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Abstract 

This thesis is composed of three studies. 

 

First study (Gold Mining and Disparities in Indigenous Infant Health in the Brazilian Amazon): 

Regulations in mining industries can mitigate environmental pollution and health risks. The 

health of indigenous communities may be disproportionately harmed by mining because they are 

often remote and disadvantaged economically, socially, and politically. Using data on over 

200,000 births across municipalities in the Brazilian Amazon, along with satellite mapping of 

gold mines, I compare health outcomes for indigenous and non-indigenous infants in 

municipalities with and without sites of illegal and legal mining. I find evidence of negative 

effects of illegal mines on birthweights, specifically for indigenous infants. My results also 

indicate heterogenous impacts of illegal mining on indigenous birthweights, with indigenous 

infants born to single mothers or on indigenous lands weighing significantly less. I do not find 

similar effects with respect to legal gold mining, suggesting that regulating the mining industry 

works for reducing health risks. 

  

Second study (Oil Well Pollution and Student Performance: Evidence from Alberta, Canada): 

Studies have established links between increases in ambient pollution and decreases in measures 

of children’s academic performance. But the effect of pollution attributed to the hundreds of 

thousands of oil wells across North America is less understood. I compare grade 9 math and 

science test score outcomes from 2015-2019 at over 500 schools across Alberta to the number of 

active and inactive oil wells within 4 km of the schools. My empirical strategy is rooted in spatial 

analysis, where fixed distances between pollution sources and areas of impact allow me to 
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measure the association of potential well pollution with education outcomes. I find evidence of a 

negative association between the number of oil wells and mean test scores, particularly for math. 

With a mean of approximately 14 wells within a 4 km radius of each school, math test scores 

may decrease as much as of 9.0 percentage points, while science test scores may decrease by an 

average of 3.5 percentage points. When considering subgroups of wells by activity status (i.e., 

active, suspended, abandoned, and reclaimed) in another model, math and science test scores still 

decrease by an average of 8.2 and 2.2 percentage points, respectively. I do not observe a 

significant effect of reclaimed wells on test scores in either subject. My results suggest that 

reducing the number of suspended and abandoned wells through the reclamation process would 

benefit student outcomes. 

 

Third study (Legacy Effect of Rural Coal Mining on Youth Population Health): With prior 

environmental studies predominantly focused on air pollution, I seek to investigate associations 

of legacy coal mining operations and human health via water pollution. I compare average health 

care demand levels from 2002-2014 for cohorts of youths aged 13 and under across Alberta, 

based on their relative positions to nearby coal mines, the majority of which ceased operations 

prior to 2002. Using an intricate spatial analysis strategy, over 50,000 youths are identified as 

living either upstream or downstream from almost 750 waterway-adjacent coal mines with 

various operating periods since 1886. I find evidence of negative associations between coal 

mines and human health, via increases in yearly doctor visits and inpatient days for youths living 

downstream from one or more coal mines. I also observe heterogenous associations based on 

characteristics of the mines. In particular, doctor visits for downstream youths are higher when 

nearby mines i) operated closer to the observation year or ii) had longer durations of operations.  
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Chapter 1 Introduction 
 

Blending the fields of environmental and health economics, the three studies presented here have 

an overarching theme of estimating social impacts linked to pollution from local nonrenewable 

resource extraction. Each study makes extensive use of spatial analysis tools to identify areas of 

concern and estimate empirical models. Underlying each model is a dataset compiled from 

various government sources. The collective objective of this research is to identify potential 

source-specific pollution effects on measures of human well-being and productivity with respect 

to proximity. The studies all focus on youth, who may be particularly sensitive to such impacts. 

 

The first study presents an investigation of how illegal gold mining activity in the 

Brazilian Amazon affects birth outcomes. I investigate whether the impacts of pollution vary 

with mine regulation (i.e., illegal versus legal), and also whether they are disproportionately 

distributed across demographics. I test these hypotheses by estimating impacts of the number of 

illegal and legal mines in a region on infant health outcomes (i.e., birth weight, premature birth 

incidence, and low Apgar score incidence). A discrepancy in impacts may imply that industry 

regulations are working, and that further regulating the illegal mining sector could therefore be 

warranted to foster health improvements throughout the region(s). I am also able to explore 

heterogeneity of impacts (i.e., health gaps) in a multitude of ways; by racial group (i.e., 

indigenous/non-indigenous), demographic characteristics (i.e., marital status, delivery age, 

education level), and regional policy characteristics (i.e., living in a municipality with indigenous 

reserves). My results provide direction for the allocation of limited municipal and federal 

government resources, such as introducing new mining regulations or revising those currently in 

place, to target segments of the population that suffer the most from health impacts. 

 

The objective of the second study is to determine whether the number and activity status 

of oil wells surrounding schools in Alberta, Canada impact adolescent academic performance. 

My hypothesis is that student test scores may suffer due to oil well-borne pollution, and these 

impacts may vary based on characteristics of nearby oil wells. For instance, while some amount 

of pollution is expected from actively producing wells, there is significant potential for old, 

abandoned wells to leak and also pollute. To investigate this hypothesis, I compare standardized 
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provincial achievement test scores in math and science from schools across Alberta to the 

number of oil wells located close (i.e., based on a threshold radius) to each school. While 

reclamation costs (i.e., the price of cleaning up old wells) can readily be estimated, there may be 

additional and hidden social costs, such as academic performance impacts, related to decades of 

potential pollution from oil wells in surrounding communities. Finding evidence of an effect may 

provide urgency to well clean-up initiatives or implore regulatory reform on the allowable 

distance between future locations of oil wells and schools. 

 

In the third study, also based in Alberta, I analyze how health care demand varies 

between children living upstream and downstream from historical coal mining sites. My 

hypothesis is that, if mining negatively impacts water quality, children living downstream from 

mining activity (compared to similar individuals located upstream) are exposed to, on average, 

relatively higher levels of water contaminants (e.g., various heavy metals) due to acid mine 

drainage (AMD), and, in turn, will have relatively higher demand for health care. I restrict my 

analysis to rural areas, as I suspect the mechanism of transmission to largely stem from relatively 

less-treated drinking water sources. These sources include private water wells, which may or 

may not be treated by the owner, or public drinking water that may undergo less-robust treatment 

due to available funding or resources. To assess whether historical coal mining activity indeed 

has legacy health effects, I compare three measures of yearly average health care demand (i.e., 

doctor visits, emergency department visits, and inpatient days) between similar groups of 

individuals, with groups varying based on their relative positioning to a coal mine along a 

waterway. If health care demand significantly varies based on downstream/upstream assignment, 

then an evaluation of conditions at past coal mining sites may be warranted, which in turn may 

provide insight for the planning of future coal mining sites. 

 

 Taken together, these three papers show significant and substantial effects of non-

renewable resource extraction that warrant the attention of policy makers; considerations that 

could be important to future development and restorative decisions and regulatory efforts. 
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Chapter 2 Gold Mining and Disparities in Indigenous Infant Health 

in the Brazilian Amazon 
 

2.1) Introduction 

The impacts of pollution are often disproportionately distributed across demographics. 

Disparities, or gaps, in outcomes such as health, earnings potential, or education have been 

observed across various group definitions including age (1), ethnicity (2-5), urban-rural 

residences (6), and resource access (7). There is an ever-growing body of literature on the impact 

of pollution on indigenous populations worldwide, which are often disadvantaged, relative to 

their peers, economically, socially, and politically1. Mounting evidence shows health disparities 

arising from environmental pollution among indigenous communities (8-10).  

 

One such potential source of disparity-inducing pollution is gold mining. There are global 

environmental concerns for artisanal and small-scale gold mining (ASGM), which often operate 

informally or illegally (11). Individuals and communities in developing economies are 

incentivized to participate in such mining activity, legal or not, as unskilled workers stand to 

benefit economically (12). Increasing gold prices, from $400/ounce in 2002 to over 

$1,800/ounce in 2022, have driven rapid expansion of illegal gold mining activity (13). In one 

area of the Peruvian Amazon, illegal gold mining increased by over 200% between 1999 and 

2012 (14). In Brazil, satellite imagery of an indigenous reservation in the Amazon showed a 20-

fold increase in illegal mining activity over a five-year period, with estimates of over 20,000 

illegal miners in the area (15). 

 

In 2010, there were approximately 896,900 indigenous people throughout Brazil, 

belonging to 305 ethnic groups (16). Of these individuals, about one third lived in urban areas 

and two thirds in rural zones. Over 13% of land in Brazil is reserved for indigenous populations, 

with most of these reserves found in the Brazilian Amazon. The 1988 Constitution recognized 

indigenous peoples as primary landowners and states that they must be guaranteed participation 

in the benefits of authorized mining activities (16). 

 
1 See Appendix A.1.1 for more detail. 



4 

 

But the benefits of participating in gold mining may come at the expense of health 

problems associated with pollution. Regulating mineral exploration and extraction is important to 

the well-being of local populations, as gold mining can have short and long-term environmental 

and health consequences. Legacy effects of mercury use in gold separation in Brazil have been 

identified and monitored for decades (17-19). Mercury2 enters the environment both as river 

deposits, a concern for drinking water sources, and as atmospheric vapour, which can be 

dangerous to inhale (20-21). This type of pollution can be especially important for indigenous 

communities, given their strong connection with the land and the fact that many communities are 

in remote regions with diminished government presence and public infrastructure (22). 

 

Beyond direct health3 effects, the negative impacts of gold mining may also extend to 

neighbouring economic activities. For example, several studies in Ghana have linked pollution 

from illegal gold mining to externalities ranging from community health care expenditure 

increases to total factor productivity reductions for nearby farmers (23-25). Illegal gold mining 

has also been linked to increased incidence of malaria in Colombia (26). 

 

In investigating health impacts caused by gold mining, I consider infant health outcomes 

as measures. The sensitivity of infants to environmental factors makes them responsive 

candidates for studying pollution impacts on human health. Additionally, isolating the health 

effect of mining on this cohort is less challenging than similar analyses of adolescents and adults, 

whose health is more likely to be confounded by exposure to other events in previous years of 

life. I investigate three measures of infant health at birth: birthweight, gestational age (i.e., 

premature birth or not), and Apgar (i.e., a simple test at 1 and 5 minutes after birth of 

Appearance, Pulse, Grimace, Activity, and Respiration) scores. 

 

Implementing preventative and corrective measures to reduce or eliminate health risks 

has both moral and economic motivations. Poor health outcomes in early life stages have been 

well-established as strong predictors of future health consequences (27). Investments in early 

childhood development have been shown to translate into lower crime rates, higher earnings 

 
2 See Appendix A.1.2 for more detail. 
3 See Appendix A.1.3 for more detail. 
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potential, greater educational attainment, and substantial gains in adult health outcomes (28). The 

ramifications of poor infant health may be felt long-term. Low birthweight, for instance, has 

been linked to reductions in adult outcomes such as height, IQ, and labour market earnings (29).  

 

My research adds knowledge by addressing several questions. First, while previous research 

has established that people working and living near mines are faced with greater health risks (30-

32), are there also municipality-wide observable impacts of illegal mining on human health? If 

health risks are municipal-wide, the costs of mining may be greater than previously thought. 

Second, are there similar impacts observed for legal and illegal mines? A difference may imply 

that industry regulations are working, and that further regulation of the illegal mining sector 

could be warranted to foster health improvements throughout the region(s). And third, are there 

apparent differences in impacts by not only race, but also by demographic4 characteristics? My 

results could provide direction for the allocation of limited municipal and federal government 

resources to target segments of the population that suffer the most from health impacts. 

 

To investigate these questions, I estimate impacts of the number of mines in a region on 

infant health outcomes (i.e., birth weight, premature birth incidence, and low Apgar score 

incidence). The breadth of my dataset allows me to not only examine impacts by regulation level 

(i.e., illegal versus legal mining activity), but also to explore heterogeneity (i.e., health gaps) in a 

multitude of ways; by racial group (i.e., indigenous/non-indigenous), demographic 

characteristics (i.e., marital status, delivery age, education level), and regional policy 

characteristics (i.e., living in a municipality with indigenous reserves).  

 

This is among the first empirical studies in the field of resource economics to make use of a 

large and contemporary Amazonian mining dataset that illuminates the extent of illegal mining 

activity in Brazil, over time. 5 I combine new information on mining with a detailed health 

 
4 See Appendix A.1.4 for more detail. 
5 I also acknowledge the larger body of related previous studies in the science literature. Mining-related pollution and its 

subsequent impacts on human health are typically measured by mercury exposure. Methods of evaluating human health risk of 

mercury exposure have included analyzing environmental samples of air, soil, plants, and fish (33-34), human samples of hair, 

blood, urine (35-36), or neurological assessments (37). Child and infant-centric studies have also typically relied on analyzing 

mercury levels in human hair, blood, and urine (38-40). However, these science papers are usually constrained to the same 

limitations as the previous economic analyses, in both size (a study population below one thousand persons), and scope (a 

singular gold mining area, community, or village) (41-42)). 
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dataset, containing hundreds of thousands of birth observations across Brazilian municipalities 

overlapping the Amazon rainforest and spanning over a decade in time. The systematic approach 

to collecting this data eliminates, or at least greatly reduces, concerns of biases typical of studies 

utilizing self-reported or small-scale survey data.  

 

As data on illegal mining has been notoriously difficult to acquire, previous economic studies 

in the same vein as ours are few and far between, typically restricted to either a legal mining 

dataset or confined to a local study area concerning one or two illegal mines and the small 

population living nearby. For instance, one study considered legal gold mining effects on low 

Apgar score incidence in the neighbouring country of Colombia (43). Comparing births 

outcomes in communities either situated upstream from a mine, situated downstream, or with no 

nearby mine, they find a positive (economic) impact living upstream from a mine, reducing the 

probability of a low Apgar score by 0.51 percentage points, while downstream births had a 0.45 

percentage point increase in probability. In another study, researchers analyzed mining activity 

effects on adult and child health (and wealth) outcomes across 44 countries by making use of 

demographic and health surveys spatially overlayed with coordinate data for mines. They find 

evidence of a health-wealth trade-off, with asset gains offset by increased incidence of health 

conditions linked to heavy metal toxicity, such as anemia in women and stunting in children 

(44). There are also several studies which have considered proximity to mining and associated 

health impacts among a limited sample of mining town residents, as measured by blood lead 

levels, urinalyses, and survey data of chronic conditions (45-47). To my knowledge, empirical 

estimation of (gold) mining impacts on human health outcomes via proximity and/or density of 

mines to general populations (as opposed to a cohort of miners or mining village(s)) is a 

relatively unexplored space, making my work vital in expanding the knowledge base. 

 

2.2) Methods  

2.2.1) Data and Variables 

I employ a health dataset of live births present in each municipality covering the entirety of the 

Amazon basin within Brazil. The dataset, found within the Brazil Live Birth Information System 
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(48)6, contains live birth records for Amazonian municipalities between 2008-2017. Besides 

race7, the dataset includes various other characteristics of infants (e.g., birthweight, Apgar score, 

congenital conditions) and of mothers (e.g., age, education, weeks pregnant, and marital status at 

birth). Data on illegal and legal mines were obtained from the Amazonian Network of 

Georeferenced Socio-Environmental Information, also known as RAISG (49). The dataset 

contains coordinates, mineral type(s) mined, and the most recent year in which a mine was 

observed (range of 2001-2020, mode of 2017).  

 

My focus is on operating gold mines (where gold is the primary or secondary resource),8 

and my models measure the potential for mining pollution with a count variable of mines 

appearing in each municipality for a given observation year. I include legal mines listed as both 

operating and actively extracting; and exclude mines in pre-exploitative stages such as licensing 

and early exploration. The geographic data available from the Amazonian Network of 

Georeferenced Socio-Environmental Information, a consortium of eight civil society 

organizations from six Amazonian countries (Bolivia, Brazil, Colombia, Ecuador, Peru, and 

Venezuela), is compiled from various sources, including governments, RAISG member 

organizations, and other civil society organizations (50).  

 

Inherently, there is less available information about illegal mines than legal mines. 

Ideally, I would also have data that would allow me to estimate the effect of the duration and 

intensity, or dosage, of illegal mining activity on infant health outcomes. It is unknown how long 

the mine existed before the observation date, or whether the mine is ongoing. Similarly, yearly 

mine-level production data is unavailable for illegal mines. However, in order to test my 

suspicion that illegal mines are more likely to impose health externalities, I need a shared 

observable characteristic to compare illegal mines to legal mines. As a result, I opt to use the 

count of mining sites, rather than the production level of said mines, as the measure of 

municipality-level exposure. 

 

 
6 For more information about the Brazilian health care systems, please refer to Appendix A.2. 
7 I note the distinction between race, defined as physical differences, and ethnicity, defined as shared cultural characteristics. The 

source of my health data, The Brazil Live Birth Information System (SINASC), categorizes births by five races or colours: white 

(branca), black (preta), yellow (amarela), mixed (parda), and indigenous (indígena). 
8 For more information, please refer to Appendix A.3. 
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To investigate my research questions, it would be ideal to have cross-sectional data over 

time. Unfortunately, I only have one observation year per illegal mine. In the absence of 

continuous mining data over time, I carry out a cross-sectional analysis that is based on selecting, 

for each municipality, one observation year of data for both mining and health variables. For 

municipalities with illegal mining, I select the most recent year between 2008-2017 for which 

mining activity is reported. For municipalities with no recorded illegal mining, the observation 

year corresponds to the most recent year of legal mining activity. For municipalities with neither 

legal nor illegal mining, the observation year is set to a base year of 2017 (i.e., the mode of 

illegal mine observation years).9 

 

The uncertainty of operating timeframes for illegal mines presents an issue for my 

research. For each illegal mine, I know of their activity status at a single point in time (i.e., the 

last year observed). A municipality may have more than one illegal mine, each with differing 

last-observed years. As I am primarily concerned with short-term observable effects on infants, I 

elect to only include illegal mines from the most recent observation year, under the assumption 

that the effect of mines from past years (which may or may not be operating in the current year) 

are less important than contemporaneous effects. While this decision means my model does not 

account for accumulations of pollutants over time, it also removes potential guesswork. 

Therefore, I interpret my estimates as lower bound effects of mines on infant health outcomes. 

 

My analysis uses health and mining data at the municipality level within the nine states of 

Brazil situated in the Amazon basin (Figure 2.110). These states comprise the Legal Amazon (or 

Amazônia Legal), a political region established in 1953 for economic purposes (51). 11 This area 

incorporates about 60% (or 5.1 million sq. km) of Brazil’s geographic territory, but less than 

13% of its total population and below 8% of Brazil’s GDP activity (52). Of the 5,570 

municipalities of Brazil, the Amazon covers, at least partially, 755 municipalities. Within the 

Legal Amazon are regions designated as Indigenous Lands for protection of both peoples and 

ecosystems, requiring congressional authorization for mining – significantly deterring legal 

 
9 The mode of legal mine observation years is 2016. 
10 Appendix A.4 contains additional information about the data sources and frequency charts of mines, by type, per municipality. 
11 The Brazilian Legal Amazon, or Amazônia Legal in Portuguese, is a political and geographical region encompassing the nine 

states of Brazil which fall within the Amazon basin. The naming convention of Legal Amazon is unrelated to the designations of 

legal and illegal mining. 
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mining but largely failing to prevent illegal mining (53). As of the 2010 Brazilian Census, these 

755 municipalities had an average of 31,374 residents (range 1,037 to 1,802,014 residents). I 

concentrate on rural areas by limiting my sample to municipalities that have under 200,000 

residents (i.e., 742 municipalities). 

 

 

 

Figure 2.1 Distribution of illegal and legal gold mines in the Brazilian Legal Amazon. 

(A) States of Brazil within the Brazilian Amazon boundaries. (B-D) States within the Amazon are further divided into 

municipalities. (B) Indigenous Lands may partially or fully cover one or more municipalities. Mining activity is prohibited in 

areas designated as Indigenous Lands but occurs illegally. Note that Indigenous Lands are not the source of my variation, as 

Indigenous births are defined by race and not by location of birth. The system of Federal Highways provides an observable 

measure of remoteness. (C-D) Heat map of illegal and legal mining counts per municipality. Note that this map does not reflect 

specific areas of mining (i.e., legal mining almost never overlaps with Indigenous lands). Density of mines are indicated on a 

scale of White (no mines) to Dark Orange (many mines). Counts of mines are based on the total number of mines observed in the 

most recent year of available data between 2008-2017. Legal gold mines are only counted if listed as actively extracting (versus 

exploring). Figure created using ArcMap (54). 
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2.2.2) Model 

I estimate effects of gold mining, both legal and illegal, within a given municipality on health 

outcomes using the following fixed effects model: 

𝐻𝑖𝑗 = 𝛼𝑅𝑖 + 𝛽𝐼𝑗 + 𝜈𝐿𝑗 + 𝛿(𝑅𝑖  × 𝐼𝑗) + 𝜌(𝑅𝑖  × 𝐿𝑗) + 𝜎𝑚𝑀𝑖 + 𝜎𝑑𝐷𝑖 + 𝜎𝐽𝐽𝑗 + 𝜆𝑠 +  𝜖𝑖𝑗  (1) 

where H denotes one of three health outcomes measures (i.e., birthweights, premature births, and 

low Apgar scores) for infant i living in municipality j, in state s. The variable R is an indigenous 

race indicator; 1 for indigenous, 0 otherwise. I is a count of illegal gold mines in a municipality’s 

observation year (as defined earlier), the majority of which occur in 2017. For municipalities 

with no illegal mines, I = 0. Similarly, 𝐿 is a count of legal gold mines in a municipality’s 

observation year, where 𝐿=0 for municipalities with no legal mines. The interaction between R 

and I captures the effect of illegal gold mining on indigenous infants. Similarly, the interaction 

between 𝑅 and 𝐿 captures the effect of legal gold mining on indigenous infants. These 

interactions allow me to compare birth outcomes between treated (i.e., illegal and/or legal mines 

present) and control (i.e., no mines) groups, and obtain the differential effects. The value 𝛿 (𝜌) 

represents the magnitude of the mean effect, on a selected health outcome H, of being an 

indigenous infant i in municipality j, which has I (L) illegal (legal) mines. The sum of 𝛿 (𝜌) and 

𝛼, coefficient on race, is the total health effect incurred by indigenous infants due to illegal 

(legal) mines. [M] is a vector of mother-level control variables, including marital status, delivery 

age, and level of education. [J] is a vector of municipality-level control variables, including (all 

per one thousand people) GDP, health spending, education spending, Bolsa amount (a 

government cash transfer program to support low-income families), and number of ICU-

equipped hospitals, and population density per square kilometre. [D] is a vector of year of birth 

dummy variables to control for year-specific shocks. 𝜆 is a state-level fixed effect, while ϵ is a 

random error representing idiosyncratic aspects of health. 
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2.2.3) Summary Statistics 

Table 2.1 contains summary statistics for my sample. Approximately 5.2% of infants are 

identified as indigenous. Mean birthweight among non-indigenous infants is 3,231 g, consistent 

with other Brazilian birthweight data (55). Indigenous births are 69 g lighter on average. 

Approximately 12.6% of non-indigenous and 17.6% of indigenous births are categorized as 

premature, occurring before the 37th week of pregnancy. The mean 1-minute Apgar score is 8.22 

out of 10 for non-indigenous and 8.13 for indigenous. Low Apgar score, defined as equaling 7 or 

below, is observed for 13.5% of non-indigenous and 14.5% of indigenous births. Regarding 

characteristics of mothers, there is little difference between indigenous and non-indigenous 

mothers with respect to delivery age and pregnancy duration. But about 59% of non-indigenous 

mothers are married, compared to 51% of indigenous. Non-indigenous mothers have higher 

mean education attainment, with 70.5% completing 8+ years of schooling versus 36.5% for 

indigenous mothers. 

Table 2.1 Summary statistics of infant, mother, and municipality of the Brazilian Legal Amazon 
         
  

Indigenous    Non-

indigenous 

  

          
N Mean St. 

Dev. 

 N Mean St. 

Dev. 

 

Infants         

 Birthweight (g) 15,476 3161.51 526.15  283,301 3230.72 546.03  

 Premature (< 37 weeks, %) 10,637 17.63 38.11  196,090 12.63 33.22  

 Low Apgar1 score (< 8, %) 10,291 14.52 35.23  270,789 13.53 34.20  

 Apgar1 score (1-10) 10,291 8.13 1.30  270,789 8.22 1.13  

 Indigenous (%) 15,865 1 0  283,606 0 0  

Mothers         

 Weeks pregnant 10,637 38.75 2.58  196,090 38.99 2.30  

 Delivery age  15,839 24.31 7.18  283,606 24.42 6.33  

 Married (%) 15,654 50.95 49.99  282,376 59.15 49.15  

 Education 1 (%) 14,888 16.58 37.19  277,870 0.98 9.87  

 Education 2 (%) 14,888 13.39 34.05  277,870 4.30 20.29  

 Education 3 (%) 14,888 32.07 46.68  277,870 24.22 42.84  

 Education 4 (%) 14,888 36.32 48.10  277,870 60.00 48.99  

 Education 5 (%) 14,888 0.16 12.70  277,870 10.48 30.64  

Municipality         

 GDP (R$/thousand people) 15,865 13.98 12.06  283,606 17.85 15.3  

 Health spending (R$/thousand people) 15,607 0.48 0.23  274,898 0.51 0.23  

 Education spending (R$/thousand people) 15,607 1.03 0.38  275,050 0.94 0.31  

 Bolsa spending (R$/thousand people) 15,865 0.44 0.19  283,606 0.32 0.19  

 ICU-equipped hospitals (#/thousand 

people) 

15,865 0.004 0.018  283,606 0.04 0.11  

 Population density (thousand people/km2) 15,865 0.039 0.03  283,606 0.03 0.03  

         

         
Notes: Summary statistics are based on a total sample of 304,691 observations across 742 municipalities for their respective 

observation years. Education attainment of the mother is categorized into 5 groups: 1 for 0 years, 2 for 1-3 years, 3 for 4-7 years, 

4 for 8-11 years, and 5 for 12+ years. 
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2.3) Results 

Table 2.2 presents my main findings from three models, one for each health measure (i.e., 

birthweight, premature birth, low Apgar score). For birthweight, I find evidence of an indigenous 

health gap, irrespective of the impact of mines, as the indigenous coefficient is negative and 

significant (1% level). All else being constant, indigenous infants are 39.2 g lighter. The 

interaction between illegal mine and indigenous is similarly significant, indicating that each 

illegal mine causes a reduction of 22.6 g of birthweight in indigenous infants. All told, 

indigenous infants born in municipalities with one illegal mine are 61.8 g lighter than non-

indigenous counterparts, 12 equivalent to a 1.91% reduction in weight.13 Notably, the estimate for 

impacts of illegal mine by itself is insignificant, suggesting that illegal mines on their own do not 

impact birthweight; rather they interact with indigenous to have an effect on birthweight. For 

legal mine and birthweight, the coefficient estimate is positive, though small (0.05 g), and 

significant (1%), suggesting that every additional legal gold mine, relative to no legal gold mine 

present, causes a minor increase in birthweights. This result may be due to a small wealth effect 

from additional job opportunities, or better access to health care services as part of a 

modernization process in remote areas that are associated with legal mining companies. The 

interaction between indigenous and legal mine is insignificant suggesting that indigenous births 

are only negatively impacted by illegal mining. 

 

 

 

 

 

 

 

 

 

 

 

 
12 From the coefficients in Table 2.2, Indigenous birthweights are less than weights of non-indigenous by 39.2 + 22.6 (I) - 0.03 

(L), where I and L are the counts of illegal and legal mines in a municipality, respectively. 
13 Compared to the mean non-indigenous birthweight from Table 2.1. 
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Table 2.2 Regressions Results: Effect of Mines on Infant Health Outcomes 
      
      

Dep. Var. Birthweight  Premature Birth  Low Apgar Score 

      

      

Indigenous -39.24***  0.036**  -0.000013 

 (13.20)  (0.015)  (0.0098) 

      

Illegal mine 1.91  0.0028  -0.0009 

 (1.84)  (0.003)  (0.0029) 

Legal mine 0.05***  -0.000001  0.00015*** 

 
 

    

 (0.02)  (0.00002)  (0.000024) 

Indigenous*Illegal mine -22.64***  -0.0018  0.0035 

 (4.14)  (0.0031)  (0.0071) 

Indigenous*Legal mine 0.03  0.00009  -0.00006 

 (0.13)  (0.00009)  (0.00008) 

      

Observations 270,534  189,909  254,132 

R-squared 0.013  0.006  0.013 

      Notes: Birthweight is measured in grams. Premature birth is defined as occurring before 37 

weeks. Low Apgar score indicates a value between 0-7 on a discrete scale between 0-10. All 

models include State-level fixed effects and employ Municipality-clustered standard errors. 

Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Estimates of 

control variables are not presented here and are available in Appendix Section A.5: Table A.1. 

 

 

For incidence of premature birth, I find that indigenous births are approximately 3.6% 

more likely to be premature, significant at the 5% level. Coefficient estimates for all mine 

variables, including interactions between indigenous are insignificant. As for low Apgar score 

incidence, indigenous and interactions with both types of mining are insignificant. The count of 

legal mines exhibits a significant (1% level) but minor positive effect (0.02% increase). Overall, 

mines, whether illegal or legal, appear to have negligible impacts on the incidence of either 

premature birth or low Apgar score, regardless of race. 

 

Beyond the differences between indigenous and non-indigenous infant health outcomes, I 

explore heterogeneity of mining effects among subgroups of my sample. For instance, while my 

initial regressions may show that indigenous birthweights are, overall, lower than non-

indigenous birthweights, mothers may belong to discernible subgroups (e.g., mother’s level of 

education) that disproportionately bring down the indigenous birthweight average. Identifying 

such subgroups could inform intervention strategies, government or otherwise, to improve 

resource allocations. As such, I consider heterogenous effects of mining within subgroup 

categories by splitting my sample. 
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I define four subgroup categories by characteristics of the birth mother and the 

municipality. First, adverse infant health outcomes may be associated with mothers at both ends 

of the delivery age spectrum (56). My age subgroups consist of those either 19 and younger or 35 

and older. Second, infant health may be related to economic standing (57). I use educational 

attainment as a proxy for earnings potential, comparing births from mothers with 7 or less years 

of schooling against mothers with 8 or more years. Third, marital status of mothers may be 

related to infant health (58). Un-married mothers, with sole responsibilities for households, may 

be associated with decreased infant health. And finally, I investigate potential differences in 

impacts across municipalities with and without indigenous reserves. Municipalities with some 

percentage of their total area designated as indigenous reserves may be more remote, less 

industrialized, and/or have greater barriers to proper health care access. I divide the sample into 

births from municipalities with no indigenous reserves (i.e., 446 municipalities) versus those 

with some proportion of land designated as indigenous reserves (i.e., 272 municipalities).  

 

Results from the subgroup models are illustrated in the coefficient plots of Figures 2.2-

2.4. For each health outcome (i.e., birthweight, premature birth, low Apgar score), I present 

coefficient estimates of my five primary regression variables14 (i.e., indigenous, illegal mine, 

legal mine, interaction between indigenous and illegal mine, and interaction between indigenous 

and legal mine) across four categories of sub-groups (i.e., marital status, delivery age, education 

level, and presence of indigenous reserves in a municipality). For each pair of subgroups within 

each category, the estimated coefficient markers (i.e., the dots in the figures) for the subgroups 

with hypothesized worse health outcomes (i.e., single, young, low educated, municipalities with 

reserves) are depicted in dark blue and appear above their counterpart’s (i.e., married, old, higher 

educated, municipalities with no reserves), whose coefficient markers are depicted in light blue. 

 

 
14 Estimates from the full model (i.e., with control variable coefficients and constants) are provided in the Appendix (Section A.5: 

Tables A.2-A.4). 
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Figure 2.2 Heterogeneity among factors affecting impacts of illegal mining effects on 

birthweight. 
Notes: Birthweight is measured in grams. Estimates of control variables are available in Appendix Section A.5: Table A.2. All 

models include State-level fixed effects and employ Municipality-clustered standard errors. Cluster-robust standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
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Figure 2.3 Heterogeneity among factors affecting impacts of illegal mining effects on 

premature birth incidence. 
Notes: Premature birth is defined as occurring before 37 weeks. Estimates of control are available in Appendix Section A.5: 

Table A.3. All models include State-level fixed effects and employ Municipality-clustered standard errors. Cluster-robust 

standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
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Figure 2.4 Heterogeneity among factors affecting impacts of illegal mining effects on low 

apgar score incidence. 
Notes: Low Apgar score indicates a value between 0-7 on a discrete scale between 0-10. Estimates of control variables are 

available in Appendix Section A.5: Table A.4. All models include State-level fixed effects and employ Municipality-clustered 

standard errors. Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
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Within the marital status subgroup category, I observe that indigenous births to single or 

married mothers (significant at the 1% and 5% levels, respectively) are approximately 36-43 g 

lighter than non-indigenous births. However, there is an additional impact (-27.1 g) of illegal 

mines on indigenous birthweights observed in the interaction, which only affects single 

indigenous mothers. Legal mines do not significantly impact birthweights, regardless of race or 

marital status. 

 

As for premature incidence, indigenous births to single or married mothers (both 

significant at the 5% level) are 3.4-3.8% more likely than non-indigenous births to be premature. 

Unlike the birthweight models, illegal mines do not exhibit a significant effect on either 

indigenous or non-indigenous premature incidence. However, there is a small but varying impact 

of legal mines on premature incidence. Births to single indigenous mothers are 0.03% less likely 

to be premature, while births to married indigenous mothers are 0.02% more likely to be 

premature. A plausible explanation is a local wealth effect of mining disproportionately 

benefitting single indigenous mothers.  

 

In contrast to the previous two models, the coefficient estimates for indigenous are 

insignificant for both single and married mothers, but there are several significant mining effects 

within the subgroup category. First, legal mines (significant at the 1% level for both) increases 

low Apgar score incidence among single or married births by 0.01-0.02% per legal mine. 

Moreover, births to single indigenous mothers are impacted by both legal and illegal mining. 

Low Apgar score incidence among single indigenous births increases by 0.98% per illegal mine 

and decreases by 0.03% per legal mine. Children of single indigenous mothers would receive 

health benefits from more stringent regulation, either by converting illegal mines to legal or 

preventing illegal mines. Overall, my hypothesis of single mother indigenous birth outcomes 

being more sensitive to mining impacts is supported by my findings. 

 

When comparing birthweights within the delivery age subgroup category, I observe a 

stark contrast in outcomes. Indigenous births among young mothers are approximately 57 g 

lighter than non-indigenous births, significant at the 1% level. The effect of indigenous on 

birthweight is not significant in the old mother subgroup. Interestingly, illegal mine increases 
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birthweight among young mothers, indigenous or not, by 8.8 g per mine (significant at the 1% 

level). This observation likely arises from the same wealth effect enjoyed by single mothers 

discussed earlier. Lastly, the interaction between illegal mines and indigenous is significant at 

the 1% level for both young and old mother births, at 21-30 g lighter per illegal mine. Legal 

mining does not significantly affect young mother births but does exhibit a small and positive 

effect on old mother births, with these births being 2.8 g heavier per legal mine (significant at the 

5% level). All told, indigenous births among young mothers are negatively impacted by illegal 

mining more so than their older counterparts, who also benefit from legal mining. 

 

There are few differences within the delivery age subgroup category with respect to 

premature incidence. Young or old, births among indigenous mothers are 4.1-5.0% more likely 

to be premature, significant at the 1% and 5% levels, respectively. Indigenous births to old 

mothers are 0.28% more likely per legal mine to be premature (significant at the 10% level). 

There are no significant impacts of illegal mining on premature incidence within the delivery age 

subgroup. 

 

As was the case with the marital status subgroup category, indigenous is not significant 

within the delivery age subgroup category for the low Apgar score incidence models. Legal 

mines increase low Apgar score incidence for young and old births by 0.02% per legal mine, 

significant at the 1% level for both. Exclusive to the old mother subgroup, indigenous births are 

2.54% more likely to be premature per illegal mine, significant at the 1% level. While I 

hypothesized that young indigenous mothers would be more harmed by illegal mining due to 

fewer economic opportunities, health complications among older mother births may be relatively 

more compounded by illegal mining pollution. 

 

 In the third subgroup category, education level, indigenous births are 72 g lighter for 

lower educated mothers and 34.5 g lighter for highly educated mothers (significant at the 1% and 

5% levels, respectively). Compared to the marital status and delivery age subgroup categories, 

the difference in effect of indigenous on birthweight in the education level subgroups is much 

more pronounced, with the magnitude of the estimate in the low educated model being more than 

twice as large as that of the higher educated estimate. Illegal mines have a significant and 
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positive effect on births from lower educated mothers, regardless of race, with births being 8.1 g 

heavier per illegal mine. Conversely, legal mines have a significant and positive effect on births 

from highly educated mothers, regardless of race, increasing birthweights by 0.07 g per legal 

mine. Illegal mines decrease indigenous birthweights, among lower and highly educated 

mothers, by 28.5-33.7 g, both significant at the 1% level. There is a small positive effect of legal 

mining on indigenous births to highly educated mothers increasing birthweight by 0.23 g per 

legal mine. Together, these results suggest that lower educated indigenous mothers are relatively 

more harmed by illegal mining than their higher educated counterparts, while the highly 

educated indigenous mothers also enjoy small benefits from legal mining. 

 

 With respect to premature birth incidence models, indigenous births are 4.2-4.3% more 

likely to be premature among either lower or highly educated mothers, both significant at the 1% 

level. Illegal and legal mining effects are insignificant in the lower educated subgroup. As for 

highly educated mothers, illegal mines increase premature birth incidence by 0.42% per illegal 

mine (significant at the 10% level), regardless of race. For indigenous mothers, illegal mines 

increase premature birth incidence by 1.03% per illegal mine (significant at the 10% level). 

While children of lower-educated mothers do not appear to particularly gain or lose from any 

type of mining activity in the premature incidence models, children of highly educated mothers 

are only made worse off by illegal mining activity. The health benefits typically associated with 

higher education appear to be mitigated by unregulated mining pollution. 

 

 There are no large and significant differences within the education level subgroups with 

respect to low Apgar score incidence models. Legal mines increase low Apgar score incidence 

among all-race births by 0.01-0.02% per legal mine among lower and highly educated mothers, 

both significant at the 1% level. Indigenous and other mining effect variables are insignificant 

across both models. My hypothesis of birth outcomes to lower educated indigenous mothers 

being disproportionately affected by mining is supported for birthweight, with weaker evidence 

of the opposite for premature birth incidence.  

 

In the final subgroup category, I consider whether living in a municipality with some 

percentage of land designated as indigenous reserve(s) has significant impacts on birth outcomes. 
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In the birthweight models, indigenous births in municipalities with reserves are 50.2 g lighter 

than non-indigenous births, significant at the 1% level. Indigenous is not significant in 

municipalities with no reserves. Legal mining does not exhibit significant impacts within this 

subgroup category. Illegal mines reduce indigenous birthweights by -19.7 g per illegal mine in 

the reserves model (significant at the 1% level) and increases indigenous birthweights by 39.7 g 

per illegal mine in the no-reserves model (significant at the 5% level). All told, indigenous 

birthweights are -50.2 -19.7(I) g lighter than non-indigenous birthweights in municipalities with 

reserves. Indigenous births in municipalities with reserves are evidently at a much higher risk of 

low birthweight and, by extension, experiencing low birthweight-related health complications.  

 

Indigenous births in municipalities with reserves are 3.9% more likely to be premature, 

significant at the 1% level. Mining effects on premature birth incidence are insignificant in 

municipalities with reserves. As for no-reserve municipalities, all-race births are 0.66% less 

likely to be premature per illegal mine and 0.05% more likely per legal mine, both significant at 

the 5% level. Indigenous births are 4.67% less likely per illegal mine to be premature than non-

indigenous births in the no-reserve municipalities. Indigenous births are overall less likely to be 

premature in municipalities with no reserves, whether or not there is illegal mining activity. 

 

 In the low Apgar score incidence models, Indigenous is insigificant across the reserves 

subgroups. All-race births are 0.01% more likely per legal mine to have low Apgar score in 

municipalites with reserves, significant at the 1% level. Indigenous births are 7.1% less likely per 

illegal mine (significant at the 5% level), and -0.6% per legal mine (significant at the 1% level), 

to be have low Apgar score in the no-reserves subgroup. Indigenous births are overall less likely 

to have low Apgar score in the no-reserves municipalities. The results for each birth outcome 

measure suppport my hypothesis of indigenous births in municipalities with reserves being more 

adversely affected by illegal mining. 

 

 In addition to the subsamples above, I explore two other model specifications (refer to 

Appendix A.6 for further details). In the first specification, I consider the explicit effect of illegal 

and legal mines by using mine type-specific subsamples of the municipalities (i.e., including 

municipalities with only illegal mines or only legal mines, but not both). I also include a second 
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specification to address possible concerns of endogeneity between illegal mines and 

unobservable determinants of health. In this specification, I employ several distance-based 

instramental variables to capture the “remoteness” of an illegal mine. In both cases, findings 

support the main results discussed above. 

 

2.4) Conclusions 

There are significant consequences of illegal mining activity for infant health outcomes in the 

Brazilian Amazon. With respect to three different infant health outcomes, I find negative effects 

of illegal mining on birthweights, specifically for indigenous infants. Moreover, the impacts of 

illegal mining are not uniform across indigenous infant subgroups. There is significant variation 

among indigenous health outcomes between subgroup categories divided by mother 

characteristics such as marital status, delivery age, and educational attainment, as well as by 

municipalities with and without indigenous reserves. In particular, illegal mining 

disproportionately impacts births to single (versus married) indigenous mothers, lowering 

birthweight and increasing both premature and low Apgar score incidence within the subgroup. 

Births to young or lower educated indigenous mothers, or those living in municipalities with 

reserves, are also more likely to be underweight due to illegal mining. Indigenous births in 

municipalities with no reserves are less likely to be premature or exhibit low Apgar score. I do 

not find similar effects with respect to legal gold mining, suggesting that regulating the mining 

industry seems to work in terms of reducing health risks. 

 

Given these findings, investments in dismantling illegal mines may yield the highest 

infant health returns in birthweight outcomes. Societal efforts to protect human health can be 

framed positively (e.g., as lives saved) or negatively (e.g., as monetary costs). For instance, 

pollution abatement measures were estimated to save approximately 1,000 infant lives in 

California (59). Conversely, the cost of low birth weight has been estimated to be as much as 

$114,437 (2016 USD) for low-birthweight status (<2500 g) infants born across the United States 

(60), or, in another study of U.S. births, as high as $550,000 (2006 USD) for very low 

birthweights near 1500 g (61). Using these estimates, it would only take 10 more otherwise-low 

birthweight births instead being above 2,500 g to justify $1 million USD in spending toward 
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taking down an illegal mine. And since the interaction between illegal mine and indigenous is 

similar in magnitude to the standard deviation of birthweight (see Table 2.4), it does not seem 

improbable to achieve this outcome given the hundreds, or sometimes thousands, of births in 

each municipality’s observation year. However, the delay in observing health returns (i.e., births 

occurring a year later) as well as the challenge15 of directly attributing health improvements to 

the previous efforts taken and money spent may not readily motivate government intervention. 

 

By examining the effects of mining pollution on infant health outcomes in the Brazilian 

Amazon, I have identified the presence of a minority health gap. Illegal gold mining is a growing 

problem in the Brazilian Amazon, as evident from recent satellite imagery, with 

disproportionately negative health effects on indigenous populations. Increasing efforts to curtail 

these illegal mines or, at minimum, forcing them to comply with legislation, would likely yield 

disproportionately larger benefits to vulnerable minority populations. Note that these results are 

based on data from hundreds of jurisdictions (i.e., municipalities) and multiple racial minority 

groups (i.e., numerous indigenous tribes defined as one race or colour) using unbiased (i.e., 

public health care system and satellite mapping) data sources. 

 

Unfortunately, these results are almost certainly not unique to the study region, as 

concerns about illegal and small-scale mining stretch far beyond Brazil and South America. But 

fortunately, with increasing global efforts to mitigate future environmental impacts of non-

renewable resource extraction, the potential benefits of these efforts will be to disproportionately 

help vulnerable indigenous populations. 

 

 

 

 

 

 
15 Moreover, cross-sectional estimates on returns to low birth weight-prevention may also be biased by omitted variables, such as 

genetics (62), and any proposed value should be scrutinized accordingly. 
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Chapter 3 Oil Well Pollution and Student Performance: Evidence 

from Alberta, Canada 
 

3.1) Introduction 

Non-renewable resource extraction is a significant contributor to global air pollution, which can 

have substantial ramifications for health outputs such as mortality rates (63). Governments have 

a number of regulatory tools (e.g., regulations and pollution taxes) that they can use to attempt to 

reduce emission levels. There is substantial evidence, particularly out of China (64-66), 

suggesting that such measures are effective at mitigating haze and CO2 pollution. The human 

health benefits of reducing air pollution, a potent policy motivator, can also be estimated. For 

instance, one health benefit analysis found that stringent carbon and air pollution policies in 

China could reduce mortalities related to PM2.5 and ozone (O3) exposure by up to 23% in 2030 

(67). Another study of air pollution in Sydney, Australia found that a 10% reduction in 2007 

levels of PM2.5 exposure over a 10-year period may have resulted in approximately 650 fewer 

premature deaths and 700 fewer respiratory and cardiovascular hospital visits (68). Even a 1% 

increase in yearly exposure to fine particulate matter (PM2.5) can increase household healthcare 

expenditure by almost 3% (69).  

 

The effects of air pollution on human health and productivity are not homogeneous, 

however, with some groups more vulnerable than others (e.g., youth) (70). Past research has 

established links between ambient or source-specific air pollution and reduced health (71) as 

well as poorer academic performance in school-aged children (72). However, evidence regarding 

the relationship between pollution originating from oil and gas wells and student performance is 

scarce. This absence is surprising given that, historically, there have been over 400,000 wells 

drilled in the province of Alberta, Canada alone (73) and another 2 million wells throughout the 

United States (74-75). 

 

As resource extraction activities continue to expand, there are growing concerns about 

the number of people living near oil and gas wells, even in dense urban areas (76). In Los 

Angeles, about 75% of active oil and gas wells are within half of a kilometre of a home, school, 
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childcare facility, park, or senior residential facility (77). Residents may be unaware of the 

locations of oil wells, as some have been hidden inside decorative buildings by the operator (78). 

At least five states (Texas, Ohio, California, Oklahoma, and Pennsylvania) have at least one 

million people living within 1.6 kilometres (1 mile) of a well (79), and nationwide, over 18 

million Americans live within this same distance of a well (80). 

 

Despite legislation, the potential impacts of oil and gas pollution can be exacerbated 

when well operators go bankrupt before permanently sealing their wells and/or restoring the 

surrounding area to its original state (reclamation), leaving the responsibility, and financial 

burden, to the public sector (81). In the case of Alberta, the Orphan Well Association (OWA) 

was established in the 1990s, and acts as an industry-funded agency (funded through a levy on 

energy companies) under the Alberta Energy Regulator’s (AER) authority to close and reclaim 

orphan wells (82). While the OWA spends a considerable amount each year on abandonment and 

reclamation efforts, estimated to be $200 million in 2016, it would take approximately 177 years 

($36 billion) to finish clean-up at the current pace (83). There are also concerns that costs are 

being underestimated, with the Alberta Liabilities Disclosure Project (ALDP) reporting that costs 

as of 2018 could be as high as $70 billion, while the AER had calculated the liability estimate at 

$58.7 billion (84). These large clean-up costs are not unique to Alberta, however. In 2022, the 

Department of the Interior stated that there are over 130,000 wells with no identifiable owner 

across the U.S., whose clean-up could cost up to $19 billion (85). 

 

While reclamation costs can readily be estimated, there may be additional and hidden 

social costs, such as academic performance impacts, related to decades of potential pollution 

from oil wells in surrounding communities. Local industrial pollution has been shown to have 

adverse outcomes on measures of academic success. For instance, schools in areas of Michigan 

with the highest levels of air pollution were observed to have the lowest attendance rates as well 

as the highest proportion of students failing to meet local testing standards (86). In Florida, 

schools within 1-2 miles of a Toxic Release Inventory site were associated with a 0.024 standard 

deviation decrease in test scores and increased likelihood of school suspensions (87). Air 

pollution in rural India was also found to decrease reading and math outcomes (by 1.11-2.39 and 

0.53-1.90 percentage points, respectively) for children aged 5-16, with greater impacts on girls 
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and older children (88). The potential impacts of pollution on educational outcomes are not all 

necessarily contemporaneous. In Texas, a decrease of one standard deviation in prenatal 

exposure to total suspended particulate (TSP) during a student’s birth year was associated with 

an increase in high school test scores from 2% - 6% (89). 

 

Though studies have established that, in general, environmental pollution is detrimental 

to educational attainment, in this paper, I investigate more specifically associations between oil 

production and adolescent academic outcomes. These associations are important for several 

reasons. First, academic performance can be interpreted as a productivity measure, which has 

also been negatively linked to pollution (90). Second, educational attainment is closely related to 

human capital attainment, where poor academic performance can translate into potential losses in 

future earnings (91). Third, academic performance levels can act as a proxy for short-term health 

and well-being, as pollution has been linked to increased incidence of illness and school 

absences, which in turn can reduce educational attainment (92). And fourth, evidence suggests 

children may be especially vulnerable to pollution impacts as they, on average, have higher 

minute ventilation (i.e., volume of gas inhaled/exhaled per minute), higher levels of physical 

activity, an immature immune system, and spend more time outdoors (93). 

 

Student performance may be impacted by methane, which comprises 95-99% of 

emissions emitted from wells (94). Methane emissions are of global concern as, after carbon 

dioxide (CO2), methane is the most prolific anthropogenic greenhouse gas (20% of global 

greenhouse gas emissions) and is at least 25 times more effective at trapping atmospheric heat 

than CO2 (95). A high atmospheric concentration of methane can influence humans, as it 

displaces oxygen and can influence inhalation, with symptoms including mood changes, slurred 

speech, vision problems, memory loss, nausea, vomiting, facial flushing, and headaches (96). 

Methane emissions also contribute to ground-level ozone formation, which has been linked to 

reduced human productivity (97). Moreover, methane emissions are often co-emitted with 

particulate matter and other hazardous air pollutants (98-99). Such pollutants have also been 

shown to impact various measures of human productivity (100-101) and performance (102). It is 

therefore possible that schools with more nearby oil wells will exhibit lower student 
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performance, measured via standardized test scores, with further variation arising from well 

activity status (e.g., active or abandoned). 

 

The potential for wells to impact performance can be substantial, given prior research 

showing that emissions from both active and inactive wells are often underestimated (103), and 

even low-level production wells can emit significant amounts of methane (104). Direct methane 

emission measurements of a sample of inactive wells in the United States found that 6.5% 

exhibited measurable methane emissions, with higher emissions observed from wells that had 

not yet been plugged (105). Further geophysical research suggests methane emissions from oil 

and gas wells are underestimated by 20% in the U.S., and as much as 150% in Canada (i.e., in 

British Columbia and New Brunswick) (106). 

 

I contribute to this literature by investigating associations between oil well-borne 

pollution and adolescent academic outcomes. I compare standardized provincial achievement test 

scores in math and science from up to 543 junior high schools across Alberta, during a 5-year 

period, 2015-2019, related to the number of oil wells located close to each school. Geocoded 

data allow me to measure the distance between wells and schools and, for each school year, 

compute the number of wells within a threshold radius of the school. In addition to time-varying 

school-level characteristics, I use school fixed effects to control for persistent local determinants 

of school-level academic performance, therefore reducing the potential for a number of possible 

confounding effects. I also use year fixed effects to control for common shocks across all 

schools, e.g., province educational policies such as variations of overall funding or variations in 

standardized tests.  

 

The results show that nearby oil wells are negatively associated with grade 9 test scores. 

For each oil well within 4 km, mean math and science test scores decrease by 0.64 and 0.26 

percentage points, respectively. When considering the stock of wells by life cycle stage, each 

active, suspended, and abandoned oil well is associated with a decrease of mean math test scores 

of 0.69, 0.64, and 0.76 percentage points, respectively. I observe a similar, albeit weaker, pattern 

when examining science scores. In both cases, I do not observe a significant effect of reclaimed 



28 

 

wells on test scores, suggesting that the reclamation process of old and/or inactive wells is 

beneficial to student outcomes. 

 

The remainder of the paper is organized as follows. Section 3.2 discusses the empirical 

strategy and models used in my investigation. Section 3.3 describes the datasets and discusses 

summary statistics of key variables. Main results are presented in Section 3.4, followed by a 

summary of robustness checks (found in the Appendix) in Section 3.5. Finally, Section 3.6 offers 

concluding remarks. 

 

3.2) Models 

I develop two empirical models that differ in how the stock of oil wells in proximity of a school 

is measured. The first model uses a cumulative count of existing oil wells as the principal 

variable of interest. The model hypothesis is that, since the number of wells is correlated with the 

emissions of pollutants (107), students attending schools in areas with a larger number of wells 

may be exposed to lower air quality. In turn these schools may, on average, produce lower 

academic performance. However, wells can be heterogeneous, and their impacts may depend on 

their activity status. I subsequently test for this heterogeneity by considering life cycle stages of 

wells. The second model splits the stock of oil wells W into subgroups based on activity status as 

they progress through their life cycle. 

 

My analysis requires a rationale for defining which oil wells are sufficiently “nearby” a 

school (i.e., close enough to potentially cause harm). This threshold distance has important 

implications. Choosing too small a radius will reduce the sample size of wells and may 

underestimate the total impacts, while too large a radius may cause diluted levels of pollution, 

thereby increasing the likelihood of not finding significant associations, when, indeed, 

associations may exist. Previous literature provides some guidance with respect to the choice of a 

threshold distance. One study investigated distances within 10 km of communities downwind 

from oil and gas wells in preproduction and production stages (107). Results indicated 

significantly higher concentrations of ambient air pollutants up to 4 km downwind of such wells, 

with adjustments made for geographic, meteorological, seasonal, and time-trending factors. 
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Following these results, I estimate empirical models for radiuses between 1-5 km16, and 

ultimately define “nearby” as wells within a 4 km radius of schools.  

 

Note that I am unable to distinguish pollution effects by type (i.e., air or water) given the 

constraints of my dataset. If wells are indeed polluting, a student’s cumulative exposure to 

pollution is a function of their time spent at school and at home, but I do not have information on 

student household locations. Without these coordinates, I cannot compare students living 

downwind17 (air) or downstream (water) to their counterfactuals.  

 

3.2.1) Model 1 

Employing a fixed effects approach, the first empirical model is: 

𝑇𝑖𝑗𝑡 = 𝜃𝑊𝑖𝑡 + 𝛽𝑋𝑋𝑖𝑗𝑡 + 𝛽𝑍𝑍𝑗𝑡 +  𝜇𝑖 + 𝜆𝑡 + 𝜖𝑖𝑗𝑡  (1) 

where T denotes one of two test outcomes measures (i.e., math or science) for school i located in 

Forward Sortation Area (FSA)18 j in year t. The variable W is the cumulative count of existing oil 

wells within 4 km from the school in each year. For schools with no nearby wells, W = 0. I elect 

to use a count over other options, such as a binary indicator for having a nearby well or not, to 

capture the large spatial and time variation in well counts. 𝑋 is a vector of school-level control 

variables, including school population, average class size, and school authority funding per 

student. 𝑍 is a vector of FSA-level control variables. The term 𝜆𝑡 is a time fixed effect that 

captures unobservable common shocks across schools, while 𝜇𝑖 captures unobservable, school-

specific determinants of test scores. ϵ is a random error representing idiosyncratic aspects of test 

scores. 

 

 
16 I observe increases in both significance and magnitude of coefficient estimates when moving from 5 km to 4 km. Results 

become progressively less consistent at radiuses below 4 km, with some subgroup variables having to be omitted due to lack of 

observations. 
17 I note the omission of wind direction from my models for two reasons. First, student exposure to well-borne pollution is not 

only a factor of time at school, but also time at home. While I could assign schools as upwind or downwind from wells, I would 

still not know what proportion of students, per school, lived upwind or downwind from the same wells. Second, my dependent 

variable, mean test scores, is a function of the students’ accumulated educational attainment over a whole school year, while wind 

direction can vary substantially within the same year. This variation (e.g., monthly) would be lost if included in the model, as all 

other model variables are only available on a yearly basis. For these reasons, I rely on the variation between schools with few 

nearby wells and schools with many nearby wells to identify impacts of well pollution on mean test scores and allow wind 

direction to be captured by the school-level fixed effects. 
18 An FSA, represented by the first three characters of a six-digit postal code, designates a postal delivery area within Canada. 
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3.2.2) Model 2 

Oil wells are expected to gradually reduce their greenhouse gas emissions, particularly methane, 

as they advance through the stages of their life cycle (108). The average life span of production 

for Alberta oil wells is 20-30 years, otherwise known as the active phase of a well’s life cycle 

(109). If, for any reason, a well does not produce19 for up to 12 months, it becomes known as 

inactive.20 An inactive well can either resume production within the next 12 months or else must 

be suspended, which involves securing the well to prevent leaks. A suspended well can be 

reactivated later at the discretion of the owner. Following suspension is abandonment, also 

known as decommissioning, which permanently seals the well. The final step is reclamation, i.e., 

returning the land to the way it was before the well appeared (or sufficiently close, as deemed by 

the regulator). Unlike the 12-month period between active and inactive or between inactive and 

suspended, there are no set timelines in Alberta between suspension and abandonment or 

between abandonment and reclamation (111). These non-urgent requirements toward moving a 

well through its life cycle opens the door to potentially years, or even decades, of leaks, detected 

or not. After a well undergoes the reclamation process, the operator can apply for a certificate 

that deems it reclaimed (or reclamation certified). Some well sites can be granted a reclamation 

exempt status if the site overlaps with another activity, such as when sites share an access road, 

when a pit or mine goes through the site, or when site leases overlap (112). Finally, many wells 

are known as orphan, an umbrella term for inactive, suspended, or abandoned wells with no 

identifiable owner, often due to the operator going bankrupt before reclaiming the site. 

 

Among the complexity of these stages, my data allows me to delineate 4 categories of 

wells: active, suspended, abandoned, and reclaimed. Due to dataset limitations, inactive wells are 

included in the total of suspended wells, and orphan wells are recorded as either suspended, 

abandoned, or reclaimed, depending on the stage they were left at by the previous owner, or the 

stage they reached under the control of the Orphan Well Association (OWA)21. I also include the 

small number of reclamation exempt wells in the total of abandoned wells. 

 

 
19 I only know the location of wells; I do not have production-level data. 
20 In some cases, only 6 months need to pass to deem a well inactive, depending on well type and public and/or environmental 

risk potential (110). 
21 As of October 2022, 710 of the 6,115 wells in my dataset were classified as orphan wells (113). However, as I do not know 

which wells were orphans during 2015-2019, I cannot use orphan wells as a category.  
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To account for life-cycle stages of wells, I estimate the following equation: 

𝑇𝑖𝑗𝑡 = 𝛼𝐴𝑖𝑡 + 𝛽𝑆𝑖𝑡 + 𝛾𝐵𝑖𝑡 + 𝛿𝑅𝑖𝑡 + 𝛽𝑋𝑋𝑖𝑗𝑡 + 𝛽𝑧𝑍𝑗𝑡 +  𝜇𝑖 + 𝜆𝑡 + 𝜖𝑖𝑗𝑡  (2) 

where 𝐴, 𝑆, 𝐵, and 𝑅 are the counts of active, suspended, abandoned, and reclaimed wells, 

respectively. Unlike W in model 1, 𝐴 may increase or decrease between years depending on the 

number of new wells added and the number of previously active wells turning inactive. While it 

is also possible for some suspended wells to resume production and become active again, almost 

all remain inactive due to unprofitability22 or no longer having an owner.  

 

3.3) Data 

My dataset has four components: test scores, school controls, well data, and demographic 

controls. Summary statistics for each variable in these components are contained in Table 3.1. 

The Ministry of Education in Alberta administers annual, standardized tests to all grade 9 

students known as the Provincial Achievement Tests, which cover several disciplines including 

math and science (115). Results were traditionally made available in 5-year reports and exams 

were consistently administered up until the Covid-19 pandemic, which led to Provincial 

Achievement Tests being cancelled in 2020 and 2021 (116). My models use the most recent five 

years of results (2015-2019) available before testing conditions were significantly altered (117). 

 

As of 2019, there were 605 schools with grade 9 classes in Alberta, which fall under 

various school authorities, including public, separate (i.e., Catholic), charter, and private. As 

school funding information is not publicly available for private schools, they are excluded from 

my models. In total, my analysis covers 541 schools for math test scores and 543 for science.23 

 

Table 3.1 shows that the mean Provincial Achievement Test score over 5 years across the 

sample of Alberta schools is 57.0% for grade 9 math and 66.2% for grade 9 science. Figure 3.1 

displays the 541 schools with available grade 9 math test scores, along with the set of nearby 

wells in 2019. With respect to math, there are 247 (45.7%) schools within 4 kilometres of one or 

 
22 One model showed that even if oil prices drastically rose 200%, only 12% of inactive Alberta oil wells would reactivate (114).  
23 The number of schools, and subsequently the mean number of nearby oil wells, differs slightly by subject due to i) test results 

not being publicly released for classes of fewer than six students (118) and ii) a few cases of missing class size data. 
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more oil wells, which comprise the treatment group; the remaining 294 (54.3%) schools 

comprise the control group.  

 

Table 3.1 Summary statistics of Alberta schools administering Provincial 

Achievement Tests in Math and Science, 2015-2019, surrounding 

demographics, and wells. N=2,418* (2,423) for math (science) 
    

Mean St. Dev. 

Dependent Variable   

 Mean test score – math (%) 56.99 10.04 

 Mean test score – science (%) 66.15 8.74 

Independent Variables – math (science)   

Well categories (# of wells within 4 km)   

 All 14.11 (13.59) 45.50 (44.76) 

 Active 5.57 (5.27) 20.60 (20.04) 

 Suspended 3.73 (3.64) 15.05 (14.96) 

 Abandoned 2.59 (2.53) 9.58 (9.46) 

 Reclaimed 2.21 (2.15) 8.70 (8.55) 

School controls   

 School population (#/100) 4.54 2.54 

 Average class size 23.19 6.05 

 Authority funding ($100 per student) 60.20 15.77 

FSA controls   

 Senior share of population 13.59 3.70 

 Population (#/1,000) 42.48 21.69 

 Household income, avg. after-tax ($/1,000) 96.32 24.23 

   
*N=2,418 (2,423) comprises 5 years of observations across 541 (543) schools 

with available test scores for grade 9 math (science). 

 

I control for attributes of schools with information on class and overall school population 

size (119), as well as annual levels of funding at the school authority level (120). School 

authorities, also referred to as school boards, districts or divisions, may include one or more 

schools. The average school in my sample has 454 students, with an average class size of 23.2, 

and funding at the school authority-level is approximately $6,020 per student per year. 
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Figure 3.1 Oil wells within 4 kilometres of schools with grade 9 classes in Alberta, 2019. 

 

For each year of test scores, I obtained annual well reports from the Alberta Energy 

Regulator (AER), which include information such as the well name and licence number, licence 

status and issue date, and date of drilling (121). In 2015, there were a total of 5,957 oil wells 

within 4 km of a school. By 2019 (Figure 3.1), the total increased by 2.7% to 6,115. Of the 5,957 

oil wells present in 2015, 2,732 were active, 1,458 were suspended, 964 were abandoned, and 

803 were reclaimed. By 2019, there were 2,227 active, 1,726 suspended, 1,235 abandoned, and 

927 reclaimed. The stock of active oil wells decreased by 18.4% between 2015-2019, while the 

stock of suspended, abandoned, and reclaimed oil wells increased over the same period by 

18.4%, 28.1%, and 15.4%, respectively. Schools in the sample have an average of 14.1 oil wells 

within 4 km (Table 2.1). By well life cycle stage, schools are, on average, within 4 km of 5.6 

active wells, 3.7 suspended wells, 2.6 abandoned wells, and 2.2 reclaimed wells.  
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I also control for differences in demographic characteristics of schools at the FSA level 

using data found in the 2016 Canadian census (122-123). I control for variable-specific linear 

trends for the following demographic characteristics: the FSA population, the share of the FSA 

population made up of seniors (65 years or older), and the average, after-tax household income 

of the FSA. These metrics, often associated with economic growth (124), are included as various 

measures of a school area’s prosperity. Referring to Table 2.1, the average proportion, or share, 

of seniors by FSA population is 13.6%, while the average FSA population is 42,480. The 

average after-tax income per household is $96,320. 

 

3.4) Results & Discussion  

Table 3.2 presents my main findings from two models, each estimated with two dependent 

variables (i.e., math and science mean test scores). Starting with model (1), I find evidence that 

all oil wells within 4 kms, without considering life cycle stage, are negatively associated with 

math score outcomes (column M1) at the 0.01 significance level. Each oil well is associated with 

a decrease of math test scores of 0.64 percentage points. With a mean value of 14.1 oil wells 

within 4 km of schools, this coefficient implies an average decrease of 9.0 percentage points in 

math test scores. With respect to science, I find a similar relationship between the presence of 

nearby oil wells and lower test scores, albeit smaller in magnitude and lower significance overall. 

Column S1 shows that an additional oil well within 4 km of a school is associated with a 

decrease of science test scores of 0.26 percentage points (significant at the 0.1 level). Together 

with the mean value of 13.6 wells, this suggests an average decrease of 3.5 percentage points in 

science test scores per school.  

 

Separating the stock of wells by life cycle stages in model (2), I find Abandoned wells to 

be the most detrimental to math test scores outcomes (column M2), followed by Active and then 

Suspended (all significant at the 1% level). Each Abandoned well is associated with a decrease of 

math test scores of 0.76 percentage points, while Active and Suspended wells are associated with 

decreases of 0.69 and 0.64 points, respectively. Reclaimed wells do not exhibit a statistically 

significant correlation with math test scores. Considering the mean values of Active (5.6), 

Suspended (3.7), and Abandoned (2.6) wells, the total effect is an average decrease of 8.2 
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percentage points per school. For science, results in column S2 indicate that average test score 

decreases by 0.32 percentage points per Abandoned well (0.05 significance level) and 0.26 per 

Active well (0.1 significance level). The coefficients of both Suspended and Reclaimed wells are 

insignificant. Altogether, this imputes an average decrease of 2.2 percentage points per school. 

Table 3.2 Regressions Results 
      
      

Model (1) (2)  (1) (2) 

Subject Math  Science 

Column (M1) (M2)  (S1) (S2) 

Wells (counts)      

All -0.64***   -0.26*  

 (0.17)   (0.15)  

Active  -0.69***   -0.26* 

  (0.15)   (0.15) 

Suspended  -0.64***   -0.19 

  (0.16)   (0.16) 

Abandoned  -0.76***   -0.32** 

  (0.15)   (0.15) 

Reclaimed  -0.40   -0.17 

  (0.30)   (0.29) 

School      

School population 0.62** 0.62**  0.29 0.29 

 (0.24) (0.24)  (0.21) (0.21) 

Average class size -0.01 -0.01  0.01 0.01 

 (0.03) (0.03)  (0.03) (0.03) 

Authority funding -0.05* -0.05*  -0.05** -0.05** 

 (0.03) (0.03)  (0.02) (0.02) 

      

Constant 68.49*** 68.42***  72.69*** 72.29*** 

 (3.71) (3.48)  (3.10) (3.09) 

      

Observations 2,418 2,418  2,423 2,423 

R-squared 0.82 0.82  0.80 0.81 

      Notes: Models include school year-level fixed effects and employ school-

clustered standard errors. ‘All’ wells equal the sum of Active, Suspended, 

Abandoned, and Reclaimed wells. Cluster-robust standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 

As for the school controls, I find several significant variables, though none have large 

effects on performance. School population size has a positive and significant coefficient in the 

math model, but it is statistically insignificant in the science model. For every 100-student 

increase in school population size, math test scores increase by 0.62 percentage points. The 

coefficient of average class size is insignificant in both math and science models. Lastly, school 

authority funding per student appears to have a small but negative correlation with test scores, 

decreasing both math (at the 0.1 level) and science test scores (at the 0.05 level) by 0.05 

percentage points per one hundred dollars per student spent. This somewhat unintuitive 
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relationship between increased school spending and decreasing test scores has also been reported 

elsewhere (125-126) and, moreover, studies (127-129) have shown that school funding has 

limited correlation to student outcomes. My data on school funding is also restricted to the 

school authority level, which can cover one or more schools, making it an imprecise measure of 

true spending per school. 

 

Next, I consider how the relationship between wells and test scores may vary between 

urban and rural schools. Prior research has shown that, on average, rural residents spend more 

time outdoors (for leisure or work) and have a higher proportion working in industrial sectors, 

which both may contribute to increased ambient air pollution exposure, and they often utilize 

private wells for drinking water over more-regulated public water systems (130). Specific to 

wells, one study found increased incidence of adverse birth outcomes to Californian mothers 

living near oil and gas development in rural areas relative to urban counterparts (131). For these 

reasons, I hypothesize that rural students may be more vulnerable to potential well pollution. 

 

To investigate this hypothesis, I gradually remove municipalities from my original 

sample, based on i) urban classification from the 2016 Canadian Census (132) and ii) natural 

break points in population size. Starting with the full sample, I first remove the two largest urban 

cities (Calgary and Edmonton) which have populations over 900,000. Second, I remove the 

largest five cities, with populations over 90,000. Third, I remove the largest 10 cities, with 

populations over 60,000. Finally, I remove all 14 cities classified by Statistics Canada as urban in 

2016, which coincide with all Albertan cities with populations over 25,000. 

 

When comparing results between rural and urban areas, it is important to consider 

changes in the spatial distribution of wells. For instance, the mean number of nearby oil wells to 

schools significantly increases as the sample becomes progressively more rural. Table 3.3 

provides the respective number of observations for each of these samples, as well as the mean 

number of wells. For math (science)24, the mean number of wells rises from 14.1 (13.6) in the 

full sample to 25.4 (24.7) wells in the rural-only sample. 

 
24 Note again that the number of schools, and subsequently the mean number of nearby oil wells, differs slightly by subject due to 

i) test results not being publicly released for classes of fewer than six students (118) and ii) a few cases of missing class size data. 
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Table 3.3 Mean wells and total observations from a progressively 

rural sample of Alberta schools administering Provincial 

Achievement Tests in Math and Science, 2015-2019 
        
 Math  Science 
 

N Mean St. Dev.  N Mean St. Dev. 

All Wells (# of wells within 4 km)        

 Full sample 2,418 14.11 45.50  2,423 13.59 44.76 

 Exclude 2 cities with largest pop. 1,481 20.27 53.73  1,481 19.47 52.87 

 Exclude 5 cities with largest pop. 1,258 22.25 56.65  1,251 21.42 55.87 

 Exclude 10 cities with largest pop. 1,110 24.64 59.85  1,104 23.68 59.04 

 Rural only 1,044 25.44 61.20  1,048 24.74 60.39 

        
 

Figure 3.2 presents the total effect of All wells, i.e., estimates of 𝜃 in equation (1), on 

math and science test scores given a progressively rural sample.25 Figure 3.2 is constructed by 

considering the marginal effects (indicated by the coefficients in the Appendix) combined with 

the mean values of nearby wells. With respect to math, the effect of All wells is significant at the 

1% level across all samples, with the marginal effect falling from -0.64 percentage points per 

well with the original full sample to -0.56 per well with the rural-only sample. When I factor in 

the respective means of 14.1 and 25.4 nearby wells, however, I observe the total effect 

significantly increases from -9.0 mean percentage points across the full sample to -14.2 mean 

percentage points for the rural-only sample. As for science, I find a similar pattern of effects, 

albeit weaker. The coefficient for All wells is only significant (and only at the 10% level) when 

using either the full sample, the largest two cities excluded sample, or the largest 10 cities 

excluded sample. When comparing the two extremes with significant impacts, the marginal 

effect of All wells decreases from -0.26 with the full sample to -0.25 with the largest 10 cities 

excluded sample, while the total effect on test scores increases from -3.5 mean percentage points 

to -6.2 percentage points, respectively. Altogether, while the marginal effect of each oil well is 

higher in more-urban samples (i.e., as indicated by the coefficients in the Appendix), the sheer 

number of oil wells in more-rural areas equates to relatively greater harm to both math and 

science test scores at these schools.  

 
25 The full regression results from models (1) and (2) can be viewed in the Appendix (Section B.1: Tables B.1-B.5).  
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Figure 3.2 Coefficient on wells with a progressively more rural sample.26

 
26 Naturally, the width of the confidence intervals increase as the sample size decreases. However, for both subjects, as the sample becomes progressively more rural, the lefthand 

endpoint (toward a smaller negative effect) remains relatively constant (within 1 percentage point) while the righthand endpoint (toward a larger negative effect) continuously 

extends outward by multiple percentage points. These trends in the confidence intervals support my conclusions. 
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3.5) Robustness Checks 

In addition to the prior results, I perform several robustness checks.27 First, my analysis has so 

far assumed that the relationship between oil wells and test scores is not endogenous. If one 

suspects the number of oil wells near a school is correlated with unobservable determinants of 

test scores, then estimates from ordinary least squares (OLS) may be biased and inconsistent. 

However, consistent estimates can still be obtained via instrumental variable (IV) estimation. To 

do so, I need to carefully select an instrument that only affects the dependent variable (i.e., test 

scores) indirectly through its effect on the potentially endogenous explanatory variable (i.e., the 

stock of oil wells). A potential IV may be found in the tenure system in Alberta that allocates 

rights to oil exploration and extraction. There are two types of agreements: Petroleum and 

Natural Gas (PNG) and Oil Sands (OS). These Agreements, or leases, typically last for 5-year 

terms and vary in parcel size, from a minimum of a quarter-section of land (160 acres), the 

minimum amount of land that must be associated with each well, to as large as 36 sections 

(23,040 acres) (133). Agreements can continue indefinitely beyond the end of the initial 5-year 

term (134). Since Agreements are required for drilling but do not, on their own, influence test 

scores, I use a characteristic of these Agreements as an instrument. My instrumental variable is 

the mean age of contemporary Agreements within 4 km of schools (see Appendix Section B.2 

for further description). I still find a negative and significant (5% level) effect of nearby oil wells 

on math test scores using the IV estimator (see Appendix Section B.2: Table B.6). However, test 

score predictions using my IV coefficient have significantly higher variance than that of my 

original OLS coefficient, which leads me to believe my OLS coefficient to be closer to the true 

effect. This inference is corroborated by a prior study that found IV estimation to only 

outperform OLS with a sufficiently large sample size (135).  

 

Second, one could also reasonably expect the age of wells to be a significant factor in 

evaluating the relationship between well pollution on test score outcomes, or perhaps even more 

relevant to test score outcomes than the sheer number of wells. I test for the potential of well age 

effects with two control variables: mean age of wells and oldest well age. Since schools in the 

control group have no nearby wells, and therefore no well ages, I assign them age values of 0 

 
27 Refer to Appendices 3.A-3.F for further details. 
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years. In both cases, I once again find no significant coefficient of the control variable nor 

significant changes to coefficients present in my original results (see Appendix Section B.3: 

Tables B.7 & B.8). 

 

Third, I consider that the percentage of students writing may be influenced by well 

pollution and, in turn, influence test scores. My hypothesis is that students feeling unwell, 

perhaps due to well pollution, may be absent during the day of the provincial achievement test. 

Whether or not these students also felt unwell on other days leading up to the test, I can 

reasonably suspect that sick students are more likely to do poorly than healthy students. 

Moreover, mean test scores only include scores from students who wrote the test. Therefore, by 

staying home, these students may artificially increase the mean test score. If that is the case, my 

main models may be plagued by selectivity and estimates would capture confounding impacts. 

To account for this possibility, I add a variable controlling for the percent of students writing the 

tests out of those enrolled in the subject. Once again, I find no significant changes when adding 

this control variable (see Appendix Section B.4: Table B.9).  

 

Fourth, it could be argued that the set of schools with one or more nearby wells is 

inherently different than the set of schools with no nearby wells. This theoretical divide may 

have multiple explanations. For example, schools with more nearby wells may be in more 

industrial or rural areas, with inherently different socioeconomic characteristics, which I may 

have failed to include in my other controls. The timing of new school and well openings may 

also be relevant. If wells are considered an indicator of area development and subsequent 

prosperity, then school construction may follow wells. In contrast, a school being built first 

might deter future well construction due to environmental concerns or zoning regulations. 

Therefore, I consider a truncated model which excludes the set of schools with zero nearby 

wells. As this approach decreases the sample size by over 50%, I would expect some changes in 

the coefficients. However, the negative and significant relationship between oil wells and test 

scores, particularly math, is still maintained in the case of zero truncation (see Appendix Section 

B.5: Table B.10). 
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Lastly, I consider whether the average distance of nearby wells has an impact on test 

scores. I may expect test scores from schools with an average well distance closer to 0 km to be 

more strongly (negatively) associated with well pollution than those with average distances 

closer to the 4 km maximum distance, ceteris paribus. Naturally, only schools in the treatment 

group (i.e., with at least 1 nearby well) can have an average well distance, so I continue to use 

the sample truncated at zero from the previous robustness check. I once again find no significant 

coefficient for the control variable nor significant changes to the previously obtained coefficients 

from zero truncation (see Appendix Section B.6: Table B.11).  

 

3.6) Conclusions 

A long history of oil well drilling in Alberta has had significant consequences on recent student 

test score outcomes. With respect to provincial achievement exam results from 2015-2019 across 

hundreds of schools, I find evidence of a significant relationship between the presence of nearby 

(i.e., within 4 km) oil wells and lower test scores. With a mean of approximately 14 wells per 

school, I found that the stock of nearby wells (i.e., All wells) is associated with a decrease of 

mean math and science test scores of 9 and 3.5 percentage points, respectively. 

 

Moreover, I find significant variation in coefficients by well life cycle stage. Abandoned 

wells are, on average, the most harmful individually, followed by Active and Suspended. 

However, when considering the mean number of each type of nearby well, Active wells overall 

have the greatest associations with mean test scores. Active wells are associated with a decrease 

of mean math and science test scores of 3.84 and 1.37 percentage points, respectively, compared 

to 1.97 and 0.81 percentage points for Abandoned. Suspended wells also have a negative and 

significant coefficient in the math model, associated with a decrease of mean test scores of 2.39 

percentage points. Reclaimed wells, however, do not have a significant coefficient on either 

subject outcome. Additionally, when I alter the sample size by excluding schools in cities with 

larger populations, I find that while the marginal association per well (i.e., the coefficient) 

decreases in more-rural samples, the corresponding total association increases, given a relatively 

higher mean number of nearby wells in more-rural samples. 
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The economic significance of these results can be approximated using estimates from 

related research. For example, one study associated a gain of one standard deviation in math 

scores among 16-year-olds in the United Kingdom with up to 14% more earnings by age 33 and 

18% by age 50, albeit with greater benefits accrued by men than women (136). Looking at the 

results from model (2) for math, reclaiming 5 abandoned wells is required to increase the 

average math test score (68.4) by one standard deviation (3.48). At an estimated cost of roughly 

$78,000 to plug and reclaim an Alberta well (137), it would only take a combined increase in 

future earnings of $390,000 among affected students to break-even against the clean-up cost. 

 

In summation, this study, rooted in spatial analysis, establishes a causal link between 

nearby oil wells (and their associated emissions) and reductions in human capital attainment, as 

measured in student test score outcomes. While my sample is limited to Alberta, it is hard to 

imagine these findings are exclusive to the province. Active wells has the potential to have the 

largest detrimental effect on student test outcomes. Along these lines, the AER was directed by 

the Government of Alberta in 2015 to develop requirements to reduce upstream oil and gas 

operation-borne methane emissions, which accounted for 70% of Alberta’s methane emissions in 

2014, by 45% of 2014 emission levels by 2025 (138). My findings also suggest that further 

benefits to future student test score outcomes may be accrued by introducing legislation that 

accelerates the reclamation process of Abandoned and Suspended wells. I have also identified a 

disparity in the negative associations between oil well pollution and education outcomes, with 

students in more rural areas disproportionately affected. Prioritizing reclamation of these rural oil 

wells may be warranted. More stringent regulations on how close a new oil well can be drilled to 

existing communities and their schools, or vice versa, can also help mitigate future harm to 

student outcomes.   
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Chapter 4 Legacy Effect of Rural Coal Mining on Youth Population 

Health 

 

4.1) Introduction 

Choices related to energy development strategies are arguably among the most important 

decisions modern societies face. While hydrocarbons have been the main source of worldwide 

energy production for over a century, there have been increasing concerns in modern times 

regarding the emissions of pollutants associated with the consumption of fossil fuels. Coal-

generated pollution has been well-researched as a major contributor to climate change (139-142), 

and ongoing conversations of phasing out coal are taking place globally (143-147). However, 

there are additional reasons to expedite the reduction in coal reliance, including known negative 

impacts on human health (148-149). Residential proximity to coal mining has been associated 

with higher rates of chronic ailments including hypertension, lung disease, and kidney disease 

(150), as well as various forms of cancer (151). In an investigation of effects of air pollution, 

researchers found that a 10% increase in coal stockpiles held by U.S. power plants results in a 

0.09% increase in average PM2.5 concentration levels within a 25-mile radius of power plants 

(152). Moreover, a 10% increase in PM2.5 causes a 1.1% increase in average adult mortality rates 

and a 3.2% increase in infant mortality rates. Another study found that county exposure to West 

Virginia surface coal mining-borne air pollution caused 9.85 more asthma hospitalizations per 

100,000 residents per standard deviation increase in exposure, with associated health care costs 

of over $11 million across a 6-year period (153). In a more global analysis, ambient air pollution 

was estimated to be responsible for around 3.2 million deaths across 41 OECD countries in 2015, 

with the economic cost of these mortalities calculated at around $5.1 trillion USD (154). Other 

methods of estimating the hidden costs of air pollution include hedonic analyses (155) and 

productivity measures (156). Beyond air, there is also significant concern about soil (157) and 

water (158) contamination in the surrounding areas of coal mines, both active and abandoned. 

 

Despite knowledge of the potential for negative environmental and human health 

impacts, energy from fossil fuels continues to be developed due to its relatively low cost 

compared to cleaner, renewable alternatives. As recent as 2017, coal supplied as much as 27% of 
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the world’s energy supply, and global coal production reached 7.9 billion tonnes in 2019 (159). 

While the Covid-19 pandemic led to a temporary decrease in global production levels, they have 

since recovered and even surpassed pre-pandemic output at over 8 billion tonnes (160). 

 

Canada was the world’s fourth largest coal exporter in 2019, producing 57 million tonnes 

and exporting 37 million tonnes, with 83% of the coal produced in just two of its provinces: 

Alberta and British Columbia (159). Of these 57 million tonnes, about 53% was less polluting 

metallurgical coal, used for steel manufacturing, and the remaining 47% was more polluting 

thermal coal, used to generate electricity. In 2018, Canada introduced legislation to phase out the 

domestic use of thermal coal by 2030, but might continue exporting it elsewhere, thereby 

contributing to global pollution problems (161-162). While the future of coal exploration is 

uncertain, the history of coal production is known, which allows investigations into the potential 

legacy effects of coal mining on human health. 

 

In the case of Alberta, Canada, over 2,000 commercial mines have operated since 1874, 

producing a combined total of over 1 billion tonnes of coal (163). These mines fall under the 

jurisdiction of the Alberta Energy Regulator (AER), a subsidiary of the Government of Alberta 

that imposes reclamation requirements for all end-of-life coal mines, requiring operators to 

remove infrastructure and return the land to an equivalent state pre-development (164). Despite 

these regulations, there are growing concerns about water contamination from coal mining (165). 

Moreover, a previously paused expansion of coal mining activity in the Rocky Mountains of 

Alberta (166) may be revisited under new leadership (167). By assessing potential human health 

costs of coal mine pollution, my analysis may help inform future policy decisions in the region. 

 

The local impact and extent of air pollution from coal mines can be difficult to measure, 

due to variability in wind dispersion. In contrast, coal-related water contamination from the 

mining process is confined to surrounding rivers and watersheds, allowing for a more precise 

analysis of the effect of coal mining on human health in nearby communities. For instance, 

diseases in China have been linked to drinking water pollution with associated human health 

costs of $2 billion annually (168). But such studies are rare. A review of published evidence 
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linking surface coal mining to public health effects indicates that there is an ‘urgent’ need for 

studies that directly link environmental exposure, dose, and biological impacts (in humans) 

(169).  

 

Coal mines situated near bodies of water create the potential for acid mine drainage 

(AMD); highly acidic and heavy metal-rich water formed through a chemical reaction involving 

sulphur-bearing materials exposed by mining activity (170). Entire watersheds (i.e., both surface 

and groundwater) can be impacted by AMD, which in turn can pollute riverbeds and soils (171). 

Cultivated soils around abandoned mine sites may result in elevated human ingestion of harmful 

heavy metals (172). Moreover, AMD is not a problem unique to active mines. One study 

investigated the extent of AMD around the city of Potosí, Bolivia, which has been a central 

location of various mineral mining operations since 1545 (173). Not only did they find evidence 

of AMD being produced from active and abandoned mines alike, but they also stressed the 

ongoing environmental threat of AMD if sulphur-bearing material (pyrite) is left exposed, as 

AMD can be continually released into surrounding areas for decades. The hidden costs of a large 

inventory of old mines, as is the case of Alberta, may be substantial. 

 

 The contributions of this study stem from my focus on spatially explicit water pollution 

as a mechanism of exposure from a large number of coal mines. Specifically, my study covers 

749 coal mines (the majority no longer active) within 5 km of a waterway (i.e., any perennial 

body of water, such as rivers or lakes, or likely areas of drainage, such as seasonal streams), and 

56,633 individuals living near these mines (within 10 km28). A comprehensive health dataset 

provides me with individual level information on their approximate location of residence relative 

to a mine site (exposure); how many years they lived in that location (dose); and their yearly 

level of health care demand (a proxy for human impacts). To assess whether historical coal 

mining activity has legacy health effects, I compare three measures of yearly average health care 

demand (i.e., doctor visits, emergency department visits, and inpatient days) that occur from 

2002 (the first year of digitized inpatient care records across the province) to 2014 (the last 

 
28 This 10 km distance refers to the distance between projected points of coal mines and clusters of postal codes onto waterways, 

which is explained in detail in the Data section. 
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updated year of a historical record of mines) between similar groups of individuals (i.e, Alberta-

born youths up to age 13). By design, individuals are identified as living either upstream or 

downstream from a rural coal mine. My hypothesis is that, if mining is negatively associated 

with water quality, residents living downstream from mining activity (compared to similar 

individuals located upstream) are exposed to, on average, relatively higher levels of water 

contaminants (e.g., various heavy metals) due to AMD, and, in turn, will have relatively higher 

demand for health care. 

 

 I employ mine-level fixed effects to control for persistent local determinants from 

unobserved coal mine attributes, as well as year fixed effects to control for common health care 

demand (e.g., province-wide fluctuations in the number of doctors or funding for hospitals). 

Notably, my investigation is based in Canada, a country with free public healthcare. This 

publicly funded system, known as Medicare, covers doctor visits and hospital stays for Canadian 

citizens and permanent residents (174). Access to free healthcare significantly reduces the 

potential for selection bias (e.g. based on income) of individuals seaking treatment. To limit 

other confounding effects on health care demand, I restrict my analysis to individuals born in 

Alberta that never moved out of the observable sample area (but are allowed to move between 

observabled areas). Using this approach, my sample only reflects individuals, hereafter referred 

to as youths, living near mines for continuous periods since birth, and omits youths with 

unknown periods of potential pollution exposure, i.e., those born before the observation window 

or those who moved out of the observable sample area and then moved back.29 In other words, I 

only include youths that were born in Alberta during or after 2002 (up to 201430) for whom I 

have data (e.g. place of resident ) for every year thereafter (including years of no health demand). 

My focus on youths also allows me to compare my results with several other mine pollution-

related investigations that have focused on adolescent health impacts (175-179).  

 

 
29 There are 646,603 individuals observed in my study area. Of these individuals, 87,438 (13.5%) satisfy my definition of youths 

(i.e., 13 and under). Of these youths, 56,633 (64.8%) satisfy my conditions of being born in the sample and being continuously 

observed (i.e., no missing years or years of partial/erroneous information).  
30 Or until the year of death. 
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 I find evidence of higher health care demand of youths living downstream from historical 

coal mining sites compared to their upstream counterparts. For downstream youths, the average 

number of yearly doctor visits and inpatient days were 3.75% and 18.4% higher, respectively. 

While there is no statistically significant difference observed for yearly emergency department 

visits in my main model, I do observe differences when using (exact) nearest neighbour 

matching (see Section 4.5.2: Matching Evidence) and subsets of mines based on most recent 

decade of operation (see Section 4.5.3: Health Care Demand Heterogeneity by Temporal Mine 

Characterstics). 

 

The remainder of the paper is organized as follows. Section 4.2 discusses the data sources 

and strategy for identifying relationships between coal mines and youths. Section 4.3 presents 

summary statistics. Section 4.4 describes the empirical models. Main results are presented in 

Section 4.5, including additional checks using nearest neighbour matching and coal mine 

heterogeneity. Finally, Section 4.6 offers concluding remarks. 

 

4.2) Data and Variable Construction 

I utilize four datasets in my analysis. The first dataset, constructed in ArcMap (180), contains 

geospatial information (i.e., elevation) for Alberta, which I use to delineate the drainage network 

(i.e., water flow direction) throughout the province. Elevation is a key component of my 

research, as flows of water may disperse pollutants from mines. Knowing the direction of water 

flows, and the locations of households and mines, allows me to assign residents into treatment 

and control groups, based on whether they live downstream or upstream from mines, 

respectively. Figure 4.1 shows the provincial drainage network, with water predominantly 

flowing from southwest (from the Rocky Mountains) to northeast. Thinner, lighter-coloured 

waterways, belonging to higher elevation regions (3,354 metres at the highest point), drain into 

gradually thicker, darker-coloured waterways (167 metres at the lowest point). 
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Figure 4.1 Alberta drainage network. 

 

The second dataset organizes mining data from Alberta Energy Regulator’s Coal Mine 

Atlas (162) and contains historical mine-level information, including years of operation, for all 

(n=2,439) Alberta coal mines that were established since 1874, up to 2014.31 The location of 

each mine is mapped at the centroid of the closest square mile section, as per the Alberta 

 
31 The Coal Mine Atlas was last updated May 15, 2015. 
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Township Survey System (181). In total, these mines have occupied 1,112 sections across 

Alberta, as multiple mines have coexisted, sometimes in different periods, within the same 

section. As I am concerned with potential legacy effects of coal mining given previous research 

(discussed prior in Section 4.1), I do not exclude any mines from the sample based on the age of 

the mines. I do, however, investigate how results change when considering subsets of these 

mines based on the most recent decade of operation and length of mining operations (see Section 

4.5.3: Health Care Demand Heterogeneity by Temporal Mine Characterstics).  

 

To select the subset of Alberta coal mines relevant to my study, I first use proximity 

analysis to identify mines within 5 kilometres of a waterway; mines beyond this distance were 

dropped. My choice of 5 km is informed by previous research considering the spatial extent of 

measurable human health impacts arising from mine pollution (albeit with no distinction between 

air or water), with such impacts including increases of 3-10 percentage points of anemia in adult 

women and a 5-percentage point increase of stunting among newborns exposed in utero (182). 

Additionally, as urban areas tend to have more sophisticated water treatment methods than rural 

regions, which mitigate effects of water pollution on health, I eliminate all mines within the city 

limits of metropolitan areas with population sizes greater than 40,000 in the year 2011 (i.e., the 

latest Canadian census year within my observation window).32 After accounting for the above 

exclusions, as well as excluding mines with no nearby postal codes (explained below), Figure 4.2 

depicts the location of the 749 mines included in my sample, which were established between 

1874 and 2014 across central and southern Alberta where most coal deposits are located (183). 

 

 

 

 
32 The population size of 40,000 is a natural breakpoint (circa 2011) in the size of metropolitan areas in Alberta, which I use to 

exclude the largest cities in Alberta. From largest to smallest, these are: Calgary, Edmonton, Red Deer, Lethbridge, St. Albert, 

Medicine Hat, Grande Prairie, and Airdrie. 
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Figure 4.2 Location of coal mines in the sample. 

 

The third dataset is derived using the Postal CodeOM Conversion File Plus (PCCF+), 

corresponding to the 2011 census, to find postal codes near coal mines (184). The PCCF+ is 

provided through Statistics Canada to its share partners (including The University of Alberta), 

and links six-character postal codes, used in countrywide mail sorting, to standard geographic 

areas. The PCCF+ data, layered onto my elevation map, is characterized by population centroid-
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weighted “pins” (yellow marks in Figure 4.3).33 Canadian postal codes have six characters. The 

first three characters identify the province, setting (i.e., urban or rural), and region type (i.e., city, 

town, or other geographic area), while the last three characters identify a city block, building, or 

large-volume mail receiver in urban areas, or a specific community in rural areas (185). This data 

allows me to identify locations with reasonable precision. In 2009, the average number of 

households served by a postal code in Canada was approximately 19 (186). 

 

The fourth dataset, provided by the Alberta SPOR (Strategy for Patient Oriented 

Research) Support Unit (187), organizes health information from Alberta youths. SPOR has 

maintained digital health records since 2002 up to the present, but limitations of the mining 

dataset (see above) restrict my analysis to the period of 2002-2014. There were three key 

considerations associated with receiving data from SPOR. First, to maintain patient anonymity, 

data for individual healthcare demand was aggregated from daily to yearly records by SPOR. 

Given the time scale involved in legacy mining and the infrequency of medical events among 

youth, this temporal resolution is sufficient. Second, for further privacy concerns, data could not 

be received at the postal-code level, but rather by clusters of postal codes. These clusters were 

pre-selected, based on relative positioning of postal codes to mines and waterways, and 

ultimately correspond to treatment (downstream) and control (upstream) groups (an in-depth 

explanation of cluster formation is presented below). Finally, for practical reasons, my data 

request could not contain health records associated with every postal code across Alberta. Only 

health records associated with postal codes deemed relevant by the study design were included. 

The remainder of this section describes the process of identifying relevant postal codes and 

subsequently clustering them in a way that maintains sufficient spatial resolution.  

 

To identify relevant postal codes, a cut-off distance between postal codes (i.e., the 

population-weighted centroids, or pins, described earlier) and coal mines needs to be specified. I 

compare various distances to find the minimum range that produces enough variation between 

downstream (i.e., treatment) and upstream (i.e., control) postal codes to present a reasonable 

 
33 As detailed within the Statistics Canada PCCF+ Reference Guide (2015), these pins represent the usual place of residence in 

densely populated (urban) areas, while postal codes in scarcely populated (rural) areas are assigned (via an accompanying 

weighted conversion file) geographic codes randomly in proportion to the distribution of population with that postal code. 
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counterfactual to capture potential health impacts among downstream individuals. This decision 

is guided not only by the conditions given to me by SPOR to limit the number of postal codes, 

but also prior research on the likely extent of mine pollution impacts (188). Ultimately, I find 

that a distance of 10 km between postal codes and mines satisfies the needs of my research. As 

of August 2011, there were 85,075 unique postal codes throughout Alberta. From this list, I 

identified 6,540 postal codes throughout central and southern Alberta as being sufficiently 

proximate (i.e., within 10 km) to mines to represent potential affected areas hence suitable for an 

empirical test of whether health outcomes are related to historical coal mining activity.  

 

I now need to group these postal codes such that identities are cloaked, while maintaining 

their relative positioning for upstream/downstream identification. A series of Figures presented 

throughout the remainder of this section, which all feature a zoomed-in area from Figure 4.2, 

serve to illustrate the process taken to form clusters of postal codes, and later define their spatial 

relationships with coal mines. I begin with the geographic coordinates of coal mines (Mine IDs 

#733-741) and postal codes in relation to nearby waterways (Figure 4.3). Waterways are 

depicted in line segments (blue lines in Figure 4.3).34 Starting from the first segment of a given 

waterway (i.e., the highest point of drainage), a new segment is created when the waterway 

changes direction or when it intersects with one or more other waterways. The proximities of 

coal mines to waterways are indicated by the shortest linear distance (black lines in Figure 4.3). 

Further to the discussion above, every included mine is within 5 km of a waterway. Mining sites 

with two ID numbers indicate that two coal mines occupied the same square-mile section at 

different points in time. 

 

 
34 An ArcMap stream network is comprised of raster (grid of cells) linear features, delineated from a digital elevation model 

(189). 
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Figure 4.3 Finding the shortest linear distance of coal mines to waterways. 

 

Next, Figure 4.4 shows how postal codes are located amongst mines according to 

regions. Regions are formed as being bounded by a waterway segment and the lines indicating 

distances from mines to waterways (regions #R1-R9). The extent to which these regions are 

depicted35 extending away from waterways is dictated by the need to encompass existing postal 

codes within 10 km. Postal codes within the same region are assigned a common number, and 

postal codes within the same region form a cluster.36 For each cluster, I aggregate postal codes 

into cluster centroids, which are established based on the weighted locations of postal codes. 

 
35 In Figure 4.4, these depictions of regions as polygons are for illustration purposes only and are simplified for readability. Also, 

while it does not appear in these figures, postal codes that fall on the opposite side of a waterway, but still within 10 km of a 

mine, are assigned to their own side-specific regions to increase model resolution. 
36 Note that I differentiate regions from clusters. Clusters are effectively regions with postal codes. There are many empty regions 

(e.g., #R7-9) across the map where no postal codes fall (i.e., people do not live everywhere). 
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Figure 4.4 Cluster assignment of postal codes in the regions formed by i) waterway 

segments and ii) intersections of waterway segments with mine distance segments. 

 

I now begin to define the relationship between a cluster and a mine as they appear in my 

models. While the initial criteria of up to 10 km between coal mines and postal codes was 

sufficient in identifying the study area, I employ a modified decision rule to better capture the 

role of waterways as potential conduits for pollution in my analysis. My next step is to project 

mines and cluster centroids to the closest waterway in order to establish upstream and 

downstream relationships. Figure 4.5 shows the nearest point of contact along a waterway for a 

selection of cluster centroids (IDs #75-80) and mines (IDs #733-741). 
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Figure 4.5 Finding the shortest linear distance of clusters and mines to waterways. 

 

In establishing upstream and downstream relationships, there are resolution limitations in 

the dataset. Without a precise hydrological model around each coal mine, and only knowing a 

mine’s location to the nearest square mile section, I cannot know the precise extent of water 

pollution exposure. While I do know, in a given area, the general elevation level and water flow 

direction, I do not know the exact path of water draining from a mine, as it may travel above or 

below ground based on unique watershed characterstics (190). As a result, for each mine, I 

consider a gradient of potential exposure. I provide some examples in Figure 4.6, using mines 

#733-735. The orthogonal distance between a mine and the nearest waterway provides the first 

directional vector. The second directional vector follows the direction of water flow. The linear 

combination of these directional vectors forms a mine’s expected maximum extent of water 



56 

 

 

pollution, and any downstream cluster centroid whose own orthogonal distance to the nearest 

waterway crosses such an area is considered “potentially exposed” by my model. In the case of 

Figure 4.6, clusters #76-78 are exposed to mine #733, clusters #77-78 are exposed to mine #735, 

and cluster #78 is exposed to mine #734. Of course, there will be errors (e.g., it is possible that 

some postal codes designated as downstream may not truly be exposed due to micro-

charactersitics of watersheds).37 However, given the large scale of my investigation, errors on 

either side (i.e., downstream or upstream) will potentially cancel out, and be minor compared to 

the number of postal codes correctly assigned. 

 

 

Figure 4.6 Stylized example of assumed extent of pollution impacts. 

 
37 Relationships are based off the assumed most likely points of contact, and interaction, between a mine (and its pollution) and 

youths living in the downstream clusters, and not the “closeness” to the waterway of each. For instance, youths in cluster #77 are 

classified as downstream from mine #735, even if the cluster centroid itself is “uphill” from mine #735. 
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In Figure 4.7, cluster centroids and mines are now established as projected points along 

the waterways. Given the direction of water flow, it is evident that cluster #80 is downstream 

from all mines in the area, while cluster #75 is only downstream from mines #736 & #737.  

 

 

Figure 4.7 Finding the projection-based distance from each cluster to each coal mine. 

 

The final step is to find the shortest linear distances between projected points of mines 

and cluster centroids. These distances, or mine-cluster pairings, are shown in Figure 4.7 as 

brown lines. Each of these pairings constitutes a unique observation for my modelling. Parings 

with distance greater than 10km are dropped. For example, one mine-cluster pairing is 

designated with the line from mine #736 to projected cluster centroid #75. Mine #736 is not 

paired with cluster centroids #79, for example, because the two points are farther than 10 km 
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away. The mine-cluster pairing between mine #736 and cluster #75 is easy to see, as distances 

go over land because of changes in directions of waterways that cause paring distances to go 

over land.38 However, there are also mine cluster pairings that are exclusively along waterways. 

These pairings are difficult to see because the lines overlap along waterways. I illustrate these 

relationships in Figure 4.8, using curved visual connections to avoid line overlaps. Figure 4.8 

explicitly shows cluster #78’s upstream and downstream relationships with nearby coal mines. 

Cluster #78 is downstream (i.e., treated observations, coloured red) from five mines (#733-737) 

and upstream (i.e., control group observations, coloured green) from four mines (#738-741). 

 

 

Figure 4.8 Stylized example of upstream and downstream mine-cluster pairings, using cluster #78. 

 
38 An alternative approach would be to restrict parings to be along waterways. The approach taken here avoids dropping a 

significant number of observations that would be farther away than 10 km if waterway distances were followed. 
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The approach in Figure 4.8 is the variation I use to estimate my models. For a given 

cluster entering the model, I construct i) a measure of health care demand (dependent variable), 

and ii) an indicator of being upstream or downstream from a specific coal mine (treatment 

indicator). In a given year, an observation will represent a mine-cluster pairing. Note that clusters 

and mines can and do enter the model multiple times. When a cluster has multiple nearby coal 

mines (up and/or down), then the cluster will participate in multiple observation pairings. 

Similarly, a mine may also enter the model in multiple pairings. This approach captures varying 

levels of potential exposure as clusters that are downstream from multiple mines enter the model 

through multiple observations.  

 

4.3) Summary Statistics 

Table 4.1 describes the mines in my sample. In total, I identified 749 historical sites of mining 

operations which which are sufficiently close to both waterways and residences of rural Alberta 

youth. Of these mines, the mean first year of operation is 1927.3, ranging from 1886 to 1993. 

The mean last (observed) year of operation is 1934, ranging from 1889 to 2014. The mean 

distance from a mine to a cluster, with a maximum allowed distance of 10 km, is about 4.5 km. I 

also observe that 58% of mines are upstream from clusters, placing just over half of the clusters 

in the treatment group. 

 

Table 4.1 Summary statistics of mines, historical. N=749* 
     
 

Mean St. Dev. Min Max 

Mine characteristics     

 Year the mine opened 1927.3 18.21 1886 1993 

 Year the mine operated to 1934.5 19.17 1889 2014 

Mine-cluster relationships     

 Distance* from mine to cluster (m) 4,532.2 2,881.9 0.0 9,992.4 

 Upstream from cluster (%) 0.58 0.49 0 1 

     
*There are 749 unique mines in the model, whose locations are known to a 

resolution of one square mile. Distance statistics are based off of 2,358 unique mine-

cluster relationships. A distance of 0.0 km indicates that the mine and the cluster fall 

within the same square mile. Distance is based off the relationship between 

projected points of mines and cluster centroids. 
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I measure the demand for health care as yearly averages per cluster across three separate 

indicators: 1) doctor visits39, 2) emergency department (ED) visits40, and 3) inpatient days41 

(187). After sorting youths into their respective clusters, I obtain the summary statistics found in 

Table 4.2. With 196 clusters over time, 2,368 observations result. For each cluster, mean yearly 

doctor visits, emergency department visits, and inpatient days are 2.73, 0.9, and 1.36, 

respectively. The mean age of youths is 3.6 years. 

 

Table 4.2 Summary statistics of clusters 

of youths, 2002-2014. N=2,368* 

   
 

Mean St. Dev. 

Dependent Variables   

 Doctor visits 2.73 1.52 

 ED visits 0.90 0.60 

 Inpatient days 1.36 2.03 

Youth patient controls   

 Female 0.48 0.16 

 Age 3.62 1.74 

   
*While 13 years and 196 clusters would impute a total 

of 2,548 observations, I cannot observe a cluster until 

the first year at least one youth is born. This results in 

N=2,368 observations of cluster-years.  
 

4.4) Model 

My analysis tests whether there are observable differences in healthcare demand between two 

similar cohorts, with cohorts specifically referring to downstream/upstrem portions of the rural 

Alberta youth population living near waterway-proximate mining sites. By considering a small 

radius around each mine that captures both treatment (downstream) and control (upstream) 

cohorts, I expect profiles of neighbourhoods and residents alike to, on average, be similar 

between treatment and control. Moreover, I expect the decision for residents to reside upstream 

or downstream from a historical mining site to be orthogonal to both observable and 

unobservable determinants of health care demand. Together, this research design allows for the 

 
39 Also referred to as (general) physician, (general) practitioner, or office visits across health literature (191, 192, 193). This data 

comes from SPOR’s Practitioner Claims dataset, with a new observation generated whenever a health service provider submits a 

claim for payment (after seeing a patient) under the Alberta Health Care Insurance Plan. 
40 Also referred to as emergency room, or ER, visits. This data comes from SPOR’s National Ambulatory Care Reporting System 

(NACRS) dataset, with a new observation generated whenever a patient visits an emergency department in Alberta. 
41 This data comes from SPOR’s Discharge Abstract Database (DAD), with a new observation generated whenever a patient’s 

stay is longer than a day (i.e., overnight) at any Alberta hospital.  
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comparison of cohorts with similar characteristics and an exogenous source of variation (i.e., 

water flow direction), constituting a natural experiment. If mining indeed has a negative impact, 

I should see differences in the health outcomes of upstream versus downstream cohorts. Adverse 

health impacts experienced by individuals throughout a cohort, manifested in specific conditions 

or diseases (194), can be aggregated into more general measures of healthcare demand; i.e. 

doctor visits, emergency department visits, and inpatient days. For two similar cohorts living in 

the same area (e.g. rural Alberta youth), which differ significantly only by their relative position 

along a waterway, observable differences in the aggregate level of healthcare demanded as 

measured by any or all three of these measures may imply that the downstream cohort is being 

negatively impacted by something the upstream cohort is not exposed to; in my analysis, 

polluted water from coal mining. 

 

Employing a fixed effects approach, the first empirical model is: 

𝑌𝑖𝑗𝑡 = 𝛽 + 𝛼𝑀𝑖𝑗 + λ𝑗 + 𝜇𝑡 + 𝜖𝑖𝑗𝑡     (1) 

where Y denotes one of three measures of average health care demand (i.e., doctor visits, 

emergency department visits, or inpatient days) for youths in the mine-cluster pairing ij (with i 

for cluster and j for mine) at year t. If mining pollutants are contaminating the water, I expect 

water contamination downstream to be higher than upstream, ceteris paribus. I therefore establish 

a binary indicator denoted M (i.e., a downstream exposure variable), which indicates whether the 

mine-cluster pairing ij is located upstream (=0) or downstream (=1) from a mining site. The 

value of coefficient α on M represents the association between being downstream from mining 

activity and average health care demand, i.e., while 𝛽 captures the average health outcome Y of 

the upstream cohort, 𝛽 +  𝛼 captures the average health outcome Y of the downstream cohort. 

The terms λ and μ represent fixed effects of coal mines and clusters of youths, respectively. 

Fixed mine effects λ capture the effects (on health) of time-constant characteristics of the mine; 

for instance, thickness of coal seam mined (in metres), and whether a mine is above or below 

ground. Similarly, the parameter μ captures unobservable, time-specific determinants of the 

health outcome Y. The term ϵ is a random error representing idiosyncratic aspects of health.  
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I also estimate another specification that controls for youth observables, namely sex and 

age: 

𝑌𝑖𝑗𝑡 = 𝛽 + 𝛼𝑀𝑖𝑗 + 𝐹𝑖𝑗𝑡 + 𝐴𝑖𝑗𝑡 + 𝐴𝑖𝑗𝑡
2 + 𝐴𝑖𝑗𝑡

3 + λ𝑗 + 𝜇𝑡 + 𝜖𝑖𝑗𝑡     (2) 

where F and A are the proportion of female youths and the average age of youths in cluster i, 

respectively. 

 

4.5) Results & Discussion 

4.5.1) Main findings 

Table 4.3 presents my main findings from model (1), estimated with three dependent variables 

(i.e., doctor visits, emergency department visits, and inpatient days). Overall, I find evidence of 

historical coal mining activity negatively associated with health. While youths in upstream 

clusters make an average of 2.4 doctor visits per year, downstream youths make, approximately, 

an additional 0.09 trips per year (p<0.01), or a 3.75% increase.42 I also find statistically 

significant results for inpatient days. While upstream youths spent an average of 1.25 inpatient 

days per year, downstream youths spent about 0.23 days more (p<0.01), or an 18.4% increase. 

The downstream coefficient is also positive for the ED visits model, albeit close to zero and not 

statistically significant. 

Table 4.3 Model (1) estimates 
    

Dep. Var. Doctor visits ED visits Inpatient days 

    

    

Downstream 0.0887*** 0.0083 0.2309*** 

 (0.0292) (0.0122) (0.0291) 

Constant 2.3989*** 0.9619*** 1.2500*** 

 (0.0172) (0.0072) (0.0171) 

    

Observations 29,542 29,542 29,542 

R-squared 0.4278 0.4613 0.3054 

Notes: All models include mine and year fixed effects. 

Mine-clustered standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 4.4 shows the results of models that add controls for average age and gender per 

cluster (model 2). Results are similar to those reported in Table 4.3. I observe significant 

 
42 The baseline number of doctor visits in my analysis (2.4) is corroborated by another study, which found that children under 18 

made 233 visits per 100 population (2.33) in 2012 (195). 
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downstream coefficients in two models, i.e., increased health care demand in the form of doctor 

visits and inpatient days, but not emergency department visits. The effect of age varies across 

outcomes. From ages 0 to 7.5, doctor visits decrease with age, and increase from 7.5 to 13; 

emergency department visits initially decrease with age, then begin to increase around 8.8 years 

old; and inpatient days decrease with age. As for sex, male youths make more emergency 

department visits and have more inpatient days. These age and sex effects are corroborated by a 

report of youth doctor visits in the US (195) and a study of hospital admissions of youths in 

Korea (196). 

 

Table 4.4 Model (2) estimates 
    

Dep. Var. Doctor visits ED visits Inpatient days 

    

    

Downstream 0.0770*** 0.0052 0.2139*** 

 (0.0286) (0.0124) (0.0289) 

Female 0.6935*** -0.1484*** -0.6100*** 

 (0.0908) (0.0218) (0.1084) 

Age -0.3829*** 0.0386 -2.8125*** 

 (0.1188) (0.0412) (0.1734) 

Age2 0.0106 -0.0238*** 0.3860*** 

 (0.0200) (0.0071) (0.0325) 

Age3 0.0014 0.0017*** -0.0176*** 

 (0.0012) (0.0004) (0.0021) 

Constant 3.1721*** 1.368*** 6.9479*** 

 (0.2000) (0.0687) (0.3064) 

    

Observations 29,542 29,542 29,542 

R-squared 0.4417 0.4668 0.3550 

Notes: All models include mine and year fixed effects. 

Mine-clustered standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

4.5.2) Evidence from Matching 

As a robustness check, I compare the previous results to those obtained from two types of nearest 

neighbour matching (NNM) analyses. In both cases, each treated cluster is matched to the nearest 

neighbour cluster in the control group. The associations between mining and health outcomes are 

obtained by computing the average difference in outcomes of control (upstream) and treatment 

(downstream) groups. The matching is based on age and sex (197). The first type of matching 
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(Table 4.5) uses the Mahalanobis43 distance to find the closest control cluster to each treated 

cluster, and vice-versa, which maintains the highest number of observations (198). The second 

type of NNM (Table 4.6) requires exact matching on the mine and, as such, it is more restrictive 

(199). In my case, this approach reduces observations from 29,542 to 14,634. But while fewer 

observations may reduce statistical power, the restrictive assumptions may improve precision of 

the estimates by comparing groups that are more similar (200). 

 

Table 4.5 NNM estimates 
    
Dep. Var. Doctor visits ED visits Inpatient days 

    

    

Downstream 0.1104*** 0.0038 0.0433*** 

 (0.0113) (0.0045) (0.0107) 

    

Observations 29,542 29,542 29,542 

Notes: estimating treatment effects from observational data 

by nearest-neighbour matching. Mine-clustered standard 

errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 In both matching models, the coefficient on doctor visits increases, from 0.09 (Table 4.3) 

to 0.11 (Table 4.5) with NNM and 0.13 (Table 4.6) with exact matching. In contrast, the 

coefficient on inpatient days decreases with matching, from 0.21 to 0.04, but increases with exact 

matching to 0.26. Estimates all remain significant at the 1% level. Perhaps most interesting, 

however, is that, unlike the other estimations, exact matching (Table 4.6) suggests a small yet 

significant (5% level) coefficient on emergency department visits, with downstream clusters 

going 0.017 more times per year on average. Moreover, I expect my estimates to be a lower 

bound due to limitations of only observing youths at the cluster level, and only as long as they 

stay within the clusters. Exact matching results suggest that mining pollution may indeed be 

associated with emergency department demand, but at a level that requires greater resolution 

than my study design permits. 

 

 

 

 
43 Matching weights are based on the inverse of the covariates’ variance-covariance matrix. 
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Table 4.6 NNM estimates with exact matching 
    

Dep. Var. Doctor visits ED visits Inpatient days 

    

    

Downstream 0.1277*** 0.0169** 0.2644*** 

 (0.0231) (0.0084) (0.0339) 

    

Observations 14,634 14,634 14,634 

Notes: estimating treatment effects from observational data by 

nearest-neighbour exact matching. Mine-clustered standard 

errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

4.5.3) Health Care Demand Heterogeneity by Temporal Mine Characterstics 

I also explore how legacy associations between mining and health care demand vary when only 

including subsamples of mines in model (1) by i) their most recent period of operation, and ii) 

the total number of years in which they operated. Though this approach reduces the number of 

observations, it allows me to investigate the hypothesis of whether mines operating closer to the 

present day, and mines operating for longer periods of time, have greater potential for adverse 

effects on human health. 

 

Figure 4.9 displays results from 10 subsamples based on the most recent period of 

operation. These operation periods were chosen by working backwards from the first year of 

health data (2002). As one decade earlier (1992) did not provide a large enough sample, 1982 is 

the first period, followed by each subsequent decade until the first mining record of 1886.44 

Observations drastically increase towards the earliest operating year (from 575 in 1982 to 29,542 

in 1886), illustrating the proliferation of mining in the past and its consolidation over time. While 

the coefficient on inpatient days remains relatively constant over time, it appears that the 

coefficient on doctor visits increases as older mines are removed from the sample. Furthermore, 

there is evidence of a small yet statistically significant association between mining and 

emergency department visits, which becomes larger and more significant alongside the 

coefficient on doctor visits. 

 

 
44 As the difference in the number of mines operating between 1886 and 1892 is insignificant, I omit 1892. 
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Figure 4.9 Downstream coefficient, by most recent year of mining operations. 

 

 In my second evaluation of heterogeneity (Figure 4.10), I consider 12 subsamples based 

on duration of mining operations, regardless of opening and closing years. These durations range 

from at least one year to at least 50 years, with most mines having a duration under five years. 

The coefficients on emergency department visits are insignificant in all cases, while the 

coefficients on doctor visits and inpatient days are conflicting. As the minimum number of years 

operating increases, the coefficient on inpatient days decreases, albeit slightly, while the 

coefficient on doctor visits increases. Significant associations observed at the upper end of 

operating years (as well as the most recent decade in Figure 4.9) must be evaluated with caution 

given the limited sample size and larger confidence intervals. However, as the overall pattern of 

associations remain relatively stable, I believe the results from Figures 4.9 and 4.10 corroborate 

my main findings. 
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Figure 4.10 Downstream coefficient, by duration of mining operations. 

 

4.6) Conclusions 

My analysis suggests health care demand levels are higher for individuals living downstream 

from legacy coal mining activity, compared to their upstream counterparts. By restricting my 

sample of individuals to youths (aged 13 and under) born in (and remaining in) the study area 

during the time window (2002-2014), I avoid potential comparison biases from unknown levels 

of previous exposures to pollution. Over the entire sample, the yearly average number of doctor 

visits and inpatient days are higher for downstream youths by 3.75% and 16.8%, respectively. As 

this study focused on predominantly rural areas, these results lead me to advise for further water 

quality testing in rural Alberta. I also explore heterogeneity within the sample of coal mines and 

find statistically significant associations between mining and yearly average emergency 

department visits when restricting the sample to mines operating closer to the present day. This 

seems to imply that, compared to past mines, living downstream from contemporary mines may 
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pose greater potential for health impacts. A future analysis consisting of a contemporary mines-

only sample may be warranted, with a revised empirical strategy to capture more of these mines 

in relation to waterways. 

 

 To attain these results, I make use of empirical methods based on a natural experiment to 

spatially sort youths into clusters relative to their positions near coal mines and waterways. 

Despite these strengths in my analysis, a number of limitations arise. There are spatial limitations 

of my data due to the resolution of coordinates of both coal mines and population density-

weighted rural postal codes; design limitations to protect anonymity (i.e., clusters of youths), and 

assumptions necessary to designate clusters as downstream or upstream based on elevation, 

water flow direction, and likely points of contact along waterways. Moreover, due to time 

constraints and the overall scope of my study, I elect to use general indicators of health demand 

rather than conditions or diseases which may be linked to specific heavy metals found in water 

pollution. If I can obtain this health data in future, an extension in this disease specific direction 

may be possible. However, the fact that significant associations were found with more-general 

health demand indicators suggest the possibility of negative pollution or AMD effects.  

 

 The results suggest that the associated health care costs due to pollution can be 

surprisingly high. For instance, Alberta doctor visits cost between $41-59 in 2020 (201), while 

the average hospital stay (0.99 inpatient days) was estimated to cost about $9,172 between 2021-

2022 (202). Using the estimates from Table 4.3, each youth living downstream from a mine costs 

the province (annually) an additional $3.28 in doctor visits and $2,100 in inpatient days. With a 

mean of 232 youths per cluster, and 165 downstream clusters, these values amount to annual 

health care costs of $125,558 and $80,388,000, respectively. I acknowledge that this back-of –

the-envelope calculation is a simplistic approach and that the cost of supplying health services is 

only one component of the total cost of pollution. 

 

 The cost of water pollution is multifaceted (e.g., environmental, health), with impacts that 

may be more widespread than initially expected, both temporally and spatially. While this 

research largely concerned coal mines from the past, the present day and future impacts of coal 
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mining in are also being heavily discussed. Water quality concerns surrounding a possible 

expansion of an active Alberta coal mine were raised at the 27th annual United Nations climate 

conference near the end of 2022 (203). The scope of water pollution from Alberta coal mines is 

not limited to the province, either, as drainage from the eastern slopes of the Rocky Mountains, 

an area of significant mining activity, also reaches the eastern Prairie Provinces of Saskatchewan 

and Manitoba (204). Certainly, water pollution mitigation efforts are in the best interest of 

current and future generations alike, both in the immediate vicinity and beyond.  
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Chapter 5 Conclusion 
 

The three studies comprising my thesis, while each distinct, share a common goal of illuminating 

pollution-related externalities of resource development on local populations. They also share 

several traits, including a focus on younger cohorts, identification strategies rooted in spatial 

analysis, and utilizing non-survey data from government or government-adjacent sources. 

Focusing on these traits help identify causal effects in my models in a number of ways. First, as 

discussed throughout, youths (e.g., infants or children) are expected to be more sensitive to 

pollution impacts (e.g., birthweight, test scores, doctor visits) than the general population, and 

these impacts may have further ramifications to future health and earnings outcomes. Second, I 

identify samples based on proximity (e.g., of place of birth, school, or postal code) to resource 

sites, avoiding potential selection biases that may arise from other sampling techniques. Third, as 

I use secondary data from reputable sources (e.g., number of doctor visits recorded by the health 

provider), concerns of self-reporting errors (e.g., a survey relying on a patient’s memory of the 

number of doctor visits) are eliminated. 

 

 In the first study (Chapter 2), I find negative effects of illegal gold mining on 

birthweights in municipalities of the Brazilian Amazon, specifically for indigenous infants. 

Moreover, the impacts are heterogeneous, with illegal mining disproportionately impacts births 

to single (versus married) indigenous mothers, lowering birthweight and increasing both 

premature and low Apgar score incidence within the subgroup. Births to young or lower 

educated indigenous mothers, or those living in municipalities with reserves, are also more likely 

to be underweight due to illegal mining. Indigenous births in municipalities with no reserves are 

less likely to be premature or exhibit low Apgar score. I do not find similar effects with respect 

to legal gold mining, suggesting that regulating the mining industry seems to work in terms of 

reducing health risks. 

 

In the second study (Chapter 3), I find evidence of a causal relationship between the 

presence of nearby (i.e., within 4 km) oil wells and lower test scores in math and science in 

Alberta. Moreover, I identified significant variation in impacts by well life cycle stage. 
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Abandoned wells are, on average, the most harmful individually, followed by Active and 

Suspended. However, when considering the mean number of each type of nearby well, Active 

wells overall have the greatest impact on mean test scores. Reclaimed wells, however, do not 

have a significant impact. Additionally, when I alter the sample size by excluding schools in 

cities with larger populations, I find that while the marginal effect per well decreases in more-

rural samples, the corresponding total effect increases, given a relatively higher mean number of 

nearby wells in more-rural samples. 

 

In the third study (Chapter 4), I find higher health care demand levels for individuals 

living downstream from legacy coal mining activity, compared to their upstream counterparts. 

By restricting my sample of individuals to youths born in the study area during the time window, 

I avoid potential biases from unknown levels of previous exposures to pollution. Over the entire 

sample, the yearly average number of doctor visits and inpatient days are higher for downstream 

youths. I also explore heterogeneity within the sample of coal mines and find significant effects 

on yearly average emergency department visits when restricting the sample to mines operating 

closer to the present day. 

 

 All else equal, the findings of each study may seem to imply that stricter regulations or 

enhanced clean-up efforts would be advised to improve social well-being. For instance, cleaning 

up the substantial number of old oil wells across Alberta may improve student outcomes today, 

which, in turn, may subsequently result in higher productivity and earnings as adults in the 

future. But do these future earnings outweigh the cost of well clean-up? Moreover, the impacts 

(or conversely, the benefits of addressing a problem) can vary widely between population 

subgroups, as in the case of illegal gold mining and indigenous communities in the Brazilian 

Amazon. My hope is that these findings can assist policymakers who are in charge of making 

these cost-benefit decisions. Even as societies gradually move toward cleaner energy sources 

such as wind and solar, I believe it is important to remain cognisant of the potential legacy 

effects of past and present non-renewable resource extraction. 
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A. Chapter 2 Appendix 
 

A.1 - Additional Literature Review  

A.1.1) Political Factors 

This study is pertinent to recent political activity in Brazil. Former President Bolsonaro planned 

to expand mining operations within Amazonian indigenous lands, despite concerns for 

socioeconomic and environmental impacts (205). Short-term economic growth is being 

prioritized at the expense of Amazonia. The potential for further devastation to the most remote 

and conserved parts of the Amazon is high and with widespread impacts. The possible reopening 

of Brazilian Highway BR-319 through the heart of the Amazon is just one example (206). There 

are many gaps in current policy regarding artisanal and small-scale (i.e., illegal) gold mining in 

Brazil and the government does not have the resources necessary to enforce regulations (207). 

Reviews of previous failed attempts to curb mercury use at artisanal gold mines, in Brazil or 

otherwise, demonstrate a lack of continuity in enforcement and misplaced objectives which have 

thwarted any such efforts (208). 

 

A.1.2) Mercury 

Human health effects of mining may be driven by air or water pollution, which I cannot discern 

at the level of resolution of municipal births. However, I suspect the primary cause of pollution 

to be mercury, as artisanal gold mining is heavily associated with its use. Mercury is mixed with 

mining material containing gold and other sediments to form a mercury-gold amalgam. This 

amalgam is then heated to vaporize the mercury and isolate the gold ore. Human health can be 

compromised by inhaling or ingesting high levels of mercury. From the World Health 

Organization, such effects include damage to the nervous, digestive, and immune systems, lungs, 

and kidneys (209). Fetuses are especially sensitive to mercury and may experience neurological 

symptoms after birth including vision and hearing loss, deficiencies in memory and motor skills, 

seizures, and language disorders. Risk assessments have established causal links between mining 

pollution and human health due to vapor inhalation and consuming contaminated fish, which can 

be measured in a variety of ways including dietary, hair, or breast milk samples (210-215). 
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Chief to my investigation is the impact of gold mining-borne mercury exposure on infant 

health outcomes. Previous investigations have identified impacts of mining and their respective 

pollution types on negative birthweight outcomes (216-221). Neurological and physiological 

impacts of mercury exposure in youth have also been well documented (222-225). Beyond 

mercury, there are also human health concerns for arsenic exposure in mining areas (226-227). 

Arsenic, a human carcinogen, naturally occurs in the environment and is often disturbed and 

released by mining activity. 

 

A.1.3) Health Costs: Measurements and Complications 

Societal efforts to protect human health can be framed positively (i.e., quality of life 

improvements or lives saved) or negatively (i.e., monetary costs). For instance, pollution 

abatement measures were estimated to have saved approximately 1,000 infant lives in California 

(228). Conversely, the cost of low birth weight has been estimated to be as much as $550,000 per 

statistical life (229). In any case, cross-sectional estimates on returns to low birth weight-

prevention may be biased by omitted variables including genetics (230) and any proposed value 

should be scrutinized accordingly. Seasonality of birth is also associated with long-term 

outcomes, possibly explained by maternal characteristic variations; winter births are 

disproportionately characterized by teenage and unmarried mothers (231). 

 

A.1.4) Disparities in Health 

Unequal income distribution is linked to higher infant mortality rates and increasingly so 

as the rich get richer, possibly explained by relative access to health care or correlation with the 

relative effects of government policies on income brackets (232). Brazil as a country has 

relatively high levels of both poverty and inequality, higher still in the rural Brazilian Amazon 

(233). Limited health care services and poor socioeconomic conditions mean that otherwise 

preventable conditions such as Tuberculosis are still a concern to these populations (234). 
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Recently, COVID-19 has created a new dimension of health disparity among ethnic 

groups (235), with Brazil being one of the world’s hardest hit countries by the pandemic. And 

beyond health, racial disparities in Brazilian education have also been identified (236). The 

wellbeing of indigenous communities in Brazil’s Amazon is also central in discussions around 

climate change and deforestation, as their presence inhibits environmental degradation (237-

238). 

 

A.2 - Brazilian Public Health Care Systems 

Brazil’s publicly funded health care system, Sistema Único de Saúde (SUS), was implemented in 

1990 following the creating of the new 1988 Brazilian Constitution which established health as a 

universal right (239). Covering every legal resident of Brazil, the goal of SUS was to improve 

health outcomes by reducing health care access inequalities. SUS is decentralized with 

administrative responsibilities at the federal, state, and municipal levels of government, and 

offers free services including primary, inpatient, and outpatient care (240).  

 

While SUS provides free services to both Brazilians and foreigners, underfunding and 

overcrowding in the public system often lead to patients seeking private treatment if they can 

afford it (241). The public and private health sectors operate independently, and National Health 

Identification Cards, previously known as SUS cards, are required to access the healthcare 

system and provide mobility of medical records between services (242). This connectivity allows 

patients to access both private and public health care services across all three government 

subsectors (243). SUS is used exclusively by over 78% of the Brazilian population, making it an 

excellent source of health data, including birth records (244).  

 

A.3 - Brazilian Mining Regulatory Scheme 

Prior to 2017, the Brazilian mining sector was regulated by two authorities. The Ministry of 

Mines and Energy (Ministério de Minas e Energia), or MME, is responsible for making public 

policy covering various energy sectors, and The National Department of Mineral Production 

(Departamento Nacional de Produção), or DNPM, oversees mining activity throughout Brazil 
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(245). The National Mining Agency (Agência Nacional de Mineração), or ANM, has since 

replaced the DNPM as the regulatory agency of the mining sector, bringing stricter 

environmental regulations and expectations for reclamation of degraded areas (246).  

 

The MME and ANM, both federal authorities, share most of Brazilian mining sector 

administrative functions, with no firm hierarchy established between them (247). As further 

described, the MME formulates mining policies, supervises implementation, and grants mining 

concessions, while the ANM is responsible for managing, regulating, and supervising mining 

activity, as well as granting exploration licences and mining titles beyond the MME’s roles. 

According to Brazil’s Federal Constitution, mineral deposits belong to the Federation and thus 

require titles to be explored or mined. Economic exploitation without such a concession is 

considered illegal. Permits are divided into two phases, exploration - guaranteeing the owner 

ability to research the area without extracting, and exploitation - granting the owner power to 

extract until exhaustion. Mineral licences, which grant rights to extract specific substances 

without prior research, as well as small-scale mining permits, which allow for immediate mineral 

use, are also available. Conditions to regulate resource exploration and extraction in indigenous 

areas are being formulated as part of the Federal Constitution but have not yet been 

implemented. Accordingly, no mineral activities are currently permitted in indigenous areas, and 

any such activity occurring is illegal. 

 

A.4 - Additional Data Source Information 

The infant health data comes from the Brazil Live Birth Information System (SINASC), which 

contains microdata on live births over numerous variables, including race, gender, place of birth, 

and mother characteristics. Data was collected for the years 2008-2017, with over 5 million birth 

records in the Brazilian Amazon. Municipality-level spending data was accessed from the SUS 

Department of Informatics, or DATASUS (248). Information on mines, both illegal and legal, 

comes from the Amazon Geo-Referenced Socio-Environmental Information Network (RAISG), 

a collaborative effort of numerous organizations from Amazon countries concerned with socio-

environmental sustainability in the region. Capital city coordinates and federal highway system 

mapping come from The World Bank Data Catalog (249). Shapefiles for Brazil, its state and 
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municipality borders, and population levels from the 2010 census are available online at The 

Brazilian Institute of Geography and Statistics, or IBGE (250). Indigenous land boundaries are 

from the National Indian Foundation, or FUNAI (251). GPS coordinates for ICU-equipped 

hospitals come from Pan American Health Organization, or PAHO (252).  

 

Of these 742 municipalities, 28 contain at least 1 illegal mine, with a mode of 1, a 

maximum of 16, and a total of 62 (Figure A.1). This data structure provides me with a sizeable 

control group, i.e., 714 municipalities without illegal mines. With respect to legal gold mining, I 

observe a total of 1537 operating mines within 84 of the 742 municipalities, with a mode of 1 

and a maximum of 695. 

 

 

Figure A.1 Frequency of illegal and legal mines in municipalities of the Brazilian Amazon. 
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A.5 - Suppressed Regression Results for Table 2.2 and Figures 2.2-2.4 

Table A.1 Main results – full models 
 

      

Dep. Var. Birthweight  Premature Birth*100  Low Apgar Score*100 

 (g)  (%)  (%) 

      

Model (1)  (1)  (1) 

      

Indigenous -39.24***  3.63**  -0.001 

 (13.20)  (1.46)  (0.98) 

      

Illegal mine 1.91  0.28  -0.09 

 (1.85)  (0.30)  (0.29) 

Legal mine 0.05***  -0.0001  0.02*** 

 (0.02)  (0.002)  (0.002) 

      

Indigenous*Illegal mine -22.64***  -0.18  0.35 

 (4.14)  (0.31)  (0.71) 

Indigenous*Legal mine 0.03  0.01  -0.01 

 (0.13)  (0.01)  (0.01) 

      

      

Delivery age 8.22***  -0.16***  -0.08*** 

 (0.29)  (0.02)  (0.02) 

Married (%) 32.47***  -1.30***  -0.40 

 (4.04)  (0.31)  (0.49) 

Education 2 (%) 100.96***  -2.59**  -0.91 

 (17.16)  (1.01)  (0.88) 

Education 3 (%) 132.47***  -4.13***  -2.05** 

 (17.04)  (1.04)  (0.89) 

Education 4 (%) 140.55***  -6.31***  -2.35** 

 (17.28)  (1.07)  (0.94) 

Education 5 (%) 104.74***  -6.56***  -2.94*** 

 (17.26)  (1.10)  (0.98) 

GDP (R$/thousand people) -0.55*  0.04**  0.01 

 (0.29)  (0.02)  (0.04) 

Health spending (per 1k) -5.72  -2.12  -7.74*** 

 (19.35)  (1.82)  (2.82) 

Education spending (R$/thousand people) 14.80  0.32  3.57** 

 (13.53)  (0.83)  (1.74) 

Bolsa spending (R$/thousand people) -2.81  -0.70  0.91 

 (26.44)  (1.85)  (4.00) 

Population density (thousand people/km2) -109.13***  1.75**  -7.50*** 

 (18.18)  (0.78)  (2.77) 

ICU-equipped hospitals (#/thousand people) 234.51***  -3.57  13.03 

 (66.29)  (5.63)  (10.11) 

      

d2008 -  -  - 

      

d2009 22.32  -  20.62*** 

 (29.37)    (1.80) 

d2010 26.75*  91.80***  -1.00 

 (13.96)  (0.87)  (1.69) 

d2011 30.44**  -2.95***  -3.36 

 (13.45)  (1.04)  (2.19) 

d2012 -  -  - 

      

d2013 -  -  - 

      

d2014 26.81**  -4.93***  0.50 

 (13.02)  (1.25)  (1.30) 

d2015 -51.35***  8.90***  -1.73 

 (8.77)  (0.89)  (1.43) 

d2016 26.05  -6.55***  59.17*** 

 (15.99)  (1.72)  (1.84) 

d2017 -  -  - 

      

      

      

Constant 2,873.31***  23.06***  17.28*** 

 (23.00)  (1.58)  (2.60) 

      

Observations 270,534  189,909  254,132 

R-squared 0.0133  0.0064  0.0134 

      
Notes: Birthweight is measured in grams. Premature birth is defined as occurring before 37 weeks. Low Apgar score indicates a 

value between 0-7 on a discrete scale between 0-10. Education attainment of the mother is categorized into 5 groups: 1 for 0 

years, 2 for 1-3 years, 3 for 4-7 years, 4 for 8-11 years, and 5 for 12+ years. All models include State-level fixed effects and 

employ Municipality-clustered standard errors. Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Table A.2 Birthweight heterogeneity – full models 
            Dep. Var. Birthweight  Birthweight  Birthweight  Birthweight 

        

Model Single Married  Young Old  Low educ. High educ.  Reserves: Yes Reserves: No  
           

            

Indigenous -36.59*** -42.92**  -56.97*** -41.35  -72.08*** -34.47**  -50.22*** 55.60 

 (12.64) (18.87)  (14.68) (26.05)  (14.72) (14.63)  (12.37) (34.59) 

            

Illegal mine 2.84 0.70  8.79*** 7.26  8.14*** -1.60  1.26 -14.71 

 (2.68) (6.01)  (2.74) (4.43)  (2.09) (2.45)  (2.83) (9.63) 

Legal mine 0.03 0.06  0.03 0.06  -0.01 0.07***  -0.01 0.10 

 (0.02) (0.04)  (0.02) (0.04)  (0.02) (0.02)  (0.03) (0.19) 

            

Indigenous*Illegal mine -27.10*** -1.36  -29.81*** -21.00***  -28.56*** -33.73***  -19.68*** 39.69** 

 (3.76) (8.03)  (8.01) (7.04)  (6.06) (7.68)  (3.99) (19.49) 

Indigenous*Legal mine 0.31 -0.20  0.09 2.83**  -0.03 0.23**  0.01 -0.03 

 (0.26) (0.14)  (0.17) (1.11)  (0.18) (0.11)  (0.14) (3.62) 

            

            

Delivery age 9.57*** 7.19***     7.88*** 7.26***  8.99*** 7.53*** 

 (0.39) (0.36)     (0.37) (0.35)  (0.41) (0.39) 

Married (%)    34.34*** 24.09**  40.29*** 28.10***  44.30*** 22.98*** 

    (5.87) (10.15)  (5.64) (4.43)  (6.01) (4.87) 

Education 2 (%) 144.05*** 60.67***  154.04*** 53.58**     122.61*** 60.24*** 

 (24.69) (16.20)  (33.59) (22.27)     (21.60) (18.54) 

Education 3 (%) 171.12*** 95.17***  155.28*** 103.91***     145.03*** 100.70*** 

 (24.00) (15.82)  (32.44) (21.83)     (21.39) (18.64) 

Education 4 (%) 182.48*** 101.07***  174.85*** 90.87***     154.69*** 109.46*** 

 (24.03) (16.28)  (32.12) (21.55)     (21.60) (19.62) 

Education 5 (%) 160.03*** 62.53***  193.64*** 67.85***     120.83*** 73.08*** 

 (24.35) (16.43)  (37.65) (23.40)     (21.38) (20.57) 

GDP (R$/thousand people) -0.49 -0.61*  -0.93** -0.39  -0.73 -0.44  -0.38 -0.36 

 (0.33) (0.34)  (0.38) (0.52)  (0.46) (0.28)  (0.43) (0.33) 

Health spending (per 1k) -19.92 5.49  -2.71 -14.79  33.20 -13.19  5.09 9.47 

 (23.59) (23.22)  (27.13) (36.17)  (31.69) (18.73)  (33.45) (24.17) 

Education spending (R$/thousand people) 22.19* 8.69  6.84 13.81  14.56 7.65  -32.59 20.96 

 (13.32) (16.28)  (15.73) (23.64)  (18.98) (13.57)  (21.96) (13.80) 

Bolsa spending (R$/thousand people) 2.24 -8.02  -31.22 56.72  -9.79 7.02  76.96 -11.19 

 (26.69) (33.46)  (32.87) (49.94)  (30.96) (28.79)  (46.71) (27.56) 

Population density (thousand people/km2) -31.06* -154.92***  -89.31*** -140.57***  -121.43*** -102.70***  -1,588.85*** -75.33*** 

 (18.47) (23.65)  (19.83) (27.57)  (34.98) (15.37)  (440.92) (14.40) 

ICU-equipped hospitals (#/thousand 

people) 

215.32*** 245.63***  157.67* 351.27**  234.70** 227.51***  106.29 188.88*** 

 (80.17) (79.51)  (92.96) (143.68)  (103.88) (68.42)  (110.52) (70.96) 

            

d2008 - -  - -  - -  - - 

            

d2009 34.61 -7.81  12.30 60.62**  30.35 11.54  6.99 - 

 (30.23) (36.02)  (37.18) (23.52)  (30.30) (27.94)  (29.83)  

d2010 38.51** 16.66  -19.73 -139.71***  68.16*** -9.55  6.80 107.36*** 

 (17.67) (15.13)  (21.38) (33.82)  (18.26) (13.10)  (11.70) (14.06) 

d2011 95.79*** 12.27  28.09 71.60***  36.69 15.13  7.92 - 

 (15.20) (17.98)  (17.88) (24.92)  (27.44) (12.60)  (19.67)  

d2012 - -  - -  - -  - - 

            

d2013 - -  - -  - -  - - 

            

d2014 117.07*** -39.33  13.18 -290.54***  -12.74 77.93***  - 34.27*** 

 (11.96) (25.16)  (19.32) (21.70)  (14.16) (14.85)   (12.07) 

d2015 -72.83*** -42.90***  -53.10*** -45.91***  -129.18*** -33.67***  -68.94*** - 

 (9.94) (12.36)  (12.08) (15.94)  (19.90) (8.25)  (12.14)  

d2016 69.69*** -53.76**  32.21 118.45***  8.67 -66.54***  4.92 - 

 (17.65) (21.59)  (19.99) (30.05)  (20.85) (18.37)  (19.11)  

d2017 - -  - -  - -  - - 

            

            

Constant 2,798.46*** 2,973.10***  2,970.27*** 3,141.31***  2,986.47*** 3,041.50***  2,871.80*** 2,905.76*** 

 (29.17) (25.33)  (37.59) (32.20)  (19.48) (16.58)  (31.32) (27.47) 

            

Observations 113,312 157,222  70,359 21,499  83,590 192,287  127,869 142,665 

R-squared 0.017 0.009  0.007 0.008  0.018 0.010  0.020 0.011 

            
Notes: For Tables 2.4-2.6, Models 1 (a) & (b) compare births of single mothers to married mothers, Models 2 (a) & (b) compare 

young mother births (≤19) to old mother births (≥35), Models 3 (a) & (b) compare relatively low education level (≤7 years) to 

high (≥8 years), and Models 4 (a) & (b) compare municipalities with (>0%) and without (=0%) indigenous reserves. Cluster-

robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1.  
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Table A.3 Premature birth heterogeneity – full models 
            Dep. Var. Premature*100  Premature*100  Premature*100  Premature*100 

            

Model Single Married  Young Old  Low educ. High educ.  Reserves: Yes Reserves: No  
           

            

Indigenous 3.84** 3.42**  4.12*** 4.95**  4.31*** 4.23***  3.92*** -2.09 

 (1.65) (1.56)  (1.55) (2.15)  (1.60) (1.52)  (1.41) (2.56) 

            

Illegal mine 0.24 0.34  0.49 -0.41  -0.09 .42*  0.19 -0.66** 

 (0.35) (0.26)  (0.44) (0.32)  (0.46) (0.24)  (0.41) (0.27) 

Legal mine -0.003 0.0005  -0.001 0.004  0.001 -0.0008  0.0006 0.05** 

 (0.003) (0.002)  (0.003) (0.003)  (0.003) (0.002)  (0.003) (0.02) 

            

Indigenous*Illegal mine -0.04 -0.65  0.04 -0.47  -0.17 1.03*  -0.29 -4.67*** 

 (0.28) (0.57)  (0.76) (0.34)  (0.36) (0.60)  (0.30) (1.28) 

Indigenous*Legal mine -0.03*** 0.02**  -0.002 0.28*  0.01 -0.004  0.01 -0.45 

 (0.01) (0.01)  (0.01) (0.16)  (0.01) (0.01)  (0.01) (0.28) 

            

            

Delivery age -0.23*** -0.11***     -0.18*** -0.13***  -0.18*** -0.14*** 

 (0.02) (0.02)     (0.02) (0.02)  (0.02) (0.02) 

Married (%)    -1.69*** -0.49  -1.54*** -1.18***  -1.37*** -1.25*** 

    (0.45) (0.73)  (0.50) (0.32)  (0.53) (0.36) 

Education 2 (%) 0.04 -4.08***  -1.13 -2.22     -3.17** -1.66 

 (1.64) (1.21)  (2.73) (1.69)     (1.33) (1.39) 

Education 3 (%) -1.80 -5.47***  -0.91 -3.35**     -5.07*** -2.94** 

 (1.59) (1.25)  (2.85) (1.60)     (1.35) (1.43) 

Education 4 (%) -4.17** -7.51***  -4.04 -3.98**     -6.81*** -5.54*** 

 (1.62) (1.27)  (2.90) (1.60)     (1.40) (1.43) 

Education 5 (%) -4.82*** -7.75***  -6.48** -4.02**     -7.00*** -.580*** 

 (1.68) (1.32)  (3.21) (1.73)     (1.48) (1.46) 

GDP (R$/thousand people) 0.04* 0.04**  0.05* 0.06  0.02 0.05***  0.04 0.03* 

 (0.02) (0.02)  (0.03) (0.04)  (0.03) (0.02)  (0.04) (0.02) 

Health spending (per 1k) -4.32* -0.79  -2.86 -1.06  -2.02 -2.25  -3.63 -0.88 

 (2.25) (2.01)  (2.51) (3.25)  (2.73) (1.75)  (3.81) (1.43) 

Education spending (R$/thousand people) 0.64 0.22  0.54 -0.45  -0.03 0.59  2.10 -0.38 

 (1.13) (0.89)  (1.08) (1.54)  (1.23) (0.80)  (1.87) (0.86) 

Bolsa spending (R$/thousand people) -1.21 -0.59  -0.25 -0.73  -0.30 -0.60  -6.03 2.13 

 (2.45) (2.07)  (2.75) (3.29)  (2.52) (1.80)  (4.19) (1.64) 

Population density (thousand people/km2) -2.39** 3.73***  -1.80 0.39  0.76 1.79**  24.54 2.25*** 

 (1.06) (1.08)  (1.54) (1.71)  (1.94) (0.75)  (41.64) (0.64) 

ICU-equipped hospitals (#/thousand people) 5.68 -9.55  5.27 -8.37  -2.87 -3.14  -6.48 -1.56 

 (8.24) (5.85)  (8.79) (10.47)  (8.67) (5.46)  (10.49) (5.10) 

            

d2008 - -  - -  - -  - - 

            

d2009 - -  - -  - -  - - 

            

d2010 90.14***       91.68***  91.74*** - 

 (1.52)       (0.77)  (1.41)  

d2011 -1.60 -2.69**  -3.74** -6.16***  -5.90*** 0.56  -2.63 - 

 (1.33) (1.11)  (1.77) (1.86)  (1.78) (0.99)  (1.64)  

d2012 - -  - -  - -  - - 

            

d2013 - -  - -  - -  - - 

            

d2014 -5.16*** -3.98**  -18.18*** 21.71***  -6.29*** -4.36***  - -3.51*** 

 (1.26) (1.54)  (1.31) (1.46)  (2.38) (0.92)   (0.53) 

d2015 9.39*** 8.86***  1.45 18.41***  10.09*** 8.38***  9.41*** - 

 (1.08) (0.89)  (1.38) (1.42)  (1.52) (0.85)  (1.13)  

d2016 -6.45*** -7.15***  -11.25*** -4.39*  -12.08*** -6.85***  -6.09*** - 

 (2.06) (1.72)  (2.17) (2.38)  (2.06) (1.50)  (1.83)  

d2017 - -  - -  - -  - - 

            

            

Constant 23.22*** 21.41***  19.29*** 17.96***  20.71*** 15.38***  24.99*** 20.99*** 

 (02.10) (1.90)  (3.03) (2.42)  (1.47) (1.20)  (2.47) (01.86) 

            

Observations 75,919 113,990  50,000 14,660  56,970 136,372  85,126 104,783 

R-squared 0.0071 0.0063  0.0062 0.0053  0.0048 0.0045  0.0097 0.0046 

            
Notes: For Tables 2.4-2.6, Models 1 (a) & (b) compare births of single mothers to married mothers, Models 2 (a) & (b) compare 

young mother births (≤19) to old mother births (≥35), Models 3 (a) & (b) compare relatively low education level (≤7 years) to 

high (≥8 years), and Models 4 (a) & (b) compare municipalities with (>0%) and without (=0%) indigenous reserves. Cluster-

robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 
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Table A.4 Low Apgar score heterogeneity – full models 
            
Dep. Var. Low Apgar*100  Low Apgar*100  Low Apgar*100  Low Apgar*100 

            

Model Single Married  Young Old  Low educ. High educ.  Reserves: Yes Reserves: No  
           

            

Indigenous -0.51 0.51  0.37 -0.24  -0.07 0.89  -0.99 -0.34 

 (1.31) (1.13)  (1.18) (1.67)  (1.13) (1.10)  (1.11) (2.43) 

            

Illegal mine -0.20 0.12  -0.31 -0.39  -0.16 -0.07  -0.12 1.58 

 (0.18) (0.56)  (0.33) (0.27)  (0.37) (0.27)  (0.31) (2.72) 

Legal mine 0.02*** 0.01***  0.02*** 0.02***  0.01*** 0.02***  0.01*** -0.01 

 (0.002) (0.004)  (0.003) (0.003)  (0.003) (0.002)  (0.003) (0.01) 

            

Indigenous*Illegal mine 0.98* -0.37  0.12 2.54***  0.84 -1.20  0.60 -7.11** 

 (0.55) (1.10)  (0.91) (0.48)  (0.60) (0.78)  (0.64) (2.95) 

Indigenous*Legal mine -0.03* 0.004  -0.0007 -0.26  -0.002 -0.01  -0.01 -0.60*** 

 (0.02) (0.01)  (0.009) (0.17)  (0.01) (0.01)  (0.01) (0.19) 

            

            

Delivery age -0.13*** -0.04**     -0.03 -0.10***  -0.12*** -0.03 

 (0.03) (0.02)     (0.02) (0.02)  (0.02) (0.02) 

Married (%)    -0.77 0.28  -0.96 -0.13  -0.08 -0.50 

    (0.65) (0.64)  (0.59) (0.48)  (0.74) (0.57) 

Education 2 (%) -1.49 -0.54  -1.72 -0.41     -0.29 -2.09 

 (1.35) (1.16)  (2.34) (1.68)     (1.08) (1.44) 

Education 3 (%) -1.56 -2.39**  -2.54 -1.43     -1.50 -3.08** 

 (1.28) (1.21)  (2.29) (1.65)     (1.12) (1.41) 

Education 4 (%) -2.69** -1.98  -2.95 -2.21     -1.13 -3.91*** 

 (1.31) (1.27)  (2.28) (1.56)     (1.16) (1.46) 

Education 5 (%) -2.57* -2.89**  -2.25 -4.42***     -1.98 -4.30*** 

 (1.38) (1.29)  (2.50) (1.64)     (1.22) (1.54) 

GDP (R$/thousand people) 0.02 0.01  -0.01 0.03  0.01 0.01  -0.01 0.08 

 (0.06) (0.03)  (0.05) (0.04)  (0.05) (0.04)  (0.04) (0.07) 

Health spending (per 1k) -7.22* -8.16***  -6.36* -4.60*  -7.43** -8.31***  -10.60** -3.86 

 (3.75) (2.91)  (3.51) (2.75)  (3.58) (2.74)  (5.21) (3.24) 

Education spending (R$/thousand people) 3.39 3.60**  3.21 2.50  2.69 3.94**  4.52 1.75 

 (2.29) (1.72)  (2.06) (1.62)  (2.07) (1.68)  (3.90) (1.76) 

Bolsa spending (R$/thousand people) -1.72 3.00  0.64 3.90  2.32 0.33  1.56 4.84 

 (4.79) (4.35)  (4.67) (3.68)  (4.48) (3.95)  (7.15) (4.61) 

Population density (thousand people/km2) -8.83** -6.21***  -9.43** -4.98*  -9.83** -7.41***  -46.31 -5.35** 

 (3.66) (2.34)  (3.68) (2.91)  (4.16) (2.49)  (50.83) (2.38) 

ICU-equipped hospitals (#/thousand people) 4.22 19.34**  14.02 4.26  13.67 12.14  30.72* -5.38 

 (14.38) (9.75)  (12.54) (10.54)  (12.96) (9.58)  (17.07) (12.95) 

            

d2008 - -  - -  - -  - - 

            

d2009 21.62*** 15.72***  24.47*** 17.67***  22.68*** 19.36***  21.45*** - 

 (2.35) (1.67)  (2.51) (2.59)  (2.36) (1.64)  (2.82)  

d2010 2.22 -5.80***  1.96 -4.79  1.16 -2.78*  -2.60 -3.43 

 (2.37) (2.01)  (2.43) (3.28)  (1.78) (1.51)  (2.22) (3.27) 

d2011 -2.00 -4.39*  3.45 -2.24  -7.13*** -1.13  -7.81** - 

 (2.25) (2.62)  (2.16) (2.00)  (2.32) (2.25)  (3.05)  

d2012 - -  - -  - -  - - 

            

d2013 - -  - -  - -  - - 

            

d2014 23.06*** -3.57  4.67*** 11.56***  8.21*** -0.0489***  - -1.70 

 (1.31) (2.69)  (1.48) (2.33)  (1.63) (0.0127)   (3.14) 

d2015 -0.71 -2.49  6.73*** 6.23***  -2.09 -0.0142  -4.80** - 

 (1.28) (1.81)  (1.37) (1.27)  (1.50) (0.0145)  (1.91)  

d2016 5.381*** 78.98***  70.61*** 54.75***  63.88*** 0.5846***  58.67*** - 

 (02.30) (1.97)  (2.24) (2.19)  (2.14) (0.0177)  (2.75)  

d2017 - -  - -  - -  - - 

            

            

Constant 19.52*** 15.06***  17.62*** 13.74***  14.54*** 15.64***  18.28*** 15.21*** 

 (3.47) (2.74)  (3.69) (2.77)  (2.60) (2.39)  (3.96) (3.17) 

            

Observations 104,989 149,143  65,774 19,996  75,607 183,084  120,175 133,957 

R-squared 0.0203 0.0086  0.0149 0.0113  0.0145 0.0127  0.0264 0.0045 

            
Notes: For Tables 2.4-2.6, Models 1 (a) & (b) compare births of single mothers to married mothers, Models 2 (a) & (b) compare 

young mother births (≤19) to old mother births (≥35), Models 3 (a) & (b) compare relatively low education level (≤7 years) to 

high (≥8 years), and Models 4 (a) & (b) compare municipalities with (>0%) and without (=0%) indigenous reserves. Cluster-

robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 
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A.6 - Additional checks 

A.6.1) Illegal Mine-only Municipalities and Legal Mine-only Municipalities 

Model (1) is modified to estimate health effects in municipalities with only illegal gold mines (2) 

or only legal gold mines (3): 

𝐻𝑖𝑗 = 𝛼𝑅𝑖 + 𝛽𝐼𝑗 + 𝛿(𝑅𝑖  × 𝐼𝑗) + 𝜎𝑚𝑀𝑖 + 𝜎𝑑𝐷𝑖 + 𝜎𝐽𝐽𝑗 + 𝜆𝑠 +  𝜖𝑖𝑗   (2) 

𝐻𝑖𝑗 = 𝛼𝑅𝑖 + 𝜈𝐿𝑗 + 𝜌(𝑅𝑖  × 𝐿𝑗) + 𝜎𝑚𝑀𝑖 + 𝜎𝑑𝐷𝑖 + 𝜎𝐽𝐽𝑗 + 𝜆𝑠 +  𝜖𝑖𝑗   (3) 

where 𝐿 = 0 in (2) and I = 0 in (3), respectively. Model (2) estimates health outcomes during 

observations years for municipalities with illegal mining (test group) versus municipalities with 

no illegal mining (control group). Municipalities with legal mines, regardless of the presence of 

illegal mining, are excluded. The converse is true for model (3). In this way, I capture the 

explicit effect of mining regulatory schemes on infant health outcomes. 

 

 I compare illegal-only model (2) and legal-only model (3) results in Table A.5 (below) to 

the main model (1) results in Table A.1 (above). With respect to birthweight, the effect of 

indigenous in (3) is about the same as in (1), while the indigenous effect in (2) is smaller than in 

the other models, -34.5 g vs. -39 g, respectively. However, the interaction between indigenous 

and legal mine, while insignificant in (1), is now significant at the 1% level in (3), with 

indigenous infants weighing 4 g more per legal mine. Just one legal mine in a municipality 

makes up the difference in the indigenous estimates between models (2) and (3). The interaction 

between indigenous and illegal mine is about the same in magnitude between models (1) and (2), 

and significant at the 1% level in both. 

 

 For premature birth incidence, the effect of indigenous is smaller in (2) and (3) compared 

to (1) in both magnitude and significance (2.84% increase in indigenous premature birth 

incidence at 10% significance level versus 3.63% at 5% significance level, respectively). The 

effect of legal mine is now significant in (3), at the 5% level, increasing premature birth 

incidence among all births by 0.04% per mine. All other estimates remain insignificant. 

 

As for low Apgar score incidence, the only significant estimate in (1) was legal mine, 

increasing low Apgar incidence among all births by 0.02% per mine, significant at the 1% level. 
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In the separate mine-type models, legal mine is no longer significant, while the interaction 

between indigenous and legal mine in (3) is now significant at the 1% level, increasing low 

Apgar score incidence by 0.24% per legal mine. This result likely stems from relatively more 

legal mining occurring in municipalities with less indigenous reserves; while mining regulation 

helps, protected areas help more for such vulnerable populations. 
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Table A.5 Effect of illegal-only and legal-only mines on infant health outcomes 
      
Dep. Var. Birthweight  Premature Birth*100  Low Apgar Score*100 

 
  

      

Model (2) (3)  (2) (3)  (2) (3) 

Mine Type illegal Legal  illegal legal  illegal legal 

         

Indigenous -34.45** -39.13***  2.84* 2.84*  -0.49 -0.22  
(13.89) (13.92)  (1.46) (1.61)  (0.91) (0.97) 

         

Illegal mine 1.00   0.19   -0.13  

 (1.73)   (0.25)   (0.28)  

Legal mine  0.21   0.04**   -0.01 

  (0.35)   (0.02)   (0.03)  
        

Indigenous*Illegal mine -23.46***   -0.11   0.83   
(3.74)   (0.26)   (0.56)  

Indigenous*Legal mine  4.03***   0.04   0.24*** 

  (0.61)   (0.15)   (0.06) 

         

Delivery age 8.22*** 8.00***  -0.16*** -0.15***  -0.08*** -0.07*** 

 (0.31) (0.31)  (0.02) (0.02)  (0.02) (0.02) 

Married (%) 32.29*** 32.12***  -1.32*** -1.24***  -0.15 -0.34 

 (4.24) (4.05)  (0.33) (0.31)  (0.52) (0.49) 

Education 2 (%) 111.55*** 101.20***  -2.94*** -2.13**  -1.05 -0.86 

 (17.49) (16.34)  (1.04) (1.01)  (0.90) (0.89) 

Education 3 (%) 143.83*** 132.83***  -4.65*** -4.01***  -2.29** -1.92** 

 (17.14) (16.03)  (1.08) (1.04)  (0.92) (0.90) 

Education 4 (%) 151.31*** 141.34***  -6.76*** -6.14***  -2.49*** -2.16** 

 (17.33) (16.34)  (1.12) (1.07)  (0.96) (0.94) 

Education 5 (%) 113.71*** 106.11***  -6.83*** -6.35***  -3.12*** -2.75*** 

 (17.42) (16.47)  (1.16) (1.09)  (1.01) (0.99) 

GDP (R$/thousand people) -0.47 -0.48*  0.05** 0.05**  0.0006 0.005 

 (0.29) (0.28)  (0.02) (0.02)  (0.05) (0.04) 

Health spending (per 1k) -8.58 -11.22  -2.38 -2.54  -7.74*** -7.46*** 

 (18.94) (18.50)  (1.83) (1.82)  (2.87) (2.81) 

Education spending (R$/thousand people) 21.19 17.86  0.23 0.36  3.70** 3.55** 

 (13.55) (13.84)  (0.84) (0.82)  (1.80) (1.76) 

Bolsa spending (R$/thousand people) -6.52 -10.84  -0.88 -0.78  2.37 1.63 

 (26.92) (26.47)  (1.93) (1.85)  (4.12) (3.98) 

Population density (thousand people/km2) -102.02*** -112.33***  1.74** 1.85**  -7.54*** -7.33*** 

 (16.39) (18.31)  (0.81) (0.79)  (2.81) (2.75) 

ICU-equipped hospitals (#/thousand people) 253.07*** 214.00***  -1.73 -3.68  13.04 11.83 

 (67.27) (65.27)  (5.85) (5.50)  (10.81) (10.25) 

         

d2008 - 51.52***  - -  - 4.31 

  (12.44)      (6.65) 

d2009 - 48.80***  - -  - -2.91 

  (13.76)      (2.20) 

d2010 27.78* 49.37***  91.65*** 2.24  -1.57 22.86*** 

 (14.33) (12.53)  (0.88) (1.48)  (1.75) (3.36) 

d2011 36.24** 42.81***  -2.49** 0.88  -3.98 54.84*** 

 (15.19) (11.93)  (1.21) (0.93)  (2.59) (2.02) 

d2012 - 69.93***  - 2.21  - 1.71 

  (19.72)   (1.37)   (5.97) 

d2013 - -57.57***  - 1.30  - 11.78*** 

  (11.78)   (0.91)   (1.97) 

d2014 23.15* -36.44***  -5.02*** 5.40***  0.49 -0.70 

 (13.86) (9.89)  (1.50) (0.82)  (1.09) (1.79) 

d2015 -47.23*** 34.08  9.48*** -0.92  -2.20 -2.06 

 (10.18) (21.72)  (1.08) (1.00)  (1.74) (2.20) 

d2016 29.52* 96.28***  -5.97*** -5.27***  59.98*** -1.95** 

 (16.07) (7.73)  (1.81) (0.69)  (1.79) (0.88) 

d2017 - -  - -  - - 

         

         

Constant 2,856.65*** 2,880.57***  23.75*** 22.73***  16.98*** 16.70*** 

 (23.27) (22.09)  (1.66) (1.55)  (2.74) (2.61) 

         

         

Observations 244,086 267,013  174,129 188,628  229,616 251,644 

R-squared 0.0136 0.0125  0.0061 0.0062  0.0080 0.0081 

         
Notes: Birthweight is measured in grams. Premature birth is defined as occurring before 37 weeks. Low Apgar score indicates a 

value between 0-7 on a discrete scale between 0-10. Education attainment of the mother is categorized into 5 groups: 1 for 0 

years, 2 for 1-3 years, 3 for 4-7 years, 4 for 8-11 years, and 5 for 12+ years. All models include State-level fixed effects and 

employ Municipality-clustered standard errors. Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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A.6.2) Instrumental Variables 

To this point, I maintained the assumption that mines are exogenous from infant health measures. 

In the case that the number of illegal mines in a municipality is correlated with unobservable 

determinants of health, specifically birthweight, I consider several instrumental variable 

regressors. I derive 7 different instruments based on the average distance from a municipality’s 

set of Illegal mines to the nearest (point distance) marker of a geographic category. These 

include i) the country border of Brazil, ii) Amazonian state borders, iii) Amazonian municipality 

borders, iv) capital cities, v) federal highways, vi) the sum of a municipality’s neighbours’ 

highway distances, and vii) both (v) and (vi). In essence, these instruments capture the 

“remoteness” of an illegal mine. My hypothesis is that miners in more remote areas may act 

more recklessly with less fear of detection and subsequently release more pollution into the 

surrounding environment. With respect to the strength of the instruments, it could be argued that 

remoteness affects birthweight via reduced health care access and is thus correlated with the 

error term. However, I already control for health care in my models in two ways: i) the amount 

of health spending per capita, and ii) the number of ICU-equipped hospitals per 1,000 people.  

 

Table A.6 contains the estimates from my IV regressions. I observe two patterns across these 

models. First, the indigenous race indicator tends to be larger and significant when using broader 

definitions of remoteness (i.e., state and municipality borders) and the interaction term is smaller 

and insignificant. Second, when I scale the remoteness instrument down to the level of capital 

cities and federal highways, I find the indigenous indicator to have a smaller and often 

insignificant effect, while the coefficient on the interaction between indigenous and illegal mines 

become larger and more significant. Intuitively, the distance from a mine to a definitive location 

of activity (i.e., a city or a highway) may be a better indicator of remoteness than the arbitrary 

distance of a mine to the nearest border segment which could be completely uninhabited all the 

way across. 
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Table A.6 Birthweight outcomes using instrumental variables 
        
Dep. Var. Birthweight Birthweight Birthweight Birthweight Birthweight Birthweight Birthweight 

        

IV Country 

Border 

State 

Borders 

Municipality 

Borders 

Capital 

Cities 

Federal 

Highways 

Neighbour 

Highways 

Own & Neighbour 

Highways 

        

        

Indigenous -34.13 -48.61*** -35.46** -28.44* -27.88* -18.76 -27.50* 

 (21.44) (15.34) (16.54) (14.94) (15.38) (24.39) (15.38) 

        

Illegal mine 11.77 10.20 -11.71 -6.84 6.96 185.19 5.58 

 (8.95) (9.60) (15.64) (8.94) (9.35) (133.65) (9.32) 

Legal mine -0.02 -0.01 0.14 0.11* 0.01 -1.22 0.02 

 (0.06) (0.07) (0.11) (0.06) (0.07) (0.94) (0.07) 

        

Indigenous*Illegal mine -45.08 1.47 -20.76 -46.87*** -60.47** -242.01* -60.47** 

 (58.77) (27.31) (21.36) (15.68) (25.10) (131.34) (25.15) 

Indigenous*Legal mine 0.18 -0.13 0.01 0.19 0.29** 1.58* 0.29* 

 (0.34) (0.21) (0.18) (0.13) (0.14) (0.94) (0.15) 

        

Delivery age 8.22*** 8.23*** 8.21*** 8.21*** 8.21*** 8.28*** 8.21*** 

 (0.29) (0.30) (0.29) (0.29) (0.29) (0.30) (0.29) 

Married (%) 32.01*** 32.33*** 31.39*** 31.35*** 31.72*** 36.47*** 31.67*** 

 (4.04) (4.03) (4.05) (4.03) (4.00) (5.04) (4.00) 

Education 2 (%) 100.81*** 102.73*** 101.03*** 100.09*** 99.99*** 98.48*** 99.95*** 

 (17.21) (19.03) (17.12) (16.94) (16.99) (17.42) (17.00) 

Education 3 (%) 131.43*** 135.53*** 131.60*** 129.65*** 129.61*** 128.62*** 129.49*** 

 (17.84) (18.93) (17.30) (16.92) (17.06) (17.10) (17.056) 

Education 4 (%) 139.41*** 143.32*** 139.45*** 137.61*** 137.65*** 137.65*** 137.53*** 

 (17.98) (19.09) (17.57) (17.16) (17.28) (17.48) (17.28) 

Education 5 (%) 103.96*** 107.74*** 103.56*** 101.86*** 102.15*** 105.46*** 102.01*** 

 (17.99) (19.08) (17.56) (17.15) (17.28) (18.49) (17.28) 

GDP (R$/thousand people) -0.48* -0.45* -0.49* -0.51* -0.50* -0.38 -0.50* 

 (0.27) (0.27) (0.27) (0.27) (0.27) (0.72) (0.27) 

Health spending (per 1k) -11.54 -14.74 -7.37 -6.61 -9.11 -40.97 -8.75 

 (18.03) (18.13) (18.66) (18.47) (17.76) (61.72) (17.81) 

Education spending 

(R$/thousand people) 

13.33 12.91 13.23 13.45 13.49 14.17 13.50 

 (13.37) (13.46) (13.48) (13.44) (13.35) (18.82) (13.36) 

Bolsa spending (R$/thousand 

people) 

-4.91 -1.31 -12.07 -12.50 -8.23 46.38 -8.78 

 (27.16) (27.06) (27.797) (26.78) (26.72) (36.68) (26.80) 

Population density (thousand 

people/km2) 

-110.28*** -109.69*** -114.46*** -114.00*** -111.53*** -79.78*** -111.81*** 

 (18.11) (17.99) (19.45) (19.04) (18.38) (18.10) (18.46) 

ICU-equipped hospitals 

(#/thousand people) 

229.75*** 234.99*** 245.84*** 240.55*** 231.16*** 109.36 231.97*** 

 (65.86) (65.68) (67.53) (67.01) (65.79) (125.07) (65.82) 

        

Observations 270,534 270,534 270,534 270,534 270,534 270,534 270,534 

R-squared 0.0120 0.0118 0.0119 0.0117 0.0118 -0.0146 0.0118 

        

Under-Ident. Test 6.632*** 3.842** 8.209** 3.810* 5.072** 2.740* 6.740* 

P-value (0.010) (0.050) (0.0042) (0.0510) (0.0243) (0.0979) (0.0807) 

        

Weak-Ident. Test 5788.1 25,000 7972.2 26,000 21,000 713.629 11,000 

10% maximal IV size (7.03) (7.03) (7.03) (7.03) (7.03) (7.03) (7.56) 

        

Over-Ident. Test 0.000 0.000 0.000 0.000 0.000 0.000 6.447** 

P-value Eq. exactly 

ident. 

Eq. exactly 

ident. 

Eq. exactly 

ident. 

Eq. exactly 

ident. 

Eq. exactly 

ident. 

Eq. exactly 

ident. 

(0.0398) 

        
Notes: All instruments are distanced-based and use the average distance of a municipality's set of Illegal mines to the nearest 1) 

Brazilian border, 2) State border, 3) Municipality border (own), 4) Capital city (anywhere), and 5) Federal highway (anywhere). 

The IV for model (6) is the average of (5) for all of a municipality's neighbours, and model (7) uses the IVs from (5) and (6). 

Cluster-robust standard errors in parentheses: Year dummies are omitted, as otherwise the estimated covariance matrix of 

moment conditions is not of full rank. *** p<0.01, ** p<0.05, * p<0.1. 
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B. Chapter 3 Appendix 
 

B.1 – Regression Results for a Progressively More Rural Sample 

Table B.1 Regressions results with a progressively more rural sample, Model 1 - Math 
            
Municipality type Full sample Exclude 2 cities 

with largest pop. 

Exclude 5 cities 

with largest pop. 

Exclude 10 cities 

with largest pop. 

Rural only 

 (1) (1a) (1b) (1c) (1d) 

      

Wells (counts)      

All -0.642*** -0.591*** -0.564*** -0.559*** -0.558*** 
 (0.172) (0.179) (0.186) (0.188) (0.194) 

School      

School population 0.621** 0.313 0.589 0.779 0.827 
 (0.240) (0.361) (0.414) (0.598) (0.711) 

Average class size -0.010 0.007 0.019 0.019 0.017 

 (0.032) (0.042) (0.050) (0.054) (0.056) 
Authority funding -0.048* -0.043 -0.061** -0.062 -0.067* 

 (0.025) (0.027) (0.030) (0.039) (0.040) 
      

Constant 68.492*** 69.321*** 69.028*** 70.637*** 72.408*** 

 (3.705) (4.975) (5.470) (6.608) (7.018) 
      

Observations 2,418 1,481 1,258 1,110 1,044 

R-squared 0.815 0.770 0.763 0.758 0.755 

      Notes: Models include school year-level fixed effects and employ school-clustered standard errors. ‘All’ wells equal the sum of 

Active, Suspended, Abandoned, and Reclaimed wells. Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1 

 

 

 

Table B.2 Regressions results with a progressively more rural sample, Model 1 - Science 
            

Municipality type Full sample Exclude 2 cities 
with largest pop. 

Exclude 5 cities 
with largest pop. 

Exclude 10 cities 
with largest pop. 

Rural only 

 (3) (3a) (3b) (3c) (3d) 

      

Wells (counts)      
All -0.261* -0.259* -0.247 -0.253* -0.254 

 (0.151) (0.153) (0.156) (0.152) (0.154) 
School      

School population 0.290 -0.026 -0.044 0.102 0.119 

 (0.210) (0.280) (0.316) (0.456) (0.507) 
Average class size 0.006 0.015 0.017 0.024 0.013 

 (0.030) (0.040) (0.042) (0.045) (0.046) 

Authority funding -0.049** -0.043* -0.056** -0.060* -0.063* 
 (0.022) (0.024) (0.026) (0.035) (0.035) 

      

Constant 72.690*** 74.175*** 73.650*** 73.789*** 74.757*** 
 (3.104) (4.131) (4.434) (5.565) (5.854) 

      

Observations 2,423 1,481 1,251 1,104 1,048 
R-squared 0.805 0.758 0.739 0.739 0.738 

      Notes: Models include school year-level fixed effects and employ school-clustered standard errors. ‘All’ wells equal the sum of 

Active, Suspended, Abandoned, and Reclaimed wells. Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1 
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Table B.3 Mean wells by life cycle stage (Model 2) and total observations from a 

progressively rural sample of Alberta schools administering Provincial Achievement 

Tests in Math and Science, 2015-2019 
        
 Math  Science 
 

N Mean St. Dev.  N Mean St. Dev. 

Active Wells (# of wells within 4 km)        

 Full sample 2,418 5.57 20.60  2,423 5.27 20.04 

 Exclude 2 cities with largest pop. 1,481 8.42 25.27  1,481 7.95 24.61 

 Exclude 5 cities with largest pop. 1,258 9.27 26.54  1,251 8.78 25.89 

 Exclude 10 cities with largest pop. 1,110 10.27 28.07  1,104 9.72 27.39 

 Rural only 1,044 10.47 28.49  1,048 10.15 28.03 

Suspended Wells (# of wells within 4 km)        

 Full sample 2,418 3.73 15.05  2,423 3.64 14.96 

 Exclude 2 cities with largest pop. 1,481 5.45 17.93  1,481 5.31 17.83 

 Exclude 5 cities with largest pop. 1,258 6.02 18.96  1,251 5.90 18.90 

 Exclude 10 cities with largest pop. 1,110 6.74 20.06  1,104 6.60 20.00 

 Rural only 1,044 7.00 20.60  1,048 6.89 20.47 

Abandoned Wells (# of wells within 4 km)        

 Full sample 2,418 2.59 9.58  2,423 2.53 9.46 

 Exclude 2 cities with largest pop. 1,481 3.47 11.28  1,481 3.37 11.14 

 Exclude 5 cities with largest pop. 1,258 3.82 12.06  1,251 3.72 11.94 

 Exclude 10 cities with largest pop. 1,110 4.21 12.77  1,104 4.10 12.64 

 Rural only 1,044 4.39 13.12  1,048 4.29 12.94 

Reclaimed Wells (# of wells within 4 km)        

 Full sample 2,418 2.21 8.70  2,423 2.15 8.55 

 Exclude 2 cities with largest pop. 1,481 2.93 10.41  1,481 2.83 10.23 

 Exclude 5 cities with largest pop. 1,258 3.14 11.18  1,251 3.01 11.01 

 Exclude 10 cities with largest pop. 1,110 3.42 11.86  1,104 3.27 11.67 

 Rural only 1,044 3.58 12.20  1,048 3.42 11.96 

        
Notes: Models include school year-level fixed effects and employ school-clustered standard errors. ‘All’ wells equal the sum of 

Active, Suspended, Abandoned, and Reclaimed wells. Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1 
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Table B.4 Regressions results with a progressively more rural sample, Model 2 - Math 
            
Municipality type Full sample Exclude 2 cities 

with largest pop. 
Exclude 5 cities 
with largest pop. 

Exclude 10 cities 
with largest pop. 

Rural only 

 (2) (2a) (2b) (2c) (2d) 

      

Wells (counts)      
Active -0.693*** -0.655*** -0.643*** -0.637*** -0.639*** 

 (0.148) (0.154) (0.157) (0.158) (0.165) 

Suspended -0.642*** -0.609*** -0.615*** -0.603*** -0.609*** 
 (0.160) (0.167) (0.170) (0.171) (0.178) 

Abandoned -0.763*** -0.720*** -0.714*** -0.708*** -0.711*** 

 (0.151) (0.159) (0.162) (0.163) (0.170) 
Reclaimed -0.399 -0.315 -0.255 -0.242 -0.238 

 (0.302) (0.330) (0.323) (0.323) (0.326) 

School      
School population 0.616** 0.316 0.582 0.757 0.801 

 (0.240) (0.362) (0.414) (0.598) (0.710) 

Average class size -0.009 0.008 0.021 0.021 0.019 
 (0.032) (0.042) (0.050) (0.054) (0.056) 

Authority funding -0.047* -0.041 -0.059** -0.060 -0.065 

 (0.025) (0.027) (0.030) (0.039) (0.041) 
      

Constant 68.421*** 69.321*** 69.433*** 71.117*** 72.982*** 

 (3.478) (4.553) (4.915) (6.080) (6.463) 
      

Observations 2,418 1,481 1,258 1,110 1,044 
R-squared 0.816 0.770 0.764 0.759 0.756 

      Notes: Models include school year-level fixed effects and employ school-clustered standard errors. Cluster-robust standard errors 

in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

Table B.5 Regressions results with a progressively more rural sample, Model 2 - Science 
            
Municipality type Full sample Exclude 2 cities 

with largest pop. 
Exclude 5 cities 
with largest pop. 

Exclude 10 cities 
with largest pop. 

Rural only 

 (4) (4a) (4b) (4c) (4d) 

      

Wells (counts)      

Active -0.260* -0.295** -0.293** -0.294** -0.292* 

 (0.151) (0.148) (0.147) (0.145) (0.149) 
Suspended -0.192 -0.234 -0.250 -0.244 -0.240 

 (0.163) (0.163) (0.160) (0.159) (0.163) 

Abandoned -0.316** -0.365** -0.369** -0.370** -0.366** 
 (0.155) (0.151) (0.151) (0.149) (0.153) 

Reclaimed -0.168 -0.054 -0.028 -0.034 -0.049 

 (0.291) (0.268) (0.264) (0.265) (0.269) 
School      

School population 0.287 -0.018 -0.046 0.090 0.103 

 (0.210) (0.281) (0.316) (0.455) (0.507) 

Average class size 0.007 0.017 0.020 0.027 0.016 

 (0.030) (0.040) (0.042) (0.045) (0.046) 

Authority funding -0.048** -0.042* -0.054** -0.058* -0.060* 
 (0.022) (0.024) (0.026) (0.035) (0.035) 

      

Constant 72.287*** 73.811*** 73.619*** 73.716*** 74.652*** 
 (3.089) (4.013) (4.285) (5.475) (5.771) 

      

Observations 2,423 1,481 1,251 1,104 1,048 
R-squared 0.805 0.759 0.740 0.741 0.739 

      Notes: Models include school year-level fixed effects and employ school-clustered standard errors. Cluster-robust standard errors 

in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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B.2 – Robustness Checks 1: Instrumental Variables Regression 

I begin by matching well locations with type of agreement. The Alberta government only 

maintains a database of currently active Agreements, so I am unable to match older wells with 

the Agreements they were once associated with. Therefore, I elect to only consider Agreements 

active during the years that match my test scores (2015-2019) with the goal of estimating nearby 

well activity in the current observation year. I formally define the instrument as the mean age of 

contemporary Agreements within 4 km of schools. This definition, unlike other structures of 

variables considered, accounts for both the extensive and intensive margins of oil well activity. 

Using counts or year-sums of Agreements would combine young leases with older leases, but 

one can reasonably expect i) a delay between an entity being granted a lease and the beginning of 

extraction activity, and ii) an increase in productivity up to some maximum extraction level. In 

contrast, the mean age of Agreements from 2015-2019 is strictly increasing, with greater weight 

given to leases which began closer to 2015 than 2019. In total, there are 793 PNG agreements 

and 18 OS agreements in my sample. Figure B.1 depicts a zoomed-in area from Figure 3.1, that 

shows Agreements of various sizes (depicted as purple areas with black boundaries) within the 4 

km radius (depicted as a black circle) of a school. Note that any Agreement that falls at least 

partially within a given radius is included in the associated mean age calculation. 
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Figure B.1 An example of PNG and OS agreements, 

within 4 km of a school, used as an instrumental variable. 

 

 Table B.6 contains the estimates from IV estimation. As I only have one instrument, I can 

only use Model (1), with its singular oil well variable, for IV estimation. For math, the negative 

association of wells on test scores via IV estimation (column 1v), compared to OLS (1), is larger 

(-2.45 vs -0.64) but lower in significance (at the 5% level vs the 1% level). As previously stated 

in Section 3.5, I believe the OLS estimates to be closer to the true effect given my sample size. 

If, in future, I could obtain significantly more observations (e.g., more years or more schools), 

then I may reach a threshold where my IV outperforms OLS. As for science, the coefficient of 

All wells from IV estimation (column 3v) is similarly larger (-1.29 vs 0.26), but no longer 

significant. For both IV estimations, I can reject the nulls of under-identification and weak 

identification. That is, the instrumental variable chosen is not only relevant, but also not weakly 

correlated with the included endogenous variables. These results substantiate my earlier findings 

of mean test scores, math in particular, being negatively associated by the presence of oil wells. 
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Table B.6 IV regression - Math and Science 
        
Subject Math  Science 

Column (1v)  (3v) 

    

Wells (counts)    

All -2.45**  -1.29 

 (1.05)  (0.84) 
School    

School population 0.62**  0.29 

 (0.24)  (0.21) 
Average class size -0.01  0.01 

 (0.03)  (0.03) 

Authority funding -0.07**  -0.06** 
 (0.03)  (0.02) 

    

Observations 2,418  2,423 
    

Under-Ident. Test 16.50  15.98 

P-value 0.0000  0.0001 
    

Weak-Ident. Test 82.52  78.70 

10% maximal IV size 16.54  16.20 
    

Over-Ident. Test 0.000  0.000 

P-value Eq. exactly ident.  Eq. exactly ident. 

    Notes: Models include school year-level fixed effects and employ 

school-clustered standard errors. ‘All’ wells equal the sum of Active, 

Suspended, Abandoned, and Reclaimed wells. Cluster-robust 

standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

B.3 – Robustness Check 2: Controlling for Well Ages 

Tables B.7 and B.8 contain well-age robustness check results for math and science, respectively. 

For the reader’s convenience, I repeat the main results of the paper (reported in Section 3.4) in 

columns (1), (2), (3), and (4). For math, columns (1e) and (2e) include mean well age as an 

additional control variable (columns (3e) and (4e) for science), and columns (1f) and (2f) include 

oldest well age (columns (3f) and (4f) for science). While the coefficient for each age control 

variable is negative, neither is ever significant. By a small margin, well coefficients are 

uniformly larger when including mean well age and uniformly smaller when including oldest 

well age. Significance levels of well coefficients only vary for science, and only for i) Active, 

which increases from the 10% level in column (4) to the 5% level in column (4e), and ii) 

Abandoned, which decreases from the 5% level in column (4) to the 10% level in column (4f). 

As these differences are not economically significant, my findings appear robust to well ages. 
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Table B.7 Robustness Check: Well Age – Math 
              
Well age  Well age: 

mean 

Well age: 

oldest 

 Well age: 

mean 

Well age: 

oldest 

Column (1) (1e) (1f) (2) (2e) (2f) 
       

Wells (counts)       

All -0.64*** -0.66*** -0.61***    
 (0.17) (0.19) (0.18)    

Active    -0.69*** -0.73*** -0.66*** 

    (0.15) (0.17) (0.15) 
Suspended    -0.64*** -0.67*** -0.59*** 

    (0.16) (0.18) (0.16) 

Abandoned    -0.76*** -0.80*** -0.72*** 
    (0.15) (0.17) (0.16) 

Reclaimed    -0.40 -0.40 -0.32 

    (0.30) (0.30) (0.30) 
Well age       

Mean  -0.04   -0.07  

  (0.15)   (0.15)  
Oldest   -0.21   -0.25 

   (0.19)   (0.19) 

School       
School population 0.62** 0.62** 0.64*** 0.62** 0.62** 0.64*** 

 (0.24) (0.24) (0.24) (0.24) (0.24) (0.24) 

Average class size -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 
 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Authority funding -0.05* -0.05* -0.05* -0.05* -0.05* -0.05* 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 
       

Constant 68.49*** 69.18*** 72.06*** 68.42*** 69.91*** 72.69*** 

 (3.71) (4.80) (4.81) (3.48) (4.56) (4.68) 
       

Observations 2,418 2,418 2,418 2,418 2,418 2,418 

R-squared 0.82 0.82 0.82 0.82 0.82 0.82 

       Notes: Models include school year-level fixed effects and employ school-clustered standard 

errors. ‘All’ wells equal the sum of Active, Suspended, Abandoned, and Reclaimed wells. 

Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table B.8 Robustness Check: Well Age – Science 
              
Well age  Well age: 

mean 

Well age: 

oldest 

 Well age: 

mean 

Well age: 

oldest 

Column (3) (3e) (3f) (4) (4e) (4f) 
       

Wells (counts)       

All -0.26* -0.33* -0.25*    
 (0.15) (0.17) (0.15)    

Active    -0.26* -0.36** -0.25* 

    (0.15) (0.16) (0.15) 
Suspended    -0.19 -0.28 -0.18 

    (0.16) (0.17) (0.17) 

Abandoned    -0.32** -0.40** -0.31* 
    (0.15) (0.16) (0.16) 

Reclaimed    -0.17 -0.18 -0.15 

    (0.29) (0.29) (0.29) 
Well age       

Mean  -0.04   -0.07  

  (0.15)   (0.15)  
Oldest   -0.21   -0.25 

   (0.19)   (0.19) 

School       
School population 0.30 0.29 0.29 0.30 0.29 0.30 

 (0.21) (0.21) (0.21) (0.21) (0.21) (0.21) 

Average class size 0.01 0.01 0.01 0.01 0.01 0.01 
 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Authority funding -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
       

Constant 75.96*** 73.56*** 72.29*** 76.10*** 73.42*** 75.96*** 

 (4.12) (4.09) (3.09) (4.03) (4.10) (4.12) 
       

Observations 2,423 2,423 2,423 2,423 2,423 2,423 

R-squared 0.81 0.80 0.81 0.81 0.81 0.81 

       Notes: Models include school year-level fixed effects and employ school-clustered standard 

errors. ‘All’ wells equal the sum of Active, Suspended, Abandoned, and Reclaimed wells. 

Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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B.4 – Robustness Check 3: Controlling for Test Attendance 

Table B.9 contains test attendance robustness check results for math and science. Comparing 

results from columns (1-4) to columns (1g-4g), respectively, the percentage of students writing 

does not have a significant effect on test score outcomes for either subject. 

Table B.9 Robustness Check: Controlling for Test Attendance - Math and Science 
                    
Subject Math  Science 

Test Attendance  Attendance l Attendance   Attendance  Attendance 

          
Column (1) (1g) (2) (2g)  (3) (3g) (4) (4g) 

          

Wells (counts)          

All -0.64*** -0.64***    -0.26* -0.26*   
 (0.17) (0.17)    (0.15) (0.15)   

Active   -0.69*** -0.69***    -0.26* -0.26* 

   (0.15) (0.15)    (0.15) (0.15) 
Suspended   -0.64*** -0.64***    -0.19 -0.19 

   (0.16) (0.16)    (0.16) (0.16) 

Abandoned   -0.76*** -0.76***    -0.32** -0.32** 
   (0.15) (0.15)    (0.15) (0.15) 

Reclaimed   -0.40 -0.39    -0.17 -0.17 
   (0.30) (0.30)    (0.29) (0.29) 

Test Attendance          

Percent of enrolled  -0.02  -0.03   0.01  0.01 
  (0.04)  (0.04)   (0.03)  (0.03) 

School          

School population 0.62** 0.61** 0.62** 0.61**  0.29 0.29 0.29 0.29 
 (0.24) (0.24) (0.24) (0.24)  (0.21) (0.21) (0.21) (0.21) 

Average class size -0.01 -0.01 -0.01 -0.01  0.01 0.01 0.01 0.01 

 (0.03) (0.03) (0.03) (0.03)  (0.03) (0.03) (0.03) (0.03) 
Authority funding -0.05* -0.05* -0.05* -0.05*  -0.05** -0.05** -0.05** -0.05** 

 (0.03) (0.03) (0.03) (0.03)  (0.02) (0.02) (0.02) (0.02) 

          
Constant 68.49*** 70.44*** 68.42*** 70.58***  72.69*** 71.88*** 72.29*** 71.64*** 

 (3.71) (4.95) (3.48) (4.78)  (3.10) (4.02) (3.09) (4.02) 

          
Observations 2,418 2,418 2,418 2,418  2,423 2,423 2,423 2,423 

R-squared 0.82 0.82 0.82 0.82  0.80 0.80 0.81 0.81 

          Notes: Models include school year-level fixed effects and employ school-clustered standard errors. ‘All’ wells 

equal the sum of Active, Suspended, Abandoned, and Reclaimed wells. Cluster-robust standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

B.5 – Robustness Check 4: Truncating Sample at Zero 

Table B.10 contains results for the zero-truncated estimations (1h-4h). For math, total 

observations N decrease from 2,418 to 1,048 moving from the full sample to zero truncation. 

Coefficients for All, Active, Suspended, and Abandoned wells decrease by about 0.04 percentage 

points each, and all remain significant at the 1% level. The coefficient of school population, 

while still significant at the 5% level, increases from about 0.62 to 0.90 in the zero-truncated 

models, while authority funding is no longer significant. 
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With respect to science, observations decrease from 2,423 to 1,062. The coefficient for 

All wells marginally decreases from -0.26 in column (3) to -0.25 in column (3h), still significant 

at the 10% level. Similarly, Active and Abandoned well coefficients both marginally decrease in 

size (-0.26 to -0.25 and -0.32 to -0.30, respectively), as well as significance (10% level to 

insignificant and 5% level to 10% level, respectively). These findings indicate that the negative 

associations of wells with science test scores largely stems from whether a school has a nearby 

well or not, and not the number of wells. And similar to math, authority funding becomes 

insignificant to science test score outcomes when truncating at zero. Overall, while there are 

slight variations observed, my original results appear robust to zero-truncation. 

 

Table B.10 Robustness Check: Truncating Sample at Zero - Math and Science 

                    

Subject Math  Science 

No 0s  No 0s  
 

No 0s   No 0s  No 0s 

Model (1) (1h) (2) (2h)  (3) (3h) (4) (4h) 

          

Wells (counts)          
All -0.64*** -0.59***    -0.26* -0.25*   

 (0.17) (0.17)    (0.15) (0.15)   

Active   -0.69*** -0.65***    -0.26* -0.25 

   (0.15) (0.15)    (0.15) (0.15) 

Suspended   -0.64*** -0.59***    -0.19 -0.16 

   (0.16) (0.16)    (0.16) (0.17) 
Abandoned   -0.76*** -0.72***    -0.32** -0.30* 

   (0.15) (0.15)    (0.15) (0.16) 
Reclaimed   -0.40 -0.32    -0.17 -0.15 

   (0.30) (0.30)    (0.29) (0.28) 

School          
School population 0.62** 0.90** 0.62** 0.90**  0.29 0.20 0.29 0.20 

 (0.24) (0.37) (0.24) (0.37)  (0.21) (0.34) (0.21) (0.34) 

Average class size -0.01 -0.02 -0.01 -0.02  0.01 0.01 0.01 0.01 
 (0.03) (0.05) (0.03) (0.05)  (0.03) (0.05) (0.03) (0.05) 

Authority funding -0.05* 0.00 -0.05* 0.01  -0.05** -0.03 -0.05** -0.02 

 (0.03) (0.03) (0.03) (0.03)  (0.02) (0.03) (0.02) (0.03) 
          

Constant 68.49*** 72.26*** 68.42*** 71.89***  72.69*** 75.53*** 72.29*** 74.40*** 

 (3.71) (7.02) (3.48) (6.37)  (3.10) (6.03) (3.09) (6.09) 
          

Observations 2,418 1,048 2,418 1,048  2,423 1,062 2,423 1,062 

R-squared 0.82 0.77 0.82 0.77  0.80 0.74 0.81 0.75 

          Notes: Models include school year-level fixed effects and employ school-clustered standard errors. ‘All’ wells 

equal the sum of Active, Suspended, Abandoned, and Reclaimed wells. Cluster-robust standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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B.6 – Robustness Check 5: Controlling for Average Well Distances 

Table B.11 contains average well distance robustness check results for math and science. 

Comparing the previous results in columns (1h-4h) to the new results in respective columns (1i-

4i), I do not observe a significant coefficient of average well distance for either mean test score 

regressions. This outcome may be caused by the fact that well pollution exposure is not limited 

to the time spent at school. The location of any given student’s home (which I do not know) may 

be closer or farther away from any nearby well in the sample. 

 

Table B.11 Robustness Check: Controlling for Average Well Distance in Sample 

Truncated at Zero - Math and Science 
                    
Subject Math  Science 

Well distance No 0s No 0s: Avg. 

well dist. 

No 0s No 0s: Avg. 

well dist. 

 No 0s No 0s: Avg. 

well dist. 

No 0s No 0s: Avg. 

well dist. 
Model (1h) (1i) (2h) (2i)  (3h) (3i) (4h) (4i) 

          

Wells (counts)          
All -0.59*** -0.58***    -0.25* -0.24   

 (0.17) (0.17)    (0.15) (0.15)   

Active   -0.65*** -0.63***    -0.25 -0.24 
   (0.15) (0.14)    (0.15) (0.16) 

Suspended   -0.59*** -0.57***    -0.16 -0.16 

   (0.16) (0.16)    (0.17) (0.17) 
Abandoned   -0.72*** -0.70***    -0.30* -0.29* 

   (0.15) (0.15)    (0.16) (0.16) 

Reclaimed   -0.32 -0.31    -0.15 -0.14 
   (0.30) (0.30)    (0.28) (0.28) 

Well Distance          

Average  -0.01  -0.01   -0.01  -0.01 
  (0.01)  (0.01)   (0.01)  (0.01) 

School          

School population 0.62** 0.61** 0.62** 0.61**  0.29 0.29 0.29 0.29 
 (0.24) (0.24) (0.24) (0.24)  (0.21) (0.21) (0.21) (0.21) 

Average class size -0.01 -0.01 -0.01 -0.01  0.01 0.01 0.01 0.01 

 (0.03) (0.03) (0.03) (0.03)  (0.03) (0.03) (0.03) (0.03) 
Authority funding -0.05* -0.05* -0.05* -0.05*  -0.05** -0.05** -0.05** -0.05** 

 (0.03) (0.03) (0.03) (0.03)  (0.02) (0.02) (0.02) (0.02) 

          
Constant 68.49*** 70.44*** 68.42*** 70.58***  72.69*** 71.88*** 72.29*** 71.64*** 

 (3.71) (4.95) (3.48) (4.78)  (3.10) (4.02) (3.09) (4.02) 

          
Observations 1,048 1,048 1,048 1,048  1,062 1,062 1,062 1,062 

R-squared 0.82 0.82 0.82 0.82  0.80 0.80 0.81 0.81 

          Notes: Models include school year-level fixed effects and employ school-clustered standard errors. ‘All’ wells 

equal the sum of Active, Suspended, Abandoned, and Reclaimed wells. Cluster-robust standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
 

 

 


