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ABSTRACT The evolution of traditional energy networks toward smart grids increases security vulner-
abilities in the power system infrastructure. State estimation plays an essential role in the efficient and
reliable operation of power systems, so its security is a major concern. Coordinated cyber-attacks, including
false data injection (FDI) attack, can manipulate smart meters to present serious threats to grid operations.
In this paper, a robust state estimation algorithm against FDI attack is presented. As a solution to mitigate
such an attack, a new analytical technique is proposed based on the Markov chain theory and Euclidean
distance metric. Using historical data of a set of trusted buses, a Markov chain model of the system normal
operation is formulated. The estimated states are analyzed by calculating the Euclidean distance from the
Markov model. States, which match the lower probability, are considered as attacked states. It is shown
that the proposed method is able to detect malicious attack, which is undetectable by traditional bad data
detection (BDD) methods. The proposed robust dynamic state estimation algorithm is built on a Kalman
filter, and implemented on the massively parallel architecture of graphic processing unit using fine-grained
parallel programming techniques. Numerical simulations demonstrate the efficiency and accuracy of the
proposed mechanism.

INDEX TERMS Bad data detection, cyber-attack, false data injection, dynamic state estimation, graphic
processing units, large-scale systems, Markov chain, parallel programming, SCADA, PMUs.

I. INTRODUCTION
A smart power grid is a typical cyber-physical system (CPS)
which integrates a physical power transmission system with
the cyber computation and communication infrastructure.
Although the advancement of cyber technologies in sensing,
communication and smart measurement devices significantly
enhanced power system operation and reliability, its depen-
dency on data communication makes it vulnerable to cyber-
attacks [1]. Coordinated false data injection (FDI) attacks [2]
manipulate power system measurements in a way that emu-
late the real behaviour of the system and remain unobserv-
able, which misleads the state estimation process, and may
result in power outages and even system blackouts. Different
aspects of constructing FDI attacks and their effect on the
system are comprehensively reviewed in [3] and [4].

The increasing demand for reliable and economical elec-
tricity services raises critical challenges in online monitoring

and control of future power grids which rely on dynamic
state estimation (DSE) [6]; therefore, security of DSE and its
vulnerability to cyber-attack is a major concern.

Detecting and identifying bad data in state estimation
is traditionally or conventionally done by comparing the
telemetered measurements from supervisory control and data
acquisition system (SCADA) with the estimated values of
the states. Traditionally, bad data are assumed to be caused
by random errors resulting from a fault in a meter and/or
its attendant communication system [8]. These errors were
modeled by a change of variance in the Gaussian noise,
which is detectable using Chi-squares and largest normal-
ized residuals (LNR) test. Many researchers have consid-
ered the problem of bad data detection (BDD) in power
systems, however conventional BDD approaches usually fail
when the network malfunction is intentionally caused by an
attacker [9], [10].
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Vulnerabilities of power system to cyber-attacks can be
classified into three main categories [11], [12]:
• Data integrity analysis- this research area investigates
the possibility of the attacks from the attacker’s point
of view by exploiting weaknesses in BDD techniques.
The problem of unexpected cyber-attack and its auto-
matic recovery based on residual signals is investigated
in [13]. Using computational intelligence technique [14]
proposed a detection method to identify compromised
data belonging to critical infrastructures. A detection
algorithm is proposed in [15] to identify anomalous
behavior from a compromised relay using the gener-
ator’s dynamic state estimation. This problem is also
formulated as identification of a subset of the mea-
surements which are more vulnerable and easier to be
attacked [17]–[19]. The results show that FDI attacks
are easier to detect using the dc model of the system
compared to the ac model. However, considering the
large size of electric grids, selecting such subsets is a
highly complex and computational intensive problem.

• Consequence analysis- the effect of false data attack
within different functions of the energy management
systems and smart grids such as optimal power flow
calculations, congestion analysis, automatic generation
control and energy pricing is investigated in this research
area [20]–[22]. The current situation of security in indus-
trial control systems considering a satisfactory degree of
security for a distributed industrial system, with respect
to the system characteristics, and the current standard-
ization techniques and the adoption of suitable controls
is presented in [23]. The impacts of cyber-attacks on the
tie-line, frequencymeasurements, and on generator DSE
are investigated in [24] and [25].

• Attack prevention analysis- specifically this research
area is interested in finding the critical measurements
and protecting them by improving the security of the
communication system. In order to identify the vulnera-
bility of a power grid, conditions were defined to quan-
tify the minimum number of measurements required
for a stealth attack [26]. Also, efforts have been made
to develop a security-oriented cyber-physical state esti-
mation framework using off-line information in [27]
and [28] which could identify the compromised set
of measurements. A risk mitigation strategy based on
the DSE is proposed in [29] to eliminate threat levels
from the potential cyber-attacks. To reduce the chance
of successful attack, a game- theoretic framework and
a security gateway was introduced in [30] and [31],
respectively, to investigate the optimal strategies for both
the sensor and the attacker.

One important fact which is neglected in the above works
is that the cyber-security analysis should be performed in a
timely manner, in order to solve the data attack construc-
tion problem efficiently. Otherwise it will slow down the
process of state estimation, online monitoring and control
of the system behaviour. In such cases even if the attack

is detected, there is no time to take an action and prevent
further casualties. Another main concern related to most of
the above approaches is that they are not tested on large-
scale power systems so the complexity and efficiency of the
proposed approaches in practical systems is unclear. Overall,
the computational complexity of the proposed approaches
grows exponentially with the size of the power networkwhich
may make them unpractical for realistic systems.

The main motivation of this work is to design an attack
detection method based on the history of the network behav-
ior to be implemented on the massively parallel architecture
of the graphic processing unit (GPU). An important fact in
this type of analysis is to reduce the execution time as much
as possible to save time for preventive action to take place.
So we need a simple and effective method which matches the
single instruction multiple data (SIMD) architecture of the
GPU to accelerate the whole process. The existingmethods in
cyber-attack analysis are mathematically complicated which
makes them difficult for GPU implementation. To overcome
the effect of cyber-attacks, in this paper considering the
stochastic nature of the system disturbances a cyber-physical
model of the power system utilizing the Markov chain the-
ory [32] is proposed. To the best of the author’s knowledge
such work has not been reported yet. It is the first time
that robust state estimation against cyber-attack is modeled
using Markov-chain and implemented on GPU. The power
system can be modeled as a stochastic hybrid dynamical
system where the stochastic nature of generation and state is
explicitly included. Considering the results of state estimation
from a group of trusted measurements, a set of possible
states along with the probability of each state is generated.
A Markov chain based on these states is then defined. After
each estimation process all states are checked on the Markov
chain. If the estimated states are close to a value with low
probability or out of the Markov chain, the possibility of
the cyber-attack is deemed high. Furthermore, to increase
the security of the system, critical measurements are iden-
tified and protected. Changing the critical measurements
using updated information decreases the chance of success-
ful cyber-attack. The proposed attack detection methodology
was built upon a parallel Kalman filtering algorithm for DSE.
In order to speed up the whole process, the proposed robust
DSE is implemented on GPU which are specially designed
to deal with large amount of data. GPUs have already found
applications for accelerating different power system applica-
tions [33], [34]. In summary, the main contributions of the
proposed approach are as follows:
• Massively parallel implementation of robust DSE
against FDI.

• Critical measurements identification and protection.
• Localization of false data injection attack using Markov
chain model.

The organization of this paper is as follows. Section II
provides formulation and the state estimation model used in
this work. Section III explains the proposed robust parallel
DSE against FDI and its implementation. The simulation
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results are provided in Section IV followed by conclusion in
Section V.

II. MATHEMATICAL FORMULATION
A. DYNAMIC STATE ESTIMATION USING EXTENDED
KALMAN FILTER
The state-space model of the power system DSE can be
described as:

xt+1 = Ftxt + bt + ωt , E[ωtωTt ] = Ot , (1)

mt+1 = h(xt+1)+ εt+1, E[εtεTt ] = Rt , (2)

where x is the vector of system states comprised of voltage
magnitudes and phase angles at all buses except the slack
bus where V1 = 16 0◦ p.u. For a system with n buses and
m lines, F represents the (2n− 1)× (2n− 1) state transition
matrix between two time frames, b is the (2n− 1)× 1 vector
representing the behavior of the state trajectory, and ω is
the (2n− 1)× 1 Gaussian noise vector with zero mean and
covariance matrix O. Sudden changes due to different types
of the noises will not affect the results. h(x) andm, are vectors
of nonlinear measurement functions and measurement data,
respectively. Phase angle of the slack bus is considered 0 as
a reference for other buses, so that there are 2n− 1 states
to be estimated. There are 2m+ 2n+ 1 elements in each
measurement vector: 2m power flows, 2n power injections,
and slack bus measurements. ε is the measurement noise
assuming normal distribution with zero mean, and R is the
(2m+ 2n+ 1)× (2m+ 2n+ 1) measurement error covari-
ance matrix.

The objective function J(x) was chosen to minimize both
estimation and prediction errors, given as:

J(x) = argmin
x

[m− h(x)]TR−1[m− h(x)]

+ [x− x̃]T ρ̃−1[x− x̃], (3)

The following equation satisfies the first-order optimality
condition at the minimum of J(x):

g(x) = HT(x)R−1[m− h(x)]− ρ̃−1[x− x̃] = 0, (4)

where g(x) is the (2n− 1)× 1 vector of gradient of the objec-
tive function, and H = ∂h

∂x is the (2m+ 2n+ 1)× (2n− 1)
Jacobian matrix. Expanding the non-linear function h(x) into
its Taylor series around the state vector x̃0 results in the
following:

h(x) = h(x̃0)+H(x̃0)[x− x̃0]+ . . . , (5)

In general, x̃0 is the initial state or current predicted state of
the system, which can be replaced by x̃. Neglecting the higher
order terms and substituting h(x) in Eq.(4):

G(x)1x = HT(x̃)R−1[m− h(x̃)],

G(x) = HT(x̃)R−1H(x̃)+ ρ̃−1, (6)

where 1x = x̂ − x̃0 is the (2n− 1)× 1 state mismatch
vector andG(x) = ∂g

∂x is the (2n− 1)× (2n− 1) gain matrix.
The state estimation algorithm given by (3)-(6) should be

solved iteratively until convergence of 1x to a specified
threshold.

In order to predict the estimation value, model of the
system should be identified. In this work Holt’s exponential
smoothing technique is used. Considering the quasi-static
nature of the power system, recent state of the system are
closet one to the current state of the system. Exponential
Smoothing assigns exponentially decreasingweights in a way
that recent observations are given relatively more weight in
forecasting than the older observations [35]. F and b are
described as follows:

Ft = BIidn, 0 < B < 2,

bt = Cx̃t −Dγ t−1 + (1+D)ξ t−1, 0 < C < 2,

γ t = Fx̂t + (1− F)x̃t , 0 < F < 1,

ξ t = D(γ t − γ t−1)+ (1−D)ξt−1, 0 < D < 1, (7)

where B, C, D and F are smoothing parameters. To select
the value of the smoothing parameters we search for values
that minimizes the size of the combined forecast errors of
the currently available series. The goal is to find the smooth-
ing parameters that result in minimum forecast error. The
forecast error is the difference between the forecast of the
current period made at the last period and the value of the
series at the current period. In this work, D and F were
selected as 0.8 and 0.7, respectively. The other two smooth-
ing parameters are functions of D and F. The Iidn is the
(2n− 1)× (2n− 1) identity matrix. The x̃ and x̂ represent
the predicted and estimated values, respectively.

Using the measurement and estimated states at the time
instant t, the predicted value x̃t+1 can be formulated as:

x̃t+1 = Ft x̂t + bt , (xt − x̂t )∼N(0, ρt ),

ρ̃t+1 = FtρtFt
T
+ ÔPt , (xt − x̃t )∼N(0, ρ̃t ), (8)

where ρ and ρ are (2n− 1)× (2n− 1) error covariance
matrices for estimated and predicted values, respectively. For
simplicity O is assumed to be constant.

Finally, utilizing extended Kalman filter (EKF) the pre-
dicted values can be updated using the next set of measure-
ments at the time instant t+ 1. The updated state through
EKF can be written as:

x̂t+1 = x̃t+1 +Kt+1(mt+1 − h(x̃t+1)),

Kt+1 = ρ̃t+1H
T
t+1[Ht+1ρ̃t+1H

T
t+1 + R]−1,

ρt+1 = ρ̃t+1 −Kt+1Ht+1ρ̃t+1, (9)

where K is the (2n− 1)× (2m+ 2n− 1) Kalman gain
matrix.

B. BAD DATA DETECTION
Even under normal operating conditions the measurements
may be corrupted by random errors. The process of detecting
exceptional errors is called BDD. Traditionally BDD tries to
detect measurements errors using the statistical properties of
the weighted measurement residual. Generally, the presence
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of bad data is determined if

rNi =

∣∣ri∣∣
σii
≤ ~, (10)

where ri is the measurements residual, and rNi is the largest
normalized residual (LNR), σii is the standard deviation
of the ith component of the residual vector and ~ is the
threshold [36].

It should be noted that measurement redundancy is a key
issue in the performance of BDD which means it is neces-
sary to have more measurements than the minimum number
required for system observability. However, existing mea-
surement configurations may not always yield such desired
level of redundancy which makes the BDD impractical.

C. FALSE DATA INJECTION ATTACK
In false data injection (FDI) attacks, the adversary who has
the knowledge of the network configuration can inject some
of the meter readings from SCADA and manipulate the state
variables arbitrarily. This type of malicious attacks can effec-
tively bypass the existing BDD technique. The assumption
is that: 1) attacker will compromise minimum number of
measurements to achieve his goal, and 2) attacker have partial
knowledge on system topology and security mechanisms.

The general rule for a hidden attack is that the attacker
must alter the data so that the measurements can plausibly
correspond to the physical properties of the system. The
main idea of FDI attack is to add a nonzero attack vector a
to the original measurements vector m which results in a
false estimation x̂ + c, where c is the error added to the
original estimation [2], [16], [18]. Considering the measure-
ment residual, a necessary condition to hide an attack can be
derived as follows:

1x̂a = G−1HTR−1[ma − h]= G−1HTR−1[m+ a− h],

= G−1HTR−1[m− h]︸ ︷︷ ︸
1x̂

+G−1HTR−1[a]︸ ︷︷ ︸
G−1HTR−1Hc

,

= 1x̂+ c → x̂a = x̂+ c (11)

ra = ‖ma − m̂a‖ = ‖ma −Hx̂a‖ = ‖m+ a−H(x̂+ c)‖

= ‖m−Hx̂+ (a−Hc)︸ ︷︷ ︸
a=Hc

‖ = ‖m−Hx̂‖. (12)

where 1x̂a refers to attacked state mismatch vector, ma is
the measurement vector under the attack, m̂a refers to esti-
mated measurement vector under the attack, and x̂a represent
the attacked state.

The above equality constraint results in a = Hc. A struc-
tured sparse attack like a = Hcwill result in the same residual
and will not be detected by BDD. In this case, the system
operator would mistake x̂+ c for a valid estimate.
Definition: The sparse attack vector a = [a1, . . . , am]T is

called false data injection attack if and only if it satisfies
the relation a = Hc, where c = [c1, . . . , cn]T is a arbitrary
nonzero vector [2].

Fig. 1 shows a possible cyber-attack on an energy control
center. For example, assume that the attacker wants to alter

FIGURE 1. Dynamic state estimation under cyber-attack, a: attack vector,
m: measurement, r: measurement residual, x̂: estimated state.

the active power flow on the line connecting bus i and j.
Based on the following equation the attacker has to at least
change one of the four variables, voltage magnitudes: vi, vj,
and phase angles: θi, θj.

Pij = v2i .gij − vivj(gijcos(θi − θj)− bijsin(θi − θj)). (13)

Imagine that the attacker wants to adjust the estimated
value for vj to vaj , the following equation must be solved
in order to find the voltage magnitude which will yield the
desired power flow:

Pij = v2i .gij − vivaj (gijcos(θi − θj)− bijsin(θi − θj)). (14)

where gij and bij represent line admittance parameters. Since
power flow and power injection are functions of voltage mag-
nitudes and phase angles, the value of other measurements
can be calculated considering the relationship between power
flow and power injection. Also, the attacker must change all
themeasurements which are functions of vj. In another words,
the following should be satisfied in order to keep the attack
hidden: ∑

i

1Pi +1LP = 0,∑
i

1Qi +1LQ = 0, (15)

where 1P and 1Q represent the alterations in active power
flow/power injection and reactive power flow/power injec-
tion, respectively. 1L represents the power losses.
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D. CRITICAL MEASUREMENT IDENTIFICATION
Large-scale power grids contain thousands of meters which
makes the protection of measurements highly expensive.
In order to reduce the cost, we identify the critical meters
to protect them based on optimal PMU placement. Critical
measurements are the ones whose eliminationmake the entire
system unobservable. One of the important properties of
critical measurements is that its measurement residual will
always be zero [36]. Without loss of generality, we can define
1m = h(x)+ ε ' H1x. The measurement residual can be
written as follows:

res = 1m−1m̂ = 1m− (h(x̂)+ ε)

w 1m− (H1x̂+ ε). (16)

Without loss of generality, ε can be removed from the
equation. Substituting (6) in (16) we obtain,

res = 1m−HG−1HTR−11m = (I− S)1m (17)

For residual equal to zero, the diagonal element Sii of
matrix S should be 1, which implies that the ith measurement
is critical.

In the next step, by optimal PMU placement at strategic
buses in the system, we try to increase the accuracy of the
system, protecting most of the critical measurements, and
providing a subset of trusted buses for use in the attack detec-
tion algorithm. In other words, PMUs work as backup mea-
surements to increase the security of critical measurements.
So those buses that are observable through PMU placements
are considered trusted bus. The objective of PMU placement
problem is to accomplish this task by using a minimum
number of PMUs. This problem can be formulated and solved
as shown below:

min.
n∑

i=1

3i × 0i,

subject to :
n∑

j=1

µi,j × 0i ≥ 1 at bus i (18)

0i =

{
1 If PMU is installed at bus i,
0 Otherwise,

(19)

where µi,j is the element of connectivity matrix which is 1
if bus i and bus j are connected, and 0 otherwise. 3i is the
cost of PMU installation at bus i.

E. MARKOV-CHAIN FORMULATION
Consider a physical system that has k possible states and at
any given time, the system is in one of its k states. Defining
a set of states as Ci, for any si, a stochastic process which
fulfils the following properties is called an l th order Markov-
chain [32]:

Pr(Ct+1 = si|Ct = si0 , . . . ,C0 = sit )

= Pr(Ct+1 = si|Ct = si0 , . . . ,Ct−l = sil ) (20)

where si0 , . . . , sil , . . . , sit ∈ S, Pr refers to probability func-
tion and t represent the time. We are trying to model the
system behavior based on the historical data. When there are
only k possible state, k is the limit for the number of data that
we can use in our Markov chain modeling. So, in this process
the probability of getting into the next state depends upon the
l previous states, where l ≤ k .

To define a Markov model, the following probabili-
ties have to be specified: the transition probability matrix
TP = [tpij]k×k and initial probabilities π0

i = Pr(C0 = sii ),
however, in our case study we are dealing with l-th order
Markov chain, so we do not use initial probability at time
zero.

tpij = Pr(Ct+1 = si|Ct = sij ), j ∈ 0, 1, 2, . . . , k (21)

with
∑k

i=1 tpij = 1 and tpij ≥ 0. In this work tpij is the proba-
bility of future state (i) to be equal to j-th data set in historical
data, so the total probability considering all historical data
should add up to 1. In l-th order Markov chain the conditional
probability of observing Ct+1 = si is a linear combination
of contributions from each of Ct, . . . ,Ct−l. The effect of
each previous state can be considered separately resulting in
following conditional probability:

Pr(Ct+1 = si|Ct = si0 , . . . ,Ct−l = sil )

=

l∑
j=0

λjPr(Ct+1 = si|Ct−j = sij )

=

l∑
j=0

λjtpiij (22)

where λ is the weight parameter considering the effect of
each previous state separately, and

∑l
j=0 λj = 1.

F. DETECTION OF POTENTIAL ATTACK
The proposed parallel DSE using EKF calculates the state
of the system using the equations described in Section II.
The Euclidean distance of the historical data and estimation
of the trusted buses are calculated. Historical data actually
refers to possible state of the systemwhich has been observed
during long term system performance, therefore it acts like
a database of the system behavior. Since the data behaviour
changes over time, the historical data representing the normal
behaviour is updated dynamically.

The Euclidean method compares the difference between
the two sets of data (x1, x2) based on the distance metric as
given in (23):

ED(x1, x2) =
√
(x1,1 − x2,1)2 + . . .+ (x1,n − x2,n)2 (23)

In the proposed method C and S represent set of states
of trusted buses and estimated states, respectively. Transition
probability is calculated as follows:

tpfij =

∑M
j=1,j 6=f ED(Ci,Cj)

(M− 1)
∑M

j=1 ED(Ci,Cj)
, f ∈ 1, 2, . . . ,M (24)
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where
∑k

j=1 tp
f
ij = 1. M is the number of data set in his-

torical data. Ci represent the current estimation of trusted
buses and Cj refers to estimated state for the same buses in
j-th historical data among allM available data set. In another
words, higher probability is assigned to the measurement set
with a smaller Euclidean distance. In the next step all of
the projected estimates and the Markov model are compared
by the detector. If the difference between two (the projected
estimates and data with high probability in Markov model)
is above a pre-computed threshold, an alarm is triggered
to notify of a possible attack or failure. The results with
probability less than 0.1 are assumed to be corrupted with
cyber-attack. In other words the probability of the attack
increases when the results match to data set with a lower
probability.

The results of state estimation are compared with normal
expected state of the system in Markov model. In case the
difference between them is above the predefined threshold,
the detector triggers an alarm. The threshold is defined con-
sidering the probability of state estimation in Markov model.
The results with probability less than 0.1 are assumed to be
corrupted with cyber-attack. However, to avoid false alarms
due to measurement or system errors, the threshold was set
to filter 99% of noise. The same criteria was also considered
for the LNR test. The threshold and detector outputs for both
LNR and the proposed method are normalized. Also, in case
of the load change, the change in voltage magnitude or phase
angle can be predicted, so that the model parameters can
be adjusted to reflect the change in the voltage due to the
load change. Fig. 2 shows the overall block diagram of the
proposed method.

III. MASSIVELY PARALLEL IMPLEMENTATION
OF THE ROBUST DSE AGAINST FDI
In this section, a trust-aware scheme for DSE is proposed that
is robust under FDI attack. In the first step, critical measure-
ments are identified. Utilizing optimized PMU placement for
critical measurements, a group of trusted buses are introduced
into the network. The assumption is that trusted measure-
ments are secured and can not be affected by adversary.
Considering high level of security and backup PMU instal-
lation on these measurements it is unlikely that the adversary
can attack these measurements. Secondly, using historic data
of the trusted buses normal activities a Markov-chain model
representing the ‘‘normal’’ behavior of the network is created.
Thus, given an observed sequence, the system has to decide
if there is a cyber-attack or system in under normal operation
condition. The Euclidean distance of the results from the
Markov-chain model is then calculated. The higher the dis-
tance the observed activities receive from the Markov-chain
model of the normal profile, the more likely the observed
activities are anomalies resulting from cyber-attacks, and vice
versa. Because many cyber-attacks require a series of related
events to accomplish, an l th order Markov-chain is used to
improve attack detection performance by incorporating the
continuous events.

FIGURE 2. Overall block diagram of the proposed robust DSE method.

A. GPU ARCHITECTURE AND PROGRAMMING INTERFACE
The application of parallel processing in power system anal-
ysis is motivated by the desire for faster computation and the
structure of the problems [37]. It should be noted that a GPU’s
architecture is different from that of a CPU. The CPU con-
sists of several cores comprising of heavy-weight processing
threads which are able to handle complex tasks with longer
processing time; however, a GPU consists of thousands of
cores that comprise massively parallel light-weight threads
which can process simple operations with much lower laten-
cies. GPU cores are more like arithmetic logic units rather
than an actual processing cores. Thus, the structure of the
problem and the solution algorithms should be redesigned in
a way to breakdown into simple operations to take advantages
of the GPU’s architecture.

The programmer divides work into threads, threads into
thread blocks, and thread blocks into grids. The actual
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execution of a thread is performed by the abstracted CUDA
cores which are a number of single precision floating point
units.

B. IMPLEMENTATION OF ROBUST
DSE AGAINST FDI ON GPU
The proposed robust DSE combines several aspects of paral-
lelism to utilize the full capability of the GPUs as efficiently
as possible. Initializations are done on the CPU. After that
all of the data are transferred to the GPU for executing the
robust DSE algorithm. In the first step, the traditional serial
algorithm is converted into smaller independent tasks which
results in task parallelism to be solved in parallel. All of the
independent tasks in the three main steps of EKF are calcu-
lated in parallel to accelerate the algorithm. In the parameter
identification step, b and γ do not rely on each other’s result,
so that they are calculated in parallel to accelerate the algo-
rithm. In the state prediction stage x̃, ρ̃, G(x) and g(x) are
parallelizable. Finally in the state filtering step, x̂ and ρ can
be calculated simultaneously.

In order to take advantage of the single instruction mul-
tiple data (SIMD)based architecture of the GPUs for basic
computations data parallelism is used for matrix-vector and
matrix-matrix products. The proposed cyber-attack detection
algorithm is composed of matrix summation and inner prod-
ucts for a large set of data. For a large-scale system the size of
the data is the main bottleneck for computational efficiency.
These tasks can be broken down into simple operations to be
assigned to an individual kernel to run in parallel. In addition
to that all operations can be done in parallel for all data sets.
By assigning each independent for loop to individual threads,
the tasks can be executed in parallel by converting into a
kernel.

In other word, underlying implementation of the robust
DSE algorithm (vector updates, inner products, matrix vec-
tor products) takes advantage of the fine-grained parallelism
using the CUDAparallel programming paradigm. These tasks
can be assigned to an individual kernel to run in parallel. Each
kernel is responsible for the calculation of that specific task.
As the number of independent threads is a lot more than the
CPU cores, this type of parallelization is not possible on the
CPU. To illustrate how the CUDA works, consider a very
simple matrix product on CPU and GPU.

Consider a function that takes two N× N matrices
A and B and multiply them in a third matrix C. On the
CPU, three for loops are used over all array elements as
follows:

for (i = 1 : N )
for (j = 1 : N )

for (k = 1 : N )

C[i][j] = A[i][k] ∗ B[k][j]+ C[i][j]

end

end

end

The computation on the GPU can be performed by separating
the outer loop from the inner calculations. First of all, enough
memory space on devicememory should be allocated for each
matrix using CudaMalloc commands:
CudaMalloc((void ∗ ∗)&dA, (sizeof (float) ∗ N ∗ N ));
CudaMalloc((void ∗ ∗)&dB, (sizeof (float) ∗ N ∗ N ));
CudaMalloc((void ∗ ∗)&dC , (sizeof (float) ∗ N ∗ N ));
dA and dB specifies the location of the matrix A and B in

device memory. The next step is to transfer data to the GPU
by executing the following command:
cudaMemcpy(dA, hA, (sizeof (float) ∗ N ∗ N ), . . .);
cudaMemcpy(dB, hB, (sizeof (float) ∗ N ∗ N ), . . .);
hA and hB specify the location of matrix on host memory.

Arrays of the matrices will be stored in vector format in the
GPU. The kernel code to perform the operation can be written
as:

_global_ void MatMult(float∗A,float∗B,float∗C, int N )
{

float sum = 0;

int id .x = blockIdx.x ∗ blockDim.x + threadIdx.x;

int id .y = blockIdx.y ∗ blockDim.y+ threadIdx.y;

if (id .x < N || id .y < N )

for(int i = 0; i < N ; + + i)

sum+ = A[id .y ∗ N + i]+ B[i ∗ N + id .x];

C[id .y ∗ N + id .x] = sum;

__syncthreads(); }

The global qualifier __global__ specifies that the kernel
is callable from the CPU and will be executed on the GPU.
id .x and id .y, are defined to control the execution of the
kernel. blockDim.x returns the number of threads in each
block. Every thread in a block and every block in a grid has
a unique index which is accessible through the threadIdx and
blockIdx, respectively. The __syncthreads() call ensures that
all threads are synchronized. To invoke this kernel from a
CPU-based code we need to add a syntax as below:
MatMult ≪ grid, block ≫ (dA, dB, dc,N );
The grid dimensions and the block dimension in execution

configuration (≪ ≫) are defined by grid and block, respec-
tively. At the end the result can be transferred to host memory
using the cudaMemcpy command.

Sparse matrix-vector multiplication and sparse triangular
solve is used for GPU implementation using cuSPARSE
library [38]. Fig. 3 shows the flowchart of the proposed robust
DSE method.

IV. CASE STUDIES
A. TEST SYSTEMS
To explore the efficiency of the GPU based robust DSE
against FDI, large-scale systems were constructed for sim-
ulations. The IEEE 39-bus, IEEE 118-bus, and IEEE
2496-bus systems were implemented on the GPU for sim-
ulation studies. Case 3 (2496-bus) has build by duplicating
and interconnecting the IEEE 39-bus system. To demon-
strate the performance of the proposed method in terms of
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FIGURE 3. Flowchart of the proposed robust DSE method implemented on the GPUs.

FIGURE 4. Voltage magnitude under normal operating condition.

speed-up, the above test systems were used to perform simu-
lations on TeslaTMS2050 GPU server from NVIDIAr with
4 Fermi GPUs, and 448 cores in each GPU. CUDA ver-
sion 5.0with compute capability 2.0 is used for programming.
The CPU is the quad-core Intelr XeonTM E5-2620 with
2.0 GHz core clock and 32 GB memory, running 64-bit
Windows 7r operating system. For accuracy analysis

FIGURE 5. a) Estimation error, and b) detector output under normal
operating condition.

estimated states are verified using power flow analysis by
PSS/Er.
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FIGURE 6. IEEE 118-bus test power system.

B. PERFORMANCE EVALUATION
In order to evaluate the accuracy of the proposed method,
the results of the state estimation under normal operating
conditions are plotted in Fig. 4 and Fig. 5. As there is no attack
in the system, the results of state estimation are close enough
to PSS/Er (real states). Fig. 5 (a) shows the estimation error
for all 118 buses. It is also shown in Fig. 5 (b) that both LNR
and proposed Markov Chain Detector (MCD) test were result
in lower values than the threshold indicating that there was
no attack in the system. The small differences compared to
PSS/Er results are justifiable considering the fact that the
order of block execution in eachGPU grid is undefined in ker-
nel definition. Therefore, it leads to slightly different results if
different CUDA blocks perform calculations on overlapping
portions of data. The same experiment is performed for all
case studies, however only results of IEEE-118 bus system,
are plotted for brevity. Details of the case studies along with
average estimation error for voltage magnitude (EAve.V ) and
phase angle (EAve.δ ) are shown in Table 1.

C. ATTACK DETECTION ANALYSIS
In the second scenario, the proposed approach was evalu-
ated for both random attack and intelligent FDI attack. For
the cyber-attack, the goal of the attacker was to change the
power injection at bus 22 by influencing the estimated val-
ues for the state variables at this bus in the IEEE 118-bus
system shown in Fig. 6. For this attack to remain hidden
other measurements have to be changed as well. In order to

satisfy (13), (14), and (15), power injections at buses
20 and 23 need to be changed. Also, the power flows on
the 21-22 and 22-23 connecting lines need to be adjusted
as well which will change the power flow on line 20-21.
As a result the attacker has to consider changing the esti-
mated value for bus 21 on his attack modeling to keep the
attack hidden. Fig. 7 and Fig. 8 show the behavior of the
system under random attack. It is shown in the results that
the estimation does not match with the measured values. The
estimation error for all 118 buses are plotted in Fig. 8 (a).
As cab be seen from Fig. 8 (a) during the first 8 seconds of
the simulation estimation error is very small which ensure the
accuracy of the estimator under normal operation condition.
However, when the system is affected by a random fault the
estimation error is suddenly increased. Since the attack is not
intelligent, this increase in the estimation error will appear
in the measurements residual and trigger both LNR and the
proposed detector as shown in Fig. 8 (b).

Fig. 9 and Fig. 10 show the behavior of the LNR and
proposed FDI test under the cyber-attack. It is clear from these
results that the estimation does not match with the measured
values. The same way as previous case study, Fig. 10 (a)
shows the trend of changes in estimation error during normal
operation condition and under cyber-attack. Once the system
is under cyber-attack estimation error is suddenly changed,
however, these changes easily bypass the LNR detector. Since
the measurement residual remained the same, the LNR detec-
tor resulted in values below threshold and thus it was not able
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TABLE 1. Summary of DSE results under FDI attack.

FIGURE 7. Voltage magnitude under random attack.

FIGURE 8. a) Estimation error, and b) detector output under random
attack.

to detect the attack in the system as shown in Fig. 10 (b). The
reason of failure in traditional bad data detection methods is
that they mainly rely on residual in the measurements vector,
however, as it is shown in Section II.C a cyber-attack does
not leave any trace in measurements residual. In the same
setup, the proposed Markov detector exceeds the threshold;
hence, the FDI attack can be detected. The same experiment
is performed for all case studies resulted in similar results,
providing the effectiveness of the proposed approach.

The same analysis was done in all case studies. Details
of the case studies along with average estimation error for

FIGURE 9. Voltage magnitude under FDI attack.

FIGURE 10. a) Estimation error, and b) detector output under FDI attack.

voltage magnitude (EAve.V ) and phase angle (EAve.δ ) after attack
elimination are shown in Table 1. Maximum detector output
for LNR test (DOMax

LNR) and proposed Markov chain detector
(DOMax

MCD) under FDI attack are also reported in Table 1. The
maximum detector output shows that in all comparative test
simulations the two traditional method resulted in an output
less that the specified threshold which will not trigger the
alarm. In general, any type of FDI attack in measurement set,
transition line or system topology results in the same changes
in the network with slight modification. Therefore, a detector
that can identify above attack will be able to detect similar
cyber-attacks that are coming from different sources.
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TABLE 2. GPU resource occupancy.

D. COMPUTATIONAL EFFICIENCY AND
RESOURCE DISTRIBUTION
In order to certify the efficiency of the proposed
GPU-based robust DSE the speed-up ratio is defined as
Sp = TCPU/TGPU , where TCPU and TGPU are the execution
times of the serial algorithm running only on CPU and
parallel algorithms on the GPU, respectively. EAve.V and EAve.δ

are errors of estimation for voltage magnitude and phase
angle, respectively. As the results reported in Table 1 show,
the advantage of utilizing GPU for parallelization is signifi-
cant when the size of the system increases. It is obvious that
execution time on CPU follows a high order complexity as the
system size grows. However, the execution time of the robust
estimator on GPU increases almost linearly with respect to
the system size as a result of fine grained parallelism on GPU.
Therefore it is expected to see higher speed-up for larger
case studies. Based on Gustafson’s law [39], the maximum
achievable speed-up by parallelization is proportional to the
number of CPU cores in the system. Unlike the CPU, there
is no fixed law to predict the maximum achievable speed-
up using GPU. As it is obvious from results, more cores
increases the processing power and throughput of the GPU
and results in significantly faster algorithm. So it is expected
to see even better performance using GPU for larger case
studies which make it suitable for real implementation. The
resource distribution from CUDA on the Tesla S2050 GPU
server is shown in Table 2. As can be seen from the results,
the number of cores increase dynamically as the size of the
system increases. Distribution of threads, blocks and memory
varies in different kernels. Typically, the number of thread
per block is a constant number which was 128 in our case
studies. The number of blocks per grid is different based on
the problem size in each case study. The maximum number
of blocks per grid in each dimension was 16. The maximum
number of grids for each Case study is reported in Table 2.

V. CONCLUSION
In this paper, a robust parallel dynamic state estimation
approach utilizing graphic processing units and extended
Kalman filter was presented. The proposed approach can
detect false data injection attack using trusted set of
measurements which were secured using optimized PMU
installation. Considering the stochastic nature of the power
system, using Markov chain theory and history of the sys-
tem’s dynamic behaviour a Markov model was proposed
to check the accuracy of the estimation results using the

Euclidean distance metric. Simulation results verify the accu-
racy of the proposed method both under normal operating
condition and under false data injection attack. It should be
considered that selecting a different threshold will not change
the fact that proposed method can detect FDI attack which
bypass the traditional BDD techniques. Large case studies
along with parallel implementation on GPUs shows the speed
and applicability of the proposed approach for real-time
large-scale power systems operation. The primary benefit to
control roomoperations is the ability to process large amounts
of data and provide useful information on a much faster time
scale and fidelity. For future work, further analysis will be
included to identify the type of attack (e.g. low frequency,
rate of change of frequency, damping rate). Also historical
data selection algorithm will be improved using optimization
technique to generate a priority list.
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