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Abstract o ;

-

Two funhan!emal data models are normally identified when classifying srructurs
for the representation of spatia.i data. One model is based on the specificatidn of loca-
tions and then recording attribute information for each location (i.e., tessellation or raster
data structurcs)y. The second-model is based on the specification of attributes and then
recording locations»for each attribute (e.g., vector dat;a structures). It is generally claimed
that, while tessellation structures are superior to vector structures with respect to perfor-
mance of spatial operations, they are more st’oragc demanding. This is known classically
as the storage versus performance gadcoﬁ' between tessellation and vector structures.
While this tradeoff is gcncrall); trucc for location-based operations, it is observed in this

thesis that the second Model is superior for attribute-based operations.
. <

'ﬁxc tradeoffs between t'csscllatior_x and vector models have long been the catalyst for
the development of data structures that attempt to capitalize on the advantages of each
_ model while minimizing the disadvantages. Consequently, a number of structures have
appeared that, having properties of both fundamental models, cannot be accordingly

" classified.

N
Primarily for the purposes of classification of spatial data structures, we introduce a

general hjbrid spatial data model . The hybrid model consists of a tessellation structure
which subdivides a vector encoded thematic data set into a set of adjacent cells. The
tessellation component serves both as a partition of and as an index to the vector data
within each cell. |

The strength of thckyb\ﬁd model is that it permits the classification of almost all
existing spatial data structures. Limiting caseslof the hybrid model correspond to tessel-
lation and vector maodels. Intermediate formulations of the hybrid model yield most of

the specific hybrid data structures developed in the literature. Realizations of certain

iv
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intermediate formulations cah provi—Z\e superior practical alternatives for representing

large thematic data sets.

The classification of data s;tmclurcs is-focused on tﬁc representation of .th;:ﬁlatic.data
in Geographic Information Systems. We are ilj_fa'ested in very large thematic applica-
tions, i.e., where the data must reside in secondary storage. The cost of retrieving
thematic data, by location or by attribute, is the underlying basis of evaluating dgta struc-

tures.
a
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é Chap?er 1

Intrqdﬁction

This thesis is concerned with the rcp’x%scntation of thematic data. By rcprcscnta%n,
we mean data structures used in compp:cr systems. In particular, the computer systems
we are interested in are Geographic /nformativn Systems (GIS) that are used in thematic
applications. The purpose of this research is to investigate, classify, and evaluate data

;

structures for the effective representation and manipulation of thematic data.

Throughout the thesis, ihe"evaluation of data structures is based on the cost of per-
forming a set of opcratip’f;s applied to thematic data. We call these operations spatial
operations . An undcriying assumption of the%thesis is that we are dealing with very
large thematic dfa‘ta' sets that consequently must reside on secondary (external) storage.
Thus, our anzilsvsi and evaluation is primarily based on the cost of accessing thematic

data needed for sp«liti.al operations. The cost of pi'occssing thematic data in primary

storage (memory) is given only secondary consideration.

1.1. Spatial Data

We begin by defining what we mean by spatial data in general and then we describe
the type of data that this thesis focuses on: thematic data. Spatial data can be defined as
any data concerning phenomena spatially distributed in one or more dimensions [68].

| This is a large class of data and is often referred to as pictorial data (e.g., [14]). This
thesis is conccmed with spatial data pertaining to the surface of the Earth which is com-
monly represented by two-dimensional models known as thematic maps. Our interest is
focused on thematic data, that is, data found on thematic maps that describes some quali-
tative or quantitative phenomenon (theme) across an area of interest. Examples of what

we mean by the terms thematic data and theme include forest covers, soil types, and
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land use classifications. Generally, a theme partitions ban area of interest iﬁto a collection
of regions commonly termed polygon.;. We use the term polygon network to mean the

~ collection of polygons comprising a theme. In particular, a polygon network is a set of
;dges connected at their vertices to form a collection of non-overlapping regions that
| totally partitions an area of interest. We assume that edges are straight line segments an
that vertices are rcprescntcd by 2-dimensional coordinates. The rcg"s bounded by the
set of edges are commonly termed poivgons , of ;vhich there are three types. Simple
polygons are rcgiéns without holes (i.¢., internal polygons) wvhile complex polygons are
regions containing one or more holes. Compound polygons refer to the union of two or
‘more simple or complex pol_ygons.- \
For thc pu;poscs of this thesis, a polygon network is equivalent to a layer of
- %ie.matic ini’otmation covering an area of interest. Generally, themes are defined in terms
of a set of attributes that serves to both classify the data and define the polygons of the
thematic layer. Eacl; polygon can be identified or labelled by the attribute value t};at
: defines it. An 'attributc value such as green may actually refer to several disjoint regions
within a polygon network (i.q, a compound polygon). ‘

Figure 1.1 shows a polygon network describing a fictitious theme. All three types
of polygons are pres;?} within the network. The colors of the theme are labelled A, B, C,
andD. Aand D rc* to simple polygons, C refers to a complex polygon, and B refers to
a eom;;ound polygon. ]

Three basic data types - points, lines, and areas - can be used to describe any
polygon. By dealing with thematic data, this thesis considers all three data types collec-
tively. Individual consideration of point and line data is excluded from this thesis.
Other, more appropriate data structures, have been developed in the literature that deal

expressly with point and line data. We note that the representation of thematic data is a



B
) ' A
B"[
4 C
B
\ D

'Figure 1.1 A Polygon Network.

more complex issue than the representation of either point or line data exclusively.

For the purposes of this thesis, we divide thematic data into two broad categories:
location data and attribute data . Location data refers to a coordinate system that serves
as a reference for the positioning of attribute data. For positioning on the surface of the
Earth, spherical coordinates (latitudes and longitudes) are normally used. Two-
dimensional thematic\maps require projecting a sphere onto a plane using s;ome coordi-
nate transformation. Many types of plane coordinate systems are used for positioning on
a map (e.g., conformal, transverse mercator, conic, or any of the widely used rectilinear
grid systems). The location and shape of a polygon is the information that is encoded in

location data. It consists of sets of coordinates that explicitly define points which, in

turn, implicitly define lines and areas.

Attribute data is the non-positional, descriptive information associated with the
polygons displaycd on thematic maps. Attribute data provides either nominal (textual) or
scalar (numeric) information about polygons. A polygon can hdve several attributes
associa‘ed with it but there is always one attribute that is responsible for its geometric

description. We refer to this primary attribute as color.
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1.2. Spatial Operations

. GIS are systems that are used to store, manipulate, and display spatial data.
Although our cmphasi§ of GIS is on thematic data, any type of data may be agsociated
thh positions and processed in a GIS. Manipulation of thematic data mcludcs the appll-
cation of spatial aperations . There are two classes of spatial operations which are .
characterized by the type of access required to retrieve the relevant thematic data from
one or more polygon networks. These classes are artribute-based operations and
location-based operations. Under each cfas_s in this thesis, we restrict ourselves to a set
of operations that we consider most relevant to GIS’s used in thcmatip applications.
While this set of operations is not exhaustive, it is representative of the two fundamental

ways of describing and seafching thematic data.

1.2.1. Location-Based Operations

The class of location-based operations is characterized by the necessity of search for
spc;:iﬁc locations within a polygon network. That is, given a location, determine the
attribute(s) corresponding to or intersecting the location. The windowing operation and
the point inclusion operation are examples of location-based operations. Both rcquirc
search for specific locations in space and both return a set of polygons, hence attributes,

which intersect the locations.

The windowing operation consists of extracting a portion of a polygon network, n,
that is contained within a window, w. In general, the window is defined as a polygon.

Windowing is performed by intersecting the polygons in n with w. This operation is

also known as range search or clipping. Figure 1.2 shows an example of windowing.

Figure 1.2a shows a polygon representing a window and Figure 1.2b depicts the result of
extracting the window from the polygon network of Figure 1.1.

A\
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Figure 1.2 Windowing Operation.

The point inclusion operation is a special case of the windowing operation where
the window is specified as a point on the plane. Given a polygon nc‘t:vork n and a point
p , the point inclusion problem is to determine which pblygon of n contains the point.
The result of point inclusion is a descripfion of the enclosing polyéon, its color, or other
data associated with the polygon. This operation is related to the point-in-polygon
operation that determines whether a given polygon contains a point.

. © h
1.2.2. Attribute-Based Operations o R ‘\f‘f

The class of attribute-based operations is charac'icdzéc'i b';' search for specific attri-
bute values (colors) within a polygon network. That is, given an attribute value, deter-
mine the locations possessing that value. In a polygon network, these locations consist of
polygons that possess specified colors. The polygon set operations are examples of
attribute-based operations. Each operation involves finding those polygons that possess
the specified colors and then performing the set operation. The resulting polygons define

the locations of the combined attributes.



In general, the polygon set operations involve two polygon networks n, and 7, and

\

6

a color from each network ¢, and ¢2. They all begin by locating all polygons Possessing

color ¢, as well as all polygons possessing color c,. Figure 1.3 illustrates the usual

polygon set operations of intersection, union, and difference. In Figure 1.3, these opera-

tions are illustrated using the polygon networks ny (given in Figure 1.1) and n, (given in

Figure 1.3a). Figures 1.3b,c,d give the results of the intersection, union, and diffgrence

operations, respectively, involving A from n, and Z from n.

ANnZ

(a)

(b)

AuZ

Ay

)

(©)

Figure 1.3 Polygon Set Operations.

@
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Probably the most important operation in GIS applications is that of thematic over-

1.2.3. Thematic Overlay

lay. The thematic overlay operation involves two .polygon networks n, and n, and con-
sists of applying the intersection operation to every possible pair of polygons, one from
each network. This operation obtains a polygon network n 5 such that n - n,xn,, where
x is the cartesian product of the set of polygons in n and the set of polygons in n,. Fig-
ure 1.4 shows the polygon nctworl; resulting from overlaying the polygon networks of
Figures 1.17and 1.3a. Each polygon in Figure 1.4 inherits a color corresponding to the

colors of the intersecting polygons.

AZ BZ
AY BZ
cz
BY cyYy
AX
BX [ DX DY

Figure 1.4 Thematic Overlay Operation.

In essence, thematic overlay is an intersection operation that is applied exhaustively at all
iocations and involves all attributes. It is not restricted by either specific locations or
specific attributes. For this reason, thematic overlay is given a separate designation in

this 8esis, apart from location-based and attribute-based operations.



1.3. Spatial Data Structures

There are two major models for the representation of thematic data. In the first
model, locations are specified and for each location relevant attributes are recorded. Con-
versely, in the second model, attributes are specified and for each attribute relevant loca-

tions are recorded.

The first model for thematic data representation is based on the idea of subdivision
or tessellation of the plane into cells. While two classes of tessellations exist, regular
and iﬁcgular. 'this thesis addresses only the first type. Each cell in a tessellation
represents and defines a region that can be differentiated from an adjacent region. A
common ‘tcnn for the smallest céll of a tessellation (i.e., a unit area) is pixel. Each cell
identifies a location on the plane, typically by two-dimensional coordinates. For exam-
ple, the center of the cell may be specified by the coordinates. For each cell, attributes
are recorded. For thematic data, attributes correspond to colors. The data structures
" associated with the organfzation of thematic data in this manner are called location-based
data structures in this the;sis. Location-based data structures are the subject of Chapter
2. Other designations for these types of data structures are found in the literature: tessel-

lation (e.g., [68]), cellular (e.g., [59]), and raster (e.g., [10]).

In the second model for thematic data representation, the locations of each attribute
(i.e., color) are explicitly or implicitly recorded. The data structures associated wityhc

organization of thematic data in this manner are called arntribute-based data srrucnu. in

-

this thesis. Attribute-based data structures can be realized in a number of different ways"
and are the subjcctzf/(;?ptcr 3. The most primitive way is to list, for each color, all of
the cells of that color~"This method constitutes an inverted list of the first model for
thematic data representation. The inverted list is as storage demanding as a tessellation

approach since all locations are still explicitly recorded (i.e., inversion implies
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vertices requires thc\imposition of an ordering on the vertices stored. Segments between
successive vertices are called edges or vectors , hence methods of this type are frequently
classified as vector data structures (e.g., [10, 68]). The usual class of vector data struc-

tures is a sub-class of our class of attribute-based data structures.

The foregoing discussion points to a duality bctwécn the two fundamental models
for thematic data representation. Typically, this duality is recognized from the following
observations [68]. Vector structures use a line segment as the basic unit of organization
and line segments are the units for which location information is recorded. Tessellation
structures use the unit area as the basic unit wherein attribute information is recorded for
each unit area. In this thesis, the duality of the two models is more correctly sh;>wn to

arise from the location-based versus attribute-based approaches to thematic data

representation.

In Chapter 2, we show that location-based data structures are more cost effective for
location-based operations. Conversely, in Chapter 3, we show that attribute-based data
structures are more cost effective for attribute-based operations. Regarding thematic
overlay, we claim that the location-based data structures are more c8st effective. Mainly
for the last reason above, the usual claim in the litcrat;m: is that location-based (tessella-

tion) data structures are superior to attribute-based (vector) data structures with respect to
/
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performance. It is al§6 geﬁcrally accepted, for reasons implied by the previous para-
graph, that vector dataStructures are less storage demanding than tessellation data struc-
tures, especially for ghcmatic data. These two considerations are the basis of the widely
entrenched'nbtion of the Korage versus performance tradeoff bctw.ccn vector and tessel-
lation data structures [10,47, 51, 59, 68, 89,90]. We wish to temper this notion with the
reaiization that vector data structures are more effective for an important class of spatial

operatfons, namely, the attribute-based operations.

Nevertheless, both classes of data structures have advantages. A number of data
structures have been developed that attempt to capitalize on the strengths of both classes.
These data structures possess aspects of both the location-based and the attribute-based
approaches. We distinguish these structures by a third class, namely, hybrid data struc-

tures,

For the purpose of classifying hybrid data structures, in Chapter 4, we introduce a
gcncral"‘hybrid model. The goal of the hybrid model is to capitalize on both the storage
and retrieval advantages of vector and tessellation approaches while minimizing the
tradeoffs. The hybrid model is based on the method of divide-and-conquer (2] applied to
a vector encoded data structure. The hybrid model is described by introducing a tessella-
tion to subdivide a polygon network into a set of adjacent cells. This tessellation com-
ponent of the model serves both ls‘n partition of and as an index to the polygon network.
Within each cell, the thematic data is still represented by the vector component. The sub-
division of the tessellation component is allowed to contimue to any level of resolution.

If the resolution is that of pixel size cells, then one limiting case of the model is achieved,
namely, a raster structure. At the other extreme, if the resolution is limited to a single
cell covering the entire polygon network, then the other limiting case is achieved, that is,

a vector data structure.
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The tessellation component of the hybrid model isthe division aspect of the divide-
and-conquer method. The conquer aspect is achieved by storing sufficient information in
each cell to permit the independent retrieval and processing of thematic data for the spa- -
tial operations. The strengths of the hybrid model are two-fold. First, as noted above,
limiting cases of the model correspond to the vector and tessellation approaches. More
importantly, intermediate formulations of the model yield most specific hybrid data struc-
tures recently developed and described in the literature. Second, we claim that realiza-
tions of certain ir‘ncrmcdialc formulations of the hybrid model can provide superior, prac-

tical alternatives fqf representing thematic data in GIS’s.

1.4. Other Surveys o

Nagy and Wagle {59] discuss and compare spatial data structures in their survey on
geographic data processing. Their classification is pased on cellular (raster) and linked
(vector) methods of spatial data organization. This survey does not include many of the
structures and concepts covercc{ in this thesis. Peucker and Chrisman [65] survey vector
methods for 2-D and 3-D appi{cations. Although this survey is restricted to vector struc-
tures, it does discuss a structure that has influenced the design of many subsequent vector

methods.

Peuquet [68] proposes a framework for the discussion and comparison of many
known spatial data structures. Her framework is divided into three classes of data models:
tessellation, vector, and hybrid models. While the organization of her survey is similar to
that of this thesis, there is no focus on performance issues and the class of hybrid data

models is net well developed.

Burrough [10] reviews tessellation and vector data structures for thematic data in a

chapter of his book dealing with the general principles of GIS. He deals with the usual

|
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raster methods including the region quadtree and a number of vector structures. His
comparison of the raster and vector approaches includes a general discussion of the
storage versus performance tradeoff, but does not focus on the location-based versus

attribute-based approaches to searching thematic data.

-

Davis [21] surveys a number of different data formats for image (raster) and graph-
Ic Ctor) data. He makes the important pragmatic point that spatial data should be
stored in a format which closely resembles its source format. This is important for two
reasons. Conversion between raster and vector can reduce the accuracy of the data.
Furthermore, organizations maintaining spatial data may not want to convert their data.
This second situation suggests that, for practical considerations, the question of raster
versus vector is not always an issue; that is, there often is no choice about the representa-
tion type.

Samet’s [77] tutorial survey on thc~quadtrcc and related hierarchical data structures
is a comprehensive reference for this important class of representation techniques. Samet
primarily focuses on the representation of region data which is closely related to thematic
data. He deals extensively with tessellation structures and treats vector structures
superficially. Samet deals also with the representation of point and line data, although
not as extensively. Throughout his survey, Samet discusses the performance of a wide
variety of spatial operations. Consequently, he does not focus on the spatial gperations

discussed in this thesis.

This thcsislfoéuscs on thematic data,2 complex and representative subset o{pic-
tonal or spatial (;na. For surveys and discussions of data structures of two and higher
dimensional pictorial data, the reader is referred to the following. Rosenfeld and Kak's
[71] text on digital picture processing is a comprehensive reference in the area of pic-

torial representation. A survey of representation techniques for pictorial data is given by



13

Chang and Kunii [14]. Chang, et al [13] describe a system for the management of large
amounts of pictorial information. "The system is based on the relational approach to data-
base design and uses a logical picture as the basic entity for morage and retrieval. A log-
ical picture is defined as a hierarchically structured collection of picture objects that con-
sist of physical pictures stored as either tessellation or vector data in an image store.
Tanimoto [85] discusses several hierarchical indices that may be used for access to pic-
tanal datat Examples of such indices are based on inherent picture structure or on picture
contents. The performance of spatial operations on three-dimensional objects using

methods related to the hybrid model of this thests is described by Cantbom [12].

This thesis does not address levels of abstraction or organization higher than data
structures in the area of spatial data representation. This includes consideration of issues
in data modelling and database organization. While these considerations are important
for the development of GIS's, they deal with issues of more abstract organization. Since
these issues are importaiit, however, we mention some representative litcrat;rc. Lone
and Meier [50] discuss the use of a relational database as a geographical database. Frank
[32] discusses the issues involved in the design of iargc GIS’s. Rugg (74] dcsc;ribcs the
use of a Hypergraph-Based data structure for the h‘icrarchical representgtion of diverse
spatial data types in an integrated manner. The GIS conference limtu}(nnually con-
tains many papers discussing the organization of data in GIS’s at many levels of abstrac-
tion. A representative example from 1987 is the session on database architecture found

in the proceedings of Auto Carto 8 [88].
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Locafion-Based Data Structures

2.1. Introduction

Location-based data structures are dcchOp;:d on the idea of subdivision (tessella-
tion) of the plane by cells. The primary differences among structures in this class are the
shape of the cell used, whether the tessellatiofi is regular or irregular, and whether the
tessellation is fiat or nested. Fundamentally, tessellation structu;és use locations in space
(corresponding to unit areas) as thetbasic logighl units of information. The unit area is

commonly known as a pixe/ and attributeinformation is recorded for each pixel.

A tessellation is a partition of the plane into a set of non-overlapping and collec-
tively exhaustive cells. If k represents the number of sidc: of a cell and v represents the
number of cells meeting at a vertex, then a (k »V)—regular tessellation is a partition in
\/v:ich the value of k is the same for all cells and v is ‘tilc same for all vertices. This
definition restricts the:class of (k,v)-regular tessellations to three types: triangular, rec-
tangular, and hexagonal [3]. By far the most useful tessellation for thematic applications
is the rectangular igs:'sellation.

Irregufar tessellations il}p{udc those in which k is fixed but v can vary from éell to
cell (i.c., the cells can vary in size and density). The most common of these is probably
the Triangulated Irregular Network (TIN), which has found a successful use in approxi-

. mating 3-dimensional data such as terrain data. For 2-dimensional thematic data, how-
ever, the generation and maintenance of structures baseci on irregular tessellations is
computationally expensive and operations such as overlay are difficult to perform, at best

[68].

Kirkpatrick [44] develops a hierarchical décomposition method based on a triangu-

14
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. lar subdivision of a planar graph (a polygon, for our purposes). The triangulation process
begins by enclosing an arbitrary ‘polygon within a triangle. The regions interior to the
polkygon and exterior to the polygon (but interior to the triangle) are then triangulated. A
triangulation hierarchy is constructed by successively replacing a group of triangles with
a common vertex by a smaller group of triangles. The common vertex is eliminated and
the resulting subdivision is retriangulated. This process continues until only the enclos-
ir; g triangle remains. The hierarchical set of triangular subdivisions can be represented

with a tree structure and is termed a k-structure .

Although the k-structure can be used for the representation of vector o{lcro'tlied
po .+ “works, it is a location-based method since it is based on the subdivision of
rey. - :ce the boundary of a polygon governs the decomposition, the k-structure
induces an irregular tcsscllati‘on. The k-structure enables a subdivision search algorithm,
which can be used for point-in-polygon operations, that is theoretically optimal for both
searég time and space requirement. Although theoretically elegant, thq k-structure is
definitely not a practical method for representing polygon networks since a change to one
polygon requires retriangulation of the entire network. Saxﬁct [77] has also noted the
unsuitability of the k-structure by commenting that a general updating procedure for this

structure has not been reported.

Historically, the most widely used tessellation structure has been the flat, square
grid commonly referred to as a rasrer. The main reasons for this are its compatibility
with the array structure of the FORTRAN programming language and with devices used
for spatial data capture (e.g., scanners) and raster-based output devices [68]. The sim-
plest format for representing a polygon network in raster is that of a 2-d array with each
array element storing the color of one pixel. Figure 2.1 shows the raster array representa-

tion for the polygon network of Figure 1.1.
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Figure 2.1 Array Representation of a Polygon Network.

The primary drawback of a raster data format is the excessive storage required because
all pixels are represented, regardless of color. Another serious limitation is that boundary

information is difficult to extract.

’

For large thematic data sets represented by raster structures, it must be assumed that
the array representation is located in contiguous external storage. This permits the use of
direct access storage techniques and allows for the the efficient performance of the
location-based operations. The point inclusion operation is simply an array lookup
operation which can be performed with O (1) accesses. Rectangular windowing involves
computing the array clem;nts corresponding to diagonally opposite corners and selecting
only those pixels.in between those locati?ns [21]. On the other hand, the attribute-Based
operations require exhaustive search sinéié;there is no provision for fcferencing the loca-
tions of colors. This takes O (p) retrievals, where p is the ﬁumbcr of pixels in the array.
The thematic overlay operation consists of traversing two registered array representations

and comparing pairs of pixels. This operation also requires O (p ) retrievals.

The storage problem of the raster can be reduced by using a compression technique

known as run length encoding [64). Each row in the array representation may have

>
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cénsccutivc pixels with the same color. Run length encoding compresses each row of
pixels into a sequence of values denoting pixels of the same color. For example, a set of
n cdnsecutive pixels with color ¢ may be dcnotcgl as the two values n,c. Figure 2.2
shows a run length encoding for tﬂé array representation of Figure 2.1. Run length
encoding can result in significant $pace saving [64] and it does not adversely affect the
pcfformance of the location-based opcrations.\ It does, in fact, speed up the windowing,
attribute-based, and overlay operations since fewer records arjc stored. However, the
retrieval cost complexity for these operations remains O (p ), where p is the number of
pixels. An example of a run length encoding method and its application to representing

terrain data is described in [57].

Row Run Length Encoding
ISR S 6A 2B .
I 6A.2B .. .
I N I W3¢ . i
I A I 4A.2C 1B, 1C :
I R 2B, 3A3C ]
.6 __J . 2B3AD2C
I 3B, 1A,4D ____________ )
8 2B, 6D

Figure 2.2 Run Length Encoding.

Another technique for reducing the storage rcquirement is the class of nested ressel-
lation models or hierarchical data structures collectively known as quadtrees.
Hierarchical data structures have become an increasingly important representation tech-
nique in the fields of GIS, image processing, and computational geometry [77]). As such,

we review this class in the next section.
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2.2. Pointer-Based Quadtrees

The term quadtree has come to mean a class of nested tessellation models whose
common property is that they are based orj‘_i the principle of recursive decomposition of
space [77]. Quadtree structures are diffcréntiatcd on the basis of th; type of data
represented and on the principle guiding fhc decomposition process. Quadtrees have
been pidposed for the representation of point, line, and region data. The point quadtree
[77] is used to rcprcsen(.,poiﬁt data and is an example of a dcéomposition process

gotverned by the input data. This results in an irregular decomposition of space.

Quadtrees used to represent region data are based on the regular dccompositioq of
space, that is, they subdivide the embedding space in a regular manner, independently of
the location of the data. The most studied quadtree approach to region representation is
the region quadtree , which is based on a recursive, square tessellation. This method
represents an image based on the successive decomposition of the image space into four '
quadrants o -«al size. Quadrant subdivision continues until homogenous subqﬁadrants
(or blocks), pussibly pixels, are obtained. The decomposition is usually represented by a
tree structure of degree four. The nodes of the tree correspond to subquadrants of the
image. In the case of a binary image, all the leaf nodes are either BLACK or WHITE and
all interior nodes are said to be GRAY.

Polygon networks may be represented by region quadtrees as well. In this case qua-
drants are subdivided if they do not lie wholly within one polygon. Each of the leaf
nodes for such a mulfi-color quadtree is assigned a color designation. This type of quad-
tree encoding is the basis for a GIS used to process thematic data such as land-use
classifications {70, 72). An example of a region quadtree is found in Figure 2.3. Figure
2.3a shows the maximal block decomposition of the polygon network of Figure 1.1. The

tree representation is shown in Figure 2.3!3.
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20

~
The most natural way to represent quadtrees is to use a quaternary tree structtire.

Each record describes a quadtree node and has space for at least four pointers; one each
for the four subquadrants. Spaﬁal operations can then be implemented as tree traversal
algorithms. In particular, the set operations, windowing and the overlay operation
require exhaustive traversals of quadtree pairs in parallel. The point inclusion operation
consists of following the path from the root of ‘thc tree to the leaf n::>dc containing the
point, and requires O (log n) retrievals, where n is the number of nodes in the tree. With
the quaternary .formulation, a complete quadtree of height h has (4**1-1)/3 nodes, where

the root node has height zero.

The region quadtree represents an improvement on the storage required by the raster
due to the 2-dimensional aggregation of homogenous blocks of pixels (as opposed to the
1-dimensional compression of run length encoding). The imfarovemcnt varies according
to the level of aggregation in the data. In fact, for color maps of considerable detail or for-
unclassified satellite data, quadtrees may not be appropriate [21, 89]. This is because of
the considerable storage overhead associated with tree representations. A quadtree with
A leaf nodes has (A—1)/3 internal nodes. The storage of the pointers further increases the
space requirement. The use of pointers leads to the additional problem of pbintcr follow-
ing operations that are required*when performing tree traversals. The latter problem is
especially ac;u;c when quadtrees are kept in external sforagc, as poir{tér following can

lead to an unacceptable number of disk accesses [24, 77].

One way to reduce the pointer storage overhead is to subdivide the space into two
equal sizcd parts always switching between the x and y axes. This method, termed a bin-
tree [46] is analogous to the multidimensional binary search tree (or k-d tree) proposed
by Bentley [61. Using a bintree reduces the number of pointers needed for each internal

]
node to two and generally leads to fewer leaf nodes [77]. However, the height of a bin-
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tree for any study area is twice the height of the corresponding quadtree, which typically
doubles the cost of location-based operations. The cost of the point inclusion operation,

for example, requires O (log n) retrievals, where n is the number of nodes.

Frank [30] introduces a variation on the decomposition principle of the quadtree that
i§ the basis of a structure calleda F ield Tree (see also [31]). The decomposition princi-
ple is altered so that each level of subquadrants is systematically shifted on the plane. In
both the quadtree and the Field Tree, each cell is subdivided into a number of smaller,
congruent cells that totally overlap the ori ginal‘cell. For the quadtree, the number is
always four but for the Field Tree, since the smaller cells are shifted, usually nine cells
are required. Figurc 2.4 illustrates the decomposition pﬁncipic for the first three levels of
a Field Tree. Level zero consists of a single cell covering a study area. This cell,
bounded by solid lines in Figure 2.4, corrf:sponds to the root cell of a quadtree decompo-
sition for the same area. The root cell is subdivided into cells 1/4 its size (like the quad-
tree) but these level one cells are translated in both x and y by 1/4 the side length of the
root cell. To fully cover the root cell, nine level one cells (bounded by dashed lines in the
Figure) are required. Each level one cell is again subdivided into nine cells, at level two,
but some of these are shared by adjacent icvcl one cells. Four level two cells (bounded
by dotted lines in the Figure) are associated with a level one cell. The other 631. cells are

associated with adjacent level one cells. Thus, level one of the Field Tree is subdivided

into forty nine level twe ells

Figure 2.5 she -ee realization of the Field Tree in Figure 2.4. Since a
quaternary tree str - .« aly four descendents of a node are immediately bclow’

the node. The ot gts are located in standard locations in the subtrees of

the north, northeast, bors of the node. For example, the children of node

12 in Figure 2.5 are located in the subtrees of nodes 12, 28, 44, and 60. The five non-

\ ~
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Figure 2.4 Field Tree Decomposition Principle.

immediate descendents of node 48, which covers the study area, are descendents of nodes

112, 176, and 240, which are outside the study area. Node 192, the root of the Field

Tree, completes the structure making it one level bigger than a corresponding quadtree.
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Figure 2.5 Field Tree Representation.

Not all cells of level two or deeper overlap the study area (i.c., cell 48). For exam-
ple, only the center twenty five cells of level two are needed to cover the study area. The
other twenty four cells need not be represented. The number of cells in a complete Field

Tree of height A that overlap the study area is given by

h i 4'I+1_1
1+ Y412 = —— +2"*24 ph -4, Q2.1

i=1
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The first term on the RHS of Equation 2.1 is the number of nodes in a complete quadtree
of height A. It is evident that a complete Field Tree of height & has only slight}y thore
nodes. In Figure 2.4, only nodes 15, 27, 39, and 51 need be stored as the descendents of

node 12, but all descendents of node 60 must be stored as they all overlap the study area.

The Field Tree may be usc& to represent pixel-based pplygon networks in a manner
similar to quadtrees. Although this may not ha\(c been Frank’s intent [3*1]. using the
Field Tree as a tessellation technique produces a structure comparable to the quadtree.
Two characteristics of the Field Tree stand out as significantly different from a quadtree. ) /)

P as all descendents of a homogenous cell in a quadtree are homogenous (and there-
fore not represented), the descendents of a homogenous cell in a Field Tree need not all
t%c homogenous. In fact, only the center descendent's guaranteed to be of the same color
(e.g., cell 60 in Figure 2.4). The other eight descendents may be multi-colored since they
only partially overlap the parent cell. The second difference is the splitting property of
the Field Tree compared to the quadtree. Consider a small polygon centered in a non-

“homogenous study area. In a quadtree, the polygon is split into four parts and is

- represented in all four quadrants of the root. In general, any region that is split by a
quadtree cell boundary remains split in subsequent levels of the tree. The orderly transla-
tion of the levels of a Field Tree provides cells of diminishing sizes that cover all regions
of the study area without splitting those regions throughout the tree. For example, the
polygon centered in the study area is never split by cell boundaries, »(/hilc a small

polygon split by a cell boundary on level i is enclosed by acell at level i+1 or level i +2.

The Field Tree has one more level than a corresponding quadtree and also requires
more nodes than the quadtree for the same study area due to thc shlfung of levels. This
implies that the spatial operations cost more with the Field Tr& than with a quadtree.
However, the extra level only introduces five subtrees (at nodes 76,108,140,156,204)
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rather than 12 subtrees as would be the case with a quadtree with one extra level. The
increased storage due to level shifting is minor, as shown by Equation 2.1. The splitting
property of the Field Tree makes it less effective than the quadtree for the location-based
operations. For example, the point inclusion operation with a quadtree stops at a homo-
genous cell since there is no subtree to search. In contrast, homogenous cells in a Field
Tree may have subtrees sinte they share descendents with neighboring cells. Since only
the center descendent is known to be of the same color, only 1/9 of the time does the
point inclusion operation terminate at a homogenous cell. In the remaining cases, the
operation ‘)may require further search to locate the enclosing cell (in the worst case the
search cc;ntinucs to the bottom of the tree). The performance may be improved by stor-
ing color information in the internal nodes of a Field Tree. Both the quadtree and the
Field Tree require exhaustive search for attribute-based operations. Since the Field Tree

is slightly larger, the cost for these operations is more expensive.

As a tessellation structure, the Field Tree compares unfavorably with the quadtree
for the reasons noted above. However, there appears to be some benefit in using the
Field Tree as a spatial index to geographic objects [45]. We discuss this claim in Section
3.5. In addition, the Field Tree provides a mechanism, not available with quadtrees, to

enhance attribute-based search and this aspect is discussed in Section 2.6.
\

2.3. Pointerless Quadtrees

There has been considerable research to minimize the storage requirement and
pointer overhead of quadtrees. The quadtree structures resulting from these efforts are
termed pointerless quadtrees . They can be grouped into two classes: those that represent
the quadtree as a collection of its leaf nodes and those that represent all of the nodes of a

quadtree in a sequence corresponding to a traversal.
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Linear quadirees , originsing with Gargantini [34], are representative of the first
group of pointerless quadtrees. The original formulation was designed for the encoding
of binary images and resulted in a space saving of at least 66% by the elimination of
internal nodes, pointers, and WHITE leaf nodes. The remaining BLACK leaf nodes are ‘,

LY

cach encoded with a locational code describing the location of a cortr of the node and a
marker indicating the size (;r level) of the node. The locational code corresponds to a
sequence of directional codes on the path from oot of a quadtree to the leaves. This
is equivalent to taking the binary representation of the x and y coordinates of a corner

pixel of a leaf and interleaving the bits from each coordinate. The leaf rfodes are ordered

by the locational code and stored in this sequence.

Traversing the leaf cells of a quadtree in the order of their locational codes follows a
track through space known as a Peano curve (the locational codes are also called Peano
keys). In general, this technique (also known as Morton indexing or Morton order [77)),
is used to map n-dimensional space onto a linear representation. A significant result of
this is that points close together in space will zend to be near to each other in the linear
representation (i.e., computer memory). We call this property of the Morton order the
locality of access . Since, in a GIS, it is often the case that the next location to be
retrieved is near the current location, the Morton order tends to reduce the search effort
(disk accesses) by continuing the search from the current location. Morton indexing also
facilitates inorder traversal of the leaf nodes of a quadtree without any pointer overhead.
The interested reader is referred to [34, 54, 62, 68, 77] for more in depth discussions of
this tepic.

Gargantini proposed that linear quadtrees be stored as arrays. On external storage, a
simple way of doing this is by storing the nodes in a relative file with the records ordered

by Morton index. Attribute-based and overlay operations are enhanced since there are
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f?wcr nodes to traverse and pointer following is eliminated. The location-based opera-
tions can take advantage of the node ordering. The point inclusion operation can be per-
formed with O (log A) retrievals, wherg'A is the number of leaf nodes, by using binary
search techniques [75]. The indices ofnodcs intersecting a nccta‘ngular window can be
determined from the locational codes of two opposite comers of the window [38]. This
enhances rectangular windowing in that the relevant nodes*may each be retrieved by node
index with binary search. Windowing with large, irregular windows, in general rc;.]uxrcs

O (A) accesses since a linear quadtree must be traversed in parallel with a window linear

quadtree to discover the overlap with the window.

LN
Adapting linear quadtrees to represent multi-color images involves retaining all leaf

nodes since each leaf node is assigned a color. This method still saves space over
»

pointer-based quadtrees since internal nodes and pointers are eliminated. A representa-
tion for each leaf node is described by Samet, et al [75] in which each leaf is represented
by a 3-tuple of <key, level, color>. The key element for each leaf is a locational code
constructed from the coordinates of the southwest pixel in the leaf. The level element
refers to the level of the leaf in the quadtree (with the root at level zero). Figure 2.6
shows the linear quadtree encoding for the polygon network of Figure 1.1.

<0,2B> <42B> <83D> <93B>

<10,3,D> <I11,3,A> <12, 2A> <16,1,A>

<32,2D> <36,3,A> <37,3A> <383D>

<393,C> <40,2,D> <442C> <48.3,C> P

<49,3,A> <503,C> <513,C> 952;2:A> ’

<56,3,B> <573.C> <58,3,C> <593.0>
<60,2,B>

Figure 2.6 Linear Quadtree Representation.

[

The linear quadtree representation of a polygon network is used to facilitate a discussion

of the location-based operations in Section 2.5.
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I\'ﬂark and Lauzon [53] propose that the collection of leaf nodes’ be compressed by
using a variant of run length encoding. Their technique, known as 2-dimensional ru;i;
encoding (2DRE) discards from the linear quadtree all but the first node in any subse-
quence of nodcs‘of the same color. The locational codes of intervening blocks can be
recovered by knowin‘thc vodes of two successive blocks. This rcprescntation is more

compact than linear quadtrees, hence the spatial operations (traversals) can be performed

more rapidly.

The second class of pointerless quadtrees is obtained by a depth first traversal of the
nodgs of a quadtree. This formulation is called a DF-expression [42] and consists of a
sequence of symbols: a polygon ‘color for each leaf node and marker symbol for each
internal node. For example, the polygon network of Figure 1.1 has the following DF-

expression. The symbol ’(’ is used to represent internal nodes.

((BB(DBDAAA(D(AADCDC((CACCA(BCCCB

Figure 2.7 DF-expression.

Like the linear quadtree, the DF-expression is more cdmpact than a pointer-based quad-
tree. The DF-expression is also more space efficient than the linear quadtree. Rather
than storing the location and size of each leaf node explicitly asin a an& QUadtrcc, in a
DF<expression, this information is obtained by sequentially reconstructing the quadtree
using the internal node symbol. Evcn‘though the nodes of thc ion are ordered
like the linear quadtree, binary search cannot be used for thé gCaudn-based operations

since the sizes and locations of the nodes are implicit in the sequence. Only a sequential

Uavcxf;al of the DF-expression can discover this information. Thus, location operations
require O (n ) retrievals, where n is the number of symbols in the DF-expression (which

is equal to the number of nodes in the comresponding quadtree). Attribute operations also
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. .8 .
require an exhaustive traversal of the DF-expression.

2.4. Cell Methods

For small applications, the structures discussed so far are adequate, if they can be
s’t\orcd in internal storage. However, for large thematic applications there is usually far
too much data for eﬁ'ectiv’e storage in memory. The direct transfer of these techniques to
external storage causes groblems of which the most cited is that pointer following may
lead to an unacccptabl‘

mber of disk accesses (i.e., retrievals) [23, 77]. This section

discusses methods of representing linear quadtrees in¥xt¢mal storage.

The B-tree [17] has been utilized for structuring the leaf nodes of quadtrees~ on disk
[1,75]. The B-tree, an extension of the binary search tree concept, is a dynamic structure
that remains balahced under insertions and deletions and supports record retrieval in
O (log A) disk accesses for location-based search, where A is the number of leaf nodes.
As previously mentioned, a relative file organization of a linear quadtf-eé;',o"tfers O (log A)
location-based access.cost. However, updating a relative file is more costly than updat-
ing a B-Tree. Although these methods are better than the O (X) access cost of sequential
files, they are not as good as direct access or hashing methods which have O (1) access
cost. However, Fraditional hashing sch?es gre not suited to a dynamic GIS environment
since a fixed amount of storage must be allocated in advanc-c [38]. This can lead to
undef-utilization of storage space when it is over-estimated, or costly reorganization of

filss if overflow occurs due to under-estimating the space.

. Several dynamic hashing methods have been developed that dynamically allocate
storage space while.attempting to maintain O (1) retrieval cost. Two approaches to
dynamic Mashing have arisen: those that maintain a directory whose size varies as the size

of the file, and those that do not use a directory. The methods which maintain a directory
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resolve overflow by splitting the affected bucket into two buckets, distributing the
affected records across Bom buckets, and somehow maintaining a correséondcncc
between the directory é.nd the buckets. The prominent directory driven dynamic hashing
method that has been applied to spatial data is extendible hashing [28). This method
uses a two-step process to locatc\a bucket: hashing determines a directory element and
then a pointer within that directory element is used to locate the bucket. Linear hashing
[49] is a dynamic hashing method that does not use a directory. Formulas are used to
locate buckets directly in external storage in a one-step process. This method resolves
overflow by chajn{ng (attaching) overflow buckets as required. Bucket splitting is per-

formed in a predictable manner so as to maintain a high storage utilization.

With both extendible hashing and linear hashing, as th¢ amount of data increases, a
new hash function must be used to addﬁress a larger key space (and vice versa as the data
set decreases in size). These methods are dynamic because a hash function can be deter-
mined easily by knowing the directory size (for extendible hashing) or the number of
buckets (for linear hashing). In contrast, with traditional hashing schemes the selection

of a new hash function is a major consideration.

Much work has been done under the headings of cell methods and bucket methods
with the aim of ensuring efficient access to point data on disk. The most successful cell
methods utilize either extendible hashing or linear hashing. These methods can and have
been extended tothe representation of region data encoded in a linear quadtree format.
Since the nodes of a linear quadtree may be ordered by locational code, cell methods may
?c used to organize the nodes as if they were points. The reader is rejlgtrrcd to [23, 38] for

in-depth discussions of these techniques that are briefly reviewed below.
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.
Extendible Hashing
The locational code provides the basis of an extendible hashing function that may be
used to organize the nodes of a linear quadtree in a set of fixed-size external storage areas
called buckets. For 2-din;cnsional point data, the interleaved bits of coordinates forms a
Je

key space of binary numbers given by ,{yﬁ‘
\

AR

. :
a2, (2.2)
i=0

where ¢ is the length of a locational code in bits and g; is a binary digit. An extendible

hashing function h, may be defined as N !

hq(key) = zd:ac—d«n—i 2, (2.3)
» i=0
where d is the length of the hashed (or pseudo) key and d<c. The hash function h4 takes
the leftmost d bits of a locational code to produce a locational code of length d. It is
extendible since d may be increased to provide greater hashed key resolution when two

keys are the same in their leftmost d bits.

The hash function hy provides direct access to a directory consisting of 2% pointers
to fixed-size buckets. The first pointer points to a bucket that contains all keys for which
the pseudo key consists of d consecutive zeros. This is followed by a pointer for all keys
- whose pseudo key begins with d—1 zeros followed by a 1, and so on lexicographically
[28]. The last pointer is for pseudo keys consisting of d consecutive ones. To store the
linear quadtree nodes of Figure 2.6 using extendible hashing, we begin with a two ele-
ment directory (i.e., d=1) with the pointers zero and one referencing a single bucket.
Each node is added to the bucket by computing its hashed key h ;(key), accessing that
directory element, and placing it in the referenced bucket. Assuming a bucket capacity of

b=5 records, the insertion of the linear quadtree nodes of Figure 2.6 results in a directory

N\
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and set of buckets as shown in Figure 2.8a. The hash function is k5 and the directory has

23 elements.

Bucket splits are triggered by insertion of keys into full buckets. Two types of splits
are possible. The first, z:nd most common, occur‘s when a bucket that is pointed to
(shared) by more than ope directory clement overflows. In this case, a new bucket is
a!located, the keys are distributed across both buckets (according to the hashed key), and
one directory pointer is adjusted. For example, inserting new keys 17,18,25,26, and 28
causes bucket C to overflow. A new bucket H is allocated and the resulting structure is
shown in Figure 2.8b. The second type of split is triggered by an overflowing bucket that
is not shared by more than one directory element. This causes the directory to double in
size since a new hash function must be used. However, only one new bucket is allocated.
For example, inserting ahew key 13 in the structure of Figure 2.8a causes bucket D to
overflow. The hash function now becomes h4, the directory doubles in size, and a new

. bucket H is allocated. The resulting configuration is shown in Figure 2.8c.

The significant advantage of extendible hashing is the guaranteed O (1) retrieval
cost for retriéving one node of a linear quadtree. Since the bucket capacity is often -
greater than five, retrieving a node also tends to retrieve the neighbors of the node due to
the Morton ordering of the nodes. Extendible hashing achieves a two disk access
retrieval cost no matter what the size of the data set. This results in'a structure that
optimizes the point inclusion opcratio‘n and facilitates rapid windowing operations. The __
price paid for this performance is the storage overhead of the directory. The directory
can grow to be very large if the data is highly clustered. Each time the directory, doubles

in size, however, only one new bucket is allocated. .
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Figure 2.8 Extendible Hashing Representing a Linear Quadtree.
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Since the directory of extendible hashing references the buckets by pointers, the
buckets may be located anywhere on external storage. As data is added, bum( splitting
causes physical scattering of the records that are logtﬂl}omcrcd by Morton index. This
implies that extendible hashing does not preserve the locality of access property of a
sequential organization for linear quadtrees. Periodic assignment of the buckets to one

contiguous storage area is requiréd to physically maintain the buckets in Morton order.

This assignment requires a costly reorganization: of the entire structure.

The EXCELL method [82, 83] is an adaptation of extendible hashing to k-
dimensional point data. In a 2-dimensional setting, it consists of a dircctor;' implen}(:nted
as an array that provides access to a set of buckets in a manner very similar to the above
technique. The EXCELL method partitions the plane into rectangular cells and the direc-
tory maps the cells onto data buckets. The decomposition induced by EXCELL
corresponds to that of a region quadtree (at even levels) singe all cells are split in two

when the directory is doubled.

Linear Hashing

- Linear hashing is a'dynamic hashing method that does not use a directory to manage
the cells of the hash address space (buckets). Instead, a set of hash functions similar to
cxfcndiblc hashing are used to map the key space directly onto a set of bucket chains. A
bucket chain consists of a fixed-size primary bucket plus zero or more fixed-size
overflow buckets attached as a linked list. The primary buckets of a set of chains are
located in coﬁﬁguous external storage. As records are added, overflow buckets arc
attached to primary buckets to resolve overflow conditions. Linear hashing is designed to
maintain a high utilization of the allocated storage space using a predefined threshold.
Bucket splitting is triggered by the overall storage utilization exceeding the threshold,

regardless of where overflows occur. Only one bucket is split each time the storage
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utilization threshold is exceeded, hence the term linear hashing. The splits progeed in a
predictable manner so that the hash function can always locate a bucket chain in one disk
access. For 2-dimensional point data, the locational code is once again the basis of a
hash function h; which may be defined as

1

k ,
hy(key) = A e ? (2.4)

§ = .

where k is the length of the hashed key, ¢ is defined as for extendible hashing, and k <c.
The hash function h, takes the leftmost k bits of a locational code, reverses their order,

and produces a locational code of length k..

Consider a set of primary buckets indexed from 0 to 2'~1. The buckets are split in
order of their indices so that bucket 0 is split into bucket 0 and 2°, then bucket 1 is split
into bucket 1 and 2i+1, and so on until bucket 2° -1 is split into buckets 2'~1and 2'*1-1.

- This splitting process now repeats with the 2°*! buckets, and so on triggered by too high
a storage utilization. Since the index of the bucket to be split is predetermined and the-
index of a bucket that overflows is random, chaining of overflow buckets is used to
resolve any overflow condition. Overflow keys are moved back to primary buckets when

\nx{se buckets are split. I ‘

Assuming a primary bucket capacit; b=4, an overflow bucket capacity b =2, and a
storage utilization threshold w=0.70, the nod:s of the linear quadtree in Figure 2.6 may
be organized in external storage using linear hashing as shown in Figure 2.9. Figure 2.9a
shows that seven brimary buckets and five overflow buckets are required. The hash func-
tion is h3 which may be used to access up to eight buckets. A feature of linear hashing is
that at most two hash functions are required to locate the correct bucket chain for either
retrievirg or storing a particular record. For example, in Figurc 2.9a, the hash function

h1 is used to locate any key. A query retrieving a record with a key of 58 hashes to
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bucket 7, since h3(58)=7, which does not currently exist. In this case, h, is used, which
hashes to bucket 3. Bucket 3 has three overflow buckets attaéhed which means that
retrieval of a record with a hashed key of 3 may require up to four disk accesses. The
arrow pointing to bucket 3 in Figure 2.9a indicates the next bucket to split. If two new
keys, 17 and 24, are inserted into the structure, then the storage utilization threshold is

exceeded and bucket 3 is split into buckets 3 and 7 (see Figure 2.9b).
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Figure 2.9 Linear Hashing Representing a Linear Quadtree.

Keys 56-60 can now be moved to bucket 7 since it is now accessible directly with 5.

\

{



’ 37

The next bucket to split after bucket 3 is bucket 0 since buckets 0-3 were split to create
buckets 4-7. The next cycle of splitting occurs with buckets 0-7. Note, in Figure 2.9b,
that the overflow chain attached o primary bucket 3 is now shorter. In general, if b>1,

then we expect a tendency for linear hashing to produce short overflow chains (49].

Interpolation-based index maintenance (9] is a multi-dimensional realization of
linear hashing. It adapts the locational code to linear hashing similar to the way
EXCELL adapts it to extendible P)Ashing. The association between the cells of the search
space and the buckets is obtained by a modification of the split strategy of linear hashing.
When a bucket is split, the keys are distributed such that fccys with smaller valucs.mmain
in the original bucket while keys with larger values are moved to the new bucket (see
Figure 2.9). This logically preserves the Morton order of the keys (i.e., the linca; quad-
tree nodes). As Figure 2.9 shows however, the keys are not physically stored in this
order implying that locality of access is\iNt preserved. In facft, as the structure grows, it

tends to scatter the records more and more in secondary storage.

Interpolation-based index maintenance requires overflow chains to handle collisions
until the linear hashing function splits the overflowed primary buckets. However, for
uniformly distributed data, short overflow chains are expected [49] implying that
interpolation-based index maintenance has an expected O (1) access cost for single record
retrieval. This performance may not hold for clustered data. In the worst case, this
method requires O (n) accesses to retrieve a single node, where n is the number of nodes
stored. In contrast, EXCELL guarantees O (1) access cost at a price: a potentially large
directory. An advantage of interpolation-based index maintenance is that storage utiliza-

tion is controlled, allowing(efficient use of storage space.
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Hybrid Hashing

Davis and Hwang [22, 24, 39] and Hwang [38] have proposed a method that com-
bines extendible hashing and linear hashing to produce a hybrid cell method providing a
compromise between the overhead of a large directory ang the advantage of high storage
utilization. This method modifies linear hashing so that it uses a directory and resolves
collisions by splitting rather than chaining to a predefined maximum partition depth
maxd. Typically, this directory is maintained in memory to avoid a disk access. Extendi-

- ble hashing is modified so that when the depth of the grid partition exceeds maxd, chain-
ing of overflow buckets is used instead of expanding the directory. This hybrid method
uses linear hashing to expand cells below maxd. Since a bucket associated with a cell at
depth maxd is referenced by a directory element, the bucket may reside anywhere in
secondary storage. The liﬁcar hashing technique is therefore applied in mllltiplc areas of
contiguous storage (the number of areas corresponds to the number of cells partitioned,
below maxd ) rather than one area of contiguous storage [24, 39]. This effectively uses up
otherwise free storage space since it cannot be predicted which cell requires expansion
due to insertion of data. However, linear hashing does not have to be applied using con-
tiguous storage for thc)primary buckets [49]. Litwin [49] describeg methods by which

~the primary buckets may be stored®h non-contiguous storage. In this case, a directory is
used to map the hash address space to the primary buckets. While this method reduces
the amount of contiguous storage rcqui,r,od tfo:‘cach application of linear hashing, it does
not eliminate the need for contiguous s‘x'o'raglt. Lastly, we note that this hybrid cell
method also does not preserve the localit;' of access of linear quadtrees since linear hash-
ing is used.

Davis and Hwang’s hybrid cell method is less sensitive to the distribution of the

data than the EXCELL method in that a cluster of data affects only one cell rather than



the entire partition. A cluster that requires cell refinement below maxd is handled by
linear hashing which prevents the directory portion from growing. In this regard, this
_hybrid cell method is similar to the hierarchic EXCELL method of Tamminen [84]. In
hierarchic EXCELL, each cell corresponds to either a bucket or the directory of another
hierarchic EXCELL file, up to a maximum depth. In this way, clusters do not cause dou-
abling of the top-level directory size. The hybrid cell method improves upon the two disk
access principle of EXCELL by providing an expected one disk access cost for record
retricval. However, in the worst case the method requires O (n ) accesses due to chaining
of overflow buckets below maxd. This is particularly true if data clustering is itself
hierarchical (i.e., clusters within clusters). In practice, however, thematic data sets rarely
exhibit such extreme clustering, so the hybrid approach can be characterized as offering
O (1) location-based access with good properties: a manageable directory size, infrequent

use of overflow chains, and good storage utilization.

The Grid File

The grid file [61] is a technique developed for the storage of multi-dimensional
point data on disk. Like EXCELL, it partitions the plane into rectangular cells and uses a
directory that maps the cells onto data buckets. For 2-dimensional data, the grid file uses
a 2-dimensional array with each element containing a pointer to a bucket. The grid file
decomposition scheme differs from EXCELL and interpolation-based index maintenance
in that both the position and orientation (i.e., along which axis) of the partition lines are
not fixed. Consequently, the grid file requires two additionai 1-dimensional arrays
(called linear scales) to keep track of the pﬁdons along each axis. This method
achieves a two disk access cost for record retrieval by a table lookup technique. Each
coordirate of a point is used with one linear scale to determine and retrieve the relevant

directory element. A second retrieval, using the directory pointer, obtains the data
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bucket. i

The grid file, like the EXCELL method, is sensitive to the data distribution. Once
again, overflow triggers bucket splitting and refinement of the partition. When a bucket
that is shared by more than one directory element overflows, an addin'o.nal bucket is allo-
cated and one pointer is adjusted to reference the new bucket. When a bucket that is
referenced by only one directory element overflows, the partition must be refined. In
contrast to EXCELL, both the axis along which to split and the position of the splitting
point can be chosen arbitrarily so as to resolve the overflow. This refinement of the parti-
tion splits only one cell in two thereby introducing a 1-dimensional cross section in the
directory (i.e., a new row or column). With EXCELL, all cells are split in two causing a
doubling of the directory. The more attractive growth of the grid file comes with the
expense of maintaining the linear scales, which must be maintained in memory to ensure
a maximum of two disk accesses for record retrieval. The irregular tessellation induced
by the grid file makes it inappropriate for the storage of linear quadtree nodes. While
linear quadtree nodes may be organized by locational code like point data, they have
areal extents in standard locations and sizes induced by a regular tessellation. Using the
grid file to store the nodes causes overlap conditions since the locational codes do not
indicate areal extent but indicate only the splitting points. This deficiency makes the grid
file unsuitable for location-based operations such as point inclusion. However, the attrac-
tive size of the grid file (compared to EXCELL) and the simplicity of its table lookup
deem it a method worthy oﬁnh

er investigation for the representation of linear quad-

trees.

All of the cell methods described above attempt to offer O (1) location-based access

to data buckets contaihing spatial data. Since these cell methods are essentially tessella-

- tion methods applied to external storage, they do not offer any improvements for
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attribute-based operations. While optimizing location-based operations, §lbeit at the
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expense of greater storage demands, cell methcds require cxhaustiy{ttsmh‘(& "ft’tribulc
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operations, : i -
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With cell methods, the organization of the data within the Bu&cts is of minor
importance since access to any parn of a bucket in memory is far faster than a disk access.
Thus, the buckets can store region data in the form of polygon networks in either tessella-
tion or vector formats without affecting the retrieval performance of location-baséd
access. If a vector format is used to organize the data contained in a bucket, theq we

A .
regard this as a hybrid method'(see Chapter 4). Since cell methods capture locality, the
4

) . : o "y
amount of processing required to perform the location-based operations can be localized

R [} /
to the extent and size of individual cells. Y

The aBll methods discussed in this scctil*hvc all been developed using a sifigle
storage unit model in which data is accessed scri;ly.l The speed with which data ma);’bé'
retrieved or stored with such a model is limited by the operational speed of the storage
unit. Recently, Wu and Burkhard [92] introduced a file organization scheme based on a
model of simultaneously accessible multiple storage units. They present a scheme, called
M-cycle allocation , that extends interpolation-based index maintenance to multiple ran-
dom access storage units. Their analysis strongly suggests that the time T required to
retrieve a set of data using a single st;ragc unit model can be reduced to T/M using M
storage units. They show that M-cycle allocation achieves near-optimum par‘allclism for
processing of orthogonal range queries (rectangular windowing, for our purposes). The
relevance of M-cycle allocation to the hybrid model developed in this thesis is discussed
in Chapter 5.

! The single storage unit model may use many physical devices, but conceptually, these devices
comprise one large storage unit.
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2.5. Location-Based Operations

As searching techniques, tessellation structures organize the embedding space from
which the data are drawn. The spatial subdivision of tessellation structures enables
searching that can be lo::alizcd to specific locations. This enhances location-based opera-
tions such as point inclusion. We are interested in structures that reside in extérnal‘
storage. Consequently, the costs of spatial operations depend on the number of disk
accesses required. For a raster structure, each pixel is dlrectly addressable and the point
‘inclusion operdtion is simply a lookup operation which can be done with O (1) disk
accesses. Quadtrees ag‘gre gate homogenous blocks of pixels in tree structures which
means that tree searches are required for location operations. In the case of pointer-based
region quadtrees, thi; requires O (log n) retrievals where n is the number of nodes in the
tree. For linear quadtrcc§ represented with ordered relative files, a lqca;ion search can be
done with O (log A) retrievals, where A is the number of leaf node., gincc the leaves are

in Morton sequence, the tree search reduces to searching a sorted list [75]. Using a cell

method can reduce thc cost of a point inclusion opcraudq to 0 )] accesscs
To analyze in greater detail thé cost of pcrfomnng locauombased ogcranons wnh

location-based data structurcs we shall use (he linear quadtree fom'mlatmn This r&'done
primarily to facilitate the dxscussxon of hybnd techniques in Chaptcr 4. Fxrst,we dcscnbc
the method of encodmg a polygon network in a linear quadtree format Then the costs of

the point inclusion operation and the wmdqwmg operation are discussed.

,7 .

e The original linear quadtree formulatxon was dcs:gncd fo: encoﬂl’ng bmary 1mages

and only BLACIg'nodes were retained [34]. Adapnng linear quadtrccs to rcprcsent
multi-color i unages simply mvolvasf;:etammg all leaf nodes. We use the formulation due

to Samet, et al [75 ich consist"'s”of a ﬁUplé of <key, level, color; for each leaf (see

wion ?f;).//

g
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s
Linear quadtrees may be stored in external storage by using methods such as an

ordered relative file, a B-tree, or a cell method. The best structure to use depends on the
application. For static and/or small applications, a relative file is adequate, but for
dynamic applications, a tree structure is more effective for handling updates. If the latter
method is used, then gomc of the pointer overhead eliminated by the linear quadtree for-
mulation is reintroduced. If retrieval efficiency is paramount, then a cell method is
appropriate. For' the purpose of analyzing the cost of location-based operations, we
choose the EXCELL representation because of its simplicity and because it offers
guaranteed O (1) retrieval cost. The directory consists of a direct access file of 24
records, where d is the length, in bits, of the current hash function h;. Each record stores
a pointer to a data bucket. Each data bucket consists of a fixed amount of disk space stor-

ing a number of linear quadtree nodes.
2
Point Inclusion

&

The poiht inclusion operation consists of determining which linear quadtree leaf
contains a given point. The input consists of the coordinates of the gi'vcn point and the
operation is pcrfc;rmcd by extendiple hashing. A locational code is constructed from the
coordinates of the given point and used to directly access a directory record. The pointer
in the directory record is used to retrieve the corresponding bucket which contains a
number of linear quaduiee nodes in Morton order. The color of the enclosing node
(polygon)~is found by searching for the highest locational code that is less than or equal
to the locational code of the point. Note that this search takes place in meinory. Thus,
the enclosing node is determined with O (1) accesses.
Windowing e ,
The general windowing ofic‘ration consists'af extracting a portion of a polygon net-

v HA
. - - .
! , ~ L SN

[9]
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work that intersects a window defined by an arbitrary polygbn covering the same area of
interest. We assume that both the polygon network and the window are encoded as linear
quadtrees. The linear quadtree for the window is binary: BLACK nodes represent the
window while WHITE nodes make up the backg-round. Figure 2.10 shéws the linear
quadtrcé'cncoding of the window polygon shown in Figure 1.3.

<0,2,W> <42 W> < 8,2,W> <122B>

<16,2,W> <20,2,W> <243 W> <25,3,W>

<26,3,B> <273,W> <282,W> <322.W>

<36,2,B> <40,2,W> <442 W> <482 B>
<52,2,W> <56,2,W> <60,2, W>

Figure 2.10 Linear Quadtree of a Polygon Window.

General windowing is performed by a parallel traversal of two linear quadtrees, one

fear quadtree consists of the

dssrasmsen,

background nodes from 1,, plus thc\window nodes it . r&ﬂaccd by the overlapping

.nodes from #;. This windowing operation entirely traverses both the window and the

‘pblygon network quadtrees. Since the extent of the window on the polygon network may

be large (in the extreme, portions of all nodes of I; may be co\crcd), the cost of window-
ing is linear with respect to the size of the polygon network. That is, O (n) retrievals,
where n is the number of nodes in t;. The constant for this asymptotic complexity is low

since each node of both input linear quadtrees is retrieved only once.

The exhaustive traversal overhead may be aVoidcd for rectangular windowing by
computing the rccord indices of the intersected nodes directly from diagonally opposite

comners of the rectangle [38]. This technique reduces the search space by identifying

i
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relevant nodes. The buckets containing these nodes may then be retrieved directly by
using'the locational codes of the relevant nodes. Note that each bucket is retrieved only
once, even though it may contain several relevant nodes. The worst case complexity of
rectangular windowing is the same as that of general windowing since the r_cﬁc:tanglc may

* intersect all of the nodes of ¢;.

2.6. Attribute-Based Operations

g
]

Since the embedding space is organized, and not the spatial entities, attribute-based
operations with tessellation models require exhaustive search. Recall that attribute-based
.operations take as input one or more colors and then must search for those pixels possess-

.
ing the color(s). For a raster structure, an attribute search requires O (p ) retrievals where
p is the numbc;' of pé ‘ In the case of pointer-based quadtrees, this search requires.a
complete tree travcréﬁce all leaf nodes must be examined, that is, O (n ) retrievals,
where n is ihc number of nodes in the tree. Linear quadtrees and 2DRE linear quadtrees.
reduce this effort since onl)\lcaf nodes are stored. The fact remains that these structures
must be exhaustively searched to satisfy attribute-based operations. In this section, we

discuss methods of enhancing the performance of attribute-based search Jpd hence, the

performance of the polygon set operations.

Inverted List

One way to enhance atribute searches for tessellation structures is to use an
inverted list structure, indexed by attribute, that lists the spatial locations (pixels or
blocks) for the attribute values. The ipverted list can be implemented as a flat structure
such as a sequential file or as a hierarchical structure as discussed in the next paragraph.
This technique is equivalent to but morAc‘ storage demanding than a vector representation.

It is equivalent since, typically, all of the polygon boundary nodes will require a record in

Ld
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the inverted list. The increas;:d storage results from having to store nodes of polygon
interiors as well. In a dynafmic environment, having two representations of the same data
results in twice the updating overhead and costly re-inversion overhead as the data grows.
In a large GIS setting, requiring twice ;hc storage for one set of data might be unacc::cpt-

able and the updating overhead would certainly be intolerable in an interactive setting.

i

Peuquet, et al [67, 81] have proposed a Knowledge-Based GIS (KBGIS) Incorporat-
ing a spatial database Built around a pair of hierarchical data models. The interesting
aspect of KBGIS is the noton that attribute data has a hierarchical nature which can be
exploited to enhand® attribute-based search. The data in KBGIS is organized spatially in
structures called spatial trees and is also organized in an object oriented approach by
object trees . Spatial trees consist of linear quadtrees which store location and attribute
data, using a separate tree for each theme. The attribute data for a theme is also organ-
ized by attribute value in object trees implemented as pointer-based and-or trees. Ini-
tially, the spatial trees for an application are fully defined while the object trees are ini-
tialized with only basic attribute data. The spatial trees are used to rcsolyé both -
location-based and attribute-based queries. As attribute-based queries are resolved,
relevant scarch"ir;fonnation is retained and used to refine the object trees. Subsequent
queries involving similar attributes can then be more efficiently resolved using the object
trees. The effectiveness of the object trees depends on the extent of the hierarchy that the

attributes of a theme admit.

Attribute Pointers

A simple way to reference the attributes in a quadtree is to use one pointer for each
attribute. Each attribute pointer points to a node in the quadtree of lowest depth whose
subtree completely contains the attribute. For a linear quadtree, two pointers are used to

indicate a range in which the attribute may be found. In general this method reduces the

.

\
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search effort for attribute operations since it eliminates search for the relevant subtree or
the start of a range. In the worst case, an attribute pointer(s) may reference the root of a
~
quadtree or an entire linear quadtree. The storage overhead for this method is minimal
§

and the maintenance of the pointers is far simpler than maintaining an inverted list.

Chen [15, 16] proposes the use of quad tree spatial spectra (QTSS) as a search
heuristic to aid in searching the spaﬁal trees of KBGIS. This technique involves ébmput-
ing statistical information regarding the spatial distribution of attribute data encoded in
region quadtrees. Properties of attribute data such as density and approximate location
are examples of spectra that may be computed. For each level in a quadtree, a spectrum

is computed and a QTSS tree is constructed to facilitate a heuristic search procedure.

Forest of Quadtrees

Jones and Iyengar [41] introduced the concept of a forest of quadtrees, that is, a col-
lection of the subtrees of a binary quadtree, each of which corresponds to a maximal
square. Maximal squares are identified by altering the concept af an internal node to
indicate something about the contents of its subtrees. An internal node is said to be of
type GB if at least two of its sons are BLACK or of type GB. Otherwise the node is of
type GW. Maximal squares are defined as either BLACK nodes or internal nodes of type
GB. A forest is the set of maximal squares that are not contained in other maximal

squares and that constitute the BLACK area of the image.

The forest concept can be extended to multi-color quadtrees by identifying the set of
maximal squares for each attribute (color) in the quadtree. For the quadtree in Figure 2.3,
which represents the polygo.n network in Figure 1.1, a forest can be constructed for each
of the colors A,B,C, and D. This is done by considering one of »t)hc colors as BLACK and

the oth-r colors to be WHITE. These forests can be used as attribute directories that
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identify roots of subtrees that contain the appropriate color. The forest directories are
0 ‘

obtained by storing pointers to the maximal squares for each ¢ol<;r. Figure 2.11 shows

the forest directories for the quadtree of Figure 2.3.

Color Forest
A 6,7,8,f 17,20
B b21,25 . ]
S R E R R
R

" Figure 2.11 Forest of Quadtrees.
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o

For mt&-color quadtrees, this representation leads to enhanced attribute searches for a

specific color since large areas of other colors can be ignored.

Field Tree

The splitting property of the Field Tree tends to reduce the partitioning of small
homogenous regions (polygons) across subtrees since the levels are alwa\{s shifted. The
ancillary structures discussed above can be used as attribute indices to guicie attribute
search with quadtrees. These attribute indices reference smaller sibtrees within a Field
Tree than within a quadtree due to the splitting ‘propcrty of the Field Tree. This would

seem to reduce the search effort for attribute operations, although the value of this tech-

nique requirc@escarch to substantiate this claim. R
\
All of theabove methods involve ancillary structures that reference locations by

attribute. Consequently, there is no distinction between simple and compound polygons.
An attribute-based operation retrieves all regions of a particular color that, in genéral, is a

compound polygon. To retrieve one specific region (i.e., a simple or complex polygon
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within lygon network), an additional level of organization is required. Such an
organization must assign a unique identifier to each region. Anexample of sucha -
method consists of constructing bounding nectangles for each polygon in a polygon net- |
work. For each attribute in a theme, a sét of bounding rectangle dcscﬁptidns or polygon
windows is kept. Each window is assigned a uniciuc identifier such as a polygon number.
This method permits accessing a tessellation structure by attribute or bx specific polygon.
This method also reduces the cc;st of attribute scarqb'to that of rectangular windowing

with minimal storage overhead and easy maintenance of the polygon windows.

The polygon windows technique is equivalent to an attribute-based (i.e., vector)
organization since the polygon object is introduced as the basis of an additional level of

organization. Chapter 3 discusses attribute-based data structures in greater detail.

2.7. Thematic Overlay

The thematic overlay operation requires complete traversal of the structures
representing two polygon networks. For each pair of pixels or blocks (nodes) in the input
structures, the overlay operation produces an output pixel or block whose color is the
union of the two input colors. For example, the overlay of two linear quadtrees
representing themes is performed with a parallel traversal in a manner very similar to
windowing. For any of the location-based data structures, the retrieval cost of the over-
lay operation is linear with respect the number of cells in the tessellations. For example,
O (p) with raster structures, where p is the number of pixels, O (n ) with quadtrees, where
n is the number of nodes, and O (A) with linear quadn‘ccs.gﬁ“crc A is the number of leaf
nodes. This is the best that can be done, so those structures that reduce the amount of
Q'data stored (e.g., 2DRE linear quadtrees) are the most effective for thematic overlay.
Furthermore, it should be noted that location-based data structures are much more

effective for thematic overlay than methods based on attribute-based data structures, as

@]



we shall see in Chapter 3.
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> Chapter 3
Attribute-Based Data Structures

-3.1. Introduction

The class of attribute-based data structures is analogous to the traditional map
wherein thematic content is controlled and the location of polygon boundaries varies
according to changes in attribute value. The spatial distribution of attributes defines the
polygons in a polygon network and the attribute values are associated with the polygons
(i.e., locations are associated with at&ibutcs). This contrasts with location-based data
structures which associate attribute information to locations imposed by a tessellation of
the plane. The distinguishing characteristic of attribute-based data structures is that

polygons may be ordered by attribute to permit rapid execution of attribute-based opera-

tions.

Common to g}l attribute-based data structures is the representation of points by 2-d
coordinates. Curves are represented by sequences of points (vectors) and regions are
constructed by considering closed sequences of vectors. Due to this formulation, this
class is also known as the class of vector data structures. Before discussing vector data
structures, we define some of the terminology that is used. A 2-d coordinate pair defines
a point or vertex. The straight line segment between any two vertices is called an edge.
Vertices that are common to three or more edges (two or more polygons) are called
nodes. The sequence of vertices (set of edges) between any two nodes is a chain. For
this thesis, we designate a curve to be either an edge or a chain. The size of a vector
represchtation of a polygon network is O (e ), where e is the total number of edges in the

network. Figure 3.1 shows a vector representation of the polygon network of Figure 1.1.

The coordinates defining vertices are the most storage demanding aspect of vector
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Figure 3.1 Vector Representation of a Polygon Network.

structures. The term chaincode refers to a well known family of techniques used to

reduce the space required for coordinates. This method generally consists of defining

chains in terms of unique directional codes that represent uniklength vectors. The origi-

nal formulation of Fréeman [33] defines eight symbols for four hgit length vectors in the
principal compass directions and for four V2 length vectors in the four gor{al flirections

(see Figure 3.2).

3 2 1
4 0
L
5 7
6

Figure 3.2 Eight Direction Chaincodes.

A chain or polygon boundary is approximated by specifying the coordinates for the start-

ing location and a sequence of chaincodes. With eight directions, each code requires
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three bits for storage. The prccisivof the chaincode approximation may be altered by

defining different sets of ¢haincodes [68]. A chain or polygon boundary may be

equivalently represented by w chaincodes of sufficient precision or a sequence of 2-d
(‘!.‘ﬁ e T

coordinates. The siBhificang difference between the two representations is the storage

reduction that may be achieved by using chaincodes. For thematic data composed of

highly irregular chains (not straight lines), the use of chaincodes requires considerably

less storage than sets of 2-d coordinates.

There are two general methods with which to organize thematic vector data.
Polygon-driven data structures use the polygon object as the basic unit and list the edges
or chains for each polygon. Curve-driven structures use the edge or chain as the organi-
-4t .al object and list the polygon information for each edge or chain. Our discussion of
vector data structures is gujdeab by this classification but it should be noted that some of

the methods presented us rganizational tcchniqlﬁ:s.

3.2. Polygon-Driven Structures

The most primitive polygon-driven structure i§ the spaghetti model which isa
direct one-to-one encoding of the boundaries of the polygons on a map [20]. Each
polygon is represented in a polygon table by listing the edges (vertices) that make up its
boundary. This results in the storage of shared edges twice and can dause gap and sliver

problems if the edges are doubly digitized.

An improvement of the spaghetti model is the point dictionary [65] in which the
coordinates of every vertex in a polygon network are stored only once in atable. For
each polygon, a sequence of pointers to records in a chain file indicates the chains mak-
ing up the boundary. For each chain, the chain file lists the vertices (or chaincodes)

comprising it. This method eliminates the redundant storage of points and avoids the

~

;\
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v . »
sliszr and gap problems of the spaghetti model. An example of such a structure is given

by Weiler [91] and is described in detail in Section 3.4.

]
A number of vector data models have also been proposed by investigators of
geometric complexity. These are elaborate models for representing polygons and are
characterized by the use of hierarchical organizations such as rectangular approxima-

tions of polygon boundaries. We briefly review two of these methods.

The Binary Searchable Polygonal Representation (BSPR) [11] is a bottom-up
approach to curve approximatios using a hierarchical sqt of bounding rectangles. In this
method, a curve (e.g., the boundary of a polygon consisting of a chain) is decomposed

_into simple sections that are monotonic in both the x and y directions. Upright rectan-
gles are used to approximate simple sections and a tree structure is uilt by repeatedly
g¢ombining adjacent simple sectons into compound sections until the cntirc curve is
covered by ong compound section. In [1}] Burton shows how the BSPR can be used for
perforrmng tﬁc pom&g&-polygon %rauon and Wolygon Intersection operauon with
algomhm#bascd’on f‘nﬂmy seaﬁh Néte that thc{fvcsofupmi of thg BSPR approximation
is fixed; that is, g!;xcc t}'lc* %ﬂwf thc mcmimsxmpﬂc sections 1s chosen, it cannot

* bevaried = " - Lo Ay .,7

B 3 " } \
Smp trees [5] are a sxrmlar medwd fot thc rcprcscntanon of curves. This top-down

r‘»x

&

.
apgroagl starts with-a rcctanglc cnclosmg the entire curve. This rectangle is recursively
- nnto two parts of strips at a-point common to both the curve and the rectan-

glf,., '

nddQspfia strip: trec approximate a polygon boundary with arbitrary precision. In the

i spllmng recurs until all strips are of widths less than sotue threshold. The leaf

l‘ -L: th; strips corrcspc)nd to the edges of a polygon and the strip tree is a binary trcc

: fganon of the polygon vertices. The strip tree is an improvement over the BSPR as
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e
rectangles of BSPR are all upright. Furthermore, the resolution of the strip tree is not

constrained by an a priori choice of rectangle width as is the case with the BSPR.

Each of the above data structures providesaq mechanism for representing one
polygon in a polygon network. Implicit in all of these organizations is the existence of a
polygon table (which is why they are called polygon-driven). For each polyon in the net-
work, the polygon table provides a pointer to the data describing its doundary and, for the
hierarchical structures, also its interior. Complex and compound polygons in {ge network .
can be accommodated by introducing some additional organization of the polygon table.
A mechanism, due to Weiler [91], for hierarchically organizifg complex and compound

2
polygons is described in Section 3.4.

Using polygon-driven structur aMMsod operatiéns are cost effective. & g
Given an attribute, it is nccessary( ﬁi:o?mm the polygon table to determine the |
relevang polygons. The pointers associated with the polygons provide access to only that
(boundary) data associated with the relevant polygons. Since the polygon table may be
ordered or indc)_(cd'by attribute, the attribute-based operations may be accomplished with

O (e) retrievals, where e is the numbet of cdgcs comprising the polygons with the

N

desired attribute. !

Generally, however, there is no spatial ordering of the polygons in the polygon t;blc
(but see Section 3.5 where we discuss a téchniquc that achieves some success in this
regard). Consequently, location-based operations require the exhaustive retrieval and
processing of polygons in the network. Both the point inclusion operation and the win-
dowing operation require O (e ) retrievals, where ¢ is thc rﬁmcdgcs compnising the
polygons, sirice each polygon must be tested in the worst cas> The thematic overlay
operation for two polygon-dnvcn structurcs requires OTEQYrcmcvals since the dctcrmi-

nation of the intersection points of the set of e edges is an O (e ) operation.
L



Despite these superficial similarities in the performance obtained with all of the
polygon-driven structures, there are some signiﬁéant differences. The hierarchical
models provide improved asymptotic cost performance of most polygon operations once

, allof.the relevant polygons have been identified a;ud retr,icved For example, using the  »

BSPR, the proctssmg costs of the pomt mclusmn operation z;nd the polygon intersection
operation are O (log e) and O (e log €) operations, rcspccnvely, ‘where e is the total
nur;lber of relevant edges. In contrast, these operanons have cost complexities of O (e)
and O (e? operatxons respectively, when usmg the spaghetti or point dictionary struc—

P

tures

The hierarchical models enable performance of the sp#tial operations as tree
searches, but this performance does not apply to polygon networks. For example, the
BSPR does not reduce the search effort required to identify candidate polygons for the
point inclusion and set operations, or to determine the overlap of a window with a
polygon network. In fact, the storage required by the BSPR is typically about twice that
required for the vertices alone [11], making it more storage demanding than the point dxc-
tionary yet not offering performance i improvements. Similar. comments may be applied
equally to the strip tree. For these structures, the decomposition criterion is governed by
the data. Hence they require an enormous amount of updating ov?rhead whenever the
polygons change - the entire structure giust generally bc reconstructed from scratch.
;‘Whilc these structures may be viable for a static spatial database application, they do not

appear t6 be desirable in the case Qf a dynamic GIS setting.

In summary, we regard the point dictionary as thie most desirable polygon driven

vector data structure.

T e s
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3.3. Curve-Driven Structures
»

The basic curve-driven data structure involves the use of a list of edges to organize
vertex and polygon informativon. In its most primiti\\/e form, the edge file is the only
structure used and, for each edge, lists the start vertex, the end vertex, the left polygon,
and the right polygon. The information provided by the edge file is s'uﬁicicnt to perform

.all of the usual spatial operations: Point inclusion is resolved by first searching for that
edge which is closest to the point. Then determining which side of the edge the point is
on, gives the en&osing polygon. Windowing is accomplished by intersecting all edges
with the edges of a window pblygon. Attribute r‘g&'?w/al consists of finding all edgcs. hav-
ing the attribute (polygon) on their left or right side. All operations, with the exception
of edge retrieval, using this primitive data structure, require exhaustive searching of the
edge file. A simple example of this structure is discussed by Dangermond [20]. The
Dual Independent Map Encoding (DIME) model t§7] is a well known realization of this

approach.

The curve-driven data structure has one significant advantage over polygon-dri\}cn
methods. Once thc- boundaries of a pzolygon have been retrieved, information about
neighboring polygons is immediately available (since left and right polygons are given
for each edge). Because of the availability of this neighborhood informatioﬁ, the curve-
driven data model has been termed a topological model by some authors‘(e.g., [68]).
Figure 3.3 shows the basic curve-driven data structure for the!i)olygon network of Figure
3.1. Figure 3.3a shows a portion of the edge file and Figure 3.3b depicts a portion of a-
point dictionary. Note that the node and vertex clements in the edge file are pointers to

the point dictionary so as to avoid duplication of coordinates.

The curve-driven data structures that organize polygon information using edges are

best suited for applications where the number of edges per polygon is small, or w}{erc
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Figure 3.3 Curve-Driven Data Structure.

)
liqear features are the central aspect. The DIME model, for example, was originally
designed for storing street maps to aid in data capture for the U.S. Census. Ina DIME

file, edges are used to define linear features such as streets, blocks, railroads, and rivers.

For thematic data, where the number of edges comprising a polygon is large, a

curve-driven data structure using a chain, rather than an edge, as the basic element, is



more appropriate. The POLYVRT data structure [65] is one example of such an

approach. POLYVRT overcomes the serious retrieval incﬂicicn%ics of the previous

methods by introducing a hierarchical organization for the separate storage of vertex,

chain, and polygon information (see Figure 3.4).
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Figure 3.4 POLYVRT Data Structure.

Rather than an odgtj file, it maintains a chain file where, for each chain, left and right

polygon identifiers and the start and end node pointers are stored. The coor&ihatcs of

nodes are stored in a separate node dictionary. The coordinates of points between nodes

are kept in a separate point file. For each chain, a pointer references the beginning of the

appropriate set of coordinates.
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In addition to the chain file, POLYVRT also maintains separate lists that assemble
the boundary chains for each polygon. A polygon table is used to store a pointer for each
polygon that references the appropriate chain list. The dual organization by polygon and
%y chain allows access by polygon identifier and by chain identifier. This additional
‘sgucturc makes POLYVRT a polygon-driven method as well.

The disﬁnction between points and nodes in POLYVRT is an important one. It has
no effect on polygon adjacency relationships and leads to processing and storage advan-
tages [65,68]. Queries concerning the adjacency of polygons need only consider the
polygon and chain information. This makes these types of qperations dependent on the
number of polygon chains rather than the number of points maklng up polygons (as with
DIME). In terms of retrieval costs, the coordinates of non- node vertices need only be

retrieved when required.

Since POLYVRT incorporates a polygon table, attribute-based operations do not
require exhaustive search. The table may be ordered or indexed by attribute as with the
polygon-driven methodg. For the location-based operations, POLYVRT offers no
retrieval improvcgeﬁts since potentially every polygon must be tested. The hierarchical
organization of PO:LYVRT makes it a highly pointer-based structure and the search |

required for location-based operations can®ead to an unacceptable number of page faults.

An interesting topological vector method has been dcsignc& by the U.S. Bureau of
_the Census for its Topolog1cally Integrated Geographxc Encodmg and Referencing
(TIGER) system [56]. TIGER will automate the mappmg and{clated geographic act1v1-
ties required for the Bureau’s survey and census programs, stamng with the 1990 Dcccn-

nial Census.

The core structures ‘of TIGER are randomly sequenced lists, one for each of three

topological elements: O-cells, 1-cells, and 2-cells which correspond to nodes, chains, and
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-
polygons respectively. The lists are maintained as separate files and contain both loca-
tional data and attribute data. TIGER providci‘ort{g linkage of attribute information t(@
a4

each element in all three lists by way of pointék\g-tb auxiliary stryctures.
S o _
The central elements of TIGER are chairis which are stor¢d randomly in a chain file.’

The TIGER chain file is similar to the POLYVRT éﬂain file in that it stores, for each
chain, the start/end nodes and the left/right polygons. Each chain record points to another
chain record having a common node as an endpoint. This technique is referred to as
threading and is used throughout the TIGER structure. This type of threading can be
used to determine the chains around each node. In addition, the chain file threads the
chains afound polygons. Like POLYVRT, the coordinates of points are stored separately

in a point file and are referenced by pointers in the chain file.

TIGER also incorporates an additional structure, a polygon table, which has one
record for each polygon in a polygon network. Each fccord stores a pointer to the first v
chain in the chain file which has the polygon on its left or right side. Only one such
pointer is needed since the other chains bounding the polygon are thpcadcd from the first
chaig record. A pf)lygon directory is used to index the polygon table which allows for

the ordering of polygons by attribute. This makes for rapid attribute retrieval.

In addition to the polygon directory, access to polygons with TIGER may be
achieved by other directories which index geographic covérs. A geographi€ cover com-
bines groups of polygons into geographic areas. Examples of covers are boundaries of
states, counties, and census wracts. Geographic covers are indexed by directories that may
be sorted according to access needs [56]. Far e‘ach cover, a pointer references the first !
polygon in the MOn table that is contained in the cover. The other polygons making
up the cover are threaded within the polygon table. The use of covc;rs enhances attribute

operations by predefining often accessed sets of polygons.
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’I’Hc TIGER model is similar to the POLYVRT model in the use of a vertex, edge,
polygon hierarchy. Both models are highly pointer-based in that POLY VRT uses lists of
pointers to files while TIGER threads sets of pointers within files. In terms of attribute-
based operations, similar comments apply to TIGER as to POLYVRT. TIGER is, how-
ever, a significant development in terms of the location-based operations. This is}'&v}éf;

cussed in greater detail in Section 3.5. .

There are many other examples of vector data structures similar in concept to the
so-called topological model. Some of these are used as the underlying structures of com-

mercial GIS’s. These are discussed in Section 4.4.

3.4. Attribute-Based Operations

. Since vector models define spatial objects, the objects ¢an be organized to permit
rapid retrieval based on attribute. For polyg:)n networks, a polygon-driven organization
accomplishes this by providing an inverted list of polygons indexed by attribute. Vector
data takes up the same of amount-storage whether it is stored in an inverted list or not.
The extra storage required for an index to the inverted list is minimal since only one
pointer for each attributc value is required. This technique essentially orders a polygon
table by attribute. Each pointer references the start of a group of polygons possessing the
relevant attribute. This permits a query for a particular attribute to retrieve the polygon
data with O (e) accesses, where ¢ is the number of edges posscssin‘ that attribute. Addi-
tional organization of the polygon table can be used to facilitgtc retrieval of individual
regions in a polygon network (simple or complex polygonsif As described for location-
based data structures, each region must be assigned a unith identifier. The holes in

‘complex polygons must be ider}tiﬁed to allow correct resolution of attribute-based opera-

tions. °
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To analyze in greater detail the cost of performing attribute-based operations with
attribute-based data structures, we shall use the structure proposed by Weiler [91], with
some modifications. Once again, as in Section 2.5, this is done primarily to facilitate the
discussion of hybrid techniques in Chapter 4. First we present Weiler's data structure

and then we discuss the costs of the polygon set operations.

Weiler introduces a two level data structure to represent a collection of spatial
objects called contours that, for our purposes, are equivalent to polygons. The top level
of the structure is a binary tree that models two geometric relationships between
polygons: coexistence and containment. Two polygons coexist if neither polygon lies
within the area of the other (i.e. non-overlapping), while containment implies that one
polygon lies within the area of the other. For a polygon network, the definition of coex-
istence is relaxed to include adjacent polygons whose overlap consists of common edges.
Each node in the binary tree represents one polygon. One branch points to a polygon that
coexists within the same area while the second branch points to a polygon that is con-
tained within the area of the parent polygon. This method is general enough to accom-
modate arbitrarily complex polygons in a polygaggnetwork. This is a significant

improvement over the other vector structures.

Each node in the _binaiy tree contains an entry point to a graph structure which is a
vector encoding of the polygons. The graph structure consists of polygon, edge, and ver-
" tex elements that are linked together to represent adjacency relationships. The entry
/point references the start of a circular list of the edges forming the boundary of a
- -polygon. The list is doubly >1‘inkcd to allow clockwise and counter-clockwise prdcessing

of the edges. Each edge points to the vertices that define it, while the entry pdint edge
also points back to the parent polygon node. Figure 3.5 shows Weiler’s data structure for

the polygon network of i,igurc 3.1. Figure 3.5a shows the binary tree structure and Fig-

«
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ure 3.5b depicts a portion of the graph structure. X
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Figure 3.5 Weiler's Data Structure .2

4 . .
Eg f?hc purposes of Chapter 4, we inroduce a modification to Weiler's data struc-
¥

o

ture, QA 'gfiudy area may correspond to a conventional cartographic map. We refer to
TRy

polyﬁ)ns that are completely within the map as closed while those polygons that cross

¢. 2 Modified from Weiler [91].

“vi W,
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the map boundary are termed open. The boundary of the map may be viewed as a set of
pseudo-edges that complete opep polygons. The modification to Weiler’s data structure
is made within the graph structure and consists of identifying pseudo-edges. See [91] for

details on a realization of the data structure. -

.

Polygon Set Operations

In general, the polygon set operations invdlve two polygon networks n p and n, and
a polygon from each network p, and p,. The intersection opex;ﬁlion obtains a polygon p 4
such that py =p | (~ p,. The union operation obtains a polygon D3 Such that
P3=p1 P2 The difference operation obtains a polygon p+ in either of two ways:
P3=P1-P10Ip3=p2-pi.

Weiler introduces a polygon comparison algorithm that can generate, in a single
application, all of the required information to perform the polygon set operations. The
comparison process resolves two basic spatial relationships between the boundaries of
the input polygons: intersection relationships and enclosing relationships. The algorithm
takes as input two or more graph structures representing the input polygons and produces
a graph structure for the output polygons. Each output polygon is characterized as to its
boundary, holes, and ownership . Ownership is a function reflecting all of the input
polygons that own or overlap the area of an output polygon. In essence, the comparison
algorithm performs an overlay of the two input graph structures and determines the own-
ership of each output polygon. The polygon set operations are solved by a selection of

one or more groups of output polygons.
The polygon comparison algorithm consists of four steps:

1. Merge: The input polygons are merged into a single graph structure by finding the

intersections between edges. All qutput polygons are embedded in the output graph.
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2. Traversal: Each polygon boundary (contour) is traversed to discover its ownership.

3. Disjoint contours: Additiood tests are made to characterize any disjoint boundaries
or any disjoint graphs of polygons. One result of this is that holes are associated

with their containing polygons. '

4. Selection: The output polygons can be grouped by ownership. The results for any
of the polygon set operations can be determined by selecting the appropriate
group(s).

See [91] for a detailed description of the polygon compggison algorithm.

The simplest approach to performing the polygon set operations is to use Weiler’s
comparison algorithm to compare two polygon networks. The result is then obtained for

the desired operation by selecting the output polygons on the basis of ownership.
Using the above notation, if the operation is

intersection  then select polygons owned by p ; and p,.

union then select polygon§ owned by p, orp,.

difference then select polygons owned by p , and not by p,,

or select polygons owned by p, and not by p,.

Weiler’s structure is a general approach to representing polygon networks with arbi-
tranily complex polygons. For polygon networks consisting of only simple polygons, this
structure reduces to a sequential list of coexisting polygons. In this case, the cost of attri-
bute retrieval is the same as that of the other vector structures. Searching of more com-
plex polygon networks is more costly since holes must be searched. In this case, coexist-
ing polygons at each level of the binary tree in Weiler’s structure can also be ordered by
attribute. This permits faster retrieval of the relevant polygons while still providing the

general solution of the graph comparison algorithm.
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3.5. Location-Based Qperations
, v
From the standpoint of searching techniques, vector models are characterized by

structures that organize the data to be searched (i.e., the edges comprising polygons) not
the embedding space. Location-based search through vector models must proceed by
testing each polygon for inclusion of a point or for intersection with a window. In the
worst case this may mean exhaustive search: O (e) retrievals, where ¢ is the number of
edges. This is easily seén if we consider that the vector structures with polygon tables
order those tables by attribute to optimize at%ribute-based operations. It sgems reasonable |
to introduce another index to the polygons, based on location, to enhance location-based
search. An example of this approach is described in [8]. Unfortunately, it is not gen-
erally possible to transform 2-dimensional space into a linear representation and preserve
all spatial properties of spatial data (e.g., neighborhood or nearness). X"I’hc locational code
transformation gi:§s a linear representation that admits a total orderiﬂg, but it does not
correspond to any orderinﬁﬁin two dimensions. However, there are methods for enhanc-
ing the performance of 1o<;1tion-bascd retrieval and hence, the performance of the point

inclusion and windowing operations. In this section, we describe three such methods.

Polvgon Table Organization

A simple and common method of associatj location information with the
polygons in a pol;gén table is by describing ;nclosing figures for each polygon and
inserting themn into the polygon table. The enclosing (or bounding) figures are simple
polygons, such as rectangles and circles, which are easy to process. Location-based

operations are enhanced since the polygon table may be searched by testing the enclosing

figures without retrieving the polygons.3 In this way, both potential polygons and

3 JIGER also stores in each chain record a bounding rectangle description for the chain.
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. irrelevant polygong‘m‘;u be dé‘gxincd quickly. ﬁis technique avoids the retrieval of
irrelevant ‘\olygons for t\‘esting. However, this technique still entails sequential travcrsz}l
of the polygon table. To reduce search through the polygon table, some other organiza-
tion is rcéuircd. .

The binary tree organization of polygons by Weiler's structure corresponds to a
polygon table. It can enhance the poiny inclusion opa‘ati(?n by using a tree search
approach. Irrelevant polygons may be avoided by following coexisting polygon branches
when the current node does not contain the point and following contained polygon , &%
branches when the current node contains the point. However, in the worst case, thi} |
mcthoa requires exhaustive traversal of the tree. A similar approach gan be used for thé

windowing operation to avoid testin g contained polygons when the enclosing polygop

does not intersect the window. R
' ¢

Guttman [35] describes a dynamic structure called an R-Tree that can bc used 0
index n-dimensional objects stored in a spatial database. R-Trees can bc used to index *
the polygons in a polygon network. TFhe basis for the R-Tree is the hicratdtdéai.drgar;i;;ii
tion of the bounding rectangles of polygons. An R-Tree is similar to a B-Tree with each
node containing records with two fields: a bounding rectangle and a pointer. ;éa'ch' lcaf
node contains index records in which the rectangle bounds a simple polygon,'a'nd't.hcb
pointer references the vector data describing the pdygon. For each rc‘cord ift an intenal
node, the pointer indicates a lower node in the R-Tree and the rectangle bounds all the
rectangles in the records of the lower node. ‘Building an R-Tree requires computin g the
bounding rectangle of each polygon and inserting the index record of the polygon into the
tree. The shape of an R-Tree is govemcd‘ by the order in which the index records are

inserted. Figure 3.6 shows the R-Tree realization for the polygon network of Figure 3.1.

Figure 3.6a shows the R-Tree index and Figure 3.6b depicts the bounding rectangle
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hierarchy. The rectangles were inserted in the order R19,R20,R18,R17,R16,R15 u;ing

Guttman's algorithm.

s

R3 R2 Rl

R20, | R19 LRU RI16 RIS | RIS
. P N
1o vector data
(a)
e, R
I 3 SR
| RIS | RI9
R3/§
RI8
R2
A e | RO | )G
R16 A R S D
R17
4
........ J\\b

Figure 3.6 R-Tree Data Structure.
n
The R-Tree introduces a hierarchical index to the polygons that permits location-

based searches that can be performed with a logarithmic number of retrievals, based on

the fanout of the tree. Each node in an R-Tree has between m and M records which
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means that the height of an R-Tree containing n polygons is at most [ log,, n] - 1. This

. _
represents an improvement over the methods describcd in the previous paragraphs.

Unfonunatcly, for a polygon nctwork the set of bounding rcctangles may have an exces-

Y

A
sive amount of overlap (see Flgurc 3 6). This lmplles that more than one subtree of a
node may need to be searched and tested for the point inclusion operat'{on. The inclusion

~ testing requires the retrieval of polygon data. Thus, the cost mentioned above is only a

best casé value for a retrieval cost that may, in the worst case, requix;c'cxhaustive traver-
sal. Variations of the R-Tree that reduce or clmunatc the overlap problem are descnhed

in {ﬂ3] and [29], respectively.
For the w1ndow1ng operation, the R Tree provides a mechamsm for pcrformm ga
"
fast rectangle check for real or potential intersections between the polygons and the win-

¢ -@

dow Only those polygons which do or potentxally intersect the window need be _
remcvcd for this operanon If the R-Tree index is maintained in internal stora'gc, thxs

3 . :
method requires the least ambunt of disk access for windowing. . .

>

Cell Methods . ' >

-

e

A polygon network may be orgamzcd with a regular tesscllanon by pamnomng the
métwork into cells. Each cell either referenccs those polygons that are contained within it -
“or intersect it, or each ccll contains the porrﬁnof the polygon nctwork that overlaps with

. it, The fOmer mkthod is oncé again a polygon table orgamzauon but the table entries are

induced by a regular tesscllauon The lattcr techmqucmmular to methqu@scusscd in

K 4
Chapter 2. Two vananons are described below. .

-
\ a .
.=
’

Techniques similar to cell methods can be used to orgamze vector data. For exam-

ple, Tamnunen [82] descnbcs an edge vanantif the EXCELL mcthod that pamnons a

-

polygon network into cells and stores polygon information in the buckcts This edge-

o ' : . e »
~ . t >
A . v
» «

X
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’

EXCELL method can be used to localize location-based search to only those cells that are
relevant. The vector data is retrieved from the buckets attachod to the relevant cells and a

location-based operation is applied to this data. / » “

The Field Tree [31] may be viewed as a cell method, that attempts to: store a polygon .
in the smallest cell which completely encloses it. The systematw shifting of cells is ’ |
desxgncd to vary the locations of the splitting lines‘around the plane so that cells may bc
locatep Whldﬁo nﬁipamnon polygons The intent is to store relatively small polygons '
deeper‘; thﬂﬁd ’Free thus avmdln g the overflow of buckets attached to higher level

eells. This method is unsuitable when there are miny relatively large polygons since .

large' polygons crossing cells boundaries cannot be avoided.

Applying the above cell methods to vector models seems to offer location-based
searches at 'costs approaching Lhose of tessellation rnethods. These approaches can be
viewed as combining both tessellation and veoter techniques in hybrid fashions which
can potengi'ally capitalize on the advantages of the combined teehniques. There has.been
a significant ament of résearch and development of hybrid methods and'they are the

: subject of Chapter 4.

Node Table Organization 2

TIGER incorporates a node file that maintains the coordinates for each node in a

polygon network. For each node a pointer references the first chain in the chain file

~

which has the node as an.endpoint. The records in tlfe%ham file pomt to other chains

- havigg, the node as an endpomt The significant feature ‘Qf the node ﬁle is the imposition
of'a spanal ordermg Peano keys are u§§i in a node dlrec:ory to mdg)f the node file

- records in the same way that the lmcar quadtree orders the leaf nodes of a quadtree. The
. l‘ﬁay be*e!hanccd! by usmg bmary search methods to 1dent1fy

v.bﬁ
o

& .
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relevant nodes. For the point ioclusion operation, using the Peano key of a given point
allows rapid &etcrmination of the network node nearest to thatpoint (i.e., nearest in’ .
Peano order). The set of chains cmanaung from the nearest node are Wtamed from the
threaded chains in the chain file. This set of chams divides the space around the nearest
node into neighborhoods, one of which may be the polygon cog\tammg the pomt If none
‘ of the nexghborhoods contains the pomt then this method has at least identified a reason-
able logation within the polygon network from which the search for the enclosing
polygon may begin. ‘
Similarly, the Peano keys of diagonally opposite corners of a rq:tangular window
(or the rectangular extent of an arbitrary window) define a range of keys and allow the
| rapid retrieval of all thc'nodcs with keys in that ra?gc. These nodes reference a set of
candidate chains (hcncé polygons) some of which intersect the window and some of
which do not. Each candidate polygon is intersected with the window and non-zero oves
laps are §ubtracted from the window. This continues until the entire extent of the win-
dow is covered. Notc that the number of nodes initially retrieved may be zero of that thg
set of nodes retrieved may not reference all of the polygons that mtcrscctathc window In
any case, this approach to windowing localizes the windowing opofanon t&a\noflghbor-'
hood within the polygon network from which sca.rch for intersecting WOns may ’

A begin. This is superior to the exhaustive testing required by other vector models.

(TN
.

e

L
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3.6. Thengatlc Overlay °

As discussed in Chapter 2, thematic overlay involves the complete traversal of the
structures rcpr;senting t_\'v'o polygon networks. With a vector representation, the funda- «
. mental operation for overlay is that of testing for intersecting polygon edges. Applying
Weiler’s graph comparison algorithm to two polygon networks is very expensive sih_cc
the search for intersecting edges requires O (e2) retrievals, where e is the number of
edges in the polygoﬁ networks. In ge%éral, only the c@gcs in the neighborhood of a pzllr.-\ '

ticular edge need be tested for intersaction. Since the methods that enhance location-

.

“based search can also be viewed as defining neighborhoods, they ¢an be (w cut dgwn K
o i ‘ .
e

s . *
the tntersection scarc.:h for overlay. This concept is discussed in Section 4.3.%

~ “ ) J
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®
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Chapter 4 ' .
Hybrid Data Structures

4.1. Introduction

The tradeoffs between the vector and tessellation approaches to structuring spatial

data have long been the catalyst for research in spatial representation techniques that

minimize the tradeoffs and capitalize on‘t?advantagcs of each model. Current and
planned GIS applications in‘%lving very large data sets demand effective solutions to the
problems of access and manigylation. The notion of combinin g the vector and tcssell;

tion approaches has been recognized by a number of researchers [8, 18, 47, 51, 66, 90]

A majorgemc of this thesis was cogently asserted by Weber [90] in 1978. He

pointed out that tiee advantages and d@sadvantages of raster data structures are “nearly
perfectly complementary" to those of vector methods. Weber went ay:
. A ]

o . | R
% Therefore it is obvious to make an atterfipt to combine both concepts in a ,
‘ﬁbybrid daza structusle -- that m::? towork in one of the two concepts, as long

.as it is stll economic, andgp s c’\‘évcr to the other, as soon as it starts to
become economic. The paint, at which the switching has to take place, essen-
tiglly is a function of pixel dimension with gridded representation [raster] --
and of the number of invol®ed features with lineal representation [vector]. ...
the transition from griddeq, to lineal representation is to be considered merely
as’[the] last step in a procets 1yccessive refinefient defined by a nesting of
squares of different sizes. . '

The structure that Weber proposed is essentiallyMyquadtree spatigl index t@%;efq%s .

' ‘ . ‘ ) Y
~ an underlying vector encoded polygon network. Each cell of the indcf references the

spatial objects that are contained in or pass through the extent of the céll. Weber noted
that the leaf cells of the quadtree should be much bigger tﬁan the pixels of a raster

representation of the map, otherwise nothing is gained. Unfortunately, he did not °

»
(,déscribc how to navigate his loca‘tional data structure nar did he define the raster and

yl.

VECtOr representatios,
< :

S :
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The idea of corr;b}ﬁing tcchhiqucs for efficient access to spatial data is not new.
Several hybrid épproachqs to structuring spatial data have been suggested in the litgra- .’
ture. To classify, evaluate, and cqompare these approaches we inu'oducc a hybrid spatial
data model as a éanceptual tool. We begin by describing the two components that
comprise the hybrid model: a tessellation ‘component and a vcctor componeht. We then

W criteria that can be used to guide the dccomposmon prmcxple of the tessellation

’ thc model that are discussed in the htcraturc

Asxdc from classification purposes, the hybrid model serves also as a practical tool.

Indcpendent of the decomposition criterion, We therefore give consxdpranoﬂ‘)%nc con-
l

struction, maintenance, and use of the model. To facilitate a discussion of the perfor-
mance of the spatial operations with the hybrid model, a realization of the médel is

¢
presented. Then we discuss performance of the spatial .operations using the hybrid model

and present a cursc:ry cost analysis of an average case. In/t'he last sc{:étion, we discyss
other data str}x;:turcs in the literature that bear i)mc resemblance to our hybrid.

42. A Hybrid Spatial l?drta Model -

’I‘h; tradeoffs between tessellation models and vector models are the 1mpctus for a

spanal data model that capitalizes on both storage ; and proccssmg advamages A hybrid
spatial data model, incorporafing aspects of both tessellation models and vector models,

- 1s the key to conq)ucﬁng this tradeoff. We define a hybrid model as one in which the lim-
iting cases correspond exactly to either afsém'don model or a vector mbdcl and whosc’

; both

. . »
intennediatc'formulations exhibit aspects of both. A divide-and-conquer [2] approach to

representing spatial data leads naturélly to'such a hybrid modcl.
ey

- We begin with a vector encoding of a polygon ne that pdveré an arez; of

Qt. For each criterion, hmmng cases ar‘?&i&ussed which yield specific formula- .

AL

K.
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' mtcresl which is one hmmng case of the hybrid model. A tcssellauon is mtroduQ
subdmde-thc area of interest mto asetof ad)acent tiles. This planar dccomposmon :
serves as both a parution of and mdcx to the spatial data'thln cach tile, the spatial i
daya is still rcprescnﬁ by the vector decl We require that the subd1v1s1on of the area
can, connnuc to any level of rcsolu%n If the hxghcst resolution is that of the" p1xel lcvcl
thcn the other limiting case, a mﬁttcsscllau%macl 1s achlcwd Thc coﬂﬁatmn of ;
a vector model and a tcsscllauon‘model m'ﬂm manner yrelds a hybnd ?dm Uammd@eﬁf % L

The tessellation component of the hybnd model is lhc d,msmn aspcct of the divide-

‘and- conqucr approach. The conquer aspect is achieved by storing sufficient information

in cach tile so that spatial operations can be pcrformcd on a silewise (i.e., tile by tile) -

basis. Each relevant tile or pair of #lgs is independently retrieved and processed. The

reducuon in cost complcxx;y due to tilewise processing is d]SCllSSCd in Section 4.3. In the
vector’limiting case, there is one tile and the entire polygon network is encbded in one )

vccté schtur;: In this case, the spatial operations are performed using vector algo- .

vn'thms. In the tessellation limiting case, each tile re'duccs' to a pixel (or block of pixels)
‘ and the polygon network is represented by a raster (or rcglon quadtree). In thlS case, the

spatial ns are performed using tcssw
lation of theghybrid model a spatial operation is pe ormcd in two steps. Fx?st, the

an 1ntcrmed1atc formu-

relevant tiles are determined using the tessellation compagent and second, thc‘ relevant
(
tiles are processed independently usmg vector tcmes"ﬁ .

» 1
» -’
-

From a pracncal standpomt gammg anyshi m divide-and-conquer means thata
- suitable irffermediate fonnulanon of the hybrid model must be determined. A spccif’

intermediate formulation dé‘pcnds‘on' the criterion governing the decampusition of a
polygon network into tucs In this chapter we consider several criteria that may be used

o’ g'uldc the decomposition prmcxplc and discuss the type of formulauon that anscs from
e, : '
' -
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applying €ach one to a vector cncofd polygon nctwork X sultable formulation depends

on the nature of the application, ca‘pccxally the type and quannty of daja and the types of

opcranons applied to the data. V&‘g&fﬁnc suitable-to mcan a formulatmn in which the
management overhead of thc tessellation component docs not ovérwhelm the reduced

complexity of tilewise vector processing. 'Q . f

4.2.1. Tessellation Component . » ’i‘. ‘
- i'ad‘:'

* The decomposition principle of the region quagtree is the basxi,«oﬁﬂneahssc‘lhnon N

com.oncly of the bhybrd model The Qua&ltmg..subdxvfﬁ%n schemc is attractive for two T

N,

reasons: . i %‘
| d

S 7
» Itis aregular tessellation in which all cells have the same shape and orientation. SJ;*

. The tessellation is unlimited [77] allowing any reso{unon tobe aducvcd . - {" '}
0‘ ,'.

" The tcssellanon component is thus a quadtree partitioning of the plc%nf 1nt0c;lls wklldf Y

“sion until homogenous blgcks (possibly pixels) of colors are obtained. Fos our hybnd'. S

. 5 e
we term tiles. The quadtree serves as both a partition and m& to the spanal 3&4. Tl'}e

resolution of the decomposition.(i.e., the maximum depth of ‘Jic (kiadPEC) is governed by

a resolution threshold. For a region quadtrce, the resolution thre!ho'ld requ&&su-bdm-
J

<.

model, we consider scveral resolution thresholds that lead to different intetmcdiatc for- ' .
4

mulanons Discussion o(rqsdlunon thresholds is dcfcrregio Section 4.2.3, until we

W, describe the organization of the tessellation and vector com¥ponents. a

[
A common operational context in which the hybrid model may be used is that of

representing and manipulating more than one thematic layer for a given study area. An
important pragmatic issue then, is how many quadtree indices (or hybrid data structures)
should be used. There are several alternatives: one quadtree encompassing all themes,

one quadtree per theme, or some mixture of these.
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The advantage of using only one quadtree for all themes is. that only ene index
needs to be stored and maintained and only one index needs to be searched to perform the
spatial operations. Within each tile, th’émcs may be indcpcndently represented (an
example of this approach is mentioned in [ 36]) or they may be merged and arcscptcd’
collcctxvcly (two examples of this approach are found in [18,43]). The disadvantage of
ﬂlc second approach 18 that retrieval of spccxﬁc thematic data for a study area implies
retrieval of u'rclc*t data diite themes aAergcd This increases the retrieval cost of
the attribute-based operations. Mcrgihg thcyyis,produpes simple and complex polygonf.
with each polygon described by several attrib:t:.s. This approach necessitates two typés
of overhead for any quc;'y involving a subset of the themes: search within the underlying
data structure to locate regions of muclcvagt color(s) and‘mcrging of these regions (by
deletion of boundaries) to construct the rcl-cvant polygons. This is expensive for all of
the attribute-based operations smcc they typically involve a small subset of the attributes

' of a theme. Thxs approach also increases the cost of the location-based operations since

merged thcmcs must be processed rather than individual themes.

‘Using one quadtree per themé requircs less storage spage per tile and allows
retrieval of specific thematic data wuhout merging ovcrhcad With this apgroach each
thcmchjdmdually a c\s@ and only relevant thematic data pertaining to a

specific study arca need be redxjeved.) The practical implications of this approach are that

dlﬁ'grcnt themes'must be representedby thcl same type of daw structure and that all of the’
data structures should ha;/e a common origin. Conversion procching is required if either ,
of these requirements is "not met. The approach of one quadtncc per theme also has thc
bcncﬁt of ease of maintenance which is unportant in dynamw applications. Updates to a
thcmc require the least amount of retrieval and processing costs compared to the previous

aﬂaroach. Another motivation for this approach, which is a common organizational con-

-
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sideration, is that different themes are owned, stored, and maintained separately. Thus,
we choose this approach for our discussion. The foregoing discussion illustrates an
example of an issue at a level of organization that is usually higher than that of data
structure development. As mentioned in the concluding section of Chapter 1, this type of

cohsideration is not within the scope of this thesis.

We now desclibe the organization of the quadtree component of the hybrid model.
We assume that the polygdn network for a t,hcmc has.been repeatedly subdividegtipto a
set of tiles that meet some resolution threslhold:’ Due ta the b;ncﬁts mentioned in Section ‘
2.3, we choose the linear quadtrcc' to encodc the organization of the.set of tiles and
thematic content of c}ach tile. WC notc‘that other quﬁﬂcc formsulations can bc used,
although they may be less cﬁegﬁve.- ‘To review, each node in the linear quadtree
corresponds to a tile in the tesseltation and irepresented by a 3-tuple of *'
<key;level,color>. éach tile is ident7M by a locational code (i.c:, key) derived from the

coordinates of the lower left comner of the tile and each tile has an associated depth (i.e,,

level) within the quadtree.

For tae purposes of the hybrid data structure, we extend the linear quadtree

definition 1fi two way:& Since a tile may correspond to an area containing more than one
\
* polygon, a single color designation is not sufficient «q encode the thematic content of the *
-y
. . * . . . -
tile. Therefore, the color in the 3-tuple is replaced bya list of colors contained within a
tile. The second extension is thata pointer is used to reference the vector datg describin g

the interior of the tile. This extended definition yields nodes of the quadnz%‘ -
* ~

hY
described by a 4-tuple of «ey,lcvclaolor.d}la}.. .The elements in the 4-tuple are! T
e key: the locational code of lower left comner of the tile,

«  level: the depth of the tle in the quadtree,



-

)
*  color: alist of or a pointer to the set of colors of polygons within the tile,

*  data: a pointer to the vector data structure for the tile.

-

There are several alternatives regarding the choice of a structure used to realize a
linear quadtree (see Sections 2.3 and 2.4). Since the choice does not affect the subse-

quent discussion, we defor making the choice to Section 4.3, where a discussion of costs

~ depends upon a spccqc implementation.

4.2.2. Vecto'r Component

The vector corﬁboncnt of the hybrid model is the organization of the spatial data
within the tiles described by the tessellation component. The choice of model used to
resent tile interiors most often depends on the app?ication and the source of the data.
hoice betwccx) a vegtor or tessellation method cah also be n;ade depending on the -

A

propcrtics of the data (e. gﬂ for dcnsc~da'ta use a raster, otherwise use a vector method).
Mare research is n:qux;cé muthc a:ca of spatial data complexity (¢.g., [19]) before the
latter criteria can be practically used to guxdc the choice of tile encoding. The primary

_ motivation for using a vector format within tiles is to define a hybnd model mainly for
the purpose of cla.mﬁcauon (thlS being the main theme of the thesjs) of those data struc-
tures which are hybrid ir: nature, that is, possessing pmp&jtics of both tessellation and

vector models. It is therefore essential that a vector fomw\be used withil tiles. The

secondary metivation arises from two observations. First, there exist many thematic
- ¢

) LY
- applications incorporating vector data. Second, for thematic data, § vector representation

vt : .
has two main advantages over a rasterrepbesenation: it is typically much more compact
)

and the attribute-based operlitions can be performcd morc effectively.

~ .

' Regardless of the vector method used, in order to achxcvc the conquer aspect oﬁhc \

hybnd modcl there must be sufficient information encoded within each tile to.enable
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geographic data to be processcd locally within a tile. The vector method used must
effectively support the rcprcscntanon of s:mplc complcx and compound polygons. The
representation of the latter type is especially important since the partition imposed, by the
tessellation on the polygon network inm\oduccs compound polygons. We choose the vec-
tor representation due to Weiler [91] for two reasons (see Section 3.4). Its hierarchical N
representation of polygon organization mirrors that of thematic polygon networks énd the
graph comparison algorithna developed by Weiler has general applicability with respect

to the operations we are interested in. Again we note that other vector representations

.

can be used byt they may be less ‘cﬂ'cctivc ¥
/

4

: Each tile in the hybnd model rcprcscnts 4 subset of a polygon network. Each subﬁ
consists of a set of regions corresponding to pomons of the polygons that overlap the ule
Polygons which are contained within the tle are madc up of closed regions, while
polygons which are partitioned by the tile boundary are made up of open rcgio\ni. Thi; ’
distinction is important because the $patial operations we are considering can %e appliet 3
within one tile or across several tiles. Tile bopndarics form pseudo-edges (or chains)‘:n "o
the boundary.of open regions. Pseudo-edges must be ignored or deleted when consider-
ing operations across Eilcs (e.g., windowing). Weiler’s vector representation can easily
" be modified to allowdesignation 9f pseudo-edges. Pseudo-edges can be used or ignored
as required, but they must be identified. The identiication of cdgv;-s as pseudo-edges is

! 4 , : .
the only mqgifitation we make to Weiler’s graph data strucwre (see Section 3.4).
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4.2.3. Resolution Thr

A very imp;mhm ¢ stic of the hybrid model is the resolution threshold that

governs the quadtree sition. The type of threshold and its particular value deter-
mine several paramefe ,’ 'cn'bing the resulting data structure. These parameters are the
size and depth of s llation cor:poncnt as well as the rile capacity of the vector

componef§ (i.c., Mu( of data in each tile). These paramctcr; directly &ffect the

cfficiency of the hybrid model for performing location-based and attribute-based opera-

tions. In this section, we consider several resolution thresholds as applied to the decom-

position principle of the refion quadtree.

We begin by making a general comment that applies to all of the resolution thres-
holds. By selecting a suitably large value, any of the thrcsl:‘c:lds yields a single node in
the tessellation component. This represents a single tile that covers the entire area of
interest and the hybrid structure is basichlly a vector representation. In this case, the

tessellation componéngnay be eliminated.

At the other extreme, the quadtree decomposition can cogtinue mdcﬁmtcly In real-
ity, there are practical considerations that constrain quadtree dccomposmon to finite lev-

els. Physical constraints of data capture limit the amount of decomposition for any

*tessellation structure, beyond which further decomposition would not yield additional

uscful informggion. We refer to this maximum resolution of a (csscllauon as the pixel
level since the smallest allowable cells are termed pixels. Note, on the other hand, that
thé finite machmc reprcsentauon of numbers effectively mtroduccs a.{mothcr gnd whnch

q
Constrains the vcctor component sincg coordinates of vertices are defined usmg thls ﬁmte

number system. We must assume that the machine resolation is at least as fine as the

resolution of the pixel level, otherwise all p'ucis could not be represented. Con'ccptually,‘

this means that at the pixel lewel, a polygon network does not necessanly consist of

¢
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uniform pixels. For example, a pix'cl may contain a polygon hetwork node at which

4

several edges are incident. Such a pixel does not have one colPr as an attribute since it is

shared by more than one polygon. In practice, the implementation of a tessellation data
structure representing such a situation usually requires a decision regarding the color
assigned to the pixel. The decisipns made at the pixel kevel for each resolution threshold
discussed below, yield limiting cases of the hybrid r;odcl that com:épond to specific data

structures described in the literature. r

In gcneral./ a tile corresponds to an ar::a‘covcrcd by a subset of a polygon network.
At the pixel level, a tile corresponds to a pixel representing one o§ thrc: siffations in a
polygon network. The pixel may be contained entirely within one polygon. Ti1c second
case is that. of a pixel in which one or more céigcs pass through it. The third cacs involves

a pixel in which one or more vertices fall within its extent. It is the latter two cases, in

L3

which a pixel is shared by more than one polygon, that data within the pixel may need to

be adjusted (approximated) in order that the governing resolution threshold be satisfied.

.

J
For any of the resolution thresholds we consider, we require that all tiles above the

. -
pixel level (i.c., tiles that are not of pixel size) satisfy the threshold value. At the pixel
level, athreshold such as a maximum numbcr of colors per tile, may not be achieved.

. We allow tiles at the pixel level to violate the rc%kunon threshold guiding the decompo-

-~ +

sition. We will, howcvcr,‘ descnibe methods of adjusting the vector component of pixel
i /

size tiles to ensure that she govergng resolution thresholll is satisfied here as well. These

Y

modifications will be shown to yield specific spatial data structures dcscrjbcd in the

, - [
literature, thus demonstratipg the general nature of the hybrid model.

4

' ¢ . )
! Before proceeding with the discussion of resolution thrcsholds ‘We should comment

on the practical considerations that can mﬂucncc the rcprescntauon of thcmatxc déta wuh

the hybnd approach Apphcauon dcpcndcm criteria oftcn dctcrmmc the n}c

. o
. .4 . .
s
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decomposifion rather than one of the resolution thresholds discussed below. A common
consideration of agencies that deal with thematic data is the existence of one or two stan-
dard map sizes. Typically, the vast majority of spatial operations caxl be rcsol\'cd by con-

sidering one or a few maps. In such cases, it4s reasonable to fix the tile size to that of the
most utilized map series [4]. If most spatial operations involve more than one map then

it may be desirable to select a larger tile size which'aggregates a standard numbér of
maps. A tite decomposition based on heavily used map series i's both intuitive and cost
effective since the least number of tiles are retrieved for the majority of operations.

There are other applicatioﬁ dependent criteria and properties of the data that can affect

- 1 ’

the cho’igc’of tile resolution to best satisfy application requirements. Two common
4 ‘ :
examples are any known trends in data density and the size and location of the most

-

requested windowing areas. It is desirable to hgve a tile size in which the d@nsest tile can

be retrieved with an acceptablésyumber of disk accesses. As we shall see, this allows the

-

most efficient performance of the spatial operations.

Tile Are}a

A simple criterion controlling resolution is that of tile area. Decomposition contin-
ues until each tile ha;s an area less than or equal to an area thrcshgid a. This criterion
q gives a tessellation consisting of tiles of uniform area and uniform depth. This 'criterion‘
can always be satisfied by the decomposition principle of the region quadtree. If the area.
threshold is that of a pixel, then-the tile decomposition is that of a raster grid. If we
require that e:ch tile have at most one color and if we eliminate the v;ctor component for
each tile, then the resulting structure is in fact a raster reprcéentation. In particular, the

raster is represented by a list of pixels ordered (or indexed) by locational code.

)

For area thresholds larger than pixel size, the tessellation component always con-

sists of a list of nodes. Since updates to the thematic data affect only the vector
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component, the tessellation component is static. This allows retrieval of nodes in the -
tessellation component through the use of direct access techniques. Tiles of ugiform area
_ means Yhat the tile capacity is variable. An effective way to rcali‘zlc this approach is to use
a file (expandable bl‘lect) to store the vector component ot; cach tile. The pointer ele-
ment of the 4-tuple representing a node in the tcssclla.tion component can then consist of
‘a file pointer. This method allows convenient use of the file handling mechanisms found

in operating systems for accessing the vector component.

{ {
Number of Colors / Number of l;olygons

bl

This threshold 45 essentially that which governs the rcéion quadtree. Tiles are sub-{

. divided until each tile-contains ¢ or fewer colors, where ¢ is the color threshold. Simi-
larly, tiles may be subdivided until each tile contains p or fewer polygons where p is the
polygon ﬂgcshold Since several polygons within a tle may have the same color, this
second threshold produccs similar, but not identical, tessellations. If p denotes com-
pound polygons, then both thrcshold:yield cquivalght tessellations. If p denotes simple
polygons, then for equal values of p and ¢ the polygon threshold yields a finer décqmpo-

sition than the color threshold.

In the limiting case, we consider a threshold valuc of ¢ =1 (or equivalently p =1) for
the remainder of this section. Neither of thcsc&xreshold values may be satisfied at the
pxxcl level. . Depending on the decision made at the pixel level, to ensure satisfaction of

eit®®r threshold, one of three known data structures arises.

The simplest decision is not to modify the tes$ellation componeht thus allowing
mult-colored pixels. If the vector component for each tile is eliminated, then the rcsﬁlt-
ing structure is a gc:ncrahdnon of a quadtrcc formulation proposed by Hunter and
Stcrgli.tz [37]. They address the prdblem of representing simple polygons by using a

l
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three-color variant of the region quadtree. Their formulation, tcmcd an MX quadtree by
S;rr:ét [77], considers the bound%ry of a polygon as separate from"Bbth fhc interior aqdl
exterior of the polygon. An MX quadtree contains nodes of three types - interior, exte-
rior, and boundary. A boundary node is.a node »‘vhich‘i's intersected by a polygon edge.
An image coritaining a'polygon is rcpcatc'dly subdivided until all boundary nodes are
pixel éizca (see Figure 4.1). Interior a;ld exterior n’odes, corresponding to areas within *
and outside a polygon, are aggregated as long as they are homogenous (as with the rcgion

quadtree).

NN '
/ AN
/ N
X \,
: \
' /
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S N /
\\ 1/
- : N %
N ~

Figure 4.1 MX Quadtree Representation of a Polygon.?

4 Modified from Samet [77).

Ll
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The current formulagjon of the hybri‘d{odcl yields a multi-color generalization of
the MX quadtree. Nodes of a single color represent interior and exterior nodes while
multi-color nodes represent boundancs and vertices. Boun}i'ancs of a polygon network
are approximated at the pixe] level, by assigning a non-zero width to polygon edges and
by assigning single pixels to vertices. In compar{son to vector modcls the MX quadtree

may require substantially more storage since boundancs are approximated at the pixel

level.

' 'I;hc color threshold is satisfied for tiles larger than pixels, otherwise the tiles would
have been decomposed further. The second data structure arising from a color threshold
of ¢ =1 is obtained by approximating the data in order to ensure that the threshold is also
satisfied at the pixel level. For each multi-color pixel, the approximation consists of
" selecting ong color from the list of colors in the node. If we aggregate sets of like- ?
colored pixels (or blocks) that result from this color selection and if we eliminate the vec-

tor component for each tile, then we obtain the region quadtree formulation.

The third data structure is obtained exactly as before (set c =1 and select a siagle
color for each multi-color pixel), Ryt now, in addition, the vector component is retained
for éach tile, with an appropriate modifi/qat_ion. Enforcing the color threshold for a pixel
size tile requires adjustmcnx of thq‘\:'c;tor.componcnt of the tile to reflect the boundaries
pertaining to the chosen color. This means that the four orthogonally adjacent tiles must
be examined and possibly adjusted to fcﬂcct the chosen color. The resulting data struc-
ture is a region Quadtree which incorporates boundary information in its leaf nodes. This

is almost exactly the line quadtree formulation proposed by Samet and Webber [76].

The line quadtree is a hierarchical approach for representing both the areas and
boundaries of individual regions comprising polygonal maps. The line quadtree attempts
. to alleviate a deficiency of the region quadtree, namely, the lack of border information.

L)
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This is achieved by encoding boundary information, within the nodes of a region quad-
tree. A regular décompo;ition is used until blocks (possibly pixels) are obtained that
have no line segments passing through their interior. This is equivalent to the 'rcgion
quadtree since lines separate regions of different colors. -Each leaf node of a line quadtree
stores border information by encoding which of the four sides of the leaf correspond to a
complete edge of any region. Border information is hierarchically maintained in that
non-leaf nodes also store border information. Each non-leaf node indicates the presence
of an edge corresponding to onc‘of its sides as long as the edge is uninterrupted by T-
junctions with any edges encoded :vithin its descendents. Figure 4.2 shows the line quad-
tree representing the example pol;gon network of Figure 1.1. Solid lines indicate the
presence of boundary information while dashed lines indicate the absence of boundary
information. The difference between Samet and Webber’s line quadtree and our hybtd
formulation is that the former st;)rcs boundary information in both intcmdwxd leaf nodes
while the latter, being a linear quadtree, stores boundary information in only leaf nodes.
Note that, had we chosen a pointer-based realization for the tessellation component of our
hybrid model (i.e., with internal nodes), the line quadtree formulation could be achieved

exactly. ' >

w
The line quadtree requires that all regions be rectilinear so that edges eventually

overlap only sides of nodes, not node interiors. Polygon networks describing thematic
data are typically composed of irregular regions. Using the line quadtree to represent
such polygon networks is undesirable for two reasons. Since regions are irregular, the
decomposition typically must continue to the pixel level to yield leaf nodes whose sides
correspond to edges. Furthermore, all of the non-leaf nodes do not contain edge informa-
tion since the sides of large quadtree blocks do not correspond to edges. The hierarchical
storage of border information in the line quadtree enables efficient techaiques for boun-

W
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Figure 4.2 Line Quadtree for the Polygon Network of Figure

1.1
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dary following and thematic overlay [77]. While this may be true for rectilinear maps, it

appears to be less successful for thematic applications.

The line quadtree and the MX quadtree are methods that may be used for the

rcfarcscntation of polygon networks. The decomposition induced by the line quadtree for

ixrcguiar thematic data is similar to that induced by the MX quadtree since boundaries are

usually represented at the pixel level. However, the line quadtree does not associate a

width with boundaries as does the MX quadtree. In general, both structures correspond

to approximations of a map {77]. The MX quadtree represents edges by BLACK pixels

while the line quadtree requires that all regions comprising a map be rectilinear which

means, for example, that the situation of five regions sharirig a vertex must be



approximated at the pixel level. The serious drawback of both variations i{ that, for
thematic data, they yield v}ry deep quadtrees since edges are usually‘ approximated at the

pixel level [77].

4

Number of Vertices

This threshold involves the vertices of a polygon network. In this approach, the
study area is repeatedly subdivided into quadrants until the number of vertices in each
tile is less than or equal to a vertex threshold v. There are two ways of specifying the
vertex threshold. The threshold value may refer to the number of vertices originall-y
present in the network. Alternatively, the value may refer to vertices originally present in
the network plus the vertices on the tile borders introduced by the partition. Both
methods lead to tiles containing a variable amount of vector data. The first method does
' this since the number of) vertices introduced by the partition is variable. The second
method yields tiles with a fixed number of vertices but still variable amount of vector
data since thc;vdcgrcc of each vertex is variélblc. As with the previous threshold, both
specifications of the vertex threshold yield tiles of varying extent. We choose the number
of original vertices threshold for the rcmaindf:r of this section since the other

specification has no advéntages.

For a tile at the pixel level that violates the original vertex threshold, the threshold
may be enforced by an operation local to the tile. If v=1, then one vertex is selected arbi-
trarily to represent the tile. The remaining vertices are merged with the selected vcrtcx‘
by adjusting their incident edges to terminate at the selected vertex. By not moving the
tile boundary intercepts of any edges, this operation is confined to the current tile. Figure
4.3 illustrates the vertex mergihg operation in which vertices v2 and v 3 are merged with

.

vertex v 1.
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Before merging. After merging.

Figure 4.3 Example of Vertex Merging.

This operation effectively approximates the vector component of a tile but only at the
pixel level. Any threshold v =k can be satisfied by this operation by repeatedly merging

vertices until ¥ remain.

~ If we choose the threshold value v =1, then this approach leads to a formulation
developed and analyzed by Samet and Webber [78]. They have developed a quadtree for
storing poly'gonal maps that is based on an alternative of the region quadtree that associ-
ates point data with qﬁadrants. This alternative, termed a PM quadtree (polygonal map),
1s l.)ascd on an earlier formulation known as a PR quadtree (point region) [77] that was
developed for the representation of point data. In the PR quadtree, a regular subdivision
is applied until leaf nodes are either empty or contain a single point and its coordinates.
The PM quadtree is the result of further adapting the PR quadtree to store polygon boun-
dary information. The leaf nodes of a PM quadtree partition the edges of a polygonal
map into partial edges that either span an entire block or enter and terminate at a vertex
within a block. These partial edges are termed q-edges and for every leaf node they are

t .
divided into seven classes. One class corresponds to the q-cdges that meet at a vertex
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within a block while the other six classes denote g-edges that enter a block at one side
and exit at another. A tree structure is used to order and store the q-edges within a leaf
node by class. Associated with each q-edge is a pair of names indicating the polygons on

either side. Figure 4.4 shows an example polygon network and its PM quadtree.
B m B
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Figure 44 A Polygdn Network and its PM Quadtree.’

The g-edges of the PM quadtree are analogous to the vector component of our hybrid for-

mulation. Examples of g-edges in Figure 4.4 are segments xy and gD.

The PM quadtree is an attempt to resolve some of the deficiencies of the MX quad-
tree and the line quadtree. These deficiencies are the pixel level approximations of
polygon boundaries and vertices by the MX quadtree, and the requirement of rectilinear
regions by the line quadtree. The PM quadtree formulation does not have these
deficiencies and is a convenient, reasonably efficient data structure for performing the
operations we are interested in [77, 78], for polygonal maps of reasonable size. The
main drawback of the PM quadtree (and the recent variation of it called a PMR quadiree
[79]) ig the use of a vertex threshold value of one. For very large spatially referenced

data sets, gartitioning to one vertex per tile is too extreme and results in a very large

5 ModiSed from Samet [77].
'S
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quadtree. For irregular thematic data, where there are a large number of vertices, the PM

quadtree effectively convents vector data to a tessellation format.

Number of Edges

With this threshold, subdivision continues until the number of partial edges in each
tile is less than or equal to an edge threshold e. In general, a specific value for this thres-
hold cannot always be satisfied when a polygon network contains vertices of degree n
and n>e. As with the vertex threshold, there are two ways to specify the edge threshold.
The threshold value may refer to the number of partial edges originally present in the
polygon network or the value may refer to the partial edges originally present in the net-
work plus the pseudo-edges introduced by the partition. Both methods of specifying the
edge threshold lead to tiles of variable capacity. This is because the number of pseudo-
edges introduced by the partition is variable and the numbcr of polygons defined by the
set of all edges in a tile is also variable. Both specifications yield tles of varying areas.
In the following discussion, e is the threshold for partial edges originally present i;1 the
network.

\ Enforcement of an edge threshold at the pixel level may be accomplished by an
operation that begins with vertex merging as described earlier. Vertex merging is used to
reduce the number of vertices to one. Then partial edges are repeatedly merged until the
threshold is satisfied. Edge merging may be viewed as coalescing two neighboring edges
Into one by merging their endpoints on the tile boundary. This operation reduces the
number of edges and number of regions in the tile b§ one. Figure 4.5 illustrates the edge
merging operation for the tile shown in Figure 4.3. In Figure 4.5, edges e 1,£2,¢ 3 are
merged with adjacent edges so as to satisfy an original edge threshold of e =4. Since this
operation effectively removes polygons within the tile (e.g., the regions labelled A in Fig-
ure 4.3), the polygon networks of one or more of the eight adjacent tiles may be affected.

3 )

&
]
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A e3
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‘ A
Before merging. After merging.

Figure 4.5 Example of Edge Merging.

The edge merging operation, while not localized like the vertex merging operation,
affects only adjacent ules since the vector data is adjusted only on the boundary of the
current tile. Since edge merging reduces the number of edges in a tile, as well as adja-
cent tiles, a single pass of all pixel lexel tiles violating an edge threshold is sufficient to
satisfy the threshold.. A minor effect of the edge merging operation is that remaining

edges may end up separating regions of the same color, in which case they may be

deleted.

While edge merging can be used to satisfy any edge threshold, we note that low
threshold values may iftroduce unacceptable distortions in a polygon network. For
example, ;cm edge threshold of e =1 does not permit the representation of three common
occurrences: more than one partial edge in a tile, more than one vertex in a tile, or a
combination of the previous two cases. This threshold does not permit the proper
representation of a node of degree greater than two. Note that in the vicinity of a node of
high degree there exist pixel size regions which contain two or more partial edges. Satis-

faction of e =1 requires approximating vertices and edges with pixels. With this
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deficiency in mind, we now discuss two quadtree formulations that arise from using an

edge threshold.

The edge quadtree of Shncicr([SO] repedtedly subdivides a region conjaining linear
data into quadrants until squares are obtained that éontain a single curve that can be
appr?ximated by a single straight line. This formulation effectively uses an edge thres-
hold of e=1. The leaf nodes store information about edges including;ircc('mn and inter-
cept, and in the case where an @gc terminates within a node, the coordinates of the end-
point. The edge quadtree requires fewer nodes than the MX quadtree or the line ;]uadtrec
to represent the same polygon network. Long edges may be rciprcscntcd by large leaves
or sequences of large lcé;cs, in sharp contrast to the MX and ling quadtrees. Small
leaves are required in the vicinity of areas of high curvature (e.g., corners) and network
nodes since these areas contain two or more partial edges. Figure 4.6 shows the edge
quadtree for the same p(;lygon used to illustrate the MX quadtree in Figure 4.1. Samet
(77, 78] has noted t!'lc serious problem of the edge quadtree representation in that it can-
not represent two or more edges emanating from a vertex except as a pixel corresponding
to an edge of minimum length. Two drawbacks stemming from this‘inadcquacy are that
all vertices of a polygon network arcstore‘t‘ the pixel level resulting in deep quadtrees

and that boundary following cannot be properly handled.

Closely related to the edge quadtree is the least squares quadtree of Martin [55].
The leaf nodes of a least squares quadtree contain curves that can be approximated by k
straight line segments within a least squares tolerance (note that this differs from the PM
quadtree since the latter formulation represents edges exactly). This formulation
cffectively uses an edge threshold of e =k. Since k can be selected based on the com.-
plexity of a polygon network, this approach is superior to the edge quadtree. The least

squares quadtree requires less nodes than the edge quadtree for a given polygon network.
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7"urc 4.6 Edge Quadtree for the Polygon of Figure 4.1.%
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.\'0& that the ledst squares quadtree can provide a better approximation than the edge
\

quadtree for tiles containing nodes of degree greater than k.

Tile Capacity

®  The previous three thresholds (colors, vertices, and edges) gcncralily sield ules of
varying extent which is more storage efficient than fixed area tiles when the density of the
data is not uniform. However, these thresholds yield tiles of vasiable capacity since,
respectively, the number of edges comprising a polygon is variable, the degree of a ver-

tex 1s not fixed, and a fixed set of edges can define a variable number of poly}ass. Tiles

6 Modified from Samet [77].
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of variable capacity implies an increased cost of tile retrieval compared to fixed capacity
tiles. Two obscrvanons allow us to claim that da{s deficiency is not debilitating. Fxrst
we observe that a specific edge thrcshpld implies a bound on the amount of vertex data in
atile. The second obsetvation stcms,from the well-behaved nature of thematic data
found in p?acncal apphcanons Itis powc to csnmate reasonably the number of
*polygons defined by the set of edges within a tile. Other researchers have also made this

L3
observation for practical settings [24, ‘:’79].

Consequently, it is reasonabld to assume tiles of bounded capacity ansmg from
these tile thrcsholds We can ensure fixed capacity tiles by usmg as a threshold, the total
storage space required by the vector component for each ulc In essence, this threshold is ,
a combination of the color, vertex, and edge thresholds. This capacity threshold requires
repcatcd decomposition until the space required by the vector component of each tile is

less than b bytes, for example.

A fixed-size bucket method may be used for the vector component of the hybrid
structure when fixed capacity ﬁlcs are achieved. The data element of each tessellation
component node references the locatio:é a buckct.l In the case of pixei level tiles
violating the capacity ihrcshold, chaining of overflow buckets may be used, or the data
can be reduced to satisfy the threshold. Again, we note that for well-behaved thematic
data sets, viol:m'on of the capacity threshold is expected to occur very infrequently.

Examples of data structures based on a tile capacity threshold may‘ be found in [18, 63].
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4.2.4. Updating The Hybrid Data Structure ; ’

A dynamic environment implies that the hybrid stn;cmre must be updated to reflect
additions, deletions, and modifications to a polygon n9t§;s/ork. Within a tile, the vector
methods discussed in Section 3.4 can be used to ugdz;tc the tile interior. These updating
operations however, can affect the arﬁoum of data“,‘reprcscntcd in the tiles. Since ;nbst of
the thresholds discussed in this chapter rclatcf;bl the amount of data within tiles, splitting °
and merging operations must be available tp":maintain the hybrid structure at a specified

threshold value (a range of values may b,e'vmorc effective for dynamic app.l'ications).

A tile is split into four sub—tilcsyi'henever a resolution threshold is exceeded (e.g.,
number of vertices). This operation fcquircs splitting the polygon network within the tile
into four polygon networks, one for each sub-tile. This can be accomplished by extract-
ing four windows consisting of the four quadrants in the tile. Weiler’s graph comparison
algorithm can be used to effect windowing by defining the windows as polygons in |
another theme and intersecting each window with the original polygon network. The
result of the intersection with each window produces ‘a polygon network in the same vec-
tor format as that of the vector component. Of concern in tile splitting is the creation of
open regions from previously closed polygons. Some polygons are unaffected by a split
and they are simply moved to one of the sub-tiles. Polygons split by the quadrant lines
Create open regions in the refevant sub-tiles. The issue here is to ensure that resulting

s

== - Open regions are properly identified with pseudo-edges in the vector component of the
i\"‘\”\:%-tiles.
The split operation affects the tessellation component in that the node corresponding
‘to tﬁé split tile is replaced by four child nodes. For each child node, the elements of the
4-tuple describing the node are assigned as follows. The key element is set to the loca-

tional code of the southwest corner of the sub-tile. The level element is one greater than

\/

X
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the level of the parent'node. The color element is adjusted to include only those colors
appearing in the sub-tile. The data element is set to refer to the location of the polygon
network for the sub-tile. The split operation adds tiles to the vector component which

implies that new buckets or files may be required to store them.

The converse of splitting is merging and it is used to aggregate four tiles w&n a

lower limit of a resolution threshold is passed. Merging is accomplished by linking the

s Y

binary trees of the sub-tiles to construct the binary tree of the parent tile. For those
polygons that cross the sub-tile boundaries, the graph data structures of the constituent
regions are 'adjuswtcd to connect the regions. This is done by rinking the edge-side loop of
aregion with thc'-edg'c-si.de loop of the corresponding region in the adjacent sub-tile. The
pscudo-cdgég within the nge-side loqp_s are deleted and the resulting gaps are closed by

~ connecting odgcs with matching ¢oordinates (on the sub-tile boundaries). Wéilcr’s graph
c;omparisqn algorithm may be used to effect merging by using it with four sub-tiles and
performing a union operation.

-

Thc merging opc..:ration affccts' the tessellation componcnt‘in that the four nodes
com:s\r‘)onding to the merged sub-tiles arc‘rcplaccd by one node. The elements of the 4-
tuple describing the new node are assigned as follows. The key element is the locational
code of the southwest corner of"c’ southwest sub—tilc‘[he level element is one less than
the level of the child nodes. The color element is the unjon of the color lists of the four
child nodes. The data element is set to refer to the location of the merged polygon net-

work. The merging operation implies that some tiles are deleted which means that the

buckets or files storing those tiles may also be deleted.
Merging of tiles is not necessarily required since it is irrelevant whether a tile con-

sists of one polygon network or of four sub-tiles. Merging is not required since the spa- ‘

tial operations can be performed without change. Pseudo-edges are used, ignored, or

t
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deleted as required if the operation spans more than one tile. The independent processing
of relevant tiles allows merging to be an optional function. A conséqucncc of this is that
the tile hierarchies of the input hybrid data structures are reflected in the tile hierarchy of
the output hybrid data structure. For example, a window extracted from n tiles will con-

sist of n tiles.

The splitting and merging ;)perations may also be required after performing some of
the spatial operations. In particular, the set operations and the thematic overlay dperation
can yield polygon networks that are.too dense or too sparse for the resolution thrcshold
value in use. Either the threshold value for the rcsuAlting hybrid structure is ignored or

| adjusted to suit the result, or the result is split/merge processed to meet the current thres-

hold.

s, Constructing The Hybrid bata Structure

Construction of the hybrid dajta structure must be possible if the structure is to be *
useful. The sdurce data for GIS aﬁplications can exist in either a tessellation format or a
vector format or it may reside on conventional maps. The important issue for construc-
tion of the hybrid is to have the data in a vector format since that is the basis of the
hybrid. There are two methods that may be used to build the hybrid structure. The
appropriate method depends largely on the current organization of the data. A top-down
method is used if the data is organized globally (i.e., it is completely aggregated). A
hottom-up approach can be used if the data is originally partitioned in some manner (e.g.,

a digital map series) or if the data is to be digitized from maps.

The top-down method begins by considering the entire data set as one large tile and
then cnnsists of repeafed application of the tile splitting operation. As sub-tiles are

created, the nodes of the tessellation component are created and inserted into a linear -
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quadtree s_;mcmrc.\Tilc splitting occurs until a resolution threshold is satisfied.

The bottom-up method consists of treating the individual maps as tiles in the final
h):bn'd struCtre. The vector component for each tile is sedrched to discover its size,
location and color content .to create a node for the tessellation component. As each node
i‘s created, it is inserted into a linear quadtree structure. This method requires maps that

are uniform in size or that the organization of the maps is congruent to a quadtree decom- ,
position (note that maps can often be split or merged to achieve this congruency). If the
maps exist only as conventional physical products, then this is the preferred method for
constructing the hybrid structure in conjunction with digitizing of the maps. The merg-

ing opcratiot; may be ap;;lied to groups of tiles that are too sparse if a resolution thres-

hold is desired. Similarly, tiles may be split if they are too dense.

4.3. Spatial Operations

In this section we consider the performance and the cost of the hybrid model for
performing the spatial operations introduced in Chapter 1. To do this, we make a number
of ass/umptions about and discuss the issues related to the implementation of the hybrid
data structure. Then we describe the location-based and attribute-based operations anc}
comment on their cost complexities. Finally, the thematic overlay operation is described
and a cursory cost analysis is presented to demonstrate the divide-and-conquer advan-

tages that may be achieved by using the hybrid method.

The major assumption of this thesis is that we are dealing with very large thematic
data sets. As a consequence, it is assumed that both the tessellation and vector com-
ponents of t.hc hybrid model reside in secondary storage. Since specific statements are to
be made about retrieval costs using the model, further requirements (in addition to those

already imposed in Section 4.2) concemning its actual realization need to be specified.
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The tessellation component is assumed in Section 4.2 to be represented by a linear
quadtree. However, as noted in Sections 2.3 and 2.4, there are still numerous ways by
which a linear quadtree may be stored and accessed in secondary storage. Since the
tessellation component is fundamentally a location-based structure, the goal is to select a

realization that offers the best location-based access.

The cell methods discussed in Secfion 2.4 can be used to achieve direct location-
based access to the nodes of the tessellation component. In particular, the EXCELL
method guarantees retrieval of a node with two disk accesses at the expense of a poten-
tially large directory. However, for reasons given in the next paragraph, a large directory
may not be a problem. If itis, then the cell method due to Davis and Hwang [22] may be
employed to keep the directory to a manageable size and offer expected, bﬁt not
guaranteed, O (1) location-based access. For the purpose of this section, we choose the
EXCELL method to realize the tessellation component. The main reasons are the simpli-
city of the method and éuarantced direct access based on location. Using EXCELL to
realize the tessellation component means that each bucket stores more than one quadtree
node. While EXCELL is typically used for storing fixed- 1cngth nOdes it 1s pracncal also
for storing the variable-length nodes (since there are muiﬁplc cblors pcrnpdc) gf the
tessellation component using a reasonable bucket size. Note. that cach nbde"in thc tessel-

-«

lation component references one tile in the vector component.

An importaht point about the relative size of the tessellation component should be
noted. In general, we are dealing with data sets that are massive if represented entirely
by a tessellation method. However, the depth of the quadtree in the hybrid model typi-
cally is not at the pixel level. The quadtree is "cut-off” at a level which pcsmits a reason-
able amount of vector data to be retrieved with O (1) accesses. This makes the tessella-

LS

tion component quadtree much smaller than the corresponding region quadtree for the
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entire data set. The directory used by the EXCELL method contains pointers that refer-
ence a leyel above the nodes of the tessellation component quadtree. Thus, the EXCELL
directory has signiﬁcantrj“/fcwer elements than the number of nodes in the tessellation
component quadtree. The tessellation component typically introduces a small amount of
stbragc in addition to the storage required for the vector component. For a quantitative

example, see Appendix Al.

As discussed in Section 4.2, the vector component of Lhc hybrid model is realized
by the polygon-driven structure due to Weiler [91]. Each tile consists of a Weiler data
structure whicMPrequires O (p +e) space, where p is the number of polygons and e is the
number of edges in the tile. It is desirable that a tile be retrieved with O (1) disk
accesses. To facilitate this, the resolution threshold governing the tile decomposition
should yield fixed capacity-tiles. Then, a bucket scheme can bc used to effect retrieval of
a specific tile with one disk access. With variable capacity tiles, the situation is more
complicated. If a bucket size is selected which accommodates the tile of highest capa-
city, then each tile resides in at most one bucket. This bucket size allows for the storage
of variable capacity tiles and for the possibility of storing multiple small tiles per bucket.
Provided that buckets of reasonable size can be used for the storage of the tiles, we
expect that, having obtained a:nodc in the tessellation component, we can retrieve the
corresponding tile with one disk access. Thus, the total retrieval cost for retrieving a

specific tile is assumed to be O (1) disk accesses.

The general method for perfonning'all of the spatial operations under consideration
consists of two phases. The first phase involves only the tessellation component and con-
sists of determining the set of tiles relevant to the operation. For the location-based
operations, where one hybrid structure is involved, this phase determines one set of indi-

vidual relevant tiles. For the attribute-based operations and thematic overlay, where two
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hybrid structures are involved, pairs of relevant tiles are determined. Once the relevant
tiles or pairs of tiles are determined, they are independently retrieved. The second phase
for each operation consists of applying a vector algorithm to each retrieved tile or pair of
tiles. The result of the vector operation is a polygon network represented lby Weiler’s
data structure. As relevant tiles or tile pairs are processed, the nodes for t};c tessellation

component of the resulting hybrid structure are created.

A key aspect of this two-phase method is that there is no recombination cost associ-
ated with obtaining the result. For all of the bpcradons, except point inclusion, the result-
ing hybrid structure possesses a tile decomposition that is related to the input hybrid
structure(s). For example, the windowing operation produces a window rcprescntcd by a
hybrid structure with a tile decomposition reflecting that of thc input. The overlay opera-
tion produces a hybrid structure whose tiles are always the smaller of the two input tiles

corresponding to the same portion of the area of interest.

All of the spatial operations are p&formcd on a tilewise basis (i.c., only one tile or
one pair of tiles is processed at a time). We assume that the vector components compris-
ing two tiles can be stored in memory simultaneously. The basic task for all of the spa-
tial operations is that of detecting and compuﬁng the intersection of two line segments
(Ysually cdgcs).l We denote the cost of executing these vector operations as processing
cost. In summary, the cost complexity of the spatial operations is then dominated by the
cost of node and tile retrievals. Typically, the processing cost of the spatial operations is

secondary since they occur in memory.

Before proceeding with the discussion of the spatial operations, we introduce some
notation and state some assumptions. {Unless otherwise indicated, we assume the
N

existence of a theme ¢ that is made up of e edges comprising p polygons. The hybrid

structure for ¢ consists of m nodes in the tessellation component and hence m tiles. The
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region quadtree encoding for ¢ is assumed to have n nodes. For resolution thresholds

whereby each tile contains many edges, we assume that n som .

»

4.3.1. Location-Based Operations

A location-based opcration with a totally vector representation requires exhaustive
traversal of a polygon network compared to the O ( 1) retrievals required with avessella-
tion representation. The hybrid model offsets this since the tessellation component .

allows the vector operations to be localized to relevant tiles.

For the point inclusion operation, the first phase consists of determining which tile i
contains a given point. This is accomplished by using extendible hashing to determine
which bucket contains the relevant linear quadtree node. Two disk accesses are required:
one to locate and the other to retrieve the relevant node in the tessellation component.
Once the data element of the 4-tuple describing the node is available, the relevant tile is

retrieved with one access.

The second phase of the point inclusion operation consists of traversing the
retrieved vector component to discover which polygon contains the point. The well
known plumbline algorithm may be used to test each polygon (and in turn each edge) in
the tile. The result of this operation may be the color of the enclosing polygonor a
Weiler structure representing the, enclosing polygon. Since the vector component for a
tile may be stored entirely in memory, the cost of the second phas% O (e; ) comparisons,
where e; is the number of edges in the relevant tile. The overall cost of the point inclu-

sion operation is thus O (1) disk accesses plus O (e;) comparisons.

In general, the windowing operation consists of extracting a portion of a polygon
network. The operation takes as parameters a hybrid structure representing ¢ and a

specification of the window (its position and shape). The operation returns a new hybrid
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be stored in memory.

*

.'i.:' rectangle around the w\indow;“can be used to compute the
quadtree nodes co‘;h)onding to tiles that intersect the rectangle. This technique avoids
traversal of the tessellation component of ¢ [38]. This method identifies a set consisting
of w relgvant tiles. Each relevanttile is retrieved and intersected with the window using
Weiler’s graph comparison algorithm. The cost of windowing is then O (w) tile
retrievals and O (e, ) processing, where w is the number of relevant tiles and e,, is the
number of edges in the relevant tiles. The shape and extent of the window over the area
of interest determine the value of w, which can equal m in the worst case, but it should
be noted that typical windowing operations involve windows that are significanty

smaller than the area of interest.

Representing the window with a hybrid structure allows a general window
specification in the form of a binary theme. For example, BLACK regions may specify
the interior of the window while WHITE regions specify the exterior of the window. The
windowing operation then consists of an intersection operation between the BLACK
regions of the window hybrid structure and the input hybrid structurc‘;. General win-

dowing specified in this manner is effectively an attribute-based operation.

4
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The basic task for atuibuteftzgsed access is the retrieval of all of the polygogs within
theme ¢ of a specified color. The two-phase approach for this task proceeds as follows.
First, the tessellation component of ¢ must be traversed entirely to discover which nodes
ri;fcmncc the relevant color. This traversal yields w relevant tiles and costs O (m)
retrievals.” Thé second phase consists of retrieving each relevant tile and extracting the
vector data pertaining to the relevant color. The cost of the sccénd phase is O (w)

retrievals plus O (e,,) processing cost, where e, is the total number of edges in the

relevant tiles.

For attribute-based access, the tessellation component must be traversed completely
so that the location of relevant colors may be determined. However, the cost of travers-
ing the quadtree of the hybrid structure is improved over the cost of traversing a pure
tessellation representation since the tcssclla:ion component is significantly smaller than a
total quadtree representation of the data set. This is because the tessellation component is
not subdivided to the pixel level and color information is recorded once per tile. While
vector attribute-based algorithms (i.c. set operations) are more complex than their tessel-
lation counterparts, they can be applied to only those polygons with the appropriate
colors. In contrast, the tessellation set operations must be applied across entire tessella-
tion structures. The complexity of the vector operations is offset by the reduced number
of objects that they are applied to. This is worth noting even though thte operations are

conducted in memory.

The set operations involve two input hybrid structures 1y and t, representing two
thcm?. Two polygon colors, ¢ and ¢, specify which attributes of each network are
relevant. A parallel traversal of the input hybrid structures is used to perform any of the

set operations and may be performed as follows.
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1. Traverse the tessellation component of both ¢, and ¢ and retrieve the relevant nodes

(i.e., nodes cdmaining the colors ¢, and c, in their color lists, resp\cctively).
{2. Perform the set operation on the sets of relevant nodes retrieved in 1.
3. Retrieve the tiles corresponding to the nodes resulting from the set operation in 2.
4.  Perform a vector set operation on the tile pairs retrieved in 3.

Weiler’s graph comparison aléorithm is used to perform the desired set operation for
each pair of relevant tiles in step 4 above. The graph comparison algorithmxyicldsa tile
in the resultant hybrid structure. A node for the tessellation component of the resultant
hybrid structure is constructed based on the contents of the resultant tile and the location
and sizes of the input tiles. Since the input hybrid structures may have different tile
decompositions, the parallel traversal must keep track of the différent sizes of tiles which

may correspond to the same area.

The cost of the parallel traversal for a set operation is governed by the cost of
attribute-based access described above. Thus, the cost of the traversal is O (m ,+m 2) plus
O (w+w ,) retrievals, where m | m, are the numbe: f nodes and w 1»w 7 are the number
of relevant tiles in the ir;put hybrid structures ¢ .z, respectively. Since it is carried out in
memory, 0\1\3 tile pair basis, the cost of the vector set operation is governed by the cost
- of processing the vector data in the relevant tiles. The processing cost is O (e, € ,) since
all of the set operations involve intersection processing of every edge with every other

edge, where e, .e,,, are the number of edges in the relevant tiles of the two themes.
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4.3.3. Thematic Overlay

Like the attribute-based operations, thematic overlay takes as parameters two hybrid
structures and yields a resultant hybrid structure. The thematic overlay operation consists
of a parallel traversal of the input structures with all tiles retrieved, regardless of color
content. Each tile of one theme is overlayed by all of the tiles of the other theme which
" overlap the same area. Each tile pair overlay is performed using Weiler's graph com-
parison algorithm. Note that while some tiles, from either theme, may participate in

more than one overlay operation in memory, all tiles are retrieved only once.

We now present a cursory cost analysis of an average case thematic overlay opera-
tion to illustrate the divide-and-conquer 'aspcct of the hybrid model. To do this, we make
some additional assumptions. As before, we assume that two themes, ¢, and t,, partition

-
the area of interest by polygon networks. The themes are described by e, and e, edges,
respectively. Now, however, we also assume that the density of spatial data across the
area of interest is uniform (i.e., the density of edges and density of polygons). That s, it

1s assumed these are well-behaved thematic data sets.

The polygon networks are represented by hybrid structures using the tile area reso-
lution threshold. While the tile area threshold yields tiles of fixed area, the uniformity
assumption implies that the tiles are of bounded capacity. Consequently, we assume that
the tile decomposition for each theme yields m tiles. For large values of e 1L€2and a
small value of m, we expect that each tile contains approximately e, /m edges, where

i=1,2 corresponding to the two themes.

The cost analysis involves a thematic overlay of the two themes. The hybrid model
provides for a divide-and-conquer approach to solvin g the problem. The tile partition
represents a way: to subdivide the overlay problem into m smaller problems of a similar

nature. Independent and local processing of each pair of tiles (one tile from each theme)
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is the key to the conquer aspect of the approach. A key feature of this approach is that
the results of processing the tile pairs do not have to be combined to proddce a final

result.

We begin by considering the retrieval cost of performing an overlay operation with
a totally vector representation (e.g., Weiler's data structure). In this case, overlay is per-
formed on a polygon pair basis (i.c.. each polygon of one theme is intersected with each
polygon of the other theme). Effectively,this consists of intersecting each edge of theme
t) with every edge of theme r,. With enough memory, the simplest way to do this is to
read both themes entirely into memory and conduct the intersection ;n'occssing. Since we
are dealing with very large themes, we assume that there is insufficient memory to store
all e, and all e, edges simultaneously. With a totally vector representation, the retrieval

cost is given by

€€,
R,=e,;+ pat 4. .

where ¢ is a measure of the proportion of edges that may be stored in memory simultane-
ously. The first term of Equation 4.1 is for the retrieval of all edges of ¢, while the
second term corresponds to the retrieval of all edges of 7, for each edge of t,. This
retrieval cost is O (e ,e;). In the extreme case of the ability to store only two edges at

once, the retrieval cost is exactly R, = e +¢,€,. As ¢ increases, the cost R, decreases to\

the limit of R, = e+ ,, wherein all edges may be stored simultancousl'y in memory.

The hybrid approach subdivides the overlay problem into m overlays of tile pairs.
Since the contents of two tiles can be stored in memory, all of the edges comprising the
polygons and partial polygons contained in two tiles need be retrieved only once to per-  ~
form the overlay of that tile pair. The retrieval cost for one tile pair is then

Ry =€ )/m+ey/m. Since there are m such tile pairs, the retrieval cost for the overlay -
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operation with the hybrid structure is given by : w
R, =m _e_1+e_2 =e;+e (4.2)
h m m 1 2: .
L

In essence, use of the hybrid model implies that all of the edges in both themes are
retrieved only once which gives a retrieval cost of O (e ;+e 2). The divide-and-conquer
strategy reduces the retrieval cost of overlay by an order of magnitude, that is, from qua-

dratic cost to linear cost with respect to the number of edges.

We now consider the computation effort of the overlay 6yf)eration. The fundamental
task in overlay is the discovery and Eomputadon of the infersections that exist in a set of
polygons, or specifically, in the set of edgges comprising the polygons. Given a set of e
edges, this task consists of processing every possible pair of edges in the set. Witha
(otaily vector regr‘esentaqon such as Weiler’s data structure, the processing cost of over-

laying the two themes ¢,,f, is

13

C,=ee, 4.3)"

a

since each edge of theme tis tested against all of the edges of theme t,. This processing

costis O (ee,).” S

The totally vector approach may be viéwed as an overlay operation oﬁ two tiles with
a total of e +e, edges. The hybrid approach subdivides this overlay into m pairs of tiles
with each pair containing e /m + €,/m edges. The proccssin% cost of the hybrid
A approach is given by

7

The processing cost of overlay can be as low as O (e log e + 5), where e=e +e, and s is the total
number of intersections, by using data structures such as the k-structure [77] and the plane sweep
algorithms of Nievergelt and Preparata [60]. However, use of these methods does not affect the
cost advantage gained from applying the hybrid approach, as described below.
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e, € '
Cy=m [‘ 2= 2. (4.4)

This processing cost is also O (e 1e,). Note that the processing cost of the hybrid
# approach is reduced from the cost.of the totally vector approach by a f:ctor of n% This

J result fé/ﬁqnh nonng for two reasons. First, subdivision of the problem by tiles reduces

\
\&A

the processing cost for any number of overlay operations for the one-time expense of
building the hybrid structures. Second, there is no recombination cost after all of the m
overlays are completed. Each pair of tiles, once retrieved and processed, produces a

corresponding tile - :} # result hybrid structure.

We now cc a2 cost of overlay between the hybrid model and a totally tessel-
lation approach (a .. -7on quadtree). The overlay of the two themes represented by region

quadtrees consists of retrieving corresponding nodes of the tessellations. The retrieval

cost for this is O (n+n,) where n; is the number of nodes of each region quadtree. The -

processing cost of a region quadtree overlay is a_llso O (n+n,) since all concsponding
nodesAmust be compared. However, the costgfsnodc comparisons is insignificant in rela-
tionﬁto the retrieval cost. Hunter [37] has shown that n; =0 (e;), as the resolution of the
tessellation gets finer, where i=1,2. Consequently, the retrieval and, processing costs are
both also O (e |+e,), where ¢; is the number of\cdges in each theme. This statement has
two implications. «First, it imp}ics that the retrieval cost of overlay with region quadtrees
1s of the same order as the cost with the hybrid model. Second, the processing cost of
overlay with region quadtrees is an order of magnitude less than the cost with the hybrid
modcl. Note, however, that in practice the region quadtree requires more storage than a
vector representation. That is, n; 2 ce;, for some constant ¢ >1. There is an interesting
research vroblem regarding the performance tradeoff and storage tradeoff between a

totally tessellation data structure and our hybrid data structure. Actual values for the con-

]
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stant ¢ and the constants associated with O (n 1+n2) and O (e ;+e,) will enable a meaning-

\

We now summarize and compare the retrieval and processing costs of the hybrid

ful comparison.,

4.3.4. Summary

model with totally tessellation and totally vector approaches. The presentation is organ-
1zed by spatial operation. \

The point inclusion opcratién can be performed with O (1) retrievals using the
hybrid approach. This is as good as the O (‘l) retrievals required by a bucket method
implementation of a tessellation approachj However, the hybrid approach requires addi-
tional vector processing to determine the enclosing polygon. The additional processing
- costis O (e, ), where e, is the number of edges in the relevanttile. There is no process-
ing overhead for a tessellation approach. In contrast, a vector approach to point inclu,sion

requires retrieval and testing of all polygons in a theme. The totally vector cost is thus

O (e ) retrievals and O (¢ ) processing.

In terms of windowing, the hybrid approach requires retrieval of only the relevant
tiles. This compares with a tessellation approach in which only the relevant nodes (buck-
ets) need be retrieved. Typically, however, there are many more relevant nodes in a
region quadtree than in the tessellation component of the hybrid structure for a given
theme. The hybrid approach requires additional vector processing within the relevant
tiles while the tessellation approach merely requires simple comparisons. Windowing
~ with a totally vector representation requires exhaustive retrieval and processing of all
edges. The hybrid approach is clearly superior to this since only relevant tiles are

retrieved and only the edges within the relevant tiles need be processed.

If storage space is not an issue, then the representation offering the best location-
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based performance is tessellation. The cost with the hybrid representation is only slightly
more expensive since vector processing is localized to relevant tiles. Compared to vec-
tor, the hybrid approach offgrs superior performance at a slight increase in storage space.
Therefore, considering both space and time complexity, the hybrid approach offers an

effective compromise: near-tessellation performance with near-vector space requirement.

For the attribute-based operations, a tessellation encoding of each theme requires
exhaustive traversal of both structures. This is an O (n;) retrieval cost, where »; is the
number of nodes in each theme. In contrast, using the hybrid structure for each theme,
only the tessellation components must be exhaustvely traversed to discover the relevant
tiles. This is O (m;) where m; is the number of tiles for each theme. The kcy difference
is that typically, the number of tiles in a hybrid representation of a theme is much smaller
than the number of nodes in a tessellation representation of the theme. Furthermore, only
the relevant tiles need be retrieved and processed using the hybrid approach. Tiles that
do not contain relevant colors need not be c;onsidercd beyond the tessellation component
traversal. In terms of processing, the hybrid approach requires vector set operations
whiéh are more costly than the comparison operations required with a tessellation

hd

representation.

With the hybrid approach, retrieval of relevant tiles for the attribute-based opera-
tions does not mean that only relevant polygons are retrieved. Eacp relevant tile may
contain irrelevant polygons. In contrast, totally vector representations of polygon net-
works may be organized specifically by color. This means that the attribute-based opera-
iions may be resolved by retrieving only relevant polygons. In this éasc, the hybrid
approach compares unfavorably with a vector approach. Note however, that the methods
to improve attribute-based performance for tessellation methods discussed in Section 2.6

may Le used to improve the performance of the hybrid model in this regard.
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The representation affering the best attribute-based performance is vector. The cost
with the hybrid representation is somewhat more costly since there is the potential for
retrieval and processing of irrelevant vector data. Com;"mrcd to tessellation, the l_;ybﬁ'c'i*'
approach offers superior performance due to reduced retrieval cost. Considering both
space and time complexity, the hybrid approach offers an effective compromise: near-

vector performance with near-vector spaoe requirement.

Finally, the thematic overlay operation requires exhaustive retrieval and processing
of entire themes regardless of the representation used. The hybrid model combines the
advantages of both tessellation and vector methods. Retrieval cost is kept to linear order,
like a tcssel‘lan'on method, but the amount of data involved is substantially less. The qua-

dratic processing cost of the vector data is improved over a totally vector approach.
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Table 4.1 provides a condensed version of the above comments. Note that in the

parison per retrieval, which is insignificant.

tessellation column of Table 4.1, we ignore processing costs since there is one com-
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Operation Representation Method
Tessellation Vector Hybrid
—* T
Location-based Retrieve only Exhaustive Retrieve only

relevant nodes.

retrieval and pro-
cessing of edges.

relevant tiles.
Exhaustive pro-
cessing within
tiles.

Attribute-based

Exhaustive
retrieval of
nodes.

Retrieve and pro-

cess only relevant
edges.

Exhaustive
retrieval of
tessellation com-
ponent. Retrieve
and process only
relevant tiles.

Thematic overlay

Exhaustive
retrieval of nodes
(linear order).

Multiple retrieval
and processing of
edges (quadratic
order).

Exhaustive
retrieval of tiles
(linear order).
Multiple process-
ing of edges
within tiles
(improved qua-
dratic order).

Table 4.1 Summary of Retrieval and Processing Costs.
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4.4. Tile Methods

During the last twenty years, but especially in the last five to ten years, there has
been considerable work in the development of GIS's using what we designate as tile
methods . Tile methods resemble our hybrid model in that they use a tiling of the plane
to subdivide space into cells. This organization usually serves as an index to spatial data
stored in an underlying data structure, which is quite often a vector scheme. This section
begins by reviewing several GIS applications that employ a tile method and compares
them to our hybrid model. The comparisons are based on how the design aspects of these
tile methods differ from our hybrid model. There are three aspects that appear repeatedly
in our discussion. First, some tile methods do not partition the underlying vector data
structure. Second, other methods partition the undcrlying structure but do not perform
spatial operations in a tilewise manner. The third a?pcct is related to Lh:;?anncr in which
these tile methods handle attribute-based retrieval. This section ends with a discussion of

hybrid methods that do not resemble our hybrid model.

Canada Geographic Information System

The Canada Geographic Information System (CGIS) was probably the first GIS
developed [86]. CGIS is intended for the storage and analysis of resource relateq
thematic data as well as production of maps. The main data division of CGIS is the
theme (coverage), which comprises data of a singlc descriptive variable, and can .poten-
tially cover all of Canada. While CGIS does partition the locational data representing a
theme, it differs from our hybrid model in that it does not perform spatial operations in a

tilewise manner.

The data structure for each theme ﬂas two components - the Image Data Set (IDS)

and the Descriptor Data Set (DDS). The IDS encodes boundary data for polygon net-



118

works representing themes while the DDS stores classification (attribute) data for each
polygon. The IDS is partitioned by a tiling of the plane consisting of fixed area tiles,
called frames, which are squares in the geodetic coordinate system (i.e., the boundaries of
frames are based on and are parallel to latitude and longitude lines). The smallest tile
used in CGIS is called a unit frame . An actual fixed tile size used for a theme is
specified by the user and must be of unit frame size or larger. That is, CGIS corresponds
to our hybrid model with a fixed tile area threshold. Larger frames are constructed by
hierarchically combining groups of four unit frames in a mannePresembling quadtrees.
The frames of the IDS partitiorf'the vector data describing a theme making the IDS analo-
gous to the vector component of our hybrid model. The unit frames are numbered and
stored using the Morton cncoc(ing sequence in a sequential file organization. Therefore,
the IDS also corresponds to the tessellation component of our hybrid, but it lacks attri-

bute information. In CGIS, attribute information is stored instead withjn the DDS.

Within each IDS frame, a polygon-driven vector format is used to encode a theme.
This format uses three variable length records in a polygon, chain, point hierarchy similar
to POLYVRT. Each polygon is listed in a record ordered by polygon number and a
pointer is used to point to the opening vertex of the first chain defining the polygon. All
chains defining the polygon network are listed once in a chain record ordered by openin g

vertices. For each chain, there are pointers to the next chains defining the left and right

polygons, the opening and closing r~ ' pointer to the start of the vertex data for
the chain. The vertex data for all . : 1e consists of chaincodes stored sequen-
tiaily in a compact notation recog »» - = gresented within CGIS are partitioned

by th= boundaries of the IDS fram\ n s are indicated and stored in the chain

record for each frame. Polygons that ’mc borders have the same polygon number

within e: ch frame.
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The attribute data for the polygons in the IDS is maintained separately in the DDS
which is not partitioned by frames. Rather, the DDS for each theme consists of variable
length records, ordered by polygon number, which store attribute data for each unparti-
tioned polygon in the theme. The data stored for each polygon includes its thematic attri-
bute, area and centroid, and a list of the IDS frames that it intersects. Ostensibly, this
makes the DDS an inverted list organization for attribute data. The DDS is ordered by
polygon number which means that it must be exhaustively searched for operations requir-
ing specific attributes. This is not a serious problem since an additional level of organi-

zation can be introduced to permit organization of the DDS based on attribute.

CGIS provides a thematic overlay function that facilitates the intersection or union
of two to eight themes. Windowing can be performed in either of two ways: by frame
number and by overlay with a polygonal window defined in a separate IDS. The overlay
function operates on a set of entire themes each defined by an IDS/DDS pair. An overlay
operation begins by merging the frames in kach theme using an edge matching procedure °
that removes frame borders [69]. The overlay operation then proceeds on the merged
polygon networks. The result of an overlay operation is a new IDS (which implies repar-
titioning of the overlayed polygons) and a corresponding DDS created by merging the
original DDS’s. While the partitioned organization of CGIS is similar in spirit to our
hybrid model, the partition of themes irriposcd by IDS frames is not exploited for the tile-

wise processing of overlay operations.

Cook [18] describes a geographic database, based on CGIS, that more closely
resembles our hybrid model. Like CGIS, the main concept of Cook’s structure is a parti-
tioned organization of a vector encoded polygon network. Rather than using fixed area
tiles, Cook’s structure uses fixed capacity tiles (i.e., fixed size buckets). Bucket overflow

is handled by splitting tiles into four quadrants like a quadtree. The system maintains a
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direct correspondence between a tile and its bucket by storing the buckets in Morton
order. Cook states that access to the tiles is by coordinate-derived keys, presumably

meaning that locational codes are used.

Cook’s system can be used to retrieve tiles in the same manner as our hybrid for
location-based operations. His system is morc' like our hybrid model than CGIS since it
exploits the partitioned organization of the vector data for performing spatial operations.
In particular, he describes algorithms for the tilewise processing of the windowing and
point inclusion opc(rations. A significant difference between Cook’s system and both
CGIS and our hybrid is that Cook advocates merging of multiple themes within one

structure whereas CGIS and our hybrid use one structure per theme.

Like CGIS, Cook’s system also organizes attribute data in a separate structure
ordered by polygon. Among the items stored for each polygon are thematic attribute and
the coordinates of a point within the polygon. The coordinates are used to retrieve the
tile containing the polygon. Whereas CGIS stores attribute information for Qach unparti-
tioned polygon in a theme, Cook’s system stores the attribute information forjeach partial
polygon introduced by the partition. Nevertheless, Cook’s system also requires exhaus-
tive search for attribute-based access. Another difference between Cook’s systém and
our hybrid is that our tessellation component is used for attribute search which is much

smaller than Cook’s polygon-driven attribute structure.

The ARC/INFO GIS

ARC/INFO is a well known GIS produced by the Environmental Systems Research
Institute (ESRI) [38]. The system is capable of maintaining a cartographic database
know 1 as a map library. ESRI describes the map library as based on a hybrid data model

represe.'ting locational and thematic (attribute) data. A vector model is used for loca-
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tional data while a relational database model is used for the attribute data, hence ESRI’s
definition of hybrid is not the same as ours. Since ARC/INFO is designed as a tile
method, it is included in this discussion. A major difference between ARC/INFO and our
hybrid model is again that ARC/INFO allows for partitioning of locational data but does

not employ tilewise processing of spatial operations.

The basic unit of operation is the coverage which is analogous to a mapsheet (a tile
in our case) in conventional cartography [58]. A coverage represents both locational and
thematic d Wen area in terms of features. Features include spatial entities such
as nodes, arcs (chains); and polygons, all of which have locations and possibly attributes.
For each covemgge, ARG/INFO uses a polygon-driven vector mct};od for the locational
data.‘ The structure used is a triplet of tables defining node, chain, and polygon topology
in a fashion similar to POLYVRT [27]. Thematic data for chains and polygons is stored
in feature attribute tables and managed by a relational database management system.
Each record in these tables is keyed by chain or polygon identifier and contains one or

more attributes of the feature.

ARC/INFO is designed to facilitate a number of polygon set operations on entire
-
individual coverages with no provision for attribute restrictions. However, the relational
database allows the attribute information associated with the vector data to be extracted
by specific attribute (e.g., color). This is used to construct new coverages for set opera-
tions with attribute restrictions. Th:: user has the option of performing these operations
on individual coverages or the user may merge coverages and then process the merged

set. The tilewise approach to set operations is not inherent in the design of ARC/INFO.
w
ARC/INFO provides management software called LIBRARIAN [27] that can be

used to organize coverages into a map library. The organization takes place along two

dimensions - by content into layers or themes and by location into riles. Tiles are used to
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subdivide the area of interest into a set of non-overlapping cells and while they are gen-
crally rectangular, tiles may be of any shape. A spatial index, called the index coverage
1s maintained for access to the tile structure. The index coverage is analogous to the
tessellation component of our hybrid but kacks attribute information (as with CGIS). All

locational information in a map library is partitioned by the tile structure (4, 58].

LIBRARIAN facilitates windowing on a collection of tiles in which the window
may span ;>nc or more tiles. The extraction of a window is performed by defining the
window as a polygon in a selection coverage. The relevant tiles are determined using the
index coverage. These tiles are merged prior to window extraction by dissolving the tile
boundaries and rebuilding the polygon network [7]. The window is then extracted wifh
an overlay function. While the tile structure of the ARC/INFO map library serves as both
a spatial index to and partition of the vector data, the design of ARC/INFO is not one of
tilewise processing for spatial operations that span several tiles. Users of the system can
operate in a tilewise manner if they fhoose, but ARC/INFO does not provide an

integrated tilewise approach for the operations we are considering.

The CARIS GIS

The Computer Aided Resource Information System (CARIS) is used for maintain-
ing land resource data and for the production of t~=matic maps [48]). The CARIS data
structure consists of several files comprising a curve-driven vector scheme which is
indexed by both a polygon table and a cell table. The cell table is a map of a square tiling
of the plane that partitions a study area. Each record in the cell table stores pointers to
the chains that are within or pass through the corresponding tile. The, key difference
between CARIS and the previous methods (CGIS, Cook, and ARC/INFO) is that the vec-

tor datu structure referenced by the cell table is not partitioned by the tiling.
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The central file in CARIS is the descriptor file which maintains the chains of a
polygon network. Associated with each chain are two pointers for the left and right
polygons and two pointers that designate one of the possible incident chains at cac%nd
of the chain. The function of the latter two pointers is similar to the threading technique
used in the TIGER system in that‘thcy are used to retrieve the boundary of a polygon. In
addition, they form a circular list identifying all neighbors of a.;;lygon. A fifth pointer
references the first element in a linked list of the edges that comprise the chain. Each

edge element in the linked list contains a pointer to a record in a data file containing the

coordinates of the edge.

The polygon table stores, among other data, two pointers per polygon. The first
pointer references one of the component chains of a polygon in the descriptor file. A
second pointer links a polygon with its attribute record in an attribute file. The attribute
file is maintained by a commercial database management system. Note that the polygon

table is not ordered by attribute (i.e., color).

The CARIS structure, as with POLYVRT and TIGER, is highly pointer based. The
CARIS tiling does not partition the underlying vector data structure, rather it serves only
as a spaual index. Locatjon-based search is therefore localized to the cell level, but since
pointers are used throughout the curve-driven vector structure, this can lead to a large
number of retrievals to obtain relevant polygons. CARIS can be used for tilewise pro-
cessing of spatial operations such as windowing and overlay. However, the vector data
must then be multiply retrieved since it is not partitioned at tile boundaries. These opera-
tions are more costly compared to our hybrid approach for both retrieval and processing.
Polygons spanning more than one relevant tile must be retrieved for each-relevant tile and
processing of one tile requires processing the vector data both within and outside the tile.

For the attribute-based operations, CARIS requires exhaustive traversal of the polygon
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table to retrieve all polygons of a relevant color.

The GeoVision GIS

GeoVision Corporation [63] has developed a GIS for a range of applications includ-
ing natural resources management. The spatial database of this GIS has¢wo components
- a spatial component which stores locationa. data for geographic entities and an attribute
component which maintains descriptive and topological information of the entities in the
spatial component. The GeoVision approach is similar to that of CARIS in that a spatial
index is used to reference a polyg.c:n network. While CARIS uses an index based on
fixed area tiles, the GeoVision system employs a quadtree index. Qurrently, one quadtree
index is maintained for sc¥eral themes. The resolution threshol governing the quadtree
in the spatial component of the GeoVision system is the number of polygons threshold.
Each leaf node of the quadtree stores a list of pointers referencing those polygons con-
tained within or passing through the corresponding tile. Like CARIS, the underlying
organization of the polygon network is not partitioned and appears to be encoded using a

polygon-driven vector format.

The attribute component relates attribute data to polygons and is implemented by a
relational database. The attribute component stores a cell-feature table , analogous to the
quadtree index, which maintains quadtree cell addresses and pointers to the polygons that
pass through the cells. Thus, a spatial index to the polygon network is daz‘;inia;;cd in beth
components of the system. The principal advantage of the cell-feature table is that it

allows efficient retrieval of relevant vector data for attribute-based operations.
L4

The GeoVision system supports both location-based and attribute-based access. A
retrieval with both location and attribute restrictions proceeds as follows [36]. The over-

lap between a user specified window and the quadtree index is determined. The quadtree
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cells comprising this overlap aré used to build a cell table that is joined with the cell- - *
feature table in the attribute component to identify a set of candidate features. Attribute
qualification within the relatidnal database is used to refine the candidate feature set to
only those features that possess the required attributes. ﬂe remaining candidate features
are retrieved from the spatial componef#it and their intersection with the query area com-
pletes the operation. When there is no attribute restriction ‘to a rcm’evall, no cell table is
built and the overlap between the quadtree and the window produces the candidate
feature set directly. Conversely, a strictly attribute-based retrieval proceeds entirely

within the attribute component.

Like CARIS, the-Geo Vision approach localizes location-based search to relevant
cells. The GeoVision system requires multiple disk accesses to retrieve the polygons
relevant to a tile. The quadtree index allows for tilewise processing of the location-based
and overlay operations but the vector data is redundantly retrieved since it is un;;aru'-
tioned. The attribute component effectively maintains an inverted list of the quadtree
index indexed by attribute. This permits efficient attribute-based operations since only

relevant vector data need be retrieved.

4.5. Other Hybrid Structures .

Kleiner and Bra‘sseg [45] discuss storage strategiey for spatial data on read-only
external storage devices. The scope is a worldwide, multi-layered base for the environ-
mental ;cicnccs comprised of zero to three dimensional spatial objects. Their main
objectives are to minimize both access time and storage space. Spatial objects are dis-
Jtinguished between those that may be partitioned tiles, background data., and those that
Ashould be stored entirely within one bucket, geographic object data. This distinction is
determined by the application and it is not clear what the value of such a separation

might be in a thematic GIS context. Their proposal for storing background data is
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essentially a hybrid scheme. Space is hierarchically subdivided by, a quadtree or bintree
method into cells which are then ordered by locational code and managed with a B-tree.
Each bucket contains partial background objects represented in a vector format. This

method is not intended to allow for the reconstruction of the background objects nor the

topology of the corresponding polygon network (in a two-dimensional setting).

To store geographic object data, Kleiner and Brassel propose that the Field Tree be
used to index a set of buckets so a void partitioning the objects. In a two-
dimensional setting, each cell encodes a polygon network in a vector format and the
entire structure is similarly organized as the background data structure. As previously
discussed in Sections 2.6 and 3.5, there appears to be some benefit in using the Field Tree
as the tessellation component for our hybrid model. However, the data-driven nature of
the Field T‘rec, compared to other tessellation models that organize the embedding space,
cause it to have more construction and updating overhcad than the latter methods.. 'F‘hg
issues cd'nccrmng the eﬁ'cctlvcness of the Field Tree as a tessellation model and as the

tessellatign component for our hybrid model is an interesting toplc for further research.

Langran and Buttenfield [47] advocate the concept of partitioning a spatial data set
to enhance acccssénd mampulablhty They suggest systcmatw subd1v151on of files into
small rectangular cells to support additive wmdowmg Idcally, the cell'area should
match that of the smallest window used. Additive windowing is performed by merging
relevant cells rather than by clipping from larger tiles (i.e. subtractive). Additive win-
dowing is cheztper than subtractive windowing if the relevant cells are merely aggrcéatcd
rather than merged into a unified polygon network. While they discuss partitioning of
spatial data, Langrangnd Buttenfield do not address the issue of using a tessellation

structure to organize cells and provide for attribute-based access.
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Other researchers suggest thg use of clﬁstcring ;;hysical data storage according to
th location of spatial data. This technique involves storing a spatial object (e. g
polygon) in its entirety within a bucket whose address is derived from the location of the
object. For point data, the locational code is used to determine the address of the bucket.
This is the basis of the cell methods discussed in Section 2.4. For spatial objects with
extent, the average coordinate value of the describing vertices (e. g centroid) or a comer
of a bounding rectangle may be used to provide a locational cod’g The latter method is

y two developers of commercial GIS's. Keating, et al [43] use a hybrid of the R-

Tree and the Field Tree fof this technique. A bpﬁr;ding rectangle around an object is the
basis for the location of the object. The object is stored in the smallest node (bucket) of a
Field Tree that €ntirely contains the bounding rectangle of the object. Apparently, the
objcc;t to bucket addressing is achieved by using logdtional codes. Bundock [8] describes

m

a similar approach and implies the use of a Field Tree technique.

The main problem with the above clustering approach is the relationship between
the contents of a bucket and the portion of a polygon nctgvork corresponding to the
bucket. A bucket effectively corresponds to a tile, since a range of coordinate values
hash to it. The problem is that the objects stored in the bucket are not partitioned at the
tile boundary. Thus, a bucket may store vector data that is outside the extent of the
corresponding tile. The retrieval and processing éosts of location-based access is then
increased since irrelevant vector daia is retrieved. Conversely, vector data that is within a
tile ;hay be stored in buckets other than the bucket corresponding to the tile. Again,

.location-based retrieval cost is increased since multiple buckets may have to be retrieved

for a given area.

A very different type of hybrid data structure has been proposed by Peuquet [66] as

a solution to the problem of the storage and manipulation of very large spatial data sc:t%S

.
%% .
AL T
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The structure is called a vaster and uses a rectangular tiling to partition an area of
interest. Each tile, known as a swath, is a rectangle of constant height (in y ) and spans
the width of the area. The number of swaths required to cover the area is determined by
the height of the swaths. Each swath corresponds to a set of contiguous scan lines as -
occurs in a raster representation. The swaths are effectively a one-dimensional tcssella}“
tion and they each contain a raster and vector component. Both components are encoded

) '
at a common resolution.:

The raster component of a swath consists of recording the intercepts of partial
chains that cross the leading boundary of the swath. This encodes the first scan li& and
serves as an index for all of the vector data in the swath. This index contains an identifier
and x-coordinate for each partial chain. The chains are repre.sented with a chaincode for-
mat and are stored in index scan line intercept sequence. Polygons contained entirely

within a swath are stored separately.

:I'hc . does not have as effective a localizing property as our hybrid model.
Location-based access to the swaths of the vaster is limited to one-ditmension (i.e., by y-
coordinatc only), which is not as effective as a quadtree index. Rectangular swaths are
not as effective as square tiles since, for applications of very large extent, the swaths may
be very long. The vector component of each swath is essentially a spaghetti format,

)
which is not as effective as the more sophisticated polygon-driven vector formats. The

vaster has no provision for attribute-based access to the vector component.
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| Concluding Remarks

t
5.1. Summary

The major contribution of this thesis is the introduction of a 'gcncral hybrid data
model for the representation of thematic data. The stren gth of the hybrid model is that it
permiits the classification of almost all specific, spatial data structures discussed in the
literature. Limiting cases of the hybrid model correspond to the two fundamental models
of spatial data representation, namely, the tessellation and vector models. Intermediate
formulations of the hybrid model, arising from a combination of a resolution threshold

and a decision made at the pixel level, yield specific hybrid data structures.

The classification of spatial data st.mcturcs is organized accc;’rding to three models.
The first two are fundamental models, the location-based and attribute-based models.
Location-based and attribute-based data structures are discussed in Chapters 2 and 3,
respectively. The third model is a hybrid of the location-based and attribute-based

models. Hybrid data structures are classified in Chapter 4.

The classification is also based on the evaluation of the effectiveness of data struc-
tures for the performance of spatial operations. The underlying assumption of this thesis
is that of very large thematic data sets which must reside on secondary storage. Thus, the
retrieval cost of accessing relevant thematic data for both location-based and attribute-
based operations is of primary concern. The cost of processing thematic data in memory

is given secondary consideration.

With an appropriate resolution threshold, an intermediate formulation of the hybrid
model compares favorably with either a totally tessellation or a totally vector approach to

representing thematic data. For location-based operations, the hybrid data structure is as

129
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cost effective as a tessellation approach. For attribute-based operations, the hybrid data
structure offers near vector performance. For thematic overlay, the hybrid data structure
offers an effective compromise: the linear retrieval cost of a tessellation structure and an

improvement on the processing cost of a vector structure.

The hybrid data structure is also proposed as a superior practical alternative for the
representation of very large thematic data sets in GIS applications. In terms of storage
space, the hybrid data structure is only slightly larger than a vector data structure. As
mentioned above, the hybrid data structure offers cost effective performance of the spatial

operations.

There are several examples of implemented GIS's that employ data structures which
resemble intermediate formtilations of the hybrid model. As discussed in Section 4.4,
these systems hﬁve one or more deficiencies when compared to the hybrid model. This
thesis makes a case for a tiling or partitioning approach to organizing thematic data
(other advocates include Cook [18] and Burrough [10]). However, there are proponents
of the opposite approach, that is, a non-partitioned or seamless organization of thematic
data. Among others, Bundock [8], Frank [31], and Kleiner and Brassel [45] advocate the
storage of unpartitioned polygons within a set of fixed-size secondary storage buckets.
While one or more polygons may be stored in their entirety in a bucket, the polygons
comprising a polygon network are still distributed among the set of buckets. This is a
logically seamless approach up to the polygon level. The CARIS GIS [48] and the Geo-
Vision GIS [63] take the seamless concept further by storing an entire polygon network
in one, unpartitioned data structure. The developers of these GIS’s claim that the seam-

less approach offers performance benefits ower a partitioned approach.

As mentioned above, this thesis demonstrates that, for attribute-based operations, a

partitioned organization of vector encoded thematic data is almost as.effective as a
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seamless (i.e., totally vector) approach. For the location-based operations and thematic

“Awyell-designed

overlay, the partitioned approach is superior to a seamless approacc'
indistinguishable from

implementation of the hybrid structure for a GIS will yield results

a seamless approach, for the spatial operations considered in this thesis,

*

For applications in which location-based operations are dominant, the location-
based data structures are clearly cost effective. Con;/crscly, for applications performing
primarily attribute-based operations, the attribute-based data structures are appropriate.
It is. possible to introduce additional structures to either location-based or attribute-based
data structures for the purpose of enhancing the performance of those operations for
which they are less effective. For example, the forest of quadtrees [41] is a storage
effective method of introducing attribute indices to region quadtrees (which arc location-
based) to enhance attribute-based operations (see Section 2.6). Conversely, the
attribute-based TIGER data structure [56], enhances location-based operations by the
addition of a node table, ordered by Pémo key (see Section 3.5), to its oc:hain file. The
hybrid data structure of this thesis provides similar enhancements and is effective for

applications that perform both location-based and attribute-based operations.

5.2. Future Perspectives

During the course of this thesis, several issues and data structures were encountered

that appear to be interesting topics for further research.

The Field Tree [31] is an interesting variation on the decomposition principle of the
region quadtree. The splitting of quadrants combined with the shifting of levels tends to
reduce the partitioning of small polygons across subtrees. This may be useful for
enhancing attribute-based search with a tessellation structure. Conversely, the tendency

of storing pdlygons within the smallest cells that completely enclose them, may enhance
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location-based search with ihc Field 'I:ree used as a spatial indcx to vector data. Note,
however, that the discussion in Section 2.2 suggests othcrwisF The use of the Field Tree
as a structure for a GIS has been suggested recently [8,43,45]). The viability of the Field
Tree as either a GIS data stricture or as the tessellation component of the hybrid model

has yet to be fully explored.

Another structure that appears attractive for the realization of linear quadtrees or the
tessellation component of the hybrid is the grid file [61]. The size and growth of the grid
file and the simplicity of its table look-up access method make it attractive compared to
the EXCELL method. Like EXCELL, the grid file does not require overflow buckets,
whereas methods based on linear hashing generally do. The grid file appears unsuitable
for the rebrcscntation of a linear quadtree since the decomposition it induces is irregular.
R;quiring the decomposition to be regular might be an effective way to adapt the grid file

to linear quadtrees.

The suitability of the k-structure [44] for the representation of a polygon network is
interesting. Although the k-structure is elaborate and requires complete reconstruction
for updating, it enables logarithmic retrieval cost for the performance of the point inclu-
sion and thcmétic overlay operations; that is, O (log e)and O(e loge) operations,
respectively, where e is the total number of edges in the ]glygon network [77]. This is
considerably better than either the BSPR or the strip tree. These last two structures offer
linear retrieval cost for the point inclusion operation and quadratic retrieval cost for
thematic overlay, with respect to e. Because of this, the k-structure should be investi-
gated further as a location-based data structure for thematic data. Recent work by
Elcock, et al [25] describes related triangular decompositions that may be applicable to

polygon networks.



133

An open research problem is the complexity of spatial data. The following ques-
tions give a flavor of the isspes involved in this area. How do we Sharactcrizc non-
uniformly distributed thematic data? Hunter has shown an asymptotically linear relation-
ship between the size of a quadtree and the perimeter of a polygon (at a given resolution)
{37]. What is the relationship between complexity of the data and the value of the con-
stant in the asymptotic relationship? How is the complexity of the boundary of a polygon
characterized or measured? The fractal nature of geographic lines [52] and complexity
measures for polygon networks represented by quadtrees [19] are research areas that may
yield results applicable to the design and application of data structures for non-uniformly
distributed thematic data. Hunter’s result also suggests an interesting research problem
involving the relationship between the hybrid model and a tessellation model for the per-

formance of the spatial operations (see Section 4.3.3).

The hybrid model proposed in this thesis suggests the parallel retrieval and process-
ing of thematic data. This is possible since the spatial operations can be performed on a
tilewise basis - each relevant tile (or pair of tiles) is independently retrieved and pro-
cessed. Furthermore, there is no recombination cost since the results of the operations

are represented by the hybrid model.

Parallel processing of tiles may be achieved by the current generation of xﬁultiplc'
processor, parallel computers. Typically, these computers are designed for computation-
ally intensive parallel algorithms that require very little initial data. In large GIS applica-
tions, the converse is typical, that is, large quantities of data must be retrieved and the
'proccssing Costs are comparatively much l‘owcr. The benefits of adapting parallel pro-

cessing to the hybrid model can only be realized if the data can be accessed in parallel.

Parallel retrieval of tiles implies the use of multiple storage devices that can be

accessed simultaneously. These can be in the form of primary or secondary storage
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attached to a set of processors. The task is to distribute the tiles comprising a theme
among the multiple storage devices. The qucstiorﬂs, what is the best way to do this?
Storing tiles in Morton order on external storage has the tendency to locate spatially
nearby tiles physically close to each other. For operations such as windowing and over-
lay, the next tile to retrieve and process is often near the current tile. If spatially nearby
tiles are locgted on the same storage device then théy must be retrieved and processed
serially. Since the hybrid model facilitates independent retrieval and processing of tiles,

it seens apparent that scattering spatially nearby tiles on different storage devices might

allow parallel retrieval and processing.

The windowing operation provides a good example of the ideal situation for parallel
retrieval and processing. Positioning a rectangular window anywhere within an area of
interest specifies an arbitrary set of adjacent, relevant tiles. To obtain maximum parallel
benefit, any set of adjacent or nearby tiles should be arranged such that each tile is always
| located on a device which does not contain any other tile in the set. Recall that linear
hashing tends to scatter the nodes of a linear quadtree among a set of buckets as the struc-
ture grows. This property might be exploited to scatter the tiles of the hybrid structure

among multiple storage devices.

The file organization scheme M-cycle allocation, introduced by Wu and Burkhard
[92] (see Section 2.4) is relevant to a parallel variation of our hybrid model. Their work
strongly suggests that using the hybrid structure with M-cycle allocation may yield max-
imum parallel benefit for the windowing and thematic overlay operations. The
effectiveness of this approach for the attribute-based operations is an interesting research

topic.
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Appendix Al

Storage Requirement for the Hybrid Data Structure

This appendix is intended to give a quantitative example of the storage required by a
hypothetical realization of the hybrid data structure proposed in Chapter 4. The purpose
of this example is to illustrate the relative size of the tessellation component compared to

the vector component,

We begin by d'escribing an operationai context. The department of Forestry, Lands
and Wildlife of the Province of Alberta administers several digital mapping programs of
provincial coverage and of varying scales. In particular, the Land Information Serv1ces
Divisionwof Forestry, Lands and Wildlife maintains a digital map data base at a scale of
1:20,000 [26]. This map series consists of 3030 maps, each with dimensions 0.250
degrees longitude by 0.125 degrees latitudc (approximately, 16 km by 12 km). The
1:20,000 map series serves as a base for thematic applications which might employ the

hybrid data structure.

W assume the existence of a theme that uses up to 750,000 bytes of storage per
1:20,000 map for vector encoded polygon networks. This is a substantial thematic data
set which requires a total of about 2.3 gigabytes8 (GB) of storage. If we subdivide each

1:20,000 map into 16 tiles, then each tile requires up to 46,875 bytes of storage.

For the purposes of this example, we assume that the data for this theme is stored on
an IBM 3380K direct access storage device [40). The pertinent characteristics of this

device are listed in Table A1.1.

8

Throughout this appendix, the terms megabyte and gigabyte refer to 105 and 10° bytes, respective-
ly.
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Characteristic Value
Bytes/track 47,476
Tracks/cylinder 15
Cylinders/volume 2655
Bytes/volume 1.8907 GB

Table A1l.1 Characteristics of the IBM 3380K Device.

A disk track can be viewed as a unit of storage that may be retrieved with a cost of
one disk access.” Each tile of the above theme may be stored entirely within one track of
the IBM 3380K device. The entire theme can be stored on two 3380K devices. This
organization allows location-based access to any tile in hybrid structure with O (1) disk

accesses.

The tessellation component must have 16 nodes for each 1:20,000 map (since there
are 16 tiles) giving a total of 48,480 nodes. Each node consists of a 4-tuple af
<key,level,color,data> (c.f. section 4.2). The storage required for each 4-tuple is shown

in Table A1.2.

Element  Storage (bytes)

Key 16
Level 4
Color 40
Data 4
Total 64

v

Table A1.2 Storage Requirement for a Tessellation Component Node.
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The key u:lcmcntO in Table A1.2 allows for the storage of a locational code formed by
interleaving the bits of two 8§ byte coordinates. The level ﬁlcmcnt consists of an integer
level number. Use of 40 bytes for the color element allows up to 320 colors to be listed
for each node. The data element consists of an integer pointer used to reference a specific
cylinder and a specific track within the cylinder. The space required for all of the tessel-

lation component nodes is thus 3.103 megabytes (MB).

The tessellation component is realized with the EXCELL cell method which
requires a directory to index the nodes. If we assume a bucket capacity of b=16 tessella-
tion component nodes, then the EXéELL directory consists of 3030 elements. Each

A

directory element cor'.ins a 4 byte pointer which references a bucket. Thus, the space

required for the directory is 0.0;2 MB.

The total space requirement for the tessellation component is 3.115 MB. The space
required for the tessellation component is about 0.1% of the space required for the vector
component. Thus, the hybrid realization of a large thematic data set introduces a minor

storage overhead compared to a totally vector implementation.



