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' . Abstract

A simulator, called FLX, for flexible link manipulators with revolute joints
has been developed. The derivation of the flexible link dynamics uses a 4 x 4
homogeneous transformation mat:tx Langrangian formulation. Link ﬂexbility is

included using the method of assumed thodes.

The kinematics and dynamics of rigid link manipulators, in particylar, the

recursive 4 x 4 matrix Lagrangian formulation of the dynamics, are reviewed. And

the extension of the 4 x 4 matrix Lagrangian formulation to include flexibility is )

presented.

Attem.pts to verify the correctness of solutions produced by the simulator are
presented. The simulator is shown to produce solutions that are conservative in
thé absence of external forcing. And when modeling simple geometries undergoing
two dimensional motion, F LX is shown to produce solutions that agree with those

produced using a scalar Lagrangian formulation.

The computational expense of the simulation is discussed and shown to be
greatly reduced if the computer code for evaluating the equations of motion is

developed symbolically.
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Chapter 1

Intrdduction

A
-

Dynamic simulation plays an importa.nt role in the design and operation
of mdustrlal robots. Dynamic simulation is useful i in the design of mampulators
'allowmg components to be swed to accomplish a specific task or the relative merits
of competmg contrgl systems to be studied (1]. /Dynamnc snmulatlon is also im-
~ portant in offline pggra.mmmg, determining the feasibility of a move for a given
manipulator and load combination to be determined without removing a robot

from service. The tracking error of a manipulator following a trajectory can also

be predicted, t*king into account dynamic leatjing, with the use of simulation.

*The dynamic equatxons of motion, central to any dynamic sxmulatlon are also
important in the control of robot motion. Given a joint trajectory, that is a time
history of desired positions, velocities, and accelerations, the equations of motion
in inverse dynamic form can be used\'to calculate the joint torques required to
follow that trajectory. If these joint torques are applied to the manipulator, accu-
rate trajectory following is possible. Luh and co-workers [2,3] have demonstrated

the effectiveness of this technique in producing accurate trajectory following with
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their “resolved acceleration” controller. However, this control method is very com-
putationally intensive. These computations must be ;:arried out repeatedly and
quxckly Paul (4] states that the dynamic equatlon; must be carried out at the

servo.rate for stable trajectory following, typically/ at least sixty times a sesgnd.

/

The quest for improved performance of roqu‘ic devices has prompted the desire
to use lighter links. Lightweight manipulators'"’promise the possibility of increased
speed of operation, reduced material req}ifrement, longer reach, reduced power
consumption, and lowered mounting str‘,e;igth and rigidity requirement [5]. How-
ever lightweight manipulators have th{e’r"‘disadvantages of excitation of flexural and
torsional moclies,,of oscillation by th'e".control torques and a loss of static position-
ing [6] These effects increase bothfénd effector position and tl.%cking errors. Cycle
time may also be adversely affected by the excitation of link oscillations. A move
can be decomposed into two phases based on the type of control employed: the
gross motion, where the load is brought as quickly as possible close to its final posi-
tion typically using PD (broportiona.l—derivative) control, and the final positioning
of the load using PID (proportiona.l-integ'ral-d’erivative) and possibly compliant
control. If there is vibration present in a manipulator after the gross motion of a
move is complete, this residual vibration may interfere Wlth the final positioning
of the load. If this is the case, then the Tesidual vibration must decay to within
acceptable limits before final positioning of a load can be accomplished. The time
- required for residual vibration to decay may nullify any reduction in cycle time
ubtained through the use of lightweight flexible links. If the advantages of flexi-
ble link manipulators are to be realized in préctice, the link oscillations must be

controlled, placing increased demands on the control system®

There is an extensive literature on the modelling and control of flexible link
manipu'ators [6,7,8,9,10,11]; However, much of the early work was in the control

L4



3
of large flexible space structures, where the gross motions of the structure are
relatively small and slow [12], and is not directly applicable to robotics, where the
gross motions of the structure are large and fast. Although gains have been made

in the control of linearized flexible robotic systems [5,7,9], the control of nonlmear,(

flexible link manipulators remains an active area of research

For the remainder of this chapter, the kinematics and dynamics ?rigid link
manipulators are presented as a starting rvint for the development of flexible link

dynamics.

1.1 Rigid Link Manipulator Kinematics

Hlstoncally, robot kinematics has evolved from the kinematics of spatial
lmkages Any robot can be considered to be a series of links connected by ac-
tuated joints. With a coordinate frame embedded in each link, the position and
orientation of each link relative to its predecessor in the chain can be described
using a .homogeneous transformation. Pieper 113] was the first to apply homoge—
neous transformations to descrlbe robot kinematics, using the Denav1t Hartenberg
conventlon for homogeneous link &ansformations. The Denavit-Hartenberg con-
vention is still the most popular means of describing robot kinematics and is ”
presented in detail in Apggndix A. The position and orientation of a link with
respect to the base frame is just the product oi' the homogeneous transformations

from the base to that link.

For each link, there is only a single generalized coordinate that describes the
link position. If the joint is revolute; the generalized coordinate is the joint an-
gle. For a prismatic Joint, the generalized coordinate is the link extension. The

generalized coordinate describing the motion of a Joint is incorporated in the ho-
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mogeneous transformation of the link, so that joint velocities and accelerations
can be exressed as time derivatives of the homogeneous transformations.

The position of a point ﬁxed in link s with respect to the coordma.te frame
of link 5 is ’p,. The prefixed stuperscript 5 implies that the position vector is
expressed in the coordinates of frame J- If the defining coordinate frame was the
base frame, that is j = 0, the prefixed superscript j is normally omitted. The
postfixed subscfipt ¢ implies that the point, whose position vector is ‘p,, is fixed
in link ¢. Using a ﬁomOgeneous transformation of coordinates, the position of a

point fixed in link ¢ with respect to the base frame can be expressed as
°p. = °W, ‘pi
pi=W'p, . (1.1)
where
Wi, is the cumulative transformation from the base frame to frame ¢ and
‘p, is the position of t}’;e poi‘nt fixed in link ¢ expressed in link 1’s coordinates.

Since the point is fixed in link 1, the position vector ‘p, is a constant vector and

he velocity of that point in the base frame is

pi = W-“P.’
d an i
- = {Z 34, q,-} pPi (1.2)
1=1 2

where ¢; is the generalized coordinate describing the motion of link j.

1.2 Rigid Link Manipulator Dynamics

Manipulator dynamic equations have been developed chiefly using one of

two approaches. Either a Lagrangian formulation or a Newton-Euler formulation,
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based on D’Alembert’s principle, has been employed. The Lagrangian formulation . .
. )
based on4x 4 tgansformation matrices will be presented in some detail, as it relates

to the development of flexible link dynamics.

UickerTl!] first developed the dynamics of a spatial linkage using Lagrangian '
mechanics and 4 x 4 transformation matrices to yexpress the kinematics. This
formulation was later particularized by Kahn [15] for seﬁl open loop chains. The

form of the inverse dynamics solution is

. .
n [ aw, aw'\
F = ZZ{T'(E,%’JJ' aq:)q"}

where : ,
F; is the generalized force or torque, p

W, is; thg cumulative transformation from the base frame to frame j,
g; is the generalized coordinate for link 7

J;j is the inertia tensor for link j with respect to the proximal joint of link j

in link ;’s body fixed coordinates,
' m; is the mass of link j,
g is the gravity vector,
r; is the position of the centre of mass of ligk 7 in frame j,
n is .the nuprer of links in the chain,

Tris ge trace operator, and

———



Wf is the transpose of W;.

The complexity of this equation arises from the dynamic coupling between the
links. The joint force or torque at a joint depends on the state of all the joints as

indicated by the summations in equation (1.3).

- Waters [16] expressed the generalized velocities and accelerations, W; and w;,
in a recursive form. Hollerbach [17] further simplified the recursion relationj) such

\
that the inverse dynamics solution could be written as

F, = i[Tr{ ’JW}—m,.gTa—a%r,]. (1.4)

The specific recursion relations used by Hollerbach [17] are

W; = W;_14;
. . aA'
W}' = Wj;lA,‘ + W 16 q,
- - . . OA; au OA;
W, =W,_A, W_i1—21¢; + Wi_ 1a. 1.5
3 JlJ+2llaqqu+ ’l(arq’+3q,~q’) (1.5)

where the starting values for the recursion are W,,= {1} and W, = W, = {0} and
Ajis the link transformation for link j. Hollerbach further noted that _;he partial
derivative with respect to the joint variable g, of the hansformat;ea- W c.ould be

written N
B OW; _OWi,, C
aql' aq- J.

Using equation (1.6), the generalized force equation could be written as

F, = Z[Tr{aw"WJW} m,qT "W ]

(1.6)

j=i 9g;
. oW, X, - T W,
N = Tr{ 90, 3 W,-J,-Wj} g — %, Zm, W;r;. (1.7)
D Y = j=



And the following recursions could be used

D.' = E‘Wj.’jﬁ’:‘

=i

i 2T - i+1 =T
= WiIW. + 3 A "MWaW,

=i+l
=T
= JW, + 4 \Diy, : (1.8)
and
6 = ZMj‘ijj
J=t
= miri + Air16i4 A(1-9)

| J

where Dpyy = €pyy = {0}. Using these recursions the generalized force becomes

W, W, | .
F;' = Tr{ aq' D.} - GTW,-‘% (11‘0)

- T
The W, terms are computed first using equation (1.5), starting from the base
of the manipulator and working towards the end effector. Then the D; and ¢,
are computed using equations (1.8) and (1.9) starting from the end effector and

working towards the base of the manipulator. .

The computational burden of the common formulations of the rigid body in-
verse dynamics equations for a six degree of freedom arm are compared in Ta-
ble 1.1. The computational burden of the inverse dynamics solution has been
reduced over the original Uicker-Kahn formulation due to the recursive nature
of Hollerbach’s formulation. The original Uicker-Kahn formulation of the rigid
link dynamics is the most computationally intensive. The number of operations,
that is multiplications and additions, in the inverse dynamics calculation using

this formulation is of order nt, where n is the number of links. In contrast, the



Number of operations

X = multiplication, + = addition

_ Degrees of Freedom |

Method Operation n X 6
Uicker-Kahn X 25n% + 66n° + 129n% + 42n — 96 | 67984
+ 32n* +86n% + 171n? + 53n — 128 | 51456
Hollerbach x ' 830n — 592 |- 4388
(4 x 4) + 675n — 464 | 3586
Hollerbach X 412n - 277 2195
(3 x 3) + 320n — 201 1719
Newton-Euler X 150n — 48 7 ‘ 852
+ 131n —48 ‘ 738

Table 1.1: Computational burden of common dynamics formulations

(data from Brady [22])

\
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number of operations in the inverse dynamics calcylation using either of Holler-
bach’s recursive formulations or the Newton-Euler formulation is of order n. The
use of Hollerbuin’l recursive formulation of the rigid link dynamics has reduced’
the comutational burden of the inverse dyx;a.mics c};lculatio’n by ~ 93% over ‘the
original Uicker-Kahn formu}ation. The 'Newtbn-Euler formulation of the rigid
link dynamics has been employed by Hooker and Margulies [18], Stepanenko and
Vukobratovic [19], Orin and coworkers (20], and Luh, Walker, and Paul [21]. The
Newton-Euler formulation is inherently mote'efficient then the Lagrangian formu-
lations, as shown in Table 1.1, inveiving 20% of the number of operations required
in Hollerbacl}’s 4 X 4 matrix Lagrangiag formulation. This increase in computa-
tional efficiency is due to the use of 3 x 3 rotation transformations and vector
u{a}mlations rather than the 4 x 4 homogeneous transformations ysed in the La-
grangian formulations. If 3x 3 rotation transformations are used in the Lagrangian
formulation, the computational efficiency is still inferior to the Newton-Euler for-
mulation. The 3 x 3 matrix Lagrangian formulation requires 2.6 times the number

of computations required by the Newton-Euler formulation.

1.3 Symbolic Generation of Dynamics Equations

Recently, impressive gains in the computational efficiency of the rigid link
dynamics have been reported [23] through the use of symbolic generation of the
equations of motion applied to the Lagrangian formulation of the dynamics. Too-
good [,23] has reported the fewest number of arithmetic operations to date for
the evaluation of the symbolically generated dynamics equations of the Stanford

manipulator.

In symbolic generation of the dynamics equations, the matrix multiplications
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involved in the Lagrangian formulation using the 4 x 4 homogeneous transfor-

mations are p

ormed only once using syrhbols. While convenient, the 4 x ¢

as multlphcatl@ —1, or 0 and addition of O are not performed, mstead they
are 2aplajhed prlate aasngmnents “The use of the trace operator in the
Llan P results in the evaluation of matrix elements which are not

required for eva.luatlon of the dynamics. Through the use of symbolic generation,

the evaluation of these unused matrix elements can be avoided.

The increase in computational efficiency through the use of symbolic generation
of the dynamics equations is due to more than just a reduction in the number
of floating point operations required. The symbolically generated dynamics are
encoded in a subroutine as a sequence of scalar operations. This eliminates the

overhead of repeated calls to matrix multiplier, trace, and transpose subroutines.

Outline of This Work

The equations of motion of flexible link manipulators have been formulated
using Lagrange’s equations (6,7,8,9,10,11] and Kane’s d?'na.mics equations [24,25).
The elastic deformation in the flexible link dynamics has been modelled by finite
eilement techniques (6,12,26] and by the method of assumed modes (7,8,25|. The "
inclusion of link flexibility into the model of a manipulator, greatly increases the
complexity of the dynamics equations. However, the computational buPden of the
flexible link dy'na.mics has not been reported in the literature as it has been for
the rigic' link dynamics. Also, symbolic generation of the flexible link dynamics

has not b-en reported.
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In Chapter 2 of this thesis, the fotmulation of the flexible link dynamics follow-

11

ing t development due to Book [27] is pr.axted Lqungee equations; using
the 4 x 4 homogeneous transformations to describe the kinematics, are used to
formulate the equations of motion. The link flexibility is incorporated into the

model using the method of assumed modes.

A numerical model, called FLX, based on the flexible link dynamics presented
in Chapter 2 has been written. In Chapter 3, an overview of this simulator and

some attempts at verifying its’ correctness are presented.

In Chapter 4, thp symbolic generation of the flexible link dynamics, using the
techniques of Toogood (23] and Kermack (28], is presented. The computational
burden of the numerical model, FLX, is compared to that of the symbolically

~’

generated dynamics equations.

Finally in Chapter 5, the results of this investigation are summarized.



Chapter 2 4

Derivation of the Equations of

Motion ' :

In this chapter the kinematics and dynamics for a serial chain of flexible
links are described. The link kinematics will first be described and then the
formulation of the Lagrangian dynamids will be ;)utlined. This formulation is
similar to the Uiker-Kahn [14,29] formulation oi the dynamics of a chain of rigid

links modified to incorporate link flexibility, following the method of Book 127].
&
In this analysis, the flexure and torsion of the links is described using the

method of assumed modes. Small deflections and rotations, tha‘t can be described
by a summation of modal shapes and linear elasticity, are assumed. The usual
strength of materials assumptions are assumed in the calculation of the strain
energy of bending and torsion [30,31]. The effects of rotary inertia and shear

deformation in bending are ignored, so this analysis is only applicable to the first

few modes of vibration of long, thin links. -
[ T
4

12 ' f .
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2.1 Kinematics ) ' .

At this point, the kinematics of a serial link manipulator will be described.
A serial linkymanipulator is a sequence of links connected by actuated joints. The
base link of the chain is a fixed inertial reference frame. Each link in the chain has
a joint at its proximal end. In this analysis only revolute joints are considered;
the only permissible motion of a revolute Joint is rotation about its joint axis.
In order to describe the KineMatics of an n flexible link serial chain, i(m, +1)

1=1
generalized coordinates are required: one for each link’s joint motion and one for

each of the m, modes of link deflection.

The kinematics of both the revolute joint motion and link deformation are
described using modified Denavit - Hartenberg 4 x 4 transform matrices. The
reader who is unfamiliar with homogeneous coordinate transformations, and in
particular with the Denavit - Hartenberg convention (32] for the representation of
a rigid link by an homogeneous transformation matrix, should refer to Appendix
A. By a homogeneous transformation of cBordinates, the position of a point in
frame ¢ can be described in any other coordinate system j if the transformation

'W; is known. The form of this transformation matrix is

z; comp8nent of O,

_ ‘R, ; component of O,

)Wi = y] m (21)
z; component of O,

0 0 o0 1

where 'R is a 3 x 3 matrix of direction cosines describing the orientation of frame
1 with respect to frame j and the fourth column of the transformation contains

the position of the origin O; of frame ¢ in frame ;.

If *h; is the position vector of a point in frame 3, shown in Figure 2.1, then

-~



Figure 2.1: Homogeneous transformation of coordinate frames

14



N ¢
the position vector of that point in frame j, the previous frame, is

' Thi = W, b, _ (2 2)

where IW; is the homogeneous transformtlon from frame j to frame i. With a
serial chain of links, the position vector of a point on link 1, in terms of the fixed
inertial coordinate system of the base, is given by the product of the individual
link transformations from the base to )u-rk‘t multiplied by the position vector of

that point in frame 1,

hi = °h;
= ‘w,'w,... “1W:‘h,-
= 'With,
-= W;‘h,. | (2.3)

/-

The prefixed superscnpt 0 of °%h; and °W, refers to the base frame and is normally

omitted. ~A

~ In order to incorporate the';iistributed link ﬁexibiliﬂty in the kinematxcs“ the -
homogeneous link transformation is decomposed into three pa.rts shown in Fig-
ure 2.2. The A matrix descnbes the rotation of the joint. Thls is not the standard_
Denavit- Hartenberg A matrxx deSC)béa in Appendix A, it is Just the rotation
transformation for the Joint. A constant S matrix allows for a rigid joint mass,'
and an L matrix describes the bend and twist at the distal end relative to the
proximal end of the flexible link due to the dnstnbuted ﬂex1b1hty Thus; the cu- |
mulative transformatlon from the base up to and mcludmg joint j can be written

as



Figure 2.2: Homogeneous link tranformations

16



17

Wi = Wi18;1L; 4
= W

b

1L 14;

-

= Wj-lA,‘ (2.4)
where .

W;_, is the cumulative transformation from the base to joint 7-1,

S;-1 is the rigid joint mass transformation from the joint axis to the base of

the flexible link,

L;-, is the link transformation from the base of the link 7 — 1 to the joint 7,
A; is the rotation transformation for joint 3,

W, 1 is the cumulative transformation from the base to the proximal end of

i
the flexible link 5 — 1, and

W,-_l is the cumulative transformation from the base to the distal end of

link 5 — 1.
If there is no deformation in link 7 — 1, then Xj_l coincides with X;_; and 17,_1
and 2,--1 are parallel to Y;_; and Z;_, respectively. |
To incorporate the deﬁ'éction of a link, the a.pproach of modal analysis (33] is

used, in which the deformed shape of a link can be described as a sum of normal

modes. The position vector of a point on a flexible link ¢ in frame 1 can be written

n zi; (n) | >
' : 0 il vis (n)
'h.' = + 6,'1' ) (25)
0 :2 zij (n)

[y
Pt
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Y
where

zi; (n), wj (n), and z; (n) are X;, Y;, and Z; displacement components re-
spectively of mode j on link s evaluated at a distance n from the base of the

link,

6ij is the time varying amplitude or modal coordinate of mode j on link i,

‘and

m, is the number of modes uted to des:ribe the deflection of link 1.

The link transformation matrix L must take into account the rotations at

the end of a link as well as the displacements as a summatjon of modes. If the

.restriction of small rotations is applied, the rotations can be assumed to add

vectorially and the direction cosine matrix sirhpliﬁes [34]. The link transformation

matrix can then be written as

L;=H; + Z 6.'J'M.'j (2.6)
j=1 .
where '
1 00 gq
0100
0010
000 1
and

(

0,4 (a:) 0 =02 (i) wij (@)

~0yi; (@) 02 (a) 0 zj (@)
0 0 0 0

M;; = (2.8)

. R ) T AT A TR R
™ . ' o
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and where the 6,;; (a;), 0,,; (a;) and, 0:i; (a;) are the X;, Y; and, Z; rotation
components of mode j on link ¢ respectively, evaluated at a; where a; is the length

of link s. .

Since the time derivatives of the generalized coordinates are required for the
formulation of Lagrange’s equations, expressions for the time derivatives of the

transformation matrices will now be developed.

The position and velocity of a point on the flexible link ¢ in the inertjal base

*frame are

hi = WSk,

W, h, (2.9)
a.hd
i'.‘ = V.V.'S."'h."i“ “’.’S.'"’.'«
= W 'h;+ W 'h, (2.10)

respectively. The position and velocity of a point on the rigid proximal mass of

link ¢ in the inertial base frame are

and
pi=W'p, . (212)

respectively. The position vector ‘p; is a constant since the joint mass is assumed
to be rigid. With a serial chaﬁ of links, it is computationally efficient to "relate
the position and velocity of a point on a link to preceding members in the chain,
in a manner similar to Hollerbach’s [17] method for rigid links. Hollerbach [f7] .

claims that, for rigid link manipulators, the applicatiorhof Waters [16] backward

]
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w,

recursion of the accelerations ﬁ’,- results in a reduction of the number of floating
point operations from order n* to n? dependence, where n is the number of links.

Differentiating equation (2.4), gives

0A;
W, =W,_.4,+ W, 24, (2.13)
a‘b
and .
. v N OA; . . A JA;
W. =-W. . W._ .—1g. W- la. )
3 W]_IA, +2 j-1 3q,- q; + ( aqz q, + an q,) (2 14)

where the starting values for the recursion are WosWo=W, = {0} and g, is the
joint variable of joint j. The transformation W and its derivatives can also be

computed recursively as follows:
W, = WL, (2.15)

differentiating equation (2.15), using equation (2.6), gives

N [ ] L] mj . |
W, =W,L; + W, Z5jijk (2.16)
k=1
and . .
u",- = W;LJ + ZW; z 5,}Mjg + W; Z 5,’;Mjb (2.17)
k=1 k=1

where W, = {1}, Pi’o = ﬁ’o = {0},

W; =W,s;, | (2.18)
and
W, =W,s, _ (2.19)

since S; is a constant fransformation. The separation of the joint transformation
A; from the link transformation L; has increased the complexity of the recursive
scheme .or the acceleratlon transformations over the rigid link case, resulting in

coupled rcursion for W and W
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2.2 Dynamics

Having made these modifications to the rigid link kinematics, it is a simple
matter to formulate the kinetic and potential energy for each link and then using
Lagrange’s equations to formulate the equations of motion for the manipulator in

terms of the generalized coordinates.

2.2.1 Kinetic Energy <_

S

~

o : R s
In this section, an expression for the kinetic enegy of the systém is devel-

oped. The total system kinetic energy is composed 6f two parts
T=T'+T1T

where

T/ is the contribution to the system kinetic energy arising from the flexible

portion of a link and

T" is the contribution to the system kinetic energy arising from the rigid

joint mass.

First, the kinetic energy of a differential element of a link s formulated. This is
integrated over the length of each link and summed over all the links to give the

total system kinetic energy.

The kinetic energy of a point on the flexible link s is
r_1 ;LT
dT) = - u(n)dn Tr{ h,AT}. (2.20)

Using equation (2.10) the kinetic energy of a point on the flexible link i can be

written as
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a1/ = % p(n)dn Tr{ W, ‘hnT W,

+2W, R W

+ W, hhT W } (2.21)

where
zi; (n)
he=3 6| W (n) , (2.22)
, i=1 25 (n)
0

#(n) is the mass per unit length of the link, and

dn is a differential length of the link.

The kinetic energy of a point on the rigid proximal mass of link i is

dT] =

dm Tr{ p, p,7}

dm Tr { W.'p,'pT W,T} . (2.23)

D | et BN |

Integrated over the length of the link and summed over the number of links, the

total kinetic energy of the arm is
n ‘e . oT .. T . T . . T
T=% [Tr { W.BuW, + 2 W BLW. + W B,W." + W,JuW, }]
1=1
(2.24)

where

’ 1 rs .
B, = A aiegy
2Jo : ,
\ m;, m; %

L | = 20 b | (2.25)

j=lk=1
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_ 1 in LT
By, = 2/ #(n)'h;*h] dn

= Z 6‘) iy + Z E 61060 Coh) (226)

k=1jy=1

By = ,;,/ u(n) A, KT dn

m, m,

= C; + E&., ( ij + ,1;) + Z Z&.‘g&.‘,’C.'gJ' (2.27)
k=1j5=1
1
Jri = 5[ pi'pldm (2.28)
and
C = / 7)(n001)7(n 00 1)dn (2.29)
C,’j = —/ f) 00 I)T(I.‘j Yij &y O)df) (230)
Caj = 2/ )(Zie Vie 2k 0) (zij vij z; 0)dn. (2.31)

After performing the required differentiations, the kinetic energy terms in La-

grange’s equations for the joint position variables may be written as

d (ar!) or’ _
dt 94, aq’
2ZTr[ {GW +2 3 6,0 W7 +25¢D'kw }]
B - (2.32)
and
% ((Z:) - ?3_: =2 gT' [%T"R'Wsr] : (2.33)

The kinetic energy term in Lagrange’s equations for the rigid joint mass, equa-
tion (2.33), corresponds to the first term in equation (1.4) of Hollerbach’s formu-

lation of the rigid link dynamics. The two terms appear to differ by a factor of 2,
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but this is due to a difference in the definition of the inertia tensor. The inertia

tensor Jp; is } Hollerbach’s inertia tensor.

The kinetic energy terms in Lagrange’s equations for the modal deflection

u

amplitudes may be written as

d (ar/) aT!
dt 86.” 66,-,
n aW' e m, . m, .
(2 Y Tr : {c. w12 Y 6uDy W,.T + 5..1).,,W,.T}
i=y+1 86,, k=1 k=1
L) <. o - . ™ - T
+2Tr [{WIDJ/ + 2 WJ Z 6,;C,g/ + W’ Z 6]kCJk/} WJ ]
k=1 k=1
(2.34)
and
d (aT') oT" n [GW. - T]
— : - =2 Tr JR,-W, (2.35)
dt \as, ), 96, z,:, 96,
where
G, = By, (2.36)
and
le = Clk + Zéllclu- (237)

=1
2.2.2 Potential Energy

‘ The potential energies considered in this analysis are the gravitational po-
tential and the strain energy of the flexible links in bending and torsion. Postfixed
subscripts g and e are used to distinguish between gravitational and elastic poten-
tial energies respectively. Postfixed superscripts f and r are used to distinguish

between the contributions to the total potential energy arising from the flexible

portion of a link and the rigid proximal mass respectively.
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The gravitational potential of a flexible link s can be expressed as
V,.’. = —g¥ W:/o 'u(n) ‘A.dn
= - Wr, d (2.38)
where
g,
0 u
. = mass, + ) be,, ‘ (2.39)
0 1=1
1 e
&, [ wln)nn, . (2.40)
< mass, Jo
\ = I,
a, y'
e, = / wm | | dn, (2.41)
0 z;
0

and
mass, is the mass of the flexible link ¢ and

cg, is the distance from the base of the flexible link to its centre of mass

when the link is undeformed.

The gravitational potential of the rigid praximal mass jmass, of link 1 is
Vo= —g WM’ (2.42)

where

MT = (000 jmass,). (2.43)

The total gravitational potential of the manipulator is then

V, = _gfi‘ {Wri+ WM} (2.44)
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The required derivatives of the gravitational potential are

v/ d Do
L = __qT__ W'vﬂ)
ag; 9q; (.};?
"W
= +g7 ‘r, 2.45
._2::, 3, (2.45)
A AL
! = g2 WM
dq, "Taq, ':Zl !
oW, .
= gy 5. M. (2.46)
1=y q]
(S
— = — _ 'r'
86,, 861'1 i=1
" [OW .
‘f[z (86'") ~ W,e,-,J, for1 <; < n;
= 1=3+1 54
~g"We,,, for j = n.
(2.47)

and

av’ n (a W, )
ot = - "M | (2.48)
8511 .=,Z+1 86,,

The gravitational potential term in Lagrange’s equations for the rigid proxi-
mal mass, equation (2.46), corresponds to the second term in equation (1.4) of

Hollerbach’s formulation of the rigid link dynamics.

The elastic potential for a slender link can be approximated by the strain
energy in bending in the XY and X2 planes and twisting about the longitudinal,

X, axis of the link. Along an incremental length dn of link 1, the elastic strain



energy is given by

1 30, \’ a8, \? 30, \*
dVy = 2 {EJ..' (W) + E I, (W) + G, I, (37) dn, ‘2.49)
where for link 1, N
E; is Young’s modulus, o>

G is the shear modulus,

I, and I,; are the second moments of area of the link cross section about

the Y; and Z, axes respectively,
I.; is the polar second moment of area of the link cross section, and

0., 0,x,’and 0,; are the angles of rotation of the beam about the X., Y,, and

Z; directiyns respectively at the generic point g along the length of the link.

Small deflections, that can be described by a summation of modal shapes and
linear elasticity, have been assumed. With a truncated modal approximation for
the link deflection, the angles of rptation of the beam, 4,,, 0,., and 4,,, at the
generic point g are‘ represented as a summation of modal amplitudes, §,;, times
the angles of r\ata:tion, 6.k, B4, and 6,,,, at the point 7 in the X,, Y;, and Z,

directions respectively due to the kin mode of link 1,
b5 = ) 64O,
k=1
0y|' = Z 6ik9y|k7
k=1

b = D 6uOns. (2.50)
k=1

Integrated over the length of the link and summed over all the links the total

elastic petential is given by

1 ra a6, \? a8, \* 90, \°
Vi = 5/; {E.'I.,' (3’7—) + El, (W) + Gl ( 3’7_) dn. (2.51)
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If the links are assumed to be uniform in cross section and if the modeshapes are

orthogonal, the total strain energy for the manipulator may be written as

1o % (3%,
v -1 2 .“/ T Pyin
oL alan (L) g

g “ (870, . o
. + F. I, A ( anz~)dn
a¢x|t
+ G, I, -——— 1 d 2.52
A (317 ) n} (2.52)
where

®,.. and &,,, are the k,, m(;deshapes in bending in the XY and X2 planes

of link 1 and v
»
®... is the k,, modeshape in torsion about the X axis of link 1.

The partial derivatives of the strain energy with respect to the jorf®variables,

¢,, and the mode amplitudes, 6, are

av,

50, =0 (2.53)
and
o ()
+ E,1, 0°’ (aa:;,, )
’ +GL, [ (a;;,,) }
:, i&glfﬁ/, ‘ © o (2.54)

where, for orthogonal modes, the elements of K ;s are non-zero only for k = f.
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’

2.3 Assembly of the Equations of Motion

i

Having derived expgessions for the kinetic and potential energies of the

manipulator and the derivatives: of these required in Lagrange’s equations, the

. equations of motion for joint 5 and modal coordinate jf may be written as

. ,i(aT}‘aT*_aV,_i_aV,_ ' (2.55)
dt \dq; " d¢; dq; dq; T ’

i(a:r)_ oT  oV. 9oV, _
by) Bby = 36, T 38,

and

- (2.56)

where F; is the joint actuator torque.
After a considerable amount of work, the equations of motion for a serial link
>ma.nipulator can be reduced to
I?=R © (257)
where I is an inertia matrix, z is a vector of the generalized coordinates,
Z = (q1.611 612 .o 61,,” RN} ) 621 622 e 62"‘2 R/ '6,,1 6712 .. 6,",,") y
and R+is a vector of the rematning dynamics and external forcing tetms.

J
2.3.1 Inertia Coeflicients

To bring the equations of motion into the form of equation (2.57), the coef-
ficients of the second derivatives of the generalized coordinates g; and ij mustbe
extracted from Lagrange’s equations (2.55) and (2.56) to form the inertia matrix
I. In order to Sepa.rate the second derivatives of the joint variables §; and modal

deflection amplitudes 5,7 from the expressions for W, and W,-,,‘it is necessary to de-

fine some intermediite transformations. Consider the product of td{ansformations

that compose W; and W,
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_1‘
W, = A1S5,LA,S,L, - A;S;L;---Ai_1S;_L;_, A

W; "‘ !‘ —== W,

WJ }; ~ jw'-'

and X
W;_, r'_"' W,
Wi = A81L,A;8,L;--- A;S;L; - AS, L, g

Wy —— |,

The transformation W, may be written in two alternate forms

‘ = W;.14,'W,

= W,L;'W,. ) (2.58)

Similarly, the transformation W, may be written as

-

W,’ = Wj—lAj jW,'
= W,L;’W,. : (2.59)

Differentiating equations (2.58) and (2.59) twice, the second derivatives W, and

W, can be expressed as

‘ Wv’ :Z Wj—lUj jWi qJ‘ -+ Z W;Mj,jWi 5,’] + Wu,' (260)
=1 J=1f=1
and » :
- ] L my . e . -
W, = Z (Wj_IUjJW,' (ij +; W]..M,-,’W; 6”) + W,, (2.61)
=1 =1 ,
where . : '
OA;
UJ' = -'i.
6q,~

The value of the transformations W.,; and Wv; can be calculated recursively as
shown in equations (2.14) and (2.17) respectively, by eliminating the terms con-
taining ¢, and gj,. The result is

- = ) 2 aA . R a2A ) .
Way =W,;_14; +2W;_, ?’q—_]%' + W, aq,’ A (2.62)

J J
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and
: _ i
Woi =W, 8L +2W, 3 é,M,,. (2.63)
/=1
Substituting expressions for W; and W, into Lagrange’s equations and isolat-

ing the coefficients of the generalized coordinates allows the inertia matrix to be

formed.
Isolating all occurrences of ga in joint equation 5 (2.55), the resulting coefficient
of §, is
‘ Ij}. :2Tf [W,'_lUijhU:W:_l}
foryj=1.--nh=1...p, (2.64)

where
n

Ji"l = Z {JW‘ [S,‘G.‘S‘T + JR.] hw‘-T}
s=max (h,s)

) / forh=1--n,7=1.-.n. (2.65)

The inertia coefficient of §,; in Joint equation j (2.55) is Line, the terms to be

included depend on the values of J and A,

Ijnk =2Tr [Wj-lUJ‘ jﬁ’,‘SnanS: W:}
forj=1--nh=nk=1...m,, (2.66)
. . T T .~ T T
e = 2Tr [W,-_IU,- (JF,.MMW,, + W08, Dy S) W )}
for]':l'--n—l,h:j---n—l,k:I---m;,, (2.67)
and ¥
*% b . T __T
L =2Tr [ W;_U, F. MW, ]

‘forj=2~~-n,h=1---j—l,k=1---m;., (2.68)



. ™~
n

F= Y {JW.- [s..c.-s‘.T + JR.-] "W,.T}

f=max (A+1,5)

where

forh=1--n-1,7=1---n. (2.69)

The coefficient of the g, in the deflection equation jf (2.56) is I, th terms to l?:

included depend on the values of j and h,

%

Inps = 27 | Wa Uy "W, S, D,y 51 W]
. forj=nh=1--nf=1.-..m,, (2.70)

Ij]h _ 2T" [Wh—th (hFJMjcw;T + AWJSJDJ!SJT WJT)] \‘-

-

forj:1.-.n—1;h:1...j’f_—_.1...mj, (2.71)

and

Ij/h =2Tr [Wh_th "F,M;W;T

foryj=1---nh=j5+1.-.n f=1 m, (2.72)
The coeﬂ!’t of by in the deflection equation jf (2.56) is Iishe, the terms to be
included depend on the values of j and h,
. T
I,,/,,k = 2TT [W,,C,,.,,W,, ]
forj=h=n,f=1---m,,,k:1;--m,., (2.73)
[ . . T _ T . «T
Ij/jg =2Tr W’-Mj/ JNJ'M]*WJ- + WjngjWJ- ]

forj=h=1'--n-1,f=1"'mjak=1"'mz'v (2.74)

[ .
Lipni = 2Tt | W, My W, S, D,.ST W' ]

forj:l-..n_l’hzn,f:1..-mj,k:1...mn’ (275)
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and
’ . , T T . T T
Iye = 2Tr [W,M,, ( NAMuW, + iW,S5,Dp ST W )]
forj=1---n—-Lh=j+1.-4n—-1,f = lovemjk=1--.my, (2.76)
where
. Ny= Y {fW.- [S.-c;sf + J,,.-] "W,.T}
\ s=max (h+1,5+1)

forh=1.-n-1,7=1.--n-1. (2.77)

The values of the fil"';., IF,, and N, arrays are computed as follows. Starting

atg the end of the manipulator with

-~

nFn

5.GnS, + Jry

-

= G, (2.78)
the values of /F, are computed recursively working back to the base, varying j
\/ faster than h,

L] i T . .
S,’L,‘AJ’.H J+1Fh, for 1 < ]' < h.

Then, the ‘F, and ’N) are computed
. | -~ ]

~and
jNh = Aj+1j+th. (281)
2.3.2 Remaining Dynamics Terms

The remaining dynamics vector R is composed of those terms in Lagrange’s

equations remaining after the removal of the coefficients of the second derivatives
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of the generalized coordinates. Excluding the coefficients of dr» and 5,.., from equa-
tion (2.55), the remaining dynamics of joint J can be written as

R, = -2 Trz [Wj—lvj ’ﬁ’- (C:W: +2 Zé,-,s,-D,.,‘S,.TW,.T)}

(3] k=1

+gf}:[ U, W, (Siri + M7)]

i=j
+F;

= ~2Tr [W;.,U;Q,] + ¢" W, \U,P, + F, C (2.82)

2N

where the values of Q; and P; are computed recursively, starting with the last link

and working back to the base,

-
-~

G.W, +2 Z&,‘,‘s DS W' for j = n
. k=1
Q, = _ (2.83)
G, W +2Z&,,‘s D,,‘S W +S;LiA;j11Q,,,, for1<j <n,

L]
n

and

PJ'Z

Sarn + M, forj=n-
[ ’ (2.84)

ij,' + M; + SijAj+1Pj+1, for 1 <j<n.
Excluding the coefficients of dn and &4 from equation (2.56), the remaining dy-

namics of the deflection equation Jf can be written as



35

-

4
n

R,'] = =2 Tr z [W;_le]jW,‘ (G:W: + 2 Sé;gS;D.’*S,-TW.»T)]

1=5+1 k=1
-T T . i} . oT
-2 T" [W“’-Dij + 2 Wj Z 5ng,'§,Wj J,Q-
° k=1
+g" Y [W;M,y W, (Siri + M.')] + VTW;C:'I
=541 - ,
=2 6uKy
k=1

( - T T . oM, T
~2T1 |WonS, D0y S, Wy +2 WS b Cos W

k=1

Mp
—Z6nkKnkf + 01. Wﬂ‘ﬂf» for J =n

k=1
= J —2Tr [W;M,,A,+,Qj+l] : (2.85)

-27Tr [W,,,S,D,.,sf W, +2 WS 6.C, ,W;TJ
k=1

m;
—Zb}kKJ}f + ﬂT Wj (M,'IA,'+1PJ'+1 + CJ'/) , for 1 S ]. < n.
k=1

\ ¢

The equations of motion can now be put in the form of equation (2.57). This
equation can then be solved for the vector of generalized accelerations and inte-

grated to produce the time history of the generalized coordinates.



Chapter 3

Model Implementation and

Verification

In this chapter, a numerical simulation of a flexible link manipulator, called
FLX, based on Book’s [27] algorithm is described and some attempts at verifying

the correctness of the simulation are presented.

3.1 Overview of FLX
L}

A numerical simulation of a flexible link manipulator has been developed
utilizing Book’s [27] algorithm, as presented in Chapter 2, to model the flexible
link dynamics. A flow chart of the simulation is shown in F igure 3.1. If the
manipulator is driven, the simulation accepts as input the cubic spliné coefficients
of a joint space trajectory. Independent fixed gain PID (proportional - integral -
derivative) joint controllers supply joint torques based on the error between the

command and actual joint positions. The actuator dyna.mi}s are not modelled,

36 ﬁ
P
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Start, way, and
end points

Trajectory
Generator

Qd(t)

Joint
Controllers

()

Arm
Dynamics

Figure 3.1: A flowchart of the FLX simulation
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however a lumped mass and inertia at the joint can be used to simulate the load
.
of a joint motor on the manipulator. If the manipulator is undriven, the input to

the simulation is an initial kinematic state.

Simulation of the response of a manipulator to a set of prescribed control inputs
requires repeated solution of the forward dynamics, involving integration of the
equations of motion. The equations of motion (2.55) developed in Chapter 2 are
in inverse dynamic form. Given the kinematic state of the manipulator, they can
be used\to calculate the joint torques required to produce that motion. These

equations must be inverted to solve for the generalized accelerations,
z=I"'R ‘ (3.1)

These equations are then integrated to produce a time history of the state {z, 2}
of the system, given an initial state {2, 2}o and a prescribed set of joint torques.
. Because of the complexity of the inertia matrix, the inversion is performed nu-
' merically using Cholesky decomposition. The use \f Choles:ky decomposition, a
form of LU decomposition, takes advanta.ge'of)l;ﬁmetry of the inertia matrix.
A fourth order Runge-Kutta scheme was used to perform the integration. The
complete dynamics equation 3.1 was evaluated at each of the four function evalu-
ations required per time step in the fourth order Runge-Kutta algorithm. Other

integration schemes were not investigated.

-

3.2 Limitations and assumptions

FLX models a serial chain of links connected by actuated revolute joints,
prismatic joints can not be modelled. The links must be uniform in cross section

and may be rigid or flexible. The flexure of a link is described by a truncated
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series of assumed normal modes (31,33],

w(n,) = 3°6,(6)8,, (n) | (3.2)

=1
where

vi(n,t) is the displacement at time ¢ of a generic point a distance 7 along

the neutral axis of link 1,
®,,(n) is the shape of the Jth mode of the deflection of link 1, and
6,;(t) is its time varying amplitude.

The modeshapes chosen are eigenfunctions of the Bernoulli - Euler flexure equation

dty, A%y,
EIE;‘— + mw = (3.3)

with boundary conditions appropriate for a fixed free beam,

and

where
E1 is the stiffness of the beam, s -
m is the mass per unit length of the beam, and

a is the length of the beam.

Thus, the flexible links used in an FLX simulation must not violate the assumptions

of Bernoulli - Euler beam theory:



40
1. the beam is initially straight,

2. the depth of the beam is small in comparison to the radius of curvature

at maximum flexure,

3. plane sections remain plane at all phases of an oscillation,

’

4. the beam is free from axial load, N
5. rotatory inertia can be ignored, and
6. shear deformation can be neglected.

Since the radius of curvature of a beam at maximum flexure will be smaller for
the higher modes than for the lower modes, inclusion of higher modes may violate
the assumptions of Bernoulli - Euler beam theory. Accordingly, the flexible links
used in FLX should only include the first few modes. The modeshapes of a fixed

free beam are

sinh(a;a;) + sin(a;a,) ' . .
cosh(a,a,) + cos(a, a,) } {cosh(a,n) = cos(a,n)} - {sinh(a,n) - sin(a,n))

(3.4)

®,,(n) = {

where o, is the jy, root of the frequency equation
cos (a,a,) cosh (a,a,) +1 =0

associated with equation (3.3) subject to the fixed free boundary conditions for
link 1. The first three modeshapes and their natural frequencies are shown in
Figure 3.2. The modal coordinates for the fundamental modes of flexure are

shown in Figure 3.3.

There must be a minimum of two links in an FLX model, because of the
dimensioning of arrays in FLX. However, joints can be locked, effectively removing

a link from the computation. Also, due to the coding of FLX, a flexible link in
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- FLX must have at least one mode of flexure in each of the XY and X2 planes.
This is not a restriction, since a link can be made rigid in one of the Xy or X2
bending planes, independent of the link stiffness in the other bending plane by

4
- choosing a sufficiently large stiffnw’s‘ in that plane.

With the exception of the terminal link n in a serial chain of links, the choice
of modeshapes of a fixed free beam to describe the flexure of any other link 5 in the
chain is clearly incorrect. The boundary condition at the distal end of link 4,1 < n,
is neither free nor fixed. There are moment and shear at the distal end of link &
due to the subsequent links in the cham and the load mass. Further, the boundary
condition at the distal end of link s cha.nges with time as the configuration of the
manipulator is a function of time. However, for the purposes of verifying the
correctness of the coding of FLX, the fixed free boundary conditions are apphed

to all of the links in the chain.

T\he inclusion of torsional modes of oscillation a%out"the longitudinal X axis

of a l%’lk in FLX is optional..

3.3

54 [N

Model verification | o RN )

|
|
\Wlthout companson toa physlcalv model or perhaps a finite element model,

g

difficult.

a stron mdlcatlon of the correctness of the numerlcal thodel. First of all, the mode] . .

 verific tion of the numerlcal model and solution’ techmque presented herem is
However, checks can be made, which although not conclusive do provide

must a ree vﬁth simpler models for which: accepted solutxons exxst Secondlgfi}{e
numeridal model must obey phymcal conservation laws. In the absence of external
forcmg,,the numerical model must conserve gnergy And thirdly, the numerical

~ % -
e

model must demonstrate closure: N oo
- R

?



Forward Dynamics
vJoint Torques a— —* Kinematic State.
Inverse Dynamics

¥ a joint torque history is applied to a manipulator model, the joint accelerations,
calculated using the direct dynamigs, can be integrated to follow the kinematic
state of the manipulator in time. The time history of the kinematic state of the
mampulator can then be input into the inverse dynamics to calculate the joint
torques required to produce the motion. To demonstrate closure the control joint
torque history applied to the manipulator and the joint terque hlstory required to

produce the resulting motion must be identical [1].

A number of test cases used to verify the numerical model and solution tech-
nique are presented. For each of the test cases, the equations of motion were
derived using a scalar Lagrangian formulation. The equations of motion were

then integrated usinge the same fourth order Runge-Kutta scheme useg in the

+
s -+

implementation of Book’s [27] algorithm. i

For the test cases that follow the flexible link used was a thin walled tube
annular in cross section and 4m in length. The properties of the link are giv;en in
Table 3.1. The choice of the link parameters was dictated by integration timestep
considerations. Since the natural frequency of flexural oscillation of a beam is
directly proportional to the stiffness and inversely proportional to the length of
the beam, increasing the length of the link and decreasmg the stiffness decreases
the frequency of lateral vibration. The choice of a long slender link allows a
larger timestep to be used than would be possible for a shorter, stiffer link, thus.
reducing the time required for the computation. In the test cases that follow, only
the fundamental mode of flexural vibration was used and, although the numerical,

model can accomodate link torsion, torsion was ignored.
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Flexible Link\Parameters T

mass, m "~ 10.955kg
outside diameter 6.00 x 1072 m
inside diameter 5.62x 107 ?m
length, a 40m
centroidal second moments of area
IandI,; ; 1.476 x 10~ " m*
I * 12952 x 10°7 m*
Young’s modulus, E 2.0 x 10" Pa
density, p 7832kg/m3

B4

Table 3.1: Properties of the flexible link

3.3.1 Single rigid link compound pendulum

The first test case presented is a rigid compound® Nt ‘ SRPEN),
shown in Figure 3.4. The equation of motion of a rigid g pendulum of
uniform link cross section and length a is ’

4

¢+ m¢ 0 (3.5)

. where ¢ is the angular displacement of the link from vertical. The rigid compound
pendulum is a useful test case, since an exact elliptic integral solution exists for

the period 7 of the rlglq/body motion,
¥

N d -
;. /ﬁ/i % | (3.6)
39 Jo V1 — k?sin’~

where

5



&

Figure 3.4: SRPEN geometry used to simulite 4he single rigid link compound
pendulum N
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k=sin¢'§“and

< is a dummy variable of integration

and for small displacements where sing ~ ¢, a constant analytical expression

exists for the period, 7, of the rigid body motion,

2a
=2 3.7
T=2x 3g (3.7)

The FLX geometry used to simuiate a rigid compound is shown in Figure 3.5. Two
links are required to model the rigid link compound pendulum in FLX because of
the di ensibning of arrays in FL)t. Link 1 is not free to rotate about Zo, that is,
jointd:‘:s\iocked, and link 2 is free to rotate about Z,. The gravitational force on

the link ® in the — X, direction.

The response of the compound pendulum, 4 m in length, simulated using FLX
with an integration time step of 1 ms, to an initial displacement of 0.4 rads is shown
in Figure 3.6. The period of the motion, 7 = 3.308 + 0.001 s, is close to the elliptic
integral value of 3.309s and analytical value of 3.276 s for small displacements. By
decreasidg the magnitude of the initial displacement from 0.4 rads to 0.05 rads, the
period of oscillation a.pproaché the analytical value as shown in Table 3.2. For
an initial displacement of 0.05 rads the period is in agreement with the analytical
value for small displacements. SRPEN and FLX give identical values for the period
of the motion. The solutions using both SRPEN and FLX are conservative, the
total system energy remains constant to wwht decimal places at its initial

value.
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Figure 3.5: FLX geometry used to simulate the single rigid link compound pen-

dulum 2
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Figure 3.6: Response of a single rigid link compound pendulum to an initial dis-

placement
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Initial Displacement Period
¢(rad) s 1(s)
SRPEN | ~ FLX Blliptic Integral
0.05 3.276 3.276 ' 3.276
0.1 3.278 3.278 3.278
0.2 3.284 3.284 3.284
. 0.4 3.308 3.308 3.309

Table 3.2: Effect of the initial displacement on the period of oscillation of the rigid

compound pendulum

3.3.2 Double rigid link compound pendulum

The second test case presented is a double rigid link compound pendulum
(DRPEN), shown in Figure 3.7. Both links are identical and of length a; the joint
axes are parallel. The equations of motion of the double link compound pendulum

dre ’

(5 + 3cos ¢z)$1 +(1+ gcos ¢z)d-’z - gsin ¢g(d31 + 9'52)&2 + i—gsin &, =0 (3.8)

and

3 . . 3 .3
(1+F cos 1)1 + @ + S sin ¢a(1)? + 5% sing; = 0 (3.9)

where

@1 is the angular displacement of the baselink from vertical and
’ /

[
@2 is tl&ngular displacement of the outer link from the longitudinal axis

of the base link. L
.

~
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Figure 3.7: DRPEN geometry used to simulate the Jauble link rigid compound

bendulum
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The FLX geometry used to model the double link compound pendulum is shown .
in Figure 3.8. The joint axes are parallel and both joints are free to move. The

gravitiational force on the system is in the —f(o direction.

The response of the system, simulated using DRPEN-with an integration
time step of 1ms, to an initial displacement of 0.4 rads of both links is shown
in Figure 3.9. The response of the system, simulated using FLX with an inte-
gration time step of 1ms, to the same initial conditions is shown in Figure 3.10.
The solutions produced by DRPEN and FLX are identical. Also both solutions
are conservative, the total system energy remains constant within eight decimal

places at its initial value.

3.3.3 Single flexible link compound pendulum

The third test case presented is the flexible compound pendulum (FPEN),
shown in Figure 3.11. The link has length a, mass m, and stiffness E/. The

deflection of the link from its undeformed position is

vin,t) = 5(t)®(n) (3.10)
where ¢(t) is the time varying amplitude or modal coordinate of the single mode-
shape ®(n) used to describe the deformed shape of the link. The modeshape used
to describe the flexibility of the link is the fundamental modeshape of a fixed free

beam.” The equations of motion of the flexible pendulum are

2 - .
(Esa— + mFg’) ¢ —mGa¢ + 2mF¢¢ + mg (gsimb — H¢cos ¢) =T (3.11)

- - KEI
—Ga¢+mF§+(

1 mF{") ¢ —mgsing =0 (3.12)

where



Figure 3.8: FLX geometry used to simulate the double link rigid compound pen-
dulum
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Figure 3.11:
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T

¢ is-the angular displacement of the undeformed link from vertical,
¢ is the modal coordinate describigg the deflection of the link,

T 1s an applied joint torque, and

§
p) : s - 1 o . ) .
D A (.13
1 a '
H= ;/o V(n)dn ‘ (3.15)
e v K = (aa)V*(a) (3.16)

and where aa is the first root of the frequency equation

. cos (aa) cosh (aa) + 1 =0

A

assoctated with equation (3.3) subject to the fixed free boundary conditions. The.
FLX geometry used to model the flexible pendulum is shown in Figure 3.12. This
geometry is essentially the sameyas that used to model the rigid pendulum, except

for the inclusion of the single mode to model the flexure of the link.

The response of the flexible pendulum, simulated usmg FPEN using a 10ms
tlmmtep, to an initial dlsplacement of 0.4rads and a modal coordinate < = 0g12,
correspondmg to an endpomt deflection of 0. 0327 m, is shown in Figure 3.13. ‘The
joint angle oscillates with a periad r = 3.31 + 0.01 s, close to the period of 'motion
of the rigid link compound pendulum 7 = 3.307 + 0.001s with the same initial
displacement. Superimposed on the rigid body motion is a hlgher frequency os-
cxll&lﬁn T =50+ 10 ms, due to the flexure of the link. The amplitude of the
oscxllatlom,,_qf the lmk Is seen to decay with time and this decay is reflected in a
Egcay of the total system energy with time. The decay of the total system energy

&~

{



Figure 3.12: FLX geometry used to model the single flexible link compound pen-

dulum |
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ment and deflection, simulated using FPEN with a 10 ms timestep
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with varying integration time step is shown in Figure 3.14. Evidently, the numer-
ical damping of the flexural oscillation is a function of the integration timestep.
With a time step 10ms, the fourth order Runge-Kutta scheme is incapable of
following t;‘e oscillation in the flexure of the link. The aroplitude of the flexural
qlation ‘ps fallen to approximately zero by 2s, corresponding to the plateau
in ihe total system enérgy. The quasi-static deflection of the link in response to
the joint motion is all that remains after approximately 2s into the simulation.
Reduction of the time step to 1 ms, approximately %th of the period of the link
flexural oscillation 47+ 1 ms, results in a negligible decrease in tota] system energy

over the duration of the simulation.

The response of the flexible pendulum to the same initial conditions"'t‘ising
FPEN and FLX with a 1 ms timestep, are shown in Figure 3.15 and Figure 3.16,
respectively. Both solutions are conservative, the total system energy remains con-
stant to within eight decimal places. The period of the joint motion, 3.307+0.001 s,
produced by both FPEN and FLX, agrees with the period of the joint motion of
the rigid link compound pendulum. The period of the link flexural oscillation,
47+ 1 ms, is also the same for both FPEN and FLX. The period of the link flexu-
ral oscillation predicted by FPEN and FLX do not agrée with the analytical value
of the fundamental period, 275 ms of a fixed free beam. "Iowever, the flexure of
the link is observed to back drive the joint as shown in Figures 3.13, 3.15, and
3.16, that is the base of the link is free to rotate in response to the flexure of the
link. Thus, since the fixed end condition at the base of the link is violated, this

disagreement is not unexpected.
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Figure 3.15: Response of a flexibldiiegk compound pendulum to an initial displace-

ment and deflection, simulated using FPEN with a 1 ms timestep
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", 3.3.4 Single flexjble link with a rigid joint mass
,

, The fourth test case is a flexible link with a rigid joint mass (JMFLX),
shovyn in Figure 3.17. A rigid joint mass is free to rotate about Zo and the flexible
link‘is attached to the rigid joint mass. The same fundamental modeshape, used
previou'sly, is used to describe the flexure of the link. Gravitational force on the
system is ignored. The equations of motion of the flexible link with a rigid joint
méss are

- 2 - ' -
{m (R’ + Ra + 93-) +mF¢t + J} ¢+m(RH + Ga){ +2mF¢id =0 (3.17)

.

- KEI .
m(RH+Ga)g‘+mF$+(4:;3 —mFg'z)g:O (3.18)

where

¢ is the angular displacement of the undeformed link from its initial position,
§ is the modal coordinate describing the deflection of the link,

m is the mass of the beam, 4

R is the radius of the joint mass,

J is the polar moment of inertia of the joint mass, and

F,G,H, and K have the same definitions as in equations (3.11) and (3.12).

The FLX géometry used to model the system is shown in Figure 3.18. Link 1 is
not free to rotate about Zo, Joint 1 is locked. A rigid joint mass is free to rotate
about Zl, and the flexible link 2 is attached to the rigid joint mass. Link 2 is given

an initial deflection in the X,Y; plane and released form rest.

The response of the system with no joint mass, simulated using JMFLX with

an integration time step of 1 ms, to an initial deflection of ¢ = 0.012 is shown



R, polar moment of inertia J
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Figure 3.17: JMEI;?X\{g‘eometry used to model a single flexible link with a rigid
s}\.&.‘
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Figure 3.18: FLX geometry used to model the single flexible link with a rigid joint

mass
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Figure 3.19: Response of a single flexible link with a rigid joint mass to an initial

—0.02

deflection of ¢ = 0.012, simulated using JMFLX with a 1 ms timestep
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_in Figure 3.19. The period of the link flexural oscillation is 49.6 ms and the link
vibration back drives the joint. The effect of increasing the joint inertia on the
frequency of link flexural oscillation, simulated using both JMFLX and FLX, is
shown in Figure 3.20. As the rotational inertia of the Joint mass is increased, the
amplitude of the joint oscillation is reduced and the period of the link flexural
oscillation approaches the analytical value of 275 ms for the period of a fixed free

beam, shown in Figure 3.20.

The most serious shortcoming in the model verification is the lack of an inde-
pendent description of the link flexibility. Both FLX and the scalar Lagrangian
test cases use the same truncated modal approximation to describe the flexure of
the link. However, the asymptotic approach of the period of the link flexural oscil-
lation to the analytical value for a fixed free beam as the joint inertia is increased is
an indication that the implementation of link flexibility in FLX is correct. Unlike
JMFLX, the FLX model has a mode of flexure in the Xlzl plane, in the plane
of the joint axis. The base of the link is fixed in relation to flexure in this plane.
~Jf the initial deflection is in the Plane of the joint axis rather than in the plane
normal to the joint axis, the link vibrates with the a period of 275 ms identical to
the analytical value tor a fixed free beam, as shown in Figure®.21.

)

[ 4
.

3.3.5 General move of a three link arm

The last test case is a general move of a three link manipulator with two
flexible links. The motion in all the previous test cases has been planar, in this
test case the motion is three dimensional. The geometry of the system is shown in
Figure 3 22. The first link, which rotates about Zo, has zero length. The second

link, which rotates a.bout Zl, is one of the standard 4 m links with two modes of
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ﬂexxblhty one in the local X¥ plane and one in the loce.l Xz plane The third

link, whlch rotates about Z,, is identical to the second. Thus, there are 7 degrees

of freedom in total. : P . “

~ lThe command trajectory for fhe move is shown in Figure 3.23. The initial and -
ﬁnel positions of the three link manipulator are shown in Figure 3.24. The joint
torques are supplied by independent, fixed gain PID joint controllers. The input
to the Jomt controllers is the onr@ position error, its time dern;a;lve and mtegra‘l
The output'ﬁ'om thq )mt trql?us are the Jom.t torques, The joint controllers
set the manipulator in mdet and are then ttirned oﬂ at 0. 53 into the move.
“The response of the rigid and ﬁexrble lmk ma.nlpulators is shon i in Figures 3.287
3.26 and 3.27, respectively. When the joint controllers are switched off, there is"
r'lo external energy input info the system. The solutions involving both the rigid
and fléxible models reﬁect this and are conservative, as shown ifi Figures 3.25 and

3.26.

.y
The time history of the control joint torques are shown in Figure 3.28 for

the case when the joint Tontrols are npt sthched off at 0.5s into the move. If 4

Y

the time lﬂ‘!;tory of the kmematlc state of the model for this case is fed into th&

!

invers¢ dynamcs calculation, the joint torques required to produce the motion’
are calculated. These joint torques, shown in Fi igure 3.29, are the same as the
control joint torques input into the forward dynamics. Thus the FLX simulation

‘:

demonstrates closure., . : . "

+.In this cha.pter the 1mplerpentatlon of the FLX srmulatlon has been 3utlmed,
and some attempts at model‘ venﬁcatron have been presented. The FLX simu-
lation has been shown to produce correct conservatnve solutions ior planar aq;d
-three dunensnona.l rlgld body motlon in s veral tef cases. This has also been
demonstrated for ﬁex1b_le.lrnl§_ r_l'lgthnﬂn:.{{l‘heg ;:e; ﬁext:re ef the link is described
TR i : : .

o * Lo
5 .22

> ) : »‘\q - '-1 4-
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Figure 3.26: Response of the flexible link manipulator: joint positions and system

energy

»

Change in Total Energy, (%)

. .

o b}
-
2
N .
=S

o
5
8
oW
g
9
"o

=)

D

)

oy

w0

‘<|:' - - —

- ]
—_
3
=
g
o
£0c -
&
2
S e

o~

|

-t

<]

o .

(=) . ) T~

Total energy calculated only after
the joint torques are turned off at 0.5 s
>
? PRI
0.0 1.0 2.0 3.0 4.0
L Time (s)

C Q.

9

76



4

622

Deflection Variable

Deﬂecﬁon Variable &g,

.

Figure 3.27: “Reqponse_

variables

Deflection Variable b1

0.3 -0.3

Deflection Vuiable 832

0.0

0.0

0.1 -0.3

0.0

- 0.0

-0.1

: \4{3)

0.1 -0.1

.?a

77

a

¥

4

0.0

+
1.0

.

of the flexible -linlé"ma.nipulator:

‘ .
2.0

Time (s)

v
N

—
30

x,ﬂ



S e e T
& ’ - . WAk . L R CER A

4 , ¥ ki
AN . .

hOR
¢
L]
*
=)
¢ - . ; b
R - d}fﬂ. PPy e
' »e
& o
Z o 7] {
[
3 - -
o .
s 3. M
&= - R “
T o~ o w®
S | . .
- n
\’ 3
: -
el S
=]
N
| T - I T ~
0.0 1.0 20 " 30 4.0
Tire (s)

v ‘ . \

fo



79

Joint Torque (kN.m)

Figure 3.29: Time history of the joint torques from the inverse dynamics
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by the fundamental mode of flexural vibration for a fixed free beam. The FLX
simulation has been shown to produce the correct frequency for the oscillation of
a pigid compound pendulum for small displacements. The FLX simulation has
also been showfr®o produce the correct frequency for the fundamental mode of
nbratlon of a fixed free beam Ang finally, the FLX nmulatlon demonstrates clo-
sure, control torquu mput into the forwazd dynaxmcs are reproduesd by mputtmg
the kinematic state of the model into the inverse dynamlcs alculation. Although
there is no conclusive proof of the correctness of F'LX it ‘appears,to produce the

correct results for the test cases presented.



Chapter 4

Symbolic Generation of the

L 4

Flexi‘ink Dynamics :
é&?’ . ) (' s“ . ”

In this chapter, symbblii:‘gﬁner;t&fdﬁ":)f\?thémﬂe')‘iible link dynamics equations
based on Book’s [27] algorithm, outlined in Chapter 2, is presented. The compu-

tational burden of the symbolically generated dynamics is compared to that of the

numerical dynamics formulation. - x

Symbolic generation refers to the mampulatlon of symbols as oppgsed to nu-
merlc values. Symbolic generation offers the possibility of obtaining very‘eﬁicnent
formulations of manipulator dyna.xblcs Manipulatioms, such as matrix multiphca—
tions and vector cross products inherent in d‘y’na.mxcs formulations, are performed
only once, elxmxnatmg the use of loop counters and the,overhead of subroutme

| calls te-mumerical matrix handling routmu‘ Also, needless 0peratwns such as

multnpllcatlon by 1 or 0 can be avoided and replaced by assignments.

Symbolic generation of the dynamics equations of rigid link manipulators is

not new, Imuh and Lin [35] déveloped an algorithm for symbolically g.enerating the

N 1 " T
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A .
manipulator dynamics using the Newton-Euler formulation. Vecchio et al. (36]

derived the equations of motion, based on the Lagrangian formulation, using the
symbol manipulation language REDUCE. Prohdnents of the use of Kane’s dynain-
ics equations have used manyal symbolic generation to formulate the dynamics of
multibody satellites and rigid link manipulators [1]. Nielen and Kane [37] have
compared the efficiency of the Stanford manipulitor inverse dynamics calculation
produced by several symbolic generation schemes The most efficient inverse dy-
namics calculation reported py these authors was Wampler’s (37] formulatlgn an
iterative/recursive method based on Kane s equatlons requiring only 468 multi-
plications and 332 addxtlons. Recently, Toogood [23] has reported an mzsrse dy-
namics calculation for the Stanford manipulator requnring onlyd455 multiplications
and 363 additions. This inverse dynamics calculation was derived symbolically us-
mg the DYNAM/CLEAR system, developed by Kermack (28] -ahd Toogood (23],
which generates the equations of motion based on Hollerbach’s (17] 4 x 4 matrix
Lagrangian. formulation. If the inertia terms for the final three links plus the
inertia terms Mr the first three links which are smaller by at Ieast one order of
magnitude tha.n the largest term for th.at link are 1gnored only 298 multiplications
and 221 addltnons are required for the computation of the Stanford manipulator

inverse dynamics [23). -

DYNAM [23,28]isnot a glneral purpose symbollc mamgulatlon rom l‘l)}her

it was written spec1ﬁoally to generate the inverse dynanucs calcu.latlon Pés

Mtrg_y

Hollerbach s [17] 4 x 4 matrix La}gmgm formu.latxon DMN_,{ crisity

TRAN subroutine consxstmg&u'w _ ‘ _ L@ » u e )
where ### is a number. The | ; . k Btringg v ed tét!»em

-

‘constxtute FORTRAN statenmnts w'hlch encode the mverSe 57 ;éncs calculption.

LN

All matrix and vector elements in Hollerbach’s formulatlon are treated as sym—

-
L 4

-
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bols and are stored in memory as. Multiplication is performed by
concatenation of a FORTRAN mul
followed by concatenation with the “tring. Agdition is performed in a sim-
ilar manner with an included addit?. operator. Parentheses are used only to
preserve aigebraic thfll‘l:J Muitiplication by 0, 1, or - 1 is.replaced by appropri

ate assignment. Addition of 0 is also not performed. The proliferation of strings of

operator “s™ with the first string

excessive length is a problem common to symb®lic generation routines 1,28;. This
problem is alleviated in DYNAM by replading a string resulting from a sywbolic
operation, if it contains a plus “+" sign or two or more multiplication =" sign‘s,
with a Z# # # variable in memory and assigning the original string to the Zg # #
variable in the FORTRAN subroutine. For example, if a matrix or vectw‘l:lemeur;
cont#ins a string

220 + 213 « 214 ”
T©
resulting from a symbolic operation, it would be replaced in wmewory by g g #,

with the number # # # being generated automatically, and the usignunem‘

Z##w =~ 120 + 213+ L14

would be made in the FORTRAN_ subroutine.

I .
Due to the especially spars: nature of some of the matrices, the application of
symbohc genentxon to flexible link dynamics should result in a significant reduc-

t’xon in the computational load in compuwon to the numerically coded dynamics.

. .'Ihe €ij»; ;.pd Cia maulcu whach describe the distribution of mass x(’ lu*

. are particularly sparse. Expmdmg equation (2.29), the C, matrices are seen Lo

have only four non-sero elements, 4

-t

r"\

»
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1 o r
D= 0
] ¢ = ;[ utmoonT(noo 1dy L
[ K a

/ unldn 0 0 / pndn

1] 0 0 0 o'o ’ N

= 5 0 0 0 0 . (4.1)
/'undn 00 /'ud’v ’
\ 0 0 .

Expanding equation (2.30), the C,; matrices are also seen to be very sparse,

Y
-
4
Cj = 2 / unoo)T (zi; vi; zij 0)dn '
r ‘ @y
/0 unzijdn /; HUnYijdn /0 unz;dn 0 ‘
1 o 0 .0 0 /
= 54 o 0 - 0 o (- (4.2) /
a, a, a, ‘ .
/ pziydn / Kyijdn / Bbz;dn 0
0 0 0
Since axial deformation of a link was ignored in the derivation of F LX, the elements
of the first column of the C;; matrices are zero. If §; ij 18 the time varying amplitude p:
of the 3, mode of bending in the local XY plane, then only the second column of
IC contams non-zero elements. And, if §,; ij i8 the time varying amplitude of the Jn
mode of bending in the locel XZ plane, then only the third c\h;mn of C,; contains
non-zero elements. Thus there are only two noggzero elements in C,;. Expanding
equation (2.31) gives ' J - ’
Cay = 2/ B(Bix vir 2 0) (zij iy z; 0)dn > b
' a, a, $ra,
/o WZiiTixdn /0 KYij T dn /6 BzijZigdn O
! a, a, a, » '
Ty Us d / is Y d / s Ys d 0 |
- % ~/0_“ ij Vi adn 0’#9,!/-5 n o‘. K& Y an CoL (4\.3) -
' /0 BT,z dn _[) WY Zadn. /0 Bzyzadn O ’
0 - 0 0 0 ) S
. ] N ’ . .
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Since axial deformation of a link was ﬁgnofed, z;; = 0 for all 1,5 and the elements

of the first row 'a.nd column’of Ciij vanish. Due to the orthogonality of the made-

shapes in bending, the rem;aining diagonal elements of C;,; are zero for j # k. The
modeshapes in bendmg in the local XV and’ X b4 plates are 1dentical. However,

for any'mode 5 only one of y., or z; is non-zero. That is, §;; is the time va.rymg

amplitude of of a. m_qde of flexural v1bratnon in either the local XY or the X2

plane, not both. Ther;afore, / iﬂy.‘,- zrdn = 0 for j = k. Thus the C;;,; have at
. 0

" most only two non-zéro elements. The M;; matrices are also particularly sparse,

0, C 0 (a) 0,45 (ay)  zis(ay)
M’- _ 0,.,“(0.,) 0 0:i5 (a) vij (as) (4.4)
¢ yi) (an ZIJ\(‘a| 0 & (a‘) ‘
0 0 0 0

Again, since axial link deformation was ignored, z;; = 0 for all ¢,5. If mode 'j
represents bending in the local XY plane, then only 0,,; and y;; are non-zero.
Similarly, if mode j represents bending in the local X Z. plane, then only 4,;;

. . . 2
and z;; are non-zero. Thus the M;; matrices contain at most only three non-zero

elements.

/

A symbolic generation routine, SYMFLX mcorporatmg the fea.tures of DY-»
NAM, has been written in C based on the flexible link dynamics preserited in
Chapter 2. The numerically coded FLX evaluates the forward dynamlcs, that is
given the generalized positions, velocities, and the joint torques, the ‘g.eneralized

accelerations are evaluated from equation (3.1)

z=I"'R

and integrated to produce a time history of the kinematic state of the manipulator.
SYMFILX follows the structure of FLX, performing the ope;ations symbolically,

Cr
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but does not perform the inversion of the inertia matrix or the time integfa.tion
of equation (3.1). The inputs to the SYMFLX gexierated FORTRAN subrou-"
tine FORTSUB are the génetalizéd Ppositions 2, velocities 3, and the apphed joint
quuu_L—Ihe mass and inertia properties of the links are mcorporated mto
FORTSUB by SYMFLX FORTSUB returns the inertia matrix I and the remam—
ing dynamxcs vector R. Using FORTSUB, the forward dykamlcs can be evaluated .
by performing the inertia matrix i inversion and [integrating equation (3. 1) numer-
1;ally as in FLX. The inverse dynamics can be evaluated by calling FORTSUB
with the joint torques set to zero. On return, the value of the joint torques can be
determined from the difference between the remaining dynamics vector ca.lcuhla.ted
using equation (2.57)
Iz=PR

and that returned by FORTSUB.

SYMFLX has been used to generate a FORTRAN subroutine that evaluates
the inverse dynamics of the three link manipulator introduced in Chapter 3. The ’
computational burden of the symbolically generated inverse dynagics calculation
is compared to that of FLX in Tabie 4.1. For the purpose of this comparison, the
added computation due to the ihc]usion of the rigid joint mass transformation,
S;, has been ignored as this transformation could have been incorporated into the
joint transformation, 4;. ' '

In the rigid link case, the numericélly coded FLX requires almost as many
opt;rations as the Uicker-Kahn formulation, even though Book’s [27) algorithm
incorporates recursive schemes similar to those used by Hollerbach [17]. The ma-
jority of oper@tions specific to the inclusion of link flexibility are avoided .in the
rigid link case through the use of logical constructs in FLX. Therefore, the large

number of operatiéns required by FLX in the rigid case must be due in part to
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4~

Number of Operations

X = multiplication, +.= addition

k Number of Flexible Modes®
Method Opera.iion 0 1 .2
Uicker-Kahn 4998 — —
+ 6484 — —
Hollerbach X 1898 — —
(4 x 4) + . 1561 — —
FLX x 4637 | 10345 | 18117
+ 2715 8513 | 15223
SYMFLX® ' X | 638 3210 —
: | + 300 | 1648 | —
SYMFLX® 445 2659 —
+ 213 1313 —

%The number of modes in the local XY and X2 of each flexible link in

the model;

2modes = 1rigidlink + 2 flexible Links x (1 + 2modes x 2 planes of bending)

»

= 11 degrees of freedom.

*The output of

°The output of

manipulator

LX without any modification.
FLX with unused Z### variables removed.

»

ﬂl
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Table 4.1: Computational requirements for the inverse dynamics of a three link

\
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4

increased number of matrix multiplications incurred as a-result of the separation
of the joint transformation, 4;, and the link triﬁsformatnon L The computa-
tional requirement of the symbohca'lly generated inverse dynamlcs calculation, 445
_multiplications and 213 additions, is less thaﬁ %th of the number of operations re-
quired by Hollerbach’s 4 x 4 matrix formulation and less then &th of the number
of operations required by FLX. This is close to the computational requirement re-
ported by Kermack [28], 450 multiplications and 243 additions, for a symbolically
generated inverse dynamics calculation based on Hollerbach’s (17] algorithm. It
should be noted, however, that SYMFLX removes unused Z### strings, whereas

Kermack’s routine did not.

In the flexible link case, with one bending mode in the ivcal XY and one in
the local X2 plane of each of the two flexible links, FLX requires 10345 multi-
plications a.nd 8513 additions to compute the inverse dyna.nncs In comparsnon,
SYMFLX, generated 1870 Z#+# 4 strings, 324 of which were unused and deleted.
The remaining 1546 Z### strings contained 2659 multiplications and 1313 addi-
tions required to compute the inverse dynamics, roughly fth of the computational

burden of FLX.
8

Estimatigg the increase in computational efficiency of the symbolically gen-
erated inverse dynamics calculation over the numerical FLX routine by counting
the number of floating point operations is somewhat misleading. The FLX inverse
dynamics calculation involves a large number of subroutine calls to matrix han-
~ dling routines wherea# the SYMFLX inverse dynamics calculation only contains
. one subroutine call. The FLX routine also employs loop counters, logical testing,

pointers, and array indexing, all of which are absent from the SYMF LX inverse
dynamics calculation. Instead a‘n\lore direct comparison of execution épeed onL the

same hardware and operating system is a better indication of relative efficiency.
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Execution Time*
() ‘
Number of Flexible Modes*
~ Method 0 1
FLX 233 403
’ SYMFLX¢ 4 78

°A\fepge times for a call to the dynamics subrou-
tine on ;.‘MCGSMO (20 MHs operation) coprocessor

" board ©Definicon System Inc.
*The number of modes in the local £ and £2 of

each flexible link in the model;

2modes = 1rigid link + 2 flexible links x (1 + 2modes x 2 planes of bending)

= 11degrees of freegom.

“The output of SYMFLX with unused ZH### vari-
ables removed.

Table 4.2: Execution times for the inverse dyna.mics calculation.

The execution times for the three link manipulator are shown in Table 4.2. In'the
rigid link case, the symbolic inverse dynamics calculation executes approximately
58 times faster than the FLX calculation. However, in the flexible link case, the

symbolic inverse dynamics calculation is only about 5 times faster than FLX.

* No simplification of the SYMFLX dynamics subroutine, other than removal of
the unused Z### variables, was performed. An examination of the SYMFLX
dynamics subroutine shows the presence of a number of repeated strings. For

example, the SYMFLX dynamics subroutine for the single flexible mode case con-

-

=

ey
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tains 48 occurrences of “C0+ S1” and “S0+ S1” and 3'; occurrends of “Cb +C1”
and “C0» C1” for a total of 166 duplicated multiplications. A repeated’ string
could be replaced by a.mgnment to'a Z### variable on the first encounter and
by that Z### variable on subsequent occutrences in the dynamics subroutine.
This has been done by Toogood (23] in the CLEAR subroutine which removes
unused Z## # strings, replaces repeated strings, removes common factors from
expressions, and simplifies some trigonometric identities. Using CLEAR on the
DYNAM generated Stanford manipulator inverse dynamics, retaining all the in-
ertia terms, Taogood [23] has reduced the number of operations required by more
than 30% from 799 multlphcatlons and 516 addmons to 525 multiplications and
368 additions. Similar gains should be peossible with the SYMFLX generated flex-

ible link inverse dyna.miés.

The symbolic generation of the inverse dynamics of the three link manipulator
with two bending modes in the local XY and two in the local X Z plane of each of
the two flexible links was not performed due to excessive memory requirements.
All the symbolic-arrays in SYMFLX are declared external, this is equivalent to
common block storage in FORTRAN. Using the minimum permissible length of the
symbolic strings of 50 characters for SYMFLX running the single mode problem,

‘the storage required for the two mode problem exceeded the available 640 kilobytes.
Work is in progress to restructure SYMFLX, us@g dynamic memory allocation
for the symbolic strings. This should significantly increase the size of model that
can be hmgled, since most of thﬁ'?mbolic strings are much shorter than the 50
character limit.

Y



Chapter 5

Summary and Conclusions.

Na
Lightweight flexible manipulators hold the promise of increased speed of op-
eration, longer reach, reduced power consumption, and lowered mounting strength
and rigidity requirement. However, flexural and torsional qscillations may be ex-
cited by the control torques, degrading endpoint position, tracking performance,
and cycle time of ﬂexilzle manipulators. Unless these oscillations can b'e controlled,

. i
the advantages of lightweight, flexible manipulators will not be realized in practice.

Fast and accurate calculation of the dynamics is required in des_ign and op-
era.tion' of robotic manipulators. Anticipated joint torques, based on.an input
tfajectory, can be calculated online and fed to the joints for improved trajectory
following. These calculations must be carried out at the servo rate, typically at
least 60 times a second [4]. The computational burden of ﬂéxible link dynamicsb
formulations hds not been reported in the literature. The possible improvements
in computational efficiency through the use of symbolic generation of the flexible
link dynamics have not been demonstrated. To address these concerns a flexible

link simulator based on a numerical algorithm of the equations of motion was

91
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developed; and its computatlonal load was compared to symbolically genented

dynamigs routines. )

The derivation of tNe equations of motion, based on Book's algolrithm (27
was praented in Chapter 2. Book’s algonthm uses a 4 X 4 matrix Lagrangian
i denve the equations of motion for a flexible link manipulator. Re-’

similar to t used by Hollerbach (17] are employed, but are

ex due to t the joint transformation from the link

transformation.

In Chapter 3, the imp]ementation of Book’s algorithm in the simulator FLX
was presented and attempts at verifying its correctness were described. The sim-
ulator only models revolute joints, not prismatic ones. The modeshapes of a fixed
free beam, eigenfunctions of the Bernoulli-Euler flexure equation, were used to

describe the flexure of a link using the method of assumed modes.

Without a physical model with which to compare, absolute verification of the
numerical simulator is difficult. However, some checks of the correctness of the
simulator have been made. FLX has been shown to produce solutions that agree
wnth simpler rigid body models involving mdtion in a plane, such as the single and
double link compound pendula. FLX has also been shown to produce conservative
~ solutions for the ﬁe:ltible link compound pendulum provided that the integration
time step used in the fourﬁh order Runge-Kutta scheme is not larger than approx-
imately éth of the period of the link ﬁéxuril oscillations. FLX hak been shown to
produce conservative solutions of the equations of motion of a rigid and a flexible
three joint, two link manipulator in the absence of external forcing. And FLX has
also been shown to demonstrate clogure: control torques input into the forward
dynamics are reproduced by inputting the kinematic state of the model into the

inverse dyanmics calculation. However, no independent check of the flexible link
4

¢
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dynamics has been made. The same mode summation used to describe flexure in

FLX was used in the simpler models.

In Chapter 4, the aymb‘olic generation of the flexible link dynamics was pre-
sented. 'Symbolic generation of the flexible link dynamics significantly reduced the
computaiional‘ burden of the inverse dynamics calculation. For a two flexible link
manipulator with three rigid body degrees of freedom and four bending modes,
seven degrees of freedom in total, symbolic generation of the equations of motion
reduced the number of floating point operations required from 10345 multiplica-
tions and 8513 additions to 2659vmultiplicatiom and 1313 additions, resulting in
an approximately fivefold increase in execution speed. However, the increase in
execution speed was not as dramatic as that for the rigid link manipulator of the
same geometry for which the symbolic generation of the symbolic dynamics exe-
cuted approximately 58 times faster than FLX. ;I'hese increases in computational
efficiency were obtained without any sophisticated editing of the symbolic dynam-
ics subroutine, only unused strings were removed. There were a large numbet of
repeated strings in the symbolic dynamics subroutine showing that further simpli-

fication of the symbolic dynamics will result in improved computational efficiency.

Since most of the symbolic strings generated are much shorter than the longest,
static storage of the syrﬁbolic matrices, composed of character arrays of sufficient
length to store the longest string, is wasteful of memory. It is recommended that
dynamic memory allocation be used in the étorage of the symbolic matrices-rather

taan static storage, in order to increase the size of the problem that can be handled.

A
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Appendix A Sy

Denavit-Han_t'enberg Convention
for Homogéheoué Link

Transformation Matrices

To specify the spatial relationship of a rigid body witﬁ respect to a fixed
reference frame, it is necessary to specify the position of the origin of a coordinate
' frame fixed in the body and the orxentatldn of the body fixed frame with respect
to the reference frame. In general, six pa.ra.meters are required, three to describe
the posmon of the body fixed frame and three to describe its orientation with
respect to the reference frame [34]. Consider a coordinate frame 5 embedded
in lin‘l; ¢ at its distal end and a coordinate frame i — 1 embedded in link § — 1
at its distal end. In general six parameters are needed to describe the position
and orientation of frame i relative to ffame s — 1. The Dena:vit-Hartenberg [32]

convention for describing rigid link kinematics places restrictions on the allowable

relative position and orientation of frames 1 —'1 and 1, reducing the number of
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paré.metem neéded to describe the position and orientation of frame 1 relative to
frame t — 1 to four. The parameters used are the joint angle 6, the lmk length q,,
the twist of the link a;, and the link offset d. In the case of a revolute joint, the
joint mgle is the controlled variable; for a prismatic joint, the controlled variable

is the link length.

The Denavit-Hartenberg convention for a revolute joint is sht"x in Figure A.1.
With this convention, the origin of the coordinate system of link s ‘is located at
the intersection of the common normal between the axes ofJomts ¢ and 1 + 1 and
axis of joint 5 + 1. If the joint axes intersect, the origin of link 1 is at the point of
mtersectlon If the joint axes are parallel, the origin of link ¢ is ¢hosen such that
the offset’ .of the next link whose coordinate frame is deﬁned will be zero(I The
Z; ‘axis is colinear with the axis of joint § + 1. The X; axis is colinear with the
commoh,normal'éxisting between joints s and s + 1. If thg joint axes intersect, the
direction of the X; axis is parallel or antiparallel to the cross product Z;_, x Z;.

The rotation of joint 1 is zero when X;_, and X; are parallel and have the same

direction.

The Denavit-Hartenberg 1ink transformation matrix A; can be thought of as

the product of the following elementary transformations: v

1. rotation a.bou&.-_l equal to the joint angle 6, ;

r

2. translation along the Z;_, axis a length equal to the offset of the link d;;

3. translation along the rotated X;_, (now colinear with X;) a distance equal

to the length a; of the link; and

4. rotation about X; equal to the twist o; of the link.



3.

joint ;

Figure A.1: The Denavit-Hartenberg convention for revolute joints
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Forming the product of these elementary transformations results in the Denavit-

Hartenberg link transformation matrix A, for a rigid link 1, relatmg the posltlon

a.nd otrientation of the coordinate frame of link s to the coordmate frame of lmk* '

1 -1, .
((cos; —sing; 0 0 (100 a)(1 o o o
4 = sind; cosd; 0 O 0100 0 cosa; —~sina; 0O
0 0 1°0 0 01 4 0 sinay cosa; 0
Lo o o1/looo1/{o o 0 1
( cosd; —sinb;cosa; sin fisina; a;cosé;
. 8ind; cosf;cosq — cos ¥; sin a; a.-sfnﬂ.-
0 sin a; cos d;
\ (] 0 0 1

To specify the positi'on and orientation in space of the distal end of a link
it is sufﬁcient to'specify the homogeneous transformation describing the relative
position and oﬁentation of the coordinate frame embedded at the distal end of
the link, frame s, with respect to the coordinate frame whose origin is located at
the base of the link, frame 1 — 1. Starting at the base of a serial chain of links, the
position of each link can then be specified relative to its predecessor in the chain.
And the position of link 1 relative to the base frame is Jjust the cumulative product

of the link transformations starting from the base of the serial chain.
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