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Abstract 

The rheology of asphalt binders is an important factor in the design and construction of 

roads. As polymer modification is now often required to meet performance demands, the 

rheological behaviour of the binders has become increasingly complex. Within the past 

decade, a new method to evaluate these binders and their viscoelasticity has emerged – the 

Multiple Stress Creep Recovery (MSCR) test.  

This thesis introduces a simple, lowest-order rheological model — the Standard Linear Fluid 

(SLF) model — that correctly predicts the MSCR response. It is shown that the SLF 

parameters can be obtained via a frequency sweep (involving small deformations) with a 

Dynamic Shear Rheometer. Furthermore, these parameters can be used to distinguish 

between polymer-modified and unmodified asphalts, just as a MSCR test can.   

Although the SLF model has all the correct qualitative features, it significantly under-predicts 

the amount of strain that was recovered in an MSCR test. This discrepancy is attributed to 

the non-linearity of the material properties. Specifically, the SLF model parameters are 

determined from small-strain frequency sweeps, while the MSCR test involves large 

deformations — when non-linearities in material properties begin to appear.  

An adjustment was made to the elastic element of the SLF model to account for non-linearity 

in the form of a hyperelastic Mooney-Rivlin solid. This improved the prediction for the 

recovery portion of the MSCR test considerably, but still not enough to agree with the 

experimental results at the cost of two additional parameters.  
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Chapter 1:  Introduction 

1.1  Asphalt Usage and Demand 

Rheology is the study of how materials deform and flow under applied forces. In this thesis, 

the rheological properties of “asphalt binder,” a material commonly used in road 

construction and preservation, will be examined. The process of paving roads requires 

mixing asphalt binder with various sizes of aggregates (i.e. small pieces of rocks) to form 

“asphalt concrete.” The binder in this mixture acts as a glue and typically accounts for 

(roughly) 5% of the total weight by mass. As the binder is extremely viscous, it must be 

sufficiently heated to allow for a coating over the aggregates. After the mixture is formed and 

laid down as paved road, it is allowed to cool and ‘set,’ so that the road can gain the elasticity 

needed to resist breaking down under traffic loads. Both the viscosity and elasticity of the 

binder are crucial rheological parameters that need to be considered and adjusted when 

designing any roadway. In Canada alone, there are over 1.1 million kilometers of two-lane 

equivalent roads, of which approximately 40% is paved [1]. Additionally, there are nearly 7 

million kilometers or roadway in the US, of which approximately 95% is paved [2], [3]. 

Clearly a substantial volume of asphalt binder is required to build and maintain the vast road 

networks across North America. With this idea in mind, it is important to realize that not all 

asphalt binders should have the same rheological properties; they must be tailored for their 

specific application (e.g. different ranges of temperature or traffic loads).   

Currently, the most common method of evaluating and distinguishing asphalt binders from 

each other is known as the Performance Grading (PG) system. A PG characterization is 

specified by two temperatures: hot and cold. Thus, a material identified as PG 58-28 has been 

determined to be suitable for road (not air) temperatures between +58°C and −28°C. 

Naturally, different locations experience different climates. Therefore, the location of a 

roadway is often the determining factor for the type of binder that is necessary for the job. It 

is reasonable to expect that a road constructed in the desert climate of Arizona requires 

different asphalt properties than one constructed in the frigid regions in Northern Canada. 

To pave roads across such extremes of climates, it is clear that the rheology of the asphalt 

(the glue which binds together the rocks) must be well understood. However, on closer 
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examination of how material testing has progressed over the past decades, one realizes that 

the PG (Performance Grading) system, although clearly an attempt at scientific rigor, has 

been quite superficial in its characterization of asphalt binder rheology.  

1.2  Origins of Asphalt Grading 

The first known method of experimental asphalt grading was adopted in the early 1900’s by 

the American Society for Testing Materials (ASTM), Committee D04, for road and paving 

materials [4]. In this time period, the usage of bituminous and tar products for roads was 

steadily increasing. As motorized vehicles were becoming more popular across America, the 

demand for roads that could support vehicles that were much faster and heavier than horse 

carriages increased dramatically. At the time, the bituminous and tar materials used as 

binders in road construction had also other applications, such as roofing and waterproofing 

[4]. The development of the “Penetration test” was done in part to determine what 

application a given asphalt was suitable for. This test, quite simply, measures how deep a 

needle of a certain weight (100g) penetrates a sample over a fixed duration of time (5s) at 

25°C [5]. The penetration depth is loosely correlated with the viscosity of the binder: less 

depth is equated to higher viscosity. However, this correlation is only empirical, and the test 

is not performed at temperatures that road surfaces typically experience.  

The D04 Committee, having recognized the shortcomings of the penetration test, developed 

Viscosity Grading in the 1960’s, although the methods were not adopted by ASTM until 1975 

[4]. Viscosity testing measures and converts the time it takes a sample to fill a calibrated 

capillary into a viscosity (assuming, inherently, that the material is Newtonian). Two test 

methods were developed: viscosity of asphalts by vacuum capillary viscometer and 

kinematic viscosity (gravity induced) measurement [6], [7]. These tests take place at 60°C 

and 135°C respectively. The measuring of a viscosity parameter at approximate road surface 

and mixing temperatures allow for better characterization of asphalt binders. Additionally, 

when combined with Penetration Grading, some information is gained over a large range of 

temperatures. However, no information on the performance of the binders in cold 

temperatures can be obtained using either method.   
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There are some similarities between the Penetration and Viscosity protocols, namely the 

evaluation of the binder before and after ageing. Ageing is a term used to describe the 

oxidation process that the asphalt undergoes over time. The terminology often used together 

with ageing is “hardening.” Although this may provide an intuitive description of how the 

material has changed, no quantification of the performance of a binder can be provided by 

such terminology. To say one binder sample is “harder” than another does not always 

indicate how they will perform relative to each other. In addition, samples with similar 

penetration and viscosity values could perform quite differently in the field. Obviously, it is 

difficult to predict the performance of materials via needle or capillary tests that do not 

capture what occurs in the field.  Although viscosity is a fundamental engineering parameter, 

clearly there was a gap in the ability to characterize the rheology of these materials, 

especially at the conditions they were expected to perform in. This gap would eventually be 

addressed using rheometers as advancements in instrumentation were made.   

1.3  Performance Grading 

1.3.1  Development of Performance Grading 

As mentioned earlier, the Performance Grading (PG) system provides hot and cold 

temperature limits for an asphalt binder.  This system was developed during the 1980’s and 

1990’s by the Strategic Highway Research Program (SHRP), specifically for performance-

based asphalt binder tests. It was adopted as standard protocol for evaluating asphalt 

binders in 1998, replacing the penetration and viscosity grading systems [4].  

In the PG system, a dynamic shear rheometer (DSR) is used to evaluate the viscous and 

elastic properties of the binder at the high temperature limit [8]. At low-end temperatures, 

a bending beam rheometer (BBR) is used to measure the stiffness and ability to relax stress 

in the binder [9]. These rheometers introduced a significant improvement in the way 

materials were characterized, as they provided direct rheological information (stresses as 

functions of strains and rates of strain) instead of correlations (depth of a needle, time to 

flow in capillary). Additionally, binders could now be tested in the entire temperature range 

of practical interest. This temperature range is expressed in the grading designation (e.g. the 

PG 58-28 that was discussed earlier).  
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Grading designations in the PG system are separated by a 6°C intervals for both the high and 

low temperature limits. The high-end temperatures begin at 46°C and increase up to 82°C, 

while the low-end temperatures range from −10°C to −46°C. Figure 1.1 shows the possible 

combinations of PG grades recognized in the AASHTO M320 PG Specification Table [10]. It is 

worth noting that not all grade combinations in the range listed are possible. For example, 

there is no listing for a PG 76-46. Typically, a hotter high-end temperature is paired with a 

warmer low-end temperature (e.g. PG 76-16). This is because the properties that let binders 

perform better in hotter weather (“stiff,” more difficult to deform) are also undesirable for 

colder weather (too “stiff” and can lead to cracking in cold weather). These opposing 

conditions force road designers to consider both ends of the weather extreme when 

balancing out expected asphalt binder performance. A short briefing of the protocols used in 

PG testing will outline how designers of the PG standard attempt to accomplish this and 

where they ultimately fall short in characterizing asphalt binder rheology. 

 

Figure 1.1 PG Specification Table M320. Used for outlining requirements needed to grade 
an asphalt. The first two rows outline the possible grades that can be given to an asphalt 
binder. The remainder of the table shows a temperature requirement corresponding to a 
specific test (rows) for a specific PG grade (columns).  
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1.3.2  Temperature Limit Determinations 

The PG system is a protocol for determining the appropriate temperature at which an asphalt 

should function.  It is based on two notions:  

• An asphalt should be sufficiently “stiff” to function as a binder.  

• Generally, an asphalt becomes less “stiff” as the temperature is increased.   

The aim of the PG system is therefore to identify the temperatures at which the asphalt 

meets its “minimum stiffness requirement” for the high temperature limit and “maximum 

stiffness requirement” for the low temperature limit. A sketch of the principle behind the 

PG system is shown for the high limit in Figure 1.2 below: 

 

Figure 1.2  A sketch outlining the basis of the PG system high temperature determination.  

To determine the high temperature limit, a DSR (dynamic shear rheometer) is used with an 

angular frequency of 10 rad/s at varying temperatures [8]. Like the Penetration/Viscosity 

system, this protocol is performed before and after ageing. The limiting temperature is 

selected from the PG temperature that meets the minimum stiffness requirement at both 

ageing conditions.  

This limiting temperature is intended to serve as an estimate to how well the material will 

resist against “rutting”. Rutting is the term used to describe the permanent deformation from 

traffic loads into a pavement structure, as shown in Figure 1.3. In order to resist rutting, a 

binder should be stiff enough that it does not deform a significant amount under traffic loads 

and have some elasticity to recover the small amount of deformation that cannot be 
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prevented. However, as we will discuss shortly, there is reason to believe that this high 

temperature limit is a bad predictor of rutting and that another testing method exists that 

predicts rutting more accurately. 

 

Figure 1.3  An example of extreme rutting in a pavement structure [11].  

To determine the low temperature limit, a BBR (bending beam rheometer) is utilized on 

material that has undergone further ageing [9]. The additional oxidizing is done in part so 

that BBR testing is performed under conditions that mimics the long-term oxidation of roads 

that become susceptible to cracking. Measurements from the BBR identify the stiffness and 

the material’s ability to relax stress through a creep test under a 100g load. The limiting 

temperature is selected as the PG temperature that meets the maximum stiffness (and a 

minimum deflection rate) requirement after 60s of loading. This limiting temperature 

estimates when a binder will exhibit thermal cracking. 

The PG system appears to be more scientific than the traditional penetration-viscosity tests.  

However, on closer inspection, this protocol turns out to be a misrepresentation of the 

principles of rheology. 
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1.4  Shortcomings of PG Designations 

Current asphalt binder testing protocol uses the DSR and BBR to gather a small amount of 

rheological information in the temperature range that the material is expected to perform 

in. While this may seem adequate enough to ensure materials are being evaluated for varying 

weather, there are problems with using temperature as the basis for performance that need 

to be addressed.  

To summarize both the high and low temperature limit procedures: only one angular 

frequency/loading input is used per rheometer, while temperature is varied until a specific 

failing criterion is met. In a way, the PG system is just an extension of the Pen/Visc system. 

Of course, using a machine to control the shearing and deforming of a sample while 

measuring the response in real time is a significant improvement over correlating the depth 

that a needle penetrates. However, by limiting these machines to just one rate or load, we 

are not fully utilizing the machine to understand the material the best we can. In this sense, 

the PG system is essentially trusting these single inputs to accurately predict performance, 

just as the Pen/Visc system previously did. 

Furthermore, the analysis performed by SHRP in developing the PG system was largely 

based on “neat” (unmodified) asphalts [12]. During the transition from the Pen/Visc testing 

to PG, asphalt binders were becoming increasingly “modified.” In this context, the 

‘modification’ of an asphalt binder is the addition of chemicals that affect its performance. 

Figure 1.4 shows a table of modified and unmodified PG designations. Both value-adding and 

subtracting additives exist in the asphalt industry. For example, a product may meet 

specification for a PG 58-28 with a true grade (predicted fail temperatures) of PG 62-32. At 

the high-end, there is 4°C of extra performance that is not reflected in the reported PG grade. 

To save costs, a supplier may add some form of diluent that reduces the true grade to a PG 

59-30. In this case, the binder still meets the specification for a PG 58-28, but the integrity 

and rheological performance of the binder has been compromised. Specifically, the addition 

of diluent will likely hinder the pavement performance as it offers no elasticity to the binder. 

This results in a product the performs worse than its PG designation. 
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Figure 1.4  A table classifying PG designations based on whether they are modified [13].  

On the other hand, there are instances where the product needs to be enhanced. The most 

common way of achieving this is by using polymers designed to improve low-end 

performance. Polymer modified asphalts (PMA) are widely used across North America 

because they can improve the low temperature grade without sacrificing a grade on the high 

end. In general, additives that help one side of the temperature grade will compromise the 

other. However, a field comparison between PMA and neat PG 64-22 showed the PMA 

resisted rutting and showed less susceptibility to thermal cracking than the unmodified 

version of the same grade [14], [15]. Other studies demonstrated that PMA has less 

temperature susceptibility than neat asphalts at both high and low temperatures [16], [17]. 

It is clear from these studies that PMA performance can be superior to neat asphalts despite 

no indication from their PG grades. 

This exposes a problem in evaluating asphalt binders using the PG system as it was not 

designed for modified asphalts. In particular, the grade designations do not reliably predict 

better performance. High-end temperature limits do not accurately predict which material 

will resist rutting to a greater degree. Likewise, low-end limits do not showcase the enhanced 

ability of PMA to resist thermal cracking compared to neat asphalts. The methodology of the 

PG system to evaluate a material based on performance at temperature ranges allows for 
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discrepancies to exist within the intervals. When deciding on performance, if the choice 

between PMA and neat asphalts is undeniably in favor of PMA, then it makes sense to 

establish criteria that determine the effect of the polymer on the asphalt rheology. 

1.5  Beyond PG 

1.5.1  PG Plus 

The first attempt at establishing a criterion for PMA was “PG Plus” tests, developed in the 

late 1990’s. Included in PG Plus protocol are three empirical tests: Toughness and Tenacity 

(T&T), Ductility, and Elastic Recovery. The procedure for all three tests involves a binder 

sample being stretched out at a fixed rate, usually at 25°C. In T&T and Ductility, the sample 

is stretched vertically or horizontally, respectively, until it splits into two pieces. For Elastic 

Recovery, the binder is only stretched a small distance and then cut in half. The amount of 

recoil over 1 hour is then measured as a percentage. For all three procedures, unmodified 

binders show almost no recovery or stretching ability while PMAs are able to stretch and 

recover a significant amount.  

When comparing two PMA binders, there is no clear indication how performance is affected 

based on recovery amount or elongation length. The discrepancy in results between 

unmodified and polymer modified was obvious, but it was difficult to evaluate performance 

between two PMAs. Thus, these tests could only be used to establish the presence of polymer 

in an asphalt and are now generally viewed as obsolete due to recent advancements with 

DSRs and their utilization.  

1.5.2  MSCR: Multiple Stress Creep Recovery 

In recent years, many states and provinces have adopted the “multiple stress creep recovery” 

(MSCR) test as either an additional requirement or alternative to PG testing. It was first 

implemented in 2010 with the purpose of properly evaluating rutting susceptibility for 

polymer modified and unmodified asphalts [18]. The procedure for MSCR testing requires 

the DSR to perform cyclic loading on aged binder at a fixed temperature. A 0.1 kPa constant 

load is applied for 1 second; the asphalt is then allowed to recover under no stress for 9 
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seconds. This cycle is repeated for a total of ten loads, and then another ten cycles are 

performed at 3.2 kPa [19].  

By using a high and a low level of stress, the effects of the polymer are being investigated 

across a range of possible excitations. Throughout the duration of the test, the shear strain 

amount is recorded as a function of time. This allows for a comparison of polymer activity 

between binders. Figure 1.5 shows an example of data for one cycle. Recall that “rutting” is 

used to describe permanent deformation. When evaluating multiple (modified or 

unmodified) binders, the results of the MSCR test can be used to directly show which will 

resist rutting more effectively. Specifically, the amount of non-recoverable shear strain 

(permanent deformation) and the percentage of strain that is recovered can be compared. 

Multiple studies have shown the improvement these two parameters provide in predicting 

rutting susceptibility compared to the PG and PG Plus requirements [20]. Intuitively, it 

makes sense to limit the maximum amount of permanent strain instead of requiring a 

minimum stiffness value. Likewise, it is more representative to impose a minimum recovery 

amount performed at expected road temperatures. 

 

Figure 1.5  A plot showing the response of one cycle in the MSCR test [21]. 
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There are two important features in this plot that form the basis of this thesis. First, the 

binder does not deform instantaneously at the onset of the load (at t = 0). Having a finite rate 

of strain indicates the binder has the characteristics of a liquid. Second, upon removal of the 

load (after 1 second), the binder recovers partially. The ability to recover indicates the 

characteristics of a solid material are also present. The presence of both solid and liquid like 

characteristics reveals that this binder is a viscoelastic material. It will be shown that 

viscoelasticity is not exclusive to polymer modified asphalts, but rather, viscoelasticity is 

inherent in all asphalt binders. To identify and quantify these characteristics properly, we 

must investigate asphalt binder rheology. 

1.6  Rheology of Asphalt: A New Model 

All discussion thus far has had to do with grading, which is based on very specific 

experiments (e.g. ASTM protocols). From the empirical results of these standardized tests, 

asphalt samples can be classified into different “grades,” or more accurately, “temperature 

ranges.” Throughout our review, the failure of the PG system (remember, still currently the 

most used) was outlined to be due to improperly characterizing rutting and thermal cracking 

ability amongst binders, whether they were modified or unmodified. However, the root 

cause of this failure lies within the inability to adequately characterize the rheology of the 

asphalt binder with only one external excitation. Although the MSCR protocol is an 

improvement in this regard (using multiple stresses) there is still much worthwhile 

information to gain about these materials. 

If the external disturbance imposed on an asphalt binder is limited only to the penetration of 

a 100g needle, or shearing between two circular plates at a frequency of 10 rad/s, or ten 

cycles of 1-second long creep loads of 3.2 kPa, then the grading test results are all that is 

needed. Of course, in reality, the number of mechanical excitations that an asphalt can be 

subjected to is limitless. How, for example, would an asphalt respond to oscillatory stress by 

a DSR at 20 rad/s or if the MSCR protocol is changed to 5 seconds of stress followed by 5 

seconds of recovery? 
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To truly understand the physical properties of asphalt, one needs to understand its rheology, 

which is the study of how a material deforms and flows under external excitations. It is 

common to use rheological models to predict the material response to these excitations. The 

aim of this thesis is to introduce a simple, lowest-order rheological model for asphalt binders 

⎯ a model that is capable of properly characterizing their viscoelasticity and MSCR 

response. 

1.7  About This Thesis 

The focus of this thesis is to demonstrate the ability of the Standard Linear Fluid (SLF) 

rheological model to evaluate asphalt binders. Chapter 2 details the basic principles of 

rheology and examines the shortcomings of other rheological models, including one 

specifically for asphalt binders. Chapter 3 outlines the materials, experimental procedures 

and applications of the DSR. In Chapter 4, experimental results from fitting data to the SLF 

model are presented and discussed. Lastly, Chapter 5 will provide a summary of the findings 

from this research, as well as recommendations for future work and other applications of 

the SLF model.  
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Chapter 2:  Principles of Viscoelasticity 

2.1  Rheology and Linear Viscoelasticity 

Rheology is the study of how materials deform and flow under external forces.  It is common 

to associate deformation with solids, and flow with fluids.  This, however, does not imply 

rheology is simply an umbrella term for the two traditional branches of science known as 

solid mechanics and fluid mechanics; rheology deals also with materials which have 

properties that are “hybrid” between solids and fluids (in addition to those with other 

complex behaviours ⎯ to be briefly mentioned in §2.1.4).   

2.1.1  Viscoelastic materials   

We begin our discussion with the two “extreme” cases in rheological behaviour, namely, the 

perfect elastic solid and perfect viscous fluid.  Table 2.1 summarizes ⎯ and contrasts ⎯ the 

qualitative features of these two types of materials.   

Table 2.1  Contrasts between perfect elastic solid and perfect viscous fluid.   

Feature Perfect Elastic Solid Perfect Viscous Fluid 

Memory of the original 
(i.e. undeformed) 
configuration:   

Complete None 

Instantaneous 
deformation?  

Allowed Forbidden 

Stresses are developed 
in the body to resist …  

strain (relative to original 
configuration), regardless of 
the rate of strain.   

rate of strain, regardless of 
the amount of strain.   

Additional details on 
the stresses of 
resistance:  

They increase monotonically 
with strain, and vanish when 
the body is undeformed.   

They increase monotonically 
with the rate of strain, and 
vanish when the body is at 
rest.   
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Despite the highly idealized features, these two models are very good approximations to the 

behaviours of many solids, liquids, and gases (particularly for substances of low molecular 

weights or with homogeneous microstructures).  There are, however, equally numerous 

materials that do not conform to either of the two models in Table 2.1. As examples, a 

material may 

(a) have complete memory of its original configuration, but cannot undergo 

instantaneous deformations; or  

(b) have no memory if its original configuration, but can deform abruptly in response to 

sudden changes in the applied force.   

Such materials, with features that are hybrid between perfect viscous fluids and perfect 

elastic solids, are collectively called viscoelastic materials.  As a matter of semantics, in this 

thesis, we will designate a material as either “solid” or “fluid” based only on the first feature 

in Table 2.1, namely, its memory of the original configuration.  Thus, the material in Example 

(a) is considered a viscoelastic solid, while that in Example (b) a viscoelastic fluid.  

2.1.2  One-dimensional analogues in viscoelasticity   

The stresses and strains mentioned in Table 2.1 are of course tensorial quantities; they are 

denoted 𝜎𝑖𝑗  and 𝜀𝑖𝑗, respectively.  To simplify the analysis, it is common in rheological studies 

to focus on only one ⎯ the most relevant ⎯ component of  𝜎𝑖𝑗, and on the corresponding 

component of  𝜀𝑖𝑗.  With regard to what is “most relevant,” the two common modes of 

excitation in material testing are tensile loading and torsional shear, as shown in Figure 2.1:   

   

Figure 2.1  The two common modes of material testing: (a) Longitudinal loading 

along the axis of a cylindrical sample, and (b) torsional shearing of a sample that is 

placed between two parallel circular discs.   
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In terms of cylindrical coordinates (𝑟, 𝜃, 𝑧) ⎯ with the 𝑧-axis coinciding with the symmetry 

axes in Figure 2.1 ⎯ the most relevant stress and strain components are: (𝜎𝑧𝑧 , 𝜀𝑧𝑧) for tensile 

loading, and (𝜎𝜃𝑧 , 𝜀𝜃𝑧) for torsional shear.  In the literature, the subscripts “𝑧𝑧” or “𝜃𝑧” are 

often omitted, leaving the stress and strain components appearing simply as 𝜎 and 𝜀.  (Unless 

additional information is provided, one would not know from this notation whether 𝜎 and 𝜀 

result from tensile or torsional excitation.)   

With the stress and strain tensors now reduced to single scalars (i.e. 𝜎 and 𝜀), the next step 

is to propose constitutive relations in the form of  

𝜎 = 𝜎(𝜀, 𝜀̇)   (2.1) 

for different viscoelastic behaviours (𝜀̇ = d𝜀 d𝑡⁄  is the rate of strain).  Viscoelasticity, as the 

name implies, is comprised of two fundamental and disparate material properties: viscosity 

and elasticity.  To provide an “intuitive feel” for these two properties, they are often depicted 

in textbooks as springs (for elasticity) and dashpots (for viscosity), as shown in Figure 2.2:   

  

Figure 2.2  One-dimensional analogues of elasticity and viscosity.   

 

The elements in Figure 2.2 invoke images of force-displacement relations in the longitudinal 

direction.  However, it must be remembered that these elements are merely one-dimensional 

analogues and should not be interpreted in a strict, literal sense.  The longitudinal force along 

the imaginary spring/dashpot is intended as a metaphor for the stress 𝜎 (with units of Pa), 

while the resulting longitudinal displacement is a metaphor for the strain 𝜀 (which is 

dimensionless).  This analogy applies equally to the torsional shear situation (Fig. 2.1b), even 

though the actual process does not involve extension/compression in the longitudinal 

direction.   
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2.1.3  Linear viscoelasticity   

Next, we discuss constitutive relations for viscoelastic materials.  We begin with perfect 

elastic solids and viscous fluids.  Referring to the last feature in Table 2.1, the statements 

suggest that  

• For an elastic solid, a plot of 𝜎 vs 𝜀 would pass through the origin.  The stress 𝜎 

increases monotonically with 𝜀, and the relation can in general be non-linear.   

• For a viscous fluid, a plot of 𝜎 vs 𝜀̇ would pass through the origin.  The stress 𝜎 

increases monotonically with 𝜀̇, and the relation can in general be non-linear.   

It is natural, as first approximation, to postulate linear relations.  This leads to the well-

known Hookean solid and Newtonian fluid: 

𝐺 𝜀  Hookean solid 

𝜎 =  (2.2) 

𝜇 𝜀̇  Newtonian fluid 

 

The parameters 𝐺 and 𝜇 are, respectively, the shear elastic modulus and the shear viscous 

modulus (or simply “viscosity”); they are assumed to be independent of 𝜀 and 𝜀̇.  In the 

literature, the symbol 𝐺 is normally associated with shear deformation.  The Hookean 

relation in eqn 2.2 is written in terms of 𝐺 because, in this work, we rely on data generated 

by a torsional rheometer in which the sample is subject to simple shearing (as depicted in 

Figure 2.1b).  [If material testing were done in a tensile mode, the appropriate elastic 

constant would be the Young’s modulus ⎯ often denoted 𝐸.]   

Hookean solid and Newtonian fluid (eqn 2.2) are the most basic forms of linear 

viscoelasticity.  (Here, the word “linear” refers to the fact that 𝜀 and/or 𝜀̇ appear as first 

powers in the constitutive relations.)  Other linear viscoelastic behaviours can be 

represented by combinations of these two basic elements.  Returning to the two examples at 

the end of §2.1.1, the material in Example (a) can be modelled by placing an elastic spring in 

parallel with a dashpot, resulting in a Kelvin-Voigt solid, while the material in Example (b) is 

modelled by putting the spring and the dashpot in series, leading to a Maxwell fluid.  A sketch 

of these two linear viscoelastic models is shown in Figure 2.3: 
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Figure 2.3  Two ways of combining a linear spring and a linear dashpot, resulting 

in the Kelvin-Voigt solid and the Maxwell fluid.  Constitutive relations for the spring 

and dashpot are given in eqn 2.2.  

Other models can be concocted by adding more springs and dashpots.  For example, a 

“standard linear solid” is formed by placing an elastic spring in parallel with a Maxwell fluid, 

while a “standard linear fluid” results when a dashpot is connected in parallel with a Maxwell 

fluid (see Figure 2.4).  The “Burgers model,” with two springs and two dashpots, is formed 

by connecting a Kelvin-Voigt solid in series with a Maxwell fluid (sketch not included here). 

 

    

 Figure 2.4  The so-called “standard linear solid” and “standard linear fluid” models.   

It is clear that, as one continues to include more springs and dashpots in various 

combinations, it is possible to replicate any type of empirical stress-strain relation.  However, 

we argue here that the purpose of modelling is not to fit empirical results to arbitrary 

accuracy by introducing an ever-increasing number of adjustable coefficients; rather, it is to 

capture the underlying physics with the least number of parameters.   



18 
 

In summary, one may think of linear viscoelasticity as “a language with only two alphabets”: 

the linear spring (i.e. Hookean solid) and the linear dashpot (i.e. Newtonian fluid).  Various 

linear viscoelastic models can be created by using different numbers of these elements and 

arranging them in different configurations. 

2.1.4  Other branches of rheology   

Linear viscoelasticity, discussed in the previous section, is not synonymous with rheology; it 

is a subset of the latter (arguably the most important one).  Figure 2.5 shows how the general 

field of rheology is divided into its different branches.  The following are brief descriptions 

of each category: 

• Viscoelasticity involves combining perfect elastic solids and perfect viscous fluids 

(described in Table 2.1) in different arrangements to form rheological models.  If the 

elastic and viscous relations are linear (as in eqn 2.2), we have linear viscoelasticity.  

If the constitutive relations were non-linear (e.g. as rubber undergoes large 

deformations), the theory would be called non-linear viscoelasticity.   

• The theory of viscoplasticity was proposed to describe materials with a yield stress 

𝜎𝑦.  Such materials behave as solids when the applied stress is below 𝜎𝑦, and flow 

like fluids when the stress level exceeds 𝜎𝑦.  Many personal care products and food 

colloids are viscoplastic; two familiar examples are toothpaste and mayonnaise.   

• Thixotropy refers to the phenomenon of time-evolving viscosity as the fluid 

structure undergoes spontaneous rearrangement on the colloidal or molecular 

scale.  It should be noted that this time evolution in viscosity is not a result of 

external influences such as temperature or the applied stress.  Dense suspensions of 

colloidal particles often exhibit thixotropic behaviours.   
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 Figure 2.5  Rheology and its different branches of study.   

2.1.5  Linear viscoelastic model for asphalt   

In this thesis, the theory of linear viscoelasticity will be used to model the rheology of 

asphalts.  As discussed in §2.1.3, by combining springs and dashpots in various ways, one can 

come up with any number of complex models.  However, in the interest of capturing the 

correct physics with the least number of parameters, we will consider only the models 

shown in Figures 2−4.  Empirical results from the so-called MSCR test will be used as a guide 

to choosing the correct model.  (Recall MSCR stands for “multiple stress creep recovery”; see 

§1.5.2.)  Arguments in this subsection will be made in qualitative terms only.   
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Recall that the MSCR test involves (i) subjecting the material to a step change in stress at 

time  𝑡 = 0, and (ii) dropping the applied stress abruptly to zero at time  𝑡 = 𝑡0.  The resulting 

strain 𝜀(𝑡) has two important features:   

• The material does not deform instantaneously at  𝑡 = 0, and  

• beyond  𝑡 = 𝑡0 , the material recovers partially ⎯ but not completely.   

 

   

 Figure 2.6  Responses of different linear viscoelastic models to MSCR excitation.   
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The bottom plot in Figure 2.6 shows the applied stress 𝜎(𝑡) of a MSCR test.  The expected 

responses of the different rheological model, denoted 𝜀(𝑡), are illustrated immediately 

above; all plots share a common time axis.  It is clear that the standard linear fluid (Fig. 4b) 

is the only model that is consistent with empirical observations.  In this thesis, we propose to 

model asphalt as a standard linear fluid. 

2.2  Predicting Deformation and Flow of Linear Viscoelastic Materials 

Thus far, discussions on the deformation/flow of materials have largely been qualitative.  We 

now introduce equations that must be solved to predict, for example, the types of behaviours 

shown in Figure 2.6.  Only linear viscoelastic materials will be considered.   

2.2.1  Constitutive relations 

Constitutive relations provide the connection between the stress 𝜎 and the resulting 

deformation (i.e. the strain 𝜀 and its time derivatives) for a given type of material.  Two such 

relations, based purely on empirical observations, have already been introduced; they are 

for the Hookean solid and the Newtonian fluid (eqn 2.2).  From these two fundamental 

relations ⎯ represented metaphorically as springs and dashpots ⎯ other linear viscoelastic 

relations can be derived.  When combining springs and dashpots, one needs to apply the 

following two rules:  

• Two elements connected in parallel:  They share the same strain, and the overall 

stress is the sum of the individual stresses.   

• Two elements connected in series:  They share the same stress, and the overall 

strain is the sum of the individual strains.   

These rules are made more clear in the following sketches:   

   

 Figure 2.7  Rules for combining two viscoelastic units in parallel and in series.   
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Straightforward applications of these two rules lead to the constitutive relations listed in 

Figure 2.8:   

   

 Figure 2.8  Constitutive relations for some simple linear viscoelastic models.   

The last relation in Figure 8, for the standard linear fluid (SLF), is of particular interest since 

(a) the expression is rarely included in rheology textbooks, and (b) the SLF is identified here 

as the model for asphalts (§2.1.5).  This constitutive relation is rewritten below as a 

numbered equation:   

Standard linear fluid:         𝜀̇ =
�̇� − 𝜇0𝜀̈

𝐺
+

𝜎 − 𝜇0𝜀̇

𝜇1
                                                    (2.3) 

where the material properties (𝜇0, 𝜇1, 𝐺) are as defined in Figure 2.8.   

 

eqn (2.2) 
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2.2.2  Solving the constitutive equations 

For linear viscoelastic models, the constitutive relations are linear ordinary differential 

equations involving 𝜎(𝑡) and 𝜀(𝑡).  The general mathematical problem is as follows: given 

either 𝜎(𝑡) or 𝜀(𝑡), solve for the other function using the appropriate constitutive relation.  

In this subsection, we consider two situations:  (a) The specific case of an SLF that is 

subjected to MSCR stress excitation (see top and bottom sketches in Figure 2.6), and (b) the 

general case of having an arbitrary 𝜎(𝑡) or 𝜀(𝑡) as input excitation.   

(a)  Standard linear fluid (SLF) subjected to MSCR stress excitation 

Here, the MSCR (multiple stress creep recovery) stress excitation is given by  

𝜎0 ;     0 < 𝑡 < 𝑡0 

𝜎(𝑡) =                                                                                             (2.4) 

0 ;      𝑡 > 𝑡0 

where 𝜎0 is a constant.  This type of excitation is simple enough that an analytical solution 

can be obtained.  Substituting the 𝜎(𝑡) from eqn 2.4 into eqn 2.3 (constitutive relation for 

SLF), one can, after some analysis, arrive at the following: 

For  0 < 𝑡 < 𝑡0
 − 

𝜀(𝑡)  =
𝜎0

𝐺
 (

𝜇1

𝜇0 + 𝜇1
)

2

 [1 − exp(−𝑡 𝜏⁄ )] + (
𝜎0

𝜇0 + 𝜇1
) 𝑡 

(2.5) 

𝜀̇(𝑡) =  (
𝜎0

𝜇0 + 𝜇1
) [ 1 +

𝜇1

𝜇0
exp (−

𝑡

𝜏
) ] 

where  

𝜏 ≡
𝜇

𝐺
 ,    with   

1

𝜇
≡

1

𝜇0
+

1

𝜇1
   or   𝜇 =

𝜇0𝜇1

𝜇0 + 𝜇1
                               (2.6) 

From these equations, three quantities are evaluated at  𝑡 = 𝑡0
− :   

𝜀(𝑡0
−) =  ⋯ 

𝜀̇(𝑡0
−) =  ⋯ 

and 

𝜀e(𝑡0
−) =

𝜎0 − 𝜇0 𝜀̇(𝑡0
−)

𝐺
     (strain of the elastic element) 

using eqns 2.5 
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For  𝑡 > 𝑡0
 + 

𝜀(𝑡) = 𝜀(𝑡0
−) − 𝜀r [ 1 − exp (−

𝑡 − 𝑡0

𝜏
)]                                   (2.7) 

where  

𝜀r = (
𝜇1

𝜇0 + 𝜇1
) 𝜀e(𝑡0

−) 

is the recoil in strain.   

(b)  General problem of arbitrary excitation 

In this general case, the input excitation is some prescribed 𝜎(𝑡) or 𝜀(𝑡); the response [the 

other function ⎯ either 𝜎(𝑡) or 𝜀(𝑡)] is obtained by solving the appropriate constitutive 

relation which, in mathematical terms, is a linear ordinary differential equation (ODE).   

It is always possible to solve ODEs numerically.  For analytical solutions, the best approach 

is perhaps to make use of integral transforms (e.g. Laplace or Fourier transform) that take 

the problem from the time domain to the complex or frequency domain.  The advantage of 

using integral transforms is that linear ODEs in the time domain are converted to algebraic 

equations in the complex/frequency domain, where they can be handled much more easily.  

The Laplace transform is suitable for transient problems with prescribed initial conditions, 

while the Fourier transform is ideal for periodic excitations with the response having already 

reached steady state.   

2.2.3  The dynamic modulus 

We now focus on a special case in which (a) the excitation (either 𝜎 or 𝜀) is a sinusoidal 

function of time, and (b) the response has reached steady state.  At steady state, both the 

excitation and the response are sinusoidal functions at the same frequency; there is, however, 

a phase difference between the two waveforms.  Without loss of generality, we will assume 

the excitation to be an imposed strain that is a sine (or cosine) function with magnitude 𝜀0 

and frequency 𝜔; the resulting stress will also be a sine (or cosine) function as expressed in 

eqn 2.8:   

𝜀0 sin 𝜔𝑡                                           𝜎0 sin(𝜔𝑡 + 𝛿) 

𝜀(𝑡) =            or                        𝜎(𝑡) =                   or                                         (2.8) 

𝜀0 cos 𝜔𝑡                                          𝜎0 cos(𝜔𝑡 + 𝛿) 
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Here, 𝜎0 is the stress amplitude and 𝛿 the phase difference.  For a linear viscoelastic material, 

the following two features are important to note:  

• At a given frequency 𝜔, the ratio 𝜎0 𝜀0⁄  is constant, regardless of the value of 𝜀0.   

• Both 𝜎0 𝜀0⁄  and 𝛿 are functions of 𝜔.   

The problem now is to determine how 𝜎0 𝜀0⁄  and 𝛿 vary as functions of 𝜔.  In principle, this 

can be done by substituting the expressions for 𝜀(𝑡) and 𝜎(𝑡), as given in eqn 2.8, into the 

appropriate constitutive relation (for example, eqn 2.3) and solving for 𝜎0 𝜀0⁄  and 𝛿.  

Unfortunately, for such a process, the algebra can quickly become unwieldy.   

A much easier way of tackling the same problem is to make use of Euler’s formula  

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 

and rewrite eqn 2.8 as  

𝜀(𝑡) = 𝜀0 𝑒𝑖𝜔𝑡                𝜎(𝑡) = 𝜎0 𝑒𝑖(𝜔𝑡+𝛿)                                    (2.9) 

where the real part of 𝑒𝑖𝜔𝑡 is understood to represent cos 𝜔𝑡, and the imaginary part sin 𝜔𝑡.  

The expressions in eqn 2.9 can now be substituted into the relevant constitutive relation, 

and the quantities 𝜎0 𝜀0⁄  and 𝛿 are determined as functions of 𝜔.  This approach of exploiting 

Euler’s formula is similar to the use of Fourier transform in that a linear ODE in time 𝑡 ⎯ the 

constitutive relation ⎯ is converted into an algebraic equation with the frequency 𝜔 being 

the new independent variable (after cancelling the common factor of 𝑒𝑖𝜔𝑡 from all terms).   

Once the functions 𝜎0 𝜀0(𝜔)⁄  and 𝛿(𝜔) are known, the problem is considered completely 

solved.  It is conventional, however, to introduce yet another quantity called the dynamic 

modulus, denoted 𝐺∗, such that  

𝐺∗ ≡ 𝜎(𝑡) 𝜀(𝑡)⁄                                                                  (2.10) 

Combining this with the expressions in eqn 2.9, we have  

𝐺∗ =
𝜎0

𝜀0
 𝑒𝑖𝛿                                                                      (2.11) 

From the above expressions, two important observations are made:   
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• It is clear from eqn 2.11 that 𝐺∗ is a complex quantity (while noting that 𝜎0 and 𝜀0 

are real numbers).   

• The time-dependent factor 𝑒𝑖𝜔𝑡, which appears in both 𝜎(𝑡) and 𝜀(𝑡), is cancelled 

out when the stress is divided by the strain, leaving 𝐺∗ as a function of only the 

frequency 𝜔 (since, as noted earlier, both 𝜎0 𝜀0⁄  and 𝛿 depend on 𝜔).   

Next, we define 𝐺′(𝜔) and 𝐺"(𝜔) as the real and imaginary parts of 𝐺∗(𝜔), i.e.  

𝐺∗(𝜔) ≡ 𝐺′(𝜔) + 𝑖𝐺′′(𝜔)                                                 (2.12) 

From eqn 2.11, it is clear that  

𝐺′ =
𝜎0

𝜀0
cos 𝛿 ;   𝐺′′ =

𝜎0

𝜀0
sin 𝛿                                             (2.13) 

It also follows that  

𝜎0

𝜀0
= |𝐺∗| = √(𝐺′)2 + (𝐺′′)2 ;    tan 𝛿 =

𝐺′′

𝐺′
                                (2.14) 

Finally, by combining eqns 2.8 and 2.13, one can write  

𝜎 = 𝐺′𝜀 +  
𝐺′′

𝜔
𝜀̇ 

Comparing this with the Hookean and Newtonian expressions in eqn 2.2, it appears that 𝐺′ 

plays the role of an elastic modulus, while 𝐺′′ 𝜔⁄  is an effective viscosity.  For these reasons, 

the quantity 𝐺′ is often called the “storage modulus” (similar to the way an elastic spring 

stores and releases mechanical energy without dissipation), and 𝐺′′ is called the “loss 

modulus” (referring to the loss of mechanical work to heat through internal friction).  

However, it should be noted that 𝐺′(𝜔) and 𝐺′′(𝜔) are not true material properties, as their 

values will change with the excitation frequency (i.e. they depend on the experimental 

conditions).   

Thus far, all equations in §2.2.3 are general, i.e. they are used to describe any linear 

viscoelastic material (for example, any of the six cases in Figure 2.8).  We now focus on the 

standard linear fluid (SLF): its material properties are defined in the following sketch:  
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and its constitutive relation is given by eqn 2.3.  From this equation, it is straightforward to 

arrive at the dynamic modulus using complex variables; the results are as follows:   

𝐺′(𝜔)

𝐺
=  

(𝜏1𝜔)2

1 + (𝜏1𝜔)2
 

SLF  (2.15) 

𝐺′′(𝜔)

𝐺
=  

𝜏0𝜔 [1 + (𝜏1𝜔)2] +  𝜏1𝜔

1 + (𝜏1𝜔)2
 

where  

𝜏0 ≡ 𝜇0 𝐺⁄  ;    𝜏1 ≡ 𝜇1 𝐺⁄                                                      (2.16) 

 

It is also possible to combine the two expressions in eqn 2.15 and get  

𝐺′′

𝜔
=  

𝐺

𝜇1
 

𝐺′

𝜔2
+  𝜇0                                                            (2.17) 

 

From these equations, one can obtain the SLF material properties (i.e. 𝐺, 𝜇0 and 𝜇1) using the 

following procedures:   

1. Determine, from experiments, 𝐺′(𝜔) and 𝐺′′(𝜔).   

2. Plot 𝐺′′ vs 𝜔.  The slope at the origin should give  𝜇0 + 𝜇1  (based on the second of 

eqns 2.15).  This is sometimes called the “zero-frequency viscosity.”   

3. Plot  𝐺′′ 𝜔 ⁄  vs  𝐺′ 𝜔2⁄ .  If the material is truly linear viscoelastic, the plot should be a 

straight line (according to eqn 2.17).  The 𝑦-intercept should give 𝜇0, while 𝐺 can be 

determined from the slope.   
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2.3  Other Viscoelastic Models for Asphalt  

2.3.1  Study of asphalt rheology:  Two general approaches  

There is no question that asphalts behave as viscous fluids.  As the constituent molecules of 

asphalts are fairly large (~103 Da), the material is generally non-Newtonian.  If one assumes, 

as is often done, that asphalt is linearly viscoelastic, it is natural to characterize the material 

through measurements of 𝐺′ and 𝐺′′ at different frequencies.  Due to experimental 

limitations, empirical data of 𝐺′(𝜔) and 𝐺′′(𝜔) can only be obtained over a limited range of 

frequencies; however, it is relatively easy to repeat such experiments at different 

temperatures.  In the past decades, there had been two lines of activities aimed at delineating 

the rheological properties of asphalt:   

(i) Linear viscoelastic models were proposed ( [22] [23]), leading ultimately to 

expressions for 𝐺∗(𝜔) [i.e. 𝐺′(𝜔) and 𝐺′′(𝜔)].  Model parameters are obtained by 

fitting theory to empirical data.   

(ii) Based on the principle of time-temperature superposition ( [24] [25]), rheological 

data obtained at different temperatures are combined to form a single plot of 𝐺∗ (or 

some other rheological parameter) vs 𝜔 over an extrapolated frequency range ⎯ 

one that is far wider than what is attainable experimentally.  This is done with the 

belief that 

𝐺∗(𝜔) at 𝑇 =  𝐺∗(𝑎𝑇𝜔) at 𝑇ref 
 
experimental  time-temperature 

superposition  

where 𝑇ref is some reference temperature, and 𝑎𝑇 is a dimensionless shift factor that 

depends on 𝑇 and 𝑇ref through some empirical relation.  The resulting 𝐺∗(𝑎𝑇𝜔), often 

called the “master curve,” depicts rheological properties at temperature 𝑇ref over an 

extremely wide range of extrapolated (or “reduced”) frequencies 𝑎𝑇𝜔.   

These two lines of activities are essentially independent of one another: “master curves” can 

be assembled regardless of the validity of the rheological model(s).  In this thesis, we focus 

only on the first activity, namely, introduction of an appropriate rheological model for 

asphalts.  We choose not to construct master curves since, as is commonly known in polymer 

physics, the principle of time-temperature superposition is valid only for 

“thermorheologically simple” fluids (ideally those composed of linear and monodisperse 

polymers).  In the context of relaxation times, which will be discussed further in the next 
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section, time-temperature superposition applies only when all relaxation modes within a 

material have the same temperature dependence [24].  In situations, such as with asphalts, 

where the molecules have a wide variety of molecular weights and chemical structures (e.g. 

branched polymers, block copolymers, etc.), the relaxation modes are certain to have 

different temperature dependencies, and application of the superposition principle would 

therefore not be justified.   

2.3.2  Stress relaxation  

Consider a material that is subjected to a step increase in strain, resulting in a sudden jump 

in stress within the body.  (Whether the material can undergo abrupt deformation will be 

discussed in the next section.)  For some materials, stresses created by deformation can 

decrease ⎯ or “relax” ⎯ spontaneously over time while maintaining the same level of strain; 

such a process is called stress relaxation.  (For polymeric materials, this can be due to the 

extension and subsequent recoil of the macromolecules.)  The simplest mechanical model 

for stress relaxation is the Maxwell fluid ⎯ first illustrated in Fig. 2.3, and shown again below 

in Figure 2.9:   

    

Figure 2.9  Stress relaxation of a Maxwell fluid.   

As shown in Figure 2.9, the stress relaxation of a Maxwell fluid, in response to a step strain 

of magnitude 𝜀0, is  

𝜎(𝑡) = 𝐺𝜀0 exp(− 𝑡 𝜏⁄ )                                                  (2.18) 

where  𝜏 ≡ 𝜇 𝐺⁄   is the characteristic time of relaxation.   
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For materials with multiple relaxation times, the “generalized Maxwell model” (GMM), which 

is simply a number of Maxwell fluids connected in parallel, is often put forward to represent 

the underlying rheology.  An illustration of the GMM is shown in Figure 2.10:  

    

Figure 2.10  The generalized Maxwell model (GMM) comprises a number of Maxwell 

fluids connected in parallel.   

Since the Maxwell fluids in a GMM are arranged in parallel, the resulting stress is just the 

sum of the individual relaxations:   

GMM:      𝜎(𝑡) = ∑ 𝐺𝑖𝜀0 exp(− 𝑡 𝜏𝑖⁄ )

𝑁

𝑖=0

;    𝜏𝑖 ≡ 𝜇𝑖 𝐺𝑖⁄                                 (2.19) 

It is also customary to define the relaxation modulus 𝑅(𝑡) as   

𝑅(𝑡) ≡ 𝜎(𝑡) 𝜀0⁄   (2.20) 

which is simply the transient stress in a material in response to unit step strain.  From eqn 

2.19, the relaxation modulus of the GMM is  

𝑅(𝑡) = ∑ 𝐺𝑖 exp(− 𝑡 𝜏𝑖⁄ )

𝑁

𝑖=0

                                                    (2.21) 

where (𝜏0 , 𝜏1 , ⋯ 𝜏𝑁) are the relaxation times.   

 

Continuous distribution of relaxation times 

Equation 2.21 represents materials with discrete sets of relaxation times.  If the 𝜏𝑖’s are 

spaced so closely together that they effectively form a continuous distribution, one can 

imagine (a) the number of relaxation modes, 𝑁, will approach infinity, and (b) the elastic 
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moduli and viscosities will become incremental ⎯ and eventually, differential ⎯ quantities, 

while their ratios  𝜏𝑖 = ∆𝜇𝑖 ∆𝐺𝑖⁄   remain finite.  In such a limit, the sum in (2.21) can be 

expressed as an integral as follows:   

𝑅(𝑡) = lim
𝑁→∞

∑ ∆𝐺𝑖 exp(− 𝑡 𝜏𝑖⁄ ) 

𝑁

𝑖=0

=  ∫  d𝐺(𝜏) ∙ exp(− 𝑡 𝜏⁄ ) 
∞

𝜏=0

 

In the literature, it is common to write  

d𝐺(𝜏) ≡ 𝐻(𝜏)
d𝜏

𝜏
                                                            (2.22) 

where 𝐻(𝜏), with units of Pa, is called the relaxation spectrum.  With this, the relaxation 

modulus 𝑅(𝑡) now becomes  

𝑅(𝑡) = ∫ 𝐻(𝜏) exp(− 𝑡 𝜏⁄ ) 
𝑑𝜏

𝜏
                                            (2.23)

∞

0

 

Note that there is no fundamental physics behind eqn 2.22; it is simply a definition of the 

relaxation spectrum 𝐻(𝜏).  [Some authors may choose to write  d𝐺 ≡ 𝐻(𝜏) d𝜏 , in which case 

𝐻 would have units of Pa/s.]   

Before proceeding to the next section, we digress slightly and introduce two additional 

equations:  The total elastic and viscous moduli of the GMM, in the limit of a continuous 

distribution of relaxation times, are  

𝐺tot  =  lim
𝑁→∞

∑ ∆𝐺𝑖

𝑁

𝑖=0

 =  ∫ d𝐺(𝜏)
∞

𝜏=0

 

𝜇tot  =  lim
𝑁→∞

∑ ∆𝜇𝑖

𝑁

𝑖=0

 =  lim
𝑁→∞

∑ 𝜏𝑖 ∆𝐺𝑖

𝑁

𝑖=0

 =  ∫ 𝜏 d𝐺(𝜏)
∞

𝜏=0

 

 

Combining these expressions with eqn 2.22, we can relate 𝐺tot and 𝜇tot to the relaxation 

spectrum 𝐻(𝜏) as follows:   
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𝐺tot = ∫  
𝐻(𝜏)

𝜏

∞

0

 d𝜏                                                      (2.24) 

𝜇tot = ∫  𝐻(𝜏)
∞

0

 d𝜏                                                       (2.25) 

 

2.3.3  Viscous fluids that cannot deform instantaneously 

When subjected to a sudden increase in stress, most viscous fluids ⎯ including asphalts ⎯ 

are incapable of responding with instantaneous deformation.  To model such fluids using 

mechanical analogues (i.e. with springs and dashpots), one necessary requirement is that 

there must be one dashpot that directly connects one end of the mechanical model to the other 

end.  Turning now to the generalized Maxwell model in Figure 10: if one insists on applying 

the GMM to fluids that cannot deform instantaneously, one of the Maxwell fluid elements ⎯ 

say the first one ⎯ must provide the “end-to-end dashpot”; it follows that the elastic spring 

of that Maxwell fluid should be infinitely stiff, i.e.  

𝐺0 = ∞          𝜏0 = 𝜇0 𝐺0⁄ = 0 

With these simple arguments, one can infer the following:   

• The case of discrete relaxation times   

One of the relaxation times must be zero.  That Maxwell fluid element, with  𝜏 = 0 , 

must have an infinitely stiff spring which allows the viscous dashpot to prevent any 

sudden jump in strain.   

• The case of a continuous distribution of relaxation times   

The value of 𝐻(𝜏) must be infinite at  𝜏 = 0 (this is analogous to infinite stiffness in 

the discrete case).  It is noted that, as evident from eqn 2.25, any “infinity” on the 

relaxation spectrum must be integrable (for the material to be a viscous fluid).  If the 

proposed 𝐻(𝜏) is “well behaved” away from  𝜏 = 0 , then the spectrum must include 

a Dirac delta function, of magnitude 𝜇0, at the vertical axis (see Figure 2.11).  In such 

a case, the total viscosity of the GMM (from eqn 2.25) is 

 

𝜇tot = 𝜇0 + ∫  𝐻(𝜏)
∞

0+

 d𝜏 
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Figure 2.11  For a relaxation spectrum that is “well behaved” away from  𝜏 = 0 , 

one must include an impulse function at  𝜏 = 0  to prevent instantaneous 

deformation of the fluid under a sudden increase in stress.   

Recall from §2.1.5 that, in this thesis, we are proposing to use the standard linear fluid (SLF) 

as the model for asphalt.  In terms of the parameters defined earlier, the SLF has two discrete 

relaxation times:  0  and  𝜇1 𝐺⁄ .  This, we believe, is the model of minimal complexity that 

captures the essential physics of asphalts ⎯ and indeed, of any viscous fluid that (a) does 

not deform instantaneously, and (b) is so inhomogeneous and varied in composition that the 

relaxation spectrum cannot be unique, and stress relaxation is best described by a single, 

effective characteristic time.   

2.3.4  Two common viscoelastic models for asphalt 

A number of viscoelastic models for asphalt have appeared in the literature.  Here, we briefly 

mention two models that are perhaps the most invoked and explain why we feel the need to 

introduce yet another alternative.   

The 2S2P1D model  

2S2P1D stands for “two springs, two parabolic elements, and one dashpot” ( [26], [27], [28]).  

A schematic of the model is shown in Figure 2.12.   

   

Figure 2.12  The 2S2P1D model for asphalt.  The two elements labelled “P” 

are the so-called parabolic elements.   
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The 2S2P1D model is an extension of its predecessor, the Huet-Sayegh model, which did not 

include the dashpot.  The parabolic element is itself a “mini-rheological model” involving 

several adjustable parameters and depends on the frequency of excitation.   

It is not important here to examine the details of the parabolic element.  We choose not to 

adopt the 2S2P1D model (nor the Huet-Sayegh model) for asphalt for one simple reason: it 

is clear that both these models predict instantaneous deformation when the material is 

subjected to a step increase in stress (no dashpot directly connecting one end of the model 

to the other).   

The Christensen-Anderson model  

In this model, “relaxation spectra of asphalt binders” are assumed to follow “a skewed 

logistic distribution function”( [29], [30]) .  Presumably, the “relaxation spectra” are 𝐻(𝜏) as 

defined in eqn 2.22 ⎯ although this is unclear (see Point 2 below).  The “skewed logistic 

distribution function” is simply a probability distribution, like the “bell curve,” that is skewed 

to one side.  It is also not clear why such a probability distribution was chosen for this 

purpose.  The magnitude of the resulting dynamic modulus is  

|𝐺∗(𝜔)| =  𝐺g  [1 + (
𝜔c

𝜔
)

log 2 𝑅⁄

]

−𝑅 log 2⁄

                                     (2.26) 

where 𝐺g, 𝜔c and 𝑅 are, respectively, the glassy modulus, the crossover frequency, and the 

rheological index (i.e. they are the three model parameters).  Here, we choose not to adopt 

such a model for asphalt for two reasons:   

• According to the model, the value of 𝐻(𝜏) at  𝜏 = 0  is zero (see eqn 13 in [30]).  This, 

as we argued above, implies that asphalt is capable of instantaneous deformation 

under a step increase in stress.  This contradicts empirical observation.   

• The logical developments, which began with the skewed logistic function and ended 

with eqn 2.26, have completely escaped us (see §5.1 in [29]).  
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Chapter 3:  Materials and Experimental Methods 

The experiments performed in this research were conducted at Gecan in Acheson, Alberta. 

(Gecan is one of the largest asphalt testing facilities in Canada, with plenty of state-of-the-art 

equipment and machinery.) The asphalt binders used in this study were provided by the 

McAsphalt Industries Ltd. terminal based in Acheson. The following sections outline how the 

asphalt binders used in this study were collected, prepared and evaluated.  

3.1  Materials 

To differentiate between asphalt samples, they are referred to by their PG designations – 

previously described in Chapter 1. It is noted here that none of the binders were verified to 

meet PG specifications in this study. However, these materials are tested and sold year-round 

and can be assumed to meet PG specifications. Additionally, as the aim of this thesis is to 

introduce a rheological model and its functionality – as opposed to comparing the model’s 

ability to predict road performance – it is enough to know that the samples being tested are 

considered to be sufficiently distinct under the PG system. Between the 6 samples, 3 are 

unmodified and 3 are polymer modified asphalts.   

The unmodified grades are PG 46-34, PG 58-28, and PG 64-22, while the modified grades are 

PG 58-37P, PG 64-34P, and PG 70-31P. Grades with different and identical high temperature 

limits are chosen to easily identify trends and changes in the resulting SLF model 

parameters. Furthermore, the PG 58-28 is the basis for the PG 70-31P, which allows for 

straightforward identification of the polymer’s effects on the model parameters. The 

polymer used was styrene-butadiene copolymers. As the formulations of these asphalt 

binders is proprietary information, the specific quantity of polymer addition is not known, 

but the amount can range from 1-10% by weight for polymer modified grades.  

At McAsphalt’s Acheson terminal, all the asphalt binders are mixed in large, heated storage 

tanks. From the large storage tanks, small batches are released into 5-gallon pails. These 

pails were heated in a 163°C oven until homogenous, then poured into pint cans for easier 

handling and reduced re-heating time.  
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3.2  Equipment and Software 

The only piece of measuring equipment used in this study is the aforementioned DSR, or 

Dynamic Shear Rheometer. The specific make and model are: TA Instruments, Discovery HR-

1 (Hybrid Rheometer). This hybrid rheometer can operate in either controlled stress or 

controlled strain mode. The DSR uses Upper Heated Plate technology to ensure that there 

are no vertical temperature gradients through the sample. The geometry used was 25mm in 

diameter, stepped, stainless steel Pelletier plates. with the lower plate being fixed while the 

upper plate is free to rotate. The software used to record data throughout the experiments 

is TA Instruments TRIOS Version 5.0.0. Figure 3.1 depicts the HR-1 and Pelletier plates. 

  

 Figure 3.1 Discovery HR-1 Rheometer and Pelletier plates [31]. 

3.3  Procedures 

3.3.1  Conditioning 

The small pint cans were placed in an oven set at 163°C until the sample was homogenous 

and fluid. This process typically takes 1 hour, when stirring the sample every 15 minutes 

after half an hour has passed. Polymer-modified grades may take up to 1.5 hours with this 

method. Next, a sample is poured from the pint can onto a silicone mold (25mm diameter) 

and allowed to cool until the binder can detached from the mold. The sample is then loaded 

onto the bottom plate of the DSR (preheated to 58°C) and allowed to condition for 1-2 

minutes. The top plate is then set to the trim height, 1050 microns, and trimmed using a 

heated metal spatula until the sample is flush with the plates. Next, the top plate is set to the 

desired gap height, 1000 microns, and allowed to condition undisturbed for 10 minutes. 
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Using TRIOS, a pre-shear rate of 1.0 (1/s) was applied for 30 seconds before another 5 

minutes of undisturbed conditioning. Pre-shearing serves to standardize the loading 

procedure and ensure all samples have the same initial state.  The sample is now conditioned, 

and the desired experiment can be performed. It is noted here that for all samples, the 

experiments were performed at 58°C.  

3.3.2  Frequency Sweep 

With TRIOS, frequency sweeps were performed between 10 - 80 rad/s,  at stress levels of 1, 

10 and 100 Pa. To facilitate data collection, the experiment was performed using the 

“Oscillation – Amplitude” input rather than the “Oscillation – Frequency” input.  The “discrete 

sweep” option in Amplitude mode allows for repeated points. For each stress, six data points 

were collected per angular frequency. The default data acquisition settings of 3 seconds of 

conditioning and sampling time, and 64 points per waveform were used. No other additional 

options were changed or enabled. Before moving on to the next stress level (but not between 

angular frequency increases), the pre-shearing and 5-minute equilibration time were 

applied to the sample again. An average value was then calculated for the G’, G’’, and tan δ 

values at each frequency.  

3.3.3 MSCR Variation 

Using TRIOS, a modified version of the MSCR procedure (as described in section 2.2.2) was 

created. In this pulse version, the creep loading is applied for 1 second (as standard MSCR 

procedure) but an indefinite amount of recovery time is allowed. There are no further cycles 

of stress on and off the binder. The experiment is performed using the “Step Transient – 

Repeated Creep” input. With this input, the software automatically enforces a data collection 

rate that is initially very fast, but gradually slows down exponentially. To mimic current 

MSCR protocol, two stress levels are used, 100 Pa and 3200 Pa. The software caps allowed 

recovery time to 1000 seconds, but in some data sets the procedure was manually ended 

before this time had reached, as there was clearly no further recovery. The samples were 

pre-sheared and allowed to equilibrate before each stress level. Due to the large time scales 

difference between the creep and recovery portions, the data is split into two sections. This 

allows for an easier interpretation of their individual effects.  
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Chapter 4:  Results and Discussion 

Appendix A contains the frequency sweep data and MSCR pulse responses. An example of 

obtaining the SLF parameters and the Matlab code template are included in Appendix B.  

4.1  Frequency Sweep Results 

“Frequency sweeps” are experimental determination of how rheological parameters — in 

this case, the phase angle δ — vary with the excitation frequency 𝜔.  Figure 4.1 shows tan δ 

vs 𝜔 at the stress amplitudes of 1, 10 and 100 Pa for asphalt binder PG 58-28. This data was 

acquired as outlined in §3.3.2. At the lower frequencies, there is a small discrepancy in tan δ 

between small and large stresses. As the frequency increases, the discrepancy is reduced. 

This trend exists for all binders. In general, the variation between the 6 data points collected 

per frequency, per stress, was highest at smaller stresses and frequencies. This is likely due 

to low torque (or stress) values being less controlled when shearing the material. Below 1 

Pa of stress, the minimum torque limit of the DSR needs to be considered. The variation was 

negligible for 100 Pa data at all frequencies. Regardless, the value of tan δ does not change 

significantly with stress, which is indicative of a linear viscoelastic material. As the 100 Pa 

data is the most reliable, it is used in subsequent analysis.  

 

 Figure 4.1  tan δ vs ω, for PG 58-28 at 1, 10, and 100 Pa stresses. 
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Figure 4.2 shows the frequency sweep data at 100 Pa for the unmodified and polymer-

modified binders. For the unmodified binders (grades that do not end with a “P”), there is a 

difference in tan δ of at least 5 between low and high frequency results. Initially, the value of 

tan δ is dropping at a steep rate. At 30 rad/s the rate continues to decrease but is less sharp. 

By 80 rad/s, the decrease in tan δ has begun to flatten out. Between unmodified binders, the 

difference in tan δ is significant. This is in stark contrast to the polymer modified binders 

(those grades whose designations end with a “P” — a reminder that they are polymer-

modified). These modified binders show very little difference from each other. The range of 

tan δ values are much smaller, only decreasing from 3 to 2 over the sweep range. Smaller tan 

δ indicates a stronger elastic presence (recall eqn 2.14), which is to be expected with the 

addition of polymer to these binders. Additionally, the decrease of tan δ with frequency 

appears linear. This suggests the viscous and elastic moduli are changing by comparable 

amounts with frequency. For the unmodified binders, they behave more like viscous fluids 

(i.e. larger tan δ) at lower frequencies, as expected. Interestingly, at high frequencies, PG 46-

34 became indistinguishable from the polymer modified binders. A deeper look into the 

storage and elastic modulus values seems necessary to find out if there are truly any 

similarities between these materials. 

 

 Figure 4.2  tan δ vs ω, for unmodified and modified binders at 100 Pa. 
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Figure 4.3 shows the storage modulus 𝐺′ as a function of angular frequency for PG 46-34 and 

PG 58-37P, at 100 Pa. For both binders, 𝐺′ increases with 𝜔. At low frequencies, the storage 

modulus is essentially non-existent for the PG 46-34 binder. As the frequency is increased, a 

quadratic relationship is evident. However, even at the highest frequencies, the values of 𝐺′ 

are not comparable to those of PG 58-37P. The addition of polymer has increased the storage 

modulus significantly at all frequencies. Moreover, the rate of increase of the storage 

modulus appears not quadratic, but linear. Based on Figure 4.3, it is clear that the PG 46-34 

and PG 58-37P binders are rheologically distinct.   

 

 Figure 4.3  G’ vs ω for PG 46-34 and PG 58-37P. 

Figure 4.4 shows the loss modulus 𝐺′′ as a function of the angular frequency 𝜔 for PG 46-34 

and PG 58-37P, at 100 Pa. In both cases, 𝐺′′ increases with 𝜔, just as 𝐺′ did. However, in this 

dataset, there is clearly a linear trend for the PG 46-34. A linear relationship for 𝐺′′ through 

the origin is equivalent to a Newtonian fluid (§2.2.3). As with the storage modulus, the 

addition of polymer has greatly increased the loss modulus at all frequencies for PG 58-37P. 

In addition, the polymer also seems to have caused the loss modulus to develop a slight 

shear-thinning trend. Again, there are no rheological similarities between the PG 46-34 and 

PG 58-37P binders. Instead, we have seen that the unmodified material is linear in viscosity, 

while the polymer modified is linear in elasticity.  
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 Figure 4.4  G’’ vs ω for PG 46-34 and PG 58-37P. 

Despite what the results of Figure 4.2 suggest, it is clear that PG 46-34 and PG 58-37P are 

quite different from each other, even at high frequencies. They do not share viscous or elastic 

characteristics. Without looking deeper into the data, incorrect conclusions could be made. 

Looking at the other frequency sweep results, it is worth asking what other inconsistencies 

could be embedded in the tan δ vs 𝜔 data? For example, why are the responses different 

between unmodified binders? Are polymer-modified binders indistinguishable from each 

other? 

Although it is relatively simple to repeat these experiments, it is not always clear what the 

significance of the storage and loss modulus are. Recall from §2.2.3 that they are not truly 

material properties, but parameters dependent on the experimental conditions. Hence, it is 

possible that materials with entirely different viscoelastic behavior can appear similar. The 

purpose of the storage and loss modulus is to summarize viscoelastic behavior. However, 

there is obviously a risk in utilizing these parameters at only one frequency (as the PG system 

does). A much better approach of measuring material properties would include an 

evaluation of their fundamental engineering parameters. By fitting the range of 𝐺′(𝜔) and 

𝐺′′(𝜔) data to the Standard Linear Fluid model, that can be achieved. 
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4.2  Standard Linear Fluid Model 

4.2.1 Fitting SLF Model 

As outlined in Chapter 2, the material properties in the SLF model can be found from 𝐺′(𝜔) 

and 𝐺′′(𝜔) data. First, the total viscous contributions are determined from the slope of the 

𝐺′′(𝜔) data. Figure 4.5 shows a modified version of Figure 4.4, with a linear trendline fit 

through the origin using the two slowest frequency points. The slowest points provide a 

better estimate of the zero-frequency viscosity than a trendline that uses high frequency 

data. Trendlines are fit using the built-in trendline option in Excel. From this figure, we can 

deduce that (𝜇0 + 𝜇1) = 38.075 Pa-s for PG 46-34. 

 

 Figure 4.5  Solving for (𝜇0 + 𝜇1) of PG 46-34. 

Next, a plot of  𝐺′′ 𝜔 ⁄  vs  𝐺′ 𝜔2⁄  is created to obtain the material properties. As mentioned in 
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through the origin) using Excel. From this plot, it is evident that the material does not fit 

linearly through the range of frequencies. At the lowest values of 𝐺′/𝜔2 (highest frequencies) 

the data begins to divert from linearity. Although the fit is not terrible (R2 = 0.9411), the 
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that this trend existed for all data sets, whether the binder is unmodified or polymer-

modified.   

 

 Figure 4.6  Full range (10-80 rad/s) of  𝐺′′ 𝜔 ⁄  vs  𝐺′ 𝜔2⁄  for PG 46-34 at 100 Pa 

Figure 4.7 shows a modified version of Figure 4.6, with the highest frequency data (60 and 

80 rad/s) removed. In this plot, the trendline fit is noticeably better (R2 = 0.9785). None of 

the points deviate from the trendline significantly, and the data reasonably resembles a 

straight line. This frequency range offers the most information without compromising the 

necessity that the relationship is linear. Thus, the SLF material properties are deduced using 

the 10‒40 rad/s data.  

 

Figure 4.7 Modified range (10-40 rad/s) of  𝐺′′ 𝜔 ⁄  vs  𝐺′ 𝜔2⁄  for PG 46-34 at 100 Pa. 
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As the SLF model is derived from simple Hookean springs and Newtonian dashpots, it is 

entirely plausible that the highest frequency data would not conform to the trend. The 

Hookean model was originally developed for solid materials, specifically metals, that could 

only undergo small deformations. It is unsurprising that soft materials composed of larger 

molecules (like asphaltenes or polymer chains) capable of large deformations are no longer 

truly linear viscoelastic at high frequencies.  

4.2.2 SLF parameters 

Using Figure 4.7, the linear trendline can be fitted to eqn (2.17) to find the three material 

properties. First, the y-intercept represents 𝜇0, the viscosity of the stand-alone dashpot. Next, 

𝜇1 is found from the difference of (𝜇0 + 𝜇1) generated from the 𝐺′′(𝜔) data. Lastly, with 𝜇1 

known, 𝐺 can be calculated from the slope. Additionally, the ratio of 𝜇1/ 𝐺 (the inverse of the 

slope) gives 𝜏1, a “relaxation time” between the spring and dashpot in series. Table 4.1 

contains the SLF parameters for all asphalt binders examined in this study. 

Table 4.1  SLF parameters determined from 10-40 rad/s, 100 Pa data. 

  
             μ0 + μ1 μ0 μ1 G τ1 

 Material (Pa-s) (Pa-s) (Pa-s) (Pa) (s) 
 UNMODIFIED ASPHALTS 

 PG 46-34 38.1 27.8 10.3 243.6 0.042 

 PG 58-28 173.6 153.0 20.6 379.8 0.054 

 PG 64-22 314.3 268.2 46.1 712.5 0.065 

 POLYMER MODIFIED ASPHALTS 

 PG 58-37P 166.6 116.2 50.4 491.2 0.103 

 PG 64-34P 211.1 152.8 58.3 590.7 0.099 

 PG 70-31P 394.4 276.7 117.7 1048.3 0.112 

The values of all material properties (𝜇0, 𝜇1 and 𝐺) increased with an increase in the high-

end PG designation, regardless of whether the binder was modified or not. For both, the 

increase in total viscosity was largely due to an increase in 𝜇0. Modified binders have greater 

𝜇1 and 𝐺 values. Between the binder sets, a notable difference in 𝜏1 is seen.  
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Unmodified binders have an increasing relaxation time 𝜏1 with grade. Modified binders, on 

the other hand, have comparable relaxation times amongst themselves that are 

approximately double the value of the unmodified binders. An increase in 𝜏1 indicates the 

addition of polymer has resulted in longer times to dissipate stress. It is interesting to note 

that colder PG grades may not need longer relaxation times (see PG 46-34 vs PG 64-22 and 

PG 58-37P vs PG 70-31P).   

There are two sets of grades that have matching high-end, but different low-end 

temperatures. Comparing the PG 58-XX, although they have similar total viscosities, the 

polymer modified version has much more attributed to 𝜇1 (30% vs 12%). Despite also having 

a larger 𝐺 value, this results in the polymer modified binder having a 𝜏1 that is 1.9 larger. 

Looking at the PG 64-XX, the polymer modified binder now has lower total viscosity and 𝐺 

value. However, a higher percentage of 𝜇1 (28% vs 15%) results in a 𝜏1 that is 1.5 larger for 

the polymer modified material. These results highlight the importance of 𝜇1 over other 

parameters, and thus, longer relaxation times in polymer modified binders. 

As mentioned in Chapter 3, PG 70-31P is made by adding polymer to PG 58-28. Comparing 

these two binders, polymer addition has clearly increased all parameters, but not by the 

same amounts: Total viscosity increased by 2.3, 𝜇0 by 1.8, 𝐺 by 2.8 and 𝜇1 by an 

astounding 5.7. This results in a 2.1 larger 𝜏1 for the PG 70-31P. An increase in relaxation 

time is indicative of a slower rate of dissipation, but it also suggests that there is inherently 

more stress to dissipate. Between the two, it is natural to expect the polymer modified binder 

to recover more strain in a MSCR (multiple stress creep recovery) test.  

4.3  MSCR Pulse Results 

As discussed in §2.1.5, the SLF model is the simplest rheological model to qualitatively 

predict the response of asphalt binders under creep loading, specifically the MSCR test. 

Figure 4.8 displays the experimental and predicted strain responses to a MSCR pulse input 

for PG 70-31P. The MSCR pulse input was executed as detailed in §3.3.3. In this plot, the 

strain is scaled to the maximum amount occurring at 1 second (when the material begins 

recovering). By scaling the strain, the response of the SLF model is reduced to a single data 
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set independent of stress (due to the linear nature of the model). Furthermore, the time is 

intentionally only shown for the first 10 seconds to provide a better view of the response 

immediately after the creep portion ends. Although the majority of the strain recovery occurs 

in this window, a small amount is not shown in the time after the 10 second mark. Hence, the 

recovery amount shown here is not equal to the reported overall recovery discussed later. 

 

 Figure 4.8  Predicted and Experimental MSCR Pulses for PG 70-31P. 

During the creep portion, there is little difference between the high and low stresses, and the 

model predicts the increase in strain well. There is no instantaneous deformation, and a 

slight decrease in the rate of deformation as the creep is applied. Upon removal of the load, 

the binder only partially recovers as expected. However, during the recovery portion, the 

model is substantially under predicting the strain recovery amount. Even though the binder 

continues to recover with additional time, it is clear that the model prediction has no further 

recovery by the 2 second mark.  

Comparing the binder responses, the recovery amount at 10 seconds decreases from 

approximately 40% to 30% as the stress is increased (remember that this is not the final 

recovery amount). This suggests that the recovery process is non-linear, which could explain 

why the SLF model underestimates the recovery amount. A closer look at the MSCR pulse 
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response for all materials is needed to determine if this non-linearity is due to the addition 

of polymer. 

Table 4.2 summarizes the MSCR Pulse recovery data for all binders at both stresses, as well 

as two material parameters: 𝜏1 & %𝜇1 (percentage 𝜇1of the total viscosity). As was the case 

with the PG 70-31P, the recovery amount of all grades varied with stress, with the larger 

recoveries occurring at lower stresses. This might suggest that unmodified asphalts also 

have non-linear recovery. However, it is worth mentioning that the unmodified asphalts all 

finished recovering quickly, similar to what the SLF model predicts. In this sense, the 

recovery process is non-linear for asphalts, but the addition of polymer increases the 

deviation. Overall, the model predicts the unmodified asphalt recovery better than the 

polymer-modified counterparts. This is largely due to the fact that unmodified binders have 

such small recovery amounts (in some cases, the model overpredicts). This further 

reinforces the assertion that polymer modification increases non-linearity, as one would 

expect from macromolecules.  

Table 4.2  Experimental and SLF predicted MSCR Pulse recovery data. 

 
           

  τ1 %μ1 
Experimental    
Recovery (%) SLF Predicted    

Recovery (%) 
Material (s) (%) 100 Pa 3200 Pa 

UNMODIFIED ASPHALTS 

PG 46-34 0.042 27.0  1.3 0.15 1.13 

PG 58-28 0.054 11.9  1.5 0.30 0.64 

PG 64-22 0.065 14.7  7.9 1.23 0.94 

POLYMER MODIFIED ASPHALTS 

PG 58-37P 0.103 30.3  50.8 29.4 3.01 

PG 64-34P 0.099 27.6  31.3 12.6 2.65 

PG 70-31P 0.112 29.8  49.5 38.8 3.24 
 

In §4.2.2, it was hypothesized that larger relaxation time 𝜏1 would indicate larger recovery 

amounts. Looking at the unmodified asphalt results, this is not necessarily the case. The 

predicted recovery for PG 46-34 is larger than for the other two grades, despite a smaller 𝜏1. 

Comparing all of their SLF parameters, we conclude that the %𝜇1 is also an important factor 
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to consider when predicting recovery. Specifically, 𝜏1 is only useful when predicting expected 

recovery for materials with comparable %𝜇1.  

An examination of the %𝜇1 of all materials reveals that PG 46-34 has a comparable ratio with 

the polymer modified binders. Interestingly, both the predicted recovery and 𝜏1 values for 

PG 46-34 are approximately 40% of the polymer modified grades. Together, these materials 

follow the general trend of larger 𝜏1 leading to more recovery. This trend is also followed in 

the remaining two binders — PG 58-28 and PG 64-22. As a check, keeping the %𝜇1 constant, 

one can adjust the parameters in the SLF model to have larger 𝜏1 and will indeed find a larger 

predicted recovery.   

It is worth determining what needs to be adjusted in the model to have reasonably accurate 

predictions of the polymer modified recovery amounts. Obviously, an increase in 𝜏1 is 

needed. There are two ways to accomplish this: increase 𝜇1, or decrease 𝐺. Using Matlab, a 

reduction of 𝐺 from 1048.3 Pa to 300 Pa improves the predicted recovery amount to 10% 

for PG 70-31P. However, this is still not enough to match the experimental results despite an 

increase in 𝜏1 by 3.5. Further increasing 𝜏1 to 8.75, via increasing the viscosity ratio by 

2.5 results in a recovery of approximately 40% (our desired amount). Figure 4.9 adds this 

“curve-fit” version of the SLF model to the previously discussed MSCR pulse results. 

 

 Figure 4.9  Fitted SLF MSCR Pulse prediction for PG 70-31P. 
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Clearly, significant changes must be made to the parameters to accurately predict the 

recovery amount. Although this theoretical value of 𝐺 is comparable to those determined 

from the binders used in this study, the required theoretical viscosity values are much larger 

than all cases.  Furthermore, the procedure to acquire the SLF parameters cannot be adjusted 

to produce smaller values of 𝐺 and such large viscosity values. A comparison between the 

frequency sweep and the MSCR pulse excitations reveals a possible reason for the 

discrepancy in the SLF predictions of the experimental results. 

4.4 Sources of Non-Linearity 

Thus far, we have seen that the SLF model is capable of predicting the shape of the MSCR 

pulse correctly, but it does not accurately quantify the response. When comparing the 

experimental results, it is apparent that the recovery portion is non-linear, as the amount of 

strain that is recovered varies with the stress applied. This is the opposite conclusion to what 

was reached at the beginning of this chapter, when we saw that the oscillatory frequency 

sweep response did not change with stress level.  

Oscillatory excitations require small amounts of deformation to preserve the integrity of the 

sample. If too large of a deformation is used, some portion of the sample will inevitably flow 

out of the space between the plates. During the acquisition of the frequency sweep data, the 

amount of deformation used is determined by the software automatically. Creep excitations 

on the other hand, do not have any constraint imposed on the amount of strain. The amount 

of deformation depends entirely on the inputs used and time allowed.  

Table 4.3 compares the strain experienced by the binders at 100 Pa for both the frequency 

sweep and MSCR pulse excitations. Here, 100% strain is equivalent to 1 revolution of the top 

plate. For the oscillatory data, the strain amount decreased as the angular frequency 

increases. This makes sense intuitively, as higher frequencies subject the binder to larger 

shear stress, and thus, a smaller amount of strain is required to preserve the sample. All but 

one strain amount is below 5.7% in the oscillatory data. This is considerably less than the 

minimum amount of 13.5% in the MSCR pulse data (keep in mind, the 3200 Pa data are 

approximately 32 the values shown here) 
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Table 4.3  Frequency sweep and MSCR pulse excitations strain percentages for 100 Pa. 

 Oscillation Strain % MSCR Strain % 

Material 10 rad/s 80 rad/s (maximum) 

UNMODIFIED ASPHALTS 

PG 46-34 25.2 1.3 119 

PG 58-28 5.7 0.8 52.3 

PG 64-22 3.1 0.5 14.6 

POLYMER MODIFIED ASPHALTS 

PG 58-37P 5.4 1.1 18.9 

PG 64-34P 4.3 0.8 29.2 

PG 70-31P 2.2 0.5 13.5 

 

As mentioned previously, the Hookean model was originally developed for solid materials 

that could only undergo small deformations, similar to the oscillatory frequency sweeps. As 

oscillatory data was used to determine the SLF parameters, it is reasonable to expect that 

those parameters are no longer valid for excitations with large deformations like the MSCR 

pulse. These results further reinforce the notion that asphalt binders (whether unmodified 

or polymer modified) are not linear viscoelastic materials during the recovery portion of the 

MSCR. Ultimately, the recovery process is non-linear in nature and therefore unrealistic to 

expect the Standard Linear Fluid model to accurately predict the MSCR response. 

4.5 Non-Linear Modelling 

It was ambitious to use a rheological model composed of only linear relations to predict 

excitations that produce large deformations. An alternative to the SLF model utilized so far 

is the inclusion of non-linear elements.  In general, a model can be considered non-linear if 

any of the elements describe their stress-strain relationship non-linearly. In our scenario, we 

are mostly concerned with the underpredicting of the recovery amount for a MSCR pulse 

excitation. Thus, our focus is on the elastic element in our model. We hypothesize that 

instead of a linear relation (like a Hookean spring), a “hyperelastic” relationship is more 

appropriate. Hyperelastic models are used to describe stress-strain relationships of elastic 

materials that are non-linear. Rubber is a well-known hyperelastic material, and has 
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similarities to the soft, large macromolecules of polymer modified asphalt binders [32]. One 

possible hyperelastic constitutive model is the Mooney-Rivlin (M-R) model. It considered to 

be suitable for deformations up to 100% [33]. By replacing the elastic spring in the SLF 

model with hyperelastic element akin to the M-R model, we have the modified SLF model. 

(This modified version of the SLF model is of course, non-linear, despite the namesake). 

                    

 Figure 4.10  Schematic of the proposed modified SLF model. 

This model introduces two material constants as additional parameters, 𝑎 and 𝑏. These are 

used in combination with G (the elastic modulus determined from the frequency sweep data) 

to model the elastic stress function by the following equations: 

𝜎𝑒 = 𝑎 [ 1 − exp (−
𝑏𝜀e

𝑎
)] + (𝐺 − 𝑏)𝜀e                                         (4.1) 

 

d𝜎𝑒

d𝜀𝑒
= 𝑏 exp (− 

𝑏𝜀𝑒

𝑎
) + (𝐺 − 𝑏)                                                      (4.2) 

 

and depicted by this sketch of the elastic stress-strain curve. 
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With the aid of Matlab, a MSCR excitation response was generated using the modified SLF 

model with  𝑎 = 350 Pa and 𝑏 = 1000 Pa (it is worth noting these values were chosen purely 

in the interest of improving the prediction) and the SLF model parameters for PG 70-31P as 

shown in Figure 4.11. The modified model predicts the recovery amount better than the 

original SLF model while maintaining the required response shape. There is no 

instantaneous deformation or recovery upon onset or removal of the load. However, the 

amount of time needed to fully recover is still too fast, and there is an abrupt end to the 

recovery instead of a more gradual gain over time like the experimental results. Still, despite 

these inaccuracies, a predicted recovery amount of nearly 20% is a remarkable improvement 

compared to the 3% predicted by the original SLF model. 

 Figure 4.11  Modified SLF MSCR Pulse prediction for PG 70-31P. 

The results of the modified SLF model confirm that the best approach to predict the MSCR 

response (with large deformation) requires inclusion of non-linear elements. The reduction 

of slope in the long term allows an increased amount of elastic (and thus recoverable) strain.  

It is possible that reconsidering one or both viscosity elements to also be non-linear in nature 

would improve the MSCR prediction even further. However, this idea is left for future work. 
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Chapter 5:  Conclusions and Future Work 
 

We have introduced a simple, lowest-order rheological model — the Standard Linear Fluid 

(SLF) model — that is capable of predicting the MSCR response. It was shown that by 

performing a Frequency Sweep with a Dynamic Shear Rheometer, the SLF model parameters 

of asphalt binders can be determined. Furthermore, these parameters can be used to 

distinguish between polymer-modified and unmodified asphalts, just as a MSCR test can.   

However, the original goal of this thesis was to predict the MSCR response. Although the 

model can predict the creep portion of the test, it failed to accurately predict the amount of 

strain that was recovered. Variation in the amount of experimental recovery suggested that 

this recovery portion must be non-linear in nature, whether or not the asphalt has been 

modified with polymer. As the SLF model inherently assumes linearity for stress-strain 

relationships, it cannot predict this non-linear relaxation of stress.  

It was determined that the root cause of the non-linearity was likely due to the large amount 

of deformation experienced in MSCR testing. It was therefore unrealistic to expect the linear 

SLF model (whose parameters are determined from small deformation excitations) to 

accurately predict the response of large deformations seen in the MSCR test. An adjustment 

was made to the elastic element of the SLF model to account for non-linearity due to large 

deformation in the form of a Mooney-Rivlin model. This improved the prediction for the 

recovery portion of the MSCR test considerably, but still not enough to agree with the 

experimental results at the cost of two additional parameters. Insight was gained on the 

impact of representing the amount of elastic strain in a non-linear fashion to the predicted 

MSCR recovery amount. 

This thesis has made significant contributions towards the rheological modeling of asphalt 

materials. The SLF model only has three parameters, while still capturing the underlying 

physics of the material. Other models discussed in asphalt rheology either assume an infinite 

number of rheological elements or cannot correctly predict the shape of the MSCR response.  

Lastly, we have also presented a straightforward protocol to determine the SLF parameters. 

Despite this research only being concerned with asphalt rheology, there is potential for other 
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industries to further their rheological understanding. Materials similar in nature to the ones 

we have discussed here, namely, large molecules with potential for elastic characteristics, 

could also make use of the SLF model. Although we have shown that the SLF model cannot 

quantitatively predict our MSCR excitation, that does not mean all excitations cannot be 

predicted.  

Some considerations for future work include the following: 

• Investigate how large of a range of deformation for the oscillatory input can be used 

to determine the SLF parameters. This can involve changing strain/stress levels 

used but also other parameters such as the gap height.  

 

• Comparing the SLF prediction when the stress level is reduced in the MSCR pulse 

excitation to a comparable amount of deformation used in the frequency sweep 

excitation to determine the SLF parameters.  

 

• Analyze the quality of the data for the frequency sweep using angular frequencies 

below 10 rad/s. Ideally, getting a close to the zero-frequency limit as possible.  

 

• Assess the SLF model’s prediction ability when one or both viscosity elements is 

replaced with non-linear relationships. 
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Appendix A1: Frequency Sweep Data 

 

Angular Storage Loss tan Storage Loss tan Storage Loss tan

frequency modulus modulus (delta) modulus modulus (delta) modulus modulus (delta)

rad/s Pa Pa Pa Pa Pa Pa

10 50.83 389.88 7.67 44.20 382.81 8.66 44.53 382.62 8.59

15 102.57 577.42 5.63 95.50 569.62 5.96 96.36 569.88 5.91

20 172.84 765.69 4.43 164.59 754.26 4.58 166.27 754.55 4.54

25 259.88 948.30 3.65 251.77 934.72 3.71 253.68 937.44 3.70

30 370.11 1121.04 3.03 356.86 1114.91 3.12 358.97 1117.79 3.11

35 490.54 1306.82 2.66 478.90 1297.14 2.71 481.08 1298.15 2.70

40 633.47 1487.49 2.35 618.66 1473.68 2.38 620.38 1475.77 2.38

60 1360.84 2191.92 1.61 1346.30 2171.48 1.61 1354.65 2176.31 1.61

80 2390.14 2924.71 1.22 2338.63 2855.45 1.22 2345.08 2864.57 1.22

Angular Storage Loss tan Storage Loss tan Storage Loss tan

frequency modulus modulus (delta) modulus modulus (delta) modulus modulus (delta)

rad/s Pa Pa Pa Pa Pa Pa

10 130.64 1691.42 12.95 132.57 1718.88 12.97 131.53 1760.84 13.39

15 223.91 2479.61 11.07 227.07 2517.97 11.09 228.28 2587.95 11.34

20 325.64 3253.34 9.99 331.19 3303.81 9.98 333.34 3393.15 10.18

25 434.66 4013.01 9.23 441.53 4069.08 9.22 444.66 4167.75 9.37

30 551.59 4747.39 8.61 557.22 4831.04 8.67 562.80 4937.31 8.77

35 669.37 5502.18 8.22 676.53 5570.72 8.23 685.42 5700.51 8.32

40 784.17 6226.33 7.94 797.86 6312.73 7.91 810.84 6448.62 7.95

60 1317.78 9028.75 6.85 1325.65 9139.83 6.89 1347.47 9339.24 6.93

80 1912.63 11699.62 6.12 1891.72 11891.88 6.29 1937.68 12090.27 6.24

Angular Storage Loss tan Storage Loss tan Storage Loss tan

frequency modulus modulus (delta) modulus modulus (delta) modulus modulus (delta)

rad/s Pa Pa Pa Pa Pa Pa

10 356.87 3264.68 9.15 356.67 3206.71 8.99 359.45 3222.00 8.96

15 606.13 4661.29 7.69 607.36 4662.05 7.68 611.26 4662.39 7.63

20 881.19 6068.91 6.89 886.01 6069.55 6.85 894.01 6117.21 6.84

25 1188.32 7542.07 6.35 1191.18 7455.86 6.26 1195.69 7448.93 6.23

30 1524.58 8871.68 5.82 1518.35 8843.11 5.82 1523.64 8863.47 5.82

35 1853.40 10179.30 5.49 1860.69 10111.50 5.43 1868.87 10148.20 5.43

40 2201.33 11500.40 5.22 2220.37 11463.10 5.16 2233.48 11536.30 5.17

60 3838.09 16460.00 4.29 3848.28 16444.60 4.27 3872.93 16485.70 4.26

80 5754.57 21591.20 3.75 5763.55 21345.00 3.70 5809.85 21146.80 3.64

PG 64-22

1 Pa 10 Pa 100 Pa

1 Pa 10 Pa 100 Pa

PG 46-34

PG 58-28

1 Pa 10 Pa 100 Pa
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Angular Storage Loss tan Storage Loss tan Storage Loss tan

frequency modulus modulus (delta) modulus modulus (delta) modulus modulus (delta)

rad/s Pa Pa Pa Pa Pa Pa

10 679.26 1778.27 2.62 668.45 1782.90 2.67 667.24 1778.31 2.67

15 981.07 2432.21 2.48 969.77 2429.33 2.51 967.79 2425.08 2.51

20 1274.01 3024.17 2.37 1265.01 3025.59 2.39 1264.22 3016.75 2.39

25 1577.95 3594.09 2.28 1562.62 3577.71 2.29 1563.04 3570.27 2.28

30 1878.25 4119.13 2.19 1867.29 4111.57 2.20 1866.74 4095.56 2.19

35 2185.68 4600.50 2.10 2178.14 4628.91 2.13 2179.06 4608.17 2.11

40 2504.45 5091.24 2.03 2499.55 5108.50 2.04 2498.97 5085.44 2.04

60 3892.41 6938.39 1.78 3886.52 6921.41 1.78 3893.28 6913.00 1.78

80 5341.22 8694.03 1.63 5476.61 8602.66 1.57 5482.37 8585.42 1.57

Angular Storage Loss tan Storage Loss tan Storage Loss tan

frequency modulus modulus (delta) modulus modulus (delta) modulus modulus (delta)

rad/s Pa Pa Pa Pa Pa Pa

10 757.16 2271.90 3.00 764.57 2266.88 2.96 755.70 2256.64 2.99

15 1112.40 3144.04 2.83 1116.93 3116.15 2.79 1097.89 3069.49 2.80

20 1444.92 3907.21 2.70 1462.09 3899.05 2.67 1465.85 3938.83 2.69

25 1778.11 4589.87 2.58 1812.12 4641.98 2.56 1791.21 4565.75 2.55

30 2144.99 5337.90 2.49 2171.23 5353.30 2.47 2146.81 5275.21 2.46

35 2518.43 6082.61 2.42 2533.58 6022.17 2.38 2531.46 6140.28 2.43

40 2857.73 6692.57 2.34 2899.68 6673.05 2.30 2873.85 6553.00 2.28

60 4457.51 9127.81 2.05 4482.59 9144.16 2.04 4467.43 8956.03 2.00

80 6358.60 11532.60 1.81 6253.66 11439.60 1.83 6221.30 11345.10 1.82

Angular Storage Loss tan Storage Loss tan Storage Loss tan

frequency modulus modulus (delta) modulus modulus (delta) modulus modulus (delta)

rad/s Pa Pa Pa Pa Pa Pa

10 1745.25 4214.35 2.41 1740.67 4220.42 2.42 1741.44 4229.51 2.43

15 2394.30 5659.42 2.36 2425.19 5719.10 2.36 2422.39 5724.78 2.36

20 3102.31 7140.69 2.30 3060.12 7085.21 2.32 3067.33 7102.72 2.32

25 3664.29 8327.84 2.27 3681.08 8373.90 2.27 3688.86 8389.33 2.27

30 4253.37 9509.05 2.24 4291.13 9596.90 2.24 4279.92 9570.52 2.24

35 4903.01 10763.10 2.20 4889.14 10762.90 2.20 4876.71 10727.70 2.20

40 5471.18 11863.60 2.17 5482.92 11885.70 2.17 5467.19 11831.40 2.16

60 7751.27 15965.00 2.06 7890.84 16092.40 2.04 7878.37 16043.20 2.04

80 10467.00 20350.30 1.94 10440.20 19976.90 1.91 10393.30 19913.40 1.92

PG 70-31P

1 Pa 10 Pa 100 Pa

PG 58-37P

1 Pa 10 Pa 100 Pa

PG 64-34P

1 Pa 10 Pa 100 Pa
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Appendix A2: Additional MSCR Pulse Figures 
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PG 58-28: 
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PG 64-22: 
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PG 58-37P: 

 

 

PG 64-34P: 
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PG 70-31P: 
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Appendix B1: SLF Parameter Sample Calculations 
 

Here is an example of how to solve for the SLF Parameters using the 100 Pa Frequency 

Sweep data for PG 58-28: 

PG 58-28 100 Pa 

Angular  Storage  Loss  tan 

frequency modulus modulus (delta) 

rad/s Pa Pa   

10 131.53 1760.84 13.39 

15 228.28 2587.95 11.34 

20 333.34 3393.15 10.18 

25 444.66 4167.75 9.37 

30 562.8 4937.31 8.77 

35 685.42 5700.51 8.32 

40 810.84 6448.62 7.95 

60 1347.47 9339.24 6.93 

80 1937.68 12090.27 6.24 

 

Plotting the loss modulus (𝐺′′)  vs angular frequency (𝜔) gives: 

 

Next, a linear trendline that is forced through the origin is fit to the data. We decided to 

only use the first two data points as they are our lowest frequency, and we are trying to 
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find the “zero-frequency viscosity”. A linear trendline for the whole data set is shown to see 

that the difference is small, but noticeable. Other data sets may have a larger difference.  

 

 

The slope of the trendline is set as the value of  𝜇0 + 𝜇1, therefore: 

𝜇0 + 𝜇1 = 173.62 𝑃𝑎 · 𝑠 

 

Recall that we are trying to fit our data to equation (2.17): 

𝐺′′

𝜔
=  

𝐺

𝜇1
 

𝐺′

𝜔2
+  𝜇0 

Next, the values of  𝐺′′ 𝜔 ⁄  vs  𝐺′ 𝜔2⁄  are calculated and plotted.  

w G''/w G'/w2 

10 176.08 1.32 

15 172.53 1.01 

20 169.66 0.83 

25 166.71 0.71 

30 164.58 0.63 

35 162.87 0.56 

40 161.22 0.51 

60 155.65 0.37 

80 151.13 0.30 

 

y = 156.66x

y = 173.62x
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Again, a linear trendline is fit to this dataset. We noticed that the highest frequency data 

points begin to deviate from the linear slope of the lower frequency points, so they were 

excluded. Trendlines for both the entire set and the reduced set are shown to see the 

improvement in the fit. Remember that we are working with a linear model, so a better 

linear fit is ideal.  

 

From this trendline we can gather that: 

𝜇0 = 153.01 𝑃𝑎 · 𝑠 

𝐺/𝜇1 = 18.429 𝑠−1 
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Our previous work found: 

𝜇0 + 𝜇1 = 173.62 𝑃𝑎 · 𝑠 

Therefore: 

𝜇1 = 173.62 − 𝜇0 = 173.62 − 153.01 = 20.61 𝑃𝑎 · 𝑠 

𝐺 = 18.429 ∗ 𝜇1 = 18.429 ∗ 20.61 = 379.82 𝑃𝑎 

 

Lastly, we can calculate 𝜏1 as follows: 

𝜏1  =
𝜇1

𝐺
=

20.61

379.82
= 0.054𝑠 

Or alternatively,  

𝜏1  =
1

18.429
= 0.054𝑠 

 

 

To summarize, we have found the SLF parameters for PG 58-28 to be: 

𝜇0 = 153.01 𝑃𝑎 · 𝑠 

𝜇1 = 20.61 𝑃𝑎 · 𝑠 

𝐺 = 379.82 𝑃𝑎 
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Appendix B2: Sample Matlab Code for SLF MSCR Prediction 

 

%% MSCR Pulse Input 

%Evan Kohut March 2020 

clc; clear all; close all; 

%Analytical solution from chapter 2 draft 

------------------------------------------------- 

 

%% Inputs 

%SLF parameters (Example for PG 70-31P) 

mu_knot = 276.7; mu_1 = 117.7; G = 1048.3; 

mu_sum = mu_knot + mu_1; 

  

%stress level 

sigma = 3200; 

  

%extra 

mu = (mu_knot*mu_1)/(mu_sum);  

Tau = mu/G; %See Chapter 2, this is not Tau1 

  

A = (sigma)/(G); 

B = ((mu_1)/(mu_sum))^2; 

C = (sigma)/(mu_sum); 

D = (mu_1)/(mu_knot); 

  

%time 

creep_time = 1; %Total creep time of one second 

n_creep = 1000; %Number of points 

dt_creep = creep_time/n_creep; %Spacing of points 

  

relax_time = 100; %Allowed up to 1000 seconds of recovery on DSR 

n_relax = 10000; %Number of points 

dt_relax = relax_time/n_relax; %Spacing of points 

------------------------------------------------- 

 

  

%% Main Code 

t(1) = 0; %Intial value 

  

for i = 1:n_creep 

    E(i) = (A*B*(1 - exp(-(t(i)/Tau))))+(C*(t(i))); 

    Edot(i) = C*(1+(D*exp(-(t(i)/Tau)))); 

    t(i+1) = t(i) + dt_creep; 

end 
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%Need +1 to ensure point is calculated for t = 1 second 

Emax = (A*B*(1 - exp(-(t(n_creep+1)/Tau))))+(C*(t(n_creep+1))); 

Edotmax = C*(1+(D*exp(-(t(n_creep+1)/Tau)))); 

  

Ee = (sigma - (mu_knot*Edotmax))/G; 

Er = (sqrt(B))*Ee; 

 

  

for i = (n_creep+1):n_relax 

    E(i) = Emax-(Er*(1-exp(-((t(i)-t(n_creep+1))/Tau)))); 

    t(i+1) = t(i) + dt_relax; 

end 

%extra because of +1 

E(n_relax + 1) = Emax-(Er*(1-exp(-((t(n_relax+1)-1)/Tau)))); 

  

 

%Scaling 

Escaled = 100*(E/Emax); %Maximum strain, at 1second, now equals 

100% 

Predicted_Recovery = 100-(Escaled(length(Escaled))); 

------------------------------------------------- 

  

 

%% Plots 

  

figure('name', 'MSCR Pulse Results') 

plot(t,Escaled) 

xlim([0 10])%Can choose how much time you want to plot 

xlabel('Time, t (seconds)'); ylabel(' Scaled Strain %') 

title('PG 70-31P') 

  

%Can import experimental results to get all data 

%onto a single figure window.  

 

 


