
Data-Driven Methods in Pipeline Leakage Detection

by

Iman Amini

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Control Systems

Department of Electrical and Computer Engineering

University of Alberta

© Iman Amini, 2021



Abstract

Nowadays, leakage detection is of great importance as pipelines are the major

means of transporting hydrocarbon fluids and gases. In this thesis, we pro-

pose two methods based on supervised learning and filtering to deal with the

pipeline leakage detection problem.

First, a novel two-stage detection method is introduced to differentiate

normal, leakage and transient conditions of pipelines. In this method, feature

vectors are constructed from the flow rate and pressure using leakage char-

acteristics. An artificial neural network (ANN) is used in the first stage of

the detection to differentiate normal and abnormal conditions with the fea-

ture vectors as the inputs. In the second detection stage, simple logic is used

to distinguish leakage and transient for data under abnormal condition. The

method has been shown to have higher detection performance and fewer false

alarms in comparison with the line balance and Kantorovich distance methods.

As the pipeline leak data is not always abundant to train supervised learn-

ing models, a filter-based method is proposed to detect pipeline leakage that

does not require prior leak data for training. Based on studies in field data,

we model pipeline leakage as an increase in the mean value of the flow rate

difference between the inlet and the outlet sensors, where the increased value is

unknown and subject to change. Then, an adaptive filter is proposed based on

the estimated cumulative distribution function (CDF) of the data in steady-

state condition using kernel density estimation. The proposed filter has better

performance in small leaks in comparison with different benchmarks.
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Preface

Chapter 3 and parts of Chapters 1 and 2 are presented in the conference paper

“A Two-Stage Deep-Learning Based Detection Method for Pipeline Leakage

and Transient Conditions”. The co-authors include I. Amini, Y. Jing, T.

Chen, A. Colin and G. Meyer. The paper is accepted and virtually presented

at Electric Power and Energy Conference (EPEC) 2020 in Edmonton.

Also, a revised version of Chapter 4 and parts of Chapters 1 and 2 are

intended to be submitted as a journal paper in the future.
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Chapter 1

Introduction

Alarm systems are crucial for the monitoring and controlling industrial plants,

which trigger alarm messages to operators in the case of faults in the process

[1]. The faults that an alarm system fails to report to the operators are referred

to as missed alarms. Missed alarms can prevent operators from taking actions

during faults in operation, which can cause catastrophes in terms of process

operation and safety. On the other hand, if an alarm is triggered during normal

operation, it is known as a false alarm. A high false alarm rate can decrease

the operators’ trust in the alarm system, which can cause dangers in the case

of real crisis [2]. Optimal designs and analysis of the alarm systems have

attracted great attention in the literature [3]–[7]. In alarm systems, the fault

detection and isolation (FDI) system plays an important role in triggering the

alarms and sending the alarm messages to the operators. There are several

methods to reduce false alarms in FDI systems for uni-variate signals such

as alarm optimal threshold tuning [8], delay timers [9], deadbands [10] and

filters [11]–[16]. Pipeline leakage detection systems are a special type of alarm

systems with the functionality of online monitoring of oil and gas pipeline

operation and reporting possible leakage to operators.

In this chapter, pipeline leak detection systems and filter-based alarm sys-

tems are reviewed in Sections 1.1 and 1.2 respectively. Afterward, the thesis
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objectives are given in Section 1.3. Finally, the thesis outline is provided in

Section 1.4.

1.1 Pipeline Leak Detection

Pipelines play a pivotal role in transporting hydrocarbon products such as

fossil fuels, gas, and other chemicals [17]. Although they are recognized as

the safest mean of transporting hydrocarbon products, leakage occurrence can

affect their reliability [18]. Often, existing pipelines are exposed to leakage due

to the aging, corrosion, and damage by a third party. Leakage poses severe

damages to the economy, environment and human safety such as energy waste

and pollution [19]. Also, owners of pipelines are responsible for environmental

clean-up and compensation of damages, which lead to a huge financial burden

to the company [20]. Therefore, early leak detection and localization are highly

desirable to help prevent the occurrence of crucial situations.

Several methods have been proposed to detect leakage in the pipelines.

Generally, these methods fall into three categories: non-technical methods,

hardware-based methods, and software-based methods [18].

• Non-technical methods include trained dogs and expert inspectors to

detect and track the pipeline leakage. Remote monitoring is being carried

out by modern technologies such as autonomous underwater vehicles

(AUVs) [21] and drones [22] in the oil and gas industries. Although

these methods are shown to be reliable and accurate, they depend on

the existence of trained dogs, expert personnel or smart facilities which

are not cost-efficient and applicable [20].

• Hardware-based methods generally utilize sensors on the external part

of the pipeline to measure a specific variable in order to detect leak-

age occurrence [23]. The acoustic method [24], optical fiber [25], tracer
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method and soil monitoring [26] are examples of hardware-based meth-

ods. The methods of this type are expensive and difficult to apply to

existing pipelines. Therefore, they cannot be used as the main strategy

for online monitoring of the pipelines [20].

• Software-based methods use fluid measurements such as the flow rate,

pressure, temperature and other parameters to monitor discrepancies in

online data [23]. The line balance approach is based on the difference

between the inlet and outlet flow rate [27]. This method is cost-efficient

and can be easily implemented; however, the threshold tuning can be

challenging due to a strict trade-off between false alarms and detection.

The pressure point analysis method monitors the statistical properties

of the pressure before and after leak occurrence [28]. The drawback of

this method is the triggering of false alarms during transient conditions.

A novel method based on Kantorovich distance was proposed in [20],

which was shown to be sensitive to changes in the pressure and flow rate

difference. Pipeline modeling can also be used to detect leakage based

on the difference between the predicted values and the measured values.

This method, however, is computationally intensive and any inaccuracy

of the models can largely affect its performance.

In recent years, a few methods that utilize advanced signal processing tools

have also been proposed. They consider feature extraction of leakage data in

the pressure and flow rate to perform the classification between normal and

leakage conditions. In [29], an artificial neural network (ANN) classification

method was proposed using the inlet and the outlet pressures and outlet flow

rate as inputs. A machine learning based method was proposed in [30], which

uses statistical and Markov-chain based features. In [31], wavelet and statis-

tical features were fed to a multi-layer perceptron neural network classifier to
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perform detection and localization. For the work in [32], the Pearson corre-

lation coefficient was used to extract features from pipeline leakage data and

a long-short term memory (LSTM) classifier was proposed for detection. The

major challenge of methods using signal processing is high false alarm rates

due to operational changes (e.g., transient conditions) or noisy data. These

false alarms can overwhelm operators during online monitoring.

1.2 Filter-Based Alarm Systems

An alarm filter is one of the common methods to detect abnormalities in

the uni-variate process data with the existence of noise. An alarm filter is an

algorithm applied on a group of process data points and its output is compared

to a threshold to trigger an alarm. Compared to the use of unfiltered uni-

variate signal, filtering is a powerful tool in the removal of false alarms in

noisy process data. The design of a proper filter depends on the distribution

of the data in normal and abnormal conditions.

The design of the optimal filter requires probability density functions (PDFs)

of normal and abnormal conditions. Depending on the properties of the PDFs,

the complexity of the optimal filter is often high. Thus, it is not a common

choice for industrial systems [13]. The moving average filter is the most com-

mon one in the industry due to its simplicity and good performance. It was

shown in [14] that if the PDFs of both normal and abnormal conditions are

symmetric and log-concave, the moving average filter is the optimal finite im-

pulse response (FIR) filter in the sense of minimizing the weighted sum of the

false alarm rate (FAR) and the missed alarm rate (MAR). There are several

other filtering methods proposed in the literature. The median filter was de-

signed in [2] and industrial data were used to show the effectiveness of the

filter. Ranked order filters were applied on process data in [11] and the an-

alytical relationship between the order of the filter and detection delay was

4



derived. The optimal linear filter was derived using differential evolution al-

gorithm in [13] and its result was compared to the moving average and the

general optimal filters.

1.3 Thesis Objective

In this thesis, targeting at alleviating false alarms caused by transient con-

ditions as well as accurate leak detection, we propose a simple two-stage

deep-learning based detection method to differentiate normal (steady-state),

transient and leakage conditions in pipelines with fluid motion. This method

utilizes the mean of the flow rate difference and the variation of the pressure

as the features for each time-window. In order to increase the sensitivity to

small changes and remove the effect of outliers in the classification, a mod-

ified tangent-hyperbolic estimator is used to normalize the features. In the

first stage of the detection, a trained deep-learning-based classifier categorizes

time-windows as normal or abnormal (including leakage or transient) condi-

tions. In the second stage, leakage and transient conditions are separated using

simple logic. In addition, leak size estimation and size-restriction are used to

remove false alarms caused by noises and disturbances. The proposed method

is tested using industry data and is shown to have a high F1 score and a low

FAR. Test results also show that the proposed method leads to a better overall

performance in comparison to two methods in the literature.

Moreover, as industrial pipelines operate in the normal condition for the

majority of their operation time, there is an imbalance between recorded leak-

age and normal condition data. In addition, there are some pipelines in the

industry with no real or experimental leakage records. Therefore, the use of

supervised learning is not always possible. With that consideration, a novel

adaptive filter based on the naive Bayes classifier and a kernel density esti-

mation is proposed to deal with the leakage problem without the usage of
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historical leakage data for training. First, we model pipeline leakage as an in-

crease in the mean value of the flow rate difference data, where the increased

value is unknown and changing. The data points are segmented into time-

windows. With the assumption that the data points in each time-window are

independent and the idea of the naive Bayes classifier, we design a filter based

on the cumulative distribution function (CDF) of the data in the steady-state

condition and an estimated minimum change in the mean value in the positive

direction when abnormality happens. As there is no prior assumption on the

shape of the CDF of the data in the normal condition, a kernel density esti-

mation is used to estimate the CDF based on the data in an adaptive mode.

This filter is tested using simulated data under different probability density

functions (PDFs). The results show that the proposed method has a bet-

ter performance in terms of the receiver operating characteristic (ROC) curve

compared to some benchmarks. Also, the proposed filter is tested on the fault

scenarios with different signal-to-noise ratio (SNR) values as defined in this

thesis. The result showed that the proposed method has a higher detection

rate (DR) in comparison with benchmarks at the false alarm rate (FAR) of 0.1

in the case of low SNRs for data with different PDFs. The method is applied

to real pipeline detection by adding an upper threshold on the inlet pressure

difference signal to distinguish leakage from the step-up (transient) condition.

The proposed algorithm is tested using three industrial datasets and is shown

to have better overall performance in the detection of small leakage scenarios.

1.4 Thesis Outline

The rest of the thesis includes three chapters as follows.

• Chapter 2 includes some mathematical background required to under-

stand the proposed algorithms and the performance evaluation in Chap-
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ters 3 and 4. Pipeline leak signature and the difference of normal (steady-

state), leakage and step-up and step-down transient conditions are dis-

cussed in Section 2.1. In Section 2.2, the kernel density estimation

method is explained and the kernel and bandwidth selections are dis-

cussed. In section 2.3, the fault detection problem is associated with the

classification problem and the performance measures to evaluate differ-

ent methods throughout the thesis are introduced. In Section 2.4, the

naive Bayes classifier is briefly explained. Finally, common detection fil-

ters are included in Section 2.5, including the log-likelihood ratio (LLR)

filter, the moving average filter and the median filter.

• In Chapter 3, a novel two-stage scheme based on artificial neural net-

works (ANNs) and simple logic is proposed to categorize normal (steady-

state), leakage and transient conditions. In Section 3.1, the system de-

scription and the problem statement are given. The proposed algorithm,

including data pre-processing, stage 1 detection and stage 2 detection,

is discussed in Section 3.2. Finally, the performance validation and the

conclusion are given in Sections 3.3 and 3.4.

• Chapter 4 consists of a novel adaptive naive Bayes classifier based fil-

ter using the kernel density estimation. First, the problem model and

assumptions are stated. In Section 4.1, the pipeline leakage model is

modeled as the change in the mean value of the flow rate difference data

in the positive direction. The issues of applying the optimal LLR filter

to the problem are mentioned in section 4.2. The proposed method and

leak detection scheme are discussed in Section 4.3. Section 4.4 defines

the SNR measure for this problem and discusses the implementation

requirements of different filters. Section 4.5 contains the comparison be-

tween the proposed method and some benchmarks using simulated and

7



real industrial data. Finally, Section 4.6 concludes Chapter 4.

• In Chapter 5, conclusion and future work for this thesis are provided. In

Section 5.1, the overall conclusion of the thesis is provided. In Section

5.2, the future work to improve the proposed methods in Chapters 3 and

4 are suggested.
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Chapter 2

Background Material

In this chapter, some mathematical background and common knowledge used

in the system modeling, algorithms and performance validation of the the-

sis are provided. First, the pipeline characteristics during normal, leakage

and transient conditions are compared. Then, the kernel density estimation

method to estimate the PDF and CDF of a set of samples from a distribution

is introduced. In the next part, the problem of fault detection is associated

with a binary classification problem and the metrics to assess the performance

of a fault detection method are reviewed. Finally, the naive Bayes classifier

and detection filters are explained in the last two sections of this chapter.

2.1 Pipeline Leak Signature

Pipeline leakage has two significant characteristics known as “leak signatures”,

exposing the leakage in pressure and flow rates [20]. The first one is that the

pressure drops at all measurement nodes [20]. The second behavior is based

on mass conservation, which states that the fluid remains inside the pipeline

until it exits from the ending node [23]. During the steady-state condition, the

inlet and outlet volume flow rates inside the pipeline are balanced, provided

that the fluid density and cross-sectional area of the pipeline remain constants

along the pipeline. Therefore, the theoretical relationship between the inlet
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and outlet nominal flow rates is given as follows:

V̇ i(t)− V̇ o(t) = 0,

where V̇ i and V̇ o are the inlet and the outlet volume flow rates respectively.

On the other hand, when a leakage happens, due to fluid loss in the pipeline,

the outlet flow rate is less than the inlet flow rate, which causes an imbalance

between the inlet and the outlet flow rates [23]. That is,

V̇ i(t)− V̇ o(t) > 0.

The inlet-outlet flow rate difference has the opposite sign to the pressure

change for a leakage.

On the other hand, during pipeline transient conditions, the pressure and

the flow rate data can either increase or decrease, depending upon the changes

made by the pipeline control center operator. This can cause extra difficulty

in the leak detection design as it is hard to differentiate a leak from a transient

condition. For instance, when there is a step-down in the pipeline, the pressure

decreases, which is the same as the first characteristic of the leakage. Also,

during other kinds of transient conditions, e.g., a step-up (causing an increase

in the flow rate), in the pipeline, imbalance in the flow difference is positive,

which has the same trend as a leakage. Nevertheless, there are signatures to

separate leakage and transient conditions. For the first example above, the

flow rate difference is negative, which is different from the leak signature. For

the second transient condition, the pressure increases, which is different from

a leakage. Therefore, both the flow rate difference and pressure signals are

required to distinguish leak from transient conditions [20]. Fig. 2.1 shows

the flow rate difference between the inlet and the outlet sensors and the inlet

pressure signals for both process step-up, process step-down and leakage.
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Figure 2.1: Flow rate difference and inlet pressure data during leakage and
transient conditions (scaled industrial data).
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Figure 2.2: Kernel density estimation of the standard Gaussian distribution
with different bandwidth values using 1000 points.

2.2 Kernel Density Estimation

The kernel density estimation is one of the non-parametric approaches to esti-

mate the PDF of a random variable using sample data. Under the assumption

that x1, x2, ..., xn are samples of a random variable X, the estimated PDF is

obtained as below: ˆ︁fh(x) = 1

nh

n∑︂
i=1

K

(︃
x− xi

h

)︃
,

where K is a non-negative function known as the kernel function, and h is a

positive value referred to as the bandwidth parameter [33]. The bandwidth

parameter plays a role in controlling the smoothness of the estimation [34].

Fig. 2.2 depicts the kernel density estimation curves using different bandwidth

values. As it can be observed, using larger bandwidth parameters can increase

the smoothness of the estimation curve. However, it can affect the accuracy

of the estimation in terms of the mean squared error.
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Different kernel functions such as uniform, Epanechnikov, Gaussian, and

others are utilized to estimate the PDF. One of the most common functions,

known as Gaussian Kernel, is defined as below:

φ(u) =
1√
2π

e−
1
2
u2

.

Among different kernel functions, the Epanechnikov kernel is indicated to be

optimal in terms of minimizing mean square error [35]. However, the choice

of the kernel has little effect on the accuracy of the estimation. Indeed, the

bandwidth choice is of more importance as it establishes a trade-off between

accuracy and smoothness [34].

There are several methods for bandwidth selection [36]. In this work, we use

one of the most simple ones in order to achieve a balance between accuracy and

algorithm execution time. Using the Gaussian Kernel function, the optimal

bandwidth for underlying Gaussian distributions can be estimated as below

[37]:

h = 1.06min

(︃
σ̂,

R

1.34

)︃
n−1/5,

where σ̂ is the standard deviation of the samples and R is the interquartile

range for the distribution. With the Gaussian kernel and the bandwidth rule,

the estimated CDF using kernel density estimation is obtained as below:

F̂ h(x) =

∫︂ x

∞

1

nh

n∑︂
i=1

φ

(︃
t− xi

h

)︃
dt

=
1

nh

n∑︂
i=1

∫︂ x

∞
φ

(︃
t− xi

h

)︃
dt

=
1

n

n∑︂
i=1

ϕ

(︃
x− xi

h

)︃
where Φ(.) is the CDF of the standard normal distribution, defined by the

following integral form:

Φ(x) =
1√
2π

∫︂ x

−∞
e−t2/2dt.
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2.3 Fault Detection and Performance Measures

The goal of fault detection is to trigger an alarm in the case of detecting an

abnormality in the data. Fault detection can be associated with a binary

classification problem.

First, let us explain the classification problem. The classification problem

is to find a categorical output y for inputs x, where y ∈ {1, 2, ..., C} and C

is known as the number of classes. If C = 2, the problem is called a binary

classification problem. One method to solve the classification problem is the

maximum a posteriori probability rule as below:

ŷ = arg max
c

P (y = c | x,D)

where D is the training dataset, ŷ is the classification output and P (y = c |

x,D) is the probability of class c given the input x and the training set D.

[38].

In the fault detection problem, we have two classes known as normal

and abnormal classes. In this thesis, we segment time-series data into time-

windows. Therefore, each time-window is classified or detected as normal or

abnormal.

There are many widely used measures to evaluate the performance of de-

tection methods. Here, we explain some of the most common methods. Tradi-

tionally, alarm triggering is associated with “positive” and “negative” classes.

The events of true positive (TP ), false positive (FP ), true negative (TN) and

false negative (FN) are defined as below.

• TP : true detection of an abnormal condition.

• FP : false detection of a normal condition. It is also referred to as error

type I.

• TN : true classification of a normal condition.
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• FN : missed detection of an abnormal condition. It is also referred to as

error type II.

Therefore, the notions of false alarm rate (FAR), missed alarm rate (MAR)

and detection rate (DR) are defined as below:

FAR =
number of FP

number of FP + number of TN
,

MAR =
number of FN

number of TP + number of FN
,

DR =
number of TP

number of TP + number of FN
.

where DR is also known as the probability of detection (PD). Also, the DR

versus FAR curve is referred to as the receiver operating characteristic (ROC)

curve.

In addition, the F1 score is another useful measure, which is defined as

F1 =
2PR

P +R
,

where P and R, called the precision and recall rates respectively, are defined

as follows:

P =
number of TP

number of TP + number of FP
,

R =
number of TP

number of TP + number of FN
.

Finally, the detection delay (DD) is considered as the difference between the

index of the detected time-window and the index of the starting faulty time-

window.

2.4 Naive Bayes Classifier

The naive Bayes classifier is one of the machine learning methods to perform

classification, under the independency assumption on the features of the input

15



data [39]. Let us assume the binary classification problem. The conditional

probability of class c given the feature vector xnb containing n features is

obtained based on the Bayes’ theorem as below:

P (c|xnb) =
P (c)P (xnb|c)

P (xnb)
.

By taking the independence of features into account, P (c|xnb) is proportional

to the following expression:

P (c|xnb) ∝ P (c)
n∏︂

i=1

P (xi
nb|c),

where xi
nb is the ith feature of xnb. Therefore, the classification is performed

using the maximum a posteriori probability rule as follows [40]:

ŷ = arg max
c

P (c)
n∏︂

i=1

P (xi
nb|c).

2.5 Detection Filters

In this section, we explain the general optimal filter to perform the detection

given the PDFs of normal and abnormal condition. Also, we introduce some

common practical filtering methods. First, denote x[m] as the sample value of

signal x at the time m. Denote the PDFs of x[m] in the normal and abnormal

conditions as fn(x) and fab(x) respectively, The kth window with N sample

points is obtained as below:

x[k] = [x[k −N + 1], x[k −N + 2], ..., x[k]] .

The optimal filter and the optimal trip point (threshold), denoted by y[k] =

g(x[k]) and ytp respectively, are obtained from the solution of the following

optimization problem with no constraints:

arg min
f,ytp

J(g),
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where, J(g) = c1

∫︂ +∞

ytp

fYn(yo)dyo + c2

∫︂ ytp

−∞
fYab

(yo)dyo,

fYn(yo) and fYab
(yo) are the PDFs of yo[k] under normal and abnormal condi-

tions. The two terms of the objective function are the FAR and MAR. That

is,

FAR =

∫︂ +∞

ytp

fYn(yo)dyo,

MAR =

∫︂ ytp

−∞
fYab

(yo)dyo.

Under the assumption of c1 = c2, the solution of the optimization problem has

been shown as follows [13]:

yo[k] =
k∑︂

m=k−N+1

ln
fab(x[m])

fn(x[m])
, (2.1)

ytp = ln

(︃
c1
c2

)︃
= 0. (2.2)

The filter as defined in Eq. (2.1) is also known as the LLR filter.

The classification task with labels “0” and “1”, respectively, is conducted

through the threshold function as below:

δyo(k) =

{︄
1, if yo[k] ≥ ytp

0, if yo[k] < ytp.

If G(·) is a monotonic function, it holds that:

yo[k] ≥ ytp ⇔

{︄
G(y[k]) ≥ G(ytp), if G(.) is an increasing function

G(y[k]) ≤ G(ytp), if G(.) is a decreasing function.

Therefore, any scaling with a constant coefficient or shifting does not affect

the optimality of the filter.

In addition, there are simpler filtering methods such as moving average

and median filters. These methods use a threshold on the average and median

values of the time-window x[k] to perform the detection. The expressions for
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Figure 2.3: Data in normal and abnormal conditions for the example in Section
2.5.

the moving average filter and the median filter, denoted as yMA[k] and yMED[k]

respectively, are given as follows:

yMA[k] =
1

N

k∑︂
m=k−N+1

x[m],

yMED[k] = Median(x[k]).

Here, we provide an example to compare the performance of different fil-

tering methods. First, consider the data in normal and abnormal conditions

with PDFs of xn ∼ N (0, 0.5) and xab ∼ N (1, 1) respectively. Fig. 2.3 shows

the data generated with these distributions.

Fig. 2.4 compares the PDFs of filtered data using different filtering meth-

ods. The PDFs of the filter outputs of the moving average filter, the median

filter and the LLR filter for time-windows with the length of 10 data points are

estimated using kernel density estimation. As it can be observed, the PDFs

of normal and abnormal conditions using the LLR filter have the least area
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Figure 2.4: Comparison of estimated PDFs of the outputs of the filtered data
in normal and abnormal conditions. The PDFs of filtered data are estimated
using kernel density estimation.

of intersection. Therefore, the FAR and MAR of the LLR filter are the least

among the different methods.
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Chapter 3

A Two-Stage Deep-Learning
Based Detection Method for
Pipeline Leakage and Transient
Conditions

In this chapter, a novel two-stage deep-learning based method is proposed to

distinguish normal, leakage and transient conditions in pipelines. First, the

problem of classification using the features of pressure and flow rate signals in a

time-window is discussed. Further, the algorithm, consisting of preprocessing,

stage 1 detection and stage 2 detection, is explained in detail. Finally, in

the performance validation section, the datasets for training and testing the

algorithm, the process of training the model and hyperparameter tuning and

the test results are discussed.

3.1 System Description and Problem State-

ment

In this chapter, datasets of leak experiments from Suncor Energy Logistics

Corporation are used to train and test the proposed algorithm. The data were

obtained through online live monitoring from the Supervisory Control and

Data Acquisition (SCADA) system. In these datasets, flow rates for the inlet
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and the outlet are provided, as well as the pressure values at five measurement

nodes including the inlet, the outlet and three middle nodes. In the proposed

method, the flow difference signal between the inlet and the outlet sensors and

the pressure signal from the inlet sensor are used.

In order to apply the machine learning based algorithm, time-series data are

transformed into feature vectors over time-windows. A time-window length,

denoted as L, is pre-set to split time interval into time-windows as follows:

TW (i) = [(i− 1)s+ 1, (i− 1)s+ L],

where TW (i) is the vector containing indexes of data samples of the ith time-

window and s is the number of samples by which the time indexes change

from one window to the next. The leak detection goal is to provide a label for

each time-window using the feature vector extracted from data of each time-

window. The feature vector for the ith time-window is denoted as X(TW (i)).

This can be modeled as the following detection function:

y(i) = Ψ(X(TW (i))),

where y(i) is the predicted label of TW (i). There are three important con-

ditions in a typical oil and gas pipeline: normal (steady-state), transient and

leakage. These are the three possible labels for the leak detection output y(i),

which are also represented as 0, 1 and 2.

3.2 Proposed Algorithm

In this section, a two-stage data-based method is introduced to detect leak

and transient conditions from pressure and flow rate difference signals. The

diagram of the detection scheme is shown in Fig. 3.1, which has three main

parts: preprocessing, Stage 1 detection, and Stage 2 detection. During prepro-

cessing, time-series data is divided into time-windows. Then, feature vectors
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Figure 3.1: The proposed two-stage detection algorithm.

are extracted from the data of these time-windows and are normalized. In

the first detection stage, an ANN is used to differentiate the normal class

(y = 0) from the abnormal class (y = 1), including both the leak events and

transient conditions. In the second detection stage, we distinguish leak and

transient conditions via a simple logic between the flow rate difference and

pressure change and apply a leak-size restriction. This stage helps to remove

false alarms caused by transient and noisy time-windows, which is one ma-

jor problem in current pipeline leakage detection methods. In the following

subsections, we explain the three components in detail.

3.2.1 Data Preprocessing

The flow difference and pressure data are preprocessed through several steps

before the detection stages. First, a sliding time-window with size L and

moving lengths s are specified, and the data is grouped into a sequence of time-

windows. Then, for each time-window, a feature vector is obtained. Afterward,

in order to have a common scale for these features, we normalize the feature
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vectors.

Feature Vector

As discussed in Section 3.1, a pressure drop and an increase in flow rate dif-

ference between the inlet and the outlet sensors are the key signatures of a

typical leak in pipelines. Thus, the following two important features are used

in this work.

• Mean of volume flow rate difference (denoted asX1): For the k
th window,

the mean of the volume flow difference between inlet and outlet sensors

can be obtained as below:

X1(k) =
1

L

L∑︂
j=1

(V̇ i(kj)− V̇ o(kj)),

where kj is the jth sample of the kth time-window and L is length of

the time-window.

• Mean of pressure difference (denoted as X2): The mean of the pressure

difference for the kth time-window is obtained as follows:

X2(k) =
1

L
(P (kL)− P (k1)),

where P (ki) is the ith measured pressure for the kth window at the inlet

sensor.

Modified Hyperbolic-Tangent Estimator

Modified tanh estimator is one of the most efficient and robust approaches

to perform normalization for neural networks. The main advantage of this

method is its robustness to outliers. Denote the normalized feature vectors

as X
(n)
i for i = 1, 2. This estimator yields normalized data with the following

expression:
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X
(n)
i (k) =

1

2

(︃
tanh

0.01 (Xi(k)− µi)

σi

+ 1

)︃
,

where X
(n)
i (k) is the normalized value of Xi(k). The parameters µi and σi

which are the mean and standard deviation of the scores of the variable re-

spectively [41]. In this method, we compute the mean and standard deviation

directly through steady-state condition samples and use them in the normal-

ization, which leads to good robustness.

3.2.2 Stage 1 Detection

The first stage of detection is to differentiate between normal and abnormal

(leak or transient) conditions. In this stage, an ANN is trained using prepro-

cessed training data and labels to perform classification. An ANN consists of

an input layer, several hidden layers and an output layer, where each layer

includes several neurons which are connected to the next layers by weights

[42]–[44]. The weights are adjusted during the training process to learn the

pattern between inputs and labels. The ANN input is composed of normalized

feature vectors, i.e.,

X(n) = [X
(n)
1 X

(n)
2 ],

where X
(n)
1 is the normalized vector of the mean of flow difference and X

(n)
2

is the normalized vector of the mean of pressure difference. For the output,

the normal (steady-state) condition is labeled as ‘0’, while both transient and

leakage conditions are considered as an abnormality and labeled as ‘1’.

In our design, the hidden layers use the ‘relu’ activation function and the

last layer uses the ‘sigmoid’ function, in order to predict the probability of ab-

normality in different time-windows. Thus, the output yields to the probability

of abnormality ŷp(k) in the kth time-window. In other words,

ŷp(k) =
1

1 + e−z(k)
,
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where z(k) is the input of the output layer for the kth time-window obtained

from a nonlinear relationship in the network as follows:

z(k) = Ξ(W,X(n)(k)),

where Ξ(.) is a nonlinear function of the hidden layers of the network, W is

the vector containing network weights and X(n)(k) is the normalized feature

vector of the kth time-window in the testing dataset.

In order to perform classification, a threshold function is used to label each

time-window as follows:

yp(k) =

{︄
0 ŷp(k) < α,

1 ŷp(k) ≥ α,

where yp(k) is the predicted label and α is a pre-defined threshold. The clas-

sification result varies on different values of α.

3.2.3 Stage 2 Detection

In the second stage of the detection, we separate transient and leakage condi-

tions. In addition, we reduce false alarms using a pre-set leak-size tolerance.

Here, we use two strategies to help remove false alarms caused by operational

changes (transient conditions) and noisy data.

Distinguishing Transient Conditions Using Signs of Flow Change
and Pressure Change

From our discussion in Section 3.1, an increase in the volume flow rate dif-

ference and pressure drop are the major characteristics of leakage conditions.

However, after the initial pressure drop, the pressure stabilizes and the vari-

ation in pressure becomes similar to the steady-state condition. On the con-

trary, the pressure always varies during transient conditions such as pipeline

shutdown or flow rate step-up processes. Therefore, the following logic-based
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on the signs of the flow change and pressure change is used to distinguish leak

and transient conditions.

Algorithm 1 Stage 2 detection

for Time window k labeled as y(k) = 1 do
if X1(k) < 0 then

y(k) = 2 ; Step-down
else

if X1(k) ≥ 0 and X2(k) > λ then
y(k) = 2 ; Step-up

else
Alert = 1 ;
if LE(k) ≥ γ then

y(k) = 1 ; Leakage
else

y(k) = 0 ; Normal
end

end

end

end

For the kth time-window, when the average flow difference is negative (i.e.,

X1(k) < 0), the abnormality is labeled as a step-down (transient) condition

(i.e., y(k) = 2). In the case of a positive average flow difference, it can be either

leak or transient (step-up). If the pressure difference (i.e., X2(k)) exceeds a

pre-set threshold λ > 0, the time-window is classified as transient conditions

(i.e., y(k) = 2). However, if the pressure drops or stabilizes (i.e., X2(k) ≤ λ),

the time-window is considered as a possible leak and an alert is raised. To

tune the threshold λ, we can set it to three times the standard deviation of

X2 under normal conditions. Therefore, if the pressure increase exceeds three

times more than normal conditions, it is considered as a process step-up.

Alarm Removal Based on Leak-Size Tolerance

When a time-window is considered as possible leakage, an alert is raised in

this stage. As noises can cause fluctuation in signal values, to avoid excessive

false alarms caused by noisy data, an estimation of the leak size is obtained to
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help handle the effect of temporarily noisy data. The leak size estimation for

the kth time-window is obtained using the sum of the flow rate difference in

(m3/h) for a sequence of alert starting from the kth
0 time-window as follows:

LE(k) =
d

3600

lk∑︂
j=l0

(V̇ i(j)− V̇ o(j)),

where l0 is the starting index of the kth
0 time-window, lk is the last index of the

kth time-window and d is the sampling rate. When the estimated leak-size of a

time-window sequence exceeds a pre-specified tolerance γ, an alarm is raised;

otherwise, the alerts are neglected.

The overall scheme for the second stage of detection is summarized in

Algorithm 1.

3.3 Performance Validation

3.3.1 Industrial Data and Detection System Setting

In this section, the proposed detection algorithm is tested with real industrial

data from Suncor Energy Logistics Corporation in the offline mode. The data

for training the ANN contains a total of 30 hours of measurements in which

several leak experiments and operational changes were carried out. The test

data were collected from another leak experiment that lasted for 12 hours

including several operational changes, a small leak event and a large leak event.

For both training and test data, upstream pressure and flow rate difference of

both ends were collected every 5 seconds i.e., the sampling rate is 12Hz.

In the SCADA dataset, there were missed measurements for some sample

times. In our experiments, the missed measurements are filled by the values of

previous measurements. After the filling, the training and test datasets contain

21600 and 8640 samples for both variables respectively. In this experiment, the

time-window parameters are set as L = 24 and s = 6. For the normalization,
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Table 3.1: Comparison of different machine learning tools for Stage 1 detection.

Machine Learning Methods FAR (%) DR (%) F1
Linear Logistic Regression 0.08% 90.06% 0.9444

DT 0.47% 92.71% 0.9428
SVM 0.23% 91.39% 0.9452
ANN 0.16% 91.39% 0.9485

the first 200 and 50 steady-state time-windows of training and test datasets are

respectively used to estimate the mean and standard deviation in the steady-

state condition. For Stage 1 detection, a multi-layer ANN is used with 3 hidden

layers and every hidden layer has 10 neurons. The weights are adjusted using

the Adam optimization method [45], with the batch size set to 72. One-tenth

of the training data are used for validation and hyperparameters estimation.

3.3.2 Test Results

In order to compare the performance of different machine learning tools for

Stage 1 detection, in Table 3.1, the FAR, DR and F1 score are shown for

the ANN and three popular machine learning methods, where their hyperpa-

rameters are tuned with k-fold cross-validation using 10 folds. The leak-size

tolerance is set to zero for all methods and α is 0.5 where it applies. As it

can be observed, ANN has the best overall performance. The linear logistic

regression has less false alarm rate; nonetheless, its DR is lower than other

methods. The ANN classifier also has the highest F1 score.

Table 3.2 shows the sensitivity of the proposed method on the leak-size

tolerance. As the leak-size tolerance is larger, the algorithm becomes more

conservative in detection. Therefore, it leads to less false alarms, while the

detection rate also decreases. As it can be seen in Table 3.2, when γ = 0, the

algorithm reaches the highest DR and FAR. By increasing γ gradually, the

false alarm rate decreases and no false alarm is received when γ = 0.3, with a

reasonably high detection rate of 86.75%. The F1 score decreases as γ is set
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Figure 3.2: DR-FAR curves of the proposed method and the line balance
method.

Table 3.2: Sensitivity of the proposed method to leak-size tolerance.

γ(m3) FAR (%) DR (%) F1
0 0.16% 91.39% 0.9484
0.1 0.16% 90.73% 0.9448
0.2 0.08% 88.74% 0.9371
0.3 0% 86.75% 0.9291

higher.

Further, Fig. 3.2 depicts the DR-FAR curves of the proposed method with

γ = 0 and the line balance method. As it can be observed from Fig. 3.2,

in the low FAR range, the DR of the proposed method is significantly higher

than the line balanced method. For the case of FAR ≥ 10%, the DR of the

line balance method is slightly higher, but the DRs of both methods are very

close to 100%.

Fig. 3.3 and 3.4 illustrate the comparison of the performance between the
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proposed method and the Kantorovich distance method [20] for small and large

leakage scenarios respectively. In this comparison, both methods are using the

inlet pressure and flow rate difference data. For the proposed method, α is set

to 0.5. For the Kantorovich distance method, the threshold for flow difference

residuals is set to be three times larger than the standard deviation of the first

500 steady-state flow rate difference data. The figures show the DD and FAR

for varying leak-size tolerance values for the proposed method and varying

Kantorovich distance thresholds for the inlet pressure and flow rate difference.

As it can be observed in the case of the large leakage scenario (shown in Fig.

3.4), the proposed method results in less FAR for all detection delay values.

However, for the small leakage scenario (shown in Fig. 3.3), the Kantorovich

distance method has a smaller detection delay when FAR ≈ 0.08%. Besides,

the proposed method is able to remove all false alarms (FAR = 0%) using a

high leak-size tolerance and maintain the detection delays of 1 and 10 for large

and small leakage scenarios respectively. However, the Kantorovich distance

method cannot perform detection with no false alarms.

3.4 Summary

In this chapter, a two-stage leak detection algorithm using leak-signature based

feature vectors and deep learning classification was proposed. The algorithm

was implemented on an industrial dataset in an offline mode and the efficiency

of the method was compared to two existing methods. The result showed that

the proposed algorithm with ANN had the highest F1 score in comparison

with the three machine learning methods. Further, by increasing the leak-size

tolerance, the algorithm gave no false alarms while having 86.75% DR. Finally,

the method was shown to have better overall performance in comparison with

two existing methods, the line balance and Kantorovich distance methods.
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Figure 3.3: Detection delay of the small leak scenario versus FAR.
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Figure 3.4: Detection delay of the large leak scenario versus FAR.
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Chapter 4

Adaptive Naive Bayes Classifier
Based Filter Using Kernel
Density Estimation

In this chapter, an adaptive filter based on naive Bayes classifier and kernel

density estimation is proposed to detect the changes in the mean value of the

data in the positive direction, where the value of change is unknown. First,

the detection problem of changes in the mean value of the data is formulated

and the issue of employment of the optimal LLR filter is discussed. Then,

the proposed method, including the initialization, pre-processing, filter design

and density function update based on filter prediction, is explained. Also, the

algorithm is customized for the application in the pipeline leakage problem.

Further, the SNR in process faults is introduced and the necessity for density

estimation or knowledge in implementing and tuning of different filters is dis-

cussed. Comparison with different benchmarks are conducted using simulated

and real industrial data, and it is shown that the proposed filter has better

overall performance in the detection of small leakage.

4.1 Problem Model and Assumptions

In this section, the problem of the detection of the change in the mean values

of data in the positive direction is modeled. Let us assume that the PDF of
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the data values, denoted as x, is shown as fn(x) for the normal condition. The

goal is to trigger an alarm in the case of changes in the mean values of data in

the positive direction, where the value of mean change is unknown. Therefore,

there are two different scenarios for the data as follows:

• The data is in the steady-state condition or there is a change in the mean

value of the data in the negative direction due to normal operation - no

alarm should be raised for this scenario.

• There is a change in the mean values of the data in the positive direction

due to faulty operation - an alarm should be raised for this situation.

As discussed in Section 2.1, as a leakage or process step-up occurs, the mean

value of the flow difference between the inlet and the outlet sensors increases.

In the case of the steady-state condition, there is no change in the mean value

of the data, while in the process step-down condition, the mean value of data

decreases. Therefore, the discussed scenario can differentiate between steady-

state/step-down and leakage/step-up conditions. By applying a simple logic

on the inlet pressure to differentiate leakage and step-up process, the problem

can be associated with leakage detection in pipelines.

Here, we present these two scenarios in the form of two hypotheses on the

data. For simplicity, we assume that the standard deviation of the data does

not change in the faulty condition. Therefore, for the PDF fn(x), the PDF with

positive and negative change in the mean value of the data is thus fn(x−∆).

Denote x[m] to be the sample value at timem, where x[m] are independent and

identically distributed (i.i.d.), the normal and faulty conditions are described

as follows:

H0 : x[m] are i.i.d. fn(x−∆), where ∆ ∈ (∆lo, 0]

H1 : x[m] are i.i.d. fn(x−∆), where ∆ ∈ (∆min,∆up).
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The parameters ∆lo < 0, ∆min > 0 and ∆up > 0 are the maximum shift in

the negative direction, the minimum shift in the positive direction and the

maximum shift in the positive direction respectively. Further, define Cab =

(∆min,∆up) and Cn = (∆lo, 0], which are the sets of mean-shift values for the

abnormal and normal classes, respectively. In this work, the value of ∆, the

mean-shift, is modeled as a random variable with the PDF f∆(c). In addition,

we consider to have an estimate of ∆min, while ∆up and ∆lo are unknown.

The goal is to perform an accurate classification between these two scenar-

ios, and to inform the operator in the case of detecting the faulty condition

(H1) as soon as the fault transpires. Also, the operator should receive the

least possible alarms in the normal operation.

4.2 Log-Likelihood Ratio Filter

Let us recall the LLR filter in Section 2.5. The LLR Filter solves this detection

problem using the PDFs of the normal and abnormal conditions. Assuming

that all normal samples follow fn(x) and abnormal samples follow the mean-

shifted distribution of normal samples, fn(x−∆1). The LLR filter is formulated

as below:

yo[k] =
k∑︂

m=k−N+1

ln
fn(x[m]−∆1)

fn(x[m])
. (4.1)

where ∆1 is the mean-shift value in the positive direction. The threshold

can be set as ytp = ln
(︂

c1
c2

)︂
= 0 if c1 = c2. For the case that the data points

follow a generalized Gaussian distribution in the normal condition, the optimal

filter can be derived as follows. First, the PDF of the generalized Gaussian

distribution is as below:

f(x) =
β

2αΓ(1/β)
e−(|x−µ|/α)β

where µ is the mean of the PDF, α =
√︂

σ2 Γ(1/β)
Γ(3/β)

, where σ2 is the variance of

the PDF and β is the shape parameter. By using the optimal filter rule and
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incorporating the PDFs of normal and abnormal data, the following expression

is driven for the LLR filter from Eq. (4.1):

yo[k] =
k∑︂

m=k−N+1

((|x[m]−∆1 − µ|/α)β − (|x[m]− µ|/α)β).

For the case of Gaussian distributions (where β = 2), the filter can be further

simplified as below:

yo[k] =
1

α2

k∑︂
m=k−N+1

(−2x[m]∆1 −∆1
2 − 2µ∆1).

As ∆1 and µ are constant, by applying shift and scaling operations to the filter

with respect to these variables, the optimal filter is equivalent to the moving

average filter:

yo[k] =
1

N

k∑︂
m=k−N+1

x[m].

It can be seen that the optimal filter is independent of the mean-shift value

(∆1). Nevertheless, the optimal threshold requires the knowledge of the mean-

shift value as it undergoes the same shift and scaling operation with respect

to ∆1 and µ exerted on the filter to obtain the moving average filter.

Generally, the optimal filter cannot be simplified to the moving average

filter for non-Gaussian distributions. In addition, the actual PDF is often

unknown in a real industrial process. Hence, there are several issues in the

implementation of the LLR filter:

• The exact PDFs of the normal and abnormal conditions may be unavail-

able.

• The PDF of the normal operation data may be changing during the

process; for example, as a result of transient conditions.

• For the defined problem, the exact value of the change in mean value (∆)

is unknown, as it can be dependent on the size of the fault in pipeline

leakage.
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4.3 Proposed Fault Detection Method

In this section, a fault detection method based on naive Bayes classifier and

kernel density estimation is proposed for the problem defined in Section 4.1.

First, a collection of data is used to have a prior estimate of the CDF of the

data in normal operation with ∆ = 0. Therefore, a naive Bayes based filter

using the kernel density estimation is used over time-windows to perform the

detection between H0 and H1 conditions. Then, predicted H0 samples using

the threshold (ytp = 0) are used as feedback values to update the primary

collection. In order to avoid incorporating false negative predictions into the

collection of data, a delay policy and a bounding constraint are also adopted.

The method is named as “adaptive naive Bayes classifier based filter”, abbre-

viated as the ANBC filter in the rest of the thesis.

4.3.1 Initialization

In this step, the number of sample points to estimate the CDF of steady-state

condition, the minimum change in the mean value and the time-window length,

respectively denoted as ne, ∆min and N , are pre-set. Afterward, the CDF of

the steady-state condition is initialized. For this purpose, the approximate

mean µ̂ and standard deviation σ̂ of the data in the steady-state condition

are required. As the underlying distribution is unknown, in the initialization

stage, we assume that the data follows a Gaussian distribution. Thus, the

initial estimate of kernel density estimation of steady-state condition is carried

out using ne Gaussian samples from N (µ̂, σ̂).
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4.3.2 Preprocessing

Recall that x[i] is the signal at the time instant i. The signal is segmented

into time-window vectors with a length of N as below:

x[k] = [x[k −N + 1], x[k −N + 2], ..., x[k]] ,

where x[k] is the kth time window. In industrial applications, some data values

are missed in data measurement. Therefore, before segmentation, missing

values are required to be filled. There are several approaches to fill the missing

values such as the use of the previous values, interpolation, mean or median.

The previous value method is more suitable for online implementation as the

population mean, median and the next values in real-time signals may be

unknown.

4.3.3 Filter and Threshold

In this section, the goal is to achieve a filter design to detect the mean value

change in the positive direction (i.e., ∆ > 0) in the signal, while considering no

change (i.e., ∆ = 0) and change in mean value in the negative direction (i.e.,

∆ < 0) as normal condition. As there always exist noises and uncertainty in

the data, a minimum detectable value (∆min) must be pre-determined based

on system knowledge or the false alarm rate. Inspired by the naive Bayes

classifier in Section 2.4, the probability of the Cn class, i.e., H0, given one

signal value x[m] is obtained as follows:

P (H0|x[m]) =

∫︁
Cn

fn(x[m]− c)f∆(c)dc∫︁
Cn∪Cab

fn(x[m]− c)f∆(c)dc
.

Correspondingly, the probability of the Cab class given the x is achieved as

below:

P (H1|x[m]) =

∫︁
Cab

fn(x[m]− c)f∆(c)dc∫︁
Cn∪Cab

fn(x[m]− c)f∆(c)dc
.
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Therefore,

P (H1|x[m])

P (H0|x[m])
=

∫︁ ∆up

∆min
fn(x[m]− c)f∆(c)dc∫︁ 0

∆lo
fn(x[m]− c)f∆(c)dc

.

If we assume that the change in the mean value (∆) follows a uniform distri-

bution, the following equation is achieved:

P (H1|x[m])

P (H0|x[m])
=

∫︁ ∆up

∆min
fn(x[m]− c)dc∫︁ 0

∆lo
fn(x[m]− c)dc

=
Fn(x[m]−∆min)− Fn(x[m]−∆up)

Fn(x[m]−∆lo)− Fn(x[m])
.

where Fn(x) is the CDF with respect to fn(x). Further, assuming that ∆up is

very large and ∆lo is very small, we have

P (H1|x[m])

P (H0|x[m])
≈ Fn(x[m]−∆min)

1− Fn(x[m])
.

With the consideration of the i.i.d. characteristic of the data, the following

test statistic is proposed:

T (x[k]) =
k∏︂

m=k−N+1

P (H1|x[m])

P (H0|x[m])
≈

k∏︂
m=k−N+1

FX(x[m]−∆min)

1− FX(x[m])
.

In practical implementation, kernel estimation of the CDF F̂X(x) is used. The

proposed detection scheme becomes

yo[k] =
1
N
lnT (x[k]) ≈ 1

N

∑︁k
m=k−N+1 ln

F̂X(x[m]−∆min)

1−F̂X(x[m])
⋛ ytp,

where ytp is the threshold. Similar to the LLR filter, the best value of the

threshold is ytp = 0.

4.3.4 Density Function Update Based on Filter Predic-
tion

In the initialization stage, since we had no assumption over the distribution

of the data, the CDF of the steady-state condition with ∆ = 0 was estimated

using a set of Gaussian samples. As the filter makes predictions on the data,
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more data are revealed and the training set will be updated using the new data

samples based on the prediction. In order to obtain a realistic approximation,

the dataset for CDF estimation needs to be constantly updated with the most

current data points in the steady-state. As the true labels of the data points

are unknown, the filter prediction is used to update the dataset for CDF

estimation.

A simple usage of all data that the filter predicts as H0 condition for the

update has a few potential issues. First, the prediction errors, such as missed

alarms, can bring inaccuracy in the dataset for CDF estimation. Second, when

a fault occurs at the time ml, based on the time-window segmentation, the

most current sample of the time-window x[ml] is the starting point of the

fault condition; however, there are N − 1 points in H0 condition in the time-

window which can affect the filter detection and classify the time-window asH0

condition. Therefore, if x[ml] is included in the dataset for CDF estimation,

it can cause errors in the CDF estimation. In addition, in the case of a change

in the mean value of data in the negative direction, the filter detects the time-

window asH0 condition. The inclusion of these samples in the CDF estimation

can cause corruption. As a solution, we apply some constraints when including

new samples for the CDF estimation. The update policy of the dataset for

CDF estimation is explained as what follows.

Assuming that Z is the dataset for CDF estimation at time i shown as

below:

Z[i] = [z1, z2, ...., zne ],

where z1, z2, ..., zne are the samples to estimate CDF using kernel density es-

timation. A delay Du is pre-determined to update the set. In this algorithm,

this value is tuned as Du =
⌊︁
N
2

⌋︁
+1, so that the Du value is larger than half of

the time-window length. Using the threshold ytp = 0, if we have a sequence of

all H0 predictions with length of Du from window i−Du + 1 to window i, we
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select the data point x[i−Du+1] as a candidate to be included in the dataset

for CDF estimation. However, if the length of the sequence of H0 predictions

is less than Du, the dataset is not updated at the time instant i. In order to

prevent outliers from entering into the dataset, a bounding constraint will be

applied to the candidate points as below:

LB ≤ x[i−Du + 1] ≤ UB

where LB and UB are respectively the lower bound and upper bound of the

data in the steady-state condition. Tuning these parameters depends on the

level of noise power in the data. Here, we applied three standard deviations of

the current dataset samples from the mean of the training samples. If the data

point is within the boundary region, it is included in the dataset; otherwise,

it is not used to update Z[i]. When a new data sample is used to update the

dataset, the least current point in the dataset is eliminated. Therefore, the

updated dataset for CDF estimation, denoted as Ẑ[i], is as follows:

Ẑ[i] = [z2, ....znm , x[i−Du + 1]].

Finally, for the pipeline leak detection dataset in this chapter, we have

an additional model-based constraint to prevent including corrupted data. In

order to prevent including flow rate difference data points of the pipeline in

the shut-down condition, the constraint x[i −Du + 1] ̸= 0 is validated before

the update.

4.3.5 Online Leak Detection Scheme

In this section, an algorithm based on the pipeline flow rate and pressure

signal is introduced in algorithm 2. In this algorithm, yo[k] is the output of

the proposed filter on the kth time window of the flow difference rate between

the inlet and the outlet sensors. Therefore, x[k] is the difference between inlet
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and outlet flow rate at the kth time instant. In addition, ∆P1[k] is defined as

the pressure difference of the inlet sensor, obtaining as below:

∆P1[k] = P [k]− P [k −Np]

where P [.] and Np are the inlet pressure signal and the size of the inlet pres-

sure signal time window respectively. As it was discussed in Section 2.1, the

difference between flow rates of inlet and outlet sensors plays a pivotal role

in leakage detection. After leakage transpires, the flow rate difference signal

undergoes a positive mean shift fault, as depicted in Fig. 2.1. Therefore, the

ANBC filter is used to detect the mean deviation. However, to exclude step-up

conditions, there is a restricting condition on the positive pressure change in

the inlet sensor, as in transient condition, the inlet sensor is affected earlier

than the others. Therefore, using this method, step-up conditions do not raise

leakage alarms. Figure 4.1 shows the integration of the ANBC filter and the

leak detection method.

Figure 4.1: The schematic of the proposed leak detection scheme.

Algorithm 2 Leak detection algorithm

for Time window k do
if yo[k] ≥ ytp and ∆P1[k] ≤ λ then

Alarm
else

No Alarm
end

end
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4.4 Performance Measure

4.4.1 Signal to Noise Ratio in Process Fault

In this section, we introduce a measure for the fault intensity based on nor-

mal and abnormal conditions, the means and standard deviations. Intuitively,

when the mean has a large change and the standard deviations of both the

normal and/or abnormal conditions are lower, for any reasonable filter, the

detection accuracy increases. On the contrary, a smaller change in the mean

value and/or high standard deviations lead to low accuracy in the detection.

Therefore, we introduce a new measure, inspired by the SNR concept in com-

munication systems, as below:

SNR = 10 log10
µ2
f

σ2
f

.

where µf = µab − µn and σf = σn+σab

2
in which µab, σab, µn and σn are the

means and standard deviations of the normal and abnormal data respectively.

Therefore, the performance of different filters can be compared for different

fault SNRs.

4.4.2 Discussion on Implementation

In this chapter, the proposed method is compared to several benchmarks in

the literature including LLR filters, moving average filters, median filters and

unfiltered data. For the LLR filters, the exact PDFs of normal and abnormal

conditions are required. Therefore, it is not feasible to implement them on

industrial data. The moving average is one of the most industrial filters for

detection. Median filters are also advantageous in detection, especially in the

existence of outliers, which can affect the average of the samples. For the

unfiltered data approach, there is no need to segment data into time-windows.

The most current point is compared to a threshold. For moving average filters,
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median filters and unfiltered data implementation, there is no necessity to

have the exact or estimated PDFs. However, in order to obtain the optimal

threshold, the exact or estimated PDFs of normal and abnormal conditions

of the filtered data are required. Generally, the optimal threshold for these

approaches is obtained as below [11]:

∂J

∂ytp
= −c1fYn(ytp) + c2fYab

(ytp) = 0

where J is the same loss function in Section 2.5. Therefore,

fYab
(ytp)

fYn(ytp)
=

c1
c2
,

with the same assumption of c1 = c2, the optimal threshold satisfies fYab
(ytp) =

fYn(ytp). Therefore, for the analytical obtainment of the optimal threshold, the

PDFs of the filtered normal and abnormal data are required. Overally, Table

4.1 shows the requirements of knowledge or estimation of density functions for

implementation and optimal filter obtainment in different benchmarks.

Moreover, the exact CDF of the real time data is not mostly known. The

ANBC filter estimates the real-time CDF of the steady-state condition in an

adaptive fashion. However, it adds more complexity in the detection algorithm.

The moving average filter, the median filter and unfiltered data are also more

straightforward in terms of implementation. However, the optimal threshold

is hard to estimate. In addition, the choice of the optimal filter and threshold

depends on the distribution of the data. For example, the moving average

and the median filters are shown to have a relatively desirable performance for

the data following Gaussian and Laplace distributions respectively. Therefore,

prior knowledge of the distribution is needed for the choice of these filters.

4.5 Simulation and Results

In this section, the proposed method is tested on both simulated and industrial

pipeline leakage data. In the simulated data cases, a change in the mean value
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Table 4.1: Necessity of density estimation or knowledge of normal and abnor-
mal conditions for implementation and optimal threshold acquisition.

Method Implementation Optimal Threshold
ANBC Filter ✓ -
LLR Filter ✓ -

Moving Average ✗ ✓

Median Filter ✗ ✓

Unfiltered Data ✗ ✓

in the positive direction is considered a fault scenario. However, in real indus-

trial data, only leakage scenarios are taken into account and step-up processes

are considered as normal conditions and they are excluded with exerting a pre-

set threshold on the inlet pressure signal as shown in Section 4.3.5. In all the

simulations, the transition between normal and abnormal conditions are taken

into account. In other words, there are some time-windows containing both

H0 and H1 conditions. In these time-windows, the true labels are obtained

using the condition of the most current data point.

4.5.1 Simulated Data

In this section, we compare the performance of the proposed method with

benchmarks in Table 4.1 in the literature in the sense of ROC curve and DR

versus SNR for different distributions including Gaussian, uniform, Laplace

and Gaussian mixture distributions. In all scenarios, the length of the time-

window (N) is set to 10 and the update delay parameter (Du) is tuned to 6.

Also, for the ANBC filter, the initial values of the mean and standard deviation

of the distribution are estimated using the first 50 steady-state samples. The

∆min in the ANBC filter is set to 1. For the LLR filter used in this comparison,

the real value of ∆ is not given. The abnormal PDF for the LLR filter is

obtained by shifting the normal PDF with a value of 1 as below:

pab(x) = pn(x−∆LLR)
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where the exact normal PDF is assumed to be known to the LLR filter and

∆LLR = 1.

ROC Curve

In this section, the ROC curves of different filters are shown to measure the

performance in different distributions. In order to reduce the randomness in

the results, the final curve for each method is obtained using its average in

1000 iterations. For ANBC filter, we used 80 data points to estimate the CDF

(ne = 80). In all cases, we have 160 data points in H0 condition, in which

20 data points are affected with a change in the mean value in the negative

direction using samples generated by distribution fn(x−∆neg). The negative

shift value (∆neg) is obtained using a uniform distribution of U{−20, 0}. Also,

we have 160 data inH1 condition with the distribution of fn(x−∆pos), in which

the shift value (∆pos) is obtained using a uniform distribution of U{0.8, 5}.

Fig. 4.2 shows an example of the experimented scenario for the Gaussian

distribution. The simulation is executed for 1000 times. In each iteration, the

thresholds varied from the minimum filter output value to the maximum filter

output value. The ROC curves are obtained using the average DR values and

the average FAR values over all the iterations.

Fig. 4.3 shows the ROC curves of different methods with respect to the

Gaussian distribution. For the PDF of the steady-state condition, the Gaus-

sian distribution N (0, 2) is used. As it can be observed, the ANBC filter has

better performance in comparison with the moving average, median filter and

unfiltered data methods. The LLR filter has the best performance.

In the next scenario, for the PDF of the steady-state condition, a uniform

distribution of U(0, 5) is used. As it can be observed in Fig. 4.4, the ANBC

filter has better performance in comparison with all other methods, as its ROC

curve is above other methods.
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Figure 4.2: An example of the experimented scenario for Gaussian distribution.

In the third scenario, steady-state data are generated from the Laplace

distribution L(0, 2). Fig. 4.5 shows that the performance of the ANBC filter

is better than unfiltered data. The ROC curve of the ANBC method is very

close to those of the moving average filter and median filter. Similarly, the

LLR filter has the best performance over the compared methods.

Finally, a Gaussian mixture distribution with two components is used to

generate the steady-state condition. The mean values of the components are

set to 0.5 and −0.5. The standard deviation values of both components are 2.

Fig. 4.6 shows the comparison between different methods. It shows that the

ROC curve of the ANBC filter is above the moving average, median filter and

unfiltered data. Similar to Gaussian and Laplace scenarios, the LLR filter has

the best overall performance.
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Figure 4.3: ROC curves of different methods for the case of Gaussian distri-
bution.

DR versus different SNR Curve

In this section, the performance of different methods is evaluated using DR of

different methods in FAR at 0.1 over different SNR values. In this experiment,

ne is set to 120 and we use 200 steady-state and 200 faulty data. The faulty

data is generated by the shifted distribution of steady-state data with the shift

value generated by a uniform distribution of U{0.8, 1.2}. To generate different

SNRs, we use different values for the standard deviation in each SNRs. For

each standard deviation value, the simulation is iterated for 1000 times and

the average DR and FAR values are obtained. Then, we obtain the DR at FAR

value of 0.1 through interpolation of the average DR and FAR values. As the

mean shift value is different in each iteration, the average of measured SNR
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Figure 4.4: ROC curves of different methods for the case of uniform distribu-
tion.

values of all 1000 iteration is used to represent the SNR value corresponding

to each standard deviation. Here, we perform this experiment for different

distributions.

Fig. 4.7 shows the case of generating the steady-state data from the Gaus-

sian distribution N (0, σG), where the value of σG varies for each SNR. The

figure demonstrates that for low SNR values, the ANBC filter has higher DR

at FAR value of 0.1 in comparison with other methods. For high SNR values,

the LLR filter and moving average filter have almost the same performance as

the ANBC filter.

The second scenario demonstrates the case of using the uniform distribution

U(0, Ub) to generate the steady-state samples, where the value of Ub is adjusted

to have desired standard deviation values. As it can be observed in Fig. 4.8,
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Figure 4.5: ROC curves of different methods for the case of Laplace distribu-
tion.

the ANBC filter has the best performance in the low SNR region. On the

other hand, the DR of the LLR filter is higher for high SNR values.

In the next scenario, we use Laplace distribution L(0, S) to generate the

steady-state data. The value of parameter S is adjusted to have the desired

standard deviation values. Fig. 4.9 shows that the ANBC filter has the high-

est DR in comparison with other methods when the measured SNR is below

−10dB. On the other hand, the median filter and LLR filter have better per-

formance for higher SNRs.

Finally, the same comparison is made in the case of generating the steady-

state data using a two-component Gaussian mixture distribution, where the

means of the components are −0.5 and 0.5 and the standard deviations of the

components are considered equal (σGM). The σGM is adjusted according to
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Figure 4.6: ROC curves of different methods for the case of Gaussian mixture
distribution.

the desired SNR value. As Fig. 4.10 depicts, similar to the Gaussian case, in

the low SNR region, the ANBC filter has the best DR at FAR value of 0.1 in

comparison with other methods.

Table 4.2: Estimated SNR values of different leak scenarios.

Days Day I Day II Day III
Leak Scenarios Leak I Leak II Leak I Leak I Leak II

SNR 0.43 -5.62 10.75 6.47 -1.79

4.5.2 Industrial Data

In this section, industrial data from Suncor Energy Logistics Corporation

pipeline for three different days of leak experiments are used to evaluate the

performance of the proposed filter with different benchmarks. The separation
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Figure 4.7: DR versus SNR for the case of Gaussian distribution at FAR = 0.1.

of the step-up and the leakage conditions are the same for all filters as shown

in Algorithm 2. As the real distribution of the industrial data is not known,

the LLR filter cannot be implemented here. In this experiment, the hyper-

parameters are set to L = 10, Du = 6, ne = 500. In addition, ∆min is tuned

as 3.5 in all cases. Table 4.2 shows the leak scenarios in each day and their

estimated SNRs.

Fig. 4.11, 4.12 and 4.13 show the ROC curves for Day I, Day II and Day

III respectively. Fig. 4.11 and 4.13 show that the ROC curve of the proposed

method is above other benchmarks for most of the FAR values, especially when

the FAR is below 2%. By referring to Table 4.2, we can see that these two

days’ data contain leakages with lower SNR values. On the other hand, in Fig.
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Figure 4.8: DR versus SNR for the case of uniform distribution at FAR = 0.1.

4.12, the performance of the moving average filter is marginally better than

the ANBC filter for FARs below 2%.

Moreover, the detection delays of different methods are compared at FARs

of 0.005, 0.01 and 0.02 for each leak scenario in Day I, Day II and Day III

in Tables 4.3, 4.5, and 4.7 respectively. As it can be observed in Table 4.3,

the DD values of the ANBC filter is less than other methods for the leak II

in Day I, which means that the detection of small leakage is faster using the

proposed method. Also, in Table 4.7, the DD values of the ANBC filter is less

than other methods at FAR value of 0.005. For leak I in Tables 4.3, 4.5 and

4.7, the DDs of the unfiltered data method is less than other methods. The

better performance of the unfiltered data method in the large leak (leak I) is
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Figure 4.9: DR versus SNR for the case of Laplace distribution at FAR = 0.1.

because it only compares one sample point to the threshold, as opposed to

other methods which perform detection based on time-windows.

Similarly, the DRs of different methods are compared at FARs of 0.005,

0.01 and 0.02 for each leak scenario in Day I, Day II and Day III in Tables 4.4,

4.6, and 4.8 respectively. As it can be observed in Tables 4.3 and 4.7, for leak

II scenarios, the ANBC filter has the highest DRs in all three FAR values in

comparison with other methods. Also, for the leakage scenario in Day II, the

moving average filter has the highest detection rate at all three values of FAR,

with the ANBC filter having equally the same detection rate in FAR values

of 0.005 and 0.02. Similar to the DD comparison, the unfiltered data has the

best overall performance in large leak scenarios in Tables 4.3 and 4.7.
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Table 4.3: DD for each leakage and FAR of different methods in Day I data.

DD of Leak I DD of Leak II
FAR 0.005 0.01 0.02 0.005 0.01 0.02

ANBC Filter 14 14 14 55 54 54
Moving Average Filter 13 12 12 81 69 68

Median Filter 14 14 14 80 68 68
Unfiltered Data 10 10 10 80 80 61

Table 4.4: DR for each leakage and FAR of different methods in Day I data.

DR of Leak I DR of Leak II
FAR 0.005 0.01 0.02 0.005 0.01 0.02

ANBC Filter 0.7578 0.7578 0.7578 0.9410 0.9466 0.9469
Moving Average Filter 0.7623 0.7668 0.7668 0.9228 0.9349 0.9395

Median Filter 0.7578 0.7578 0.7578 0.9199 0.9315 0.9378
Unfiltered Data 0.7758 0.7758 0.7758 0.7515 0.8276 0.8739

Table 4.5: DD and FAR of different methods in Day II data.

DD of Leak I
FAR 0.005 0.01 0.02

ANBC Filter 37 35 34
Moving Average Filter 37 35 34

Median Filter 37 37 36
Unfiltered Data 33 33 33

Table 4.6: DR and FAR of different methods in Day II data.

DR of Leak I
FAR 0.005 0.01 0.02

ANBC Filter 0.9819 0.9828 0.9833
Moving Average Filter 0.9819 0.9832 0.9833

Median Filter 0.9794 0.9819 0.9824
Unfiltered Data 0.8593 0.8951 0.9272

Table 4.7: DD for each leakage and FAR of different methods in Day III data.

DD of Leak I DD of Leak II
FAR 0.005 0.01 0.02 0.005 0.01 0.02

ANBC Filter 6 5 5 29 25 23
Moving Average Filter 4 4 3 30 26 23

Median Filter 4 4 4 29 26 25
Unfiltered Data 0 0 0 36 23 22

55



Figure 4.10: DR versus SNR for the case of Gaussian mixture distribution at
FAR = 0.1.

4.6 Summary

In this chapter, a novel detection method was proposed for fault scenarios with

a change in the mean value of data in the positive direction. The method uses

kernel density estimation to approximate the CDF of the data in the steady-

state condition with an adaptive approach. For the detection task, a naive

Bayes based filter was used to detect the abnormalities. Also, the process

for updating the data for estimating the CDF was proposed. The method

was shown to have higher probability of detection values when FAR = 0.1

for four different distributions in relatively low SNRs. In addition, the ROC

curves of the proposed method were compared to different benchmarks in the

given scenarios. It was shown that the proposed method had better overall

56



Figure 4.11: ROC curves of different methods in Day I data.

performance in comparison with the moving average filter, the median filter

and the unfiltered data. Moreover, by using industrial data, it was shown

that the proposed method had a better overall performance in detecting small

leakages in terms of the detection rate and the detection delay at false alarm

rate values of 0.005, 0.01 and 0.02. Overally, the proposed method was shown

to have a good detection performance in the case of small changes in the mean

Table 4.8: DR for each leakage and FAR of different methods in Day III data.

DR of Leak I DR of Leak II
FAR 0.005 0.01 0.02 0.005 0.01 0.02

ANBC Filter 0.7972 0.8042 0.8182 0.9364 0.9618 0.9649
Moving Average Filter 0.8112 0.8182 0.8322 0.8978 0.9604 0.9649

Median Filter 0.8112 0.8112 0.8112 0.8968 0.9512 0.9619
Unfiltered Data 0.8392 0.8392 0.8392 0.5665 0.7927 0.8825
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Figure 4.12: ROC curves of different methods in in Day II data.

value of the data in the positive direction.
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Figure 4.13: ROC curves of different methods in in Day III data.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, two methods were proposed to detect leakage in the oil pipelines.

First, a two-stage deep learning based method was proposed to categorize

normal, leakage and transient condition in the pipeline. The result was shown

to have better overall performance in comparison to the two methods in the

literature. As the leakage data is not always available to apply supervise

learning based methods, an adaptive naive Bayes classifier filter using kernel

density estimation was also proposed to detect changes in the mean value of

the flow rate difference between inlet and outlet sensors data in the positive

direction. In order to separate the step-up transient condition from the leakage,

a simple logic was used on the inlet pressure difference signal. The proposed

filter was applied on both simulated and industrial data and the results were

compared to different benchmarks in the literature. It was shown that the

proposed filter is more effective to detect small leakage scenarios in terms of

the detection rate.

5.2 Future Work

Both proposed methods in this thesis can be improved further in future work.

For the supervised learning method in Chapter 3, by using larger datasets with
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more leakage scenarios and having more features such as acoustic signals, tem-

perature, density, etc., the performance and the reliability can be improved.

Also, more sophisticated deep learning models such as LSTMs can be trained

and tested to increase the accuracy and robustness of the method.

In order to extend the proposed filter in Chapter 4, the assumption of inde-

pendent distribution can be relaxed. Therefore, the conditional probabilities

of data for the transition between the normal and abnormal conditions can be

taken into account. Also, the proposed filter is designed to detect based on the

model that the mean change is abrupt and consistent, although unknown. In

reality, gradual changes exist, which can affect the robustness of the method

by corrupting the dataset for CDF estimation. Therefore, both the filters and

the update policy for the estimation of CDF can be improved to deal with

gradual and abrupt changes. Finally, in order to improve the performance and

robustness, an ensemble method using different filters can be considered.
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