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e e (ABSTRACT'Q *“ IR ‘i' ‘
Carbon1c Anhydrase (C A ) is a 'zine- contatq1ng ,*// L
ﬁ§~“enzyme, w1de1y d1str1buted 1n nature, whose phy51olog1ca1
role. 1s to acce]erate th% rever51b]e hydrat1on of. carbon

T SNy

*) C A also cataly;es“h;°'

:d1ox1de (c02‘+_H20 = HCO3 PELIN
' f}other reaCt1ons such as hydrat1on of a]dehydes and .
’hydro]ys1s of esters Accordlng to X ray d1ffract10n
.stud1es, 1ts actlve s1te conta1ns a z1nc ion coord1nated; o
- at the base of a deep c]eft 1n the prote1n, to three | |
"1‘h1st1d1ne 1m1dazo1e res1dues and a water mo]ecu]e or
’57hydrox1de 1on Severa] mechan15ms of actxon have been'-
"f;proposed for C A y and some mode]s stud1ed to verwfy thev”
Ff¥]1ke11hood of some of these mechan1sms None of these
hihhmode1s, however c]ose]y resemb]es the act1ve s1te of the}i}ﬁ:?
f ! enzyme RITREE S o R e

In th1s ork severa] tr1dentate ]1gands [g‘ Z

,\_,

29(a c)] conta1n1ng 1m1dazo1e m01et1es have ‘been SyntheQ;;a*t;’

Vf s1zed and the1r phy51cochem1ca1 propert1es stud1ed and

h:? compared to those of the enzyme First of a]], the'
tuf};mode1s must be shown to b1nd metals \/therefore fhe1r
“tametal b1nd1ng ab111ty has been stud1ed us1ng a potent1o—:{m5hw
':jmetr1c method The meta] b1nd1ng constants found are ;h'_hf.\;
cons1stent1y 3-4 pK un1ts lower than those of apo- B
ff@carbon1c anhydrase Segpnd, the mode of the meta] btnd-‘"
31ng has to be tr1dentate | In order to chqfk th1s,vnmr

'exper1ments of 11gand so]ut1ons w1th vary1ng Zn(II)



C

-concentrat1ons have been performed The sma]] 1lgands
.9 12 ex1st as 2: 1 or 1 1 meta] comp1exes the 1atter be1ng
f_favored at h1gh meta] ¢ ncentrat1ons De1eter10us 2 1 '

”A(L Mt L) b1nd1ng can be overcome by p]ac1ng 1arge a]ky]

V"J_groups at the 4,5- 1m1dazo1e pd%\tions However such sub~

_ st1tut1oni1n vhe trts 1m1dazole carb1no] ser1es appears to

”"rlead to fac11e dehydratlon to produce h1gh]y co]ored

\‘>7fffu1vene 11ke mater1als Such dehydrat1on can be overcome

: 3by remov1ng the carb1no1 OH group or methy1at1ug the f:“;'f'
- 1m1dazo]e nltrogen Hohever, the former subst:tut1on of

”310H by H produces an ext&eme]y eas11y a1r ox1dlzed methane,

"fand the 1atter N methy]at1on 1eads to rather poor metal

- binding ab”‘ty | LHJands 17 and 29(a c) avo1d these )

fi,prob]ems by 1nsert1ng a methylene un1t between the car-ffh“'*

wifb1n01 grOup and the 1m1dazo]e r1ng (17) or by subst1tut1ng

.-ﬁﬁfthe carb1no] group by a phosphorous (phosph1nes 29)

":"Phosph1ne 29c shows from the nmr study the format1on of “f

\;

: a symmetr1c, tr1dentate, 1 1 comp]ex w1th Zn «}rh.

Th1rd1y, 51nce the coord1nat1on number around the'fhf_-7'

B "~hfmeta1 shou1d be four to approx1mate the pseudotetrahedra]

f,;'arrangement 1n the act1ve s1te of C A the UV v1s1b]e

| 'ﬂxyispectra of the ]1gands u51ng Co(II) as a probe have beenuf\

_Trecorded 0n1y carb1no] 17 and phosph1ne 29c show the

f1ve coord1nate complexes,,theng“

e

Afab111ty to form four\an

iothers appear to form octahedra] comp]exes predom1nant1y
o

”"iﬂFourthly, s1nce the act1v1ty of the enzyme has been f'if o



| ﬂffllgand mode]s hf't“ffjivf;jhif‘:fi”?f}ff

“to determ1ne whether they have a t1tratab1e group W1th

.5~7“fSuch a pK R A~;*,~4*
e S

‘}aSSOCiated with‘the basic-fOrm With pK' ~‘7 the Z1nc'

| vcomp]exes of these 1\gands have been tltrated w1th basei_a

P

<

Fina11y, the more promws1ng 11gands have been:hf’

'checked for cata]yt1c act1v1ty u51ng react1ons wh1ch are:

‘known to be cata]yzed by the enzyme, such as PNPA i

vl

2ﬁ;29c show. soMe cata1yt1c act1v1ty towards co2 hydrat1on
:A]though encourag1ng, th1s cata]yt1c act1v1ty is S$a]]
:f{compared t° the enZyme,.suggest1ng that the creat1on of .
,4ffha simple meta] b1nd1ng cav1ty mlght not be enough to
;ﬁtftaccount for fu11 enzymat1c act1¥)ty,'and that some othen
'“:factors such as hydrogen bond1ng 1n the v1c1n1ty of thefﬁ;g’”

35,f'?meta1 m1ght have to be cons1dered 1n the des1gn of new

. . _\\ SR

;hydrolys1s and CH CHO and C02 hydrat1on ’ L1gands 17 andh_h:eF

S . e .
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1. INTRODUCTION.
S | »
A. __CARBONIC ANHYDRASE" B
y \ | | |
Carbonlc Anhydrase ~was f1rst isolated from

;190d
~in ]932 by Me]drum and Roughtonzand found to cata1yze
the revers1b1e hydratlon of carbon d1ox1de : A]though
the enzyme is present in most organ1sms, and is found
,‘1n many d1fferent t1ssues of p]ants and- an1mals, most

- of the present know]edge about its mo]ecu]ar propert1es

and mechan1sm 1s based on stud1es of the forms 1so1ab1e

le-

from human and bov1ne erythrocytes , the en;yme‘be1ng

‘ the maaor prote1n component of the red b]bod cell

", It 1s 1nvo]ved in a variety -

'7other than hemog]ob1n
”_of phys1o]og1ca1 funct1ons where 1ts spec1f1c cata]yt1c\
“role is to fac111tate the 1nterconvers1on of carbon
’Jd1ox1de and b1carbonate3.‘
— The human erythrocyte enzyme is compr1sed of three_
d1st1nct 1sozymes des1gnated A, B, and C 1n re]at1ve'
-abundance 5, 83, and 12% respect1ve1y }.
A]] three var1ants cons1st of about 260 am1no-«uf
ac1ds 1n a s1ng1e po]ypeptlde cha1n,_conta1n‘one_Zjnot:
:1on per molecu]e, and have mo]ecu]ar we1ghts‘negrf300o0i
{‘Forms A and- B are 1nd15t1ngulshaﬁ]e_1n'terms,ofhtheir‘“'
specific activities tonards'the'hydratton"of €0, and -
aminoaCid comoositions]ﬂ, However, there 1s.omly a 59%:

homo1ogy between the amino acwd sequences of human;:



- carbonic anhydrases B and c, and the human‘C isozyme“
has a max1ma1 turnover number with respect to the

hydrat1on of 002 wh1ch is f1ve t1mes as 1arge as that

le

of the human B Bov1ne erythrocyte carbon1c anhydrase 1

¥

}cons1sts of tWO 1sozymes A and B in re]at1ve abundance

20 and 80% respect1ve1y, that. appear to have 1dent1ca1

am1noac1d composxtlons and are equa]]y h]ghly active '7§%=‘

]e. 'It has been suggested3

' towards common substrates
‘that the 1ow act1v1ty form. arxses from a’ gene dup11ca-'
tion that took p]ace ear]y 1n mamma11an evo]utfon,.
perhaps }00 150, m1111on years ago |

4

. ,X?RAY STRUCTURE

{ The comp]ete structures of the human i ozymes B
land C have been deduced from h1gh reso]ut1on X- ray
,stud1es on enzyme crysta]s obta1ned from 50 mM.’ Tr1ss“i
: su]fate buffer so]ut1ons, pH 8 54.3 The tert1ary o
structures of the two 1sozymes are very s1m11ar The;:
1 enzymes are e111pso1ds of d1mens1ons 41 X 42 X. 55 AI
and the 21nc 1on 1s near the center of the mo]ecu]e
at the. bottom of a 12 A deep con1ca1 cav1ty, where it :;j -
1s bound to the prote1n through the nttrogen atoms of‘i; i
three h1st1d1ne 1m1dazo]e 11gands (H1s 94 96; and |

119) Of these three ]1gandss\h1st1d1ne 94 d1ffers from

the other two 1n that gt 1s 0 4 A further from the z1nc



H ion (TABLE I)‘.

TABLE 1
‘Zinc-ligands in HCAC®

Ligand  Zinc-ligand distance (A)
T v
His 947(3" N) Y |
His 96 (3'N) 2.0 .
THiS IO QU N) LT 2.0
oMot o e
e S _
- ;
SN
\ .

E1ther a water mo]ecu]e or a hydrox1de ion occup1es'
a fourth pos1tlon around the z1nc, thus complet1ng a,-
‘somewhat d1storted tetrahedra1 coord1nat1on in Wthh

,zthe greatest dev1at1on from the regu]ar tetrahedra]

ang]es 1s about 20°. The water mo]ecu]e d1rect1y 11gated .7,5

to- the meta] 1on is- hydrogen bonded to threon1ne 199

y'?wh1ch 1n turn is hydrogen bonded to the bur1ed g]utam1c
;iiac1d 106 .. The fact that Thr 199 forms hydrogen bonds ‘
'W1th most 1nh1b1tors suggests that 1t plays an act1ve *

fro]e 1n cata]ys1s Apart from. the h1st1d1ne 11gands,'

'v‘other res1dues in the act1ve s1te that are common “to both:
*>‘1sozymes B and C5b
i*bGln 92 and those 1nvo])ed 1n a hydrogen bonded sequence f.

 His 19 6l "7 - His® 107 - Tyr 194 - Ser 29 - Trp 209 =

b’(F1gs 1 and 2)

are Thr 199 Pro 201 Pro 202 Hxs 64 f;b:eg':
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2;,"METAu LON SPECIFTCTTYi

The z1nc 1on in carbonvc anhydrase canrbe removed
at low pH. . Hh11e the apoenzyme. undergoes no gross 3"
structural changes re]at1ve to the holoenzyme,‘1t 1s'
B cata]yt1ca11y 1nactive The apoenzyme can be recon-f
st1tuted w1th other d1va1ent metal jons and these occupy

the zinc s1te, 51gn1f1cant restorat1on oF cata]yt1c

act1v1ty is brought about only by Zn(II)‘andzg .

!d.éa ,3506II) cAhBoNICZANHvoRASE‘(co(ii):c,n;)"
The CO(II) C. A has a redd]sh b]ue cohor w1th a -
max1ma] molar absorpt1v1ty of 300 400 M e

Its absorptﬂon spectrum d1sp1ays a. band structure v

however, whwch dOes not correspond to that of any

- model Co(II) comp]exes At pH 9 there are four w1de1y

sp11t max1ma at 520 5 6]5, and 645 nm 1nd1cat1ve

f:of a dlstorted coord1nat1on geometry around the meta]

correspond1ng ‘to- a four and/or f1ve coord1nate llgand

f1e1d]a ]b ]e 9 7b ]0 There appears to be a change 1n E

geometry surround1ng the Co(II) 1on as the pH s Towered ;i{jif*if?*

from 9 to 6 the w1de1y sp]1t spectrum of the Co(II)
7’: )
. u-enzyme 1s present on]y under alka)1ne cond1t10ns

The change 1n absorpt1v1ty at 640 nm has been

8a; 8b 8c‘

observed to fo]]ow e t1trat1on curve WTth a



_ singTeipK” aroUnd T'when measurements:are performed in
buffered solut1ons or in the presence of salts to keep

| the 1on1c strength cq%stant The cata]ytlc act1v1ty
a'of both the nat1ve and cobaTt subst1tuted enzymes aTso-r

8d,8e, 12b

adepends on pH™ The pH dependences of both -

hthe Spectra and the cataTyt1c act1v1ty have aTways been:
‘.attr1buted to the same fonizing group]a 1c, 18134’

: However, it has been shown recent1y11 that 1n the

| ”rabsence of buffers and monovaTent an1ons the PH de- -*

"’;pendence of the eTectron1c spectra of Co(II) Subst1tutedt;;'s'

7C A 1s not as s1mp1e as expected for a swng]e d1sso~

T 11

‘c1at1ng group It has been suggested therefore, that

- there 1s no reason to ascr1be aTT the pH dependent

.f;propertles of the enzyme to onTy one d1ssoc1at1ng group
xffone group cou]d be respon51b1e for some propert1es -
:b*and some other for other pr0pert1es, 1n such a way that

a more\compTex explanation shoqu be sought :,Zf‘;i_':

~ .m:d“hthATALYTIC”PRQPERTIEéfOF.CARBONI¢7ANHYDRASE.f )

The only known phys1oTog1caT funct1on for C A

“'iis the cataTys1s of the 1nterconvers1on of carbon d1ox1de'*

ff*and b1carbonate]e

frhrange of rt%ct1ons in wh1ch nucle%ph111c attack Of

hi}oxygen at an eTectrOph1T1c center occurs]g{’ These 1n—fgn

]2, aTdeh,ydes]3

15

sfc]ude the hydrat1on of carbon d1ox1de

frpyruv1c ac1d]4 and aTkyT pyruvate esters

In VTtro, the enzyme CataTyZQS a {e;i S

Ty the ;fdf:fwft"“‘"ii



hydro]y31s of some carboxy]1c, carbon1c, sulfon1c and

16

\ phosphor1c esmers ., and the hydroTys1s of carbo—

benzoxy and su]fonyl ch10r1des]6c,17, of 1 f]uoro 2,4-

18 19

d1n1trobenzene and of phenyl N methy]acet1m1date

g The enzyme cata]yzed react1ons can be formal]y
‘\anEWyzed 1n terms of the e]ementary c1a551ca1 M1chae1ws-
Menten scheme, accordlng to wh1ch the ve]oc1ty of
enzymat1c cata1y51s, veni is g1ven by kcat[E] /
(1+KM/[S]), where k ‘f1s the turnover number, [E]
~ the 1n1t1a1 concentrat1on of enzyme ‘Kh is. the
M1éhae]1s constant, and [S] is the concentrat1on of HJ;

‘1substrate

Some se]ected values of the M1chae]1s parameters

e

for CO2 and aceta]dehyde hydratlon, and PNPA hydro]ys1s {
.are. glven in TABLE II | - _" s H
o BOVCA and HCAO are k1net1ca1]y sim11ar 1n ‘some
respects and have 51gm01da1 pH v&; kcat prof11es for
CO2 hydrat1on over the pH range between 6 and 9,‘cons1s-ha7
tent W1th the t1trat1on of a group w1th pK around .

neutra11ty The s1tuat1on is"a 11tt1e more complex forhf&ﬁ

’i S .

HCAB where the state of 1on1zat1on of add1t1ona1

groups appears to 1nf1uence the rate o



| e TABLE I
Mlchae11s parameters for the C A. -cata]yzed hydrat1on"

) of c02 “and CH3CH0 and hydro]ySIS of PNPA1e ]9

}v;,;’Kn (m) -

CO, . HCAC 05 6.2 x10° .4
. HeAB 05 s x0T g

S BOVEA 675 4z x 10 s §

CCHyCHO BOVCA  7.20 goo . 550_;

1 20
2. 2.5

0 f'\‘?f;s'~ 13
0 BEREEES B

. PNPAC  HCAC
. Hems
~ BOVCA

- BOVCA

0O N ® .o
O — & oo
o B ot o~

;jB,l'apnoeossofnebnANrSMsfFoRlCARBONic;ANHYDRAsE-"'

i A‘Var1ety of deta1]ed ;hem1ca1 mechan1sms for‘fhee}'“'
C. A -cata]yzed hydrat1on of C02 has been suggested ?fv
‘fWh1ch appear to be compat1b1e w1th most, 1f not a]] of
| the ava11ab1e phy51cochem1calv1nf0rmat1on] .».. e - |
hh The act1v1ty of C A around neutra] pH 1svgoverned |
':hy the 1on1zatlon of at ]east one group w1th pK nearieeh
é7A The enzyme cata]yzed C02 HC03' 1nterconvers1on at'

' around neutra] pH can be schemat1zed as 1n eqUatlon ]

H20

_”f E + CO2 ;:::3 EH o+ HCO3 _;};;hﬁﬁffEV?{ ffﬂijkj)ff‘f}“v*;:'.



':}neutra]1zat1on react1ons in aqueous so]ut1on§

» n*to be 1nvoked

) ;\2 10
'Th1s protonated enzyme (EH ) must undergo 1onazat1on o

A

:to regenerate the actlve form of the enzyme (E) before
- the turnover cycle is complete (equat1on 2)
St EH® — E+H - - - (2)

-

Th1s transformat1on must occur at a rate wh1ch 1s,‘t
'.greater than,‘or equa] to, the rate of turnover

' 5 coc™] ~

g(kcat

= 5y 10 , TABLE ). ‘Then kg must be
> 5 x 10

5 S1nce the 1nterconvers1on of the aC1d1c
' ]and ba51c forms of the enzyme 1nvolves an . 1on1zat1on ///

~’.fof apparent pK ~ 7y then.v

- ‘{;fk = ke/Ke = 5.x-105_$ec'i/10 M = 5 X 10]2 M ]bsecfl _ 1,(3) o
ThiE’vAIueﬁfPr'k'~éxceéd$'fh§5diffusﬁon;limited:comi
bihation rates-observed for sma11 mo]ecu]e acid- base

21 bvhaejah:'

:ffactor of LOO In order to exp1a1n th1s paradox,

pu

prote1n— and/or buffer mEd1ated proton transfer needs
22 ' ‘ :

' ﬁ: Four d1st1nct a]ternat1ves have been suggested23 _.t227'~-5

u.;for the 1on1zab1e group The proposed mechan1sms are

.';Jd1v1ded 1nto categorles accord1ng to th1s group

”7'(]) a metal coord1nated water mo]ecu]e 1on121ng to OH

afe(mechan1sms w1 Hﬁ w4,.and W5)’.(2) a t)trathb1e



R .ﬂco-:,wv
r'imidaonefgroup aSsoctated nith‘the‘meta]iion-via'oné
or more water mo]ecu]es (mechan1sms IH] IH2); (3)a
~neutra] 1m1dazole group lon1z1ng t meta]'Cbondinated
‘1m1dazolate an1on (mechanism Il)‘ (4) the part1a1]y
.bur1ed carboxy] group “from G1u 106, connected to a

"metal coord1nated water mo]ecu]e V1a a hydrogen bonq

’_system Glu 106 -- Thr 199 - H,0- ano (mechan1sm G])

[For a- comp]ete d1scuss1on on the va11d1ty of each_.f

one of these mechan1sms see refs ]d le, 1f, and ]h

7*The charge in. the meta1 ion has been om1tted for

-s1mp11c1ty ]

O SCHEME T | o
ru-Mechanism-wT; Nuc]eoph111c attack by Zn OH]a ]3 24

Pl LU

11



. SCHEME IT

~ Mechanism W2. General base attack by H,0 assisted by

. %
. ~J

‘ ’  o :  . \‘ . - .
' o —ln- OH2 HCO
| 7/

jsmmMEin”

':Mechan1sm N3 Nuc]eoph1]1c attack by Zn OH w1th con-l

-.com1tant proton transfer26

12

In mechanlsms w1 w2,_and w3 CO2 never b1nds to??lf{ ;jff;?if

i-on and the h1st1d1ne 11gands p]ay the pass1ve role offﬂfﬁ*f?”ﬁ5"ﬁ*

 i;ﬁanChor1ng the meta] The cruc1a] ro]e of Zn in thesei9ifﬁf?ii{€} 



L)

mechanisms is to acidify its ligated waterrmoTecule.
Th1s water mo]ecu]e is converted 1nto a zinc- bound
hydrox1de ion, wh1ch is nuc]eoph111c enough to attack
a 002 molecule e1ther d1rect]y (Nl N3)‘or through a

genera] base mechan1sm (Ww2). Mechan1sm W3 was

: or1glna11y proposed in an attempt to avoid any potentla]

d1ff1cu1t1es assoc1ated w1th proton transfer between

the enzyme and so]vent dur1ng the cata]ytlc cycle It

, can be- demonstrated]2 that th1s mechan1sm 1s 1ncom—>,

'patlble w1th the h1gh tprnover number. unless the PKy

of carbon1c acxd in the act1ve s1te 1s 1ncreased by 2

Un1t5
‘ ‘ &‘
tMechan1sm W4. Generalitbase attack by Zn-OH assisted by
H\S 6427“~._'7'{ | o '
_ NP
N, o9 b N
700 oC
‘“"Zn ;S,ﬂg_ . ;F:ib
I /o(' -
. “_'dN/'N-H |
-~In ? + I’P | —
H , =

13.



| o \ 14

The Zn-0H species is ~]0 t1mes ]ess basic than frée OH~
It is reasonable to expect that it is somewhat less

‘fnucleoph111c too. Mechan1sm W4 was proposed. to over-

come th1s d1ff1cu1ty the - 1nc1p1ent zinc ox1de wou]d be

a -better: nuclquh11e than the z1nc hydroxo comp]ex

- SCHEME v+ = S ' | _ - | s;
Mechanism W5. ’Nucieophflic attack,by'Zh-OH assfste\i

hydrogen bonding with Thr 199 ang 61u 10620,

T08 -—<e /Thr 19 =

N : l
- -.'Znuo- Oe
. . /

| | | | \ \\
sTh1s is real]y a more e1aborate wl mechan1sm The dis-,s_"‘~‘v~“}
'tlngulsh1ng features of thls one are twofold F1rst,
act1va¢10n of the nuc]eoph1le through hydrogen bond1ng

with Thr 199 and GIu 106 The xeray structures;of the



nat1ve enzyme and the enzyme- 1nh1b1tor comp]exes4 S

1nd1cate that Thr 199 plays a role in stabilizing

: coord1nat1on of ligands to the fourth ]1gand s1te through

"vhydrogen bond1ng between the Thr 199 hydroxyl group and ,

the ligand.’ It is suggested here.that Thr ]99vp1ays a
‘similar'role>dnring the . cata1ytic t;ansformatfonzo‘ |
Second 1nteract1on 1n a. f1ve coord1nate spec1es
between the Zn and an oxygen atom of C02, po)ar1zes~w
the 0=C= 0 group (Zn+8 g 0) and activates it to nucleo-
ph111c attack Th]S f1ve coord1nat1on has precedent b
in the HCAB- 1m1dazole comp]exzoc Im1dazo]e, the only.
vxnown compet1t1ve inhibitor for-the hydrat1on of .
C02 by C.A., appears to occupy a d1stant fifth coor-
dwnatlon s1te on the In 1on, its, nearest nttrogen atom.
-be1ng 2.7. A from the Zn. It sits.in a hydrophob1cz
‘pocket wh1ch is be11eved to be occup1ed by CO2 in thef‘

‘,catalyt1c reactwn27b

15
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© SCHEME VI
Mechahism G1 Genera] base attack by In- OH2 asswsted
by Glu 106 through Thr 19920,
06 "‘<<e Thr 199 s } he 1 199
106 Y <— 106 s
‘H=0 , - O Hee 0 o
G: - , ' i |
H - | M
Y A i : : : N
A=in-0=H E “Zn- - 0— H, .
/c_ . . \‘ {
: '__: _ » o o . C ‘
| : Q:/C 0 o : » ,:90, 0_‘ .
e _;g(g  he19s - ‘4» Gl -<f Thr 199
106 N 7 : - 106 FALEER L
M- H—0 ; . ? |
o g o H
N | . : AN ,
—In:-:0—H o C o o =Ine - OHy
s ' R - -\ -
Although very similar to W5 with the difference that
7he?e Glu 106 atts as the titrab]e Eatalytic gfoup
h1s mechan1sm suffers from the prob1em that an excep—
t1ona]1y hlgh pK must be ass1gned to G]u 106 desp1te'
1ts close contact with the pos1t1ve1y charged meta]

icn.f

. . : ’
. .



SCHEME VII

_ Mechanism I1. General base attafk byjHéO aésiSted‘

by.His'1T9 imidazo1ate anion{mofetyzg;
o c4° L g 8
OH, Zh N : OH, ¢ ®
His 96 2.2 B P I N S 2 A
i \ _— |_In-
His 94 .. . : AN
‘ éNngﬁ\h S N -
His 119 His 119
o [ o J
\QHZ- | o \QHZ
Ao = JE o ot O
N N ek
Hi's 119 His 119

This mechahiSm was originally based on the downfield

_shiftaof'the c-2 protdh of'HiS:94:as pH was, inCreaSed,

fo110w1ng a t1trat1on curve W1th an assoc1ated pK ~

‘\Catalys1s is then effected by a- strong general base:~

Juxtaposed to a powerfu] Lew1s ac1d

7



'SCHEME VIII |
Me;hanis%\IHI.: 4enera1 base attéck by H,0 assisted by

'_‘Hiﬁ 64_imid§zole moiety]d._:,A-

HZO

18



SCHEME IX.- }
22 g , .
Mechanism IH2. General base attack by ZIn- OHZ ass1sted by
. His 64. 1m1dazole mo1ety29. -
~ ‘/H' '- ﬂj o | " F.
- —_—
e O\fpg =
,o/r
S
Sl
_ﬁi_
| ’
WO 0K
B T ' ' S

Mechan1sms IH] and IH2 do not requ1re any "except1ona1"“~
pK for the t1trab1e group s1nce the 1m1dazo11um m01ety.
‘ of a h1st1d1ne has a pK of around 7 The ma1n argu--
hv',ment agalnst these mechan1sms 1s that a]ky]at1on of ‘

3q on1y br1ngs about a 70%

H1s 64 w1th bromopyruvate
decrease 1n the act1v1ty of HCA f Th1s 1nd1cates that

the mod1f1ed 1m1dazo]e r1ng must be able to rotate :



20
> |
_free]y for: the non a]ky]ated n1trogen to- be pos1t1oned
happropr1ate1y, or that the carboxy]ate group of the -
mod1fy1ng m01ety assumes the ro]e.of general base 1f

x_‘the act1ve 51te h1st1d1ne res1due a]one governs the

cata]yt1c behav1or around neutra] pH

&

C. PREVIOUS MODELS‘FORhCARBONIC ANHYDRASE

dAccord?ng to WOO]]ey3] a “mddé] is understood as
- a s1mp1e system w1th a. property or propert1es re]at1ng
1t to the bwo1og1ca] system under cons1derat1on | -
Idea]]y a range of mode] compounds, structura]ly

"”¢controlled to reproduce in vary1ng degrees the property

'1n quest1on, prOV1des a quant1tat1ve scale in wh1ch

e _the b1o]og1ca1 system m1ght fa]] 1f 1t contlnues to

‘pdev1ate from th1s scale then 1t has st1]1 not been .”5 o
itu]ly understood A model System may alternat1ve1y be\‘h
gdes1gned to reproduce one: of the b1oToglca] propert1es

of the system, for 1nstance to test the hypothes1s that
‘a suffdelent cond1t1on for the act1on of an enzyme 1s a L
'Cpart1cu1ar con3unct1on of react1ng atoms or, groups, 1f o

, ﬁSUCCGSSfU] th1s does not conf1rm that the blolog1ca1

'"}vsystem acts in the same way as the mode] but it does

ht”show that the act1on of the s1mp1e system 1s 1n pr1nc1p]eg7;[‘
'j*ava1]ab1e for nature to make use of 1n the comp]ex one Rk ;t:fgf""
Several mode]s have been stud1ed 1n order to test )

dt?};for some of the pr0posed mechan1sms of act1on of C A R ehbf‘fs{

N



?,hydro]ys1s of PNPA k.

N |
espec1a11y that of “the- zinc bound hydrox1de

32

In 1965 E. Bres]ow stud1ed the CO2 hydratlon 1n

vthe presence of some sma]] pept1de Cu(II) comp]exes
“Cu- glycy]g]yc1ne (CuGG) had been prev1ous1y33 shown

@«

"'to dlssoc1ate a proton from a bound H 0 w1th a pK of -

ﬂfv“9 37 at 25°, and the spec1es CuGGOH 'cata]yzed the A

cat’ (M'] s' ]) for CuGG in - the_

C02 hydrat1on at pH 9 Was - found to be 9 3. Equat1on 4

"shows one of’ the mechan1sms that was: proposed for . th1s

o cata]yst -
- _ ) 'f\.‘
COH, L OH, 0 L, |
AN 0}2=0' = [:::Qu- . ;;:ii CuGGOH T WO
N\ja.- o YN L OH R ORI
QOO N Hco3
Ho o H He s
VAN
A

N That the. 1on1zat1on of a bound H20 was 1mportant cata]yt1¥--

f hca]]y was supported by the marked 1ncrease in k t from -

0.11 at pH 7 to 9 3 at pH 9. Add1t10na1 ev1dence came
from the effect of added 1m1dazo]e, wh1ch formed a 1 1 -

Jhimlxed comp]ex W1th CuGG The va]ue of k. for th1si

cat

hv;complex was ]ess than 0 3 at pH 9 Thus 1m1dazole 1ed N

;:.Ae1ther to a dlrect dlsp]acement of bound OH Or‘tolanu L

fah1ncrease 1n the pK .of bound H20
| The conc1u51on of . the WOrk was'e"that a ]1gand on
;f,a meta] 1on part1cu1ar]y an 0H~;vm1ght part1c1pate 1n

4~ﬂthe enzymatlc react1on o

21
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VQi'Chtpman

| "The analogous Zn'oompTexes were notJStudied be-

| cause of weaker b1nd1ng, CO d1s 1aced the Zn from g]y— .
2 P

cylg]yc1ne for examp]e because of carbamate format1on

The ma1n arguments aga1nst the zine- bound hydTox1de

mechanlsm have been twofo1d F1rst, that a z1nc-¥'

"ebound water cannot have such a Tow pK as 78a 34

"T second that a’ Zinc- bound hydrox1de 1on would be so f

‘polar1zed by the meta1 as to 1ose most of 1ts negat1ve

change to the z1nc and thus be too weak a nuc]eoph11e

- to attack for examp]e C0227y

By us1ng the zinc. 1on pyr1d1ne 2 carboxa1d0x1me
Atanlon [Zn(II) PCA] complex as a mode], Breslow and

1d, 35 brov1ded some ev1dence suggest1ng that

o _both arguments m1ght be wrong [Zn(II) PCAJ Was shown

’v}to be an effect1ve and spec1f1c nuc]eoph11fc ta]yst

*1n the hydro]ys1s of both PNPA and 8 acetoxyq 1no]1ne-

| ng5 su]fon%te (equat1on 5)

BOR

22

+ CH3COO S
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Coordlnat1on to z1nc ion perturbed the PK, .of PCA from
10 04 to 6 5,-aPthough a nuc]eoph1l1c1ty comparable to
hydro;ide was reta1ned35

Y

The transester1f1cat1on of N- (8 hydroxyethy])

P 5 ethy]ened1am1ne by p n1tropheny1 p1c011nate was’ shown

to be subJect to z1nc 1on cata]ys1s by S1gman and

\

Jorgensen]d 36

~in 1972, Thelr 1nvest1gat10ns indicated
that reaction very probab]y occurred through the forma-
t1on of a ternary complex (1) 1n wh1ch zinc 10n funct1oned

both to 1ower the pK of the hydroxyethy] m01ety, and

. to serve as a temp]ate for the react1on

H2N’\

L 1
0N - ; |
The pK of the Zn(II) comp]exed B hydroxyethy] mo1ety,_‘

'as est1mated from the pH dependence of the observed

f.rate of transester1f1catwon (assum1ng that the reactlon

,f was subJect to a spec1f1c base cata]yzed react1on) was

F”]_perturbatlon of 3- 4 un1ts re]at1ve to the pK of the

'tiffree hydroxyethyl group

’V‘fapprox1mate1y 8 4, correspond1ng to an est1mated pK vnf?7/ﬁ\f,:i

The 1ast two examp]es demonstrated the part1C1pat10n ’}I;*Vi

yof 21nc coord1nated nuc]eophlles 1n a ChEm]ca] trans-__tj_:’dfh-"'
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o ' _ B / . .
formation .It is harder to demonstrate a simi]ar role

‘for a water mo]ecu1e coord1nated in-a 1ab11e complex .

‘7f1n aqueous med1um, due to the k1net1c equ1va1ence of the

two mechanlsms A (equat1on 6) and B37a (equat1on 7)

p- NltrOphenyl p1co11nate is used as an examp]e

 4-PR). Bhe catalys1s ‘afforded by meta] 1ons was shown L
7toﬁ5e era] orders of magn1tude b1gger for 2 PA _.f«,f_gﬁje
'fthan for 4 PA They attr1buted th1s dwfference in |

‘.o'cata]ytlc behav1or to the Spec1a1 arrangement of the‘

”'e r1ng nltrogen and a]dehydlc group 1n 2~ PA wh1ch 1St*ﬂiv

7fPaabsent 1n 4 PA However, they were not ab]e to



udifferentiate'between a hydratioh arisihgfromdreaction
schemes‘ihyolving'ah'attackby‘exterha]'water on the - |
. metal-2-PA compTex (A) ahdlone in Which the attaokihg

water 1tse]f qomes from the meta] hydr%te (B) because of

the 1ab11e nature of these comp]exes" (equatton 8)

.Sihce'C}A is: equa]]y actlve in the hydrat1on of both

a1dehydes37bﬂ they concﬂuded that no. pyr1d1ne n1trogen-
';to meta] coordwnat1on 1s 1nv01ved in the enzymat1c
"}_hydrahon of 2- PA or 4- PA |

W1th the use of, 1nert M(III) trans1t1on meta]jf,_

'“*t1on of metal bound hydroxxde 1n a chem1ca1 transformatlon

18

]d ,38 £ 0

| Buck1ngham et a] o conc]uded from thelr

,ih]abe11ng experlments that the Co(III) catalyzed hydroly-"_fi

A

‘IS of glyc1ne esters proceeded by dual pathways at
f% approx1mate1y equa] rates by mechan1sms correSpond1ng

T

25

O, . N

;f_~comp1exes, 1t 1s poss1b1e to demonstrate the part1c1pa-»



to A gnd B (equation 9).

’_;water coord1nated to Co(III) was shown to be an ‘
'&veffect1ve nuc]eoph11e (pK ~ 6) 1n the hydro]ys1s of j

| fg]yc1ne esters < A&  L : 'v ‘

>  Chaffee et a]39a, and Pa]mer and Harms:';g-b fonndil
that Co(III)f, RA(111)-, and Ir(I11)-goordinated
T°hydrox1de was an effect1ve enough nuc]eoph1]e to react‘
f w1th CO2 They mea5ured the rate of CO2 uptake by T

n’hydroxopentaamm1nemeta](III) 1on to form carbonato-h h

jnpentaamm1nemeta](III) 1on, accord1ng to equatlon 10

0

i e B T S
‘jwwm+%vme%]:wWw]w m
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The second order rate constants (k, M~ sece])'were
determined to be 220, 420, and 590 for Co, Rh, and Ir
respectively. The respective‘pK }s were* 6'6 6.8, |
and 6.7; As po1nted out by the authors39a it is 51gn1f1-
fcant to. compare the reactivities to carbon d1ox1de of
water, hydroxopentaammwnometa](III) ion and hydroxy1

ion, and their re]atlve basicities. The 1atter are in

]6 The rate constants

a ratio of approx1mate1y 1: 10 10
do fa]] in this order but obv1ous1y not in any s1mp1e
_proport1on, s1nce while OH converts COZ to carbonate

7

10 t1mes more raptdly than does water it 1s only -

20- 40 times more effect1ve than the M(III)'complexes.
| .In 1974 App]eton and Sarkar4b t1trated some
‘1m1dazo]e Zn(II) comp]exes and concluded ‘that the
byrro]e hydrogen of"a,neutra1 1m1dazole m01ety may be”b
~induced to 1on1ze at pH! s near 7 by coord1nat1on of

the pyr1d1ne n1trogen to a z1nc ion. Ana]ys1s-of the

In(II)-N- methyl1m1dazo]e system y1e1ded a va]ue of 9 1 Q

for the pK of a meta] bound water mo]ecu]e in the
presence of a. tr11m1dazole 11gand field. However thesek-

"results ‘were comp]1cated by the formation of; p{?ﬁ1p1-
: 3 o
tates. '

“Martinqlf criticized heayily'these‘resu]ts saying

mthat they were Observed under non-equiTibrium conditions
and he found no precedent in.the 11terature for such

g;a pronounced ac1d1f1cat1on in 1m1dazole compounds by
3 . %,
A ot

o



zinc ion:" | : : f R hﬂ;\
'In'agreement,with Martin4]a, Séuégé‘et-a14]P using
“nmr techniques attrtbuted the deprotonation ofhthe t
histamine-Zn(II) complex start1ng at pH ~ 8 to a zinc-
'bound H20 and not to an 1m1dazo1e pyrr011c NH. | -

4

To eva]uate the z1nc-1m1dazolate" mechanism in

4?a

a mode]_system,»Sargeson et al compared the effect

of‘[Co(NH3)50H]*f and [Co(NH ) Im]++-(1m}= imtdazolate“
ton) on PNPA' In water, the hydroxide comp]ex is 6 x ]03
.t1mes less reactive than the imidazolate comp]ex, theh

coord1nated 1m1dazo]ate being of similar nuc]eoph111c
reactivity to free OH™ towards PNPA It was conc]uded]hv
;fthat these resu]ts support a mechan1sm for the esterase
act1v1ty of C.A. whereby a zinc- 1m1dazo]ate attacks"

rthe carbony] of ester substrates, g1v1ng an intermediate

wacy1h1st1d1ne, wh1ch 1s then c]eaved by water. Co-
v_’ord1nat1on of N- acety11m1dazole to Co(III) was found to

*tenhance the rate of hydro1ys1s by ca 20 fold re]at1ve
to free N acety11m1dazole However, d1rect attack of

'.Zn Im on CO2 in C. A. Was recogn1zed as unlikely because

the resu1t1ng carbamate would decompose by heterolytic

"N-C fission rather than H20 add1t1on fo]lowed by e11m1na-.

t1on of HCO - or H2C03 Sargeson based this argument on":.

}prev1ous carbamate decompos1t1on stud1es42b c (III)-

"bound carbamates decompose in acidic med1a w1thout oxygen

42b

" exchange from water to CO2 (equat1on 1).

28



4+
HY, NaNO2

[CO(NHB)SOCONHZ] ———ﬁga——-—b-£C0(NH )50 H ] + C02 + N2_

However, it is not possible at neutral pH's to discard

the»possibility by which water adds to the carbamate

- prior to the N-C bond c]eavage“C (equation 12)
+ SR |
Rzl;l-coz, == RM + 0,
. t{ ‘ : X b . »
0N | \/ .
+ + - | mmm— . -
- H Roll-C-077 === R,NH + -HCO].
"H OH ' '

\Sargeson suggested that C;A;’might operate via
'twb meéhanigms: IZn-0H for.COZ, butLZh-Im for ésters.
| A mode] supportwng the Zn-0H mechan1sm Was pro-
vwded by wO011ey3], who prepared Zn(II) and Co&II)
complexes of the ligands _Lg;_L '

R, =Me ;Ré=H’

ﬁé. N
2b R]=R2=H'

_ ¥ .
The complexes are f1ve coord1nate, w1th 4 nltrogen
donors from g' and water as the f1fth 11gand Titra--

t1on of the zinc: 2(a c) comp]exes y1e1ded pK va]ues of

8.69, 8.12 and 8. 13 respect1ve1y, at 25°, wh11e that

()

o
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for [CoCR]H was found»to beéebout 8‘ Six coordlnated
Ni(II) and Cu(II) compfexes showed pK s > 11. |
[ZnCR OH] was found to be an eff1c1ent catalyst for

aceta]dehyde hydrat1on, comparab]e to: the enzyme but.

: a very modest one for CO2 hydratlon The conclus1on .
" from these exper1ments was that the meta] bound hydroxide
- would have suff1c1ent nuc1eoph111c power to account
- for thelenzyme's aotiyity in aceta1dehyde‘hydration,.‘

‘although not in CO hydration, 1f the Zn env1ronment

was the same in the enzyme as 1n CR complexes. However,

a poor]y so]vated nuc]eoph11e would, in a non- po]ar

2+

42 Some 1nact1ve Cu -

env1ronment be more react1ve
)2 -substituted carbon1c anhydrases show an -
43

and (VO

joni2ation with pKa ~ 7. ' If the active site did not

. differ from the one {n'the an -enzyme {not very 1ike1y),

1t must be shown that the 1on1zat1on does not corres-"

»pond to metal bound H20 before the Zn OH mechan1sm can

4

be accepted
?.
wh11e this thes1s work was 1n progress, Breslow ,

44 reported the synthes1s and pre11m1nary phys1ca]

et"a1
stud1es of some mo]ecu]es conta1n1ng three che]atlng
1m1dazo]e r1ngs trts (2- 1m1dazo]yl) carb1no1 (2- TIC)‘

3, and trzs [4(5) 1m1dazoly1] carb1no] (4-TIC) 4.
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4-TIC was found to be a very gdod metal blnder,‘com- L
parab]e to C.A. for Co(II), Ni(I1) and Cu(II), but about
100 times worse b1nder for Zn(II) _ Also, the Co(II)
comp]ex oft 4- TIC did not have the b]ue co]or charac—
.ter1st1c of tetracoordlnate Co(II) They suggested
that these 11gands were a bit too sma]l, S0 that
. octahedral comp]ex1ng was fac1]e, and that a somewhat
]arger ligand re]ated to 4- TIC might well m1m1c better
both the spectroscop1c behav1or of C.A. and a]so ‘the
extraord1nary Zn(II),afflnlty of the enzyme T -
‘Recently Tabush1 et a]45 prepared C.A. mode]s (5

and 6) us1ng cyc]odextrln

IS

. 5 t . - . ‘5 .
The comp]exes ZnC'l2 6 and ZnC]2 5 cata]yzed (k t'z.v
» 166 and 16.2 M lbsec 7 respect1ve]y) the hydrat1on of
. c()‘z.‘(pH = 7_._so 25° ) o

-

By compér#ng the rate enhancements of these cyc]o-u7"
;_dextr1n der1vat1ves w1th those from (1m1dazo]e) Zn(II)
and (h1stam1ne) Zn(II) they conc]uded that both the

'g“hydrophob1c env1ronTent prov1ded by cyc]odextrln and
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the zinc bound to the imidazoles contributed to g1ve
some of.the C.A. act1v1ty Another 1nterest1ng f1nd1ng o0
was that the 1ntroductlon of add1t1ona1 base enhanced
-the-act1v1ty, as.seen for ZnC12:6 ¢ompared to ZnC12°
‘ Although not ment1oned by the authors, thlS rate en-
hancement of ZnCl,:6 vs. ZnC]2 5 could have been due‘
stmp]y t0~difterent coord1nat10n geometry around the
z1nc ion, and not necessar1]y to the presence of add1-
t1ona1 bases. | |
F1na1]y, and a]though it does not f1t 1nto the
‘h category of a mode1, it 1s worthwhlle to ment1on‘the

work of Kaiser et a146

who produced and character1zed ]

a 36 aminoacid residue pept1de conta1n1ng the meta]— ‘
'"b1nd1ng 11gands at the actlve site of HCAB Due to pre-
‘c1p1tat1on prob]ems they were not ab]e to. study the
'Zn(II) peptide comp]ex " Instead they used Co(II)

Stud1es on the hydro]ys1s of'5 n1tro 2- hydroxy a to]uene-
fsu]fennc acid- su]tone]6d and hydrat1on of COZt showed
that the pept1de in thelpresence or absence of'Co(II) o
‘had 1itt1e‘ if any, catalyt1c act1v1ty ' They attr1buted <}/’/F

,;/ -

this 1ack of success to the poor b1nd1ng ab1]1ty of thg/

T

,‘pept1de,'and reached the conc]us1on that the ne;t/

:"7step in des1gn1ng a C A mode] shou]d be the preparat1on

'h,of a pept1de capable of b1nd1ng the act1ve s1te meta] .”

,1on ‘more t1ght1y



IIx RESULTS AND DISCUSSION . ,

A.  INTRODUCTION.TO THE PRESENT WORK

The mode]s studied S0 far, a]though successful

" in some aspects, all suffer from some prob]ems Forg,
'»-examp]e, E. Bres1ow:§~2 demonstrated ‘that OH bound to:‘
Cu (II) was a modest cata]yst for 602 hydrat1on, but
" did hot cons1der the s1tuat1on for Zn(II). R--Bres]owh-~

33 36-showed the part1c1pat10n of

'et al and S1gman et al
~zinc- coord1nated nuc]eopht]es in ester hydrolyses,
butsthese nuc]eoph1]es have no d1rect ana]ogy in. the
enzyme \ Results -obtained from mode1s 1nvo1v1ng M(III)

38 39 42

"complexes can not be d1rect1y extrapo]ated to

the ana]ogous Zn(IIJ\eomplexes,_due to the d1fferent
1on1c charge and to the very. dlfferent react1v1ty 1n 'fg

31 proved that a- z1nc

terms of 11gand exchange wool1ey
»bound water can have low pK (~ 8. 1) and be an effect1ve
—icatalyst for aceta]dehyde hydrat1on However, the
1_number and nature of the n1trogens coord1nat1ng the
\*metal have lltt]e 1n common W1th the enzyme. | A swmn]ar
 prob1em is encountered W1th the mode] of Tabush1 .

45 -

et al’ty where on]y two 1m1dazo]es are bound to the,_.T L

1ﬁemeta], compared t0»three 1n the act1ve szte of C-A : In;,f;*

‘Tthls case 11tt1e can be sa1d about the mode of act1on

o .

[  of the mod 1 catalyst

The p rpose of th1s work was to bulld‘mode]s to

. 1%33;



a;f-between d1fferent catalyt1c centers 1n the po]ymer

mimic the maximum possible number of physicochemical

’features of the. active site of C.A. (three imidazole.

_11gands surround1ng the meta], pseudotetrahedra] arrange—

. rment,.1on1zab1e group w1th pK 7, blue Co(II) comp]ex,
Es]ow Zn(II) brndwng rate, etc )'and see how we]] they '
'fcould reproduce ‘the cata]yt1c behav1our of the enzyme.

A vaa mode] and ‘the enzyme have a lot 1n common,‘

'x"the extrapo]atlon of some property from the mode] to}‘:f

“the enzyme 1s safer than 1f they are on]y vague]y re-‘

",lated | From this po1nt on, our def1n1t1on of mode] w111‘

be much narrower than WOolley s31 , Th 1dea1-mode1"‘

R4

will be the s1mp1est chem1ca1 system wh1ch mlmtcs the

max1mum_poss1b1e number of pr0pert1es:of»the enzyme.

B POLYMERS

s Our f1rst attempt at mak1ng a mode] for C A was
E one h1ch 1n retrospect was amb1t1ous 1n the sense
.that we re]1ed upon a po]ymer1c cata]yst 1ncorporat1ng

vipendant 1m1dazoles wh1ch were hoped to blnd the meta]

in a more or less correct geometry ”al*;;’_jy, j}hqiﬁ‘_

If one 1ncorporates catalyt1ca1]y act1ve funct1ona1-t

wjgroups 1n synthet1c po1ymers, the apparenﬁ'cata]yt1c

'g‘ act1v1ty may be enhanced due to assoc1at10n between ;;;_"“

Eihcatalyst and substrate47

48

*fQ'For examp]e, po]y 4(5) vrny11m1dazo1e was found to be i";:

34

» and to some cooperat1ve effects}jfﬁ i
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[}

better cata]yst than 1m1dazo]e for the hydro]y51s of ?

48b

n1trophen01acetates “For the negat1ve1y charged

substrate 4- acetoxy .3- n1trobenzo1c ac1d a be]] shaped

" pH-rate profile was-observed as a result of e]ectro--%
:istat1c attraction to the protonated 51tes of ‘the poly-.
,\mer; The enhanced cata]yt1c act1v1ty towards the neutra]
;substrate PNPA was attr1buted to the cooperat1ve par-

: ft1c1pat1on of the an1on1c forms of the pendent 1m1dazole -

<groups Two p0551b1e mechan1sms were postulated _One*

| 1s that the neutra1 1m1dazole group. a551sts the attack

‘dof ah1on1c 1m1dazole on the ester carbonyl (7) and the

“iother is that the neutra] 1m1dazo]e attack on the ester

"d*g1ves a tetrahedra1 1ntermed1ate wh1ch 1S then attacked

fh,by an an1on1c 1m1dazole actlng as a genera] base (8)
"7 Nlth these 1deas 1n m1nd copoly[N v1ny1pyrr011—1:fjjhyfe5ﬁ s
v _d1none 4(5)-v1ny11m1dazole] was prepared by free Tad1031

'hg;polymer1zat1on Of a mlxture of N v1ny1pyrro]1d1none i



”ggjcataﬂyt1c rate enhancement was observed 1n any case

ey
/N

and 4(5)-vinylimidazole (équation 13).

If'aliteventstwent bptﬁmaT]yhthevimidazote‘resjduesh i
| would bind zinc behhaps'inhthe'correct geOmetry,‘the
‘,po]ymer cha1n wou]d prov1de some hydrophob1c env1ron-"
-ment, and the pyrro]1d1none resadues wou]d be ]1ke the
_ppept1de ]1nkages of a prote1n,:thus afford1ng a macroQ'
mo]ecule w1th at least some centers wh1ch cou]d be
Hns1m11ar to the act1ve s1te of C A

The 1m1dazo]e content of the copo]ymer was
'determ1ned from the N and O mlcroanalyses _ThennUmhenh“
of mo]es of 1m1dazole per 100 g of polymer (ﬁI)jigx‘
'“g1ven by the express1on '.h"“sl_‘ _'-1 - |
'nr-;‘[% N'{.(% 0716) x 141728f'1' S T
d'where % N and % 0 are thelpercentages of n1trogen and
7oxygen in: the po]ymer respect1ve1y ‘ )
: | The po]ymer was comp]exed wtth Zn(II) 1n the ratlo'fhﬁf
j'":_'_s_“'[Im1dazo]e]/[Zn(II)] = 3, and tested for catalyt1c s

o €.

"f}act1v1ty towards PNPA hydro]ysxs and C02 hydrat1on t;Nd7"h‘
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Th1s fact, and the 1nab1]1ty to assign the nature of

the polymer:Zn(11) comp]ex 1nduced us to d1scont1nue this

work, and study simpler, easier to character1ze, mode]s.

C. CARBINOLS

These mode]s were des1gned to b1nd meta1s in a tri-
dentate fash1on,'s1m11ar to the way Zn(II) 1s bound
':Jn the active s1te ofFC A. Severa] features had to be
srpresent 1n the molecu]es before they cou]d be cons1dered
good candqdates for C.A. mode]s “The f1rst one was
_‘;M(ii) binding‘abi1fty The check this, the b1nd1ng
constants W1th severa] d1valent cat1ons were determ1ned
,S1nce the pK ‘s were né%ded as data for obta1n1ng the'

+

_meta] b1nd1ng constants, they were a]so determ1ned
‘Second '1#ébrder to check that the mode of b1nd1ng was.

1 tr1dentate, nmr exper1ments of 11gand so]ut1on9 w1th

| vary1ng Zn(II) concentrat1ons were performed Th1rd1y,i'
<‘s1nce the coord1nat10n number around the meta] shou]d
‘e_be four to approx1mate the pseudotetrahedra] b1nd1ng in
»_ C.A. 4 5, the UV, v1s1b]e spectra of the 11gands us1ng T
;i.tCo(II) asa».probe8 were recorded Flna]ly, the z1nc |

complexes Were tltrated w1th base 1n order ‘to. observeh'

'i‘.the t1trat1on of a group w1th pK -7, the baS1c form(_»f,wq'

?‘of wh1ch 1n C A §§ assoc1ated W1th act1v1ty1a ]C ]e

(Tab]e III shows llgands 9 17 wh1ch for synthet1c conaﬂdt‘

;'ven1ence were prepared as carb1nol der1vat1ves Theyg‘}”"
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contain pyridine and several Substituted imidazb]e  1"

x;mo1etles to compare thEIT dlfferent behav1our in terms

of meta]fm“L

' TABLE 1II
} jCompounds'9 toil7'

- Hi 1 C
b

Substltuents‘

"¢+ continued...



. Table III (continued)

Compound  Substituents
‘ ‘CH3

. / N
14 a:b:c: v/4 I
14 e =g

CHq

39



" and Alley

1. SYNTHESES

Compounds 2-16vwere.synthe$iied by feacting-the

—

. metaTatedfdérivatives o?'Z-bromopyridihewqrvthe‘appfo—'

priate N-substituted imidazoles according to the methods

" of Wibaut et‘also

51b

(éqgation 15)5 Roesla;vand'Shir1ey o

compounds.

}(Schémelx),vwith the=apprgpfiate carbony1 ' 

. 40



‘Nhen the imidazole moiepy'was required to have free N-H
in §he fina] product, the starting imidazo}e‘was N-

protected before metalation. This was done according to

Sla 44, using an ethoxy-

44

the methods of Boe . and Tang et al
©or methoxymethyi protectimg group, which waeremoVed

By‘reflux in hydro;hlorié acid (Scheme X1).

SCHEME XI
CICH 0Et
‘ >
EEN |
1. n-Buli 1 el

2. CO(OEt),




The deuterated ¢ompounds d-9 and d-10 were prepared
using 2- bromopyrldIne 6d as a. start1ng mater1a1 This was
obtained by deuteration of 2-1ithio-6- bromopyr1d1ne

prepared accord1ng to Gilman's procedure52 (Scheme XII).

SCHEME XII

1. n- BuL1 n -BuLi
2 MeOD

Compound 17 was synthesized u51ng I1th1ated N- protected-
2, 4 5- tr1methy]1m1dazoIe as a nuc]eoph11e (Scheme XIII)
’ It is worth noting the except1ona11y long t}me (2 weeks)

required to deprotect 17b in refluxing 10% ag. HCI.



ubstant1al yields of

N

dehydrated product 18 as ev1denced by a very 1ntense M+

H1gher acid concentrat1ons gave s

peak in the mass Spectrum and the presence of an’oiefinic
singlet at § 7.0 ppm in the nmr spectrum* of the hydro—'

lized product.

SCHEME XIII

\ |
R T\ =N
: \' ";;f/’(”’ - - Iil’ IZQ
. 50% HpS0,4 R=CH,0OMe .
S ‘ 10%Hc1l
18 '"123

3

"5, estimated”3?

for Ar,C=CHAr is 6.90 ppm



Ligands 14 endvli upon\dmying (for microanalytical
purposes) tended to.dehydrate (as evidenced by the build-
up of an M+-H20‘peak in the mass Speetrum)‘to form in-
tensely colored crysta]s‘which appeared‘to possess ex-
tensive comjugatibn as mighgebe'eXpected for a fulvene-

like Y9 (equation 16). ‘-

14015 MO (16)
A
R =Me,i-Pr °

JH-nmm experimemtS‘on these'cryétals in CDC13 showed
“complete mo]ecu]ar symmetry as expected if ‘the a]ky]
"groups were tautomer1ca11y equ1valent on the nmr t1me—
scale. . | |

_»gince 15'proVed to Be'inapbronfiate for study the o
synthes1s of 1xgand 20 was’ attempted accord1ng to

equat1on 17

~‘NaOH/H20_

- 15 = >




The corresponding methane was present as ev1denced by a
]H nmr s1ng]et at § 5. 4 , -and the mater1a1 appeared |
reasonably stab]e as its HC1 salt. Unfortunate]y in bas1c
media, the meth1ne H proved extremely suscept1b1e to

53c wh1ch converted it back to 15 which

air oxidation
again suffered deleterious dehydratlon to form what

we be11eve is 19 (equat1on 16).

T

2. BASICITIES | o c

Ion1zat1on constants of the protonated ligands were
}determlned by potent1ometr1c t1trat10n methods outlined

54a 54b_

by Albert and SerJeant and Rossottl and Rossotti

Data-were analyzed by a modified compnter versidn of‘
the Simm's method55 (APPENDIX 1), The pK,'s obtained
are T1sted in. Tab]e IvV. |

There is no- pred1ctab]e trend 1n the ba51c1t1es for

: 2-1

:

although on the average the N methy11m1dazoles are
more ba51c Where comparlson can be made between those
'11gands conta1n1ng N- CH3 and N H 1m1dazo]es (ile. 10

44) the Tatter ~appear to be more

'and 135 12 and 2 TIC
_inas1c at Teast at pKa] and pK a2’ The pK S of the 4 5-'
d1subst1tuted 1m1dazo]es were determ1ned 1n 1ncrea51ngly‘A'
organ1c medla for soTub1T1ty reasons and therefore cannot

r1gorousTy be. compared W1éh those vaTues determ1ned in:

Water " As can be seen from the two sets of data re-

. &

S 53b
Y for:(06H5)3CH)1s‘§.§~ppm:u‘;

7



TABLE IV

“pKa's for ligands 9-17 determined by potentiometric

e
tlfrat1qna.

. Ligand S PKy3 | - PKy, o PKay
9 1.5 2. 4.7

13' 1.5 2.1 5.4
11. 1.6 2.65 5.6
'ig‘ 1.7 | ‘els 5.5
13° ©1.44:0.08 2.87¢0.1 6.46+0. 05
14¢ 2.85:0.03 5.12£0.03 7.5880.03
149 2.5840.02 4.78:0.02 7.40+0.02
154 2.3340.04 4.49%0.03 — &
1§f <157 3.80£0.05 6.90£07 05
179 2;45¢o.05 C g47t01 8. 2t0'2.

Genera]]y determ1ned in solution compr1sed of 3.0 mL
0. 25 '8 KN03, 1 0 mL 0 025 M ]1gand and- either O 50 or
] 00 mL 0.1095 M HNO3, and have a # 071 un1tuprec1sloni
un1ess noted. | -4"‘ =

P3mL (1:1 aceto e/H, 0), 0.25 M KN03, 1 0 ml of o 025 s
11gand in acetone, and 1. 0 mL of 0 ]095 M HNO -

\. N

cDetermlned in 3 L, o 25 M KN03, 1 o mL of o 025 M ]1gand

conta1n1ng 0 1095 m1111mo]es of HNO3 -

“efds ml.. of 111 acetone/H 0, 0. 25 W KNO3, 1. o mL of 11gand
e;‘(O 025 M) conta1n1ng 0 ]095 m1111m01es HNO3 ' |
pK] cou]d not be determlned due to prec1p1tat10n in. th1s

medlum L T
, ,.1.,..cont1nued

.\ .
A

40



o 2, 4 5- tr1methy11m1dazo]e is 3 9

Vi

Table IV (continued)

f3 mL of 75:25 acetonitrile/H,0, 0.25 f KNO5, 1.0 mL of
0.1042 M HNO5, 1.0 mL of 0.0269 M ligand in ethanol.
93 mL of 1:1 acetone-H,0, 0.25 M in KNO,; 1.0 mL of

1 0.0245 M ligand in methanol, 1.0 mL of 0.1042 M HNO,.

iSpehted\%oh 14, in the more organic ehvirenmeht the pKa's
here 1ower,'consi5tent with expectatiohs besed‘on.so1vent'
V‘po1arity,ran& clearly 4 5-suhstitutibn-(]6~and 12,. li |
and ZLTIC ) increases . the bas1c1ty as expected
Ligand_ll, in wh1ch the 4,5-d1methyl1m1dazo1e'is
.»eitehded fhom thehcerbihoi'centrefby a Methy1ehe unit,
-1s the most bas1c part1cu1ar1y at pKa2 and pKa], when
qgmpared w1th 14, ]5, or 16 Presumab]y th1s is due
to 1ncreased separat1on of the pos1t1ve charges upon

44,57 | ’;: |
- (fvg

"protonat1on

3. ,METAL BINDINé%CONSTANTS

L These were determ1ned by t1trat1on of the ]1gands~

'l'1n the presence of meta]s accord1ng to the method of -

54b

'.~;Rossott1 and Rossott1 The data were ana]yzed by a

‘*Whereassééhethylimidésze’hds7a pK of 7 85 fhetebf P
256 DR



computer program (APPENDIX IT) and the results are

shown in Tabie V. o : o b

The genera] ordering for meta] stab111ty constants

for 9-14 is Zn’ ,~$ Co++ < NitT < Cu++ and a ftrst_and

sétond‘binding constant indicative of a 1:] (L?M+f)“
7and 211 (L M i) complex was obtalned for each. Ligands"
lé_and lg W1th 4,5-d1tsopr0py1 substituen'ts appear. from

_ space;fftling models to.enCapsutate the metat suffie dd//
»_c1ent1y to 1nh1b1t 2:1 comp]exatlon and no second b1n -
1ng constants were observed\for these It is worthy

to note that for C.A. the ord\r of stab111ty constants~

. ' the ordex o |
is Cu+f >‘Zn+f'5-Ni++;> Cott at pH 5. Ssb, and the metal- y

 ligand geometry 1s demonstrated to be dlstorted tetra-'

| 4, 5 ,10 '
.hedra1 at 1east for Zn++ " and Co ++7 . While we

have no detal]s for the coord1nat1on numbers for 9-14:
M++ complexes other than those 1mp]1ed from uv stud1es
’~w1th Co }(see be]ow),. 15, ]6, and 17 appear from '
v'models only fo. a]low tetrahedral geometry if they are ‘
;bound symmetr1ca]1y It would-appear from Table V that o
'man+31s bound to . 15 and 17 stronger than is: Co i per-’

1fhaps as a result of the enforced tetrahedra] geometrysgf

The data for 16 1nd1cate that Zn and Co + and1093

The baS1c computer vers1on was k1nd1y suppl1ed by 4
Prof R Bres]ow of Columb1a Un1vers1ty and was mod1f1ed

to be ut111zed for 11gands wh1ch possess on]y two pK



TABLE

v

Metal stability constants for ligands 9-172+2,

Value & .

” ‘Ligand ~ Parameter i‘anﬁ

2+ 2+ 2+

Co Ni oy

s

iin;YHdmaniCAB

i

- PK;

SR X
4.9

5.9
. 5.

5.0

3.15
2.7

7.50:0.05
. 6.67:0.17

18.86:0.10

© 8.81:0.03
- 7.53£0.03

7.50£0.04
- 40i01

6.4 . 6.2 6.6
51 5.7 6.35

66 7. 7.5
6.2 66 7.0
- T T
52 68 . 712
4.5 . . 6.2 5.6
- 48T L
, -3 o
8.67:0.01 - . >10.5
~8.10:0.70 - 510

9.46:0.07 - 11.910.06.
19.65:0.03  9.90:0.05 11.4120.03
©8.93:0.04  8.70:0.15  9.64+0.7
<7.00 ppte 9.28:0.2

 ?5752‘;;;:?f119;5iffh,i_ 11;67' :itf7f1

B  5';;,;.;.,;ontfhued1{; i;-fa’ :
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Table V (continued)

#25.0°C, 3.0 mL of 0.25 M KNOg, 1.0 mL of 0.025 M 1igdnd

containing 0.1095 millimoles HNO4, 0.5 mL of 0.011 M metal.

Pprecision of +0.1 units unless noted. =

Cpetermined as in a"
d,

Prec1p1tat1op prevented pK2 determ1nat1on 3 "{§V
€3.00mL (1:1 acetohe/H 0) of.0.25 M KN03, 1.0 mL of 0.025
M 11gand in 0. 1095 M HNO > and 0 5 mL of 0,011 M,meta].

f3.0 mL (15L acetone/H,0) of 0.25 il KNO,, 1.0 mL of 0.025

33
M 11gand in acetone, 1.0 mL of 0. 1095 M- HN03, and 0.5 mL.

; of 0 011 M metal.

93,0 mL (75:25 CH, CN/HZO) 0 25 M KNO3, 1.0 mL of 0.0269 M

" Tigand in ethanol, 0.5 L of 0. 1042 H HNO, 0.5 mL of

0. T]“ﬁ'metal-'f

'7'h

"

3 mL 1: 1 acetone H20

2

1Reference 8b

are equ1va]ent1y weak , F1na]1y it is of note that 17
b1nds metal in the order Cu + > s Ni++ >_(_:ov++
para]le] to that for C A s a]though the former va]ues
are about 4 pK un1ts ]ower than those for the enzyme
A pattern emerges when one cons1ders the stab111ty

constants for N CH3 1m1da201e der1vat1ves ]0 12, and

t

16 when compared to thexr N- H 1m1dazo]e analogues 13

44

2 TIC Sy and 15 respect1ve1y In every case N methy]a-7m'-h

t1on reduces the meta] blnd1ng ab1]ity by some 3 4 pK



l‘%\ . ‘\\e

\'X.

‘units. This observation contrasts the reportssg“fn
- ) v\
wh1ch N- methy11m1dazole and 1m1dazo1e exh1b1t nearly

1dent1ca1 pK ‘and stability constant\va]ues_for Cu +,‘ £

,.Cd++, and Ag., While we have no unambiguous reason for

\ o - . v _

- the stronger binding ability of N-H vs. N- CH3 1m1dazo]esﬂ
the phenomenon may be re]ated to a better so]vat1on of

the former when bound to meta] as in equat1on 18

30 o L

4 NUC'LAE‘AR'M'AG.NETIC RE'SONANC'E'STUDI‘ES:

]H nmr Spectra of rough]y 10 =2 M so]utlons of
11gands 9-17 were determ1ned in DZO as a funct1on of 1n—'ﬂ~
creas1ng [ZnBr2] After-subsequent add1t1ons of Zn“, ifg'

‘ the pD (pD_é _H‘(meter read1ng)'+ 0 4)60a of the test

Nhen needed, methano] d4, acetone d6’ or d1methyl~
sulfox1de d6 were added to increase the solub111ty of B
the comp]exes 7Q'Y'ﬁ;ﬁf‘it: eﬁiltt;17f . -f’L” _‘f [:



O

]
so]uttons decreased due to release of protons from the

11gand accompany1ng meta] b1nd1ng, and the pD of the
so]ut1ons at the end of the Zn add1t1ons was in the

order of 4; This is 1mportant because the potent1ometr1c
_titrations to determine the ztnc—b1nd1ng constants in-

Variably showed the complexes to be.fdlly formed by
pH ~ 3.5 when the pK1 was‘S'or more. Chemical shifts

fdr 11gands g—] and the-Zn++'comp1exes for 9 and lg'are

| LA
“"given in Table VI.

| ‘Some interesting'trends that provide information
Jabout ‘the structure of the complexes are apparent from
';gcons1derat1on of the data for 9 the pyr1d1ne H spectra]
é:reg1on is 111ustrated in Fig.. 3.' Assignments areteasily.
?‘ver1f1ed by comparing the spectra of 9 and d-9 9 (th 4) ﬁ
*‘Subsequent add1t1ons of In + showed the bu11d up of an
; additioha1 set of resonances at the expense of ‘those
for 9, and f1na11y when the 9/7n"t *ratio was 2, 3 clean
4 Spectrum was produced 1nd1cat1ve of a symmetr1ca]1y bound
:"2'1 complex (Flg 3). Now 1t—appears that HD is the low -ffaﬂgl’
J f1e1d reSOnance at 6 8 54 coup]ed to HC at ¢§ 8 25 (JCDH=Hv(t:@&
f7 6 Hz).b By e11m1nat1on HA in the 2 1 comp]ex 1s sh1fted -
upf1e1d to 6 = 7.7 and s coup]ed to g at & 7.40 (Ipp * -

5.4 Hz) | Th1s upf1e]d sh1ft probab]y occurs because HA

Th15 spectrum agrees very wel] W1th the one of Zn (9)

(C]O )2 reported recent1y by Boqgess and Boberg60b
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R | - . In®*/19:05
1 a H ,

B .
.

8. . 74
ppm ”

Fig. 3. The _]H‘-nmr'spe’étra of 9 and its 2_:1 Zn2+ c-omp,'lex"

§

in D,0. See Table VI.



Fig. 4. The']H—n(} spectra of .d-9 and its 2:1 In

in~DZO. See Table VI.

2+
<

4‘comp1exf

27
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in the 231 comp]ex lies very c]ose to and above the plane
of a pyr1d1ne group of a second ligand *, and is there-
fore shielded by the 1atter s ring current. Unamb1guous-’
conf1rmatlon of. these assignments is prov1ded by the - |
Spectrum‘of the ana]ogous-Z:] qomp}ex of g:g‘in<Fig. 4.
These obsehvations ahe inportant when considering the
| spectra for 10 and'tts n*t compleQes i]tostrated in Fig.
5. The middle Spectrum agaln shows downf1e1d sh1fts for
HD and HC ahd an upf1e]d shift for HA, the pos1t1on of
HB remains roughly unchanged. A sizeable downf1e]d o
shift of 0.74 ppm is observed for the 1m1dazo1e N- CH3,
- as well as some small’ 51gna1s attr1butab1e to 'some
resndual uncomp]exedAlg. Increas1ng.[2n J qauses a new
set ot‘resonances to apoean‘at the expense of those
,‘from‘lg/and itst:] complex, until a symmetric pattern
'iseobtained when the Zn+f/lg ratiois 15. We believe
" that this final spectrum jthhat‘0f¥fﬁ§,15ﬂ comp]ekyof
10 and note that the pyridine Ha has shifted downfieldr
- once it 1s removed from the prox1m;by W1th the second
e]1gand | The spectra] parameters for d= 10 conf1rm the
ass1gnments (Table VI and F1g 6) _A |
From the above, one can reasonab]y conc]ude that

these mo]ecu]es ex1st as symmetrﬂca]]y bound comp]exes 1n

so]ut1on, and. that both 2:1 and 1: 1 comp]exes ex1st

This same effect has been noted before in the nmr

spectrum of [FeII(Bipyr)3]6326].



CH,

Zn2t /110 = 05 |

o

A

Zn®* /102 15

Fig. 5. <The ]H-nmr spectra of_lg_as a function of in-
bcreasihg;[Zn?f]. See teXtvand'Tablé‘VI for
ITaSSignment$. The resonance at & 4.8 is attri-

}butable t6 HOD;

. 59



Fig. 6..

The b

H nmr of d 10 as a funct1on of 1ncreas1ng

‘[262+];; The large resonance at 6 4 8 is attr1-
“.butable to HOD For a d1scuss1on of the ‘

erSonqncesAattrlbutab1e to-Hf see'text,h’:‘

¥
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depending on the ligand:Zn'' ratio. It is noteworthy
,that'fob the‘equi]ibrium described in eq. 19, the rate

of’{nterchangiﬁg the species is slow on the nmr time-

2L + zn'tt ;-_‘:L+Lz+*:'Lz L (19)

(1:1 complex) (2:1 comp1ex)

scale sihce eeparate re;onances}are observed for each
-species‘ | | |

Ana]ogous experlments performed W1th 11gands 16
and 17 showed very broad and 11} def1ned nmr . spectra,,

_1nd1cat1ng unsymmetr1pa1.b1nd1ng apd/or fast exchange

between’comp1EXed abdvnon—complexed'ligand.

.ROtatioh”within}the 2:1'comp1exeof'lg‘-

From the mldd]e spectra in F1g 5 and ng 6'1t"
'i_tan be seen that the 1m1dazole hydrogens, H and Hf,
'-fappear as a s1ng]et at 6 7 ]0 and a pa1r of fortultous]y
equa] 1nten51ty broadened s1ng1ets at 5 6. 44 and 5§ 6.62
respect1ve1y ' From equat1on 20 1n the symmetr1ca]]y

eabound 2: 1 comp]ex Hf of one 1m1dazo]e can be pos1t1oned

61



!
. A
be tween two pyridines of the second ligand (21) o

between an imidazole and a pyridine of the second 11gand

. (22) This. shou]d g1ve rise to two different sh1e]d1ngs

for}Hf,.the Hf peak from 22 twice as 1ntense as the one
Jfrom 21 : The fact that both peaks appear of equa] |

1ntens1ty can be exp1a1ned 1f for examp]e 21 is for-

tu1tous]y a 11tt1e more. stab]e than 22, the equ1]1br1um ‘

constant for the process in. equat1on EO be1ng K eq ='{

K /k- = 1 Var1ab1e temperature.]H -nmr studies i

on th1s samp]e showed that at temperatures above 320 K,

the latter two peaks coa]esce 1nto a s1ng]et centered B

at § 6. 52, exper1menta]1y m1dp01nt between ‘the Hf va]ues

shown 1n Tab]e VI. At 275 K two approx1mate1y equal
'.1ntens1ty 1m1dazo]e N- CH3 resonances separated by 2 Hz
,were observed, in agreement w1th the descr1bed equ11-r‘

1br1um m1xture of 21 and 22 | |

| The rate of s1te exchange (kz, equat1on 2]) and
'the act1vat1on energy (AF*, equat1on 22) for the process
1,cou1d be ca]cu]ated assumlng equa] populatwons 1n both

- ESIGES of the equ1]1br1um62_ From the exper1menta1

‘AvHe = 20 Hz (at 100 MHz) and a coa]escence temperature .”h
‘~f,of 320 K _-:ir*~.}ffy¥v~i,<* T _”._}gga:.._
K '=»1./2, g =‘_..;.1_/[z,(o.»225‘/a\))] = 44 se‘c’»‘gi- o S en
f“;w . A , T LR ‘ L
' AF

') .

62

- 2. 303 RT(10 39 + logT - 109 kz) = 16 s kcal mo] (22)
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5. Zn™" COMPLEX TITRATION

- 0f particular importance to the activity of C.A.,
and therefore to any system designed to m1m1c C.A., is
,}the act1v1ty related 10nlzat1on of a group w1th a |
pK ~7 (see Introduct1on) Among other candldates,

Zn OH2 has been theor1zed to have such a ]ow pK in
the enzyme]a 13, 20,24, 26 27

3] that the pK of the zinc- bound

in some mode] systems
water may approach 7 1f the coord1nat1on number of z1nc

in the comp]ex is 4 or 5.

On the other hand, 1ontzat1on of In- bound 1m1dazo]e C

jhas been proposed to account for the Tow pK 28,40 w1th
»HSOme experlmenta] Just1f1cat1on in s1mp1e complexes4q
xIn order to cast some . ]1ght on the above quest1on,
“11gands 10 and 13, d1ffer1ng only by N- methy]at1on of
the 1m1dazo]e were comp]exed to an equ1va1ent amount of
m;nf+ and titrated with NaOH.: In both cases t1tratfon»y
of the free bases (0 025 mmo]) in a solut1on conta1n1ng

0 1095 mmo] HNO3 showed comp]e(e re]ease of a]] added

and it has been demonstrated '

63

"protons afte? pK had been passed, and that thls process S
] :

{ewas comp]etely revers1b1e Nhen bound to equ1mo]ar

Z 13 showed complete re]ease of a]] added H by pH

7'~ 3.5 1nd1cat1ng that meta] b1nd1ng was complete by that

t;p01nt, and the add1t1ona1 release of 0 025 mmo] H

‘~(1 0 equ1v based on 13 Zn ) upon further t1trat1on,.,s77

‘,l
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suggesting Zn++-0H2'or Zn"*-ImH ijonization, with an

apparent pKa of 6.98. Ultraviolet spectra of the solu-

 tion on either side of the apparent pK showed‘no‘

substantial changes and - the solution rema1ned clear

until at 1east pH 10 1nd1cat1ng that free [Zn ] was

very Tow. Ana]ogous t1trat1on of 10 in the presence

of n*t curious]y.showed the re]ease of only 0.8 equiv.

_ of ¥ (based on lg:Zn++)‘at the apparent pKé of 6.50°

hand not the expected 170.equtv. 'The difference between

:theObsehyed andothe expeeted base consdmptfon ({n”
fthis‘system)’may'be associated'with*the preSence of 2:1
tomplexo Aga1n, Y spectra of the so]ut1ons above and
~be10w the apparent pK showed m1n1ma1 d1fferences On

'the surface,‘the data appear to be most cons1stent with-=
10n1zat1on of a In- 0H2, however th1s is tempered by the'
fact that neither t1trat1on proved to be reversible. A -
;speculatwve exp]anat1on'for the 1rrever51b1]1ty of thev

‘,t1tratlons m1ght be d1mer formatlon as in path a or b

'fof equatlon 23, a]though one wou]d th1nk that these

ey
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"dimers" would revert back  to L-zn**-0H, quickly in acid
solution. The character1zat1on of these dimers was
attempted by isolating a comp]ex from bas1c solutions

containing ligand and Zn . However. the |

H-nmr spectrum,

| mitroanaTysis and molecular weight determination,gave.

incone]usive.results; while_some precedence for the

~ existence of.oxy and.hydroxyubridged Zn** dimers is

; avai]ab1e63]SUCh bridged'species are‘more commonly found

wfth ons like Co(II) Cu(II) (II), and Fe(III)64§
Ligands 14 17 were 1nvest1gated ana]ogous]y It

can be seen from space f1111ng models that the progres—}‘

s1ve]y bu1k1er substmtuents at the 4, 5- pos1t1ons should

| prevent 2 1 (L Zn L) b1nd1ng, and reduce the poss1b111ty

of br1dged d1mers s1nce there should be severe buttress-'”

‘1ng between the tsopropy] groups on adJacent 11gands

Titratibn_of Zn? 14 showed the consumption of l 0

equ1v ofrOH at’about pH 7 but th1s was tied to the

revers1b1e format1on of an 1ntense1y b]ue co]ored so]ut1on

74 wh1ch 1nd1cates the ligand 1tse1f suffers some mod1f1ca-

tjon. L1gand 15, even at ac1d pH,. when comp]exed with

in++ gave a. brlght pmnk'solutton, cons1stent with |

:*‘transformatlon to 19 accord1ng to equat1on 16.

‘} - ngand ]6 on the other hand showed no propens1ty

't'to form co]ored so]ut1ons (aga1n support1ng dehydrat1on

;'of 14 and ]5) and was therefore tltrated (for reasons

_h‘of solub111ty 16 requwred a t1trat1on medxum of 80%



aq. dioxane) in the presence of equimolar ™t I

this case, curiouslyrat "pH“ 7 two equivalents of OH™
were consumed and the process was revers1bde “ Control -
exper1ments under the same cond1t1ons but in the absence
of lg showed again the consumpt1on of two equ1va1ents

of OH™ at~a "pH" of 7, which is c]ear]y tied to the

formation of Zn(OH)2 XHZO but-the latter species appears‘

quite soluble in the medium. Thus it wou]d‘appear that

because Zn++ binds to 16 on]y weak]y (pKZn ++ = 4, Tab]e o

YV) at elevated "pH" OH~ s1mp]y sequesters the meta]
away from the ligand. B '\“ﬁ-‘h . ’.ﬂ(

L1gand 17 was des1gned to prevent 2:1 (L In L)
bind1ng, oXy- or hydroxy-brldged d1mers, and,the.de]eter-
ious dehydrat1on in the presence of 70" and OH™.. One
1m1dazole N H was requlred to prov1de reasonable metal

anding T1trat1on of 17 in the presence of equ1mo]ar

"In** showed the revers1b1e consumption of 1 equiv. OH

.with'onfapparent "pKa“ of .~ 6 5 in 76% ethano]/water and h
‘ ++ o

of ~ S.foh 60% aq. dioxane.l In the absence of 17,

‘under the seme conditions.showed.prec1pjtatfﬁ
. Zn(OH)é and.the-cbnsumotfon‘of 2,eduiu OH™ at around
.“pn"v7;] Interact1on of 17 ith in+-,1s strong enough

ito ho]d t§?§1atter 1n so]ut1on,‘and the consumpt1on of
-OH 1s con51stent W1th Zn" OH2 or Zn t ImH t1trat1on
. (a]though the “pK " seems too low) or. more llke]y w1th

dOH d1splacement of one of the weak]y bound N CH3

A

66.



imidazoles as in equation' 24.

N,

17:20% 04, + oW m—

o Fy

6. Co(IT) COMPLEX TITRATJON.AND UV _VISIBLE SPECTRA.

>

L The fact that act1vat1on of apo-C.A. can be ach1emed.
- With Co(II)7 prov1des the poss1b1]1ty of us1ng the
‘spectroscop1c propert1es of cobalt as a probe for the-
a act1ve s1te geometry of C.A. Zn(II) can not g1ve the
esame kind of 1nformat1on because it has.a comp]ete set

of 3d electrons

The Co(II) ion has a d7'configuration, and-it forms;'

- preferentlally octahedral complexes, although four and
f1ve coordlnatlon are not uncommon7b 65 The d d

absorpt1on spectra of Co(II) are so character1st1c that-

. -

1-the geometry of a complex can be reasonably wel] prewr*”

65b, 65¢, Genera11y octahedral

‘th(II) is p1nk (A o~ 500 nm, e~ 10 M ]fc ), and

‘ d1cted from 1ts spectrum

‘ ’:tetrahedra1 is blue or v1o1et (Amax A_575Mnm 200-;;c,

,w'}1000 M 1) ngh Sp1n pentacoord1nated Co(II) com-

‘hplexes have absorptlon bands usually between 500 and



~ 700 nm with intensitie% intermediate between,those of i -

tetrahedral and octahedraL spec1es]0 65¢.

- o

Again, ligands ]0 and 13 were compared as their

5

Co(II) comp]exes “Titration of equ1mo1arvamounts of

Al

_lg-and Co(II),‘and 13 and Co(IT) showed titration of a

‘group inveach one of ‘the complexes, with respective

:pK ‘s of 8.75 and 8.04. U]trav1o]et Spectra of each
‘above and be]ow the apparent pK did not show ev1dence
for tetrahedra] or f1ve coordlnated Co(II) Hence in

1‘) v

these systems what .appears to be s1mp1e Co- OH2 t1tra-

© tion 1s not. suff1c1ent to enforce a tetrahedral geometry

L1gands 9 1], and 12 showed absence of any tetra-*
hedra] or five coordlnated Co(II) bands | |

The complex 17 Co(II) upon t1trat10n w1th NaOH :
in. 76% aq ethano] and in the absgnce of a1r deve]oped

'a v101et co]or (Ama*‘-'sso nm, € = 60 assumlnq comp1ete"

1 1 b1nd1ng) attr1butab]e“to four or f1ve coordlnat1on

w1th an apparent pK 7,; Howev%r, no. conclus1on could

A

“be drawn from th1s exper1ment, s1nce the v1o]et color m;'
| vformatlon proved not to be revers1bh§3upon reac1d1f1ca-‘

~ tion w1th perch]orrc or hydroch10r1c ac1d Th1s
-arrevers1b111t§ 1s not 11ke1y due to Co(III) format1on

’ a - v

.,because the experlments were performed 1n the absence

p:of oxygen, but probably to 1wgand decomposit1on (dehydra—“mg 2

tlonV) as in. equatlon 25 -o?'fVQT;fefﬁfph7-5

. 68

S
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7. CATALYTIC STUDIES

3 = :
fatigands 9 and 17 were‘tested for. catalytic aetivity
towards PNPA hydr01y51s at several pH's around neutra11ty,

1n the presence of severa] Zn t concentrat1ons For

3both 11gands no cata]yt1c rate enhancement was detected.

"L1gand 17 was also tested for aceta]déhyde hydrat1on

w1thout success F1na11y 17 was tested for- 602 hydra-m

: t1on in 76% aq. ethanpl,; The results are summarrzed in
Cable Vi,

h ' The first noticeable th1ng ls the high va]ues for

~“k 66

compared to 11terature va]ues obta1ned for 602

“obs . .
hydrat1on in aqueous solutlons under s1m11ar buffer and

r10n1c strength condltlons Th1s is 1n agreement w1th
67 observat1on that the blcarbonate dehydrat10n~
:'15 acce]erated 43 t1mes relat1ve to water in the presence
of 71.5% d1oxan Probably the trans1t1on state66c does
N7.not have much charge separat1on (equatlon 26) and is

o
\ #
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- TABLE VII
| €0, hydration in 76%'etganoi:H20'at 25°, S
Reaction céndjtions | ‘kobt (sec‘1); , kcatd (M'] sgc'])
‘ ‘ v
- Spontaneous (pH 7.50) | . _0;175t0;015 . . -
. Spontanéous (pH 6.50) | ].t]Ot0.0SO.. -
[Pad (PH 7.50)  0.1800.005 e
7™ pu7s0) ' 0.284:0.012 109227

17+ 't (pH6.50) ' 1.520£0.025 41075

N
-

L ‘Jj} . b . . ' . -
aKineti'cs measured in 0.05 M HEPES buffer. Ionic
strength was kept constant at 0. 2 M by NaClO4 addition.

pH values are those d1rect]y read from electrode

1mmersed in solut1on

bra73 = 1073 u oo
‘[17] - [in(c1o4) 1=10%w ,

d
kcat - (kobs Spont}/[cat]

Negl1glb1e w1th1n exper1menta1 error



stabilized by decreasing the polarity of the medium.

| 0 H 0 H
. N/ N /

0 ' -0 C—0

I /H \ }: A

— 3 —
| \H " :'I \H 0/
H‘-'O\ ‘ . ) \ H .
0 H
H/ \H ‘ - - ) ' .
s Jr (26)
HCO3-'+ H30

The second and most important observation is that

. kcat diminishes with 1ncreas1ng pH. A]though measure-

ments performed only at two d1fferent pH va]ues are : h ‘
not enough to define the pH dependence of the phenomehoh

me@sured, 1t is clear that K. . at pH 7.50 is smaller

cat
than at pH 6. 50 In other words, the concentration of

the oota1yt1ca11y active species ([CAT]) is decreased

as pH\increases.
. . I B

A sumihg that the catélytica]ly‘active species is

a trig-i 1dazole coordinated zinc comp]ex, the following

\

_Tequ1]1br1um (equatlon 27) can be proposed, which is
also conswstent with the base t]trat1on of the complex
CAT coqu be a zinc bound hydroxxde species. ‘At

_pH 6.5 the coo entrat1on of CAT would be enough to

“produce the' obs rved increase of k of 0. 410 sec -1

obs

When more base -is\added to the system to increase the ,
;o

pH to 7.50, the co'centrat1on of CAT (probably through 23)
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is decreased{’ Zinc hydrox%de éou]d'then precigitaiéjof
agglomerate irreVefsibly and tﬁe 1%gand could brotdnaté

~at pH 7.5 since pk ay for 17 is 8 2. The BaSe'cbhsump-‘ /
tion. 1n g01ng from ]7 In- 0“2 to 24 would stlll be one

mo]e of baJe per mo]e of complex : S »'



8. CONCLUSION

Although for various reasons each of ligands g 17
has some serious deficiency in terms of the1r ability,
to be considered as "models" for ‘the meta] binding
site of C.A., several important observations have been
made which cast light on the minimum }eaturee such
mode]s must possess. 2,\ L - |
1; N- CH3 imidazole 11gands bind meta] rather poor]y

when compared with their N-H ana]ogues Onew

clearly requ1res large pKM++ values for a potentda?

‘mode] for C.A. so that the metal will not be

sequestered‘away from the iigand atcelevated pH.
2. The small ligands 9-12 from nmr stﬂﬂ{esjn D,0 \

SOIution can exist as 2:1 or lil‘metalicomplexesub

- hthe 1at§er being favored;at highmeta]_cohcentra;i7\§
't1ons | . ‘” o | | |
C3. De]eterlous 2: l (L M L) bind{ng’cah"be ouercome-
pby p]acing 1arge a]ky] groups at the 4 5- 1m1dazo1e v{]
pos1tjons However sqch substxtutlon 1n\the trms—,, ‘
o imidacole carb1nol series appears to lead to fac11e
.dehydrat1on to produce h1gh1y colored fu]vene 11ke '
t mater1a15~ Such dehydrat1on can be overcome by re-
‘),moving the carbinol OH group, or methy]at1ng the J
1 1m1dazole nltrogen, however the former subst1tut1on:,
of‘QH by H produces an extreme]y eas11y‘a1r- i»
_,oxidizgd,mgfhahe,'and the iatfer N:methy]atfohf‘

! - . @
- A r

2y
N
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u leads to rather poor metal binding)abi]ity{
One possible reason for the dehydration of the -

,N H 11gands and. poor b1nd1ng of the N- CH3 analogues
‘might be strain forces involved in the formation of .;f5
- the meta]-comp]exf The fact that Ketone lgg can be -
‘obtained by'sinp1y heatingrof carbino] f6 (SCHEME XIIinN
1nd1cates that 16 1tse]f might be a stra1ned molecu]e |
eand decompos1t1on re11eves this stra1n pjndlng to
meta] stra1ns even more the ligand mo]eque lFigure i_
7 shows the approx1mate geometr1ca1 arrangement for
't b1nd1ng of one 1m1dazo]e of a carb1nol 1lgand
Bond Tengths (OH)C-Cp = 1.47 A, CZ-N] ",- 1.33 A, and‘,“

,N]-an% 2. 05 A,_and angles N3 C; N] = 109°;‘and

- Fig. 7. GeOmetrlcal arrangement for: Zn blndlng of o-f

. ,.

im1dazole of a carb1n01 11gand



q

Co=Ny- C5 = 108° were assumed to be the same as the
ana]ogous ones in the complex 16b ZnBr2 (APPENDIX III)
The angle HOfC-CZ was assumed to havevthe tetrahedral
value of. ;109° ‘It can be seen that C- CZ'N] -In fOrm

~ half of a very dlstorted hexagon Assum1ng that the
| opt1mum d1rect1on for 1m1dazo1e b1nd1ng is the one that =

b1sects ‘the CZ—N]-C5 ang]e, as represented by the dotted

f11ne in Fxg 7, the dev1at1on from this ang]e when'

the trzs 1m1dazo1yl carb1n01 11gands bind. Zn t 1S;quite’
large (']8 ). »In'order~to m1n1m1ze th1s-dev1atdon,'
the mo]ecule has to 1ncrease the OH C- CZ ang]e, thus.h
l;1ncreas1ng its tota] energy, and. as.a consequence 1ts

| suscept1b111ty to chemlcal mod1f1cat1on .
From the above, the next step in. the construct1on

Cof a. model"}for the actxve s1te of C A was the des1gn

5reof a ser1es of llgands lack1ng the poss1b111ty for de-

.hydrat1on, and mak1ng metal blndlng more favorab]e, L

"pW1thout the need for a 1arge d1stort1on oﬁ»the molecule ;,gl*f"

”f(\ e. the phosph1ne analogues of the carb1nols)

PR [
B

| ;,_Q_'b.,‘7.mit‘)s”PHINE.S’~

As 1nd1cated in the prevwous sect1on the trzs-.*~

"1m1dazoﬂy1~phosph1nes were syq$he51zed ln order to avo1d f'v

;nsome problems presented by the carb1nol ana]ogues _A .h -

s1m1]ar geometr1ca1 ana]ySIS of the mode of b1nd1ng to

75
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Zn++ can be done g
The geometry of phOSphlnes is that of a tr1gona1
ﬂpyramldsg 70 (Fig. 8). 'The angle each bond makes
]
b Yo G LV
- cos8 = |1 - =~'sin (& (28)
/ 3 -\ 2

Fig. 8. :Geometry ofe o S d‘ .

: Phosphjnes.. ,

_7with the prlnc1pa1 ax1s (e) 1sjre1ated to the bond'f\
'Ejangle (¢) by equat1on 28 70 The bond angle b 15 | .
ﬁ;typ1ca]Ly/aTbund,100° (ref 70) wlth th1s va]ue and
'_‘us1ng equat1on 28 a v??be of- 62° for 6 is obtained Theft‘° y
7Faverage va]ue for P .C.. bonds 1n tr1subst1tuted phOSph1nesttd
s 1. 8 A 70,~ w1th th1s data and the N Zn bond d1stance ,,;f
.fof 2. 05 A (APPENDIXwIII), the approx1mate geometrical N
1'arrangement for. Zn ' b1nd1ng of a trts 1m1dazo]y1- f‘g'
-phosphlne can be drawn (F1g 9) R B
| It is observed that ‘the devwatton of the actua]
';N Zn b1nd1ng directlbn from the opt1mum one (dotted l1ne)ff

1*15 Smaller than in the carb1no] case ( 13 ) This

h1nd1cates, however, that these phosph1nes do not afford



wyet the optimum geometry for_Zn++ binding.

|
|
|
P

~——

,‘........N-. ......_. —— e - - - ———
- .3 o

,a'FigLsQ; Approxlmate geometr1ca] arrangement for Zn

' b1nd1ng of a trts 1m1dazo]y1 phosph1ne

>'H_py;.L'SYNTHE51sQ""' i

‘-‘ Nucleoph1]1c dlsplacement on phosphorous ha11des byi"

,sforganometa111c reagents 1s a\Very fac1]e process lead-, ,f,7*

ing to . tert1ary phosph1nes7] o

- The synthes1s of phospQ1nes 29(a/c) (Scheme XIV)
7was attempted f1rst by react1on of 11th1ated ZS(a c)
lfw1th phosphorous tr1chlor1de The phosph1nes 26(a c)
f were obta1ned but the strong ac1d conditions needed to

;'deprotect the lmidazoles44 led tOoP c bond cleavage

N

17



SCHEME XIV

o I>
HC(OEt)3
(nCHiiii///
| ) N
(Bee T 2lac O

1) nBuLi A ) B
jaecy oo ey




.Instead; the bis¥ethoxy methyl was used as a protecting
‘group72. :The N-protected imidazZoles gl(a-c) mere |
lithiated and reacted with phosphorous trichloride to
glve the phosph1nes 28(a c) which'were'notntsolated.but-
successfu]ly deprotected under neutra] conditions to

afford compounds gg(a-c).

2. H' AND M BINDING CONSTANTS

IoniZation andemetalvbinding constants were
determ1ned in the same way as for the carb1no] compounds
_Ion1zat1on constants are 11sted in Tab]e VIII. Due to
jso]ub111ty 2easons the exper1ments had to be performed
‘1n media: of d1fferent ethanol1c content therefore. the
~values. for the three 11gands are not dlrectly comparab]e
tj..For examp]e, phosph1ne 29c appears to be substantwal]y
.less bas1c than 29b but that m1ght 11kely be a so]vent
,effect, the more polar env1ronment (less ethanol content)
‘g1v1ng a hwgher apparent pK | .

Zn and Co b1nd1ng constants to 1lgand 29c were

determ1ned 1n the same med1um used for pK s determlna-ﬁt .

ttlon, and foundsto be 5 90 0 05 and 3 70 - 0.20 res-»

Npect1ve1y ' The much better ab111ty to b1nd Zn f»comparedmh-?*"“

58

:to Co )s probably due ‘to tetrahedra] b1nd1ng How-

. e :
,ever, these b1nd1ng constants are1very sma]] 1f dnex\-

79

Ncompares them w1th the aff1n1t1es for Zn and Co ”tqf:fv;:-._



TABLE VIII -

vIonizétion cqnstants"(pKa's) for 1igands0gg(a-c)a.

Li@and" pKa] _’ pKa2 l - PKy3

EtOH/H,0 ratio?

Mo29a° 6.79  6.04  2.54

20¢® .. 6.60  4.35 2.80

4. 758 6.51 244

0.67 -
1 0.20

4.00

% s 0. 05 un1t preC1510n A
e 4 o ' '
: %at the beglnnlng of the t1trat1on

°4 ml Q. 25 M KN03 in.1:1 ELOH/H, 0, 1 m1 0. 025 ML in

e. 1051 M H§0

d4_p1 0.25 M KN03, 1 m 0. 025 ML in EtOH 1 m 0. 1051 M

_fHN03,

’\eé'ml EtOH 75 mg KN03, 1 m] 0. 1051 M HN03, 1 ml 0.025 M

L in EtOH

,.'(‘ .

. . S 1 .
[ . ‘. . : -
'

apo carbon1c anhydrase ' Perhaps thlS resu]ts from the

;non opt1mized geometry for metal b1nd1ng of th1s phosph1ne

"*”z BINDING ‘
. ‘

RN L e o -.’.v o R
TN : B T T

NUCLEAR MAGNETIC RESONANCE STUDY OF 29c AND |

80

"JHQfﬁmf?sbe¢t}a“df'}bugﬁjy{!q;qgsfm1225 15;d4;jﬁi1f B
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29¢c. -

Zn* /20¢ =1

~

H-nmr spectrg of 29¢ and its 1:1 In** coms

_Fig. 10, The!



gy
methano] 020 were recorded as a funct1on of 1ncrea51ng A
++ oo '
[Zn""]. As it can be 3een in: Fig. 10, when the 29c/ o

2t ratio was 1, aw 1 def1ned symmetr1ca1 1 1
complex wa§ observed’- Chem1ca1 shlfts and - coupl1ng con-

-stants for the 11gand and 1ts Zn complex are-glven'ﬂn

Table IX. Further add1t1on of Zn d]d not change the;‘_h
Spectrum and 2 1 comp]ex was not obserged L
For the equ111br1um SRR B

TABLE Ix O . '_ |

Chemwca} sh1ft values for 11gand 29c and its’ Zn‘“:i L
ficomp]ex determ1ned 1n CD3OD DZO solut1on | e
L ® T : o % .1;'

[Zn J/[2_95] -1 3.53m 3 17 m 1 34 4 22 d
Lo i 9= 7 Hz J= 7Hz

_— : N EC A
-;%nmr t1mesca1g s1nce separate resonances are observed ﬂor‘;_,iﬂ~*"

”feacﬁ spec1es., Also, the fact that two d1st1nct resonances

%“for the LBOPPOPY]S are observed 1nd1cates that the 31da}ftﬁ}fﬁ~~71



L N
-

\\\\mo$£cule is 1ndeed bound tr1dentaté as expected L
R RATE oF zn‘"_' BINDING Bv\29'c C
p— N

o |
There 1s ev1dence that the b1nd1ng of meta] 1ons

Qby apo carbon1c anhydrase 15 d1fferent in 1mportant

respects from the b1nd1ng of the same 1ons by sma]] e
S :

» 11 ands L S ;f._\-v'* s SR "11,;_:T7\*r

For example. the second order rate constants for

the react1on of Zn f thh sma]l 11gands are’in. the range

-107-10ng_lrsec 1;‘w1th 11tt1e dependence on. the naturefn_h't’ :

Q: 'ofrthe 1igand73n, Ho]yer et a174 reported lower values, 7};1j'

‘c]ose to 106 M -1 secf? at 25°, for the react1on of Zn |
'tw1th 1 10- phenanthro]1ne, 2 2' b1pyr1d1ne. and 2 2', 2“A yfy‘.
'terpyr1d1ne Theareact1on of In f‘wwth apo-C. A %%t~vfy
‘characterlzed by rates wh1ch are two. orders of magn1tude
"slower than observed w1th these polydentate 11gands75 a4

". The . actlvataon parameters for the react1on of Zn+f ;
with the apoenzyme are also very dlfferent compared to
the reaot1on\w1th the T1gands stud1ed by Ho]yer et aP74

) Cheiate formatton W1th sma]] 11gands is character1zed |
ﬁby "a. 1ow energy of act1vat1on of 7-8 kca] mgge and
a smal] negat1ve entropy of act1vat1on of 4&to -8 ca]
deg'1 mo]e j; whereas the protein react1on has an un-
5usua11y Targe energy of actlvatton, 21 kcal mo]e'1;~'
"ywh1ch 1s part1a11y compensated by a fa1r1y large pos1t1ve

!

';'entropy of actlvatlon amount1ng to 27 29 ca] deg 1"5‘



. K . . T - R

| mo]e"]75 S1nce the'Zn 1s*bonnd to:the}pnotein af}Jh;‘lw’
l‘the bottom of a c]eft the 1arge pos1t1ve entropy of‘. -
B d*act1vat1on hag/been attr1buted7§ to 11berat1on and
‘f}f:d1gorder of bound water mo]eculesﬂ;rom the Zn*“and/or
A the protewn cav1ty f}jiﬁf[f‘fﬁin“{?gn S
In order to compane 1t w1th\the enzyme,hthe rateh;_

—_— 3

' .(agalh the organ1c med1um was needed for so]ub111%y

‘t‘reaSons) The resu]ts are summar1zed 1n Tab]e X.
RN R SN

h_d;e (}da} 1'gsns5a£él3;g;L‘fj-'
/ ‘, |

-f Rates of n? blnd1ng to 29

entry ft?);;e».[anfJx104 : d-k](sec,i)c; B k2(M ]sec ])x10f4f»-

I X ] ,_‘j‘73 31 \ :j‘ 11.7:0.5  3.50.2
R R ¥ IRE- N L S 0:.0.8" . . 3.3:0.3
C§i 28 3, 3L? 10.1£0.9 3.060.3
iv 2.8 6.62 ;,~', 8.8:0.5 - -
v 82, 331 0 1.305 - 3402 .
Covi a2 o220 o 3as0s o e
vii 22 Ctad® o ee0s o 0 -
vidl. 22,8 3.3 - b5 3302 . |
ixoowed '3 - - so:05 . o -
X. 330 331 19.81.6  5.0:0.5
Coox a6 331 293515 9,005
Cooxih 8630 331 34807 10.5:0.5

% .. . continued......

‘f»of an* b1nd1ng by 29c was stud1ed 1n 76% ethanol water d fh;'{ff
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- Table X (C°"t‘"U9d) ‘}a,aifzaigixeifftftﬁt(f?ﬁ,e;*“

aMeasured under pseudo f1rst order condlttons [M]/[29c]

w:_ﬁ>1o by look1ng at the Opt1ca1 change at 290 nm, wave—fi}

\"

':tfilength of max1mum d1fference between the spectra of 2

—_

"f_gand 29c Zn ; comp]ex.“ The concentrat1on of 29C WaS
5 o “ . . :

2 x 10 M un1ess otherw1se stated ’{
bZn (NO3)2 was used 7” ‘ 'ddlx o . h;
CPseudo f1rst order rate constant 'ﬁgfy;?iw;g;a-p-

«

(

dSecond order rate constant k2 = k /[z +*j ¢1t~lﬂff¢;;fﬁ5»infn7

B N
- eThe "bH" of the z1nc so]ut1on was 5 3

fThe "pH“‘of the z1nc soTnt1on was adJusted to 6 2 by
add1t1on of NaOH ,‘f.}ié.‘f}iitﬂ;wﬂj_Vﬁﬁf;sjVﬁ**°
gThe‘"pH" of the z1nc solut1on was adadsted to 6 9 by

add1t10n of NaOH V?g fte“”i’?*{\ﬂ :

- - . ol

hThe concentratton of 29c was 1 x 10

JThe k1net1cs at th1s temperature was no 1onger f1rst
e L
' *,order., The observed rate seemed to have two commxmnts S

:‘-a fast and\a slower one The value reported for k]

~

R PR T
;corresponds to- the fast one N .
fg} o L N . i . S R RN

¥

| It can be seeh from the f1rst three entties that the

e rate of b1nd1ng 1s constant w1th1n experwmenta] error
1n the pH range S 3 6. 9,.1nd1cat1ng that the rate—f
determ1n1ng/§tep is relat1vely 1ndependent of the state

s - oY
. of protonatlon of the 1m1dazole

. Tem L .
5 T I e R
M . T e .

. . e o v : Al .
. g R .
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) "V,Fjg, 11 shows the dependence of the pseudo-"

'f»flrst order rate qpnstant w1th the z1nc- concentrat1on R

TM(entrles 1v.911 in Tab]e X)

oy e
-sec™ |-

- 66,._ x10._4’.-M;,» ,  _‘ e
[Zn(Noa)] %%

. . ‘t . ! . B ) . . o o B .

11 22 3

:oT’

1::’Figﬁ'li.h Plot of the pseudo flrst order rate constant

L

‘»of Zn blnﬁ1ng to 29c vs. the concentrat1on ;.,. -: o

of Zn(NO )2

:ate of b1nding appears to

_Contrary to expectatwons tw_ﬁ
v}be re]at1ve1y independent offthe z1nc concentrat1on

;fytIt 1s poss1ble that the metal binds in a fast step



PRP— ; ,\‘.'.-‘
N [ I o co '.__ - W et
. \

'fto the fvrst 1m1dazo]e of the ]1gand, and then more \r.f ,tpff.'“/
'“f?1510w1y to the other two,_the measured rate cornespond—t‘ o

f}n1ng’to'th1s 1ast rate determnm1ng step If th1s were"ﬁjﬁf; @hthm

fso, determ1n1ng the rate . Jof. blndlng under cond1t10ns of |
h‘tsoccess1ve1y 1ower [Zn_fj; shou]d u1t1mate1y a]ter the ',;j;gf
rfirate determ1n1ng step to one depehdent on [Zn ijt ”; o
5 The rate of b1nd1ng was observed to 1ncrease W1th

"‘*'temperature The Arrhen1us p]ot (pH of the Zn so]u—-hfeﬁ”h ’

'f*;*t1on 5, 3) over a range of temperatures is shown 1n rj;»f'V"'

F ]2 (entmes v, v]”, x- x11 m Table x) _

'.'-"»f..'

; -ng}pizy-.Effect of temperature on the rate constant
| :ffor the b1nd1ng of Zn to 29c The Str&Ight

f}11ne 1s a least squares f1t to the exper1mental

ildata g -#- 20 4. 4599 8 (T) re0.976



'nijthe rate oF b1nd1ng 1s qu1te slow (3 3 X 10 M -1 f

":fffor C A metal 51te the act1vat1on parameters are'

e uf S "', :“.- R I L
'51f'The energy and entropy of actxvat1on are, 9 3 kcal '-?//ﬁh\\vjkﬁ

'”moif},and 6 5 cal deg mbl ! respect1ve1y ' A]though
1

e b
-ﬁ’at 23 ) 1n agreement W1th 29c belng a reasonab]e model

i, V9.

ff;frmore 1nd1cat1ve of those for a sma1der 119and thgff_.f'

'jfﬂfvery sma]l act1vat1on entropy 1nd1cates that there 15“

"f?fnot very much so]vent reorderwng 1n the rate determ1n1ngff;h}*,f,f

i':i;step for the observed process

""S;VYiCQ(&i)fvrsIBLEPSPchRAfjf@jfjg;i;5:"'”

For reasons exp]a1ned 1n Rhe prev1ous chapter,;_'“'"' .

“ufiCo(II) was. used as a- probe to assess the coord1nat1oh

”,eg'geometry of the phosph1ne comp]exes

: ;:Jlgat1on

- UL V spectra of 29a and 29b 1n the presence of
"7C0C12 showed ltttle 1f any evadence for four coord1nate fﬁ""' S

0n the other hand the d1tsoprogy1-

7b,65. R

.t hOSph1ne 29c 1n the presenge_ofsﬁoﬁj showed_neueLSJb]e;;;;;;;%fn
f;vformatgon of a tetrahedra] spec1es (F1g 13) at 1ncreas-1¥h-ftfwaW

_[1ng PH w1th bands appearlng at: 588 (285) 522 (456)=.
646 (5]6) 662 (50]) nm (E) ,<W]th an appare“t pK "o

L NRETA i AP -
(F19 14) around 5.5, R My

The 29c Co(II).spectra were found to be h1gh1y a;f]ﬁ

' a*. - - —— ‘ .‘ v —— ;;fv_'~3’

e 's. were determ1ned by add1ng known amount§ of 29c to

a cell conta1n1ng 3 ml of 0 1 M CoC]Q 1n fﬁ% EtOH/H 0



’fols.;ﬁHij;,’

06

oaf

;__UV VTs1b1e spectra of 29c CoClz comp]ex at i

o QjEtOH H,0, 0. 01 mL. of 1.0 " Coc12, 0. 1L of

89

TS

':several pH s 1, pH 3. 8 2, pH 4 1 3 pH 4 7,1;15'H .
4, pH 5. 2; 5, pH 6\05 6, pH 7. 45 (3 mL of 75%“;*7'

70,025 M 29c in EtOH, and PH. adJusted w1th smalrafir“*f=”

| szadd1t1ons of conc}

kHﬁt}Harb1trary un1ts

: _QQH } Vert1ca1 :calg,

"~ T ' el . v,



S “

_;qﬂ,;»j.._na“v-j'jji T

4

B

-

'ff;complex 29c CoC]2 as a: funct1on of pH (from 2

‘T*for the Co(II) enzyme\lF19 ]6) In the presence of

';C104' and NO3 the 29c Co(II) Spectra were not 1nd1ca-h§§?

\

F1g 13) The 11ne draﬁh 1s an eye gu1de on]y

. gpﬁ'

A rig;"14 Inten51ty of the 646 nm d d transut1on of the 3faf-_,n

‘7ﬁﬁian1un dependent (F19 ]5). remInTSCe"t °f the s1tuat10n “

*fft1ve of a tetrahédral coord1nat1on but were more con- f}73°:357“}.

: as1stent W1th predominant 5 and/or 5 COOrdlnate ,f’ S

Thus the metal b1nd1ng s1te of 29c 1s flex1b1e

fenough to a]]ow access of one or more add1t1ona1 11gandslj_;[§h:7j

_faother than the three of the phOSph1ne Th1s feature

-fVFmay be 1mportant 1f the trans1t1on state for CO

: hhydratlon by 29c Zn f 1nvo1ves f1ve coord1nate z1nc



L IR VLR NAR e S R
~ Fig. 15, ULV, -v1s1b1e spectra of 131 29¢c: Co(NO3)2 solu= .7,
= '~' Vt1ons saturated w1th dlfferent an1ons in. 76%

" ethanol:H,0; ¢1° "(——), (----), 1 (—-f—"v—“-)”_;xu-;;_
 ‘Ff}("—~——-), N&‘ (-—--—*): ‘The spectrum of e
'3133ﬁ Co(II) bOV1ne carbon1c anhydrase 1n unbuffered

‘“:;solution at pH 8 8 (——i——) redrawn from ref TT);;iff

. N . ;
AN PRI

"ijg{;iSf rAbsorpt1on spectra of the complexes of
:7;, ;?7l“f'51bov1ne Co(II)_carbon1c anhydrase w1th it G
B T L S e (__r_u), N3 o T

} ﬂReproduced from refs 8a and 7b
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The cata]yt1c act1v1ty of 296 towards PNPA »i“ C e

"~sahydroly51s and that of 29(a c) towards CO2 hydrat1on :;;_

’vjwere stud1ed ‘-,ff‘fhrjf?; ‘f.f' 3 ' 'T.-f}"'p\ T

SRR
CompoDnd 29c and 1ts 21nc complex proved to be
,,1nact1ve 1n cata]yz1ng PNPA hydro]ys1s L _

e J
- The reSu]ts of the COZ hydrat1on exper1ments are
i}{summar1zed 1n Tab]e XI Phosph1nes 29a and 29b at pH

L ya SRR ‘ - A
”57 5. show very sma]] cata]ys1s (kcat’~ 5 M ] ' ]) R

ffc;athCh does not seem to be enhanced by the add1t1on of

ntt On the other hand phosphlne 29c shows a neg]1-_f“f7H7HH

;i~hfglb1e catalyt1c effect at pH 7 5 but upon comp]exat1on o

fff;hw1th equ1mo]ar amount (10 3 M) Zn produces a catalyt1c

ﬁj;rate enhandement of COZ hydrat1on of 30 M -1 ’ﬁf“l 'nyfohrf’n“

'»fpdTh1g cata]yt1c rate enhancement is. somewhat 1ncreased

- fat pH 7 0 and 1t d1sappears comp]etely at pH 6 5 Th1s

’c_observat1on 1nd1cates that some baswc form of the com- .

e

' fp]ex is probab]y the cata]yt1ca11y active spec1es

'ff'ﬁln fact, t1trat1on expertments on Z9c Zn T+ showed an tﬁ?ﬂfh;-?w )

3afljon1zat1on of some assocvated group whlch can be tenta- Ve w e

n/tlvely ass1gned as 29c Zn --0H2 However the t1tra—vf

'””_t1on curve was not eas11y ana]yzed as hav1ng ar1sen from

/ hfa s1ngle we11 def1ned event Prqbab]y the ba51c part p;dj}-(fT{h

T;ffaf this t1trat1on was comp]1cated by comp]ex[hydro]ys1s

°7=fs1m1]ar to what happened to carb1nol 17) due tO the ';Q;ﬁpisz”
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 CTABLE XI

Rates of €0, hydration Catalyzed by Comp1 exes 29:2n"tat 25°, -

=fReaction;coqditioh§;ﬁ

(Séc ])ZL(

1 obs

c"ffkcat

fSpontaneous (pH 7

22297” C(pH 7

_29c + 't (pH 7

(Spontaneous (pH 7

'29c + Zn (pH 7

. -—_—

fSpontaneous (pH 6

29c + Zn (pH 6

s O 1.
._;5@{&i;

5

50)

50)
00)

00)
560
LI

0

SOX}T

Coameas

T{lto 2os+o ooa/’}*7“

- O ]70"0 020

”:3;0 386*0 ooaff,;“u"’”*"w'(

7f0 491+o 035}73;
S T]O*O osoﬂ{{;,f;’

'fi;”o 0464+o ooo4f“f;”m»~

7750 o.0d00.000

;-j'l oso+o 0405jiﬂf;fi;§§”?;? S

'7jao 0469+0 Ooggdpﬁ'if”sﬁiff4£éf,j"“

1?;5£4E{dgfgfp(f

"1ie ethanol water

was ]0 M

was kept constant at 0 2 M w1th NaC]O4

3

caf = (k

when used

- kspont /[ S g
:’ﬁ”FNegl1g1b]e w1th1n experumental error.;,ﬂ7@7e73'

BELY! K1net1cs measured 1n\0 05 M HEPES buffer

4

Zn(C104)2 was used as source of Zn

cat]

pH va]ues are
HH[ those d1rect1y read from e]ectrode 1mmersed 1n so1ut10n

fﬂfg'Due to solub111ty reasons, runs w1th 29a and 29b were

the cata]yst concentrat1on

e

(M ]sec ])Pdl7f L

Ion1c strength'(V'

o performed 1n HZO solut1ons, and those w1th 29c 1n 76% ‘:jﬁgi_j’;



7rﬁhgand not s1mp1y a react1on of 29c w1th COZ to form »;feiiié
°'l,;the coerespond1ng carbamate because the amount of o
“h~igﬁ ]1berated was near]y the same as the 1n1t1a1

f;;;{[cozj, wh:ch in turn was he]d at 5 10 t1mes that of

. - T
-

e ‘relat1ve1y weak 21nc blnd1ng ab111ty of the 11gand s s
- s “':a;;;' Rt

The C02 hydrat1on was\trulx~a cata]ytic process

DT

‘7;ﬂ;catalyst Thus the cata]yt1ca11y actlve form was

jfﬁ%_turn1ng over

'"ffhj | As observed 1n the C&PblﬂO]S, the presence Of

s

'fftsa propyl group5‘1n the 4 and 5 pos1t1ons of the 1m1dazo]e

"ff1nh1b1ts z 3B (L M L) b1nd1n9 gfﬁfﬁﬁ-Zfﬁ*fﬁfkff&fifhfﬁ‘;v :

' "rthe analogous carb1no] 11gands

‘**rQ;J 2 Subst1tut1on of the carb1no] group by phosphorous :f-71

"ffseems to e11m1nate the dehydrat1on prob]ems Pr‘eseﬂt 1" S

r

‘””*f:Vj3; Compound 29c b1nds z1nc 1n a trtdentate sym-g;iif:f 25

":jmetrlcal way, us1ng 1ts three 1m1dazole r1ngs

j7f{€more 1nd1c3t1ve of a smal] 11gand

'fh4 The rate of 29c blndlng'to 21nc is s1m11ar tO

“hffthat of the apﬁfnzyme, but the actrvat1on parameters are

e

MQ’7ﬁh§v The metal b1nd1n9 ab1]ity °f 290 ’S "°t as
"iffgood as. one wou1d 11ke 1t to be% perhaps due t° reasons

"ldﬂexp1a1ned at the beQInn1n9 of thls chapter This PfObﬂbly »=4;i55

'5ﬂhf1eads to complex hydrolysws at hlgh pH s.vand the con-"'-v'fq-we

'T;vﬁcentrat‘°“ of act1ve catalyst does not Seem to 1ncrease




-marked]y by increasfng the‘pH“ | _ | f‘ |
| 6. " The Uy- v1s1b]e spectra éf the 29cCo(II) comp]exes(
'{lhave several features dn common w1th Co(II) carbon1c
:'anhydrase E ' | v j“ S -“f
| -,7+1 Compound 29c const1tutes the f1rst model for
~the actijve s1te of C. A whwch m1m1cs at the same‘t1me"'
aseveral of the phys1cochem1ca1 propertles of the enzyme
1nclud1ng some cata]yt1c act1v1ty towards CO2 hydrat1on
and b1carbonate dehydrat1on o ;‘)=“, .‘w‘ff; - t:' .
' ,8.hf A]though thlS cata1y51s is. encourag1ng, 12-15-4
‘modest when compared to that exh1b1ted by the enzyme“ 1it:‘

is poss1b1e that s1mp1y creat1ng a good meta] b1nd1ng

AN

\hcaijty 15 not sufftE\ent to accougt for fu]] enzymat1c';;‘
“act1v1ty | Kannan et a177 said that "1t is a]so 1mportant
"’to account for the ro]e p]ayed by the system zinc- so]vent—
 Thr ]99 ~ G]u 106 +in enzyme catalzyed reactlons when R |
;comparlng and eva]uat1ng model systems for the carbon1c |
aanhydrases" | Maybe the z1nc bound water needs to be
‘-'hydrogen bonded in order to be fu]ly eff1c1ent in. hydrat1ng
'COZ S | ,: :
a 9, At th1s p01nt 1t can be suggested that the
. next step 1n the construct1on of a carbonlc anhydrase
model shou]d be the 1ncorporat1on of some’ secondary |
hydroxy] group(s) in the tr1dentate llgand, able tooh‘

'form hydrogen bond(s) with the water molecule coord1nated

dlrectly to: the metal, as in 30

4 e



.Th1s m1ght lower the pK of th1s z1nc bound water, l’

”lg1v1ng h1gh concentrat1ons of 21nc bound hydrox1de at

4

*f_low enough pH 3 where the zwnc 1on 1s st11] t1ght]y .

inbound in the cav1ty of the 11gand Another advantage
ehdof the OH conta1n1ng 11gands m1ght be the1? 1ncreased
Z'Asolub1]1ty 1n aqueous med1a, be1ng then poss1b1e to [t

-,Study them at h1gher concentrat1ons and as a conse-:f,-

o quence W1th h]gher accuracy
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111, EXPERIMENTAL
: ) - T el

\

A.  SYNTHESES \\-- B SR,
- . . v to K . / ‘ ) ‘,‘ . \.\l\&“‘i

S Rout1ne IR 1H nmr and exact mass spectra were . Vlf

nrecorded on a 7199 N1c01et FT IR spectrophotometer

f(CHCT cast film), a Var1an HA- TOO 15 spectrometer W1th c; 1

‘Four1er Transform mod1f1cat1ons prov1ded by a. D1g11ab

rFTS NMR 3 System, and an AEI MS 50 spectrometer, res—:

Coa

~"pectt\te.Ty.

3f:“14(5)¥Viny1imidazole
It was prepared by the procedure of Overberger and ,}3

'Vorchhe1mer49,'mp 81- 83° (T1t 4% mp 83. 2-84.5°). |

Copo]y[N v1nyprrroT1d1none 4(5) v1ny11m1dazo]e1

3 The copoTymer of N v1ny1pyrro]1d1none and 4(5).'
cv1ny11m1da2019 was prepared accordlng to KoppTe s pro—{ﬁ-

:Jcedure471 Polymer un1ts wath moTecuTar we1ght > 100000?'

\ .

were Obtalned by f11ter1ng a water soTut1on of the crude e

.polymer m1xture through a XM TOO DIAFLo(:) membrane ]n'ngc,

2 pressure\£11trat1on ceTT : The soTut1on conta1n1ng ,:f>;jgf

‘ R ®
the desired s1ze polymer was then Twoph111zed

Anal. ‘found: C, 62:52; H, 8.03; 2. 40 6. 1469
T'orrespond1ng to (equat1on 14) 0. 21 mojes of 1mydazo]e

-per 100 g of poTymer

98



. Tris(Z—pyridjl)Carbinoll(2)
» ' - —

Compound 9 was prepared as descr1bed by Nlbaut L

et a45°, mp l28 129 (19£.%9 127- l28 ) |

st(Z pyrldyl)-z (N methyllmldazolyl)carblnol (lO) -

| A solut1on of 0.9 g (0 ll mol) of N methyl1m1dazol&§]a mfh
1n 50 mL dry ether under N2 was cooled to -30° (suspen-' '
s1on) and treated w1th 7.5 mL of l 6 m n butx&l&thlum 1n
R hexane followed by st1rr1ng at room temperature for-'

':.330 mrn ft was then cooled to -40° and a solutlon of bzs-

” leyr1dyl ketone50 1n 5 mL ether and 5 mL THF was’ added
d opwwse After st1rr1ng at room temperature overnlght
L the mlxture was quenched w1th H20 and the pr‘duct was

fi;f1solated by chloroform extractlon_ The c0mbfned extracts‘ff -

e were drled (MgSO4), and str1pped of solvent to g1ve a 3‘

paste wh1ch was. decolorlzed w1th charcoal and recrySta]_:b.aa i

llzed from Skelly B/benzene to g1veE 8 g (6l%) of wh1te .

crystals mp lS3 155°; IR 3350 (br), 1590 l430,,1360

:-llOO cm 1

E (M ), 249 (M OH), Anal calcd for C]5 ]4N90 ‘C 67-67~

NMR (DZO) Table VI, mass spectrum m/e 266

©

ﬂ§,5.26, N, 2].05 Found C 67 98 H 7 N 21. 07

. ~ .
st(Z pyr1dyl 6d) 2 (N methyl1m1dazolyl)carb1nol

\

@ BREER

‘”; f It was-prepared'analogously;to:lg'butlusing bisJ



"h(2 pyr1dy1 6d)ketone | | . '
~NMR. (o 0) Table VG mass spectrum m/e 268 (M+)f251b
L on) o

fets(z:ﬁyridyf;ﬁd)ketone,

- 100

A so]ut1on of 2] g (0 132 mo]) of 2 bromopyr1d1ne~ é;%‘f'

';6d 1n 300 mL dry ether under N, was treated W1th 90 mL
'of 1. 6 M n butyl]tth1um in hexane at ~65° | After two R
37}cyc1es of a]]ow1ng the so]ut1on to warm to-—45°, and

,recoo11ng to —65°, 8 m

:ﬁlwas added ke3o1ng gh'itemperature at -60°' St1rr1ng

'(O 067 mo]) of d1ethy1carbonatel»}h""'

r“dwas cont1nued for 2]h at4—65° and then at room tempera-}jﬁ»}ﬁ'

f;ture overnight Worku: conswsted of the add1t1on of 8 g

fihnzso4 in 10 mL H o, fo]]owed by ether extract1on ‘Thej¢;f7

:W‘comb1ned extracts were dr1ed (Na2304), and strlpped

of so]vent to g1ve a dark 011 wh1ch after d1st1]1at1on

?;ggave a yel]ow 011 bp 120 140°/0 15 Torr | Crysta1]1zattonfgjg*.l-u

tl.from to]uene at -60° afforded 6 g (24%) Of.Off4whiteaf.ﬁ“‘*

3{crystats, mp 51-53°; IR 1680 1575 1430 1320"13boud

"¢_ 1 ‘H NMR (c001 )6 7.5 (2H dd), 7.91 (24, )s-elia_f,;‘
“_(2 dd), mass spectrum m/e 186 (M.), 79 (M -d- Pyr C 0) ;rs_,

2;bfamdpyrtdﬁhe?6df e
- 6-promof251jthiopyridinesz'waéfquenched atf-4d°f,"“

Reference 50 reports the preparat1on of bts(z pyrldy])-
. (.
‘\ketone 1n 10% y1e1d from 2 pyr1dy] 11th1um and ethyl

"dp1col1nate ‘:T"".,'"}7‘f ‘ i'fUV S fti/ -?



*='jet a]

i,i B 1Y

' 'W1th an excess of methano] d]. and the m1xture after - ;:"

J»workup. afforded 2 bromopyr1d1ne 6d, 1n 82% y1e]d TH

’idNMR showed comp]ete absence of the 2 H

“‘Trie(2=pyridyl-éd)carbinO] (d 9)

, In a procedure ana]ogdus to that descr1bed by w1baut

50 for the preparat1on of 9 2 ]1th1opyr1d1ne 6d r};”

4:v'nd bca(z pyr1dy1 6d)ketone were reacted to gIve 41% of
- d9, mp 128- 129° (11t 50 127- 128°‘for 9) Ty NMR (o 0)
 dTab1e VI, mass spectrum m/e 266 (M ) 249 (M OH) 187

d;77(M 6d pyr) u”’”;f*qiefal‘ :ﬁjf* *‘g{ :,;.;j“f'
i o g __w}vﬂj”g.;,f,. t*r‘fud"'t _plpjp P
.;f.fhﬁ 318(2 N methy]lmldazo]y]) 2- pyr1dy1 carblnol_(ll)v ‘Hf;ﬂff:r
L ‘ a.~-v .~ﬁ“ Y

To a. suspens1on of 0 5 mo] of 2 N methyl1m\dazo]y]

'“5e7]1th1um 1n 600 mL dry ether at 0° was, added 0. 25 mo] f}ﬂ;;_f"

'&f;Of ethyl p1c011nate and the m1xture was st1rred four

*f mp 131 133°

‘hours It was tQF" decomposed wath 20 mL of: 10% H SO4

Q'and extracted thh ch]oroform : The comb1ned extracts R
'1were dr1ed (MgSO4) and so]ve't removed to g1ve an 011 8

veffrom wh1ch unreacted N- methy,_1m1dazo1e was removed by

.f~;dast111at1on (55 /3 Torr) ;fThe)res1due was recrysta]-ﬁ,

lized from Ske11y B/benzene to g1ve 6 g (9%) of 1] ’
= ‘]H NMR (CDC] )fTab1e VI,-mass Spectrum m/e
269 (M), 191 (M*opyr); Aﬁdﬁ '
c}62t45;'H,}5.57,_N,:26e02ff

calcd for C]4H]5N50 cth"'
Found: c 62 803 K 5,75,."



- 1m1dazoly1 11th1um44 1n 2 0 mL: THF at -60° was’ added a

- '1n 50 mL THF After add1t1on the deep b]ue so]ut1on'3,. B

fi”was st1rred an add1t1ona] hour at -60°'and then over-,jh'

1Bis(2-pyrddyJ)—2-(N—ethokymethyt)jmidazolyl .

'}fb ‘a so]ut1on of 0 04 mo] of 2 (N etﬂoxymethyl)

solutlon of 7 36 g (0 04 mo]) of bzs(z pyr1dy1)ketone‘h

AR -y L
*.gxby several ethyl acetate extractlons wh1ch were com-'“a

'°ffb1ned and dr1ed (MgSO4) and then str1pped of so]vent

F-f'7y1e1d1ng an o1ly paste wh1ch ﬁas recrysta]11zed from

1ifliether to g1ve 4 5 g (36%) of the product mp 62 63 5°
‘&ijJH NMR (cuc1 ) a 0. 95 (3H t), 3 20. (2H q) 5 20 (2H
.*s), 7 07 (2H ) 7 25 (3H m),‘7 75 (4H, m), 8. 50

Deprotect1on of 13b (see above) was accompl1shed

",haccord1ng to pub]lshed procedure44, and the free base

j; ]1berated by ba51f1cat1on, mp 225 2350 (decomp ) |
R {0, 0) Table VI; IR 3200 (br), 1570 1430 744" cm",_fg

fhmass spectrum m/e 252 (M ), 235 (M QH)’ 185 (M -1 _}-”

T_a‘1m1dazoly1), 146 (M pyr) Ana] ca]cd for C]4H]20N

2 Hy0: C, 64. 45 “H, 4. 93 N 21 4 FnUnd C, 64, 70

o H,,4;7o,.N,‘21;1stg;.g7~

N

102

n;n1ght at room te%perature Quench1ng w1th H 0 fo]lowed S



* ".procedurema from 4 5 d1methy11m1da201e

'ffby bas1f1cat1on, mp >275° (darkens)

o 03

Nm@ngmtw14;$&m§wwimauou,j‘
A ST L s _
Th1s compound was prepared accord1ng to pub11shed
78 1n 24% y1e1d
‘*_bp 68° (0. 4 Torr) 1H-NMR.(cpc1 ) s 2 22 (6H, s) 3. 23,f'
-(3H, s) 5 15 (2H, s), 7. 46 (1H,-s) mass spectrum m/e ff< 

j14o (M ) 109 (M OCH ), 95 (M.-CHZOCH3)

L

Trms [2 (N ethoxymethyl) 4 5 d1methy11%ﬁdazo1yl]1W ?

N\

| '(Wf; carb1no1 (14b)

. .

L From 15. 4 9. (0 091 mol) of 2 (glethoxymethyl 4, 5—“1f; S
7 j;d1methy11m1dazoly1) llthlum reacted w1th 3 6 g (o 03 t},fjfff(i)'f
'ffimol) d1ethy1 carbonate in 200 mL THF at —60° | .( B
;.rijso1ated 7. 5 g crudé orange crysta1s (50%) Wh1ch were G
;iikrecrysta111zed from hexane/ether to g1ve 14b, mp q14_ﬁ‘ ﬁifipjji“
o 16.5e: 90 MHz, Ty NHR (coc1 ) 5 o. 98 (3 t),_g 03 e
‘:}i(BH’ s), 2 15 (3H, s), 3 15 (2H q), 5. 13 (;H 5),1., ;
»j;ﬁ 31 (1H br), mass spectrum m/e 488 (M ) 443 (M‘-rffp'(i.:
'5qfocnzcu3) 429" (M*-CH,0CH, cn3) The free 1Jgand (14) wag“'“'“

44 fo]]owed o

Tﬂ]]berated ana]ogous]y to - pub11shed procedure
‘H NMR (p 0)
'5_‘6_2.26_(5).' Anal ca]cd for C25H40N604 C 61 45

’{pr,,sfés;wN;_17,?0 Found ¢, 61.27; H, 8. 1§ 7 44

7"7(N‘éth°xymethy1-4}5?d{i$oprppyT%midaZoJé“'ur*1

71fhﬁ§péphppund-Waﬁfprepéréd,étcoruingftofpubfiéhédrf-r"



\ procedure from 4, 5 d1zsopr0py]1m1dazo1e "~ in 34%
*yields bp 95° (0.07 Torr)s Th- NMR (cpc13) 5 1.30- (15H,
m), 3'05 (2H, m), 3.43 ?H, q), 5.22 (2H, s), 7. 20 (1H
:"s), mass spectrum m/e 210 (M ) 155x( aocn CH ), 141
.n(M cnzocnzcn3) S |

-y
.o
P

' | Trzs[ 2- (N ethoxymethy]) 4 5= d1zsopropy11m1dazoly1]- |
o carbinol (]Sb) T —

oy

From ]3 5 g (0 064 mol) of 2 11th1o N- ethoxymethyl-

f4 5- d1tsopropy] 1m1dazo]e and 2 40 mL (o 021 mo]) of
5{d1ethy1 carbonate was 1so]ated 8 5 g (62% _of 15b (recrys'{eﬂ
:'f.-_from ethyl acetate), mp 121 123° ]H NMR (com ;)8 1.5

*;(45H, m), 3 05 (12H,}m), 5. zo (6H, s), 5 75 (lH br) el

fﬁmass spectrum m/e 656 (M ) 639 (M OH) 597 (M -_:,quﬁjf}ff?“
JFCHZOCH CH3) The free base (15) was 1so1ated ana]ogous]y nfffw'ﬁd
;aas for 14: ]H NMR (cnc1 ) a aE 26 (36H d) 3 01 (6H L
:thPt ) \\Ana] ca]cd for C28 46N60 C{ 69 70 H 9 54,.:

Z)‘ -“ 'v‘

N, 7. 43 Found c 6Q 33 H, 9L 54, 17 49 '«“a__};_%1;;;;i7u~

»Nemethyi;A;sxdaieqpropylimidazole:"'

| A su5pens1on of 10 9 g (0 0722 mol) of 4 5- d1tso-:;-7%’?:"t
ffpropy11m1daapﬂe 1n 500 mL THF was treated at —10° w1th
2.8 ml of 2.2 M n- buty111th1uw;1n hexane, and st1rred
.ffor 15 mwn unt11 a]most a11 sol1ds disso]ved Then 4 49
;LmL of methy] 1od1de were added After workup and ether
*fextractlon an 011 was obta1ned wh1ch was pur1f1ed by

ol



s
d1st111at10n)to glve 8. 8 g (68%) of product bp 43 45°jd]

\ (0.05 Torr)¢' H-nmr- (cnc13) 5 1. 37 (12H dd), 3.0 (2H
m), 3.55 (3H, s) 7 25 (IH,_s), ma\s spectrum m/e 166 |

"t(M )y 151 (M CH ) ) S\r

..\ . ‘

(f‘*\~\ Trig- 2 (N methy] 4 5 d1zsopropy]1m1dazoly1)-vA~

carb1no] (16)

P PRy

e : ]

T From 0.058 mol of 2 (N methyl 4, 5- d1%80P”°PY‘°-*'

f;1m1da201y1)11th1um and 0 019 mo1 dlethylcarbonate was
"

 ??1sq1ated 50% of an 011 conta1n1ng 16 and 1ts ana]ogoua f*;i-
.‘fketone One gram of th1s m1xture was chromatographed';idf*

'over 511ica ge] (ethy]acetate) to glve the des1red 16?;€}d

‘fdas an 011 ]H NMR (acetone d ) 6 1 15 (18H d) ';n‘. S
} (18H d),v3 5 (6H, m), 3 27 (9H,,m),»6 42 (IH,,s,fﬂff}ﬁffn'fff}ff
g}Anal_ caled: for c3] 52N60 c,17o 99; H, 9.92; N :;f;?:ff“’*n"”
fﬁ]ﬁ 03. Found 71 L] H 10 04, N 15 64

SIEECIN . R S SRR \\ et 'w’."

N methoxymethy] 2 4 5 tr1methy11m1dazole

i A solutlon of the 11t 1um salt of N methoxymethy]-q} ”rff}f];'T
fa4 5. d1methy11m1dazo]e (o 071 mol) in 250 nLoTH wa$ -, o
.etreated with 0 07] mo] of m%thyl 1od1de After worki_fv}“
}5up and ether extract1on a yel]ow 011 was obta1ned whlmh
iawas pur1?1ed by d1st1]1atlon to glve the desired product d’

Cin 90% yle1d | b@ 50- 53° (0 03 Torr), H- NMR (coc1 )

‘da 2 12 (6H, s), 2. 38 (3H, s) 3.25 (3H, s),‘5 08 (2H, s), .,i-‘°';'

‘mass. spectrum m/e 154 (M ), 123 (M ocn ), 109 (M+ cnzocn3)



: ‘Q]QS

‘-

sBis??f[N-methyl-4;S-djiéopropy]imidaiQTymjkétoné .*"

(16b)

—

Heatlng of neat _ﬁ at 180 /Torr for 5 min: y1e1ded
_ an 011 WhICh was recrysta111zed from ether, mp: 197 ]99°'
o,

s e

H-NMR- (cuc13) § 1 23 (IZH -), 1. 34 (124, d), -3 3_
f_ (4H, m), 3.85 (6H, s), mass spectrum m/e 358 (M ), 34&

ls; (M CH3) Ana] ca]cq for C21H34N40 C, 70 39~ H, 9 49 ‘
N 15 64 Found ;p, 7o 23 i 9.505 N, 15 60. |

st 2 [N methyl 4 5 d1zsopropy]1m1dazo]y1] 2 [N- s

methoxymethy] 4 5 d1methy11m1dazo]y1methyi]—-

carbino], ]7

& T° 1 29 g (o 0084 mo]) N methoxymethyl 2 4 5 tr1‘f‘si4
3;{ methx}1m1dazo]e 1n IBQ mL dry THF at;-60° was added ] éq;?::
 } (O 0084 mol) n- BuL1 1n hexane TD th1s m1xture qu ,f_r;.s
o added 3 09 g (0 0084 m01) of bzs 2 [N methy] 4 5 d1180_}33;a

" propy11m1dazoly1]ketone 1n 10 mL THF After workup, and_[”{_aqfff

3;s recrysta]]Tzat1on from ether, 2 7 g: (63%) of the product;s }i..3ﬁ
_Was’ obta1ned, mp- 133 134°, "’H NMR (cnc1 5) a . 11 Qen, e

;%), 1.26 (IZH, a7 1 98 (3H, s),_2 09 (3H, s) 2, 93 (4H, _

o om), 3.23 (9H, 6, 3. 87 (2H, s) 5. 35 (ZH, $); mass. ,/"

.;’spectrum,_m/e 5?2 (M ),,497 (M -CH 3 359 (M N methOXy-s,ﬁ,j
?' - nethyl dig, d”"e“‘y“'"ldazommethyl) Anal. calea. r S

: 58 03 H, 9 42, N T5 5] e ”
. The free base (]7) was 0bta1ned by r9f1ux1ng thelf' PR

e above mater1a1 1n 10% HC] for two weeks and bas1f1catxon,si;;}




'mp 168- 170° (darkens) ‘H NMR (cpc13) a 1. 23b(24H d),
2, TO (6H, s) 2. 93 (TOH,-m), 3. 57 (2H, s) mass spectrum, |
',;ém/e 468 (M ), 450 (M -H, ), 359 (M -4,5- dlmethy11m1dazoly1-i

' methy])
'v-,Tr@e~2#[455-diieopropy1imidézbiyl]methane.jé;)_'

Under n1trogen, 100 mg of the trzs 2 [4 5 d1zso-.v s
T”fpropy]1m1dazo]y1]carb1no] xHCl sa]t was d1sso]ved 1n; 
'10 mL 3N NaOH and TO mL ethanoT and brought to ref]ux,}’d”/?

"ffbefore 100 mg of sod1um d1th1on1te d15501ved 1n the _p«'.

wf}m1n1mum amount of H20 was added 1n one portion After

-;fxone m1nute, the mlxture was ac1d1f1ed w1th conc HCT

1ff[and then aTT vo]at11es were removed under vacuum. The

'ﬁimand evaporated to afford 2 yeTlow1sh so]1d, mp ]20 180°;T;p p o
,éii(decomp ), mass spectrum m/e 466 (M -ch]) 451 (M";ffi¢f¥~fi7”
‘if;ch] CH ) : | 'T‘: n; gl;;:éo}v“f | },iiew_
Th1s mater1al proved to be re]at1ve]y stabTe as the s
1f_fHC1'saﬁtvbut upon ba51f1cat10n 1n the presence of air- f““?ffg7jf.:
'J.;d1scolored badTy due to a1r ox1datwon fo]Towed by de-dd;agiz_ﬁj-u:
_rihydrat10n zl .-M.Vv ,‘, _ = . v; T.Kv
- The phOSph1nes 29(a c) were k1nd1y prepared by

“fiD R S Brown us1ng the method descrlbed 1n ref 72 f}?pf;d;?h;vfi

Trzs[z (N methy11m1dazo]y] ' noT (12) _;in SR

Th1s compound was prepared as reported by Tang

pdet a14ﬁ, mp 178 179° (11t 44 177 5 179 5¢ )



f»jgentle stream of n1trogen (pur1f1ed by pass1ng succe;-_

A
-

- B. POTENTIOMETRIC TITRATIONS )

1. ek, DETERWINATIONS / :

| These werzxﬁapformed in a Jacketed ceII kept at f_%r;_~ |

S 300+ 0 I°' A1r was exc]uded from the ceII by pass1ng a

&J

";51ve1y through a squt1on of Ba(OH)2 and of water) through d
;g the ceII The pH was measured u51ng‘&£$ad1ometer TTT2

=Lt1trator and PHA 943 B t1trat1on moduIe 1n conjunct1on

;meter at the beg1nn1ng of each ser1es of exper1ments

ng s are the average of at Ieast three determ1nat1ons

;w1th a Rad1ometer 6K24OZB comb1ned eIectrode, and re-;"

:t1tr19rabh Standard pH 4 and pH 7 buffers wWere: us;djtp o

fcheck the e]ectrode I1near1ty and standard1ze the pH

[ EX RIS (A

fThe 1on1c strength was ma1nta1ned consfant by us1ng aisV'ifﬁfﬁfih
fmed1um 0 16 M 1n KNO3 Data were anaIyzed by a computer

hver51on of the S1mm s method55 CAPPENDIX I) and reported

’”5f2;*J%METAL'BINDINGZCONSTANTS,";7"lufﬁ:ff“+bfs~: (LA
- L Mo ot e T
- . ..;u?a~p-; N
: R ’

rh“; Stock so]utlons of Co 3§3N},:,£Zn7>,vand cu were
gprepared from thelr reagent grade hydrated nltrate saIts
fand were stand;rd1zed by EDTA t1trat10n82 TyplcaIIy

7a three to four fon excess of 11gand over metaI was-

‘t1trated as above and the data anaIyzed (APPENDIX II) "ffp{ﬁh*



- ffabove After a]] the ac1d added had been t1trated,_and‘

'ﬁf{amount of meta] added as. ca 0 01 M so]ut1on, 3 mL of

109 .

fA:to g1ve metal blndlng constants wh1ch are reported as~

’,,the average of three determlnatlons

T

- 'fa;,- COMPEEX,IiTRATrONS'd'

A solut1on consust1ng of an equ1mo]ar amount of f{7
\:111gand and meta], and a. known amount of strong ac1d

‘JZWas tltrated with NaOH. fo]]owlng the same method astﬁﬁidéi?;ﬁaj?

Vg 2:
o when the consumpt1on of one extra equ1va1ent (based on k;

"'fthe amount of comp]ex present) was c]ear, tme pK of
the 1on\a9b1e group was determ1ned graph1ca]1y as the ngf?ﬁ‘f

tfaPH at Whlch an extra half equ1va1ent of OH had been con-}?ffﬁlﬁ'“

”Tﬁffsumed Typ1ca11y 1 mL of 0 025 M ltgand the sto1ch1ometr1c '

g 25 M KN03, and 1 mL of o 1050 i HNO were m1xed in the

.:fntherm8§tated t1trat10n cell and tltrated wlth 0 1000 M ffﬁk‘;ﬂ~” B
'547”30“ e ":u: “ ‘,:“;;;.‘,fi G
'jj*c NUCLEAR MAGNETIC RESONANCE STUDIES OF Zn COMPLEXES ﬁ?“"‘“

Typlcally 2 8 mg of ]1gand were d1sso]ved 1n ca

1-;f0 35 mL of DZO and m1crollter amounts of O 5 M ZnBr2 ‘““'%_f,:}gﬁ*

7cf1n DZO were added, and spectra recorded after each add1-:ij;ffj5ﬁ75

..A

hc:t1on Whenkneeded methano] d4, acetone d6 or d1methy]- ﬁdui_hls;g
'fdisulfox1de d6 were added to so]ub1112e the comp]ex 'h_!j;;é;~_;g;;
s SNacicE B A

;T‘Q> RATES OF Zn BINDING TO 29 SR R R

These were stud1ed under pseudo ftrst order °°nd1-;;gfgfﬁ e




Ao
B O

tions ([zn**1/[29¢] > 15) in 761 ethanol-water. In a

typ1ca1 experiment, a 3.31 x 10 -4 M Zn (NO 2 solut1on

L

and a 2 x 10 -5 M 29¢ so]ut1on were m1xed 1n an Am1nco-

- Morrow stopped flow systenm, and the binding mon1tored

L

‘.1;as transm1ttance change at 290 nm. The data were
"-ana]yzed by an ana]og compar1son techn1que The trans-

;m1ttance time. curves were stored on a Tracor NS-570 -

s1gnal averager and then output to a dual trace osc11-.
loscope for compar1son to a synthet1c exponent1a1 decay

curve whose t1me constant could be changed by chang1ng |

d, the res1stance 1n the C1rcu1t The temperature was keptl

econstant by means of a standard temperature contro]
~system The entha]py (AH*) and entropy (AS )~of act1va4f
At1on were obtalned by p]ottwng Rn(kz/T) versus ]/T o
,GF1g 12) According to equatlon 30 (ref 79)

110

k., = ex ——] exp [—2 o 309 A
et o) o

/N

where kz 1s the. pseudo flrst order rate constant k the

_Boltzmann constant -h Planck s constant. ‘and R andfT

* have the1y usual mean1ngs. the s]op%igﬁﬁkuch plot is .
- -AH*/R and tﬁe 1ntercept tn(k/h) + AS /R.‘ o

E. cATALYT1c~sTunxes,

1. HYDROLYSIS OF PNPA

p-NitrOphenyl acetate was prepared as‘dEScribed'by'

I 4



v

80

'Chattaway After two recrysta111zat1ons from

Skel]y 8 the product was near]y co]orTess, mp 76-78°

“(1it.8!

- mp 79.5- 80 ). _ ,
A stock so]ut1on of PNPA (1 00 x 10 2 M) in 98%
ethano] was kept t1ght1y stoppered and refrigerated.
’ The kinetic runs were performed on a Un1cam SPT8OO re-{
'cord1ng spectrophotometer equapped w1th a Un1cam AR25
~linear recorder The ceTT compartments Were thermo-
:“stated'at 30 -O.Td, and hydroTygﬁs exper1ments were
"7charr1ed out u51ng 1 cm path Tength 3 mL capac1ty quartz -
,cuvettes ‘In a typ1ca1 run, 3 mk of buffer was 1ntro—-"
/L/dﬁced to the cuvettes; fo]]owed by 1 uL of TO M ZnCT2
_ybsolut1on and 40 uL of 0 245 M l1gand soTutlon “The*.ré-rf -
'=_su1t1ng concentrat1on ofvcomplex was . approx1mate1y 3 X |
‘}TO 3, The react1on was 1n1t1ated by add1ng a sma]l

- a11quot (20 pL) of PNPA stock soTut1on to the cuvette

}and m1x1ng The react1ons were fol]owed by the 1ncrease-r\

'“;1" absorbance at 400 nm (A of p- nltropheno]ate an1on)il o

for at least three ha]f 11ves, and the 1nf1n1ty absorbance ‘='

was taken after 7 TO han 11ves At the end of the run
“the pH of the reactlon m1xture was measured The read-
“ing genera]]y changed by no more than 0.05 un1t dur1ng

”'the course of a run. The pseudo f1rst order hydrolys1s

”c‘rate constant was caTcuTated by a non- Tlnear Teast

,"squareﬁ program . Contro] exper1ments were run s1mu1- |

v

This program was kindTy~proVided by Prof.vR.E;D.‘McCTung.
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[N

taneous]y in ce]]s conta1n1ng 11gand but no metal, ‘and.

meta] but no 11gand respect1ve1y

R

2. .HYDRATION OF ACETALDEHYDE‘

_Q{hf“- The f1rst order d1sappearance of . aceta]dehyde wase

fo]]owed by mon1tor1ng the decrease in the Carbony1

-1

absorpt1on at 276 nm (e 16 M~ 'cm"1);“accord1ng to the”

,method of Pr1nce and Noe]]ey83‘ A1l experlments were
‘conducted an ;he same apparatus as for PNPA hydro]ys1s
but at. 0. 0 0. 2°,. “the ce]l mount1ng belng coo]ed by af
water ethy]eneglyco] m1xture from a thermostated bath

'h:The absorbance was set to 0 5. un1ts fu]] sca]e, and the ;\;\;;

“,;chart speed of the recorder to 2- 10 sec/cm W1th a A:'

u._l cm quartz ce]] f111ed w1th 3. O mL of therma]]y equ111-7j;

"-”‘brated buffer so]ut1on conta1n1ng the cata]yst to be e

hstudled in’ the 1lght beam, the pen recorder S adJustab;e

7{fscale was set to read 0 0 on- the chart A known vo]ume,».‘

usua]]y 5 uL, of acetaldehyde was then 1ntroduced rap1d]y

:from a’ ch111ed mlcrosyrlnge, the solut1on was m1xed and
v‘the chart paper set 1n mot10n Read1ngs cou]d be taken .
_dfrom the chart w1th1n less than 10 sec \f aceta]dehyde

.h add1t1on

3. “COZtHYDRATION AND BICA&BONAJE DEHYDRATIONS® -

-

A so]vent COﬂS]Stlng of 76% ethano] -water was used

for k1net1c runs with 29c and 17, and water for 29a -

’

4



Af; were prepared by carefu]ly we1gh1ng the salt and d1s—

" ) e
. . . ey
i . . i

and '29b. A CO, stock solution was prepared by bubbling

"Athe pure gas. 1nt0 the so]vent for at least 30 min at

room temperature SoLut1ons of 1ower concentrat1ons»'
E SN
. were prepared by d11ut1on of the stock so]ut1on ‘yTo}-

4

determ1ne the concentrat1on of COZ’ a knOWn vo]ume of -

the saturated so]utlon was added to. ‘an excess of -

.standard1zed Ba(OH)2 contalnlng BaC]2 ' The resu1t1ngAf‘,

solution was back- t1trated aga1nst standard1zed HC1 with

'lpheno]phtha1e1n as. the 1nd1cator So]utaons of NaHCO3

. ’/
’so1v1ng 1t 1n fresh]y b011ed so]vent JUSt pr1or to. useg}

The buffer used was a 0.05 M HEPES so]utwon conta1n1ng;_:'

1073 n 0 (C10, )2, vj3 M Tigand, 1074 " an1trophenol, B

;3dand enough sod1um perch]orate (ca 0 15 M) to make the“'

"1on1c strength equa] to 0 2. M, and the resu1t1ng SO]u-f fff

fbt1on adJusted to the requ1red pH w1th concentrated sod1um

‘au’prepared from SO]Td z1nc carbonate and perch]or1c acid,

v‘rand'1f% zinc content determ1ned by EDTA t1trat10n82';1b75h
:K1net1c exper1ments were performed on an Am1nco Morrow \

: 7stopped f]ow spectrophotometer f The co, so]ut1on : -

jobta1ned by d1]ut1on of the stock so1ut10n w1th so]vent o

“conta1n1ng 0 2 M NaC]O4 was p]aced ln one syr1nge, and
a solutlon conta1n1ng the comp]ex,.1nd1cator and buffer
1n the other syrlnge . The C02 hydrat1on reactlon was

\'ﬁollowedvat_QOO nm (p n1tropheno]ate an1on) The total

13

.‘ .‘ '_’\.:‘

~+ hydroxide. A 'stock Zn(cw4 5 so]ut1on (0.0948 M) was}i'ff_”



s change in.transmfttance7did not exeeed 5%, and the pH
;of the so]ution after m1x1ng usua]ly fel] to a value

? near to - 0 T pH unit lower than the dnitial pH. The
Aosc1lloscope trace read1ngs were used to determ1ne f1rst
;order hydrat1on rate constants46 by compar1son to a

' synthet1c exponent1a1 curve, us1ng the same e]ectronlc E

++

set up as descr1bed for the rate of b1nd1ng of Zn' to

‘29c Contro] exper1ments 1n the. absence of metal,,and

. in the absence of 11gand and meta] (spontaneous) were'.m

| nalso performed

. 114
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APPENDIX I | //

pK, DETERMINATION BY POTENTIOMETRIC TITRATION

“Let L be an organ1c base that can accept three

',-.protons accordlng to the fo]]ow1ng equat1ons

L+ H = LH Ly
CLHEH =, (aL2)
 LHé_+TH é:;} _LHs_b_n ,» : : (AIf3)sA»

H, LH LH2, and LH3 represent w ,_LH LHéf+, and Lo

respect1ve1y Charges are om1tted for swmp11c1ty
‘\-,Let‘us1define.the’dissoc{ation~¢dnstants:

r Hgajj. [L][H]/[LH] ;j,;' TR

o
ﬂ

Kip =

:;1og'K.T'. T (ALL)
[LHILHI/[LH, 1 ;~‘pK32 = -10g Kyp ﬂt";;(AIiSXf

v'hK$3 = [LH ][H]/[LH3] pK 5.']09 Ka3 ?JFT(AI;G)t{

_Let us def1ne nH as the average number of hydrogen 1ons

: bound per mo]ecu]e of base

([LHJ + 2[LH21 + 3[LH3J)/([L] + [LH] + [Lhy] + [LH3]) (Aif;7)-" .

”If the pK s are d1fferent,enough:
When pH = pKéi[ S

[L] [LH] and. [LH ] [LH3] <<[LH]

126
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Theh,‘fdom~AI 7 B
| [LH]/([L] + ELH]) | R (‘Axr.e.)‘.
when pH - pKaZ" |

| [LH] é'fLAz] ;nA'rL]; [LHé] é<[LHj
\.Théd,_frdm‘AI.7i‘ |
| =([LH]+'2[LH2])/([LHj.;~[LH2]) ;'{;5' (Ai.9):.dz
then - pKa3 | s e R
| [LH ] ; [LHé]}and [A]. [LH] <<[LH2]

Then, from AI 7

=\

Ry " (z[LH ] + 3[LH3])/([LH2] + ELH3]) (Ar‘m B

‘From AI 8 AI 9,_and AI 10 pKa], pKaz, and pKa3 w11] be

"i_dthe pHmva]ues of the so]ut1on when nH 1s 0 5,.1. 5. and

}"AZ 5 respect1ve1y

'}exper1menta11y determ1nab1e var1ables R 'V,JA
- SR o Ry e o
'ifan [H]T fv[&] [OH ]added ‘ng - ds
O I

| (Al;il);3“x'

N

Qhere;[H]T }tota] concentrat1on of strong ac1d added at

’ the beg1nn1ng

j]

‘measured as pH

A
Yo

& . y
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[L]T = tota] concentration of organ1c base present
Kw_ d1ssoc1at1on constant of water 1. 66 X 10 ]4
“The program "@on1sation" compu‘tes-nH for each addition
-0f NaOH.
41 ionisation - : R
>, 1. C IONISATION CONSTANTS :
> 2 “REAL NH - A
> 3 1 - FORMAT(I2)
S 4 2 . FORMAT(2F10.6) ,
> 5 5 . FORMAT(‘ . IONISATION CONSTANTS'). _ : _
> 6 '6 . FORMAT(/“VOLUME s4Xs‘PH’ »7Xr ‘NH’)" e S I
> 7 7 FORMAT(/Fé, 454X,F5,2,5X,E10, a0 e R
> 8 .9 'FORMAT(4F10,7)
> .9 .13 FORMAT(//’ - CNAOH’, 19x.'CLH"13x,'CL'.11x,'00L17
> 10 - 14 FORMAT(1F10. 6,5x,F1o 6.5X,F1o é,dx.F1o 6) :
> 11 READ(Sy1IM -
> 12 7 DO 110 I=1,M - “_-v
> 13 ’READ(Sy9)CNAUH:CLH;CL-VOLI
> . 14.°7 | CWRITE(6sS5) - o e e
> 15 - WRITE(6v8) . -;_ 1:A3:‘e Do e e o
> 16 . READ(Sy1)N L S e .
> 170 DO 100 J-in :
> 18- - ' READ(5,2) UOLUME;PH
> 19 . U FF=10%X¥X(~PH) . -
> .20 - - VOL=VOLUME+VOLI
> .21% . . CORRT=1,84E-14/FF" . o
> 22 CS=CLH- (CNAUH*UOLUME+FF*UDL)+CDRRT*UOL .
> 23 . NH=CS/CL ,
> 24 - 100 :URITE(6v7)UOLUMEvPH7NH
> 25 . WRITE(&r13) : ' N
> 26 I URITE(éu14)CNAOH;CLH7CL;UOLI 8
S 27 T 8TOP. ‘ _ B N TR
> 28 B 110f"CONTINUE P if B T T
> 29 COUEND s S ’ L
. #END OF FILE =
DATA
Mo - number of runs
CNAOH - concentdat1on of sod1um hydrox1de used 1n the
' t1trat10n (M)
CLH --vmmoles of strong ac1d added at the beg1nn1ng

",ﬁL."77-_mmoles of organ1c base present : R



vop1
N -
VOLUME

 {

- PH -

,'Ekamgje;

‘number of pairs (VOLUME, PH)

129

initial volume .

.volume of,Na0H.addedT.‘-'

pH,bf”SOIutioh aftér,thé addition -

"Program oﬁtpUt.for pKa's d¢t¢rmiﬁati0ﬁ~_ 

r;}00i=n,f :‘: 2:48 f",‘ﬂf-.3;TZ ﬁ‘
o
0 ae - P
L0360
"f;;BQQ .
.40
e

":%520" W

w700
900

.940

S

2
2
2
3
3
B 3
. .640 4
L o.660 g
680 4.35
8
5
6
6
6
6
6
7

0000 " 240 340

~nN
o
e e L L L e
. e e e S ‘o . . LI N . .
o
o

.920

960
.980 -
.000
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CWhere: . Lol

n

“ CNAOH

1

CCLH =o0a0s0 0

ScL o=0.0250 -

o ovour

o

~ The values of pH when fi, = 0.5, 1.5, and 2.5 can be
obtained by any interpolation method. =~

B



xfﬂ;Eper metal

affb_when pL = pK]

'_APPENDIX -
STABILITY CONSTANTS OF METAL COMPLEXES AS

DETERMINED BY POTENTIOMETRIC TITRATION

}
)

Let L be an organlc 11gand that can form comp]exes

a w1th meta] ions - according to the fo]10w1ng equat1ons

'Efm +‘Lj = m - R , (A:;:1)v

o, ML, and MLZ'represent M Mtff;7and“MLé++;l Charges
“b;are om1tted for s1mp11c1ty The stepw1se d1SSOC1at‘°":

l“fconstants can. be def1ned as ;,3*

> Eifffffk{f. [M][LJ/[ML] 3 px1
’-ftlﬁjikg;’ [ML][L]/[ML2] " pK2

",
S

'f?ffLet n be the average number of base m01ecu1es bound

i ([ML] ¥ 2[MLz])/([M] + [ML] + [MLzJ)}ﬁfffn(A1??5)¢fiﬂﬁi

| lIf pK] and pK2 are d1fferent enough

[M] [ML] and [MLz] <<[ML]

| ;fThen, from AII 5

[ML]/([M] + [ML]) JEETE"”5775f;tb"5‘AIf§6)fb}

_ Nhen\pL =, pKz

[ML] [MLZ] and [M] <<[ML]

B 5a;(Aif.2).i‘U

‘1-109 K1 »@,,7 (AII 3)EELi;T
.-]og Kz "} (AII 4{};.?‘



n"fthen

' Tnen, from AII 5 }

/ﬁd- ([ML] + 2[ML {57([ML] + [MLZ]) = 1 5 (AII 7):

«.From AIl. 6 and AII 7, pK] and pK2 are the pL va]ues :d

. fwhen n is. 0 5 and 1.5 respectlvely It 1s needed to, b

' _1express n- and [L] as funct1ons of exper1menta11y

'fdetermlnable var1ab1es

f[LJT'=V[L]f}éée s[L]prtonated [L]bound to meta]

['-lr

[L]T -'([L] + [LH] + [LH2] + [LH ])
[MJT L ;

‘”Q}Subst1tut1ng AI 11 in AII 9

[L] + [LH] + [LHz] + [LH ] + "[M]T | .(ATIFB)fekﬁ

(AII 9>}L;~;;="

ﬁaf[L]T and [M]T are- known,'CS can be obta1ned from exper1-fﬁi.ﬁad

'“vmental data (AI 11), and nH can be expressed as a: funct1on\} A A

"iof pH and the ac1d d1ssoc1at1on constants of the organ1c f"

Vbase S e o
[L][H] z [L][HJZ .
‘}v __»' Kay o KKy »e Ka]KaZKa3

T '..[L?J[H-J RGOS [L][H]3

o p —
K| a3[H] * 2 Ka3[H]2 +3 [H]3

KaIKaZKaB + Kaz a3[H] * K 3[H]2 +: [H]3

31
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[L] + [LH] + [LH2] + [LH3J,—':, | he

/ .

Let us deflne a

"-;"“ R L C AKa]Kaz a3 » T, hi_ o )

- ¥ 2 . 3
Ka]KaZ a3 + K 2 aB[H] K, 3[H] & [H]

K

‘_From AI 7. and AI 1] subst1tuted 1n AII 12
C

_II
e

[L] a([L] + [LH] + [LH2] + [LH3])

'Sl

H

\ 'The program "stab111ty" computes Cs | A, a,fEL],}ﬁ,fand
- PL\for each add1t1on of NaOH IR
. STABILITY CDNSTANT o e . .

fxrrn

-."IHPLICIT REALIB (A-H-D -2y

S REALSBUNULSNLL. i T T T R

1 " FORMAT(I2). "~ - 7 I ]. . ,;J IR P SRR

2. FORUAT(F6.4:F4.2) i BRI o S T SR

g «ronnnr(' . STABILITY consraur' Lo )

8 FORMAT(/? vOLUHE‘v4X-’PH’:?X:'CS'-?X.'NLL':BX-'ALFA':IIX:’RB‘

*IZX"NL'v 10X, °PB7 )= .

. 7 - FORMAT(/Fé. 4.4x.r5.2.sx.r4 4.4x.F6 3.4x.Ezo 4.4x'Exo 4.4x.510 4,

S x4x-r7 4y AR

L9 "FORMAT(F1044¢F10.7+F10. 7vF10, 7.F1o a0 ﬁi‘,:g?-nf--

EDRED & RENRLE | R FORMAT(F10:4,F10,4,F13.4) " o ’
1400 1 FORMAT(/ 27 cnnou'.xzx.'cu' I”Xv'CLH'rlJXr’CL'-IIXr'UOLI’rIIX

SIS ®YPKIZ 12X PK27 9 12Ke FPK3Y)

oayéu&@kn

:v'xv"' o

S
N
©

'3}
>
>
>
>
>
>
>
B R
D> 2
>
>
>
>
>
>
>

>4 ano 615X5F10,4)
>.7v1e 'L,.' READ(S, 1)M: - . g:‘; e P
> 719 D0 110 Te1yM - "»-;*:";xv RSN
> 020 0 REBDCS,9) CNADH:CH-CLH&CL.VOLI Lo
20020 0 U READ(S,10) PKLsPK2,PK3 . 0 .
¥ AKLE10, RE(=PK1)
> 230 v AK2m10 (8K (PK2)
> 240 T AKIR10, ¥R (-FK3)
> 25 o WRITE(SyS)
> 26 o0 7 URITE(Se8)"
> 22 00 T U READ(Ss1) N
> 287 . T . DO 100 JsisN- o
LY 29 S EnT 0 READGSY2) VOLuus.Pu SR e T T e
S S [ A S FRmlOREC-pHY ot R P A P TR
> S T T
>
>
>
>
>
>
>
>
>
>
>
>

31 7 VOLsVOLUMEdVOLT

32 . CORRTel 88E-14/FF . R T

L33 T CS=CLH~ (CNAOH:UOLUHE{FF:VOL)+c0RRTtv0L
C340 L TY=AK3RAK2RFFH28AKIRF FEX2+3XFF X3

SRR - BRI TR -‘SB’AKIlAK“tAK3+AK21ﬁk3!FF+RK3tFFt!"+FP!t3
36 o G NLU=TT/SR ¢ o

.37 NL=(CL-CS/NLL)/CH °

39 .';"j:-ALrhnaxxtanzrnxs/ss

39 a0 o TANG=CS/VOL: . ‘

40 “_.RBrﬁLFA$TANG/NLL : _
©c41 . .. PB=-=DLOGLO(RB) - :
A2 100 " WRITE(S,7) VOLunE.PH.cs.NLL.ALFA.Rn.NL.PB _ EREIRTELTS

A3 T WRITECS.13) : Ty A

44 07 CURITE(Sr14) cuaou-cn- LH.CL.00LI.PK1-PK2,PKJ - R

[

45 . . . sTOP.

e 47 o u:un
" 4END oF FILE

>

Sy . ; ¥ o Sl R T
> 48 110 'conrruus S e LT e e e 5 SRR
> e T L e T
’

. .“‘§ i,.]: i.fuv.‘ii .  ?j ff{f,     v»li:v; S . :Elﬂl [:‘5‘ j;f}; 3>;

(AIT.12)

c2 (AII 14)f

16 " 14 FORMAT(1F10.6,5XsF10. 6.sx.on a.sx.rxo a.sx.r1o a.ux.rxo 4.5x. ST
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 DATA:.

~ CNAOH
oM

CLH

oo
voLr

ek

e >pKa2 as def1ned 1n AI

'pKal as def1ned 1n AI 4f‘d**

tpK 3'as deflned 1n AI

’:;VQLUM£?Esvolume of NaOH added

1380

number of runs

jconcentratxon of NaOH used 1n the t1trat1on (M) |
.mmoles of meta] ion added at the beg1nn1ng
:mmo1es of strong ac1d\added at the beg1nn1ng
:mmoles of organ1c base present

'1n1t1a1 vo]ume y"

e m Co

o Oﬁ_ﬁg

'V

| 'thmbsr;Ofip?irs;(vOLUME;fPHY5f“”""'” “

'QpH o*che SO]Ut]on after the add1t1on e}nle

. *v

'f If the organ1c 11gand has only one pK because 1t can

only protonate once,'equat1ons AII 11 and AII 12 turn

lnto

: =' :

,,a,tHjladn - R

By mak1ng pKaz pK 0 equat1ons AII 11 and AII 12

i are good approx1mat10ns for AII 15 and AII 16 because -f{vﬁ-ﬁ;'



R ET

¢rom Afi;{1',ﬂ;;;: L_l__ ng] + 3[333 [ W
ERSCRTE Uk far T TGy e EH]

O SRR ﬁ  K K 3
~from AIT.12 §

- al . al '..,o }:o'
o+ [H] + [H]2 + [H]3 oﬂl + [H] a

f"éod7fhéz JFém'can sti11'be uéed If the organ1c

”o_, the express1ons for nH and a’are:

o anan

Ka] a2

'52 +. Kaz[HJ 4 [H]Z

;Wfsﬂbﬁfffdiiﬁg?bK,ﬁv; 0 1n AII 11 and AII 12 one gets

: ,“] + 2[H]2 + 3[H]3

*“;KaIKaZ f Kaz[H] + [H] + [H]3
'“?fq‘#' Sl a] a2 2 g (AII 20)‘ﬂ   t}
: Ka]Kaz + K Z[H] + [H] + [H]3 YV,,5 : .

;_ror some values of K a2 and [H], the term [H]3 might not o{_.,;_ v“
"be neg]1glb1e in AII 19 and AII 20 For th1s rEaSQn 1'f1a'"§,3"7}
;-a new program "stab1l1ty 2" 1s used to compute the r1ght |

iiexpressuons AIL.17 and AII 18



'01 -tabs11au2>‘

1007 WRITE(417) VOLUHE.Pu.cs.NLL.ALFA.RB.NL PRI

C.. ¢ STABILITY cdnsraﬁr
CIMPLICIT. REALfa (A—H o-za
 REALX8'NLsNLL

FORMAT(T2) - J ;
FORHAT(F4.,4,F4.2)

~FORMAT(/’ WU UHE'-4X;’PH'u?X:‘CS'r?X;’NLL‘:BXr’ALFA’:lin{ﬁB’

l?Xv'NL’vIOXv'PB') . q~}

1
2 i
'S .. FORMAT(" STﬁBILITY CONSTANT#)
p
7
9

’EORHhT(F10-4vF10 7'F10 7;F10 7rF10 4)

10 :FORMAT(2F104)
13 . FORMAT(//* | cnanu'-1~x.'cn'.xzx.'CLH',13x.'CL',11x,'vaLr"zxx

R PKI';i"Xr'PK »12X0PKI’)

.- 1“:) FORHhT(lFlObvaXrFIO 615X'F10 6!5X'F10 6'JXIF10 6'5XUF10 615X! "

$F10.8) . .
. READ(Sy )M [*
DO 110 I=1,M :
- READ(S5,9) CNAOH.CH:CLH}CL-UOLI'
" READ(S710)" PKl'PKz ,
: ~AK1=10 ¥EC-PKLY g
S AK2=100RM(-PK2) 0T

(AN

K URITE(&:S) S S L
S MRITECA98) | = o
. READ(3s1) 'N!. Y s
CDO 1007 JulgN R S T T P
'READ(5,2) UOLUHE.PH T S R
o FFmIOREC=PHY. . 50 o L e e
: '_UOL-VOLUHE+VDLI RV L
‘CORRT=1.,86E-14/FF Do e
7 CS=CLH-(CNAD tUOLunE+FFtv0L)+coanrtVOL SR
L TT=AK2IFF425FFR2 .
H»SB-AhltAKZ#nKZtFF+FFl‘2
CNLL=TT/SB-

' ﬁﬁLFAnhKIIAKZIEB*
. TANG=CS/VOL . T T e
RB?ALFA!TANG/NLL chol ,'kc,;-
: PB==~DLOG1O(RB)Y. S

. CURITE(S#213) S
VU WRITE(Sr14)., CNAOHvCHpCLH:CLcUOLI'PKlrPK2

. STOP

£ 110 ’conrxNUE - E
e . R T
S w : Foo .
B ¢
'b | f\' ;f?'
‘ - W

fORHAI(/Fé.j.‘XrFS 2,5¥:F6 4r4XrF6 3;4X;EIO 414XvE10 4:4X:!10.4r .

R

L NLS(CL-CS/NLLY YO L L B R I SR

:,ii36 B




Exambie

.e;determlnation between 11 and Co, .

"5f‘258l,4”3}
) 403¢1f;
. 0.4666
05476
£?o 5999 R
7 f5 oszr#;f;y;;ifffif?7 ;

'e:;3gb3f;¥if
R R
3. z?ﬂfﬁo 669sfﬁ"fe
?A;O 7355f;f?3;
1;ﬁ?] 095}};}?;;5
1. 24sfffifiﬂf
1. 399#;}f;i'
1468

‘ ;fefé-i4*f 
Coaae
:;feiiféfaieff? |
f:h"Q’f5;$5{f;7f?_
¢  v~.ﬁf71 532

|  5§1 nggzi f
; ﬂ;ﬂi1f1 738

3 o

S

Ay

,; L, :‘

é;‘o 1550

"-‘1ﬂ?Be ho
i 5.6238

Partia] program output for b1nd1ng constants ,j:

_3{5 2951”*[f],,,
77}5 1977fff':  e“‘ ,u :
s, ,355;5;?_V?51*15‘”';”

137

a7e3s T

14;54§5fffi},je?;?freii
:1gdféiéi§fj;;;;;;;;_i:'*
s, 9438}j;ejj;173f .

‘lJ;}pK] and pKz were obtained by graphlc 1nterpolat1on 1n a Qfe;kiif;f

ef:fplot of I vs

PL ,';*;{ e

'”:PKgfi;



APPENDIX III

"~ X-RAY STRUCTURE OF 16b:ZnBr,

(Reproddéed_from ref. 68_with‘permi§sion)

5 o |
-~ +Thé complex 16b52n8r2'was pbtained by controlled
evaporation of'equimblar amounts of 16b and‘ZnBré dis-
solved in DMF, and its strutthre determined by an X-Ray

diffraction methoﬁge._

L

"Fig. AITIL.1. PLUTO (Motherwell) drawing of the title

T compound. 'AtomS‘areQrepresented by spheresk
of arbitrary radius and coordination bonds
arevreprésented‘by singlé lines.\“_” f

g T o /

. |
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CAPPENDIX IV. .

X-RAY STRUCTURE OF 29¢:ZnCl,

(Reproduced from Ref. 76’with‘pemission)'

The comp]ex 29cf-'Zn012 was obta1ned by contro]]ed
evaporat1on of: equlmolar amounts .of 29c and ZnCl2 d1s—.

solved 1n EtOH DMF, and 1ts structure determlned by
: 7

. X-Ray’ d1ffract1on method.

F1g ALV, 1 shows the structure of the comp]ex “The
_z1nc 1on 1s coord1nated equ1va]ent1y to the three 1m1da—
.zo]es as pred1cted from nmr exper]ments The fourth )
‘]1gand isa ch]orwde 1on An 1nterest1ng observat1on

h,:1s the way the 1sopropy1 groups 1n the 4 1m1dazo]e pos1- fd:'

| t1ons are or1ented, a110w1ng on]y one ]1gand to enter
Av’

- the cav1ty and b1nd the zinc 1on Another 1nterest1ng

*h’feature of the comp]ex is: the hydrogen bonding between

T:fto 1m1dazo]e N-H. and the carbony] of two DMF mo]ecu]es
“which crystalllzed w1th ‘the comp]ex - The X- ray structure»iﬂ
vof the enzyme suggests that two 11gand h1st1d1ne N- H |
groups are hydrogen bonded to carbony] groupsSb HIS 94
to Gln 92, and His 96 to the. pept1de carbony] of Asn o
244 (Fig. 2). ‘ o
| _ Some b0nd ]engths and angles are lTisted 1n TABLE
aAiV 1. The P o bond lengths and the N- In d1stances agree‘
“-vw1th the ones predlcted in page 76 The bond ang]es ' |

‘around the phosphorus are sllght]y smaller than pred1cted;

oo
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'Y

- A:\:
\‘4 ),

Fig. AIV;I.'°0RTEP draﬁfng_ofl;he comb}éX'shbwinQ.two

.mb]ecu]esﬂof DMF'which ckysté11ized with;it.,vAtoms’are' ‘
: represented.by‘BS% probabi1ity thefma] elepsoid$,§

o B - A ) 0
"Hydrogens are drawn as spheres of arbitrary radium 0.1 A. -~
\ o R ; e S



\

- Table AIV.1.° Bond Tengths (K) and angles (°)

P(])-c(1)
P(1)-C(8)
C(1)-N(1)

— S

‘>C(2)fC(3- }

1.82

1.34
©1.34
. 1.38

Py

1.82

1.50

Coc)ee()ec(e) e
ERUC R PR L TR
| N(J)fC(})?N(z)’-
,;fi‘_N(3)?C(8)-N(4)‘
Coc)N2)-zn

f;111,~-
1o
o114

.c(s)-‘
(9)-

-N(4)
)-c(10)
L_ (3) '

N
C -C
Nx

(9
(s »
C10)-N(4).

L c(9)-c(11)

gt C(iO)fc(Tmi;;'
B
CoN)-zn

. ;- C(8)?N(4)fi"j

-t“  N(é);zn;n(4);:j;; |
L7. fN(4)r2ﬁ?N(4)]   f:‘94jfif fJﬁ '
Qv 200
"‘_’Cj_zn;N(A)k f ‘H ~

. % . .

Con.37
1.39

2los
Cozos
S 2.7
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