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Abstract 

 

Tuberculosis (TB) infection in the elderly is frequently misdiagnosed. The 

resulting treatment delay may increase TB transmission which is higher in long-

term care (LTC) facilities. The CDC's recommendations to prevent and control 

TB in LTC facilities include TB education and better initial screening methods on 

entry into the facility. However, TB education programs might not always be 

given priority and comparing screening methods experimentally is often not 

feasible.  

 To address these problems, we develop a general conceptual SEIR 

network model for LTC facilities and present a case study of a specific outbreak 

that occurred in a nursing home in Arkansas. We investigate the impact of 

reducing diagnosis delay on the Arkansas outbreak and evaluate potential 

screening programs for that setting. Our results quantify the effectiveness of 

reducing diagnosis delay, justifying a good TB education program. We also 

suggest multiple screening programs that were found to produce equivalent 

results. 
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Glossary 
 

 

active TB disease A person who is experiencing TB symptoms  

and is able to transmit infection to others. 

converter A person who is known to have been  

tuberculin-negative but is now testing  

positive, indicating a new or recent latent TB  

infection. 

latent TB infection A person who has been exposed to TB but is  

not experiencing any symptoms and thus is  

not able to transmit infection. 

Latin Hypercube Sampling A statistical method used to generate a sample 

of parameter sets with more likely values  

according to the specified parameter 

distributions.  

Monte Carlo simulation A method to evaluate a model through a 

number of iterations, each of which is run 

with a random set of inputs. Individual  

outcomes are stored and used to calculate  

mean model outcomes. 

nonlinear least squares A method for fitting a nonlinear model to a  

dataset. 

reactor A person who has a positive reaction to the  

tuberculin skin test and thus has latent TB  

infection. 

sensitivity analysis A study to quantify the impact of uncertain  

factors of a model on the model's outcomes. 

tuberculosis An airborne infectious disease caused by the  

Mycobacterium tuberculosis complex. 
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1. Introduction 
 

 
Tuberculosis in the elderly (>65 years old) is an important issue in Canada. In 

2009, this section of the population accounted for 20% of all reported 

Tuberculosis (TB) cases [2]. Previous exposure to TB, a compromised immune 

system and the presence of chronic conditions, are some of the factors that put the 

elderly at a higher risk for TB infection [3]. This risk is further increased if the 

elderly are living in an enclosed space, sharing the same sources of air, food and 

water, such as in a nursing home [4]. The costs associated with an active TB case 

are also significant. The Canadian government spent $47,290 for each active TB 

case in 2004 and this includes the direct costs for the care of the patient with 

active TB, contact investigations and the treatment of any resulting latent TB 

infections (LTBI) [5]. 

 

 In older adults the misdiagnosis of TB infection is a common problem 

since more frequently diagnosed illnesses, such as pneumonia and lung cancer, 

share a number of symptoms with TB [3,6,7]. This misdiagnosis results in 

treatment delay which may lead to an increase in disease transmission and could 
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potentially endanger the patient's recovery [8]. The presence of a good TB 

screening program is thus important. Continuous screening of the residents for 

latent TB infection would be highly beneficial but is not feasible as it is costly and 

puts a substantial burden on the nursing staff. 

 

 Quite often, for ethical reasons or otherwise, it is not possible to conduct 

experiments to assess the effectiveness of different intervention strategies. 

Mathematical modeling has proven to be a useful tool to investigate and compare 

such strategies [9,10]. In this thesis, we will develop a network model for TB 

transmission in long-term care facilities and use it to investigate different aspects 

of TB intervention strategies. 

 

1.1 Objectives 

 

The main objectives of this thesis are: 

 

1. To develop a conceptual network model for Tuberculosis (TB) 

transmission in long-term care facilities. 

2. As a case study, to adapt the conceptual model to a TB outbreak in an 

Arkansas nursing home and develop a specific network model that can 

recreate the Arkansas outbreak. 

3. To incorporate different TB interventions into our Arkansas Model to 

investigate: 

 the impacts of reducing diagnosis delay, and 

 the effects of different screening programs. 

4.  To demonstrate applicability of network models to the study of control 

and prevention of disease transmission in long-term care facilities. 

 



3 

 
 

1.2 Some Background on Tuberculosis 

 

Tuberculosis (TB) is an infectious disease that is caused by the Mycobacterium 

tuberculosis complex. It is transmitted from person to person through the air. 

Infection occurs primarily through inhalation [11] of droplet nuclei of this 

pathogen  (1-5μm in diameter [12]) that are expelled from the infectious person's 

body into the air mainly through, but not limited to, sneezing or coughing [13]. 

Any susceptible individual that is close enough to inhale these airborne pathogens 

may become infected. The infection usually attacks the lungs, in which case it is 

called pulmonary TB. However, extra-pulmonary TB may develop if the infection 

spreads from the lungs to some other part of the body which may include, 

amongst others, the central nervous system, the bones and the genitourinary 

system. [11,13] 

 

 Individuals infected with the TB mycobacterium do not always develop 

active TB disease [11]. The bacteria may remain inactive inside the lungs for a 

period of time during which the individual is said to have latent TB infection 

(LTBI). At this stage one does not display any symptoms and is therefore not 

infectious [13]. If no preventive treatment is given for LTBI around 10% of the 

latently infected population will eventually develop active TB. These latently 

infected individuals have a higher probability of developing active TB in the first 

two years after infection [11]. Once the pathogens in the lungs become activated, 

the individual starts showing symptoms and is able to transmit the disease. 

Common symptoms of active TB disease include coughing, fever, night sweats, 

loss of appetite and weight loss [13]. 

 

 Diagnosis of new disease usually involves skin testing for conversions, 

chest radiography for those that are tuberculin-positive and analysis of sputum for 

acid-fast bacilli to determine whether active TB is present [3]. The tuberculin skin 

test (TST) is used to diagnose TB infection for which a five tuberculin unit dose 

of purified protein derivative (PPD) is administered intradermally using the 
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Mantoux method. The reaction is read 48 to 72 hours later and a diagnosis is 

made according to the size of the measured induration whilst taking into account 

the person's risk category [6]. 

 

Tuberculosis in Long-Term Care Facilities 

 

Tuberculosis is a nosocomial (healthcare-associated) infection for residents and 

employees of long-term care facilities [14]. Elderly persons residing in such long-

term care facilities are at a higher risk for TB than other elderly persons living 

within the community [15-17].  In a survey conducted in the USA, the TB 

incidence rate for nursing home residents was found to be 1.8 times higher than 

that of elderly community dwellers [17]. A combination of personal and 

environmental factors make the elderly, especially those living in long-term care 

facilities, more susceptible to TB infection. Previous exposure to TB, a 

compromised immune system and the presence of chronic conditions are 

examples of such personal factors, whereas the concentration of M. tuberculosis 

in the air and congregate living within such facilities further increase the risk of 

infection [3].  

 

 The elderly who are susceptible to TB include those with no prior 

exposure to the bacterium, those with a dormant infection that is at risk of 

reactivation, as well as those who had previously recovered from infection but 

may now be susceptible to reinfection [15]. Reactivation of a latent infection is 

the reason behind the majority of active TB cases in the elderly [6,15,18,19]. The 

risk of an elderly person getting active TB disease from a new infection was 

estimated to be between 8% and 12% [19,20]. 

 

 Identifying, diagnosing and treating TB infection and active disease in the 

elderly are more challenging [3,6]. Elderly people having active TB do not 

necessarily display the more common symptoms of TB [15]. For this reason, a set 

of recommendations for the prevention and control of TB in long-term care 
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facilities were published by the Advisory Committee for Elimination of TB and 

include the four principal elements of surveillance, containment, assessment and 

education [16]. 

 

 Surveillance includes the identification and reporting of all cases of both 

TB infection and disease within the facility. Such measures include screening all 

new residents on admission and all employees on employment unless a previous 

positive reaction to the skin test is already documented. Containment deals with 

the prevention of further disease transmission within the facility. The advised 

treatment should be administered and completed and the proper ventilation system 

switched on. Assessment primarily includes the monitoring and evaluation of both 

surveillance and containment within the long-term care facility. Education 

includes preparing residents, families, visitors and employees to realize the 

importance of their cooperation with surveillance, containment and assessment 

activities. This is done by giving them appropriate information  and by equipping 

them with the right skills. [16]. 

 

The nursing staff`s role in the control of TB includes the facilitation of early 

diagnosis of TB and the upholding of the required isolation practices for newly 

diagnosed patients, amongst others [3]. 

 

1.3  Mathematical Modeling of Infectious Disease Transmission 

 

The role of mathematical modeling in epidemiology has become more prominent 

over the past century. Some diseases may be managed in different ways including, 

but not limited to, strategies of prevention, isolation of infectious patients, 

quarantine of susceptibles or treatment of symptoms [9]. The effectiveness of 

such strategies cannot usually be compared using experiments, for ethical reasons 

or otherwise, and the only possible solution is to develop a mathematical model to 

make predictions and compare the outcomes of the possible management 

strategies [9,10]. It was through mathematical modeling that Ross concluded that 
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the spread of malaria could be managed by controlling the number of mosquitoes 

[21]. A brief summary of some major accomplishments of mathematical modeling 

are described by Brauer in [9]. 

 

 The suggested control strategies may be considered a side benefit of using 

modeling. A mathematical model mainly provides insight into what affects the 

spread of disease, which may not be evident from the data itself due to 

inaccuracies in measurement or otherwise [9,10]. 

 

 Brauer [9,10] also briefly discusses the trade-off which is present in most 

areas of mathematical modeling, including modeling of disease transmission. This 

trade-off is between simple models and more detailed (and thus more complex) 

ones. A useful model is one that gives, with no excessive complexity, a plausible 

answer to the question for which it was set up. 

 

 We now give a brief introduction to compartmental models based on 

Brauer's more detailed discussion of compartmental modeling in chapter 2 of 

Mathematical Epidemiology [10]. In such models, the population is split into a 

number of compartments depending on the nature of the disease that is being 

considered. For diseases with immunity, one would have a class for susceptible 

individuals (S), one for the infectious individuals (I) and one for the recovered 

(R). A model for a population moving forward across these three compartments is 

called a SIR model [10]. A well-known example of such a model is the one 

introduced by Kermack and McKendrick in 1927 [22]. 

 

 For some diseases, such as tuberculosis, one formulates SEIR models 

because of the existence of a latency period (E) where individuals have been 

infected but are thus not yet capable of transmitting the disease to others. 

Compartmental models for other different types of diseases include SIS and SIRS 

models, amongst others [10]. 
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 The variables in this type of model are the time t and the numbers of 

susceptibles, infectious and recovered individuals at time t are S(t), I(t) and R(t), 

respectively. Assumptions are made on the transfer rates across compartments and 

since the model is formulated based on the changes in the size of each 

compartment using differential equations. This kind of model is therefore 

deterministic with the disease progression within a population completely 

predictable from the modeling equations and initial conditions. Another important 

concept is the basic reproductive number, R0, which measures the number of 

secondary infectious cases produced by one infectious case in an entirely 

susceptible population throughout its entire infectious period [10]. 

 

 Deterministic models are suitable for large populations such that 

homogeneous mixing is justified. However, especially at the beginning of an 

outbreak, there may be many susceptibles and very few infectious individuals. 

The pattern of contacts is thus more important, suggesting that deterministic 

models should be replaced by stochastic models. Two possible options are 

complete stochastic models and network models. Stochastic models require many 

simulations and each simulation may have a different outcome, whereas one 

simulation is enough for deterministic models as the same output is obtained 

every time the model is run [10].  

 

 Network models are stochastic and are very useful in simulating the 

transmission of infectious diseases within relatively small populations. They take 

into account the individual contacts between members of the population. As such, 

they give a more realistic picture of how the disease is spreading in that particular 

community and allow one to extract more information from the model. When 

dealing with a sufficiently large population, one may switch to a deterministic 

model once the outbreak is past its initial stages [10]. A more detailed description 

of network models is provided by Brauer in chapter 4 of Mathematical 

Epidemiology [10], whereas a detailed introduction to complete stochastic models 

is provided by Allen in chapter 3 of the same book [10]. 
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1.4 Literature Review on TB models 

 

We here present a brief introduction to some of the TB models published in the 

literature. The majority of these are differential equations SEIR-type models and 

include different aspects of TB such as drug-resistant strains of TB, treatment and 

vaccination strategies, TB-HIV co-infection and TB amongst immigrants.  

 

 Blower et al. [23] present a theoretical framework for the investigation of 

TB transmission dynamics. This is done through two SEIR-type differential 

equation models, a simple one and a more detailed one that includes both active 

TB (infectious and non-infectious) and recovery. The very slow dynamics of TB 

epidemics are also discussed. 

 

 A model by Ziv et al. [24] focuses on the reduction of the incidence rate 

for TB through the treatment of early latent infection. They conclude that contact 

investigations, with the appropriate treatment when required, has a significant 

impact on reducing the spread of TB. 

 

 Castillo-Chavez and Feng [25] analyze an age-structure model for TB 

transmission in the presence of vaccination to identify an optimal vaccination 

strategy. They conclude that this optimal strategy can be either vaccination of the 

susceptible population at one particular age (one-age strategy) or vaccination of a 

proportion of susceptibles at an age and the rest at another later age (two-age 

strategy). 

 

 Another TB model that incorporates vaccination is presented by Lietman 

and Blower [26]. They develop two simple mathematical models investigating the 

impact on TB epidemics of pre-exposure vaccines in the first and the impact of 

post-exposure vaccines in the other. Their conclusion is that vaccines which are 

only moderately effective, may still have an impact on the reduction of TB 
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epidemics, as long as they are used in conjunction with treatment rates that are 

sufficiently high. 

 

 A reinfection threshold is detected by Gomes et al. [27] in a general TB 

epidemic model. Once this threshold is reached, disease transmission becomes 

mainly due to reinfection. At that stage, vaccination fails due to the resulting 

drastic increase in infection levels. They conclude their findings by showing how 

vaccination programmes can be used to manipulate these reinfection thresholds. 

Cohen and Murray [28] present another model that includes reinfection, this time 

amongst US immigrants. 

 

 Cohen et al. [29] develop a network model for TB transmission that takes 

into account reinfection. Other models, including Cohen and Murray's model for 

TB amongst immigrants [28], had stated that reinfection is a particularly major 

factor in high-incidence regions. Due to the absence of a homogenous mixing 

assumption in network models, Cohen et al. [29] suggest that reinfection may also 

be a major factor in moderate- or low-incidence regions. 

 

 Castillo-Chavez and Feng [30] present two models. First they develop a 

simple SEIR model for one-strain TB transmission and then they present a two-

strain TB model that includes a resistant strain which is left untreated. They use 

the latter model first with a naturally-resistant strain and then with an antibiotic-

resistant strain. Their conclusion is that although not frequent, co-existence of a 

typical strain and a naturally-resistant strain is possible. On the other hand, co-

existence is standard when the resistant strain was resistant due to antibiotics. 

 

 Cohen et al. [31] developed a model for populations coinfected with TB 

and HIV. They use this model to analyze the effects on the dynamics of drug-

resistant TB caused by the administration of isoniazid preventive therapy (IPT) to 

the coinfected population (community-wide IPT). Although drug-resistant TB 

strains would emerge more quickly on implementation of such a programme, they 
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conclude that this strategy is still beneficial as long as the necessary identification 

and effective-treatment policies for the increasing proportion of drug-resistant TB 

cases were implemented. 

 

 This brief literature review is not meant as a full review of TB models but 

rather it aims to give a brief overview of the various aspects that TB models try to 

address. A more detailed review on TB models is presented by Colijn et al. [32]. 

 

1.5 Overview of Our Results 

 

1. We used the network modeling approach to develop a conceptual model 

for TB transmission in long-term care facilities. 

2. Case study (the Arkansas Model): we adapted the conceptual model to a 

specific TB outbreak that occurred in a nursing home in Arkansas, USA, 

between 1977 and 1979, as described by Stead [1]. 

3. We used the Arkansas Model: 

a. to investigate the impact of reducing diagnosis delay, and 

b. to identify an optimal screening program for that nursing home's 

residents. 

For the Arkansas setting, reducing diagnosis delay to one month results in 

a reduction of 25% in the number of latent TB infections and a reduction 

of 47% in the number of active TB cases. Multiple screening programs for 

this Arkansas setting were found to produce the same results. 

 

Our results demonstrate how a network model may be used to implement different 

aspects of TB intervention strategies and investigate their effectiveness leading to 

recommendations for policy making. 
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1.6 Thesis Outline 

 

Chapter 2 describes the modeling process and introduces an example of a real TB 

outbreak that is described in published literature [1]. Details from this outbreak 

provide us with the data used for parameter estimation, the process for which is 

described in this section. We also include a description of the sensitivity analysis 

process. 

 

 Chapter 3 first describes the results of both the parameter estimation and 

sensitivity analysis processes. We then compare the results of our Arkansas 

Model with the outbreak described by Stead [1]. This Arkansas Model is then 

used to explore the impact of reducing diagnosis delay. We also assess potential 

screening programs that test for conversions and if appropriate, treat, a percentage 

of the susceptible population every number of months. The latter is aimed at 

reducing the burden on the nursing staff by finding a good balance between the 

testing frequency and the proportion of residents to test. We conclude this thesis 

in Chapter 4 by providing a brief summary of this work and a discussion of any 

limitations and potential future work. 
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2. The Modeling Process 

 

 
Network models have been increasingly used to model infectious disease 

transmission [9]. Keeling and Eames [33] provide a review of basic aspects of 

network theory and epidemiology, linking the two together. Additional theoretical 

background on network models can be found in [10,34,35]. Others [34,36-38] 

apply network models to investigate various infectious diseases through the use of 

simulations. A network model for TB transmission is presented by Cohen et al. 

[29]. We have adapted the network modeling approach to develop a general 

conceptual model for TB transmission in long-term care facilities. This conceptual 

model can be adapted to specific long-term care facilities. 

 

 In this chapter we describe the modeling process. We first develop in 

Section 2.1, a general conceptual SEIR TB network model in the setting of a long-

term care facility. We then adapt this modeling framework to a particular case of a 

TB outbreak that happened in a nursing home in Arkansas, USA, in the late 

1970s, as described by Stead [1]. Using the data extracted from this paper, we 

perform parameter estimation and model fitting using random sampling methods. 

This process produces a network based stochastic model whose expected outcome 
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reproduces the Arkansas outbreak. Sensitivity analysis is then performed using 

two methods to determine the parameters that are the most sensitive with respect 

to model outcome. Results from the analysis will be presented in Chapter 3. 

 

2.1 A General Conceptual SEIR Network Model for TB 

transmission in Nursing Homes and other Long-Term Care 

Facilities 

 

A network (graph) is used to represent the contact among residents in a long-term 

care facility. The nodes in the network correspond to rooms of the facility whilst 

the edges between the nodes reflect the contacts between one or more residents of 

the corresponding rooms. The degree of a node is the number of edges at the node 

and describes the average number of contacts of that room.  

 

To model the spread of TB in the facility, the resident population is 

compartmentalized into 4 categories (S, E, I, R) based on their TB health status: 

susceptible, exposed (latent TB infection), infectious (active TB disease) and 

recovered (received treatment and is therefore no longer susceptible to the same 

strain of TB). 

 

 

 

 

 

 

 

Figure 2.1. An SEIR process for the progression of Tuberculosis in elderly 

residents of a long-term care facility.  

Stages of the process include susceptibility to TB (S), latent TB infection (E), 

active TB disease (I) and recovery (R) from either infection or disease. 

 

 

S E 
 

I 
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 At each node of the network, we defined a set of attributes that describe 

the corresponding room. This set contains the room number, the wing number and 

the health status of each of its residents. The health status of a resident may have 

only one of these values at any point in time: susceptible, reactor, converter, 

infectious, recovered converter and recovered infectious. As the disease 

progresses throughout the residence, this value will change based on the resident's 

contacts and the disease transmission rates, amongst others.  

 

 A reactor is a person who has a positive reaction to the tuberculin skin test 

(TST). A converter is a person who is known to have been tuberculin-negative but 

is now testing positive, indicating a new or recent infection [39]. This is measured 

as an increase of over 10mm in induration over a period of two years [40]. Both 

reactors and converters are latently infected (E) but their probability of developing 

active TB disease are different. They are thus assigned different rates of 

progression from E to I. The risk of developing active TB is higher in the first two 

years after infection [11] so the converters are given priority over the reactors for 

LTBI treatment [41]. 

 

Connections within a wing 

 

Long-term care facilities are typically organized into different wings. The contacts 

between residents living within the same wing i are created first. We make the 

following assumptions on the number and distribution of contacts within a wing:  

 

1. there is only a small number of rooms that either have few contacts or else 

many contacts; and  

2. most rooms have an average of μi contacts. 

 

Therefore, we let X be a discrete random variable that represents the number of 

contacts per day that a room has with other rooms located in the same wing. For 

wing i, preceding assumptions 1 and 2 are the same as assuming that X has a 
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Poisson distribution with mean μi. Thus, the probability P that a room has k 

contacts is given by  

         
  
     

  
 

   

The following explains the process of creating these connections: 

 

Step 1 

 

Create a vector P such that P(k) contains the probability of a room having k 

contacts (as described above). If the number of rooms in the wing is n, then the 

maximum value of k is equal to n - 1 since a room may not be connected to itself. 

Another vector N is created such that N(k) holds the number of rooms that have k 

contacts. This is obtained by multiplying each entry of P by n and then rounding 

its value since the number of rooms is an integer value. 

 

Step 2 

 

Summing the entries of N should result in n. However, due to the rounding 

performed in Step 1, this might not be the case.  

 If sum(N) < n, then a number of rooms have not been assigned a 

degree. The difference is thus added to N(μi) to ensure that the mean of 

the distribution is not changed. 

 Otherwise, if sum(N) > n, a number of rooms have been assigned 

multiple degrees. To ensure that all rooms are assigned only one 

degree, a random element of N, say N(j), is selected and its degree is 

reduced by 1 as long as j ≠ μi and  N(j) ≠ 0. 

 

Step 3 

 

A sampling vector AS of rooms is then created. AS contains the room numbers of 

all non-isolated rooms, with each room number repeated according to that room's 

number of contacts, given by N(j) for room j. A second sampling vector AS1 is 
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also created and used later to make the connections between different wings. This 

second vector is created in the same way as AS with the main difference that each 

room number j is repeated N(j) times up to a maximum of μi.. Capping at the mean 

μi the maximum number of times a room number may appear in this vector avoids 

the possibility of just selecting the most connected rooms as the ones also 

connected to the other wings. 

 

Step 4 

 

To establish the links between rooms in wing i, a vector CM of length n is created, 

where CM(j) is a list of all the rooms that are connected with room j. We create 

the links between the rooms and thus populate the vector CM as follows: 

 select 2 rooms, r1 and r2 from AS, making sure r1 ≠ r2 to avoid having 

self-connections; 

 add r1 to CM(r2), which is the list of contacts of r2; 

 similarly, add r2 to CM(r1). This is done based on the assumption that 

connections between rooms located in the same wing are bidirectional; 

 remove r1 and r2 from AS by switching them with the last and next-to-

last elements of AS respectively, and then truncate AS by two elements. 

The switching is done to further randomize this process. 

 

Connections between wings 

 

The connections between rooms located in different wings are established next. A 

connection from wing i to wing j represents a visit made by a resident living in 

wing i to a resident located in wing j. For such connections, we assume that a 

resident who is highly connected in their own wing, i.e. is very sociable, has a 

higher probability of having contact with residents of other wings. The total 

number of visits from wing i to wing j is given by βij. 
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 To create these connections, probability proportional to size (PPS) 

sampling [42] was used to select 2 different samples, each from AS1. The 

likelihood of a room number being selected is proportional to the number of 

contacts the room has within its own wing. 

 

 The first sample, SiX, has length βij + βik and it contains the room numbers 

of those rooms in wing i whose residents will visit residents in wing j and 

wing k. 

 The second sample, SXi, contains the room numbers of those rooms in 

wing i receiving visits from residents living in wings j and k and it 

therefore has length βji + βki. 

 

Another vector WXtoWi is then created, composed of 2 random samples selected 

as follows: 

 

 βji rooms were selected from SjX 

 βki rooms were selected from SkX 

 

These are the rooms in wings j and k whose residents are visiting wing i. For each 

room z in SiX, a random room from WXtoWi is selected and added to CM(z) to 

make the connection. WXtoWi is updated accordingly. 

 

 After the connections are set up, the index case of TB and the reactors are 

selected amongst the resident population. Letting the index case be a very sociable 

resident that is located in wing i, we select our index case to be that resident from 

wing i that has the most contacts. The CM vector is used to compare the lengths of 

the list of contacts of the rooms in wing i to obtain the most connected room in 

that wing. A resident from that room is then randomly selected to be the index 

case, by switching its health status to infectious. A number of reactors in each 

wing are selected randomly, allowing for the possibility of having multiple 

reactors in one room. 
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 The network model set up using this process is stochastic. Each run of the 

model will result in a different network configuration. The number of nodes and 

the number of edges are fixed. However, the connections themselves are created 

randomly such that two connected nodes in one model evaluation are not 

necessarily connected in the next. Monte Carlo methods and mean model 

outcomes are thus used. A Monte Carlo simulation consisting of a number of 

model evaluations is performed, each time recording the output. The mean output 

is computed at the end. Most simulations in the studies of this thesis, including 

those for model validation, the investigation of the impact of reducing diagnosis 

delay and the assessment of different screening programs (Chapter 3), make use 

of 20 000 model runs to ensure that the mean model outcome is well-established. 

 

 The SEIR process is performed on the individuals of the population at 

every single time-step. The chosen time-step is one day and one evaluation of the 

model investigates TB progression in the long-term care facility for a specified 

duration. 

 

 At the program initialization, the network is configured and all room 

attributes are assigned. Then each individual's movement is followed across 

compartments from day 1 until the last day. Transitional probabilities are assigned 

to the relevant individuals to assess whether they should progress to another 

compartment. Flowcharts describe the general structure of the program (Figure 

A.1) and also how possible progression from one compartment to the next occurs 

(Figures A.2 - A.5).  

 

2.2 Case Study: A TB outbreak in a nursing home in Arkansas, 

USA 

 

Stead [1] describes an outbreak that occurred in a nursing home in Arkansas, 

USA, between 1977 and 1979. The first wave of the outbreak was caused by an 

index case that was misdiagnosed for more than a year. A second wave of active 
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TB cases was mainly due to treatment delay of the converters, which could not 

immediately be distinguished from reactors. We would like to adapt the 

conceptual model described in Section 2.1 to recreate this specific outbreak.  

 

 The nursing home consisted of 240 beds in 112 rooms, with 2 or 3 

residents in each room, spread over six wings. Two of these wings were for 

skilled care so its residents very rarely left their rooms, whilst residents from the 

other four wings ate and played games together in the dining room. The resident 

population was mainly white of middle-class background with a mean age of 76.1 

years. 

 

 At the time, the facility's TB control strategy consisted of a chest 

roentgenogram for residents close to admission to exclude active TB and skin 

tests for employees before starting employment at the facility. Chest 

roentgenograms were obtained from those employees whose reaction had an 

induration of 10mm or more within 48 hours. Employees were then tested 

annually and all converters, irrespective of age, would be treated with isoniazid. 

 

 In June 1978, a public health nurse noticed a number of conversions 

among the facility's employees, who were annually tested for latent TB infection. 

This prompted an investigation, which led to the discovery of the index case, a 

sociable 72-year old man who had been a resident of the nursing home for three 

years. On a visit to the hospital for minor surgery in June 1977, the index case had 

a routine chest roentgenogram which showed some abnormalities in the lungs. 

Diagnosed as a "probable bronchogenic carcinoma" by the radiologist, the patient 

turned down further investigations and was taken back to the nursing home. His 

symptoms, which included coughing and weight loss, were attributed to the 

carcinoma so he kept on interacting with the other residents. 

 

 On discovery of the index case, all residents and employees with no 

known prior positive reaction to the skin test were skin tested and those that now 
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resulted positive were given chest x-rays. Tuberculin-negative residents and 

employees were tested again after two months. All employees that had converted 

were given prophylactic treatment with isoniazid and residents with active TB 

disease were also treated. Resident converters could not yet be identified and 

because of their age, preventive treatment was withheld. 

 

 In March 1979, an active TB case was confirmed in a 65-year old man 

with chronic lymphatic leukemia. He was found to be anergic through skin testing 

with different antigens since previous TST was negative. All previously 

tuberculin-negative residents and employees were tested once again and more 

converters were found among both groups. A 97-year old man was among the 

converters and, because of his age, it was decided that confirmation of active TB 

disease was needed before treatment was to be initiated. Before test results came 

back, he was admitted with abdominal pain to hospital where he was diagnosed 

with pneumonia. He did not respond to the corresponding treatment and died a 

week later. Confirmation of active TB disease arrived a few days later. 

 

 Realising that an outbreak of TB was occurring in the nursing home, more 

effort was put in to locate the residents' previous TST records. The majority of 

such records were finally obtained, allowing the distinction between reactors and 

converters to be made for the first time and thus the administration of the 

appropriate treatment. 

 

 Figure 2.2 outlines the major events of this outbreak. The outbreak data 

and the distribution of the reactors amongst the wings, as extracted from Stead 

[1], are described in Tables 2.1 and 2.2, respectively. The active TB cases are 

counted separately from the converters in Table 2.1. 

 

  



21 

 
 

 

 

 

 

 
Jun 1977               Jun 1978              Aug 1978          Jan 1979      Mar 1979       Jul 1979       Sep 1979      

T=1 (time-days)       T=366    T=427               T=580          T=639            T=761           T~800   

 

 

 

June 1977: Misdiagnosis of the index case during hospital visit. 

 

June 1978: Index case is diagnosed with active TB disease. All resident and 

  employees with no known tuberculin-positive records are  

  tested. Chest x-rays are given to those now resulting in a  

  positive reaction. 

 

Aug 1978: Tuberculin-negative residents and employees are tested again. 3 

  more cases of active TB disease and 3 new cases of LTBI are 

  discovered among the residents. Residents with LTBI are NOT 

  treated due to old age and the absence of certain medical records 

  preventing the identification of converters from reactors. All 

  active TB cases are treated, together with cases of LTBI  

  amongst the employees. 

 

Jan 1979:  Misdiagnosis of another resident due to symptoms resulting 

  from complications of leukemia.  

 

Mar 1979:  Resident is diagnosed with active TB disease. All tuberculin-

  negative residents and employees are tested once again,  

  resulting in 20 new cases of LTBI and 1 case of active TB  

  disease amongst the residents. Treatment is finally given to all 

  converters as they could finally be distinguished from reactors.  

 

July 1979:  1 more resident with active TB disease and another with LTBI 

  are discovered and treated accordingly. 

 

 

 

 

Figure 2.2. Timeline of the major events of a TB outbreak in a nursing home 

in Arkansas as described by [1]. 
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2.3 Our Baseline Network Model for TB transmission in the 

Arkansas Nursing Home (the Arkansas Model) 

 

Our Arkansas Model was built according to the description of the general 

conceptual model in Section 2.1. MATLAB R2007b is used to develop the 

program for model simulations. 

 

 Additional simplifying assumptions for our Arkansas Model in relation to 

the data include: 

 

 2 residents residing in each room (total of 224 residents vs. the 240 stated 

in the paper); 

 the nursing home rooms are regrouped into 3 wings according to location 

and type; 

 minimal transmission from employees and visitors to residents - model 

simulates TB transmission solely amongst the resident population; 

  a constant resident population, no new admissions or deaths considered; 

 no common areas - dining room is excluded; 

 2 periods of transmission: Jun 1977 – May 1978 and Oct 1978 – Feb 1979. 

Otherwise, all active TB cases are discovered and treated (treatment 

efficacy of 100%);  

 rate of progression to active TB for reactors is chosen to be a quarter of 

the corresponding rate of progression of converters as none of the 

residents who were tuberculin-positive before June 1978 developed active 

TB disease [1]; 

 on average, frequency of contact between roommates is higher than that 

between residents of different rooms. For simplicity, we assume a contact 

ratio of 10:1; 
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 network configuration is determined at the beginning. New contacts 

cannot be created and existing ones cannot be removed during each model 

evaluation. 

 

 

 

Table 2.1. Outbreak data, obtained from Stead [1] 

 

 

 

 

 

 

Table 2.2. Data about reactors, obtained from Stead [1] 
 

 

 

 

 

 

 

 

Table 2.3. Distribution of cases among different wings by the end of the 

outbreak [1] 

 

 

 

 

  

Date Jun 77 Jun 78 Aug 78 Mar 79 Jul 79 

Time (days) 1 366 427 639 761 

Accumulated 

number of 

converters 

0 18 21 41 42 

Accumulated 

number of  

active TB cases 

1 3 6 7 8 

Wing Number 1 2 3 

Number of Reactors 27 8 12 

Wing Number 1 2 3 

Active TB Cases (actual) 8 0 0 

Latent Cases/Converters (actual) 21 18 3 
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The timeline in Figure 2.3 describes the periods of transmission, which include 

the year taken for the index case to be discovered (June 77 - June 78) and the 

second transmission window that starts in October 78, based on our assumption 

that active TB cases were diagnosed and treated for the 4 months following the 

discovery of the index case. This second period of transmission ends in March 79, 

with the diagnosis of a new active TB case and the treatment of both converters 

(ω = 0.8) and active TB cases (γ = 1).  

 

 A schematic diagram of the network representing our nursing home, 

taking into account the above assumptions, is displayed in Figure 2.4. 

 

 

 

 

 

 

 

 

 

Figure 2.3. Timeline of the Arkansas outbreak including our assumptions.  

These include assumptions about periods of diagnosis delay and the proportions 

of successfully treated converters (ω = 0.8) and active TB cases (γ = 1). 

 

 

2.4 Parameter Estimation 

 

The progression rate (per day) from latent TB infection to active TB disease is 

described by the parameter ε. The data in Table 2.1 was used to estimate its value 

as follows: over the course of one year, between June 1977 and June 1978, 2 new 

active TB cases developed from a total of 20 converters. An estimate for the value 

of ε was thus obtained by the following calculation: 

 

    
 

        
          

 

Jun 1977 Jun 1978 Oct 1978 Mar1979 Sep 1979 

γ = 0 γ = 1 γ = 0 γ = 1 

ω= 0.8       
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 The parameter ω describes the recovery rate of the converters. The 

Tuberculin Skin Test has a false negative rate of up to 20% [43], implying that 

only 80% of the converters are effectively diagnosed with LTBI. A treatment 

efficacy of 100% is assumed and thus ω is assigned the value 0.8. 

 

 The recovery rate from active TB disease is described by the parameter γ. 

During periods of transmission, γ takes on the value 0, otherwise it is assumed 

that all infectious cases are isolated and treated immediately. A treatment efficacy 

of 100% is also assumed and thus during these periods γ has a value of 1. 

 

 

 The description of the outbreak provided by Stead [1] does not include any 

details about either the contact rates or the transmission rate. These parameters are 

thus fitted using the data extracted from Stead [1], which includes the 

accumulated number of converters (five data points) and the accumulated number 

of active TB cases (five data points) at specific points in time (Table 2.1), as well 

as the distribution of LTBI (three data points) and active TB cases (three data 

points) amongst the different wings (Table 2.3). 

 

 The method of nonlinear least squares is used to fit these parameters: 

 

 λ, which is the probability that a contact per day results in infection; 

 

 the mean of the Poisson distribution of contacts of the rooms in wings 1 

and 2, which are given by μ1 and μ2; and  

 

 the number of visits originating from wings 1 & 2 (β12, β13, β21 and β23). As 

wing 3 is for skilled care, no contacts occur amongst its residents  

(μ3 = 0) and the residents do not leave their rooms (β31 = 0 = β31).  
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Figure 2.4. A schematic diagram of the network representing the nursing 

home of the Arkansas Model.  

The parameters βij represent the number of visits per day from Wing i to Wing j. 
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 Rooms in wings 1 and 2 are not generally isolated so the minimum value 

for both μ1 and μ2 is set to be equal to 1. The upper end of the range of values of μi 

is restricted to one less than the number of rooms in that wing i since a room can 

at most be connected to all other rooms in that wing but may not be connected to 

itself. The maximum values for μ1 and μ2 are thus equal to 40 and 36, respectively. 

 

 The assumption that, each day, residents living in the same room had 10 

times as much contact with their roommate than they had with other residents, led 

to the restriction of the value of the parameter λ to a maximum of 0.1. 

 

 Details about the type of contact amongst wings were not provided and 

thus some further assumptions were made. Wings 1 and 2 have a total of 82 and 

74 residents, respectively so the maximum number of visits from wing 1 to wing 2 

(β12) and vice versa (β21) was set to 100. A lower maximum of 50 visits 

originating from each of wings 1 and 2 to wing 3 (β13 and β23) was chosen so that 

each wing may now have a maximum total of 100 visits (Figure 2.5). 

 

 

Table 2.4. Range of possible values for fitted parameters 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter [min,max] 

λ [0,0.1] 

µ1 [1,40] 

µ2 [1,36] 

β12 [1,100] 

β21 [1,100] 

β13 [1,50] 

β23 [1,50] 
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Figure 2.5. The maximum number of visits per day for each wing. 

 

 

Parameter Fitting - Stage 1 

 

To make the fitting tractable, a sample of 5000 parameter sets was selected. Each 

parameter set p contains a value for each of the 7 parameters to be fitted, which 

were selected randomly from the parameter ranges described in Table 2.4. Due to 

the stochasticity of the model, each time the model is evaluated, the network's 

edges are configured differently. Mean model outcomes thus needed to be used. 

For each of the 5000 parameter sets,  a Monte Carlo simulation of 500 model 

evaluations is executed using the same parameter set p. The outcomes recorded 

after each model evaluation include the number of converters and the number of 

active TB cases at specific time intervals over the duration of the outbreak, as well 

as the distribution of both LTBI and active cases across the 3 different wings. A 

Wing 1 

(82 residents) 
 

max total number of  

visits received 

100 

Wing 2 

(74 residents) 
 

max total number of  

visits received 

100 

Wing 3 

(68 residents) 
 

max total number of  

visits received 

100 

β23 (≤ 50) 

β12  (≤ 100) 

β21 (≤ 100) 

β13 (≤ 50) 
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vector of length 500 is thus created for each outcome x and the corresponding 

mean model outcome, dx (Table 2.5), is calculated by taking that vector's mean. 

 

Table 2.5. Model Outcomes 

 

 

 The mean model outcome for a parameter set p is described by the vector 

data, where it is defined by: 

        

  

  

  

 

   

  

 

The observed values, provided by Stead [1], are described by the vector data*. 

For each set p, the error is calculated, squared and summed up to obtain the sum 

of squares, SS(p), for that parameter set. 

 

          
     

 

  

   

 

 

The 5000 parameter sets are then sorted in ascending order according to their sum 

of squares. 

 

Parameter Fitting - Stage 2 

 

The next step makes use of the top 50 parameter sets obtained through the process 

described in Stage 1. The three most frequent values for each of the contact 

parameters (μ1, μ2, β12, β13, β21 and β23) were selected, whilst the range for the 

parameter λ was linearized into 12 values. Another sample of parameter sets was 

Outcome description Outcome representation 

# of active TB cases at specific points in time d1,  d2, d3, d4, d5 

# of converters at specific points in time d6,  d7, d8, d9, d10 

# of active TB cases across the 3 wings d11,  d12, d13 

# of converters across the 3 wings d14,  d15, d16 
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formed by obtaining all possible combinations of these selected values. The size 

of this sample is thus equal to 8748 (i.e. 3
6
 x 12). The same procedure as in Stage 

1 is followed for all parameter sets and again, they are ordered by the lowest sum 

of squares. The parameter set that has the lowest sum of squares is considered to 

be the best fit for our model. 

 

2.5 Sensitivity Analysis 

 

The purpose of performing sensitivity analysis is to determine which parameters 

have the largest effect on each of the outputs of interest. It is not simply a method 

of finding the most important factors since the definition of importance needs to 

first be specified [44]. In our case, the outputs of interest are the number of 

converters and the number of active TB cases occurring during a fixed period of 

time. We would like to determine which of the parameters has the most impact on 

these numbers. 

 

 Sensitivity analysis may be classified into either local or global. Local 

methods, sometimes also referred to as One-Factor-at-a-Time (OFAT) methods, 

perturb one parameter whilst fixing the rest [45]. Results may include graphs 

presenting the size of the output as it changes with variations in the investigated 

parameter. One major drawback of this kind of method is that the interactions of 

the investigated parameter with those parameters that are kept fixed are 

completely disregarded. To overcome this, global sensitivity analysis is opted for 

instead of local methods.  

 

 Marino [46] gives an overview of when it is appropriate to use some 

standard methods based on the type of relationship that exists between input and 

output. Scatter plots may be used initially to determine any nonlinearities between 

the parameters and the outcomes of interest. If a linear relationship exists, 

standard methods for its measurement include the Pearson correlation coefficient 

and the Partial Correlation Coefficients (PCC), amongst others. Other methods, 
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such as the Spearman Rank Correlation Coefficients (SRC) and Partial Rank 

Correlation Coefficients (PRCC), are useful in the presence of a monotonic 

nonlinear relationship, where parameters and outputs are first ranked. The third 

class of methods is used for non-monotonic nonlinear relationships and are based 

on variance decomposition of model output. These include the Sobol method and 

the Fourier Amplitude Sensitivity Test (FAST) [46]. 

 

 In our sensitivity analysis, scatter plots of the fitted parameters against the 

outputs of interest were generated and based on the absence of a clearly defined 

linear relationship, PRCC was used for our global sensitivity analysis. The sample 

of parameter sets used was generated using Latin Hypercube Sampling [47]. We 

also investigate the local sensitivity of the estimated parameters ε and ω using the 

OFAT method. 

 

Partial Rank Correlation Coefficient Method (PRCC) 

 

We generate a sample of 3000 parameter sets using Latin Hypercube Sampling 

(LHS) [47] and run a Monte Carlo simulation of 500 model runs for each set. The 

corresponding mean model outcomes are recorded in Table 2.5. A matrix P of 

parameter sets is formed, with each column corresponding to a different 

parameter and the two outcomes of interest, d5 and d10, are attached to P as 

another two columns, forming the matrix D. The partial correlation coefficients 

for both outcomes are then calculated using MATLAB's partialcorr function. 

 

 For the LHS, a triangular distribution, with endpoints a, b and mode c, is 

used to generate the 3000 parameter sets. The endpoints for each parameter 

correspond to the minimum (a) and maximum (b) value that parameter can take 

(Table 2.4), whilst the mode (c) was chosen to be the respective previously fitted 

values. The interval [0,1] is split into 3000 intervals of equal length. A random 

value is chosen from each interval and the corresponding parameter value is then 

calculated (and rounded accordingly). 
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 A vector of 3000 values is thus formed for each of the contact parameters 

μ1, μ2, β12, β13, β21 and β23, and the transmission parameter λ. Each vector is 

randomized separately and the resulting vectors are now the columns of a 3000x7 

matrix P describing our sample set. Each row of the matrix corresponds to a 

parameter set, which is used to run a Monte Carlo simulation of 500 model 

evaluations. The two mean model outcomes of interest are recorded for each 

sample set, forming another two vectors of length 3000. Together with the matrix 

P, they are used as input to the Matlab function partialcorr to calculate the partial 

correlation coefficients and determine an order of sensitivity for the parameters. 

 

One-Factor-at-a-Time Method (OFAT) 

 

We now investigate the effects the parameters ε and ω have on the size of the 

outbreak. A range of values (Table 2.6) is selected for both the rate of progression 

from LTBI to active TB disease, ε, and the recovery rate of the converters, ω. The 

values for ε are minor perturbations to either side of the previously chosen value 

of 0.0003, whilst the values for ω reflect the statement that the TST has a false 

negative of up to 20% [43]. Both ranges are linearized into 11 points. For each 

parameter that is being investigated, a Monte Carlo simulation of 2 000 model 

evaluations is performed for each of the parameter's 11 values, keeping all the 

other parameters fixed.  The corresponding mean model outcomes representing 

the number of active TB cases and the number of converters after 800 days are 

then calculated.  
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Table 2.6. Range of values for ω and ε 

 

 

 

 

 

 

2.6 Summary 

 

In this chapter we have described how a general conceptual SEIR network model 

for TB transmission in a long-term care facility may be developed. We have 

adapted this conceptual model to a specific nursing home in Arkansas as 

described by Stead [1]. Using data from published literature [1] we have estimated 

some of the parameters and fit the rest with a two-stage fitting process using the 

method of Nonlinear Least Squares. Sensitivity analysis for the fitted parameters 

was done using the Partial Correlation Coefficient Method on a sample of 3000 

parameter sets generated by Latin Hypercube Sampling, whilst the One-Factor-at-

a-Time method was used for the estimated parameters ε and ω. Results are 

presented in the next chapter. 

  

Parameter Range 

ω [0.8, 1.0] 

ε [0.0002, 0.0004] 
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3. Results 
 

 

In this chapter we present our results for the case study of the Arkansas nursing 

home using the modeling process described in Chapter 2. For each subsection, we 

first list the main results and then describe how these results are established. 

Section 3.1 describes the outcome of parameter fitting, which will be used in 

subsequent simulations. Section 3.2 highlights the results of sensitivity analysis, 

whilst in Section 3.3 we present the results of a Monte Carlo simulation of the 

outbreak that occurred in a nursing home in Arkansas, USA, in the late 1970s, as 

described by Stead [1].  

 

 We also investigate two aspects of TB intervention strategies using the 

fitted Arkansas Model in the setting of the Arkansas nursing home. In Section 3.4, 

we investigate the impact of reducing diagnosis delay. In Section 3.5, we 

investigate the effects of various screening programs.  
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3.1 Parameter Fitting 
 

Using our two-stage fitting process, we have determined the set of parameter 

values for which the mean model outcomes best fit our data (Tables 2.1 and 2.3).  

 

  RESULT 1 - Best-fit parameter values 

 

 

The parameter values that provide the best fit mean model outcome 

for our data are: 

 

λ µ 1 µ 2 β12 β21 β13 β23 

0.0990 3 14 86 7 38 12 

 

 

 

 

 We now describe the outcomes of the intermediate steps taken in the 

parameter fitting process. 

 

Stage 1 

 

The five parameter sets with the lowest sum of squares out of the 5000 sampled 

sets are described in Table 3.1. To select the values for the next stage of the 

parameter fitting process, we considered the best 1% parameter sets out of the 

initial 5000. This is equivalent to selecting those 50 parameter sets that resulted in 

the lowest sums of squares. The three most frequently occurring values for each 

parameter were selected and whenever multiple values for a parameter had the 

same frequency across those 50 sets, three values were randomly selected from 

them. Figure 3.1 describes the frequency of each possible parameter value across 

these 50 parameter sets, whilst Table 3.2 summarizes the selected values. 
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Table 3.1. Top 5 Fitted Parameter Sets for Stage 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1 

 

2 

 

3 

 

4 

 

5 

λ 0.0956 0.0959 0.0714 0.0709 0.0243 

µ1 3 3 3 3 3 

µ2 7 8 8 12 30 

µ3 0 0 0 0 0 

β12 63 42 91 10 92 

β21 30 13 11 9 8 

β13 7 23 31 18 28 

β31 0 0 0 0 0 

β23 10 29 17 18 14 

β32 0 0 0 0 0 

Sum of squares 271.30 285.85 288.40 293.85 310.68 
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Figure 3.1. Frequency distribution of the parameter values.

Each graph shows the number of occurrences of the corresponding parameter
values across the best 50 sets (ordered by least sum of squares) resulting from
the random sample of 5000 parameter sets.
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Table 3.2. Top 3 most frequent values for each contact parameter.  

Values obtained after running the model with each of the 5000 randomly chosen 

parameter sets. More than 3 values shared the same highest frequency for both β12 

and β13 so the 3 values were randomly selected amongst the most frequent values.  

 

 

 

 

 

 

 

 

 

 

Stage 2 

 

For the second stage of the parameter fitting process, we created a new sample of 

parameter sets by first linearizing the parameter λ into 12 points between 0.001 

and 0.099. The resulting set of values, {0.0010, 0.0099, 0.0188, 0.0277, 0.0366, 

0.0455, 0.0545, 0.0634, 0.0723, 0.0812, 0.0901, 0.0990}, together with the 

selected values for the other parameters as described in Table 3.2, are combined to 

create all possible combinations of these values. The resulting sample of 8748 

parameter sets is then used to find the parameter set with the least sum of squares. 

Its resulting mean model outcomes are then considered to best fit our data.  

 

 We describe the best five parameter sets obtained through this second 

stage in Table 3.3 and we summarise all the parameters used by the model, 

estimated and fitted, in Table 3.4. 

 

 

 

Parameter Values 

µ1 {2, 3, 4} 

µ2 {1, 8, 14} 

β12 {8, 38, 86} 

β13 {5, 17, 38} 

β21 {7, 17, 47} 

β23 {4, 12, 37} 
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Table 3.3. Top 5 Fitted Parameter Sets for Stage 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1 

 

2 

 

3 

 

4 

 

5 

λ 0.0990 0.0545 0.0455 0.0990 0.0990 

µ1 3 3 3 3 3 

µ2 14 14 14 8 14 

µ3 0 0 0 0 0 

β12 86 86 86 86 86 

β21 7 7 17 17 7 

β13 38 17 17 38 17 

β31 0 0 0 0 0 

β23 12 37 12 4 12 

β32 0 0 0 0 0 

Sum of squares 238.55 253.36 255.71 259.29 259.85 
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Table 3.4. Parameter Descriptions and Values for the Arkansas Model 

  

Parameter Definition Units Value 

γ Prop. of successfully treated cases of active TB % 0 or 100 

ω Prop. of converters successfully treated for latent TB % 80 

ε Rate of progression from latent to active TB Day-1 3.00 × 10-4 

λ Transmission probability (Contact.Day)-1 9.90 × 10-2 

 Mean number of contacts within:   

μ1 Wing 1 Day-1 3 

μ2 Wing 2 Day-1 14 

μ3 Wing 3 Day-1 0 

 Number of visits from:   

β12 Wing 1 to Wing 2 Day-1 86 

β21 Wing 2 to Wing 1 Day-1 7 

β13 Wing 1 to Wing 3 Day-1 38 

β31 Wing 3 to Wing 1 Day-1 0 

β23 Wing 2 to Wing 3 Day-1 12 

β32 Wing 3 to Wing 2 Day-1 0 
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3.2 Sensitivity Analysis 

 

The main results of the sensitivity analysis performed on our Arkansas Model, 

with respect to the data set from the Arkansas nursing home, are displayed below. 

Result 2 describes which of the fitted parameters has the highest and lowest 

correlation to the size of the outbreak. We describe the ranking of the fitted 

parameters obtained by the Partial Rank Correlation Coefficient Method in Table 

3.5. The two rankings related to the two outcomes, the number of active TB cases 

(I) and the number of converters (E), are listed separately. The rank is a measure 

of the correlation between the parameter and the size of the outbreak. The second 

result summarises the main observations of the local sensitivity analysis 

performed on ω, the proportion of successfully treated converters, and ε, the rate 

of progression from latent TB infection to active TB disease. We provide further 

details supporting these observations in Table 3.6. 

   

RESULT 2 - Global Sensitivity Analysis of the fitted parameters 

 

 

 Parameter μ1, the mean number of contacts within Wing 1, has the  

highest correlation to both the number of active TB cases  

and the number of converters. 

 

 Parameter β23, the mean number of contacts from Wing 2 to Wing 3,  

has the lowest correlation to the number of active TB cases. 

 

 Parameter β13, the mean number of contacts from Wing 1 to Wing 3, 

 has the lowest correlation to the number of converters. 
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Biological Interpretation 

 

The most sensitive of the fitted parameters is μ1, which represents the mean 

number of contacts in wing 1. The value of μ1 is important to our model 

particularly because the index case resides in wing 1. The higher μ1 is, the easier it 

is for the infection to spread as the index case would have a higher probability of 

being connected to residents with a larger number of connections.  

 

 The least sensitive parameters amongst the ones analysed are β13 and β23, 

representing the total number of visits received by the residents of wing 3, 

originating from wings 1 and 2, respectively. The values of these parameters have 

relatively less impact on the size of the outbreak as the residents in wing 3 are 

mainly confined to their rooms.  

 

Biological Implications 

 

Our sensitivity results imply that, to reduce the potential number of LTBI or 

active TB cases, it is best to restrict the number of contacts within the index case's 

wing. A reduction in the number of visits to wing 3 is not strictly necessary as it 

does not have a major influence on the spread of the disease across the nursing 

home. 

 

 

Table 3.5. Ranking of the correlations of the fitted parameters.  

Rank from highest (1) to lowest (7) correlation to the size of the outbreak. 

 

 

   

  

Rank 1 2 3 4 5 6 7 

Number of Active TB cases (I) μ1 β21 μ2 λ β12 β13 β23 

Number of Converters (E) μ1 β21 μ2 λ β12 β23 β13 
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RESULT 3 - Local Sensitivity Analysis of estimated parameters 

 

 

 Perturbing ε, the progression rate from latent to active TB, has 

resulted in the most drastic changes to both the number of active TB  

cases and the number of converters. 

 

 Perturbing ω, the fraction of converters successfully treated for 

 latent TB, does not have any significant effect on either the number  

of active TB cases or the number of converters. 

 

 

 

Biological Implications 

 

Our local sensitivity analysis implies that among the parameters ε and ω, reducing 

ε will have a significant impact on the number of LTBI and active TB cases.  

 

 

Table 3.6. Local sensitivity analysis of the estimated parameters ω and ε 

 

 

 

 

 

 

 

 

 

 We now describe in more detail the results just described by including all 

the relevant values and figures that established our observations. 

 

  

Parameter Observation 

ω Decreasing the rate of false negatives resulting from the TST 

kept the mean number of converters between 34 and 36, and 

the mean number of active TB cases between 7 and 7.6. 
 

ε Perturbing the rate of progression from LTBI to active TB 

disease, from a value of 0.0002 to 0.0004, led to the mean 

number of converters to increase from 26 to 44, and the mean 

number of active TB cases to increase from  4.8 to 11. 
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Partial Rank Correlation Coefficients (PRCC) 

 

Using the mean model outcomes for each of the 3000 parameter sets generated by 

the Latin Hypercube Sampling method, scatter plots of each of the fitted 

parameters against each of the two outcomes of interest were plotted. An example 

of such a scatter plot is shown in Figure 3.2. These plots displayed the nonlinear 

relationships between the fitted parameters and the two outcomes. The PRCC 

method was thus used for the global sensitivity analysis of our fitted parameters. 

 

 Using MATLAB's partialcorr function, we calculated the partial 

correlation coefficients that measure how sensitive an outcome is to a particular 

parameter. We first ranked the individual vectors of both parameters and 

outcomes using MATLAB's tiedrank and then used these vectors as input to the 

partialcorr function, to obtain the partial rank correlation coefficients. The higher 

the absolute value of the coefficient associated with the parameter for some 

outcome, the higher the correlation between that parameter and that outcome. We 

present the results in Table 3.7, where both the coefficients and the ranking in 

terms of sensitivity (1 being the highest) are given. 

 

Table 3.7. Partial Rank Correlation Coefficients for the Fitted Parameters 

 

 

 

  

 μ1 μ2 β12 β21 β13 β23 λ 

Active TB Cases (I)  0.9644 0.5844 0.0478 0.8104 0.0421 0.0376 0.4656 

Rank (I) 1 3 5 2 6 7 4 

Converters (E) 0.9138 0.6287 0.0555 0.8142 0.0331 0.0335 0.3132 

Rank (E) 1 3 5 2 7 6 4 
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Figure 3.2 Scatter plot of the most sensitive contact parameter (µ1).

The pattern in both plots shows the nonlinear relationship between (µ1) and
the size of the outbreak, using data obtained from a Monte Carlo simulation of
500 model evaluations performed for each of the 3000 parameter sets generated
by Latin Hypercube Sampling.
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One-Factor-at-a-Time Method (OFAT) 

 

We show the effects of perturbing the value of ε by 0.00002, from 0.0002 to 

0.0004, in Figure 3.3. The top graph describes the changes in the number of 

converters by the end of the 800 days. The bottom graph shows the  changes in 

the number of active TB cases. We observe that small changes in the value of ε 

lead to an increase in both the number of converters and the number of active TB 

cases. 

 

 We have also perturbed the parameter ω to investigate its effects on the 

size of the outbreak. The values of ω reflect different percentages of the false 

negatives resulting from the Tuberculin Skin Test, which may be up to 20% [43].  

Its lowest value is thus our chosen value of 0.8 with increments of 0.02 until the 

hypothetical perfect testing that can detect all latent TB infections (ω = 1). The 

changes in the size of the outbreak by the end of the 800 days are shown in Figure 

3.4. It is observed that the fluctuations in the value of ω lead to minimal changes 

to both the total number of converters and the total number of active TB cases.  
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Figure 3.3 Local sensitivity analysis results for ε.

Investigating how the rate of progression (ε) from LTBI to active TB affects
the mean number of converters (top) and the mean number of active TB cases
(bottom) after a Monte Carlo simulation of 20 000 model evaluations.
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Figure 3.4 Local sensitivity analysis results for ω.

Investigating how the proportion of false negatives resulting from the TST ω
affects the mean number of converters (top) and the mean number of active
TB cases (bottom) after a Monte Carlo simulation of 20 000 model evaluations.
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3.3 Simulating the Outbreak of the Nursing Home in Arkansas, 

USA 

 

A Monte Carlo simulation consists of a number of model evaluations. For each 

evaluation, we randomly generate a set of parameter values from chosen 

parameter distributions, evaluate the model using that set of values and record the 

outcome. The result of a Monte Carlo simulation is then the mean outcome that is 

calculated from the outcomes of the individual evaluations of that simulation. 

 

 As described in Section 2.1, the general conceptual model is stochastic. 

Each time the model is evaluated, the connections between the nodes are created 

randomly. Two connected nodes in one model evaluation do not have to be 

connected in another and so we make use of Monte Carlo methods. The outcome 

of a simulation is thus not the result of a single model evaluation but the mean 

outcome of a series of model evaluations.  

  

 We ran a Monte Carlo simulation of 20 000 evaluations of the Arkansas 

Model. The simulation's mean model outcomes are then compared to the scenario 

as described by Stead [1]. 

 

RESULT 4 

 

 

The mean outcomes of a Monte Carlo simulation of the Arkansas  

Model are comparable to Stead's description of the outbreak:  

 

 3.4% of the population developed active TB disease in our  

 simulated outbreak compared to the 3.3% described by Stead. 
 

 15.7% of the population contracted LTBI in our simulation 

compared to the 17.5% described in Stead's outbreak. 
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Figure 3.5. Output of the simulated Arkansas Model.

The total number of LTBI/converters (top) and active TB cases (bottom) at
each day from one evaluation of the Arkansas Model.
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 A sample output of a single evaluation of the Arkansas Model includes the 

graphs shown in Figure 3.5. The top graph describes the number of converters and 

the bottom graph describes the number of active TB cases, both for each day of 

the simulated outbreak.  

 

Starting with one active TB case (the index case), we have an increasing number 

of such infectious cases until around day 200. A corresponding increase can also 

be seen in the number of latent TB infections.  All active TB cases are treated as 

soon as the index case is discovered at T = 365 days (June 77). However, none of 

the residents with LTBI is treated and thus that number of cases is steady until in 

this case, one of them develops active TB disease at around T = 620 days. We call 

this the second wave of active TB cases. This can be seen by the decrease of one 

converter and the corresponding increase by one in the number of active TB 

cases. The probability of our model producing this second wave of active TB 

cases is 72.1%. 

 

 The delay in diagnosis of this new infectious case leads to a few more 

infections until all known converters and active TB cases are treated at T = 639 

(March 79). A number of converters were undiagnosed due to the 20% false 

negative rate of the Tuberculin skin test and this is reflected in the remaining 

number of converters left untreated.  

 

 The distribution of both the average number of active TB cases and the 

latent TB infections are described in Figure 3.6.  The spread of TB infection 

across the nursing home is influenced by the index case's contacts. The more 

highly connected they are, the higher the probability of more residents becoming 

infected. With the index case being the most connected resident in Wing 1 

together with such a low mean number of contacts in Wing 1, there's a higher 

probability that the index case ends up connected (randomly) to residents which 

are not very social. We thus see the distribution of both the active TB cases and 

the latent infections (Figure 3.6) peaking at lower values than the mean. However, 
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using the mean outcomes after evaluating the model for a sufficient number of 

times (in our case, 20 000 model evaluations), we obtain a good indication of how 

our simulated outbreak behaves in comparison to the scenario described by Stead 

[1]. 

 

 The mean percentages of the population that were either infected with 

LTBI or else developed active TB disease throughout the duration of the outbreak, 

summarised in Result 4, are listed again in Table 3.8. For comparison purposes, 

we include values for both the actual outbreak as occurred in the original scenario 

as well as the outbreak simulated by our model. 

 

Table 3.8. Population affected by the outbreak  

 

 

 

 We also compare the distribution of cases amongst the three wings at the 

end of the outbreak. Both distributions of converters and active TB cases are 

listed in Table 3.9.  

 

Table 3.9. Percentage distribution of Cases 

 

 

 

 

 Actual (%) Simulated (%) 

Active TB Cases  3.3 3.4 

Latent Cases/Converters 17.5 15.7 

Wing 1 2 3 

Active TB Cases (actual) 3.3 0 0 

Mean # of infectious cases (simulated) 2.09 0.95 0.15 

Latent Cases/Converters (actual) 8.75 7.5 1.25 

Mean # of latent cases/Converters (simulated) 8.83 6.76 0.15 
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Figure 3.6. A frequency distribution of the total number of convert-
ers and active TB cases from one Monte Carlo simulation.

The number of LTBI/converters (top) and active TB cases (bottom) were
obtained at the end of an 800-day period from a Monte Carlo simulation of 20
000 evaluations of the Arkansas Model.
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3.4 The Impact of Reducing Diagnosis Delay 

 

In the outbreak scenario described by Stead [1], the index case was diagnosed 

with active TB disease an entire year after the initial misdiagnosis. A second case, 

a number of months later, was also misdiagnosed, leading to a second wave of 

infections. We investigate the effect of diagnosis delay on the size of the outbreak 

and the mean time for the second wave to appear, to give some estimates as to 

when to be more alert than usual for active TB cases. We assume that active TB 

cases are successfully treated as soon as they are diagnosed. Therefore, reducing 

diagnosis delay is crucial for narrowing the window of transmission for 

undiagnosed cases, and for prevention of potential outbreaks. 

 

  RESULT 5 

 

 

Reducing diagnosis delay to 1 month results in: 
 

 a 47.1% reduction in the number of active TB cases;  

 a 25.5% reduction in the number of converters; and 

 a mean time T* of 380 days for a second wave of active TB 

 cases to occur. 
 

 

 

 

 We also list, in Table 3.10, the reduction in the number of cases, when 

compared to the simulated Arkansas outbreak, that resulted from different 

reduction of diagnosis delay. We also list the mean time it takes for the second 

wave of active TB cases to occur. 
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Table 3.10 Reduction in Outbreak Size and  

Mean Time (T*) for second wave to occur.  

Values resulting from the reduction in diagnosis delay. 

 

X (months) E (%) I (%) Mean time (T*) 

1 25.5 47.1 380 

3 21 44.1 425 

6 12.1 35.3 490 

9 0.6 23.5 552 

  

 

 To obtain these results, we have incorporated into our baseline Arkansas 

Model both the standard intervention practices, such as immediate treatment of 

any active TB cases upon diagnosis, follow-up screening and treatment of 

diagnosed converters for 8 weeks, and a delay of diagnosis of the index case. 

More specifically, we have made the following modified assumptions:  

 

 Index case is misdiagnosed for X months. We vary X to be equal to 1, 3, 6 

and 9 months to investigate how the length of the transmission window  

(γ = 0) affects the size of the outbreak. 

 Any converters are treated once, 8 weeks after the diagnosis of the index 

case (ω = 0.8). 

 All cases of active TB disease are diagnosed and treated right away (γ = 1) 

during the 4 months following the discovery of the first active TB case for 

that period. 

 A resident develops active TB disease after the first wave of cases is 

considered to be over. We denote this time by T*. This resident is again 

misdiagnosed for X months, leading to a second wave of infections, at 

which time, the same procedure as the one adopted during the first wave is 

followed. 

 The period of time we consider is the same as for the original scenario: 

Jun 1977 until around Sep 1979 (800 days). 
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The timeline describing periods of transmission (γ = 0) and the recovery of both 

active TB cases (γ = 1) and converters (ω = 0.8) is detailed in Figure 3.7. 

 

 

 We ran a Monte Carlo simulation of 20 000 model evaluations for each 

value of X and tabulated the results in Table 3.11, which describes the percentage 

of the population that has been affected by the outbreak by the end of the first 800 

days. The values for the original scenario described in Section 3.3 are included for 

comparison purposes. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Timeline of events as we investigate the effects of diagnosis delay 

on the size of the outbreak after 800 days.  

The length of the transmission window is denoted by X months, indicating the 

periods of disease transmission (γ = 0). All active TB cases are treated (γ = 1) 

during the 4 months after the discovery of the index case. Treatment of converters 

occurs once, 8 weeks after the first active TB case is diagnosed. 

 

 

Table 3.11. Population affected by the outbreak when the transmission 

period is X months long 

 

 

X (months) E (%) I (%) 

1 11.7 1.8 

3 12.4 1.9 

6 13.8 2.2 

9 15.6 2.6 

Arkansas Model 15.7 3.4 

 

 

Jun 77 Jun 77  

+X mo 

Jun 77  

+ X mo 

+ 8 wks 

Jun 77  

+ X mo 

+ 4 mo 

T* 

+ X mo 

 

T* 

+ X mo 

+ 8 wks 

T* 

+ X mo 

+ 4 mo 

T* ~ Sep 79 

ω = 0.8 ω = 0.8 

γ  = 0 γ  = 1 γ  = 1 γ  = 0 γ  = 1 γ  = 1 γ  = 0 γ  = 0 
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 The second wave appears very frequently, independent of the length of the 

transmission window X. What is affected by X is the time at which this second 

wave of infections occurs. Having an idea of when it is more likely for new 

infections to develop will help the nurses be more alert than usual especially 

around that time. We describe the probability of having this second wave within 

the first 800 days and the mean time it takes for it to appear in Table 3.12. 

 

 

 

Table 3.12. Probability of obtaining a second wave of infections within 800  

days and the mean time for it to appear.  

Values obtained when the transmission period is X months long. 

 

 

 

 

 

 

 

 

 

 

 

 A sample model output of a single evaluation of one of the simulations 

with the transmission window being one month long is shown in Figure 3.8. 

Translating one month into 30 days, the bottom graph clearly shows that starting 

with the index case, he is misdiagnosed for 30 days during which time, as shown 

in the top graph, he infected a number of residents. At the end of that month, he is 

diagnosed and thus treated, which is reflected in the drop of the number of active 

TB cases. This results in the number of converters being constant as none of them 

had yet become infectious.  

 

 After eight weeks from the diagnosis of the index case, all known 

converters are treated and thus we see a drop in their number. In this case, none of 

the converters became infectious until just before T = 400 days. This new active  

X (months) Probability (%) Mean time (T*) 

1 83.3 380 

3 82.3 425 

6 77.7 490 

9 73.1 552 

Arkansas Model 72.1 545 
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Figure 3.8. The daily total number of LTBI/converters (top) and

active TB cases (bottom) from one model evaluation of the Arkansas

model with reduced diagnosis delay.
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TB case is again misdiagnosed for one month, during which a number of residents 

got infected. The same procedure is followed, where the active TB case is 

diagnosed and treated after one month and the diagnosed converters are treated 

after eight weeks (56 days). 

 

 

3.5 Evaluation of Potential Screening Programs 

 

During the Arkansas outbreak, the nursing home had no regular screening 

program for its residents. Employees were tested yearly, and the importance of 

having at least that type of screening program in place for the employees is shown 

by the fact that the investigations which eventually led to discovery of the index 

case were triggered by a public nurse's observation that a number of employees 

had converted over the previous year.  

 

 We would like to investigate the effects of implementing different 

screening programs for the residents. Testing all residents on a monthly basis 

would significantly decrease the possibility of a TB outbreak occurring in the 

nursing home. However, this is often not feasible, as it puts a large burden on the 

nurses and also inconveniences the residents. We look at the possibility of testing 

a percentage Y of the susceptible population every X number of months. If an 

active TB case is encountered, it is treated right away. Additionally, if a 

proportion Z of the tested population is found to have converted during the 

screening, we look for any active TB cases and treat them right away.  

 

 We compare the effectiveness of the different screening programs by 

measuring the total number of converters and the total number of active TB cases 

that occurred throughout the 800-day period. The most successful screening 

program is the one resulting in the least number of LTBI and active TB cases. 
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 RESULT 6 

 

 

Testing Y% of the susceptible population for LTBI every X months  

produces a comparable reduction in both the number of active TB  

cases and the number of converters, to testing (nY)% every (nX)  

months. For example: 
 

 testing 25% of the susceptible population every 3 months; 

 testing 50% every 6 months; and 

 testing 75% every 9 months, 
 

all lead to approx. 2.6% of the resident population developing active 

TB disease and 18.2% contracting LTBI. 

 

 

 

 

 The flowcharts in Figures 3.9(a) and 3.9(b) describe the algorithm 

developed for the implementation of different screening programs.  

 

 Tables 3.14(a), 3.14(b) and 3.14(c) reflect the percentages (converters, 

active TB cases) of the population that were affected by the outbreak when a 

screening program with the appropriate parameters described above is included in 

our simulation. Once again, a Monte Carlo simulation of 20 000 model 

evaluations is performed and mean model outcomes are used. 
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Figure 3.9 (a). Flow diagram describing the algorithm for a screening 

program. 
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Figure 3.9 (b). Flow diagram describing the algorithm for a screening 

program (cont.). 
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Table 3.14 (a). Percentages (E, I) of population affected by outbreak with 

screening program in place (Z = 0.05) 

 

 

 

 

Table 3.14 (b) Percentages (E, I) of population affected by outbreak with 

screening program in place (Z = 0.10) 

 

 

 

Table 3.14 (c) Percentages (E, I) of population affected by outbreak with 

screening program in place (Z = 0.15) 

  

 

  

Z = 0.05 

Y (%) 

X months 

            1                         3                        6                        9 

25 (12.6, 1.7) (17.8, 2.6) (20.4, 3.3) (21.8, 3.8) 

50 (11.4, 1.4) (15.1, 2.0) (18.0, 2.6) (20.3, 3.2) 

75 (10.7, 1.3) (13.5, 1.7) (16.3, 2.2) (18.5, 2.7) 

100 (10.3, 1.3) (12.5, 1.5) (15.0, 1.9) (16.9, 2.3) 

Z = 0.10 

Y (%) 

X months 

            1                         3                        6                        9 

25 (13.5, 1.7) (17.9, 2.6) (20.7, 3.3) (21.8, 3.8) 

50 (11.9, 1.4) (15.2, 1.9) (18.3, 2.6) (20.1, 3.1) 

75 (11.1, 1.3) (13.7, 1.7) (16.4, 2.2) (18.3, 2.6) 

100 (10.3, 1.3) (12.7, 1.5) (14.9, 1.9) (16.8, 2.3) 

Z = 0.15 

Y (%) 

X months 

            1                         3                        6                        9 

25 (14.0, 1.7) (18.4, 2.7) (20.8, 3.4) (22.0, 3.8) 

50 (12.0, 1.4) (15.4, 2.0) (18.4, 2.6) (20.2, 3.2) 

75 (11.0, 1.3) (13.8, 1.7) (16.5, 2.2) (18.7, 2.7) 

100 (10.3, 1.3) (12.8, 1.5) (15.0, 1.9) (17.0, 2.3) 
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3.6 Summary 

 

In this section we have presented the results from our parameter fitting and 

sensitivity analysis processes. We have described the kind of output one may 

obtain from our model, by taking the outbreak described by Stead [1] as an 

example. Two aspects of TB intervention strategies are investigated using the 

fitted model. One aspect focuses on reducing diagnosis delay, and the other is the 

investigation of different screening programs. 
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4.  Discussion 

 

 
In this concluding chapter, we first give a summary of main results in the thesis in 

Section 4.1, and then, in Section 4.2, we discuss some limitations of our TB 

network model and suggest possible solutions that may be implemented in the 

future. 

 

4.1 Summary 

 

Our main objective is to model TB transmission in long-term care facilities such 

as nursing homes, for the purpose of assessing the effectiveness of TB 

intervention and management strategies at these facilities. We have developed a 

general conceptual SEIR network model for TB transmission in long-term care 

facilities. To demonstrate the applicability of the conceptual model, we have built 

a specific network model to simulate a TB outbreak that occurred in a nursing 

home in Arkansas, USA, between 1977 and 1979, as described by Stead [1]. We 

have implemented two aspects of different TB intervention strategies into the 

Arkansas Model and assessed their effectiveness measured by the reduction in the 

number of LTBI and active TB cases within a given period of time. 
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 We have investigated the impact of reducing diagnosis delay of an 

infectious case using our Arkansas Model, by varying the duration of the 

transmission window of an infectious TB case while adopting the current practice 

of contact tracing and treatment of converters after 8 weeks following the 

diagnosis of an infectious case. Our results show that if the transmission window 

of an infectious TB case is cut to within a month, the number of converters at the 

Arkansas nursing home can be reduced by 25%, whilst the number of active TB 

cases will be reduced by 47%.  

 

 We have also implemented a hypothetical screening program into our 

Arkansas Model, to investigate the impact of testing different percentages of the 

susceptible population at different time intervals. We observed a useful linear 

relationship between the percentage of susceptibles screened and the frequency of 

screening. For instance, in the case of the Arkansas nursing home, screening 25% 

of the susceptible population every 3 months will achieve a similar result to 

screening 50% every 6 months. This suggests that, for the same number of staff 

nurses at the nursing home, to test a smaller percentage of residents more 

frequently is preferable than testing a larger population less frequently. 

 

 Results in this thesis have demonstrated feasibility and usefulness of using 

network models to study control and prevention of transmission of TB in long-

term care facilities. We expect that the same modeling approach can be applied to 

the control and prevention of other disease transmissions in a similar setting. 

 

4.2 Limitations and Future Work 

 

Our network's static nature prevents the number of contacts and the actual 

connections themselves from changing over time. This closed and static system 

does not take into account any admissions to the nursing home. Any deaths and 

outside visitors are also excluded from the model.  A dynamic network may be 
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created to reflect the nature of human relationships as well as the changing 

population of the nursing home. The extra stochasticity introduced by having such 

a dynamic network will increase the time required to run the model simulations, 

with the parameter fitting process taking considerably more time. Our Arkansas 

model produced results that were comparable to the Arkansas outbreak as 

described by Stead [1]. The introduction of a dynamic network for more accurate 

results will thus not result in a significant improvement. 

 

 The parameter fitting process did not identify a single prominent unique 

set of parameters as the data extracted from the description provided by Stead [1] 

was not enough. The top five parameter sets, shown in Table 3.3, produce similar 

outcomes. To overcome this, more data needs to be obtained. Another possibility 

is talking to a physician to acquire a better understanding of which parameter 

values make the most sense. This would lead us to restrict further the range of 

values each parameter may take, reducing the sample space of parameter values. 

This will result in a more effective parameter fitting process. 

 

 For our model, we have implemented two aspects of different TB 

intervention strategies. Additional strategies may be implemented and compared 

in order to determine whether there are better alternatives to the strategies that are 

currently in use. One such alternative would be the inclusion of staff members and 

their interactions with the resident population. This provides an opportunity for a 

different type of screening, where the impact of regularly screening a percentage 

of the staff rather than the residents may be investigated.  

 

 Costs associated with treating LTBI and active TB cases may also be 

included in the model to assess the cost-effectiveness of the different investigated 

strategies. Such assessments may further aid policy makers in decision-making. 

This network model may also be adapted to model transmission of other 

infectious diseases in similar settings, including  detention centers, hospitals and 

aboriginal reserves.  
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Figure A.1. Overall program structure 
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Figure A.2. Subroutine for the S → E process 
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Figure A.2. Subroutine for the S → E process (cont.) 
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Figure A.3. Subroutine for the E → I process  
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Figure A.3. Subroutine for the E → I process (cont.) 
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Figure A.4. Subroutine for the E → R process 
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Figure A.5. Subroutine for the I → R process 
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Figure A.6. Subroutine for the Test for 2nd wave process. 
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