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Abstract

No matter how sophisticated the reasoning mechanism is in a knowledge-based sys-
tem, its performance will always be limited by the quality of its store of domain
dependent. knowledge - its knowledge base. The acquisition of this knowledge has
long heen considered a “bottleneck” in the development of knowledge-based systems.
Although much effort goes into eliciting and encoding the knowledge base of a sys-
tem, there will almost always be some omissions and errors. It is therefore useful for
a knowledge-based system to continually acquire new knowledge during its operation.

THINK is a framework to integrate interactive machine learning into a knowledge-
based system which allows a system to incrementally acquire new knowledge when
the current knowledge base is inadequate to solve a given problem. This knowledge
acquisition method uses the current problem context and line of reasoning to hypoth-
csize missing items of knowledge. Hypotheses are generated through a generalized
abduction method and then subjected to a neural net based plausibility test prior
to presentation to an expert user. The knowledge base is updated according to the
response. If hypotheses are rejected then alternate ones are generated until accepted.
In interactions between cxpert and system, learning is achieved through experience
so more plausible hypotheses are presented earlier. This learning takes the form of
training the neural net with previous hypothesis-response pairs.

An implementation of THINK is described along with experimental results which

indicate the validity of the concept.
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Chapter 1

Introduction

1.1 Motivation

A knowledge-based system (KBS) is a computer system which use stores of domain-
specific knowledge to solve problems. The store of knowledge, called the knowledge
base (KB), is applied to problem instances with some problem-solving method. This
method is embodied in a separate part of the system called the inference engine.
Thus, the inference engine applies the knowledge within the KB to a given problem
instance to produce a solution. The term “inference engine” derives from the use of
various logical inference methods to apply knowledge to a problem. An important
specification of a system is the knowledge representation (KR) scheme. Although
the content of the KB is domain-specific, its representation scheme is system specific
to enable interpretation by the system’s inference engine. A view of a KBS in its
simplest form is given in figure 1.1.

One central area of KBS research is knowledge acquisition (KA). The problem of
acquiring the domain-specific knowledge for a KBS has been recognized as a “bot-
ileneck” in the development of practical systems since the DENDRAL days [5]. The
sheer volume of knowledge to be acquired for a practical system makes it inevitable
that there will be errors and omissions. Omissions can also occur when domain ex-

perts omit details they think are unimportant to the inference process in order keep
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Iigure 1.1: Simple KBS View

things simple for the knowledge engineer. Some details just never naturally come to
the mind of the expert until they are needed in an actual problem case. The expert
may overlook some details because the details are so obvious (to the expert at least).
The result is that while the KB may allow adequate or even expert performance, it
can always be improved.

Buchanan [6] notes that the KA problem has several dimensions and naturally
goes through phases. He likens it to a chess match with an “opening,” a “middle
game,” and an “end game.” In the development of R1, McDermott [16] noticed a
similar requirement to go through a “rule splitting” refinement phase. However the
phases are identified or characterized, it is natural to use a specific KA approach for
cach. A phase might be characterized by an emphasis on filling in missing knowledge.

Missing knowledge will be manifest in one of two possible ways:

1. The KBS will find no solution to a problem because of the missing knowledge.

2. The KBS will provide an incorrect solution or 2 less than best solution to the

problem.

In the second case, the system could allow the user to reject these solutions one by
one until the first case arises. For example, a system might be expected to generate
A and B as possible diagnose.s for some given symptoms, but only comes up with A
because of missing knowledge for diagnosis B. Closer examination by the user might
result in A being rejected. Then there will be no other possibilities to investigate
although there should be. Consequently, it makes sense to take a close look at the

first manifestation, above.



A robust system will have an alternate way of proceeding when faced with the
first situation, above. Any such contingent reasoning is likely to be less effective and
less reliable, and therefore less desirable. than the primary reasoning mechanism.
Otherwise, it would be used primarily. It makes scuse, therefore, to use the contin-
gent reasoning not just to continue with the problem or subproblem at hand, but
rather to “repair” the problem with the primary reasoning mechanism  to find the
missing knowledge required for the task at hand. After the missing knowledge has
been inferred, it can be verified with an expert user, to give it the same credibility as
the extant system knowledge. A good, robust KBS will have a way of automatically
switching, as required, into a mode of incremental KA directed at the missing knowl-
edge for a given task within the context of that task. Not only will the task context
be set up in the system for this directed KA, but will also be fresh in the user’s mind.

THINK (Thoughtful Hypotheses for Inquiring on New Knowledge) is a framework
to integrate a directed, and interactive KA subsystem as motivated above. Davis

encourages these basic ideas of integration and expert interaction in [7).

1.2 Objective and Contribution

The objective and contribution here is to show that an adaptive (learning) KA subsys-
tem which acquires missing knowledge can be integrated into a KBS which has knowl-
edge based on associational links. Such KBSs form a significant subset of all KBSs.
They include systems, such as CASNET [25] which is based on causal-associational
links; and production systems, such as R1 and XCON [16] whose production rules
can be viewed as associations between conditions and actions. Any KBS in this sub-
set can derive the additional robustness and other benefits described in the previous
section with the inclusion of a KA subsystem similar to the one presented here.
Previous work in KA is focused on either initial KA for a KBS (e.g., [17, 1]) or
on refinement of knowledge bases. The work here clearly falls into the refinement

category. Other work in this category is directed at refining existing knowledge items



(e.g., [22, 10, 8, 13]); and guiding an expert to general areas of the domain which need
attention to gradually elicit new knowledge items (c.g., [7. 14]). There are no existing
systems, known to the author, which infer, on their own, new! KB items complete
and ready to be incorporated into the KB and only requiring the expert to approve
or reject (or perhaps provide a certainty factor for) the new item.

It is the author’s thesis that a useful KA subsystem for acquiring missing as-
sociational knowledge is possible which combines abduction and the application of
Adaptive Logic Networks? (ALNs) to perform adaptive hypothetical inference to gen-
crate candidate missing KB items to present to an expert for verification.

To show that such a KA subsystem is possible and viable, a particular such system

is implemented and tested on the following ;-redictions:

1. The system wil be Capa.ble of acquiring missing knowledge required for a given
problem, putting it to an expert for approval, incorporating it into the pri-
mary KB, and allowing the primary KBS reasoning mechanism to continue to

successfully solve the given problem.

2. Because of its adaptive nature, the KA subsystem will improve with increased

use. That is, a more mature KA subsystem will present fewer candidate KB

items which are rejected by the expert.

1.3 Overview of Chapters

The remaining chapters are organized as follows: The next chapter describes the
general THINK framework along with its scope of application.

Chapter 3 provides preliminary background information on abduction and on the
particular type of neural net (ALN) used in the experimental system.

Chapter 4 describes the experimental system in detail. It provides more detail on

the architecture of the system, and implementation specific details and assumptions

1By “new” it is meant that the inferred KB items are not revisions of existing KB items.
o .
2A kind of neural network presented later



for the individual components.

Chapter 5 describes related work in the arca intelligent knowledge acquisition.
This chapter also provides comparisons between the related work and that presented
here.

Chapter 6 describes the experiments conducted on the implemented system. Re-
sults of the experiments are provided as well as a qualitative evaluation of the system
in light of the results.

The final chapter provides a general appraisal of the THINK concept. Limitations

and strengths are highlighted and suggestions for further work are given,



Chapter 2

The THINK Framework

2.1 Scope of Application

The THINK framework applies to KBSs which have knowledge based on self-contained
associational links. Many KBSs are based on some form of associational knowledge.
The designers and users of these systems have their own various meanings for these
links which are usually independent of how they are used. Whether the links are
“causcs”, or inversely “evidences” , or orthogonally “allows”, or generally “explains”,
a common basic inference of, say, backchaining can result in a useful KBS. All that
need change is the name of the link ana which associations are made in the KB. Here,
such associational links will be represented with a — connective.

As an example consider an “animal world” KB with the following associations:
{bird(X) = fly(X),dog(X) — run(X),cat(X) — leap(X)}.

Let the KBS also know: {bird(tweety), dog(lassie), cat(morris)} as observations. If
the KBS is tasked to explain fly(tweety), backchaining can be used by finding an
association whose right hand side matches fly(tweety). Since the first association
matches, the system then continues by trying to explain bird(tweety). This is ex-
plained simply by citing it as an observation.

Suppose such a system is unable to provide an explanation for some observation.

6



This would be the case in the above example if the association, bird(XN) — fly(\)
was missing from the KB. In this situation, the system might suggest to an expert
user a candidate KB item which, if added to the KB, would help in the explanation.
Suppose the example system is supposed to explain fly(tweety) and is missing the
first association. It cannot explain fly(fweety). At this point the system might
suggest to an expert that bird(tweety) — fly(tweety) (or some more general form
of it) be added to the KB. Based on the expert’s response, the KB could then be
automatically updated and reasoning could continue. This sort of suggestion would
only be necessary if the system is unable to find any explanation for fly(Lweely).
There is an obvious problem with this simple scheme, though. 1f the KB or set of
observations is large, then the number of possible suggestions is prohibitively large.

No expert user wants to be deluged with many thoughtless suggestions:
e Does dog(lassie) — fly(tweety) hold? Answer: No.
e Does cat(morris) — fly(lweety) hold? Answer: No.
o Does bird(tweety) — fly(lweety) hold? Answer: Yes.

This could be much worse if either the KB or the observation set were large.

2.1.1 Thoughtful Hypotheses

The solution to the above problem is to intelligently order the suggestions so that the
right one is likely asked early on. The determination of whether the response is likely
to be positive or negative is where intelligent hypothetical inference can be used.
Based on a history of previous suggestion-response pairs, cach possible suggestion is
checked for some kind of support. Only if there is support, is a suggestion actually
made to an expert.

THINK is a framework for performing this secondary inference directed at incre-

mental KA. There is a separate adaptive knowledge-based subsystem with its own KB

-1



for this purpose. The subsystem is meant to generate either links or literal elements!

as needed,

2.2 KA Subsystem

When the primary reasoning system fails to find an explanation for a problem, it is
then up to the KA subsystem to acquire missing items which will allow an explanation.

There are two kinds of possible missing items:

Missing literals: These are usually observations which should have been given for

the current problem. These could include “askables” which are commeon in

expert systems.
Missing links: These are usually missing KB items.

The KA subsystem can generate either kind of these items as candidates.

The technique for acquiring these missing items is generate and test. Based on its
KB, the primary KB, and the current line of reasoning, the KA subsystem generates
candidate knowledge elements which would allow an explanation. Testing is just
asking an expert if the hypothesized missing items should in fact be added to the KB
or problem description.

The expert is expected to provide two responses to each presented item:

1. A categorization of good‘ or poor of the item as a suggestion. This categorization
could be based on anything the expert believes, particularly if this basis is
something not naturally represented in the primary KB. For example, it could
be a “poor” suggestion to ask something the expert could never know. If an
expert could know an answer (after a reasonable amount of effort) then it would
be a “good” item to suggest. The idea here is to develop a classification scheme

which is not easily represented in the language of the main domain knowledge.

1A literal is just an atomic proposition or its negation. E.g., bird(tweety) and ~dog(morris).
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Figure 2.1: View of General KBS with THINK

2. A response as to whether the suggested item should be a new KB item, new
observation, or neither. The response here may include parameters for the new

item (e.g., a certainty factor).

\

The first response is not part of the knowledge acquisition, proper. Rather, it is used
in adaptation of the KA subsystem. The order of generation of candidates is based on
previous expert categorizations. It is important to have a two part response mainly
to allow for “good” candidates which, nonetheless, are just not true. In this case
the “good” part of the response will be used in adapting the system to tend to ask a
similar question again in a different case even though the main (second part) response
the first time was negative. In this way, the KA subsystem is one which learns from

experience to ask “good” questions earlier than “poor” ones.

2.2.1 Architecture

The architecture for THINK‘is an extension of that for a KBS to include the KA
support described above. This architecture is depicted in figure 2.1. The KA in-

ference engine receives, from the performance inference engine, the current task or



subtask that cannot be performed. The KA inference engine then uses the main KB
augmented with its own KB to generate a suggested new knowledge item to which an
expert, responds. Based on this response, the KA inference engine updates the main

K3 and through adaptation also updates its own KB.

2.3 Summary

The following points summarize the THINK framework:

e THINK applies to systems with a KB mainly consisting of associational links.

Other ancillary knowledge may be present, though.

e When the performance system is unable to solve a problem, the KA subsystem

is called upon to acquire missing knowledge.

e The KA subsystem uses its own hypothetical inference procedure to generate
candidate new KB elements which will allow the performance system to solve
its problem. This subsystem uses its own specialized KB along with the the
KB of the performance system. Based on this knowledge, KB candidates are

generated in an order of decreasing quality as indicated by past experience.

e The expert user responds to candidates in two parts. The first part indicates
the quality of the candidate and is used to adapt the KA subsystem. The second

part is an indication of how the candidate should be incorporated into the KB

of the performance system.

This is a very general framework. Any kind of adaptive subsystem can be used
which performs as described above. It is within this framework that systems can be
developed which support the authors thesis: a useful KA subsystem for acquiring
missing associational knowledge is possible which combines abduction and the ap-
plication of ALNs to perform adaptive hypothetical inference to generate candidate

missing KB items to present to an expert for verification.

10



Chapter 3

Background

This chapter provides introductory descriptions of abduction and ALNs. These are
central to the mechanism of the adaptive KA subsystem presented here. Abduction is

used to generate candidate new KB items. ALNs are used in ordering the candidates

by quality.

3.1 Abduction

This section describes the inference method of abduction. First, it is presented as
Peirce [21] originally did. Then, the contemporary Al view is presented. Although
the modern view seems less general than Peirce’s, it is argued that it need not he so.
Finally, the mechanism of abduction is related to the common Al theme of search.

This relationship is very evident in THINK.

3.1.1 Peirce

The notion of abductive inference was first put forth by the philosopher, Charles 5.
Peirce [21]. He describes abduction as the initial jormation and consideration of a
hypothesis. Peirce distinguishes this from verifying a hypothesis which is an induclive
process. As Peirce puts it, a hypothesis is any “supposed truth from which would
result such facts as have been observed”. In short, a hypothesis is a supposition

11



which explains something. Thus, abduction is the gcneration of any supposition

which explains something - quite a general kind of inference.

Strictly speaking, there are no restrictions on hypotheses (and therefore abduc-

tion) except that it must explain something. Peirce does, however, provide some

guidelines and caveats which should help in performing “good” abduction. Some of

these are outlined below.

1.

«  abduction cornmits us to nothing,” says Peirce. The point is that no
conclusion is drawn by abduction. It merely generates a hypothesis to be further
investigated. Abduction is sometimes introduced by others as “an unsound
rule of inference” (eg: [11]). This is a rather unfair sounding introduction.
Abduction is a best introduced as a method to generate hypotheses. Although
a “method” can be though of as a rule and a hypothesis is a kind of inference,
the connotation is lost in the “rule of inference” description with which people
casily associate the idea of faulty reasoning. Abduction should be used freely

without fear of generating a faulty line of reasoning, but with the understanding

of what abduction produces.

Any hypothesis which explains something is a valid product of abduction. For
example, to hypothesize that it had been raining recently would be an abduction
to explain some wet ground. This is not very useful, however, if one is trying
to find an explanation for a broken window. Here, the point is that abduction
should be directed toward some end reasoning goal; “that ought to be done

which is conducive to a certain end.” In short, the application of abduction

should be goal-directed.

A hypothesis need not explain just some observed phenomenon; it may be more
generally applicable. Indeed, a more general hypothesis may be much more
useful. For example, upon observing the relationship between the pressure and
volume of a sample of helium gas, one might hypothesize that the Boyle’s Law

relationship will always hold for this sample; or one may hypothesize that it

12



holds for any helium sampic, or any gas sample, or even any matter sample.
Even the last hypothesis is useful if only to incite investigation towards its

refutation.

. Prior likelihood of the truth value of a hypothesis should not enter into ab-
duction. Consider the popular Sherlock Holmes quote: (roughly) *When the
impossible has been eliminated, whatever remains, however unlikely, must be
the truth.” Clearly, it is important for abduction to produce unlikely hypotheses
as well as likely ones lest there sometimes be nothing remaining alter elimination

of the impossible.

. Hypotheses definitely should be verifiable. It is of no use hevond mere pondering
to suppose an explanation which cannot be checked out. It is not necessary
to be able to verify a hypothesis directly, though. It is acceptable to make
hypotheses for which there will be indirect evidence for their confirmation. It
is good abduction to suppose earlier rain explains wet ground. Although one
cannot go back in time to observe the rain directly he can check weather reports
and ask around if it had rained. On the other hand it is not good abduction
to suppose that the ground just magically became wet. This is not becanse it

seems unlikely but because there is no way of checking out the theory.

. Abduction can include a preference for one hypothesis over another. This pref-
erence, though, must not be based on any knowledge bearing on the possible
truth of the hypothesis. This is in keeping with the first and fourth points
above. Consideration of the truth or likelihood of a hypothesis is done afler
abducing it - in the verification of it. Some possible bases for preference have
been mentioned above. A more general hypothesis could be preferred over a
more special one or vice versa; or a more easily verifiable hypothesis could be
preferred over one more difficult to check out. Iven aesthetics may provide

grounds for preferring one hypothesis over another.
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3.1.2 Contemporary AI Abduction

Many Al tasks may be viewed as finding explanations. For example, diagnosis is
finding an expianation for observed symptoms; recognition or classification is finding
an explanation for observed characteristics; plan recognition is finding an explanation
of observed actions; and natural language understanding is finding an explanation
(meaning) for a sequence of words. Al practitioners often use abduction as one of the
methods in the search for explanations. Toward the end of automating abduction, it
has been formalized as a clean, simple inference rule {11, 15):

d-V, ¥
—— (3.1)

In knowledge-based systems, the — connective is not taken as material implication
but as some kind of explanatory connection such as “causes”, “may cause”, or “al-
lows”. Thus, ® is inferred (hypothetically, not conclusively) as an hypothetical ex-
planation for W.

At first this may seem to be a restricted version of Peirce’s abduction, for it does
not. provide for the hypothesis of a link like ® — W. For example, bird(tweety) may
be hypothesized from fly(tweety), bird(X) — fly(X), it does not seem possible to
infer hypothetically bird(X) — fly(X) from bird(tweety), fly(tweety). Actually,
though, such an inference is valid with this formalized abduction. Most reasoning

systems have this rule implicit: (¢, ® — ¥) — ¥. Substituting into the abductive
rule 3.1 gives
(¢, 2 -V T, ¥
¢ -V

Adding ® to the antecedent and removing it from the consequent, as well as removing

(3.2)

the implicit rule from the antecedent gives

o, U
- Vv (3:3)

Abduction need not be restricted to producing but one hypothesis at a time. Just

removing the implicit rule from 3.2 gives

v

¢, OV (3.4)
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Also, ® itself could be a conjunction of, say, &, ..., d,. If the first { of these are
given, known, or supposed, then they can be removed from the consequent of 3.1,

and 3.4 giving
(Dla'--aq)h (q)la"'vq)n) — \l’, v

(bl+1$°"9(bn

(3.5)

and
Gy, U

(I)H-h*-'aq)na ((I)la'-'ad)n) -V

respectively. Abduction can be chained by using the results of one abduction as

(3.6)

hypothesized premises to others. For example 3.4 might be chained with itself for n
applications. Let ®; and ¥; be ® and ¥ from the ith application. Feeding ®; into

the (i 4+ 1)st application as W;4; and removing redundant hypotheses (®s) gives

14

(I)m q’"_’q)n—l“*"'—bqh—-)\ll (3.7)

It should now be clear that by freely combining the above inference rules, for-
malized abduction is as general as Peirce’s abduction. That is, any explanatory

hypothesis can be generated through formalized abduction.

3.1.3 Abduction and Search

Abduction and search are closely related. Consider a search state space with state
nodes, N;, which each expand via allowable state transitions to a sct of nodes,
N},...N. A search specifies a start node, N, and also specifies (perhaps indi-
rectly) a set of goal nodes Ng. The aim of a search is to find a state transition path
from N, to some goal node, N, € Ng. Let P; denote the proposition, “N; is on a
path from N, to a goal node,” and let P} denote the same for Ni. It is then true that
Rj — P, for j € [1..n;]. Now, either P, is known true, or it is assumed true to begin

the search. N, gets expanded and N},... NJ** as new search frontier nodes. This also

identifies the rules, P} — P,,... P?* — P,. It is then possible to apply abduction:

3

P,, P} — P, .
— (j € [1..m]) (3.8)



One application of this abduction is exactly the process of selecting the next node
to expand. Thus the whole search process is a series of forward abductive chaining
steps. It ends when a rule, I’,-j — P is identified where /V,’ € Ng. At this point P,
can be shown deductively and the chain P, — -+ — P, corresponds to a path in the
search space. Thus, search is abduction.

If scarch is abduction, then is the reverse true? Is abduction search? The answer
is yes. A state in the state space is specified by the pair, (F,T) where F is the set of
known facts and T is a set of currently considered hypotheses. F' is static so is the
same for all states. A state transition is the application of any abductive inference
rule resulting in an addition to T and so a new state. Although not mentioned by
Peirce in [21], an important caveat is that any addition to F' (abductive inference)
should not result in any inconsistent set of hypotheses. That is, F'UT should remain
consistent!. What remains is to show how start and goal states are specified for a
scarch. Recall one of the principles of abduction from section 3.1.1 is that abduction
should be directed to some end - that there should be something specific to be
explained. Let that item be denoted, G. If G is already known to be true (just an
explanation is desired) then the start state, is (F,#). Otherwise, G is assumed and
the start state is (F, {G}). An end state is one where there is satisfactory evidence

for the non-redundant items in 7.

3.2 Adaptive Logic Networks

This section describes Adaptive Logic Networks (ALNs) which are a particular kind
of neural network. A brief definition of general neural nets is fi:st given, followed by

the distinguishing characteristics of ALNs. Included, is a brief motivation for the use

of ALNs.

'This may seem very much like reasoning in the Theorist framework [23]. The important distinc-
tion is that in Theorist, additions to T are drawn from a predefined set of allowable hypotheses; here
additions to T are drawn from abductive inference. Thus, Theorist is very much a default reasoning
framework and not so much and abductive one.
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3.2.1 Neural Nets

Pertinent elements of the neural net definition from [12] are sunmmarized below:

1. A neural net is a directed network of processing clements.

2. Connections in the network are unidirectional and pass the output of one pro-
cessing element as the input of another. Some connections serve as inputs to
the overall net and pass net input input values as input to processing clements.

Some connections serve as outputs from the net and pass output from processing

elements as net output.

3. Each processing element may have any number of input connections.

4. Each processing element may have any number of output connections but they

each must carry the same output value. That is, a processing clement computes

only one function and this value “fans out” over the element outputs.

5. The output of a processing element is a function of only its inputs and the local

state of the processing element.

6. The local state of a processing element may be changed as a function of the

current state and of the inputs to the processing clement.

The above defines a neural net as it operates. Neural nets can also be adapted
(trained) automatically by an adaptation process. The function from the last two
points (called a transfer function) above may be parameterized and the parameters my
be adjusted during the adaptation process. This process (which partly distingunishes a
neural net) typically consists of presenting the network with inputs as well as known
correct outputs. This information is propagated throughout the network according
to the process resulting in modification of the transfer function parameters. This
process is repeated over many input-output examples (a training set) until the net

performs acceptably. More details of adaptation may be found in Chapter Three of

[12].
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3.2.2 ALN Characteristics

ALNs were primarily developed at the University of Alberta by William Armstrong
and are well described in [2]. The overall characteristic of ALNs is simplicity. This can

be seen in the characteristics below which relate respectively to the general definition

points in section 3.2.1.
1. An ALN is a binary tree of processing elements.

9. Connections are directed UP the tree (towards the root). Inputs to the network

are passed to the leaves of the tree and there is a single output at the root.
3. Each processing element has exactly two input connections.
4. Each processing element has exactly one output connection.

Inputs to each processing element are boolean values (0 or 1). The output of

14
.

a processing element is one of four possible boolean transfer functions: AND,
OR, LEFT, or RIGHT. There is no local state information as there is only one

state of the processing element.
6. The loca! state does not change during operation.

Because the four possible transfer functions are each monotonic? and monotonicity
is preserved through composition, ALNs are monotonic. This may or may not be a
desirable feature. Any function can be realized, though, by providing the complements
of the arguments as well as the arguments themselves as ALN input. With AND and
OR functions available and the availability of input complements, it is clear that any
boolean function can be realized with a large enough ALN.

In order to realize some functions it is necessary to replicate some of the inputs

to more than one leaf processing element. In fact, a multiplicity of a dozen or more

2A boolean function is monotonic if a single change of any argument from 0 to 1 will not cause
the output to change from 1 to 0 and vice versa.
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Figure 3.1: Nonmonotonic ALN with 8 leaves and 2 inputs

is sometimes needed in order. to have a large enough ALN structure. Although in-
put connections and processing clement transfer functions can be defined manually,
it is common (as it is in general for neural nets) for the transfer functions to be
automatically defined through an adaptation mechanism. Initial connections from
inputs to leaf elements are random. If the adaptation procedure is unsuccessful (the
network does not perform acceptably after a reasonable training period), another
random input connection scheme can be tried or the ALN can be enlarged increasing

the multiplicity of inputs. An example ALN is depicted in figure 3.1.

3.2.3 Insensitivity of ALNs

Bochmann and Armstrong have shown that ALNs are insensitive to small changes in
input [3]. That is, a small perturbation in the input bit pattern will result in a small
probability of a change in the.ALN output. This property of ALNs makes them good
for pattern recognition. After training on a small set of exemplar bit input patterns,

and then presenting the ALN with a new pattern which is close (in Hamming distance)



to an exemplar, it is likely that the ALN will classify the new pattern in the same
way as the similar exemplar, This brings to light an important principle in the use of
ALNSs for pattern recognition: Patterns should be encoded into ALN inputs in such
a way that “similar” patterns have encodings which are close in Hamming distance.
"This allows a more natural adaptation of the ALN to recognition®. For example,
to use ALNs for case retrieval in a case-based reasoning system, case indices should
have encodings such that cases that are similar with respect to case solutions will

have index encodings which are close in Hamming distance.

3.2.4 ALN Adaptation

The ALN adaptation procedure is described in detail in [1] and [2]. It is summarized
here. Adaptation is fairly simple because it is locally isolated at each processing ele-
ment. A training set consists-of training samples (exemplars) along with the known
correct output. These are presented to the ALN in random order. For each presenta-
tion, the ALN adapts in response to the presentation. There are two main issues in
adaptation: how to adapt an element and when. The how issue is about choosing an
appropriate transfer function and the when issue is about deciding when an element
is “important” in a computation and consequently if it should be adapted for the
current exemplar. Each of these will be discussed in order.

A processing element has four transfer functions to choose from during adaptation.
During each exemplar presentation, the network is evaluated on the exemplar so
that each element has available its inputs. Also, the correct network output? is
made available to each “important” element. “Important” elements are then adjusted
according to its inputs and the desired network output. Adjustment is not done in

a way that snaps the element to produce the correct output, but rather, it is edged

3However, ALNs are capable of learning to determine when it is important for certain subsets
of the input to be close to those in exemplars. This determination is based on other subsets of the

input.
4Because of ALN monotonicity, this serves as the desired element output for “important”

clements.
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towards that state. This gradual adaptation is doue for the following reasons:

e It is not necessary for every “important” element to actually produce the desired
output. It is possible for other parts of the network to “take up the slack”

sometimes.

e The initial choice of which elements are “important” is a heuristic one and so
could be wrong. Naturally, it is undesirable to snap an clement il the basis for

change could be wrong.

e There is always a choice of functions to which to move, given inputs and desired
output. It is inappropriate to just select one and change to it. Rather, just
reinforce the appropriate choices and inhibit the inappropriate oncs. After a
number of exemplars have been processed, the most appropriate choice should

emerge.

To facilitate this gradual movement towards an appropriate function, two bounded
counters are maintained at each element during adaptation. The bounds are set
arbitrarily with the tradeoff that smaller bounds result in “snappicer” behaviour and
larger bounds can result in slower adaptation. The current range is 64. One will be
called the (1, 0) counter and the other the (0, i) counter. If the inputs are (0, 0) or
(1, 1) then the output is predetermined regardless of the transfer function. In this
case, the element adaptation is foregone as pointless. It is when the input is either
(1, 0) or (0, 1) that the transfer function is important. The counters respond to the
inputs according to the desired output and they then determine the function of the
element. If both counters are above the midpoint of their bounded range, then the
element function is an OR. If both are below, the function is an AND. If only the
(1, 0) counter is above the midpoint, the function is a LEFT and the function is a
RIGHT if the (0, 1) counter is the only high one. On a (0, 1) adaptation input, the
(0, 1) counter in incremented if the desired output is 1, otherwise it is decremented.

This appropriately reinforces both the OR and RIGHT functions in the first case and



inhibits them in the second case. The treatment for the (1, 0) counter and input is
symmetric.

The choice of which elements are “important” (should be adapted rather than
just left alone) for a given exemplar is a heuristic one. Clearly, if an element is not
“important” for an exemplar, then none of its children are. It is also clear that the
root, element is always “important”. The remaining heuristics for determining which
child elements of “important” elements to adapt are outlined below. Note that any

discussion of left and right is symmetric:

e If onc of the inputs of an “important” element is not the same as the desired
output then the source of the other input is declared “important”. The ratio-
nale for this is that if the other side is producing the desired output then the
adaptation of the current element will encourage the use of the other side and so
it should be encouraged by making it “important”. If the other side is also not
the same as the desired output, then both children will be declared “important”

by this rule since at least one of them needs to come around.

“im_

e If one input is “enabled” to pass through an element then its source is
portant™. This occurs when one input is a 0 to an OR element or one input is
a1 to an AND element. In these cases the other input effectively just passes
through. Also (clearly) the left and right inputs at LEFT and RIGHT elements

respectively are “enabled” to pass.

e The right and left children are declared “important” at LEFT and RIGHT
elements respectively. This may seem the most strange of all. Part of the
rationale for this rule is that “it can’t hurt”. Later on, perhaps if the current

element changes function, “it might help”.
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3.3 Why ALNs

ALNs are used here to filter candidate knowledge items based on previous expert
responses to similar candidate items. Basically, this is an inductive learning function
and many inductive techniques might be well applied here instead. For example,
Quinlan’s ID3 [24] method might be used as it also builds a classification scheme
based on a set of exemplars. Other alternatives might include various other neural

net methods. ALNs, however, are used for the following reasons:

e All that is needed is a yes-no to the question of whether a candidate new KB
item should be put forth or not. The boolean output of an ALN is adequate
for this while other inductive methods may have more claborate results which

are not needed.

o ALNs seem suitable for inductive reasoning within a KI3S but have not yet been
used as such. ALNs have been used for induction or empirical generalization in

other applications including the following:
— database mining - the discovery of functional dependencies within a rela-
tional database;
— grading beef based on ultrasound images;
— discriminating subatomic particles produced by a high-cnergy accelerator;

— assisting in the control of sophisticated suspension systems for rough-

terrain vehicles;
— assisting in the control of walking prostheses; and
— measuring tarsands composition from spectral data.
The above applications are specialized. The usc of ALNs here will demonstrate

that they can be used in a more general, domain independent way for induction

within a KBS.



e Since ALNs are subsymbolic, this will demonstrate the effectiveness and prac-

ticality of using symbolic and subsymbolic methods together in a reasoning

system.

e The auxiliary KB needed can be maintained in the short term as the actual
network and in the long term as a training set made up from all previous

suggestion response pairs. The second form is simple, intuitive, and easy to

manipulate.
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Chapter 4

An Implementation of THINK

This chapter describes, in detail, a THINK implementation. The purpose is twofold:
1. To show by example how the THINK framework can be applied.
2. To describe the experimental system used to test the thesis of this rescarch.

The description provides sufficient detail to convey all the important fundamentals
of THINK. Only those details which either are directly part of T HINK or are needed
as glue to put things in context are described here. For example, details for the user
interface, for enhancing efficiency, and KB storage-retricval are omitted here for the
sake of brevity and clarity.

First, a descrip..ion of the performance system is given along with examples. Then,
the KA subsystem is described. Finally, an example of THINK in operation is given

with annotations highlighting the above details.

4.1 The Performance System

The KB of the performance system here is based on causal associational links. Here,
the — connective means “causes”. The links have the form C},... ,Cn — I2, where
the C;s and the Es are literals. The Cjs are taken as a conjunction. An example
knowledge item would be [wol f(X), full_moon] — howls(X).
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As well as the causal associations above there is a class hierarchy of predicates’.
An example would be timberwol f —s, wolf. Thus, wol f(a) can be inferred from
timberwol f(a) but not causally. The hierarchy is not strict in the sense that a
predicate name may be a direct descendant of more than one other predicate name.
T'hat is, the hierarchy forms a partially ordered et rather than a tree. An example
from automotive diagnosis would be loose_cylinder.valve. This could come under
eylinder_problem and mechanical_problem. The two classes are neither disjoint, nor
does one contain the other.

After providing the system with a set of observations (usually just literals), the
system can then be asked to explain a literal item. The system then uses a straight-
forward backchaining mechanism to establish a cause for the literal. The immediate
cause is reported. If the next-immediate level cause is desired it can be found by hav-
ing the system explain the immediate causes. The system reports immediate causes,
because the semantics of the causal links, here, preclude transitivity.

There is an important notional distinction between causal links and isa links
which is reflected in the operation of the system. Consider the examples above. If
timberwol f(a) is given as an observation and an explanation for wol f(a) is requested,
it may not make sense to give timberwol f(a) as a causal explanation®. Backchaining
inference proceeds along both isa and causal links, but only steps across causal links
are considered as causal explanation steps. An example is when full_moon is also
given as an observation and an explanation is requested for howls(a). The answer
given is the pair [full.moon,wolf(a)]. There is no further explanation for wolf(a)
even though it was actually inferred through an isa link. Also, if howls —;5, notsy
was an isa link and an explanation for noisy(a) was requested, then the same answer

would be given - howls(a) is not part of the cause for notsy(a).

I'T'he use of a hicrarchy illustrates that there can be other knowledge in the performance system
other than associational. However, only associational knowledge will be the target of KA.

2This depends entirely on the intended meaning of “causes” within the system. In any case, there
needs to be a distinction between “causes” and “is a” at least for purposes here.
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4.1.1 Facts and Observations

The KB consists of facts, obscrrations, and hicrarchal links. The only distinetion
between facts and observations is one of permancnce. Facts are permanent KB items
and observations are temporary applying to only one or a few problem instances.
Other than that, they have equal standing in the KB and are used without preference
for one or the other. It is allowable, although probably not appropriate, to have a
causal link as an observation and, likewise, it is allowable to have a literal item as
a (permanent) fact. Typically, observations are used in delining a problem iustance

(e.g., symptoms to diagnose).

4.1.2 Restrictions on Variables

In order to ease reasoning tasks (particularly redundancy and consistency checeks), all
explanation requests must be for ground (containing no variables) literals. Also, to
ensure the same holds for all subsequent subtasks, all links (of the form ¢ — 17) must
have the property that all variables which appear in € also appear in I+ (although the
reverse need not hold). Thus, links such as bird(X) — [ly(X) and [riendly(X) —

likes(Y, X) are allowed but a link such as likes(Y, X) — happy(X') is not allowed.

4.2 The KA Subsystem

This section describes the KA subsystem in detail.  First, some delinitions neces-
sary for understanding are provided. Tben, the candidate generalion procedure is
described. To structure this description, it is given in two parts. Fach of these parts
draw on the techniques described in detail in Chapter 3. First, the method of iden-
tifying candidates is described, then an adaptation of ihat method which orders the
presentation of candidates by quality is described. Finally, the actions taken on the

expert’s response is described.



4.2.1 Partial Causal Links

The performance system allows links of the form Cy,...,Cn — E. The method for
acquiring these conjunctive cause links is described in detail later. In brief, it involves
incrementally building the conjun -iion by adding conjuncts one at a time. To support
this, an intermediate kind of link is needed. This will be the partial causal link and
will have the form, Cy,...,Cyr —, E. In short, this link means that the conjunction

forms part of a cause for E. Formal meanings of both kinds of links together with

meanings of roughly negated links are given below.

C — E: C is a minimal set of conditions to cause E. That is, C causes E and if
anything were removed from C the result would not cause E.

E.G., [full.moon,wolf(a)] — howls(a).

C —p E: C is some proper subset of some C' which is a minimal cause for E. That
is, all of the components of C could, together, play a part in some cause for E.

E.G., [full.moon] —, howls(a).

not(C — E) : C does not form any subset of some cause for E.
E.G., not([full_.moon, grey(a)] — howls(a),
and not ([ full_moon, wol f(a), grey(a)] — howls(a).

not(C —p E): This has the same meaning as not(C — E).

Notice that “not™ here is not the same as logical negation. However, when “not” is
applied to an atomic proposition, its meaning is negation. Recall that causal links
are not considered transitive; they can be thought of as meaning “directly causes”

instead of just “causes”. Hicrarchal links, however, are transitive.

4.2.2 Abducing Candidate Missing KB Items

This section describes the raw (thoughtless) generation of candidate KB items. Later,
an adaptation is described to “add thoughtfulness” by ordering generation. To gener-

ate candidate KB items, an abduction based search is used. It is actually an extension
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of the backchaining search used to search for an explanation for some literal. As such,
the two searches are combined into one.

The best way to describe the combined search is as a cost bounded iterative
deepening search. The nodes in the search space are literals to be explained®. Nodes
may be expanded in the following ways with preference in the order given. Note
that any hypothesis must be both consistent and non-redundant. Also, circularity is

checked and pruned.

1. If the literal is explicitly in the KB, then it is branched to a success leaf. In this

case there are no other branches needed.
2. For a node, G, if there is a link, C — G, then it is branched to a C node.

3. For a node, G, just hypothesize that G is true. To exercise this branch would
mean asking the user if G was true. The resulting node is a success leaf. This
kind of branch is not applicable to the root of the scarch because it would not

result in any explanation for the root literal.

4. For a node, G, if there is some partial link, C1 —, G, and there is some other
explicitly known literal, C, then hypothesize that C' A C'1 — G is true where
C' is the result of arbitrarily filling in variables of (' with arguments of (1. 'The

resulting node is C’ A C1. This way partial links are pursued and built upon.

5. For a node, G, if there is some partial link, C'1 —, G, and there is some other
literal, C, appearing in any link or partial link, then hypothesize C' A C1 — G
where C' is the result of the same kind of variable filling as above. The resulting
new node is C' A C1. This also builds on current partial links but in a more

“desperate” manner.

6. For a node, G, if there is some other explicitly known literal, €', then hypothesize

that C' — G is true where C' is the result of variable filling as above. The

3Gome nodes can be conjunctions which are expanded as AND nodes.
4Each different way of filling in variables results in a separate Lranch.



resulting new node is €. This can result in a new link or partial link in the
KB.

7. For a node, G, if there is some other literal, C1, appearing anywhere in any

link or partial link, then hypothesize C' — G where C’ is the result of the same

kind of variable filling as above. The resulting new node is C".

To “exercise” a hypothesis-based branch means to ask the user if the hypothesis is
true. The cost of a branch for the first 3 types above is 0. The cost for the other,

hypothesis-based, branches is 1. The cost of a node, n, is

min cost(n,) + branch_cost(n,n;).
n,Esuccessors(n)

The cost of a success leaf is 0. The cost of an AND node is the corresponding max
function. Note that branches from an AND node have no cost. Given a KB of
{A — B,B — C, D} and a goal of explaining C, the search space expanded for costs
bounds of 0, 1, and 2 are shown in figures 4.1, 4.2, and 4.3, respectively. Success
leaves (explicit KB lookups) are in boxes; interior nodes are shown as large letters;
zero cost branches are shown as solid lines; and cost nodes are shown as dashed lines
labeled with the corresponding hypotheses.The preferences from the above ordering
are reflected in the left to right ordering of the branches in the figures; a left to right
pre-order traversal represents the actual search.

Notice that a 0 cost bounded search just corresponds to using the KB as it is (no
KA at all) to find an explanation. This allows a simple yet close integration of KA
into the reasoning mechanism. During KA, the search is “forward looking”. That
is, before actually exercising a hvpothesis branch (asking the user), the space below
that branch is checked to ensure that a success is possible with the current bound.
For example, with a bound of 1 in figure 4.2, the branch labeled with A — C? would
not, be exercised for this reason, but it can be exercised with a bound of 2 (figure
4.3). After asking about a hypothesis, if the response is positive, then the cost for the
associated branch is discounted (it is not hypothesis-based anymore) and the space

below it is expanded accordingly. For example, in figure 4.3, if a positive response for
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Figure 4.1: A Depth 0 Search Space
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the C—A link is received, then the B node at the end of the C—A—B path can be

expanded. Nodes are automatically pruned when they become inconsistent.

Result Strengthening

As pointed out in section 3.1.1, an abductive hypothesis can be more generally appli-
cable than is necessary for the current problem. In a KB, the stronger the knowledge,
the better. It is therefore useful to pursue an expert’s response (positive or nega-
tive) to a candidate KB item by proposing slightly stronger ones. For example, if
canary(a) — fly(a) has just been acquired by the system, then why not propose
bird(a) — fly(a)?

The system here uses the hierarchal information to pursue responses in this way.

The ways of strengthening a new KB item depend on its form and are described below.

The reader should assume the obvious intuitive hierarchy for the given examples.

P(args): Find a P’ such that P’ —;,, P and strengthen to P'(args). E.G., bird(a)

strengthens to canary(d).
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not(P(args)): Finda P’ suchthat P —;,, P'and strengthen to not(P'(args)). B.G.,

not(canary(a)) strengthens to not(bird(a)).

C(args) — (X): Find a €’ such that C —s € and strengthen to C'(args) — (X).

E.G., canary(a) — fly(a) strengthens to bird(a) — [ly(a).

not(C(args)) — (X): Find a C’ such that €' —u ' and then strengthen it to
not(C'(args)) — (X). E.G., not(fast(a)) — late(a) can be strengthened to

not(very.fast(a)) — late(a).

(X) — E(args): Find an E’ such that E' —;, £ and strengthen to (X) = K. LG,
jet(a) — fly(a) strengthens to jet(a) — fly-high(«).

(X) — not(E(args)): Find an E' such that £ —,. k' and then strengthen it to
(X) = E'. E.G., summer — not(cold-weather) can be strengthened to

summer — not(nasty_weather). (Cold weather is a kind of nasty weather.)

not(C(args) — (X)): Find a C’ such that €’ —, ' and then strengthen it to
not(C'(args) — (X)). E.G., not(bird(a) — big(a)) can be strengthened to
not(condor(a) — big(a)).

not(not(C(args)) — (X)): Find a C' such that C' —j,. C' and then strengthen
it to not(not(C'(args)) — (X)). E.G., not(not(very.slow(a)) — on-lime(a))

strengthens to not(not(slow(a)) — on-time(a)).

not((X) — E(args)): Find an E’ such that £ —is £ and then strengthen it to
not({X) — E'). E.G., nol(summer — sunny) can then be strengthened to

not(summer — pleasant). (Sunny weather is a kind of pleasant weather.)

not((X) — not(E(args))): Find an E’ such that E' —. £ and strengthen to
not((X) — E'). E.G., not(fast(a) — not(late(a))) can be strengthened to
not( fast(a) — not(very.-late(a))).

Strengthening is done recursively until either there are no more consistent strength-

ening steps or a negative response is received. In the first case, recursion ends; in
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the second case recursion continues on the negative response. For example, after
successfully strengthening canary(a) — fly(a) to bird(a) — fly(a) and then an un-
successful attempt to strengthen to animal(a) — fly(a), the recursion ends. A final
strengthening step is to propose a universal generalization which can strengthen any
form. Thus, bird(a) — fly(a) will be strengthened to bird(X) — fly(X) (for any
X) and proposed to the user.

Except for the final universal generalization step, the above strengthening proce-
dure is akin to Mitchell’s version space approach [18]. All the possible ground rules
along with lines of strengthening define a partial ordering much like the partial order-
ing of concept descriptions usc-ed by Mitchell. There are somne fundamental differences

in the model, though, which are described below:

1. In the version space approach, there is a distinction between concept descrip-
tions and instances of a concept. Here, there is no distinction. This is a relax-

ation making things easier in this implementation.

9. In the version space approach it is assumed that, examples of concept instances
are provided (at random) from some external source not concerned with the
generalization problem. Here, the approach is for the system to select more and
more general examples based on a starting point and the lines of generalization
available. This is an advantage for this system because it is always acquiring
samples which are useful in identifying maximally strengthened rules (target
concepts). It does not have to wait for useful samples to be generated from the

environment.

3. During generalization in version spaces, it is assumed that thereis a single target
concept description and examples provided are positive or negative instances
of that concept. Here, there are several valid rules and the KB (along with
negative information) provide positive and negative examples of more than one
maximally strengthened rule (concept). This serves as a hindrance to the system

here with respect to taking advantage of a version space approach.
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35
The advantage of the first two points is taken as the system freely generates strength-
ened rules and presents them to the user. Because there is no distinction between
description and instance, the user sees each presentation as an example candidate
rule. The third point above demands that the system always present generalizations

to the user. As an example, consider that the system knows
{canary(X) — fly(X),bald_cagle(X) — Tly(X)}
and
{canary —iso songbird, bald_eagle —;sq €agle, songbird =y, bird, cagle =iy, bird}

With this, the version space algorithm would immediately generalize to the rule,
bird(X) — fly(X) missing at least one intermediate generalization (strengthening)
step. Furthermore, it would not even have to confirm the generalization with the user
because there is only one target concept description. In the system here, this would
not be justified because the two rules could be independent of each other. However,
the above situation does suggest that a larger step in strengthening to generate a
candidate would make sense. Rather than first asking, say, if songbirds fly or cagles
fly, just ask straight away if birds fly. If this is not accepted, the weaker (less general)
versions could still be tried later. The system here docs not yet take advantage of
this approach but it would likely be a good enhancement. Such an enhancement
might also use ALN support to justify “leaps” through the partial order. Another
idea would be to use version space and ALN justification to immediately strengthen

a candidate generated from the search phase and present this initially to the user.

4.2.3 Candidate Ordering with ALNs

ALNs are used to order abduced candidate items before presenting them to the user.
So not to compromise completeness, this ordering does not ezclude items but rather
just provides preferences for some over others. ALNs will only apply to ground literals

and ground positive links. This section will describe how information is encoded into



an ALN input and how the results of ALN computations are used to order candidate

items.

Input Encoding

There are two main parts of an ALN input: an encoding of the candidate KB item,
and an encoding partly representing the context. As will be seen later by example,
hierarchal information is very important for generalization and this forms part of both
encodings. First, the encoding of context is described, and then that for the actual
candidate is described.

Context Encoding. It is difficult to come up with a reasonable representation for
an arbitrary scenario which could involve any number of different objects and relations
(predicates) holding between them. Consequently, a limited context description is
used. Any candidate KB item will involve a limited number of objects (arguments of
predicates) which will be considered to be of prime importance. The limited context
description is then just a list of explicitly known literals which involve any of the
“important” arguments appearing in the candidate KB item.

For any candidate item of a given form, there is a particular maximum number
of “important” objects. For example, a candidate of the form, P(X) — Q(Y,Z) has
a maximum of three important items. Let D represent a qualified wild-card object
which is just any object other than one of the “important” ones. Using D and the
important objects, there is a limited number of ways of filling in the arguments of
any predicate. It is therefore possible to assign a particular ALN input value (bit)
to cach of these possibilities for each predicate in the system. For example, if there
are two important objects, A and B, and there is a binary predicate, P, then there

would be an input bit assigned for each of the following tuple forms of P®:
(A, A), (4, B),(A,D), (B, A),(B, B),(B,D),(D, A),(D, B), (D, D).

To encode the context, each of these bits are set if the predicate holds for the assigned

5There is also the same assignment for not P.
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tuple. Also, corresponding bits are sct for all predicates above the considered predi-
cate. For example if tweety is an important object and canary(tweety) is explicitly
known, then the bits for bird(tweety) and animal(tweety) are also set.

It is important to understand that the input bit assignments are done by place-
wise reference to the arguments appearing in the candidate KB item. For example,
A, above, would mean “the the object appearing first in the KB item” and B would
be the second. With a different candidate KB item of the same form (same arities but
possibly different predicates), the input assignments would be the same but would be
set according to the actual arguments in the candidate KB item. Thus, the context
input bits ave set (or not) depending on substitutions of arguments from the candidate
KB item to the various predicates of the system.

Candidate KB Item Encoding. Each possible candidate will involve cither
one or two predicates: one if the candidate is a literal, or two if it is a link. To encode
a link suggestion it is just a matter of identifying the predicates involved and which is
at which end of the candidate link. To do this, two sets of bits are assigned. One set
identifies one end of the link and the other identifies the other. Bach set has one bit
assigned for each predicate in the system. The appropriate bit is set for the involved
predicate in the candidate item. Also, bits are set for all predicates above the involve
the involved predicate. For example to encode hird(a) — [ly(a) as a candidate, there
is one set to encode bird and one set to encode fly. For the first, the bits associated
with bird, and animal are set; for the second, the bits associated with fly and move
are set.

There is also a set of bits indicating pairwise identity of arguments in the candidate
item. This is important to distinguish wo candidates like bird(a) — fly(a) and
bird(a) — fly(b). While the first might make sense, the second probably does not.
In this set there is a bit for each 2-combination of arguments and it is set if the
combination is a pair of identical arguments. For example, for a suggestion of the
form P(X) — Q(Y, Z), there are three bits - one for each of the following identities:
X=Y,X=2Z,andY =2.

-



Monadic Predicates

/anina /moxe\ colour
dog cat bird fly leap run yellow orange brown

Figure 4.4: Example hierarchy

Multiple Specialized ALN Types. The form of the candidate KB item has a
lot to do with the structure of the input encoding. For this reason, there are separate
ALN types specialized for each form. The important aspects of the form for this are
the arity of the involved predicates and whether the candidate is a literal item or
a link item. The implemented system allows four arities (0 ~ 3). There are then 4
forms for literal candidates and 4 x 4 = 16 forms for links. Thus, there are 20 different
specialized ALN types.

An Encoding Example. The foregoing should be made more clear with some
simple examples. Consider a KB with a hierarchy as depicted in figure 4.4 and the

following facts and observations:
{bird(t) — fly(t),not(yellow(t) — fly(t)), bird(t),yellow(t), dog(r), brown(r)}

Encodings for bird(t) — fly(t), yellow(t) — fly(t), dog(r) — run(r), and for

brown(r) — run(r) are given in columns 1, 2, 3, and 4, respectively in table 4.1.

Now, suppose that the first two encodings are from past experience and were
classified as “good” and “poor”, respectively. The Hamming distance between the
third and first columns is 12 and the distance between the third and second columns

is 14. The ALN would therefore be expected to classify the third pattern the same
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Encodings for form P(.X) = Q(Y)

Bit Assignment

Column

1

2

3

4

Bit Assignment.

(=]

OR O PO OFHOOOOOODODOO0ODODOOOOCOO—OFO O -
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O~ O O0O000O0OROROOOOODOOOOOCODOOROHOOOOO O

O O 00000 ORO0OOO0ODDOOLOOODOODODDLDOHHORODOOOO O

Context Bits

dog(X)
not(dog( X))
dog(Y')
not(dog(Y'})
bird(X)
not(bird(X))
bird(Y)
not(bird(Y))
animal(X)
not(animal(X))
antmal(Y)
not(animal(Y'))
run(X)
not(run(X))
run(Y’)
not(run(Y’))
fly(X)
not(fly(X))
fly(Y)
not(fly(Y))
move(X)
not(move(X))
move(Y) .
not(move(Y))
brown(X)
not(brown(X))
brown(Y)
not(brown(Y'))
yellow(X)
not(yellow(X))
yellow(Y)
not(yellow(Y))
colour(X)
not(colour(X))
colour(Y)
not(colour(Y'))

ccCcocCcoococoococoCc e ~=0o—Co0

oOoCc oo omOoO0O0CocCcCCoCcoOoC

1
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coococococo=m0O~moOCCOCCO

1

ccCcocecococCceCoceCccCcoc—~oOoCcC—

cccocococeceoecmOoOQoOoO—~oOCcoOooOoOC

1

c e —CcC o O -

—
L

ccCcCcC

1

Candidate Encoding

P bits
dog
nol dog
bird
not bird
animal
not antmal
run
nol run
Ity
not fly
move
nol movc
brown
nol brown
yellow
nol yellow
colour
nol colour
Q bits
doy
nol dog
bird
nol bird
animal
nol animal
run
nol run
Iy
not fly
move
nol move
brown
nol brown
yellow
nol yellow
colour
nol colour
identity bit
X=Y

Table 4.1: Example Encodings
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as the first rather than the second. Likewise, because the Hamming distances from
the fourth column to the first and second columns are 14 and 12, respectively, the
ALN would be expected to classify the fourth input pattern like the second. Thus,
(based on the two supposed exemplars) dog(r) — run(r) will likely be classified as
positive (good) and brown(r) — run(r) will likely be classified as negative (poor) and
so preference will be given to dog(r) — run(r). This makes sense to people. What is
captured in the example exemplars can be expressed as: “kinds of animal” attributes
can cause “kinds of move” attributes; and “kinds of colour” attributes do not likely
canse “kinds of move” attributes.

This example shows the importance of the hierarchal knowledge to enable the
ALNs to generalize on the exemplar (training) information. Another principle which
arises is that the hierarchy must be very well considered to enable this. Classes of
predicates should be grouped so that generalizations as in the above example can
emerge. That is, classes should contain predicates which tend to cause predicates in

other particular classes (given appropriate identities among the arguments).

The ALN Role in Search

Section 4.2.2 describes an iterative deepening search method for abducing candidate
KB items. The examples in the previous section illustrate how ALNs can favour
candidates which are “similar” to positive training samples and disfavour candidates
which are “similar” to negative training samples. It is a simple matter to use ALN
results to adjust the cost associated with each hypothesis branch in the search space.
For example the cost of a hypothesis branch which the ALN classifies as positive can
be 1, and the cost of a hypothesis branch which the ALN classifies as negative can
be 2. The cost of non-hypothesis branches can remain as 0. The iterative deepening
scarch can then be conducted as described except with these branch costs.

This simple adaptation is very close to what is implemented here, but there are

a couple of enhancements worth noting. Rather than using just one ALN to com-
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pute the added cost for a branch, this implementation uses moret. Because of the
randomness in the initial structure of the ALNs and the random order of presenting
exemplars during adaptation, it is likely that a number of them will not always agree
on classifications. It is reasonable to place more confidence in a classilication when
there is greater agreement. Clearly, a finer granularity of preference can be gained
by using multiple ALNs: Prefer most those candidates which all ALNs classily as
positive; next, prefer those which all but one classify positive; and so on. 'To apply
this to the cost bounded search, the cost of a hypothesis branch becomes I ney
where num_neg is the number of AI.Ns which classify the branch as negative (poor).

Informal experiments have indicated that it is best to complete scarching at a
bound defined by the number of hypotheses branches before allowing a greater number
of these branches in a path. Therefore a nested iteration is used. The outer loop varies
the number of allowable hypothesis branches and the inner loop varies the total cost
from 1 to the maximum possible given the inner loop bound. The depth hound is
therefore a two-part one: The number of hypothesis branches must be below the
maximum; AND the total cost must also be in bound.

When a hypothesis branch is actually exercised and receives a posilive user re-
sponse, then that branch becomes a non-hypothesis branch and has a cost of 0. The
search space below then automatically expands to the current hounds and the search

continues down. .

The ALN Role in Strengthening

Result strengthening, as described in section 4.2.2, is not part of the scarch, proper.
It is an aside — a tangent. It makes no sense, therefore, to apply the cost bound in
force at the time during strengthening. Rather a static bound is used: A strengthened
hypothesis is put forth if one third or more of the ALNs classify the the strengthened

hypothe-is as positive.

6Specifically, 7 are used here.



4.3 Acting on Expert Responses

The previous sections described how candidates are generated. This section describes
the allowed expert responses, the intended interpretation of those responses, and the
action taken by the system. Recall that expert responses are two-part. The first
part is used for adapting the KA subsystem; in this implementation it is used to add
training exemplars for the ALNs. The second part is used for integrating some form
of the candidate into the primary KB. Each part is mecant to be treated separately

and they will be described separately below.

4.3.1 Acquisition of Training Samples

Every time a hypothesis branch is exercised, it is an opportunity to gain a new
training sample for the ALNs. The expert responds with cither “good” or “poor” as
his classification of the quality of the candidate. An encoding for the context and

candidate will have already been constructed.

Acquisition During Strengthening

ALNs scem to have a hard time learning k-of-n functions (or even 1-of-n functions).
This thwarts learning during strengthening. As an example, consider the above idea
that kinds of animal attributes will cause kinds of move attributes, but the animal at-
tribute by itself is not enough for a particular mobile abilities. During strengthening,
the strengthened candidate, animal(a) — move;(z)7 will be asked and be responded
to negatively and as a “poor” candidate. Thus, every time a positive example is
acquired, a very similar negative example is also acquired which actually goes against
the desired concept. In this example, a negative sample is acquired where the animal
attribute is set in the P bits; and a particular move; and move attributes are set
in the Q bits. But, it is the animal attribute that is actually positively important

in the concept. The desired concept is that particular kinds of animals cause cause

“;move; is some kind of move attribute
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certain kinds of mobile abilities (i.e., 1-of-n animals causes 1-of-m moves). Rather
than learning this function (when there are few training samples), the ALN will tend
to learn that the animal attribute (in general) is poor for this because of the negative
examples received during strengthening. This is definitely NOT what is wanted.

A simple solution is to not use negative (“poor”) training samples from strength-
ening phase. It would still be possible to get undesirable negative training samples,
as above, from normal search (unstrengthened) hypotheses. Then, these would still
be included. Hopefully, this would not happen too often and it certainly would not
happen as often. This solution still leaves some deficiency in the system.

A better solution would be based on capturing the desired 1-of-n function compo-
nents explicitly in sonie assigned input bits. There could be a particular bit assigned
for each attribute in each part of the input (each set of input bits) indicating if there
are more discriminating bits set for this attribute in the same set. This bit will be a
kind of helper bit for 1-of-n functions. It would be set whenever the corresponding
l-of-n condition holds. EG: for dog(z), the dog, animal, and 1-of-n-(animal) bits
would be set, but for animal(z), only the animal bit would be set. This solution
would require about double the number of ALN inputs.

The implementation here only has the first, simple, solution to this problem in-

corporated. The second solution is certainly worth further investigation.

4.3.2 Incorporating the Candidate Itemn

Here, a formal specification of the allowed second-part responses is given. The inter-
pretations and consequent actions for responses to the three main candidate forms

(C — E, not(C — E), and literal, P) are given in tables 4.2, 4.3, and 4.4,

8The “unknowns” iist has the same permanence as observations.

9The justification for this comes out of the procedure for generating conjunctive candidate causes
(discussed in section 4.2.2). [C1, .. .,Cn] — E is only generated from an existing [Cg, ..., Cu)l —p F
in the KB.
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[RESPONSE | INTERPRETATION

[ACTION

]

C — FE is added to a list

problem instance, but is not al-
ways true.

unknown The expert does not know.
of unknowns® so that it is not
asked again. No changes are
madc to the KB, proper.
never Neither C — E nor C —, E is | not(C — E) and not(C —, E)
ever true. are both added to the facts. If
C is a conjunction with first
conjunct, Cy, then not(C;y —
E) is also added to the facts®.
no Neither C — E nor C —, E | not(C' — E) and not(C —, E)
is true for the current problem | are both added to the obser-
instance but may be true in | vatious. If C' is a conjunction
others. with first conjunct, C;, then
not(Cy — E) is also added to
the observations.
always C — E is always true. C — I is added to the facts.
yes C = E is not always truebut | C — E is added to the
is true for the current problem | observations.
instance.
always(partly) [ C —, E is always true. C —, E is added to the facts.
partly C —, E is true for the current [ C' —, E is added to the

observations.

Table 4.2: Interpretations of responses to candidates of the form, C' — E
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[ RESPONSE | INTERPRETATION

[ACTION ]

unknown The expert does not know. not(C — E) is added to the list
of unknowns.
never C — FE is always true. C — I is added to the facts.
no C — E is true for the cwirent | € —  F is added to the
problem instance but is not al- | observations.
ways true.
always Neither C — E nor C —, E is | not(C — ) and nol(C —, F)
ever true. are both added to the facts. If
C is a conjunction with first
conjunct, (1, then not(Cy —
E) is also added to the facts.
yes Neither C — E nor C —, E | nol(C — E) and not(C —, I)
is true for the current problem | are both added to the obser-
instance but may be true in | vations. If C'is a conjunction
others. with first conjunct, Cy, then
not(Cy — E) is also added to
the obscrvations.

Table 4.3: Interpretations of responses to candidates of the form, nol(C' — F)

| RESPONSE | INTERPRETATION

[ACTION

unknown The expert does not know. P is added to the list of
unknowns.
never P is never true. not(P) is added to the facts.
no P is not true for the current | nol(P) is added to the
problem instance but may be | observations.
true for others.
always P is always true. P is added to the facts.
yes P is not always true but is | P is added to the observations.

true for the current problem
instance.

Table 4.4: Interpretations of responses to candidates of the form, P, for literal, P.
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Figure 4.5: View of Experimental KBS with THINK

4.4 Summary

This implementation and how it fits into the THINK {ramework is summarized in
figure 4.5. This diagram parallels the general figure 2.1. The only caveat with the
diagram is that the distinction between the backchaining of the performance system
inference engine and the abduction of the KA subsystem inference engine is an ab-
stract one. In this actual implementation, the two are combined in a single iterative
decpening search. When the cost bound is 0 (initial). then basic backchaining is
performed. If this does not work, then the cost bound increases and abduction is

performed.

4.5 THINK in Operation

Figure 4.6 is output from three actual THINK sessions. Some unimportant output has
been removed and annotations have been added at the right. User input and responses
follow the “| " prompt. Between sessions the ALNs were adapted to incorporate
newly acquired training samples. Before the first session, the KB was completely

empty except for hierarchal information. The hierarchy is the same as that in figure
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4.4 with the addition of collie, tabby, and canary predicates in expected places.
The first session has no benefit of any other previous knowledge or training samples
but still manages to acquire knowledge items t_ solve its problem. The first user
response on line 5 says that the candidate, yellow(tweely) — fly(tweety), is “poor”
(nonsensical), and that it is “never” true (not(yellow(tweety) — fly(tweety)) should

be added to the KB facts). The second response on line 7 says that the strengthened

candidate, not(yellow(tweety) — fly(tweety)) is “good™ (is sensible) and is “always”
true (should be added to the KB facts).Here, there is a high correlation between
positive first and second parts of the response and between negative first and second
parts of the response, but this need not always be the casc. Of note in the first session
is the amount of strengthening from the second search candidate. Lines 11, and 13
are strengthenings from the candidate presented at line 9. Line 15 is a strengthening
of the negative response to line 13. Lines 17 and 19 are, in turn, strengthenings
of the negative response to line 15. Line 21 is a strengthening based on universal
generalization of the negative response to line 15. Finally, line 23 shows a similar
strengthening for the positive response to linc 11.

The second session shows some benefits from the experience of the first session.
Here, the ALNs seem to have learned that the canary predicate is “good” to have
on the left hand side when a move; predicate is on the right. The ALNs have seen
no samples indicating the importance of the identity bit, though so the candidate at
line 38 is put forth. The ALNs have learned that yellow is not a “good” predicate
on the left here but line 41 shows that they have not learned that coloured; is also
not generally “good”. A line of strengthening analogous Lo that which followed line
9 was not repeated after line 46 because the strengthencd candidates did not meet
the one-third ALN agreement threshold required to put them forth. This saved on
several unneeded questions but a useful strengthening (dog(lassic) — run(lassic))
was missed.

The third session displays even more experience. The needed KB item was quickly

found. The lack of any literals involving tweety or lussi shows that the importance
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Explanation for fly(tweety): bird{tweety)

{
{
(
{
{
{

{

{
(
{
{
{
{
{
{
(
(
(
(
{
(

rpaervations ontaered. )

puery

#i1rst candidats )
H.:sponse )}

Strengtening ~f response

lexnt search candidate }

U U 3

“trengthenings
and responses

|: fact{collie(lassie))
I: fact{brown(lassiej).

|: fact(canary{tweety)).
|: fact{yellow(tweety)}.
|: explain{run(lassie)).

Maybe: canary (tweety)causes run(lassie)
|+ poor, never.

Maybe: brown(lassie)causes run{lasrie)
|: poor, never.
Maybe: not (brown(lassie)causes move(lassie))

|: good, always.

Maybe: collie(lassie)causes run(lassie)
|: good, always.

Maybe: collie(X)causes run(X)

|: good, always.

Explanation for run(lassie): collie(lassie)

{

{
{

{
{

{

search candidate )

sezarch candidate )

#trengthened candidate }

.2arch candidate )

surengthenad candidate }

Sclution )

{

ALNs adapted )

| fact {tabby {(morris)).

| fact (orange(morris)).
): facti{collie(lassie)}).
1: fact(brown{lassie)).
|: fact(canary(tweety)).
1: fact(yellow(tweety)).
1: explain{leap(morris)).

Maybe: animal (morris)causes leap (morris)
poor, never.

Maybe: tabby(morris)causes leap(morris)
I: good, always.

Maybe: cat(morris)causes leap{morris)
good, always.

Maybe: cat (X)causes leap(X)

good, always.

Explanation for leap(morris): cat(morris)

{
{

{

{

______________________ )
}
Ol:servations entered )}
}
}
_______________________ )
Query }
search candidate )
Search candidate }

Solution }

Figure 4.6: A THINK Session
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of the identity of arguments is important. Also, the useful strengthening missed in the
second session was not missed here. Line 65 demonstrates the problem with the simple
solution to the problem described in section 4.3.1. Tere. the more general candidate
is suggested first. This candidate is just too general but since it was generated in
the search phase (rather than during strengthening), a negative training sample is
generated from it. Unfortunately, this is undesirable as it closely matches the desired
positive pattern of animal — move.

These example sessions show the ability of this implementation to learn to generate
better KB candidates before poorer ones. It worked well here likely because of the
clean hierarchy with classes closely related to the causal links as prescribed near the
end of section 4.2.3. Things are not always as clean as this, though, and so the
learning performance is not always as impressive. More realistic results from a more

realistic KBS are given in Chapter 6.
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Chapter 5

Related Work

This chapter reviews some of the other research on KB refinement and on similar
methods of machine learning. This other work is compared with THINK so to high-

light the relative advantages and disadvantages of THINK.

5.1 TEIRESIAS

TEIRESIAS is a KBS which made several contributions to KR and reasoning in
general. With respect to KA, its prime contribution is an interactive KB debugging
method using rule models(7).

The performance system of TEIRESIAS is similar to THINK in that it is based
on backchaining along associational links. The associations are premise-action asso-
ciations. The main differences are that TEIRESIAS uses certainty factors and it does
not use a hierarchy.

After the system performs a task, it checks with the user (if the user is known to
be an “expert”) for an evaluation of the result. If the result is wrong, TEIRESIAS
cnters a KB debugging session. Like THINK, the session is interactive and takes good
advantage of the problem context. It begins by asking what parts of the result were
wrong and what the correct result should have been. Through a series of leading

questions which refer to actual KB rules, the user is led back along the lines of
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reasoning to find the problem in the KB. Typical leading questions ave like: *Should
it have been possible to conclude (some premise) for (some rule)?™; (alter listing
rules applicable to some action) “Should there be another rule?™; and “ls (some rule)

correct?” Eventually, the user is asked to modify or add a rule or rules.

Rule Models

Rule models are used in TEIRESIAS for two main reasons:

e During interpretation of a natural language input of a new rule, rule models

allow some predictions on the rough form and content of the new rule.

e After a new rule has been interpreted, the model provides a base for evaluating

or “second guessing” the new rule.

A rule model is based on a subset of the KI3 rules. The subsets are grouped
according to classes of the action part of the rule. For example, rules that conclude
about some property, (X), would form the basis for a model. The models can be
more or less specific than cach other as well. For example, there can be models for
rules that conclude that (X) holds and models for rules that it does not hold. Both
would be more specific than the model for rules about (X).

A rule model characterizes the members of the associated subset according to the
contents of the premise and action parts of the rule. For each part, a list of cominonly
occurring forms is provided as well as a list of close correlations of forms in cach part.
Each listing is accompanied by a measure of how common or closely correlated the
item is. These lists are constructed through simple statistical analysis of the member
rules. An example from [7] is reproduced in part in figure 5.1 This example from an
investment advice system models rules that have conclusions about investment arcas.
In such rules, premises about the desired return rate and investment time scale being
either the same or not the same as some vahie are common. Also cotmnon, but less
so, are premises about the market trend being the same as some value. When there

is a premise about the desired return rate being the same as some value there is



PREMISE ( (RETURNRATE SAME NOTSAME 3.8)
(TIMESCALIS SAME NOTSAME 3.8)
(TREND SAME 2.8)
((RETURNRATE SAME) (TIMESCALE SAME) 3.8)
((TIMESCALE SAME) (RETURNRATE SAME) 3.8)
((BRACKET SAME) (FOLLOWS NOTSAME SAME)
(EXPERIENCE SAME) 1.5))

ACTION  ( (INVESTMENT.AREA CONCLUDE 4.7)
(RISK CONCLUDE 4.0)
((INVESTMENT_AREA CONCLUDE) (RISK CONCLUDE) 4.7))

Figure 5.1: A rule model

usually a premic  about the timescale heing the sane as some value and vice versa.
Also, if there i.. a premise about the income bracket of the investor being the same as
some value, there are usually premises about how he follows the market and about
his investment experience. There are similar listings for the action part of the rules.
Note that there can be multiple parts to an action in TEIRESIAS.

An example use of a rule model for “second guessing” an expert’s new rule would
be if he enters a rule like: “I7 1) the investor’s income bracket is 50%; and 2) the
investor follows the market closely; then the investment area should be high tech-
nology.” In this case, TEIRESIAS would suggest the inclusion of a premise about
the investment experience of the investor as well as the inclusion of an action about

desired risk of the investiment.

Evaluation

TEIRESIAS takes advantage of the problem context to (together with the user) come
up with missing rules. Like THINK, it uses an auxiliary KB (rule models) to help
in this KA. The TEIRESIAS rule models come from the primary KB whereas the
THINK auxiliary KB (ALNs) derive more directly from the interactive KA process.

In the end, TEIRESIAS is likely to ask fewer but harder questions than THINK
does. For example, TEIRESIAS will just ask the user to enter a new rule for some

needed action and THINK will suggest a series of rules on its own until it hits on one



the user likes. Questions like “Should (X'} have been able to he concluded?™ require
a bit more insight by the TEIRESIAS user into the reasoning process of the system,
Also, TEIRESTAS will lead the user around the reasoning lines until the weakness is
identified. THINK will, on its own. find a KB hole which has the most likelihood of
being filled and which will allow the problem to be solved.

It is difficult to provide anything other than a subjective, qualitative comparison
as above because it appears that there has been no formal, quantitative evaluation of
TEIRESIAS to compare with the formal experimental vesults for THINK provided in
Chapter 6. Davis, in [7], remarks speculatively on the relative utility of TEIRISIAS
KA in different domains. There is no mention of any learning or improving ability of

TEIRESIAS with experience. Iere, THINK is shown to improve with experience.

5.2 SEEK and SEEK2

SEEK [22] and its successor SEEK2 [9, 10} are systems which perform KB refinement
for a production system. In the performance system, the productions have the form:
If Cy,...,Cy, then conclude D with confidence, e f, where D is some diagnosis and the
C; are called choice components'. If cach choice component of a rule is satisfied, then
the rule fires. The individual choice components, €, have the form: ke, oy Cons
where the ¢; are distinct findings (intermediate or observed). The choice component

is satisfied if at least & of its 7n findings are true.

Empirical Analysis

SEEK and SEEK2 use a case basc of problems with known solutions to perform an
empirical performance analysis of the current [K13. The analysis provides information
on which cases were correctly and incorrectly diagne ed by the performance system

as well as indications of the strong and weak arcas. The analysis is broken down in

1 Actually, the productions in SEEK are a restricted form of this but the distinetion is not
important here.



Lwo main ways:

1. For cach type of diagnosis, the analysis tells how many times the diagnosis
was missed (false negatives) and how many times the diagnosis was incorrectly

concluded (false positives).

2. For each rule, the analysis tells how many times the rule was responsible for a
misdiagnosis (false positive). Also, various statistics are given on cases which
had the rule’s conclusion as the correct diagnosis including: when the system
missed this diagnosis and the rule did not fire; when it would have made a
difference?; how close it was to firing in these cases; what is the most frequently

missed choice component in these cases.

KB Refinement

Based on the first. breakdown above, the user (in SEEK) or the system (in SEEK2)
selects a diagnostic arca on which to try to improve performance. Then the rules
responsible for concluding that diagnosis are looked at with respect to the second
breakdown. There are a number of heuristics which will suggest specific refinements

according to the empirical analysis. The refinements fall into two categories:

Generalization: If a rule with the correct diagnosis as its conclusion did not fire
and consequently, the system missed the diagnosis; and this happened often,
then the rule should be generalized (made casier to fire). Of course, if the rule
is already responsible for many {alse positives also, then this is not so certain.
One way to generalize is to take the most frequently missed choice component
of the rule and reduce the k value for it by one. Another form of generalization
is to take a rule which did fire for the correct diagnosis but which had too low
a ¢f value. For this rule. the ¢f value could be raised. This second method is

more drastic.

4] . I3 3 . I3
21t might not make a difference had such a rule fired if the ¢f value is still too low.
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Specialization: If a rule is responsible for many false positives then it should be spe-
cialized (made more difficult to fire). One way to specialize a rule is to increase
the k value for one of the choice components. Another form of specialization is

to reduce the ¢f value for a responsible rule.

There are other forms of generalization and specialization with associated heuristic
rules, but the above gives the general flavour.

After the system generates the set of relinements which are likely to improve
performance, the SEEK user selects one to “try oult™. In SEEK2 the system just
tries them all, one at a time. To try out a suggested refinement, it is temporarily
incorporated into the KB and all the stored cases are run over again. Then, a new
analysis is done and if the user likes the results, he can tell the system to keep the
refinement permancntly. In SEEK2, the system just keeps the refinement. with the
best improvement.

This whole process is a cyele which is repeated until the SEER user is satisfied

or, for SEEK2, there is no more possible improvement.

Evaluation

SEEK and (even more so) SEEK2 work much more on their own than TEIRESIAS.
Like THINK, they infer changes to the KB rather than prompting the user lor them.
The SEEK work did not include any forimal quantitative evaluation of its inethod.
This is not to be confused with the fact that the empirical analysis can evaluate
individual changes for the user. For example, there is no indication (experimental or
otherwise) how, or even if, better refinements are suggested when there is a larger
case base.

The main evaluation mcasure for THINK is how mucliuser interaction is necessary.
SEEK2 goes to an extreme in this respect with no user interaction at all. One question
is whether this goes too far. This can be a debatable and certainly domain dependent,
issue.

The SEEK2 method is supported by a solid set of experiments. Naturally, perfor-



mance will improve on the case base used for the empirical analyses. These are used
to generate refinement recommendations and then to select which ones to actually
incorporate. To verify the SEFER2 et hod, a case basc is divided randomly. One part
is used as a test set. The performance on the test part is evaluated before and after
running SEEK2 with the other part. The process is redone (from start) but with the
roles of the two parts switched. In both cases the performance improves on the test
nart after running SEEK2 on the other. A similar principle applies in the testing of
THINK. Tests are run in various sequences, but never are two similar tests in the
same sequence (See Chapter G,

‘The main differ: ces are what make comparison difficult. Both SEEK and SEFK2
take an overall approach to refineretyihey  «oorate several refinements which will
improve the system for many cases. THINK, on the »ihie hand takes an incremental
approach: it generates candidate(s) which will kel in bt one problem. The SEEK
advantage is a likely better overall improvement of the: system and the THINK advan-
tage is an immediate improvement which can be incorporated right when needed in
solving a problem. Another difference. is that SEEK and SEEK?2 only refine existing
rules while THINK is capable of generating complete rules from scratch. This does

not grant an advantage cither way. Both kinds of KB update are useful.

5.3 APT

APT [19] is a system which does intelligent KA for a performance system based on
STRIPS like rules and a hierarchy of properties (much like the hierarchy for monadic
predicates in THINK). The hierarchy is used to allow STRIPS like rules defined for
general kinds objects to be applied to more specific kinds. An example rule (from
[19]) is shown in figure 5.2. Now, if a goal was to have a box which is currently at an
assembly line 1o be at the warchouse. then the rule above could be applied if bor isa
object and assembly line isa line were parts of the hierarchy. Before a rule is actually

used. the user is asked to validate the rule choice. This just gives the user a chance
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Preconditions  Location of Object is a Line
Location of Robot is the Warchouse
Problem MOVING
Subproblems Robot moves to the Line
Robot takes the Object
Robot moves to the Warchouse
Post-conditions Location of Ohject and Robot is the Warchouse

Figure 5.2: An example APF rule

to say “do not use that rule; use some other.”

APT is much like THINK in that it switches into a KA phase when it cannot
resolve a step in a problem. This way. APT derives all the benefit that THINK does
in doing incremenlal KA in the context aran actual problem. When there are no
rules that the user likes, the user is simply asked to provide his own. Naturally, the
provided rule will be specific to the problem at hand. For example, if the rule above
was missing and the current goal was to get a box, currently at the assembly line,
to the warehouse. then the user might put forth a rule like the one above except
with “Box” and “Assembly Line™ instead of “Object™ and “Line™. Although, not as

powerful as the above rule, it would do for the task at hand.

Rule Completion

Because users are not a knowledge engineers, they might not provide perfectly formed
rules; or might miss some important precondition. For this reason, APT uses an
explanation mechanism to check on the completeness of the preconditions. Suppose,
in the above example. that the user forgets to include that the location of she robot
is the warehouse as a nrecondition  APT would try to find an crplination for the
first subproblem (Robot moves to the Line) and the explanation would he in the fact
that the robot is nof already at the assembly line. This would hentity the 1aed for
the location of the robot in the preconditions and the current locaiic of the robot
(from the current state of the “world™) would be suggested as an add i precondition

for the new rule. In this way the rule gets properly completed. This is a bit like the

-]



“second guessing” mechanisin described for TEIR IISTAS.

Rule Generalization

After acquiring a new, problem specific, rule in this way, it attempts to generalize it
using a process almost identical to the strengthening phase of THINK. By climbing
the concept hierarchy, more and more general rules are suggested to the user until he
rejects them. This generalization of rules is much like navigating a version space [18]
of rule concepts. At this point, THINK and APT behave differently. THINK begins
to generalize on the negalive response while APT takes a different tack. Instead of
just stopping at the most general and accepted version of the rule, APT takes one
step further to the first too-general (rejected) version and tries to specialize that. This
may identify versions of the rule which are siblings (with respect to generalization)
to the most general and accepted version. These sibling versions are checked for
acceptability as well; some of them will be accepted and some of them will not. By
cliciting a new class in the hicrarchy or new preconditions for the rule or both, A PT
specializes the first too-general version to cover all its accepted children versions in a

single rule.

iwvaluation

APT is closer to THINK in its methods than TEIRESIAS or SEEK. APT takes
advantage of problem context: it acquires knowledge incrementally; most, but not all,
of its questions to the expert are leading ones: and it uses a separate hierarchy both
in its normal reasoning and in its KA process.

A significant ditference between APT and THINK is in how APT starts its KA
process. The initial problem specific rule is provided outright by the user when asked.
There is 10 inference of this important item 1. - APT. Getting started seems to be the

hard part®. Also. in the specialization phase just described. the user takes a more

active role.

3The author has found this to hold in writing chapters of this thesis as well.
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The specialization phase of APT and THINK's generalization ol negative responses
end up having the same cffect. To generalize a negative response, THINKN descends
the hierarchy to generate new candidates. This results in the same scarch that AP'T
makes during its specialization phase. The effect is roughly the same: THINK ends up
with a disjunction of accepted siblings while APT ends up witn a single rule covering
the same siblings. APT, however, requires more complex irteraction with the user for
specialization. The benefit of APTs method is the inereased chance of acquiring a
more cohesive and semantically better founded rule. This may include the acquisition
of a possibly semantically important new node in the hieravchy™.

There is some concern expressed in [19] about the possible number of rule versions
proposed during generalization. 1t is felt that there should be some kind of preference
criteria to restrict generalization so to cut down this number. THINK already does
this with ALNs (see section 4.2.3).

As with TEIRESIAS, there is no reported quantitative evaluation for APT al-
though it is reported to have been uselul in a variety of applications. There is no
indication that the KA process improves with experience (as is shown for THINK).
Even if there is some improvement it is probably not as marked as with THINK be-
cause APT does not. retain negative information which is known to he very valuable

in THINK.

ATHINK is able to acquire new hierarchy nodes too. but # %5 thraugh iieidentaf acquisition rather
than active elicitation. If THINK cncounters a predicate it has e seen befure it allows the user
to navigate the hierarchy in order to place the new predicate.



Chapter 6

Experimental Results

This chapter presents the results of experiments with the current implementation of
THINK. First, a description of the experimental design is given. Then, quantitative
results which bear on the following predictions are provided.
I. After making a number of missing item suggestions and recciving cooperative
responses, the system will eventually acquive the needed missing knowledge and
solve the problem.

2. The more questions asked in previous tests in a given experiment!, the fewer,
on average, will bhe the number of “poor” questions asked during the current
test.

An interpretation of the results raises new questions. These questions are briefly

addressed with conjectured answers,

6.1 Experimental Design

To evaluate the system a well considered. nontrivial causal network (taken from [15])
is encoded into the system. Building on this. a considered hierarchy appropriate for

the domain is also encoded into the svsteai. The causal net and hierarchy are for an

LLE., the more mature the system during the current test
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Figure 6.1: Causal Network for Automobile Diagnosis

automobile diagnosis application and are depicted in figures 6.1 and 6.2 respectively.

The aim of THINK is to be able to acquire missing knowledge items during prob-
lem solving and to get hetter at it with experience. It should be able to acquire literal
items, links, or hoth. Five separate fests have been designed which require THINK
to do this. Fach test is based on the KB depicted in figures 6.1 and 6.2, This KM e
a well considered one which makes real world sense. A problem scenario is chosen for
which the KB has a solution and then needed items of knowledge are removed from
the KB or, in the case of obscrvations, not initially provided in the problem deserip-
tion. THINK is then asked to solve the problem (provide an explanation). Whenever
THINK presents a candidate item, the user responds cooperatively. Statisties on the
questions asked (good versus poor and strengthening versus non-strengthening) are
maintained. Table 6.1 describes the actual tests used.

In order to give cach test a chance to be run with various amounts of previous
experience, the 5 tests are run in 10 different sequences. Although, there are 5! = 120

possible sequences. the 10 chosen provide good coverage. Fach test is twice run in



TEST | SCENARIO MISSING KNOWLEDGE
| clogged_ air_[iller clogged_atr_filter
— loorich_fuclanix
— incomplete_combustion
— black_smoke
2 clogged_pev_filter contaminated_oil
— conlaninated-oil — worn.pston
— worn_pston
— leak v _cylinder
— oil_burning
—r bluc_smoke
3 clogged. fuel line clogged_fuel line
— toolcan_fuel i
— detonation detonation
— conflicting_.combustion_front | — con [licting.combustion_front
— knocking_sound
4 faulty valec faultyvalve — leak_in_cylinder
— leak_in_eylinder
— low_compresston_pressur low_compression_pressure
— poor_power - POUr_power
5 worn_bearing worn_bearing

— oil_pressure loolow

— overheating

— too_hol _spark_pluy

— blistered_spark _plug
—iva Jouled_spark_pluy
— bad_spark

— misfiriyg

— incomplele_combustion
— black_smoke

overhealing
—+ too_hot _spark_plug

bad_sparl:
— misfiring

Table 6.1: Experimental tests
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each possible place in a sequence and, for cach test, the other tests appear before and
after it an equal number of times in the various sequences. From the perspective of
an individual test, the only varicly gained in going to 120 sequences is in the sub-
ordering of the other tests either before or after it in a sequence. Fach sequence hegins
the same with a complete main KB and randomly initialized ALNs with ai empty
training set. Before cach fest in the sequence the appropriate “missing knowledge™ is
removed from the K. Before the first test and hetween cach of the others, the ALNs
are trained with the current training set as well as all the current KB items included

as positive examples. The training sequences used are listed in table 6.2

6.1.1 Testing without ALNs

To provide a control for the experiments, the same sequences were run with the ALNs
decoupled from the system. In these runs, wherever an ALN result was needed, a

unanimous, positive result was assued. Actually, the control is only valid for a test



SEQUENCE
NAMIES [ TEST SEQUENCE
Al12345
Bi{n4321
¢l23451
D]15432
134512
{21543
11145123
{32154
Jis1234
N|{43215

Table 6.2: Test sequences

when it is run first in a sequence. This is because learning still occurs because of the
accumulation of negative knowledge on the candidates. Tt is still very useful to run
the entire sequence to compare how well the system learns both with and without the
ALNs. The expected result is that there will be some learning both ways but that

the learning should he more pronounced with the ALNs.

6.2 The Results

To begin, an initial anccdotal report of somie results will help explain the presentation
style and focus of the main vesults. First of all. most (about two thirds) of the
candidates presented are from strengthening. ‘This is not surprising because each
candidate from search can often be strengthened a couple of steps before strengthening
ends. Also, most (about 90 percent) of the strengthening candidates are “good” ones.
This is also not surprising because they derive from known true KB items. Because
the performance with respect to strengthened candidates is thusly not very interesting
and because the strengthening technique is not new?, the focus of the presented results
will be on the search candidates,

Recall the first prediction at the start of this chapter: After making a number of

It is done in APT. See section 5.3.
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missing item suggestions and receiving cooperative responses, the system will eventu-
ally acquire the needed missing knowledge and solve the problem. This is not a hard
prediction to make considering that the iterative deepening search used is exhaustive,
It came true in every test in every sequence with and without ALNs. No further
address of this prediction need be made.

The second prediction was: The more questions asked in previous tests ina given
experiment (sequence), the fewer, on average, will be the number ol *poor”™ questions
asked during the current test. Here, previous experience is measured in total (inchud-
ing strengthening questions) questions occurting previously in a sequence. Although
results regarding strengthened candidates are not considered important here, the ef-
fect of all previous candidates cannot he disregarded in looking at performance in
search candidate generation. The measure of performance in a single test is in the
number of “poor”™ search candidates presented — the fewer the better. The overall,
adaptive, performance is seen in the relationship between experience prior to a test
and the performance during it the more test performance improves with expedience,
the better.

Experimental results of the above measures are presented graphically in figures
6.3 through 6.7. Each point on a graph represents the results of a single test in
some sequence. The position along the horizontal axis represents the tolal number
of candidates presented in all other tests beforc the test in its sequence; this is the
prior experience. The position along the vertical axis is the number of “poor™ search
candidates presented during the tests this is the performance measure with better
performance lower on the scale. Points which lie along solid lines are from runs
which use the ALNs and points along the dashed lines arve from runs without ALNs.
Adaptive performance is seen in how the lines descend iroe left to right the more
descent the better. It is expected that both lines on a chart will descend and that
the ALN (solid) line will descend more than the other.

Figure 6.8 summarizes the aggregate for all five tests. The vertical scale on this

chart is the average (among the five tests) number of poor scarch questions as a pereend
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of the number of poor scarch questions presculed when there is no prior erpericice
and without ALNs. This provides a normalization which weights equally the relative
performance of cach test regardless of the difficulty of the test. To illustrate how this
chart is constructed, the computation of one of the points is given in table 6.3. The
point from the table is that on the ALN (solid) line at position, (105, 151). Each row
of the table shows the contribution from cach test and this can be seen in each of the
charts for the individual tests. The first column just labels the test. The second two
columns show data points from the individual test which bracket the experience (prior
questions) value of 105. The next colummn is an interpolation to 105 of the bracketing
points. The next column gives the normalization divisor; it is the value for the non-
ALN line at zero prior experience from the individual chart. The final column is the
interpolated value as a percent of the normalization divisor. The bottom row reports

the average of the last column and is what is used as the plot value at 105.
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TEST Data Points Iuterp. | Norm. Div. | Percent
I | (26.14) | (217.0) | &2 3 AT
2 (11.6) | (224,7) | 6.44 5 129
30| (38.78) | (255.52) | 69.97 73 96
4| (0,136) | (211.51) | 93.70 136 69
5| (105.22) | (105,22) | 22.00 11 50

Average 151

Table 6.3: Sample aggregate point computation lor ALNs with prior experience of
105 questions



6.3 Interpretation and Discussion

ALN Instability

One of the first things that will be noticed in the charts is the instability of tiie ALN
lines compared to the non-ALN lines. Considering the randon initializations of ALNSs,
this is not too surprising. Each point on a chart is from a different sequence and the
ALNs are reinitialized Lo tween sequences. 1t makes sense that different initializations
will result in different hehavionr: learning rates should vary. It is even reasonable to
expect the ALN tests to possibly perform worse than non-ALN tests when there is
little prior experience, Tn any casel fearning eheuld oecur and alter some experience
the ALN line should end up below thie non-ALN line, This is best scen in the Test 1

chart.

Expected and Unexpected Results

As stated in the previous section it was expected that the non-ALN iine would de-
scond. Without the ALN instability. this descent should be fairly steady. This result
was borne out for all the tests except for ‘Tost 1 which had a line which did just stayed
T8I I .

constant. This line. however, started out at a very low valne already.

The ALN line (although unstable) was expected to descend as well and to do so
more than the non-ALN line. This is horne out for Test 1. Test 2, and especially
Testd. Test 3 and especially Test 5 charts are not as expected. though. Some possible

explanations for this are given belew:

e Recall from near the end of section 1.2.3 that the hicrarchy must be very
well considered. Perhaps the inivial design of the hierarchy is flawed. In ret-
rospeet, this seems likely when one cousiders the missing link from Test 5,
overheating — toohol . sark_pluy. The hicrarchy used here has the links,
overhcating =, performanccsymplom — . symptom. It is very likely
that the ALNs would fearn in general (based on the many other presented

candidates) that symptom class propositions do not cause much of anything.



One way of testing thix Lypothesis would he to remove the overhealing =4
per formaned _symplom link from the hicrarchy and run the tests again, Pre-

liminary experimentation indicates that this only party explains the result.

e Recall from the later part of section -1.3.1 that an inferior solution to an ALN
input encoding problem was used in this THINK implementation and that this
problem was manifested in one of the three sample THINK sessions of figure
4.6. Tt cannot be determined or further supported with the data collected from
these experiments, but it could be that the same problem is manifested in Test
3 and Test 5 runs here. The obvious wu_\" of investigating this is Lo implement
the better solution and redo the experiments, Farther experimentation alony

this line has not yet been tried.

e One thing that Test 3 and Test 5 have in common is that they both include a

missing literal iten as part of the missing knowlcdge. When the hierarchy was

designed. thought was mostly given to creating classes such that members of

one class tend to have causal relations to members inother classes (as deseribed
at the end of seetion 4.2.3). In other words, thought was given to the ability to
recognize good links and not much thought wvas given to re-ognizing good literal
KB items. In this test application. a good literal item is one whiclis reasonably
directly observable (i.c.. an “askable™). Perhaps. the addition of more S
would help®. This is not too certain, though. becanse many existing, cliasses
such as temperature problom and wcchanical problen already should help in

tuis distinetion,

The above explanations arve based on mings issues of domain knowledge aud knowledge
representation. These are hound to arise inauy first implementation of a knowledge-

based system, anc the KA subsystem s, after all. one of these, i view of this, in

30f course the addition of two elasses, askable and not _askable s an obvious idean, but this s
not the point here. The iden here is to test THINK'S ability 1o learu less well defined eriteria for
“good” and “poor” candidates. Ini practics” - e, il things ave casily labeled as askable or not,
then that is what will be done-.



TEST | AVERAGE SEARCH QUESTIONS
ALNS NO ALNS
| 6.7 5.0
2 6.1 7.4
) N2.2 57.2
4 T 120.6
5 T0.5 49.1

Table 6.4: Average scarch gquestions

view of the plausible explanations above, and in view ol the positive results gained for
tests 1, 2, and 4, these results bhear support for the thesis of this research: a useful KA
subsystem for acquiring missing associational knowledge is possible which combines
abduction and the application of ALNs to pecform adaptive hypothetical inference to

generate candidate missing KB items to preseot to an expert for verification.

6.3.1 An Observation and Explanation

Another thing which staud - at is that Test [ and Test 2 runs always take many
fewer candidates than the others. 1egardless of prior experience. The average (over
all sequences) nermber of good and poor seareh questions for cach test type is o vvn
in table 6.4. The question which avises ist Why is there such a jump between Test
2 and ‘Test 3 and no corresponding jump between st 1 and Test 57 Recall from
section 4.2.3 that the iterative deepening is done in a nested loop with the outer loop
limiting the number of missing items on any pathin the search space. This explains
the jump between Test 2 and Test 3. The scarch space is much larger when more
missing items are allowed on a path. Why, then is there ro increase between Test
4 and Test 57 The reason is that once the limit is increased to 2, the entire search
space is effectively thrown wide openin this respeet. This is because with a limit of
2. a link and a success leal can always be hypothesized. This allows a link branch to
by erercised. If it is successful. then the search space below that branch is expanded

whole scarch space.

[ C]



Chapter 7

Conclusions

7.1 Summary

This research has siown that an adaptive knowledge acquisition method can be inte-
grated into the operation of a knowledge based system to acquire missing knowledge
in the context of a problem. 1t has been shown that the general THINK framework
depicted in figure 2.1 can be filled in as in figure figure 1.5 to yield a working system,
This framework is flexible. Any kind of KA reasoning methods and auxiliary KR
system which is appropriate to an application can be “plasged in”. Inceed, the use
of a neural network here testifies to this flexibility.

As well as the above, the specilic implementation here has also shown:

e Subsymbolic and symbolic compnting metl:ods can be effectively used together
in a simple unifying framework. This is not only shown in the integration of
the KA subsystem with the main reasoning system but also within the KA

subsystem where abdiz: tion and ALNs work together.

e Neural nets and ALNs in particular can perform inductive reasouing. Based
on previous examples good knowledge itens candidates are inductively distin-
guished from poorer ones. This was done with a fair degree of effectiveness in

mast cases.

T



o The use of ALNs or any other kind of uncertain method to guide the search
for candidates does not have to compromise the completeness of the search
which ¢231 be had by symbolic means. By adding a bounded cost to the search

branches, the ALNs order the search space but do ot prune it.

o Multiple kinds of knowledge and KR schemes can be used together. In the
systens implemented here there are three main kinds of knowledge: causal asso-
ciational links, hicrarchal links, and ALNs with their training sets. So long as
the semantics of the various kinds of knowledge are held constant and uniform,
the use of a single kind of knowledge can be used in multiple ways. Here, the
hicrarchal knowledge is used in the main backehaining reasoning process; in the

strengthening process: and in the ALN input consiruction process.

‘The experimental procedure developed for this research is simple and widely apph-
cable. Any incremental knowledge acquisition systen can be evaluated by removing
known needed knowledge elements from a knowledge base and then exercising the
system to re-acquire the knowledge. Measurements of effectiveness are derived from
interaction statistics collected during the exercise. Valuable statistics would be the
number of atomic interactions, the number of negatively appraised interactions, or
anything else deemed important for the nser and the system.

The main limitation of wny THINK-like system will lie in the knowledge and
the knowledge representation of the auxiliary knowledge base. After all, the THINK
knowledge acquisition subsystem is a knowledge-based system unto itself and this is a
eritical performance factor in any knowledge-based system. This point was evidenced
in thimplementation heve. The noor learning result for test 5 may be an indication
of the importance of getting the hierarchy right.

The wie of domain specific and domain independent heuristics at the symbolic
level to help guide or even prune the candidate search space was not addressed in
this work. In fact. such heuristies were avoided so to better observe the performance
of the raw THINK implementation here. Almost certainly, even better performance

(fewer poor candidates) could be achieved with the use of more heuristics. This wenld

-
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be true both with and without the use of ALNs,

7.2 Future Work

Future work onn THINK should lie in exercising the flexibility of the framework as well
as addressing weaknesses observed here. To hegin, the further experiments suggested
in section 6.3 should be tried and their results explained. Other suggestions are

provided below.

7.2.1 ALN Inputs

The more relevant input there is to the ALNs, the better. In this implementation,
context bits were included as well as an encoding of the candidate itself.  Also the
hicrarchal information was very important for the generalizing ability. Other avail-
able information will probably be useful as well. One idea is to include imformation
about existing links already associated with literals in the candidate. For example
an indication of what is already known to be caused by and what is alrrady known
to cause the P and the Q in a PP — Q suggestion could be useful. ‘The original
idea for including hierarchal information was (hat it seemed reasonable to try to find
generalizations on what kinds of things cause of her kinds of things. This new idea s
to try and find generalizations like, “things that cause things in class A tend to also
cause things in class [3.” and “things that are caused by things in class (" tend to
cause things in class 0.7 Any other ercative ideas for generalizations might also be

tried.

7.2.2 Other Candidate Grading Methods

ALNSs certainly are not the only way to learn to ¢ ssify things. ALNs were used here
for the reasons discussed in section 3.3. The integration of other inductive methods

as suggested in section 3.3 shonld be tried and compared. Just as was necessary with

-
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ALNs. appropriate input selection and encoding schemes will need to be developed

for cach.

7.2.3 Other Candidate Generation Methods

In the implementation here, abduction was used to generate candidates. Other meth-
ods should be explored. One idea is to reverse the roles of symbolic and subsymbolic
computing methods and use a neural net to construct candidates given the current
subgoal or requirement and then use symbolic heuristic methods to grade them. This
would have an advantage of automatic grading which would allow more automatic

generation of training data for the adaptive part ol the system.

7.2.4 Acquisition of Multiple Kinds of Links

Although, as pointed out in section 7.1, multiple kinds of knowledge are used in
THINK, the object of acquisition is ouly one kind - one kind of associational link.
Pearl’s use of causal and evidestial links [20] shows the usefulness of multiple kinds
of links in a knowledge-hased system. I knowledge based systems are going to use
semantically different kinds of associational links then THINK should be able to
acquire multiple kinds of links in one system. Investigation into how to do this would

be valuable.

7.2.5 Domain and Application Considerations

All of the above ideas were stated generally with respect to domains and applications.
Certainly, some ideas, such as auxiliary KB encodings, will be better suited to some
domains and applications than others. There should be some investiz stion into what

THINK clements go best togetiier depending on the application or domain.
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