
 

 

University of Alberta 
 
 
 

High Order Corrections to Fundamental Constants 
 
 

by 

 
Matthew Dowling 

 
 
 
 
 

A thesis submitted to the Faculty of Graduate Studies and Research  
in partial fulfillment of the requirements for the degree of  

 
 
 

Doctor of Philosophy 
 
 
 
 

Department of Physics 
 
 
 
 
 

©Matthew Dowling 
Fall 2012 

Edmonton, Alberta 
 
 
 
 

 
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis 
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is 

converted to, or otherwise made available in digital form, the University of Alberta will advise potential 
users of the thesis of these terms. 

 
The author reserves all other publication and other rights in association with the copyright in the thesis and, 

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or 
otherwise reproduced in any material form whatsoever without the author's prior written permission. 



This is dedicated to my wife and best friend who has always been there with words
of encouragement, advice and support whenever I needed them.



Abstract

This thesis explores the determination of a few of the fundamental constants of the

standard model by employing different methods than those historically used. Modern

field theory techniques are applied to the calculation of the ↵2

(Z↵)5 corrections to

the Lamb shift leading to an increase in the precision of the current value. It is then

shown how these same techniques can be used to compute the ↵(Z↵)5 corrections to

the bound electron g-factor. Next, the beyond the standard model decay of a muon

into an electron and a particle called a Majoron is considered. This calculation

provides the theory that underlies a new method of searching for the Majoron that

does not require any modification of currently planned muon to electron conversion

experiments. Finally, the two related decays of a b-quark decaying to a c-quark and

leptons and a muon decaying to an electron and neutrinos are considered in a new

kinematic configuration. This new approach provides the O(↵2

s) corrections to the

semileptonic b-quark decay rate and is currently the only method that gives access

to the O(↵3

) corrections to the muon decay rate. All of these corrections are used

in determining fundamental properties of the standard model as well as the ongoing

search for new physics.
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Chapter 1

Introduction

In particle physics one of the ‘holy grails’ is to find a single theory that successfully
describes the building blocks of matter and their interactions. As of today, the
theory providing the closest approximation to this is called the standard model of
particle physics (SM). The SM describes interactions of spin 1/2 matter particles:
the quarks,

✓

u
d

◆✓

c
s

◆✓

t
b

◆

,

and the leptons,
✓

⌫e
e

◆✓

⌫µ
µ

◆✓

⌫⌧
⌧

◆

,

mediated by bosons,
�, W±, Z0, g, H.

The quarks and leptons also have a related partner called an anti-particle. Anti-
particles have the same properties as their partner particle except their quantum
numbers are reversed. For example, the anti-electron (positron) has the same mass
as an electron but its charge is positive instead of negative. All of these particles
have been observed except for the Higgs boson, H. The two main Large Hadron
Collider (LHC) experiments ATLAS and CMS recently announced the discovery of
a new particle that is so far consistent with the SM Higgs [1, 2]. It will take much
more data and effort to conclusively determine if this is the SM Higgs or something
more exotic.

Apart from having yet to conclusively discover the Higgs boson, the SM has been
tested with an amazing degree of precision. The electromagnetic coupling constant
↵, for example, has been determined to be [3]

↵�1

= 137.035 999 074(44). (1.1)

This value agrees well with the next best determination using a different method,
such as electron-electron scattering, and makes quantum electrodynamics (QED), a
component of the SM, one of the most precisely tested theories to date. In fact, in
the roughly 40 years since the SM was formulated, every test that has been used
to check its validity has shown it to be accurate, almost. Even with this success
it is expected that the SM is not a complete theory. One of the major reasons
for believing this is that astronomical measurements show there is very likely some
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other kind of matter out there. It has been named dark matter because it does not
interact electromagnetically (i.e. it does not give off any light). As well, there are a
few experimental measurements possibly showing signs of some new kind of physics
not included in the SM. The most significant of these results is the determination of
the charge radius of the proton. A recent measurement [4] showed that the radius
of the proton should be

rp = 0.84184(67)fm. (1.2)

The current CODATA recommended value [3],

rp = 0.8775(51)fm, (1.3)

does not take this measurement into account because it differs so widely from previ-
ous measurements [5, 6]. The difference between these two values is at the 7� level
(they differ by roughly seven times the error) making it one of the most significant
discrepancies in the SM today. In the two years since the new value for the charge
radius of the proton was published, no explanation has been found that can explain
the difference.

There are typically two approaches used in the search for new physics. The first
involves colliding particles at higher and higher energies to see if anything new is
created. This is the method employed by accelerators like the Tevatron and the LHC.
By colliding protons at very high energy, the LHC hopes to produce new particles,
like the Higgs, if they exist. The second approach comes in at the other end of
the energy spectrum: precision measurements. These experiments are typically low
energy, but control of the parameters in the experiment is so good that extremely
precise measurements can be made. These measurements can be sensitive to new
forces or particles through “virtual corrections”. A simple example shows how this
can happen and what is meant by virtual corrections. It also helps introduce some
of the main concepts from particle physics that will be used in this thesis.

Virtual Corrections

Consider a process like the decay of the muon (µ). In the SM, the muon is able
to decay into a muon neutrino (⌫µ), an electron anti-neutrino (⌫e) and an electron
(e) through the weak force (W±, Z0). This decay process can be represented by a
diagram such as the one in Figure 1.1. These kinds of diagrams are referred to as

Figure 1.1: A representation of the tree level decay of a muon. The wavy line
represents the W� that is responsible for this kind of decay being
possible.

Feynman diagrams and actually represent a mathematical expression that gives the

2



amplitude for such a process to occur. The magnitude of the total amplitude can
then be used to compute a physical quantity, such as the decay rate.

This is not the only Feynman diagram that takes a muon and produces the
neutrinos and electron. Another example is illustrated in Figure 1.2. This time, the

Figure 1.2: Another Feynman diagram that also contributes to muon decay. The
loop can be any particle anti-particle pair that interact electromagnet-
ically.

diagram has an extra part with two photons (�), the wavy lines, and a loop where
one line is a particle (X) and the other is its anti-particle (X). The (anti-)particle in
this loop can be any kind of particle that interacts electromagnetically. This diagram
starts with a muon and produces the same kinds of particles in the final state as the
diagram in Figure 1.1, but in a more complicated way. Its contribution is suppressed
by powers of the QED coupling constant, ↵, so it is called a correction. When a
process like muon decay is measured in an experiment, it is only possible to see the
initial muon and the final electron and neutrinos. All of the other particles in the
diagrams are known as virtual particles. They are not physically created but are able
to contribute to the process anyway. One way of thinking about these particles is
that they borrow an amount of energy �E from the vacuum and are able to “exist”
for a short period of time �t such that the uncertainty relation

�E�t  ~
2

(1.4)

is satisfied. The photons and particle anti-particle loop make up the virtual correc-
tion.

If there is a new particle that has not been detected yet, and it interacts electro-
magnetically, it would contribute to muon decay via diagrams like those in Figure
1.2. The decay rate must be measured very precisely in order to measure the effects
of a new particle in this way, as the contribution from the loop diagram in Figure
1.2 is proportional to ↵2

⇣

mµ

mX

⌘

2

, which is very small for mX � mµ.
This brings us to the main topic in this thesis: high order corrections. In addition

to searching for new physics, precision experiments are used to measure the many
fundamental parameters in the SM. This means that in order to obtain useful pre-
dictions from theory, the values of all free parameters need to be known. Typically,
these parameters are found by comparing a measurement with the related theoretical
prediction and then assuming the two should be equal. It is then possible to extract
the value of the parameter of interest. Since the assumption that the measurement
and theory should be equal may not be true, it is necessary to have more than one

3



method of determining these parameters. In addition, to properly compare the ex-
perimental and theoretical values, both should have similar error, otherwise the one
with the larger error limits the precision of the final result. To this end, theorists
are continually computing higher and higher order corrections to various processes.

Perturbation Theory

The term higher order corrections has been used a few times without a real explana-
tion for what it means. The fact is, calculations in quantum field theory (QFT) are
rather difficult. They are so difficult that no full calculation of a physically realizable
process has ever been carried out. It is, however, possible to carry out an asymptotic
expansion in some small parameter in the theory. This procedure was created by
both Feynman [7] and Schwinger [8, 9] independently. During a long bus ride in 1948
Dyson realized that the two theories by Feynman and Schwinger were identical. His
derivation of this [10] has become the standard method of introducing perturbation
theory.

In carrying out this expansion, a standard set of rules can be inferred that hold at
any order in the expansion. It has been found that there are only a few different rules
that need to be followed in order to build up any amplitude required. In addition,
each of these terms can intuitively and conveniently be represented by a picture
called a Feynman diagram. For QED, the coupling constant ↵ ⇡ 1/137 provides
an ideal parameter for this expansion. In quantum chromodynamics (QCD), the
situation is not as simple because the coupling constant, ↵s, is relatively large at
energies below the b-quark mass. In that theory, the perturbative expansion should
be augmented by an estimate of non-perturbative effects.

Feynman diagrams are a convenient tool to organize and keep track of the dif-
ferent contributions to the process being considered. The rules for constructing
the diagrams are known as the Feynman rules and are (partially) shown in Figure
1.3. These are the propagators and vertices that make up the SM. Note that if the
fermions in the W-Fermion vertex are leptons, one must be an e, µ, or ⌧ and the
other must be a neutrino. As well, this lepton neutrino pair must be of the same
flavour (e, µ, ⌧). Only the vertices that will be relevant for this thesis have been
included. In addition to the vertices listed in Figure 1.3 there are vertices for:

gggg, Z0ff, �W+W�, Z0W+W�, ��W+W�, �Z0W+W�, Z0Z0W+W�,

W+W�W+W�, W+W�H, Z0Z0H, Hff, HHH, HHW+W�,

HHZ0Z0, HHHH.

Finally, rules are also required for how to include the external particles.

Incoming Fermions:u(p, s) Incoming anti-Fermions: v(p, s)
Outgoing Fermions:u(p, s) Outgoing anti-Fermions: v(p, s)

Incoming Photons,Bosons: ✏(k,�) Outgoing Photons,Bosons: ✏⇤(k,�)
Incoming Gluons: ✏(k,�)ac Outgoing Gluons: ✏⇤(k,�)ac⇤

The u(v)’s are the positive(negative) energy wave function solutions of the free Dirac
equation and the ✏’s are polarization vectors. In addition, the ac’s are the colour
wave functions of the gluons with c = 1, . . . , 8.
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�gµ⌫ + kµk⌫
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H
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�a

2
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3-Gluon
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1

)⌫ ]

W-Fermion

�i gp
2

�µ
(1��5

)

2

Vff 0

Figure 1.3: A sample of the Feynman rules for the standard model. Note that the
photon and massive vector bosons are denoted by the same type of line.
Unless specified, this type of line always refers to a photon instead of
the Z0 and it should be clear from the vertices if the particle is a W .
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As an example of how to apply these rules, let’s look at how to compute the
decay rate of a b-quark into a c-quark and leptons. This is one of the dominant
decay modes of the b-quark and can be measured accurately in experiments. It
will be considered in much more detail in Chapter 6. To start, the interaction that
converts a b-quark into a c-quark comes in the form of the weak interaction. The
resulting W boson can then decay into two leptons: an electron, muon or tau, and
the associated neutrino. When the process is drawn out, the result is the diagram
in Figure 1.4, which represents the amplitude for the process to occur. To convert

Figure 1.4: The Feynman diagram for semileptonic b-quark decay. Each line and
vertex represents a factor that contributes to the decay rate.

from the diagram form to an equation, the fermion lines are followed from finish
to start applying the Feynman rules as the different propagators and vertices are
encountered. Starting with the outgoing c-quark gives

iM =



u(pc)
igVcb

2

p
2

(1� �5)u(pb)

� 

u(p`)
ig

2

p
2

(1� �5)v(p⌫)

�

, (1.5)

where the spin indices have been ignored in the wave functions. Note that the factors
Vff 0 for leptons are zero unless the flavour of f and f 0 is the same, in which case
it is one. This indicates that the weak force is unable to change the flavour of
lepton and has led to a rule called lepton flavour conservation. Until recently, lepton
flavour conservation was considered to be an exactly conserved symmetry of the SM.
Chapter 5 will explore a model that allows lepton flavour to be violated.

Figure 1.4 is just the leading order contribution to the decay rate. To take
into account higher order corrections a way of including more interactions must be
found. In the case of the b-quark decay rate gluons can be added through interactions
with the quarks. As shown in Figure 1.5, there are three ways that a single gluon
can be added in this example. The number of gluon lines indicates the order of
the correction. To see this, consider the vertex contribution from gluon-fermion
interactions:

� igs
�a

2

�µ. (1.6)

For each gluon-fermion vertex, an extra factor of gs is included. The amplitude of
the process in terms of powers of gs is then

iM / 1 + gs + g2s + . . . , (1.7)

where the dots indicate higher order contributions. In order to compute the decay
rate, the square of the amplitude is taken. When this is done, the terms proportional
to gs will give zero so that the first order correction is proportional to g2s . Each of
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Figure 1.5: The first order diagrams contributing to semileptonic b-quark decay.

these diagrams has a single gluon and it is found that a single gluon added to a
diagram increases the power of the coupling constant by two. Using the relation

↵s = 4⇡g2s , (1.8)

it is seen that the number of gluons determines the power of ↵s and thus the order
of the correction.

With perturbation theory being one of the very few methods of calculation in
QED, the past 60 years have been very fruitful in developing methods and algorithms
to compute the integrals associated with Feynman diagrams. It has become possible,
with the help of computers, to do the lengthy and highly complex calculations needed
to match experimental precision and extract extremely precise values for different
physical constants. For example, the current value of the fine structure constant
relies on the calculation of 12672 “tenth-order” Feynman diagrams [11] (tenth-order
is in quotes as they are technically the fifth-order terms in the expansion. The ten
comes from counting factors of g instead of ↵). This determination of ↵ comes from
comparing the calculations and measurements of the electron g-factor [12].

1.1 Experiments

This section takes a look at some of the experiments that are able to produce the pre-
cise measurements needed to extract fundamental constants in the SM. The meaning
of the constants will only be briefly discussed leaving more detailed descriptions to
the chapters that consider each one respectively.

Lamb Shift

The Lamb shift is a spin-independent correction to atomic energy levels due to
quantum loops. It has been an important quantity in the history of the development
of QED. Its theoretical calculation showed the importance of perturbation theory
and renormalization. There are a few different ways of measuring the Lamb shift.
The Lamb shift that splits the 2S

1/2 and 2P
1/2 levels in hydrogen will be the focus

of this section. Using a direct measurement, the most precise value of the 2S
1/2 -
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2P
1/2 splitting was done by Lundeen and Pipkin in 1981 (1057.845(9) MHz) [13]. In

1994 Hagley and Pipkin made an indirect measurement of the 2S
1/2 - 2P

1/2 splitting
by measuring the 2S

1/2 - 2P
3/2 splitting and subtracting the theoretical value for

the 2P
1/2 - 2P

3/2 splitting (1057.842(12) MHz) [14]. These two experiments relied
on a technique of measuring the relevant transition frequency called the separated
oscillatory field (SOC) method.

The SOC method was first introduced by Norman Ramsey in 1956 in his book
‘Molecular Beams’ [15]. The idea of this method is to prepare the two level system
of interest in its ground state. For the 2S

1/2 - 2P
1/2 Lamb shift, a beam of hydrogen

atoms is prepared in the 2S
1/2 state. The beam is then sent through two regions

that have an oscillating electromagnetic field and are separated by some distance
much larger than the length of the regions with the oscillating fields. The oscillating
fields induce transitions between the two states of the system. Measurements of the
number of atoms that have a final state of 2P

1/2 are made as the frequency of the
oscillating fields is changed. This measurement is done by counting the Lyman-↵
photons emitted in the decay from the 2P

1/2 state. When the frequency of the
oscillating field matches the frequency of the transition, a maximum is found in the
number of atoms that have transitioned. The change in energy of this transition is
related to the frequency, !, by �E = ~!. This can also be done with just a single
oscillating field region. The benefit of using two regions is the interference effect
created with the separation of the regions.

Consider a single atom proceeding through the fields. Amplitudes can be assigned
to the different processes that are classically thought of taking place. First, let
Ciif be the amplitude for the atom to go through the first region with no change
and then transition as it proceeds through the second region. Similarly, let Ciff

be the amplitude for the atom to transition in the first region and remain in the
excited state as it goes through the second region. The cross term CiffC⇤

iif produces
an interference effect that ends up narrowing the peak observed at the transition
frequency. This narrowing is what allows a much more precise measurement of the
frequency as shown in Figure 1.6. The Lamb shift is used to measure either the
Rydberg constant R1 or the charge radius of the proton.

Electron g-Factor

The electron g-factor is another historically important quantity. It is a proportional-
ity factor between the spin and magnetic moments expressed in units of e

2me
. Dirac’s

equation in relativistic quantum mechanics shows that it should be exactly two. Fur-
thermore, QED corrections show that the g-factor should actually be slightly larger
than two. Today, the ability to measure the value of the g-factor precisely gives the
best determination of the fine structure constant ↵. In addition, the bound electron
g-factor (which is considered in Chapter 4) is used to determine the mass of the
electron to a precision of 14 digits [16].

As with the Lamb shift, there are a few different ways of measuring the electron
g-factor. Here, the method that currently provides the most precise measurement of
both the free and bound electron g-factors will be described: by use of a Penning trap.
The Penning trap is a device first built and named by Hans Dehmelt in 1959 based
on ideas from Frans Penning. It uses a combination of a non-uniform electric field
and a uniform magnetic field to confine charged particles in a small area. The motion
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Figure 1.6: The interference effect of the SOC method narrows the peak that occurs
at the transition frequency. The frequency !

0

corresponds to the energy
difference between the two levels. Here, the dashed line corresponds
to having a single region with an oscillating field while the solid line
corresponds to having two regions with the field. Both are normalized
so that the maximum is P

0

.

of the charged particles in the trap is shown in Figure 1.7. The three frequencies of

ωz

ω_

ω+

Figure 1.7: The motion of an electron in a Penning trap. The different frequencies
!�,!+

and !z are all separately measurable.

the motion of the particle can be measured, and it is then possible to calculate the
cyclotron frequency, !c of the particle using the relation,

!2

c = !2

+

+ !2

� + !2

z . (1.9)

The cyclotron frequency is also related to the the magnetic field that the particle is
moving in,

!c =
e

me
| ~B|. (1.10)
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Taking a look at the Larmor precession frequency of the particle, it is seen that
it is related it to the magnetic moment of the particle,

� ~µ · ~B = g
e

me

~S · ~B = ~!L. (1.11)

When the spin and magnetic field are aligned it is possible to solve for the Larmor
frequency,

!L = g
e

2me
| ~B|. (1.12)

Dividing the two frequencies gives a very simple expression for the free electron
g-factor,

g = 2

!L

!c
. (1.13)

The bound electron can be treated similarly. This time, the motion of the atom
comes into play. The Larmor frequency of the electron is the same as before and the
cyclotron frequency now refers to the atom (it must be an ion). This changes the
equation for the cyclotron frequency to,

!c =
Q

m
ion

B, (1.14)

where Q is the total charge of the ion and mion is the mass of the ion. Again, taking
the quotient of the two frequencies gives a formula for the bound electron g-factor,

gb = 2

!L

!c

me

m
ion

Q

e
. (1.15)

Thus, if the ion mass is well known, the mass of the electron can be extracted by
comparing Equation 1.15 with a theoretical calculation of gb. Note that here !c is
different from the one for a free electron, so that the value 2

!L
!c

does not correspond
to the free electron g-factor.

Muon Lifetime

The muon lifetime has become an important tool in particle physics. Recently, the
MuLan collaboration was able to measure the lifetime with a precision of one part-
per-million [17]. This value is used to determine a constant called the Fermi constant,
GF which, along with ↵ and mZ is one of the most precisely known parameters of
the electroweak theory (a combination of QED and the theory of weak interactions).
The value of GF is important in processes involving the weak interaction and is
defined by

GF

(~c)3 =

p
2

8

g2

m2

W

. (1.16)

Through this relation it is seen that GF is related to the weak coupling constant and
the mass of the W boson and can be interpreted as an effective coupling constant
when the relevant measurement is not sensitive to the full effects of the weak in-
teraction. The experiments that measure the muon lifetime are conceptually simple
and can be done in high school laboratories. In [17] the setup consisted of a beam of
muons that could be turned on and off. The muons were then collected in a target
of either AK-3 (an alloy of 30% Cr, 10% Co and 60% Fe) or a SiO

2

quartz disk for
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a period of 5µs. The measurements were performed with a period of 22µs where
the muons were allowed to decay. This setup was surrounded by a layer of plastic
scintillators and then a layer of photomultiplier tubes. The detections were binned
into a histogram for the final lifetime measurement. This process was repeated 170
times in order to obtain a large number of events. To extract the muon lifetime from
this data, the experiment had to account for other effects such as spin precession,
pileup, timing stability, etc. Apart from these sources of error, the measurement
comes down to fitting the sum of the histograms with the function

F (t) = Ae�t/⌧µ
+B, (1.17)

where B accounts for a flat background and A accounts for polarization. In the
case of an AK-3 target, A also takes into account spin precession as AK-3 is a
ferromagnetic material.

With the increasing precision that the previously described experiments are able
to achieve, it is important for the theory community to make sure the accuracy of
the theory is at least matching that of the experiments. Improving the theoretical
description of the processes used to determine some of the fundamental constants in
the SM will the main focus of this thesis.

This thesis will proceed as follows. In Chapter 2 a few of the theoretical tools
that were used in obtaining the results will be introduced with explicit examples
showing how they are used. Chapter 3 focuses on a new calculation of the ↵2

(Z↵)5

corrections to the Lamb shift. The problem is approached using the loop integration
tools developed in Chapter 2. This is in contrast to the work in [18, 19] where
the corrections are calculated using atomic physics methods. In Chapter 4 it will be
shown how the methods of Chapter 3 will be used to compute the ↵(Z↵)5 corrections
to the bound electron g-factor for the first time.

In Chapter 5 one of the main results of this thesis is presented. A beyond the
standard model process is considered that allows for a new type of muon decay. One
of the daughter particles of this new decay is a, so far unseen, massless boson called
the Majoron. The results provide the theoretical background for a new method of
searching for this kind of decay. Future bound muon decay experiments will be able
to use the results without requiring a special setup or cuts as opposed to current
searches.

Chapter 6 will present the ↵2

s corrections to the semileptonic b-quark decay rate
discussed above. As with the Lamb shift and g-factor, the calculation is approached
in a slightly different way from previous calculations. It is found that the approach
has properties making the computation much easier as compared to the previous
determinations. These simplifications provide the method that will allow the calcu-
lation of the ↵3 corrections to the standard model muon decay rate. The formulation
of this and some initial results will be presented in Chapter 7.
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Chapter 2

Tools for Loop Integrals

Before corrections to different processes can be presented, some of the methods used
to compute high order corrections need to be introduced. Perturbation theory is one
of only a few ways used to carry out calculations in quantum field theory and as a
result there are a large number of methods that have been developed to deal with
the integrals that appear. In this chapter the focus will be on the techniques used
in the calculations presented later in this thesis.

To start, a method of converting phase space integrals into loop integrals will
be discussed. This has the benefit of making most calculations in this thesis loop
calculations. As a result, the tools for loop integrals that will be built up over the
course of this chapter will be be useful for all problems. After this, the basic one loop
integral will be discussed. The evaluation of this integral introduces some important
techniques and also provides the basis for many of the other methods that will be
used.

From here, a method of rewriting loop integrals in terms of a set of integrals that
is considered to be easier to evaluate will be introduced. The technique is based on
integration by parts identities and is useful if a large number of integrals need to
be evaluated. Following this, an identity known as Mellin-Barnes will be used to
evaluate one of the integrals appearing in the Lamb shift calculation from Chapter
3. This method allows for both numerical and analytic evaluation of loop integrals.

Finally, a method called sector decomposition will be described that allows an
algorithmic extraction of infinities that are commonly found in the evaluation of
loop integrals. The extraction of these poles allows numerical calculations to be
done without having to characterize the poles of each integral separately and carry
out subtractions: a method that is commonly used. Furthermore, the algorithmic
nature of the method has allowed computer programs to be developed that will carry
out the integral with minimal input from the user.

2.1 The Optical Theorem

One thing that all higher order corrections have in common is the loop integral.
These integrals appear when there are closed loops in the diagram being considered.
The momentum flowing through this loop is unconstrained by momentum conserva-
tion rules so the loop momentum must be integrated over all possible values. The
techniques for evaluating loop integrals have become quite advanced. For decay pro-
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cesses, like muon decay and b-quark decay, an identity known as the optical theorem
can be used. This theorem provides a way for the decay rate to be re-written in
terms of self-energy diagrams: diagrams where only one particle enters the diagram
and the same kind of particle leaves. The exact formulation of the optical theorem
is

ImM(p ! p) =
1

2

X

f

ˆ
d⇧f |M(p ! f)|2. (2.1)

What this says is that the imaginary part of the amplitude for the process p ! p is
equal to the sum of the square of the amplitude for the process p ! f over all final
states f as long as f exists as an intermediate state in the p ! p process. Instead of
presenting a formal proof of this theorem, a more intuitive description using Feynman
diagrams will be shown. Remember, a Feynman diagram gives the amplitude for a
process. In order to actually compute the property of interest (i.e. a decay rate) the
amplitude is typically squared. An example of this is shown in Figure 2.1 for b-quark
decay, and has been drawn in a suggestive form. Connecting the lines of the c, ⌫`

Figure 2.1: A diagrammatic representation of squaring the amplitude for the pro-
cess b ! c`⌫`.

and ` pairs would produce a self-energy diagram almost equivalent to the square of
the amplitude. The optical theorem formalizes this equivalence and says that the
imaginary part of the self-energy diagram is equal to the square of the amplitude.
With this method of converting decay processes into self-energy diagrams, tools are
needed to carry out the required loop integrals.

2.2 One Loop Integral

The basis for almost all of the methods encountered in this thesis is the ability to
compute the one loop integral shown in Figure 2.2. This diagram is not a Feynman

Figure 2.2: The basic one loop integral often called the one loop on-shell integral.

diagram, but instead is a representation of the denominators (also known as prop-
agators) that appear. This kind of diagram will be used frequently. The relevant
information comes from the internal lines. A dashed (or sometimes dotted) line will
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denote a massless propagator 1/(k2) and a solid line will denote a massive propa-
gator 1/[k2 +m2

], unless otherwise stated. Four momentum conservation rules still
apply at the vertices, but the vertices themselves do not contribute any factors. In
the case of Figure 2.2 the integral is

on-shell(a, b) =
ˆ

dDk

(2⇡)D
1

(k2)a[(k + p)2 +M2

]

b
, (2.2)

where the integral is carried out in D = 4 � 2✏ dimensions and M2

= �p2. Note
that a procedure by the name of Wick rotation has been used here that rotates the
4-vectors to Euclidean space with the replacement x0 ! ix0. This has the effect of
changing the sign of the mass in the propagators. As well, by doing the integral in D
dimensions instead of four, the divergences commonly encountered appear explicitly.
In single diagrams they will appear as powers of 1/✏ after an expansion in ✏. All such
terms should cancel when the contributing diagrams are summed. This procedure
is known as dimensional regularization. Also notice that the propagators have been
given general powers a and b. Frequently the same type of integral will appear
differing only in the powers of the propagators. If possible, the best way to take
this into account is to compute the integrals with general powers so the result can
be applied to all cases instead of carrying out each integral separately. A family of
integrals, differing only in the powers of the propagates, is referred to as a topology.

To compute this integral, an identity called Feynman parameters is used. This
technique is based on an identity that allows factors in the denominators to be
combined.

1

AaBb
=

�(a+ b)

�(a)�(b)

ˆ
1

0

dx
xa�1

(1� x)b�1

[Ax+B(1� x)]a+b
(2.3)

If needed, this can be applied multiple times to combine as many propagators as
required. A more general form of this identity exists that allows the combination of
more than two denominators in one shot.

1

A
1

. . . An
= �(n)

ˆ
1

0

dx
1

. . . dxn
� (
P

xi � 1)

[

P

xiAi]
n (2.4)

Although the two methods are based on the same identity, it is possible that one
will give a slightly nicer representation of the integral allowing one to carry out the
resulting integrals more easily.

Applying Equation 2.3 to the on-shell integral of Equation 2.2 gives

on-shell(a, b) =
�(a+ b)

�(a)�(b)(2⇡)D

ˆ
1

0

dx

ˆ
dDk

xb�1

(1� x)a�1

[k2 + 2k · px]a+b
. (2.5)

Next, the square for k is completed and k is shifted k ! k0 � p. The momentum k
is unconstrained so the shift only changes the integrand.

on-shell(a, b) =
�(a+ b)

�(a)�(b)(2⇡)D

ˆ
1

0

dx

ˆ
dDk0

xb�1

(1� x)a�1

[k02 +M2x2]a+b
(2.6)

The k0 integral can be carried out by moving to hyper-spherical coordinates. This
involves an integral over D � 1 angles which is given by

ˆ
⌦D =

2⇡D/2

�(

D
2

)

, (2.7)
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where ⌦D indicates the angular part of a D-dimensional integral. The radial, K,
integral is then ˆ 1

0

dK
KD�1

[K2

+M2x2]a+b
. (2.8)

Making the change of variables K =

p
yMx produces an integral giving a beta

function.
ˆ 1

0

dy
[M2x2]D/2�a�b

2

yD/2�1

[y + 1]

a+b
=

[M2x2]D/2�a�b

2

�

�

D
2

�

�

�

a+ b� D
2

�

�(a+ b)
. (2.9)

This leaves just the x integral to carry out, which is, again, in the form of a beta
function as is common when using Feynman parameters.

on-shell(a, b) = (M2

)

D
2 �a�b 2⇡

D
2

2(2⇡)D�
�

D
2

�

�

�

D
2

�

�

�

a+ b� D
2

�

�(a)�(b)
(2.10)

ˆ
1

0

dxxD�2a�b�1

(1� x)a�1

=

(M2

)

D
2 �a�b

(4⇡)
D
2

�

�

a+ b� D
2

�

�(a)�(b)

� (a)� (D � 2a� b)

� (D � a� b)
(2.11)

=

(M2

)

D
2 �a�b

(4⇡)
D
2

�

�

a+ b� D
2

�

� (D � 2a� b)

�(b)�(D � a� b)
. (2.12)

Note that if the integral is carried out when b is a negative integer or zero, the result
is zero. This an example of something called a scaleless integral. In dimensional
regularization, all scaleless integrals are zero. If it is possible to identify them before
carrying out any integral this can simplify the expression – sometimes considerably.

This method of computing loop integrals is common. The result for the k0 integral
in Equation 2.6 will be of particular use;

ˆ
dDk

(2⇡)D
1

[k2 +M2

]

a
=

�

�

a� D
2

�

(4⇡)
D
2
�(a)

✓

1

M2

◆a�D
2

(2.13)

2.3 Integration By Parts

The next method that will be considered is called integration by parts (IBP). This
procedure is useful when topologies cannot be solved with general powers as done in
the previous section. The basis for the method is the identity

ˆ
dDk

@

@kµ
qµI(k, q, . . .) = 0, (2.14)

where I is the integral to be evaluated, k is any of the loop momenta in I, and q
can also include the external momenta. Note that q = k is a valid choice. If this
identity is applied using all possible combinations of q and k, a system of equations
is formed that can then be used to rewrite the original integral in terms of integrals
that are, hopefully, easier to calculate.

To see how this method works, the on-shell integral from Equation 2.2 will be
used as a simple example. Although the result of this integral for a general form has
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already been worked out, it provides a good demonstration of the IBP method. The
integral depends on two momenta, k and p. For simplicity

I(a, b) =
1

(k2)a[k2 + 2p · k]b , (2.15)

is defined. This creates two identities that can be applied. Multiplying by pµ and
taking the derivative with respect to kµ gives

@

@kµ
pµI(a, b) =



�a
2k · p
(k2)

� b
2k · p+ 2p · p
[k2 + 2k · p]

�

I(a, b) (2.16)

=



�a

✓

[k2 + 2k · p]
(k2)

� 1

◆

�b

✓

1� (k2)� 2M2

[k2 + 2k · p]
◆�

I(a, b) (2.17)

= (a� b)I(a, b)� aI(a+ 1, b� 1)

+bI(a� 1, b+ 1)� 2M2bI(a, b+ 1). (2.18)

For a second relation, kµ can be multiplied instead of pµ giving

@

@kµ
kµI(a, b) = (D � 2a� b)I(a, b)� bI(a� 1, b+ 1). (2.19)

When integrated, the expressions in Equations 2.18 and 2.19 should give zero.
The next step is to try to use these relations to reduce the integral to a form that

is easy to integrate. In this example, the first simplification is easy to find. Looking
at Equation 2.19, a can be reduced to zero by repeatedly applyingˆ

dDkI(a, b) =
b

D � 2a� b

ˆ
dDkI(a� 1, b+ 1). (2.20)

Of course, this also increases b by one each time it is used, but the number of
propagators to deal with is reduced by one and it may be possible to reduce b as
well.

For the second relation, consider the sum of Equations 2.18 and 2.19;ˆ
dDk

⇥

(D � a� 2b)I(a, b)� aI(a+ 1, b� 1)� 2M2bI(a, b+ 1)

⇤

= 0. (2.21)

As is, this doesn’t look like it will help much because this produces one term that
increases b and another that decreases b. The powers a and b are arbitrary though,
so b can be shifted to b� 1. This gives the identityˆ

dDkI(a, b) =

1

2M2

(b� 1)

ˆ
dDk [(D � a� 2(b� 1)) I(a, b� 1)

�aI(a+ 1, b� 2)] . (2.22)

Notice here that because of the denominator, this relation cannot be applied when
b = 1. Thus the integral is reduced to I(a, 1) with this relation alone. If, however
the relation in Equation 2.20 is applied first and then the relation in Equation 2.22
is used, any integral can be reduced to the case

ˆ
dDk

[k2 + 2p · k] . (2.23)
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Equation 2.23 is known as a master integral because any on-shell type integral can
be reduced to this one. In the end then, only the integral in Equation 2.23 is needed
instead of the full general result in Equation 2.12.

This method is very useful for calculations of high order corrections when the
number of integrals becomes large. It allows one to reduce all of the integrals to
a small set of master integrals that are easier to compute than the full set. The
technique of reduction and selection of the “simplest” integrals is not a trivial task
but has been automated in a few ways [20, 21]. Even with these routines, it may be
convenient to change the set of master integrals to a set where the user is able to
obtain more accurate results. Such was the case for the Lamb shift calculation in
Chapter 3.

2.4 Mellin-Barnes

Now that a problem of interest can be reduced to a set of master integrals, there
needs to be a way of computing them. The first approach that is typically used is
applying Feynman parameters to see if the resulting integrals can be carried out. If
this is possible, then the calculations are done. Quite often, though, more complex
methods are required.

Mellin-Barnes (MB) integrals are integrals resulting from an identity that splits
denominators instead of combining them like Feynman parameters. The identity is

1

[A+B]

a
=

1

�(a)

1

2⇡i

ˆ c+i1

c�i1
d!

A!

B!+a
�(�!)�(! + a), (2.24)

where c is a real number used for the contour integration. To see how this relation
is useful, consider, as an example, the master integral I

21

from the Lamb shift cal-
culation and shown Figure A.1. For convenience, this is reproduced in Figure 2.3.

Figure 2.3: Master integral I
21

. The double dotted line indicates a delta function.

Before starting, note one important aspect of the Lamb shift calculation. When
dealing with the interactions between the electron and neucleus a new propagator is
defined that, for current purposes, reduces to a massless propagator and a delta func-
tion of the scalar product between the loop momentum flowing through the nucleus
and external momentum. For example, if k is the loop momentum flowing through
the nucleus and p is the external momentum then the propagator is proportional to

�(p · k)
k2

. (2.25)
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In Figure 2.3 this is shown by the double dashed line.
The integral that needs to be calculated is

I
21

=

ˆ
[dDk

1

][dDk
2

][dDk
3

]�(2p · k
1

)

(k2
1

)(k2
2

)(k2
3

)[k2
3

+ 2p · k
3

][(k
1

+ k
2

+ k
3

)

2

+ 2p · (k
2

+ k
3

)]

, (2.26)

where the scalar product p·k
1

has been set to zero because of the delta function. This
is consistent with waiting until after the k

1

integral is carried out. For simplicity,
the notation [dDk] = dDk

(2⇡)D
is also used.

The k
2

part of the integral is considered first.

Ik2 =

ˆ
[dDk

2

]

(k2
2

)[(k
1

+ k
2

+ k
3

)

2

+ 2p · (k
2

+ k
3

)]

(2.27)

The denominators can be combined using Feynman parameters with (1� x) multi-
plying the k2

2

term.

Ik2 =

ˆ
1

0

dx

ˆ
[dDk

2

]

[k2
2

+ 2k
2

· (p+ k
1

+ k
3

)x+ (k
1

+ k
3

)

2x+ 2p · k
3

x]2
(2.28)

Completing the square for k
2

and shifting k
2

! k
2

� (p + k
1

+ k
3

)x so that the
integration over k

2

can be completed gives

Ik2 =

ˆ
1

0

dx

ˆ
[dDk

2

]

[k2
2

+ (k
1

+ k
3

)

2x(1� x) + 2p · k
3

x(1� x) + x2]2
(2.29)

=

�(✏)

(4⇡)D/2

ˆ
1

0

dx
[x(1� x)]�✏

h

(k
1

+ k
3

)

2

+ 2p · k
3

+

x
(1�x)

i✏ . (2.30)

In this final expression, if the x
(1�x) term was not present, there would simply be a

massive propagator. Fortunately the denominator can be split using the MB identity.
This leaves a beta function from the x integral.

Ik2 =

1

2⇡i

�(✏)

(4⇡)D/2

ˆ c+i1

c�i1

dw

[(k
1

+ k
3

)

2

+ 2p · k
3

]

�w

�(�w)�(w + ✏)

�(✏)

⇥
ˆ

1

0

dxx�w�2✏
(1� x)w (2.31)

=

1

2⇡i

1

(4⇡)D/2

ˆ c+i1

c�i1

dw

[(k
1

+ k
3

)

2

+ 2p · k
3

]

�w

�(�w)�(w + ✏)�(1� w � 2✏)�(1 + w)

�(2� 2✏)
(2.32)

With the k
2

integral done and a nice propagator in the result, the k
3

integral
can now be considered. For now, the gamma functions and MB integral is left out
in order to concentrate only on the k

3

part.

Ik3 =

ˆ
[dDk

3

]

(k2
3

)[k2
3

+ 2p · k
3

][(k
1

+ k
3

)

2

+ 2p · k
3

]

�w
(2.33)

Again, Feynman parameters are introduced, but notice that there are two options
here: combine all three denominators at once or combine two of them and then the
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resulting two. Either way the expression has two Feynman parameters. Combining
all three at once allows the integrations to be computed without needing to introduce
more MB integrals. The choice of parameters used here is k2

3

x and [(k
1

+ k
3

)

2

+2p ·
k
3

]y.

Ik3 =

�(2� w)

�(�w)

ˆ
1

0

dy

ˆ
1�y

0

dx

ˆ
[dDk

3

]y�w�1

[k2
3

+ 2k
3

· (p(1� x) + k
1

y) + k2
1

y]2�w
(2.34)

Completing the square for k
3

and shifting k
3

! k
3

� (p(1� x) + k
1

y) gives

Ik3 =

�(2� w)

�(�w)

ˆ
1

0

dy

ˆ
1�y

0

dx

ˆ
[dDk

3

]y�w�1

[k2
3

+ k2
1

y(1� y) + (1� x)2]2�w
(2.35)

=

�(✏� w)

�(�w)(4⇡)D/2

ˆ
1

0

dy

ˆ
1�y

0

dx
y�w�1

[y(1� y)]w�✏

h

k2
1

+

(1�x)2

y(1�y)

i✏�w . (2.36)

The only thing left (momentum wise) is the k
1

integral. This can be separated into
the radial and angular part after taking into account the delta function and making
the change of variables k2

1

! z.

Ik3 =

p
⇡

(4⇡)D
�(✏� w)

�(�w)�(3/2� ✏)

ˆ 1

0

dz

ˆ
1

0

dy

ˆ
1�y

0

dx
y�1�✏

(1� y)w�✏z�1/2�✏

h

z + (1�x)2

y(1�y)

i✏�w

(2.37)
Next, a change variables is made again with z ! t (1�x)2

y(1�y) leaving a beta function
in the t integral and a sum of beta functions in the x and y integrals. Again, the
gamma functions are dropped here for convenience.

Ik3 =

p
⇡

(4⇡)D

ˆ 1

0

dt
t1/2�✏�1

(t+ 1)

✏�w

ˆ
1

0

dyy�1/2�w+✏�1

(1� y)1/2+✏�1 (2.38)

⇥
ˆ

1�y

0

dx(1� x)1+2w�4✏ (2.39)

After integrating over t,x and y, the result is (in full)

I
21

=

p
⇡

(4⇡)3D/2

1

2⇡i

ˆ c+i1

c�i1
dw

�(1/2� ✏)�(1/2 + ✏)

�(2� 2✏)�(3/2� ✏)
✓

�(3/2 + w � 3✏)

�(2 + w � 2✏)
� �(�1/2� w + ✏)

�(�w + 2✏)

◆

�(1 + w)�(w + ✏)

�(1� w � 2✏)�(�1/2� w + 2✏)�(�2� 2w + 4✏)

�(�1� 2w + 4✏)
. (2.40)

The final step, is to carry out the contour integration. In some cases, this can be
done analytically by closing the contour on either the right or left of c and summing
the poles from the gamma functions. More complicated integrals will involve more
than one MB integral that needs to be computed. In these cases, it is likely that the
only way to obtain a result is to use a numerical method of integration or to sum
the poles numerically.
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The integral in our example is one of the cases that can be computed analytically.
Before integrating, Equation 2.40 is expanded in ✏. This allows the poles of the
gamma function to be found and makes it possible to choose an appropriate contour
for the integration. The final result to order ✏0 is

I
21

= ⇡2
✓

1� 2⇡2

3

◆

. (2.41)

The factor of two difference between this result and the result in Appendix A comes
from using �(2p · k) as opposed to �(p · k).

This method can be very powerful and is the only way to obtain analytic results
for some of the Lamb shift master integrals in Chapter 3.

2.5 Sector Decomposition

In the event that the resulting Mellin-Barnes integrals are too complicated, another
method can be used to compute master integrals numerically while keeping the
dependence on ✏ analytic. Keeping the explicit powers of ✏ is important as it is likely
that the integral of interest will have ✏ poles.

Sector decomposition is a systematic method of breaking up the integral into
regions, each of which are integrable either numerically or analytically. This method
is much more complex than the previously described methods. Fortunately, there are
programs written that will automatically carry out the operations to be described.
A formal description of the method will be followed with an example in order to
elucidate some steps involved in the process.

2.5.1 The Idea

Sector decomposition is a method that was developed formally only a few years ago
[22] to provide a systematic way of evaluating higher order Feynman integrals when
the typical analytic methods proved intractable. It is normal for a loop integral to
have divergences; both infrared (IR) and ultraviolet (UV). This makes a numerical
approach to evaluating these integrals difficult. One must be able to treat these
singularities in a systematic way.

One way of dealing with the IR poles is via a subtraction method. This involves
finding the form of the poles and subtracting them from the integral so that what
is left is a finite integral that can be evaluated numerically (or if it simple enough
analytically). This requires a systematic way of finding the poles of a given integral.
Sector decomposition provides a general method of finding and extracting the poles
of an integral so that it can be evaluated numerically.

The idea is to take the region of integration and break it up in such a way that
each pole lies in a different sector. Using Feynman parameters, this can be done in
a systematic way. The poles appear explicitly and can be extracted so the resulting
integral is finite and can be numerically integrated.

2.5.2 Primary Sectors

The first step is to take the Feynman integral of interest and write it in a way that
will allow the pole structure to be determined. Consider a general Feynman loop
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integral with {k
1

, . . . , kL} the loop momenta, {p
1

, . . . , pN} the external momenta and
{m

1

, . . . ,mM} the masses of the propagators. A general scalar Feynman integral can
be written as

I =

ˆ L
Y

l=1

[dDkl]
M
Y

m=1

Dm({k}, {p},m2

m), (2.42)

where, again [dDk] = dDk
(2⇡)D

and Dm denotes a propagator. This procedure can be
generalized for propagators of varying power, however it will not be considered here
for simplicity. For a good review with general powers, see [23].

The first step is to combine the propagators using the more general form of
Feynman parameters from Equation 2.4. The result can always be written in the
form,

I = �(n)

ˆ L
Y

l=1

⇥

dDkl
⇤

ˆ
1

0

dx
1

. . . dxn�
⇣

X

xi � 1

⌘

(2.43)

⇥
2

4

L
X

j,k=1

kj · kkMjk � 2

L
X

j=1

kj ·Qj + J

3

5

�n

,

where M is a matrix of Feynman parameters and Q is a vector of external momenta
and Feynman parameters. It is then possible to shift the loop momenta to absorb
the linear term and integrate. The result is of the form

I = (�1)

n
�(n� LD/2)

ˆ
1

0

dnx�
⇣

1�
X

xi
⌘ Un�(L+1)D/2

Fn�LD/2
, (2.44)

where dnx is short for dx
1

. . . dxn, and

F = det(M)

2

4J �
L
X

j,k=1

Qj ·Qk(M
�1

)jk

3

5 , (2.45)

U = det(M). (2.46)

The integral is now in a form that allows divergences to be found. To disentangle
the poles in the integral I the integral is decomposed into what are called primary
sectors. The integral is separated into n parts using

ˆ
1

0

dnx =

ˆ
1

0

dnx
n
Y

j=1

✓(xj � 0) =

n
X

l=1

ˆ
1

0

n
Y

j=1

j 6=l

✓(xl � xj � 0), (2.47)

where the ✓-function is defined by

✓(x � y) =

⇢

1 if x � y
0 otherwise. (2.48)

Now, an odd but useful transformation of variables is made. This transformation
allows one of the xi integrals to be carried out using the delta function. The change

xj =

8

<

:

xltj j < l,
xl j = l,
xltj�1

j > l.
(2.49)
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is made. It turns out that with this transformation xl factors completely from both
functions F and U . In fact, the xl integral will always be of the form

ˆ
dxl
xl
�

 

1� xl

 

1 +

n�1

X

k=1

tk

!!

= 1. (2.50)

What is left is n integrals of the form

Il = (�1)

n
�(n� LD/2)

ˆ
1

0

dn�1t
Un�(L+1)D/2
l

FN�LD/2
l

. (2.51)

For simplicity, the overall factor of (�1)

n
�(n� LD/2) is left out as it is a common

factor. The integrals Il define what are referred to as the primary sectors. The poles
of the t integrals are still entangled within U and F , but it is seen that they occur
when the functions U and/or F go to zero.

2.5.3 Iterated Decomposition

The integral is now separated into different sectors. This does not guarantee, how-
ever, that the poles in each sector do not overlap. To disentangle the poles, an
iterative method of sector decomposition is applied that removes the poles from the
functions U and F and makes them explicit in the integral.

To start, the functions U and F are considered and the minimal set of parameters
ts such that when set to zero U and/or F goes to zero is determined. For each of
these parameters ts1 , . . . , tsr , the integral is decomposed into sub-integrals using,

r
Y

j=1

✓(1 � tsj � 0) =

r
X

k=1

r
Y

j=1

j 6=k

✓(tsk � tsj � 0). (2.52)

As with the primary sectors, a change of variables is made in each new sector corre-
sponding to

tsj =

⇢

tsktsj j 6= k,
tsk j = k.

(2.53)

Again tsk factorizes from U and F , and the integral becomes

Ilk =

ˆ
1

0

dn�1t

0

@

n�1

Y

j=1

t
Aj�Bj✏
j

1

A

Un�(L+1)D/2
lk

Fn�LD/2
lk

. (2.54)

This procedure should be repeated until the functions U and F contain constant
terms and all of the pole structure is contained in the

⇣

Qn�1

j=1

t
Aj�Bj✏
j

⌘

term. The
poles can then be read straight from the Aj terms.

It should be noted that it is possible for certain integrals to lead to an infinitely
iterative scheme. Other schemes have been outlined that are guaranteed to iterate
a finite number of times, but will not be discussed here.
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2.5.4 Extracting the Poles

With the poles now appearing explicitly in the integral, a simple subtraction routine
can be applied to separate the poles from the integral. The integrand is separated
into two parts.

Il =

ˆ
1

0

dtlt
Al�Bl✏
l T (tl, ✏) (2.55)

If Al < 0 then there are poles. To deal with them, T is expanded in a Taylor series
about tl = 0 to order |Al| � 1. The part with the pole can then be analytically
integrated for tl giving

T (tl, ✏) =

|Al|�1

X

p=0

T (p)
l (0, ✏)

tpl
p!

+R(tl, ✏), (2.56)

where R is the remainder of the series. Solving this for R gives the original integrand
T less the pole part T (p). By construction, this quantity has no poles and can be
integrated either analytically or numerically. Note that R can also be expanded
in terms of ✏ so that in the end, the result is a series in ✏ just like most other
dimensionally regularized results.

2.5.5 Example

In order to make these ideas more concrete, a simple but non-trivial example will be
considered in the form of the sunset integral in Figure 2.4. The integral is

Figure 2.4: A two loop integral that can be computed analytically but also pro-
vides a non-trivial example of sector decomposition. The dotted line
in this case indicates what is known as an eikonal propagator 2p · k

2

instead of a massless propagator.

M
2

=

ˆ
[dDk

1

][dDk
2

]

[k2
1

+ 2p · k
1

][(k
1

+ k
2

)

2

+ 2p · (k
1

+ k
2

)][2p · k
2

]

. (2.57)

With three propagators, three Feynman parameters are introduced.

M
2

= � 1

�(3)

ˆ
[dDk

1

][dDk
2

] (2.58)
ˆ

1

0

�(1� x
1

� x
2

� x
3

)d3x

[k2
1

(x
1

+ x
2

) + 2p · k
1

(x
1

+ x
2

) + 2k
1

· k
2

x
2

+ k2
2

x
2

+ 2p · k
2

(x
2

+ x
3

)]

3

If the denominator is compared with the expression in Equation 2.43, the 2⇥2 matrix
M and a 2 component vector Q are apparent. Technically, a scalar component J
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would also be present, however in this case it is zero. Thus M , Q, and J are given
by

M =



x
1

+ x
2

x
2

x
2

x
2

�

, Q =

 �p(x
1

+ x
2

)

�p(x
2

+ x
3

)

�

, J = 0. (2.59)

Completing the square for k
1

allows the change of variables k
1

! k0
1

� p� k
2

x2
x1+x2

and the integral over k0
1

to be carried out.

M
2

= ��(3�D/2)

(4⇡)D/2

ˆ ˆ
1

0

�(1� x
1

� x
2

� x
3

)[dDk
2

]d3x

(x
1

+ x
2

)

3

h

k2
2

x1x2
(x1+x2)

2 + 2p · k
2

x3
x1+x2

� p2
i

3�D/2

(2.60)
The same process can be repeated for k

2

. After a bit of re-arranging, it is possible
to get this in the form,

M
2

= ��(3�D)

(4⇡)D

ˆ
1

0

d3x
(x

1

x
2

)

3�3D/2�(1� x
1

� x
2

� x
3

)

h

�p2x
1

x
2

⇣

x
1

+ x
2

+

x2
3

x2
+

x2
3

x1

⌘i

3�D
(2.61)

Note that this is exactly what would have been obtained if the expression in Equation
2.44 had been naïvely used.

The integral is ready to be decomposed into primary sectors. With three Feyn-
man parameters, there are three integrals. Using the identity in Equation 2.50 and
simplifying gives

M
2

= ��(3�D)(�p2)1�2✏

(4⇡)D
(I

1

+ I
2

+ I
3

), (2.62)

where

I
1

=

ˆ
1

0

d2t
t3�3D/2
1

⇥

(1 + t
1

)(t
1

+ t2
2

)

⇤

3�D
, (2.63)

I
2

=

ˆ
1

0

d2t
t3�3D/2
1

⇥

(1 + t
1

)(t
1

+ t2
2

)

⇤

3�D
, (2.64)

I
3

=

ˆ
1

0

d2t
(t

1

t
2

)

3�3D/2

[(t
1

+ t
2

)(t
1

t
2

+ 1)]

3�D
. (2.65)

I
1

and I
2

are the same so only two integrals need to be considered. Starting
with I

1

it is seen that F has a pole and the minimal set of parameters needed is
S
1

= {t
1

, t
2

}. Making the appropriate change of variables leads to the integrals

I
1

= I
11 + I

12 , (2.66)

where

I
11 =

ˆ
1

0

d2t
t�1+✏
1

⇥

(1 + t
1

)(1 + t
1

t2
2

)

⇤�1+2✏ , (2.67)

I
12 =

ˆ
1

0

d2t
t�1+✏
2

t�3+3✏
1

[(1 + t
1

t
2

)(t
1

+ t
2

)]

�1+2✏ . (2.68)
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The integral I
11 is now in the form of Equation 2.55 and shows that there is a first

order pole in t
1

. For the second term however, the procedure must be repeated as
there are still poles in the denominator. Starting with I

11 an expansion is done to
leading order in t

1

so that the pole can be integrated. This gives the expression

I
11 =

ˆ
1

0

d2tt�1+✏
1

+

ˆ
1

0

d2tt�1+✏
1

R(t
1

, t
2

, ✏) (2.69)

=

1

✏
+

ˆ
1

0

d2tt�1+✏
1

 

1

⇥

(1 + t
1

)(1 + t
1

t2
2

)

⇤�1+2✏ � 1

!

. (2.70)

From here, the remaining term may be able to be computed analytically. It is
usually easiest however, to expand in ✏ to the desired order and integrate term by
term. Doing so to O(✏) gives,
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For I
12 the result is
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This integral was accomplished by applying the iterated decomposition once more.
The procedure is somewhat tedious so only the I

3

integral is shown here. Starting
with S = {t

1

, t
2

} the integral is

I
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32 , (2.74)

where
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These are the same integrals only differing by the exchange of t
21 and t

22 . This
leaves
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where t
1

and t
2

are used instead of t
21 and t

22 . For simplicity, only a schematic
of how this integral should be done is shown. The Taylor expansions in t

1

, t
2

are
denoted by T

1

, T
2

, the remainders by R
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respectively and the full denominator
term by D. Expanding first in t
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Next, both T
1

and R
1

need to be expanded in terms of t
2

. First, the T
1

term. Again,
there is the expanded part and a remainder.
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where the expansion in t
1

then t
2

is denoted by T
1,2. Remember, the expansions

are only carried out to high enough order so the remainder term contains no poles.
Similarly, expanding R
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gives,
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Now the remainder terms need to be replaced with the known expressions.
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Remember that each of these terms should be integrated as is, so that the poles are
avoided. This process produces the four integrals
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Integrating and expanding each of these in terms of ✏ gives
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The results can now be summed for the final answer. The full expression is

M
2

= ��(�1 + 2✏)(�p2)1�2✏

(4⇡)D
(2I

1

+ I
3

) (2.86)

= 0. (2.87)

As it turns out, the result actually starts at O(✏). It is possible to compute all of
the O(✏2) terms analytically except for two that must be done numerically with the
result

M
2

⇡ �52.637887✏ (2.88)
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as compared to the analytic result,

M
2

= �16⇡2

3

✏ ⇡ �52.637890✏. (2.89)

Note, that the reason it is difficult for this method to obtain an analytic result is
because of the pre-factor �(�1+2✏) which has an ✏ pole. This means the expansions
must be computed to O(✏2) to obtain the O(✏) term.

Typically, sector decomposition is used for integrals that are much more diffi-
cult than this example. Fortunately programs are available that will automatically
compute the integrals given a set of propagators. When needed in this thesis the
Mathematica package FIESTA [24] is used.

This chapter has introduced a few of the commonly used methods in computing
higher order corrections. Starting with a basic one loop integral, it was shown how
Feynman parameters can be used to carry out the loop integrals needed. In an effort
to make calculations easier, a method of reducing the list of integrals required was
introduced. Integration by parts allows a large list of integrals to be rewritten in
terms of a small set of master integrals.

With the ability to reduce a problem to a set of master integrals, two methods
of carrying out the integrals were then introduced. The first method relied on the
Mellin-Barnes identity and allows a separation of terms in denominators while intro-
ducing a complex integral. These integrals can then be carried out analytically or
numerically using contour integration or by summing poles after closing the contour.
The second method provides an algorithm for extracting the poles of an integral
so that numerical calculations can be done. This method is useful when the other
methods that were introduced are not tractable. It is also a good tool for checking
analytic results numerically.

Now that a set of methods for approaching problems is in hand, they can be
applied to the problems that will be considered in this thesis. All chapters with the
exception of Chapter 5 will use the techniques described above. In some cases, it
will be necessary to use additional techniques that have not been discussed here, but
will be outlined when they are used.
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Chapter 3

The Lamb Shift

One of the most important historical tests for QED and its perturbation theory
came in the form of what is known as the Lamb shift. In June of 1947, Willis Lamb
announced a definitive measurement of the splitting between the energy levels of
the 2S

1/2 and 2P 1/2 states in hydrogen at a conference held on Shelter Island in
New York. The results of these measurements are typically expressed in terms of a
frequency through the relation �E = ~⌫, where h is Planck’s constant and ⌫ is a
frequency. Lamb measured the splitting to be approximately ⌫ = 1000 MHz [25].
Before this announcement, theorists attempted to calculate the difference between
these two states and consistently ended up with a divergent result. This caused them
to believe that the effect should be unphysical and not show up in any experiment.
At this time, the formalism of QED was still being developed. In particular, theorists
were just beginning to understand and develop the theory of renormalization. At the
same conference, Hendrik Kramers described his work on mass renormalization in
a classical non-relativistic theory. Fortunately Hans Bethe realized the connection
between these two talks, and used this idea of mass renormalization to calculate
the Lamb shift on his way home. He found the value should be 1040 MHz [26],
which agrees very well with the value found by Lamb and Robert Retherford. This
agreement gave a huge boost to the theory of renormalization which is an integral
part of QFT today.

In this chapter a calculation of the ↵2

(Z↵)5 contribution to the Lamb shift is
described. The problem is approached in a somewhat different way as compared to
previous calculations. This leads to an improvement in precision of approximately
an order of magnitude, as well as some new analytic results for individual diagrams.

3.1 Perturbation Theory

The corrections to the energy levels due to the Lamb shift can be grouped into four
categories,

�E = �E
non�recoil

+�E
recoil

+�E
vp

+�E
proton

. (3.1)

The non-recoil term comes from interactions between the electron and nucleus, as
well as self-energy interactions of the electron, and can be calculated assuming an
infinitely heavy nucleus. The recoil term comes from the finite mass and non-zero
motion of the nucleus. The vp term is the contribution from vacuum polarization
effects due to muons and hadrons, while the similar contributions from electrons is

28



included in the non-recoil term. Finally, the proton term comes from considering
the charge radius of the proton to be non-zero. Currently this term introduces the
largest uncertainty to the theoretical prediction of the Lamb shift. For a review of
the current state of the art calculations in each of these, see [27].

The calculation of the recoil, vp and non-recoil corrections can be built up per-
turbatively in four expansions. The first is the usual expansion in ↵ and comes from
the self-energy of the electron. The second expansion is in the quantity Z↵, where Z
is the atomic number of the nucleus. These terms come from the electron’s interac-
tions with the nucleus. By including the factor Z, the calculation can be performed
for a general nucleus. Note that this expansion will only work in the region where
Z↵⌧ 1. The third expansion is in terms of a mass ratio. For the recoil corrections
it is the mass ratio of the electron to the nucleus, m

M , where m is the mass of the
electron and M is the mass of the nucleus. The vp corrections depend on the mass
ratio of the electron to a heavier particle (e.g. muon or pion). The mass in the vp
corrections comes from loops in the diagrams. Since the electron is much lighter than
any of the heavier masses in this problem, these corrections are small and will not
be considered here. Finally, the proton term is expressed as an expansion in merp,
where rp is the charge radius of the proton. There is currently some disagreement
surrounding the charge radius of the proton. A recent measurement, using the Lamb
shift in muonic hydrogen, shows a 7� disagreement with previous measurements [4].
It is therefore timely to scrutinize the theory of the Lamb shift.

In this thesis, the calculation of the Lamb shift is centred around the contribution
of order ↵2

(Z↵)2 in the non-recoil part of the energy corrections. A sample of the
contributing diagrams is given in Figure 3.1. This order of the correction is commonly

Figure 3.1: Two of the 60 diagrams that contribute to the ↵2

(Z↵)5 corrections to
the Lamb shift. The double line indicates the nucleus.

quoted as ↵2

(Z↵)5. The extra three factors of Z↵ come from the amplitude of the
hydrogen wave function squared evaluated at the center: | (0)|2 =

(Z↵µ)3

⇡n3 , with µ
the reduced mass of the system. The terms in the expansion can be broken up as
shown in Equation 3.2.

�E
non�recoil

=

m(Z↵)4

⇡n3

� µ
m

�

3

⇥

↵
�

A
40

+ (Z↵)A
50

+ (Z↵)2A
60

. . .
�

+↵2

(B
40

+ (Z↵)B
50

+ . . .)

+↵3

(C
40

+ . . .)

+ . . .] (3.2)

In this expansion, the coefficients are organized as follows: A,B,C denote the power
of ↵, the first index denotes the power of Z↵ and the second index denotes the power
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of ln(Z↵). The coefficient A
61

would then be the coefficient of the ↵(Z↵)6 ln(Z↵)
term. The ↵2

(Z↵)5 term, described in this section, corresponds to B
50

. This calcu-
lation has actually been done before [18, 19]. The purpose of the present calculation
is to apply a new method to the problem and improve the precision. As well, the
same method and set of master integrals can be used in the calculation of the bound
electron g-factor, which will be discussed in Chapter 4. Comparison with [18, 19]
provides a very good check of the method and the values of the master integrals.

3.2 Method

In order to describe some of the important methods in the calculation, the leading
order diagrams that contribute to the (Z↵)5 correction are considered and shown in
Figure 3.2.

Figure 3.2: Tree level contributions to the Lamb shift. The double solid lines
indicate a nucleon whereas the single solid lines indicate an electron.

If the expressions for these two diagrams are written out, it is seen that they
differ only slightly.

d
1

=

e4

(k2)2

⇥

u(N)�↵( /N � /k +M)��u(N)

⇤

[(N � k)2 �M2

+ i0]

⇥

u(q)�↵(/q + /k �m)��u(q)
⇤

[(q + k)2 �m2

+ i0]
, (3.3)

d
2

=

e4

(k2)2
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u(N)��( /N +

/k +M)�↵u(N)
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[(N + k)2 �M2

+ i0]

⇥

u(q)�↵(/q + /k �m)��u(q)
⇤

[(q + k)2 �m2

+ i0]
, (3.4)

where /k = kµ�µ. Namely, only the nucleon line parts differ in the sign of k and the
indices of the � matrices are switched. If only this part of each diagram is considered,
a few simplifications can be made. First, notice that because an infinitely heavy
nucleus is being considered, k ⌧ N , the denominators can be expanded in a Taylor
series. The leading order of this series is the only term required when considering
an infinitely heavy nucleus. Higher order terms belong with the recoil corrections.
This gives

d
1

+ d
2

/ u(N)



�↵( /N +M)��
�2N · k + i0

+

��( /N +M)�↵
2N · k + i0

�

u(N). (3.5)

Finally, the �↵ and /N terms can be reordered and the Dirac equation can be used
to rewrite this as

d
1

+ d
2

/ u(N)N↵��



1

N · k + i0
� 1

N · k � i0

�

u(N). (3.6)

30



This difference is a delta function (�2⇡i�(N · k)), and hence a single expression for
the sum of the two diagrams in Figure 3.2 is obtained and given in Equation 3.7 ,

d
1

+ d
2

= �2⇡ie4
[u(N)N↵��u(N)]

(k2)2

⇥

u(q)�↵(/q + /k �m)��u(q)
⇤

[(q + k)2 �m2

+ i0]
�(N · k) (3.7)

This sum is general and does not depend on possible self interactions on the electron
line. Therefore, a new effective propagator can be defined allowing a single diagram
to be considered instead of the sum of two. This propagator is given by

ph3D = �2⇡ie2
u(N)N↵��u(N)

(k2)2
�(N · k). (3.8)

This propagator is named ph3D because the delta function sets the time-like compo-
nent of the photon to zero. This is actually a consequence of assuming the nucleus is
infinitely heavy. Working in the centre of mass frame of the nucleus means the only
non-zero component of the nucleus four-momentum is the time component. The only
diagram required is shown in Figure 3.3. The leading order calculation can now be

Figure 3.3: The effective diagram, where the dotted line denotes the new propa-
gator ph3D.

considered, and simplifies to

iM(0)

= �2⇡ie4
ˆ

d4k

(2⇡)4
[u(N)N↵��u(N)]

(k2)2
(3.9)

⇥
⇥

u(q)�↵(/q + /k �m)��u(q)
⇤

[(q + k)2 �m2

+ i0]
�(N · k).

Summing over final spins and averaging over initial, gives

iM(0)
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2Mm

ˆ
d4k
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Tr
⇥

(

/N +M)N↵��
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(k2)2
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⇥Tr
⇥

(/q +m)�↵(/q + /k �m)��
⇤

[(q + k)2 �m2

+ i0]
�(N · k).

It is then straightforward to work out the traces and rearrange to give

iM(0)

=

2

3⇡ie4

Mm

ˆ
dDk

(2⇡)D



M2

(k2)2
� M2

(k2)[k2 + 2q · k]
� 4M2m2

(k2)2[k2 + 2q · k]
�

�(N · k). (3.11)

An important aspect of this calculation is that recoil effects are not being considered.
Effectively, the electron is treated as being at rest so that q = (m ~

0) while N = (M ~
0).

This implies that the electron momentum and the nucleon momentum are parallel
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and related by N =

M
m q. The delta function then becomes �(q · k)mM and the scalar

products of q and k in the denominator can immediately be set to zero. Finally, the
leading order contribution is

iM(0)

= �2

6⇡ie4
ˆ

dDk

(2⇡)D
�(k0)

(k2)2
= 0. (3.12)

There is no additional shift to the energies. The reason for this is only the Coulomb
photons have been considered whose effects are already included in the solution of
the Schrödinger equation.

Contrary to most calculations where the amplitude needs to be squared to obtain
a decay rate or cross section, the amplitudes of these diagrams are proportional to
the energy shifts. It can be seen how computing these types of diagrams gives the
energy splitting of the Lamb shift by taking a close look at the electron propagator.
The propagator of the electron has poles at the allowed energy levels as shown in
Equation 3.13.

i
/k �m� En

=

i

/k �m(1 +

˜En)
(3.13)

The amplitude of a diagram is proportional to the energy. This can be seen by
considering the most basic diagram that has just an incoming and outgoing electron.
In the centre of momentum frame of the electron, the amplitude is

iM = u(p)u(p) = Tr[/p+m] = 4m. (3.14)

The self-energy and interactions with the nucleus are simply higher order corrections
to this amplitude and contribute to a change in energy that can be grouped with
the mass in the same way as occurs in the propagator. What actually ends up being
calculated in this chapter is

iM(m)

= 4�E(m)

n , (3.15)

where �E(m)

n is the mth order correction to the nth energy level.

3.3 First Order Corrections

The procedure for transforming the nucleon propagator into a delta function is com-
pletely general so this also works at higher orders when electron self interactions
are included. At the two loop level six diagrams contribute as shown in Figure 3.4
(diagrams a and d also have mirror images that need to be included).
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Figure 3.4: First order contributions to the Lamb shift. The solid lines indicate
the electron line, while the wavy lines indicate photons and the dotted
lines indicate the new ph3D propagator. This convention will be used
for all diagrams in this calculation.

Fortunately, because the leading order contribution is zero, these diagrams don’t
have any renormalization terms and should be finite when summed. All of these
diagrams also belong to a single topology, named N53d, and shown in Figure 3.5.

Figure 3.5: The single topology (N53d) required for the ↵(Z↵)5 contribution to
the Lamb shift.

A similar topology called N5 is considered in [28]. The difference here is that one
of the photons is replaced by the three dimensional exotic propagator ph3D. This
integral can be solved for general powers of the propagators as a

3

F
2

hypergeometric
function, or Laporta reduction [20] can be used to reduce the list of integrals to
two simpler master integrals. Using the Laporta reduction program FIRE [29], the
two master integrals shown in Figure 3.6 are found, both of which can be solved
analytically using Feynman parameters.

Figure 3.6: Two master integrals used in the two loop Lamb shift.

Note that in FIRE, the propagator 2p · k is used in place of the delta function.
This works well for the reduction and does not change the final result as the sign
of the propagator does not change the reduction. Remember also, that if the delta
function propagator does not appear in the final integral, the total contribution is
zero. This is evident if the two contributing diagrams are considered separately
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instead of using the delta function. The only difference between the two diagrams is
this propagator 1

2p·k (see Equation 3.6). If it disappears in the reduction, then the
difference between the two diagrams is zero and no calculation needs to be done.

The diagrams in Figure 3.4 have been calculated in order to check the methods
used here. The results are

a =

↵(Z↵)5m

8

✓

425

32

+ 7⇠

◆

, (3.16)

b = �↵(Z↵)
5m

8

✓

55

16

+ 2 ln(2) +

7

2

⇠

◆

, (3.17)

c = �↵(Z↵)
5m

8

✓

11

2

+

7

2

⇠

◆

, (3.18)

d =

↵(Z↵)5m

8

✓

5

48

◆

, (3.19)

in perfect agreement with known results [30, 31]. As an extra check of the results,
this and subsequent calculations are performed in a general gauge that is denoted
with the parameter ⇠. When summed, the contributions at a given order should not
depend on this gauge parameter.

3.4 Second Order

The main purpose of this chapter is to compute the second order corrections to
the Lamb shift using the loop integral technology that has been developed over the
past few decades. These corrections are known and were originally calculated in
[18, 19], with the more accurate solutions provided in [18]. The methods outlined
have been able to reproduce the results in [18] and moreover improve upon the
numerical precision.

The second order corrections consist of a total of 60 Feynman diagrams that
must be calculated as shown in Figure 3.7. Using FIRE (see previous section) these
integrals can be re-written in terms of 32 master integrals. The values and diagrams
for the master integrals have been presented in [32] and are included in Appendix A.
In order to calculate the contributions from each diagram as accurately as possible,
a combination of techniques that are described in Chapter 2 is used.

The results and calculation in [18] are done in the so-called Fried-Yennie gauge.
This gauge sets the gauge parameter ⇠ =

2

1�2✏ and has the important property
that, in this gauge, each Feynman diagram is infrared finite. This allows numerical
calculations to be done without worrying about divergences. The calculation was
carried out in a general gauge to make sure the gauge parameter disappeared in the
sum of all diagrams. Specializing to the Fried-Yennie gauge allows a comparison of
the results diagram by diagram with [18]. The results for the electron self-interaction
and vertex correction diagrams are presented in Table 3.1.

It can be seen that most of the results presented here agree well with those of [18].
There are, however, a few diagrams that differ significantly: diagrams o, s, k and r.
As stated in [32] it is possible that these differences arise because of the different
regularization schemes used. If the full result is considered instead, the change in
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Figure 3.7: The second order Feynman diagrams needed for the O �↵2

(Z↵)5
�

cor-
rections to the Lamb shift. The diagrams I-V are vacuum polarization
diagrams and each represents a collection of diagrams with every possi-
ble permutation of the propagators. The diagrams a�s are the electron
self-interaction and vertex corrections. The naming schemes used in
[18, 19] have been used here as well.

energy is found to be

�Ea�s =
↵2

(Z↵)5

⇡n3

⇣ µ

m

⌘

3

m[�7.72381(4)], (3.20)

which is in perfect agreement with the result in [18],

�Ea�s =
↵2

(Z↵)5

⇡n3

⇣ µ

m

⌘

3

m[�7.724(1)]. (3.21)
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Diagram This Calculation Ref. [18]
a 0 0
b 2.955090809. . . 2.9551(1)
c �2.22312657 . . . �2.2231(1)
d �5.2381153272259(2) �5.238023(56)
e 5.0561650638185(4) 5.056278(81)
f 6 ln(2)� 207/40 �1.016145(21)
g 6 ln(2)� 147/80� ⇡2/4 �0.1460233(52)
h 153/80 153/80
i �5.51731(2) �5.51658(54)
j �7.76838(1) �7.76813(18)
k 1.9597582447795(2) 1.959589(33)
l 1.74834(4) 1.74815(38)
m 1.87510512(6) 1.87540(17)
n �1.30570289(7) �1.30584(18)
o �12.06904(9) �12.06751(47)
p 6.13815(1) 6.13748(30)
q �7.52425(2) �7.52525(74)
r 14.36962(7) 14.36733(44)
s �0.9304766935602(5) �0.930268(72)

Table 3.1: Comparison between the results for diagrams a-s (in the Fried-Yennie
gauge) and those of [18]. Numbers ending in an ellipsis indicate an
analytic result, which are given in Appendix 3.

Here, µ is the reduced mass of the system. The error in the result presented here
comes from the master integrals. The diagrams denoted I-V were calculated in [19].
These diagrams have also been calculated using the method presented in this chapter
and the sum of diagrams is improved by about two orders of magnitude. The results
are shown in Table 3.2.

Set This paper Refs. [19]
I �0.07290996446926(4) �0.0729098(3)
II 0.61133839226. . . 0.61133839226 . . .
III 0.50814858506. . . 0.50814858506 . . .
IV �0.12291623(3) �0.122915(3)
V �23/278 �23/278

Table 3.2: Comparison between the results calculated here for the different
vacuum-polarization sets (in the Fried-Yennie gauge) and those of [19].
Numbers ending in an ellipsis indicate an analytic result, which are
shown in Appendix 3.

The sum gives the energy corrections from vacuum polarization diagrams.

�Evp =
↵2

(Z↵)5

⇡n3

⇣ µ

m

⌘

3

m [0.86281422(3)] . (3.22)
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The full energy correction is

�E =

↵2

(Z↵)5

⇡n3

⇣ µ

m

⌘

3

m[�6.86100(4)]. (3.23)

As can be seen, the method used improves upon the previous results by a bit more
than an order of magnitude. The error in this result comes from the numerical
methods used in computing the master integrals. These methods are the limiting
factor in the precision of our result. The achieved improvement shows the power of
our method and provides an important check before applying it to the calculation
of the bound g-factor of the electron in the next chapter.
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Chapter 4

Bound Electron g-Factor

Along with the Lamb shift, the calculation of the g-factor of the electron was one
of the first tests of QED, in particular perturbation theory. The success of the
theoretical description of the g-factor continues today by providing the most precise
determination of the fine structure constant, ↵. This is the most precise measurement
of any coupling constant and is a testament to how successful the SM is.

This chapter focuses on the g-factor of a bound electron. An electron in an atom
has a g-factor that differs from the g-factor of a free electron because of interactions
with the nucleus. With the use of Penning traps, the value of the bound electron
g-factor can be measured accurately. The value is then used to determine the mass
of the electron. This currently provides the most accurate value of the electron mass
as shown in [16]. Two values are provided in that paper: one for a carbon atom and
one for an oxygen atom (in atomic mass units):

me(
12C5+

) = 0.000 548 579 909 32(29) (4.1)
me(

16O7+

) = 0.000 548 579 909 60(41). (4.2)
(4.3)

As can be seen, the two values agree well and provide the current CODATA recom-
mended value [3]. It should be mentioned here that the measurements and calcula-
tions are done using so called hydrogen like atoms. This means that there is only one
electron orbiting the nucleus. As well, recalling the expression used for determining
the bound g-factor given in Equation 1.15,

gb = 2

!L

!c

me

m
ion

Q

e
. (4.4)

shows how the electron mass can be determined from the value of the bound g-
factor. Importantly, the mass of the ion used needs to be known with great precision
to obtain such a precise value of the electron mass.

In the following, the historical description of the free and bound g-factor will be
discussed. With this perspective, a more modern method of calculating corrections
will be introduced that follows the methods used in the Lamb shift calculation.
This new approach will eventually allow a determination of the unknown ↵(Z↵)5

corrections as the calculation is ongoing.
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4.1 The g-Factor

4.1.1 From the Dirac Equation

In naïv non-relativistic quantum mechanics with semiclassical reasoning, the inter-
action of the spin of an electron with an external magnetic field is given by

V = �~µ · ~B =

e

2me

~S · ~B. (4.5)

Comparing this with experimental measurements shows that it is off by a factor of
almost exactly two. To account for this extra factor, the interaction term is modified
to include what is known as the g-factor.

V = �~µ · ~B =

ge

2me

~S · ~B (4.6)

As it turns out, this factor can be explained by treating the electron relativistically
using the Dirac equation. Indeed, the first major success of the Dirac equation,
and one of the factors contributing to its acceptance, is the fact that the magnetic
moment of the electron comes out with the proper factors of two. Today, this factor
is known as the g-factor of the electron and is known to be slightly different from
two. To start, let’s see how this factor of two comes about. Consider the Dirac
equation for an electron in the presence of an external field:

(i�µDµ �me) = 0, (4.7)

where Dµ = @µ � ieAµ, Aµ is the electromagnetic vector field and  is the electron
spinor. Multiplying by (i�µDµ +me) from the left, gives

� (�µ�⌫DµD⌫ +m2

e) = 0. (4.8)

The factor of �µ�⌫ can be written in terms of commutators and anti-commutators.

�µ�⌫ =

1

2

({�µ, �⌫}+ [�µ, �⌫ ]) = gµ⌫ � i�µ⌫ (4.9)

This identity gives
(DµD

µ � i�µ⌫DµD⌫ +m2

e) = 0. (4.10)

Using the same trick from Equation 4.9 on the second term, the D0s can be re-
written. Notice that since �µ⌫ is anti-symmetric and {Dµ, D⌫} is symmetric, only
the commutator contributes.

0 = (DµD
µ � i

�µ⌫

2

[Dµ, D⌫ ] +m2

e) (4.11)

= (DµD
µ � e

2

�µ⌫Fµ⌫ +m2

e) (4.12)

Since the interaction between the spin of an electron and a magnetic field is what
is required, the term proportional to �µ⌫Fµ⌫ is what is needed. By taking the non-
relativistic limit of this term, it is possible to obtain the interaction term that appears
in the Schrödinger equation with the correct factors of two:

e

me

~S · ~B. (4.13)
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4.1.2 In Field Theory

The g-factor is now known to differ very slightly from two. This difference is known
as the anomalous magnetic moment of the electron and is expressed by

ae =
1

2

(g � 2). (4.14)

It arises from self-energy corrections to the electron-photon vertex. To see how this
happens, consider the matrix element of the electromagnetic current

hp0, s|Jµ
(q)|p, si. (4.15)

Using Lorentz invariance and charge conservation, it is possible to write down a
general form of the current:

hp0, s|Jµ
(q)|p, si = u(p0, s0)



�µF
1

(q2) +
i�µ⌫q⌫
2me

F
2

(q2)

�

u(p, s), (4.16)

where F
1

(q2) and F
2

(q2) are known as form factors and q = p0� p is the momentum
transfer. The Gordon decomposition can be used to show that at leading order in
momentum transfer, the matrix element becomes

u(p0, s0)



(p0 + p)µ

2me
F
1

(0) +

i�µ⌫q⌫
2me

(F
1

(0) + F
2

(0))

�

u(p, s). (4.17)

The coefficient of the first term F
1

(0) is defined to be one as it corresponds to the
electric charge seen in experiments. The second term gives the magnetic moment of
the electron, which is shifted by an amount F

2

(0) = ae. It is this factor that will be
calculated here.

Before this can be done though, the different contributions and factors need to
be separated so that in the end only F

2

(0) remains. The authors of [33] show how
this can be done in a simple but effective way. Their procedure is followed here. In
order to get F

2

(0), Jµ(q) is expanded to first order in qµ:

Jµ(q) ⇡ Jµ(0) + q⌫
@

@q⌫
Jµ(q)

�

�

�

�

q=0

(4.18)

= Vµ + q⌫T
⌫
µ . (4.19)

The result contains terms proportional to qµq⌫ and qµ. To deal with these, the
average over spatial dimensions is computed. As dimensional regularization is used
for the final calculation, the number of spatial dimensions is taken as D � 1. This
procedure gives

hqµq⌫i =

q2

D � 1

✓

gµ⌫ � (p0 + p)µ(p0 + p)⌫
(p0 + p)2

◆

, (4.20)

hqµi = 0. (4.21)

In order to extract F
2

(0) from the result, an operator known as a projector is
used. Such a projector, say Pµ, can be contracted by multiplying by the expansion
of Jµ

(0) and taking the trace. The most general form of Pµ is

Pµ = (/p
0
+me)



g
1

�µ � g
2

me
(p0 + p)µ � g

3

me
(p0 � p)µ

�

(/p+me). (4.22)
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Taking the trace leads to a system of equations showing that g
3

is zero and F
2

(0) is
given by

F
2

(0) =

1

2(D � 1)(D � 2)m2

e

Tr


D � 2

2

�

m2

e�µ �Dpµ/p� (D � 1)mepµ
�

V µ

+

me

4

(/p+me)[�⌫ , �µ](/p+me)T
µ⌫
i

. (4.23)

Higher order corrections to the anomalous magnetic moment can be computed
by expanding the diagram to first order in q and replacing the V µ and Tµ⌫ terms in
Equation 4.23 with the corresponding terms from the expansion, before traces are
taken.

4.2 The Bound g-Factor

So far only the free electron g-factor has been considered. To treat the bound case,
there are two options. The first is to use bound wave functions for the incoming and
outgoing electrons. In the historical computation of the bound electron g-factor this
is not how it was done. The use of bound wave functions will be explored more in
Chapter 5.

The second option, which will be used here, is to treat the binding as a per-
turbation and build it up in a series similar to the Z↵ series from the Lamb shift.
In this case, the leading order term is just the free electron g-factor; the first order
involves the exchange of one photon with the nucleus and so on. The corrections to
the form factor F

2

are built up in a double expansion. Self-energy corrections to the
electron provide an expansion in ↵ and interactions with the nucleus result in an
expansion in Z↵. In this expansion, all leading order terms in the ↵ expansion are
known. They were calculated to all orders in Z↵ by Breit in [34]. Other than this
correction, the ↵ and ↵2 expansions are known up to (Z↵)4. Similar to the Lamb
shift, the wave function of the electron evaluated at the origin provides a factor of
(Z↵)3 to the ↵ and ↵2 expansions. This means that the (Z↵)4 contributions come
from a single photon exchange with the nucleus and the (Z↵)5 contributions have
two photons exchanged.

In this chapter the method from Chapter 3 is applied to start the calculation
of the ↵(Z↵)5 and the known contributions are reproduced. The evaluation of the
other terms are ongoing.

Breit Correction

Before computing the ↵(Z↵)5 corrections it will be informative to derive the leading
order term in the Breit correction. The method is similar to the methods currently
used in calculations of higher orders. As well, this exercise will help to highlight the
difference between this approach and the method that will be introduced in the next
section. For this correction, there are three diagrams that can contribute shown in
Figure 4.1. The Dirac spinors are

u(~p) =

s

2Ep

Ep +me
P
+

(~p)!, (4.24)
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Figure 4.1: The tree-level contributions to the bound electron g-factor. The zig-
zag line indicates the magnetic field interaction and the photon line
shows an interaction with the Coulomb field.

where ! is the four-spinor of a particle at rest and P
+

is the projector on the positive
electron energy states. The projectors on positive and negative energy states are

P±(~p) =
1

2

✓

1± ~↵ · ~p+ �me

Ep

◆

. (4.25)

Expanding the spinor u(~p) in terms of ~p gives the corrections to the g-factor.
The g-factor as determined by the diagrams in Figure 4.1 comes from the am-

plitude, which is equal to the negative of the potential. To start, consider the first
diagram with no Coulomb interaction. The amplitude is

iM = u(~p
2

)

⇣

�ie�
0

~↵ · ~A
⌘

u(~p
1

). (4.26)

Note that the definitions of ~↵ and � used are

↵ =

✓

0 ~�
~� 0

◆

, � =

✓

1 0

0 �1

◆

, (4.27)

where ~� are the Pauli matrices and 1 indicates the unit matrix. The corrections in
this diagram come from expanding the spinor in p

1

and p
2

.

u(p) =

1

p

2Ep(Ep +me)

✓

(Ep +me)�
p̂�

◆

(4.28)

⇡
0

@

⇣

1� p2

8m2
e

⌘

�
⇣

1� 3p2

8m2
e

⌘

p̂
2me

�

1

A , (4.29)

where ~� · ~p has been denoted as p̂. This notation will be used frequently in this
discussion. Using the expanded expression for the spinor, multiplying by i to give
the negative of the amplitude, and keeping only terms up to third order in the
momenta gives

V
1

=

e

2me

h⇣

ˆAp̂
1

+ p̂
2

ˆA
⌘

� 1

8m2

e

⇣

p2
2

ˆAp̂
1

+ 3

ˆAp̂
1

p2
1

+ 3p2
2

p̂
2

ˆA+ p̂
2

ˆAp2
1

⌘

�

. (4.30)

Now, instead of using the eigenvalues p
1

and p
2

it will be more convenient to use
the operator P . This also allows the relation P = �i~r to be used. Writing out the
indices of the vectors explicitly and using the anti-commutator relation of the Pauli
matrices gives

V
1

=

e

2me
✏ijk�k

⇥

[Ai,rj
]
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+

1

8m2

e

�

�Airj
+ 3Airj

�� 3�rjAi �rjAi
�

�

�

. (4.31)

Note that only the term with a spin interaction contributes to the g-factor. This
allows the �ij term to be dropped from the anti-commutator of the Pauli matrices.

Next the magnetic field can be explicitly included with the relation Ai
=

1

2

✏ilnBlrn.
Using the commutator of P and r also gives the relation �rn = 2rn

+ rn�. This
can be used to commute the rns to the left. The resulting expression is

V
1

=

e

2me
✏ijk�k



✏ilnBl

✓

�jn

2

� 1

4m2

e

(rnrj
+ �jn�)

◆�

. (4.32)

The spatial average of rnrj is taken and is equal to 1

3

�nj� giving

V
1

=

e

2me
�kBk



1 +

P 2

3m2

e

�

(4.33)

=

e

2me

✓

1� 2

3

(Z↵)2
◆

~� · ~B (4.34)

=

e

2me

✓

2� 4

3

(Z↵)2
◆

~S · ~B, (4.35)

where ~S =

~�
2

has been used and P 2 is replaced by its expectation value. The g-factor
is given by the bracketed term. It shows that this diagram correctly reproduces the
leading order of 2 and the first correction is proportional to (Z↵)2.

To obtain the rest of the (Z↵)2 correction, the other two diagrams in Figure 4.1
must be computed. This time, the negative energy projectors will also be needed.
These projectors come with an extra minus sign when used in the potential. The
sum of the two diagrams is

V
2

= eP
+

(p
2

)

�P�(p2 � q)

�2me
~↵ · ~A+ ~↵ · ~A�P�(p1 + q)

�2me

�

P
+

(p
1

)

Z↵

r
. (4.36)

The two projectors can be combined with

P
+

(p
2

)P�(p2 � q) =

1

4

✓

1 +

~↵ · ~p
2

+ �m

Ep2

◆✓

1� ~↵ · (~p
2

� ~q) + �me

Ep2�q

◆

(4.37)

⇡ 1
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✓
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+ �me

me
� ~↵ · ~p
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� ~↵ · ~q + �me
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◆

(4.38)

⇡ 1
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2

+ �me

me

◆

~↵ · ~q
me

(4.39)

= P
+

(p
2

)

✓

~↵ · ~q
2me

◆

. (4.40)

Similarly

P�(p1 + q)P
+

(p
1

) ⇡
✓

�~↵ · ~q
2me

◆

P
+

(p
1

). (4.41)

Using this in the expression for the potential gives

V
2

=

e

(2me)
2

⇣

ˆAˆq� ˆq ˆA
⌘ Z↵

r
. (4.42)
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The rest of the analysis follows the same procedure carried out previously. The
required identities are ri 1

r = � ri

r3
and the average over the directions of r: rjrn !

�jn

3

r2. Finally, the contribution to the potential from the two diagrams with a
Coulomb contribution is

V
2

=

e

2me

✓

2

3

(Z↵)2
◆

~S · ~B (4.43)

Summing V
1

and V
2

then gives the full (Z↵)2 corrections to the potential.

V
1

+ V
2

=

e

2me

✓

2� 2

3

(Z↵)2
◆

~S · ~B. (4.44)

Comparing this expression with Equation 4.6 shows that the (Z↵)2 correction to the
bound electron g-factor is

�g = �2

3

(Z↵)2. (4.45)

A similar calculation can be carried out using the full bound electron wave func-
tions in a hydrogen-like atom. This gives the full Breit correction valid at all orders
in Z↵:

g =

2

3

⇣

1 + 2

p

1� (Z↵)2
⌘

. (4.46)

4.3 The ↵(Z↵)5 Correction

In this section, the same method used to calculate the O(↵(Z↵)5) corrections to the
Lamb shift are used to compute the similar order correction for the bound electron
g-factor. With the required magnetic insertion, however, the number of diagrams
at this order increases from four to nine. The diagrams only provide part of the

Figure 4.2: Contributions to the bound electron g-factor. The solid lines indicate
the electron, while the wavy lines indicate photons and the dotted lines
indicate the ph3D propagator used. The circled x’s indicate unique
places where the interaction with an external magnetic field is included.

contribution to the corrections to the g-factor as they correspond to the two diagrams
with a Coulomb interaction in Figure 4.1. The analogue of the other diagram comes
in the form of the Lamb shift. This contribution is made explicit in [35] where it is
shown that the contribution to the g-factor is twice the Lamb shift contribution.
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The calculation has been completed for diagram d in Figure 4.2. In this cal-
culation, the projector found in Equation 4.23 is used. The two diagrams are first
computed such that a list of the integrals that will need to be computed is generated.
This list is comprised of 93 unique integrals all belonging to the topology N53d from
Figure 3.5, reproduced in Figure 4.3 for convenience. This list is then fed into the

Figure 4.3: The single topology (N53d) required for the ↵(Z↵)5 contribution to
the Lamb shift.

Laporta algorithm FIRE in order to reduce the list of integrals to a small set of mas-
ter integrals. The reduction produces the same two master integrals that contribute
to the Lamb shift and are shown in Figure 3.6. A more detailed description of the
use of these programs is given in Appendix B.

From here, the values of the master integral can be plugged into the expression.
The result of diagram d is

d =

5

36

↵(Z↵)5. (4.47)

Adding the Lamb shift contribution from Equation 3.19 then gives the result

�gvp =
5

9

↵(Z↵)5, (4.48)

where the vp refers to the fact that these are the vacuum polarization corrections.
This result is in agreement with the known result in [36]. The other diagrams are
still being calculated and the full result will be published when available.
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Chapter 5

Majoron

Neutrinos were first discovered in 1956 by Frederick Reines and collaborators, but to
this day, relatively little is known about them. One of the major properties that has
been established is that neutrinos can oscillate between the three different flavours:
electron, muon and tau. The observed pattern of oscillations requires that at least
two neutrino states be massive. What the masses of the neutrinos are, along with the
origin of these masses, is still unknown. There are two possible types of fermion mass
that can occur. All known elementary fermions, other than neutrinos, have what is
called a Dirac mass. The other more intriguing type of mass is known as a Majorana
mass, named after Ettore Majorana who first proposed this property. The major
difference between Dirac and Majorana particles is that a Majorana particle is its
own antiparticle. The possibility of neutrinos being Majorana particles is intriguing,
because as will be seen, this may lead to beyond the standard model effects, including
new particles and forces.

One of the processes looked at that would confirm the Majorana nature of neu-
trinos is neutrinoless double beta decay. In this process, a nucleus will decay twice
through the conversion n ! pe⌫e. If neutrinos are Majorana, the two emitted elec-
tron neutrinos can annihilate with an end result of only two electrons being emitted.
This would violate lepton number conservation.

In field theories, conservation rules like lepton number conservation are associated
with a symmetry that exists in the theory. A violation of lepton number conservation
would require a mechanism to be added to the theory describing how this happens.
Three possibilities exist for how this symmetry breaking can occur. The first is that
it is explicitly broken in the Lagrangian. The second is spontaneous local symmetry
breaking, similar to the Higgs mechanism. Finally, the method of interest here, is
spontaneous global symmetry breaking. At first glance, this seems to be an odd
choice as Goldstone’s theorem [37] says that a broken global symmetry necessarily
involves the creation of a new massless Goldstone boson. Naïvely, one would expect a
massless boson to be ruled out by the fact that it would give rise to a new long range
force, which has never been seen. This can be reconciled by having the Goldstone
boson coupling very weakly to matter so that its effects fit within experimental
error. In Appendix D, a model is introduced that leads to a new massless Goldstone
boson called the Majoron. Although the particular model has been ruled out by
experiments, it is possible to create supersymmetric theories that lead to a Majoron
with similar properties as the one introduced in the model: in particular the muon-
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electron coupling is the same [38, 39]. Along with introducing a mechanism for
lepton number violation, this model also includes lepton flavour violation. The fact
that neutrinos oscillate means that lepton flavour is violated. The addition of the
Majoron, enhances muon to electron conversions.

The aim of this chapter is to provide the theory that will underlie a new way to
search for Majorons and is based on [40].

5.1 Limits on Majoron Emission

The standard method of placing limits on Majoron production comes from looking
for free muon decays of the form µ ! eJ , where the Majoron is denoted by J . By
comparing the expected decay rate to the SM decay, it is possible to put a limit on
the branching ratio of a muon decaying to an electron and Majoron. The current
limit is [41]

B(µ ! eJ) =
�(µ ! eJ)

�(µ ! e⌫µ⌫e)
< 8.4⇥ 10

�6. (5.1)

Using free muons presents some problems in searching for a new two body decay.
The most important of these comes from comparing the SM electron energy spectrum
to that of the Majoron decay. In a two body decay, the kinematics force the outgoing
particles to have equal and opposite momentum and equal energies (in the rest frame
of the parent). The outgoing electron in the decay µ ! eJ has an energy of mµ/2 in
the center of momentum frame of the muon, where mµ is the mass of the muon. The
SM decay is a three body decay making the electron spectrum a bit more interesting,
with the general shape known as a Michel spectrum. Figure 5.1 shows the electron
spectrum for the SM decay at tree level where it is seen that the maximum energy of
the electron is approximately mµ/2. This means that any signal from the Majoron
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Figure 5.1: The Michel spectrum for a muon decaying to an electron and neutrinos.
Only the tree level decay is plotted, as the known corrections do not
change the properties significantly. �
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decay would appear as an excess of events at Ee = mµ/2. Experimentally, extracting
a signal from this region is difficult. This begs the question, is there an easier
place/way to search for a very weak signal?

The answer comes from considering not free but bound muon decays. When
the muon is bound to a nucleus, the electron spectrum now extends all the way
to the point where Ee ⇡ mµ. This occurs for both the SM decay and Majoron
decay. As the energy of the electron approaches its maximum, the spectrum drops
off very rapidly. A recent paper calculates the SM spectrum, paying close attention
to the high energy region so that an accurate estimate of the SM background can
be given in this region [42]. Using the results from that paper and assuming an
experimental energy resolution of approximately 250 keV, the SM background is
expected to be approximately 0.22 events at the high energy endpoint after a two year
run. Furthermore, it is shown in [42] that the spectrum is suppressed as (Eµe�Ee)

5

near the endpoint. Here, Eµe denotes the maximum energy of the electron and is
given by

Eµe = Eµ � Ee � Erec, (5.2)

where Erec is the recoil energy of the nucleus. This area provides a much cleaner
place to search for new decays like Majoron decay.

Studies of the high-energy endpoint of the muon decay spectrum will be per-
formed in the planned searches for muon-electron conversion [43, 44], µ(A,Z) !
e(A,Z), where A and Z characterize the nuclear properties of the target used. In
the absence of a signal, those experiments are able to put limits on the branching
ratio

B(µ ! eJ) =
�(µ ! eJ)

�(µ ! e⌫µ⌫e)
(5.3)

by first determining the ratio

�(µ(A,Z) ! e(A,Z))

�

capture

= Rµe. (5.4)

Here, �
capture

is the rate of nuclear muon capture (i.e. instead of decaying, the muon
is captured by the nucleus). If there is no signal, experiments are able to provide an
upper bound for Rµe. This ratio can be related to Majoron emission in muon decay
using the relation

NRRµe =
�(µ ! eJ)⇥ fJ

�

capture

, (5.5)

where NR is a factor used to correct for the phase space region used by the experiment
and fJ is the fraction of µ ! eJ events that occur in the region of interest. It is the
factor fJ that will be determined in this chapter. The limit on the branching ratio
is given by bringing these relations together.

B(µ ! eJ) =
�(µ ! eJ)

�(µ ! e⌫µ⌫e)
=

NRRµe

fJ

�

capture

�(µ ! e⌫µ⌫e)
(5.6)

In order to compute the fraction of events fJ , an expression for the spectrum
of the decay rate of the µ ! eJ process when the muon is bound to a nucleus is
needed. The high energy limit requires treating both the muon and electron fully
relativistically. To start, the muon and electron wave functions are needed as they
exist in hydrogen-like ions.
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5.2 Nuclear µ ! eJ Decay

5.2.1 Dirac Equation for Hydrogen

The decay spectrum of the electrons can only be properly computed by considering
the solution of the hydrogen atom using the Dirac equation. This is because the
the endpoint spectrum where the electron and muon are both relativistic particles
will be considered. Thus, the Dirac equation needs to be solved for an electron in a
central field.

The Dirac equation in terms of ↵i and � matrices instead of the usual �µ is

W = (~↵ · ~p+ �m+ V (r)) (5.7)

Here V (r) is the potential and W the energy of the state  . Now the fact that
~p = �i~r is used to rewrite this equation in polar form. Using the triple cross
product identity provides

r̂ ⇥ (r̂ ⇥ ~r) = (r̂ · ~r)r̂ � (r̂ · r̂)~r. (5.8)

Rearranging to solve for ~r gives

~r = r̂(r̂ · ~r)� r̂ ⇥ (r̂ ⇥ ~r) (5.9)

= r̂@r � i
r̂

r
⇥~l, (5.10)

where ~l = �i~r ⇥ ~r is the orbital angular momentum. Using this in the term ~↵ · ~p
gives

~↵ · ~p = �i↵r@r � 1

r
~↵ · (r̂ ⇥~l). (5.11)

Finally, the r ⇥~l term can be re-written by using the identity

(~� · r̂)(~� ·~l) = r̂ ·~l + i~� · (r̂ ⇥~l). (5.12)

Using this allows the relation

~↵ · ~p = �i↵r@r + i
↵r

r
~↵ ·~l. (5.13)

Plugging this into the Dirac equation gives

W =



i�
5

�r

✓

@r +
1

r
� �

r
K

◆

+ V (r) + �m

�

 , (5.14)

where the operator K = �(1 + ~� ·~l) has been defined. The matrix �r is given by

r�r =

✓

~� · ~r 0

0 ~� · ~r
◆

, (5.15)

where ~� are the usual Pauli matrices. This is the equation that must be solved for
the electron and muon wave functions.
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5.2.2 Electron Spectrum

Free Decay

The decay rate is normalized to its free decay, so the free decay of a muon into an
electron and a Majoron is considered first. For simplicity, the left and right hand
projectors are denoted PL =

1

2

(1� �
5

) and PR =

1

2

(1 + �
5

).

M = u(e) (g
1

PL + g
2

PR)u(µ)J (5.16)

|M|2 = [u(e) (g
1

PL + g
2

PR)u(µ)]
h

u(µ)(g
1

PL + g
2

PR)u(e)
i

(5.17)

= [u(e) (g
1

PL + g
2

PR)u(µ)] [u(µ) (g1PR + g
2

PL)u(e)] (5.18)

=

1

8

Tr
h

(/pe +me)
�

(g
1

+ g
2

)� �5(g
1

� g
2

)

�

(/pµ +mµ)

�

(g
1

+ g
2

) + �5(g
1

� g
2

)

�⇤

(5.19)

= 2memµg1g2 +
1

2

(m2

e +m2

µ)(g
2

1

+ g2
2

) (5.20)

⇡ m2

µ

2

(|g
1

|2 + |g
2

|2). (5.21)

In the last line, the possibility of complex couplings has been included and me is set
to zero. The decay rate is

�

0

=

|M|2
8⇡

|pe|
m2

µ

. (5.22)

With |pe| ⇡ mµ/2 and |M|2 from Equation 5.21, the decay rate becomes

�

0

=

mµ

32⇡

�

g2
1

+ g2
2

�

. (5.23)

Bound Decay

For the bound decay there are a few extra criteria that need to be met. The muon
needs to start in a bound state (1S for this calculation). As well, the electron has a
significant interaction with the nucleus as it leaves which needs to be accounted for.
The diagram representing this decay is shown in Figure 5.2

Figure 5.2: A diagram representing the bound decay of a muon. The circle at-
taching the muon line to the nucleus indicates that the muon is bound
and the double line connecting the electron to the nucleus indicates
that the electron wave function is solved in the presence of a Coulomb
potential.
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The matrix element for the free decay is as in Equation 5.16

M = u(pe) (g1PL + g
2

PR)u(pµ)J. (5.24)

To change from the free decay to the bound case, the wave functions of the muon
and electron need to be replaced with their respective bound/interacting cases. This
is done by replacing the previous expression with

ˆ
d3re�i~pJ ·~r�e (g1PL + g

2

PR)'µ. (5.25)

The substitution can be made more intuitive with the relation

(2⇡)3�(3)(~pµ � ~pe � ~pJ)u(pe)�u(pµ) =

ˆ
d3re�i~pJ ·~rhe| e� µ|µi. (5.26)

The matrix elements
he| e|0i and h0| µ|µi (5.27)

are then replaced with their interacting counterparts
p

2Ee�e and
p

2Eµ'µ. (5.28)

The matrix element is now

M = 2

p

EeEµ

ˆ
d3re�i~pJ ·~r�e (g1PL + g

2

PR)'µJ. (5.29)

Squaring this and plugging it into the equation for the decay rate gives the starting
point of the calculation.

� =

ˆ
d3pJ

(2⇡)32EJ

d3pe
(2⇡)3

(2⇡)�(Eµ � Ee � EJ)

ˆ
d3re�i~pJ ·~r�e(g1PL + g

2

PR)'µ

�

⇥
ˆ

d3r0e�i~pJ ·~r0'µ(g
⇤
1

PR + g⇤
2

PL)�e

�

(5.30)

From here, the best place to start is the pJ integral to get rid of the delta function.
Using

d3~pJ = dEJEJ |~pJ |d⌦J (5.31)

gives

� =

1

2(2⇡)5

ˆ
d⌦J

ˆ
d3pe|~pJ |

ˆ
d3re�i~pJ ·~r�e(g1PL + g

2

PR)'µ

�

⇥
ˆ

d3r0e�i~pJ ·~r0'µ(g1PR + g
2

PL)�e

�

. (5.32)

To simplify the expression, a single r integral is considered. The best way to evaluate
this is to write the wave functions in terms of the upper and lower components.

'µ(~r) =
X

s

as

✓

G(r)�s
�1

iF (r)�s
1

◆

(5.33)
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and
�e(~r) =

X

tµ

aµt

✓

g(r)�
µ


if(r)�
µ
�

◆

, (5.34)

where the definition

�µ
 =

X

m

C(l
1

2

j;µ�mmµ)Y µ�m
l �m, (5.35)

has been used, and the electron wave function has been expanded in terms of partial
waves. The Rayleigh expansion is also used for the exponential terms,

ei~q·~r = 4⇡
X

JM

iJjJ(qr)Y
M⇤
J (q̂)Y M

J (r̂), (5.36)

where jJ is a Bessel function. This gives

Ir = 4⇡

ˆ
d3r

X

JM

(�i)JjJ(pr)Y
M⇤
J (p̂)

X

stµ

a⇤µtas(g�
µ†
 � if�

µ†
�)

⇥ �
0

(g
1

PL + g
2

PR)

✓

G�s
�1

iF�s
1

◆

Y M
J (r̂). (5.37)

When the wave functions and gamma matrices are then multiplied out

1

2

h

(g
1

+ g
2

)

⇣

g⇤�
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 G�s

�1

� f⇤
�
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�F�
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 F�s

1

+ f⇤
�

µ†
�G�

s
�1

⌘

�Jl�

i

. (5.38)

It is important to note that the other term is the hermitian conjugate, and as seen in
the free decay, this switches the left and right projectors. For later use, the resulting
term is

1

2

h

(g
1

+ g
2

)

⇣

G⇤�s†
�1

g�
µ
 � F ⇤�s†

1

f�
µ
�

⌘

�Jl

+i(g
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� g
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)

⇣

G⇤�s†
�1

f�
µ
� + F ⇤�s†

1

g�
µ


⌘

�Jl�

i

. (5.39)

This has the right structure to produce the g2
1

+ g2
2

term from the free decay.
The first integral that can be evaluated is the angular integral d⌦r. This is

accomplished by using
ˆ

d⌦r�
µ†
 �

s
�1

Y M
J (r̂) =

ˆ
d⌦r

✓

�1

r
~� · ~r

◆

�µ†
�

✓

�1
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~� · ~r

◆

�s
1

Y M
J (r̂)

=

ˆ
d⌦r�

µ†
��

s
1

Y M
J (r̂). (5.40)

Substituting in the expressions for � gives
ˆ

d⌦r�
µ†
 �

s
�1

Y M
J (r̂) =

ˆ
d⌦rp
4⇡

X

m

C(`
1

2

j;µ�m m µ)Y µ�m⇤
` (r̂)�m†�sY M

J (r̂)

=

1p
4⇡

C(J
1

2

j;Msµ). (5.41)
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Placing this into the expression in the r integral produces

Ir =

4⇡

2

p
4⇡

ˆ
drr2

X

JM

(�i)JjJ(pr)C(J
1

2

j;Msµ)Y M⇤
J (p̂)

X

stµ
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)(gG� fF )� i(g
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)(gF + fG)] . (5.42)

=
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4⇡
X

stµ

a⇤µtas
X
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2+KC(

1

2

Kj; srµ)
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⇥

(�1)(�i)KY r⇤
K (p̂)SK
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, (5.43)

where

SK =

ˆ
drr2jK(pr)

⇢
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1 + (�1)
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◆
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◆
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G)�Kl�

�

. (5.44)

The decay rate is given by

� =

1

2(2⇡)5

ˆ
d⌦J

ˆ
d3pe|~pJ ||Ir|2. (5.45)

Looking at the spherical harmonics that appear the ⌦J integral can then be imme-
diately calculated as ˆ

d⌦JY
r⇤
K (p̂)Y r0

K0(p̂) = �KK0�rr0 . (5.46)

The partial wave coefficients for the electron are given by

aµt = 4⇡ilC(l
1

2

j;µ� t t µ)Y µ�t⇤
l

(p̂e)e
�i� , (5.47)

where the extra exponential term arises as a result of the phase shift from the
interaction with the Coulomb potential. The other coefficient as can be written in
the unpolarized case as

asa
⇤
s0 =

1

2

�ss0 . (5.48)

The angular part of the pe integral can be carried out using these terms and givesˆ
d⌦peY

µ�t⇤
l

Y µ0�t0

l0
= �ll0 �µ�t,µ0�t0 . (5.49)

The four remaining Clebsch-Gordon coefficients can now be simplified with
X

rs

C(

1

2

Kj; srµ)C(

1

2

Kj0
; srµ0

) = �jj0 �µµ0�(K � 1

2

� j), (5.50)

and
X

tt0µn

C(l
1

2

j;ntµ)C(l
1

2

j;nt
0µ) = 2j + 1, (5.51)

where the delta functions have been used as needed. Finally, this just leaves the
sums over K and  and an integral over |pe| = Ee to give the electron spectrum,

d�

dEe
=

4

⇡mµ

⇣mµ

32⇡

⌘

(Eµ � Ee)E
2

e

X

K

(2j + 1)|SK|2. (5.52)
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The final requirement is |SK|2. In each term of this sum, there are factors of
✓

1 + (�1)

l+K

2

◆

�Kl and
✓

1 + (�1)

l+K+1

2

◆

�Kl� . (5.53)

With the Kroneker delta, the factor on the left is simply one. The other factor is
not as clear. Making the substitution  ! �0 and using the relation between l
and j gives

l = j +
1

2



|| (5.54)

l + l� = 2j (5.55)
= 2||� 1. (5.56)

In the Equation 5.56, j = ||� 1/2 has been used. The second term then becomes
 

1 + (�1)

2||�1+1

2

!

= 1. (5.57)

This greatly simplifies our expression for |SK|2;

|SK|2 =

ˆ
drdr0jK(pr)jK(pr0) (5.58)
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.

It is preferable to write everything in terms of � instead of ±. To do this, the
relations g� = if and f� = �ig can be used. These can be worked out from the
massless Dirac equation for the electron (note that the relations no longer hold if we
consider a massive electron).

Before starting, there are a few relations between  and K that are worth review-
ing. The first of these is  = ±K,±(K + 1). As well,  6= 0 and from the relations
in Equations 5.54-5.56 l = j + 1

2


|| = || + 1

2

(


|| � 1). Combining these relations

with the delta functions from Equation 5.58 gives

�Kl !  = K,�(K + 1), (5.59)

and
�Kl� !  = �K, (K + 1). (5.60)

One can now look at a single K term in the sum where  can take on four values.
Summing these gives
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Here, gp = (g
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+ g
2

) and gm = (g
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2

) have been used for simplicity. The positive
 terms can be re-written as negative terms via the above relations.
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The full spectrum of the electron is finally given by

N(Ee) =
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where the sum over K goes from 0 to 1. From here, functions for f, g, F and G
are introduced. If the finite size of the nucleus is ignored, these functions can be
worked out analytically [45]. For the results to be experimentally viable though,
larger nuclei will need to be considered where the size of the nucleus cannot be
ignored. To include these effects, the wave functions must be solved for numerically,
meaning that from this point onwards the spectrum needs to computed numerically.
Before the results of this calculation are presented, the expansion of the spectrum
in terms of energy and ↵ will be explored.

5.3 Energy Expansion

Ultimately the high energy region of the electron spectrum will be of interest and
the results will be completely numerical. The required information will be extracted
from this, but it would also be nice to be able to pick out some properties of the
high energy endpoint of the spectrum analytically. One way of doing this is to carry
out an expansion near the endpoint.

In the previous section, the spectrum of the electron in terms of the muon and
electron wave functions is solved for. If the nucleus is assumed to be infinitely heavy
and small, the wave functions, g, f,G and F can be solved for analytically. Using
the bound state solutions for the muon and the continuum state solutions for the
electron, it is possible to Taylor expand the spectrum near the maximum energy
point.

The muon wave functions in the 1S state are given by

G =

(2⇣mµ)
�+1/2

[2mµ�(2� + 1)]

1/2
(mµ + �)1/2r��1/2e�⇣mµr, (5.65)

F = � (2⇣mµ)
�+1/2

[2mµ�(2� + 1)]

1/2
(mµ � �)1/2r��1/2e�⇣mµr, (5.66)
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where ⇣ = Z↵, and � =

p

1� ⇣2. The electron wave functions are given by
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where, � =

p

2 � ⇣2, and Ee is the electron energy. The muon wave functions
are normalized such that

´
(G2

+ F 2

)r2dr = 1 while the electron wave functions
introduce a factor of 1

4E2
e

to the coefficient of our spectrum.
For now, only the leading order of the expansion is required. If the expansion

in terms of Ee about the point Eµ, the maximum energy, is considered the electron
wave functions have a leading order of � =

(Eµ�Ee)

Eµ
and the muon wave functions

are simply constants.
Next, consider the Bessel functions that appear. The series form for these can

be used to find
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The only term contributing to the leading order is the K = 0, i = 0 term for which
j
0

(Eµ�r) = 1. Putting this all into the expression for the decay spectrum gives
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where the factor of 1

4E2
e

from the electron wave function has been taken into account.
This integral can be evaluated analytically and gives zero.

Thus, to obtain the leading order for the spectrum, the second order terms in
all of the above expressions are required. Expanding the electron wave functions in
� increases both by one order. As well, if the next term in j

0

(mµ�r) is included, it
is seen that it goes like �2. The next important term in the leading order is when
K = 1. In this case, the spherical Bessel function gives

j
1

(Eµ�r) ⇡ Eµ�r

3

. (5.71)

Writing just the terms that involve � gives
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where the nth coefficients of the � series in the wave functions are denoted by
g(n) , f (n)

 . The leading order in the expansion is not linear or even quadratic; it
goes like �3. Fortunately these integrals can also be calculated analytically. The
result is long and complicated (to the point that Mathematica would not recognize
the first term calculated as zero analytically), so the calculation is done analytically
and then numbers are introduced into the result to obtain the expansion. Expanding
to O(�6) gives

1

�

0

d�

dEe
⇡ (Z↵)5

mµ
�3
�

41.892 + 374.536� + 2180.640�2 + 10198.429�3 +O(�4)
�

.

(5.74)
The full expression for the leading term is
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. (5.75)

Here, � goes from zero to one. Figure 5.3 shows that the expansion is converging on
the proper values.
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Figure 5.3: The Taylor expansion of the electron spectrum. The contributions
from O(�3) to O(�6) are shown in order to illustrate how the series is
converging on the full result (dots). Looking at the right side of the
curves, the bottom one is O(�3). Moving up, the curves go in order up
to the top one which is O(�6). The units of the spectrum are in fm.
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5.3.1 Expansion in Z↵

As the expressions for the Taylor expansion are so complicated that numbers must be
input, it may be beneficial to expand the expression in Equation 5.75 in terms of Z↵.
A full expansion in Z↵ would include an infinite sum because K is unbounded, so
only the leading term in the energy expansion is considered. This should, at the very
least, simplify things so that the expression can be written down analytically. As
well, this can be compared with the leading order result obtained from perturbation
theory and provide a check of the full results.

Again, the wave functions from [45] are used. To carry out the expansion in Math-
ematica, each term in Equation 5.75 must be considered separately (i.e. g(1)�1

G, f (1)

�1

F ,
etc.). The results can then be used in Equation 5.75 to obtain the expansion in Z↵.
Everything can be expanded and a very simple expression for the leading order term
is obtained.

1

�

0

d�

dEe
=

(Z↵)5

mµ⇡

512

3

�3 ⇡ 54.3
(Z↵)5

mµ
�3 (5.76)

This agrees with the perturbative version of this calculation. Comparing this result
with the full result in Equation 5.74, shows that the coefficient is accurate to only
about 25%. This justifies a full relativistic treatment as opposed to carrying out a
perturbative calculation.

5.4 Results

For the full electron spectrum, the electron and muon wave functions must be solved
numerically, taking into account the finite size and mass of the nucleus. A Fermi
distribution ⇢(r) is used as a model for the nucleus and characterized by two param-
eters, a and r

0

.
⇢(r) =

⇢
0

1 + e
r�r0

a

, (5.77)

where ⇢
0

is a normalization constant chosen such that the integral over all space of
r2⇢(r) is �Z↵. In order to account for the finite mass of the nucleus,the nuclear-recoil
energy is approximated with [46],

E
rec

⇡ E2

e

2mN
, (5.78)

where mN is the mass of the nucleus. For this calculation to be useful to exper-
iments, the spectrum for various nuclei is needed. The results for gold (used by
SINDRUM II [47]), aluminum, and titanium (considered for use by both Mu2e [43]
and COMET [44]) are included. Table 5.1 shows the parameters used for each of the
nuclei considered as found in [48].

The numerical values for the full range of energies for the electron spectrum have
been calculated. Figure 5.4 shows the results for Al, Ti, and Au. In addition to
these, the analysis has been refined at the endpoints for Al, Au and Ti so accurate
results for the corresponding fractions fJ can be obtained. The endpoints of Al and
Au are plotted in Figure 5.5 against the standard muon decay in orbit results to
highlight the difference in the shape. Note that the Majoron emission plots have
been scaled to facilitate the shape comparison.
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Nucleus r
0

(fm) a (fm) mN (MeV) Eµ (MeV) Eµe (MeV)
Al(Z = 13) 2.84 0.569 25133 105.194 104.973
Ti(Z = 22) 3.84 0.588 44588 104.394 104.272
Au(Z = 79) 6.38 0.535 183473 95.533 95.508

Table 5.1: Values for the parameters in the Fermi distribution in Equation 5.77,
nuclear masses, muon energy Eµ, and endpoint energy Eµe for the ele-
ments used.
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Figure 5.4: The full electron spectrum for aluminum, titanium, and gold.
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Figure 5.5: A comparison of the endpoints for aluminum and gold (solid lines)
with the SM spectrum (dashed lines). The Majoron spectra have been
scaled to match the SM spectra at 100 MeV (Al) and 90 MeV (Au).
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SINDRUM II

The SINDRUM II Collaboration used gold nuclei to measure the electron spectrum
of muon decay in orbit processes in the region from 90MeV to Eµe. They were able
to put a limit on Rµe of

RSINDRUM II

µe < 7⇥ 10

�13

(90%C.L.). (5.79)

The electron spectrum when a Majoron is produced has been calculated as well and
it is found that the numerical results near the endpoint are fit very accurately with
the function
1

�

0

d�

dEe

�

�

�

�

Au,Ee>90MeV

=

1

mµ
(5.292⇥ 10

�3�3 + 9.629⇥ 10

�2�4 + 1.125�5 + 22.94�6),

(5.80)
where

� =
Eµ � Ee � E2

e
2mN

mµ
. (5.81)

Using Equation 5.80 the fraction, fJ , of Majoron events in the region of interest is

fJ,Au =

ˆ Eµe

90MeV

1

�

0

d�

dEe
dEe = 2.4⇥ 10

�8. (5.82)

As a result, only NR is required in order to place a limit on the branching ratio
B(µ ! eJ).

NR corresponds to the number of µ ! e events seen in the detection region.
In the SINDRUM II experiment, six events were seen. This matches the SM decay
in orbit predictions so it is likely that none of these events correspond to a signal.
Typically, one would then perform a subtraction of the background in order to extract
any signal. In this case there are so few events that background subtraction is not a
desirable method. Instead, to put an upper limit on the Majoron emission branching
ratio, it is assumed that the number of Majoron events is no larger than the total
number of events seen. This is only a single result, and it is not likely that another
run of the experiment would provide exactly six signal events again. To account for
this, the number of events is assumed to follow a Gaussian distribution with a mean
and variance of six. Projecting up to the 90% C.L. means that 90% of the time,
nine events or less are seen. Since there is actually no signal, a Poisson distribution
can be used to find the mean upper limit of events that could possibly be seen by
running the experiment multiple times. In this case, at 90% C.L. the mean upper
limit is found to be a = 2.3. Now a is the number of sample events multiplied by
the probability of an event being a signal, 1/NR

a =

9

NR
. (5.83)

Solving for NR, gives NR =

9

2.3 .
Finally, with the capture rate �

capture

=

1

88ns

and the SM decay rate �(µ !
e⌫µ⌫e) =

1

2.197µs

an upper limit on the branching ratio for Majoron emission can be
obtained. From Equation 5.6

B(µ ! eJ) <
9

2.37⇥ 10

�13

2.4⇥ 10

�8

2.197µs
88ns

⇡ 3⇥ 10

�3 @ 90% C.L. (5.84)
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Unfortunately this is much larger than the current limit, so the results are not able
to improve upon the limits using current data. A more robust limit can be obtained
with the use of Bayesian limit calculations (see for example [49]) but is not expected
to improve the limit by the two orders of magnitude required to match the current
limits.

Mu2e and COMET

Although current data does not provide a more stringent upper limit on the branch-
ing ratio B(µ ! eJ), future µ ! e experiments may be able to do so using the
results from our calculation. The experiments Mu2e at Fermilab [43] and COMET
at J-PARC [44] aim to improve sensitivity to the 10

�16 level. They also intend on
using an aluminum target.

The aluminum target both helps and hinders the evaluation of the branching
ratio. On one side, the ratio between the muon capture width and free muon width
in Al is about 1.5, as compared to 25 for Au. The fraction of events fJ , however, is
much smaller due to a much lower value of Z. For Al, it is found that the endpoint
of the spectrum (above 100 MeV) is closely approximated by

1

�

0

d�

dEe

�

�

�

�

Al,Ee>100MeV

=

1

mµ
(3.289⇥ 10

�10� + 3.137⇥ 10

�7�2

+1.027⇥ 10

�4�3 + 1.438⇥ 10

�3�4 + 2.418⇥ 10

�3�5

+1.215⇥ 10

�1�6). (5.85)

In the region Ee > 100MeV, fJ = 2.2 ⇥ 10

�10. Using NR = 27, this time based on
background subtraction of the decay in orbit background, gives an upper limit

B(µ ! eJ) < 1.9⇥ 10

�5. (5.86)

This is comparable to the current limit. Note that it is possible to obtain a more
accurate estimate of the bounds these experiments will be able produce by including
the effects of the energy resolution in the experiment [40]. The limit does not change
significantly so the effect is not considered here.

Both experiments also consider Ti as a possible target. For completeness, the cal-
culation has been carried out for this nucleus as well. The endpoint of the spectrum
is approximated by

1

�

0

d�

dEe

�

�

�

�

T i,Ee>99MeV

=

1

mµ
(5.404⇥ 10

�10� + 9.301⇥ 10
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�4�3 + 8.113⇥ 10

�3�4 + 5.470⇥ 10

�2�5

+4.244⇥ 10

�1�6), (5.87)

with the bounds on B(µ ! eJ) being similar to that of Al.
With this analysis, Mu2e and COMET may produce more stringent bounds on

the branching ratio B(µ ! eJ). This is even more likely if suggestions to push
the sensitivity to the 10

�18 level are undertaken. Also, if the experiment is able to
improve the energy resolution used, a better bound can be placed on the branching
ratio. The results given here require no modification or extra analysis of the conver-
sion experiment – the bound comes as a free byproduct. In addition to providing a
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method of finding limits of the branching ratio, it is shown that the endpoint of the
spectrum is an ideal place to search for new types of muon decays. This is because
the SM muon decay has stronger suppression, (Eµe �Ee)

5 at the endpoint than the
Majoron emission, which goes as (Eµe � Ee)

3.
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Chapter 6

Semileptonic b-quark Decay

6.1 Introduction

The CKM Matrix

In QCD the particles that interact via the strong force are known as quarks, while the
force carrying particles are the gluons. The quarks are arranged into three doublets,

✓

u
d

◆

,

✓

c
s

◆

and
✓

t
b

◆

.

They are the only particles in the SM that interact via all three forces: electromag-
netic, weak and strong. d-type quarks have an electric charge of �1

3

e, while u-type
quarks have an electric charge of 2

3

e. One of the peculiarities of quarks is that they
never have (and in theory never will) been seen in a state that is not bound to
another quark or antiquark. The qualitative argument for the cause of this is that
the strong force becomes stronger as the distance between quarks increases. When
the quarks are far enough apart, the potential energy between them becomes large
enough to cause the production of a new quark anti-quark pair, leading to two bound
states instead of one. The inability of quarks to be free is called confinement.

With the property of confinement, calculating the decays of quarks becomes a
more difficult task than for leptons. The fact that the quark of interest is not a free
quark, but is bound, must be taken into account. In order to compute a true decay
rate, the non-perturbative effects of the strong force potential need to be included.
Fortunately, methods have been developed to separate the non-perturbative effects
of this binding interaction with other perturbative effects. This chapter focuses on
the perturbative aspects of quark decays.

Through the weak interaction, quarks are able to change their flavour from an
up-type (u) to a down-type (d) quark. This allows the process b ! c`⌫ to occur.
The strength of this mixing is described by the Cabibbo-Kobayashi-Maskawa (CKM)
matrix,

0

@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A .

Typically, one would invoke unitarity requirements to rewrite this matrix in terms
of three unknown parameters and a complex phase. Nevertheless it is important
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to measure the values of each of these matrix terms. Doing so allows the unitarity
requirements to be overconstrained and tested for new physics. If this unitarity was
found to be broken, this would be an indication of new physics, such as a fourth
generation of quarks.

The Parameter Vcb

The parameter of interest in this chapter is |Vcb|. Experimentally, two approaches
are used to extract a value of |Vcb| from data. The first is by looking at the exclusive
decays B ! D`⌫` and B ! D⇤`⌫` that give values [50]

|Vcb| = (39.6± 0.6
exp

± 0.8
theo

)⇥ 10

�3

(B ! D⇤`⌫`),

|Vcb| = (39.4± 1.4
exp

± 1.3
theo

)⇥ 10

�3

(B ! D`⌫`).

Both of these values involve lattice QCD calculations and are used to give the average
exclusive value of Vcb

|Vcb| = (39.6± 0.9)⇥ 10

�3

(exclusive).

The other approach involves extracting Vcb from the inclusive decay of the B meson.
This method uses all decay products that have leptons and a meson with a c-quark
in the final state (Xc): B ! Xc`⌫`. Currently, this approach gives the most precise
determination of |Vcb| with a value [50]

|Vcb| = (41.96± 0.45± 0.07)⇥ 10

�3

(inclusive 1S).

Here, 1S refers to the renormalization scheme used in the mass definition of the
b-quark. As can be seen, there is some tension between the exclusive and inclusive
measurements. This motivates more precise measurements and a deeper investiga-
tion of the theory.

In order to extract |Vcb| from the decay rate, a sufficiently accurate theoretical
expression is required. The expression for the total decay rate �(B ! Xc`⌫`) is
given by [51]

� =

G2

Fm
5

b(µ)

192⇡3
|Vcb|2(1 +Aew)A
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(r, µ)⇥
2

4z
0
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G(µ) +
⇢3D(µ)+⇢3LS(µ)
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2m2

b(µ)

1
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�2(1� r)4
µ2

G(µ)� ⇢3D(µ)+⇢3LS(µ)

mb(µ)

2m2

b(µ)
m2

b(µ) + d(r)
⇢3D(µ)

m3

b(µ)
+ . . .

3

5 . (6.1)

Here Aew are electroweak corrections, and Apert are perturbative corrections, z
0

(r) is
the tree-level phase space, r is the mass ratio m2

c(µ)/m
2

b(µ) and µ is the renormaliza-
tion scale. The µi and ⇢i are expectation values of non-perturbative operators. This
result is obtained using the method of Operator Product Expansion, which is able
to separate the perturbative and non-perturbative parts. A review of semileptonic
b-decay, including a discussion of all these terms, can be found in [51]. The per-
turbative part, Apert, is calculated by applying perturbation theory to the partonic
decay b ! c`⌫`. These are the corrections that will be focused on here.
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Perturbative Corrections

This chapter is based on [52], which calculates the second order (also called next
to next to leading order or NNLO) corrections to the decay b ! c`⌫ by expanding
around the limit that the daughter quark is as heavy as the parent. The NNLO
corrections to this decay have been studied using various expansions in an attempt
to provide an accurate determination of the decay rate. The first methods used an
approximation scheme where the leptons were replaced by a virtual boson (W ⇤) with
a mass that allowed the calculation to be carried out in a specific kinematic region.
This replacement can be done rigorously by looking at the decay rate of b ! X`⌫`.

d�(b ! X`⌫`) =

(2⇡)4

2mb
|M|2d�(b ! X`⌫`), (6.2)
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◆

u
igw
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p
2

�⌫(1 + �5)v, (6.3)

where d� is an element of the phase space for the decay, Qµ is the quark current
and q is the momentum of the W . The phase space integral can be separated with
the identity,

d�(b;X`⌫`) = d�(b;XW ⇤
)d�(W ⇤

; `⌫`)(2⇡)
3dq2. (6.4)

The differential decay rate is then,
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Notice that it is now possible to carry out the phase-space integral for the leptons.
The method of computing these types of tensor integrals is commonly used as follows
below.

Phase Space Integral

Consider the tensor integral

I↵�
=

ˆ
d3p`

(2⇡)3E`

d3p⌫

(2⇡)3E⌫
(2⇡)3p↵` p

�
⌫ �

4

(q � p` � p⌫) (6.7)

The only tensors that can appear in the final result are g↵� and q↵q� , so the result
must be of the general form

I↵�
= Ag↵� +B

q↵q�

q2
. (6.8)
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The two unknowns A and B can be solved for by multiplying both equations by
g↵� or q↵q� . It is then possible to carry out the integrals to create a system of two
equations that can be used to solve for A and B. Multiplying by g↵� gives

4A+B =

ˆ
d3p`d3p⌫

(2⇡)3E`E⌫
p` · p⌫�(Eq � E` � E⌫)�

3

(p` + p⌫). (6.9)

For simplicity, the rest frame of the W ⇤ is considered. In addition, since the mass
of the leptons is so small compared to the other scales in this problem, they are
considered to be massless.

4A+B =

ˆ
d3p`

(2⇡)3
(E2

` + p2

` )
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`

�(Eq � 2E`), (6.10)
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2⇡2
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✓

Eq
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� E`

◆

, (6.11)

=

q2

8⇡2
. (6.12)

Here, the fact that q2 = E2

q has been used to write the final result in a Lorentz
invariant form. Carrying out the same procedure after multiplying by q↵q� gives the
condition

A+B =

q2

16⇡2
. (6.13)

Finally, solving for A and B gives

A =

q2

48⇡2
, B =

q2

24⇡2
, (6.14)

which produces the result of the integral.
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Using the result for I↵� , the decay rate is
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(6.17)

where the limiting case q2 ⌧ m2

W has been taken, which is valid for this decay.
Now, consider the decay rate of the process b ! XW ⇤ where the W ⇤ has a mass

mW =

p

q2.

d�(b ! XW ⇤
) =

(2⇡)4

2mb
QµQ

⇤
⌫

✓

gµ⌫ � qµq⌫

q2

◆

d�(b;XW ⇤
) (6.18)
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Comparing the two expressions, it is now possible to relate the full semi-leptonic
decay rate to the virtual boson decay rate

d�(b ! X`⌫`) =
g2w

96⇡2m4

W ⇤

ˆ
dq2q2d�(b ! XW ⇤

)|
mW⇤=

p
q2
. (6.19)

This equation allows the decay rate for b ! XW ⇤ to be computed and related to a
specific point in the mass spectrum of the decay b ! Xc`⌫`. With enough points in
the mass spectrum, it is possible to provide a good estimate of the full b decay rate.

Kinematics

With the leptons replaced by a virtual boson, one can map the kinematically available
phase space onto a triangle as shown in Figure 6.1.
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W * /  M

Zero R
ecoil
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1

0 1

Figure 6.1: The kinematic region allowed for the decay Q ! qW ⇤. The known ex-
pansions are seen to cover the borders of the region plus the bisecting
expansions, where the mass configuration mW ⇤

= m was considered.
The dashed line and circles show the points used to obtain an approx-
imate result for the full decay with leptons.

The vertical axis corresponds to the mass ratio of the virtual boson (W ⇤) to
the heavy quark (Q). The horizontal axis corresponds to the mass ratio of the
light quark (q) to the heavy quark. When the sum of the masses of the boson and
light quark equals the mass of the heavy quark, the light quark is produced at rest
and the leptons have momenta in opposite directions. This situation provides the
hypotenuse of the triangle, also known as the zero recoil line. Using various limits of
the two mass ratios, the decay rate �(Q ! W ⇤q) can be calculated as an expansion
around the chosen limit. For this decay, calculations have been carried out for the
configurations,

m

M
= 0

mW⇤
M ⇠ 0 [53] (6.20)

m

M
= 0

mW⇤
M ⇠ 1 [54] (6.21)

m

M
⇠ 0

mW⇤
M = 0 [55] (6.22)

m

M
⇠ 1

mW⇤
M = 0 [56] (6.23)

m

M
⇠ 0

mW⇤
M =

m
M [57] (6.24)
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m+mW ⇤

M
⇠ 1

mW⇤
M =

m
M [58]. (6.25)

Full analytic solutions are also known along the zero recoil line [59]. Using points in
three of the expansions (denoted as circles in Figure 6.1) allowed an approximation
of the full decay [58, 60].

The full calculation, including leptons, was first done both numerically and ana-
lytically in [61, 62] respectively. Both results are valid in the physical region of the
quark mass ratio ⇢ = mc/mb ⇡ 0.25 � 0.3. In [62] the corrections were obtained as
an expansion in the ratio of quark masses ⇢. The calculation described here pro-
vides an additional check of the analytic result by expanding in the opposite limit,
� = 1 � ⇢. In addition, this calculation requires the application of the method of
asymptotic expansion to a new kinematic configuration. The results agree well with
the expansion in [62] and has interesting implications for calculating higher order
corrections.

6.2 Calculation Method

The full NNLO corrections to this decay involve diagrams that have as many as
five daughter particles: two leptons, a quark and up to two gluons. A convenient
way to obtain the amplitudes needed for this calculation is through the use of the
optical theorem. The decay can then be written in terms of four-loop b-quark self-
energy diagrams, and the powerful loop integral techniques developed over the past
few decades can be taken advantage of. These self-energy diagrams have two mass
scales that need to be dealt with: mc and mb. The mass scale MW is removed by
using a four-fermion effective interaction with coupling GF that avoids the creation
of a W propagator. The occurrence of the two scales makes these integrals much
more difficult than they would be if they had a single scale. Fortunately, asymptotic
expansion can be used to separate the two scales in the problem.

Asymptotic expansion is a method of separating integrals into ‘regions’ such that
the resulting regions have integrals with only one scale. The result is an expansion
in the ratio of small scale to large scale. In the case of this calculation, this ratio
is denoted � = 1 �mc/mb. The loop momenta in the diagrams can then have one
of two characteristic scales, hard mb or soft �mb. When all loop momenta have
been separated into hard or soft regions, the result is a product of single scale loop
integrals that can be calculated with the many tools and methods available.

As an example, consider the leading order contribution to this decay as shown
in Figure 6.2. This diagram is a topology diagram like the one discussed in Chapter

Figure 6.2: The leading order contribution to b ! c decay. The dashed lines
indicate massless leptons, the heavy lines denote b-quarks, and the
light lines denote c-quarks.
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1. It is possible to simplify any Feynman diagram to an expression that depends
only on different powers of the propagators and possibly scalar products of momenta
in the numerator. Thus, the vertices and external lines indicate only the flow of
four-momenta. The diagram in Figure 6.2 represents the integral

I(�
1

) =

ˆ
dDl

(2⇡)D
dDk

(2⇡)D
1

l2
1

(l + k)2
1

[(p+ k)2 +m2

c ]
�1

(6.26)

Note that in this calculation the leptons are considered to be massless. First, it will
be important to remember a few properties of this integral. In order to regularize
infrared and ultraviolet divergences, the integrations are done in D = 4� 2✏ dimen-
sions. This allows an expansion in ✏ after the integrals have been computed to make
the divergences explicit. When all diagrams are summed, including any renormaliza-
tion terms, the pole terms in ✏ should cancel to give a finite result in the limit ✏! 0.
This is known as dimensional regularization. The second thing that is noticed is that
the massive propagator has been given a power �

1

. When considering the topology
of a diagram, it is often convenient to use general powers of the propagator as it
is likely that more than one configuration of powers will appear. If a result can be
derived for general powers, then values can be plugged into the general result.

The integral over the lepton loop momentum is not very difficult. Fortunately,
this is the form of the lepton loop that will appear in all diagrams at all orders as
the leptons do not interact in this decay. As a result, it can be done once and result
can be used in future calculations. Also, this is a sub-topology that appears often in
this calculation, so the evaluation is done using general powers of the propagators
here. Using Feynman parameters to combine the propagators gives

One(a, b) =

ˆ
dDl

(2⇡)D
1

(l2)a
1

[(l + k)2]b
(6.27)

=

ˆ
dDl

(2⇡)D

ˆ
1

0

dx
�(a+ b)

�(a)�(b)

xb�1

(1� x)a�1

[l2 + 2l · kx+ k2x]a+b
. (6.28)

The square is completed for l and a change variables l ! l0 � kx is made. This puts
the denominator in a form that allows the l integral to be carried out. The result is
an integral over the Feynman parameter that gives a beta function,

One(a, b) =

ˆ
1

0

dx
�(a+ b)

�(a)�(b)

ˆ
dDl0

(2⇡)D
xb�1

(1� x)a�1

[l02 + k2x(1� x)]a+b
(6.29)

=

ˆ
1

0

dx
�

�

a+ b� D
2

�

(4⇡)D/2
�(a)�(b)

xb�1

(1� x)a�1

[k2x(1� x)]a+b�D/2
(6.30)

=

�

�

a+ b� D
2

�

(4⇡)D/2
�(a)�(b)

1

k2(a+b�D/2)
(6.31)

⇥
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1

0

dx(1� x)
D
2 �b�1x

D
2 �a�1

=

�

�

a+ b� D
2

�
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D
2

� b
�

�

�

D
2

� a
�

(4⇡)D/2
�(D � a� b)�(a)�(b)

1

k2(a+b�2+✏)
. (6.32)

a = 1 and b = 1 can now be plugged in as in the lepton loop from Equation 6.26.
At this point, the k integral is all that remains to be completed.
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This second loop integral in Equation 6.26 is more complicated as the mass in the
propagator is mc, while the momentum depends on the external momentum which
is proportional to mb. Asymptotic expansion is used to deal with this complication.
As mentioned earlier, the hard region is when the loop momentum is of order mb and
the soft region is when the loop momentum is of order �mb. To separate the integral
into these two regions, the small scales are Taylor expanded out of the propagators,
as shown in Figure 6.3. By including higher orders in this expansion, a series is built
up in powers of �.

Full diagram
[2, 3]

[1]

[1] = (p+k)2+m2

c [2, 3] = k2✏

Region 1

|k| ⇠ mb [1] ! k2 + 2p · k

Region 2

|k| ⇠ �mb [1] ! 2p · k+2�p2

Figure 6.3: The asymptotic expansion of the diagram in Figure 6.2. The double
dotted line represents the integrated lepton loop. The double solid line
denotes the eikonal propagator 2p · k + 2�p2.

There are two integrals that need to be calculated. On closer inspection, it is
noted that the integral from Region 1 will not contribute to the final result as it is
purely real while the decay rate is given by the imaginary part. In general this is true
for the so-called ‘hard’ region when all loop momenta are of order mb. Normally, the
hard region is one of the more difficult regions to calculate meaning this kinematic
configuration (the � ! 0 limit) leads to some strong simplifications. The other region
gives

eOne(�
1

,�
2

) =

ˆ
dDk

(2⇡)D
1

(k2)�1
[2p · k + 2�p2]�2

. (6.33)

To carry out this integral, a similar method of combining the denominators as Feyn-
man parameters is used. The parameterization used here however, is slightly differ-
ent.

1

AaBb
=

�(a+ b)

�(a)�(b)

ˆ 1

0

d�
�b�1

[A+B�]a+b
(6.34)

The integral over k is carried out in the same way as the integral over l previously.
This leaves an integral that can be rewritten to give a beta function. The final result
is

eOne(�
1

,�
2

) =

ˆ
dDk

(2⇡)D
�(�

1

+ �
2

)

�(�
1

)�(�
2

)ˆ 1

0

dx
x�2�1

[k2 + x(2p · k + 2p2�)]�1+�2
(6.35)
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)

.

These two integrals, One and eOne, appear frequently in this calculation. With these
general forms, calculation of diagrams only requires plugging in values for a, b,�

1

and
�
2

. Another simplifying feature of the integral in Figure 6.2 is the fact that this two
loop integral can be done by carrying out two nested one loop integrals. This is not
always possible in general, but occurs quite frequently in this calculation. In fact,
this nesting of integrals appears in almost all regions for the four loop calculation.
With this technique, only five unique topologies are required to carry out the full
calculation. In addition, the topologies that appear have at most two loops, and the
calculation of these is well known (see for example [28]).

The only regions where nesting does not work are those with a three-gluon vertex.
An extra step is required for these diagrams. It turns out that it is possible to get
rid of the dependence on one of the gluon propagators through recurrence relation
techniques, such as IBP. The Laporta algorithm implemented in FIRE and rows [63]
is used to do this reduction. The resulting integrals can then be calculated using
the nesting technique described above. With these simplifications, this four loop
problem is reduced to the calculation of five one or two loop integrals.

6.3 Second Order Corrections

The second order corrections to the decay rate involves the calculation of the 39
four loop diagrams shown in Figure C.1. These diagrams all fit into one of ten
topologies that can be reduced to a total of five master integrals shown in Figure
6.4. The names in these diagrams come from [28] where they are evaluated, with the
exception of eY2, which is related to the integral I 0 in [64]. Note that eY2 is also a
generalization of the eOne integral in Equation 6.33.

The total decay rate can be written as a series in terms of ↵s
⇡ . The results

presented here are given such that ↵s is evaluated at the scale mb unless otherwise
specified.

� =

G2

F |Vcb|2m5

b

192⇡3



X
0

+
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⇡
CFX1

+

⇣↵s
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⌘

2

X
2

+ . . .

�

, (6.39)

where
X

2

= CFXF + CAXA + TF (nlXl +Xc +Xb). (6.40)

Here, XF and XA are the abelian and non-abelian terms respectively, while Xl, Xc

and Xb denote the contributions from diagrams with light, c- or b- quark loops
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Figure 6.4: The five master integrals used to calculate every diagram for the NNLO
corrections to the decay. The solid and dashed lines indicate massive
and massless propagators respectively, while the double dashed and
solid lines indicate propagators of the type 2p · k or 2p · k+ �p2 respec-
tively.

respectively. In QCD CF = 4/3, CA = 3, TF = 1/2 and nl = 3. The tree level and
first order corrections have been reproduced as well,

X
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X
1

= �48

5

�5 +
72

5

�6 +

✓

512

105

ln(2�)� 158152

11025

◆
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The ellipses indicate higher order terms in � that are not shown here. These results
agree with the expansion of the full results found in [65]. Note that the expansions
start at the order �5. This means that the series is strongly suppressed in the region
where � ⇠ 0 and leads to a highly convergent series. As will be seen, this has the
important consequence that the expansion is valid over the whole range of � and
approximates the full result, even at � = 1, with fairly good accuracy.

The second order terms have been calculated up to O(�15) for the quark loop
contributions. For the abelian and non-abelian terms the contributions are known
up to �12 and �11 respectively. For simplicity, the results up to O(�7) are presented
here with the full results given in Appendix C.
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These results can be checked in a few ways. The first method is to look at
the limiting case � ! 0. In this case, the results can be compared with the zero-
recoil form factors calculated in [66, 59]. Specifically, both the �5 and �6 terms in
the expansion here can be matched with the axial form factor ⌘A. When doing
this comparison it is important to take into account the different scales used for ↵s.
Here, ↵s(mb) is used while [66] uses ↵s(

p
mcmb). In order to compare the two results

properly ↵s must be run from mb to p
mcmb with four active flavours. This changes

the full result by

�X
2

=

48

5

✓

11

12

CA � 1

3

TF (nl + 1)

◆

�6 +O(�7). (6.48)

Completing this change reproduces the first two terms of the expansion in [66] for
the full result as well as the individual terms in Equation 6.40.

The second check is to compare the results here with the expansion from the
opposite limit. Figure 6.5 shows the plots for the results presented here along with
the expansions from [62]. As can be seen, the special kinematic configuration of the
expansion done here has led to some very nice properties of the result when compared
to the expansion in [62]. In particular, the expansion given here is converging quickly
to the full result even at the point � = 1 where the expansion is not expected to
converge. Also note that the Xb expansion was able to reproduce the extremum at
mc
mb

⇡ 0.2 that was found in [62].
The full result is shown in Figure 6.6, compared with the expansion from the

opposite end. Here, terms up to O(�11) are plotted as that is the highest order in
which all corrections are accounted for. The plot in Figure 6.6 clearly shows how
well the expansion behaves all the way to � = 1. Combining this with the major
simplifications that were found during the calculation implies that the third order
corrections would not be much more difficult to calculate. Although this is not
currently required in the quark sector, it could be applied to similar processes, such
as muon decays.
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Figure 6.5: Plots of the different contributions to the O(↵2

s) corrections to b ! c`⌫
decay. Dashed lines indicate the expansion from mc

mb
= 0 calculated

in [62], while the solid line shows the expansion presented here and
published in [52].
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Chapter 7

Muon Decay

In 1936 Carl D. Anderson and Seth Neddermeyer were studying cosmic radiation
when they discovered particle tracks different from both electrons and protons [67].
The particle seemed to have the same charge as an electron but a mass in-between the
electron and proton. Thus, they proposed this new particle be called the mesotron.
Very quickly, this new particle went from being a discovery to being used as an
experimental tool. In 1941 Bruno Rossi and David Hall performed an experiment
[68] measuring the decay rate of muons with different momenta. They found that
their results agreed with predictions only when time dilation effects were taken into
account. This marks one of the first experimental confirmations of time dilation as
predicted by special relativity.

It was eventually realized that the mesotron was a lepton just like the electron
and was re-named the muon. In the SM, the muon is now used as a tool to carry
out precision measurements. The fact that it has a large mass compared to the
electron makes it ideal for testing the limits of the SM and searching for effects
from possible new physics. For example, the Lamb shift of muonic hydrogen (a
hydrogen atom with a muon instead of electron) has recently been used to make
the most precise measurement of the proton charge radius [4]. This measurement
disagrees with previous measurements by 7�. As another example, the experimental
measurements and theoretical determinations of the anomalous magnetic moment of
the muon currently have a 3.4� discrepancy [69, 70].

In the SM, the muon can only decay in a few ways. Almost 100% of the time,
the decay is of the form µ ! e�⌫µ⌫e [50]. The other two decay modes quoted in
[50] include the decay with an extra photon or electron positron pair. This property
makes the SM decay of the muon a very clean process that is now used to extract a
value for the SM constant GF [17]. In order to measure this fundamental constant
as precisely as possible, it is necessary to compute the decay rate to high order. A
review of the determination of GF from the muon lifetime cites three main sources
of error limiting the measurements [71]: the electron mass in the O(↵2

) corrections,
hadronic effects (which are small), and higher loops. The latest corrections to be
computed were the O(↵2

) corrections [72], where it was found that an unexpected
linear term in me/mµ shifts the value of the decay rate by about 0.5ppm.

This small correction raises an important question: how accurate is the current
theory regarding muon decay rates? Are higher loops a significant source of error?
Looking at the order of magnitude of the most recent correction, it is found that the
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change between the massless case and the linear mass corrections is of order

O
✓

me

mµ

◆

↵2 ⇠ me

mµ
↵2 ⇡ 0.005↵2. (7.1)

In terms of the expansion in ↵, the order of the next correction can be estimated to
be,

↵3 ⇡ 0.007↵2. (7.2)

If the O(↵3

) contribution to the muon decay rate has a somewhat large coefficient,
this correction could be important in a proper determination of the muon lifetime
and in particular GF .

This chapter focuses on a first effort to compute the third order corrections to the
decay rate of the muon. To start, the relation between this decay and the QCD cor-
rections of the semileptonic b-quark decay described in Chapter 6 is considered. The
simplifications in that calculation also occur here and make this order of calculation
possible. Next, some further simplifications are described that were skipped over in
Chapter 6 but prove to help significantly here. After this, the calculation method
used is expanded on as some extra techniques are needed. Finally, the results that
are currently available are presented and some of the computing resources required
to obtain them are discussed.

7.1 b-quark Decay Relation to Muon Decay

The semileptonic decay of quarks is very similar to the SM decay of muons. Taking
a look at the tree level diagrams in Figure 7.1 it is seen that after the limit of large
W mass is taken, the decays can be related with the replacements,

b ! µ, c ! e, l ! ⌫e, and ⌫l ! ⌫µ. (7.3)

This is achieved mathematically with a Fierz transformation. The equivalence of

Figure 7.1: Tree level decay diagrams for semileptonic b ! c and muon decays.

Figure 7.2: Tree level decay diagrams for semileptonic b ! c and muon decays
after the limit MW ! 1 is taken.

these two diagrams means that corrections to the semileptonic decay of b-quarks
also give corrections to the SM muon decay. In fact, the first calculation of second
order corrections to muon decay (including mass effects) were calculated in [72] as
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part of the corrections to the b-decay. At higher orders, there is a difference between
these two calculations. This difference comes from the fact that QCD corrections
involve colour factors and interactions between three and four gluons. These kinds
of interactions are not present in QED so the muon decay rate must be extracted
from the semileptonic b-quark decay rate. Fortunately, the explicit separation of the
different colour factor contributions as presented in Chapter 6 gives a very simple
method of extracting the muon result. Specifically in QED

CA = 0, CF = 1, TF = 1, nl = 0. (7.4)

Convergence

As seen in Chapter 6, the kinematic limit taken provided some significant advantages
when carrying out the calculation. Remember, the expansion is being done in the
limit where the electron is just as massive as the muon and regions where the loop
momenta can be either large (hard) or small (soft) compared to the mass of the
muon M are considered. One of the advantages was the fact that the series in
� = (1 � m

M ) converges very rapidly and gives accurate results even at the point
� = 1. For the muon decay, this convergence may change because, as mentioned
before, the calculation involves only a subset of the diagrams that appear in the
b-quark decay calculation. To make sure that the expansion still converges nicely,
consider the O(↵2

) results. At tree level and first order in ↵ the b-quark and muon
decays are identical so there is no use in considering them here. Figure 7.3 shows
the second order corrections for various orders in the expansion of � between �7 and
�10. The convergence is not quite as good as in the case of the b-decay. At order

0.00 0.02 0.04 0.06 0.08 0.10
d
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OHa2L

Figure 7.3: This plot shows the convergence of the second order corrections to
muon decay. Starting at the bottom, the lines correspond to expan-
sions up to order �7, �8, �10, �9 and the known expansion from � = 1

respectively.

�10 using m
M ⇡ 1

205

there is about a 13% difference between the full result and the
expansion.

When the third order corrections are considered though, an accuracy of 10% -
20% would actually lead to a useful estimate of the full result. This is mainly due

78



to the fact that the size of the correction to the muon decay rate will likely be on
the same order as the current experimental error. If it turns out to be the case that
the corrections are actually larger than expected, this estimate would highlight the
need for a more accurate calculation of this correction.

7.2 Features of the Expansion

At third order, O(↵3

), there are 249 five-loop Feynman diagrams that need to be
computed. On top of this, each diagram is expanded asymptotically in the limit
� = 1� m

M ⇡ 0. In Chapter 6 a few of the features of this calculation were mentioned
that result in making it much easier than if the diagrams had been expanded in
the limit m

M ⇡ 0. One of these simplifying features was the fact that the purely
hard region does not contribute because this region is real. In general, there are
2

# of loops -1 regions that need to be considered. Remember, the neutrino loop is
computed exactly so the asymptotic expansion is carried out on one fewer loops. At
third order, getting rid of the purely hard region means that there are 15 regions
to consider. Having to compute 249 diagrams 15 times over presents a challenge so
let’s look for a way to simplify the calculation further.

Before finding further simplifications, one important point must be made. The
external momentum can be routed through the loops in a diagram in various ways. In
this kinematic region, however, a very specific routing is convenient to use otherwise
some regions can be missed. The condition that needs to be met is to have the
external momentum pass through all massive lines. To see why this is helpful,
consider the expansion of an electron propagator when the loop momentum, k, is
soft. Without the external momentum, p, flowing though this propagator

[k2 +m2

] = [k2 +M2

(1� �)2] ! [M2

]. (7.5)

This makes the integral over k scaleless and thus does not contribute. However, if
the external momentum flows through the propagator, the expansion gives

[k2 + 2p · k + p2 +m2

] = [k2 + 2p · k �M2

+M2

(1� �)2] ! [2p · k � 2M2�]. (7.6)

As seen in Chapter 6, a propagator like this is not scaleless.
Note that the requirement for the external momentum to flow through all massive

propagators includes any fermion loops that appear in the diagram. Normally, this
is an unnecessary step that complicates the evaluation of the integral. In this case,
however, it provides a check to make sure all of the regions have been accounted
for. With these points taken into consideration the following simplifications become
apparent.

To start, consider the diagrams with fermion loops. These diagrams can be
further simplified by taking a closer look at the propagator structure and what
happens after expanding. For a concrete example, consider the propagator structure
that comes from the diagram in Figure 7.4. If the electron loop in the diagram is
considered, it is seen that only those two propagators involve the loop momenta k

3

.
The k

3

integral would look like,
ˆ

dDk
3

(2⇡)D
1

[(k
3

+ p)2 +m2

][(k
2

+ k
3

+ p)2 +m2

]

. (7.7)
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Figure 7.4: A third order diagram contributing to muon decay. The solid and
dashed lines indicate muons and electrons respectively while the wavy
lines indicate photons and the dotted line corresponds to the neutrino
loop. The relevant momenta are labeled.

Carrying out the asymptotic expansion such that k
3

is soft and, for simplicity, k
2

is
hard, gives ˆ

dDk
3

(2⇡)D
1

[2k
3

· p�M2�]
. (7.8)

Equation 6.38 shows that this integral is zero because there is no massless propagator
k2
3

. Note that the absence of the massless propagator is what makes this integral
scaleless so considering the case where k

2

is hard would not change anything. In
general, this will be true for any case as long as the momentum flowing through
the fermion loop is soft (in this case k

3

). Thus, regions where the fermion loop
momentum is soft do not need to be considered. For diagrams with two fermion
loops, only two regions need to be considered and for diagrams with a single fermion
loop there are four regions to consider. With about one third of the diagrams having
at least one fermion loop, this simplifies the calculation a considerable amount.

Next, a closer look is taken at the loop involving the neutrino line. It is possible
to show that if the momentum flowing through this loop is hard, the resulting soft
integral will be scaleless. To see this, lets look at the possible types of massive
propagators that will appear.

electron soft k : [k2 + 2p · k + p2 +m2

] ! [2p · k � 2M2�] (7.9)
muon soft k : [k2 + 2p · k] ! [2p · k] (7.10)

electron hard k : [k2 + 2p · k + p2 +m2

] ! [k2 + 2p · k] (7.11)
muon hard k : [k2 + 2p · k], (7.12)

where p2 = �M2. Now, the loop that includes the massless neutrino line only has
electron propagators (other than the neutrino propagator). If the neutrino loop
momentum is hard, the only types of propagators contributing to the soft region
then are muon and photon propagators. Any electron propagator contributing to
the soft region would be part of a fermion loop, which as just seen leads to a scaleless
integral anyway. This means that when the neutrino momentum is hard, the only
types of propagators that can appear in the soft region are,

k2 and [2p · k], (7.13)
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leading to a scaleless integral. This argument also works when there are more loop
momenta to consider. Applying this condition gets rid of half of the original set of
regions leaving at most eight that must be considered.

7.3 Calculation Methods

One of the requirements of carrying out a large calculation such as this is to automate
the procedure as much as possible. For this problem, a private set of libraries written
by M. Czakon is used to generate the diagrams and required information for the
asymptotic expansion. These libraries generate FORM code that define the diagrams in
such a way that the Feynman rules can be applied and asymptotic expansions carried
out. The routing of the momenta in each diagram is also automatically determined
using conservation of momentum at each vertex. In order to avoid any human error,
custom routines have also been written in FORM for the neutrino integral, soft integrals
and asymptotic expansions. All of these routines can be generally applied to any
diagram of any order in ↵ for the muon decay rate. The one exception to this is four-
loop soft integrals which, as shall be seen soon, do not follow the same behaviour as
soft integrals with three-loops or less. In this case, Czakon’s libraries can be used to
apply integration by parts (IBP) relations and simplify these four-loop soft integrals.
These routines have been tested by re-computing all previous results from tree-level
to O(↵2

).
Other than the four-loop soft integrals, the other step that is not completely

automated is the hard integrals. Fortunately, routines have been implemented in
FORM to carry out up to three-loop on-shell integrals. A package called SHELL3 is
used which has been used in various three-loop problems [73, 74, 75] All that needs
to be done to use this package is to map the momenta from the diagram definitions
from our code to the definitions required by SHELL3.

Iterative integrals and IBP

In the process of carrying out this calculation, a situation came up that does not
occur in the calculation of the O(↵2

) corrections. At the NNLO order, all soft
integrals could be completed using an iterative integration procedure. For example,
consider the following two-loop integral,

I =

ˆ
dDk

1

dDk
2

(k
1

)

2

(k
2

)

2

[2p · k
1

+ 2�p2][2p · k
2

+ 2�p2][2p · (k
1

+ k
2

) + 2�p2]
. (7.14)

This represents a worst case scenario for the second order calculation as it requires
the most complex treatment of any integral. The integral is symmetric with respect
to k

1

and k
2

so without loss of generality, lets take a look at the k
1

integral first.
Finding a way to write this in the form of Equation 6.33 so that the result of that
integral can be used would be best. The first problem encountered is that there are
three propagators involving k

1

instead of two.

I =

ˆ
dDk

1

(k
1

)

2

[2p · k
1

+ 2�p2][2p · (k
1

+ k
2

) + 2�p2]
. (7.15)
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This problem can be easily circumvented by using partial fractions on the two
massive-type propagators.

1

[2p · k
1

+ 2�p2][2p · (k
1

+ k
2

) + 2�p2]
=

1

[2p · k
2

]

✓

1

[2p · k
1

+ 2�p2]

� 1

[2p · (k
1

+ k
2

) + 2�p2]

◆

(7.16)

This splits the integral into two terms, each of which only have two propagators
involving k

1

. Note that if the propagators appeared with larger powers, this relation
could be introduced multiple times until the integral becomes a sum where each term
only involves one of the two propagators.

The two k
1

integrals needed are

I
1

=

ˆ
dDk

1

(k
1

)

2

[2p · k
1

+ 2�p2]
, (7.17)

I
2

=

ˆ
dDk

1

(k
1

)

2

[2p · k
1

+ 2p · k
2

+ 2�p2]
. (7.18)

The first of these matches exactly the form of Equation 6.33, while the second integral
is only slightly more complicated. In the case of I

2

the terms that don’t depend on
k
1

in the second propagator are grouped into a single term � = 2p · k
2

+ 2�p2. This
makes the relation between Equation 6.33 and I

2

a bit more clear. The result of
the integral ends up being proportional to [2p · k

2

+ 2�p2] instead of just (2�p2).
Notice that the term in the result that depends on k

2

is exactly the same as the
massive-type propagator from the original integral. This means that the k

2

integral
becomes

I /
ˆ

dDk
2

(k
2

)

2

[2p · k
2

][2p · k
2

+ 2�p2]a1
. (7.19)

Here the factor of [2p · k
2

] from the partial fractions has been included.
Typically, there would be an option of carrying out the integral as is or using

partial fractions to simplify the integral. In this case however, partial fractions
cannot be used because a

1

can depend on ✏, thus a
1

will never be zero. This means
that the integral must be evaluated as is. Fortunately, the integral can be solved for
general powers in much the same way as the eOne integral in Equation 6.33.

The above example shows the most difficult case encountered in the NNLO cal-
culation. At third order, however these techniques do not work all of the time. It
is possible for the propagators that appear to be of a form where partial fractioning
will lead to no simplification. In particular, it will not produce integrals where the
iterative integration technique that is outlined above can be applied. The integrals
always end up in a form similar to

I =

ˆ
dDk

(2⇡)D
1

(k2)n1
[2p · k +�

1

]

n2
[2p · k +�

2

]

n3
(7.20)

As is, this integral can be solved for general powers of the propagators. The result
is a hypergeometric function that depends on �

1

and �

2

. This presents a problem
when �

1

and �

2

depend on other loop momenta.
One way to further simplify the initial integral is to use integration by parts

identities. Using this technique it may be possible to reduce the power of one or
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more propagators to zero. This gives a better chance of being able to rewrite the
initial integral in terms of integrals that can be solved using the iterative procedure.
In the worst case scenario, this reduction leads to a small set of master integrals
with terms similar to Equation 7.20 but with definite powers in the propagators.
Techniques such as Mellin-Barnes or sector decomposition can then be used to com-
pute the master integrals. This integration by parts procedure is, as will be seen,
unfortunately the bottleneck in the calculation.

7.4 Results

Here, the currently available results for the O(↵3

) corrections to the muon decay rate
are presented. The computational resources and time required for this calculation
are not insignificant and are ultimately what will limit the accuracy of the final
result. These time requirements mean that the computation is ongoing and only a
subset of the final results are known. Note, however, that the only obstacle in the
full calculation is the computing time required. All of the integrals and procedures
needed have been implemented and successfully tested. In order to demonstrate the
difficulty present in this calculation, some of the computing resources needed are
looked at.

Computing Resources

The first step in the calculation is to take traces and integrate the neutrino loop.
Since this step is the same for each region that needs to be considered, it can be
done separately. The results are stored in files that take up a total of 5GB for all
249 diagrams.

From here, each region needs to computed individually. To carry out the expan-
sions as quickly as possible, a threaded version of FORM appropriately called TFORM
is used. Using 12 cores, the expansion of all diagrams in all regions to the first two
orders takes approximately two weeks. In all cases except for the purely soft region,
the soft integrals are carried out in this step. It is possible for single regions to
use 100GB of RAM when only the first two orders of the expansion are included.
This does not really limit how high the expansion can be carried out as FORM will
automatically use hard disk space when there is not enough RAM present. One im-
portant check that is carried out is to make sure that the sum of diagrams is gauge
independent. Including the gauge dependence increases the size of the calculation
dramatically. At a maximum, one region of a single diagram wrote over 994GB of
data to temporary files while carrying out the soft integrals. This calculation was
done with only the first order in the expansion included! The calculation would
likely run out of disk space if it needed to be run to higher order.

The limiting step in this calculation is generating the integration by parts iden-
tities that are needed for the reduction of the four-loop soft integrals. For this
step, there are 742 ‘prototype’ integrals that identities need to be generated for.
Fortunately, the identities for each of these prototypes can be generated separately
enabling the use of large clusters to complete this step. Even with this massive
parallelization, the longest running instance took 22 days to complete. In total, 3.12
years of computer time have been used with 3 897 849 400 identities generated. The
bugaboo cluster on WestGrid was used which has nodes with either four or six core
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processors running at 2.66GHz. As well, individual generation routines used over
20GB of RAM when running. This came close to using up all of the 24GB available
per node. Finally, the identities are written to database files which total in size at
254GB. All of the above numbers are used to compute only the first two orders in
the mass expansion. Clearly, in order to expand to higher orders, more time and
RAM is required. Note that the b-decay calculation was ultimately limited by hard
drive space which at the time was around 500GB.

Fortunately there is a way to further parallelize this by separating it into two
steps. The first step generates the identities and writes them to files. This step can
be run on more than one processor and uses very little RAM so that it is possible to
take full advantage of the WestGrid resources. The second step reads the identity
files and carries out any simplifications the can be done. This step can only use
a single processor for each prototype and uses much more RAM. In order to deal
with this, the second step can be run on local machines which have approximately
1-200GB of RAM. This has been set up and is currently running to obtain higher
orders in the mass expansion.

Master Integrals

In this calculation, there are two types of integrals. The first are the soft integrals
with massless and eikonal propagators, and the second are the hard on-shell integrals.
In the hard case, up to three-loop integrals appear and there end up being just six
master integrals needed as shown in Figure 7.5. In the soft case, there is the master

Figure 7.5: Master integrals for the hard loops. The solid lines are massive and
the dotted lines are massless. The names are given according to the
integration routines used.

integral eOne that is solved for general powers in addition to thousands of four-loop
master integrals with fixed powers.
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Current Results

In Chapter 6 the results were presented in terms of the colour factors CA, CF , TF

and nl. In QED, these colour factors have values of CF = TF = 1 and CA = nl = 0

so it would not make much sense to present the results here in a similar fashion. If,
however, the fact that the result here is a subset of the (N)3LO semileptonic b-quark
decay corrections is taken into account, it makes sense to keep these factors so that
future calculations can make use of this result. For completeness, the muon decay
rate is given by,

�(µ ! e⌫e⌫µ) = �

0



X
0

+

↵

⇡
CFX1

+

⇣↵

⇡

⌘

2

CFX2

+

⇣↵

⇡

⌘

3

CFX3

+ . . .

�

, (7.21)

where

�

0

=

G2

Fm
5

µ

192⇡3
, (7.22)

X
0

, X
1

are given in Chapter 6 and X
2

can be obtained from the results in Chapter
6 by setting CA and nl to zero. The factor X

3

is further parametrized by

X
3

= C2

FXF + CFTF (Xµ +Xe) + T 2

F (Xµµ +Xµe +Xee), (7.23)

where XF refers to contributions from diagrams with no muon or electron loops,
and the other Xi’s refer to contributions from diagrams with one or two muon and
electron loops.

All known results are presented here except for the case of diagrams with two
fermion loops. For simplicity, only the first two orders of those results are presented
here with the full results included in Appendix F.
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(7.28)

(7.29)

Here, the symbol a
4

refers to the multiple polylogarithm Li(4, 1
2

). The calculation
to higher orders is under way and will be published when available.

It is important to be sure these results are accurate if they are to be used to
estimate the size of the corrections to the physical decay rate. As discussed in
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Chapter 6 if the form factor ⌘A is known in the limit of equal b-quark(muon) and c-
quark(electron) masses, it is possible to extract the first two orders of the corrections
to the decay rate. The contribution to ⌘A at O(↵3

s) is actually known [73] so it should
be possible to match the results presented above to these corrections providing a
valuable check of their accuracy. Again, the authors of [73] used ↵s(

p
mcmb) which

translates to ↵(pmemµ) for muon decay. Running the coupling constant to ↵(mµ)

allows a proper comparison of both results. This procedure has been carried out and
it is found that the results here do indeed match the terms found from [73].

As another check, the leading orders of the known results were computed using a
general gauge. The disappearance of this gauge parameter provides another check of
the results. Note that only the leading orders were checked as including higher order
terms would lead to expressions so large that the available disc space is exhausted.

7.5 Estimate Of The Decay Rate

Although the calculation is not yet complete, it is possible to use the known results
to provide an estimate of the size of the physical corrections to the decay rate. In
particular, it will be useful to estimate a lower bound for the absolute value of the
correction. This lower bound would then give the smallest expected correction to
the decay rate, and ultimately GF .

To do this, at least the first order of XF will be needed. Fortunately, the form
factor calculated in [73] can provide this. In fact, it is possible to obtain the first
two orders of all terms using this method. For completeness, both orders will be
provided in Appendix F with the leading order of the XF term given here:
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Two methods will be used to estimate the physical decay rate. For the first
method, consider the ratio between the full correction at the value � = me

mµ
and the

value of the leading order of the expansion around � = 1� me
mµ

at some small value
of � say, � = 0.01 for the tree level, and O(↵,↵2

) corrections. At a value of � = 0.01
the leading order of the expansion is accurate to 1% for all three contributions. The

Tree Level NLO NNLO
Full Correction 1.000 �1.808 6.664
Leading Order 1.28⇥ 10

�9 �9.6⇥ 10

�10

1.806⇥ 10

�9

Ratio 1.28⇥ 10

9

1.88⇥ 10

9

3.69⇥ 10

9

Table 7.1: A comparison between the full corrections to the muon decay and the
leading order contribution from an expansion around � = 0 at tree level,
first order and second order in ↵.

values are shown in Table 7.1. As is, the numbers don’t seem to mean anything.
A closer look at the ratios, however, seems to indicate that the value of the ratio
increases by approximately a factor of two every time the order of ↵ is increased.
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Another important property to notice is that the full correction and leading order
always have the same sign. Assuming these trends hold, a lower bound on the ↵3

corrections would be obtained by multiplying the leading order correction, evaluated
at � = 0.01 by 3.69⇥ 10

9. The factor of two is left out so as to provide a reasonable
bound of

X
3

⇡ �5. (7.31)

This is a sizeable result and warrants a check with a different method.
The second method that will be used relies on the first two orders of the mass

expansion. Figure 7.6 shows the O(�5), O(�6), and full corrections to the muon
decay rate at all known orders. To be clear, the O(�5) correction includes just the
�5 term and the O(�6) correction includes both the �5 and �6 terms. A few general
properties are apparent from these plots. First, the corrections up to O(�5) have the
same sign as the full result. This was seen in the previous estimate as well. Second
and more importantly, the full result always lies between these two corrections and
even seems to be located close to the mid-point. In fact, the thin solid line in the
plots in Figure 7.6 shows the plot of the mid-point. As can be seen, this line follows
the full result very closely. In the NLO and NNLO plots, this estimate is within 35%
of the full result at the worst. Applying this to the (N)3LO terms gives the plot in
Figure 7.7. The estimate using this method is

X
3

⇡ �6. (7.32)

Both approximation methods discussed here give similar estimates. This shows
that the correction X

3

is very likely close to �6. Based on the analysis presented in
the second method, a conservative error is 50% giving a final estimate of

X
3

⇡ �6± 3. (7.33)

Including this correction in the determination of GF , it is found to shift the central
value between �0.02 and �0.07ppm. This is an order of magnitude smaller than the
current error in [17]. For the contribution to be large enough to get to the 0.1ppm
level, |X

3

| would need to be larger than 13 which is roughly double the estimate
given here.

In this chapter a method of calculating the O(↵3

) corrections has been presented.
Results were given for some of the contributions, particularly those that come from
diagrams with fermion loops, with the rest of the contributions still being calculated.
Using the relation between the form factor ⌘A and the muon decay rate, it was
possible to obtain the first two orders in the mass expansion of all terms contributing
to X

3

. This allowed two estimates of the physical value of the decay rate, with
both giving similar values. Although it is found that the change in GF due to this
correction is small, any future measurements that improve on the lifetime of the
muon given in [17] will need to take these O(↵3

) corrections into account.
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Figure 7.6: Plots of different order contributions to the muon decay rate at tree
level, O(↵) and O(↵2

). The dashed and dotted lines indicate the cor-
rections up to O(�5) and O(�6) respectively. The thick solid line shows
the full known results while the thin solid lines show the mid-point
between the two expansions.
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Figure 7.7: This plot shows the expansion of X
3

to first order and second order in
�. The dashed line corresponds to the O(�5) expansion and the dotted
line corresponds to the O(�6) expansion. The solid line shows the mid-
point between these two expansions and approximates the full O(↵3

)

corrections to the decay rate of a muon.
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Chapter 8

Conclusion

One of the main focuses in particle physics today is the search for new physics.
In addition to the more direct methods employed at colliders like the LHC and
Tevatron, it is possible to search for new physics by looking for its effects in precision
measurements. These high precision measurements require very precise predictions
from theory. Most importantly, the fundamental constants that the measurements
and theory depend on must be known as precisely as possible. In an effort to aid in
this endeavour high order corrections to the standard processes used to extract the
most precise values of various fundamental constants have been considered.

Another main goal of this thesis was to show how well developed techniques in
field theory could be used to produce results that have previously been difficult to
obtain. In Chapters 3 and 4 loop integral techniques were applied to problems where
historically only atomic physics methods had been used. This approach led to an
improvement of the precision of the O(↵2

(Z↵)5) contributions to the Lamb shift by
an order of magnitude. In Chapter 5 a new kind of muon decay was considered that
required the use of full solutions to the electromagnetic Dirac equation as opposed
to a perturbative approach. The results provide the theoretical foundation for a
different method of searching for a new massless boson called a Majoron. Finally,
in Chapters 6 and 7 corrections to the decay rates of two related processes in a new
kinematic configuration are considered. Although the kinematic limit considered
seems to be an inappropriate choice at first glance, a number of significant simpli-
fications are found. These features allowed an accurate description of the second
order corrections to semileptonic b-decay as well as access the (N)

3LO corrections to
muon decay.

The calculation of Lamb shift corrections was looked at in Chapter 3 using mod-
ern techniques developed in particle physics instead of the atomic theory proce-
dures that had been used previously. Compared to previous calculations of the
O �↵2

(Z↵)5
�

corrections, this approach provided a few advantages. One advantage
was the ability to use dimensional regularization allowing explicit calculation of the
✏ poles. In [18, 19] the calculations were done in the Fried-Yenni gauge to avoid the
✏ poles. This gauge has the property that individual Feynman diagrams are infrared
finite and thus the poles do not appear. Using this property, it is possible to carry
out the calculations numerically for each diagram. With dimensional regularization
and the techniques outlined in Chapter 2 the calculation could be carried out in a
general gauge.
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The calculation was reduced to the evaluation of 32 master integrals. It was
possible to obtain almost half of these master integrals analytically, improving the
previous result by close to two orders of magnitude. In addition, four new analytic
results for individual diagrams were found. These improvements give a full correction
to the energy of

�E =

↵2

(Z↵)5

⇡n3

⇣ µ

m

⌘

m[�6.86100(4)], (8.1)

as compared to

�E =

↵2

(Z↵)5

⇡n3

⇣ µ

m

⌘

m[�6.861(1)], (8.2)

from [18, 19].
Finally, the set of master integrals providing this result appears in the calculation

of the same order correction to the bound electron g-factor. Re-calculating the
corrections to the Lamb shift provides an important check of the methods used as
well as values of the master integrals.

In Chapter 4 the leading order contribution at all orders in Z↵, known as the
Breit correction, was reproduced as a starting point. A procedure for computing the
O �↵(Z↵)5� corrections was then described following the same methodology used in
the Lamb shift. Work is continuing on evaluating the contributions at O �↵(Z↵)5�.

The goal of Chapter 5 was to provide the theoretical background needed by
experiments to search for a new particle called the Majoron. The introduction of
the Majoron comes from considering the possibility of neutrinos having a Majorana
mass. Building this into the SM theory by assuming a global symmetry breaking
causes the Majoron to emerge.

With the Majoron interacting very weakly with SM particles, it is argued that
the best method of searching for them is in the high energy region of the electron
energy spectrum in bound muon decays. In this region the SM decay of the muon
has a suppression proportional to (Eµe � Ee)

5. It is shown that the Majoron decay
does not follow this same suppression and is instead proportional to (Eµe�Ee)

3. As
well, by expanding to leading order in ↵ it was argued that a perturbative calculation
would not provide an accurate estimate of the electron spectrum. For this reason,
the calculation of the the spectrum had to include effects such as the finite size of
the nucleus, full relativistic wave functions and the recoil of the nucleus.

Using data from the SINDRUM II collaboration, an upper limit of the branching
ration of the decay µ ! eJ was found to be

B(µ ! eJ) < 3⇥ 10

�3

(90%C.L.). (8.3)

This is approximately three orders of magnitude larger than the current limit

B(µ ! eJ) < 8.4⇥ 10

�6. (8.4)

As the SINDRUM II data is unable to produce a more stringent limit, future exper-
iments Mu2e and COMET were considered to estimate the limits they may be able
to provide for the Majoron branching ratio. It was found that, with current design
parameters, it may be possible to match the current limit and an upper limit of

B(µ ! eJ) < 1.9⇥ 10

�5 (8.5)
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was estimated for both experiments. An increase in sensitivity with proposed up-
grades would likely enable the experiments to place a more stringent limit on the
branching ratio than is currently available. In order to allow these upper limits to
be extracted from the data in the future, fits to the endpoint spectra for the three
nuclei considered: aluminum, titanium and gold were provided.

In Chapters 6 and 7 the related decays of a b-quark to a c-quark and leptons and
a muon to electron and neutrinos were considered. The O(↵2

s) corrections to the
b-quark semileptonic decay rate were presented. These corrections were previously
computed numerically and analytically in [61] and [72] respectively. The approach
used was to compute the corrections in the opposite limit to that of [72], namely
around � = (1� me

mµ
) ⇡ 0.

This new kinematic configuration provided some surprising simplifications to the
calculation as compared to that of [72]. One of the first simplifications was the fact
that the purely hard region (the region where all loop momenta are large) does not
contribute. This has the consequence of removing three-loop on-shell integrals from
the calculation. In fact, the full calculation was reduced to five different integrals
with at most two loops.

Another advantage of carrying out the calculation in this limit is that the expan-
sion in � converges well to the full result. Combined with the fact that the leading
order in the expansion is proportional to �5, this allowed a confirmation of the ex-
pansion in [72] with very good accuracy. The results were even able to reproduce
an unusual local maximum in the mass spectrum of the contribution from diagrams
with a b-quark loop that appears around � = 0.8. In the end the result was within
2.5% of the full result at a value of � = 1 demonstrating the fast convergence of this
expansion.

Perhaps the most important consequence of this calculation is that the simplifi-
cations and convergence provide a method of computing the next order in the decay
rate. Indeed, this calculation led directly to the muon decay rate calculation in
Chapter 7 as all of the simplifying properties are general and hold at all orders.

In Chapter 7 it was argued that the O(↵3

) corrections to the muon decay rate
could very well be of the same size as the linear mass correction at order ↵2 found
in [72]. Consequently, the (N)

3LO correction will be important in a proper deter-
mination of the SM parameter GF . During this calculation it was found that the
purely soft integrals (when all loop momenta are small) do not fully benefit from the
nesting procedure that was implemented in the b-decay calculation. This makes the
calculation more difficult because, even with IBPs, a large number of master integrals
must be calculated. As well, the expansion of these five-loop diagrams produces a
large number of terms causing the limits provided by the computing hardware used
to be a limiting factor. Nevertheless, results for diagrams with one and two fermion
loops have been provided. Combining these with results extracted from the O(↵3

s)

corrections to the form factor ⌘A made it possible to provide an estimate for the full
corrections at the physical value of me

mµ
of

X
3

⇡ �6± 3. (8.6)

This was seen to change the value of GF by between -0.02 and -0.07ppm. Although
this is an order of magnitude smaller than the current error, this result will be
important in any future measurements that improve on the precision of the lifetime
of the muon.
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With these results, the effectiveness of the methods used has been shown. The
methods used are not specific to the problems considered so it will be possible in the
future to compute other required high order corrections with them. For example,
the method of computing the bound electron g-factor and Lamb shift can be used
to compute higher order corrections of both effects. It should be possible to use the
master integrals from the O(↵2

(Z↵)5) contribution to the Lamb shift to compute
the similar order correction of the bound electron g-factor. In addition, the methods
used in the Lamb shift calculation can be used at order O(↵3

(Z↵)5). One of the
main difficulties in that calculation would be the evaluation of the four loop master
integrals once the reduction is complete.

A major portion of the contributions to the O(↵3

s) corrections to semileptonic
b-quark decay will be complete when the muon calculation is finished. It should also
be possible to compute the non-abelian and massless loop parts. The three and four
gluon vertices provide a complication making these diagrams the most difficult part
of the O(↵3

s) corrections.
This thesis has concentrated on high order corrections to a few of the fundamental

constants in the SM. It has been shown how the application of methods based on
loop calculations can be successfully applied to problems in atomic physics. As well,
the calculation of heavy to light decays similar to the decay of a muon has been made
possible by considering a new kinematic configuration. The methods developed in
this thesis will help searches for new physics by allowing a comparison of ever more
precise theoretical predictions and experimental results.

The endeavour to probe the standard model at high precision is one that gets
more and more difficult with every step forward. It is exciting to be able to provide
methods that allow the state of the art measurements of fundamental constants to be
pushed beyond their current limits. I hope the methods presented here will continue
to be useful in providing a means to make these steps forward however small or large
they may be.
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Appendix A

Lamb Shift

A.1 Master Integrals

The Lamb shift calculation can be reduced to the evaluation of 32 master integrals.
The topologies are shown here along with the results for each master integral.

I1,2 I3,4,5 I6
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I12

I32

Figure A.1: Master integrals for the Lamb shift. Solid lines correspond to massive
propagators, dashed lines correspond to massless propagators and the
double dotted lines correspond to the ph3D propagator. A dot on a
line indicates higher powers of that propagator.

In all of the above results, it should be assumed that an expansion in ✏ was
carried out and that higher order terms exist. The only terms where this does not
apply are the results where the full dependence on ✏ is shown.
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Analytical results for a few of the diagrams were obtained which did not fit in
Table 3.1. For completeness, they are presented here.
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Appendix B

calc3 setup and Use

For the calculation of the Lamb shift and bound g-factor corrections a set of packages
is used to generate, identify, reduce, and integrate the expressions that appear. The
package qgraf [76] was used to generate the diagrams. The output was fed to the
packages q2e and exp [77, 78] to express the diagrams in terms of FORM [79] readable
code. From here, a list of contributing integrals is fed into the Laporta reduction
package FIRE [29] so that the result can be expressed in terms of a small number
of master integrals. The integration of these master integrals is done with custom
made routines. The purpose of this appendix is to describe the setup and use of
these programs in the context of the Lamb shift and g-factor.

B.1 Setup

The first step in setting up the package is to obtain and install the executables that
are needed. qgraf can be obtained at http://cfif.ist.utl.pt/~paulo/qgraf.
html and needs to be compiled with a Fortran compiler. The programs q2e and
exp are private programs that are needed for expansions and FORM code generation.
These executables should be in a directory that the $PATH environment variable
points to so that they can be run from any directory.

Next, the calc3 directories need to be set up. The top directory is calc3 and
can be named as desired. Inside this directory are folders containing FORM files for
integration. Three of these are the packages SHELL3, matad and mincer. The other
three folders are common, generic, and problems. The common folder contains FORM
routines that are common to all problems such as declarations, averaging routines
and one-loop integrals. The generic folder contains the FORM files that run the cal-
culation and sum the diagrams. Finally, the problems folder contains the problems
that one wants to calculate using this setup each in separate folders. In order to
find the files in all of these folders, the environment variable FORMPATH should point
to these folders. The folders that are required are common and the folder where the
topology integration files are kept (these will be discussed in the next section). If
the packages SHELL3, matad and/or mincer are going to be used, FORMPATH should
also point to these folders. For matad and mincer, it should point to the prc and
inc folders. A convenient way to implement this is to create a custom exactable
that will set the form path before running form.

For the calculation of the Lamb shift and bound g-factor, the Mathematica pack-
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age FIRE is also used. This can be downloaded from http://www-ttp.particle.
uni-karlsruhe.de/~asmirnov/FIRE.htm and also requires the Mathematica pro-
gram IBP.m found at http://www-ttp.particle.uni-karlsruhe.de/~asmirnov/
Tools-IBP.htm. These files should be installed in a directory accessible by the local
Mathematica installation or in the directory where FIRE will be run from.

B.2 Problem Folder

The problems folder contains all of the problems that will be solved using this setup.
Inside the problem folder (for convenience, it is named gfactor here), there are
several files and directories that need to be created. First, qgraf requires a model,
style and qgraf.dat file. Instructions for how to create the model and .dat files are
included with qgraf. The style file should be the q2e.sty file that is included with
the source code for q2e. This ensures that the output from qgraf is in the proper
format for use by q2e. At this point, it should be possible to run qgraf.

The next step is to run q2e with the list of diagrams generated by qgraf. In
order to properly run q2e though, a configuration file needs to be created along with
a file defining the propagators and vertices in the problem. The configuration file
simply points to the propagator and vertex files and gives q2e some specific options.
The file used for the g-factor calculation looks like

* q2e.propagator_file ~/calc3/problems/gfactor/gfactor.prop
* q2e.vertex_file ~/calc3/problems/gfactor/gfactor.vrtx
* q2e.mass fe:M1
* q2e.anti_fermion fe:fE
* q2e.closed_fermion_loop fe:nh
* q2e.expand_naive Q2

Here, the qgraf field fe is given a mass M1 and q2e is told that its anti-particle
partner is named fE. As well, there are rules saying that any closed fermion loop
consisting of the field fe should be multiplied by the factor nh and the variable Q2 will
be expanded. The vertex and propagator files (gfactor.vrtx and gfactor.prop)
define how q2e should handle the propagators and vertices that appear in the di-
agrams. This defines the functions for the propagators and vertices used in FORM
along with their arguments.

In the vertex file, the basic definition of a vertex is

{fe,fE,ph:*FT<spin_line>(<lorentz_index_particle_3>)|||}.

This defines the vertex between an electron and photon. The option <spin_line>
is substituted with the number corresponding to the fermion spin line so that traces
can be taken properly in FORM. The <lorentz_index_particle_3> option gives the
Lorentz index of the third particle in the list (in this case the photon) as required
by the Feynman rules. After this definition, other arguments can be included (for
example a function for colour arguments in QCD). The options for this file can be
found in the documentation that comes with the exp and q2e package. The propa-
gators are defined in much the same way.
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{fe,fE:*FT<spin_line>(<momentum>)|||}
With these files defined q2e can be run with the command

q2e -q qlist. -c gfactor.conf -do gfactor.2.dia -eo gfactor.2.edia.

This command specifies the qgraf output file that will be read into q2e and the con-
figuration file. The program produces two files gfactor.2.dia and gfactor.2.edia
that contain FORM folds and a simplified list of each diagram respectively. The 2 refers
to the two-loop diagrams and serves as a way to distinguish different orders of the
calculation.

Before these files can be run through exp, two additional files are needed. The
first of these is a file that should be named GLOBAL and will be added to every dia-
gram source file. It contains various FORM folds that carry out operations specific to
the problem being considered. In this set-up, the only required fold is the GLOBAL
fold. This is where the preprocessor definitions and exp variables are set. As an
example, the GLOBAL fold for the factor calculation is:

*--#[ GLOBAL :

#define GAUGE "xi"
#define NUMEXTMOM "3"
#define LOOPS "2"

* exp.loops 2
* exp.problem gfactor
* exp.form_command startform3
* exp.formset_file form.set
* exp.makefile_path ~/home/calc3_cz/problems/gfactor/make
* exp.source_file_path ~/home/calc3_cz/problems/gfactor/src

*--#] GLOBAL :

Other possible folds include TREAT0, TREAT1,..., TREAT4, TREATMAIN, TREATEXP,
TREATCOL and TREATEXP. They are called at various times during the calculation and
are used to include problem specific procedures like renormalization, special projec-
tors, expansions, etc. The order of most calls to these folds can be found in the file
generic/treat or common/treat. After q2e is run, this file, typically named GLOBAL,
should be combined with the .dia file generated by q2e such that the GLOBAL file
appears first.

The second file required is a file that defines the topologies in the problem. This
allows exp to map each diagram to a topology so that the proper integration routines
can be used. For some problems, pre-defined topologies may be able to be used (e.g.
the SHELL3 package comes with a file for this), but it is also possible to create a new
list or add to an existing list. Starting with any topology file (even an empty one),
exp can be run and will assign topologies to the diagrams until it is unable to fit
a diagram to a topology. exp will print out the information for the diagram it is
unable to fit to a topology. The topology file can then be built up by adding new
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definitions until all diagrams can be mapped to a topology.
The topologies are defined in the following way:

{name; n_lines; n_loops; n_external_mom; n_masses; scale_info;
line_info; mass_distribution}
For example, the general two loop self-energy topology corresponding to Figure B.1

Figure B.1: An example two-loop topology. In this appendix it is referred to as
twog.

would look like,

{twog;5;2;1;1;;(q1:1,2)(p1:1,3)(p2:4,1)(p3:2,3)(p4:4,2)(p5:3,4)
;10011;x0011;100x1}
Here, no scale information is required so that part is left blank. The line information
is formatted such that the first entry is the external momentum and the following
five entries define the internal lines. In general, external momenta should be labeled
qi and internal momenta should be labeled pi. In this example, three mass distribu-
tions are given. The first states that the first, fourth and fifth lines have mass M

1

and the others are massless. In the next two mass distributions, the x means that
the corresponding line is not present. Finally, one can run exp using the command

exp -t topsel.gfactor -ed gfactor.2.edia -dmm gfactor.2.dia -v3

where topsel.gfactor is the topology file and the other two are the .edia and
.dia files generated by q2e. The output is a source file for each diagram containing
everything needed for a FORM definition of the diagram and a make file that will carry
out the calculation. These files are written to the directories defined in the GLOBAL
fold of the GLOBAL file.

The final thing needed to calculate the diagrams is a topology file for each topol-
ogy defined in the topsel.gfactor file. These contain momentum definitions, other
expansions that are needed and calls to the integration routines that will be used. In
principle, the calculation is ready to go now provided all of the integration routines
are in place. The calculation can be run at this point by executing make with the
makefile that is created.

B.3 Lamb Shift and g-factor Specific Setup

Some extra steps were needed for the calculation of the Lamb shift and bound g-
factor. The first of these is the routing of momentum in the g-factor diagrams.
Occasionally the momentum from the external photon (magnetic field) will be routed
through the diagram such that it flows through the photons connecting the electron
and nucleus. Since the ph3D propagator is being used for this part of the diagram,
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the momentum that flows through it cannot be changed. The solution for this is to
re-route the momentum. A short perl script has been created to automatically run
through the diagrams and fix the problem. There are only one or two situations in
which it is unable to route the momenta properly so the user must go into the files
and fix these diagrams manually. The script has been set up to let the user know
which diagrams are successful and which need to be changed manually.

Although the program can be successfully run at this point, not much will be
done. Files need to be created that tell FORM what to do with each topology. These
files should have the same name as the topology that they describe. Continuing with
the example from the previous section, the file would be named twog. This file is
called after the setup has finished with the other routines that are automatically run
(e.g. Feynman rules, traces, expansions, etc.).

Eventually a reduction routine will be run on the integrals that appear so the
topology files are set up to print a list of the integrals required if the preprocessor
variable LAPORTA is defined. This list can the be used in the Mathematica package
FIRE to carry out the Laporta reduction. Three different files are used in FIRE. One
to define the integral, another one to generate the identities and one to write the
reduction of each integral in the initial list in a FORM compatible format. As an
example of how these files are set up, consider the N53d integral from Figure 3.5
that is reproduced here for convenience.

Figure B.2: The topology, N53d, required for the ↵(Z↵)5 contribution to the
Lamb shift.

First, the integral is defined and the information that FIRE needs to carry out
the reduction is generated. These steps are put into a single file named def_N53d
reproduced here.

Get["FIRE_3.4.0.m"];
Get["ibp.m"];

Internal = {k1,k2};
External = {p};
Propagators={k1^2,k2^2,k1^2+2*p*k1,k1^2+k2^2+2*(k1+k2)*p+2*k1*k2,

2*p*k2};
PrepareIBP[];
reps={p^2->-1};
startinglist={IBP[k1,k1],IBP[k1,k2],IBP[k1,p],IBP[k2,k1],IBP[k2,k2],

IBP[k2,p]}/.reps
RESTRICTIONS={{0,0,0,-1,0},{0,0,0,0,-1}};
(* SYMMETRIES={{}}; *)
Prepare[];
SaveStart["N53d"];
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The first two lines load the routines that will be used into Mathematica. Next, the
internal loop momenta and the external momentum is defined. Following this, the
propagators are given. The PrepareIBP[] command then solves the system of linear
equations. Note that for this step to work properly, the terms in the propagators
must form a linearly independent system of equations. Occasionally this requires the
addition of irreducible numerators to the list. The list of reps is composed of rules
for replacing certain terms. In this example, the square of the external momentum
is set to �1. Next, the IBP identities are defined using the function

IBP[k1,k2] =

@

@kµ
1

kµ
2

. (B.1)

The restrictions and symmetries of the integral are then defined and tell FIRE when
an integral is scaleless or symmetric with respect to a rearrangement of propagators.
The restrictions are lists with a zero when a propagator can appear and �1 when
the propagator is absent or appears in the numerator. They should be defined such
that the integral with the allowed propagators is zero. Careful consideration of the
restrictions and symmetries can greatly simplify and speed up the reduction. Finally,
the system of equations is prepared with Prepare[] and the information is saved to
a file called N53d.start.

Next, the IBP identities are applied to the list of integrals and saved for later
use. The file used for this is named do_N53d and is reproduced below

Get["FIRE_3.4.0.m"];
LoadStart["N53d"];
Burn[];

rnum = 0;
tlist = {};
For[ii = 1,ii < rnum,ii++,tlist=

Append[tlist,"N53d."<>ToString[ii]<>".tab"]];

If[ 0 =!= Length[tlist],
LoadTables[tlist];

];

input = OpenRead["./N53d.list"];
expr = Read[input,String];
evlist = {};

While[expr =!= EndOfFile,
expr = StringReplace[expr,"\n" -> ""];
expr = ToExpression["{"<>expr<>"}"];
evlist = Append[evlist,{0,expr}];
expr = Read[input,String];

];
Close[input];

EvaluateAndSave[evlist,"N53d."<>ToString[rnum]<>".tab"];
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Again, the FIRE routines need to be loaded, but the IBP routines are not required
this time because the identities have already been generated. Next, the start file
that was created at the end of the previous file is loaded and the reduction is primed
using the command Burn[]. This performs some initial setup and optimization for
the calculation. The next few arguments look for previously generated tables of iden-
tities. This allows new identities to be appended to files that already exist without
re-computing the old ones. The final preparation needed before the identities can
be evaluated is to read in the list of propagator powers that was created by running
FORM. This is accomplished with the lines from “input =” to “Close[input]”. The
While loop is used to generate the list in the format that is used by FIRE. The file
N53d.list had the propagator powers in the form a1,a2,a3,a4,a5 where as FIRE
needs them in the form {n,{a1,a2,a3,a4,a5}}. The value n corresponds to the
integral number if more than one integral is being evaluated. Only one integral is
considered at a time, so this is set to zero. Finally, the IBP identities are evaluated
and saved to a table with the command EvaluateAndSave.

This provides the results, but for them to be useful they are needed in a FORM
readable format. The table of solutions written at the end of the previous file is not
in a format that is useful. As well, the dimension is set to D = 4 � 2✏ dimensions
so the results need to be expanded in a series in ✏. This is accomplished with a file
named write_N53d.

Get["FIRE_3.4.0.m"];

fun = "N53d";
inlist = "N53d.list";
intable = "N53d.0.tab";
outtable = "N53d.inc";
EPLIM = 10;

LoadStart[fun];
Burn[];
LoadTables[intable];

input = OpenRead[inlist];
output = OpenWrite[outtable];

expr = Read[input,String];
cnt = 1;
While[expr =!= EndOfFile,

expr = StringReplace[expr,"\n" -> ""];
expr = ToExpression["{"<>expr<>"}"];
lhs = "id "<>fun<>ToString[expr]<>" = ";
lhs = StringReplace[lhs,{"{" -> "(", "}" -> ")", ", " -> ","}];

rhs = F[expr]/.G[a__] :> ToExpression[fun] @@ a;
rhs = rhs/.d -> 4 - 2*ep;
rhs = Collect[Normal[Series[rhs,{ep,0,EPLIM}]],ToExpression[fun][___],acc];
rhs = ToString[InputForm[rhs]];
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rhs = StringReplace[rhs,{"[" -> "(", "]" -> ")", ", " -> ","}];

WriteString[output,lhs<>rhs<>";\n"];
If[0 == Mod[cnt,100],

WriteString[output,".sort(polyfun=acc);\n"];
];
cnt++;
expr = Read[input,String];

];
Close[input];

If[20 < Mod[cnt,100],
WriteString[output,".sort(polyfun=acc);\n"];

];
Close[output];

For this, the package FIRE and access to all of the files that have been created is
required. Running Burn[] allows the tables of results to be loaded. The While loop
looks rather complicated and works as follows. First, the list of propagator powers
from N53d.list is read in and saved to expr. This list is written in the form

id N53d(a1,a2,a3,a4,a5) =

for eventual output to a FORM file. Next, the FIRE functions F and G are used to
solve for the integral in terms of the set of master integrals produced by the IBP
reduction. After this, the result is expanded in a series about ✏ = 0 so that FORM
does not run into any trouble with denominators. Finally, the output is written to
a file called N53d.inc. Note that .sort statements are also included for FORM after
every 100 replacements. This helps to optimize the evaluation in FORM.

In the end, a file called N53d.inc is generated that can be used in the topology
file. The result of the diagram being calculated can now be expressed in terms of
only a few master integrals. From here, the final step is to evaluate the master
integrals and plug in the results.
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Appendix C

Semileptonic b-decay

C.1 Results

The mass expansion for the O(↵2

s) corrections to the semileptonic decay of a b-quark
into a c-quark is presented here. The parameter � is defined by � = 1 � mc

mb
. All

orders obtained have been included even though the full result is limited to order �11
because of the non-abelian contribution XA. The notation follows that of Equation
6.40.
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C.2 Diagrams

D01 D02 D03 D04 D05

D06 D07 D08 D09 D10

D11 D12 D13 D14 D15

D16 D17 D18 D19 D20

D21 D22 D23 D24 D25

D26 D27 D28 D29 D30

D31 D32 D33 D34 D35

D36 D37 D38 D39

Figure C.1: All second order diagrams that needed to be calculated for the
semileptonic b-decay. The wavy line in each diagram indicates the
neutrino loop while the thick lines are b-quarks, the thin lines are
c-quarks, the looped lines are gluons and the dotted lines are ghosts.
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Appendix D

A Majoron Model

The purpose of this appendix is to introduce a model that results in a Majoron.
Models such as this one have been excluded by the invisible Z0 decay width mea-
surements. It is possible, however, to create supersymmetric models that are able to
circumvent this limit so that the Majoron is still viable. This theory was developed
in [80].

A model with two neutrino states labeled ⌫L and ⌫R is considered. They are
arranged such that they are part of a doublet and singlet respectively,  L = (⌫L e

�
L ),

⌫R. The charge conjugate partners are ⌫CR = C(⌫L)T and ⌫CL = C(⌫R)T , where C is
the charge conjugation matrix i�2�0. A Higgs doublet, �, and an additional Higgs
singlet, ', are introduced and have couplings to the neutrinos given by

L
1

= �h
1

⇣

 L�⌫R + ⌫R�
† L

⌘

, (D.1)

L
2

= �h
2

⇣

'⌫CL⌫R + '†⌫R⌫
C
L

⌘

. (D.2)

Note that only the right handed neutrino gets a Majorona mass in this model.
When both � and ' have non-zero vacuum expectation values the mass terms can
be written as

Lmass = �
⇢

�

⌫L, ⌫
C
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⌫CL
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, (D.3)

where m is the Dirac mass and M is the Majorana mass. This reconstructs the
neutrino parts of L

1,2 when multiplied out and the equality ⌫L⌫R = ⌫CL⌫
C
R is used.

The equality is realized by explicitly multiplying out the matrices on the right hand
side of the equation. Using in the definitions of the conjugate fields, the right hand
side becomes

⌫CL⌫
C
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h

C(⌫R)T
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(D.4)
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T (D.7)
= (⌫R)

T
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= (⌫L⌫R)
T
= ⌫L⌫R. (D.9)

Now, the physical states and their masses have to be found. This is done by
diagonalizing the mass Lagrangian to find the mass eigenstates and eigenvalues.
Assuming that M � m, the eigenvalues are approximately M and m2

M . Note that
this gives a natural argument as to why the neutrino mass is so much smaller than
the Dirac mass m. This is known as the seesaw mechanism originally proposed in
[81] and is a possible explanation for the observed smallness of the neutrino masses.
The physical states are found to be

⌫ 0L ⇡ ⌫L � m

M
⌫CL , ⌫ 0R ⇡ ⌫CR � m

M
⌫R, (D.10)

⌘R ⇡ ⌫R +

m

M
⌫CR , ⌘L ⇡ ⌫CL +

m

M
⌫L. (D.11)

The fields ⌫ = ⌫ 0L + ⌫ 0R = ⌫C and ⌘ = ⌘R + ⌘L = ⌘C are self-conjugate Majorana
fields with masses m2

M and M respectively.
The fields ⌫ and ⌘ can be used to determine the couplings to different particles

in the SM. The first changes are the W and Z0 couplings to neutrinos.
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The scalar Higgs also couples to the neutrinos. Since the Higgs field has a non-zero
vacuum expectation value, it can be written as

' =

1p
2

(h'i+ ⇢+ iJ). (D.17)

This gives the mass M =

h2p
2

h'i while the fields ⇢ and J are a massive Higgs and
a massless Goldstone boson called the Majoron. Only the Majoron couplings with
fermions are used in this thesis, so the massive Higgs field will be ignored in the rest
of this discussion. By construction, the Majoron only couples to the neutrinos with
the Lagrangian

LJ�neut ⇡ ih
2p
2

J


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5
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5
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. (D.18)

D.1 Fermion Couplings

The Majoron only couples to the neutrinos, so the only way for it to couple to
fermions is through the loop diagrams in Figure D.1. The effective coupling intro-
duced by these two diagrams is needed to calculate decays such as µN ! eNJ . Note
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Figure D.1: The tree level diagrams for fermion couplings to the J field.

that these are not allowed decays. They are more like extended vertices and will be
used to define an effective Feynman rule for a ffJ vertex. Only the lepton couplings
will be considered as the quark couplings are not used in this thesis.

Consider first the diagram with the Z0. The amplitude of this diagram is given
by
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where the exponents n,m are used to include all possible cases of neutrino couplings
(⌫⌫, ⌫⌘, ⌘⌘) to the Z0 and J respectively and m

1

and m
2

refer to the masses of
the neutrinos in the loop. They are left general until the sum over all possible
combinations is carried out. The trace is taken to sum over the fermion polarizations
in the loop. Looking at the respective couplings, the only possible cases are
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, (D.20)

so that m+ n = 2. Collecting like terms and simplifying the matrix element gives
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The effective coupling wanted is between leptons and and a Majoron. To facilitate
this, the limit k ⌧ MZ is taken. The Z0 propagator ends up being gµ⌫/M2

Z , so the
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matrix element becomes
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For simplicity, consider just the integral. The trace is given by
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so that the integral becomes

I(1, 2) =

ˆ
ddp

1

(2⇡)d
4(pµ

1

(m
2

�m
1

)� kµm
1

)

(p2
1

�m2

1

)

⇥

(p
1

+ k)2 �m2

2

⇤ . (D.26)

The 1 and 2 in I(1, 2) refer to the mass terms m
1

and m
2

respectively. The integral
can be computed by introducing a Feynman parameter,
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Now, in dimensional regularization integrals with an odd power of the momentum
being integrated appearing in the numerator are zero. This gets rid of the pµ term
so that the integral becomes
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where k2 has been set to zero as the Majoron is massless. The term that is actually
needed is the sum of possible neutrino contributions, and the only part of the matrix
element that depends on this is the integral just computed. Summing the different
contributions gives I(⌫, ⌫) � I(⌫, ⌘) � I(⌘, ⌫) + I(⌘, ⌘), where the (�1)

n term from
the matrix element has been taken into account. Carrying out the sum gives
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Note, as would be expected, there is no ✏ pole and the result is symmetric with
respect to m⌫ ,m⌘. Finally, the fact that m⌘ � m⌫ is used to let m⌫ ! 0 to obtain
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Using this in the matrix element from Equation D.22 gives
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Now, k = ` � `0, where `, `0 are the four-momenta of the incoming, outgoing lep-
tons respectively. The Dirac equation can be used to cancel or rewrite some of the
momenta in terms of masses so that the matrix element becomes
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This matches the expression found in [80] and defines the Z0 contribution to the
coupling between leptons and a Majoron.

The full coupling requires the additional contribution from the diagram with the
W in Figure D.1. The matrix element from this diagram is
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Similar to the previous calculation, the limit k ⌧ MW is taken so that the W
propagator is essentially a point interaction. This gives
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Here, there is no trace taken, but the �
5

structure effectively gives the same result
as before. With (1 � �
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) = 0 only terms in the integral that have a single
gamma matrix need to be evaluated, so the only surviving terms in the integral are
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This integral is �µ Iµ

4

where Iµ is given in Equation D.32. Substituting the expression
for Iµ and using the Dirac equation to rewrite the factors of /̀ and /̀0 gives
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Finally, combining the results from Equations D.39 and D.48 gives the effective
vertex between leptons and the Majoron,

L =

GFh2
16⇡2

m⌫mfu�5uJ. (D.49)

D.2 The Model With n Flavours

The process that will be computed using this model is the decay of a muon into
an electron and Majoron in the field of a nucleus. Thus, a decay channel must
be found that allows a muon to decay into an electron and Majoron. In order to
provide a channel like this, the model needs to have at least two flavours of leptons.
The addition of extra flavours causes the mass matrix elements in Equation D.3 to
become n⇥ n matrices, where n is the number of flavours. An arbitrary number of
flavours is considered here instead of generalizing to just two or three.
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With more than one flavour of neutrino, the see-saw mechanism is more complex.
The mass matrix that must be diagonalized is

M⌫
=

✓

0 mD

mT
D MM

◆

, (D.50)

where mD,MM are n⇥ n matrices with n being the number of flavours.
This matrix can be diagonalized by a unitary transformation U via UTM⌫U . The

transformation matrix then gives the relation between the mass and weak eigenstates
of the neutrinos in the theory via

✓

⌫0L
⌫0CR

◆

i

= U⇤
ijnLj ,

✓

⌫0CL
⌫0R

◆

i

= UijnRj , (D.51)

where ⌫L,Ri are the weak eigenstates. Not much is known experimentally about the
elements of the neutrino mass matrix, so it is best to consider the elements to be
general and complex with the only condition being that the matrix is symmetric. The
elements of the matrix can likely be further constrained using neutrino oscillation
data, but these effects won’t be considered here. The interaction Lagrangians with
the J and W⌥ are given by

LJ
int = � igW t�

4MW
Jni



�
5

�

mni +mnj

�

✓

1

2

�ij � ReCij

◆

+i
�

mni �mnj

�

ImCij

⇤

nj (D.52)

LW⌥
int = � gW

2

p
2

Wµ`iB`ij�µ(1� �
5

)nj + h.c., (D.53)

where Cij =

Pn
k=1

UkiU⇤
kj and B`ij =

Pn
k=1

V `
`ij

U⇤
kj are introduced, with V ` the

unitary matrix responsible for diagonalizing the lepton (e, µ, ⌧) mass matrix and
t� = tan

h�i
h'i . It is interesting to note that, if Cij is diagonal, there is no mixing

between the lepton flavours.
Of interest is the Majoron coupling to leptons, so the matrix element of the

diagram in Figure D.2 is what is required.

Figure D.2: The only (first order) diagram contributing to the lepton coupling to
the Majoron.

Following a procedure similar to the previous section, the coupling its found to
be

L`1`2
int = `

1

[g
1

(1� �
5

) + g
2

(1 + �
5

)] `
2

J. (D.54)

120



Since the actual couplings are not known, all dependence on mass, gW , t� , etc., is
grouped into the two distinct coupling constants g

1

and g
2

.
This model provides an effective coupling between fermions and a Majoron. Al-

though this particular model has been ruled out by experiments, the same coupling
appears in supersymmetry models that include Majorons. For this reason, the cou-
pling can be used to compute the Majoron decay rate in Chapter 5.
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Appendix E

O(↵3) Renormalization

In order to compute the (N)3LO corrections to muon decay, the corresponding O(↵3

)

renormalization constants are required. These have been computed in [82] and ex-
pansions were given in the limit m

M = 0. Unfortunately, in this limit, the integrals
are difficult and needed to be computed numerically. As well, it would be quite a
challenge to re-expand the results in the limit that is needed, � = (1 � m

M ) = 0.
For this purpose, the required renormalization constants are computed here. The
method followed is the same as in [82] with the exception that the expansion is
carried out in the limit � = 0.

E.1 Method

The calculation of the wave function and mass renormalization constants relies on a
relation between self-energy diagrams and the constant of interest. These formulas
have been derived in [83, 84] and are given by

ZOS
m = 1 + ⌃

1

(M2

q ,Mq), (E.1)
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��1

= 1 + 2M2
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q ,Mq), (E.2)

where ZOS
m and ZOS

2

are defined by

mq,0 = ZOS
m Mq, (E.3)

 
0

=

q

ZOS
2

 , (E.4)

and the OS refers to the on-shell scheme. In these expressions, ⌃

1

and ⌃

2

are
components of the self-energy contributions of the particle q with momentum and
mass q,Mq respectively. They are given by the decomposition

⌃(q,mq) = mq⌃1

(q2,mq) + (/q �mq)⌃2

(q2,mq). (E.5)

This decomposition of the self-energy of q can be used to directly calculate the
renormalization constants. This is done by multiplying Equation E.5 on the left by
the projector /Q+mq

4m2
q

, where q = Q(1 + t) and t is a small parameter, and taking the
trace

Tr


/Q+mq

4m2

q

�

⌃(q2,mq) = Tr
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4mq
⌃

1
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Here, Q2

= m2

q has been used. Expanding to first order in t gives
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This shows that it is possible to compute the renormalization constants from self-
energy diagrams by expanding the external momentum q to first order in t. The
leading order term is then equal to ZOS

m and the term linear in t is equal to
�

ZOS
2

��1.
The main purpose of carrying out this calculation is to obtain the terms in the

renormalization constants that depend on the expansion parameter � =

⇣

1� me
mµ

⌘

.
These terms appear in diagrams that have an electron loop. The only treatment
required, differing from other diagrams in the calculation, is expanding the electron
mass in the propagators using me = mµ(1��). With this expansion, the calculation
can be reduced using IBP to 15 three loop master integrals.

E.2 Results

The full results for the O(↵3

) corrections to ZOS
m and ZOS

2

are presented here. The
leading orders in the � expansion have been checked with known results [82] and the
O(↵) and O(↵2

) results have been reproduced. All results agree well with the known
expansions.

To facilitate the parameterization of the muon decay results, contributions from
a diagram with an electron loop or muon loop are indicated with factors of ne

or nµ respectively. In the following expressions, the (3) denotes the third order
corrections ,a
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is the multiple polylogarithm Li
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Appendix F

Full Muon Results

The full known O(↵3

) corrections to the muon decay rate are presented here. The
decay rate is given by

�(µ ! e⌫e⌫µ) = �
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X
0

, X
1

are given in Chapter 6 and X
2

can be obtained from the results in Chapter
6 by setting CA and nl to zero. The factor X

3

is further parametrized by,

X
3

= C2

FXF + CFTF (Xµ +Xe) + T 2

F (Xµµ +Xµe +Xee), (F.3)

where XF refers to contributions from diagrams with no muon or electron loops,
and the other Xi’s refer to contributions from diagrams with one or two muon and
electron loops.

The full known results are
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F.1 Results From ⌘A

In Chapter 7 the extraction of the first two orders of the mass expansion for cor-
rections to the muon decay rate is discussed. For completeness, the results are
presented here. Note that the calculation is done with me = mµ, so the Xµ,e terms
are combined into a single result.
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