
TELECAREPLUS: BRIDGING THE GAP
BETWEEN PROVIDERS AND PATIENTS

THROUGH TELEMEDICINE

PARISA GHANBARI

A project report submitted in conformity with the requirements
for the degree of Master’s of Science in Information Technology

Department of Mathematical and Physical Sciences
Faculty of Graduate Studies

Concordia University of Edmonton

© Copyright 2023 by Parisa Ghanbari

TELECAREPLUS: BRIDGING THE GAP BETWEEN
PROVIDERS AND PATIENTS THROUGH

TELEMEDICINE

PARISA GHANBARI

Approved:

Rossitza Marinova, Ph.D.

Supervisor Date

Committee Member Name, Ph.D.

Committee Member Date

Patrick Kamau, Ph.D.

Dean of Graduate Studies Date

Abstract

Telemedicine has attracted a lot of attention recently because of its promise
to increase healthcare access at low costs and with few restrictions. The
telemedicine platform TelecarePLUS, which is proposed in this paper, enables
healthcare service providers to provide patients with the highest calibre care
remotely. TelecarePLUS can give patients quick access to healthcare regardless
of their location or physical restrictions, especially in the wake of COVID-19,
where social distance has been the norm. With capabilities including secure
audio/video/text consultations, patient registration, electronic medical record
management, prescription management, and patient monitoring, it is a one-
stop shop for healthcare. The platform is simple to use and simple to access,
with a key focus on safeguarding data privacy and preserving data integrity
and confidentiality. TelecarePLUS has the potential to completely transform
the digital healthcare sector given the rise of various diseases and labour short-
ages by bringing healthcare services to those who might not have easy access
to them, such as those who live in remote locations or have mobility issues.

Keywords: telemedicine; TelecarePLUS; electronic medical records; digital
healthcare

i

Acknowledgement
I like to sincerely express my gratitude to Dr. Rossitza Marinova for her invaluable
support, advice and patience during this journey.

Dr. Marinova’s supervision inspired me throughout the project to overcome all the
challenges and aim for the excellence in my work.

I am immensely grateful for her belief in me, which helped me to strive for the best
results and know my capabilities and talents better.

I would also like to show my appreciation for my teammates in the TelecarePLUS
project. Their dedication and professionalism, their exceptional skills and coopera-
tive spirit was the reason we were able to deliver such innovative project in a short
amount of time.

In the end, I am profoundly thankful for all the support and love received from my
family and friends. For sure without their sacrifices and constant encouragement,
this project would not have been possible.

ii

Contents
1 Introduction 1

1.1 Problem Statement . 2
1.2 Organization of this report . 2

2 Objectives / Research Questions 3

3 Literature review (and theoretical framework) 4

4 Project Design 6

5 Project Implementation and Results 8

6 Conclusion and Future Works 22

7 Contribution 23

8 Appendix: Screenshots 24

References 29

iii

List of Tables
1 Tech stack for TelecarePLUS . 8

iv

List of Figures
1 Steps to build the web application . 4
2 U.S telemedicine market . 5
3 Homepage of our website in 1400 px width 7
4 Homepage of our website in 560 px width 7
5 TelecarePLUS - Home page . 24
6 TelecarePLUS - Home page . 24
7 TelecarePLUS - Features page . 25
8 TelecarePLUS - Patient Registration Form 25
9 TelecarePLUS - Patient Registration Form 26
10 TelecarePLUS - OTP Verification page 26
11 TelecarePLUS - Doctor Selection page 27
12 TelecarePLUS - Slot Selection page 27
13 TelecarePLUS - Slot Selection page 28
14 TelecarePLUS - Appointment Booking Successful 28

v

Listings
1 JXS example . 8
2 Adding functions and returned JSX lines to the main JSX code . . . 9
3 Embedded JXS code . 9
4 CSS example . 10
5 Adding global and module CSS files 11
6 Initiating AOS . 11
7 Utilizing AOS inside JSX elements 12
8 Router in React.JS . 12
9 Handling the input received from user 13
10 Fetching and sending data from API 15
11 Fetching and sending data from API and displaying it based on current

date . 16

vi

1 Introduction
Despite of ground breaking advancements in the field of healthcare, many individuals
still face challenges in accessing high quality healthcare services.The rise for remote
healthcare services delivery has further been highlighted by the global crisis caused
by the COVID-19 pandemic. This is where telemedicine comes into the picture.
It refers to the use of telecommunication technologies like audio, video and text to
automate the process of consultation and provide healthcare services to those in need
in a seamless way. Moreover, there are some pre-existing platforms in the market that
have advanced themselves further by including the aspects of robotics and virtual
reality to deliver healthcare [1].

Despite of telemedicine standing up as a promising solution to the challenges im-
posed, existing similar applications still face the challenges like technical difficulties,
limited to appointment types and security concerns. Traditional measures of deliver-
ing healthcare, though having many challenges, have developed a sense of trust and
adaptability among its end users. Telemedicine, through the use of technology, still
needs to develop the trust. However, it has shown some promising signs, especially
after the outburst of the pandemic.

Therefore, it is a critical need to develop a new application that has the potential to
address these challenges and also improve outcomes [2]. This is where TelecarePLUS,
a telelmedicine web application that offers health services to patients anywhere and
anytime comes into the picture.

My role in this project was to design a seamless and beautiful user experience (UI),
suitable for all devices and visually appealing for all users. Utilizing the latest tech-
nologies [3] and best practices in front-end development, I was able to harness the
power of React JS (18.2.0) and JSX (JavaScript XML) to create a responsive and
beautiful website. React JS library, Axios was used to send data securely and safely
to back-end without exposing any sensitive information to the end user. One of the
most important aspects of the website that had to be achieved was the responsive
design which was successfully implemented using CSS 3. Other libraries like Aos was
used in order to help make the website look fabulous and elegant.

In short, the website provides a user friendly environment for patients to easily
register themselves as a new or existing patient and share their health problems and
other required information. On successful verification, the patient can then choose
their desired doctor, date and slot and then proceed to book an appointment.

Many features and functions were implemented in the project which some of them
will be explained in this paper.

For sure in the near future, working harder and dedicating more time on this project
will make the website one of the most revolutionizing platforms in healthcare.

1

1.1 Problem Statement

The scenario of healthcare services delivery before the introduction of telemedicine
was different. The services were provided through the in-person interaction between
patients and healthcare service providers. Patients requiring medical attention had
to either physically visit hospitals or spend a good amount of money to afford similar
facilities at home. Consultation between doctor and patient had to be done face to
face.

This method came with numerous challenges for both the patients and providers.
Patients had to schedule their consultation well in advance which resulted in long
waiting times. Patients with mobility limitations and severe illness faced travel
distance as a major hindrance. Moreover, people belonging to remote areas had
minimum or no access to specialist opinions.

On the other side, healthcare service providers faced challenges related to high traffic
of patients during peak intervals. This influx resulted in ineffective resource man-
agement and improper staff allocation. Manual communication between different
provider bodies resulted in disorganized care and diagnosis. Ineffective way of man-
aging patient medical records saw some errors, putting patient’s data to the risk of
being handled insecurely.

To address these challenges, TelecarePLUS emerges as a one-stop healthcare plat-
form. The platform consists of features like secure audio/video/text consultations,
patient registration, medical records management, prescription and report manage-
ment and patient monitoring. The platform achieves its goals through user friendly
and interactive designs and also has a main focus of protecting the integrity and
confidentiality of patient’s data.

1.2 Organization of this report

This project report is organized as follows:

• Chapter 2: The objectives of creating the TelecarePLUS platform are explained
and multiple questions are posed to guide the project’s completion.

• Chapter 3: This chapter presents the literature review and The significance of
telemedicine.It is explained how the telehealth system is driven by the growth
of the technology and constant demand of patients after COVID-19.

• Chapter 4: This chapter outlines and discusses several key factors that were
necessary to consider when commencing the TelecarePLUS project.

• Chapter 5: In this chapter, the technical aspects and technology stack are
discussed. The use of different technologies are explained and highlighted along
with sample codes from the project.

• Chapter 6: The achievements of TelecarePLUS project is concluded in this

2

chapter. The significance of utilizing the best technologies and a user-friendly
design is emphasized and also the future possibilities and additions are men-
tioned.

• Chapter 7: It focuses on the contribution of the project and report.

• Chapter 8: The purpose of this chapter is to showcase visual support for the dis-
cussed project. These pictures are appended to provide a better understanding
and additional context for the readers.

2 Objectives / Research Questions
Our main goal in this project was to create an innovative and state of the art web
application to provide online consultation and healthcare services for the patients
in the name of the telemedicine platform called TelecarePLUS. To commence the
project a first, we assigned different roles to each member and then we set forth
some primary questions for each assigned responsibility that had to be answered
in order to complete the project. The mentioned questions for my role in the web
application (CCH) are as follows:

• What are the best technologies to leverage that will satisfy the need to imple-
ment a modern, intuitive and user friendly web application, compatible with
patients’ needs and desires [4]?

• How to successfully and efficiently integrate essential APIs to fetch data from
back-end and provide the necessary information for the patients to discern and
choose from [10]?

• How to facilitate secure and smooth data transfer between front-end and back-
end to protect patients’ information and provide the essential data for the
back-end developer [10] [11].

• How to optimize the code and utilize JSX, a JavaScript extension to do so [12]
[13]?

• What libraries and frameworks can be used to efficiently increase the quality
of the project and save time at the same time [14]?

• How to improve the user experience and provide the best UI and a visually
captivating design on all the possible platforms [4].

• How to write the code in such a way that can be modified and updated easily
in the future?

Having all these questions in mind, we tried our best to deliver a web application
that not only meets the needs of our users but also displays our capabilities in coding
and web development.

3

Addressing these questions, we surpassed our own standards and abilities in order to
achieve the goals of this project in a short amount of time.

Also all the required steps for the design and then implementation were documented
and all possible challenges were noted as we were working on new technologies.

The whole process was planned similar to Fig. 1 and followed with commitment.

Figure 1: Steps to build the web application
[5]

3 Literature review (and theoretical framework)
Based on the article [6] the importance of telemedicine lies in the rapid growth of the
technology and needs of patients for new ways to receive health services. After the
Covid-19 pandemic, the significance of having such platform was felt and understood
more than anytime. Many applications and web applications were developed after
the pandemic, and yet, the need for a better and more efficient platform is visible.

Talking about telemedicine and telehealth systems, there are some factors that can be
considered. First factor is such platform removes the barriers set between healthcare,
doctors and patients. Patients do not need to be physically present to be assisted or
examined. This both makes receiving healthcare more convenient and also decreases
the chance of spreading contagious viruses in the society as it happened with Covid-
19.

In the article written by "HealthTech" Magazine in May 2020 [7] telemedicine has
offered a lifeline during the most difficult times of the pandemic and could have
permanent implications on the market. It is likely to become a permanent fixture in
healthcare delivery in the near future. A survey by IT vendor Sykes states that more
than 60 percent of the patients are willing to try telemedicine due to the pandemic.

4

Kaiser Permanent, Oakland California based, which nearly operates 40 hospitals
started conducting more than 90 percent of mental health visits virtually starting
the pandemic period, which would have taken years to implement under normal
circumstances.

Sourced from the report (Market Analysis Report) [9], the telemedicine market is
estimated to grow in annual growth of 18.16% from 2023 to 2023, see Fig. 2.

More people are demanding the telehealth services and the quality of service is ex-
pected to increase rapidly. In May 2021, Walmart Inc. inherited MeMD-a telehealth
provider which enables Walmart to offer virtual care access across U.S.

Figure 2: U.S telemedicine market
[5]

So based on the provided information, it can be concluded that the telemedicine and
telehealth market is highly in demand and many opportunities [8] lie in this field as
the demand is increasing exponentially.

5

4 Project Design
Commencing a project as a front-end developer, a few factors must be considered:

• Implementing user-friendly, visually appealing, and trustworthy interface is
necessary [15]. The colors chosen in the website should promote care and trust
and the design of the buttons, navigation bar and ... should be straight forward
so all users in any age can simply go through their procedure.

In order to achieve this goal we used already created telemedicine web application
as a sample to start with. The comments of the users and their feedback was also
another useful source to understand the needs of our end users better. So the design
had to follow the same successful pattern of the so called web applications while
trying to improve the quality by considering the end user’s feedback.

Another important factor as mentioned before, was making the pages responsive
[16]. It is a modern and necessary attribute that each web application must have,
however, for our project the necessity was even higher as the end users are patients
and they may be in need of our services anywhere and anytime so they have to have
the ability to successfully check out the website and complete their requests with no
issues on any device.

Another thing to consider is if a website is not responsive it will not have a good
SEO ranking [16]. If our web application is not visible for the users we will not have
a chance to fulfill our project and be able to improve in the future as we are not
receiving enough feedback from the user side.

It is true that the sole idea of the project is to be able to assist patients at home,
however, any project has economical aspects as well as it needs to survive as a
business [17]. So if we do not get enough users or they leave the website for poor
design or incompatibility with their device, that’s a huge negative point for the
website and its SEO ranking [16] and it is considered as a failure.

As shown in Fig. 3 and Fig. 4, responsiveness was the main goal of the design part
of our project.

Both pictures have been taken from TelecarePLUS web application.

6

Figure 3: Homepage of our website in 1400 px width

Figure 4: Homepage of our website in 560 px width

7

5 Project Implementation and Results
The front-end design and back-end functionality of the TelecarePLUS website were
brought to life during the implementation phase by the integration of numerous
technologies and components. The primary front-end technologies and environments
used in this project are given in Table 1.

React.JS (version 18.2.0) and dif-
ferent React and JavaScript(ES6)
libraries

Making the website dynamic and
adding functionalities

JSX (JavaScript XML)
Writing the HTML code inside the Re-
act.JS file and optimizing the HTML
code

HTML5 Creating a base to demonstrate the
whole project

CSS3 Designing the web pages and adding
enabling a responsive design

Chrome DevTools an environment to see and debug the
code

Visual Studio Code The environment used to develope the
code

Table 1: Tech stack for TelecarePLUS

Apart from the main HTML file that is a necessary part of any website the whole
code for the HTML structure was written inside the React.JS file codes using JSX
technology [12]. JSX is not a necessary part of React development but it enhances
the functionality of the code and the debugging and coding process. It makes it
easier to combine the react code with HTML elements [13] and also allows react to
show warning messages and error regarding the HTML tags and their elements. The
production procedure using JSX was much simpler and organized.

In the below mentioned example in Listing 1, we are combining HTML elements
with React code and variables. This a code for a drop down menu that users can
pick their genders from. All the elements must be wrapped inside a <div></div>
element or <></> in order to work. This piece of code is returned as the result of a
function named "GenderList" which is later called in the main JSX code of the file.

1

2 return (
3 <div>

8

4 <label htmlFor="gender">Gender:</label>
5 <select
6 value={ selectedGender}
7 id="gender"
8 onChange ={ handleGenderChange}
9 >

10 <option value="" disabled hidden >
11 Your gender
12 </option >
13 {genderOptions.map((option) => (
14 <option key={ option.value} value={ option.value}>
15 {option.label}
16 </option >
17))}
18 </select >
19 </div>
20);
21

Listing 1: JXS example

The code mentioned below in Listing 2 adds functions and returns the JSX lines to
the main JSX code.

1

2 <div className ={ Form_css.input_box}>
3 <GenderList />
4 </div>
5

Listing 2: Adding functions and returned JSX lines to the main JSX code

Also, more complicated parts of the React and JavaScript code can be embedded
inside JSX and vice versa, making it completely easy and convenient to work with,
implementing everything in the same file as shown below in Listing 3:

1

2 const guardianCountryOptions = guardianCountries.map((
guardianCountry) => ({

3 value: guardianCountry.idd.root ,
4 label: (
5 <div>
6 <img
7 src={ guardianCountry.flags.svg}
8 alt={ guardianCountry.name.common}
9 style ={{ width: "20px", height: "15px", marginRight: "5px"

}}
10 />
11 {guardianCountry.idd.root}
12 {guardianCountry.idd.suffixes &&
13 guardianCountry.idd.suffixes.length > 0 && (
14 {guardianCountry.idd.suffixes [0]}
15)}

9

16 </div>
17),
18 data: guardianCountry , // Store the entire country data in the

option
19 }));
20

Listing 3: Embedded JXS code

In the above example, we’re directly assigning the data fetched from an API inside
our HTML elements.

The graphical design of the project was mostly done using pure CSS3 and the latest
CSS properties such as Grid. Also React was used to add dynamic visuals in the
design. Some examples for how CSS styling was done is mentioned below in Listing 4.
The code also explains how we implemented the responsiveness behavior of the web
application.

1 .nav_list {
2 margin -right: 2rem;
3 }
4 .nav_list ul {
5 display: flex;
6 list -style: none;
7 }
8 .burger_icon {
9 display: none;

10 padding: 1rem 2rem;
11 }
12 .burger_icon span {
13 display: block;
14 width: 2rem;
15 border: #e8ede7 solid 2px;
16 margin: 10px;
17 }
18 @media (max -width: 780px) {
19 .nav_list {
20 display: none;
21 }
22 .burger_icon {
23 display: block;
24 }
25 }
26

Listing 4: CSS example

In the screens in size more than 780px we normally have our main navigation bar
named as (nav_list) and the burger icon for the navigation menu is not displayed.
However, as soon as the screen width becomes less than 780 px the design is changed.
The element with the (nav_list) class stops displaying and the burger icon will show

10

as a replacement for the navigation bar. The difference was visible in reference to
Fig. 3 and Fig. 4.

CSS code is written separately in a different file and imported in the React file. The
normal CSS files are applied to all React files and in order to make them specifically
for a certain React file we add the key word "module" in the CSS file name. As-
signing CSS classes (The syntax) for "module" CSS files are also different. In the
TelecarePlus project, I created one CSS file applying globally CSS properties and
styles for all files (for example footer and header which are consistent in most pages)
and one specific CSS file for each React.JS file or page in the web application to
apply specific styles according to elements and contents on the page.

The difference between assigning the global CSS file and specific CSS file as an
example in the TelecarePLUS project comes as follows in Listing 5:

1

2 import Features_css from "../CSS/features.module.css"; \\ The CSS
file created specifically for the "Features" page

3 import "../CSS/allFiles.css"; \\The global CSS file
4

5 \\add the module CSS code
6

7 <div className ={ Features_css.explanation}>
8 <h2>Book an Appointment </h2>
9 </div>

10

11 \\add the global CSS code
12

13 <div className="info">
14 <p> 2023 cch.me Inc. All rights reserved.</p>
15 <p>Emergency/Help Call</p>
16 <p>780********* </p>
17 </div>
18

Listing 5: Adding global and module CSS files

As mentioned, React was also in play adding visuals to the website. One of the
React libraries used to make it happen was AOS [18]. AOS is a library used to
animate elements on the screen [19], for example adding scroll on motion visuals to
the website. Just like any library it has to be installed and then added to the code.
The library is first activated inside the code using useEffect hook [20]. useEffect is
basically a hook in React.JS which is used to perform side effects in the component
[21]. The code is shown below in Listing 6:

1

2 useEffect (() => {
3 Aos.init({ duration: 2000 }); // Activate the animation effect
4 }, []);
5

Listing 6: Initiating AOS

11

Then the predefined code in the library can be used to add animations to the elements
[18] like the example below in Listing 7.

1 <div data -aos="fade -up" className ={ Features_css.img6_box}>
2 <div>
3 <h2>Consult your doctor online and receive E-

prescription </h2>
4 </div>
5 <div>
6
7 </div>
8

Listing 7: Utilizing AOS inside JSX elements

The main parts of the project however, had to be coded using React.JS. Connecting
front-end code to back-end, calling APIs, navigating through different pages and
exporting the React code in HTML file and etc are all done by React.JS.

Working with this technology was a bit challenging for me as I had zero experi-
ence using React. However, working with JavaScript had given me the ability to
understand how React works better as a front-end developer.

Some parts of the code are mentioned below as example in Listing 8. We have one of
the main React file where we upload all the pages and export them all in the indext.js
file later to be uploaded in the HTML file later. Any page that is added inside the
project must be imported in this file (App.js) and in the router. Navigating through
different pages in React is possible through using Router which has to be imported
in the project. Line 14 is adding the "HomePage" as the primary page of the website
and line 20 is creating a error page for all the wrong pages that users enter inside
URL manually. It is an efficient and organized way of navigation possible thanks to
React.JS.

1 import React from "react";
2 import { Route , Routes , Navigate } from "react -router -dom";
3 import { HomePage } from "./ Pages/HomePage";
4 import { Features } from "./ Pages/Features";
5 import { Form } from "./Pages/Form";
6 import { Otp } from "./Pages/Otp";
7 import { DoctorPage } from "./ Pages/DoctorPage";
8 import { Error } from "./ Pages/Error";
9

10 export function App() {
11 return (
12 <Routes >
13 <Route path="/" element={<Navigate to="/homepage" replace />}

/>
14 <Route path="/homepage" element={<HomePage />} />
15 <Route path="/features" element={<Features />} />
16 <Route path="/form" element={<Form />} />
17 <Route path="/otp" element={<Otp />} />
18 <Route path="/doctorpage" element={< DoctorPage />} />

12

19 <Route path="/*" element={<Error />} />
20 </Routes >
21);
22 }
23 export default App;
24

Listing 8: Router in React.JS

In the example mentioned below in Listing 9, we are handling the input received
from users in the form. So we’re adding some restrictions and conditions for the
users as well as setting the final input as the value that later will be sent to the
back-end (the back-end code is not mentioned here and only the values are received
and displayed in the console.log).

To write these functions, useState has been used which is a React.JS hook [22] used
to add states to functional components [23]. Each time the user adds anything to the
input element written in JSX code the React functions receive the input and change
the state of the value based on the input change. The values later are handled in
"handleSubmit"when the user tries to submit the form. That is where they will
receive the final validation errors to fill the form properly. (Just a part of the whole
code is added in Listing 9 in order to explain the functionality of the code).

1

2 const [age , setAge] = useState("");
3 const [monthInput , setMonthInput] = useState("");
4

5 const handleAgeChange = (event) => {
6 const value = Number(event.target.value);
7 // value within valid range
8 if (isNaN(value) || value < 0 || value > 120) {
9 setAge("");

10 } else {
11 setAge(value.toString ());
12 }
13

14 };
15 const handleMonthChange = (event) => {
16 const month = parseInt(event.target.value);
17 if (isNaN(month) || month < 1 || month > 12) {
18 setMonthInput("");
19 } else {
20 setMonthInput(month.toString ());
21 }
22 };
23

24 const handleSubmit = (event) => {
25 event.preventDefault ();
26 console.log("Age:", age);
27 console.log("Month Input:", monthInput);
28 }
29

13

30 return (
31 <div className ={ Form_css.input_box}>
32 <label htmlFor="number -input">Age:</label>
33 <input
34 type="number"
35 id="number -input"
36 placeholder="Your age"
37 value={age}
38 min ={1}
39 max ={120}
40 onChange ={ handleAgeChange}
41 />
42 </div>
43 <div className ={ Form_css.input_box}>
44 <label htmlFor="month -input">Month:</label>
45 <input
46 type="number"
47 id="month -input"
48 placeholder="Enter month"
49 value={ monthInput}
50 min ={1}
51 max ={12}
52 onChange ={ handleMonthChange}
53 />
54 </div>
55);

Listing 9: Handling the input received from user

In the code snippet mentioned below in Listing 10, we are fetching some data about
doctors in the "doctorPage" from the API created and provided by the back-end
developer. The response is received as JSON format and then assigned to "items" in
the end. result is what has been returned from the API and rows is the list inside the
API that has the desired data we want to show in our page, that is why the items is
defined as a list in the beginning. as explained inside the code using comments, we
are handling the errors in the early state of receiving the data in order to prevent
swallowing exceptions from actual bugs in components. The Axios library [24] is
used to handle fetching and posting the API data. as it is displayed in the function
"handleButtonClick" (the button used to book the appointment), this library is used
to post the chosen (by the user) data to back-end , which in this care is the doctor-id
from API. This function activates whenever the user clicks on the booking button. It
has been considered that ion every part of the process, from receiving to sending the
data, that errors might happens, so error handling code has been written in order to
protect the web application from crashing.

Lastly just a specific part of the JSX code is added in this document to show how
this functions are called inside the JSX elements. From line 54 to 58 we can see
how different data is retrieved from API (saved in the list "items" and retrieved
individually as "item") and then in line 59 to 64 we have the button element added

14

to activate the process of sending the data to server based on user’s choice. This
function is basically activated in line 60 and the function has been explained in the
previous paragraph.

1

2 import axios from "axios";
3

4 const [error , setError] = useState(null);
5 const [isLoaded , setIsLoaded] = useState(false);
6 const [items , setItems] = useState ([]);
7

8 useEffect (() => {
9 fetch(

10 "https ://12 vwe151nh.execute -api.ap-south -1. amazonaws.com/dev/
onlinedoctor?account_id=demo_account"

11)
12 .then((res) => res.json())
13 .then(
14 (result) => {
15 setIsLoaded(true);
16 setItems(result.rows);
17 },
18 // explanation: it’s important to handle errors here
19 // instead of a catch () block so that we don ’t swallow
20 // exceptions from actual bugs in components.
21 (error) => {
22 setIsLoaded(true);
23 setError(error);
24 }
25);
26 }, []);
27 const handleButtonClick = (item) => {
28 const dataToSend = {
29 // sending data to the server
30 DoctorId: item.id,
31 };
32 axios
33 .post("/api/bookAppointment", dataToSend)
34 .then((response) => {
35 // handling he response in backend
36 console.log("Appointment booked successfully!");
37 })
38 .catch((error) => {
39 // if backend requests fail
40 console.error("Error booking appointment:", error);
41 });
42 };
43

44 if (error) {
45 return <div>Error: {error.message}</div>;
46 } else if (! isLoaded) {
47 return <div>Loading ...</div>;
48 } else {

15

49

50 return (
51 <div className ={ DoctorPage_css.doc_container}>
52 {items.map((item) => (
53 <div className ={ DoctorPage_css.back_box}>
54 <h3>Doctor Name: {item.doctor_name}</h3>
55 <p>Specialty: {item.specialty}</p>
56 <p>Medical Reg No: {item.medicalreg_no}</p>
57 <p>Consultation Fee: {item.consultation_fee}
58 </p>
59 <button
60 onClick ={() => handleButtonClick(item)}
61 className ={ DoctorPage_css.book_btn}>
62

63 Book an appointment
64 </button >
65

66 </div>
67 </div>
68);

Listing 10: Fetching and sending data from API

In the code example mentioned below in Listing 11, line 14, a token is assigned, which
is later used to access the API which contains detailed information about doctors’
availability. Also in lines 16 to 21 various date methods are used to extract year,
month and date from the "date" object.

The "fetchDataForSelectedDate" function fetches appointment slots for the chosen
date (by the user) from the API. The authorization key is used here to access this
information.

Later in "generateNextSevenDays " function the next seven days are determined on
the basis on current date and then showed in the page using jsx.

At the end the approval of this appointment is displayed to patients after the date
submission.

There is also the option to cancel the whole process and return to doctor page using
"useNavigate" in line 79.

For each and every function error handling function have been written to prevent
any crash in the web application.

1

2 export function SlotSelection () {
3 const [error , setError] = useState(null);
4 const [isLoaded , setIsLoaded] = useState(false);
5 const [items , setItems] = useState ([]);
6 const [selectedDate , setSelectedDate] = useState(null);
7

8 const location = useLocation ();

16

9 const id = location.state.id;
10 const name = location.state.name;
11 const exp = location.state.exp;
12

13 const tokenKey =
14 "Bearer <Authorization token >";
15

16 const getFormattedDate = (date) => {
17 const year = date.getFullYear ();
18 const month = String(date.getMonth () + 1).padStart(2, "0");
19 const day = String(date.getDate ()).padStart(2, "0");
20 return ‘${year}-${month}-${day}‘;
21 };
22

23 const fetchDataForSelectedDate = (date) => {
24 setIsLoaded(false);
25 setSelectedDate(date);
26

27 const formattedDate = getFormattedDate(date);
28 const slotAPIurl = ‘https :// betaemrapi.hlthclub.in/appointment/

onlineappointment/getslots/${id}?date=${formattedDate }& account_id
=demo_account&get_instant_slots=false ‘;

29

30 fetch(slotAPIurl , {
31 headers: {
32 Authorization: tokenKey ,
33 },
34 })
35 .then((res) => {
36 if (!res.ok) {
37 throw new Error("Network response was not ok");
38 }
39 return res.json();
40 })
41 .then(
42 (result) => {
43 // Assuming the API response contains afternoon , evening ,

and morning slots
44 setItems ({
45 afternoon: result.afternoon || [],
46 evening: result.evening || [],
47 morning: result.morning || [],
48 });
49 setIsLoaded(true);
50 },
51 (error) => {
52 setIsLoaded(true);
53 setError(error);
54 }
55);
56 };
57 console.log(items);
58 useEffect (() => {

17

59 fetchDataForSelectedDate(new Date()); // Fetch initial data for
today ’s date

60 }, []); // Empty dependency array means this effect runs only once
, on mount

61

62 const handleDateSelection = (date) => {
63 fetchDataForSelectedDate(date);
64 };
65

66 const generateNextSevenDays = () => {
67 const days = [];
68 const today = new Date();
69 for (let i = 0; i < 7; i++) {
70 const nextDay = new Date(today);
71 nextDay.setDate(today.getDate () + i);
72 days.push(nextDay);
73 }
74 return days;
75 };
76 const handleFormSubmit = () => {
77 window.alert("Your appointment has been booked.");
78 };
79 const navigate = useNavigate ();
80 const handleCancelButton = () => {
81 try {
82 navigate("/doctorpage");
83 } catch (error) {
84 navigate("/error", { state: { message: "Failed to load the

page" } });
85 }
86 };
87

88 const daysArray = generateNextSevenDays ();
89 if (error) {
90 return <div>Error: {error.message}</div>;
91 } else if (! isLoaded) {
92 return <div>Loading ...</div>;
93 } else {
94 return (
95 <div>
96 <header className="otp_header">
97 <div className="otp_icon">
98 <img src={ cchLogo} alt="Connect and Care Hospital Logo"

/>
99 </div>

100 </header >
101 <main className ={ SlotSelection_css.main_slot_selection}>
102 <article className ={ SlotSelection_css.doc_box}>
103 <div className ={ SlotSelection_css.img_doc}>
104
105 </div>
106 <div className ={ SlotSelection_css.doc_info}>
107 <h3>Name : {name}</h3>

18

108 <h4>Specialty : Internal Surgeon </h4>
109 <h4>Years of Experience : {exp}</h4>
110 </div>
111 </article >
112 <div>
113 <h1>Slot Selection </h1>
114 <div className ={ SlotSelection_css.days_box}>
115 {daysArray.map((date) => (
116 <button
117 className ={ SlotSelection_css.day_btn}
118 key={date.getTime ()}
119 onClick ={() => handleDateSelection(date)}
120 >
121 {date.toLocaleDateString("en -US", {
122 weekday: "long",
123 month: "short",
124 day: "numeric",
125 })}
126 </button >
127))}
128 </div>
129 <div>
130 <p>
131 Doctor time:{" "}
132 {selectedDate.toLocaleDateString("en-US", {
133 weekday: "long",
134 month: "short",
135 day: "numeric",
136 })}
137 </p>
138 {/* Check if the morning time slots array is not empty

before rendering */}
139 {items.morning.length > 0 && (
140 <div>
141 <h3>Morning </h3>
142 <ul className ={ SlotSelection_css.li_slots}>
143 {items.morning.map((timeSlot) => (
144 <li key={ timeSlot}>{timeSlot}
145))}
146
147 </div>
148)}
149

150 {/* Check if the afternoon time slots array is not
empty before rendering */}

151 {items.afternoon.length > 0 && (
152 <div>
153 <h3>Afternoon </h3>
154 <ul className ={ SlotSelection_css.li_slots}>
155 {items.afternoon.map((timeSlot) => (
156 <li key={ timeSlot}>{timeSlot}
157))}
158

19

159 </div>
160)}
161

162 {/* Check if the evening time slots array is not empty
before rendering */}

163 {items.evening.length > 0 && (
164 <div>
165 <h3>Evening </h3>
166 <ul className ={ SlotSelection_css.li_slots}>
167 {items.evening.map((timeSlot) => (
168 <li key={ timeSlot}>{timeSlot}
169))}
170
171 </div>
172)}
173 </div>
174 </div>
175 <div>
176 <button
177 className ={ SlotSelection_css.slot_btn}
178 onClick ={ handleCancelButton}
179 >
180 Cancel
181 </button >
182 <button
183 type="submit"
184 className ={ SlotSelection_css.slot_btn}
185 onClick ={ handleFormSubmit} // Call the

handleFormSubmit function on button click
186 >
187 Submit
188 </button >
189 </div>
190 </main>
191 <div>
192 <footer className="all_footer otp_footer">
193 <div className="info">
194 <p> 2023 cch.me Inc. All rights reserved.</p>
195 <p>Emergency/Help Call</p>
196 <p>780********* </p>
197 </div>
198 </footer >
199 </div>
200 </div>
201);
202 }
203 }

Listing 11: Fetching and sending data from API and displaying it based on current
date

These are only short lines of the code that has been worked on so far to create the
TelecarePLUS web application. For sure a telemedicine website is not just a one

20

time coding task and it has to be updated regularly based on user feedback and
functionality monitoring. However, considering the time and scope of the project, it
can be said the main part of the project has been done in a short amount of time.

Moreover, apart from code snippets, some screenshots of the web application can
also be found in the appendix section 8. The screenshot in Fig. 5 is the first landing
page of the application. This page asks the user to choose a desired area. Based on
the area chosen, the user is asked to choose a hospital from the second dropdown
list. The objective of this page is to let the user choose the nearest hospital to their
area for consultation, so that it is convenient for the patient to visit the hospital, if
needed. However, the user can proceed with anything they like.

Fig. 6 and Fig. 7 just gives an insight to the features of this web application. These
pages are static and meant to provide information to the end user.

The patient registration page is shown in Fig. 8 and Fig. 9. This form is meant to
ask the patient for their details like name, age, gender, mobile, email and symptoms
experienced. Based on the age of the patient(if less than 18), the form also asks the
user to enter their guardian’s name and mobile number. Proper validations for these
input are in place to ensure that the user enters the correct and valid information to
proceed forward using the Submit button.

The email address entered by the user in the registration page is prompted by a
random six digit OTP that the user needs to enter correctly in the page shown
in Fig. 10. This is to ensure that the user is requesting an appointment using a
legitimate email. The same email will also be used to send the e-prescription and
other related documents to the user after the teleconsultation is over.

On successful OTP verification, the user is redirected to a doctor page as shown in
Fig. 11. This page lists down all the doctors for the hospital chosen by the user in
the first page. The page has doctor cards with related information listed using a
flip animation. The user can choose a doctor and proceed ahead to date and time
selection.

The date and time selection page as shown in Fig. 12 and Fig. 13 shows the available
slots for the selected doctor in the previous page. Current date is selected by default
and the user can see the list of available slots for that doctor for the next seven days.
After selecting a slot, the user can submit the request and the frontend code sends
the request to an API URL that books the appointment for the user after proper
data validations and returns a success message as shown in Fig. 14.

21

6 Conclusion and Future Works
In conclusion, the TelecarepLUS project has achieved its goal in creating a seamless
and elegant website, providing an environments for the patients to receive online
health services. The project was planned and research questions were set at the
beginning and in the end all the questions were answered and desirable result was
delivered.

By ensuring that the best technologies were utilized and a user-friendly design was
implemented, an intuitive and spectacular interface was designed. The success in
meeting all the required objectives and overcoming the challenges along the way is
a proof for the dedication of the team and using the right technologies and methods
used in implementing the project.

Looking ahead for the future and enhancing the capabilities of the telecarePLUS
project, multiple future works has been considered to be added in the website which
are as follows:

• Multilingual Support: Integrating the website using multiple languages will
be a valuable addition for the website. It helps improving the communication
and assisting patients with different background from different regions.

• Ease of access for visually impaired individuals: Despite of the fact
that this aspect was considered during the implementation and some features
(adding extra information for text to speech features) were added to the code,
additional measures will be incorporated into the project.

• AI-based diagnosis: Implementation of preliminary AI diagnosis can be a
revolutionary asset for the telecarePLUS project, providing fast and proper
medical advice, based on the patient’s medical history and the symptoms they
declare in the website.

• Monitoring Devices: Integrating the wearable devices and remote monitor-
ing tools into the application to assist patients track their health status and
sharing this information with the doctors using telecarePLUS website.

• Use feedback and make improvements: Use the feedback received by real
patients and make improvements based on the patient’s needs and require-
ments. Conducting a survey and involving the patients in the process are few
examples of how this will be done.

22

7 Contribution
The goals of this project report is to establish the case for the TelecarePLUS web
application, as an adaptable and favorable platform for patients. The notable con-
tributions of TelecarePLUS are elucidated as follows:

• Core Features: TelecarePLUS provides multiple features that simplifies ac-
cessing healthcare and enables users to receive consultation services utilizing
different platforms and devices. Throughout the implementation process, users
with different conditions have been considered and additional considerations
have been designed to simplify the process for them.

• User-Friendly Interface and Responsive Design: It is ensured that pa-
tients, in all ages are able to easily navigate through the web application and
benefit from the services. TelecarePLUS is designed in a way that welcomes
patients with an intuitive and trusting interface and enables them to access the
platform wherever they are regardless of what device they use. Patients will
have a seamless and consistent experience as they receive their desired service.

• Secure Data Transfer: During the implementation phase, one of the primary
focuses was to establish a secure data transfer between front-end and back-end
which was implemented and achieved successfully. The patient’s information
are communicated and transferred safely and it is safeguarded from different
threats and attacks.

• Tackling Issues with an Innovative Approach: The primary goal of this
project was to remove the obstacles posed by traditional healthcare services
and provide a simple yet impeccable platform for the patients regardless of the
time or location.

• Future Work: Looking ahead, this project report argues the different pos-
sibilities for TelecarePLUS and its impacts on the healthcare system. All the
future directions and designated plans are designed in such a way that enables
TelecarePLUS to expand and have a revolutionizing impact on healthcare.

23

8 Appendix: Screenshots

Figure 5: TelecarePLUS - Home page

Figure 6: TelecarePLUS - Home page

24

Figure 7: TelecarePLUS - Features page

Figure 8: TelecarePLUS - Patient Registration Form

25

Figure 9: TelecarePLUS - Patient Registration Form

Figure 10: TelecarePLUS - OTP Verification page

26

Figure 11: TelecarePLUS - Doctor Selection page

Figure 12: TelecarePLUS - Slot Selection page

27

Figure 13: TelecarePLUS - Slot Selection page

Figure 14: TelecarePLUS - Appointment Booking Successful

28

References
[1] Grigsby, J., Kaehny, M. M., Sandberg, E. J., Schlenker, R. E., & Shaughnessy, P.

W. (1995). Effects and effectiveness of telemedicine. Health care financing re- view,
17(1), 115–131. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193577/

[2] Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2021). Telemedicine for
healthcare: Capabilities, features, barriers, and applications. Sensors interna-
tional, 2, 100117. DOI: https://doi.org/10.1016/j.sintl.2021.100117

[3] Top Frontend Technologies and their usage. By Anusha SP. https:
//www.knowledgehut.com/blog/web-development/front-end-technologies-
list

[4] Telehealth Website Design: Best Principles to Consider. https:
//www.syntacticsinc.com/news-articles-cat/telehealth-website-design-
best-principles-consider/

[5] The 7 Phases of Web Development Life Cycle. monocubed. https://
www.monocubed.com/blog/web-development-life-cycle/

[6] Successful development of telemedicine systems-seven core principles. Peter Yel-
lowlees. https://journals.sagepub.com/doi/abs/10.1258/1357633971931192

[7] 6 Reasons Telehealth Is Now More Important Than Ever by Craig Guil-
lot. https://healthtechmagazine.net/article/2020/05/6-reasons-
telehealth-now-more-important-ever

[8] Benefits of Telemedicine. Brian William Hasselfeld, M.D. https:
//www.hopkinsmedicine.org/health/treatment-tests-and-therapies/
benefits-of-telemedicine

[9] Telemedicine Market Size, Share & Trends Analysis Report By Compo-
nent (Products, Services), By End-user (Patients, Providers), By Applica-
tion, By Modality, By Delivery Mode, By Facility, And By Segment Fore-
casts, 2023 - 2030. https://www.grandviewresearch.com/industry-analysis/
telemedicine-industry

[10] AJAX and APIs official documentation. https://legacy.reactjs.org/docs/
faq-ajax.html

[11] How To Use Axios With React. Reed Barger. https://www.freecodecamp.org/
news/how-to-use-axios-with-react/

[12] Writing Markup with JSX. https://react.dev/learn/writing-markup-
with-jsx

[13] React JSX. w3schools. https://www.w3schools.com/react/reactjsx.asp

29

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193577/
https://doi.org/10.1016/j.sintl.2021.100117
https://www.knowledgehut.com/blog/web-development/front-end-technologies-list
https://www.knowledgehut.com/blog/web-development/front-end-technologies-list
https://www.knowledgehut.com/blog/web-development/front-end-technologies-list
https://www.syntacticsinc.com/news-articles-cat/telehealth-website-design-best-principles-consider/
https://www.syntacticsinc.com/news-articles-cat/telehealth-website-design-best-principles-consider/
https://www.syntacticsinc.com/news-articles-cat/telehealth-website-design-best-principles-consider/
https://www.monocubed.com/blog/web-development-life-cycle/
https://www.monocubed.com/blog/web-development-life-cycle/
https://journals.sagepub.com/doi/abs/10.1258/1357633971931192
https://healthtechmagazine.net/article/2020/05/6-reasons-telehealth-now-more-important-ever
https://healthtechmagazine.net/article/2020/05/6-reasons-telehealth-now-more-important-ever
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/benefits-of-telemedicine
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/benefits-of-telemedicine
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/benefits-of-telemedicine
https://www.grandviewresearch.com/industry-analysis/telemedicine-industry
https://www.grandviewresearch.com/industry-analysis/telemedicine-industry
https://legacy.reactjs.org/docs/faq-ajax.html
https://legacy.reactjs.org/docs/faq-ajax.html
https://www.freecodecamp.org/news/how-to-use-axios-with-react/
https://www.freecodecamp.org/news/how-to-use-axios-with-react/
https://react.dev/learn/writing-markup-with-jsx
https://react.dev/learn/writing-markup-with-jsx
https://www.w3schools.com/react/react_jsx.asp

[14] Optimizing Performance in React official documentation. https:
//legacy.reactjs.org/docs/optimizing-performance.html

[15] Telemedicine Website Design: Top 5 Tips for Telehealth Product Design
in 2023 by Maria Shapovalova. https://www.voypost.com/blog/telemedicine-
website-design

[16] Leaders in Healthcare, Website Design and Marketing. Website De-
sign, E-Commerce, and Digital Marketing https://www.solution21.com/blog-
Importance-of-responsive-web-design-for-medical/

[17] Why Your Medical Practice Website Needs A Mobile Responsive Design BY
SUYOGYA TRIVEDI. https://practicetechsolutions.com/blog/medical-
practice-website-needs-a-mobile-responsive-design/

[18] AOS. Animate On Scroll Library. Michał Sajnóg. https://
michalsnik.github.io/aos/

[19] AOS - Animate on scroll library. Michał Sajnóg. https://www.npmjs.com/
package/aos

[20] React useEffect Hooks. w3schools. https://www.w3schools.com/react/
reactuseeffect.asp

[21] Components and Props official documentation. https://legacy.reactjs.org/
docs/components-and-props.html

[22] Using the State Hook official documentation. https://legacy.reactjs.org/
docs/hooks-state.html

[23] useState in React: A complete guide. Esteban Herrera. https://
blog.logrocket.com/guide-usestate-react/

[24] axios-http.com. Axios. Promise based HTTP client for the browser and node.js.
https://axios-http.com/docs/intro

30

https://legacy.reactjs.org/docs/optimizing-performance.html
https://legacy.reactjs.org/docs/optimizing-performance.html
https://www.voypost.com/blog/telemedicine-website-design
https://www.voypost.com/blog/telemedicine-website-design
https://www.solution21.com/blog-Importance-of-responsive-web-design-for-medical/
https://www.solution21.com/blog-Importance-of-responsive-web-design-for-medical/
https://practicetechsolutions.com/blog/medical-practice-website-needs-a-mobile-responsive-design/
https://practicetechsolutions.com/blog/medical-practice-website-needs-a-mobile-responsive-design/
https://michalsnik.github.io/aos/
https://michalsnik.github.io/aos/
https://www.npmjs.com/package/aos
https://www.npmjs.com/package/aos
https://www.w3schools.com/react/react_useeffect.asp
https://www.w3schools.com/react/react_useeffect.asp
https://legacy.reactjs.org/docs/components-and-props.html
https://legacy.reactjs.org/docs/components-and-props.html
https://legacy.reactjs.org/docs/hooks-state.html
https://legacy.reactjs.org/docs/hooks-state.html
https://blog.logrocket.com/guide-usestate-react/
https://blog.logrocket.com/guide-usestate-react/
https://axios-http.com/docs/intro

	Introduction
	Problem Statement
	Organization of this report

	Objectives / Research Questions
	Literature review (and theoretical framework)
	Project Design
	Project Implementation and Results
	Conclusion and Future Works
	Contribution
	Appendix: Screenshots
	References

