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ABSTRACT

The first part of this thesis is the study of the following type. Let
w(ry.....rp) = T3 Iym be a word in the alphabet ry.. .. .. rn such that
Iy # I1igq forall i=1.... .m-1 If (H,....Hy) is an n-tuple of subgroups of
a group G then denote by u(Hy,... JH,) theset {u(hy,... . hy) | hy € H}. I
o € S, then denote by ug(Hy,....Hy) theset u(Hy).... Homy). We study
groups G with the property that for cach n-tuple (Hy,....H,) of subgroups of
G, there is some o € S,, 0 #1 such that w(H,,... JHy) = u.(H,,...Hy,). In
chapter 2, we show that if G is finitely generated soluble groups, then G has
this property for some word u if and only if G is nilpotent-by-finite. We also
look at some specific words u and study the properties of the associated groups.

For the middle parts, we consider two kinds of group properties and will
see easily the one includes the other. Suppose G is an infinite group with the
property that whenever X,,X2,X3,X, are infinite subsets of G there exist

r;€Xi (:=1,2,3,4) such that

(1) (71, 2,23, Z4) is metabelian or,

(ii) [ [Ils12]7[1:3714] ] =1

We show any infinite group satisfying (i) 1is metabelian and any locally soluble
group satisfying (ii) is also metabelian.

For the final part, a finitely generated infinite group G is proved to bhe
quasi-Hamiltonian if any two infinite sets of subgroups of G contain pair H, K
that permute. This is not true for arbitrary infinite groups, a counter example is

provided.
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CHAPTER 1

INTRODUCTION

The work done in this thesis is concerned about some soluble groups satisfing
certain gronp properties. Chapter 2 is independent of the rest . The next chapters
are closely related and have the same origin; a question of Paul Erdos.

Chapter 2 is initiated by several authors’ papers on rewriting products of
group elements and permutable subgroups in [BLy], [BLz], [LMR,] and [RW,].
It is based on the paper by P.S. Kim and A.H. Rhemtulla in [KR].

We will introduce notations and examples before the main results.

Let n be a fixed positive integer, X = {z1,... ,zn} asetof n symbols
and F = F(X) the free group on X. Let U = {u,ug,...} and V =
{vi,v2,...} be non-empty sets of elements in F. Define the class P(U. "y to
consist of groups G such that given an n-tuple (g1,...,gn) of elements in G,

w(gts--- +Gn) = V(G1s--- 19n) for some u € U and some v €V, v # u. Some

examples;

(1.1) Let U = {u} where u(zy,... ,in) =212z Tn and V = {u, | o € Sa\1}

where S, is the symmetric group of degree n and

Ug( Ty, -- ,I,,) = u(za(l)w e azo(n)) = Zg(1)T0(2) """ To(n)

Then every group in P(U,V) is finite-by-abelian-by-finite. Conversely every
finite-by-abelian-by-finite group is in P(U,V) for some suitable n. This was
shown by Curzio, Longobardi, Maj and Robinson in [CLMR]. These groups are

more commonly referred to as Pp-groups.
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(1.2) Let u = u(ry.... . In) = 01r2 I, U ={us | o €S} and V" =1L
Then P(U.V)-groups. more commonly referred to as  Qy-groups or rewritable
groups, are again finite-by-abelian-by-finite groups as shown by Blyth in [BL,].
That an abelian-by-finite group is in Q, for some n is implicit in Theorem 1 of

Kaplansky [KA].

(1.3) If we take n = 2, u = u(r.12) = (ryra)", v o= v(r,r2) = (rar)"
where r > 0 is fixed and U = {u}, V' = {v} then G € P(U.V) if and

only if G/Z(G) is of exponent r. If G € P(U.V), ri = y~'r and r, =y,

-1 r

ry) = z" forall y in G and hence r" € Z(G).

1..r

then y~'z"y = (y
Conversely suppose G/Z(G) is of exponent r, then (ryr2)" € Z(G) and

-1
(r172)" = 27 (z112)" ) = (r271)".

In general, the classes P(U, V') may be viewed as generalising varieties and,
except for some specific sets U and V, it is very difficult to describe them. We
now turn to related classes of groups.

Let n >0 be fixed, X = {z),...,Zn} be a set of idempotent variables
and S = S(X) the free semigroup generated by X. Thus for any u € S, u =
u(Z1y-.- +Zn) = I11Z12°° Tim where z;; € X and z); # Z1i41 forall i =
1,...,m=1. If (H,,...,Hy,) isan n-tuple of subgroups of a group G then denote
by u(H,,...,H,) theset {u(hy,...,hn) | h; € H;}. Thus if u(zy,...,za) is
as above, then

U(Hl,... ,Hn) = H”ng...Hlm.

If U and V are sets of elements in S then define the class SP(U,V) to

consist of groups G such that for any n-tuple (Hjy,..., H,) of subgroup of G,
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wHy, ... Ho)=v(Hi ..., H,) forsome u €U andsome v €V, v # u. Some
examples:

(1.4) Let U = {u} where u(ry,... ,In)=T1T2  To and V' = {ug | 0 € Sn\1}.
As in (L1), ug{Lyy. - Tn) = WTo(r)--- ,To(n))- Finitely generated soluble

SP(U', V) groups are finite-by-abelian. Convcrsely every finite-by-abelian group
isan SP(L:,V) group for some integer n. These results are contained in [RW,].

From [LMR,] we know that periodic SP(U,V)-groups are locally finite.

(1.5) For each positive integer , let u, = us(z,y) = (zy)", and vr = vr(1,y) =
(yr)". Let U= {u., r= 1,2,...) and V={v,, r= 1,2,...}. Then the class
SP(U,V) is precisely the class of groups in which every subgroup is ellipticaily
embedded. Groups with this property are considered in [RW,] and [SM]. It is
known that a finitely genecated soluble group G is in this class if and only if it is
finite-by-nilpotent. The same is true if we replace “soluble groups™ by “residually

finite p-group” in the above statement. We show the two main results as follows

in chapter 2,

(1.6)Theorem. Le: U = {u} where u is a word in idempotent variables
Iis... In for n > 1 andlet V = {ug | 0 € Sa}. I G 1is a finitely

generated soluble group in SP(U,V), then G is nilpotent-by-finite.

(1.7)Theorem. Let G be a finitely generated soluble group, U = {u} where
u=u(zy,... ,Tn) =(T1"-Zn)" and V = {us | 0 € Sa} where uq(z1,... ,Tn) =
w(Zo(1)s--- 1To(n))- Then G is an SP(U,V)-group for some n > 1, r > 0 if

and only if G is finite-by-nilpotent.
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Chapter 3 is motivated by a question of P. Erdds: If G is a group such that
subsets consisting of mutually noncommuting clements are all finite, then are they
boundedly finite? B.H. Neumann [NE,] answered this question affirmatively by
proving that G has the property stated above if and only if G is centre-by-finite.
Extensions of problems of this type are to be found in [GR] and [LW].

In addition, J.C. Lennox [LE] has studied bigen=tic properties of finitely

generated groups, that is, wher all two-generator subgroups of a group G hasa
group property ¢, G aiso has p for some classes of hyper-(abelian-by-finite)
groups.
Contrarily, it is kmown that M.F. Newman has constructed an example (Unpub-
lished. See [LE]) of a three-generator infinite p-group (p a prime) with all of 1ts
two-generator subgroups nilpotent. Therefore it is necessary for G to be hyper-
(abelian-by-finite) in the study of bigenetic properties.

In some classes of infinite groups, G has p if whenever we choose infinite
sets Xi,...,Xn (n >1) of G, there exist z; € X; such that (z1,...,Zn)

satisfies p. Some examples;

(1.8) Let G be an infinite group. If for every pair (X,Y) of infinite subsets of
G, thereexists z in X and y in ¥ such that zy = yz, then G is abelian.
From a result of B.H. Neumanr: [BN,], it follows that G is centre-by-finite so
that the centre Z of G is infinite. For any z,y in G we take the infinite sets

Zz,Zy and by hypothesis, [£21,yz2) = [z,y] = 1 for some z1,22 in Z.

(1.9) Let n > 1 be a fixed integer and G an infinite group. If every infinite
subset X of G contains an element of order dividing n, then G is of exponent

dividing n. Let F denote the FC-centre of G. This is the set of all elements
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of G having finitely many conjugates. If z isin G and z" # 1, then the
number of conjugates of z must be finite and hence z € F. Thus C = Ce(z)
is infinite since |G : C| is finite. Let D C C be the set of those clements in C
of order dividing n. Clearly D is an infinite set and (dz)* = z" # 1 for all

d € D, contradicting the hypothesis.

With above examples in mind, it is proper to ask the extent to which a
property for an infinite group G is determined in the above fashion: Let %
be a variety defined by the law w(zy,... ,Zn) = 1 and assume that n 1is the
least number of variables required to determine y. If G is an infinite group
such that whenever Xi,...,Xn are infinite subsets of G there exists z; in
X;, t=1,...,n such that (z1,.-- ,Tn) isa V-group. Does it follow that G is

a V-group? It is too much to expect this to be true for all varieties V but we

have no counter example.

In chapter 3, based on the paper by P.S. Kim, A.H. Rhemtulla and H. Smith
[KRS), we proved the result when V is the class of metabelian groups.
P. Longobardi, M. Maj and A.H. Rhemtulla [LMR;] proved the result when V is
the class of nilpotent groups of class n —1. Their result is slightly stronger for
they do not assume that (z1,...,Zn) is nilpotent of class n —1 but only that
[£1,... 2] = L.

From the point stated above, it is natural to ask a similiar type of a question:
if G is an infinite group such that whenever Xy, X2, X3, X4 are any infinite
subsets of G there exists z; € Xi, 1 =1,2,3,4 such that [[z1,z2)], [x3,z4]] = 1,

then is G metabelian?
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At present we don't know the answer but we have affirmative answer for

locally soluble groups in chapter 4.

Recently several authors in [LMRS] and [CLRW] have studied the group
property when every infinite set of subgroups contains a pair that permute as
subgroups. One of main results is that a finitely generated group G is centre-
by-finite if and only if every infinite set of subgroups of G contains a pair that
permute .

Using this result, we prove the following in chapter 5; A finitely generated
group G is quasi-Hamiltonian if every two infinite sets X, Y of subgroups of G

contains H € X, K € Y such that HK = KH.



CHAPTER 2

PERMUTABLE WORD PRODUCTS IN GROUPS

In this chapter, we shall not look at P(U,V)-groups, but concentrate our
attention on SP(U,V)-groups. At present little is known about the various classes
SP(U,V) and P(U,V). The reduction from soluble to nilpotent-by-finite in
(1.6)Theorem will be achieved using several Lemmas. Most of Lemmas contain
complicated computations. All results are from the paper by [KR].

We recall that a soluble group G is said to be minimaz if and only if it has
aseries 1= Gp4Gi4...4G, =G in which the factors are cyclic or quasicyclic.
We shall call a group constrained if and only if there is no prime p for which
it has a section isomorphic to CplCw, the standard restricted wreath product
of a cyclic group of order p by an infinite cyclic group. This terminology is due
to P.H. Fropholler [KO], who gave a celebrated Theorem; Every finitely generated
constrained soluble group is minimaz and hence 3t has finite rank.

Since SP(U,V) is subgroup and quotient closed, (2.1)Lemm:. implies that

finitely generated soluble groups in the class of SP(U,V) have finite rank.

(2.1)Lemma. The wreath product of a cyclic group of order p with the infinite
cyclic group is not in the class SP(U,V) where U, V are as in the statement

of (1.6)Theorem.

Proof. Let G be the wreath product of a cyclic group of order p and
an infinite cyclic group (t). Then we can identify each element of G by a
pair (f(t), t*) where f(t) € Fp(t), the additive group of the group ring of the

infinite cyclic group (t) over the field F, of p elements, and o € Z. The
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product of two such clements is then given by the rule: (f(t), ) (g(t), t3) =
(F(£) +t*-g(t), to+8). The elements of the base group correpond to those pairs
where a =0 and the elements of the top group correspond to those pairs where
f(t)y=0.

We are given X = {z1,...,Ia}, u = u(_\’) = 1 T12...-Tim; L1 €
X, r1i # T1i+1, 1 = 1,...,m—1 and we are required to show that there exist sub-
groups Hi,...,H, of G such that HyHyg...Hym # HoayHo2) - - Hy(1m)
for any ¢ # 1 in the symmetric group of degree n.

Take H; = (ki) where h; = ((1—t*)fi, t%); fi = fi(t) and a; aretobe
chosen appropriately. Note that hf = ((1- tkei) f;, t**i) and a general element

of u(Hy,...,Hs) is h¥j... k¢ =

((1 —tkla“)fu, tklau) . ((1 _tkmﬂlm)flm, tkmalm) —

(1= thom)foy + (1= 5302 frg 4 oo Aot (L= 57 i, £37)

where \; = kjaqg + -+ + kiayi, 2 = 1,...,m. Partition the set {1,...,m} as
the union S; U---US, where S;={j|z1j =zi}. Thena general element of
u(H,,... ,H,) is of the form

n

(S o @himr —ahy), )

i=1 JES;
with the understanding that Ao = 0. Likewise u(Hg),---, Hyn)) consists of
elements of the form

(Z(fqb(i) z:(t“i-1 — thi)), thm)
i=1

JES;
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where it = bagany + -+ liagaiy, 1 =1,...,m and o =0. If o denotes

the inverse of ¢, then we may write these elements as

n

(SO Y (g =), ).

i=1 JESs (i)

Now
(S5 T (= = %)), ) = (3 Y (i - th)), thm)
i=1  jES: i=1  JESe(i)

implies Am = pm and

n n
(22) I OMGRETSHED DI DR CEilatl

i=l  JES; i=1 jES.(i)
Let p1,...,pn bedistinct primes, each greater than m. Put p=p1...Pn, ki =1
and ai =p/p;, i=1,...,n. Then foreach i >0, A\, =ay; + - +ay.
Let fi = tP'. Note that \j <p forall j and they are all distinct. Also note
that fith = fyt*’ implies p'+}; = p' + pjr. Hence pjo = Aj mod p so
that pj #A; mod p for any i#j. Thuseach J; is congruent modulo p to
precisely one pjr.

Now 1 € S,(k) forsome k. Thus f(t#o —t#1) is a term on the right hand
side of (2.2). Since po =0 and the only A; equal to zero is Ao, fr(t?e — th)
appears on the left hand side of (2.2). In particular 1 € Sk. Since Si1,...,5n
partition the set {1,...,m} and 1€ SkNSe(k), it follows that o(k) = k. Hence
py and A; are both congruent to zero mod p/ps; it follows that p1 = As.

Suppose, by way of induction, that we have established that u; = A; for
all j <e Then pe— pe-1 = Le@gae) which is congruent to zero mod all
primes p; except possibly one namely, pg1e). Now we look at Aj=Ae-1, 3=

e,... ,m}. A, — Ae—1 = @y, is congruent to zero mod all primes pi, Pi # P1e-
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For each of the other Aj — A.—;, we can find at least two primes amongst

{p1.-.-  pPn} suchthat A;j—A._y is not congruent to zero mod either of them,

Hence 0 # aje = leag(re) mod pre. But ag(1e) # Qe implies ag(1¢) =0 mod

pre. Thus age) = are, and 1. = Tg(re) = Th'y S8Y. Thus o(k') = &' and
e € Sir. Thus fi(the=t —the) = fre(tre=r —t2<) and A, = pe.

It is now clear that #(j) = j forall j =1,...,n and hence ¢ is the

identity permutation of the set {1,...,n} as required. )

Let C be a torsion-free abelian group and let A < Aut(C), we extend the
action of A to the rational vector space V = C ®z Q as natural way, where Q
is the field of rational number.

A is said to be rationally irreducible on C if C/B is periodic whenever B is
nontrivial A-admissible subgroup of C. Then it is easy to see that A is rationally
irreducible if and only if A is irreducible as a group of linear transformation of

V.

(2.3)Lemma. Let G =(A,t) where A isa torsion-free abelian group of finite
rank on which (t) acts rationally irreducibly. If G € SP(U,V) where U, V
are as in the statement of (1.6) Theorem, then for some positive integer k, (tk)

acts trivially on A.

Proof. We are given a group G = (A,t) where A is torsion-free abelian
of finite rank on which (¢) acts rationally irreducibly. Let us assume, if possible,
that [A,t] #1. Then V =A®zQ isan irreducible Q(t)- module and by
Schur’s Lemma, the centralizer ring ' = Endq(yV is a division ring of finite
dimension over Q. The image of (t) in EndQV clearly lies in and spans I' so

that T is an algebraic number field. Moreover, regarded as a [-space, V isone
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dimensional. Thus we may consider A to be an additive subgroup of Q(r) for
some algebraic number 7 and the action of conjugation by t as multiplication by

T.

Let h; = b;j(1 — 7 )t™ for suitable integer o and bi(1 —r71%)€ A. Let
H; = (h;). Note that h¥ = b;(1 - rkai)tkai,

As in (2.1)Lemma, we are given u = u(T1y--+ 1 Tn) = T11T12-.. Timj Tli €
{£1,...,Tn}, T1i F# Trit+1 i=1,...,m—1; and we need to show that with
proper choice of b; and a;, the subgroups Hy,...,Hn can be found such that

Hn...th#H¢(11)...H¢(1m) forany ¢=,£1 in Sn. Now

AL hEm = by (1 = Ry by (1 - phmaim jpkmaim
= by (1—7™) + bia(r™ —72) - + bym(TAm=1 — 7Am)Am
where \; = kjagy + -+ + ki, 1 =1,...,m.

We shall put Ao =0 and write 1=7°= o,
Thus a general element of u(Hy,..., H,) has the form
S (e e
i=1 JES;
where S; = {j; =1, = zi} sothat {1,... ,m} is the disjoint union of Si,... , Sn.
Likewise the general element of u(Hg(1)--- Hy(n)) has the form
Z(b‘ Z (Thi-t — rhi ))tnm.

i=1  JES.()

where p; = bagay + -+ licgy, =10, po = 0 and o =¢~}. Thisis

shown in the same way as in the proof of (2.1)Lemma.



In particular pgm = Am and
n
(2.4) Zbi(z(rf\j-x — ) - Z (rhi-1 — r#i)) =0,
=1 €S J€Sa(i)

Now we return to pick b; and «a; appropriately. For each integer r > 1,
pick primes pri,...,Prn tosatisfy 27 <pn and P < pri+1, i=1.....,n-1L
Put ¢, = Pr1* Pra, bri(y) = y": and ap = ¢r/pri, ¢ = 1,... ,n. To make
the notation simpler, we shall write b; for by and a; for a,, where there
is no ambiguity. Since there are infinitely many choices of ¢, and each choice of
gr determines the sequence Hi,...,H, of subgroups which in turn corresponds
to some permutation ¢ # 1 such that u(Hi,... JHy) = u(Hgrys - Hemy)-
there is an infinite number of choices of r such that g, correspond to the same
permutation ¢.

If, for some value of r, we have the following stronger version of (2.4):

n n
3 biy)Li(y) — ) biy)Mi(y) =0
i=1 i=1
where
Liy) = SN —vh), M@= ), (" —y")
JES: JESq(iy
and y is an indeterminant; then p; = A; forall j and ¢ = 1. Thisis
seen using arguments similiar to those in the proof of (2.1)Lemma. Thus we may
suppose that for every r,
n n
P(y) = > bi(w)Li(y) - D ki(y)Mi(y)
i=1 =1
is not zero but P(r)=0. If Q(y) is any non-trivial segment of P(y) such that

Q(r) =0, then Q'(y) = P(y) - Q(y) is a segment of P(y) with Q'(r)=0.
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Moreover one or both of Q(y) or Q'(y) contains at least as many monomials
from Y1, b(y)Li(y) as from oo, bi(y)Mi(y). Let Q(y) be such a segment

of P(y) of shortest length. Thus

I Q(y) #0
II. Q(r)=0
III. Q(y) contains at least as many monomials from S i, bi(y)Li(y) as from
Toiey bi(y)Mi(y) and
IV. No proper segment has properties I and II.

We write Q(y) = Q1(y) — Q2(y) where Qi(y) is a segment T, ki of
S bi(y)Li(y), Qa(y) o segment Ty Ey* of iy bi(y)Mi(y) and wemay
suppose that there is no term in Qy(y) equal to any term in Q:(y). If Qi(y)
has only one term in it, then Rly) = +y* or +y*+y* where 0 # A and
i # A Inboth cases @(7) =0 implies T is a root of unity and (t*,A] =1 for
some k >0, as required.

We may therefore assume that Qi(y) = Yia +y* has more than one
term; M =¢' + ;i and 0 <) <+ <Ay Similiarly Qa(y) = S0, +y¥

where p) < -+ < py,. Let
vy = min{A}, g1} and vy = max{\y, Mo}

Then y~*'-Q(y) is a polynounal of degree vz —11 with non-zero constant
term. Moreover vz — vy > X, — A > 27. Thus the degree of the polynomial

increases with r and hence there are infinitely many expressions

u+tv

1= Z 6,‘1‘7‘

i=1
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where 7i > 0, &, € {~1,0,1} and no subsum of the right hand side of the
equation is zero. But this is not possible by Theorem 1 of (PO} which we state

below for convenience. This completes the proof. ®

(Van Der Poorten)Theorem. Let K be a field of characteristic zero and H
a finitely generated subgroup of the multiplicative group of K. Then for each
integer m > 0 there are only finitely many relations uy + -+ -t um = 1 with

each u; € H and no subsum of the left hand side is zero.

(2.5)Lemma. If G = (A,t), where A 9 G and is abelian of finite rank, and
G € SP(U,V) where U, V are as in the statement of (1.6)Theorem, then for

some € >0, (A,t%) has a non-trivial centre.

Proof. If the torsion subgroup of A4 is non-trivial then it has a non-trivial
subgroup A4; of exponent p for some prime p. This is finite since A has finite
rank, hence it is centralized by t! for some ¢ >0 and A; lies in the centre
of (A,t!). We may thus assume that A is torsion-free. Let D be a non-trivial
subgroup of A of least rank subject to D < G. (2.3)Lemma applies to (D,t)
and we conclude that (D,t¥) is abelian for some k > 0. Hence D lies in the

centre of (A,tF). [ )

(2.6)Lemma. Let G = (A,t), where A isa torsion-free abelian group of finite
rank on which (t) acts rationally irreducibly. If G € SP(U,V) where U, V

are as in the statement of (1.7)Theorem, then (t) acts trivially on A.

proof. As the hypothesis of (1.7)Theorem is stronger than that of (1.6)The-
orem , (2.3)Lemma and its proof applies. We follow the proof of (2.3)Lemma and

reach the situation where we may assume A to be an additive subgroup of Q(7)
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for some algebraic number 7 and ihe action of t under conjugation is that of
multiplication by 7. Furthermore we may assume 7 toa primitive kth root of
unity and we need to show that 7 = 1.

Let h, = (k*(1—7), t7}) and Hi = (h;). Observe that R} = (k'(1 -
), t=*) and hf = t=k Let X = (H,---H,)" and suppose that for some
¢#1in Sp, X = (H¢(,)...H¢(,,))'. If ¢(1) # 1, then (Hy,Hy)) € X. But
this is not possible since X is the union of a finite number of cosets of (t*)
whereas (H),Hy(1)) contains the subgroup gencsated by (k®) —k)(1-7), an
infinite cyclic subgroup of Q(7), not contained in any finite union of cosets of
(t*). Hence ¢(1) =1 and similiarly ¢é(n) =n.

For any permutation 7 in S,, a typical element z of Hpay.--Hr(n)

has the form

A An
x—hrzl)...h”(n)

= (kw(l)(l _ T'\‘)+ kﬂ'(2)(1 _ TA:)TA; 44 kx(n)(l _ T'\" )T'\‘+'"+'\"'l, f~“)

where p= A1 +---+ A, and A; are arbitrary integers. In turn these elements

may be written as
(k"m(l — o) 4 k(e — 7o) 4 k(M) (ron-1 — 7%n), t=)

where a; are arbitrary integers.

In particular t~°°z has the form (h, t~o) where

h= kx(l)(,rao _ Ta‘) + k1r(2)(,ra; _ ,rag) 4ot kw(n)(ran_1 _ Ta,.)

= kr(l)rao + Ta,(kw(2) _ kr(l)) +o 4 Ta,...1(k1r(n) _ kt(n-l)) _ Ta"k"(").



16

Thus, if ao is a given fixed integer, the real part of h is maximised by
choosing @; =0 mod k if =(i+1) > 7(i), a; = ¢ mod k where ¢ = (k/2]
if 7i+1)<w@);i=1,...,n—1 and ap=¢q mod k. If 7 is the identity

permutation then this value is

k cos(2mag/k) + (K™ — k) — k" cos(2mq/k).

On the other hand if 7 # 1 and (1) = 1,7(n) = n, then the maximum

real part of the value of h is

2rayg

R LY 7 eas 274 x(i) _ pr(i+1) 2mq
+ (k" —k)—k cosT+Z(k -k )(1—0()h—k—)

k cos

where the sum is over all values of i such that w(i) > w(i + 1). This value is
clearly greater than the value obtained for the identity permutation .
Now the general element of (Hg(1)...Hun))" is (A, t77) where h is
expressible in the form
i BP0 poia g g (R(2) _ g g pSin (BT (D)) pein ()
i=1
where ajp =0, @in = @it100 t = 1,...,7 =1, arq = a. By picking tae
values for a;; to maximise the real part of h as above, it is clear that the value
achieved when 7 # 1 is greater than for 7 = 1. Thus (Hyry---Hon))"» ¢(1) =
1, ¢(n) = n, ¢ # 1, contains elements not contained in (Hy...H,)". This

completes the proof. &

For convenience, we write main Theorems from Introduction.
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(1.6)Theorem. Let U = {u} where u is a word in idemnpotent variables
Iie.. fgon > 1; andlet V. = {up | 0 € Sa}. If G is a finitely generated

soluble group in SP(U,V), then G is nilpotent-by-finite.

Proof. By hypothesis, X = {z1,... Zp}u= u(X)=z11%12..- T1im where
ri, €X forall t=1,...,m and z1; # 7141 forall 2=1,... ,m—1. Let G
be a finitely generated soluble group such that for any n-tuple (Hy,...,Hn) of

subgroups of G, thereisa permutation ¢ # 1 in S, such that
w(Hy,... Ha) = HiHiz... Him = u(Hoq), - - yHo(my) = Ho11) - - Ha(1m)-

We need to show that G is nilpotent-by-finite, and we proceed by induction
on the solubility length of G. If G is abelian then there is nothing to prove.
Let G be soluble of length d and assume that the result holds for soluble groups
of smaller length. Since the class S P(U,V) is subgroup and quotient closed,
we may suppose that G has a normal abelian subgronp A such that G/A is
nilpotent-by-finite. In particular G is abelian-by-polycyclic. By (2.1)Lemma, G
has finite rank.

As G is finitely generated abelian-by-polycyclic, it satisfies the maximal
condition for normal subgroups. If G is not nilpotent-by-finite, then let B be a
maximal normal subgroup of G such that G/B 1is not nilpotent-by-finite. Now
we replace G by G/B and hence assume that every proper quotient of G is
nilpotent-by-finite.

Let T be the torsion subgroup of A. Then T has finite rank and is of
bounded exponent since C satisfies the maximal condition for normal subgroups.

Thus T is finite, and C = Cg(T), the centraliser of T in G, is of finite index
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in G. If T#1 then G/T is nilpotent-by-finite and hence C/T is nilpotent-
by-finite. Since T < Z(C), the centre of C, then C and hence G would be
nilpotent-by-finite. Thus we assume T =1 and hence A is torsion-free, and by
passing to a suitable subgroup of finite index in G, if necessary, we may assume
further that G/A is a finitely generated torsion-free nilpotent group. Thus there

exists a finite set T = {t;,...,t,} of elementsin G such that G = (A,T) and
A= GO < (GOstl) = Gl <...< (Gr—lstr) = Gr =G

is a central series from A to G wi'" torsion-free factors.

If r=1 then G = (4,t;). By (25)Lemma Z({A,t')) # 1 for some
¢, >0 and hence D = ANZ({A4,t{')) is a non-trivial normal subgroup of G. By
our choice of G,G/D is nilpotent-by-finite and hence G is nilpotent-by-finite.

Now suppose we have established the result for the case r < d and supposc
r = d. By the induction hypothesis, Ggq-1 is nilpotent-by-finite and G =
(Gy—1,t4). Let H = (A,G4_,) for some suitable ¢ >0 so that H is nilpotent.
Let¢ ¥ = ANZ(H) then Y is normal in (H,t5) which is of finite index
in G. Moreover Z((Y, t{)) # 1 for some ¢ > 0 by (2.5)Lemma, so that
D, =YNZ({Y, tf,‘)) is a non-trivial subgroup of G contained in the centre of
(H ,tfi‘) which is of finite index in G. We may replace (H,ty'; by its normal
interior in G, if necessary; it still contains A and hence D;. Now (H, tf,‘)/Dl
is nilpotent-by-finite, D < Z({H, t%)) and (H, tl) is of finite index in G.
Thus G is nilpotent-by-finite, as required. é

In the case of finitely generated linear SP(U,V)-group, (1.6)Theorem follow

from Tits'Theorem (See[WE]); A finitely generated linear group either is soluble-

by-finite or contains a non-cyclic free subgroup.
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The latter does not occur in  SP(U, V)-groups and hence we have the following

immediately.

(2.7)Corollary. A finitely generated linear SP(U,V)-group is nilpotent-by-finite

where U, V are as in the statement of (1.6)Theorem.

(1.7)Theorem. Let G be a finitely generated soluble group, U = {u} where
u=u(Tr,..,Zn) = (71 covzn) and V = {ug | o € Sn} where Us(Z1y--. 1y Tn) =
w(Zo(1)-- - 1Ta(n))- Then G isan SP(U,V)-group for some n>1, 1> 0 if

and only if G is finite-by-nilpotent.

Poof. Since the hypothesis of (1.6)Theorem are satisfied by the group of
(1.7)Theorem, we may assume G to be finitely generated nilpotent-by-finite. Let
T be the maximal finite normal subgroup of G. Since we wish to show that G
is finite-by-nilpotent we may look at G/T, if necessary, and hence assume that
G has no non-trivial finite normal subgroup. Let F be the Fitting subgroup
of G. If F# G then pick any t € G\F such that tP € F. Clearly it is
sufficient to show that (F,t) is nilpotent for G /F is finite and soluble, we can
reach G from F by a subnormal series with factors of prime order. Thus we
assume G = (F,t), tPEF and F is torsion-free.

Let H be the hypercentre of G. Then H NF isisolatedin F. This may
be seen by first checking it for Z(G)NF and then by taking the quotient of G by
this subgroup, and using induction. Observe that if H £ F then G=HF and
G is nilpotent. So assume H < F. Next we look at G/H. If G/H is nilpotent
then sois G. So weassume H =1. Let A bea non-trivial normal subgroup
of G of least Hirsch length and A < Z(F). Since (4,t) € SP(U,V), (t) acts

trivially on 4 by (2.6)Lemma. Thus A < Z(G) contradicting the assumption
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that Z(G) = 1. This concludes the proof that if G € SP(U,V") then G is
finite-by-nilpotent.

Now suppose that G is a finitely generated finite-by-nilpotent group. For
any subgroup L of G let 4(L) denote the nilpotent residual of L. Thus (L)
is the intersection of the terms of the lower central series of L. Let F =1(G). It
is finite by hypothesis and G/ is nilpotent of class ¢, for some ¢ > 0. Thus
(L) = 7(L) for all L <G where ¢ = |F| + ¢,. We show, by induction on
|v(H, K)| = s,‘that (HK)# = (KH)% = (H,K) for all subgroups H K of G
where dy = (4r)°, r = rank of G; di = di-1 +2i(i +di), i > 1. In particular
(HK) = (KH)? = (H,K) forall H, K where d=dy and f = |F|.

By Proposition 2 of [RW,] T(HK)' = [(KH)' = (K,H) where T =
v(K,H),t = (4r)¢, and r is the rank of G. Thus if T=1 then d, =t will
suffice.

For any a € (HK)!, a = gb forsome g €' and b€ (KH) so that
ab-' =ge TN(HK)®. If TN(KH)** =1, then a=% and (HK)! = (KH)".
This implies (H,K) = (HK)!, and again d, =t suffices.

If Iy, =TN(HK)* # 1, then for each integer m 2 1 let Ty =
I'n NTHK g0 that Ty C (HK)?+?m_  Observe that I'm = I'm+41 implies
(Tm) = (TH) = (TK). Since I'my CT and IT| =s, Iy =T441. Also note that
(T'n) € T%,. Thus the normal closure N of 'y in (H,K) liesin (HK)*
where A = A, = 2(s? + ts).

Now NH and NK bothliein (HK)* and (NHNK)™ C (HK)Mm

for all m > 0. Rank of (H,K)/N is no greater than r, v((H,K)/N) =
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ve({H,K)/N) and |y((H, K)/N)| < |[7({H,K))|. Thus by the induction hypoth-
esis, N(HK)® = N(KH)* = (H,K) where d' =t+ g+ +X-1 = dy_y. Since
(HK)» > N, we obtain (HK)% = (KH)" = (H,K) where ds = de—1+ Ay
Now that we have shown that for a finitely generated finite-by-nilpotent
group G there is an integer d such that (HK)! = (KH )¢ for all subgroups
H. K of G, welet u=u(z,y)= (zy)?, v=v(z,y) = (yz)? then G € SP(U,V)
where U = {u}, V = {uo | 0 € S2}. This completes the proof of the second part

of the theorem. [

We can not replace “nilpotent-by-finite” in (1.6)theorem by the stronger
condition “finite-by-nilpotent” of (1.7)Theorem. It is tedious, but we will show
that the infinite dihedral group Do lies in SP(U,V) where U = {u}, V =
{uglo € Sp} and u= u(z1,T2, T3, T4) = T1T4T2T3T2T3T4T1 and it is well-known

that Do is not finite-by-nilpotent.

(2.8)Example. Let U = {u} where u = (T, .- 1 T4) = T1T4T2T3T2TIT4T]
and V = {u, | 0 € Ss}. Then the infinite dihedral group G isin SP(U,V).
Consider u(H,,H,,Hs, Hy) for given subgroups H, H,,H3,Hy of G. If
H, or H, isnormal in G then u(Hl,Hz,Ha,H4) = u(H4,H2,H3,H1). If
H, or Hj; is normal in G then w(Hy, He, H3, Hy) = u(H,, Hs, Ha2,Hy). So
assume none of the H;'s is normal in G. If for some i, H; is not of order
two, then it contains a subgroup K; normal in G and of index two in H;.
Moreover u(Hoy(1)--- Ho(s)) = Ku(Hyy - .- Hos)) for all ¢ € S, and we may
replace G by G/K; and each of H; by H;K;/Ki. Thus the essential case to

be considered is one where each H; is of order two.
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Now G = (a,t) where a' =a”! and t* =1 H; = (ahit), i =
1,2,3,4. We will show that the set L = H,H,H3H,H3H, equals the set R =
HyHsH,HyH,Hy. Fror: this it follows that u(H,,Hs, H3, H4) = HiLH, =
H,RH, = u(H,,Hs,H2, Hy).

Now a* € HyHyH2H; ifandonlyif A =0, A2 =23, A\a— Ay or 2Xp — 2A;.

a’ € HyH3HoHy if and only if A = A2, A3, 242 — A3 or 2)\3 — A;. Hence
H;H;HyH;\H3H,H3Hy consists of a2*2~2*s only and H3H,H3H,\H,H3H:H,
consists of a?*3~2*2 only.
But H,a?**~2*H, consists of a* where X € {22 —2)3, 23 ~2);} and a*t
where A € {Ag —2X2 +2X3, A+ 2X2 — 2)3}. From the symmetry between A2
and A3 above it is clear that Hya?*:=2%H, = H,a?*~2* H,. Thus thesets L
and R are equaland G € SP(U,V).

We have not tried to analyse conditions on words u for which Do ¢

SP(U,V) where U= {u} and V={u, |0 € Sa}



CHAPTER 3

A CHARACTERIZATION OF

INFINITE METABELIAN GROUPS

Throughout this chapter, G is an infinite group . We write
G € A* when G is metabelian.
G € A? whenever X, X,,X3,X4 are infinite subsets of G there
exist z; € X; for i=1, 2, 3, 4 such that (z1,z2,%3,4) is metabelian.

In the study of %AZ-groups, Ramsey’s Theorem occurs. Let A Dbe the
family of 4-element sets of G whose elements generate a metabelian subgroup and
B be the family of 4-element sets of G whose elements generate a non-metabelian
subgroup. Then AUB is the family of all 4-element sets of G and then there exists
an infinite subset S of G such that either all four element subsets of S belong
to A or all four element subsets of S belong to B. By the property of G € A2,
the latter can not happen. Suppose S = {s1,32,.. .} and Z = {[si,sj] | i # i}
If Z is infinite then (Z) is an infinite abelian subgroup of G. Suppose, on the
other hand, that Z = {z1,...,2}. For each £=1,...,k, let Uy denote the set
of all {si,s;} suchthat [si,85], for £ <4, is equal to z;. By Ramsey’s Theorem
once more, there is an integer ¢ <j and an infinite subset S; of S such that,
for all s;,s; in 5 with i < j, [si,s;] = ze. We may assume S = S;. Then, for
i<j<k [sisisp]= [3,‘,8;1][33',8]‘]’;1 = [3.-,.s;l][s.-,sk]":l = 1. In particular,
for distinct i,j,k,¢, with : < j and k<e, 3;3;1 and .s;k.s,'1 commute. If

-1 which commute pairwise then

there is an infinite set of distinct elements s;s;

we again have an infinite abelian suogroup. Suppose, on the contrary (by means

of a relabelling if necessary), that T = {s187 7, 8387 e ne s SN-18y'} isa maximal

23
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set of pairwise commuting elements of this type. Choose i 2 N. Then the set
Y = {s,-s.-'_,,ll,s,-s,-‘_gz, ...} is certainly infinite and so some element y of Y does
not liein T. Clearly y commutes with every element of T, and we have a
contradiction which allows us to conclude that there is indeed an infinite abelian

subgroup of G.

(3.1)Lemma. G € A? is metabelian if G is one of the following.
(1) G has the infinite centre
(2) G isan FC-group
(3) G is residually finite.

Proof. Let Z be the centre of G. For any a,b,z,y in G, let
A=aZ ={az|z2€ 2}, B=b2, X=22,Y = yZ. Then these four infinite
subsets give the desired result in (1).

For (2), if G is a periodic F'C-group then Cg(a)NCeq(b)NCq(z)NCa(y)
has an infinite abelian subgroup S and four subsets aS, bS5, zS, yS yield
(la,b],[z,y]] = 1. I G is not periodic then we may assume G is a finitely
generated FC-group. In that case G has the infinite centre.

For (3), let N; (i € I) be subgroups of finite index with N;erNi =1, then

[la,b],[z,y]] =1 mod N; forall i¢. So [la,d],[z,y]] =1 and G is metabelian.

(3.2)Theorem. Any group G € A2 having an element z of infinite order is

metabelian.
Proof. Clearly we may assume that G is finitely generated.
For any a,b in G, consider sets {azi |i€Z}, {bz'|i€l}, {a”|p: primes},

{29 | ¢ : primes, g # p}. These infinite sets yield {a,b,z) € %% Hence [(z),G]
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is abelian. Let J be [(z),G] and C be the centralizer of (z)J in G. If
J is finite, then (z)J is in FC-centre of G. Hence |G : C| is finite and
C is finitely generated. Let ¢i1,...,¢n be generators of C. Then for each c¢;
there exist n;, ¢; such that [z6t™, ) = [z™,¢i]. Therefore [z%,c;] =1 and
[z¢,C) = 1 for some ¢, for example ¢ = ¢, ---£,. Hence the centre of C is
infinite and C € A2, Thus C and G are residually finite (See Theorem 1 [PH])
and G € %%

We may take J to be infinite. Pick any a,bc in G andlet S ={s€
J | (s,ua,vb,wc) € A* for some u,v,w € J}. Thenby G € A%, J\S is finite
and (S) = J. Since J isa normal abelian subgroup, [vb,wc] = [b,c]z for
some z € J and [s,ua] = [s,a]. Hence ((b,c),[s,a]] =1 forall s €S and
[[b,c],[J,a]] = 1. Therefore ¢, [J,G]] =1

If [J,G] is finite, then let D be the centralizer of [J,G] in G so that
[J,D,D] = 1. Hence [D',J] =1 by the Three Subgroup Lemma (See Lemma
2.13 [RO,]). For any a,bc,d € D and u,v,w,z € J, [[ua, vb), [we, 2d]] = 1
implies [[a,b],[c,d]} =1. Thus D€ %2 and hence D and G are residually
finite, so G € U2
If [J,G) is infinite, then for any a,bc,d in G and u,v,w,z ia [7,Gl,
([ua, vb}, [we, zd]) = [[a, b],[c,d]] and hence G € 2. [

Remark. In the study of a torsion-free group G € %2, it is observed that for
any a, b, ¢, in G, the sets {ac' | i € 7}, {bc' | i € 1}, {c? | p : primes},
{c? | ¢ : primes, ¢ # p} yield (a,b,c) € A* and hence G is 3-inetabelian
group. This special group has been studied by I.D. MacDonald [MA] and has the

properties



(1) G/Z(G) is metabelian (2) G" has exponent 2,

hence G" =1 and G is metabelian.
From now on, we confine our attention to periodic groups with A2
(3.3)Theorem. If G € A2 is periodic and soluble, then G is metabelian.

Proof. If G' is finite, then G is an FC-group and hence G € %* by
{3.1)Lemma.

We may assume G' is infinite metabelian by induction oi the derived length
of G. f G ¢ U2, then there exists a finite subgroup F' which is not metabelian
since G is locally finite. By replacing G by G'F, we may take G = HF where
H is an infinite metabelian normal subgroup and F is a finite subgroup with
F ¢ %2. We note that if N is any infinite normal subgroup of G € A%, then
for any a.b,c,d € G, the four sets Na, Nb, Nc¢, Nd yield [[a,b],[c,d]] =1

mod N and hence G" < N.

(Case 1) We prove the result when G has an infinite abelian normal
subgroup A. So we can take G = AF.

Suppose A has a non-trivial divisible subgroup. Since G is periodic, we
also may take G = HF where H = (Cp~)" for some prime p, integer n > 0
and 7 is minimal subject to H 4G and assume that 1# G" < H, G" =1.
We will prove the case when n is infinite at a later time.

For each g € G, g induces a homomorphism of H to (g, H]) by h— [g,h]
for h € H, hence either [g,H] =1 or [g,H] is infinite. Therefore, if [F', H]
is finite, then [F',H] = 1. Easy computation shows that for any gi € F and

hi € H(:=1,2,3,4), [[h191,h292),[h3g3, hags]] =1 implies [l91,92], [93,94]) = 1,
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which contradicts F ¢ 2. Hence [F',H] is infinite. By the minimality of n
and [F',H]aG = HF, wehave G" < H =[F',H] = [F',[F',H]] £ G" and
hence [F',H]=H =G".

Pick ¢1,92 in F such that [g1,92] does not centralize [g,H| for some
g€ F. Let X={zeH|[z9] [91,92]) # 1}, then X isinfinite since [F',H] =
[F',[F',H]] is infinite. Therefore ([h191, h2ga), [R3g, 2]l = (g1, 92), [g,z]] #1 for
all z € X, h; € H which contradicts G € A2,

Suppose A has no non-trivial quasicyclic p-group. If every p-component
of A is finite where p is a prime, then the subgroup B generated by all
p-components of A for p which does not divide the order of F is an infinite
normal subgroup of G.

We may take BF as a counter example, but BNF =1 and F = BF/B e %2
Hence A has an infinite p-component for some prime p and hence has an infinite
basic subgroup so we can assume A is an elementary abelian p-group (the same
argument can be applied for H & (Cpe )°). Thus A and G are residually

finite, the proof is complete in this case by (3.1)Lemma.

(Case 2) Suppose G has no infinite abelian normal subgroups. We may
take G = HF where G" < He %2, F ¢ %2, both H' and F are finite, H
is infinite normal in G.

If [F',H] is finite, then (F')6 = (F")HF = F'[F', H] is finite, the central-
izer C of (F')¢ in H has finite index and hence it is infinite normal in G.
Replacing H by C, we may assume [F',H]=1.

On the other hand if [F',H] is infinite, then it is not abelian by the

assumption and [F',H]< G is easily checked. Thus HF' ¢ %A? and we choose
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a finite subgroup Fi ¢ A* of HF' such that HF, ¢ A* but Fj < H for
(HF'Y < HF" < H. Hence [F{, H] is afinite subgroup of H'. Asabove, we can
reduce to the case [F}, H] = 1. Therefore, in either case, we may take G = HF
with [F',H] = 1. Furthermore H/H' is infinite abelian and G/H' € A2 by
(Case 1). So G" < H'

Now we may assume G'" is minimal normal in G and of exponent p. Let
C(H') be the centralizer of H' in H, then C(H')<G and G/C(H') is finite.
Replacing H by C(H'), we have G" < H' < Z(H) and hence H is nilpotent.
By the minimality of G"” and F" 4G, we also may assume F "=G".

Write K = G'N H, then |G': K] < oo. Hence K is infinite. Otherwise
G isan FC-group. Put J=KF. If K' =1, then replacing H by K, it
is reduced to the (Case 1). We may assume K’ # 1 and hence K'=G" from
K'<aG and the minimality of G". Also G" = F" < J" <G" = K'. Replacing
H by K and hence G by J, wemay take G" = H'. G" still remains minimal.

For primes p, q, p # ¢, the g-component H, of H is finite, otherwise
consider L = H,F in which L"NH, = F"N Hy =1, which contradicts
1£F" F¢ A for L/H, € A* and F" < H;. Since H is periodic nilpotent,
H can be chosen a p-group.

If Z(H) is infinite, then it is reduced to the (Case 1). If not, then H/Z(H)
has a finite exponent, so does H/H'. Hence H/H' contains a G-invariant
infinite elementary p-subgroup K/H'. As before, we may assume K "#1, and
hence K'=G" = H'. Replacing H by K, we have H =G" < Z(H) £ H,

H/H' is an infinite abelian elementary p-group and H ' is of exponent p.
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Now let A,/H' be a minimal G-invariant subgroup of H/H' and Ci be
Cyi(A;). Then C, 4G and |G: C,| is finite.

By the residual finiteness of G/H', we can choose H14G such that G/H,
is finite and A4, N H, = H'. Clearly we can take H; < C,. Nowlet A2/H' be
a minimal G-invariant subgroup of H,/H' and C; be Ch,(A2).

Then C;<G, [41,A42]=1 and |G: C,| is finite. Choose Hz < C3, H,4G
such that |G : Ha| is finite with Az N H, = H'. Continuing this process, we
get a subgroup N/H' of H /H' which is the direct product of infinitely many

minimal G-invariant finite subgroups A; = A;/H' where [Ai,A4j] =1 for all

i#£j. Set

X, = (A4n+l |n =0a1a2’-'°) Xp = (A4n+2 |n=0’1’2"'°)

X3=(A4,,+3|n=0,1,2,...) X4=(A4n |n=0,1,2,...).

Then each X; is infinite and normal in G. Pick g; € G fori=1,2,3,4 such
that {[g1,92),[93,94]] # 1, then for each z; € Xi, [[z191,2292), [23g3,24g4]] =
(g1, 92], 93, 94]] since [F',H) =1 and [z;,z;] =1 for all 1 # j. This contradicts

G e % ®
(3.4)Theorem. If G € A2 s locally soluble then G is metabelian.

Proof. Since G/K € %? for any infinite normal subgroup K, every G-
invariant proper subgroup of G" is finite. If G" is minimal normal in G, then
G" is abelian (See Theorem 5.5.1 [RO;3]). Therefore G is soluble and G € A2
by the previons Theorem. Therefore we can choose 1# A<4G and ASG". If
C = Cgr(A) £ G", then C is finite, also |G" : C| and G" are finite. Hence

G is soluble.
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It follows that every proper G-invariant subgroup of G" is contained in

Z(G"). Hence G"/Z(G") is minimal normal in G/Z(G") and so abelian.
Therefore G € A2 'y

(3.5)Lemma. Suppose a periodic group G € U? has an infinite abelian sub-
group. If F is any finite subgroup, then there exists an infinite metabelian

subgroup containing F.

Proof. Let A be an infinite abelian subgroup and r,y bein F = G,.
By considering A, A, Az, Ay, we have a metabelian subgroup ({ao, bo, co, doy)
for some ag, by, co, do € A, so that [[{a0), z], [(@0),y]] = 1. Repeating this with
A\{ao} in place of A and so on, there exists a cofinite subset Ag of A such
that [[{a),z],[(a),y]] =1 for all a € Ao.

Since G, is finite, there exists a cofinite subset A, of A such that
[{a),z],[{a),y]] =1 forall @ in A; andall z,y in Go. Foranelement 1 # a) €
Ay, let Ny = [{(a1),Go]. Then using the identities [ay, ]** = [a1a2,9][az, 9]
and [a,q1]9* = [a, g2] "![a,g192) for any group element a,g,ai,gi, We can show
N, 4G, = (a;,Go). But G;/N; is finite and N, is abelian, hence G; and N,
are finite.

Similiarly we construct Np = [{az),G1], G2 = (az,G1) where az € A2\Gi
for some cofinite subset 4, of A; and [[{a2),91],[{az2),g2]] =1 forall g1, g2 € G,
and all a; € A;. Of course, N2 is an abelian normal subgroup of G2, both
groups are finite. Continuing this process , we get an infinite strictly increasing

tower of groups, F = Go C Gy C G2 C -+-. Furthermore, [Gi-1, {(a;)] =1 mod
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N, forall ¢ >1. So we can write

G1 = Go((l1)N1

G2 = G1{a2) N2 = Go{a1)N1(a2) V2

Gi = Gola;)N1{az) Nz - - - (ai)N;

Let K, be the subgroup generated by the elements of {a;,N; |t =
12,...,n} and K = U, K. Clearly K, is soluble. By induction on n, we as-
sume Knp_y = {a;, N;i|i<n-1) is soluble. N, is abelian and normal in K =
(Kn-1,an, Nn) and (an) is central in Kn module N,, which is therefore
abelian-by-cyclic-by-soluble and hence soluble. It follows that K is locally sol-
uble and clearly infinite. As F normalizes K, FK /K is finite and hence

metabelian. Therefore FK is locally soluble and hence metabelian . [ )

From now on, for the further study of 2-groups, we may assume that every
finite subgroup is nietabelian by (3.5)Lemma and Ramsey Theorem. Moreover we
will show in (3.7) that it is enough to look at simple 2-groups, in order to prove

that A2-groups are actually metabelian.
(3.6)Theorem. If G € A2 is infinite locally finite then G e 2.

Proof. It follows from (3.5)Lemma.
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(3.7)Reduction to Simplicity. Suppose G € A2 but G ¢ A*. If G® s
finite. then G" is an FC-group where G = [G"”,G"]. By (3.1)Lemma and
(3.3)Theorem, we may assume G" is finite and G' is infinite.

Therefore G' is an FC-group and hence G' € U2, it follows that G
is soluble and hence metabelian. If G is infinite, then G/G® € A* which
implies G® = G". Suppose¢ G" has eu infinite proper normal subgroup N,
then G"/N € U2, which implies G < N, contradicting to G" perfect.

Let N be a finite normal subgroup N of G", then Cgr(N) has finite
index in G". Since G has no infinite normal subgroups, Cg»(N) = G". Hence
the centre Z of G" is the unique maximal normal subgroup of G" so that

G"/Z is simple. By (3.6)Theorem, we may assume G is a simple group .
(3.8)Theorem. Any infinite group G € A} is metabelian.

Proof. By (3.7)Reduction, (3.6)Theoren and {3.2)Theorem, we may assume
G is finitely generated periodic simple. Suppose there exists a subgroup C
isomorphic to Cpes for some prime p, then for each pair z,y € G, by considering
sets C, zC, C, yC we can say {[{c),z],[(c),y]) is abelian for all but finitely
many ¢ in C. Henceforall c€ C, ([(c),z],[(c),y]) is abelian and therefore
[C,G]. is abelian. Since G is non-abelian, [C,G] =1, therefore G contains
no Cjp«-subgroup.

Let A be an infinite abelian subgroup and S = S(z,y) denote the set of
all a€ A such that ([{a),z],[(a),y])} is abelian, then S is a cofinite set of A
and a € S implies (a) C S. If A contains elements of infinitely many distinct
prime orders, then choose a prime p and an element ¢ of order p sucu that no

element of the finite set B = A\S has order a multiple of p and such that for
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all be B, bc¢ B. Since bc€ S and (bc)P =bP € S, wehave (b) =(b?), bES
and hence S = A, which is true for all z, y in G. So [{c),G] is abelian
normal in G.

Hence we may assume A has elements of only finitely many prime orders
and hence has finitely many p-component. Since A contains no Cpee-subgroup,
A contains an infinite elementary p-subgroup; (a1) X (az) % {a3)---. There
exists a; € A such that for all b€ B, ba; ¢ B and hence ¥ € S, it follows
that AP C S = S(z,y) forall z, y in G.

If AP # 1, then [(a'), G] is abelian normalin G for 1 # a' € AP. Therefore
every infinite abelian subgroup has prime exponent. If every metabelian subgroup
is abelian, then any infinite subset of G contains 4 elements which generate a
metabelian subgroup and hence it is abelian. By B.H. Neumann'’s Theorem [NE,],
G is centre-by-finite and G € %? by (3.1)Lemma. Hence there exists an infinite
non-abelian metabelian subgroup H by Ramsey’s Theorem and (3.5)Lemma. Let

H0=(h1,h2> with [hl,h2]=,£1 for some hl,h2 in H.

(Case 1) We prove the theorem when G, H are groups stated above and
additionally G is a p-group.

If H' is finite, then H isan FC-group. If H' is infinite, then L= H'Hp
is nilpotent ( G. Baumslag, see Lemma 6.34 [RO,] ). Let M be the least term of
normal closure series of Hp in L subject to M infinite. Since Hp is subnormal
in L, Hé" is finite. Hence Hy has the infinite centralizer in L.

In either case, there is an infinite abelian subgroup D centralizing Hp =
(h1,hg). For any z,y € G, there exist d; € D, i = 1,2,3,4 such that

T = (dlhl,d2h2,d3$,d4y) € m2. So a= [hl,hq] € T', [a, d327] = [CY,Z'] € T' and
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[a,y] € T, and hence [{a), z}, [{@).y]] = 1 for all z,y € G. Therefore (), G]

is a normal abelian subgroup of G. This contradiction induces the other case.

(Case 2) When G is not a p-group with above statement.

By (Case 1) and (3.5)Lemma, all of the Sylow p-subgroup of G are
metabelian. If G has an infinite non-abelian Sylow p-subgroup of G, then
the same argument as (Case 1) would yield an abelian normal subgroup of G.
Hence we can assume every infinite Sylow p-subgroup of G is abelian.

Since G contains a non-abelian metabelian subgroup, it contains a finite
such subgroup F. So F ! contains a nontrivial g-element f for some prime
g. Let A beany infinite abelian group so that A is a p-group for some p. As
(3.5)Lemma we construct H = H(F, A) which contains F. If H' is finite, then
Cu(F) is infinite and hence it contains infinite abelian subgroup centralising F'.
Then similar to last part of (Case 1), [(f),G] is a normal abelian subgroup of
G. Thus H' is infinite, abelian of prime exponent and contains F', therefore
H' is a ¢g-group.

It follows that we can choose A as an infinite Sylow g-subgroup of G not
containing f for NgegA? 4G and hence NgegA? =1. F remains finite as
before. Now [(a), F] is abelian for all but finitely many a € A. As (3.5)Lemma
we can begin the construction of H = H(F,A) with Ny = [(a), F] and go on
to consider G; = (F,a) so that H contains G;. As we have seen, H'isa
g-group. This implies that [{a), F] is an abelian g-group for all but finitely many
a € A. In particular, [{a),(f)] isa g-group. Since (a, f)/[{a),{f)] is g-group,
(a, f) is a g-group and is contained in the infinite g¢-group H'{a, f), which is

abelian for all infinite Sylow subgroups are abelian. Thus [e,f] =1 and Ca(f)
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contains all but finitely many elements of A and hence all of A. Thus (A4, f)

is a g-group, which contradicts the choice of A and f & A.



CHAPTER 4

LOCALLY SOUBLE GROUPS WITH
A METABELIAN LAW ON INFINITE SETS

Throughout this chapter, G denotes an infinite group. We deal with a
similiar type of problem as chapter 3 with weaker condition. By G € Qluz We
mean every four infinite sets X, X2, X3,X4 of G contain z; € X; (:=1,2,3,4)
such that [[z1,z2),[z3,24]] =1. Clearly G € A2 implies G € A2, but we don’t
know the other inclusion which may actually imply G € %2. Anyhow we prove
that if G € A} is locally soluble then G € A2,

Parts of proof mimic (3.2), (3.3)Theorem. We also depend on the properties
of FC-groups to prove main theorems. Subgroups of this rather special type will
play an important role in this chapter. These subgroups were introduced by B.H.
Neumann [NE,] and hence we use the term N-group ( See [TO]).

An N-group G of cardinality X (infinite) is an FC-group generated by

elements z;,yi, i € I, where |I| =N and the generators satisfy the conditions
[ziazj] = [yl'ayj] = [mia y]] =1 ifi # j$ [xl'a yi] =2z ?é 1.

These relations are not to be understood to form a system of defining relations of
G, there will in general be further relations, not consequences of these relation.
But they must not imply z; =1 for any :. In particular, if all z; are chosen
distinct then such an N-group is called an N;-group.

The following properties of an N-group G are readily verified from the
definition. The subgroups Z; = (z;,y;) are normal in G and they jointly

generate G. The centralizer C(Z;) is generated by all the subgroups Z; with

36
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j #1i together with the centre of Zi, and the centre Z of G is generateu Ly
the centre of all Z;.

We shall show that any FC-group G contains an N-group if G/Z(G)
is infinite, thus obtaining the main results by considering these groups in more

detail. To do this, we quote the following two well known Theorems.

(4.1)Theorem (Neumann (NE;]). If G is an FC-group then G' is periodic

and hence the elements of finite order form a subgroup of G containing G'.

(4.2) Theorem (Cernikov [CE]). A group G isa finitely generated FC-group if
and only if it is isomorphic to a subgroup of the direct product of a finite group

and a free abelian group of finite rank.

(4.3)Lemma. Let U be a subgroup of finite index in an FC-group G.
(1) If |{U/Z(U)| is finite, then |G/Z(G)| is finite
(2) If U' is finite, then G' is finite

Proof. There is a finitely generated normal subgroup F of G such that
FU =G.
Since |G/Cg(F)| is finite and |G : Z(U)| is finite, we have |G:Cg(F)NZ(U)|
is finite, but Cg(F)N Z(U) centralizes FU = G and so G/Z(G) is finite
In (2), we have G' < U'(FNG'). But FnN G' is contained in the periodic
subgroup of F by (4.1)Theorem and so is contained in a finite subgroup of F

by (4.2)Theorem. Therefore G' is finite. ®

(4.4)Theorem. Let G be an FC-group.
(1) If |G/Z(G)| is infinite, then G contains an infinite N-subgroup

(2) If G' is infinite then G contains an infinite N;-group
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Proof. We define the generators in, yn (n = 1,2,3,...) induc:
tively. Suppose that we have defined z;,y1,... ,Zn-1,Yn—1 and let C =
CG(Z1,Y15+++ »Tn=-1,Yn-1) so that |G : C| is finite. By (4.3)Lemma, C/Z(C)
is infinite and in part (2), C' is infinite.

Therefore C contains elements Zn,yn such that [z,,yn]# 1, and part (2), we

can choose Tp,yn SO that [zn,ya] € {1,21,... ) Zn—1} 'y

Same results in chapter 3 hold for ‘21% in place of A%. Proofs require no change.

Theses are listed below.

(4.5)Lemma. G € A} is metabelian if
(1) G has the infinite centre
(2) G isan FC-group

(3) G is residually finite
Proof. See (3.1)Lemma.

(4.6)Lemma. G € %} is metabelian if C(G') has G-invariant infinite abelian

subgroup.

Proof. Let C be a such subgroup of G and a,b,c,d in G. Consider
four sets aC,bC,cC,dC. By G € %2, thereexist z; € C for i=1,2,3,4 such

that [[az1,bz2], [c23,dz4]] = 1. This implies (la,8],[c,d]] = 1. Hence G € %*. &
(4.7)Corollary. G is metabelian if Z(G') is infinite.

(4.8)Lemma. If G € ¥}, then [G',[G,N]]=1 for any infinite normal abelian

subgroup N of G.

Proof. For any a,b,c in G, consider sets Na,Nb,Nc,N andlet §=

S(a,b,c) C N be such that for any s € S there exist n; € N (i =1,2,3) with
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([n1a,n2b), [nsc, s]] = 1, so that (la, bln, [, s]) = ([a, B, [c, 8]l =11 for some n € N.
Clearly, N\S is finite, N = (S). Since [c,s182) = ¢, s2]le, $1]%% = ¢, 51][c, 2]
and 1 = [c,81817] = [c,817][c, 1] for all 51,82 € S, la,b] commutes with

[e,n] for all n € N. Hence [la,b],[c, N]] =1, as desired.

(4.9)Corollary. If G € %} and [G,N] is infinite for some infinite normal

abelian subgroup N of G, then G € %%
Proof. Since [G,N] < G' and [G,N] < Z(G'), G € A2 by (4.7)Corollary.

(4.10)Theorem. If G & Ql% is a finitely generated soluble infinite group, then

G is metabelian.

Proof. We prove by induction on the solubility length of G. We consider

two cases;

(Case 1) We prove the result when G has an infinite abelian normal sub-
group N.

By the previous Lemma, we may assume [N,G] is finite. Let D = Cg[N,G).
Clearly [N,D,D] <[[N,G],D] =1, hence [D',N] =1 by the Three Subgroups

Lemma (See [RO;3)). Therefore, D and G are residually finite, so desired.

(Case 2) When G has no infinite abelian normal subgroup.

By induction hypothesis, G" is finite abelian and hence G' isan FC-
group. Since the centralizer H of G" in G has finite index, it is enough to
show H € %2 for being residually finite-by-finite is equivalent to residually finite.
Replacing G by H, we may assume [G,G"] = 1. Since G is finitely generated,

choose {t1,...,ta} as a set of generators of G/G'.
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Let t beany t; and T be the subgroup generated by (G',{] and G".
First we show T = [G',(t)] G" 4G and each element of T is of the form
[a,t]g" for some a € G', ¢" € G". The following can be easily checked by using
commutator’s identities [zy, 2] = [z,2]Y[y,z] and [z,yz] = [z,z][z,y]* for any

group elements z,y, 2.

(1) [a,][b,t] = [ab,t]g" for some ¢" € G", depending on choice of a,b € G'
(2) [a,8]7! € [a~},t)G" for [a,t][a™",t] € G" from (1)

(3) [a,t?] = [a,t][b,t] = [ab,t]g" for some g¢" € G", b= a'

(4) [a,tt~!] =1 implies [a,t™!] = [b,#]"! where b= at”’
(5) [a,t][t,b] = [t,ba™?]® = [ba=",t]'¢g" for some g¢" € G"
(6) [a,t][t,b] = [t,b][a,t] mod G

(7) [a,t%) = [a,t[t,g] ] = [a,t]g" for some ¢" € G"

where a,b€ G', g € G. (1)-(6) tell us the typical form of elements of T and (7)
implies T<G. If T; =[G',t;]G" is finite for all i, then [G',G]<ThT;-- T
Hence G is finite-by-nilpotent and hence nilpotent-by-finite. (See Theorem 4.25
[RO,]). Therefore G is residually finite ( Sce P. Hall [PH]) and hence G € %2.

Now we may assume T = [G',t]G" is infinite. By (Case 1), T is non-
abelian and has the finite centre. Recall T < G' is an FC-group and G" is
central. By (4.4)Lemma, T has an N-group generated by z;,yi (¢ € I) subject

to [ wil #1, but [oi,95] = [0, 5] = [yiny;] =1 forall i #j. Let

zi = [ai,t]lg!  y; = [bj,tf]
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for some a;,bj € G', gi', f} € G". Then clearly for each @ € I,

[zi,yi] #1 implies [[ai,t], [bir t]] # 15
[zi,y;] =1 implies [[ai,t], [8;,t]] =1 and etc.
Let i € I and I be the disjoint union of {io}, Ir and J; with
|I] = |J1] = oo. Set
X ={(l,'ob,'1 |i1 EIl} X2={ta,-1 |21 GII}
X3={bl'oaj1 IJl EJ]} X4={tbj1 |.71 EJI}'
Note that a’s (b}s) are not necessarily distinct, but G" is finite, so X; is infinite.
The set of commutators of elements of X and X», denoted by [X, X,], consists
of [ai,biy,tai] = (@i, t][biy, t]g", and [X3,X4] consists of [bi,, t)laj, , t1f", for
some ¢", f" € G", depending choice of elements of X;. But
[[a,-o,t][b,-‘,t]g", [bioit][a.int]f"] = [[aioat][bint]v [bio’t][a’jut]]
= [[aioat][biut]'; [bioat]]g' for some g’ €G

= [[aio’t]a [bio,t]]g for some g € G

Therefore {[z1,22),[z3,2z4]] #1 forall z; € X;, contradicting to G € A;. @
(4.11)Theorem. If G € A? is an infinite periodic soluble group then G € A2.

Proof. We use induction on the solubility length of G. We may assume

G' is metabelian. Also G' is infinite for otherwise G is an FC-group.

(Case 1) We prove the result when G has an infinite normal abelian subgroup.
Suppose G is a counter example, then there exists 2 finite subgroup F ¢ 2%

Hence we can take G = FA where A is infinite abelian normal in G. Suppose
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A has a divisible subgroup and hence a divisible p-subgroup H. Since H is
normalin G, [G',[G,H]] =1 by (4.8)Lemma. If [G,H] is infinite then G € 4%

If [G,H] is finite then [g, H] is finite for all g € G. Now for each g € G,
¢ induces a homomorphism of H by h+— [g,H]. I [g,H] is finite, then
[g.H] =1 and hence [G,H]=1. Sodone by (4.5)Lemma when [G, H] is finite.
Therefore we may assume A has no divisible subgroup.

If A has finite p-components of A for infinitely many primes p, then the
subgroup B generated by infinitely many finite p-components of A for prime p
which does not divide the order of F is normal in G. So we may take G = BF
as a counter example with BN F = 1. Since B is infinite, G/B € A2 and
hence BF/B= F/BNF = F € %?, contradicting to the choice of F.

It follows that A is an infinite p-group and reduced. Hence A has an
infinite basic subgroup. (See [FU]) We may assume A is an elementary abelian

p-group, therefore A is residually finite and hence G. So the result follows.

(Case 2). We prove the result of the other case.

We may assume G has no infinite normal abelian subgroup and G" is
finite. We may take G = AF where F ¢ %? is finite, A € A2, A' is finite
abelian normal and G' < A.

Let D = Ca(A') then G/D is finiteand DaG for D = AN Cg(A').

For g € G, let N(g) be the subgroup generated by [g, D]A', then clearly
[gvD]h(A')h = [gth]Al = (g, D] [g,h],D]A' = [g,D]A'

forall h € G and hence N(g)<G. Since A’ isfinite N(g) C A isan FC-group.

For dy,d; in D, we have

lg,d1d2] = g, d2][g, d1]P* = [9,d2]lg, d1]a’
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for some o € A'. Hence [g,di]lg,d2] € [9,d1dz]A'. Since G is periodic
[g.di]”" = l9.d1]¢ € [g,d]A' for some d € D and ¢ > 1. Therefore every
clement of N(g) is of the form [g,d]a’ for some deD and d €A

We choose a transversal {g1,... ,gn} of D in G then [G,D]A' =
(91,D]...[gm,D]A". I N(g) is finite for all g € G then [G,D] and {gP} are
finite for all g € G, where {gP} denotes the conjugate class of ¢ in D. Hence
G is an FC-group.

Therefore, we may assume N(g) is infinite for a fixed element g € G. By
(Case 1), the centre Z of N(g) is finite. Hence an FC-group N(g) has an
infinite N-subgroup generated by i, ¥i (i € I) for an infinite I, subject to
(i, yi] # 1, [ziy]= [zirz;] = vyl =1 if i#J. Set

z; =g, cilal  vi=lgdilbi
for ¢;,d; € D and af,b, € A'. This setting is possible for every element of N (9)
is of this type.

Recall A' is finite abelian normal, D < 4, [D, Al = 1 and hence
[ [g,D), A’} = 1. Choose i € I and let I be the disjoint union of I, J
and {1} where |Ij|=|Ji|=oco. Let

X, =X;={gd|de D}

Xo = {ci,diy | 11 € I}

X4 = {di,d;, | j1 € N1}
then, [X;,X.] consists of [gd,c;odi,] = [9,di,][9, cio]a’ for some a' € A', and
[X3, X4] consists of [gd,diyd;,] = [9,dj, )9, dio]b' for some ' € A'. Hence for
z; € Xi. {[#1, 2}, [z3,z4]) = [[9, i), [9, i, ]})¥ for some g € G, which is not equal

to 1, contradicting to G € U3. ’'y
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(4.12)Theorem. If G € A} is locally soluble then G is metabelian.

Proof. Since G/K € %? for any infinite normal subgroup K, every G-
invariant proper subgroup of G" is finite. If G" is minimal normal in G, then
G" is abelian (See Theorem 5.5.1 [RO3]). Therefore G is soluble and G € A2
by the previous Theorem. Therefore we may assume 1# AaG and A S G".
If C=Cgn(A)SG", then C isfinite, |G":C| and G" are finite and hence
G is soluble.

It follows that every proper G-invariant subgroup of G" is contained in
Z(G"). Hence G"/Z(G") is minimal normal in G/Z(G") and hence abelian.

Therefore G € A2, &

(4.12)Theorem tells us it is possible to assume that G is simple for further

study of 2A3-groups as we have seen in (3.7)Reduction to Simplicity.



CHAPTER 5

EXTENSIONS OF A PROBLEM OF PAUL ERDOS

ON QUASI-HAMILTONIAN GROUPS

In this chapter, G denotes an infinite group. A non-abelian group G is
said to be Hamiltonian if every subgroup is normal, and to be quasi- Hamiltonian

if any two subgroups permute as subgroups.

The structure of Hamiltonian groups is well known (See Dedekind and Baer
5.3.7 [RO;3)). Quasi-Hamiltonian groups have been studied by K. Iwasawa in [IW}],
(IW,]. Joining quasi-Hamiltonian groups with a variation of Erdos problem, P.
Longobardi, M. Maj, A.H. Rhemtulla and H. Smith [LMRS] have proved the

following, which extends the result of [CLRW].

(5.1)Theorem (LMRS). Suppose every infinite set of subgroups of G contains
a pair that permute. Then a finitely generated G is centre-by-finite, conversely

a finitely generated centre-by-finite group satisfies the hypothesis.

Above is not true in general and a counter example was provided in [CLRW]

which is based on a group constructed by Iwasawa [IW,] and Napolitani [NA].

o)

We are concerned here about finitely generated groups satisfying (5.2).

(5.2) any two infinte sets X, Y of subgroups of G contzin HeX, K€Y

such that HK = KH.

(5.3)Theorem. Any finitely generated group G is quasi-Hamiltonian if and

only if G satisfies (5.2).

Proof. Clearly it is enough to show (a){b) = (b}{a) forall a,b€ G.

45
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(5.2) is a stronger condition than that of (5.1)Theorem and hence G has a

torsion-free element z € Z(G).

(Case 1) Suppose a,b are elements of finite order.
Let ({a){b))?> be the set of elements of the form alrbf2alebl for € €
7.  Then this set is finite and hence we can choose 0 # m € Z such that

(z™) N ({(a){d))? =1. Let

By the hypothesis, (a)(b){z*™) = (b)(a)(z*¥™) for some k € Z, and
hence (a)(b) C (b){a)(z*™). Therefore, (a)(b) C (b)(a) and similiarly we have
(b){(a) C (a)(b)-

(Case 2) Suppose a,b are elements of infinite order.

Since G is centre-by-finite, there exists n such that a”, b* are central

in G. Set

X = { (a)’ (an+l)’ (02n+l)’.“}

Y ={ (b), ("), "), )

then, (a™+1)(b*"tY) = (b*"*!)(a™t!) C (b}{a) for some ¢ and s. For
all 4, j, a'bia'™b*™ C (b){a) and hence (a)(b) C (b)(a). Similiarly we liave
(b)(a) C (a)(b)-

(Case 3) Suppose the order of a is infinite and the order of b is finite.
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Choose 0 < n € Z such that a" € Z(G) and (a™) N (b) = 1. Set

X = { {a), (a™t1), (a®t1),...}

Y = { (8), (B)(a"), (B}{a®")---]

Then, X and Y are infinite. Hence (a'" 1) (b)(a*") = (b)(a’"){a'"*!)

for some s,t Therefore, (a)(b) = (b}{a), and the result follows. é

(5.4)Corollary. Any group G hwing an element of infinite order is quasi-

Hamiltonian if and only if G satisfies (5.2).

Proof. Let ¢ be an element of infinite order. Then a finitely generated
infinite group (z,a,bj 1is quasi-Hamiltonian for each choice of a,b. Hence
(a)(b) C (b){a). @

Suppose G is an infinite group satisfying (5.2). If G is not periodic, then
by (5.4)Corollary (a,b) = {a)(b) for each a,b€ G. It is shown in [LMRS] that
a periodic group satisfying the hypothesis (5.1)Theorem is locally finite. Hence

periodic groups satisfying (5.2) are locally finite. So we have the following;

(5.5)Corollary. Suppose G satisfies (5.2). The set of all elements of finite order

in G forms a characteristic subgroup

(5.3)Theorem is not true in general. Clearly a counter example must be locally
finite.

(5.6)Example. Let Ds be the dihedral group generated by a,b with relations
ot = b2 = 1. It is easy to see that (a?) = Dy = Z(Ds) and Ds is not

quasi-Hamiltonian; for example, (ab)(a?b) # (a*b){ab).
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Let be the element of order 2 in the quasi-cyclic 2-group C~, then

o=

N = ((a%,})) is normal in Dg @ Cye. Let G be the quotient of Dg @ Ca~ by
N. Let X, Y be two infinite sets of subgroups of G. Since any subgroup of
Cy~ is considered normal in Dg @ C2, We may assurne no subgroups in X, Y

is a subgroup of Cz= /N (this notation makes sense since a? is identified with

).

v

Therefore, we can choose H € X, K € Y suchthat z; +y € H, T2+ y2 €
K with |y1]| > 4, |y2| > 4 for z; € Ds,yi € C2=. Then 4 +y? € H implies a? €
H. Similiarly a? € K. Now pick any nontrivial elements dy+c € H, dy+c2 € K

with d; 74 1in Dg, then

(dy + ¢1)(d2 + ¢2) = dydz + ¢y

= dad, [dl,dz] +cc E KH

This implies HK ¢ KH. Similiarly AH C HK. On the other hand, G
contains a subgroup isomorphic to Dg. Hence G is not quasi-Hamiltonian but

‘oes satisfy (5.2).
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