probability constants (A(i))

STATE STATE PROBABILITY CONSTANT
(i) Al
2 M/N
3 0
4 R
5 S
6 )\12 /u
7 A1 M/ Ny
8 A3 M/Nu
9 )\.32 0/ u
10 )\(34 0/ n
n )\43 R/
12 )\.45 R/u
13 )\.54 S/ n
14 Asy S/u
15 7\.15 / n
16 o
17 A31 0/

18 Apq M/Np
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Table A.1  State probability constants (A(i)) ... Continued

STATE STATE PROBABILITY CONSTANT
0 A(i)
19 )\.42 R/p.
20 M35 0/n
21 AsyS/u
22 Ag/n
23 P41 R/n
24 A5 M/Nu
25 )\.52 s/
26 M
27 250 M/Np
28 A33 0/
29 Ay R/
30 Ass S/u

The steady state probability Py is defined by the following equation:
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Py = 1 (50)

1 +2 AQ)
i=2

The probability of occupying any other state P; is given by:
P;=P; Al (51)

A.3 Evaluation of Markov model narameters
The key parameters required to evaluate the steady state probabilities of the
generalized Markov model are the repair/restoration rate and the state transitional

rates as shown ir Figure A.1l. The rate of “eparture from a given state A;is defined as
g P gl

follows:

total duration in state

= 1.0 / mean deraiion in state i (52)

The individual directional transition rates )\'ll from a given state ito another
operational state jthrough a restoration state is defined as:

>‘-ﬁ = )\1 P(,j) (53)

where: P(ij) = probability of a transition from state ito j
P(i,j) is defined as follows:

P(i,j) = _number of transitions from state i to j (54)
total number of transitions from state i

The restoration rate p is defined as the reciprocal of the mean time to restore the

computer system 1o a fully operational state.
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The probability of being in an operational state is equal to the sum of the

probabilities of occupying all operational states and can be expressed mathematically
as:

P(operational) = P; + Py + P3+ P4 + Pg (55)

The frequency of departures from the operational states is equal to the sum of
the frequency of departure from each individual operating states and can be expressed
as follows:

faown = PiA11 + Apa + Mgz + Mg+ Mg + Pyhgy + Agp + Ay .
}\% + }"25) +P3()\.31 + )\.32 + )\.33 + )\.34 + )&35) + P4()\.41 + ...

1.42 + 7\.43 + )\,44 + )\.45) + PS()\'SI + A’SZ + }\.53 + }\.54 + )\.55) (56)



