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ABSTRACT

This study explores the usefulness of hyperspectral data to discriminate rock units 

and estimate the abundance of sulfides in rocks. Airborne visible-near infrared (VIS-NIR) 

hyperspectral data collected from northern Cape Smith, Quebec and laboratory thermal 

infrared reflectance (TIR) data measured on rock samples from eight different mines in 

the Sudbury Basin, Ontario are involved in the analysis. The study addressed four 

different geological application scenarios with the aim of retrieving useful lithological 

information from rock spectra while minimizing the influence of varying environmental 

factors.

The research first examines the effects of topography on the selection of rock 

endmembers from airborne VIS_NIR spectra and demonstrates how a topographic 

correction process can improve the discrimination of rock units. It demonstrates that 

traditional ways of selecting spectral endmembers from hyperspectral data for areas of 

rugged terrain cannot provide representative rock unit signatures. The second part of the 

research targeted the mapping of wall rock in an underground environment using TIR 

spectra. Rock samples from mines of the Sudbury Basin in Ontario were measured using 

naturally broken surfaces both dry and wet to address environmental conditions 

encountered underground. An innovative method applying a spectral angle mapper on the 

2nd derivative of rock spectra from 700-1300 cm ' 1 was proved to be robust to remove the 

effect of liquid water, local geometry and disseminated sulfide ores while preserving 

diagnostic rock signatures for mapping. The study then focuses on retrieving sulfide 

information from TIR to estimate ore (total sulfide abundance) grade on naturally broken 

rock faces and separate ore-bearing rocks from their host rocks in an underground
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environment regardless of rock types. An important finding is that reflectance at 1319 

cm"1, where most silicate rocks demonstrate low reflectance, is related to total sulfide 

concentration in rocks. Finally, a study was conducted on core and cut rock faces to 

examine the usefulness of TIR in detecting sulfide ore zones and estimating total sulfide 

content in cores and cut rocks. Adaptable mathematical models were established and 

tested for potential core logging applications.

The most important result of this research is that rock spectra can be used to 

identify different rock types in an underground environment and on surface exposures in 

the field. Total sulfide content can be detected and predicted on naturally broken and cut 

rock faces using hyperspectral data.
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CHAPTER 1

INTRODUCTION

Hyperspectral sensors, unlike multispectral sensors (e.g., Landsat Thematic 

Mapper), provide co-registered images with high spectral resolution (<20nm) and have 

greater capability to discriminate compositional variations of exposed terrestrial 

materials. Using data acquired from airborne hyperspectral sensors, like AVIRIS (Kruse 

et al, 1997, 1993, 1990; Mustard et al, 1993, 1992, 1987; Boardman et al, 1997, 1994, 

1993; Rowan et al, 1995), CASI (Staenz et al, 1992; Neville et al, 1995) and HYDICE 

(Resmini et al, 1997) over arid and semi-arid regions, researchers have demonstrated 

that these data have promising potential for geological applications. Most reported 

geological hyperspectral applications were conducted at a broad scale under a specific 

geological setting or environment (case based) using data collected from airborne 

sensors. Laboratory measurements of rock spectra (Lyon 1965; Vincent et al, 1975; Hunt 

et al, 1976,1974; Grove et al, 1992; Clark et al, 1997, 1984; Salisbury et al, 1993, 1991, 

1985; Walter et al, 1989) were mostly conducted to find typical rock features, which if 

present could be used for mapping from airborne surveys. The future usefulness of 

hyperspectral data will depend on whether hyperspectral data can provide detailed 

information to identify the presence of different rocks/minerals and allow valid mapping 

of the abundance and spatial variation of rocks/minerals in different environments, and 

whether the approaches developed for a given mapping scenario can be adapted to other 

environments.

1
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1.1 Key research avenues in geological hyperspectral analysis

In operational geological application scenarios, rocks can be situated in a variety of 

environments and exposing a variety of surface properties. Rocks can be exposed above 

ground in rugged terrain, which is the case for most field surveys, or underground on 

tunnel faces or on drill cores, which is the case in mining sites. Rock surfaces can be 

naturally broken, cut, dry or wet. This thesis will explore the possibility of identifying 

rock units and sulfide mineral assemblages in different environments while minimizing 

influences from the above factors. The following key revenues were identified in this 

research.

(a) Removing the effect of topography to facilitate rock endmember selection. 

Rock endmembers are the spectral representations of key rock units needed to be traced 

from hyperspectral data. Many of the approaches and tools available (Boardman et 

al, 1993; Bateson et al, 1997) for the selection of image endmembers have limitations 

when the hyperspectral data are not normalized to a uniform imaging geometry. At times 

the spectra identified in the field and in the laboratory (on rock samples collected in the 

field) suggest the existence of distinct endmembers that are unrecognized in the image 

data despite their occurrence over pixel size areas. Sometimes the spectral signatures of a 

selected “image endmember” (rock spectra selected from data cube) are not statistically 

representative of a distinct class because the spectral amplitude and feature depth of the 

endmember is dependent on location and imaging geometry, which are related to local 

slope and aspect of rugged terrain. Additionally, expected endmembers (pure pixels) can 

not often be determined confidently using multi-dimensional visualizing tools because 

topographic effects tend to smear the related data clusters which become mixed with each

2
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other or with other irrelevant targets in the scene. Removing the topographic effect will 

unveil a clearer signature of a rock unit and facilitate the selection of representative 

endmembers necessary for rock unit mapping.

(b) Rock type identification in an underground environment using naturally broken 

surfaces. Rock unit mapping in an underground environment (such as a tunnel face) is of 

particular interest for the mining industry. It is closely related to mine exploration but 

generally overlooked by the remote sensing community. The complexity of underground 

rock face mapping comes from many environmental factors such as liquid water, the 

irregular orientation of local rock facets on broken rock surfaces and the influence of 

disseminated ore. Using hyperspectral technology in an underground environment 

represents a new application of remote sensing.

(c) Sulfide ore detection on broken and cut rock faces using hyperspectral analysis. 

The detection and abundance estimation of specific mineral assemblages is a challenging 

but useful application of hyperspectral data. Goetz (1982) demonstrated that spectroscopy 

could aid in mapping surface mineralogy. Crowley (1993) presented a study on mapping 

of evaporite minerals with AVIRIS in Death Valley. Kruse (1996) reported the potential 

of mapping -OH containing minerals from drill cores. No research has been conducted on 

detecting sulfide minerals in rocks using hyperspectral data. The occurrence of sulfide 

minerals is a common indicator of many types of mineralization, at times the sulfide 

minerals themselves are the mining targets. Sulfide ores can be seen in rock samples, on 

tunnel faces (might be dry or wet) or in cores. A robust approach for detecting the 

occurrence of sulfide minerals and a method for the fast estimation of their abundance 

could greatly benefit the mining industry by replacing some labor-intensive routines with
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automated processes (such as the automation of core logging).

This thesis tackles the above issues on the basis of research projects sponsored by 

the mining industry and stemming from collaborations with industry. Though specific 

problems were targeted, the science contribution of this thesis resides in the fundamental 

research results with broad geological applications.

1.2 Research conducted in this thesis

Chapter 2 explores how a topographic correction implemented using publicly 

accessible DEM’s (digital elevation models) can significantly facilitate the selection of 

realistic rock endmembers from hyperspectral data. Using an example intended for 

lithologic mapping, the research illustrates the benefit of a topographic correction in 

combination with standard visualization tools for an improved visualization of rock 

endmembers, for the selection of statistically more representative rock spectra, and for 

the detection of subtle spectral variations introduced by rock compositions. CASI 

(Compact Airborne Spectrographic Imager) data over North Cape Smith, Quebec, is used 

to investigate the effects of topography on the selection of endmembers, and to test how 

the topographic correction process improves the discrimination of rock units necessary 

for lithologic mapping. A simple atmospheric correction method involving the removal of 

skylight is implemented in the pre-processing of the data prior to the application of a 

generic Lambertian radiance correction model using a DEM. The chapter does not focus 

on atmospheric or topographic correction models and their possible improvement, which 

have been discussed extensively (Smith et al, 1980; Teillet, 1982; Woodham et al, 1987; 

Proy et al, 1989; Meyer et al, 1993; Sandmeier et al, 1991; Dymond et al, 1999). Rather, 

it focuses on analyzing the merits of a topographic correction for the selection of
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spectrally uniform and geologically meaningful rock endmembers.

Chapter 3 investigates the usefulness of thermal infrared reflectance spectroscopy 

(TIR) to map rock faces in an underground environment. Mapping of wall rock and rock 

cores in the underground environment is part of routine mine operations. It is generally 

conducted visually by geologists. Research in this chapter explores the feasibility of 

using thermal infrared reflectance (TIR) spectroscopy to automate this operation with a 

long-term aim of improving reliability and reducing operation costs. Rock types are 

identified using TIR spectroscopy while addressing important considerations relevant to 

the underground mining environment namely the presence of water on rock surfaces, the 

presence of disseminated sulfides in rocks, and the broken characteristics of freshly 

blasted rock which, unlike natural rock exposures, largely lack weathering minerals. A 

laboratory Fourier Transform Infrared (FTIR) spectrometer was used to measure 

reflectance spectra (500 cnf'-SOOO cm'1) of rock samples on naturally broken surfaces. A 

total of twenty-nine samples covering 10 different rock types, including barren silicate 

rocks and sulfide disseminated rocks, were collected from eight mines around the 

Sudbury Basin in Ontario. Broken rock surfaces were measured wet and dry to address 

environmental conditions encountered underground. Spectral data were processed using 

2nd order derivative analysis and the spectral angle mapper algorithm (Kruse et al, 1993) 

for rock type identification. This research resulted in a methodology for rock face 

mapping that minimizes the effects of environmental factors. Factors examined are liquid 

water on the rock surface, variations in local rock facet geometry and the presence of 

disseminated sulfides. The ability to map rock type in the underground environment 

using spectroscopy combined with ore grade estimation capability reported in chapter 4
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and chapter 5, would be a valuable asset to the automation of mine operations.

Chapter 4 investigates the usefulness of thermal infrared reflectance spectroscopy 

(TIR) to estimate ore grade in an underground environment and separate ore-bearing 

samples from their silicate host rocks. Work was carried out under laboratory conditions 

to test the initial concept and all samples had naturally-broken faces, to mimic the 

situation in a freshly blasted underground opening. A total of twenty-six samples, 

including massive and disseminated ores, were collected from eight mines around the 

Sudbury Basin in Ontario. Rock surfaces were measured wet and dry to address 

environmental conditions encountered underground. The study demonstrates the 

feasibility to separated ore bearing rocks from barren rocks and estimate total sulfide 

(chalcopyrite + pyrrhotite + pentlandite) concentration using TIR reflectance data.

Chapter 5 extends the study of sulfide estimation to cut rocks and cores with a view 

towards future applications in the mining industry, especially towards automated core 

logging and sulfide ore grading, using TIR hyperspectral devices. The immediate goal 

was to assess whether sulfide-bearing cores and cut rocks could be discriminated from 

barren cores and whether their ore grade could be related to raw TIR spectral data rather 

than continuum removed spectra as used in chapter 4. Using raw (absolute) reflectance 

will improve the ability of detecting ore in real-time. An empirical relation was 

established between total sulfide content and TIR data. A suite of thirty samples, 

including 17 core sections and 13 cut rocks for a variety of rock types and sulfide 

contents collected from the Sudbury Basin in Ontario, are used to test the TSC-TIR 

model. Promising results indicate that it is possible to build a core-logging prototype 

sensor. Many application-related issues, such as the dimension of the instrument field of
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view (FOV), the calibration model and the effect of removing the spectral continuum are 

also discussed in this study and the corresponding appendix.

1.3 Major contribution to sciences

The major contributions of this thesis can be summarized as follows.

(a) It establishes that the topographic normalization of hyperspectral data using 

publicly available topographic maps can significantly improve the ability of 

identifying proper rock unit endmembers from hyperspectral data collected over 

rugged terrains.

(b) It demonstrates that underground rock face mapping is possible while minimizing 

the impacts of underground environmental factors, namely the presence of liquid 

water, the irregular orientation of rock faces and the presence of disseminated 

sulfide ores.

(c) It demonstrates that sulfide ores (chalcopyrite + pyrrhotite + pentlandite) can be 

detected and the ore grade can be estimated using TIR hyperspectral data , 

regardless of whether the rocks are cut or broken, dry or wet. A unique band 

position (1319cm'1) is found in this study to be sensitive to the presence of sulfide 

minerals and the absolute reflectance at 1319cm'1 is linearly related to the total 

sulfide concentration in cut rocks.
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CHAPTER 2

THE TOPOGRAPHIC NORMALIZATION OF HYPERSPECTRAL DATA AND 

ITS IMPLICATIONS ON THE SELECTION OF SPECTRAL ENDMEMBERS

FOR LITHOLOGIC MAPPING

2.1 Introduction

For decades, topography has been known to introduce variations in the radiance 

detected by air and spacebome sensors (Temps et al, 1977; Smith et al, 1980). The effect 

of topography on remotely sensed data has been explored by many researchers (Kimes et 

al, 1981; Conese et al, 1993; Itten et al, 1993; Sandmeier et al, 1997; Gu et al, 1998) who 

have attempted to model and reduce the influence of local terrain slope and aspect with 

the aim of improving land cover identification. Such studies have focused on 

multispectral data with the goal of looking at the anisotropic effects of topography on 

surface reflectance. Few examples in the literature explore the effect of topography in 

hyperspectral data sets, particularly in terms of its influence on the signature of spectral 

endmembers (Adams et al, 1986). In geology the analysis of hyperspectral data for 

lithologic mapping and mineral exploration is now becoming routine (Adams et al, 1986; 

Boardman et al, 1994) and the use of representative spectra of rock units of interest 

(generally referred to as endmembers in general terms) is key for referencing targets of 

interest.

Endmembers can be obtained from in-situ field measurements or, more typically, they 

are extracted from imagery data due to a number of possible constraints including the 

remoteness of the study area. Consequently, recent research (Boardman et al, 1993; 

Bateson et al, 1996; Ifarraguerri et al, 1999) has started to focus on the development of
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methodologies (Kneubiihler et al, 1998) that can be used to select feasible endmembers 

from hyperspectral data sets. Methodologies such as the Minimum Volume Transform 

(Craig et al, 1994), the N-Dimensional Projection (Jimenez et al, 1999), Convex Set 

Theory (Boardman et al, 1993), and the Maximum Noise Fraction Transform (Green et 

al, 1988; Gordon et al, 2000), have been proposed for the extraction of endmembers 

from hyperspectral data sets. Some have been implemented to visualize endmembers 

(Boardman et al, 1993, 1994) and others to perform the automatic selection of 

endmembers (Bowles, 1995; Winter, 1999).

In practice, many of the tools available for the selection of image endmembers have 

limitations. At times the spectra identified in the field and in the laboratory (on rock 

samples collected in the field) suggest the existence of distinct endmembers unrecognized 

in the image data despite their occurrence over pixel size areas. Sometimes the spectral 

signatures of a selected “image endmember” is not statistically representative of a distinct 

class because the spectral amplitude and feature depth of the endmember is dependent on 

location and imaging geometry. Additionally, expected endmembers can often not be 

determined confidently using multi-dimensional visualizing tools because topographic 

effects tend to smear the related data clusters which become mixed with each other or 

with other irrelevant targets in the scene.

Once defined from the image data, the endmembers can be used to classify each pixel 

in the image via either spectral similarity tools (e.g., spectral angle mapper, Kruse et al, 

1993) or spectral deconvolution (e.g., spectral mixture analysis, Boardman et al, 1989). A 

common assumption of many spectral analysis methods that make use of spectral 

endmembers for image classification is that each pixel shares the same illumination and
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imaging geometry as that of the endmembers selected. However, this assumption is rarely 

satisfied. The primary cause of heterogeneity in imaging geometry for different pixels is 

local topography, where varying surface slope and aspect (orientation) results in variably 

illuminated areas and thus variations in illumination intensity. Data acquired using high 

spatial resolution airborne sensors, such as CASI (Compact Airborne spectrographic 

Imager, ITRES Research Limited) and Probe (Earth Search Sciences, Inc.), are 

particularly sensitive to local topographic variations at the scale of meters (Conese et al, 

1993). Due to the effect of topography, the spectra of neighboring pixels are subject to 

amplitude variations and thus contrast variations, in accordance with local slope and 

slope aspect. Endmember signatures selected from specific pixels are subject to these 

same variations and therefore may not form distinct clusters of pixels when viewed using 

multi-dimensional visualizing tools.

This paper explores how a topographic correction applied to hyperspectral data and 

implemented using publicly accessible 1:50,000 DEM’s (digital elevation models), can 

significantly facilitate the selection of representative endmember signatures. Using an 

example intended for lithologic mapping, we illustrate 1) the benefit of a topographic 

correction in combination with standard visualization tools for an improved visualization 

of endmembers, 2) for the selection of statistically more representative endmember 

spectra, and 3) for the detection of subtle spectral variations. A simple atmospheric 

correction method involving the removal of skylight is implemented in the pre-processing 

of the data prior to the application of a generic Lambertian radiance correction model 

using a DEM. The paper does not focus on atmospheric or topographic correction models 

per-se, or their possible improvement, which have been discussed extensively (Teillet
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1986; Woodham et al, 1987; Meyer et al, 1993; Sandmeier et al, 1997; Dymond et al, 

1999; Proy et al, 1989). Rather, we focus on analyzing the merits of a topographic 

correction for the selection of spectrally uniform and geologically meaningful 

endmembers.

2.2 Study area and data sets

The selected study area is located in the Ungava peninsula of Northern Quebec, 

Canada (Figure 2.1) and covers an area of approximately 2 x 2  kilometers (Figure 2.1a 

and 2.1b). Ground cover consists largely of grasses and mosses with lichen partially 

covering rock outcrops. Relief is moderate and the altitude ranges from 1,500 - 1,750 

feet with more than 80% of the terrain characterized by slopes less than 15°. The region is 

located geologically within the Cape Smith Belt (Figure 2.1a), which is generally 

interpreted to be a foreland fold and thrust belt of the early Proterozoic Ungava Orogen 

(St-Onge and Lucas, 1993). Outcrops of two early Proterozoic rock groups (ca 2.04-1.92 

Ga; Parrish, 1989) are exposed in the study site. The Watts group, which contains 

distinctive mafic and ultramafic rocks including layered gabbro and layered peridotite, 

and the lower Povungnituk group, which comprises a sequence of complex clastic 

sedimentary rocks (sandstone, pelite, dolomite, basalt and minor gabbro and peridotite 

sills).

A detailed knowledge of the spatial distribution and continuity of the gabbro, 

peridotite, and sedimentary rocks is important for mining exploration efforts in the 

region. Numerous sulfide deposits have been discovered since the 1950’s, and the 

mineralization has been found to be associated with differentiated mafic-ultramafic 

bodies (principally gabbro and peridotite sills and sheeted dykes) (GioVenazzo et al,
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1989; Barnes, 1990). These sills and dykes range from several meters to 600 meters thick 

(M.R. St-Onge et al, 1993).

Due to the logistical difficulties associated with accessing this region, airborne remote 

sensing has been used for regional mapping. For this study we use CASI Radiance data 

acquired from a nominal altitude of 3,628 m above sea level near Lake Vaillant 

(73.84°W, 61.46°N), Cape Smith Belt around 15:00 GMT on July 27, 1995. The data was 

geometrically corrected using on board GPS data and re-sampled to a 10-meter spatial 

resolution. The CASI spectral data has 13 narrow spectral bands (2 nm-12 nm bandwidth) 

located between 0.43-0.96 nm and centered at 475.29 nm, 490.14 nm, 540.52 nm, 564.90 

nm, 619.55 nm, 665.03 nm, 678.33 nm, 710.68 nm, 750.76 nm, 800.50 nm, 881.04 nm, 

950.15 nm, and 969.24 nm. These band locations were carefully selected to maximize the 

possibility of differentiating compositional variations in ground targets.

To correct the influence of topography on CASI radiance using the radiance 

correction approaches described below, a digital elevation model created from a 1:50,000 

topographic map with 50 meter grid was used in the process. The DEM was registered to 

CASI data with 10 meter pixel spacing and less than 1 pixel RMS registration error. 

Though the pixel spacing of the above DEM is 10 meters, it does not portray topographic 

details at a scale equivalent to that of the CASI pixels because of the limited spatial 

resolution of the original DEM.

2.3 Radiance correction

The illumination over the study region comes from two different sources, direct and 

diffuse solar illumination. Terrain relief changes the direct solar illumination by 

modulating the solar radiance at different slope angles and aspects. Diffuse light, which is
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a result of multiple scattering from atmospheric constituents, is non-directional and not 

significantly modulated by topography. It can, therefore, be treated as an additive term to 

the surface illumination. Before making the DEM-based radiance correction, the additive 

diffuse component must be subtracted from each pixel/spectrum.

For each spectral band, the additive component can be roughly estimated using the 

measured radiance of a deep lake within the scene (Chavez, 1988; Crippen, 1987, 1988), 

in this case Lake Vaillant (Figure 2.1b). This estimation is based on two assumptions: (1) 

the atmospheric conditions within the scene (2km x 2 km) are uniform, (2) the radiance 

of Lake Vaillant is negligible implying that the lake is sufficiently deep and clear, and (3) 

the lake surface is sufficiently calm to prevent the occurrence of glare. Figure 2.2 

displays the average DN ((W/m 2 ptm1 s r 1 )*100) reading for 325 pixels of Lake Vaillant. 

This spectrum is taken to represent the overall contribution of diffuse light during data 

acquisition and was subtracted from each pixel in the scene at the onset of the analysis.

In this study scattering of the direct illumination by the surface was modeled using a 

Lambertian scattering model (Conese et al, 1993; Doute et al, 1998; Chang et al, 2000). 

More complex scattering models (Dymond et al, 1999; Sandmeier et al, 1997) were not 

explored because of the insufficient spatial resolution of the DEM. The Lambertian 

model provides a fast method to normalize the directional solar radiance that was 

calculated using:

NormalizedRadiance = RawRadiance * (cos6 ! cos/) 

where 6 is the solar zenith angle at the time of acquisition and i is the local incidence 

angle, which can be determined using the DEM and the following equation:

cos i = cos (3 cos 6 + sin /? sin 0 cos(A -  0)
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where (3 is the terrain slope, (j) is the solar azimuth angle and A is the local terrain aspect.

2 1 1RawRadiance represents the CASI detected radiance ((W/rri /uni sr )*100) after 

removal of the diffuse component. The local instantaneous solar azimuth and solar 

elevation angle were calculated as 212.85 ° and 37.86°- Figure 2.3 shows a shaded relief 

of the study area using the solar position at the time of data collection. The radiance 

profiles (a transit from point A to point B on Figure 2.3) of three of the CASI bands 

(centered at 475.29nm, 490.14nm, and 619.55 nm,) were examined to assess the 

performance of the topographic correction in a typically rugged terrain. The transit is 600 

meters long (covering 60 pixels) and crosses a ridge (dominantly peridotite) recording an 

elevation change from 1640 feet to 1690 feet (Figure 2.4). A comparison of the radiance 

profiles pre (Figure 2.5a) and post (Figure 2.5b) correction suggests that the correction 

process performs well for the normalization of dominant topographic effects in this 

terrain. Prior to the correction (Figure 2.5a), the modulation of radiance by topography 

resulted in a dome-shaped profile on which was superposed high frequency variations 

attributed to local differences in surface materials. The profile of the corrected data shows 

a flat baseline indicating that the dominant effect of topography along the 600 meters 

transit has been removed. Variations due to transitions in surface materials and coherent 

returns from adjacent pixels belonging to a common map unit are more clearly 

recognized. Consequently delineation of map units and their contacts is facilitated. A 

visual comparison of the uncorrected (Figure 2.6a) and corrected data (Figure 2.6b) for 

the entire study area shows the same improvement. The contrast between different 

cover/rock units is improved, and the boundary/contacts between units are better defined.

2.4 Implication on the selection of endmembers
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To compare the spectral signatures of geological targets before and after the 

correction process and to examine the impact of the correction on the extraction of 

spectral endmembers, distribution maps of rock units were created from the CASI data. 

For this purpose an unsupervised classification (arbitrarily set to 18 classes for the whole 

region) was first conducted on the corrected data set using a pipe-line/Parallelepiped 

classifier (Richards, 1994). This step provided guidance for easily identifying 

endmembers and reducing the spatial scope to locate rock endmembers of specific 

interest, such as gabbro and peridotite. Five classes (gabbro, peridotite, two sedimentary 

rock types and vegetated alluvium) that fall in respective geological categories on the 

geological map were identified as physically meaningful units. The two sedimentary rock 

classes, which are mapped as volcaniclastic, are included in the analysis to assess the 

correctness of their contact with gabbro and peridotite. The vegetated alluvium is located 

near valleys or along rivers where rock outcrops are less abundant. The results of the 

unsupervised classification for the above noted five classes provided a suite of five masks 

that were applied to the corrected and uncorrected CASI data sets. Using only these 5 

classes in our discussion avoids any unnecessary influence from other unknown classes 

and best highlights the topographic effect on an individual class.

Multi-dimensional scatter plots were used to explore the hyperspectral data. These 

provide an intuitive way to determine the separability of, and relationship between, 

different data clusters. Figure 2.7a shows a scatter plot of the data for the 5 classes prior 

to the correction. CASI band 3 (540.52 nm) and band 13 (969.24 nm) were carefully 

selected for their maximum separability of the five endmember classes. It is clear that all 

of the classes are shown as elongated pixel clusters before correction. The degree of
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elongation is a function of topography, which in turn is determined by the spatial 

locations of all of the pixels within a specific class. The triangular cluster in the lower 

part of Figure 2.7a is actually composed of three endmember classes (peridotite, gabbro 

and one sedimentary unit). It is hard to separate these three clusters confidently on the 

scatter plot before the correction, because they overlap. Most of the gabbro pixels are 

mixed with peridotite and sediment before the correction. Figure 2.7b shows the scatter 

plot of these endmember clusters after the correction, and they are clearly separable using 

only bands 3 and 13. The correction process results in clusters with a near circular shape, 

indicating that the spectral signature of each ground target should be uniform and 

statistically normal. The correction process not only normalizes the endmember 

distribution, but also decreases the standard deviation of each endmember for all bands 

(Table 2.1) except band 12 (950.15 nm), a band subject to the influence of atmospheric 

water vapor. The decrease of the radiance variation caused by local topography results in 

spectral clusters for each endmember with a distribution closer to normal. The histograms 

of bands 3 and 13 (Figure 2.8a and 2.8b) suggest that the corrected data clouds for the 

above five classes can be approximated by a suite of normally distributed clusters. The 

benefit of the topographic correction for data analysis is not confined to facilitating the 

separation of gabbro and peridotite as in this particular case.

This case study also brings to our attention the way in which we can select proper 

endmembers. Figure 2.7a shows two well-known approaches used to select endmembers 

or training clusters for hyperspectral classification. In the first case, high-radiance pixels 

are selected for each cluster (shown in region A and B on Figure 2.7a) on the basis that 

these pixels demonstrate clearer spectral signatures with stronger spectral contrast. It
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should be noted that such pixels are likely the over-illuminated pixels located on sun 

facing slopes. In the second case, the comers of the cluster convex hull (extremities like 

region C, D and E on Figure 2.7a) are selected on the basis that they represent distinct 

spectral signatures, which assumes that all of the pixels within the convex hull are 

mixtures of these signatures. However, when the topographic effect is present, as in 

Figure 2.7a, the above assumption is not valid because the extremities of the data clouds 

are endmembers displaced to that position as a result of the topographic influence (as in 

region D and E which are mainly peridotite in Figure 2.7a)). Consequently the selected 

pixels are most likely contaminated by over-illuminated or under-illuminated pixels, 

which do not represent the true mean signature of a class. Additionally, some 

endmembers can be hidden within the convex hull (i.e gabbro). Thus, endmembers 

selected by these methods are very likely “incomplete” or “non-representative” if the 

topographic effect is embedded in the data. The endmember list may be "incomplete” by 

lacking some endmembers that cannot be confidently selected because their data clusters 

are mixed with that of other classes. An example is gabbro, which cannot be 

distinguished from peridotite and volcaniclastic sediments, without a topographic 

correction. "Non-representative” endmembers means that the spectrum of a selected 

endmember from the un-corrected data is likely to be contaminated by pixels at extreme 

illumination conditions, or affected by other classes. An example is location C (Figure 

2.7a), which is a mixture of over-illuminated pixels of the peridotite and one of the 

sediment units. When the clusters shrink following the topographic correction, their 

statistical centers (Figure 2.7b) are representative of each class. If a spectral mixture 

exists after the correction, a convex hull method can then be confidently applied to the
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corrected data cube to locate or refine endmembers.

2.5 Lithologic mapping using radiance corrected data

The distribution of gabbro and peridotite from the unsupervised classification 

generally coincides with the respective rock unit distribution on the published geologic 

map. This approach does not, however, ensure that they are properly mapped. This is 

because (1) the total number of classes, which is a subjective classifier input, influences 

the final distribution of gabbro and peridotite in the unsupervised classification, and (2) it 

is assumed that all pixels are pure, which means that target detection at the sub-pixel 

scale is not important. This assumption does not always hold in the study area, where 

gabbro dykes can be meters thick and thus smaller than one CASI pixel. Existing spectral 

mixing techniques (Boardman, 1991,1993) provide approaches for improving the tracing 

of these rock units at the sub-pixel scale, if the pure endmember spectra of gabbro and 

peridotite are available.

Pure endmembers of the above 5 classes were selected from a scatter plot of CASI 

band 3 (540.52 um) and band 13 (969.24 um) using radiance corrected data. Endmember 

spectra were created by interactively selecting and averaging the central 8 to 12 pixels of 

each cluster on the scatter plot (Figure 2.7b). When used as inputs into a constrained 

linear spectral unmixing (Adams et al, 1985) model, the resulting abundance maps 

provide the distribution of the above five endmembers within the scene. A uniform 

threshold (0.8) for all five classes was applied to the individual endmember proportion 

images to create the distribution map shown on Figure 2.9. Applying 0.8 as a threshold to 

the unmixing results indicates that the distribution map shows pixels with more than 80% 

spatial coverage of the corresponding endmembers. The accuracy of the final map was
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assessed using a confusion matrix (Congalton, 1999), which examines every pixel in each 

class and determines how many are attributed a proper “ground truth” category, and how 

many are misclassified when compared to the published geological map. The assessment 

(Table 2.2) indicates that the unmixing results achieved an overall accuracy of 83.4% for 

gabbro, peridotite and two sediment rock units (12,087 out of 14,486 pixels are properly 

classified). Gabbro shows the lowest accuracy (62%) which reflects that gabbro generally 

occurs as dykes whose thickness can be at the meter scale, and whose locational accuracy 

can therefore be greatly affected by small registration errors between the geologic map 

and the classification result; an error less than 10 meters in this case. Furthermore, gabbro 

is a rock type that is resistant to physical weathering and tends to generate resistant debris 

in the proximity to rock outcrops. Thus the CASI data represents not only the original 

location of gabbro occurences, but quite possibly also that of gabbros that has undergone 

secondary transport -  which would not be reflected on the geologic map.

2.6 Discussion

It has been reported (Ekstrand, 1996; Conese et al, 1993) that over correction tends to 

occur with a bigger local incidence angle as a result of assuming a Lambertian surface 

scattering mode. This cannot be confirmed in this region because the DEM used is not 

detailed enough to distinguish correction errors; those due to the over correction of the 

Lambertian model and those due to the fact that micro-topography is not present in the 

1:50,000 topographic map. Errors of registration between the geologic map and the 

unmixing results can affect quantitative assessment results, especially for rock units with 

small outcrops like gabbro dykes. Mis-registration due to instantaneous platform 

instability could cause errors not recognizable during registration but with significant
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consequences for quantitative evaluation.

Geologic studies have shown compositional variations within the gabbros and 

peridotites exposed in the north Cap Smith region due to differentiation, mineralization 

and contact metamorphism (Bames, 1990; M.R. St-Onge, 1993). The topographically 

corrected data cluster for peridotite (Figure 2.7b) does show a triangular shape rather than 

a circular one. This indicates that it may be possible to use topographically corrected 

CASI hyperspectral data to explore the compositional variability within the peridotites.

An issue raised but not included in this study is the sensitivity analysis of the DEM 

resolution. It would be important to know how the capability of differentiating rock 

outcrops will change as a function of the resolution of DEM used to correct the 

topographic effect. This is open to further study when proper DEM data become 

available.

2.7 Summary

This case study suggest that publicly accessible 1:50,000 topographic maps can be 

used to remove the dominant topographic effects embedded in CASI hyperspectral data, 

and improve the ability of separating and tracing gabbro and peridotite in the north Cape 

Smith region, using an existing spectral unmixing methodology. The fast radiance 

correction approach, using the Lambertian model, taken in this research highlights the 

merit of making topographic corrections before selecting endmembers. When 

topographic effects are embedded in the data, methods typically used for the selection of 

endmembers, such as the convex hull method, can miss endmembers or select non­

representative pixels as endmember candidates. Following the topographic correction, the 

statistical center of a specific data cluster is a more representative endmember location
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for circular isolated clusters. For the mixed data cloud that displays convex extremities, 

the apices of the cloud can be confidently treated as endmembers for spectral mixtures.
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Table 2.1 Standard deviation of peridotite and gabbro radiance DN on CASI bands 

before and after topographic correction

Gabbro Peridotite
Band Uncorrected Corrected Uncorrected Corrected

1 841.05 623.56 820.88 445.96
2 787.64 i 644.121 769.531 461.26
3 790.33 612.45 802.52 456.25
4 791.14 594.54 827.58 456.58
5 744.99 567.63 806.14 451.28
6 713.74 563.42 776.46 450.25
7 699.31 558.29 762.90 447.39
8 697.951 405.83 777.14 331.71
9 705.31 292.95 808.61 246.22

10 656.15 270.14 766.581 231.43
11 655.91 263.69 744.56 219.56
12 266.54 287.79' 287.27 227.17
13 522.11 281.18 559.70 220.93
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Table 2.2 Confusion matrix for accuracy assessment of rock units

Ground Truth (Pixels) Total Accuracy
Peridotite Gabbro Sediment(a)

Class
(Pixels)

Peridotite 9044 1839 75 10958 82.53% (9044/10958)
Gabbro 170 691 254 1115 61.97% (691/1115)

Sediments(b) 0 61 2352 2413 97.47% (2352/2413)
(a) Povungnituk group, labeled as one unit on geological map
(b) Two merged classes (sedimentl and sediment2) fall in Povungnituk group
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Figure 2.1 (a) Geographical location and regional geologic setting of the working region 

(modified after St-Onge and Lucas 1993); (b) Local geologic setting (modified after 

1:50,000 geology map, St-Onge et al, 1993).
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Figure 2.2 Mean surface digital number (DN) of 325 pixels from Lake Vaillant (shown 

on Figure 2.1) extracted from radiance CASI data.
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Figure 2.3 Shaded terrain relief using the solar position at 15:25 GMT on July 27, 1995. 

Line A-B marks the location of a cross-ridge profile used to explore topographic effects.
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Figure 2.6 Color composite image of CASI bands, Red=band 11 (881.04nm), 

Green=band 7 (710.68nm), Blue=band 3(540.52nm); (a) upper: Before radiance 

correction, (b) Lower: After radiance correction.
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Figure 2.7 (a) left: Data clusters of the 5 classes from unsupervised classification before 

topographic correction. Circles mark the traditional location for selecting possible 

endmembers; (b) right: Cluster breakdown after correction. Circles mark the positions of 

confident endmembers. Blue + green : volcaniclasic sediments, Yellow : gabbro, White: 

peridotite. Red: vegetated alluvium.
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Figure 2.8 (a) Histogram of endmembers on CASI band 3 (540.52nm); (b) Histogram of 

endmembers on CASI band 13 (969.24nm). Solid line: histogram after topographic 

correction, Dash-dot and dot line: histogram before topographic correction.
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Figure 2.9 Distribution map of five classes created by applying 0.8 as the threshold to 

constrained spectral linear unmixing results.
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CHAPTER 3

ROCK TYPE DISCRIMINATION IN A SIMULATED UNDERGROUND 

ENVIRONMENT USING 2nd ORDER DERIVATIVE THERMAL INFRARED

REFLECTANCE SPECTRA

3.1 Introduction
Mapping of wall rock and rock cores in the underground environment is part of 

routine mine operations. Generally, the in-situ identification of lithologic units is 

conducted visually by geologists. This paper investigates the feasibility of using thermal 

infrared reflectance (TIR) spectroscopy to automate this operation with the long term aim 

of improving reliability and reducing operation costs.

Thermal Infrared Reflectance (TIR) spectroscopy generally refers to the traditional 

mid-infrared (MIR) spectral region, 3.0 to 30 jam. Geological applications of TIR 

spectroscopy have been conducted for decades. Early research by Lyon (1965, 1972) 

revealed differences between mineral assemblages or within-mineral groups in rocks 

from the shape and intensity of the spectra and the presence of individual minima (or 

maxima). Vincent (1975) measured the hemispherical thermal reflectance of naturally 

weathered igneous rock surfaces. Hunt (1974, 1976), Clark (1984), Gillespie (1984), 

Kahle (1980, 1988), Salisbury (1991), and Christensen (1992) discussed the spectral 

features measured from rock powders and surfaces for a variety of rock types. These 

studies unveiled the key thermal infrared spectral features of rocks and minerals, 

especially near Restrahlen bands (reflectance peaks between 700 cm'1 -1300 cm'1) and 

illustrated the possibility of using TIR for lithological mapping.

Numerous case studies have demonstrated the successful applications of visible/near-
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infrared and thermal infrared multispectral and hyperspectral imaging technologies to 

detect the surface distribution of minerals, particularly in environments with low 

abundances of vegetation (Khale et al, 1988; Kruse et al, 1990; Rowan et al, 1995). A 

few studies (Gallie et al, 2001; Broicher 1999; Cudahy et al, 1997; Kruse 1996) have 

focused on the use of visible near-infrared (VNIR) spectroscopy to detect specific 

minerals in broken rock and rock cores, typical geological targets in the underground 

mining environment. More recently, Rivard et al, (2001) and Gallie et al, (2001) used 

thermal infrared reflectance (TIR) and VNIR spectroscopy for the estimation of sulfide 

mineral abundance (chacopyrite, pentlandite, pyrrhotite) in varying types of broken 

rocks for the purpose of ore grade estimation.

This study is aimed at identifying rock types using TIR spectroscopy while 

addressing important considerations relevant to the underground mining environment; 

namely, the presence of water on rock surfaces, the presence of disseminated sulfides in 

rocks, and the broken characteristics of freshly blasted rock which, unlike natural rock 

exposures, largely lack weathering minerals. The ability to map rock type in the 

underground environment using spectroscopy combined with ore grade estimation 

capability (Rivard et al, 2001, Gallie et al, 2001), would be a valuable asset to the 

automation of mine operations.

One of the unique challenges present in underground mining environments is that 

rock faces are likely to be wet or covered by thin liquid water films. In the VNIR spectral 

region, the presence of water results in a O-H (hydroxyl) stretch absorption feature at 

1.45/xm and that combination absorption from the H-O-H bend and O-H stretch near 

1.92/xm (Hunt et al, 1970). These water features affect the interpretation of rock spectra
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for the application of VNIR spectroscopy underground because they occur at the same 

wavelength as hydroxyl (O-H) and H-O-H features caused by layered silicate minerals 

such as kaolinite and halloysite (characteristic absorptions at 1.45jam and 1.92/xm). 

However significant water features in the thermal region (near 3450 cm'1, 3200 cm'1, and 

1640 cm'1) do not overlap with the 700 cm'1 to 1300 cm'1 region, where most silicate 

mineral features occur (Salisbury et al, 1991). Rivard et al, (2001) and Gallie et al, 

(2001) reported that some sulfides (chacopyrite, pentlandite, pyrrhotite) are almost 

featureless in this region, suggesting that it may be an appropriate spectral window for 

rock type analysis in the presence of disseminated sulfides. Consequently, this study 

focused on using TIR spectroscopy for rock type discrimination in underground 

environments.

3.2. Sample suite and experimental setup

3.2.1 Sample suite

Laboratory experiments were undertaken to address these issues using 29 samples of 

10 host rock types (Table 3.1) and 2 massive sulfides, as they would occur when freshly 

blasted and exposed in the underground mining environment. These samples were 

collected by mining geologists and represent the dominant rock types from eight mines in 

and around the Sudbury Basin in Ontario. The 10 rock types include quartz-rich rocks 

(e.g., granite, quartz diorite), mafic rocks (gabbro, diabase, amphibolite, norite) and a 

breccia (Sudbury breccia). The samples displayed freshly broken surfaces with grain size 

varying from fine (e.g greenstone) to coarse (e.g., some amphibolite). Samples of 

massive sulfide and disseminated sulfides in norite and quartz diorite were included in 

this study to explore how the presence of sulfide minerals would influence the
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identification of rock types. The sulfide minerals are dominated by pentlandite 

((Fe,Ni)9 Sg), chalcopyrite (CuFeS2), and pyrrhotite (Fei_xS). Thin section point counting 

was conducted on each rock sample (Table 3.2) for mineralogical identification and rock 

type classification. Grain size and texture of each rock sample are also listed.

Rocks in Table 3.1 and Table 3.2 were originally named visually from hand sample 

by mine geologists. Rocks named as amphibolite, diabase, gabbro, greenstone, Sudbury 

breccia and metasediment by mine geologists are classified consistently with that 

determined later from the dominant minerals observed in thin section (e.g., amphibolites 

are rich in hornblende) or rock texture (e.g., Sudbury breccia is characterized by the 

presence of clasts and matrix or groundmass). Minor discrepancies occurred for naming 

some norite and quartz diorite samples; however, thin sections show that these samples 

do have similar mineral assemblages except for sp#13, which is altered and sericitized.

3.2.2 Measurement set-up

Reflectance measurements were conducted with an MB 102 Fourier transform 

InfraRed (FTIR) spectrometer equipped with a Mercury/Cadmium/Telluride (MCT) 

detector. A thermal light source (globar) provided illumination normally incident onto the 

sample surface. A globar light source was used because the underground environment 

acts as a blackbody cavity at a temperature similar to that of the target of interest 

complicating the detection of the emission properties of the rock surface (Rivard et al, 

1995). The MCT detector was located approximately 50cm from the vertically oriented 

sample to perceive diffuse bi-directional reflected energy (Hapke, 1993) leaving a 15 

mm x 15 mm field of view at a 35 degree phase angle. An infrared (IR) camera was used 

to locate the footprint of the light source on the sample because thermal infrared light is
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not visible to the human eye. The detector perceives the reflected bi-directional thermal 

energy between 450 cm'1 to 6000 cm'1 at an adjustable wave number resolution. The 

control software provides the flexibility to co-add multiple scans of the same sample 

footprint to form a single spectra. A Diffuse gold panel (Infragold™) was used to 

normalize the radiance readings of natural samples to reflectance. The data presented in 

this study includes 1-4 spots (15x15mm) per sample. For samples with a heterogeneous 

texture, measurements were located to sample the variability. For every location 

measured, TIR spectra were collected for dry and wet conditions to simulate the extreme 

underground environment. Surfaces were wetted by applying clean water to form a water 

film and spectra were collected immediately.

3.2.3 S/N ratio and spectral resolution

Signal to noise (S/N) was adequate, exceeding 1000 (Figure 3.1) over the entire 

spectral region of interest (700-1300 c m 1). It was estimated for a single scan while 

measuring a diffuse gold panel (Infragold™), a target of high and uniform reflectance. 

When measuring samples, 200 scans were averaged whenever possible to suppress noise, 

but a subset of the samples were measured using an average of 32 scans because of time 

constraints. This difference had little impact on the quality of the data in view of the high 

S/N of the instrument.

The MB 102 FTIR provides selectable spectral resolution. Use of coarser resolution 

results in quicker acquisition. The diffuse gold panel was measured at a resolution of 1 

cm'1, 2 c m 1, 4 cm 1, 8 cm'1, 16 cm'1, 32 cm'1 and 64 cm'1 using 200 scans to determine an 

adequate resolution for this study. A set-up at 16 cm'1 was selected for all measurements 

because it preserves known TIR spectral features of rocks.
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Radiance spectra of the diffuse gold panel and rocks measured at 16 cm'1 spectral 

resolution (Figure 3.2) display atmospheric bands caused by H2 O vapor (near 1500 cm'1 

and 3750 cm’1) and CO2  (near 680 cm'1 and 2350 cm'1). These features are located 

outside the Restrahlen band (700 cm'-BOO cm'1) of silicate minerals.

3.2.4 Reproducibility

Four targets (fine-grained, coarse-grained, homogeneous and most heterogeneous) 

were used to assess measurement reproducibility (Table 3.3). Eight consecutive 

measurements were acquired for a given location on each sample within a time interval of 

eight minutes. Each measurement was an average of 200 scans at 16 cm'1 spectral 

resolution. The root mean square (RMS) error over the entire region is between 0.15%- 

2.01% reflectance, absolute, with a mean value of 0.70 % (Figure 3.3). The error 

increases above 1.00% beyond 4000 cm'1 (near-infrared region) due to the sensitivity fall 

off of the detector. These results indicate that the FTIR was very stable within the thirty- 

two minutes required for the acquisition of thirty-two measurements from four samples. 

Consequently measurement of the gold panel, required for the estimation of reflectance, 

was conducted approximately every thirty minutes.

3.3 Results and discussion

3.3.1 Role of liquid water

Water is known to have a high absorption coefficient in the infrared region (Clark, 

1981). On broken rock surfaces, liquid water may form a thin film, which would 

substantially reduce rock reflectance. Figure 3.4a shows spectra of granite (sp#30) and 

amphibolite (sp#ll) under both dry and wet conditions. These two samples represent 

mafic and felsic rocks, with clearly identifiable Restrahlen features of dominant silicate
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minerals (75% hornblende in sp#ll, 35% quartz in sp#30). Major features of mafic 

minerals tend to occur at smaller wave numbers (e.g., Hornblende feature at 995 cm'1) 

than that of felsic minerals (e.g., Quartz feature near 1180 cm'1). The combinations of 

spectral features from rock forming minerals provide the possibility of discriminating 

different rock types using spectral data. Spectra collected under wet conditions show a 

significant decrease in absolute reflectance from 700-1300 cm '1, but diagnostic features 

of minerals are preserved.

Figure 3.4b shows the ratio of radiance from a diffuse gold panel under wet and dry 

conditions. The ratio highlights the exact positions (3000-3900 cm'1, 2100 cm'1, 1670 

cm'1) of liquid water absorption features over the thermal region. These results show a 

spectral region near 980-1550 cm'1 with uniform values of the ratio indicating that liquid 

water may have a uniform effect on target spectra in this region. To assess whether this 

observation could be generalized to a variety of targets, a wetting experiment was 

conducted on 15 rock samples. For each sample, a series of spectra were collected at time 

intervals of 20 seconds after wetting. The data were collected with 32 scans to shorten the 

data collection time of each spectrum and sample the dynamic changes occurring during 

the drying process. A representative series of spectra is shown in Figure 3.5 for granite 

gneiss (sample #19). When samples are wetted, the average TIR reflectance is reduced 

(to 30% of dry amplitude near Restrahlen band on sp#19) and the spectral contrast is 

attenuated. During the drying process (vertical sample under ambient temperature), the 

overall spectral amplitude and contrast increase and approach that of the dry spectrum. 

Spectral features of water can overlap or mask rock features as seen for a hornblende 

feature (660cm'1) in granite gneiss (Figure 3.5). Typically samples returned to a dry state
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within five minutes (320 seconds for granite gneiss (#19) and 220 seconds for quartz

diorite (#6)). As observed for the gold panel, the presence of water on rocks changes the

rock spectra uniformly between 980 cm_l-1550 cm'1 and changes the spectral amplitude

1 1and contrast without masking rock features. The 700 cm" -980 cm' region shows a 

smooth transition from a very shallow (less than 4% dry/wet ratio from center to shoulder 

of absorption) water absorption feature (near 660 cm'1) to the 980 cm"'-1550 cm’1 

plateau. This observation provides an important basis for selecting spectral regions 

where rock features are retrievable under wet conditions.

3.3.2 Effect of disseminated sulfides

Our previous research (Rivard et al, 2001, Gallie et al, 2001) on the spectroscopy of 

sulfide minerals (chalcopyrite, pentlandite and pyrrhotite) observed in our samples 

indicates that their spectra are featureless in the 700 cm"1-1300 cm'1 region with the 

exception of a broad absorption of low amplitude for chalcopyrite centered near 900 cm'1 

(Figure 3.6a). This feature can be observed, though very weak, from the spectrum of the 

massive sulfide sample #9 on Figure 3.6a. The addition of these sulfides to silicate rich 

rocks attenuates the spectral features of silicate minerals but does not modify the relative 

amplitude of silicate features as was observed for the addition of surface water in the 

980-1550 cm'1 region. As described below the effects of the broad chalcopyrite feature 

and the minor water feature over 700 cm'1-980 cm'1 can be removed by using the 2nd 

order derivative of spectra during the process of rock type classification.

3.3.3 Use of 2nd order derivative spectra

The analysis of 2nd order derivative spectra can be used to derive significant spectral 

parameters such as band position, band depth, band width and inflection points (Figure
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3.6b) while suppressing the low frequency spectral background (continuum). It has been 

used for the spectral analysis of terrestrial materials (Huguenin et al, 1986; Farrington, 

1994; Ben-Dor et al, 1997). In this study, the 2nd order derivative was computed for each 

spectrum for the 700 cm"1-1300 cm"1 region to minimize the low frequency amplitude 

variations resulting from the presence of liquid water and disseminated sulfides. Figure 

3.6b provides an illustration of the 2nd order spectra for the broken face of dry 

amphibolite, dry massive sulfide, dry granite, powder samples of chalcopyrite and 

pentlandite, and a wet/dry gold panel (shown as a ratio spectrum). For the sulfides and 

water, the 2nd order derivative values oscillate between -0.1 to 0.1 and converge to zero, 

which indicates that liquid water and sulfides do not have a significant influence on the 

2nd order derivative spectra of rocks within the 700 cm"1-1300 cm'1 region. These results 

are attributable to the lack of contrast in reflectance (absence of high frequency features) 

for these materials. Silicate-rich rocks display a variety of features from 700-1300 cm"1 

(Figure 3.6a) that result in distinct peaks and troughs after the 2nd order derivative 

transformation. These features are directly indicative of the mineral components within 

each sample with 2nd order derivative values reaching above 2.0 or below -2.0 (Figure 

3.6b). Compared to 2nd order derivative values of distinctive rock features, values 

observed for water on gold and for sulfide rich samples are insignificant. Thus the use of 

2nd order derivative spectra for rock type classification will greatly minimize the 

influence of water and disseminated sulfides. A disadvantage of the 2nd order derivative 

transformation is that it is sensitive to noise. A noise suppressing pre-processing step is 

generally required before calculating the 2nd order derivative. This step was not required
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in this study due to the high S/N ratio of the data. The rock spectra collected in this study 

were transformed into 2nd order derivative spectra before classification.

3.3.4 Rock type discrimination

Rock type mapping requires explicit knowledge of the representative spectral 

signatures of all the possible candidate rock types. In other words, a typical spectrum of 

each rock type, which is referred to as an endmember spectrum, must be known. 

However, the abundance and composition of minerals for a given rock type can be 

variable across localities, thus rock endmember spectra should be collected locally in 

order to achieve optimal mapping results. Based on rock types in Table 3.2, up to 4 

spectra collected under dry conditions were selected for each rock type (Table 3.5) and 

averaged to create a representative endmember spectrum. Spectra for dry surfaces were 

selected because they demonstrate the strongest contrast. The process was guided by an 

unsupervised classification, which is indicative of the dominant spectra within each rock 

type, of the 700-1300cm'1 subset from data cube. Ten endmember spectra, covering ten 

rock types, were created. Samples with disseminated sulfides (DIQD and DINR) were 

treated on the basis of the host rock type. Using the endmember spectra, the challenge is 

then to predict the rock type corresponding to all remaining spectra (> 67% of 

measurements) for dry, wet, sulfide bearing or barren samples.

As the measurements were collected from naturally broken rock surfaces to meet the 

original goal of this study, the micro-topography of rock surfaces must be considered 

because it will cause local changes in observation and illumination geometry that will 

modulate both the spectral amplitude and contrast of spectral features. The use of 2nd 

order derivative spectra will minimize variations in spectral amplitude but changes in
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feature depth will not be normalized. The Spectral Angle Mapper algorithm (SAM) 

(Kruse et al, 1993) was applied to 2nd derivative spectra to classify rock type because 

SAM is sensitive to the shape of the spectrum and thus minimizes the effect of local 

surface topography. SAM is a spectral similarity mapping method based on vector 

analysis. The similarity index a  (measurement of the angle between two vectors or 

spectra) is determined between the rock endmember spectrum (vector R) and an unknown

x

rock spectrum (another vector U) and is given by Ct = cos 1

bandsz
i = l

I bands bandsJZM2*JZft'2
V V i=i V /=!

. The

unknown rock spectrum that holds the smallest Angle ( a )  with respect to the 

endmember spectrum is considered to be most similar to the correspondent rock type. 

Because SAM uses only the relative direction of the spectra vectors and not their length 

(vector mode), SAM is insensitive to changes of gain factors caused by variation in 

illumination and viewing geometry. The rock type classification process using SAM in 

this study was conducted on 2nd derivative spectra using the 10 rock endmembers. For 

each unknown rock spectrum, 10 similarity indices (angles in radian) were calculated 

against 10 rock endmembers (see Figure 3.7 for an example) and the unknown rock 

spectra were classified to the rock type against which they held the smallest spectral 

angle. The results of the classification are shown in color-coded form in Figure 

3.8(lower), where each color represents a rock type. Visual evaluation of the 

classification results shows that the general distribution of the classified rock types is 

close to the corresponding expected rock categories (top portion of Figure 3.8), which are 

listed in Table 3.2.
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3.3.5 Assessment of rock type classification

Assessment of the classification results was conducted by examining the correctness 

of identification for each rock type. The correctness for each rock type (Table 3.5) was 

calculated from the confusion matrix (Table 3.4, Jensen, 1986) by counting the number of 

correctly identified spots among all the measurements for a given rock type. Highest 

correctness occurs for the most homogeneous (non-porphyritic, non-clastic, non-blebby 

and not foliated) rock types such as diabase (DIA) and gabbro (GAB) while lower 

correctness values occur for more heterogeneous rock types such as quartz diorite (QD, 

myrmekitic or foliated) and the Sudbury breccia (SBC, clastic). Grain size, water and the 

presence of disseminated sulfide minerals do not have obvious influences on correctness.

Most of the samples group well by rock types except for the quartz diorite (QD) 

where 7 out of 42 of the spots (17%) were misidentified as norite (NOR). This confusion 

appears to result from the similarity of the dominant mineral components in quartz diorite 

and norite based on thin section data. Norite and quartz diorite both contain hornblende 

and quartz as the dominant mineral component and biotite/plagioclase as secondary 

components. Because the field of view of each spot is only 15mm, local modal variations 

in heterogeneous rock surfaces (e.g myrmekitic or foliated quartz diorite) will bias the 

local identification results. The slightly weathered face of quartz diorite sp#7 was 

misidentified as greenstone. This is most probably due to the weathering process 

affecting the mineralogy though not verified by thin section data. Another low success 

case (44% correctness) was granite (GRA), 31% (5 spots out of 16) of which was 

classified as metasediment (MTSD). Thin section analysis indicates that the modal 

abundance of minerals in the granite samples varies significantly. K-feldspar in granite

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



changes from less than 5% to 60% and plagioclase varies from less than 5% to 55% in 

the 4 granite samples. These variations in modal proportions, combined with local modal 

variations due to the heterogeneous rock texture (e.g., Sp#34, granoblastic texture), will 

introduce uncertainty into the identification of local spots. Changes in the abundance of 

sulfides do not appear to affect the rock type identification of ore-bearing samples 

(maximum 35% total sulfide in quartz diorite sample #2). Norite samples with 

disseminated sulfides (DINR) were not successfully classified as norite. In the case of 

DINR sp#13, every spot was classified as amphibolite. Thin section observations show 

that it is poor in plagioclase, which is partially sericitized (5-9% sericite), compared to 

the norite end member, which is an average of spots from sp#3 and sp#17. The latter is 

richer in plagioclase.

The average correctness for all 10 silicate rock types covering felsic rock types and 

mafic rock types reaches 75%, whether they are wet, dry, ore bearing, or barren. Another 

assessment index (prediction accuracy), which is often referred to as the producer 

accuracy (Table 3.4), is also listed in Table 3.5 to measure the probability that a spot 

identified as a specific rock type is actually that type. When this index is equal or close to 

a higher correctness percentage listed in Table 3.2 for a given rock type (e.g., Granite 

gneiss and diabase), less confusion is achieved between that rock type and all other rock 

groups. This indicates that spectra from that rock group share common and unique 

features, which enable them to be easily isolated from all other classes, as their 

endmember. The average prediction accuracy reaches 80%.

3.4 Conclusions

This research demonstrated that TIR spectroscopy at 700 cm'1 - 1300 cm'1 contains
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diagnostic spectral information for silicate rocks and can be used to identify silicate rock 

types. A combination of derivative analysis and SAM is efficient in minimizing the effect 

of liquid water, of rock surface micro-topography and disseminated sulfides on spectral 

amplitude. The experiments also suggested that a spectral resolution of 16cm'1 for TIR 

measurement provides enough spectral information to differentiate silicate rocks. A 

limited array of sulfide minerals was included in this study (chacopyrite, pentlandite and 

pyrrhotite) and additional work is required to extrapolate the results of this study to 

additional sulfide minerals. There are a few spectra in the literature for pyrite (Ferraro, 

1982; Salisbury et al, 1991) indicating a high TIR and a lack of diagnostic spectral 

features within the 700-1300 cm'1 region. Thus pyrite is not expected to have an obvious 

effect on the 2nd derivative spectra of rocks in accordance with the sulfide minerals 

included in this study.

Because the spectra were measured in a controlled laboratory environment with 50cm 

separating the sample and the spectrometer, atmospheric attenuation on the measured 

radiance was not significant. One factor that was not examined in this study is dust in the 

underground environment that may partially cover broken rock surfaces. The impact of 

dust on the spectra of rocks deserves further research before testing in an operational 

scenario.

A significant issue raised from this study is how to select proper rock endmembers 

representative of rock category or sub-category. For example, in the four granite samples, 

K-feldspar varies from 10% to 60% in modal abundance and plagioclase varies from less 

than 5% to 51%. These significant variations will obviously result in rock spectra distinct 

from the defined endmember, no matter how the endmember spectrum is selected. A
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systematic study is required to group various rocks into sub-categories that carry unique 

spectral features suitable for hyperspectral analysis and consistent with lithological 

principles (Richard et al, 1979) widely accepted by geologists.
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Table 3.1 List of rock samples included in the experiment

Rock Type Column1 Sample # D ryc #W etc Sulfide %
(Abbreviation) Position ID (Cpd/PnPod)
Amphibolite (AMPH) 1 10 3 3 0/0

2 11 3 3 0/0
3 16 3 3 0/0

Diabase (DIA) 4 21 3 3 0/0
5 31 2 2 0/0
6 38 4 4 0/0

DIQDa 7 2 3 3 m i
8 4 3 3 12/8
9 26 3 3 2/11
10 27 3 3 2/21

Gabbro (GAB) 11 32 3 3 0/0
12 39 4 4 0/0

Granite gneiss (GRGN) 13 19 3 3 0/0
Granite (GRA) 14 18 1 1 0/0

15 30 4 4 0/0
16 34 2 2 0/0
17 37 1 1 0/0

Greenstone (GRST) 18 12 4 4 0/0
19 15 3 3 0/0
20 22 4 4 0/0

Metasediment (MTSD) 21 5 3 3 0/0
22 20 3 3 0/0
23 25 3 3 0/0

Norite (NOR) 24 3e 3 3 0/0
25 3 3 3 0/0
26 17 3 3 0/0
27 24 3 3 0/0

DINR” 28 13 3 3 0/9
29 23 3 3 0/25

Quartz Diorite (QD) 30 6 3 3 0/0
31 7 3 3 0/0
32 T 3 3 0/0
33 33 3 3 0/0

Sudbury Breccia (SBC) 34 28 3 3 0/0
35 29 3 3 0/0
36 35 3 3 0/0
37 36 3 3 7/2

a Sulfide Disseminated in Quartz Diorite; Sulfide Disseminated in Norite;c Number of 
individual dry and wet measurements on each sample; d Sulfide contents from thin 
section point counts where Cp = chalcopyrite, PnPo= pentlandite and pyrrhotite; e 
Slightly weathered broken face of sample; Refers to column number on Figure 3.8.
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Table 3.2 Major mineral components from thin section analysis o f rock samples

Rock
Type3 Sample

ID

Quartz
/

K-Sparb
(%)

Horblendec
/

Biotite
(%)

Plagioclase
/

Pyroxened
(%)

Chlorite
(%)

Olivine
/

Sericite
(%)

Grain
Size11 Texture

10 25/—e 70-75/- l/~ AC1 _/_ M-C Porphyritic

AMPH 11 15/— 80-85/- <5/~ — F Porphyritic
16 <5/~ 60-65/<5 25-30/-- - ~/<3 F-M Massive

DIA

21s
31 --/AC 70/10-15 AC 10/AC F-M Granular
38 ~/<l 55-60/15-20 — 15/— F-M Inequigranular
2 10-15/-- 10-15/5-10 30-35/- <5 ~/<5 F-M Equigranular
4 4-8/12 28-32/20 12/— 5 F-M Massive, incf

DIQD 26 13-17/— 33/12 20-26/- <4 - / - F-M Equigranular,

27 3-7/- 36/11-15 7-15/— ~/<7 F-M
blebby 

Poikilitic, blebby

GAB
32 3/~ - /I 35/60 — F-M Inequigranular
39 AC/~ 45/— 50 -/AC F-M Equigranular

GRGN 19 65/— <5/~ 30/— <5 l/~ M Granoblastic
18 30/60 <1/10 <5/— — —/AC F-M Granoblastic,

GRA 30 30-35/40-45 —/5-10 5-10/— AC --/AC C
foliated

Inequigranular
34 37/10 ~/<l 51/— <3 -/AC M Granoblastic
37 45/24 10/10 11/— — F-M Inequigranular
12 45-50/- 30-40/15-20 AC/— — F Foliated
15 30/- 40/20 - /„ 10 F Foliated

GRST 22 20-30/- 50-60/- <5/~ 5-10 ~/<5 F Porphyroblastic
5 60-65/- -/30-35 1 F Foliated; clastic

MTSD 20 50/-- -/20-25 AC/~ 20-25 F Foliated
25 80/<5 ~/10 <5/~ — F Equigranular
3 10/— 55/5 25/— — -/AC F-M Massive

NOR 17 15/<5 30-35/20-25 25/— — „/~ F-M Massive
24 35-40/1 30/5-10 20/— - F Foliated

DINR 13 5-9/— 45-54/9 14-18/— — ~/5-9 F Equigranular
23 12-15/— 23/15 23/- — --/AC F-M Equigranular
6 20/5 45/10 15-20/— ~ F Foliated
7 15/— 45/5 35/— — F Myrmeketic

QD 7k
33 10-15/<5 45/10 30/— F-M Inequigranular
28 50-60/AC --/< 2 15-20/— 15-20 F-M Clastic
29 60-64/-- ~/<5 8-12 F-M Clastic

SBC 35 60-65/-- 11-13/— 14-16/— — M-C Multi-clastic
36 20/- 20/-- 30/15-20 — F-M Minerals oriented

a Refer to Ta ?le 1 for rock name abbreviation; b K-Feldspar;c Inc uding hornblende and
Actinolite ; d Including Pyroxene and Augite; e Not observed; f Occurred as accessory 
minerals; ; 8 No thin section available; ; h F=fine grained; M=medium grained; C=coarse 
grained;1 with inclusions;k Refer to Table 1;
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Table 3.3 List of samples used to assess reproducibility

Property Target type Sample ID

Homogeneous Infragold1M standard panel —

Coarse-grained Granite 18

Homogeneous Quartz Diorite 33

Heterogeneous Sulfide Disseminated Norite 23 (40% Ore blebs)
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Table 3.4 Confusion matrix of tock type classification assessment

Ground Trut,h (classification by geologist) Total
spotsAMPH DIA GAB GRA GRST NOR&

DINR GRGN QD&
DIQD MTSD SBC

Classes

AMPH 17 0 0 2 0 6 / 0  a 0 0 2 2 29123
DIA 0 18 0 0 1 0 0 0 0 0 19
GAB 1 0 14 0 0 0 0 2 0 0 17
GRA 0 0 0 7 0 0 0 0 0 0 7
GRST 0 0 0 0 16 0 0 0 1 0 17
NOR&
DINR 0 0 0 0 2 2 0 0 7 0 4 33

GRGN 0 0 0 0 0 0 5 0 0 0 5
QD&
DIQD 0 0 0 1 1 5 0 27 2 0 36

MTSD 0 0 0 5 2 4 1 6 1 0 13 2 33/27
SBC 0 0 0 1 0 0 0 0 0 14 15

Total
spots 18 18 14 16 2 2 35129 6 42136 18 2 2 151b

a Numbers in italic are excluding spots from weathered surfaces or with o 
alteration.b Total number of correctly classified spots of all rock types.

:>served
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Table 3.5 Endmember/classification statistics

Rock type Total spots 
(dry/wet)

# selected3 

(dry/wet)
% EM b Correctness0

Prediction
accuracyd

AMPH 9 /9 3 /0 17% 94% (17/18) 56% (17/29) 
74% (17/23)°

DIA 9 /9 4 /0 2 2 % 1 0 0 % (18/18) 95% (18/19)
GAB 6 / 6 3 /0 25% 100% (14/14) 82% (14/17)
GRA 8 / 8 4 /0 25% 44% (7/16) 100% (7/7)
GRST 1 1 / 1 1 3 /0 14% 73% (16/22) 94% (16/17)
NOR & DINR 18/18 3 / 0 1 0 % 57% (20/35) 61% (20/33)
GRGN 3 /3 2 / 0 33% 83% (5/6) 100% (5/5)
QD & DIQD 24/24 4 / 0 8 % 64% (27/42) 

75% (27/36)f
79% (27/36)

MTSD 9 /9 4 /0 2 2 % 72% (13/18) 39% (13/33) 
48% (13/27)g

SBC 1 1 / 1 1 4 /0 18% 64% (14/22) 93% (14/15)

Average 75% / 77% 80% / 82%

a Number of dry/wet spots selected for the calculation of the endmember in each rock 
category; b Percentage of endmember spots from total measured spots both dry and w et;c 
Calculated by counting the percentage of correctly identified spots out of total measured 
spots in each rock category. d Calculated by counting the percentage of correctly 
identified spots out of all spots classified as a given rock category. e Excluding sp#13. f 
excluding the spots on slightly weathered surface.e See discussion in text.
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Figure 3.1 Averaged single scan signal-to-noise ratio (S/N) measured over five days 

using the MB 102 FTIR and a 100% reflectance Infragold panel and globar illumination.
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Figure 3.2 Important atmospheric bands (CO2 and H2 O) seen in the radiance spectra of 

the diffuse gold panel measured at 16 cm ' 1 spectral resolution.
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Figure 3.3 Average RMS deviation in % reflectance from 4 four samples measured 

during the reproducibility test.
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Figure 3.4 Effect of water on reflectance spectra: (a) upper: Spectra of granite and 

amphibolite under dry and wet conditions; (b) lower: %Ratio of radiance for the diffuse 

gold panel under wet and dry conditions .
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Figure 3.5 Spectra of granite gneiss (sample #19) collected during the drying process. Six 

of the eleven spectra collected are displayed. The time interval between each acquisition 

was 2 0  seconds.
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Figure 3.6a Reflectance spectra of sulfide mineral powders and broken rock surfaces. The 

spectra of sulfide powder (212-600 nm grain size) were measured in bi-directional 

reflectance mode at RELAB, Brown University. The powders were created from massive 

sulfide samples of the same Sudbury locality. Bold solid line = Granite sample #30; bold 

dash line = amphibolite sample #10; thin solid line = massive sulfide sample #9, 26%Cp, 

63%PnPo; thin dash line = massive sulfide sample #1, 80%Cp, 15PnPo; stars = 

chalcopyrite powder spectra; circles = pentlandite powder spectra; black squares = 

wet/dry ratio spectra of diffuse gold panel.
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Figure 3.6b 2nd order derivatives of the spectra shown in Figure 3.6a. Refer to Figure 3.6a 

for legends.
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Figure 3.7 Spectral angle (in radian) map for the diabase endmember. Darker spots 

represent smaller angle values indicating a higher similarity to the diabase endmember 

spectrum. Refer to Figure 3.8 for the locations of the diabase (DIA) spots.
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Figure 3.8 Results of the rock type classification, (a) upper: Schematic representation of 

the image construct. Each square represents one spot/measurement; each column of 

squares includes all spectral measurements for one sample, and each pattern groups 

spectra from one rock type. The lighter coloured squares at the bottom of each column 

correspond to measurements from dry surfaces, while darker shades represent 

measurements from wet surfaces. There are no spectra in areas occupied by white 

squares. Rock acronyms are detailed in Table 3.1; (b) lower: Color-coded classification 

results using SAM applied to the 2nd order derivative spectra.
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CHAPTER 4

ORE DETECTION AND GRADE ESTIMATION IN SUDBURY MINES USING 

THERMAL INFRARED SPECTROSCOPY

4.1 Introduction

Reflectance spectroscopy involves the measurement of light reflected from a solid, 

liquid or gas at varying wavelengths, for the extraction of compositional information. The 

variations in material composition often cause shifts in the shape and position of features 

in the spectrum. With the vast chemical variety typically encountered in the world, 

spectral signatures can often be complex. However, an increased knowledge of the 

natural variation of spectral features and a better understanding of the causes of the 

observed shifts, combined with rapidly improving computing resources, allow us to probe 

in increasing detail the chemistry of terrestrial materials. By analysing the spectral 

features, and thus specific chemical bonds in materials, one can map where those bonds 

occur, and thus map materials. For geological purposes the identity and relative 

proportions of optically-active minerals can often be deduced from the shape of the 

reflectance curve. The data might be for a rock measured in the laboratory, in the field or 

from an aircraft, or of a whole planet from a spacecraft or Earth-based telescope.

Thermal Infrared Reflectance (TIR) spectroscopy generally refers to the 

traditional mid-infrared (MIR) spectral region, 3.0 to 30 jam. Geological applications of 

TIR spectroscopy have been conducted for decades. Early research by Lyon (1965, 1972) 

revealed differences between mineral assemblages or within-mineral groups in rocks 

from the shape and intensity of the spectra and the presence of individual minima (or 

maxima). In the laboratory, TIR is measured by shining sufficient thermal energy on a
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sample and then measuring its reflectance. Salisbury et al, (1991) presented laboratory 

spectra for minerals and rocks that demonstrate the systematic absorption troughs and 

reflection peaks resulting from vibrational motions of bonds within crystalline materials. 

The TIR spectral features of silicate minerals are related to the vibration of molecules and 

bonds such as Si-O, Al-O, H-O, and Si-Al-0 (Lyon and Bums, 1963; Vincent and Hunt, 

1968; Nash and Salisbury, 1991; Wenrich and Christensen, 1996). The strength of 

absorption/reflection features and their position vary with mineral composition and 

crystal structure and provide a possible means to determine mineral composition and rock 

type remotely. TIR hyperspectral sensors (hundreds of wavelengths), mounted in 

airplanes, have been successfully used to produce mineral maps of the earth’s surface, 

which complement other forms of geological mapping (Kahle et al, 1980; Gillespie et al, 

1984; Kahle et al, 1988; Cudahy et al, 1999). The Thermal Emission Spectrometer on 

board the Mars Global Surveyor planetary probe is currently used for investigating the 

geological nature of the surface of Mars (Christensen et al, 1998).

A potentially new application of TIR spectroscopy is in the underground mining 

environment. Numerous forms of geosensing are presently being investigated in support 

of the automation of routine mine production. One form of geosensing being considered 

in this study is the delineation of sulfide-rich ore zones from their host rock and the 

estimation of ore grade using TIR reflectance spectroscopy. There are several key 

differences, though, in the past use of this technology for mapping and that intended for 

underground work. First, the intent is to map underground rock faces, which means that 

a source of illumination must be supplied. The choice of measurement of reflected energy 

rather than emitted energy is dictated by the difficulty of detecting the emission
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properties of the rock surface in an environment which acts as a blackbody cavity at a 

temperature similar to that of the target of interest (Rivard et al, 1995). Second, the rocks 

exposed will be broken with little or no weathering. Third, the rocks are likely to be wet 

and water has a very high absorption coefficient in the infrared. Thus even a thin film of 

water would substantially reduce reflectance, which could make diagnostic absorption 

features of minerals hard to measure. Finally, the TIR spectral signature of sulfides has 

not been well documented compared to silicate minerals. There are a few spectra in the 

literature for pyrite and pyrrhotite (Ferraro, 1982; Salisbury et al, 1991), which indicate 

high reflectance in the TIR with a lack of diagnostic spectral features below 27 pm. No 

spectra for chalcopyrite have been reported.

Laboratory measurements were undertaken to address these issues using samples 

of massive and disseminated ores and barren host rocks found in and around the Sudbury 

Basin, as they would occur when freshly exposed in the underground environment. The 

intent was to test the feasibility of using TIR geosensing to distinguish ore-bearing rocks 

from their host, to estimate ore grade under dry and wet conditions, and to elaborate a 

rationale and the methods to achieve these objectives using reproducible measurements. 

The more practical aspects of feasibility will be investigated during further studies.

4.2 Materials and methods

4.2.1 Sample suite

A total of twenty-six samples were collected from eight mines around the Sudbury 

Basin in Ontario. All samples were collected underground except one barren rock 

sample, which was collected from a surface outcrop. The samples selected had 

reasonably flat, freshly-broken clean faces, large enough to make non-overlapping
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measurements, and displayed a reasonably homogeneous mineralogical texture. The 

latter point is important because the backside of each sample was cut to generate thin 

sections, from which modal point counts were extracted and then used to guide the ore 

grade estimation from the TIR spectra. Two thin sections were examined for the most 

heterogeneous samples. The samples (Table 4.1) are from two rock types, span a variety 

of grain sizes, and include massive and disseminated ores. The twenty massive and 

disseminated ore-bearing samples contain chalcopyrite (Cp), pyrrhotite (Po) and 

pentlandite (Pn) as the major ore-forming minerals. Pyrite occurs as an accessory phase.

4.2.2 Instrumentation and set-up

Analyses were carried out using a Bomem MB 102 Fourier Transform InfraRed 

(FTIR) spectrometer equipped with a Mercury/Cadmium/Telluride (MCT) detector. The 

MCT detector measured reflected thermal energy at wave numbers ranging from 450 to 

6000 cm ' 1 (1.67-22.0 pm). The light source was a globar. An infra-red camera was used 

to image the footprint of the light source (not visible to the eye) on the sample. The light 

source was normally incident to the sample surface, and the viewing angle was at 35 

degrees providing a diffuse bidirectional reflectance measurement (Hapke, 1993). 

Samples were about 50 cm away from the viewing sensor. Reflectance spectra were 

obtained from the ratio of each measurement to that of an illuminated diffuse gold panel 

of known reflectance. The data presented in this study includes two sets acquired with the 

same illumination and viewing geometry. One set is characterized by a field of view of 

approximately 15 by 15 mm for which three to six measurements per sample were 

acquired (Table 4.1). The second set is characterized by a smaller field of view of 4 by 4 

mm in which case 9 to 20 measurements were acquired. For every location measured,
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spectra were collected for dry and wet conditions to simulate extreme underground 

conditions. Surfaces were wetted using clean water to form a water film. These 

conditions were ephemeral and required immediate acquisition following wetting of the 

surface.

4.2.3 Experimental work

Signal to noise and spectral resolution

Signal to noise (S/N) was adequate, exceeding 1000 (Figure 4.1) over the entire 

spectral region detected (1.67-22.0 pm). It was estimated for a single scan while 

measuring a diffuse gold panel (Infragold™), a target of high and uniform reflectance. 

When measuring samples, 200 scans were averaged whenever possible to suppress noise, 

but a subset of the samples were measured using an average of 8  scans because of time 

constraints. This difference had little impact on the quality of the data in view of the high 

S/N of the instrument.

The MB 102 FTIR provides selectable spectral resolution. Use of coarser resolution 

results in quicker acquisition. The diffuse gold panel was measured at a resolution of 1 

cm'1, 2 cm'1, 4 cm'1, 8  cm'1, 16 cm'1, 32 cm ' 1 and 64 cm ' 1 using 200 scans to determine an 

adequate resolution for this study. A set-up at 16 cm ' 1 was selected for all sample 

measurements because it preserves known TIR spectral features.

Reproducibility

Four targets (fine-grained, coarse-grained, homogeneous and most heterogeneous) 

were used to assess measurement reproducibility (Table 4.2). Eight consecutive 

measurements were acquired for a given location on each sample within a time interval of 

eight minutes. Each measurement was an average of 200 scans at 16 cm ' 1 spectral
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resolution. The root mean square (RMS) error over the entire region is between 0.15-2.01 

% reflectance, absolute, with a mean value of 0.70 % (Figure 4.2). The error increases 

above 1.00 % beyond 4000 cm ' 1 (near-infrared region) due to the sensitivity fall off of the 

detector. These results indicate that the FTIR was very stable within the thirty-two 

minutes required for the acquisition of thirty-two measurements from four samples. 

Consequently measurement of the gold panel, required for the estimation of reflectance, 

was conducted approximately every thirty minutes.

4.3 Results and discussion

4.3.1 Spectral statistics

In some samples, the sulfides occur as blebs or aggregates, which can vary in grain 

size and which are not always uniformly distributed. Such textural and compositional 

heterogeneity is difficult to sample adequately, either for mineralogy with a few thin 

sections, or for reflectance with limited spectral measurements. The latter issue was of 

particular concern for samples sp50-59, which were examined with a small field of view 

(4x4 mm).

We conducted an expectation test (Richard, 1979) for the 1319 cm ' 1 spectral range to 

assess if a sufficient number of measurements had been acquired to adequately represent 

the overall reflectance of each sample. In this test, an adequate number of measurements 

is judged to have been taken when the average reflectance approaches a constant value as 

more measurements are included (Figures 4.3-4.6). The test was run for samples sp50-59 

and all passed the test whether wet or dry.

4.3.2 Spectral characteristics of ores and silicate-rich rocks

Figure 4.7 displays two representative spectra of typical host rocks for the ore (spl7
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norite, sp33 quartz-diorite) and two spectra of massive sulfide (total sulfide abundance > 

90%). These show spectral features between 700 -  1300 cm ' 1 and 2000 -  3300 cm ' 1 

where silicate minerals (quartz, feldspar, hornblende, biotite, etc.) play an important 

control on the overall shape and magnitude of rock reflectance spectra. The spectral 

features include pronounced reflection peaks (Restrahlen Bands), which can be 

diagnostic of specific minerals (e.g., 1180 cm ' 1 reflectance peak of quartz) (Salisbury et 

al, 1991; Salisbury, 1993). There is a shift toward smaller wave numbers (longer 

wavelengths) in the Christensen Frequency, represented by a local minima around 1300 

cm'1, and reflectance peaks as the sample composition changes from quartz-rich (felsic) 

to quartz-poor (mafic) (Vincent et al, 1975; Nash and Salisbury, 1991).

Sulfide minerals (chalcopyrite, pyrrhotite, pentlandite) do not show diagnostic 

features in these two spectral regions (Figure 4.7) and display generally flat spectra. The 

massive sulfides display distinctly higher reflectance over the entire thermal region 

(average reflectance >2 0 %) while the silicate rocks show low reflectance (average 

reflectance < 10%). The largest difference in reflectance between massive sulfides and 

silicate rich rocks is observed in the 1300 -  1400 cm ' 1 spectral region, located just 

beyond the Reststrahlen band (700-1300 c m 1) of silicate minerals. In this region the 

spectra of silicate minerals converge to a common low reflectance value related to the 

Christiansen frequency.

Solving for the abundance of sulfides would require modeling silicate-sulfide mineral 

mixtures and an explicit knowledge of the spectra for all mineral constituents of the 

rocks, a task difficult to complete in many field measurement scenarios. An important 

finding of this research is that in the 1300 -  1400 cm ' 1 region, most known silicate

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



minerals converge to a common reflectance minima of less than 1.5%, eliminating the 

requirement for the spectra of each silicate mineral constituent. Moreover, because 

silicates do not contribute significantly to reflectance in this region, it is possible to relate 

the spectra from silicate-sulfide mixtures directly to sulfide concentration. This 

information was used to develop a method for the estimation of ore abundance.

4.3.3 Identification of ore-bearing rocks

The first step in developing a method for identifying ore-bearing rocks was to address 

issues related to the geometry of the spectral measurements. Many common geological 

surfaces exhibit only quasi-Lambertian behaviour when viewed at nadir for incidence 

angles up to 40° (Mustard and Sunshine, 1999). In addition, illumination intensity is 

affected by the angle of a surface. Thus the magnitude of the reflectance spectra 

(albedo), though not the shape, will be affected by small variations in the geometry of 

observation and illumination induced by irregularities of the surface. The problem is 

especially acute when using naturally-broken rock faces. Continuum removal can be 

used to remove the albedo effect by normalizing the reflectance curves by ratioing them 

to the convex hull fitted over the spectrum (Clark and Roush, 1984). After continuum 

removal for a wide spectral range (Figure 4.8), the spectra show a systematic increase of 

the continuum removed reflectance (CRR) in the 1300-1400 cm ' 1 region with an increase 

of total sulfide content in the samples. The correction does not remove any wavelength 

dependent anisotropy resulting from small variations in the geometry of observation and 

illumination induced by irregularities of the surface. These variations are embedded in 

the uncertainty of our results. The magnitude of wavelength dependent anisotropy has 

been investigated for soils (Becker et al, 1985; Nerry et al, 1991; Narayanan et al, 1992;
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Kologo and Stoll, 1996) but has not yet been assessed for the broken surfaces of this 

study.

The presence of water on the Infragold panel introduces structure to the spectra of a 

wet surface (Figure 4.7). Similarly, when sulfide samples with flat spectra are wetted, 

new spectral features are introduced. For continuum removal over large spectral regions 

(e.g., 500-5000 cm'1), these water features significantly affect the CRR near 1300 cm'1. 

However, between 1080-1504 cm ' 1 the spectra of water on Infragold™ is featureless or 

flat, i.e. water simply makes reflectance lower. Consequently, continuum removal over 

this limited spectral range should be relatively insensitive to the presence of water and 

should facilitate the identification of ore whether the surface is dry or wet.

Using the CRR at 1319 cm ' 1 for all samples with 15x15 mm FOV, an artificial image 

was constructed to visualise the results of the spectral analysis (Figure 4.9). The massive 

sulfide samples and samples with more than approximately 2 0 % sulfides exhibit higher 

TIR reflectance at 1319 cm ' 1 compared with samples of the barren host rocks. In 

contrast, samples sp26 and spl3, which have less than 20% sulfides, are more difficult to 

separate from the host rocks (Figure 4.9b). Measurements of wet ores (>20% sulfides), 

whether massive or disseminated, are also distinctively bright. Thus it appears that the 

CRR at 1319 cm ' 1 when calculated from 1080-1504 cm ' 1 is relatively insensitive to the 

presence of liquid water.

To mask the barren samples, a threshold at 0.475 CRR was applied to Figure 4.9b, 

resulting in an image, which shows a large subset of the ore occurrences (Figure 4.9c). 

Table 4.3 documents the percentage of ore-bearing pixels successfully identified for each 

sample and shows that correctness is greater than 83% for samples exceeding 20% total
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sulfides. Correctness systematically increases with increasing sulfide concentration. This 

tool would be useful to assess the location of high sulfide wall rock (>2 0 % ore) in an 

underground environment.

4.3.4 Correlation between reflectance and sulfide concentration 

The variation in CRR value at 1319 cm ' 1 as a function of sulfide concentration 

(Figures 4.10-4.12) was examined empirically. In addition to the 20 sulfide-bearing 

samples, two data points were included, one for barren norite and one for barren quartz 

diorite. These points are the average CRR value for the three samples of each rock type. 

The points were included to add a constraint to the regression in the absence of data with 

sulfide concentrations between 0 and 7%.

The regression between the CRR value and sulfide concentration gives a coefficient 

of determination value (R2) of 0.93 for both the dry (Figure 4.10) and wet (Figure 4.11) 

measurements. In fact, the form of the dry and wet regression equations is so similar that 

it suggests that the data could be pooled with little loss in prediction accuracy or 

precision. This was achieved by averaging all wet and dry measurements for a sample, 

and then fitting a new regression through the wet-dry average data (Figure 4.12). The 

regression line for the wet-dry average also has an R2  value of 0.93. The regression line 

reaches 0% sulfide (i.e. crosses the x-axis) at a CRR value of 0.02, which is close to the 

lowest CRR value (0.06) observed from barren samples. More than 85% of the residuals 

(observed minus predicted) are within 1 0 % absolute of the true total sulfide concentration 

(Figure 4.13). Because of the shape of the equation, errors in CRR measurements would 

induce larger absolute errors at high concentrations of sulfides than low.

The total sulfide concentration for each sample was estimated from a single thin
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section. Since a thin section is unlikely to perfectly represent the face of the rock, 

especially for blebby heterogeneous disseminated sulphides, we expected that the 

relationship might appear quite noisy. In addition, grain size is variable for all minerals 

in the sample suite, and the sulfides occur in clusters, further increasing the range in 

effective grain size. Grain size is known to affect reflectance properties (Salisbury and 

Eastes, 1985). Yet the regression is excellent, suggesting that the method is robust. The 

finding that a single regression equation can be used for either wet or dry samples, further 

enhances the potential of the approach.

The relationship demonstrates the capability to estimate total sulfide concentration 

using TIR reflectance data. However, not all sulfide minerals contain metals such as 

nickel or copper, and minerals such as pyrrhotite do not contribute to the true grade of 

ore. The TIR approach described here is not capable of differentiating between types of 

sulfide minerals. In some cases, this is not problematic because the true ore minerals 

form a fairly constant proportion of the total sulfide content. In other situations, some 

method to estimate the mineral mix would be advantageous. A parallel study using 

visible and shortwave-infrared wavelengths has shown that it is possible to differentiate 

between chalcopyrite vs pentlandite and pyrrhotite if the concentration of total sulfides is 

known (Gallie et al, 2000). Thus, use of the two wavelength ranges together holds 

significant potential for development of a useful and practical ore grading system for the 

operational mining environment.

4.4 Conclusions

This study focused on the use of thermal infrared reflectance spectroscopy for the 

discrimination of sulfide-bearing rock from barren host rocks, and ore grade estimation.
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Wet and dry rock/ore samples were measured for the analysis of their spectral 

characteristics. The following are key findings for this research:

• In the region of 1319 cm'1, near the Christiansen Frequency, most known silicate 

minerals converge to a common reflectance minima (less than 1.5%) but massive and 

disseminated sulfide ores have distinctly higher reflectance.

• When sulfides are disseminated in the host rock, the average reflectance of the 

rock increases but the correlation with abundance is not systematic due to surface 

geometry effects. When this is overcome by using continuum removal, the 

correlation between the continuum removed reflectance (CRR) at 1319 cm ' 1 versus 

sulfide concentration gives an R value of 0.93 for dry and wet surfaces when 

averaged.

• More than 80% of the residuals (observed minus predicted) are within 10% total 

sulfide, absolute.

• A simple threshold applied to the CRR at 1319 cm ' 1 to separate ore-bearing 

samples from barren host rocks is very effective for sulfide concentrations exceeding 

20%.

Different ore forming minerals (chalcopyrite, pentlandite, etc.) were not identified 

using TIR reflectance spectroscopy because discriminating features are absent in the 

portion of the spectrum investigated. However, the use of shorter wavelengths, in 

combination with TIR, may hold the potential both to estimate total sulfides and to 

provide a breakdown of the mineral mix.
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Table 4.1 List of rock samples

Rock type Sample
#

Measured 
area (mm)

#
scans ' 1

#
Dry6

#
Wet6

%
Cpf

%
Pof

%
Pnf

%
Total

sulfide
Norite 3 15x15 2 0 0 3 3 — — — —

17 15x15 2 0 0 3 3 — — — —

24 15x15 2 0 0 3 3 — — — —

Quartz 6 15x15 2 0 0 3 3 — — — —

Diorite 7 15x15 2 0 0 6 6 — — — —

33 15x15 2 0 0 3 3 — — — —

DINRa 13 15x15 2 0 0 3 3 0 8 1 9
23 15x15 2 0 0 3 3 0 2 1 4 25

DIQDb 2 15x15 2 0 0 3 3 3 27 5 35
4 15x15 2 0 0 3 3 1 2 6 2 2 0

26 15x15 2 0 0 3 3 2 9 2 13
27 15x15 2 0 0 3 3 2 19 2 23
50 4x4 8 15 15 6 8 1 15
51 4x4 8 15 15 1 5 1 7
52 4x4 8 15 15 6 8 1 15
53 4x4 8 18 18 2 15 3 2 0

54 4x4 8 24 24 1 7 3 1 1

55 4x4 8 15 15 1 0 2 1 13
56 4x4 8 9 9 2 9 1 1 2

57 4x4 8 1 2 1 2 1 5 1 7
58 4x4 8 15 15 4 1 2 2 18
59 4x4 8 15 15 1 1 1 3 15

MASUC 1 15x15 2 0 0 3 3 80 1 0 5 95
8 15x15 2 0 0 4 4 4 44 7 55
9 15x15 2 0 0 3 3 27 41 2 2 90

14 15x15 2 0 0 3 3 0 6 8 2 2 90

aDisseminated in Norite; bDisseminated in Quartz Diorite; cMassive Sulfide; d # of 
individual scans for each measurement;e # of individual dry/wet measurements on each 
sample; ffrom thin section point counts where Cp = chalcopyrite, Po = pyrrhotite, and Pn 
= pentlandite.
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Table 4.2 List of samples used to assess reproducibility

Property Target type Sample #

Homogeneous InfragoldiM standard panel —

Coarse-grained Granite 18

Homogeneous Quartz Diorite 33

Heterogeneous Disseminated in Norite 23 (40% Ore blebs)
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Table 4.3 Correctly identified ore-bearing samples at 1319cm'1 using CRR values.

Sample Rock
type

Dry CRR Wet CRR AVG
CCR*

% Total 
Sulfide

Correctness**

Spl MASU 0.996 0.995 0.995 95 1 0 0 %
Sp9 MASU 0.944 0.938 0.941 90 1 0 0 %

Spl4 MASU 0.985 0.993 0.989 90 1 0 0 %
Sp8 MASU 0.980 0.987 0.984 55 1 0 0 %
Sp2 DIQD 0.744 0.792 0.769 35 1 0 0 %

Sp23 DINR 0.754 0.837 0.796 25 1 0 0 %
Sp27 DIQD 0.473 0.658 0.567 23 83%
Sp4 DIQD 0.461 0.543 0.503 2 0 50%

Sp26 DIQD 0.208 0.422 0.317 13 17%
Spl3 DINR 0.348 0.697 0.526 9 50%

*AVG CRR = Dry CRR/2.0 + Wet CRR/2.0. ** Correctness is calculated by counting the 
percentage of dry and wet measurements above the threshold CRR value.
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Figure 4.1 Averaged single scan signal-to-noise ratio (S/N) measured over five days 

using the MB 102 FTIR and a 100% reflectance Infragold panel and globar illumination.
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Figure 4.2 RMS error in % reflectance averaged for 32 measurements from four samples 

during the reproducibility test.
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Figure 4.3 Average reflectance at 1319 cm ' 1 for dry locations of sp50 (diamonds), 51 

(squares), 52 (triangles), 55 (circles), and 59 (stars) as a function of the number of 

measurements for these samples. Results show that these samples exhibit a stabilized 

average at the end of the experiment. All results shown are for samples with 

measurement areas of 4x4 mm.
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Figure 4.4 Average reflectance at 1319 cm"1 for wet locations of sp50, 51, 52, 55, and 59 

as a function of the number of measurements for a these sample. Results show that these 

samples exhibit a stabilized average at the end of the experiment. Symbols as shown on 

Figure 4.3.
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Figure 4.5 Average reflectance at 1319 cm ' 1 for dry locations of sp53 (diamonds), 54 

(squares), 56 (triangles), 57(circles), and 58(stars) as a function of the number of 

measurements for a these sample. Results show that these samples exhibit a stabilized 

average at the end of the experiment.
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Figure 4.6 Average reflectance at 1319 cm ' 1 for wet locations of sp53, 54, 56, 57, and 58 

as a function of the number of measurements for a these sample. Results show that these 

samples exhibit a stabilized average at the end of the experiment. Symbols as shown on 

Figure 4.5.
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Figure 4.7 Comparison of spectra for typical dry ore-free rocks (sp33, spl7) and massive 

sulfides (spl, spl4). The spectra labeled "wet panel" was acquired for the wetted 

Infragold panel. (By definition, the dry infragold panel has a perfectly flat spectra with a 

reflectance of 1 0 0 %.)
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Figure 4.8 Continuum removed reflectance spectra of single measurements of dry, ore- 

bearing samples. The total sulfide % is shown in parenthesis for each sample. The 

continuum was calculated for the 500-4000 cm ' 1 spectral range.
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Figure 4.9 (a) Schematic representation of the artificial images displayed in b and c. Each 

square represents one spectral measurement, each column of squares includes all spectral 

measurements for one sample, and each pattern groups spectra from one rock type. The 

lighter coloured squares at the top of each column correspond to measurements from dry 

surfaces, while darker shades represent measurements from wet surfaces. There are no

spectra in areas occupied by black squares; (b) continuum removed reflectance at

1 1 1319cm" calculated from 1080-1504 cm" ; (c) image shown in b with a threshold

corresponding to >2 0 % total sulfide concentration.
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Figure 4.10 Regression between total sulfide and CRR values at 1319 cm ' 1 for the 

average of dry locations for a given sample. Continuum removal was carried out from 

1080-1504 cm'1. Total sulfide concentration was estimated via thin section point 

counting.
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Figure 4.11 Regression between total sulfide and CRR values at 1319 cm ' 1 for the 

average of wet locations for a given sample. See Figure 4.10 for additional details.
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Figure 4.12. Regression between total sulfide and average CRR values at 1319 cm'1. The 

mean CRR values were calculated from all available dry and wet measurements for a 

given sample. See Figure 4.10 for additional details.
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Figure 4.13 Observed minus predicted sulfide concentration for each ore bearing sample, 

the average norite, and the average quartz diorite. Positive values indicate an 

underprediction. Negative values indicate an overprediction. Predicted values were 

calculated using the regressions shown on Figure 4.10-4.12.
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CHAPTER 5

TOTAL SULFIDE ESTIMATION OF CORES AND CUT ROCK SURFACES BY 

THERMAL INFRARED REFLECTANCE

5.1 Introduction

The identification of ore zones and estimation of ore content in rock cores is a labor- 

intensive routine for the mining industry. This process of core logging is generally 

conducted visually by geologists. Kruse (1996) used hyperspectral technologies with 

split cores to identify different silicate alteration minerals from near-infrared spectra, 

giving encouraging results towards the automation of core logging. No research has been 

reported on the detection of sulfide minerals in cores using spectroscopy. The detection 

of sulfide minerals is directly related to the extraction of many base metals such as Ni 

(nickel), Cu (copper), and Au (Gold). Thus, detecting the presence of sulfide minerals 

and quantitatively grading the sulfide ore content in cores is of particular importance for 

the mining industry. This study targets the delineation of sulfide-rich ore zones from 

their host rock and the direct estimation of sulfide ore grade on cut rock faces (e.g., 

cores) using Thermal Infrared Reflectance (TIR) spectroscopy.

Thermal Infrared Reflectance spectroscopy over the 3.0 to 30jam region has been 

conducted for decades to identify the compositional variations within different rocks 

(Lyon, 1965, 1972; Walter et al, 1989; Nash et al, 1991). Hundreds of typical TIR 

spectra of rocks and rock forming minerals have been collected in ideal laboratory 

conditions by Hunt (1974, 1976) and Salisbury (1993), providing a wealth of spectral 

references of polished rocks and rock powders of different particle size. There are a few
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sulfide TIR spectra in the literature for pyrite, chalcopyrite and pyrrhotite (Farmer, 1974; 

Ferraro, 1982; Salisbury et al, 1991; Rivard et al, 2001), which indicate high reflectance 

in the TIR and a lack of diagnostic spectral features below 27pm. Recent research 

(Rivard et al, 2001) on naturally broken rock faces demonstrated that 1319cm'1 (7.58pm) 

is a sensitive spectral position for identifying sulfide ores and the continuum removed 

reflectance (over 500 to 5000 cm'1) at 1319 cm ' 1 is exponentially related to ore grade. 

Cut rock surfaces differ from that of broken rock surfaces most notably because of the 

reduced surface micro-topography that changes the local viewing geometry of spectral 

measurements and thus affects the intensity of energy received (Hapke, 1981, 1993; 

Mustard et al, 1989). Published work (Rivard et al, 2001) shows that sulfide ore 

detection using continuum removed spectra (Clark et al, 1984) minimizes the micro- 

topographic variations on broken rock surfaces. The removal of a continuum may not be 

necessary for spectral readings from core and cut rocks and would reduce computational 

requirements for a real-time core-logging scenario. This indicates that sulfide ore 

detection from TIR spectroscopy must be re-assessed if it is to be applied to cut rock 

faces. In addition, ore grading of cores requires quantitative models adaptable for 

different drilling scenarios (e.g., on cores with different diameters). This requirement 

points to the need to easily calibrate the model relating TIR signatures and ore grades.

This research was conducted with a view towards the future automation of 

underground mine operations, especially towards core logging and sulfide ore grading, 

using TIR hyperspectral devices. The immediate objective was to assess whether sulfide- 

bearing cores and cut rocks could be discriminated from barren cores and whether their 

ore grade (%) could be estimated using TIR spectral information. A suite of samples
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(cores and cut rocks) was collected from mines of the Sudbury basin, Ontario, Canada. 

Reflectance properties of sulfide ores in the thermal region and the nature of the 

quantitative relationship between TIR and total sulfide content (TSC) was explored for 

cut rock surfaces. Multiple samples of various rock types and different sulfide ore grades 

were used to validate the quantitative models and address issues of statistical confidence.

5.2 Materials and methods

5.2.1 Sample description

A total of 31 samples (Table 5.1), including 17 core sections and 14 rocks, were 

collected from mines of the Sudbury basin. Core sections (with various diameters larger 

than 30 mm) cover the majority of the local rock types, including a structurally deformed 

breccia, varying granites, granite gneiss, meta sandstone, quartz diorite, amphibolite, 

olivine diabase, metagabbro and gabbro. The rock samples are all ore bearing rocks with 

different ore grades. Sulfide ores are disseminated in 12 quartz diorites (DIQD) and 1 

norite (DINR). A sample of massive sulfide (MASU) is also included in the sample 

suite. Sample sp# 8  was used for quantitative modeling of the TIR vs. TSC relation and all 

other samples were used for model validation. Sp# 8  is a quartz diorite cut on both sides 

to form a rock slab approximately 60 mm x 95 mm x 10 mm in physical dimensions. 

Sulfide minerals in sp# 8  form patches of about 10 mm x 10 mm in size. Sulfides are also 

observed (less than 5% but visually noticeable) in the silicate matrix (dominated by 

hornblende, plagioclase, quartz), which is fined grained and homogeneous.

For each sample the major ore-forming minerals were identified and estimated by 

point counting of thin sections. The TSC (%) of each sample was estimated by summing 

the modal abundance of chalcopyrite (CuFeS2), pyrrhotite (Fei„xS) and pentlandite
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((Fe,Ni)9 Sg). The TSC of the sample suite spans from 0% (barren host rock) to 95% 

(massive sulfide).

5.2.2 Laboratory setup and experiment

The laboratory environment was set up with an MB 102 Fourier transform 

interferometer (FTIR) using a Mercury/Cadmium/Telluride (MCT) detector to make 

diffuse bidirectional reflectance measurements (Hapke, 1993). The detector perceives the 

reflected thermal energy over the 500 cm ' 1 to 6000 cm"1 (1.67 um-20.00 um) range. An 

Infra-gold™ panel was used to normalize the detected energy to thermal infrared 

reflectance. The spectra recorded for each surface location consist of eight scans at 16 

cm ' 1 spectral resolution averaged to minimize noise. For cut rock samples, the detector 

was aligned at a 35 degrees phase angle with nadir illumination from an internal thermal 

light source. The instrumental field of view (FOV) is adjustable and was setup to 5 mm x 

5 mm. Setup for cores was a little different with a 4 mm x 4 mm FOV to minimize the 

influence of surface curvature. In addition the incidence angle of illumination and 

viewing angle of detection were equal to 17.5 degrees (near specular mode) to increase 

the reflected energy and compensate for the smaller FOV. The cores were aligned parallel 

to the principal plane. An infrared video camera was mounted to visualize the 

illuminated area and guide the selection of the measured locations. A flexible platform 

was used to hold and transpose both core and rock samples to preserve the viewing 

geometry for all measurements. The positioning error for a sample was less than 0.5 mm. 

The signal to noise ratio (S/N) of the instrument, which was tested each day, was above 

1000 within the 500 cm"1 to 5000 cm ' 1 thermal infrared region. A previous reproducibility 

test (Rivard et al, 2001) has shown the instrument to be stable for at least 32 minutes. The
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above setup (16 cm ' 1 resolution and 8  scans) allows the completion of measurements for 

each sample (average 30 spots on each sample) within 30 minutes.

5.2.3 Sampling strategy and data arrangement

The sampling strategy differed for the rock slab (sp#8 ), cores (sp#76 to sp#92) and 

other cut rocks (sp#l, sp#4, sp#23, sp#50 to sp#59). The rock slab was scanned 

intensively following a regular grid, thus sampling the local sulfide abundance variations 

and was used to acquire a dense data set to model the link between TIR and TSC. Core 

samples were measured along the core length to simulate an operational core logging 

process while minimizing curvature of the core faces in the FOV. For cut rocks other than 

sp# 8  multiple representative regions were measured to sample the overall heterogeneity. 

The sampling strategy for the cores and cut rocks focused on making measurements on 

spots that best represent the overall sample surface because both cores and cut rocks were 

used in this research to test the sulfide prediction models derived from the rock slab 

(sp#8 ) using ore grades estimated from spectra and from thin section modal counts.

Rock slab sp# 8  is a quartz diorite with a sulfide content of 55% based on the analysis 

of a thin section. Measurement of this sample was conducted on a regular grid (Figure 

5.1a, one spot measured in each 5 mm x 5 mm grid cell). The sulfide content within each 

grid cells was estimated by point counting from a high quality digital photograph of the 

sample. Each cell and corresponding spectrum include an array of 16 by 16 pixels in the 

digital photo from which the sulfide point count was conducted.

For each core section, spectra were collected from 21 to 43 adjacent spots along the 

core length (Figure 5.2), depending on the physical length of the core. This suite of 

samples includes different silicate host rocks and was used to explore the spectral
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signatures of samples free of ore and validate the correctness of sulfide grade estimation 

for the 0% TSC scenario.

The 13 cut rock samples are all ore bearing with at least one side cut. For each 

sample, 12 to 25 spots were measured within rectangular grids (Figure 5.3) over multiple 

regions of the cut surfaces in an attempt to sample the local variations in ore content. This 

suite of samples displays TSC contents varying from 7% to 95% and was used to validate 

the correctness of the sulfide estimation model.

5.3 Data modeling for the rock slab

More than 200 spectra were collected for the slab (sp#8 ) surface (Figure 5.1a). The 

spectra vary significantly from spot to spot because some of the grid positions were 

almost fully occupied by sulfide while some were mainly filled with the silicate-rich 

matrix. Spectra from grid cells at and near the slab edge were rejected to avoid edge 

effects. A subset of 144 spots (8x18  grids that are equivalent to a 40 mm x 90 mm area) 

within a rectangular region was selected for data modeling. Because the thin section 

modal analysis only provides an overall TSC estimation for this sample, a high-resolution 

digital photo (300dpi) was used to provide an estimate of the sulfide content at each spot. 

The digital photo was taken when the rock slab was wet to enhance the visible contrast 

between sulfides (shown as bright colors in Figure 5.1a) and silicate-rich matrix (shown 

as dark black in Figure 5.1a). The photo was co-registered to the spectral cube and re­

sampled to the same spatial coverage (16 by 16 pixels for each spot). The co-registration 

error between the digital photo and the data cube is less than 3 pixels (0.93 mm).

5.3.1 Calculation of local TSC (%) from the digital photo

On the washed cut surface of slab sp#8 , sulfide minerals are light bronze or bright
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yellow in color while the silicate matrix is black. To highlight this difference, a 

supervised maximum likelihood classification (Addington, 1975) was performed on the 

digital photo based on two training classes: sulfide rich clusters and the silicate matrix. 

The classification results (Figure 5.1b) clearly separate the slab surface into sulfide pixels 

and matrix pixels. The classification statistics (Table 5.2) show that 34917 pixels 

(47.90%) out of 72898 (total pixels) are sulfide and 37981 pixels (52.10%) are matrix. 

The thin section analysis shows that 55% sulfide minerals are present in this sample. The 

7.10% difference between the thin section result and the classification result of the slab 

does not necessarily indicate that the classification result is biased because the thin 

section, which was cut off from a portion of the sample, can not cover the same area as 

the digital photo. The classification result from the digital photo is thought to be more 

reliable than that of the thin section because the photo covers a large part of the sample.

The abundance of sulfide within each TIR measurement grid cell was calculated 

using the classification results of the photo (Figure 5.1b), and used as the “true” local 

TSC percentage for TSC-TIR modeling. Previous research (Bartholomew et al, 1989) 

suggests that the detected radiance within 7-13 um (770-1430 cm'1) is dominated by 

surface reflections as opposed to volume scattering. This suggests that the estimated 

abundance of sulfide and silicate matrix for each grid cell will represent the major 

contributors of spectral information measured for that cell.

5.3.2 Relationship between TSC and TIR signatures

As discussed in a previous paper (Rivard et al, 2001) the continuum removed thermal 

infrared reflectance at 1319 cm ' 1 is sensitive to the concentrations of sulfides in naturally 

broken rocks. In this study the relationship between sulfide content and TIR was
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examined without removal of a continuum. Four spectra from different locations on slab 

sp# 8  are displayed on Figure 5.4. These indicate that an increase in TSC increases the 

reflectance near 1319 cm ' 1 while silicate features from 700 cm ' 1 to 1300 cm ' 1 are 

depressed. The spot with 97% TSC (the top spectrum on Figure 5. 4) shows greater than 

31.59% reflectance near 1319 cm'1. Spectra of spots with no sulfide minerals tend to 

converge to a reflectance value below 2% near 1319 cm ' 1 and display much stronger 

spectral features from 700 cm'1-1300 c m 1. This observation is consistent with previous 

hyperspectral research on sulfides (Rivard et al, 2001) showing that sulfide minerals have 

higher reflectance in the thermal band than silicates and are almost featureless within the 

700 cm^-MOO cm ' 1 region. Spots filled with both sulfides and silicate minerals create 

spectral mixtures whose spectra have moderate contrast. Two spectral indices were used 

for modeling sulfide concentrations. One is the absolute reflectance at 1319 cm ' 1 

(TIR.1 3I9 ). The other is a composite band ratio (TIRmtio), which is defined as 

TIRn TIRTIRratio = 0.5 *(— —̂ - + ---- ti^-) that was used to explore the possibility of improving the
77/?i3i9 TIRm9

precision of ore estimation by including multiple bands. Published spectra (Salisbury et 

al, 1991) of rock forming minerals indicate that the strongest thermal infrared reflectance 

peaks of mafic silicate minerals occur near smaller wave number regions than that of 

felsic silicate minerals. The first ratio term (reflectance at 995 cm ' 1 over 1319 cm'1) in the 

above equation increases with the abundance of mafic silicate minerals (augite, 

hornblende, biotite) and the second term (reflectance at 1180 cm ' 1 over 1319 cm'1) with 

the abundance of felsic silicate minerals (quartz, orthoclase, microcline). When the 

sulfide proportion increases in a given spot, the TlR mti0 will decrease and approach 1 .0 . 

TIRratio tends to increase when the relative proportion of silicate minerals increases. The
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above two indices were calculated for each spot on the rock slab. A visual assessment 

suggests that the distribution of these two indices (Figure 5.5b, 5.5c) is clearly correlated 

to the distribution of local TSC (Figure 5.5a). A statistical analysis shows that TSC is 

linearly correlated to TIR1 3 1 9  (Figure 5.6a) and exponentially correlated to TIRratio (Figure 

5.6b). R 2  reaches 0.90 and 0.87 respectively and both estimations are considered non­

biased with normally distributed residuals (Figure 5.7a, 5.7b). Cross-validation 

(Herzberg, 1969) shows that 83% (for TIR1 3 1 9 ) and 82% (for TIRmtio) of the 144 spots on 

rock sp# 8  are properly estimated with less than 1 0 % absolute errors (or residuals) 

(calculated from counted TSC% minus TSC% predicted by models). The regression line 

for the TSC vs. TIR1 3 1 9  relation (Figure 5.6a) predicts a reflectance of 1.05% for a TSC of 

0 % which is consistent with the published reflectance of silicate rocks near the 

Christensen frequency (Christensen, 1992). The exponential estimation curve on Figure 

5.6b tends to lose sensitivity when TSC is below 10% largely due to the influence of 

various silicate minerals whose spectral contribution to the mixed spots can not be fully 

represented by the above band ratio. However a benefit of the spectral ratio is that it is 

insensitive to minor changes of spectral amplitude caused by uncontrolled factors, thus it 

was integrated with TIR1 3 1 9  to form a combined index (77R,n* x), which is represented as, 

SCP %= 0.9l+2.05*TIR]3i9 +5.66*EXP(4.30-2.43*TIRmtio)

The parameters above were estimated from the 144 spots using a non-linear parameter 

estimation (Andrew, 1999). Cross validation indicates that this combined index gives a 

better TSC prediction with R2=0.91. 87% of the 144 spots were estimated with less than 

1 0 % absolute error and the estimation was robust with normally distributed residuals 

(Figure 5.7c).
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The basic finding outlined in the above empirical modeling is that the total sulfide 

abundance of cut rock surfaces can be linearly related to thermal infrared reflectance at 

1319 cm ' 1 and exponentially related to the average TIR ratio of 995 cm ' 1 over 1319 cm ' 1 

and 1180 cm ' 1 over 1319 cm'1. However, these models were based on 144 measurements 

on one rock slab (sp#8 ), a quartz diorite with 4% chalcopyrite, 7% pyrrhotite and 44% 

pentlandite. Below, the applicability of these models is evaluated on more rock types 

with a variety of sulfide contents.

5.4 Model validation on cores and cut rock faces

The 17 cores and 13 cut rocks (excluding sp#8 ) listed in Table 5.1 were used for 

model validation. At least one thin section was analyzed per sample to determine the total 

sulfide content (chalcopyrite + pyrrhotite + pentlandite). When multiple thin sections 

were analyzed an average total sulfide content was calculated. Thin section observations 

shows that the type of sulfide minerals and their contents vary amongst samples. For 

example, sample sp#l (massive sulfide) is rich in chalcopyrite (80% modal) while sample 

sp#23 (norite) is free of chalcopyrite. To validate the models derived from sp# 8  using 

TIR data from different rock types with varying sulfide minerals, two assumptions were 

made: First the curvature of core faces does not introduce a significant TIR bias. The 

smallest core diameter is 30mm while the field of view is 4mm x 4mm; consequently, the 

maximum curvature within a FOV is 1.9 degrees. The total effect of curvature within a 

FOV is an integration (from 0 degrees to 1.9 degrees) of effects from local facets. The 

curvature effect was assumed negligible during the model validation and cut rocks and 

cores were treated as one sample suite. Secondly it is assumed that ore grade determined 

from thin section analysis and that observed at the sample surface are equivalent. This
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assumption is valid for homogeneous samples, for which the percentage of sulfides on the 

rock surface is equivalent to the volume abundance of sulfides. As seen below the ore 

grades estimated from the different models was compared to ore grades estimated from 

thin sections (30 mm x 50 mm in size) taken as the “ground truth”. Whether or not a 

sample is considered “homogenous” is dependant on the measurement or view scale. For 

multiple measurements with a footprint less than 5 mm x 5 mm, this assumption was 

evaluated through the following spectral statistics.

5.4.1 Spectral statistics

Depending on the physical dimensions of the samples, 12 to 45 spots were measured. 

In some samples, sulfides occur as blebs or aggregates, which can vary in size and create 

local textural and compositional heterogeneities at a scale less than 5 mm, though the 

sample was visually assessed as homogeneous and included in the test. To appraise if the 

number of measurements conducted on each sample is sufficient to statistically represent 

the sample, an expectation test (Richard, 1979) was conducted using the measured 

reflectance near 1319 cm'1. In this test, an adequate number of measurements is judged to 

have been taken when the average reflectance approaches a constant value as additional 

measurements are included. Figure 5.8 shows the results of an expectation test for four 

samples (sp#23, sp#57, sp#84, sp#8 6 ), for which the number of measurements conducted 

appears sufficient to represent the core section or rock. Additional measurements are not 

required for samples like these. Figure 5.8 also illustrates one sample (sp#l), which was 

not considered to have passed the test because a stabilized plateau for the average 

reflectance was not observed. An expectation test was conducted for all samples and 26 

samples passed the test while 4 samples listed in Table 5.3 did not. All host rock samples
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passed the test. The average reflectance near 1319 cm ' 1 of sulfide free samples (e.g., 

sp#84, sp# 8 6  displayed on Figure 5.8) displays a stable value between 0.40% and 1.50%, 

close to the predicted value (1.05%) derived from the TIR1 3 1 9  model.

A stable plateau of average reflectance could not be confidently determined for four 

samples (#spl, #sp52, #sp81, and #sp83) indicating that current numbers of 

measurements are not sufficient to represent the local compositional or textural variations 

for these samples. Sp#l is a massive sulfide with 95% sulfide ore. The other three are 

quartz diorites with disseminated sulfides at lower concentrations (sp#52: 8 %, 

sp#83:15% and sp#81:15%). Due to limitation of physical dimensions of these samples, 

more measurements could not be conducted. However, the trends of the spectral 

averages of these samples are clearly identifiable indicating that they are approaching a 

stable value. This observation suggests that the ore grade for these samples will be either 

overestimated or underestimated in a predictable way if the current spectral average is 

used for the sulfide prediction models. During the model validation described in the next 

section, average spectra, which represent their expectation, were used for all 26 samples 

that passed the expectation test. For the 4 suspicious samples, because no clear 

expectation plateau can be observed, a virtual expectation was set at the mathematical 

average of the points on the expectation curve for each sample. For sp#l, the expected 

average reflectance at 1319 cm ' 1 was set as 32.17%. The expectation test helps to 

determine how representative the TIR measurements are. The ore prediction models were 

evaluated both with and without these 4 samples. The assessment without these samples 

helped to define the estimation using ideal measurements. Including these 4 samples in 

the assessment helps to understand the behaviors of models under more practical and less
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rigid conditions when the representativeness of measurements is unknown.

5.4.2 Qualitative assessment of models

During the validation, sulfide estimation using TIR 1 3 1 9  and TIRindex, in which TIRrati0  

is integrated, was assessed (Table 5.4). The results were compared with the sulfide 

abundance estimated from thin section analysis. The criteria used to evaluate the 

predictions are,

(a) Absolute error (e) (Table 5.4), which is defined as the observed total sulfide (%, 

from thin section analysis) minus the predicted TSC (%, from each model), e 

outlines the envelope of maximum absolute prediction error. For all samples, the 

first three maximum error values are -11.64%(sp#83), -8.38%(sp#81) and - 

7.50%(sp#l). All are for suspicious samples that did not pass the expectation test 

indicating that the spectral measurements are not fully representative of the whole 

sample. In all cases the predictions tend to overestimate the TSC as expected 

(Table 5.3) based on the expectation test. The predictions for all remaining 

samples show absolute errors less than 7.22% (Table 5.4) and less than 3.67% for 

the ore free samples.

(b) Mean (m) of absolute error (e) (Table 5.5), which is calculated from the statistical 

distribution of the absolute errors, m should be zero for a non-biased estimation. 

The maximum m value (-2.65% absolute) occurred while using the TIRindex on ore 

free samples indicating an overestimation.

(c) Standard deviation of absolute error (stdev), which delineates the variation of 

absolute errors within a stated confidence level, stdev is less than 4.86% for ore 

containing samples and less than 0.91% for sulfide free samples (Table 5.5).
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Excluding the suspicious samples from the ore containing samples improves the 

stdev of estimation error for the TIRindex indicating that it is less robust than 

TIR] 3 1 9  at low ore grades that characterize the suspicious samples. Stdev is higher 

on ore bearing samples than on ore free samples for both estimators even when 

suspicious samples are excluded. This is most probably due to errors during thin 

section analysis because the TSC can be confidently set to 0% for sulfide free 

samples while the TSC of ore bearing samples are subject to counting errors using 

thin sections, particularly for samples of low ore content and for samples with 

non-uniformly distributed sulfides.

(d) The correlation coefficient R of observed ore grade (from thin section) vs. 

predicted ore grade (from models) (Table 5.5) and the slope (k) of the regression 

line (Figure 5.9). These two parameters are indicative of the degree of the above 

correlation and the degree of systematic estimation bias over the entire ore grade 

range (0% to 100%). All 30 sample points are located near the £=1.0 line and 

both models have R2 values bigger than 0.96 indicating that the predicted TSC% 

represents well the true TSC%. The k values (1.07 and 1.09) indicate a small 

overestimation. Excluding the 4 suspicious samples does not significantly 

improve k and R2  indicating that the current number of measurements for these 

samples, though not considered sufficient based on the expectation test, did not 

introduce a bias for ore estimation over the entire ore grade range. This suggests 

that their current average spectra are approaching their normal expectations.

The 14 sulfide free rocks have an average reflectance at 1319 cm ' 1 of 0.85% 

(maximum 1.35% and minimum 0.47%). On a scatter plot of predicted versus observed
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total sulfide (Figure 5.9), ore free silicate rocks cluster near the (0,0) point and are 

distinct from sulfide bearing rocks. The lowest ore grade for the ore bearing samples is 

7% (sp#51). To setup the statistical confidence and theoretical threshold for 

discriminating ore free hosts from ore bearing rocks using the existing 30 validation 

samples, 14 ore free samples and 16 ore bearing samples were considered as two separate 

categories. When the statistical confidence level (Yamane, 1967) was set at 70% 

(1.03 * stdev) and 90% (1.64 * stdev) for ideal non-biased estimations, the probability 

distribution of ore prediction errors within each group will be 15% to 85% at 70% 

confidence and 5% to 95% at 90% confidence (Figure 5.10). Table 5.6 lists the absolute 

ore grade errors for the two categories if predicted at 70% and 90% confidence using the 

the TIR.1 3 1 9  and TIRindex models. As indicated by Figure 5.10, the mean and deviation of 

the errors are different for the two classes. Discriminant analysis (Klecka, 1980) suggests 

that when the true ore grade is higher that 4.82% (threshold in Table 5.6) it can be 

estimated using TIR1 3 1 9  with an absolute error of ± 3.89% at a 70% confidence level. At a 

90% confidence level, ore grade (when higher than 7.68%) can be predicted with an 

absolute error of ±6.19% using TIR1 3 1 9 . When the true ore grade in a specific sample is 

lower than the thresholds listed in Table 5.6, there is a higher possibility of 

misidentifying the sample as ore free. TIRindex does not perform as well as TIR1 3 1 9  under 

this ideal assumption (estimation error is assumed to be normally distributed with zero 

mean) but the difference is not significant. In a practical scenario, the mean of the 

estimation error may not be zero (as in Table 5.5), indicating that there is a necessity for 

calibrating the models to remove a systematic estimation bias, which is well represented 

by the mean of estimation errors.
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The validation is subject to estimation errors embedded in thin section data, which 

was collected by visual point counting on thin sections cut from one or two small 

portions of the core or rock samples. How well the thin sections represent the entire cores 

or rocks is questionable and difficult to evaluate.

5.5 Discussion on practical issues

The successful application of these models to cores requires further examination of 

factors that will possibly affect sulfide estimation results. Factors such as the curvature of 

the core surface and the dimensions of the instrument FOV have been identified and will 

be discussed in the appendix or investigated in later studies. Two issues, namely the 

calibration of models and the effect of the continuum removal on the models, will be 

explored in this section. The calibration of models was explored to provide further 

guidance towards the development of practical applications. The removal of the 

continuum is a common spectral processing method and the discussion will focus on its 

influence on the prediction of TSC% illustrating the necessity of using raw thermal 

infrared reflectance spectra rather than continuum removed spectra for ore grading on 

cores and cut rocks.

5.5.1 Effect of spectral continuum removal

Raw reflectance spectra rather than continuum removed spectra were used to predict 

total TSC in this study. The continuum is the overall spectral amplitude or "background" 

onto which mineral spectral features are superimposed. The continuum is subject to 

changes in the geometry of measurements and thus its removal can minimize variations 

in the geometry of the measured surface (e.g., micro-topography). The removal of the 

continuum has been extensively used (Kruse et al, 1985, 1993; Clark et al, 1984, 1987)
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as a useful tool to highlight spectral features, particularly to delineate local minima and 

maxima of spectra, which are usually indicative of specific mineralogical information. 

However, the removal of a sloping continuum is known to cause apparent shifts (Clark et 

al, 1987) in the position of reflectance minima such as that at 1319 cm'1, which in this 

case is a key parameter for the estimation of TSC. TIR spectra of silicate rocks converge 

to a local minima near 1319cm'1 and the local continuum of rock spectra is tilted. A test 

was conducted using the 144 spectra from sp# 8  by removing the spectral continuum over 

two spectral ranges. The relationship between “true” TSC and the continuum removed 

reflectance at 1319 cm ' 1 (Figure 5.11) is non-linear as opposed to that using the original 

reflectance which is linear. The degree of non-linearity is dependant on the spectral 

range over which the spectral continuum was removed. This effect will propagate into 

the TIRmtio model, in which the TIR1319 component is embedded. Another reason for using 

raw reflectance for ore grading is that the spectral continuum not only changes over 

different spectral regions, but also varies for different host rock types, which may have 

various spectral tilting or envelopes. The dependency on host rock type introduces 

uncertainty for the estimation of sulfides from continuum removed spectra. Therefore, it 

is recommended that raw reflectance be used to predict total sulfide content for cut rocks 

and cores when the effect from curvature or local surface topography is not significant.

5.5.2 Model calibration

In operational scenarios, the instrument setup and viewing geometry may differ from 

that of the laboratory experiment in this study. In addition the roughness of the core 

surface may also be different depending on the drilling process. These two factors will 

affect the reflectance measurements in the thermal region. For example, the TIR1 3 1 9
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model estimates ore grade from the reflectance at 1319 cm’ 1 and the reflectance is 

dependant on the viewing geometry and surface scattering properties at a specific setup 

(Sandmeier et al, 1998). The calibration of models allows the prediction models to be 

adapted to a given measurement scenario by optimizing the model parameters and 

minimizing systematic errors while preserving the basic TIR-TSC relation. By 

measuring a few samples of known ore grades, the parameters for model TIR1 3 1 9  and 

TIRindex can be estimated for any setup. A minimum of two samples is required for the 

model TlR1 3 i9  though additional calibration samples would improve the calibration. A 

calibration should involve at least one sample with low ore grade and one with high ore 

grade to avoid local estimation biases and a poor calibration beyond the ore grade range 

displayed by the calibration samples. A minimum of three samples is required for 

TIRindex calibration due to the exponential term.

Though none of the two models showed a significant advantage over the other during 

the validation process, each has its own merits in terms of possible application scenarios. 

TIRindex requires one more sample for calibration than TIR1 3 1 9  does, but due to the 

integration of the band ratio component, TIRindex is less sensitive to minor spectral 

amplitude variations caused by uncontrolled factors between calibrations. TIR1 3 1 9  would 

be well suited for real-time sulfide estimation and can be easily calibrated. Because it 

requires only one TIR band, a customized instrument design using TIR1 3 1 9  to estimate ore 

grade would be less costly than that using TIRindex, which requires three thermal bands.

5.6 Conclusions

This study explored the possibility of using Thermal Infrared Reflectance to delineate 

sulfide ore zones and estimate ore content in cut rock samples. Experiments were
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conducted in the laboratory on cut rock faces and rock cores targeted for core logging. An 

empirical relationship between the total sulfide content (chalcopyrite + pyrrhotite + 

pentlandite) and the thermal infrared reflectance was established. The major conclusions 

from this research are,

(1) The thermal infrared reflectance at 1319 cm ' 1 of sulfide disseminated silicate 

rock is linearly related to the total sulfide content of the samples. The average 

of the spectral ratios of 995 cm ' 1 over 1319 cm ' 1 and 1180 cm ' 1 over 1319 cm ' 1 

is exponentially related to the total sulfide content of the samples. The 

correlation coefficient exceeds 0.9 for both relationships.

(2) The total sulfide content of the samples can be estimated using spectral indices 

(TIRj3 i9  or TIRindex) with a maximum mean error of 2.65% and standard 

deviation of 4.86% with respect to the ore grade calculated from the analysis 

of thin sections.

(3) Sulfide bearing samples can be confidently (greater than 90% correctness) 

separated from host rocks when the total sulfide content exceeds 7.68% and 

that their sulfide content can be predicted with a standard deviation of 6.19% 

from the true content if the mean error is removed using a calibration.

(4) For operational core logging scenarios, a minimum of two and three samples 

are required respectively for the calibration of the TIR1 3 1 9  and TIR^dex models.

(5) The removal of the continuum from spectra renders the TSC-TIR relationship 

non-linear. The use of raw TIR data is recommended for total sulfide 

estimation on cut rocks and cores.

The “true” sulfide content of samples was calculated from thin section analysis, in
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which a subjective bias exists in the identification of mineral and in the location of the 

thin section on the sample. More rigorous ore grade measurement methods should be 

used to calibrate the models in operational scenarios to avoid systematic prediction 

biases.
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Table 5.1 List of core and cut rock samples

Sample
type Rock type Sample ID FOV

(mm)
#

scans'*
#

spots*
%

Cpf
%

Pof
%

Pnf
%

Total sulfide
Breccia 90 4x4 8 42 —

Granite 76
84

4x4
4x4

8

8

36
38

—

Granite gneiss 91
92

4x4
4x4

8

8

39
38

—

Metasediment 8 6 4x4 8 34 —

Quartz diorite 87
80

4x4
4x4

8

8

2 2

36
—

Core 79 4x4 8 43 —
Amphibolite 78 4x4 8 32 —

Olivine 77 4x4 8 40 —
diabase

Metagabbro 85 4x4 8 36 —

Gabbro 8 8

89
4x4
4x4

8

8

40
40

—

DIQDa 82 4x4 8 30 6 8 1 15
81 4x4 8 40 3 1 0 2 15
83 4x4 8 2 1 1 1 0 1 1 2

DIQD 51 5x5 8 33 1 5 1 7
57 5x5 8 36 1 5 1 7
52 5x5 8 45 3 4 1 8

54 5x5 8 40 1 7 3 1 1

56 5x5 8 23 2 9 1 1 2

55 5x5 8 36 1 0 2 1 13

Rock 59 5x5 8 34 1 1 1 3 15
50 5x5 8 32 6 8 1 15
58 5x5 8 40 4 1 2 2 18
53 5x5 8 40 2 15 3 2 0

4 5x5 8 19 1 2 6 2 2 0

DINRb 23 5x5 8 35 0 2 1 4 25
MASUC 1 5x5 8 1 2 80 1 0 5 95

Slab DIQD 8 5x5 8 144 4 7 44 55

a Disseminated in Quartz Diorite; b Disseminated in Norite;c Massive Sulfide d # of 
co-add scans for each measurement;e # of measurements on each sample; f from 
thin section point counts where Cp = chalcopyrite, Po = pyrrhotite, and Pn = 
pentlandite.
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Table 5.2 Classification results of the digital photo for rock slab sp#8

Digital Number # pixels Area % Area % 
Accumulated

# pixels 
Accumulated

0  (matrix) 37981 52.10% 52.10% 37981
1 (sulfide) 34917 47.90% 1 0 0 .0 0 % 72898
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Table 5.3 Suspicious samples resulting from the expectation test and the expected ore 

prediction bias

Cut rocks Cores
Sample ID Sp#52 Sp#i Sp#81 Sp#83

Effect(a) + (b) + +

(a) Predicted effect on the estimation of total sulfide using the current and insufficient 
number of spectra. (b) The average of all available measurements tends to 
overestimate (+) or underestimate (-) the true sulfide content.
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Table 5.4 TSC predicted from TIR1 3 1 9  and TIRinciex

Sample
#

TSC% from 
thin section

Predicted TSC% % e
T IR m 9 TIRindex TIR1319 TIRindex

90 0 . 0 0 0.18 3.17 -0.18 -3.17
76 0 . 0 0 -1.87 1.87 1.87 -1.87
84 0 . 0 0 -1.59 2.05 1.59 -2.05
91 0 . 0 0 - 1 . 2 0 2.29 1 . 2 -2.29
92 0 . 0 0 -1.44 2.14 1.44 -2.14
8 6 0 . 0 0 0.45 3.35 -0.45 -3.35
87 0 . 0 0 - 1 . 8 6 1.87 1 . 8 6 -1.87
80 0 . 0 0 -1.18 2.30 1.18 -2.30
79 0 . 0 0 -0.78 2.56 0.78 -2.56
78 0 . 0 0 0.96 3.67 -0.96 -3.67
77 0 . 0 0 0.07 3.10 -0.07 -3.10
85 0 . 0 0 -0.58 2.69 0.58 -2.69
8 8 0 . 0 0 0.13 3.14 -0.13 -3.14
89 0 . 0 0 -0.14 2.97 0.14 -2.97
51 7.00 12.79 1 1 . 2 1 -5.79 -4.21
57 7.00 14.22 1 2 . 1 1 -7.22 -5.11

52* 8 . 0 0 3.98 5.60 4.02 2.40
54 1 1 . 0 0 11.80 10.58 -0 . 8 0.42
56 1 2 . 0 0 6.13 6.96 5.87 5.04

83* 1 2 . 0 0 15.01 23.64 -3.01 -11.64
55 13.00 13.17 11.47 -0.17 1.53
59 15.00 14.39 13.09 0.61 1.91
50 15.00 20.44 17.82 -5.44 -2.82
82 15.00 15.47 21.06 -0.47 -6.06

81* 15.00 15.60 23.38 -0 . 6 -8.38
58 18.00 24.63 18.89 -6.63 -0.89
53 2 0 . 0 0 19.22 15.30 0.78 4.70
4 2 0 . 0 0 23.38 22.54 -3.38 -2.54
23 25.00 29.68 23.79 -4.68 1 . 2 1

1 * 95.00 99.90 102.50 -4.9 -7.50* •Samples that did not successfully pass the expectation test. Absolute error (e), is the
observed total sulfide (%, from thin section analysis) minus the predicted TSC (%, from 
each model).
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Table 5.5 Statistics o f  total sulfide predictions

Sample
number Model Ore-free samples Ore-containing samples All samples

m (%) stdev (%) m (%) stdev (%) R2 Slop (A:)

30(26)° T IR 1319 0.63 0.91 -1.98(-2.27) 3.78(3.89) 0.98(0.92) 1.07(1.11)
TIRindex -2.65 0.58 -1.99(-0.56) 4.86(3.65) 0.96(0.82) 1.09(0.99)

Data in brackets are from 26 samples excluding suspicious samples. Data outside 
brackets are from all 30 samples including the suspicious samples.
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Table 5.6 Error in TSC as a function o f the model and confidence level

1.03*stdev (70% confidence) 1.64*stdev (90% confidence)
Models Ore-free Ore-bearing Threshold21 Ore-free Ore- bearing Threshold21

TIR-1319 0.93% 3.89% 4.82% 1.49% 6.19% 7.68%
TIRindex 0.59% 5.00% 5.59% 0.95% 7.97% 8.92%

a Thresholds above which the ore content can be predicted with corresponding 
confidence level. For example, at a 70 confidence level ore bearing samples with greater 
than 4.82% TSC will show a predicted TSC with an error of 3.89% using the TIR1 31 9  

model.
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Figure 5.1 (a) left: Digital photograph of rock slab (Sp#8 ) and the grid system (5 mm x 5 

mm) showing each cell measured; (b) right: Supervised classification result showing 

white pixels as sulfide locations and black pixels as silicate matrix.
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dx

x = 4mm dx=5mm

Figure 5.2 Schematic diagram of general layout of spots measured on cores
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x =  dx = 5mm

Figure 5.3 Schematic diagram of general layout of spots measured on cut rock faces
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Figure 5.4 TIR spectra from typical spots on rock slab (sp#8 ) with different TSC values.
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(a) (b) (c)

Figure 5.5 (a) left: visualization of local TSC (%) estimated from the photo for sp#8 . 

Brighter grid cells indicate higher local TSC; (b) middle: visualization of TIR spectral 

slice of reflectance at 1319cm'1. Brighter positions represent higher TIR values; (c) right: 

visualization of TIR ratios. Brighter squares indicate bigger spectral ratios and lower TSC 

values.
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Figure 5.6 (a) upper: relationship between TSC (%) and TIRjug (%) on rock slab sp#8 ; 

(b) lower: relationship between TSC (%) and TlRratio on rock slab sp#8 .
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Figure 5.7 Distribution of estimation error (residuals) for different spectral indices, (a) 

upper: estimation by TIR 1 3 1 9 ', (b) middle: estimation by TIRmtio', (c) lower: estimation by 

TIRindex (linear combination of TIR1 3 1 9  and TIRratio).
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reflectance at 1319cm’1. Black dots: original reflectance at 1319cm’1; squares: reflectance 

at 1319cm’1 after continuum removal over 500 cm ' 1 to 5000 cm'1; triangles: reflectance at 

1319cm’1 after continuum removal over 1080 cm’ 1 to 3000 cm’1.
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CHAPTER 6 

SUMMARY AND CONCLUSIONS

This study has explored the usefulness of hyperspectral data to discriminate rock 

units and estimate the abundance of sulfides (chalcopyrite + pyrrhotite + pentlandite) in 

rocks. Four different research themes were explored corresponding to different geological 

application scenarios and demonstrating the potential of retrieving useful lithological 

information from rock spectra while minimizing detrimental effects from topography, 

moisture in the underground environment and surface properties of rocks. Salient 

achievements of this thesis include:

(a) The topographic correction of CASI hyperspectral data at the pixel scale 

reconstructs a uniform solar illumination. This research demonstrates that for 

two of the major rock endmembers investigated (gabbro and peridotite) the 

DEM correction process, which uses publicly available topographic maps, can 

effectively reduce the variation in detected radiance due to changes in local 

illumination. Specifically, rock units located on sloping terrain, whose 

endmember signatures were initially difficult to isolate, became clearly 

identifiable after undertaking the topographic correction. An multi­

dimensional view of CASI data also shows that topography has the effect of 

expanding endmember clusters; the correction process shrank the endmember 

clusters toward their virtual original positions. This study indicates that a 

topographic correction is beneficial for retrieving geologically meaningful 

rock unit endmember signatures from hyperspectral data acquired over rugged 

terrain.
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(b) Rock type discrimination for a simulated underground environment was 

conducted using 2 nd order derivative thermal infrared reflectance spectra and 

demonstrates the feasibility of mapping rock faces in an underground 

environment. An innovative method applying the spectral angle mapper 

algorithm to 2 nd derivative rock spectra has shown to be robust for minimizing 

the effects of liquid water on the rock surface, variations in local geometry 

and the presence of disseminated sulfides while preserving diagnostic rock 

signatures from 700-1300cm’1 necessary for rock type identification. An 

average accuracy of above 80% for rock type determination was achieved for 

all rock types tested. This study suggests that it is possible to automate the 

discrimination of rock types in an underground environment and provide real 

time lithologic information from cores for mine exploration, using thermal 

infrared reflectance spectroscopy.

(c) An important finding for sulfide ore detection in broken silicate rocks is that, 

in the region of 1319 cm’1, most known silicate minerals converge to a 

common reflectance minima (less than 1.5%) but massive and disseminated 

sulfides have distinctly higher reflectance. Individual sulfide minerals 

(chalcopyrite, pyrrhotite, pentlandite) however, do not reveal diagnostic 

features in this spectral region. When sulfides are disseminated in the host 

rock, the average reflectance of the rock increases but the correlation with 

abundance is not systematic. However, the total sulfide concentration (TSC) 

as a function of continuum removed reflectance (CRR) is systematic. The 

empirical correlation between CRR at 1319 cm ' 1 versus the total sulfide
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concentration, estimated via thin section point counts, gives a coefficient of 

determination value (R2) of 0.93 for measurement of dry and wet surfaces 

when averaged. Similar results are observed when dry and wet locations are 

analysed separately. The relationship demonstrates the feasibility to estimate 

total sulfide concentration from TIR reflectance data even when samples are 

wet.

(d) Further study on the estimation of sulfide ore from cut rocks and cores has 

identified a linear relationship between reflectance at 1319cm'1 and TSC and 

has shown that TSC is exponentially related to a specific TIR band ratio 

(0 .5 *TTR9 9 5 /n R 1 3i9  + 0 .5 *TIRii8o/TIRi3 i9 ). Results show that sulfide- 

containing samples can be separated from barren host rocks with 90% 

confidence when TSC is greater than 7.68%. TSC can also be estimated from 

TIR data with a mean error of 2.27% and a standard deviation of less than 

6.19%, when compared to estimates from thin sections. Removal of the 

continuum, which is often used to highlight spectral signatures in 

hyperspectral analysis, results in a non-linear TSC-TIR relationship. For cut 

rocks and cores, removal of the continuum is not necessary for ore detection 

and grade estimation.

Removal of the continuum as discussed in chapter 4 (published in 2001 in 

Geophysics, vol. 66) helps to minimize the effects of micro-topography on broken rocks 

and highlights the TSC-TIR relationship at 1319cm1. As the research evolved, removal 

of the continuum was found to be unnecessary for the analysis of spectra for cut rock 

surfaces for which the measurement geometry is more constant than that of broken rocks.
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Because the calculation of the continuum is dependant on the selection of the spectral 

range where the removal process is applied, an additional calibration step is required to 

calibrate the sulfide prediction models (in chapter 5).

The research in this thesis has expanded previous spectroscopy studies, which are 

mostly case-based or limited to the laboratory, by providing a wider scope for geological 

applications, especially the application of thermal infrared reflectance data to solve 

problems encountered by the mining industry. The research was conducted with a view 

towards the automation of mine operation and the design of appropriate prototype 

instruments of benefit to industrial partners, and to make significant contributions to the 

application of spectroscopy in geology. Though the usefulness and feasibility of using 

hyperspectral data for rock unit discrimination and sulfide ore detection was 

demonstrated in this thesis, much work remains to transform these research results into 

state-of-art technology designed for a mining application.
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APPENDIX A

EFFECT OF CHANGES IN INSTRUMENT FIELD OF VIEW ON THE 

ESTIMATION OF SULFIDE ORE

A l. Problem description and approaches

In Chapter 5, the instrument instantaneous field of view (FOV) of the MB 102™ 

spectrometer was set to different sizes for cut rock (5 mm x 5 mm) and core (4 mm x 4 

mm) samples. This did not cause an obvious discrepancy in the results of total sulfide 

estimation and the sulfide prediction models worked consistently well for the cores and 

cut rocks under the given sampling strategy. However, it is important to quantitatively 

explore possible effects of varying the size of the FOV on sulfide estimation from 

spectra. This information will provide critical knowledge for applying the sulfide 

prediction models to real core logging scenarios, especially for the design of instruments 

and sampling strategies in customized applications.

Spectra collected on sp# 8  (see Chapter 5 for sample description) were used to explore 

possible FOV effects on the estimation of sulfides. There were 144 independent 

measurements/spots (5 mm x 5 mm FOV) with known local (within each grid) total 

sulfide readings obtained from a high-resolution digital photo. Because the TIR 

measurement at each spot is independent of those of adjacent spots, it is statistically valid 

to mathematically average the spectra from more than two adjacent spots to simulate one 

spectrum under a larger virtual spot, which was assumed to be a linear mixture of spectra 

from those spots involved in the average process. The mixing systematics is basically 

linear if the components are arranged in spatially distinct patterns, analogous to the
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squares on a checkerboard (Nash and Conel, 1974; Singer and McCord, 1979). The 

averaging process meets the checkerboard assumption.

As illustrated in Figure A l, the new virtual spot (FOV footprint) can be square or 

rectangular in shape with dimensions that may be many times that of the original spot 

size (25 mm2). When dx is equal to dy, the new FOV is a square but it can be a rectangle 

if dx is not equal to dy. While moving the new FOV window (square or rectangle) over 

the entire surface of sp#8 , spectral data for a bigger virtual FOV over the same sample 

surface can be simulated. Both square and rectangular FOV shape were simulated in this 

study. For square FOV, five different sizes were tested with dx=dy= 10mm, 15mm, 

20mm, 25mm and 30mm. For rectangle FOV, dx was fixed to 5mm and dy = 10mm, 

15mm, 20mm, 25mm and 30mm. The rectangle FOV was explored with a view towards 

core logging using hyperspectral devices because the use of a rectangular FOV makes it 

possible to minimize curvature effects for cores whose diameters are generally less than 2  

inches.

A2. Analysis of data from various FOV

The statistics of TSC (%) and TIR1 31 9 data (in percent, thermal infrared reflectance at 

1319 cm'1) will be explored for varying FOV shape (rectangle and square) and size to 

examine the possible effects on the linear TSC-TIR relationship presented in Chapter 5. 

Three kinds of data for the rock slab are available for this analysis; (1) total sulfide 

content (TSC%) counted at each spot from the digital photo; (2) TIR spectrum at each 

spot; (3) sulfide content of 47.9% for the whole sample based on the analysis of the thin 

section.

A2.1 Square FOV
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When dx=dy and dx is changed from 1 to 6  times that of the original size (5mm), the 

area of the FOV changes from 1 to 4, 9, 16, 25, and 35 times the original size 

respectively. The basic statistics of the local TSC and TIR13 1 9 (Table A1 and Figure 

A2) for the new FOV show that,

(a) The mean TSC value counted from the new grid system is stable (51.40% ~ 

50.88%, Figure A2a and Table A l) and tends to approach the thin section 

value (47.9%) when applying the largest FOV. This indicates that a larger 

FOV generally provides a more representative reading for the entire rock face. 

The 0.52% difference between 51.40% (TSC counted at the smallest FOV) 

and 50.88%(TSC counted at the largest FOV) is mainly due to the edge effect 

from the pixels under virtual grid lines, which are 1  pixel wide.

(b) The mean TIR value at 1319cm'1 (TIR1 3 1 9) from the new grid system is also 

stable (Figure A2a and Table A l) and is approaching the value of 16.04%, 

(the expected TIR13 1 9 value for 47.9% TSC based on the linear model between 

TSC and TIR1 3 1 9  described in Chapter 5) as the FOV increases.

(c) The standard deviation for TSC and TIR1 3 1 9  consistently decreases with 

increasing FOV size (Figure A2b). This indicates that a larger FOV is more 

reliable in terms of providing a stable and representative TIR spectra and local 

TSC data.

From the scatter plots of TIR131 9 and TSC over different FOV sizes (Figure A3), it is 

obvious that while the FOV is increasing, the data clusters tend to shrink and approach 

the point where TSC=47.9% and TIR1 3 1 9  =16.04%, which is the “true” data for sample 

sp# 8  assuming that the linear TSC-TIR model in Chapter 5 is valid when the FOV
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changes.

To validate the above assumption, the TIR1 3 1 9  sulfide estimation index from Chapter 

5 was applied to the TIR data set for new FOV sizes. The predicted sulfide contents using 

the TTRi3 i9  model were compared with the local TSC established from the analysis of the 

digital photo. The results were evaluated using the same methods as that used in Chapter 

5, including the absolute prediction error (e), which is defined as observed total sulfide 

content (%, from digital photo analysis) minus predicted TSC (%, estimated from TIR1 3 1 9  

model), the mean (m) of the absolute prediction error, which is calculated from the 

statistical distribution of the absolute errors and the standard deviation of the absolute 

prediction error (stdev), which delineates the variation of absolute errors. As the field of 

view increases in size, the absolute sulfide prediction error at each spot generally 

decreases as illustrated in Figure A4, for which the biggest error drops from 23% (5mm x 

5mm FOV) to less than 7% (30mm x 30mm). The standard deviation of the prediction 

error (Table A2 and Figure A5a and A6 a) also systematically decreases when using a 

larger FOV. This indicates that the TIR-TSC prediction model works better with a larger 

FOV. The mean error varies from -0.42% to 0.07% about zero without significant 

changes for different FOV sizes, suggesting that the TIR1 3 1 9 model is unbiased for sulfide 

estimation at different FOV sizes.

When the confidence of the sulfide estimation is set to 90%, the absolute estimation 

errors are confined within ± 7.28% for a FOV of 5mm x 5mm to ± 1.85% for a FOV of 

30mm x 30mm (Table A2) based on the error distribution seen in Figure A5a. This 

indicates that a larger FOV is preferred for reliable sulfide estimations.

A2.2 Rectangle FOV
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Five rectangular FOV sizes of 5mm x 5mm, 5mm x 15mm, 5mm x 25mm and 5mm x 

35mm were examined. Similar results were found as those for square FOV. When the 

size of the rectangular FOV increases, the linear prediction remains unbiased with a near 

zero (<0.07%) mean prediction error (Figure A5b) and the deviation of the estimation 

error systematically decreases (Figure A6 b). When the confidence level is set to 90% 

correctness, the error envelope for the prediction drops from ± 7.28% to ± 4.32%.

As the mean error remains stable near zero for both square and rectangular FOV, the 

standard deviation of absolute prediction errors (stdev) can be used to define the envelope 

of distribution of total sulfide estimation errors. An interesting finding is that the stdev 

decreases as a logarithmic function of the footprint area in mm2 (Figure A7). Data for six

footprint sizes ranging from 0.25mm2 to 9.00mm2  (for square FOV) and four footprint

2 2sizes (for rectangular FOV) ranging from 0.25mm to 1.75mm tested are shown on 

Figure A7. Both data sets fit the logarithmic function well.

A3 Conclusions

The following conclusions can be drawn from this investigation

(a) The relationship between thermal reflectance at 1319cm'1 and local total sulfide 

content remains linear at different FOV. The TIR1 3 1 9  prediction model provides an 

unbiased estimation with near zero mean error (less than 0.42%).

(b) The total sulfide estimation for the largest FOV has smaller estimation errors. The 

maximum error decreases from 23% absolute to less than 7% as the FOV 

increases from 5mm x 5mm to 30mm x 30mm.

(c) The standard deviation of the estimation error systematically decreases 

logarithmically as the FOV increases. When the FOV area increases from 0.25
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mm2  to 9.00 mm2, the stdev of the prediction errors drops from 4.43% to 1.35% 

absolute.

(d) Square and rectangle FOV gives similar results indicating that the shape of the 

FOV does not introduce noticeable differences in the estimation of sulfide 

abundance for flat cut rock surface but the footprint area is the dominant factor 

modulating the distribution of errors. This indicates that sulfide estimation models 

can be used on spectra collected with a rectangular FOV when necessary.

A general conclusion is that a larger FOV should be used for an instrument setup 

when attempting the estimation of sulfides from TIR spectra, especially for 

heterogeneous samples. A FOV can be devised to adjust the footprint area to fit the 

physical dimensions of targets and the target textural heterogeneity.
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Table A l Basic statistics of TSC and TIR1319 over varying square FOV

FOV size lx l(4) 2 x2 3x3 4x4 5x5 6 x6

Footprint (mm2) 0.25 1 . 0 0 2.25 4.00 6.25 9.00

TSC (%) Stdev(d) 22.31 18.83 16.31 13.97 12.38 10.73

TSC (%) Mean(b) 51.40 51.35 51.26 51.15 51.03 50.88
TIR1319(C) (%) Stdev 6.58 5.68 5.09 4.45 4.00 3.44
TIR1319 (%) Mean 17.04 17.17 17.04 17.11 16.90 16.99

(a) Standard deviation of readings from all virtual spots over the entire rock face.(b) Mean 

value of readings from all virtual spots over the entire rock face. (c) Thermal infrared 

reflectance value at 1319cm'1. (4) N x N FOV sizes represent (Nx5mm) x (Nx5mm) 

square FOV coverage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156



Table A2 TSC prediction errors from TIR1 3 1 9  model under different square dimensions of 
FOV

FOV size lx l(a) 2 x2 3x3 4x4 5x5 6 x6

Mean (m) of absolute 
prediction error (%) 0 . 0 1 -0.42 0 . 0 1 -0.34 0.07 -0.36

stdev of absolute 
prediction error (%) 4.43 2.98 2.44 1.82 1.56 1.35

m +1.64*stdev ( %) 7.28 4.46 4.00 2.64 2.62 1.85

(a) N x N FOV sizes represent (Nx5mm) x (Nx5mm) square FOV coverage.
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Figure Al Schematic representation of simulating variable field of views on the cut 

surface of rock sample sp#8.
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Figure A2 (a) Mean TSC (diamond, from digital photo) and mean TIR1319 (circle, from 

spectra) for all pixels at a given FOV. Results are shown for square FOV ranging 25 - 

900mm2; (b) Standard deviation of local TSC (diamond) and TIR13 1 9 (circle) under 

various square FOV sizes.
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Figure A3 Scatter plot of local total sulfide content (TSC) vs. thermal infrared reflectance 

at 1319 cm'1 (TIR1319) at different square field of view sizes. Cross=5mm x 5mm FOV; 

Diamond=15mm x 15 mm FOV; Black dot=30mm x 30 mm FOV.
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Figure A4 Distribution of absolute prediction errors at different total sulfide 

concentration under 5mm x 5mm (square) and 30mm x 30 mm (black dot) field view 

setups.
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Figure A5 Distribution of total sulfide prediction errors from TIR1 3 1 9 model at different 

square (a) and rectangle (b) FOV sizes.
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Figure A6  Variation of mean and deviation of total sulfide prediction errors from TIR131 9  

model under different square (a) and rectangle (b) FOV sizes. 1 x 1 is original 5mm x 

5mm square FOV. N x N FOV sizes represent (Nx5mm) x (Nx5mm) square FOV. Star= 

mean (m) absolute prediction error; Diamond=standard deviation {stdev) of absolute 

prediction error; Circle= m+1.64*stdev.
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APPENDIX B

THEORY AND PROCESSING TOOLS FOR TIR SPECTROACOPY OF 

GEOLOGIC MATERIALS

B .l Spectroscopy

Spectroscopy is the study of interactions of electromagnetic radiation with materials. 

Spectrometers are used to measure emitted or reflected photons from a target as a 

function of wavelength. Because the density of the measured photons is affected by 

scattering and absorption processes occurring during the photon-target interactions which 

are modulated by the target composition, the measured spectra is indicative of the 

chemical composition of the target.

Spectroscopy is used in the laboratory, in the field, from aircraft and satellites. 

Reflectance and emittance spectroscopy of natural surfaces are sensitive to specific 

chemical bonds in materials, whether solid, liquid or gas. Spectroscopy has the advantage 

of being sensitive to both crystalline and amorphous materials. Its historical disadvantage 

is that it is so sensitive to small changes in the chemistry and/or structure of a material 

that special methods must be employed for data analysis.

The variations in material composition often cause shifts in the position and shape of 

absorption bands in the spectrum. With the vast chemical variety typically encountered in 

the real world, spectral signatures can be quite complex and sometimes unintelligible. 

However, an increased knowledge of the natural variation of spectral features and a better 

understanding of the causes of the observed shifts combined with rapidly improving 

computing resources have turned the disadvantage into an advantage, allowing us to 

probe in increasing detail the chemistry of terrestrial materials. Imaging spectroscopy is a
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relatively new technique providing a spectrum for each position of a large array of spatial 

positions for many spectral wavelengths (hyperspectral image). The data might be for a 

rock measured in the laboratory, in the field or from an aircraft, or of a whole planet from 

a spacecraft or Earth-based telescope. By analyzing the spectral features, and thus 

specific chemical bonds in materials, one can map where those bonds occur, and thus 

map materials.

Thermal Infrared Reflectance (TIR) spectroscopy generally refers to the traditional 

mid-infrared (MIR) spectral region, 3.0 to 30 fim, which covers thermally emitted energy 

which for the earth peaks near 10 /am and decreases beyond the peak with a shape 

controlled by gray-body emission. In this region, Kirchoff’s Law (Nicodemus, 1963) and 

the relationship between reflected and absorbed light reveal the basic theory of 

spectroscopy.

B.2 Absorption and reflection of minerals and rocks

When a stream of photons encounters a rock surface, a subset is reflected and some 

are refracted into the rock. All minerals and rocks have a complex refraction index,

m = n - j* K

where n is the real part of the index, j  = (-1 )m , and K is the imaginary part of the index of 

refraction. K  dictates how far photons can travel into the material. When photons enter 

the sample, they are absorbed according to Beers Law, I  = 10 e tx, where 7 is the observed 

intensity, I0 is the original light intensity, k is an absorption coefficient and x  is the 

distance traveled through the medium. The absorption coefficient k is related to the 

complex index of refraction by the equation, k = An * K  / A , where A is the wavelength 

of light. The reflection of light, R, normally incident onto a plane surface is described by
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Fresnel equation,

R = [(n-1)2 + K2 ] / [ ( n + 1f  + K2 ]

All the above equations hold for a single wavelength. The absorption coefficient and 

index of refraction vary with wavelength, and thus the observed reflected intensity varies. 

The absorption coefficient as a function of wavelength is a fundamental parameter 

describing the interaction of photons with a material. In practice, only reflectance is 

measured. The relationship between reflectance and absorption makes it possible to 

determine the absorption property of rocks by measuring reflected light.

The real part of the index of refraction (n) generally varies less than the absorption 

coefficient as a function of wavelength, especially at visible and near-infrared 

wavelengths, where electronic processes (absorption of photons at a specific wavelength 

causes a change of isolated atoms and ions from one energy state to a higher one) 

dominate the absorption process. At longer wavelengths, n reaches a minimum value 

(near 8.5 /xm for most silicate minerals) at a frequency called the Christensen frequency 

resulting in a minimum in reflected light (Figure B.la). The exact location of the 

observed reflectance minimum is also controlled by the absorption coefficient K. At 

longer wavelengths K rapidly increases for silicate minerals giving rise to a maximum in 

reflectance known as the restrahlen band (Figure B.lb). The location of this band 

corresponds to a fundamental vibrational stretching process, which dominates the 

absorption process of silicate minerals in the TIR region. In the laboratory, TIR is 

measured by illuminating the sample and measuring the reflected component.
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B.3 Emissivity and reflectance in the thermal spectral region

In many applications of thermal infrared spectroscopy, the surface investigated cannot be 

illuminated artificially. This is the case for airborne and spacebome imaging. In such 

case, rock and mineral reflectance signatures can be estimated using measurements of

emissivity (E). E  is defined as, E  = L A /  L BA , where LA is the spectral radiance of the

measured target, and L® is the blackbody radiance at an equivalent temperature, which is

given by

Lbx = C\l[A5n (e C2im) -1)]

where A is wavelength, T is temperature and C l, C2 are radiation constants. Kirchoffs 

Law relates emissivity to reflectance (R) by

R = 1 -  E

This relationship holds for most geological materials (Salisbury, 1993) in the thermal 

region and thus reflectance can be calculated from the emissivity spectra.

B.4 TIR research in geology and TIR spectral library of rocks and minerals

TIR geological applications have been conducted for decades. Most of the TIR 

geological applications are based on the relationship between R and E. Early research was 

conducted by Lyon in 1965 and 1972 and the key conclusion is that details of the spectral 

shape, intensity and individual secondary minima (or maxima) could reveal specific 

differences between mineral assemblages or within mineral groups in rocks. Vincent 

(1975) focused on the 7-14 pm reflectance spectra of 26 different igneous rocks and 

found that most of these rocks have a reflectance minima around 11.75 pm where the 

Christensen frequency (CF, Christensen, 1992) occurs. Walter (1989) found that the TIR
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reflectance of rocks was correlated with the SCFM chemical index, which is defined as 

Si02/(Si02+Ca0+Fe0+Mg0). This meant that quartz-rich rocks should be separable 

from mafic rocks. Nash (1991) found that plagioclase composition in rocks can be 

identified by a systematic band shifts (from 7.6 to 8.0 um) as the anorthite content 

increases from 0% to 100%.

Work by Hunt (1976), Richard (1979), Gillespie (1984), Khale (1980, 1988), 

Christensen (1992) used emission or reflectance spectra for the compositional analysis of 

various geological materials. A wealth of laboratory spectra for minerals and rocks was 

reported by Salisbury (1991, 1993). The data illustrates the systematic absorption troughs 

and reflection peaks resulting from vibrational motions of bonds within crystalline 

materials. The strength of absorption/reflection features and their position vary with 

mineral composition and crystal structure and provide a possible means to determine 

mineral composition and rock type remotely. The spectra collected by Salisbury are now 

in the public domain as a TIR spectral library accessible via the John Hopkins University 

and found in some of the hyperspectral data processing software systems such as ENVI™ 

(The Environment for Visualizing Images).

B.5 Hyperspectral data analysis software

Most of the current remote sensing data processing software systems such as ENVI, 

PCI™ (PCI Geomatics), ERDAS Imagine™ (ERDAS, inc.), TNT™ (Microimages, Inc.), 

ISDAS (Canada Center for Remote Sensing), and ISIS (United States Geological Survey) 

provide some level of hyperspectral analysis functionalities. ENVI is built on IDL (The 

Interactive Data Language) and includes traditional processing techniques but the 

strengths of the software are dedicated techniques for hyperspectral data analysis and
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visualization, which include extraction of spectral profiles, comparison with library 

spectra, spectral math, the Spectral Angle Mapper classification (SAM), linear spectral 

unmixing, Matched Filtering and spectral endmember visualization tools. The detailed 

references of these algorithms are documented in the ENVI user manual. ENVI also 

provides a user-friendly interface for the development of new functions. The spectral data 

processing conducted for this thesis was performed in ENVI with a small amount of 

programming in the IDL/ENVI environment.
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Figure B1 (a) Real (n) and Imagery (K) part of the complex refraction index of quartz 

(Clark, 1998); (b) TIR reflectance spectrum of quartz measured in this study.
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