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In this thesis,r turbulence in the atmospheric surface layer has®
been studied using "structural" and ‘"deterministic" approaches. The
thesis is broken into four papers. The first two papers (Chapters IZ
and III) concern the search for, and interpretation of coherent
structures in experimental data. The third and fourth papers (Chapters
IV and V) develop and apply a low-order model to study the dyna ies and
energetics of convective plumes in the atmospheric surface layer.

In Chapter II, experimental data on windbreak flows have been
analysed, using several statisticzl methods. I have proposed and shown

that coherent structures DO exist in the mixing region of a porous

]

windbreak (50% porosity) flow, and are largely responsible for the
momentum transport that re-accelerates the leeward flow. A co mparison
between windbreak flow and the laboratory turbulent mixing layer

‘suggests that the dominant structures in these tvo flows are similar.

Some previous numerical and experimental results are 1nterp:eted in
light of the coherent structures and the self-similar property in the
mixing region of a windbreak flow.

In Chapter III, the Shot-Effect method has been used to extract
"statistical" coherent structures from velocity and temperature
fluctuations measured in the atmospheric surface layer. The extracted
coherent structures rétain objectively ‘the cross-covariances of
velocities and temperature. The transport characteristics of the
coherent structures and their variation with atmospheric stratification
agree with the common perception of the transport processes in the

atmospheric surface layer.



In Chapter IV, based on a simple applicatiﬂn! of the dynami:al
systems theory and experimental evidence of coherent motions in the
convective atmospheric surface layer, I have developed a lov-order model
(15 ordinary differential equations) to study coherent flow dynamizs, by
performing a Galerkin projection of the Navier-Stokes equations on a set
of 15 orthogonal functions ¢(x,z), extracted from an ensemble of
experimentally observed convective plumes (or coherent structures) vith
the Proper Orthogonal Decomposition method. These orthogonal functions,
defined on a two-dimensional domain (640 m x 150 m), are ﬁyéiﬂalraf
large-scale turbulent velocity and temperature fluctuations in the
convective atmosphere, and are assumed ta-have embedded enough ?hysics
to model the most important aspects of the coherent structures. The
effects of the unresolved turbulence on the coherent structures are

modelled by the Smagorinsky -eddy viscosity elasure, This lawsérdéf

model provides a means to study instantaneous coherent &ynémics:iﬁ'thé
atmospheric surface layer, an aspect not empha;ized before.

In Chapter V, budgets of the hcfig@ntalband‘vertical mcmantum;'and
of the turbulent kinetic energy assaciéted vith vertical motion, within
updrafts of convective plumes are evaluated, using experimental
observations of the velocities and temperatures within the plumes, and
the corresponding pressure fluctuations calculated by the low-order
model developed in Chapter IV. Detailed pressure distributions within a
convective plume, and the role of ' the tganslatian velocity in the
development of the éanVEgtive plume are discussed using the simulated
flow fields. The force balances revealed by the momentum budget study
suggest a shape-preservation mechanism for the plumes, which is

consistent with the experimental observations. The transport and



redistribution of turbulent kinetic energy seen from the study of the
turbulent kinetic emergy budgets explain the relatively long lifetime of
the convective plumes. Implications of the transport properties of the
convective piumes for modelling atmospheric turbulence and air quality

problems are also discussed.
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CHAPTER 1

INTRODUCTION
In recent years, attempts to better understand atmospheric

turbulence, and demands to minimize uncertainty in air quality
modelling, have placed an increasing emphasis on the study of

instantaneous plumes or coherent structures, in the convective

atmosphere. The occurrence of the coherent structures strongly
influences higher-order velocity statistics and pressure fluctuations.

For example, an analysis of experimental data by Hunt et al. (1988)
showed that the variability of the vertical velocity within plume
updrafts produces more than half of the contribution to the total
(unconditional) variance %2 and to the third moment w3. Wilczak and
Businger (1984) found that the pressure perturbations assaéiated vith
the coherent structures are essentially responsible for the pressure-
velocity and pressure-temperature covariances in the énsembLEEEVEraga
budget equations for the momentum, heat and turbulent kinetic energy,
in the convective atmospheric surface layer.

Higher-order statistics and preésure perturbations are difficult
to measure in experiments. Yet turbulent transport (vertical
derivatives of triple-velocity correlations) and pressure covariances,

important processes in many turbulent flows, must be parameterized in

ensemble-average turbulence models (Zeman, 1981). The effects of the
convective plumes have not been considered or vell paramete erized in
most ensemble-average turbulence models. For example, lack of
understanding of the pressure perturbations (larg .y contributed by the

thermal plumes) is one of the reasons that ad hoc adjustments of
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pressure covariance terms in the second-order closure are necessary in
order to model convective atmospheric turbulence (Zeman, 1981;
Wyngaard, 1984). Thus, successful modelling of atmospheric turbulence

requires insight into mechanisms, particularly the large-scale coherent

In this thesis, coherent structures in the atmospheric surface

layer have been investigated along structural and deterministic lines

in four separate studies. 1In Chapters II and III, several statistical

‘M\

methods are used to extract coherent structures from Vturbglengé
records, measured in a windbreak flow, and in an undisturbed
atmospheric surface layer. The dynamics of these coherent structures
are discussed in terms of their role in the transport of momentum and
heat. The transport properties of coherent structures in windbreak

flow offer an explanation for the success of a numerical simulation

using the Reynolds equations (Wilson 1985), and for some previous

experimental observations. The "statistical" coherent structures in
the atmospheric surface layer and the variation of thei ransport

characteristics with atmospheric stratification are démanstrated_byrthe
Shot-Effect method (Lumley 1981). The results agree with the common
perceptions of turbulent transport in the atmospheric urfazg layer.

In Chapter IV, the observed coherent structures in the géﬁvegtive
atmospheric surface layer are embodied into a mathematical framework,
and a low-order model for studying coherent dynamics is develaped.
This low-order model is based on the recent understanding of turbulent
structure provided by the dynamical systems theory (Ruelle and Takens
1971). This so-called "deterministic study of turbulence claims that

solutions of equations for a fcr:ed dissipative system, such as that of



the Navier-Stokes equations, are 1likely attracted to low-dimensional
manifolds in phase space (a space where each point corresponds to a
solution of the Navier-Stokes equations). These manifolds, which are
characterized by their fractal (usually small) dimensigns,}are'calléd
"strange attractors" (Chapman and Tobak, 1987). Due to the
nonlinearity of the governing equations, turbulent flows dominated by
strange attractors in phase space possess the property of extreme
sensitivity to the initial condition. Sensitivity to the initial
condition produces randomness in flow variables, and the folding

process manifests as intermittency, which may correspond to chaotic

coherent motions, i.e., a sggmigg}y_;hacticﬂmatign could be produced by

a simple underlying mechanism. This deterministic view of turbulence

provides a hope to study the dynamics of coherent structures with a
low-order model.

A simple analysis of turbulence data measured in the atmospheric
surface layer, taking the dynamical systems point of view, suggests
that coherent structures in the convective atmospheric surface layer
may be described by a low-order dynamic model. A low-order model is
then derived by projecting the Navier-Stokes equations along a set of
basis functions, the latter obtained by performing a Proper Orthogonal
Decomposition (Lumley 1981) on the experimental data- The orthogonai
functions, defined on a two-dimensional domain (640 m.x 150 m)g‘afe
typical of large-scale velocity and tempefatu:e £1uctuatioﬁs in the
convective étmosphere, and are assumed to have embedded enough physics
to model the most important aspects of the coherent structures. The
effects of the unresolved turbulence on the coherent structures are

modelled by the eddy viscosity closure. The model treats boundary



conditions objectively, uses experimental data as the initial
conditions, and provides a means to study the time-dependent behaviour
of a coherent structure, an aspect not emphasized before.

In Chapter V, budgets of the horizontal and vertical momentum, and
of the vertical component of the turbulent kinetic energy, within
updrafts of convective plumes, are evaluated using experimental
observations of the velocities and temperatures within the plumes, and
the corresponding pressure fluctuations calculated by the low-order
model developed in Chapter IV, The convective plumes are fqund to be
characterized by strong turbulent and pressure trénsport (ifg,, local
equilibrium does not prevail). The phase relationships_obgerved‘
between pressure and velocity fluctuations within the conyéctive plumés‘
minimise energy redistribution between alongwind (u) and véftigal (w)
motion by the agency of pressure fluctuations. Such a decoupling of u
and w effectively inhibits vertical transport of alongwind momentum in
the convective atmoéphere, and allows a convective piume to exist as an
anisotropic identity for a relatively long time (i.e., a time of order
of a few times necegsary to travel its own length).

Detailed pressure fields within a convective plume, and the role
of the translation velocity in the development of the convective plume,
are discussed using the simulated flow fields. The vtfanspért
characteristics and pressure distributions of the persistent convective
plumes revealed in this study provide information that could be useful
for improving atmospheric turbulence modelling, and for understanding

the uncertainty in air quality problems.
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1. Introduction

A vindbreak, i.e., a wall-mounted fence, represents a simple
example of a two-dimensional bluff obstacle. The flow behind the

fence, influenced strongly by the aerodynamic interaction between the

fence and the upstream wind field (the fence exerts a form drag force!
on the wind field), is characterized by strong velocity and pressure
gradients in both horizontal and vertical directions (Plate, 1971:
Bradley and Mulhearn, 1983).

Intuitively, a windbreak flow is 1likely to be a flow vhere
coherent motions play an important role. However, ensemﬁlesavéraéé
turbulence models, which ignore the existence of coherent métign, have
had some success in describing windbreak flavsz.fcr example, Vilson
(1985) showed that the mean wind and some seccﬁd order statisties af—a
windbreak flow can be simulated reasonably well at least élﬁsé to the
vindbreak with a second-order closure model. It is a curiosity about
structures and their possible role in a windbreak flow that has
resulted in this study.

All previous studies of windbreak flows concerned ensemble-average
properties, such as the attenuation of mean wind and turbulence by
fences. Plate (1971) revieved several aerodynamic aspects of a solid

vindbreak flow and demonstrated its complexity by dividing the flow

1.Defined as D = 0.5C,pHU, 2, where C, is the drag coefficient, p the
air density and U, the approaching wind speed at the fence height H.

6



into seven regions, each having different aerodynamic factors acting on
it. In particular, Plate used a control volume to analysé alongwind
momentum loss in the flov over a fence, and proposed a taeoretical
model relating windbreak drag to the leevard mean velocity field.

Using wind directions and fluctuations observed with a rotating
vanes (which are of cause not sensitive to fast fluctuations), Baltaxe
(1967) shoved clearly in the lee of fences the presence of large-scale
flow patterns, which varied with porosity of the fences, and
disappeared when the porosity of the fences is larger than 25%. Raine
and Stevenson (1977) demonstrated the domination of the downstream flow
by the fence-top generated turbulence, using measurements of turbulence
intensity and spectra of the alongwind velocity dovnstream of the
fences. Mulhearn and Bradley (1977) found, in their wind tunnel
experiment, that the mean flov and momentum transport downstream of
porous fences are very sensitive to the incident wind direction. 1In
addition, it has been shown ’that a number of other factors, such as
terrain roughness and the approaching wind profile can also influence
the downstream turbulence field (Plate, 1971).

Although it seems to have been generally accepted in previous
studies that fence-top generated large-scale motions could be important
in downstream flov, especially in the case of a solid fence, no study
reported has discussed the detailed momentum transport processes
associated vith them, or explicitly taken into account their effects @nr
dowvnstream flow development. VWe feel that some of the experimental
observations may be better understood from the instantaneous and

structural points of viewv. It is with the large-scale structure in the
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dovnstream mixing region (Figure 1), and its role on downstream flow
development, that the present study is concerned.

In this study, experimental data from earlier authors (Mulhearn
and Bradley, 1977; Bradley and Mulhearn, 1983), and from our own
experiments to specifically investigate coherent structures in the
vindbreak flow, will be used. By examining the long-time turbulence
statistics and the instantaneous flow structure, we will shov that
coherent structures DO exist, and make a substantial contribution to
momentum transport in the mixing region of a windbreak (50% porosity)
flow. A comparison between windbreak flﬁvs and the laboratory
turbulent mixing layer (Brown and Roshko, 1974) will demonstrate chat
the momentum transport achieved by the dominant structures in these tvc
flows is similar, although a windbreak flow is more complex because of
the unsteadiness (on long time scales) of the wind speed in the
atmosphere, and the presence of the ground. Such a comparison suggests
that, as in the turbulent mixing layer, the windbreak flovw is self..
similar in the mixing region, i.e., "motions af different sections
differ only in velocity and length scales, and are dynamically similar
in these aspects of controlling mean velocity and Reynolds stress"
(Townsend, 1976).

Ve believe that coherent motions in the mixing region of a
vindbreak flow have a major influence on important aspects of the flow,
such as intermittent flow reversal (observed behind dense vindbreaks;
Baltaxe, 1967), and the rate of downstream flov. recovery. Wilson's
(1985) numerical simulation, and some previous field observations of
vindbreak flow will be discussed in light of the self-similar property

and the observed coherent motions.



2. The Rllerslie experiment and data analysis

Our experiment was conducted at Ellersiie,rAlberta, in the summer
of 1989. A plastic fence (90 m iong and 2.34 m high) was erected in an
open field (Figure 1). The porosity of the fence vas 50%, and its
resistance coefficient (k, = AP/pU?), measured in a wind tunnel, was
1.66. The upstream fetcﬁ of uniform and level terrain was about 1 km.
The surface was covered by long grass of about 30 cm. A log-law fit to
an upstream vind profile measured under hnear neutral stratification
yielded a surface roughness, z, = 0.1 m. |

The instrumentation included two 3-dimensional sonic anembmétéfg»,
(Applied Tech. 1Inec., 25-cm path length), two 1-dimensibhal sénicrl
anemometers (Campbell Sci. Corp., . 10 cm path length) and fi?é cup -
anemometers. Using the sonic anemometers, time series ofﬂfﬁ,-Q;:b)
were sampled at 20 Hz, at points both upstream and downstream (mdstly
in the mixing region). In some cases the cup anemometers were moﬁntéd"
on the upstream tower to measure the approaching mean wind.profiie
u(z). In other cases; the mean wind profiles and turbulent
fluctuations (u,v,v) were measured simultaneously at the downstream
tover. Data acquisition was accomplished by an analogﬁe-to—digital
converter coupled to a personal computer.

Since the heat flux was not measured, the Monin-Obukhov length,
listed in Table 1, was crudely estimated using the flux-gradient
relationships, i.e.,kz/u, aU/3z = ¢m(z/L)_ (Dyer, 1974) from the the
upstream mean wind profiles and weather conditions (used to determine

the atmospheric stability condition) recorded nearby at the Edmonton
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International Airport. A total of 15 hours of data vere collected
under different atmospheric stability conditions. The long path length
of the three-dimensional sonics filtered high frequency turbulent
fluctuations, but these have no relevance to the present study of
large-scale turbulence. To check the quality of the data, the mean
horizontal velocity Jﬁ?i?E according to the sonic anemometer(s) was
compared with that of the cup anemometer(s) at the same location(s)-

We accepted the sonic data provided the discrepancy was less than 10%.

analysis, only the data collected under "steady" wind conditions,

characterized by a small standard deviation of the wind direction (og 2

20°), have been selected (Table 15,

2.1 Long-time statiétics revealing organization and gusﬁiness behind a
vindbreak |
To examine the role of coherent motion 'in a windbreak flow, we
have assumed that if the postulated structures exist, and ‘have
persistent and important impact on the flow, théir éffeﬁt should be
seen not only in the instantaneous fla§ field, but also in the lnng;
time statistics.

Table 1 lists some turbulence statistics both upstream and
downstream of the windbreak. Most runs included simﬁltaneaus
measurements by sonic anemometers upstream and davﬁstréap. The ratio
of the momentum flux (-uv) to the turbulent kinétic energy (k), -uw/k,
méasﬁres the effectiveness of the turbulence in terms of momentum
transport (Townsend, 1976). Upstream, on average, -uw/k = 0.14, vhich -

is consistent with the value measured by Hogstrom (1990) in the



atmospheric surface layer, while in the downstreanm mixing region this
ratio is considerably larger. The  variations of -Tw/k upstream are
perhaps due to changes in atmospheric stability and boundary-layer
depth. The variations downstream are attributed to variations in the
incident wind direction, sensor location, and atmospheric stability
etc. Also notable in Table 1 is the significant difference between the
skewness (Sk,) of the vertical velocities upstream and dgvnstream; sk,
is generally positive upstream, which agrees with previous observations
for the atmospheric surface layer (e.g., Hunt et al., 1988). But,
large negative values of Sk, were seen in most of the observations made
in the mixing region (runs 4, 5, 6 and 7), indicating strong sweeping
motions (or gusts). Note that since most of the runs lasted more than
15 minutes, during which time the wind conditions vary, the effect of
changing wind directions was averaged into the quantities in Table 1.
Figures 2(a,b) show spectra of the fluctuating alongwind component
(u) and the momentum flux (-uv), calculated for run 4, upstfeam and in
the downétream mixing region. Upstream, the u spectrum peaks at.
considerably lower frequency than the -uw co-spectrum, which -is
consistent with the study 'by Kaimal et al. (1972). Downstream, the
peak of the u-spectrum has moved to higher frequency, which agrees with
a previous observation by Ogawa and Diosey (1980). The peaks in the u
and -uw spectra are much closer together downstream than upstream. It
is obvious from Figure 2(a) that upstream, some of the low-frequency
content of the u-component does nét contribute to momentum transport,
although it does contribute substantially to the turbulent kinetic
energy. Therefore, upstream, the Reynolds stress and turbulent kinetic

energy may not be "carried by" the same "eddies" (Townsend, 1978).
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s agrees with the notion that there is a considerable amount of

s

Th
"inactive" motion (Hogstrom, 1990) in the atmospheric surfacerlayéfi
However in the downstream mixing region, the turbﬁlent aiéﬁgﬁiﬁd
fluctuations are fully involved in momentum transport, résulting in the
increased value of -uw/k seen in Table 1. In the atmospheric surface
layer, spectra are greatly influenced by the unsteadiness of the
advecting vind, in addition to the '"phase serambling" (Yule,.1980) of
the eddies themselves; tﬁus, no further attempt to inferAthe'eddy
structures has been based on spectral analysis.

The effective momentum transpﬁrf seen in;the_laﬁgstimé statiStics
and spectral characteristics shown above is presumably - caused by

increased organization and gustiness in the downstream flov. To reveal

(any) coherent motion from the measured velccity Eimé‘SEfiéS; aﬁd to
reveal its role in the momentum transport process. We will not be able
to shov the spatial characteristics of the coherent motion because of
the very limited data available, but the temporal character will be
obtained. Since run 4 and run 7 (Table 1) vere measured when the wind
conditions were relatively steady, they have been selected for

analyzing upstream and downstream flows respectively.



2.2 Quadrant analysis

Quadrant analysis (Willmarth and Lu, 1974) 1is a method to sort
momentum transport into swveep (u > 0, w < 0), ejection (u <0, v > 0),
invard interaction (u <0, w <0) and outwvard interaction (u > 0, v > 0)
events. By doing so, and progressively filtering out smaller events
(|uw| < threshold value), one may identify large intermittent events
that make a strong contribution to the momentum transport. Readers are
referréd to Appendix A for a brief description of Quadrant analysis.
Here Quadrant analysis is used to study the structure of the Reynolds

stress -uv, from the instantaneous u and v signals measured in run 4 of

our experiments,

Upstream and downstream structures of the Reynolds stress obtained

using the quadrant analysis are shown in Figures 3. Upstream, the
transport process is relatively symmetric, i.e., sveeps and ejections
contribute equally and positively to the Reynolds stress, and inward

and outward interactions contribute equally and negatively to the
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tress. But downstream, the Réynéids stress is'glearly
dominated by sweeps. At large values of the hole size, H,, when onc

selects lower frequency events with large Reynolds stress, this

dominance becomes dramatic. For example, at H, 10 the Reynolds
stress is essentially produced by the sweep event alone, and represents
about 37% of the total Reynolds stress. Furthermore, that 37% of the
total Reynolds stress was found to be produced in less than 5% of the
total sample time! The strong sweep motions transfer momentum excess,
produced by the strong wind shear above the fence, from upper levels to
lowver levels, and result in the large negative skewness of the vertical

velocity seen in Table 1. The pattern of the downstream Reynolds



14

stress structure changes little with atmospheric stability conditions.
This agrees with Seginer (1974), who found that atmospheric stability
has a minimal effect in the near-fence region, vhere, in our view, the

vindbreak induced large-scale motions dominate the thermal =ffect.

2.3 Conditional sampling

To investigate the velocity structures that dominate the Reynolds
stress in the downstream flow, the VITA (Variable - Interval Time
Averaging) technique (Blackwelder and Kaplan, 1976) will be used to
identify "events". The VITA technique supposes that peaks in the
short-time variance signal correspond to dramatic events. The short-
time variance is defined as

1 +T/2 1 +T/2 2 .
VAR(t,T)= —| x?(s)ds - {——— x(s)ds} ' - (1)

t-T/2 T t-T/2

vhere x is a signal fluctuation with its long-term mean subtraz;eﬂ out.
WVhen T becomes large the second term on the right-hand side Gf (1)
tends to zero, and the long-time variance, ckzi is obtained. There is
a close relation between the integration time T and the time scale of . x
contributing to the short-time variance. For example, Schols (1984)
found that Equation (1) works roughly as a low-pass filter, aééépting
frequencies below 1/T . On the basis of a visual inspection of the
measured velocity time series, it is found that the violent coherent
motions usually last between 3 to 5 s. Since we are interested in the
velocity structure of the violent sweep motions selected with the
quadrant analysis in Section 2.2, vhich have relatively long time

scale, T = 5 s was chosen for the present study.
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Instead of using the u velocity component as the event selector
(as vas the case in most previous applications), the momentum flux,
-uw, was used as the controlling VITA variable. This is because, inra
laboratory study of a turbulent mixing 1layer, Bradshaw (1966) found

that maximum instantaneous momentum flux occurs duriag the large eddy

=]
11

pairing process; so events selected by VITA using -uwv triggering should
correlate well with the large-scale motions.

The events (velocities in a time domain centered at the insténf
wvhen the maximum of the short-time variance occurs) are selected'vhen
VITA exceeds the long-time averaged variance of -uw.  The time domain
was chosen to be six seconds so that it will cover a complete perigdZéf

most of the selected events. One hundred events were selected for each

upstream and downstream location. The selected events contributed
about 70% of the momentum flux in about 50% of the total time, for both

upstream and downstream locations.
The major difference between previous applications of the VITA

technique and the present study is in the stage of ensemble averagiﬁg_r

It is important to remember that the selected events may contain
contributions from a number of scales. Most previous authors formed an

arithmetical average of the selected events. But in the atmospheric
surface layer, owing to the unsteadiness of the wind, the ensemble-
averaged events could be a blurred superposition of the embedded
structures, and show no order (Narasimha and Kailas, 1987).

To examine the VITA-selected turbulent events; we have used the
method of Proper Orthogonal Decomposition (Lumley, 1967,1981), which is
a statistical method widely used to sort from a large set of

experimental observations a subset of linear combinations of coherent
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patterns contributing maximzlly te the observed variance. It has been
successfully applied in this context to idgntify coherent maticﬁs,in
turbulent jets (Glauser et al., 1985) and in the wall region of the
turbulent boundary layer (Aubry et al., 1988). Héré, because of the
limited data available, only a simple version of this theory is
applied: only the temporal variation of the data will be considered.
Details of this theory can be found in Appendix B and the references

listed therein, but a very brief description follows.

2.4 Proper orthogonal decomposition
Suppose f,(t), £,(t), ..., £,(t) are N realizations (or events) of

a fluctuating signal, each of which can be either a single variable or

a composite of variables, sampled periodically at time interval, At =
(T, - T,)/M, within the closed domain [T,, T,1}. By requiring a

function ¢(t), defined on the domain [T,, T,], to resemble in a
statistical sense the dominant Structure embedded in ‘these

realizations, one obtains (Appendix B) for ¢(t) the prescription

M
Z ,(t ;tk)¢(tm)

wvhere R(t, ,t,) is the two-time covariance function formed from the N

(L) (2)

realizations £, which is a (M+1)x(M+1) matrix, and A is the eigenvalue.

Equation (2) is the well-known problem of determining eigen?alués
and eigenvectors of a matrix R(t,,ty). Solving this eigenvalue problem
(IMSL, 1989), one finds a set of eigenvalues (Nyy vevy X)), ordered
such that A > X\, > ... > X; > 0, and a set of earrespandiﬁg thhaganai
functions (¢,(t), ..., ¢,(t)).

Each event can then be reconstructed from the orthogonal functions
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n-ﬂ
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L]
1=

£y ()4, (t,) (3D
m=0
vith different coefficients, «,,, for each different event.

For flows having a high degree of organization, this decomposition
has been found very effective in the sense that the first fe§
orthogonal functions will retain most of the information in the
velocity covariance of the selected events.

To implement the Proper Orthogonal Decomposition to ébtain'the :
orthogonal functions, the selected events vere blackaaveragea every 0.1

s, i.e., low-pass filtered, and used to calculate the " two-time

covariance function

R(t,,t,) = T Z FT, F, ' L _,;«;3‘:;7 =
& - e

where (¥) denotes a transpose ané F, is a‘i x 120 matfixz‘[qi(t;);;::
wi(ty)y <vey U (tee), wi(tey)l, so therccéarianéé; R(t, ty), céntaiﬁég
the variances of u and v components, as well as the covariance of u
and w. :

To be consistent with the objective of investigating the velocity
structures that dominate the Reynolds stress, wve veighted the-seleéted,
events with their respective values of the Réynalds,strésé V,. (1)

averaged over the domain [T,, T,], when calculating R(t,,t,)

N
Rty t,) = ZV“(i) FT, F, . (3d)
i=1 ‘
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m

Thus, the resulting eigenvectors calculated from (2) emphasize th
velocity events not only effectively retaining information in velocity
covariance but also making the largest contributions to -uw. Such
weighted orthogonal functions have been calculated and used by Mahrt
and Frank (1988) in an investigation of the intermittent turbulence at
the top of a strongly stratified surface inversion layer.

Figure 4 shows the five most important orthogonal functions
extracted from events contributing strongly to the Reynolds stress, for
the upstream and downstream turbulence. These five velocity structures
contribute more than 50% of the wvelocity variance of the selected 100
(N) events, and represent, in a decreasing order, the 1argest”scéle
motions. Upstream, the vertical velocity components are“n;t vell
correlated with the alongwind components, and have a small amplitude,
implying that most momentum transport happens when there ‘is a,stfphé
alongvind fluctuation and a weak downdraft. This is expected in.tﬁe
undisturbed atmospheric surface layer, where the hgrizcntai motions .
dominate. But downstream, u and w have gbgut the same amplitude, éﬁd
are better correlated within the selected events, implying an effective
momentum transport mechanism in the downstream turbulence.

The analysis so far suggests that there ARE strong coherent
motions in the mixing region of a windbreak flow. However, our data
are too limited to discuss further the coherent motions, their spatial
structure, and their role in determining the evolution of a vindbreak
flow. For this, ve will rely on earlier windbreak experiments. In
addition, it is noted that the strongly coherent downstream u and v
events resemble the velocity measurements from the laboratory turbulent

mixing layer, where the primary structures are the transverse vortices
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that have strong vertical motions (Latigo, 1979). Thus, if a
resemblance (both mean flow and turbulence) between windbreak flow and ,
the turbulent mixing layer can be established, the well known
properties of the turbulent mixingrlayef will shed light on what ve ﬁay
expect to ultimately be revealed as the vortical nature of windbreak

flow.
3. A resemblance between windbreak flow and the turbulent mixing layer

A turbulent mixing layer is formed by fﬁe sﬁdden intetacfion of
twvo parallel streams having initially (i.e.,b at the poiﬁt of
conjunction) distinct and uniform velocities U, énd U,. Although the
simplest statistical theory of the turbulent mixing layer based on an
eddy viscosity is well known (Schlichting, 1968), study of the coherent
structures in the turbulent mixing layer has been an active academic
problem (Latigo, 1979; Liu, 1989), and has played an important role in
research aimed at better understanding of turbulent shear flow. The
essential feature of a turbulent mixing layer 1is the presence of
spanvise coherent large-scale vortices, which are believed fo be a
manifestation of hydrodynamic instability (Ho and Huerre, 1984).
Following this primary instability, secondary instabilities introduce
three dimensionality into the flow. Roshko (1980) concluded
"development of a mixing layer is largely determined by the primary
spanwise vortices and the streamwise counter rotating vortex pairs.
The Reynolds stress and the growth of the layer are controlled mainly
by the primary vortices while the secondary set provides internal

mixing and possibly modifies the stress.”
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For a solid fence, Plate (1971) has demonstrated that the flow
near the separation streamline (i.e., a 1line passing close te"thé tip
of the fence, and dividing the downstream flow into "high" and "low"
velocity regions) can be well described by the simplest theory of the
turbulent mixing layer, which involves the assumption of an eddy

% .
ky, = — (U, -1U,). (4)
4g? ,

Here U, and U, are the flov velocities above and below the windbreak,

and ¢ is an empirical constant.

n the case of a porous fence, ve vauld ‘expect that the upper part

[

of the flow field (z > H), which is distorted (relative to the apstream
flow) owing to the drag on the fence, would have Qharaatariétiﬁs
similar to the upper layer flow of a solid fence, but with less séVE”=
distortion. Theoretical and wind tunnel studies reviawed By Laﬁs and

Livesey (1978) have shown that a wuniferm screen blaﬂklng a cgnf;ned

flov always tends to make the downstream wind more unifor By varying
the resistant coefficient k., the downstream mean velocity prcfile can
be controlled. In addition, with increasing porosity, the mean]flov
recirculation zone right behind a windbreak becomes Weak'{ééltéxé.
1967) and the flow in the mixing régi@n vill not be affected by the
presence of the ground as strongly as in ;he case afra solid fence.

Thus, it is reasonable to assume that in the mixing region of a porous

vindbreak, the flow has the characteristics of the flow that results if

an_upper flow with initially uniform velocity, U,, is joined to a lower

flov of velocity U,.
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Experiments (Finnigan and Bradley, 1985) shov that there is a
small downward curvature in the mean streamline downstream of the
vindbreak, which is caused by the pressure gradient between ground and
the upper layer free stream, i.e., "Coanda" effect (Plate, 1971).
Plate pointed out that the Coanda effect is in part responsible for the
recovery of the wind profile to the upstream equilibrium condition in
solid windbreak flows, but suggested that this effect is probably small
for a porous fence. We thus neglect the effect in the following
discussions.

To test the hypothesized resemblance of windbreak flow to the
turbulent mixing layer flow, we have used the experimental data of
Bradley and Mulhearn (1983), who désignedra viﬁdbreak experiment in the
atmospheric surface layer to verify a theory for the wake behind a
fence in a boundary layer proposed by Counihan et al. (1974). The
fence was 1.2 m in height, with a porosity of 50% and a resistance
coefficient k, = 2. Using drag plates, and cup aﬁd sonie éngmametérs,

velocity and shear stress profiles wvere measured at varicﬁé locations
downstream of the fence, under near neutral stability ccnditiens. The
patterns of velocity and shear stress downstream vere found independent
of the upstream wind velocity over the range 5-10 m/s. Figure 5 shows
the mean profiles upstream and downstream of the windbreak, reproduced
from Bradley and Mulhearn. Immediately behind the windbreak (x/H =
0.8), the wind profile is relatively uniform below windbreak height.
The wind profiles in the mixing region (x/H = 8.3, 12.5, 16.7) have
been plotted in Figure 6 wusing the mixing layer scaling. The solid

line in Figure 6 is the solution for the velocity profile in a

turbulent mixing layer, namely
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U+ U, U, -U, , 7
U= — R erf(n) ’ (%)
2 U, +U, ;

where n = oz/x is the similarity variable for the mixing layer. The
empirical constant o was specified as 14.5, as suggested by Plate (1971)
for both solid and porous fences; erf is the error function. For our

purposes, the speeds U, and U, have been normalized by the velégity at

4 m. Then U, = 1.0 vhile from the wind profile at x/H = 0.8, U, = 0.4.

From Eq. (5) the momentum flux T is calculated as

-k, — (e

wvhich is bpresented in Fig. 7 along with Bradley énd Mulhearn’s
experimental data at two locations downstream of the windbreak. |

Since the data were averaged over many different runs, séétter
around the theoretical curves could be partly due to thewﬁafiéfiéﬂ éf
the atmospheric stability conditions and the incoming wind directiénsi
Qualitative agreement between the expe:imentai'data'and the theoretical
calculations in Figures 6 and 7 indicates that in the mixing region of-
the windbreak flow, both mean flow and second-order statistiég follow
(qualitatively) the turbulent mixing layer scaling.

Further evidence of the resemblance between windbreak flow and the
turbulent mixing layer can be extracted from Mulhearn and Bradley’s
(1977) experiment, in which the authors examined the sensitivity of
windbreak flow to the incident wind direction in a wind tunnel.
Mulhearn and Bradley found that with a decrease of incidence angle in
the approaching wind direction (i.e., when the upstream vind is more

nearly perpendicular to the fence), the downstream mean wind profiles

tend to decrease mostly near and below the windbreak height (i.e, the
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velocity difference U; - U, becomes larger), whereas the momentum
fluxes tend to increase 'strongly, especially at heights greater than
half of a fence-height. That is, the larger the difference between
velocities at upper and lover levels of a windbreak, the stronger the
downstream momentum transport will be. This phenomenon is also found
in the turbulent mixing layer. From Equations (5) and (6), we obtain
1 9 : : , 5
T == pK,(U; - Uy) —erf(n) : 7
2 9z ,
Thus, a mixing layer with a larger velocity difference, U, - U,, will
transport momentum more effectively. | |
It seems plausible, from the above compafisohs, tﬁat the dominant
flow structure in the mixing region of a windbreék'is siﬁilar to a
classical turbulent mixing layer. Having established Ehicheﬁnéctian,'
we will try to explain some of the interesting phenoﬁena af'wiﬂdbreak

flows.
4. Discussion and Conclusion

Why do turbulence models, such as the eddy viscosity closure and
Fhe second-order closure, which do not explicitly account for the
occurrence of coherent motions, lead to fairly reasonable prediction of
the mean flow (Wilson, 1985) in what we now know to be an Qrgaﬁized
windbreak flow ? To address this question, let us recall some
experimental evidence on the turbulent mixing layer. Following
extensive turbulence meésurements in a plane mixing layer, Wygnanski
and Fiedler (1970) claimed that "in spite of the complexity of the flov

the simple concepts of eddy viscosity and eddy diffusivity appear to be
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valid within the turbulent zone." Shih (1984) successfully simulated a
turbulent mixing layer using a second-order model. His success, és
Lumley (1985) points out, is partly begause,_in a selfasimilaflflcw,
all scales of the turbulence respond quickly to the changes in the mean
flow field, so the coherent motions transport momentum in much the same
way as the "fine grain" turbulence does, and can be described by the
gradient transport theory. The self-similar properties of a turbulent
mixing layer have been demonstrated by Spencer and Jones (1971) in a
vind tunnel expériment vhere the fluctuating velocities were found to
closely follow the mean velocity in attaining similar distribution. In-
view of the resemblance between windbreak flows and the turbulent
mixing layer, the successful numerical simulation of the windbréék flow
by Wilson (1985) based on the Reynolds equations is not surprising.
From laboratory experiments we know that the thickness of a
turbulent mixing layer at any given x is linéarly proportional to tha
normalized velocity difference, (U, - U,)/(U; + U,) (Bfgwand and
Troutt, 1985). On the other hand, from the aeradynémiz point of viey,
the normalized velocity difference between upper and lower levels of a -
wvindbreak flov (immediately behind the fence) is determined by
parameters such as porusity, ineident wind - directién, etc.
Observations (Raine and Stevenson, 1977) shoved ‘that the higher the
porosity of the fence, the slower the rate of recovery to the upstreaﬁ
condition in the far wake. Since the mean wind profile downstream is
shaped by the momentum transport, in light of what wethave shovn we can
assert that the slow recovery is caused by the fagt that with
increasing porosity, the normalized velocity difference behind the

fence decreases, and the 1large-scale coherent motions become less
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effective and need a longer distance to transport the alongwind
momentum required to restore the wind profile to the equilibrium
upstream condition. For the =s=ame reason, when the incident wind is
oblique to the fence, the normalized velocity difference behiné the
fence is decreased, leading to the reduced momentum transport observed
in a windbreak flow (Mulhearn and Bradley, 1977).

Finnigan and Bradley (1983) found that immediately behind a fence,
the zone of enhanced turbulent kinetic energy (relative to upstream)
covered a deeper vertical region than the zone -af enhanced shear .
stress. Similar differences (although of lesser degree) can be seen in
a turbulent mixing layer (Hygnanski‘ and Fiedler, 1970). The narrow
zone of the enhanced stress may correspond to the pairiné,pfegess.af
the coherent motions, that happens in the region of large velocity
gradient. The deeper zone of enhancémenﬁ éf turbulent kinetic energy
could be due to the very 1ar§e eddy (larger than the scale considered
here) induced swirling "inactive" motions. which are éarticularly
intense iﬁ a boundary layer with adverse pressure gradienf (dp/dx > 0)
(Townsend, 1976); such as in the lee of a windbreak (Plate, 1971).

"Inactive" motions contribute little to the Reynolds stress, but

atmospheric stability, we do not expect the normalized velocity
difference, and consequently the structure of momentum transport in éhé
near vake of a windbreak, to change with atmospheric stability. This
has been confirmed by our quadrant analysis, and by the observation éf

Seginer (1974). The changes in flov pattern in the far vake of a
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windbreak flow are however influenced by the local thermal structure,
and cannot be easily predicted.

In conclusion, we have shown that coherent motions DO occur in a
porous windbreak flow, and argued that they resemble the vortices seen
in the laboratory turbulent mixing layer. By virtue of their strong u-
w correlation, the coherent motions are largely responsible for the
momentum transport that reaccelerates the leevard flow. However, from
the modelling point of view, the coherent motions in a windbreak flow,
do not pose great difficulties, because of the self;similaf properties

of the flow in the mixing region.
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Figure 2 Alongwind velocity and Reynolds stress spectra of the windbreak
flow at (a) upstream and (b) downstream mixing region,
respectively. The data were measured at height (z/H = 0.71)

during run 4. The mean wind speed at the upstream measurement

height was 2.44 m-s-1,
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Figure 4 First five orthogonal functions obtained by P.0.D. of velocity
time series observed upstream and downstream of a fence. The
% are the fraction each velocity structure contributes to the
total variance of the VITA-selected events. The scale for
velocity applies to all five structures.
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Figure 5 Mean wind profiles measured under near neutral conditions,
reproduced from Bradley and Mulhearn’s (1983) experiment. The
vind profiles are normalized by the velocity at 4 m. The dash
line denotes the upstream wind profile; —— X/H = 0.8;

e X/H = 8.3; A X/H = 15.5; + X/H = 16.1
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Figure 6 Theoretical and experimental mean wind profiles in the mixing
region of the windbreak, expressed in mixing layer scaling.

Eq. (5); Expégiment (Bradley and Mulhearn, 1983): & X/H

= 8.3; A X/H = 12.5; + X/H = 16.7.
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Figure 7 Theoretical and experimental Reynolds stress profiles in the mixing
region of the windbreak, expressed in mixing layer scaling, ———
Eq. (6); Experiment (Bradley and Mulhearn, 1983): e X/H = 8.3; &

x/E = 15-3-
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EXTRACTION OF COHERENT STRUCTURES IN THE ATMOSFHERIC SURFACE LAYER
USING THE SHOT-EFFECT METHOD

1. Introduction

Most previous studies of coherent motion in the atmospheric
surface layer have used conditional sampling methods to select an

ensemble of coherent events (in the velocity or temperature signals),

quantitative properties (momentum and heat transport, translation
velocity, lifetime etc.) of the coherent structures vary among
Wartena, 1986), reflecting not only the variation of the turbﬂ;eﬁ:gﬂin
the atmospheric surface layer, but also the different methodologies
used. Conditionally averaged structures can be influenced by factors
such as the sampling criteria, and the prejudices of the researcﬁer.
It is felt that a statistical description of coherent motion should be
more objective. In this study, the Shot-Effect method (Lumley 1981) is
described and applied to extract "statistical" coherent structures
under unstable and neutral conditions in the atmospheric surface layer.
The transpdrt characteristics of the "statistical" coherent structures
agree qualitatively with the common perception of the transport

processes under unstable and neutral stratification.
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Although coherent structures, such as gusts and ramps, are
frequently observed in the atmospheric surface layer, the thbuléﬁQE“
can be considered statistically stationary. In other vords, ve assﬁmg
that the time series obtained at a fixed location in a field experiment
consists of a series of coherent structures, occurring with different
strengths at random times, and, in the intervening intervals, random
fluctuations on smaller spatial and temporal scales, shoving lesser
degree of organization. For such a (stochastic) stationary time series
with embedded structures, the Shot-Effect method, originally developed
to study the flow of electrons from cathode to anode in a vacuum tube
(Rice, 1944), can be used to extract the coherent structures. Here, a
brief introduction to the concept of the Shot-Effect method, as ﬁsed in
turbulence studies is.given (for a fuller discussion see Lumley, 1981).

A stationary stochastic time series of velocity (or temperature)
vith embedded structures, at a height z_ iﬁ the écmcsphérié surface

layer, may be represented as a convolution integral

T
U (20 t) = | £z, tot)ELY) dtr ey
T

vhere i = (u, w, ©), f;(z,,t-t’) is a deterministic function (the

coherent structure) for the ith variable defined on the domain [T,, 7,1,

n

and E(t’) is a white noise function, i.e., E(t)E(t’)

overbar denoting an ensemble average. It can be shown (Rice; 1944) that

the auto-covariance of u;(z,,t) can be expressed approximately as

5(t-t’), the



40

T2
R (2,,T) = u;(2,,)u;(2,,t+T) = j fi(zm,t)fi(zm,t+1)dt, (2)
T, ,
provided the domain [T,, T,] is large enough that

T

2
1 -
z‘,i;;—_—-,l—.l—)-J‘ uy dt =0
Tl

After taking the Fourier Transform of Eq. (2) with respect to.T, one

obtains
A A A -
R;;(2,,0) = fi(zm,w)-fi'(zm,w) ’ ' S (3)

where (A) denotes the Fourier Transform, w is the angular:fféquehéyréhd
(') indicates a complex conjugate. The Fourier Trénsfdrm of £, can be
obtained from (3) within a phase angle, y(w).

A /2 , : , .
£,(z,,0) = Ry; (z,,0) eiviw) . . . (4)

, A
For now, let us just consider the magnitude of f;, i.e., assume Y(w) = 0;

then it follows from (4) that

W,
0 Ay

£,(z,,t) = (1/2n) Ie—xwt R, (z,,0) do, o (5)
_wo V :
vhere w, = 1/8t, At being the sampling interval. Thus, when the phase

angle is neglected, the derived structure, f£;(z,,t), is completely
determined by the auto-covariance of the signal. It should be
mentioned that using variance and covariance to examine spatial or
temporal structure of flows has been a common statistical tool in
turbulence research (Townsend, 1976). This is because persistent and
dynamically important coherent structures contribute significantly to

the variance and covariance.
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Although the phase angle does not affect the amplitude of £,, it
may influence the geometrical structure of the coherent motion,-as
Lumley (1981) indicated. For example, if the coherent structure is an
even function with respect to time, then ¢(w®) = 0; for an odd function,
Y(w) = - 90° when @ > 0 and y(w) = 90° when w < 0. In general, this
phase angle is not readily available, although Lumley (1981) suggested
a method to recover it from higher-order statistics.

In this study, the primary concern is the transport properties of
coherent structures, i.e., the momentum and heat fluxes. 1In tha; case,
it is not the geometrical structure of a single variable that is
important, but the cross-covariances of u, w and 6 that must be
preserved.

In order that the coherent structure f; ébtained from Eq. (5)
earréatiy capture the turbulent transport processes, the cross-
covariances must be imposed on R;;. For this purpose, let us write the
éxperimegtal data as an ensemble of composite time series En(z;t)'(n =
1, ..., N), vhere P (z,t) = [u,(z,,t;), w,(2;,t,), Bﬁ(zl;tl),'g.f,

v, and © measured at heights from z, to =z,, from times t; to t . Let

p?
us assume $(z,t), a composite function (structured as F.), resembles
the dominant structure embedded in the ensembie of F,(z,t), and define
$(z,w) as the Fourier Transform of ¢(z,t). " Then using the proper
orthogonal decomposition (Appendix B), ¢(z,w) can be obtained by

solving the eigenvalue problem

| =

urR(zm,gk;m)§(zﬂ:m)
=0

]

Mw) #(z,,0) . (6)

=
Il
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Here R(2z,,2,,w) 1is the Fourier Transform of the cross-covariance

function R(z,,2,,Tt) calculated as

N :
Rz = A ) i DR (a0 t0) 7
n=1

which contains information on the signal auto-covariance (R, ),

[ad

velocity cross-covariance and temperature-velocity E:st=cavariance
(Ry» i#j) with respect to space and time.

Solving Eq. (6), one obtains a set of eigenvalues X (w) and
eigenfunctions ¢,(z,w) vhich retair all the information on the auto-
covariance and cross-covariance embedded in the raw 'déta.

Consequently, the auto-covariance can be reconstructed as (Appendix B,

Eq. (5B))
N
B i i
Ry;(2,,0) = Eilﬁ(m}¢n(zm,m)¢n(2m,M) ) (8)
n=1 -

vhere ¢: are the eigenfunctions for the ith variable, i.e., the ith
component of the ¢, (z,w), on which the information ag baﬁh auto-
variance and cross-covariance is imposed. B

In the following, the Shot-Effect method will be usééAta extract
coherent structures from measured time histories of velocity and
temperature in the atmospheric surface layer, where coherent motions
have been found to dominate turbulent transport (see Wilczak, 1984).
By necessity, the phase angle y(w) 1is set ta!zera, i.e., the coherent
structure is assumed to be an even function wiéh respect to time, which
will certainly affect the geometrical structure of the coherent motion,
but will not affect the cross-covariances of u, w and ©, preserved by
the Proper Drthagangl Decomposition, at different heights and different

times. A similar assumption in using the Shot Effect method to extract
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coherent motions has been made by Moin (1984) 1in a fully developed
turbulent channel flow and by Glauser et al. (1985) in a turbulent jet

mixing layer, although the preservation of covariances by the Proper

Orthogonal Decomposition was not discussed.

3. "Statistical"™ coherent structures extracted from towver data

The data examined here are velocity and temperature fluctuations
sampled by the three-dimensional sonic anemometers from the Boulder
Atmospheric Observatory (BAO) 300-m tower (see Appendix,c_far a brief
description of the site, iﬁstruméntatinn and data  sampling of ‘this
facility). Two sets of data wvere ééle;ted: the first wvas measuted on
17 July 1986, 1100 to 1130 MST; the seccﬁd @ﬁ.ﬁ August 1986, 1866it§

1830 MST (Table 1). These data were selected because the wind:

represent respectively typiecal unstable r(i.é-, light wind andlstréng:
surface heating) and neutral (i.e., strong wind and no surfaéé»heatiﬁg)
atmospheric surface layers, as characterized by the given value @f-thé
Monin-Obukhov length scale, L.

The data, sampled at 10 Hz, were first block-averaged over 0.8
seconds to filter out the high-frequency camp@ﬁentsg The resdlfing
low-pass filtered half-hour records were divided evenly into 28
segments, each of 64 s duration. The measurements at the five levels
(10, 22, 50, 100 and 150 m) were interpolated, using the cubic spline
interpolating scheme, "CSINT" (IMSL, 1989), onto eight levels (10, 30,
50, 70, 90, 110, 130 and 150 m), with equal intervals between the

levels, for the convenience of the following numerical calculation.
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The velocity and temperature fluctuations, u, w and 8, in each of the
segments, were used to calculate the ensemble-averaged cross-covariance

function

28
n=

vhere F, is a 1 x 1536 matrix, [u, (1,t,), w,(1,t,), 6,(1,t3)y -vvy
u (Bytes)s Vo(Bytgy)s 6,(8,t5,)], and (7) denotes a transpose.

Taking the discrete Fourier Transform of R(z,,2z,,T) in Eq. (9)
with respect to Tt and then substituting into Eq. (65, the eigenvalue
problem for each of the 64 frequencies was numerically solved to obtain
a set of eigenvalues and eigenfunctions. Averaging over the 64
frequencies, the largest eigenfunctions were found to contribute
respectively 41% and 32% of the total signal variances under unstable
and neutral stratifications.

As in Moin (1984) and Glauser et al. (1985), here the coherent
structure is defined as a function composed of the dominant mode for
each frequency. Then the 1largest eigenvalue and the carrespénding
eigenfunction for each frequency are used to form the auto-variance in
Eq. (6). Substituting Eq. (6) into Eq. (5), the coherent structure,
f;(2,,t) can be calculated for u, v and 8, respectively.

Since only the first (most energetic and organized) eigenfune;icn
for each frequency is used to form the auto-variance in Eq. (8) and all
motions with lesser degree of organization are excluded, the above
method for extracting coherent motions is only meaningful in flows
vhere coherent motions are seen experimentally to play a dominant role.

Figures 1 and 2 present the "statistical" coherent structures

formed from £,(z,,t), f£,(z,,t) and f£fg(z,,t), and their momentum and
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heat transport characteristies for an unstable and a. neutral
atmosphere, respectively. Comparing Figures 1 and 2, it is noted that
flux patches under unstable conditions are relatively larger than those
under neutral conditions. As expected, the temperature and vertical
velocity are better correlated under unstable conditions than neutral
conditions. This results in the efféétive heat transport by the
coherent structures under unstable conditions (Figure 1(c)).
Furthermore, there are two upward momentum transport centres in the
upper layers (Figure 1(b)), as has been observed experimentally
(Vilczak, 1984) under unstable conditions, vhereas these are very weak
under neutral conditions (Figure 2(b)).

The approximation in (2), the smoothing, and neglecting the phase
angle of the Fourier Transform when implementing the Shot-Effect.
method, have introduced some subjectivity. However in principle, these
assumptions should not affect the variance and covariance functions
from which the coherent structures are extracted. Thus, the coherent
structures in Figures 1 and 2 have retained objectively the créssf
covariances of u, w, and © that characterize turbulent transport at thé
largest scale. Since these f, are "statistical" structures nbtained'bﬁ
neglecting the phase angle y(w), it may not be ap?rapriate to compare

them directly with a single flow visualization.
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The Shot-Effect has been shown to be able to. extract coherent
structures from experimental data. It provides a flow “visualiza;ian"
by a simple statistical analysis. The transport characteristics of the
"statistical" coherent structures agree qualitatively with our
perception of the transport processes under ~unstable - and neutral
stratifications.

The Shot-Effect method, like conditional sampling methods, is only
a tool to extract the coherent structures from experimental data. It
may be useful for an initial study of flows vhere not much is known
about the dominant transport properties to intelligently carry out
further study of the flovs. To study the detailed dynamics of the
coherent structures and their influence on transport in an evolving
flow field, one needs to solve the governing equations. In subsequent
Chapters, the governing equations, and more in depth discussions on
dynamics and energetics of coherent motions in the atmospheric surface

layer, will be presented.
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Fig. 1

(a)
(b)

(c)

The "statistical" coherent structure obtained by the Shot-
Effect method under unstable stratification in the atmospherie
surface layer.

Vector velocity and temperature (dashed line) field formed by
this coherent structure.

Corresponding contour of the momentum flux. The momentum flux
is normalized by the root-mean-square of momentum flux averaged
over the whole structure. Solid and dash lines indicate upvard
and downvard momentum transport, respectively.

Corresponding contour of the heat flux. The heat flux is
normalized by the root-mean-square of heat flux averaged over
the whole structure. Solid and dash lines denote upward and
downvard heat transport, respectively.
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Fig. 2 As in Fig. 1 but for neutral stratification. Note that
although the heat flux under neutral conditions is very small,
the contours are plotted to compare their pattern with those
under unstable conditions. '
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A LOW-ORDER STUDY OF LARGE-SCALE COHERENT STRUCTURES
IN THE CONVECTIVE ATMOSPHERIC SURFACE LAYER: MODEL DEVELOPMENT

1. Introduction

A typical convective plume or coherent structure (hereafter, CS)
in the atmospheric sufféee layer is associated with ramps in the scalar
(temperature, humidity, tracer contaminant) signals, and corresponds to
gust-ejection cycles in the velocity fluctuations (Vilczak 1984).

These CS’s are three-dimensional, but distinctly elongated in the

alongwind direction, except under very unstable conditions when they

are found to decrease in alongwind extent, and to increase in crosswind
extent (VWilczak and Tillman 1980; Williams and HEQEE? 1992). The
vertical extent of the CS5's varies with atmospheric stability, and from
structure to structure. Some CS’'s can extend through thé vhole
atmospheric boundary layer. Observations show that the lifetimes of
the CS’s are at least as long as the  time *fequired for them to
propagate for a distance several times their alongwind length (Wilczak
and Tillman 1980). The time fraction whén the coherent motions are
observed vas found to be about 42% in the unstable atmosphere (Antonia
et al. 1983).

~Because of their frequent occurrence and péfsistent naiure,-the
CS’s have been found to be 1largely responsible for the momentum and
heat transport, and to contribute signifiéantly to the budget of
turbulent kinetic energy and samé third-order turbulent statistics

(e.g., W) observed in the convective atmospheric surface layer
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(Wilczak 1984; Hunt et al. 1988). The occurrence of the CS’s has not
been explicitly taken into account in the usual ensemble-average
turbulence models, and is believed to be one of the causes of the
necessary adjustments of model constants (especially those related to
modelling of pressure covariances) in order to bring into alignment
predictions and observations in the convective atmosphere (Lewellen and
Teske 1973; Wyngaard 1980).

In viev of their decisive influence on turbulent transport in the
convective atmosphere, it is natural to speculate thai; among other
factors (low-frequency changes in wind speeds and directions, ete.),
the CS’s and their variation (in number and nature) with atmospheric
stratification.may be partially responsible for the variability of the
mean concentration fields observed under apparently identical "mean"
meteorological conditions (e.g., mixed-layer depth; surface heatingwand
mean wind profile etc.) in air quality experiments (Vyngaard 1988). 1In
addition, CS’s will certainly cause some short-term.random fluctuations
in pollutant concentrations, wvhich can be as important as the aiérage
concentration. Therefore, an air-quality model should consider this
intermittent nature, as well as the average flow properties (VWyngaard
1988). |

Most previous work on turbulence structures in the atmospheric
surface 1layer has used conditional sampling or other statistical
methods (Young 1988;>Mahrt 1991; Villiams - and Hacker 1992; Turner and
Leclerc 1992) to extract CS's. The transport properties and dynamics
of the CS’s weré then discussed with reference to the "averaged" or
"statistical" structures. A problem with these studies is that the

subjective selection of the coherent events, and *the averaging and
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smoothing procedures, when applied to an unsteady atmospheric
turbulence, may mask the structure of the coherent motions. In
addition, time-dependent behaviour of the CS's has n@t‘been discussed
in these studies.

There have been attempts to model the CS’s in the convective
atmospheric surface layer. Telford (1970) developed a model to predict
the bulk properties (radius, upvard velocity, turbulence intensity,
etc.) of an isolated plume in a convective field, assuming that it has

a statistically uniform interior and a sharp boundary. Although

Telford’s model was derived empirically (i.e., the Naviersgﬁﬂkési
equations vere not used), and neglected the environmental vind shear
wvhich, as will be shown in Chapter V, is important for the evolution of
a plume,

More recently, Large Eddy Simulation, in which large-scale
structures are explicitly calculated and the pnfesclved (or subgrid)
scales are modelled, has become an alternative tool f@rvstudyiﬁg CS's
in atmospheric turbulence (Schmidt and Schumann 1989; Schﬁmann and
Moeng 1991). 1In order to study CS’s, Schmidt and Schumann sorted out
the Gé:s in the flow fields by conditional sampling, from the huge
amount of numerically generated data. Using the results from large
eddy simulation, Schumann and Moeng were able to study the budgets of
momentum and turbulent kinetic energy within large-scale mixed layer
thermals in more detail than could be provided by experimental study
(Young 1988). These studies have also revealed some detailed three-
dimensional flow structures of the mixed layer thermals, e.g., the

spoke pattern found in Schmidt and Schumann’s study, that would have
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been difficult or impossihle to obtain experimentally. Notwithstanding
these studies, it is felt that coherent flow dynamics in the
atmospheric surface layer are to some extent unknown. Besides, Large

Eddy Simulation is still very expensive. Thus, seeking a way to study

CS’s with clear physics and vithout excessive computation is desirable.

The concept of Large Eddy Simulation implies that some of the
degrees of freedom (i.e., those related to small-scale fluctuations) in
turbulent flows ecan be removed, by modelling the small-scale
turbulence. 1In other words, considering the correlation between small
and large-scale turbulence (e.g., using eddy viscosity closure) greatly
reduces overall computatienal effort. The rationale for such a
simplification in calculating turbulent flows may be supported by
recent applications of the dynamical systems theory to turbulence
(Sreenivasan 1985; Newell et al. 1988). These studies have shown that
the transport properties of turbulent flows, especially those that are
dominated by CS’s, may be governed by relatively low-dimensional
strange attractors in phase space (to be introduced in Section 2). To
model a strcngiy organized flow, it has been suggested that a natural
decomposition is to divide the flew into C5’s represented
deterministically by the dominant orbits in phase space, and superposed
stochastic fluctuations. By definition, within a CS the flow field is
temporally and spatially correlated, so it is reasonable to think that
further simplification to computing large-scale turbulence can be made
wvhen the correlations within a C5 are considered.

Lorenz (1972), decomposed the Navier-stokes equations in two
dimensions with an infinite system of time-dependent ordinary

differential equations. By sorting the equations into sets of
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statistically similar behaviours, and retaining only a fev of them
within each set, a low-order model (28 ordinary differential equations)
was constructed. Vhen compared with a more-complete numerical
simulation, the solutions of the low-order model exhibit many of the
important properties of two-dimensional turbulence, although not all of
them. Recently, Aubry et al. (1988) studied theoretically a low-order
system of ten ordinary differential equations for the near-wall
boundary layer flow, from the dynamical systems point of view. They
shoved that the repetitive intermittency found by solving the low-order
equations in phase space corresponds to the burst phenomenon commonly
observed in the wall region of the turbulent bouhdary layer. ‘This
indicates that the basic dynamics of the burst phenomenon can be
modelled adequately using only a few low-order modes.

In view of the abundant experimental evidence of CS’s and their
simple and repeatable patterns in the convective atmospheric surface
layer, in this study, the possibility of describing deterministically
the CS’s was explored through - experimental data analysis and
theoretical reasoning. A low-order model (15 ordinary differéntial
equations) based on empirical basis funcfions and the Navier-Stokes
equations will be derived. This new framework can désc:ibe‘ﬁ@t'ﬂniy
the coherent dynamics of the "averaged" or "statistical" CS’s, but élsa
their (short-term) time-dependent behaviour, not emphasised in ﬁreviaus

studies.
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2. A Dynamical Systems View of Turbulence in the Atmospheric Surface Layer

The atmospheric surface layer occupies roughly the lowest 10% of
the atmospheric boundary layer, where the mean turbulent vertical
fluxes of momentum, heat and moisture can be regarded as approximately
height-independent. It is characterized by strong vertical wind shear,
and turbulent motions (including intermittent CS’s) that are affg;ted
by the proximity of the ground. In this section, experimental data
will be analysed, taking the dynamical systems pojhts‘ of viewv, to
examine the possibility of a low-order study of CS's in a stationary,
horizontally-uniform convective atmospheric surface layer, where bathr
vertical wind shear and buoyancy force operate as turbulence energy
sources.

The atmospheric surface 1layer can be considered a»dynamiiél
system, since its evolution from a known initial state can be desgribéd
by a set of rules, the Navier-Stokes equations. Theoreticall?, partial
differential equations such as the Navier-Stokes équatioﬁs fcaq be
transformed into a set of N truncated, coupled, ordinary diffefential
equations by expressing the spatial variability with a set of N
orthogonal functions, as commonly practiced in spectral fluid dynamics
(Qanuto et al. 1988). For  example, if A;(t) are expansion
coefficients, then a flow variable f (velocity or temperature) can be

represented as

N
f(x,t) =Z A (t); f(x) (1)

i=1
vhere ¢;° are orthogonal basis functions for the variable f.

Substituting Eq. (1) into the Navier-Stokes equations and using the
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Galerkin projection (to be introduced in Section 3), one obtains a set

of N coupled, time-dependent ordinary differential equations:

ACt) = Fi(Ay, Ay ooy Ay a1, 2, ceeee, N, (2)
vhere F, are determined by the orthogonal functions and their spatial
derivatives. The evolution of the flow can then be described by the
time history of the N expansion coefficients A;(t), vhich serve as the
generalized coordinates of the flow in a phase space vherein lie the
solutions of (2). Each set of A; (i =1, 2, 3, ..., N) at time t forms
a point in the phase space, and defines a flow realization at that
instant in physical space. N is the number of the phase variables

needed to describe the flow, and is also termed the number of degrees
of freedom (Monin 1978). Depending on how complex the underlying
system is, the number of degrees of freedom may vary from "a few" for a
laminar flow to infinity for a truly random process. It.is important
to note that the number of dég:éesr of rfféédﬂm alsgrdepenﬂg on the
choice of the orthogonal functions, i.e., an optimal set of orthogonal

functions will minimize the required number of degrees of freedom.

In the N-dimensional phase space, a system trajéetary, i.e.,

evolution of the physical flow, can be represented as a vector:
ACt) = (A (1), A (L), ...y Ay(L)) . (3)

Portraits of the time evolution of A(t) may show a distinct pattern. A
time-independent physical flow forms an unmoving point, while a
periodic physical flov forms a close contour such as a circle or torus.
These points and circles or tori are called "attractors", and are
characterized by their integral number of dimensions in phase space.
Traditionally turbulent flows, oving to their wide spectrum of scales

- of motion, have been described in phase space by a torus, or a quasi-



periodic attractor with very high dimension (Landau 1944). This view
wvas challenged by Ruelle and Takens (1971), who proposed a model in
vhich turbulent motion could be reached after a small number of
bifurcations (the exchange from one to another stationary solution in a
system, when one of the external parameters is varied). The attractor

of this turbulence model has a small, but fractal (real number)

dimension, and has been termed "strange attractor". The strange
attractor is characterized by the property of extreme sensitivity to

the initial condition, i.e., any two initially-close trajectories on

the attractor eventually diverge from each other. Because of the
sensitivity to the initial condition property of strange attractors,

variables in a system vhere strange attractors play an impaftént role
are neither periodic nor quasi-periodic, and appear random even tﬁéugh
they are actually deterministic. This implies that; in situations
vhere the random experimental signals are caused mainly by an
underlying low-dimensional attractor, a low-order dESEEipEi§ﬂ>(igé;;
small numbers of ordinary differential equations) of the system may be

The turbulent £lov in the atmasphe%ic surface layer is a
dissipative dynamical system, i.e., turbulent kinetic energy is
continually being generated and damped. For such a system, in which
turbulent kinetic energy generation and dissipation mechanisms compete

for dominance, and the signals exhibit chaotic behaviour, there is
often a strange attractor in the phase space (Berge et al. 1984). The
simple and repeatable feature of CS’s in the convective atmospheric

surface layer (Schols 1984; Vilczak 1984) may indicate that the

turbulent flow, and especially the CS’s, are characterized by a certain
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degree of order. Although there are variations (number and nature) of
CS’s among different studies, this may be understood as the temporal
variation of the expansion coefficients 1in Eq. (2). It is thus
suggested that a few orthogonal functions and relatively simple
trajectories in phase space, i.e, a few ordinary differential
equations, may be all that are needed to describe the dynamics of the
CS’s in the convective atmospheric surface layer. This conjecture may
be confirmed by determining the correlation dimension of the phase
space visited by this dynamical systém. For this purpose, we need to.

define a phase space. A suitable phase space can be constructed from
experimental data by the time-delayed method (Packard et al. 1980;

Takens 1981).

a. Construction of the phase space

Equation (2) shows that the evolution of a physical fiow can be
described by a set of N ordinary differential equatibns._ It can easily
be shown that Eq. (2) can be reduced to a single ordinafy,difféfential
equation for, say, A; 1if all other variables are eliminated by
differentiation

ALTRI(E) = G (A (1), AN(Y), ... yA N1y, (4)
vhere G is a highly nonlinear (Nth order) function of A,. Eq. (4)
indicates that the system can be described by N phase variables (A, (v),
Ay1(t), ..., A 'F-1)(t)) involving a single variable A,, vithout any
loss of information. Physically this means that, provided it is
sampled a sufficient number of times, any single variable will

represent the characteristics of the underlying system.
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In practice, experimental signals are prone to being contaminated
by extraneous noise (e.g., noise arising in the electronics of the
sensing or recording device) and derivatives are especially
susceptible. Ruelle (1981) suggested that phase coordinates formed by
a single phase variable A(t) and its successive shifts, by a delay
constant T, A(t + nT), should also describe the underlying systen,
provided n is big enough. Takens (1981) showed that if an underlying
attractor has dimension N, then (2N + 1) independent phase variables -
will faithfully represent the attractor.

The data used for phase construction in this study were turbulent
fluctuations of the three velocity components (u, v, w) and the
temperature (6) measured at the 300 m tower of the Boulder Atmospheric
Observatory (BAO), located near Boulder, Colorado (See Appendix C for a
brief description of the site, instrumentation and data'sampiingvaf
this facility). A total of 60-min of data (four signals digitized at
10 Hz to yield 36000 samples for each sigﬁai) vere selécted from the
data available between 10:40 am to 11:40 am on July 25, 1986. - The mean
flow properties listed in Table 1 indicate that both wind shear and
surface heating are important for the flow selected.

In constructing phase variables from experimental data, it has
been suggested (Guckenheimer 1986) that, instead of using one
experimental variable measured at a single point, one should use many
time series measured at different locations in space, to include
information on the spatial variability of the flow. Thus all the three
velocity components and temperature fluctuations measured at the first
five levels (10, 22, 50, 100, 150m), which are considered to be within

the atmospheric surface layer, vere used.
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The data wvere first arithmetically averaged every 5 seconds to
remove the high frequency components not of interest in this study, and
then normalized by their respective standard deviations calculated over
the 60-min period. From the normalized data u,(t,), va(ty), w,(t;) and
6,(t;) (m =1,...5), the vector phase variables are constructed

X(taM) = (v 0080, ooy wy Mgy, 6 (e, L., 8 M) (t,),

Ul‘H)(ti:)r sy ustﬁ)(ti)r Vi(n’(ti)r "y VS(H,(ti)J (5)

vhere M is the embedding dimension of the phase space, which varies
from 5 (only vertical velocities are used) to 20 (all three velocities
and temperatures are used). From VEqi (5) we can see that as the time
index i increases, the trajectories of the vector phase variébles will
form a "cloud" of points in a phase space of dimension M.

In principle, the time interval, At = tis1-t;y should be chgsen
such that the resulting M-dimensional phase variables will be
independent. It is suggested that a time intervél of about one fourth:
the period of the characteristic oscillation of the_systém wvorks best
(Guckenheimer 1986). Here, At is chosen as 5 s, vhich is of the same
order of magnitude as the height-averaged Lagrangian time scale of the
velocity fluctuations in the atmospheric surface layer (Hanna 1981).
The relatively large time interval At used here implies that the pﬁasea

space analysis pertains to large-scale flow.

b. Determination of the correlation dimension

If a dynamical system is determined by a relatively 1low-
dimensional attractor, we expect that there exist spatial correlations
betveen the points in phase space. The correlation dimension is a
measure of long-time spatial correlation between points in phase space,

vhich can be obtained from the characteristic of the "cloud" formed by
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the M-dimensional system trajectories. The correlation dimension of a

dynamical system is obtained by computing the correlation integral
C(r) = Lin == ) H(r - |X(t;,H) - X(ty,M)) (6)

1 for x> 0, H(x) = 0 for

Here H(x) is the Heaviside function, H(x)

x < 0. The X(t;,M) are the M-dimensional phase space variables for

total number of system observations. C(r) counts the average number of
data points in phase space that 1lie within a hypersphere of radius r.
If the underlying system has a low-dimensional attractor vith a
correlation dimension d, then it has been shown that C(r) =« r9 for a
certain range of r, and this relation does not change with increééing
simply understood as follows. If one puts points at random onto é'&-'
dimensional object one expects the number of points in any hyperééhefe
of radius r to behave as r?. 1In practice, for very small r, the ﬁuﬁbég'
of pairs of X(t,,M), X(tj,H) vhose distance is 1less than rbbééames
small, and the statistic calculated from Eq;'(é) is poor: on the gthér
hand, at very large r, all pairs of X(t;, M), X(t;,M) lie within the

1. Thus, the relation C(r)

span of the attractor, resulting in C(r)
« r9 only holds for a certain range of small r. Note that for a
completely random system, i.e., no attractor in phase space, d
increases with increasing embedding dimension M; no saturated d can be
obtained (Berge et al. 1984).

An estimate of the correlation dimension furnishes a lowver bound

for the dimension of the phase space needed to describe the system in
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question, i.e., a lower bound on the number of ordinary differential
equations that should be components of a model predicting the evolution
of the system. Using 720 values of the vector X(t,,M), constructed
with Eq. (5) from the 60-min data; the correlation C(r) was calculated
as a function of M and r. Vhen the correlation C(r) is plotted against
r (Fig. 1), it is found that the slope becomes saturated roughly at d =
5.7 when M approaches 10 (i.e., only w and © are used). Thus, this
dimension estimate implies that the system can have as few as 6 (i.e.,
N = 6, the nearest integer greater than d) degrees of freedom and, in
principle, the flow evolution may be confined to a 13 (2 x N + 1 = 13)
(Takens 1981) dimensional phase space.

It must be mentioned that, in general, this technique for.
implementing the correlation dimension estimate requires a large number
of data points, so that a large number of X(t;,M) can be formed to
cover detailed structure of the attractor. However, Lorenz (1991)

demonstrated that the number of data points used to estimate the

correlation dimension need not be very large, if the most relevant:.

variables of the system are selected. The low-pass filteredvyélocity
and temperature fluctuations chosen here are the essential variables .to
describe the large-scale turbulent motions in the atmospheric surface
layer. In fact, vhen the same technique was applied to analyse another
set of 60 min Boulder data observed under the convective condition
(with different wind shear and surface heating), a similar correlatiow
dimension (6.2) was obtained. Hence, the uncertainty in the dimension
estimate using the rather small data set in this study may not be a:

large as one might think.
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Since there is no theory that says given a finite correlation
dimension, the associated system has a strange attractor (Tsonis 1993),
the lov correlation dimension obtained above only indicates the lowver
bound of the actual number of degrees of freedom of the system.
Hovever, the analysis above does provide some hope of a useful low-

order description of the large-scale flov.

3. Derivation of A Low-Order Dynamic Model for CS’s in the Atmospheric

Surface Layer

The dimension estimate in Section 2 provides a lower bound for the
number of ordinary differential equations necessary to model the
dynamics of C5’s in the convective atmospheric surface layer. Hovever,
the theory says nothing about construction of the model. The fagf that
a turbulent flov can be represented by a small number of degrees of
freedom in phase space means that, mathematically, the flow field in
physical space can be expanded on a small set of appropriate @rthagcﬁal
functions (i.e., basis functions). Since the turbulent flowv is
governed by the Navier-Stokes equations, to obtain an M-dimensional set
of dynamic equations, one may simply project the Navier-Stokes
equations along a set of M orthogonal functions.

A common choice is to decompose the flow variables as Fourier
series, leading to what is called spectral fluid dynamics. However, in
the Fourier series representation, the wave numbers are evenly
distributed over a given domain, so small-scale motions (i.e., large
Qave number) are represented by many Fourier modes, while large-scale

motions have few modes. That 1is, given a spatial resolution within a
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domain, the Fourier series representation is relatively ineffective in

o

epresenting large-scale motions (Tennekes 1978). Furthermore, since

!

arge-scale CS’s are sensitive to the geometry of the boundary, i.e.,
different flows have different CS’s, it is inappropriate to use one set
of orthogonal functions to characterize flov structures in general.
Therefore, flow-dependent orthogonal fuﬁc;iaﬁs should be used. 1In this
study, such optimal orthogonal functions will be extracted from
experimental data by the "Proper Orthogonal Decomposition" method

proposed by Lumley (1967,1981). Readers are

Ln

eferred to Appendix B for

a brief introduction to this method.

a. Proper Orthogonal Decomposition of a turbulent flow

It has been shown in Chapter II (Section 2.4) that when requiring

resemblance to the embedded structure in an ensemble of flovw

1]

realizations, f, (x) (t 1, 2, 3, ..., NY, defined on a ﬂamain
[X,, X,], the orthogonal functions ¢ can be obtained by solving the

folloving eigenvalue problem

R(xp» % )9(x,) = M(%,) - (7)
0

TO1T

vhere the sum is over the domain divided into P equal intervals with

Xg = Xy, X3 = X, + &%, ..., %X, = X;, X\ is the eigenvalue, and

12

_y 1

£, (%) £,(%y)
1

L
I}

is the two-point covariance function which is a (P+1)x(P+1) matrix

formed from the N flow realizations. By solving this sigenvalue

problem, one finds a set of N eigenvalues ), and eigenfunctions ¢,
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(orthogonal functions). A single flow realization at an instant t ecan

then be decomposed by the orthogonal Euncticﬁs

N | i
f.(x) = Za,,.(t)¢,.,(X) : (8)

m=1 SRR
where o, (t) are the expansion coefficients, which can be considered as

the weights of each orthogonal  function in ' the observed flowv
realization.

This decomposition has been found to be very éffective in the
sense that the first few orthogonal functions converge optimally fast,
i.e., for a given order of truncation, the orthogonal functions will
ret_ ... more flow information than Fourier modes.

Because only second-order statisties, R(x,,x%,), are used hefe, no
higher-order statistics are embeddedrrin these orthogonal functions.
However, Lumley (1981) showed that - higher-order- Stafistigssraﬁ
experimental data are carried by the QaeffiéiEﬁts"ém(tji' Thus, thé
orthogonal functions and their c@eifiéiEﬁfs tcgétﬁer»~retain' all
statistical information of the rav data. SQ#E thatbalthaugh the
coefficients «,(t), as seen in Eq. (8), are unpredictable from one flow
realization to another, their variation is not faﬁd@m. For examplé, if
ve consider f,(x) to be velocity, e, (t) will be canstraiﬁedyﬁy the

Navier-Stokes equations.

b. Experimental data selection
The data to vhich the Proper Orthogonal Decomposition was applied

were the same as used in section 2 for the dimension estimate. Since

functions will be extracted from an ensemble of visually selected
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organized turbulent time series, instead of from the whole time series.
This makes the resulting orthogonal functions more relevant to the
coherent motions in the atmospheric surface layer. Visually screening
the 60 minutes of data, fifteen '"events" were ‘selected vhich are
considered to be CS’s, based on their temporal variation and the
vertical correlation of the wvelocity and temperature fiuétuatipns,
i.e., gust-ejection cycles of the rvelocity vectof énd'ramp structures
in the temperature fluctuations. Although the 'selected CS’s show
similar patterns, i.e., a strong updraft confined to a narrow region
accompanied by wider downdrafts, - theirv—spatiél. (in the vertical
direction) and temporal scales are all différént."These fifteen CS’'s
occupied only 36% of the total sampling time, but contributed more than
50% of the total momentum flux.

Because the tower provide; data‘onﬁa verticgl cross—section of the
three-dimensional turbulent structufe;f fhese fsélected HCS’s" are tvo-
dimensional. This preqludest{OUr‘;modéiligg ”fheaihportant tu;bulenf.
transfer mechanism, vortex stréféhing. 1iAithopéh mdsf:CS'svexhibit‘a
well-defined two-dimensional paftern, 'their ,dy;amics aré:iﬁ principle
three-dimensional. Previous studies by Kaimél and Businger (1970) and
Schols et al. (1985) showed that the crosswind velocity v isrrelatively
"inactive", i.e., no specific pattern can be seen in the v signal,
during the large coherent events. But a recent analysis of
experimental data collected by an instrumented aircraft (Williams and
Hacker 1992) showed a clear in-flow pattern of a coherent structure in
the cross-wind direction that varies with distance from the centre‘of
the structure, i.e., £flow variables of a coherent structure varied

considerably in the cross-wind direction. However, without detailed
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data in the cross-wvind direction, the present study treats CS’s as tvo-
dimensional, i.e., it is assumed that the flov variations in the
alongwind and vertical directions dynamizally dominate the development
of the CS’s, and the flow in the cross-wind direction is simply driven
by the continuity requirement.

The selection criteria introduce subjectivity, hovever, the
"events” will not be averaged as in previous studies (Wilézak11984;
Schols et al. 1985). Instead, we will extract as much statistical
information as possible from these C5’s.

The 15 selected raw CS’s were first interpolated from the height-
time plane to a height-distance plane, using Taylor’s frozen turbulence
hypothesis. Since the data were collected during vfaiily ~windy
conditions (see Table 1), the turbulence intensity, Ve/U, vas about 0.2
at most levels, and since observed CS’s can maintain their identity for
several minutes (Wilczak and Tillman 1980), the frozen turbulence
hypothesis may not result in large error for the large-scale motions.
Note that since an observed CS moves as an entity at a constant
translational velocity (Wilczak 1984), to interpolate the data from
temporal to spatial variation, one should use the translational
velocity of the CS (assumed to be 90% of the mean velocity at the top
of the layer), instead of the local mean velocity at each level. Thus,
the fluctuations of the interpolated data are relative to the
coordinate moving with the translational velocity. All the CS’s are
interpolated onto a horizontal distance of 620 m, the average
horizontal extent of the CS’'s observed. The horizontal axis is divided
into 31 bins (32 grid points), each with a horizontal length of 20 m.

High wave-number fluctuations were removed by a low-pass Gaussian
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filter having a half-power length of 5 m (Holloway 1957). The data
vere then interpolated from the original five levels (10m, 22m, 50m,
100m, and 150m) measured to eight levels (10m, 30m, 50m, 70m, 90m,
110m, 130m, 150m), wusing a cubic spline interpglatign scheme, CSINT
(IMSL 1989). A typical sample and its final form, after the filtering
and interpolation, are plotted in Fig. 2 and 3. They show that the
vertical velocity and the temperature within the selected C$'s are weli
correlated, and the alongwind velocity has an obvious phase shift witﬁ
recpect to the vertical velocity. The phase shift between u and v is
consistent with the observation that some of the alongvind velocity

fluctuations are '"inactive" in terms of momentum transport in the

c. Extre:

action of the orthogonal functions

The 15 filtered CS’s, corresponding to 15 flow realizations over

the region 620 m x 140 m, are used to form the two-point covariance

matrix
1 _ , ,
R(x-x',2-2') = EZF (x,2)F . (x',2") (9)
t=1

vhere F, (Fig. 4) is a Q@mposité series of velocities and temperature
and (%) denotes a transpose. R(x-x",z-2') is a 768 x 768 matrix and
contains information on the signal variances, the velocity covariances
and the temperature-velocity covariances.

Substituting R(x-x’,2z-2’) (note that now R 1is defined in a two-
dimensional (x-z) plane) into Eq. (7), the orthogonal functions (in

two-dimensions) are obtained by numerically solving the eigenvalue

problem. Because 15 experimental realizations of the C5 are used to
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i

create the matrix R(x-x',z-z'), only 15 non-zero eigenvalues can b
calculated. The resulting grthggcnal:functiaﬁs are structured the same
wvay as F,. The first three orthogonal functions are plotted in Fig. 5.
Ve see that u and w are in general negatively correlated, v and @ are
positively correlated, and that there is a clear correlation across thé.
height range, as in the raw data (Fig. 3). Thus, the cross-correlation
information is effectively retained in the decomposition .of the
velocity and temperature fields.

Forming a 15 x 768 matrix F of the 15 events (i.e., the 15 F,) and
a 768 x 15 matrix E of the 15 eigenfunctions and performing the matrix

FxE=B , (10)
give us a 15 x 15 matrix B(t) consisting of the coefficients o, (t),
from which the statistics of the 15 eigenvalues are calculated
(Table 2). The first orthogonal function Qépturés 38% of . the total
variance and represents statistically the most likely common stfﬁétﬁfe

the 15 events). The standard deviation of the expansion coefficients
in Table 2 can be considered to be the variability of the orthogonal
function (or mode) among the selected raw CS's. Since the first
orthogonal function has a small standard deviation, it is relatively
stable among the 15 selected rav CS’s, and makes a persistent
contribution to the observed flow structures (Eq. (8)). Tha first six
orthogonal functions capture 80% of the total variance. This effective

data representation by the orthogonal functions minimizes the number of
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degree of freedom (Section 2) needed to model the flow, and is
essential for derivation of the low-order model.

It should be emphasized that the orthogonal functions derived here
are flow dependent. In general, we expect these orthogonal functions
to depend on atmospheric stability, the Réyn@lds number, and even the
mean vind speed. Hovever, it is assumed that they have embedded enough
physics to model the CS’s in the convective atmospheric surface layer.
Using the Navier-Stokes equations, we will now determine the evolution
of the coefficients o, (t), so that the evolving CS’s can be described

in terms of o,(t) and the orthogonal functions as in Eq. (8).

d. Simplification of the Navier-Stokes equations

The instantaneous Navier-Stokes equations, in two-dimensions, and

neglecting Coriolis force and molecular fluxes, are (Businger 1982)

o .. 8 .. R R
at ax, ax, Sonm A L .

1

The mass and thermodynamic energy conservation equations are

d 3 .
’si"ﬂ“ﬁui"

at ax,

1

(11b)

I
=]

3T 8 _._
_ gTui =

ot X,

1

(1lc)

[C}
]

In Eq. (11), the subscript notatien i = (1, 2) indicates coordinate
directions, x, z, and the corresponding velccity components are u, v;
the summation convention applies for indices repeated within terms; and

8;, is the Kronecker delta.
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Eq. (11) generate in a turbulent flow a broad range of temporal
and spatial scales, involving a large number of degfees of freedom. To
solve these equations numerically, an extremely small time step and a
very fine grid spacing must be used. However, the data whence we
extracted the orthogonal functions were spatially filtered
instantaneous quantities; thus, the number of degrees of freedom
represented in the experimental data has been greatly reduced.. We nov
derive a set of equations governing the variables that have been
filtered in the same manner as the experimental data.

Since a CS has a steady translational velocity,'Ut, the,foiléﬁing
discussion will be with reference to a coordinate system moving Vith
U,. Firstly, we decompose the instantanepus;éuantities in Eq{ (11)

into horizontal means, denoted by an overbar, and fluctuations, i.e.,

u; = U;(z,t) + u,(x,2,t), o . S (12a)
p = P(z,t) + p(x,2z,t) , o | »_(125)
T = T(z,t) + 6(x,2,t) and T <i2c)
b= py + p(X,2,t) . : C(12d)

Here horizontal homogeneity has been assumed for the mean velocity,
temperature and pressure fields (i.e., time-average means do not vary
wvith x). The synoptic scale pressure gradient, which is in actuality
imposed on the atmospheric surface layer and is at least partly
responsible for the motion, has been assumed to have no direct effect
on the dynamics of a CS. A similar assumption was made in Wilczak’s
(1984) study of coherent motions in the atmospheric surface layer. It

also has been assumed that the horizontal mean temperature, T, equals



the adiabatic reference temperature, and that p = Ppy 15 a constant air
density.

The Boussinesq approximation, in which dengity fluctuations are
neglected unless coupled with gravity, is adopted, and the density
fluctuation is expressed in terms of the temperature fluctuation,

p
- ‘ ©(12e)

Sl @

Po

The governing equations for  fluctuation velocity (u;)  end
temperature (6) are obtained by the standard technique of substituting
into the instantaneous equation (Eq. (11)) the decompositions (Eq.
(12)), and subtracting the horizontal average value of the resulting
equations, i.e., subtracting the evolution equations for U, and T. The
resulting equations are

du du 3  8u? auw  auw 1 ap
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(13d)

Note that in Eq. (13b), the mean vertical pressure gradient was not
assumed to be hydrostatic because there is strong vertical advection in
the convective atmosphere, resulting in a "mean" vertical pressure

gradient 1/p,3p,/3z = -aw?/dz (Wilezak and Businger 1984; Schumann and

Moeng 1991).
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The equations for the mean velocity and temperature are
— 3 — =0 . (14a)

(14b)

iI
+
1]
pen]

Next, the departures from the horizontal average are further split
into small volume means and fluctuations, using Schumann’s (1975) fixed

volume average scheme, i.e.,

u= {u} + u’ and {uv} = {u}{w} + {u'v’}, {15a)
0= (6) + 0 , | | (15b)
p={p}+p . (15¢)

The "volume" over which the spatial averages { } are formed is a 20m x
20m bin. Spectral analysis of the present data (See Chapter V later)
indicates that the lover frequency limit of the inertial subfangé'fgf
horizontal velocity is around 0.1 Hz, at a mean vind speed of 8 m-s-!.
Thus, the grid spacing Ax = Az = 20 m is within the inertial subrange
of turbulence in the atmospheric surface layer, except perhaps (on the
evidence of Fig 1d of Chapter IV) at the 10 m level. In other vords,
the spacing is sufficiently fine to resolve the full range of energy
containing eddies.

Substituting Eq. (15) into Eq. (13), and Reynolds averaging in the
normal manner, one obtains
a(u}  _3(u) TR 3 duv dt,, 12
— o+ T W=+ =) ¢ =W} - =+ — = - = —(p')  (l6a)
at ax az ax 9z az az Pg 9X

a(wy  _afwy 3 d Wi dt,, (8} 129

— 4 T —(u W) + =V} - — 4 — - —g

— (16b)
at ax ax 9z 9z  3x T Py 92

]
1
|
i\
"Ul
e
Koy



~dl
Ln

a{e}y _afe} a8 T 9 ave
+ U=+ —(u} {6} + (v} — + — (v}(8) - —
3 3
¢ —{ue) v —we) =0 . (16¢)
ax .3z ' '

Here G;, v and w8 are the horizontal mean fluxes, invariant upon
application of the small-volume average. In Eq. (16) ‘the modified
pressure has been introduced |
1 L
{p'} = {p} + g po {u,'u,’} ) | ' (17;)\

and the Reynolds stress due to unresolved scales of motion is defined 35, 

1 v .
Ty = (ugfug’) - ; {u "uy 734 . - (17b)

An eddy viscosity/diffusivity hypothesis was . used té model the
Reynolds stress and heat flux

afu, } E[Uj}

Ty = Ky(—— + ——) S (170
X4 X, : R
a(e) B T R e
(u '8} = - K— i SR Sy
- (1)

The eddy diffusivity K,  has been specified as

-3y E{uj}
K, = (can)?| + — , (17e)

ij 9%

i.e., the Smagorinsky model, where ¢ is a model constant and Ah is the
grid spacing. The eddy diffusivity K, varies in space and time,
consistent with the fact that in a turbulent flow the small-large scale

interactions vary considerably. Lilly (1967) has shown that this
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is vithin the inertial subrange, i.e., 1, << 0n << L, where 1, is the

Kolmogorov length scale and L the integral length scale. The eddy ,t,

diffusivity for heat K, is SURE EER PR
K, B
, , (17f)

K, =

.
vhere P, is the turbulent Prandlt number, here taken as 0.74 (Businger
1982). It vas assumed in (17b) that the turbulent kinetic energy of
the unresolved scales is given by
l, =
‘{uk’uk,] = m—— :
(¢, 8n)?

vhere ¢, = 0.094 (Deardorff 1970). Numerical calculation shows that

!ﬁm

the unresolved turbulent kinetic energy is 1less than 10% of the
resolved turbulent kinetiec energy.

The sources of turbulent kinetic energy in this system are shear
production and buoyant production, which are parameterized in terms of
the mean gradients of velocity U and temperature T, réspeétively;.'The
turbulent interactions in the resolved scales (but not inéluding the
vortex stretching) are inhereatly modellel by the interactions of the
orthogonal functions. The sink of turbulent energy in this system is

the subgrid energy cascade (from Eq. (16 a,b))

9Ty, 313,

{u}— + {w}— , (18)
a9z ax : i

wvhich, using Eq. (17¢) can be written as
3({ult,)  3({vity,) ofu}  a{v} ,

— - Kp(— + —)

az x az ax
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Upon integration over the flow domain, the first two terms w 11 be zero
(assuming horizontal homogeneity), and the last term is alvays
negative. Thus, although they may nét model the instantaneous energy
cascade processes correctly, on average, the subgrid térms alvays take
energy from the structures, i.e., they act as a filter to prevent
excessive turbulent kinetic energy in resolved scales. For a given
resolved velocity field ({u}, ({w}), the subgrid terms vary vith the
model parameter c. '

The small-volume average applied in Eq. (16) not only filters out
turbulence vith scales smaller than our grid volume in the observations
but also explicitly incorporates into the governing equations all the
dynamic effects of the unresolved turbulence on the large-scale flow.
That is, Eq. (16) are the modified Navier-Stokes equations that govern
the resolved scales, and mimic the energy cascade processes from
resolved scales to unresolved scales by the eddy diffusivity model.
Quantities in Eq. (16) are now equivalent to the low-pass filtered data
(Section 3b), from which the orthogonal functions were extracted.
Eq. (16), when combined with the model (Eq. (17)) ~are the basis for
deriving the low-order model (and could equally well serve as a'Large;

eddy-simulation in two dimensions).

e. The low-order model

From nov on, the bracket { }, indicating the small-volume averaged
quantities, will be dropped. Decomposing velocities and temperature

into N orthogonal components as in Eq. (8)

N
u(x,z,t) = Z"”"(" ¢, (X,2) (19a)

m=1
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N
v(x,2,t) = };an<t> b, (x,2) (19)
m=1 3 P
N .
6(x,z,t) = }Zah(t) ¢:(x,2) ' » 7\  (19¢)
m=1

For an incompressible flow, i.e. 3u/3x + 3w/3z = 0, it is easy to

prove, from Eq. (19a,b), that

u v
9, 3¢, : - : -
—+ — =0 . (20) .
ax 9z L

The low-order equations are obtained by substituting Eq.-(19) into
Eq. (16), then applying Galerkin projection, i.e., by taking the inner

product

ffEi-¢;dxdz=0 , (1
vhere the integral extends over the flow domaih (620 m x 140 m),‘ahd‘ir
= (u, v, ). EY, E¥, and E® represent, respectively the u, wrﬁoﬁentﬁm
equations, and the thermodynamic energy equation. Using fhe p:thogonal_

property of the orthogonal functions, i.e.,

i i u u w oW e e - |
jf $; ' 4y dxdz = II(¢j¢m * b0 + by4y) dxdz = 35, (22)
(no summation implied by the repeated superscripts)

in Eq. (16), one obtains a set of N ordinary differential equations

N N
d m m i
a%‘ = Z(lcij + 2Cij)aiaj + zcijkmiajak
i,j=1 1,j,k=1
1 v
v [fe- = ot 4)) dxz (23)
0.

m=1, .. ., N.

The coefficients (lc:j, zcrj, and c:jk) in Eq. (23) are determined by the
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spatial variability of the orthogonal functions, the temporal variability
of the mean quantities (U, 80/3z, T and 3T/23z), and the subgrid terms. The
quadratic terms are of two kinds: the first (le:j) results from the

3 2 - ) 1 < 1] i m
nonlinear interactions among the orthogonal functions, the second (3313) is

due to the subgrid modelling. The cubic terms c,

ijx come from the mean-

fluctuation int'ractions. The last term in Eq. (23) is the pressure
forcing term which will be discussed later. A detailed expression of
Eq. (23) is given in Appendix D.

When substituting Eq. (19) into the governing Eq. (16), it has
been assumed that the turbulent fluctuations in the model system are
solely caused by the interactions amgﬁg the N orthogonal functions and
their interaction with the mean velocity and temperature fields. The
more orthogonal functions included, the closer the simulation should
model the reality. Therefore all 15 orthogonal functions have been
used in the velocity decomposition (Eq. (1?)). As mentioned earlier
the 15 CS’s contributed more than 50% of the Ectal:Reynolds stress over
the 60 min, indicating that they probably are gapablé.af modelling the
most important dynamics of the two-dimensional CS’s.

In reality, a CS in the atmospheric surface layer invglvés
interactions of many different scales. This implies that tﬁe
parameterization of the unresolved scales (Eq. (17)) must model the
contributions from both subgrid turbulence and the large-scale
turbulence that is not explicitly included in this study. | This
conflicts with the basic assumption that the eddy diffusivity
formulation models only the small-scale turbulence. No attempt was
made to account for the effect this approximation (Eq. (17)) may have

on the simulations in this study.
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4. Numerical Integration of the Low-Order Dynamic Equations

In this section, the calculation of the coefficients Yeggr 2e44
c:jk and the pressure forcing term are discussed, as they are important
in determining the general ©properties of the low-order dynamic
equations. This 1is followed by a brief discussion of the initial
conditions and the numerical simulation.

a. Calculation of the coefficients and pressure forcing term of the

low-order model

All of the <coefficients in Eq. (23) involve derivatives of the
orthogonal functions. But, except for the first few, the
experimentally determined orthogonal Eunctigﬁs are not smooth, and
using a finite difference scheme to calculate their derivatives would
likely result in a large error. A better method for caleculating the
derivatives of a non-smooth funection 1is the Fourier transform methad;'
often used in spectral fluid dynamics (Moeng 1984; Qanuto et al. 1988)5'

For example, to obtain df/dx, f is Fourier transformed first

N
F(k,,z) = % }Zf(xn,z)exp(aikmxn) , (24)
n=1

vhere N is the number of grid points in x direction, k, =2nm/NAx

(m = -N/2+1, ..., N/2) is the wave number and x_=ndx. Applying the
derivative operator in the Fourier space, i.e., multiply F(k,,z) by
ik,, and taking the inverse Fourier transform of ik,F(k,,z), one

obtains the derivative in physical space

o N/2
{&E] - - }EikmF(km,z)exp(ikmxﬂ) . (25)

m=-N/2+1
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The quadratic term le?j is easily calculated in this way from the
orthogonal functions and their derivatives. The ctﬁér‘quédratic verms,
zc:j and the cubic terms ijk, need to be evaluated at each time step,
because of the required calculation of the absolute value of the strain

rate in the subgrid stress terms (Eq. (17e)), and the mean flow quantities.

The pressure forcing term appearing in Eq. (23) is

1 ff[op" 3p" 1
n=- - — ¢, + — ¢, dxdz . (26)
Po 9x 9z )

For our two-dimensional study, the velocity divergence (3u/9x + aw/23z)
of the experimental data is in general non-zero. Nevertheless, in
order to determine the pressure, the simulated flow field was forced to
satisfy 8u/9x + aw/3z = 0. This constraint changes the values of the

coefficients o« in Eq. (23), as if they satisfied‘the twvo-dimensional

continuity equation du/9x + Bdw/az 0. The implication of this
constraint will be discussed later.
Incompressiblity in two dimensions du/dx + aw/3z = O means that

pressure is determined diagnostically at each time step by a two-

dimensional Poisson equation

azp‘ azp.

—_— — =

ox? 9z?
U v 3%u? d%uv 3w 3Ty? a2t,, g 36

mpp(2— — 4 — 42— ¢ — - + 2= - = ). (27)
9z dz  Ix? axdz  2z? az? %3z T 2z

After taking the Fourier transform of Eq. (27) in the x direction and
using finite differences in the 2z direction, the resulting tridiagonal
matrix was inverted using the Thomas algorithm (Von Rosenberg 1969) to

obtain p* in Fourier space, with Neumann boundary conditions derived
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from Eq. (16b). The p* in Fourier space was then inverse transformed
to get the pressure at each grid point. The newly calculated pressure
is used to evaluate the pressure term (Eq. (26)) which appears in the
evolution equation (Eq. (23)) for e, (t). Note that the non-divergence
property of the orthogonal functions (Eq. (20)) is particularly useful
to simplify the calculation of the pressure term. For example, using
Eq. (20), Eq. (26) can be written as

1 3 u 3 w : .
m= - —(p" ¢, + —(p"¢,)| dxdz . (28)
0 ax 9z

After carrying out the integration, one can easily shov that only the
pressure fluctuations (obtained from the Eq. (27)) at the domain
boundary influence the evolution of the coefficients, and thus are used.

b. Initial condition

Because of the nonlinearity of the governing equations, evalutiun~
of a flow is very sensitive to the initial conditions for the large;
scale structures (Rogallo and- Moin 1984).. The optimum initial
condition for the present short-term simulation is that Sétrrﬂf
coefficients o (t) which represents a "snapshot" of the flow. This

can be easily obtained by rewriting the simple relationship of Eq. (16)

FxE=B . . (29)

The resulting 15 x 15 matrix B(t) consists of 15 sets of g@gffigients

o, (t) (m =1, 2, ..., 15), each corresponding to a snapshot of the flow
realization.

Given a set of o,(t) obtained from Eq. (29) as an initial

condition, the system Eq. (23) determines the time histories of the

coefficients, from which the evolution of the CS in a coordinate system

moving with the translational velocity, U,, is obtained. The initial



velocity and temperature profiles are also taken directly from the
measured values. The temporal variation of mean velocity and
temperature are calculated using horizontally averaged equations, i.e.,
Eq. (14), vhich states that the local temporal changes in mean velocity
and temperature are due to the convergence of vertical momentum flux
and heat flux, respectively.

Eq. (23) are advanced using the second order Runge-Kutta scheme
(Qanuto et al. 1988). The simulations showed no sensitivity to time
step vhen the time step A4t was less than tvo seconds. The preseﬁt
simulations use a At = 1 =, whiech is much smaller éhaﬁ the time step
required for linear computational stability At < Ax/U. At each time
step the current values of o,(t) can be 'used to form the current
velocity and temperature fields by Eq. (19)! . Since the velocity and
temperature fluctuations can be reconstructed easily and the pressure
can be calculated from Eq. (27), only the coefficients o (t) are stored
at each time step during the simulations. This allows a fast ﬁumefigal
simulation. One minute of real time requires about 20 seconds éPU time
on a Vax station 3100 (model 30, 2.8 VUPF). Appendix E provides a flow
chart for solution of the low-order equations.

It has been assumed that the orthogonal functions have embedded
not only the internal dynamics of the CS’s, but also all the external
effects, such as the surface heating, on the CS’s. .Vith the time

history of the coefficients o (t) obtained from the simulations,

1.Note that since the basis functions have non-zero divergence, 3¢"/3x
+3¢¥/3z # 0, using Eq. (19) to form the velocity field conflicts with
the assumption of tvo-dimensionality used to obtain the pressure.
However, if 9v/dy is small for these CS’s, as indicated in previous
studies, one expects that this would not result in large error in a
short-time numerical simulation.
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Eq. (19) will give the fluctuating velocities, u, v, and temperature,
8, at each grid point (including the boundary) of the calculation
domain. Thus, there is no need to specify boundary conditions, and we
are simulating a flov field within a moving domain (620 m x 140 m).
What we observe is expected to be much 1ike vatching the atmosphere
from a window moving at a speed U,.

The nonlinear dynamics of turbulence in the atmospheric surface
layer imposes a limit on long-term prediction. Even though the low-
order model has been constructed from first principles, the predicted
flow evolution will differ from reality beyond the time of
predictibility, due to errors in the initial conditions, and in the
model for the unresolved motions (Section . This is an inherent
problem for turbulence modelling (Herring 1979). Furthermore, the tvo-
dimensional assumption imposes another potential error in flaw

evolution at large time. Therefore, provided the initial condition is

n

correct, a short numerical simulation is preferred.

n of the Low-Order Model

n
o
[l
]
]
=
]
i ]
P
[ ]

There are certain aspects of this low-order model that need to be
improved in any future study. An obvious limitation of the model is
the assumption of two-dimensionality of the CS’s, which are in fact
three-dimensional. This not only restricts the numerical simulation to
a very short period of time, but also may inherently modify the
simulated flow structures. Deardorff and Willis (1965) have discussed
the tendency of two-dimensionality to prevent small-scale irregular

turbulence arising, due to lack of the normal three-dimensional energy
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cascade. It 1is not possible, at present, to sample simultaneously

atmospheric turbulence at points covering a large three-dimensional

Another problem is the modelling of unresolved motion. It may be
adequate to model the effect of the subgrid-scales on the large-scales
by the eddy diffusivity concept. But - our closure model (with its

eonstant, ¢) aecounts not only for the effect of smalliscalé
turbulence, but also the neglected large-scale turbulence. The:é may
be a need to model these two rff ts separately, especiallyrfcr a long-

time simulation, so that the variation of simulations with model
constants can be studied with clear physieal i ntEEprtatlﬂﬁ.
The model is flov specifie, i.e., it applies only to coherent

tral and

‘H
T

motion in the convective atmospheric surface layer. Under
stable conditions, the orthogonal functions which determine the
properties of the model will be different, and the model cannot be
applied. 7

In view of these limitations, and since only fiftéen orthogonal
functions have been used as the basis functi@nsrta simulaté the flow,
one cannot expect the model to accomplish tasks other than an
approximate representation of coherent motions within é short peria& of
time. Nevertheless, comparing with previous studies, it is felt that
the present model is more rational because it directly incorporates
experimental information to form a mathematical framewvork, avoiding
subjectivity.

Finally, the dynamical systems theory has been used here only to
provide guidelines for building a low-order model. Apart from

implicitly suggesting their "existence", no attempt was made to study
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ne wunderlying attractors. Further study should focus on the
jquantitative behaviour of the underlying afttractor, such as the
Lyapunov Exponents (Berge 1984) which measure the sensitivity of the

phase trajectories to small changes in initial conditions, i.e., the

predictability.
6. Summary

ased on experimental evidence and a simple application of the

o

dynamical systems theory, a low-order model, i.e., a set of 15 ordinary
equations, and the mass and energy conservation equations, has been
developed to study coherent motions in the convective atmospheric
surface layer. The model incorporates experimental information (the
empirical basis functions) into a mathematical framework, and treéts
the initial and boundary conditions objectively. Therefore, the model
provides a means to study instantaneous coherent dynamics. iﬁ Ghapte?l
V, the model simulations will be used to study the dynéﬁiéé and

energetics of convective plumes in the atmospheric surface layer.
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Table 2
Expansion statistics for the eigenfunctions obtained by Proper
Orthogonal Decomposition of the 15 visually selected CS's.

Eigenfunction [Expansion coefficient' Eigen- Accgmulated
variance
number Mean Std (o) value |explained %
1 -0.90 0.41 0.96 38
2 0.08 0.61 0.36 52
3 -0.03 0.49 0.22 61
4 0.01  0.43 0.18 68
5 0.0 0.43 0.17 74
6 0.0 0.40 0.15 | 80
7 0.0 0.32 0.09 | 84
8 0.05  0.30 0.8 | 87
9 0.0 0.27 0.07| 90
10 ~0.04 :0f26, - :;b;065 Y
11 0.02 0.2 | 0.05| 95
12 0.04 0.21 0.04 | 96
13 0.0 0.19 '0.04 97
14 0.02 0.18 10.03 99
15 0.00 0.17 0.02 100

Note: since the data were normalized, the eigenvalues and
expansion coefficients listed in this Table have no units.
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Fig. 1  Correlation integral calculated from Eq. (6) with the
reconstructed phase space having embedding dimensions M
ranging from 5 to 20 (i.e., from a single variable (w) to four
variables (w, 6, u, v)).
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CHAPTER V

ETICS OF CONVECTIVE PLUMES IN
THE ATMOSFHERIC SURFACE LAYER

1. Introduction

A plume in the convective atmospheric surface layer is an isolated
volume of buoyant f£luid with a highly anisotropic, coherent (i.e.,
spatially and temporally correlated) flow structure. The existence af
the plumes in the atmosphere has been attributed to both canvégtian in
the presence of shear, and to hydrodynamic instability ef the mean
velocity profile (Brown 1980). = Coherent motions under forcing by the
curvature of the vertical profile of mean velocity align themselves in
the mean flow direction (Schols et al. 1985). Wilczak and Tillman
(1980) showed that most of the plumes observed in the atmaspherié
surface layer first appear at ground and grow in height, suggestiﬁg :j
buoyancy may be a production mechanism. But Antonia et al. (19?9);
comparing organized velocity and temperature fluctuations @bsezvéd in_
the atmospheric surface layer and in an adiabatic laboratory boundary
layer, suggested that the internal dynamics of atmospheric plume
structures and the laboratory ejectiah (or burst) events are closely
related. The study by Antonia et al. (1979) was conducted in the first
few meters of the atmosphere where, as has been shown (Zhuang and
Wilson 1992), the transport characteristics of plumes change little
with atmospheric stability. However, at higher levels, due to reduced
shear production of turbulent kinetic energy -TwaU/3z and roughly

height-independent buoyant production w6g/T, turbulent structures may
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be significantly different from those in a laboratory boundary layer.
An experimental study of turbulence structure in the convective
atméspheric boundary layer by Hunt et al. (1988) stated "turbulence
within the thermal undergoes distortion by large-scale eddies and
cannot be regarded as locally independent motions driven simply by the
shear on each thermal, but the nature of this interaction is poorly
understood”.

The dynamics of convective plumes in the atmospheric surface layer
vere investigated by Wilczak (1984} and Wilczak and Businger (1984).
By forming two-dimensional (x-2) cross-sections of velocities and
temperatures from an ensemble of conditionally sampled plumes, Wilczak
shoved that turbulent fluxes of momentum and heat, as well as third-
order moments, can be interpreted in terms of the circulations
associated with the plumes’ velocity and temperature structures. By
calculating the pressure field within the plumes, using the momentum
equations, Wilczak and Businger showed that the con?ective plumes.also
make the dominant contribution to the pressure covariance terms in the
budgets of vertical and horizohtal heat fluxes, stress and turbulent
kinetic energy. In Wilczak and Businger’s study, the dynamics of the
convective plumes were discussed in terms of their effects on the
ensemble-averaged properties in the atmospheric surface layer. It is
telt that an analysis of the detailed dynamics within the plumes
‘themselves is needed.

The primary objective of this study is to examine further the
dynamics (momentum budgets) and energetics (turbulent kinetic energy
budgets) of the convective plumes, emphasizing aspects that are related

to their persistence in the atmospheric surface layer. Turbulence
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statistics resulting from the coherent motion are also calculated to
show their influeﬁce on the routinely measured unconditional turbulent
statistics. Implications of  this Study for atmospheric turbulence
modelling will be briefly discussed.

The following discussion will be based on “experimental
observations of 15 convective plumes (Chapter IV), and on calculated
pressure fluctuation fields and short-term flow evolutions obtained

using the low-order model developed in Chapter IV.
2. Low-order Model Simulations

In Chapter IV, a 1low-order model (15 ordinary differgntial
equations) for studying coherent dynamics was developed by performiﬁg‘a
Galerkin projection of the Navier-Stokes equations onto a set of 15
orthogonal functions. These orthogonal functions were obtéiﬁéd.by
decomposing an ensemble of experimentally observed plumes with‘thé.
Proper Orthogonal Decomposition method (Lumley 1981). It Was.éssuﬁed;
that the orthogonal functions are typical of lérge-scale tufb@lént
velocity and temperature fluctuations in the convective atmospheric
surface layer, and have embedded the most important aspects erthe
coherent motion. The model provides a means to Study instﬁhténeaus
coherent dynamics.

The only model parameter that needs to be fixed is ¢, an arbitrary
constant in the Smagorinsky model, which accounts for the influence of
the unresolved scales. The constant c¢ was chosen by inspection of the
simulated velocity spectra, which are very sensitive to the model of

unresolved motions (Deardorff 1971). It was found in this simulation
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that the velocity spectra are more sensitive to the model parameter at
the lovest levels. Figure 1(a,b,c) shows the spectra of the vertical
velocity calculated from the simulations using three different values
of c. When c is too small, i.e., weak damping of the resolved scales,
there is excessive energy at the high wave number end of the spectra,
causing numerical instability of the simulations. On the other hand,
within the range (0.1 < ¢ < 0.5), an increase in ¢ has little impact on
the spectra, and gives a spectral roll-off at higher wvave number, with
a slope of about -2, which is similar to the spectrum calculated using
the filtered experimental data (Fig 1(d)).

As discussed by Deardorff (1971) and Schmidt and Schﬁmann (1989),
grid-point values (in both experiments and numerical simulations)
represent mean values over the grid interval. The spectra calculated
here from such mean values have in effect been filtered. Thus, unless
the grid is fine enough to truly resolve a significant portioh'ofrthe
inertial subrange, one should not expect to see a -5/3 slope
(Kolmogorov’s 1law) in the spectra, butr rather, a steeper slope
depending on the filter applied. Here ¢ = 0.21, a value suggested by
Deardorff (1971), was used for the reported.simulations.

Note that theoretically a Lagrangian spectrum decays as k-2
(Tennekes and Lumley 1971) with wave number. However, this has no
bearing on the -2 slope seen in Fig. 2(a), because the flow was
simulated in a coordinate system moving with a constant translation
velocity, and the individual fluid elements were not followed. This

will be clear later in Section 5c, when the particle trajectories are

presented.
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It is obvious that our ecriterion for selecting the value of ¢ is
ad hoc. On the other hand, there is no "right" choice. Mason and
Callan (1986) demonstrated that the 1éﬁgth séalé 1, = cOn (vhere &n is
the grid spacing) is the key parameter defining the separation into
resolved and unresolved scales. Thus, the value of ¢ not only relates
to damping of the resolved turbulence, but also to the'spatial
resolution of the numerical simulation. We are not aware of any
rigorous argument for the specification of c.

Here, fifteen experimentally observed plumes have been used as
initial conditions for model simulations that advanced through three
minutes of real time, i.e., fifteen fhEEE!miﬁutE flov realizations were
constructed, which will be used in fhis study "éi@ng wvith the

experimental data.
3. Conditional Statistics of the Observed Plumes

Table 1 gives velocity and pressure»statistigsrférmed from the 15
experimentally observed plumes (the staﬁdard_ deviation of pressure
fluctuation, o,» was calculated by the model). The statistics in
Table 1 are conditional statistics, i.e., they are "in" the plumes, so
they need not equal the usual unconditionally-averaged statistics. The
model-calculated o,’'s are significantly larger (about a factor of 5)
than those measured in a neutral atmospheric surface layer (Elliot
1972). This is consistent with the calculation by Wilczak and Businger
(1984) who attributed the large pressure fluctuations to buoyancy
contributions. The skewnesses of the vertical velocity and temperature

at most levels are large and positive. The positive skewness of the
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vertical velocity indicates an upward transport of vertical velocity
variance by turbulent motion (Townsend 1976). This may be due to the
fact that the turbulent kinetic energy production rate at the lower
levels exceeds the local dissipation rate, and the excessive turbulent
kinetic energy is driven wupwvards by the inertial force (Schmidt and
Schumann 1989). The negative skewness of the horizontal velocity at
the lover levels is believed to be caused by strong ejection motions
(withu <0 and w > 0). Notably, within the plumes the standard
deviation of the cross-wind velocity, o,, is larger than that of
alongwind wind velocity o,, except in the first two layers. This may
correspond to the strong convergence in the cross-vind direction within
plumes observed by Williams and Hacker (1992) from data obtained by an
instrumented aircraft flying in the crosswind direction through the
convective plumes. The correlation coefficients of the pressure and
the alongwind velocity, EﬁV(oucp) will be discussed in Section (5b) in
terms of turbulént kinetic energy redistribution by the pressure
fluctuations.

Table 1 may be compared with Table 2, vhere are listed statistics
calculated (unconditionally) from the raw 1-hour experimental data.
The statistics within the plumes follow qualitatively those calculated
unconditionally, except that the large ratio of o,/0, at upper levels
seen in Table 1 was "smeared" by the unconditional average. Vélues in
Table 1 are smaller than those in Table 2, because of the filtering
applied for the selected events (CHAPTER 1IV).

Figure 2(a) shows the conditional probability density function
(PDF) P(w|In plume) of the vertical velocity, calculated using the

observed plumes, at five levels. These PDF’'s are qualitatively similar
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(at the same heights) to an unconditional PDF (Fig. 2(b)), calculated
directly from experimental observations (Hunt et al. 1988). The skewed
PDF means that updrafts are narrover than downdrafts. The shape of PDF
in Fig. 2(a) implies that the unconditional PDF of vertical velocity is

dominated by the influence of the large-scale plumes.
4. Momentum and Turbulent Kinetic Energy Budgets of the Plumes

Using aircraft measurements of velocity and temperature
fluctuations at various heights within the atmospheric boundary layer,
Lenschov and Stephens (1980) and Young (1988) evaluated many terms in
the budget equations for the mean vertical velocity within
conditionally sampled thermal updrafts and downdrafts. These studies
demonstrated a quantitative diEEEfengé betwveen the force balapceé of
updrafts and downdrafts. Acceleration in the updrafts was EEﬁezai1y in
phase vith buoyant forcing, while the acceleration in dawndréfﬁs,éas
generally out of phase with buayanff forcing. ThéEEfoé; itvvas'
suggested that the effects of préssﬁreagradients and mixing (which
could not be separated in the analysis of experimental data) must be to
provide the initial impetus to the downdrafts at higher levels. A
similar study by Schumann and Moeng (1991), using’ Large Eddy
Simulation, showed good agreement with the experimental study by Young
(1988), and provided more detailed analysis of momentum budgets within
the canvegﬁive thermals. Schumann and Moeng also evaluated the
turbulenf kinetic energy budget for the thermals.

All these studies concerned primarily the force balance within the

large-scale mixed layer thermals. Here, budgets of momentum and
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turbulent kinetic energy within the atmospheric surface layer plumes

are examined.

a. Momentum budgets

Following Young (1988), the momentum equations (CHAPTER  1IV,:

Eq. 16 (a,b)) can be averaged over updrafts and downdrafts,
respectively. The resulting budget equations are
au] au dfuv] duw 1 3[p’]

— = = [V¥] - — —
at 3z 9z az Py OX
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Here [ ] denotes an average over the updrafts or downdrafts, i.e.,
X+X/2  y+Y/2 o
lq] = *ﬁi J J a(x,y) I(x,y) dxdy ,

XY
x-X/2  y-Y/2

vhere I is an indicator function
1 if point (x,y) lies in updrafts (or downdrafts)
e { 0 otherwise .
Terms with the overbar are horizontally-averaged over both updrafts ané
downdrafts, and are invariant upon further averaging @ier updrafts or
downdrafts; p, is the "mean" pressure induced by the vertical advection
in the convective atmosphere (Chapter 1IV); and p’  is the pressure
fluctuation, having vanishing mean wvhen averaged over bathrupdrafts and
downdrafts. The mixing terms in the eqﬁatian (M) are the sums of all

the horizontal advection terms in the original momentum equations..

+ M ’ : (13)7
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Note that, when moving the averaging operator inside the vertical
derivatives, one has the relation (Leibnitz’s rule) (Young 1988)

[BAJ d[A] [A] 3¢ [A]z 30

2l sz e 2z o A (2)

az 8z o dz o a3z
vhere o is the number of gi’. points with w > 0 (or < 0) at height z,
and [ ], denotes an average over lateral boundary of the updrafts or
downdrafts. The last two terms account for the variation with height
of the updrafts’ or downdrafts’ horizontal length, and are called size
terms. Present calculation shows that ¢ changes very little with
height for the surface layer plumes. Therefore the size terms have
been neglected in Eq. (1). The subgrid terms were shown (through
numerical calculations) to be at least a factor of fiﬁe smaller than
the rest of the terms in the equations, and have also been neglected.

Assuming a steady-state plume structure, i.e., [u]/3t = 0 and
d[w]/3t = 0, in a coordinate systém moving with the translation
velocity, the terms in these equations were evaluated using the:fiftgen
experimentally-observed plumes (velocities - and temperatures), and thé
corresponding model-calculated pressure fluctuations. Ihermixiﬁg fefﬁs
vere calculated as residuals. In order to compare this study vith;
previous work, it was found convenient to normalize Eq. (1) by the
convective scaling parameters: z;, the mixed layer heighti and
v. = (2,w6g/T)}/3, the convective velocity scale.

Figure 3 presents the momentum budgets within updrafts (a,b) and

downdrafts (c), respectively. The dominant feature of Fig. 3(a) is

that vithin the updrafts, w-momentum generated by the "mean" pressure

1.Since z; wvas not measured in the experiments, it vas estimated
indirectly to be 750 m, using the spectra of the vertical velocity
suggested by Kaimal et al. (1982).
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gradient forcing po'léﬁt/az and by buoyant forcing at the lower levels
is advected upward by the mean vertical motion (-3[w?]/3z). This
agrees with the study by Schumann and Moeng (1991). The buoyancy force
and the fluctuating pressure gradient force are roughly in balance, and
of secondary importance. As expected, the mixing for v momentum is
small, since the w values on the interface between updrafts and
downdrafts are small.

A study of pressure fluctuations by Hoéng and Wyngaard (1986)
based on Large Eddy Simulations found that about 40% of the variance of »
the pressure fluctuation in the convective atmosphere is contributed by
buoyancy. In this study, it is difficult fo separate the buoyancy
contribution to the pressure fluctuations from other effects, such as
mean shear, turbulence-turbulence interactions and subgrid ﬁati@ns (see
Chapter IV, Eq. (27)), because all the effects are related. .Hawevg:,
Jjudging from the magnitude of o, (Table 1) and the balance bétﬁéen
buoyancy and fluctuating pressure gradient in fig. 3(a), dﬁé ¢éy
suggest that the pressure fluctuations are primarily buoyancy
generated. The sign of the fluctuating pressure gradient in Fig. 3(a)
is opposite to that found by Schumann and Moeng (1991) in the lower
levels of the mixed layer thermals. This discrepancy maﬁ be attributed
to the stronger wind shear effect in the large-scale mixed layer
.thermals, which induces a negative vertical pressure gradient (shown
later) supporting the vertical motion.

In the alongwind momentum budget (Fig 3(b)), consistent wvith
previous studies (Wilczak and Businger 1984; Schols and Vartena 1986;
Schumann and Moeng 1991), within the updrafts there is a favourable

horizontal pressure gradient force (3[p’]/3x < 0). The term -fw]ausaz,
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representing upvard advection of slow alongwind motion (or horizontal
momentum deficit), is a significant loss of u momentum at low levels.
By contrast, in the downdraft region (Fig 3(c)) -[w]aU/az represents a
downward transport of the horizontal momentum surplus, and is the
largest source of the horizontal momentum, essentially balanced by a
positive horizontal pressure gradient force, The flux divergence (-
3[uw]/3z) works in the same direction in both updrafts and downdrafts
to balance the horizontal-average mean flux divergence. The EffEQt of
mixing shown in Fig 3(b,c), resulting from large-scale circulations
within the plumes, is to export horizontal momentum from dawudrafﬁs to
updrafts to recover the u-momentum lost by the upvard advectianr(fr
[w]aU/3z). A similar mixing effect for u momentum in the bottom léyers
of mixed layer thermals has been found by Schumann and Haené (1991);
The momentum budgets discussed above can be interpreted with the
help of a conceptual model of a plume moving in a sheared atmosphere
(Fig. 4). Figure 4 is similar to the model Newton (1955) used to
describe thunderstorm dynamics. In this scheme, a plume ﬁaves at a
constant translation velocity (U.) which is faster than the air
velocity (U ,(z)) at lower levels, but slower than the air velagityiatk
upper levels. It can be considered as an obstacle immersed in the air
flow. Then, because of the velocity difference between the plume aﬁﬂ
its environment, at upper levels a positive pressure perturbation is

induced on the upwind side and a negative pressure on the downwind

effect of these horizontal pressure gradients is to decelerate the
moving structure (considered in bulk) at lower levels and accelerate it

at upper levels: thus to "tip" the plume. However, because of the
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vertical shear of the horizontal wind, vertical motion within the
updraft continues to transfer air having lower alongwind momentum from
lower levels to the upper levels (-[w]al/3z), and this mechanism
opposes the tipping force due to the horizontal pressure gradients.
Therefore, to maintain the plume there must be strong vertical motion
supported by either a favourable vertical pressure gradient ("mean" +
fluctuation) or/and buoyancy, as seen in Fig. 3(a). Since the
translation velocity for our observed plumes is close to the mean
velocity at the top level (150 m), only the lower half of the model in
Fig. 4 seems to apply to our experimental observations. The force
balances shown in Fig. 3 are consistent with the shépeeﬁreservatian of

the convective plumes.

b. Turbulent kinetic energy budget .

For convective plumes to sufvivé in a highly dissipative
atmospheric turbulent flow, there must be abcansistent and efficient
energy supply mechanism. This may be seen by examining the budget of
turbulent kinetic energy within the plumes.

In an analysis of turbulent kinetic energy budget within updrafts
of large-scale mixed-layer thermals, Schumann and Moeng (1991) found
that the essential sources for the total turbulent kinetic energy
(e = 1/2/u%+vi+w?) are buoyancy production and turbulent mixing from
downdrafts into updrafts in the lover part of the mixed-layer thermal.
But the pressure transport was found to be insignificant even in the
atmospheric surface layer. This seems to contradict what has been seen

of the role of pressure forcing in maintaining the plumes (Section 4a).
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In this study, the budgets for individual components of the
turbulent kinetic energy (33, ve, ;ﬁ)A will be discussed, emphasizihg
the vertical component within updrafts. It is felt that turbulent
kinetic energy interchange between different velocity components may
also be of importance in describing the development of therplumes.

The ensemble-averaged turbulent kinetic energy budge£ for the
vertical wind component within the updrafts can be written as

18[w?]  13[ww?] [v] 3p, [w8] 1 3fvp’] 1  a[w]

ST st T e T — 4 g - - + = [p'l—= -, + M, (3)
2 at 2 9z Py 02 T Py 902 Po 92

Here, as in the momentum budgets, the size and subgrid'termsvare:small,
and have been neglected. Note that the térm'—p;'llw]aﬁé/az,would be
identically zero if the budget equation were to be avéraged ovef15ch
updrafts znd downdrafts. This term was'missing in Schumann aﬁd Hoéng's
(1991) study.

Terms in Eq. (3) were evaluated using the experimental;déta and
the simulated pressure fluctuations, with the‘mixing term calculated as
the residual. The dissipation rate eu‘has;béen éuggested and‘observed
to be larger within wupdrafts than in downdrafts becéuse §f the more
vigorous turbulent motions (Mahrt 1991; Schumann and Moeng 1991).
Hovever, since the details of the energy cascade mechanism are not
known, as a first approximation, €, was evaluated as £/3, where ¢ is
total dissipation rate estimated using velocity spectra (Fig. 5). Ve

assumed valid the inertial subrange relationship

2/3 —=2/3 .
£S,.(£) = «, & (2nf/U) (4)
vhere S, , is the spectrum of the vertical velocity, f is frequency and

«, = 0.67.
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Assuming steady state, i.e., 3[w?] /3t = 0, the rest of the terms
in Eq. (3) are depicted in Fig. (6). The local energy sources (the
buoyancy force and the vertical velocity-"mean" vertical pressure
gradient interaction term) generate excessive turbulent kinetic energy
in the vertical motions at low levels. However, the local dissipation
is relatively small. This ihbalance drives a great upward (probably
overshot vhen the inertial force is great) turbulent transport (-
1/23[w3])/8z), and the redistribution of a large amount of the vertical
component of the turbulent kinetic energy by pressure fluctuations into
the horizontal components (1/p,[p’]3[w]/98z). The pressure fluctuations
also transport some overshot vertical component of the turbulent
kinetic energy from upper levels back to 1lower levels to recover the
lost energy. Thus, they are a source at the lower levels and a sink at
upper levels. The mixing term (calculated as the imbalance Eq. (3)) in
. Fig. 6 may be subject to error due to the assumption of steady;sfate-
and the summation of errors of othér terms. No satisfactory
explanation has been found for the mixing term, which, nevertﬁeless; is
not essential for the following discussions.

Figure 7 presents the vertical profiles of the préssure velocity-
gradient covariances, [p]2[ul/a3x, Ipla[v]/dy, [plefw]}/3z, which
quantify the pressure redistribution of the alongwind, crosswind and
vertical components of the turbulent kinetic energy, respectively. The
crosswind pressure redistribution term [p]3[v]/dy was inferred from
[p]3{u}/dx and [p]3[w]/3z through the continuity equation. A positive
value of the covariance means that the corresponding component of the
turbulent kinetic energy gains energy from other components, while a

negative covariance means that the corresponding component of turbulent



112

kinetie energy loses energy to other components, by pressure

fluctuations. At lowver levels, pressure fluctuations redistribute a

I

arge amount of vertical component of the turbulent kinetic energy into
the cross-wind component, but they have no impact on the alongwvind
component. At upper levels, pressure fluctuations pass turbulent
kinetic energy from the cross-wind component into the alongvind
component, leaving the vertical component untouched. Thus, as far as
pressure redistribution is concerned, it seems that the alcnéﬁind
velocity [u] and vertical velocity [w] are essentially decoupled at all
levels.

Since vorking by the pressure force transfer energy between the
different velocity components of equal wave numbers (Batchelor 1970,
p87), no energy is generated or destroyed during the pressure
redistributien.

McBean and Elliott (1978) studied the transfer  of turbﬁlent'
kinetic energy by the pressure fiuctuatigns,r and shoved that the most
efficient energy transfer betveen velocity [u] andr other veicéiﬁy ’
components takes place when [u] and [p] are 90° out of phase, whiie:ﬁgj"
transfer takes place when [u] and [p] are in phase, Hence baséd on
Fig. 7, one may suggest that the horizontal velocity and the pressure
fluctuations have small phase difference at lower levels within the
updrafts, leading to weak conversion of turbulent kinetic energy from v
to u. This is consistent with the small phase difference and large
correlation betveen u and p at lower levels seen in Table 1.

It is noted that both momentum and turbulent kinetic energy
budgets in this study differ quantitatively from the study by Schumann

and Moeng (1991). The values in Fig. 3 and Fig. 6 are generally a
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factor of two larger than corresponding values for the atmospheric
surface layer calculated by Schumann and Moeng (1991). This may be due
to the fact that Schumann and Moeng wused data from a Large-Eddy
Simulation where the flow had reached a steady state in equilibrium
vith a constant imposed surface heat flux, while the data in this study
vas collected between 10 to 11 am when the atmospheric boundary layer
vas in the stage of rapid development (deepening). In addition,
pressure transport (-1/p,3[p’w]/3z) is more important here than in

Schumann and Moeng’s study.
5 A Case Study of An Evolving Plume

Some insights into flow within a plume, such as  the role of
pressure distributions within the plume and “the effect of the plume
translation velocity on the evolution of the'plume, can be developed

more clearly in case studies, using the simulated flow realizations.

a. A snapshot of a convective plume

Figure 8 shows contour plots (é snapshot in time) of various flow
variables, from one of the 15 éxperimentally observed plumes in the
Boulder data. Figure 8 resembles the averaged large-scale plume of
Wilczak (1984) in a convective atmospheric surface layer. The plume is
inclined slightly away from the vertical, as can .be seen from both
velocity and temperature contours (Fig. 8(b) and (c¢)). The velocity
field is characterized by a strong narrow updraft, with wider
downdrafts on both sides (Fig. 8(a)). Probably still in its early

development, the plume does not show a strong microfront on the upwind
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side of the wupdraft, as has been seen in other experiments (e.g.,
Kaimal and Businger 1970; Wileczak 1984). The alongwind velpcify_
fluctuation u (Fig. 8(d)) correlates well with the vertical velocity w
in the updraft region, and has a 1large negative value in front of the
updraft. The vertical velocity and temperature © are strongly
positively correlated essentially everyvhere. The phase relation
between u and w creates strong downward momentum transport within the
updraft (which is in fact an upward transport of u momentum deficit),
but upward momentum transport just in front of the updraft (Fig. 8(e)).
This is similar to the uw distribution observed by Wilczak (1984), who
concluded that this sort of plume is inherehtly ineffective in‘
transferring streamwise momentum. Consistent down-gradient_,héatl
transport occurred throughout the plume (Fig. 8(f)), as a result of,thé‘
good correlation between w and 6. 7
Unless otherwise stated, the following discussion will be based on
the plume shown in its initial state in Fig. 8, and its evolution with

time.

b. Pressure distributions within the plume

The pressure fluctuation field in Fig. 9, calculated using the
observed velocities and temperature (Fig 8), shows negative values
within the strong updraft (warm) region, and distinct alongwind and
vertical gradients both upwind and downwind of the updraft.

The pressure fluctuations in this particular plume are produced
mostly by the interaction between the updraft and the wind shear. This

can be shown by a linear analysis of the Poisson equation (Chapter IV,
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Eq. (28)) (Rotunno and Klemp 1982). Keeping only the wind shear term

in the Poisson equation, one obtains

9p alp au 8w
— + —— = =2p; — — (3)
ox? 2z 3z 3

Fig. B8(b) shows that in a gross sense w varies sinuoidally with x in
the region on the downwind side, of the wupdraft. Note that for a
function consisting of a narrov range of Fourier companeﬁES; the
Laplacian of the function is negatively proportional to itself.
Neglecting the variation of p with 2z, and 'assuming 3U/3z does not
change much in that region, the variation of p with x: can therefore be
approximated (very schematically) by |
U aw
p & 2p, — — (6)
3z oax

in the neighbourhood of the downwind side of the updraft. Campariﬁg
Fig. 8(b) and Fig. 9, we can see that the sign of the pressure
fluctuation varies roughly according to that of 3w/3x, although the
maximum magnitude of the pressure fluctuation occurs somewhat away from
the location predicted by Eq. (6). Since the magnitude of av/3x
increases with height to about 90 m, then decreases with height, in the
downvind region, the wind shear induced vertical pressure gradient
accelerates the updraft below 90 m, but decelerates it abcve,'in'the
downwind region.

Figure 10 shows the model-calculated acceleration field, and the
associated vertical pressure gradient ("mean" + fluctuation) and
buoyancy fields of the plume. Comparing the patterns and the contour

values in Fig. 10, it is obvious that the acceleration correlates well

vith the pressure gradient, and the buoyancy force influences strongly
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the acceleration only at upper levels within the updraft. The
contribution from the subgrid terms in the vertical momentum equation
is apparently very small.

Largely due to the pressure gradient forcing, the air within the
updraft experiences an upward acceleration at lower levels (z < 90 m),
and a downward acceleration at the upper levels. When advected
downstream, such a pressure field will continuously initiate the rising
of hot fresh air from the surface into the updraft, to provide energy
for the development of the plume. Thus, it seems reasonable to suggest
that although buoyancy may be the primary force in initializing the
plume, the vertical pressure gradient dominates the evolution of the
established plume. The importance of the pressure distribution within
a surface plume has been noted by Kaimal and Businger (1970) who, by
calculating the vertical acceleration and buoyancy force from an
experimental observation, concluded that the vertical pressure gradient
must be larger than the hydrostatic pressure gradient, and must account
for at least 40% of the vertical acceleration. Similarly, Schols.ﬁnd
Wartena (1986) showed that the vertical pressure gradient force within
coberent structures, observed in the first few meters above the ground,
is sufficiently large to cause ejection of the low-speed flow from the

bottom to the top of the structures.

c. The role of translation velocity in the development of the plume

In a sheared atmosphere, the plume experiences considerable mixing
due to the relative motion between the plume and its environment. On
the one hand, since the mixed air is cooler than the air in the updraft

region of the plume (Fig. 8(a),(c)), an increase of U, will bring more
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cooler air into the updraft from the lateral boundaries of the updraft,
reducing the upvard motion; on the other hand, at a large U, there
vill be more hot air entering the updraft from the:battam of the plume
per unit time, A theoretical model of plume mixing developed by
Davison (1974) showed that in most cases, heat entering from the bottom
of a plume exceeds that 1lost through its lateral boundaries. Thus a
large U, favours the vertical motion within the updraft.

Hovever, for the horizontal motions, a larger U, vill increase the

mixing of the negative alongwind momentum from the downwind side of the

updraft. This can be seen by evaluating the horizontal momentum budget :

as in Fig. 3(b) but using a larger translation veloeity. TFigure 11

[}

shovs that, with a larger translation velocity U, = 1.1 U, the'mixihg
effect changes from a positive production seen in Fig. 3(b) to a
negative production for the horizontal momentum. Thus, unless there is
a stronger vertical advection of the horizontal velocity, the increased
ingestion of negative horizontal momentum will destroy the shape of the
updraft. This is seen in Fig. 12 which shows two plume structures
after one minute of evolution from the same initial condition
(Fig. 8(a)), but using two different translation velocities. With a

0.9 U, 1little change (compared with

translation velocity U,
Fig. 8(a)) was found in the plume’s shape and strength after one
minute, but when the plume is advected at a higher translatiénavelacity
U, = 1.1 U, the updraft becomes narrowver and weakef. 'This,Shapea
destroying mechanism due to a large U. 1is consistent vith fhe "tip"
mechanism resulting from horizontal pressure gradient discussed earlier

(section 4a).
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Therefore, for a certain thermal stability condition, there is an
optimal translation velocity which sustains a plume by balancing the
horizontal and vertical motion. For the plume shown in Fig. 8(a), it
vas found that a U, equal to 90% of the local velocity at 150 m can
sustain it for the longest time (~ 3 min).

The translation velocity of a plume depends not éniy on the flaw
mean velocity, but also on the momentum mixingrbath horizontally and
vertically within the plume, which varies with surface heating. This
may lead to some reported variations in plume translation velocity in
different studies (Kaimal and Businger 1970; Wilczak and Businger 1984;
Schols et al. 1985).

In passing, it is noted that, in contrast to a plumérin the
convective atmosphere, under neutral and stable conditions, without
surface heating (weak vertical motion), a coherent structure such as
those observed by Schols (1986), can be destroyed readii§ byrthe
horizontal pressure gradient induced by the relative motion Eé;ﬁeeﬁ_the
coherent structure and its environment, In fact, when visﬁaily
screening the Boulder data of neutral and stable éanditinﬁs;”ﬁc
evidence of organized motion having persistent spatial (vertical) and

temporal extent was found.

d. Trajectories of fluid elements within the plume

A plume moving at a constant translation velocity means that the
flow structure (e.g., the pressure and velocity patterns) is advected
at a constant velocity tovards the downstream region. 1In this aspect,
a plume is somevwhat like a wave disturbance with U, as the phase speed.

During its development, a plume 4is maintained by continually injecting
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fresh hot air into the updraft and getting rid of the relatively cold
fluid elements (Davison 1974; Telford 1986). Therefore, not all air
elements initially within the plume will stay with the plume during its
lifetime. To visualize the motion within the caﬁvegtive plume, Pig. 13
presents ten particle trajectories viewed in the coordinate system
moving at the constant translation velocity. The particle trajectories

vere calculated using the three-minute numerical simulation for the

plume. Initially (t 0), the tén fluid elements were distributed
symmetrically with respect to the centre of the updraft. At each time
step (8t = 1 s), the simulated velocity field at the grid points (with
interpolations when necessary) were used to advance the particles.
After two minutes, all ten fluid elements have moved to new positions,
and few stayed within the domain of the calculation. It is noted that

the motion of the particles entering into the updraft is essentially

deterministie rather than random.
6. Conclusion and discussion

A striking feature of the momentum and turbulent kinetic energy
(v?) budgets evaluated within the updrafts of the plumes is that, the
local source (buoyancy) and sink (viscous dissipation) are reiativelylr
small compared with vertical advection and transport by tgrbﬁlEﬁce and
pressure. This implies that within a convective plume, most momentum
and turbulent kinetic energy are not generated 1ocally; rather they are
transported from other parts of the flow. In other words, the local
turbulent- quantities bear 1little relation to the local mean flow

properties. This is in contrast with turbulence under neutral
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stratification where the flowv structures are dominated by a close
baiance between shear production (jl)) and viscous dissipation (e).

As expected, the persistent and coherent pressure force has a
significant influence on the dynamics and energetics of the convective
plumes by redistributing turbulent kinetic energy among the velgcify
components. Although the pressure fluctuation has the tendency to
redistribute turbulent kinetic energy among velocity components, it vas
demonstrated that due to the particula:_phase relationships between the
velocities and pressure fluctuations within the convective plumes, the
energy redistribution is very uneven, and it is espegiaily ineffective
in that respect for energy exchange . betveen alongwind and vertical
motions within a convective plume. This means the return-to-isotropy
time scale, T (time required for a velocity component to return tg;an
isotropic state by nonlinear turbulence interactions), is large for a
flow dominated by such plumes, and different for the different velocity
components. |

The decoupling between u and w results in ineffective alongwind

momentum transport in a convective atmosphere, which explains previous

Lt

experimental observations. McBean (1974) observed that although strong
surface heating leads to large amounts of m@ﬁeﬁtum transfer both upward
and downward, the net transfer is usually very small. Greenhut and
Khalsa (1982) showved .that the ‘large upward and dewnward momentum
transfer under convective atmosphere is produced almost entirely by the
plume-averaged mean flow circulations within;updrafts and downdrafts,
vith only 5% coming from small-scale eddy correlations. Mahrt (1991)

suggested that the ineffective momentum transport is a result of a

phase shift betwveen the alongwind and vertical velocities. The



stronger the updraft, the weaker the correlation between u and v will

be. Consequently, the momentum transport (-uw) decreases with
increasing thermal instability. This systematic. phaseslag'betvéen

alongwvind and vertical velocities in convective atmospheric turbulence -
was pointed out earlier by Tennekes and Lumley (1971). |

The distinctive pressure distribution within a convective plume
shown in the case study, and its role in transferring turbulent kinetiﬁ
energy among §elaeity components, have important impligaﬁiﬁns far
modelling convective atmospheric turbulence. For example, if has been -
realized by atmospheric turbulence modellers that the second-order
parameterization of pressure covariance terms using - Rotta’s (1951)
model must be modified to include the cantfibﬁtian from convectively-
induced pressure fluctuations (Wyngaard 1980; Zeman 1981; Maéﬁgiand
Vyngaard, 1986). The variation of velocities and préss@fe
distributions within the plumes with atmospheric stability canditi@hs
almost assures that ad hoc adjustments of SEQDDdéﬁdeE*ElGSBfES‘aré
necessary in modelling atmospheric turbulence (Wyngaard, 1982).

The occurrence of convective plumes and their transpartvprgpefties
pose a difficult problem for air quality modelling. The longevity of
the highly anisotropic convective plumes makes it possible for a
diffusing pollutant to travel a long distance upvard without reversing
downward, as seen in Fig. 13. This violates the principle of the K-
theory of turbulence diffusion, in which diffusion is envisaged as a
random valk process in vhich particles can travel large distances only
after suffering many independent upward and downward displacements
(Lamb 1982). Second-order closure models are also likely to yield

erroneous predictions of pollutant concentrations in the convective
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atmospheric surface Iayer, because of the difficulties in modelling the

covariance of pressure gradient and scalar concentration, 1/pﬂcap?a

M |

(Zeman 1981), to which the plumes make important contributions (Hoeng
and Wyngaard 1986). 1In situations vhere pollutants are released into a
flow dominated by convective plumes, or in the case of a puff release

the transport properties of convective plumes can be most impertant.
In such cases, recall that the covariance of pressure gradient and
concentration is parameterized (in the budget equation for the vertlcal
flux, Wc) as wc/T (Zeman 1981). Then because of the large return-to-
isotropy time scale, T, of the plumes, it will take a long time for a
mass flux to be destroyed within the plumes. Thus, the concentration
field would likely contain some extreme "events" and counter gradient
fluxes may occur due to the existence of the plumes, and a large

sampling variation can be expected in experimental data. These extreme
"events" are one of the causes of the variability of observed
concentration (mean and fluctuation) in air quality exper;ménts;

So far, no practical dispersion model reported has expliei
incorporated convective plumes in calculating atmospheri dlSpegs;an;7
an essential step to understand and provide a practical salutigﬁ for
the inherent uncertainty in air quality modelling. Nevertheless, I
feel that the present study has qualified some aspects of plumes in the

convective atmospheric surface layer that are important for atmospheric

dispersion. The more we understand iiLz coherent dynamics, the easier
it will be to incorporate them into a practical dispersion model. A
future extension of this work would be to characterize plumes under

different atmospheric stability conditions, so that uncertainty in air
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quality modelling can be estimated using the extreme “events" resulting

from plumes under different stability conditiens.
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Fig. 1 Velocity spectra calculated (a,b,c) from the numerical simulations
with different model parameters ¢, and (d) from the filtered
experimental data, at a height of 30 m. Here £ is frequency, k,
vave number and U, the mean wind speed at 30 m.
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Fig. 2 Probability density functions calculated (a) using the conditional
sampled convective plumes in this study, and (b) from rav
experimental data by Hunt et al. (1988).
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Fig. 3(a) Vertical momentum budget within the updrafts of the convective
plumes observed experimentally. A translation velocity
U = 0.9 U wvas used in the calculation, where U, is the local
mean velocity at 150 m.
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Fig. 3(b) Horizontal momentum budget within the wupdrafts of the
convective plumes observed experlmentally A translation
velocity U, = 0.9 U, was used 1n the calculation, where U, is
the local mean velnglty at 150 m
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Fig. 3(c) As in Fig. 3(b), except for the downdrafts.
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Fig. 4 Schematic representation of a convective plume as an obstacle in
air flov with wind shear. U = U, - U, vhere U, is the
translational velocity of the CS and U,(z) the wind velocity of
the environment. The plus and minus signs denote the induced
pressure, p, due to the relative motions.
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Fig. 10 (a) Vertical acceleration, dw/dt = 3w/3t +(U + u) 9w/3x + vaw/3z,
(b) pressure gradient, -1/p,(3p,/92 + 3p’'/3z), and
(c) bugyancy 0g/T fields of the CS. Variables are normalized.

= 0.4. Negative values are shaded.
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CHAPTER VI
GENERAL CONCLUSIONS

The objective of this thesis was to study transport properties of
coherent motion in the atmospheric surface layer. I have achieved this
by extracting and interpreting coherent stfuctures from - measured
turbulence records, and by developing and applying a low-order model
for a rational study of coherent structures in the  convective
atmospheric surface layer.

Two types of coherent motions, i.e., vortical motions in windbreak
flows and convective plumes in the atmospheric surface layer, havg_been
identified and discussed. It has been shown that both coherent'mpﬁions
play a major role in the turbulent transports, and largely shape the
observed turbulent statistics, in their respective flows.

However, from the modelling point of view, the importance of the
two coherent motions varies significantly. On one hand, because of the
self-similar properties in the mixing region of a windbreak flow,~fhe
transport properties of the vortical motions can  be adequately
described by an eddy diffusivity concept. On the other hand, the
turbulent trénsport associated with the convective plumes bear little
relation to the local méan flow quantities, and change with atmospheric
stability. Thus, ad hoc adjustment in an ensemble-average atmospheric
turbulence model without explicitly taking the convective plumes intc
account is warranted.

This structural and deterministic study of turbulent flows by no

means opposes the usefulness of the well established statistical

145
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theories of turbulence. Rather, its objective is to provide detailed
flov mechanisms for a better understanding and modelling of the flow.
I believe that the detailed flov structures revealed in this study
(Chapter V) have offered information that could be useful for improving
ensemble-average turbulence models for flow prediction and air quality
modelling. I also believe that incorporating coherent structures into
a flow description will eventually reduce the parameterization needed

to quantify the flow.
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Appendix A  QUADRANT ANALYSIS

(Referred in Chapters II)

Tamord NS
~ Interaction %%R% (Cﬁgﬂ?
II1 7 | e ) IV

Figure 1A Schematic representation of Quadrants and the hole
used for Quadrant analysis.

Quadrant analysis (Willmarth and Lu 1974) has been used to provide

detailed information about the momentum transport process. This

e

s .
done by sorting the instantaneous samples of alongwind velocity u and
vertical velocity w into five bins, depending on which quadrant of the
uv plane the sample occurred, and whether or not the magnitude juv| of
the event exceeds (or othervise) an optional threshold value Hyu,?

(Fig. 1A). The events in quadrants II and IV, representing ejection
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and sweep, respectively, make a positive contribution to the overall
mean momentum flux -uw; on the other hand, the motion in quadrants I
and III, consisting turbulent outwvard and inwvard 5ntéra¢tigns. make a
negative contribution to the overall momentum flux -uw.

The "hole" is a hyperbolically bounded region of events that are
"small" in the sense that Juv| §  Hyu.?, vhere H; is the "hole size"
(Fig. 1A), a parameter free to be chosen to sort out dominant events.
It is a subjective matter to choose the hole size, so as to reveal "the
structure” of the momentum flux, The structure of momentum flux can be
studied by sorting events as a flux fraction varying with H, in each of

the quadrants. For example, at H,

1]

0, all samples of u and w will be
sorted into quadrants I, II, III, and IV. By progressively increasing
the magnitude of H,, the samples that make only a small contribution to
the Reynolds stress are sorted into the hole region, vhile the violent
events, possibly corresponding to lgfge—Sﬁalé structures, remain and
are identified within each quadrant.

The flux fraction §; ,, is defined as

Si’Ho = __:—'— H (lA)

vhere the subscript i refers to quadrant number, and (uw); ., is the

conditional average flux in-ith quadrant at hole size H;, defined as

T
. 1T
(uw)i,HO = 'Ii:im ; uw Ti;HD dt , (24)
e
0

and I; .o, the indicating function, is
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{ 1 if u, w lies in the ith quadrant and |uvw| 2 H,|uv|
0 othervise
Obviously, if H, = 0, we obtain from (1A)

4' .

i=1

Quadrant analysis has been used in many turbulent flows to study

flux structures, and has provided considerable information about

turbulent transport processes (see Antonia (1981) for a review).
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The proper orthogonal decomposition ~ (POD) 'is a classical
probability theory (Loeve 1955). It states that a variable fluctuation
can be expanded as a series of deterministic functions (proper
orthogonal functions) with random coefficients. Lumley (1967)
introduced it to the field of turbulence research for objectively
defining coherent structures from random turbulent signals. The major
advantage of the POD is that it converges optimally faster in quadratic
mean than any other expansion. For example, when an ensemble of events
is selected from flow with high degree of organization, this
decomposition has been found very effective in the sense that the first
a fev orthogonal functions will effectively retain most information in
the velocity covariance of the selected events.
been applied, in connection with the dynamical systems theory, to
derive lov-dimensional dynamical systems for turbulence studies
(Sirovich 1987; Aubry et al. 1988).  Readers are referred to Aubry

n fluid

ljtn

(1991) for an extensive review of the POD and its applications
dynamics. Here only a simple version of the POD (in time domain) will
be described.

Suppose f,(t), f,(t),.. fy(t) are N realizations (or events) of a
fluctuating signal, each of which can be either a single variable or a
composite of variables, sampled periodically at t, with a time
interval, 4t = (T, - T,)/M, within the closed domain [T,, T,]. Ve
intend to find a function ¢(t) within the domain [T,, T,] that, in a

statistical sense, "regembles" the dominant structure embedded in

these realizations.
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Let us pick the square of the correlation

M 2
. zzfi(t"¢(t“) | .
1 m=0 ‘ 1R
*=ﬁz n- L (18)
i=]1 z¢2(t-)
m=0

as a measure of the resemblance, where t_ T, + mAt. Ve select ¢(t)

by requiring X\ to be maximum. This is done by applying the calculus of
variations. Perturbing ¢(t_,) by amount €A¢(t,), then replacing ¢(t,)

in Equation (1B) with ¢(t_)+e84¢(t,), and taking the limit

dX(g) ’
Lim = 0 (2B) .
e50 de
wve obtain
M - .
}; R(tp, t,)8(t) = M(t,) - (3B)
m=0 '

vhere X\ is the eigenvalue, and

N
R(t,,t,) = %—Zi ) £,(t,)
1

is the two-point covariance function formed from the N realizations,
vhich is a (M+1)x(M+1) matrix. By definition R(t,,t,) is

a. symmetric, i.e. R(t_,t,) = R(t,,t.),

b. continuous if the sample functions are continuous and

c. defined on a closed integral [T,, T,].

For R(t,,t,) thus defined, it may be shown that (Loeve, 1953)
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1. There are not one, but a discrete set of solutions: to (3B),
i.e.,

ZR(tm,tk)¢n(tm) = x“¢n(tk) ] o . n= 1] 2, 3,’ ¢ o N-
m=0 ; 7‘ _ o L ;
2. All the eigenvalues )\, are real, non-negative and ordered such.

. N

that A, > X\, > ....> Ay > 0. The sum of the the eigenvalues I\,
g n

is called the total variance of the samples. The eigenfunctions

¢, are real and orthogonal to each other over the domain [T,,T,],

i.e.,

¢, (t), explains a fraction of the total variance, XI/E A,» and
is orthogonal (i.e., uncorrelated in the domain [Tl, T,}) to
the rest of variance, and | | 7 |

¢,(t), explains a fraction of the total variance,,ki/?rkh;;énd

is orthogonal to ¢,(t) and the rest of the variance, and

¢N(t))

etc.

3. Any realization f,(t) can be expanded in the ¢, as basis

functions
N
£, (t) =z o $, () (4B)
n=1
wvhere M

N
%in =z fi(tm)¢n(tm) and >‘n “Z ®in®in

m=0 i=1
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4, The covariance can be decomposed as

i
-]
gt

N
R(E,, 1) z Nb (808 (5) (
n=

n=1
Equation (3B) is the vell-known problem of determining eigenvalues
and eigenvectors of a matrix (R(t,,t,)). A standard solver of Equation
(3B) can be found in the IMSL MATH/LIBRARY (IMSL 1989)3 The
decomposition will reduce to the Fourier decomposition when the

realizations are stationary (i.e., R(t,,t,) depending only on

ltm = tkl)'
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Appendix C The Boulder Atmospheric Observatory

The Boulder Atmospheric Observatory 300-tover 1is a research

facility operated by NOAA for studying the atmospheric boundary layer.
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the foothills of the Colorado Rockies ﬁﬁ'a

section of agricultural land, with gentle slopes in the immediate area.

The instrumentation levels on the tower are distributed linearly with’

height, except for the lowest two levels (Table Cl). Table Cl1 lists
the standard measurements on the tower, including the characteristics
of the sensors, their sampling rates, and the error estimates. The
sonic anemometers at all levels are pulsed synchronously 200 times pér
second, but only 20-point nonoverlapping block averages of the readings

are recorded. This is done to minimize aliasing in spectra computed
from the time series. A detailéd description of this facility, the
associated remote sensing systems, and the data acquisition systém is
given by Kaimal and Gaynor (1983).

Extensive site evaluations have been performed to determine hau
the unevenness of the terrain influences the temporal and spatial
structure of the boundary lajer over the site (Schaté and Panofsky,
1980; Kaimal et al., 1982; Hunt et al., 1988). These studies have
demonstrated that the measurements at this facility agres with those
made over flat land.

The facility has been a site of many cooperative experiments. The
archived data are generally available to external users. In addition,
data acquisition at the site proceeds on a continuous basis even during

periods between experiments. The data chosen in this study vere

collected as routine measurements in the summer 1986. The data vere



155

selected on the basis of the data summary sheets, which provide twenty-
minute summary listings of mean winds, temperatures, dewpoints, Monin-

Obukhov length, variances and turbulent fluxes (momentum and heat) etc.
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APPENDIX D  DETAILED EXPRESSIONS OF THE LOV-ORDER EQUATIONS

(Referred in Chapter IV)

de, T ([® & N LI N ]
dt Lax & 3 9z ¢ it
K N N . C N LN ) ]

+ [—(Loy b, " Tty ¢,%) + —(Zoey "L $,¥)

ax & p az & i ]

) 3 -

+ =—(Eﬂ ¢i“2ﬂ ¢ 2y + (Zz $; "EE ¢ 2)

[9x & az i i

[ ( 8T,, @Quw ATy, aw?
+J. (— = = )" + (— = — )" +
9z 9z 9Xx 9z

3H, 9H, 3wé

ax 9z 3z

3y au ,
JJ {(U——Za $p "+ — Eu $; “)¢
J . ax? az + . ‘

d y
(U——Em Y - -
axi T

g

T, 6,9)8,"

3 oT,, ,
(U—Zo; ¢, + —La; $,7)4,® 5 dxdz
axi az+t

1
+ J:,}— - vt $.) dxdz
o
m = 1,—, y N

¢m°}dxd= )i i=1

s Z

Turbulence
» interaction

i,

Subgrid
rturbulenge

Mean-turbulence
» interaction

N

m
) Z‘:ijkc‘i“jﬂk

1:Jsk51

} Pressure term

vhere H,, H, are subgrid heat fluxes, and U and T are derived by Eq. (14).



of the required calculation of the absolute value of the strain rate in
the subgrid stress terms, and the mean flow quantities (U and T).
Therefore more detailed expression on the low-order equations is not

possible as far as the analytical expression is concerned.
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Appendix E Flow Chart for Calculating the Low-Order Equations

ati
(Referred in Chapter IV)

INITIALIZATION

Step 1 Calculate the derivatives of the fifteen orthogonal
functions obtained from Eq. (7), using Fourier
Transform method (Eq. (25)) in x direction and
finite difference in z direction

Step 2 A snapshot of a flow realization, represented by a
set of expansion coefficients o, obtained from
Eq. (29), is selected as an initial condition

Step 3 Set the simulation time T, = 0

Step 4 Set the desired duration of the simulation T,

CALCULATION OF FLOW FIELD 1

Step 5 Form velocities, and their derivatives with Eq. (19)
and the results saved in step 1, using the new
expansion coefficients o).

) T I

Step 6 Obtain the current mean wind and temperature profiles
using Eq. (14) as a negative feedback to stabilize
the simulation

1

- . . m m -
Step 7 Calculate the coefficients ¢; 4, €3 4, and pressure
term in the low-order equations (Eq. (23))

DATA STORAGE AND STEP AHEAD 4

Step 8 Advance the expansion coefficients o using Eq. (23)
and save the current values of &,




