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Abstract

In the oil sands extraction process, bitumen (crude oil) is separated from the sands

in the Primary Separation Vessel (PSV) through a water-based gravity separation

process. The interface between froth (crude oil) and middlings (water and sand) is

the most important control variable in the PSV operation. Bitumen recovery and

downstream operations are critically dependent on interface level measurement and

control. Most of the traditional PSV level instruments have deficient service factors,

limiting the implementation of automatic control. Therefore, we proposed novel and

robust computer vision based methods to estimate the froth-middlings interface

level on video frames captured from a PSV’s sight glasses camera.

The first chapter of the thesis discusses the computer vision as a knowledge basis

for the proposed work. Typical image processing and analysis methods are

described, and they provide the foundation for the subsequent chapters.

The subsequent chapters propose several approaches for the interface level

detection. As the first approach, we present the froth-middlings interface level

detection on single frames (static image processing). The level is detected based on

edge detection performed on the frames, in which traditional filters are proposed to

smooth the images through model-based image restoration.

Next, we develop and implement a robust computer vision based method to

estimate the froth-middlings interface level in PSV, in which we additionally

consider the dynamics of a set of consecutive frames to improve the level estimation.
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The algorithm processes the online video frames of a camera mounted on PSV sight

glasses, and the level is detected based on a combined operation of edges and

motion detection in a set of consecutive frames (static and dynamic image

processing). In addition, the algorithm uses reliability analysis to detect the

environmental conditions that may limit the level estimation, and a time-based

sliding window analysis of the level measurements is proposed. Industrial

application results show that the proposed computer vision algorithm is more

accurate and reliable when compared to other instruments, as well as more robust

against the process and environmental abnormalities.

Finally, advanced filters with finite impulse response (FIR) structure are

proposed and developed to improve the image restoration and object tracking

process. We address the problem of smoother design for state estimation based on a

finite number of measurements collected over a finite horizon. Three different FIR

smoothing algorithms are proposed using the maximum likelihood FIR estimation,

which is robust against uncertain noise statistics and modeling parameters. The

FIR algorithms are applied to the image restoration and level tracking problem in

PSV, and they show better robustness against modeling uncertainties than

traditional IRR filtering approaches.
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Chapter 1

Introduction

1.1 Background

Oil sands are a type of unconventional petroleum deposit that consists of a mixture

of crude bitumen, silica sand, clay minerals, and water. Alberta’s oil sands amount

to 10 % of the world’s total oil reserves with a production of more than 3 million

barrels per day [1]. There are two predominant processes to extract the bitumen

from the oil sands, 1) surface mining and 2) in situ thermal extraction. In surface

mining, oil sands closer to the surface is mined and sent to the bitumen extraction

facility. In the in situ thermal extraction, deposits below the surface are extracted

by means of steam injection [2].

In the bitumen extraction facility for the surface-mined oil sands deposit,

bitumen is separated from the sand using a water-based gravity separation process.

The Primary Separation Vessel (PSV) or Cell (PSC) is the heart of the extraction

process where up to 90% of the bitumen is recovered [2]. Figure 1.1 shows the

cross-sectional view of a typical PSV. PSVs are large vessels with a conical bottom

and have a steep side slope that helps the gravity separation process. A feedwell

pipe feeds the oil sands slurry (mined and crushed oil sands feed mixed with hot

water) into the vessel right below the froth layer where the separation process

begins. The heavy solids sink to the bottom of the vessel, while the lighter bitumen

floats to the top. Thus, three different segregated phases are generated in the
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separation process: 1) Overflow: a clean froth product that contains about 50-60%

bitumen, 2) Middlings: a fine slurry composed of mostly water with about 2-4%

bitumen, 3) Underflow: a coarse tailing consisting of at least 50% solids and residual

bitumen (less than 1%)[2, 3]. The froth layer is the most important one where the

majority of bitumen is recovered. The middlings layer contains a mixture of

bitumen, water, and solids, and usually goes to further reprocessing to increase

bitumen recovery. The tailing layer is composed of coarse solids and is pumped out

to the tailings treatment plant.

Figure 1.1: Industrial Primary Separation Vessel(PSV) schematic. The sight glasses
are installed within the froth-middlings zone.

The interface between the froth and middlings layers is the most important

control variable in the process. Bitumen recovery and downstream operations are

critically dependent on the froth-middlings interface level measurement and control.
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A high interface level increases the presence of solids in the froth layer deteriorating

the bitumen quality. While a low interface level increases the presence of bitumen in

the tailings, leading to bitumen loss and environmental consequences. Therefore,

good and stable control of the froth-middlings interface level is necessary for the

efficient bitumen recovery and reduction of process variations in the downstream

operations [4–6].

Froth-middlings interface control can be achieved if it is measured accurately.

Current best practices in the industry for the froth-middlings interface measurement

include differential pressure (DP) cells, nucleonic density profilers, and capacitance

probes. However, these instruments do not have a desirable service factor, limiting

the application of automatic control in PSV operation [3, 7]. DP cells are more

suitable for applications with uniform density fluid columns; however, they suffer

when it comes to multiphase fluid columns such as the PSVs. Nucleonic profilers

have a high installation and maintenance cost, prone to frequent errors caused by

substance build-up on its surface, are subject to safety risk associated with the

radiation loss, and need periodical inspection and approvals. Capacitances probes

usually lose their sensitivity over time due to substance build-up on its surface [8].

Therefore, the use of traditional instruments to measure the PSV froth-middlings

interface level accurately remains as a challenge. In most PSV applications, the

froth-middlings interface is being monitored and controlled manually by the

operators.

Typically, PSVs are equipped with sight glasses on the side of the vessel close

to the froth-middlings zone, as shown in Figure 1.2, and they span a length of two

meters from the top part of the froth launder. Sight glasses allow the froth-middlings

interface level and the separation process dynamics to be visually monitored. The

depth of the froth layer (interface level), the quality of the bitumen froth, and the

clarity of the interface can be inferred through the sight glass visuals.
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detection method, which is more robust to lightening condition changes or intensity

variations on the image, is employed to detect the level interface. However, the use of

just the edge detection method alone would produce an ambiguous output when sight

glasses have significant stains and may require additional computationally expensive

filtering techniques such as particle filtering [9]. For example, in [4], several different

image processing filters were proposed to remove the noise and reduce the spurious

edges generated by the method. In addition, an extended Kalman Filter is proposed

to smooth the level measurements before they are sent to the level controllers. In

[9], an image differentiation method was proposed to compute a confidence value

for the level estimation. The method works well for ideal interface images which

are relatively noise free. In the real world, the noise comes from different sources

including the camera acquisition noise, fine sand particles moving in the separation

process, stains that appear and disappear on the sight glass, and shadows/glares on

the sight glasses.

1.2 Motivation

In this thesis, we are motivated to investigate and develop a new approach to

improve the accuracy of the camera froth-middlings interface level detection. The

objective is to exploit the information on the sight glasses visuals and use automatic

computer vision techniques on the images obtained from the video camera.

Most of the previous methods were solely based on static image segmentation,

such as region segmentation or edge segmentation, which search for the level

location by processing the information in each frame separately. As a result, they

had to deal with the problem of noisy detections (spurious edges in [3]) or

difficulties to classify the oil and water regions ([3] and [7]). However, the level is a

feature in the image that has dynamics in time and thus by considering methods

that analyze the motion in subsequent frames we can extract additional information

about the level location. Therefore, we are motivated to combine the information
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from static and dynamic image segmentation processing methods to obtain an

image output that can provide a more accurate level location with less

computational load. In addition, there are abnormal process scenarios that affect

the level detection which have not been discussed and addressed in the previous

works. Abnormal scenarios such as the stains on the sight glasses, blur or fuzzy level

interface, froth and middlings phases with non-homogenous pixel intensities, and

level switch from one sight glass to the other. These were in fact the main causes for

the noisy detections when using most of the previously proposed algorithms.

Besides, the previous works do not provide the framework to address the

industrial conditions that affect the reliability of the level detection when using a

video camera sensor. For example, scenarios such as people/objects blocking the

camera, camera motion or vibrations, lighting changes, or poor image quality.

Finally, we are motivated to investigate the state estimation theory and filtering

design using finite impulse response (FIR) structures. FIR filters utilize finite

measurements collected over the most recent interval, and thus have some

advantages with respect to infinite impulse response (IRR) filters, such as

robustness to modeling and noise uncertainties, guaranteed stability, and linear

phase. We are motivated to implement the state estimation through FIR structures

to improve the image restoration and level tracking problems in PSV.

The PSV laboratory experiment shown in Figure 1.3 is employed to study the

froth-middlings interface behavior. The PSV experiment is located in the Computer

Process Control Lab at the University of Alberta.
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3. Implemented an image segmentation based on motion detection to find the

level interface in a set of consecutive frames (dynamic image processing). The

objective is to capture spatial information (static image processing) about the

level and observe its dynamics in consecutive temporal frames. The interface

level is estimated based on the maximum value of the vertical profile of the

segmented image.

4. Developed and implemented a computer vision method to estimate the

forth-middlings interface online based on image and data processing

techniques performed on video frames of the PSV sight glasses. The vision

sensor is designed with an algorithm that consists of three main steps, in

which the inputs are the video frames, and the outputs are the estimated level

values. The video processing algorithm has three important steps: 1- Static

and dynamic image processing step that detects the interface level in the

frames, 2- Reliability analysis step that prevents inaccurate level estimations

caused by the scenarios that affect the sight glass visuals , and 3- Time-based

sliding window analysis of the level measurements to remove outliers, smooth

and track the level location.

5. Developed forward-backward smoothing algorithms with Finite Impulse

Response (FIR) structure to denoise the raw interface images. To achieve this

objective, we exploit the iterative Maximum Likelihood Finite Impulse

Response (ML-FIR) estimation to obtain estimates for each point inside the

finite horizon. Then, we combine these estimates by employing the formulas

for the optimal combination of two independent estimates, known as the

forward-backward smoother equations. The proposed FIR smoothers have

three important advantages over the traditional smoothers. First, the

proposed methods are robust to uncertainties of modeling parameter and noise

statistics. Second, the algorithms are independent of the initial states and

covariance in each finite horizon because the initial estimates are obtained

through the batch Maximum Likelihood (ML) calculation. Finally, the FIR
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smoothers can have a faster and more accurate capture of the local dynamic

changes in the data as they only consider the most recent measurements.

1.4 Thesis outline

The remainder of this thesis is organized as follows:

Chapter 2 is an introduction to image processing and analysis methods. It

provides the mathematical background to understand the subsequent chapters. We

particularly focus on the computer vision algorithms which typically include the

following components: image acquisition, image prepossessing, image processing,

image analysis, and decision making. Feature extraction and image segmentation

are the most important steps during low-level image processing. They can be

performed using the static information in one single frame, such as region

segmentation or edge detection, or using dynamic information on several frames,

such as motion detection.

Chapter 3 presents the problem of detecting the froth-middlings interface level on

single frames (Static image processing). An image segmentation based on edge

detection is proposed to detect the interface level. However, images are generally

corrupted by the noise coming from different sources. Therefore, it is crucial to

remove this noise to improve the performance of the level edge detector. Traditional

model-based filters are investigated and applied to the interface level image to

remove the noise and find the level through edge detection.

Chapter 4 describes a computer vision based method that uses image and data

processing techniques to estimate the froth-middlings interface level in PSV. The

algorithm process the online video frames of a camera mounted on PSV sight

glasses, and it is based on a combination of static and dynamic image processing

steps. The objective is to capture spatial information (Static image processing)
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about the level and observe its dynamics in a set of consecutive temporal frames. In

addition, the algorithm uses a reliability analysis on the images to detect

environmental conditions that limit the level estimation, and a time-based sliding

window analysis of the level measurements to remove outliers, smooth and track the

location of the level. The computer vision system was implemented in two industrial

PSVs and it has been found more accurate and reliable when compared to other

instruments, and more robust against process and environmental abnormalities.

In Chapter 5, filter and smoothers with FIR structure are studied and

implemented on the image restoration and object tracking problems. We address

the problem of smoother designs for state estimation based on a finite number of

measurements collected in a finite estimation horizon. Three different finite impulse

response (FIR) smoothing algorithms are proposed using the maximum likelihood

FIR estimation, which is robust against uncertain noise statistics and modeling

parameters, and also independent of the initial states of each finite horizon.

Moreover, we provide equivalent but iterative Kalman-like structures of these

algorithms for practical implementation. The applications of the proposed

algorithms to the interface image restoration and level tracking problems are

presented, and they show better robustness against modeling uncertainties than

traditional filtering/smoothing approaches.

Chapter 6 draws the conclusions of the thesis and provides some future works

directions.
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Chapter 2

Introduction to Image Processing
and Analysis

This chapter is an introduction to the field of image processing and analysis methods

in the literature. It provides the foundations to comprehend the image operations of

the subsequent chapters. Especially, it focuses on computer vision algorithms which

are concerned with the automatic extraction, analysis, and understanding of useful

information from a single image or a sequence of images. Finally, it describes different

feature extraction and segmentation methods, which are the most important task to

enhance the features of interest in the images. They can be performed by using

information from one single static frame (region segmentation or edge detection), or

by using information from several frames (motion detection).

2.1 Introduction

Image analysis is a computer-based process of extracting quantitative information

from images. The process begins with the input of an image and ends with the

output of numerical data. This process distinguishes image analysis from image

processing where both input and output are in the form of an image. Image

processing is the means by which the input image is modified by mathematical

algorithms to generate an output image that is enhanced in some way. For example,

by using an image processing operation, we can enhance the edges or reduce the

noise on the image, while by using an image analysis operation, we can find the
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location (pixel coordinates x and y) of an object in the image. Image processing is

often used to prepare the images before image analysis [11].

The field of image processing and analysis is diverse, and there are applications in

multiple fields (Engineering, robotics, medical imaging, agriculture, food processing,

video surveillance, object tracking, etc.) [12]. In this chapter, we introduce the

mathematical methods and algorithms that are used to extract meaningful

information from the images. It also provides the necessary mathematical basis and

background about image processing and analysis for the subsequent chapters.

2.2 Digital image representation

A grayscale image could be defined as a two-dimensional function, f(x, y), where x

and y are the spatial coordinates, and the amplitude of f at any pair of coordinates

(x, y) is called the intensity or gray level of the image at that point. When x, y and

the intensity values of f are all finite, discrete quantities, we call the image a digital

image. Thus, a digital image is composed of a finite number of elements called

pixels, each of which has a particular location and value. The amplitude of the

pixels is often quantized to 256 levels (which can be represented by eight bits). Each

level is commonly denoted by an integer, with 0 corresponding to the darkest level

and 255 to the brightest [13]. However, for image analysis simplicity it is convenient

to rescale the gray intensity level from 0 to 1, where 0 correspond to the darkest

level, 1 to the brightest level, and any number in between is a shade of gray. Figure

2.2 represents the PSV froth-middlings interface level in a bi-dimensional and

three-dimensional map.
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Figure 2.1: Intensity or gray level representation of the froth-middlings interface
level’s image. Left: Grayscale bidimensional display. Right: Grayscale tridimensional
display

2.3 Type of image processing and analysis

algorithms

There is no general agreement among researchers regarding where the scope of

image processing ends, and how it distinguishes from other related areas, such as

image analysis and computer vision [11–13]. However, we can organize and divide

the image algorithms into four main categories [3, 14]:

• Image Processing: Comprises a broad variety of methods that operate on

images to produce another image [11]. It is the process of enhancing the input

image (colorizing, enhancing the contrast, image sharpening, etc.) in a manner

that it is more suitable for image analysis. In most cases, the input to and the

output of the algorithm is an image. For example, the edges of structures may

be sharpened, or the image may be given an enhanced contrast or reduced

noise.

• Image Analysis: It is the process of obtaining numerical data from images.
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This is usually accomplished by a combination of measurements and

processing operations. The data obtained by image analysis may subsequently

be evaluated statically, or used to generate a graph or other visualization

information.

• Computer Vision: It is a general class of algorithms which extract

information from images. The input to the algorithm could be a single image

or a sequence of images, or even images from multiple angles of a scene of

interest. In Computer Vision the output of the algorithm does not need to be

an image, as in Image Processing. Instead, the output could be a detected

feature such us the location (x and y coordinates) of an object in an image.

• Machine Vision: It is the use of computer vision algorithms for industrial

applications. Computer vision algorithms only extract information from an

image, while Machine vision involves using this knowledge to manipulate an

industrial element, such as a control valve, a pump, or a robotic arm.

Among all of them, computer vision algorithms are the ones that have a

particular interest in the case of the PSV forth-middlings interface level detection.

People utilize their eyes and brains to detect their general surroundings for different

purposes. Computer vision is the science that intends to give a comparable ability

to a machine or computer. For example, operators use their eyes to detect the

interface level location through the sight glasses in the PSV and then manually

control the separations process. However, the objective of this work is to replace

this operator’s eyes task by a computer vision system that can achieve the same

results. Thus, in the following sections, we introduce the computer vision science

and the typical method and algorithms utilized in the design.
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tools have been created to build such datasets: Cameras, Webcams, Digital

compact cameras, 3D cameras, laser, etc.

2. Image Pre-processing: It is the process of removing the variability on the pixel

level without losing essential information about the image. Examples are data

resampling, noise reduction, or contrast enhancement.

3. Image Processing: It is the process of using algorithms to infer low-level

information on parts of the image. This type of information is characterized

by image edges, point features or segments, for example. They are all the

basic geometric elements that build objects in images. It usually involves

advanced applied mathematics algorithms and techniques, such as edge

detection, segmentation, classification, and feature detection and matching.

4. Image Analysis: It corresponds to the analysis and understanding of the data,

which will allow the decision making. High-level algorithms are applied, using

both the image data and the low-level information computed in previous

steps. Examples of high-level image analysis are 3D scene mapping, object

recognition, or object tracking.

5. Decision making: It provides the final decision output for the required

application. For example, pass/fail on automatic inspection applications,

match/no-match in recognition applications, or space coordinates (x, y) in

tracking applications.

When developing computer vision algorithms, one has to face various issues and

challenges, related to the very nature of the data or event for which the application

has to be created and its context: 1. Noisy or incomplete data, 2. Real-time
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processing, or 3. Limited resources such as computational power and memory.

Current research is focused on addressing these challenges to make the algorithms

more robust and efficient under difficult conditions. In the following sections, we

describe some of the most important methods that can be utilized in a computer

vision algorithm for interface level detection. They provide a mathematical image

processing basis for the following chapters of the thesis.

2.5 Feature extraction

Feature extraction is the process of detecting and isolating a desired portion or

shapes (features) from a digitalized image or video. In general, a feature is defined

as a region in an image that has some particular characteristic of interest. It refers

to the process of extracting some quantitative information of interest from an image.

When the input data to an algorithm is too large to be processed, and it is

suspected to be redundant (e.g., the repetitiveness of images presented as pixels),

then it can be transformed into a reduced set of features (also named a feature

vector). Determining a subset of the initial features is called feature selection. The

selected features are expected to contain the relevant information from the input

data so that the desired task can be performed by using this reduced representation

instead of the complete data.

In the froth-middlings image, the feature of interest corresponds to the

froth-middlings interface region. The interface is a feature that lies along the

vertical axis of the image. In other words, if we take one set of column data from

the image we would have all the information that we need to study the system and

extract the interface level feature.

Figure 2.3 has 3 images taken on different conditions. Image 1 seems to have the

clearest conditions. However, Image 2 is blurred by dark lighting conditions, and

Image 3 is occluded by sticky foam over the tank wall.

One set of column data from each image of Figure 2.3 was selected and plotted in
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Figure 2.3: Forth-middlings interface images with different environmental and
process conditions.

Figure 2.4. As we can observe, the vertical intensity profiles display the different

types of conditions observed in Figure 2.3.

Moreover, if we focus on one of the images, for example, Image 1, we will observe

Figure 2.4: Vertical intensity profiles of froth-middlings interface level images.

that the vertical intensity profile may change along different longitudinal regions.

For example, Figure 2.5 depicts the Image 1 vertical profile taken from different

columns. As we can see, the vertical profile could vary by different conditions, such

as noise, uncertainties or process properties in the image.

In summary, we can state that images are always corrupted with noise produced

during the acquisition process (sensor, camera, and electronic circuits). This is a
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Figure 2.5: Image 1 vertical intensity profile at different longitudinal regions.

typical additive and independent noise at each pixel, and independent of the signal

intensity. In addition, external environmental conditions, such as changing lighting

conditions, shadows, and glares, can produce colored noise. This type of noise can

appear on some specific regions of the image and has a neighborhood dependency.

Finally, physical obstructions coming from the internal process (such as foam,

bubbles or sticky oil) can generate unexpected disturbances on image properties.

2.6 Image segmentation

Image segmentation is one of the most critical tasks of image analysis. It has the

objective of extracting information (represented by data) from an image via image

segmentation, object representation and feature measurement [12]. Image

segmentation is often described as the process that subdivides an image into its

constituent parts and extracts those parts of interest (objects). The objective is to

simplify or change the image into something easier to analyze.

Gray level image segmentation is generally based on one of two basic properties of

gray level values in images: discontinuity and similarity. Thus, two categories of

algorithms can be distinguished as in Figure 2.6: the boundary-based ones that
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detection techniques used in image processing: Frame differences and Background

Subtraction.

2.7.1 Frame differences

One approach for detecting changes between two image frames f(x, y, ti) and

f(x, y, tj) taken at times ti and tj, respectively, is to compare the images pixel by

pixel. One procedure to do this is to obtain a difference image. Suppose that we

have a reference image that contains stationary components. Then, comparing this

image against a subsequent image of the same scene, but including an object that

has moved, results in a difference of the two images that cancels the stationary

elements and keeps the non-stationary components [12].

A difference image between two images taken at times ti and tj can be defined by

equation 2.4,

dij(x, y) =

{

1 if |f(x, y, ti)− f(x, y, tj)| > T

0 otherwise
(2.3)

where T is a specified threshold. dij(x, y) has a value of 1 at spatial coordinates

(x, y) only if the intensity difference between two images is considerably different, as

determined by the specified threshold T . Therefore, in dynamic image processing,

all the pixel in dij(x, y) with value 1 are considered the result of object motion.

Accumulative frame differences

Consider a sequence of image frames f(x, y, t1), f(x, y, t2),· · · , f(x, y, tn), and let

f(x, y, t1) be the reference image. An accumulative difference image (ADI) is obtained

by comparing this reference image with every subsequent image in the sequence. A

counter for each pixel location is incremented every time a difference occurs at that

pixel location between the reference and an image in the sequence. Thus, when the kth

frame is compared with the reference, the entry in a given pixel of the accumulative

image gives the number of times the intensity at that position was different from the
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model”, which has only information about the stationary components on the scene.

In practice, obtaining a reference background image with only stationary elements is

not always possible. Therefore, the background model has to be updated to the

changes in the environment. In the case of indoor scenes, reflections, shadows,

lighting changes or animated images on screens lead to background changes.

Similarly, due to wind, rain or illumination changes brought by weather, static

backgrounds methods have difficulties with outdoor scenes.

2.8 Conclusion

This chapter introduced digital image processing and analysis methods. Digital

image processing is a transformation that takes an image into another image, while

digital image analysis is the transformation of an image into numerical data. The

digital image algorithms can be organized and classified into four types depending

on its application: Image Processing, Image Analysis, Computer Vision and

Machine Vision. Of particular interest are the computer vision algorithms that aim

at giving computers a visual understanding of the world. A computer vision

algorithm depends on its application, but there are typical functions that can be

found in most architectures: Image Acquisition, Image Pre-processing, Image

Processing, Image Analysis, and Decision making.

Feature extraction is the process of extracting some quantitative information of

interest from an image. Usually, we are interested in particular features of the image

that contains relevant information. Thus, we can restrict the image processing of

the vision algorithm to those specific features in the images. In the case of the

froth-middlings level detection problem, the feature of interest lays on the vertical

axis of the image. By looking at a set of pixels data from the vertical profile

(column data set)of the image we can infer the location of the level interface (the

feature of interest).

Image segmentation is one of the most important and critical tasks in image
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processing. It consists of subdividing the images into the parts of interest. Gray

level segmentation is usually performed based on two basic image properties on the

pixel level: discontinuity or continuity. Therefore, we described the region based

segmentation algorithms that subdivide the image into regions that have similar

pixel properties (continuity), and the edge based methods that subdivide the image

into regions where there are pixels discontinuities (edge detection).

In addition, image segmentation can be performed based on the dynamical

information of a set of consecutive frames. Motion detection finds the regions of an

image where the position of an object has changed with respects to its surrounding

among a set of different consecutive frames in time. Several approaches that

perform image segmentation based on motion detection were described and

analyzed with their advantages and disadvantages for each particular application:

Frame differences, accumulative frame differences, and background subtraction.
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Chapter 3

Interface Level Estimation Based
on Image Restoration and Edge
Detection

The objective of this chapter is to apply existing image processing techniques to

interface level estimation in laboratory scale. The prior work conducted by Liu [7]

has focused on Markov Random Fields based image segmentation to find the interface

level by partitioning the image into oil and water regions. However, the segmentation-

based methods may not provide satisfactory results since they are highly affected

by the lighting conditions, gradual variations of pixel intensities along the images

and presence of shadows and glares. Therefore, this chapter address the problem

of detecting the interface level by looking at the intensity contrast change between

the oil and water regions by applying edge detection operations on a single digital

image, which is more robust to lighting conditions and extends the work of Liu [7] to

other abnormal environmental scenarios. In addition, images are always corrupted by

noise, and thus it is required before a good image preprocessing or restoration step

to improve the efficiency of the level detection. The objective of image restoration

is to remove the noise from the images without losing the features of interest (froth-

middlings interface level). In this sense, we are motivated to use model-based image

restoration methods which are more robust than regular restoration methods. Prior

image models based on Bayesian Networks and Markov Random Fields are proposed

for the restoration process in this chapter. The proposed methods are implemented
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on the forth-middlings interface images of the pilot-scale PSV setup.

3.1 Introduction

Edge detection is by far the most common approach for detecting significant

discontinuities in gray level images [12]. An edge is a set of connected pixels that lie

on the boundary between two regions. This means that if the edges in an image can

be identified accurately, all of the objects can be located and some basic properties

such as area, perimeter, and shape can be measured. The edge detection process

serves to simplify the analysis of images by drastically reducing the amount of data

to be processed, while at the same time preserving useful structural information

about object boundaries [16, 17]. In the interface detection problem, edge detection

serves as a tool to identify the boundaries between the froth and middlings regions.

In other words, by looking at the intensity change between froth and middlings, we

can find a potential location of the interface level.

Efficient and accurate edge detection will improve the performance of subsequent

image processing techniques, including image segmentation, object-based image

coding, and image retrieval [18]. In practice, optics, sampling, and other image

acquisition imperfections can generate edges that are blurred. The degree of

blurring is determined by factors such as the quality of the image acquisition

system, the sampling rate, and the illuminations conditions. As a result, edges are

more closely modeled as having a ”ramp-like” profile when the technique is applied

to the raw image data [12]. Therefore, removing noise from the raw image will lead

to more efficient and accurate edge detection of the level interface. In this sense,

image restoration attempts to remove the noise and reconstruct the original image

by using prior knowledge about degradation phenomenon.

In this chapter, we introduce the challenges of finding an interface by looking at

the intensity contrast changes in a single image (vertical edge detector). Later, we
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describe the theory of image restoration problem that deals with the reconstruction

of the original image data. Finally, we apply the state estimation theory to perform

the image restoration process as a model-based optimization problem.

3.2 Problem Formulation

In general, if we look at the froth-middlings interface image, we can distinguish

three regions on the vertical axis: the froth region (oil), the interface region, and the

middlings region (water). Therefore, there are two boundaries along the vertical

profile of the image. One boundary lies between the froth-interface region and the

other lies between interface-middlings region. As we mentioned in Sectionv2.5, these

interface-boundary features are located over the vertical direction of the image.

Accordingly, an edge operator can be employed to detect the boundaries or

transition regions on the images. Therefore, applying a vertical edge detector mask

as in Figure 2.12b, we can detect the vertical properties changes in the

froth-middlings interface image.

Figure 3.1 presents the froth-middlings interface image. On the left, there is a raw

image acquired by the camera, while on the right there is an example of an ideal

image. Figure 3.1 displays the region and boundary concepts of the forth-middlings

interface. On the left, there is a raw image acquired by the camera, while on the

right there is an ideal image. The real image has a vertical profile, 3.1.c, which is

corrupted by noise and other factors, while the ideal image has a straight and clean

vertical profile, 3.1.d. Thus, when running a vertical edge detector on each profile,

we obtain the vertical change profile as Figures 3.1.e and 3.1.f. We notice that the

real image vertical change profile is spiky and noisy, while the ideal image vertical

change profile displays clearly the interface region.

Efficient and accurate detection of the interface can be achieved by removing the

undesired noise in the image. As described previously, the objective of image

processing is to enhance image properties in a manner that facilitates the following
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feature detection step. Thus, in the next section, we introduce the image restoration

process on digital images. This method attempts to remove the corrupted/noisy

image to get a clean and original image. An image restoration process will

guarantee better outcomes on the interface level detection.

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Edge detection comparison between a real image -corrupted by noise and
distortions- on the left-hand side, and an ideal image on the right-hand side.
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surface f(x, y) [20]. For the sake of notations simplicity, we represent the

observation function g(x, y) as observation values yn, the original image f(x, y) as

hidden true states xn, and the additive noise term v(x, y) as the observation model

noise vn

3.3.1 Observation and model-based image optimization

The image restoration performance can be improved by using a model-based

optimization method. The main reason for the use of optimization is the existence

of uncertainties in every vision process. Noise and other degradation factors, such as

those caused by disturbances and quantization in sensing and signal processing are

sources of uncertainties. Thus, the model-based optimization methods are more

robust for an image restoration process than non-model-based optimization.

Figure 3.3 describes a typical framework of image optimization at a pixel level [21].

For the sake of simplicity, we represent the observation function g(x, y) as

observation values yn, and the original image f(x, y) as hidden true states xn.

Essentially, we have the sampled image in which each pixel is considered as an

observation value yn with noise and uncertainties. On the other hand, we have the

hidden states xn, which represent the original image values that we would like to

estimate. Then, based on these frameworks we can formulate two different functions

to relate these graphical models nodes. One of the functions, ϕ, (called the

Observation Model), relates the observations and the true states, and the other

function, ψ, (called the Graphical or State Relation Model), relates the true states

based on predefined criteria chosen by the user.
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3.3.2 Graphical models

A graph is composed by nodes (also called vertices) connected by links (also known

as edges or arcs). In a probabilistic graphical model, each node represents a random

variable (or group of random variables), and the links express probabilistic

relationships between these variables [22]. One major class of graphical models are

the Bayesian Networks(BN), also known as directed graphical models 3.4a, in which

the links of graphs have a particular direction. The other major class of graphical

models is Markov Random Fields (MRF), also known as undirected 3.4b graphical

models, in which the links have no directional significance. Directed graphs are

useful for expressing causal relationships between random variables, while

undirected graphs are better for expressing soft constraints between random

variables. Therefore, in the following sections, we introduce the optimal image

restoration process through both image modeling approaches. We employ BN

approaches in sections 3.4 and 3.5, and MRF in Section 3.6.

(a) Directed graphical model (Bayesian
Networks)

(b) Undirected graphical model (Markov
Random Fields)

Figure 3.4: Graphical models representing the joint probability distribution over three
variables a, b, and c.
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3.4 Image Restoration using Least Square

Estimation (Wiener filter)

The first method developed to reduce additive random noise in images is based on

Wiener Filtering (WF) [13] , which designs a linear, time-invariant filter to extract

a signal from noise in the frequency domain [23]. The WF is an optimal minimum

mean square error estimator. In other words, it minimizes the overall mean square

error in the process of inverse filtering and noise smoothing.

The method consists of considering images and noise as random variables, and the

objective is to find an estimate x̂n of the original image xn such that the mean square

error between them is minimized. This error measure is given by Equation 3.3.

e2 = E{(xn − x̂n)
2} (3.3)

It is assumed that the image, xn, and noise, vn are uncorrelated and stationary

linear stochastic process.

In addition, the WF can work as an adaptive method based on a statistical model

estimated from a local neighborhood system around each pixel. The WF tailors

itself to the local image variance. For example, the filter performs less smoothing

when the variance is large, while performs more smoothing when he variance is

small. This approach often produces better results than linear filtering. The

adaptive filter is more selective than linear filtering, preserving edges, and other

high-frequency parts(features) of an image.

Model Parameters Estimation

Adaptive WF estimates the local mean and variance around each pixel using the

following Equations 3.4 and 3.5.

µ =
1

NM

∑

yn (3.4)

σ2 =
1

NM

∑

y2
n − µ2 (3.5)

39



where N ×M is the N by M local neighborhood system of each pixel in the image.

Finally, adaptive WF estimate is based on the Equation 3.6.

x̂n = µ+
σ2 − ν2

σ2
(yn − µ) (3.6)

where ν2 is the average noise variance of the image.

The mean square error is not, however, the criterion used by a human observer in

judging how close a restored image is to the original. Moreover, the WF is not very

amenable to state estimation because of difficulty in extension to Multiple

Input-Mulitple Output (MIMO) problems with state variable descriptions, and

difficulty in the application to signals with time-varying statistical properties [23].

3.4.1 Simulations and results

The interface detection process is performed in two steps, image restoration, and

vertical edge detection. In image restoration process, we use Equation 3.6 with

parameters in Table3.1. After that we use the vertical edge operator described in

2.12 to find the level interface location.

Figure 3.5 illustrates the results of level interface estimation based on the WF

restoration and edge detection. 3.5a corresponds to the raw interface image with its

noisy vertical profile, 3.5b depicts the restored image and cleaned profile after

smoothing with WF; and 3.5c shows the vertical change profile after using the

vertical edge detector. The maximum of this vertical change profile corresponds to

the interface level location.
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Parameters Values Description
xn [0,1] Continuous interval set
N ×M 10x10 Local neighborhood system size
µ Adaptive Estimated from local neighborhood system
σ2 Adaptive Estimated from local neighborhood system

Table 3.1: Wiener Filter model parameters

Figure 3.5: WF restoration and level detection. (a)Raw image and vertical profile,
(b) Wiener restored image and vertical profile, (c) vertical change and level detection
on Wiener restored image

3.5 Image Restoration using Kalman Filter

Many types of image degradation can be approximated by a linear,

position-invariant process. The advantage of this approach is that the linear system

theory becomes available for the solution of image restoration. The Kalman

Filter(KF) and Kalman Smoother(KS) are well-known state estimation filters for

linear systems with additive Gaussian noise. Therefore, we can formulate the image

restoration process as a state estimation problem for a linear state-space model

specified as Equations 3.7 and 3.8.

xn = Fnxn−1 +wn (3.7)

yn = Hnxn + vn (3.8)

where xn ∈ RK is the state vector, and yn ∈ RL is the measurement vector.

Fn ∈ RK×K is the state transition matrix, Hn ∈ RL×K is the measurement matrix,
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and wn ∈ RP and vn ∈ RL express the process and measurement noises that are

zero-mean white Gaussian and mutually uncorrelated, i.e., wk ∼ N (0,Qk) and

vn ∼ N (0,Rk).

Kalman Filter

The optimal estimation tries to find the state estimate that minimizes the cost

function (Minimum Mean Squared Error) as Equation 3.9:

Je =

∫ tf

0

E[(x− x̂)(x− x̂)T ]dt (3.9)

The optimal solution for a linear state-space model with Gaussian noise is

provided by the KF specified as Equations 3.10-3.14.

P−
n = FnP

+
n−1F

T
n +Qn (3.10)

Kn = P−
nH

T
n (HnP

−
nH

T
n +Rn)

−1 (3.11)

x̂−
n = Fnx̂

+
n−1 (3.12)

x̂+
n = x̂−

n +Kn(yn −Hnx̂
−
n ) (3.13)

P+
n = (I−KnHn)P

−
n (3.14)

3.5.1 Fixed-interval smoothing: Kalman Smoother

In fixed-interval smoothing, we seek an estimate of the state at some interior points

of the interval. Several forms of the fixed-interval smoother have been proposed.

One of the most common methods is the smoother by Rauch, Tung and Striebel,

called the RTS smoother [23].

The RTS smoother is an efficient two-pass algorithm for solving the fixed-interval

smoothing problem. The forward pass is the same as the standard KF algorithm.

State estimates and covariances obtained during the forward pass are saved for use

in the backward pass algorithm. The RTS smoother algorithm can be summarized

as follows:
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1. The system model is given as follow:

xn = Fn−1xn−1 +wn−1

yn = Hnxn + vn

wn ∼ (0,Qn)

vn ∼ (0,Rn)

2. Initialize the forward filter:

x̂0 = E(x0)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

3. For n = 1, · · · , N (where N is the final pixel), execute the standard forward

KF:

P−
n = Fn−1P

+
n−1F

T
n−1 +Qn−1

Kf,n = P−
nH

T
n (HnP

−
nH

T
n +Rn)

−1

x̂−
f,n = Fn−1x̂

+
f,n−1

x̂+
f,n = x̂−

f,n +Kf,n(yn −Hnx̂
−
f,n)

P+
f,n = (I−Kf,nHn)P

−
n

4. Initialize the RTS smoother as follows:

x̂N = x̂f,N

PN = P+
f,N

5. For n = N − 1, · · · , 1, 0 execute the following RTS smoother equations:

Kn = P+
f,nF

T
n−1(P

−
f,n+1)

−1

Pn = P+
f,n −Kn(P

−
f,n+1 −Pn+1)K

T
n

x̂n = x̂+
f,n +Kn(x̂n+1 − x̂−

f,n+1)
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3.5.2 Simulations and results

As in the previous section, the simulation was performed in two steps: an image

restoration using the KF and the KS, and interface level detection using a vertical

edge mask. Recalling the interface detection problem, the interest is focused on the

image vertical profile. Figure 3.6 displays a column data set from the image

corresponding to the image vertical profile. The Figure compares the KF and the

RTS, in which we can observe that RTS provides a smoother profile than the KF.

Thus, we use the RTS algorithm to perform the image restoration process and level

estimation.

Figure 3.6: The KF and the RTS restoration profiles comparison.

The RTS algorithm is used on vertical (each column data-set) and horizontal

(each row data-set) directions on the image. Also, it is used in both directions

combined, by first running in a horizontal direction for every row data-set, and then

in a vertical direction for every column data-set. Table 3.2 provides the parameters

used in the RTS smoother simulation. We tuned Qn and Rn to obtain a smoothed

profile, under the consideration that system model uncertainties (Qn) are smaller

than measurement model uncertainties (Rn). Figure 3.7 has RTS results in each

image direction, and the final combination in both directions.
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Parameters Values Description
Fn 1
Hn 1
Rn 1 Sensor noise
Qn 0.01 System noise
x(0) 0.5076 1st row/column mean value
P(0) 7.1577 1st row/column variance value

Table 3.2: KF and RTS model and noise parameters

Figure 3.7: Image restoration through RTS smoother. (a) Raw image, (b) RTS
applied on image horizontal direction, (c) RTS applied on image vertical direction,
(d) RTS applied on horizontal and vertical combined directions

After obtaining the restored image by RTS smoother, we run the vertical edge

detector to detect the level interface. Figure 3.8 describes the entire interface

detection process. 3.8a shows the acquired interface image with its noisy vertical

profile, Figure 3.8b depicts the restored image through RTS and its cleaned vertical

profile, and Figure 3.8c illustrates the vertical change profile and the interface level
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location that correspond to the peak.

Figure 3.8: Image restoration and level detection through RTS smoother. (a)Raw
image and vertical profile, (b) RTS restored image and vertical profile, (c) vertical
change profile and level detection on RTS restored image

The WF approach is based on the frequency domain analyses, whereas the KF or

the RTS that we derived later are based on the time domain analyses. Nevertheless,

both filters are optimal under their own assumptions [23].

3.6 Image Restoration using Markov Random

Models

When the observed image is considered as a noise-added surface, the problem is to

restore the underlying surface. The purpose of image restoration is to recover the

true pixel values xn, from the observed (noisy) image pixel values yn. In Section

3.3.2, we introduce the preliminaries of MRF graphical models. The next step is to

develop the image optimization framework through MRF models. To do that, we

first need to build the observation and prior models, which is given below.
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3.6.1 MRF observation model for images

Each observed pixel value is assumed to be the sum of the true gray value and

independent Gaussian noise:

yn = H(xn) + vn (3.15)

whereH(xn) is a linear function and vn ∼ N(0, σ2). The functionH(xn) maps a label

xn to a real gray value, where xn may be continuous or discrete. We can consider

that there is a unique numerical value for a label xn and write Equation 3.15 simply

as yn = xn + vn, and the likelihood energy function then becomes:

U(y|x) =
∑

n∈S

(xn − yn)
2

2σ2
(3.16)

where S represents pixel sites.

3.6.2 MRF priors model for images

According to the Markov-Gibbs equivalence, the prior probability follows a Gibbs

distribution

P (x) =
1

Z
e

1

T
U(x) (3.17)

where Z is a normalizing constant called partition function, T is a constant that is

usually assumed as 1, and U(x) is a prior energy function. The general expression

for U(x) is given as

U(x) =
∑

n∈S

∑

n′∈N

g(xn − xn′)2 , (3.18)

where N denotes the set of neighborhood pixels (cliques) defined in the MRF model.

The underlying surface xn, from which the observation yn is sampled, is a graph

surface defined on a continuous domain. The first factor affecting the specification

of the MRF prior distribution is whether xn takes a continuous or discrete value

[20]. Piece-wise constant surfaces xn or homogeneos blob-like regions, can be

properly characterized by the MML(multilevel logistic)[20] that uses cliques
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potentials(neighbor pixels) described by:

Vc(f) =

{

0 if all sites have the same label

ζc otherwise
(3.19)

If all sites have the same label, it means the entire smoothness of label f on sites c.

Any violation of the entire smoothness incurs a penalty of the positive number −ζc.

The prior energy is the sum of all the clique (neighbors) potentials:

U(x) =
∑

n∈S

∑

n′∈N

[1− δ(xn − xn′)] (3.20)

3.6.3 MAP-MRF framework

Bayesian framework helps to obtain statistical inferences, incorporating the prior

information. The statistical image analysis problem based on MRF field can be

solved using a MAP solution [7]. The objective of MAP solution is to maximize the

posterior probability, which can be represented as

max
x

P (x|y) (3.21)

According to the Baye’s rule, the posterior probability can be computed by using the

following equation:

P (x|y) =
P (x, y)

P (y)
=
P (y|x)P (x)

P (y)
, (3.22)

where P (x, y) is the joint probability distribution, P (y|x) is the conditional

probability density function (p.d.f) of the observation y (also called the likelihood

function of x for y), P (x) is the prior probability of x, and P (y) is the density of

observation y. Therefore, the posterior probability is proportional to the product of

likelihood function and the prior probability, which is provided as

P (x|y) ∝ P (y|x)P (x) (3.23)

In the image analysis problem based on MRF, P (x|y) is indeed the posterior

probability distribution of an MRF. According to the Markov-Gibbs equivalence,

the prior probability follows a Gibbs distribution specified as

P (f) =
1

Z
e

1

T
U(x) , (3.24)
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where Z is a normalizing constant called partition function, T is a constant that is

usually assumed as 1, and U(x) is the energy function. By substituting equation 3.24

into 3.23, we can obtain the expression for the posterior probability as,

P (x|y) ∝ eU(x|y) ∝ eU(y|x)eU(y), (3.25)

from which we can determine that

U(x|y) ∝ U(y|x) + U(y) (3.26)

where U(x|y) is defined as posterior energy, and U(y|x) is called likelihood energy.

Using the prior and likelihood models from Sections 3.6.1 and 3.6.2, we can write the

general form of the posterior energy function as

U(x|y) =
∑

n∈S

(xn − yn)
2

2σ2
+
∑

n∈S

∑

n′∈N

g(xn − xn′) (3.27)

Maximizing the posterior probability P (x|y) is equivalent to minimizing the posterior

energy function U(x|y), which is specified as

min
x
U(x|y) (3.28)

The only parameter that needs to be determined is the variance σ2 of the noise

distribution. Once σ2 is determined, the minimum of posterior energy U(x|y) based

on MAP-MRF solution can be completely achieved.

3.7 MRF piece-wise constant restoration

In a piece-wise constant restoration, xn consist of discrete values. It means that xn

can take values of 0 or 1. The task is to recover the true configuration x̂n from the

observed image yn. In the MAP-MRF framework, the optimal x̂n is the one that

minimizes the posterior energy function in Equation 3.28 [7].

Posterior Energy function

According to Li [20], the procedure of the MAP-MRF approach is summarized as
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the following steps:

1. Define a neighborhood system and set the cliques for it.

2. Define the prior cliques potential function in the Gibbs prior distribution.

3. Derive the likelihood energy function form the observation model.

4. Add the prior energy U(x) and the likelihood energy U(y|x) to yield the

posterior energy.

U(x|y) =
∑

n∈S

(xn − yn)
2

2σ2
+
∑

n∈S

∑

n′∈N

[1− δ(xn − xn′)] (3.29)

Energy minimization

The minimization solution x̂ is the optimally restored image in the configuration

space. The MAP solution is defined as x̂ = minx U(x|y). The simplest algorithm to

find x̂ is the steepest local energy descent or the greedy method. The procedure is

to start with an initial configuration x(0) and iterate until it reaches a minimum

value. An example of such gradient descent algorithms is the iterative conditional

modes(ICM)[20]. The steepest local energy descent algorithm finds a local energy

minimum whose quality depends on the initial estimate x(0). Global minimization

algorithms such as simulated annealing need to be used if global solutions are

required.

3.7.1 Simulations and results

In a piece-wise constant restoration, xn consist of discrete values/labels(i.e. 0,1,2,3,

etc.). Thus, in this simulation we considered binary labels (0 or 1) for xn, which

results into a binary segmentation problem. It means that we assign 1 to each pixel

that corresponds to oil and 0 to each pixel that is water. An Iterative Conditional

Mode (ICM) algorithm is used to minimize the Posterior Energy function. The model

parameters, µ and σ2, are estimated from the data. As we establish the problem

as a binary discrete segmentation, we need to estimate a set of parameters for each
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phase(µ, σ2 for oil, and µ, σ2 for water). One challenge of image processing is the image

space-variant properties that we could find on different image regions. These space-

variant properties can be caused by diverse factors such as noise, lightening conditions,

shadows, reflections or obstructions. As a result, image statistical properties, µ, σ2,

could differ significantly from one region to the other on the same image. In [7],

considers one set of parameter (µ, σ2) for the entire image, which penalizes some

regions during the image segmentation process and generates a poor segmentation.

However, based on prior knowledge, the level is a property that lies on the image

vertical direction. Therefore, we proposed to estimate the model parameter µ, σ2

from each image column in order to improve the algorithm segmentation.

Once we obtain the segmented image, we run the vertical edge detector to find the

level interface. Figure 3.9 has the original image, the binary segmented image through

MRF, and the level detection results.

Parameters Description
xn Binary(0 for water and 1 for oil)
µ Column adaptive, estimated from column data
σ2 Column adaptive, estimated from column data
N Neighborhood system 1st order
Minimization algorithm ICM (Iterative conditional mode)

Table 3.3: MRF binary restoration parameters.

3.8 Markov random field edge detection

Edges correspond to abrupt changes or discontinuities in certain image properties

[20]. The image properties may be non-texture or texture. In this section, we are

interested in non-texture edges due to changes in image intensity, such as jump

edges and roof edges. Jump edges correspond to the discontinuities in the

underlying surface xn.

Edge detection is an image restoration process that also involves discontinuities,
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Figure 3.9: Markov Random Field Restoration and level detection. (a)Raw image
and vertical profile, (b) MRF binary segmented image, (c) vertical change profile and
level detection on MRF binary segmented image

therefore we are interested in removing the noise to obtain a smooth image, except

on those regions where there are discontinuities. In the next section, we modify the

previous piece-wise restoration graphical models described in Section 3.6.2 to obtain

an edge labeling model.

3.8.1 Edge Labeling using line process

The Posterior Energy function presented in the previous section for a MRF restoration

process can be written as:

E(x) = U(x|y) =
∑

n∈S

(xn − yn)
2 + λ

∑

n∈S

∑

n′∈N

g(xn − xn′) (3.30)

For the edge labeling problem g(xn − xn′) should be modified for the purpose of

explicitly marking edges. In addition to the existing MRF for pixel values, it is

necessary to introduce another MRF, called Line Process(LP) in which each label

takes a value of 0 or 1 related to the occurrence of edges. The line processes are

located in between adjacent intensity variables and denote the presence (or absence)

of a discontinuity . Therefore, g(xn − xn′) is a function based on two coupled MRFs

which are illustrated in Figure 3.10. One set is the existing lattice for the intensity

field (pixels), and the other is the dual lattice for the introduced edge field.
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Figure 3.10: Two-coupled MRF representation: A lattice of pixel sites(dots) and its
dual edge sites(bars).

Thus, we need to defined two MRFs: one for pixel sites (dots) represented by xP
n ,

and other for edges(bars) by xE
n,n′ . The interaction between the two coupled MRF’s is

determined by the joint probability P (xP , xE) or the prior energy U(xP , xE). Then,

we have to modify the prior energy into a function that depends on both MRF,

intensity and edge variables as

U(xP , xE) =
∑

n∈S

∑

n′∈N

(xP
n − xP

n′)2(1− xE
n,n′) + αxE

n,n′ (3.31)

Finally, adding the prior energy to the likelihood energy yields to the posterior

energy for the edge labeling problem:

E(x) =
∑

n′∈S

(xn − yn)
2 + λ

∑

n∈S

∑

n′∈N

(xP
n − xP

n′)2(1− xE
n,n′) + αxE

n,n′ (3.32)

The first term on right hand side in Equation 3.32 attempts to keep the restoration

of xn close to the observed data yn in a least square sense. While the second right

hand term encodes the assumption that the data is smooth everywhere except at the

discontinuities. The third term enforces a penalty for incorporating a discontonuity

in the restoration. Also, minimization of Equation 3.32 has to be performed over all

xP
n and xP

n .
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3.8.2 Simulations and results

Similarly to previous sections, the simulations were performed in two steps: an

image restoration using MRF edge segmentation , and an interface level detection

using a vertical edge operator. Table 3.4 has the parameters considered for the

MRF edge segmentation. Figure 3.11 describes the process of detecting the interface

level through MRF edge segmentation.

Parameters Description
xP
n Binary(0 for water and 1 for oil)

xE
n Binary(0 for edge absence and 1 for edge presence)
µ Column adaptive, estimated from column data
σ2 Column adaptive, estimated from column data
α 0.042
N Neighborhood system 1st order
Minimization algorithm ICM (Iterative conditional mode)

Table 3.4: MRF binary restoration parameters

Figure 3.11: Markov Random Field Edge detection. (a)Raw image and vertical
profile, (b) MRF edge segmented image, (c) vertical change profile and level detection
on MRF edge segmented image

3.9 Conclusions

This chapter discusses the problem of detecting the level interface through image

processing and analysis techniques on single static frames. The interface level

54



detection problem can be divided into two main steps: a first step that consists of

restoring the image and a second step to detect the feature of interest (interface). In

the image restoration process, the objective is to take the corrupted and noisy

image and estimate the clean and original image. Subsequently, a feature detection

step based on vertical edge detection is performed on the restored image to detect

the level interface.

In image restoration process, four model-based image optimization methods were

investigated. The first two (Least Squares -WF-, KF and KS estimations) are based

on the Bayesian Network graphical models. In each of them, we consider continuous

states (from 0 to 1) for the restoration process, which provides a continuous

smoothed image as output. The smoothed image output, f̂(x, y) or x̂n, attempts to

recover the pixel values of the original image f(x, y) or xn. The last two methods

(MRF segmentation and MRF edge segmentation) are based on MRF graphical

models. In these cases, we consider discrete states (0 or 1) for the restoration

process, which provides a binary segmented image as output. The image output,

f̂(x, y) or x̂n, is a segmented image of the original image f(x, y) or x̂n.

For the feature detection step, we utilize a vertical edge detector(mask) to find

boundary changes along the vertical image profile. These boundaries delimit the

three-phase regions in the image (oil, interface, and water) in the vertical change

profile, and the maximum value in the profile corresponds to the interface level

location.

In summary, the four image restoration methods achieved successful results for our

enhancing objective, and the level interface was detected accurately by the vertical

edge detector.

55



Chapter 4

Computer Vision Based Method
for Froth-Middlings Interface Level
Detection in the Primary
Separation Vessels

∗ A robust computer vision based method to estimate the froth-middlings interface

level on the primary separation vessel (PSV) is described in this chapter. Figure 4.1

describes the computer-vision system architecture for the froth-middlings interface

level detection in the PSV, which is the most important control variable in the PSV

operation. Bitumen recovery and downstream operations are critically dependent on

the froth-middlings interface measurement and control. Typically, PSVs are

equipped with sight glasses that allow the operations to track the level of the

froth-middlings interface. The vision sensor consists of an algorithm that processes

the online video frames of a camera mounted on the PSV sight glasses, and it is

based on a combination of static and dynamic image processing techniques.

Industrial results show that the computer vision algorithm is more accurate and

reliable when compared to the other instruments, as well as more robust against the

process and environmental abnormalities.

∗A version of this chapter is submitted to the Computers and Chemical Engineering, 2018
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4.1 Introduction

In this chapter, we are motivated to investigate and develop a new approach to

improve the accuracy of the camera/computer vision system-based froth-middlings

interface level detection. Most of the previous approaches were solely based on the

static image segmentation, which searches for the level location by processing the

information in each frame separately. As a result, they had to deal with the

problem of noisy detections (spurious edges [3]) or difficulties to classify the oil and

water regions ([3] and [7]). However, the level is a feature in the frames that has

dynamics in time. Thus, by considering methods that analyze the motion in

subsequent frames, we can extract additional information about the level location.

Therefore, we are motivated to combine the information from static and dynamic

image processing methods to achieve an accurate interface level detection with less

computational load. In addition, there are abnormal process scenarios that affect

the level detection which have not been discussed and addressed in the previous

works. Abnormal scenarios include such as the stains on the sight glasses, blur or

fuzzy level interface, froth and middlings phases with non-homogenous pixel

intensities, and level switch from one sight glass to the other. These were in fact the

main causes for the noisy detections when using most of the previously proposed

algorithms. Also, the previous works do not provide the framework to address the

industrial conditions that affect the reliability of the level detection when using a

video camera sensor. For example, scenarios such as people/objects blocking the

camera, camera motion or vibrations, lighting changes, or poor image quality.

The main contribution of this chapter is the development of a robust computer

vision-based method to estimate the forth-middlings interface online. The vision

sensor consists of an algorithm that processes the video frames through three main

steps and outputs the estimated level values. In the first step, the algorithm infers

the level location in the frames based on a static and dynamic image processing

technique. The static image processing method identifies the potential level

57



locations with sharp pixel intensity changes (froth and middlings have different

intensity colors), and the dynamic image processing picks the level location that has

the maximum motion among the potential level locations detected by the static

image processing method. In the second step, the algorithm uses a reliability

analysis on the images to prevent inaccurate level estimations caused by the

environmental scenarios that affect the sight glass visuals. This allows the algorithm

to run online and with no supervision on the industrial site. In the third step, the

algorithm performs a time-based sliding window analysis to remove outliers and

smooth the level measurements.

Figure 4.1 shows the schematic of the computer-vision system design for the

industrial PSVs. The setup has a video camera that captures and transmits the

visuals of the sight glasses to the application PC, where the Video Processing

Application runs in the background to infer the level from the video frames. Then,

the estimated level value is communicated through Open Protocol Communication

(OPC) to the Distributed Control System (DCS), and a video stream with a level

indicator is transmitted to a webserver that can be visualized from the control room

or any other machine on the network. The video processing algorithm was

developed and tested in the Process Control Laboratory at the University of

Alberta. Then, an application based on the algorithm was developed and deployed

in two industrial PSVs, where it has been found more reliable and accurate than the

other instruments.
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that runs online. The video processing algorithm has three important steps which

are described later with more detail:

1- Static and dynamic image processing step

2- Reliability image analysis

3- Time-based sliding window analysis

4.2.1 Initial configurations

The video processing algorithm uses the following information, provided during the

initialization, to perform the image processing calculations:

1. Sight glasses or the regions of interest (ROI) in the frames.

2. Reliability reference region in the frames.

These regions must be configured in the initial frames acquired from the video

camera. Figure 5 shows an example of the configuration. The green rectangles

correspond to the ROI where the algorithm executes the calculations to detect the

level. The red rectangle corresponds to the reliability reference region where the

algorithm executes the calculation to provide an alert during abnormal scenarios in

the environment that affects the level estimation. Appendix A.2 provides more

details about the initial configurations.
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Figure 4.4: Flowchart of the static and dynamic image processing step. The
algorithm estimates the level based on static and dynamic image processing techniques
performed on a set of temporal consecutive frames.
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shown Equation 4.1, all the pixels outside the ROI are converted into 0, while all the

pixels inside the ROI keep the same value.

XROI(ti) = X(ti) ∗BMSG (4.1)

Therefore, the subsequent image processing calculations will be limited only to the

pixels constrained to the ROI in the frames (XROI(ti)).

Vertical edge filter:

In this step, a vertical edge filter runs over the ROI XROI(ti). This filter strengthens

the regions with sharp intensity changes, enhancing the potential level regions in the

images [24]. In image processing, a mask (also called convolution matrix or kernel) is

a small matrix that could be used for different purposes, such as blurring, sharpening,

edge detection, or more [12]. The operation is accomplished by doing a convolution

between the mask and the image. The vertical edge filter/mask used in this work is

a matrix with positive and negative rows of ones stacked above and below a row of

zeros as shown below,

VF =





1 1 1
0 0 0
−1 −1 −1





The above matrix is called the Prewitt vertical filter of size 3x3 in the literature

[24–27]. The size of the vertical filter can be tuned to enhance the images in different

ways. The size implies the cluster of pixel involved in the calculation. For instance,

increasing the vertical size, by adding a row of ones to the top and negative ones to the

bottom, the filter will consider more neighboring pixels vertically in the calculation.

While increasing the column size, by adding a new column, [1; 0;-1], the filter will

consider more neighboring pixels horizontally in the calculations. In addition, the

element values in the filter determine the magnitude of the filter. The convolution

mask calculation between the ROI and the vertical edge filter can be described by

Equation (2).

XS(ti) = XROI(ti)⊗VF , (4.2)
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where XS(ti) ∈ RM×N correspond to the vertical edge filter outputs, and Ts is the

distance between each frame. We provide more information about the sample time

Ts in Appendix A.2.

Frame differentiating:

The objective of this operation is to find changes among the accumulated frames in

the sliding window after the vertical edge filtering step. An absolute accumulative

frame differences is performed as shown below,

D(ti) = |XS(ti)−XS(ti−1)|+|XS(ti)−XS(ti−2)|+|XS(ti)−XS(ti−3)|+|XS(ti)−XS(ti−4)| .

(4.4)

We call the resulting matrix, D(ti) ∈ RM×N as the dynamic image matrix. Figure 4.8

displays a sample of the dynamic image matrix D(ti). The white region corresponds

to the region with the most significant motion among all the potential level regions

(white patches) detected in the previous static step, refer to Figure 4.7.
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4.5,

M(m, ti) =

∑N

n=1 D(m,n, ti)
∑N

n=1 BMSG(m,n)
. (4.5)

Figure 4.9 depicts the vertical profile, M(m, ti), to the right of the dynamic matrix

D(ti). This profile is a column vector. If the detection has been done correctly and

the level has been moving, the peak of this profile corresponds to the location of the

level. In the second step, the algorithm finds the pixel location (Midx(ti): Motion

location) of the maximum value in the profile and the maximum value (Mval(ti):

Motion magnitude) in the vertical profile, M(i, ti) as shown in Equations 4.6 and 4.7,

Midx(ti) = max
m

(M(m, ti)) , (4.6)

Mval(ti) = M(Midx(ti), ti)) . (4.7)

Midx(ti), would correspond to the location (pixel coordinates) of the level in the frame.

The motion magnitude or the largest element value, Mval(ti), has information about

the significance of the actual change. If the region is very bright, this number will

be large, meaning that there is a significant change in the interface level location.

Otherwise, the detection is considered to be weak, and the maximum of the profile

will be smaller than what could be attributed as an actual motion.
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Level detection based on the quality threshold:

Algorithm 1 presents the logic for level detection based on the quality threshold. It

determines the level detection by comparing the maximum value in the dynamic

vertical profile, Mval(ti),which we call as the quality index Qidx, to a quality

threshold, Qth. For Qidx above Qth the algorithm estimates the level based on the

vertical profile of the , Midx(ti) and for Qidx below Qth the algorithm estimates the

level based on the vertical profile of the static images Eidx(ti). Finally, the accepted

level value on the image, Limg(ti), is sent to the reliability image analysis step

described in the next section.

begin
if Qidx(ti) > Qth then

Limg(ti) =Midx(ti)
else

Limg(ti) = Eidx(ti)
end

end
Algorithm 1: Detection acceptance based on quality threshold

In addition, if Qidx is smaller than Qth for a sustainable period, the algorithm will

send an uncertain quality alarm to the user. Typical uncertain level scenarios occur

when the level is not visible, such as when it is behind a stain on the sight glass, is

switching between sight glasses, or outside the sight glasses visual span. Mval(ti) and

Qth are displayed online in the figure trends of the VPA (Appendix A.1). The quality

threshold value, Qth, should be tuned to the conditions in the process (Appendix

A.2).

4.2.3 Reliability image analysis

The purpose of the reliability image analysis is to prevent the level detection from

abnormal scenarios in the environment, such as people/objects crossing in front of

the camera, unintentional camera motions or vibrations, lighting changes, and

conditions that affect the quality of video acquisition (mist, condensations, ice).

The algorithm will hold the last reliably estimated level value if the image
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The output image, X(tref ), is the RRR, which consists of the selected red rectangle

area excluding the ROI (Figure 4.3). The algorithm performs this operation during

the initialization and considers the initial frame as the RRR.

Current reliability region:

When the algorithm runs online, takes the current image, X(ti), and removes all

pixels outside the reliability region using the same calculation in Equation 4.11. The

output image, XR(ti), is the current reliability region.

Reliability regions comparison:

The current reliability region, XR(ti), and the RRR, XR(tref ), are compared

continuously by considering the mean absolute intensity difference in the reliability

region as shown below,

Ridx(ti) = mean

(

|XR(ti)−XR(tref )|

XR(tref )

)

, (4.12)

where XR(tref ) represents pixels intensity from the RRR, and XR(ti) represents the

pixels intensity from the current reliability region. The subtraction and division

operation between XR(ti) and XR(tref ) are performed element wise (pixel by pixel).

The output, Ridx(ti), is a scalar value, and compared against a reliability threshold

to determine if the environmental conditions are abnormal or not.

Detection acceptance based on reliability threshold:

The algorithm decides the reliability of the level detected by the image processing

algorithm based on a reliability threshold Rth. Algorithm 2 presents the logic for

the detection acceptance based on the reliability threshold.
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begin
if Ridx(ti) > Rth then

Lr(ti) = Limg(ti)
else

Lr(ti) = Ls(t(i− 1))
end

end
Algorithm 2: Level detection acceptance based on reliability threshold

If the Ridx(ti) is greater than Rth , the algorithm will consider that the

environmental conditions are normal and will rely on the level estimation from the

image processing algorithm Lr(ti) = Limg(ti). However, if Ridx(ti) is smaller than

Rth, then the algorithm will assume that environmental conditions are abnormal,

and hold the last reliable level value. Moreover, if Ridx(ti) is smaller than Rth for a

sustainable period of time, then the algorithm will alarm the user about an

abnormal condition in the environment of the room.

4.2.4 Level tracking over time-based sliding window analysis

The level is a physical quantity that has coherence and continuity in time, and thus

we do not expect to observe a sharp raise or dip in the level measurements. The

time-based sliding window analysis of the most recent detected level values is

performed to smooth the level trends and remove the unrealistic jumps in the level

measurements. Figure 4.11 summarizes the flowchart of the time sliding window

calculations. The sliding window length, W , is defined a priori. A larger sliding

window size implies stronger and smoother outlier filtering.

In the first step, the algorithm computes the local median (m) and standard

deviation (σ) inside the window and replaces any outlier (outside the 3σ threshold)

by the median value (m). The algorithm uses the Hampel filters, which replaces the

outliers based on past and future neighbors of each sample inside the measurement

window [28].

In the second step, the algorithm performs a moving average calculation inside the

window to smooth the values based on past and future elements in the array.
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Level =
UP − LO

Span
∗ Lb + LO , (4.15)

where y3,2 is the bottommost coordinate of the lower sight glass , y1,1 is the topmost

coordinate of the upper sight glass in pixels, and Span is the level span in pixels

covered by the sight glasses. Y is the length of the entire frame in pixels, L is

the level location in pixels measured from the top, and Lb is the level location in

pixels measured from the bottom. UP and LO are the levels in engineering units

corresponding to the top part of the upper sight glass, and the bottom part of the

lower sight glass respectively in the vessel. Level is the calibrated real level estimation

in percentage, which is communicated to the DCS.

4.3 Computer vision system architecture

Figure 4.1 shows the schematic of the computer-vision system design for the

industrial PSV. A video camera captures the visuals of the sight glasses, and

transmits to a PC, called the application PC, where the video processing

application(VPA) is installed and running. In the application PC, the video

processing application runs in the background to infer the level from the video

frames. Then, the value of the inferred level is communicated through Open

Protocol Communication (OPC) to the DCS, and a video with an overlaying marker

indicating the inferred level is transmitted to a web server that can be visualized

from the control room or any other machine on the network.

Flowchart of the VPA architecture is shown in Figure 4.13. The VPA reads the

camera feed through the network in the communication layer. Then, the video

acquisition and settings layer allow the user to set the video acquisition settings and

the tuning parameters of the video processing algorithm. Video processing

algorithm layer process the video feed and executes the level estimation algorithm.

Video processing algorithm provides the estimated level values and the video frames

with level indicators as the outputs. The estimated level values are communicated

to the DCS through OPC and the video frames with the level indicators are

communicated through ISS communication to the webserver.
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parameters listed as follow: The sight glasses or ROI, the RRR, the number of

frames for static-dynamic image processing, the sample time of the dynamic image

processing, the size of the vertical edge filter, the time-based sliding window length,

the quality threshold and the reliability threshold.

4.4 Results

4.4.1 Computer vision system implementation

Initially, the video processing application was developed and tested in the Process

Control Laboratory at the University of Alberta. A Primary Separation Vessel (PSV)

experimental setup was used during the research and development (R&D) stage.

A factory acceptance test (FAT) was conducted in the lab to test the algorithm

performance under process and environmental conditions like the ones in the industry.

In addition, recorded video files from the industrial PSV sight glasses were employed

during the FAT. After the R&D stage, the vision system has been deployed and

installed in two industrial PSVs. In both cases, a site acceptance test (SAT) was

conducted to test the algorithm performance in the industrial environment, and it

has shown that the sensor has a reliable and accurate operation. Figure 4.14 depicts

an image output of the online stream display of the video processing algorithm with

the level information overlay.

Industrial results show that the algorithm is robust to different process

abnormalities, such as blurry interface, level switch from one sight glass to other,

stains in the sight glasses and PSVs running on water. In addition, the reliability

analysis can handle abnormalities in the environment, such as people/objects

blocking the camera visuals, unintentional camera motions, lighting changes, and

conditions that affect the quality of image acquisition (mist, condensation, ice).

The vision sensor provides a level estimation that is more reliable and accurate

when compared to the other instruments in the process. Figures 4.15 and 4.16

compares the camera level estimation to the two other instruments in the PSV
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Figure 4.15: Camera estimation scenario 1. Red line: Nucleonic profiler estimation;
Blue line: Camera estimation; Yellow line: DP cell estimation; Black dashed line:
Sight glasses borders.
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Figure 4.16: Camera estimation scenario 2. Red line: Nucleonic profiler estimation;
Blue line: Camera estimation; Yellow line: DP cell estimation; Black dashed line:
Sight glasses borders.

Nucleonic Profiler MSE DP Cells MSE
Scenario 1 595.36 36.02
Scenario 2 34.56 32.16

Table 4.1: Mean Squared Error (MSE) comparison between camera level estimation
vs nucleonic profiler and DP cells for each scenario.

In the SAT, the video algorithm was monitored for a month and it showed a

reliability service factor of 99.54% in PSV 1 and 99.92% in PSV 2. It means that

during 0.46% and 0.08% of the time of each PSV operation, there was an unreliable

environmental condition (reliability index went below the reliability threshold)

affecting the level estimation where the algorithm held the last accurate value.

These unreliable scenarios were generated by operators working in the room and

blocking the camera visuals. In addition, the quality of the level estimation was
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monitored during the same month resulting in quality service factors of 62.21% for

PSV 1 and 68.04% for PSV 2. It implies that 37.79% and 31.96% of the time the

level presented a less reliable estimation, with a quality warning from the algorithm

in which it had less dynamics (below the quality threshold). These scenarios are

associated with moments when the level is outside the sigh glasses visuals, level

switches from one sight glass to other or level occluded by the stains on the glasses.

Finally, the accurate and reliable estimation of the vision sensor facilitates the

closed-loop control of the froth-middlings interface. It helps to stabilize the

extraction process in the PSV, increase the bitumen recovery, and reduce the

variability in the downstream operations.

4.5 Conclusion

A computer vision system based on image and data analysis techniques is developed

to process the online video stream of a camera mounted on PSV sigh glasses. It

detects and communicates the inferred level to the distributed control system (DCS)

facilitating the implementation of closed-loop control.

The computer vision algorithm is designed with three main steps, in which the

inputs are the video frames, and the outputs are the estimated level values. In the

first step, the algorithm detects the level in the frames based on edge and motion

detection performed on a set of consecutive frames. In the second step, the

algorithm uses a reliability analysis of the images to handle the abnormal

environmental conditions that affect the sight glasses visuals. In the third step, the

algorithm performs a time-based sliding window analysis to eliminate outliers and

provide smooth level tracking.

The computer vision algorithm was developed in the Computer Process Control

laboratory using a PSV experimental setup, and was later implemented in two

industrial PSVs. The results under the industrial environment are presented, and

they show that the algorithm is accurate, reliable and robust against the process
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and environmental abnormalities.

The video algorithm has two other important advantages for the PSV operation.

First, it is a non-intrusive sensor in the sense that it does not require a vessel shut

down (with respective oil production losses) to do the installation and maintenance.

Additionally, the level estimation of the vision sensor can be employed online as a

reference value to recalibrate the other instruments (nucleonic density profiler and

differential pressure cells).
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Chapter 5

Image Restoration and Object
Tracking using FIR Structures

∗ In this chapter, we address the problem of smoother design for state estimation

based on a finite number of measurements collected in a finite estimation horizon.

Three different finite impulse response (FIR) smoothing algorithms are proposed

using the maximum likelihood FIR estimation, which is robust against uncertain

noise statistics and modeling parameters, and also independent of the initial states

of each finite horizon. Moreover, we provide equivalent but iterative Kalman-like

structures of these algorithms for practical implementation. The applications of the

proposed smoothing algorithms to an object tracking and image processing

examples are demonstrated, and it shows that their have better robustness against

modeling uncertainties than traditional smoothing approaches. Finally, we proposed

the implementation of FIR algorithms to the image restoration process of PSV’s

interface level, and to the level tracking problem in the time-based sliding window.

5.1 Introduction

Digital filters can be classified in two types based on the duration of their impulse

response: the infinite impulse response (IIR) filters, and the finite impulse response

∗A version of this chapter was submitted to the IEEE Transaction on Systems, Man and Cybernetics:
Systems, 2018
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(FIR) filters [29, 30]. IIR filters consider all the available information from a

data-set, while FIR filters use the most recent measurements (finite horizon) within

the data-set. FIR filters are also known as non-recursive filters as they do not have

the feedback (a recursive part of a filter), even though a recursive algorithm can be

used for FIR realization at each time step [31, 32].

As an IIR filter, the Kalman Filter (KF) [23, 33, 34] is the most popular

estimator for linear systems with the Gaussian noise. It is well known that KF

achieves the optimal estimation based on all previous measurements. However, it

has been proved that KF only gives the optimal estimation under certain conditions

[35, 36]. For example, to implement the KF optimally, a complete specification of

dynamical and statistical model parameters must be given [37–39], which are not

exactly known in most practical cases. In addition to KF, Kalman smoothers have

been developed to achieve a linear optimal estimation of any point in the past. In

[40], a forward-backward smoother is derived as a combination of two optimum

filters based on the maximum likelihood principle. In [41], the Rauch-Tung-Striebel

(RTS) smoother is presented as a more computationally efficient algorithm than the

forwardbackward smoother, which computes the smoothed estimates with a

backward pass. Nevertheless, all these smoothers suffer from the same weakness as

the KF, which is a consequence of the IIR structure. In general, it is crucial to know

the system modeling parameters and noise statistics before using the KF or

smoothers [42–44].

Contrary to IIR, FIR filters utilize finite measurements collected over the most

recent time interval, and thus have some advantages, such as guaranteed stability,

linear phase and robustness to parameters changes, and round-off errors [43, 45–48].

The development of FIR filtering following the theory of receding horizon control

was initiated by Kwon [43]. Later, Shmaliy developed a linear optimal FIR

estimator to deal with the problems of filtering, smoothing and prediction in the

state-space [49–52], which was further extended to non-linear models in [53]. Other
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work related to the development of FIR filtering can be seen in [54–57]. However, a

critical drawback of the FIR filtering is its batch-form estimation, which makes

matrices and vectors acquire large dimensions. As an alternative solution, iterative

Kalman-like algorithms for FIR calculation within the finite horizon were introduced

in [32, 52, 58, 59]. These iterative estimations are of higher computational efficiency

than the batch-form estimators. In view of this, Zhao et al. applied the sequential

Bayesian theory to the most recent measurements, and revealed the relationship

between the FIR and the IIR filters with a maximum likelihood FIR (ML-FIR)

estimator [58]. The proposed estimator has the advantage of being independent of

the initial states and covariance within each finite horizon, and converges to the

optimal Kalman estimation with the increase of the finite horizon length.

Compared with the enormous works done on the FIR filtering, the FIR

smoothing problem remains open, although some related hints have been shown

[49, 60, 61]. Hence, the motivation of this paper is to extend the theory of FIR

filtering to that of the FIR smoothing. The main contributions of this work are to

develop three smoothing algorithms with FIR structure. To achieve this objective,

we exploit the iterative ML-FIR estimation to obtain estimates for each point inside

the finite horizon. Then, we combine these estimates by employing the formulas for

the optimal combination of two independent estimates, known as the

forward-backward smoother equations. The proposed FIR smoothers have three

important advantages over the traditional smoothers. First, the proposed methods

are robust to uncertainties of modeling parameter and noise statistics. Second, the

algorithms are independent of the initial states and covariance in each finite horizon

because the initial estimates are obtained through the batch ML calculation.

Finally, the FIR smoothers can have a faster and more accurate capture of the local

dynamic changes in the data as they only consider the most recent measurements.

This chapter is organized as follows. In Section 5.2 we introduce and compare the

FIR filtering structure to the IIR filtering structure. In Section 5.3, we describe the
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system model and formulate the problem. In Section 5.5, the ML-FIR estimator is

presented and decomposed into a prior and posterior estimator to be employed

recursively within the finite horizon in a forward-backward direction. In Section 5.6,

we introduce the optimal smoothing combinations and three different types of FIR

smoothers are developed. Finally, we apply the proposed FIR smoothing algorithms

to the object tracking and image processing problems in Section 5.7. Conclusions

are drawn in Section 5.8.

5.2 FIR filters

FIR filters are filters with finite impulse response. They are also known as

non-recursive filters as they do not have the feedback (a recursive part of a filter),

even though recursive algorithm can be used for FIR realization. Figure 5.1 depicts

FIR and IRR general structures.

Figure 5.1: FIR and IIR structures.

A FIR filter takes an input signal x[n], and produces an output signal y[n] based

on a weighted sum of the most recent input values x[k − n]. A typical form of the

FIR equation is given as:
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y[n] =
M
∑

k=0

bkx[k − n] = b0x[n] + b1x[n− 1] + b2x[n− 2] + · · ·+ bMx[n−M ] (5.1)

where bk are called the FIR filter coefficients , and M is the order of the FIR

filter. The set of FIR filter coefficients completely specifies an FIR filter. Different

choices of the order and the coefficients leads to different kinds of filters (low-pass,

high-pass and band-pass).

FIR filters have several desirable properties that make them attractive for a wide

range of applications [43]. An exactly linear phase-response can be achieved with

FIR filters, with the result that they can be used in the faithful reconstruction of

signals without phase distortion. Consider, for instance, a filter that weights

samples nearby more strongly than those that are far away. This performs a weaker

smoothing, but it also introduces less distortion. Because of this, FIR filters are

often more useful for random noise reduction.

In addition, FIR filters are inherently stable, and hence the question of stability

does not arise either in the design or in the implementation of these filters. For

example, images are very complex signals, which are very difficult to model

accurately, and stability is thus a highly desirable feature for image processing

filters.

The primary disadvantage of FIR filters is that they often require a much higher

filter order than IIR filters to achieve a given level of performance. Other

disadvantage of linear-phase FIR filters is the overall group delay in certain

applications [29] .

5.2.1 Kalman Filter limitations

The KF works well but only under certain conditions [23], and the following are some

of its drawbacks:

1- It is necessary to know the mean and correlation of the noise, wn and vn at

each time instant.
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2- It is necessary to know the covariances Qn and Rn of the noise processes. The

KF uses Qn and Rn as design parameters, so if we do not know them, then it

may be difficult to successfully use the KF.

3- The attractiveness of the KF lies in the fact that it is the one estimator that

results in the smallest possible standard deviation of the estimation error. That

is, the KF is the minimum variance estimator if the noise is Gaussian, and it is

the linear minimum variance estimator if the noise is not Gaussian. If we desire

to minimize a different cost function (such as the worst-case estimation error)

then the KF may not accomplish our objectives.

4- It is necessary to know the system model matrices Fn and Hn.

5.3 System Model and Problem Formulation

Consider a general discrete-time linear model represented in the state-space by:

xn = Fnxn−1 +Gnwn , (5.2)

yn = Hnxn + vn , (5.3)

where xn ∈ RK is the state vector and yn ∈ RL is the measurement vector. Fn ∈

RK×K is the state transition matrix, Hn ∈ RL×K is the measurement matrix, and

Gn ∈ RK×P is the noise matrix. wn ∈ RP and vn ∈ RL are the process and

measurement noises that are zero-mean white Gaussian and mutually uncorrelated,

i.e. wn ∼ N (0,Qn) and vn ∼ N (0,Rn).

The FIR filtering problem consists of estimating the current state xn given the most

recent measurements ym:n , {ym, · · · ,yn}, as Figure 5.2 illustrates. The interval that

goes from m up to n is called the finite horizon.

Similarly, we can define the FIR smoothing estimation problem as follows. Given

a linear Gaussian state-space model as in Equations 5.2 and 5.3, and letting xn be

the current state, the objective of the FIR smoothing is to estimate xn−q, given the

most recent measurements ym:n, where 1 < q ≤ N is a positive integer. Figure 5.2

illustrates the FIR smoothing estimation problem.
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and Ln,m ∈ RNL×NP are

Fn,m =
[

(Fm
n )T , (Fm

n−1)
T , · · · , (FT

m)
T
]

,

Gn,m =















Gn FnGn−1 · · · Fm+2
n Gm+1 Fm+1

n Gm

0 Gn−1 · · · Fm+2
n−1 Gm+1 Fm+1

n−1 Gm

...
...

. . .
...

...
0 0 · · · Gm+1 Fm+1Gm

0 0 · · · 0 Gm















,

Hn,m = H̄n,mFn,m ,

Ln,m = H̄n,mGn,m ,

where H̄n,m = diag(Hn,Hn−1, · · · ,Hm) is a diagonal matrix and F j
i = FiFi−1 · · ·Fj.

5.4 Optimal filtering on finite horizons

5.5 Maximum Likelihood FIR Estimation

A solution to the FIR filtering problem given a finite horizon of measurements ym:n,

has been provided by the ML-FIR estimation x̂ML
n|N , which is specified in [58] as

x̂ML
n|N = KML

n,mYn,m

= (H̃T
n,mΣ

−1
n,mH̃n,m)

−1H̃T
n,mΣ

−1
n,mYn,m , (5.6)

where KML
n,m is the ML-FIR gain, H̃n,m ≡ Hn,m(F

m
n )−1, Σn,m is the finite horizon

measurement variance,

Σn,m = V ar[Yn,m|xn]

= (Ln,m − H̃n,mḠn,m)Qn,m(Ln,m − H̃n,mḠn,m)
T +Rn,m ,

and Ḡn,m corresponds to the first row of Gn,m, which is specified as

Ḡn,m = [Gn FnGn−1 · · · Fm+2
n Gm+1 Fm+1

n Gm].

As can be seen, Equation 5.6 has a batch form in calculation, where large

dimension matrices have to be computed for each finite horizon. Therefore, the
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ML-FIR estimator has also been presented in a Kalman-like iterative structure, in

which the general estimation and covariance equations can be written as:

x̂i = Fix̂i−1 + (Ki + K̃i)(yi −HiFix̂i−1) , (5.7)

Pi = (I− (Ki + K̃i)Hi)(FiPi−1F
T
i +GiQiG

T
i )(I− (Ki + K̃i)Hi)

T

+ (Ki + K̃i)Ri(Ki + K̃i)
T . (5.8)

In Equation 5.7, the first term on the right-hand side, Fix̂i−1, is used to predict the

estimate from i−1 to i, while the second term, (Ki+K̃i)(yi−HiFix̂i−1) updates the

predicted estimate at i based on the measurement yi. (Ki+K̃i) is the correction gain,

where Ki is equivalent to the Kalman Gain, and K̃i works as an additive correction

gain to Ki. Similarly, in Equation 5.8 the term FiPi−1F
T
i +GiQiG

T
i is the prediction

error variance, and (I−(Ki+K̃i)Hi) indicates the posterior estimation error variance.

The complete description of iterative ML-FIR estimator can be found in Appendix

B.1.

Base on these, Equations 5.7 and 5.8 can be decomposed into prior (prediction)

and posterior (update) forms 5.9-5.12. In order to simplify the notations, we use

the superscript ”−” to indicate a prior estimation, and superscript ”+” to indicate a

posterior estimation.

1) Prior estimation:

x̂−
i = Fix̂

+
i−1 , (5.9)

P−
i = FiP

+
i−1F

T
i +GiQiG

T
i . (5.10)

2) Posterior estimation:

x̂+
i = x̂−

i + (Ki + K̃i)(yi −Hix̂
−
i ) , (5.11)

P+
i = (I− (Ki + K̃i)Hi)(P

−
i )(I− (Ki + K̃i)Hi)

T

+ (Ki + K̃i)Ri(Ki + K̃i)
T . (5.12)

Note that Equations 5.7 and 5.8 can be used either in a forward or backward

direction inside each finite horizon [m,n]. That is, they can be used to estimate
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x̂n starting from xm in a forward direction; or to estimate x̂m starting from xn in

a backward direction. The slight modification is that for backward estimation the

system model has to be inverted, that is, we should use F−1 instead of F, by assuming

F is invertible. In the same way, Equations 5.9-5.12 can be employed either in a

forward or backward direction inside each finite horizon. The complete description of

the iterative ML-FIR estimator can be found in Appendix B.

The forward and backward estimates obtained by Equations 5.9-5.12 are not optimal

since they are calculated from the iterative ML-FIR estimator, which approaches

to the optimal estimation only when the finite horizon [m;n] extends to the full

dataset [58]. Therefore, the length of the finite horizon plays an important role in the

estimation performance.

5.6 Proposed FIR Smoothers

In this section, we derive three different FIR smoothing algorithms based on the

combinations of Equations 5.9-5.12. Figures 5.3, 5.4 and 5.5 illustrates each of these

FIR smoothing algorithms respectively. The first two smoothers (Figures 5.3 and

5.4: fixed-lag FIR smoothers) have more benefits for on-line applications where an

estimate with a specific lag q is required. In this situation, we want to obtain an

estimate of the state at n − q given measurements from m up to n, where the

horizon [m,n] continually changes as we obtain new measurements, but the lag q is

constant. The first algorithm, in Figure 5.3, considers a combination of estimates

within the same finite horizon, while the second one, in Figure 5.4, combines

estimates from different finite horizons. Finally, the third algorithm (fixed-interval

FIR smoothing in Figure 5.5) is intended to be used for off-line application. In this

situation, we have a fixed interval of measurements (y1, y2, · · · , yT ), and we want to

obtain the state estimates for all the points in that interval.

To derive the FIR-type smoothers, we consider the forward-backward combination

of estimates here, which reduces the complexity of the smoothing procedure [23].

However, other types of combinations can also be performed inside the horizon.
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5.6.1 Optimal smoothing

Forward-backward smoothing

The well known formulas for the optimal combination of two independent estimates,

x1 (covariance P1) and x2 (covariance P2), of x are [40],

x̂ = (P−1
1 +P−1

2 )−1(P−1
1 x̂1 +P−1

2 x̂2) , (5.13)

P = cov(x̂− x) = (P−1
1 +P−1

2 )−1 , (5.14)

where the statistics of noise are assumed to be Gaussian with zero mean. These

estimates represent the minimum variance and maximum likelihood estimate of x̂. If

we assume that x̂1 and x̂2 are the estimates for a given point i obtained from two

different optimal filters, one of which runs from the beginning of the data interval

forward to i, and the other of which runs backward to the point i from the end of the

data interval, then x̂ is the optimal smoother estimate for the point i.

Hence, applying some mathematical rearrangement on Equations 5.13 and (5.14

we can achieve the forward-backward smoothing Equations 5.15-(5.17. The forward-

backward approach for smoothing combines two estimates to obtain the smoothed

estimate. The subscript ’f ’ refers to forward estimates while the ’b’ corresponds to

backward estimates.

Kf = P−
b (P

+
f +P−

b )
−1 , (5.15)

x̂ = Kf x̂
+
f + (I−Kf )x̂

−
b , (5.16)

P = [(P+
f )

−1 + (P−
b )

−1]−1 . (5.17)

RTS smoothing

The RTS smoother is an efficient two-pass algorithm for fixed interval smoothing

[41], which has two steps. A first step (forward path), where a filter runs forward to

obtain estimates for each point in the fixed interval. And a second step (backward

path), where we compute the smoothed state estimates x̂i and covariances Pi. In the
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from i = m to i = n− q. The second estimate xb, is based on a backward filter that

runs backward from i = n to i = n− q. In this sense, we can employ Equations 5.15,

5.16 and 5.17 to combine the ML-FIR estimation in a forward-backward direction

for each finite horizon, and finally obtain an smoothed estimation of any point

within the finite horizon. Thus, we are able to describe an iterative FIR smoother

algorithm based on a forward-backward estimates combination within the finite

horizon, which is shown in Algorithm 3. A detailed description of Algorithm 3 can

be found in Appendix B.2.

Data: ym:n

begin
for i = m : 1 : n do

Initialization: x̂α, Pα ;
Execute forward ML-FIR estimation: x̂−

f,i, P
−
f,i, x̂

+
f,i, P

+
f,i ;

end
for i = n : −1 : n− q do

Initialization: x̂+
b,n = x̂+

f,n, P
+
b,n = P+

f,n ;

Execute backward ML-FIR estimation: x̂−
b,i,P

−
b,i,x̂

+
b,i,P

+
b,i ;

Combine forward and backward estimations using (5.15), (5.16) and
(5.17): x̂i, Pi ;

end

end
Result: x̂n−q

Algorithm 3: Fixed-lag FIR smoother within the horizon

Through Algorithm 1 we can obtain the smoothed estimates, x̂i, for each point

within the finite horizon [m,n]. However, if we are interested in a particular smoothed

estimation within the finite horizon with a given lag q, we only need to perform the

forward-backward combination until that estimation point of interest x̂i = x̂n−q.

5.6.3 Fixed-lag FIR smoothing (FIR-MLS2): combination of
estimates from different finite horizons

In this section, we derive an extension of Algorithm 1, where we analyze a combination

of ML-FIR estimates within the same finite horizon. In fact, we can consider a

combination of ML-FIR estimates coming from different finite horizons. Figure 5.4
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Data: ym:n

begin
for i = 1 : n do

for i = m : 1 : n do
Initialization: x̂α, Pα ;
Execute forward ML-FIR estimation ;
Save estimates at the end of the finite horizon: x̂−

f,n, P
−
f,n, x̂

+
f,n, P

+
f,n ;

end
for i = n : −1 : m do

Initialization: x̂+
b,n = x̂+

f,n, P
+
b,n = P+

f,n ;

Execute backward ML-FIR estimation ;
Save estimates at the beginning of the finite horizon: x̂−

b,m, P
−
b,m,

x̂+
b,m, P

+
b,m ;

end
Combine forward and backward estimates from different finite horizons
through (5.15), (5.16) and (5.17): x̂i, Pi

end

end
Result: x̂n−m

Algorithm 4: Fixed-lag FIR smoother (different finite horizons)

The best combination of estimates coming from different finite horizon is achieved

when the largest number of measurement can be covered by the horizons. This occurs

when the last point of the horizon, n, coincides with the first point of the next finite

horizon, m. In this case, if n is the last point of the finite horizon we can use the

forward ML-FIR estimator to obtain x̂f,n. Then, if m is the first point of the next

horizon we can employ the backward ML-FIR estimator to achieve x̂b,m. Finally,

the combination of those two estimates x̂f,n and x̂b,m is the best combination from

different finite horizons.

In a real time application, if [m,n] is the current finite horizon, the best fixed-lag

FIR smoothing estimate x̂n−q combining different finite horizon estimates is achieved

at the beginning of the current finite horizon x̂n−q = x̂m = combination(x̂f,m+ x̂b,m).
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Data: y1:T

begin
for i = 1 : 1 : T do

Input: ym:n ;
for i = m : 1 : n do

Initialization ;
Execute forward ML-FIR estimation ;

end

end
Output: x̂−

i,m:n; P
−
i,m:n; x̂

+
i,m:n; P

+
i,m:n ;

for i = T : −1 : 1 do
Initialization: x̂T = x̂+

f,T , PT = P+
f,T ;

Execute backward RTS smoother through (5.18), (5.19), and (5.20):
Ki; x̂i; Pi ;

end

end
Result: x̂i|T

Algorithm 5: Fixed-interval FIR smoother

5.7 Simulations and Results

In this section, we describe two different applications of FIR smoothing. The first

case is a tracking object simulation with approximate modeling parameters. While the

second is an image restoration problem. In both cases, we compare FIR estimations

to traditional IIR estimations.

5.7.1 Experimental Validation

The quantitative analysis for experimental validation is carried out by using two

parameters widely use in signal processing, Signal-to-Noise Ratio (SNR) and Root
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Mean Square Error (RMSE), which are defined in 2 dimensions as

SNRdB = 10 ∗ log10

(

r
∑

i=1

c
∑

j=1

[x(i, j)]2

r
∑

i=1

c
∑

j=1

[x̂(i, j)− x(i, j))]2

)

, (5.21)

RMSE =

√

√

√

√

1

rc

r
∑

i=1

c
∑

j=1

[x̂(i, j)− x(i, j)]2 , (5.22)

where r corresponds to one of the signal dimension length and c to the other dimension

length. In the case of 1 dimensional signal analysis we only need to consider the

dimension r in Equations 5.21 and 5.22.

5.7.2 Object tracking simulation

In this section we simulate a moving object example. Data is generated with

additive Gaussian noise, and the system is modeled with approximate parameters.

The objective is to estimate the true states.

Data Generation:

In the simulation, the true states are generated by Equation 5.23 . The measurements,

y(tn), are generated from Equation 5.24 with sampling time tn = 0.04 × π × n, and

contaminated with additive Gaussian noise vn ∼ N (0, σ2 = 0.25). A total of 200

data points (n = 1, 2, · · · , 200) are considered in the analysis [62].

x(t) = [−cos(t)− sin(t)]T , (5.23)

y(tn) = x(tn) + vn . (5.24)

Modelling:

We model the two components of the state in Equation 5.23 as the first and

second integrals of white noise. Therefore, the dynamic and measurement equations

of the system can be specified by Equations 5.2 and 5.3 with,

F =

[

1 0
T 1

]

G =

[

1 0
0 1

]

Q =

[

T T 2/2
T 2/2 T 3/2

]
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H =
[

0 1
]

R = σ2 ,

where the sample time is T = 0.04× π and σ2 = 0.25.

Simulations:

Figure 5.6 compares the classical RTS smoother to the three FIR smoothers

developed in this paper. It is observed that FIR smoothers estimate the true states

with more accuracy than RTS smoother. As ML-FIR structure is more robust to

noise statistics and modeling parameters, we expect to have better smoothing

performance. The robustness can be observed particularly in the regions with more

dynamics (signal bends in Figure 5.6).

Figure 5.6: Smoothing performance of FIR smoothers to a moving target with
approximate modeling parameters. IRR-RTS: RTS Fixed-interval smoother. FIR-
MLS1 (Algorithm 1): Fixed-lag smoother within the same finite horizon [N=25 q=10];
FIR-MLS2 (Algorithm 2): Fixed-lag smoother from different finite horizons [N=25];
FIR-MLS3 (Algorithm 3): Fixed-interval smoother [N=25]
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Table 5.1 illustrates the SNR and RMSE performance of each filter. The IIR-

KF and ML-FIR were also included in the table to compare their performance to

FIR smoothers. Essentially, we can observe that FIR filters provide a more accurate

estimation than traditional IIR filters when the system has approximate modeling

parameters.

Table 5.1: Filters Performance and Experimental Validation

Filter Structure SNR(dB) RMSE

IRR-KF 12.35 0.1726

IRR-RTS 16.18 0.1111

FIR-ML 13.30 0.1572

FIR-MLS1 Fixed-lag smoother(within horizon) 16.59 0.0960

FIR-MLS2 Fixed-lag smoother(different horizons) 17.59 0.0960

FIR-MLS3 Fixed-interval smoother 17.13 0.1000

Figure 5.7 illustrates the RMSE as a function of the finite estimation horizon length

N. We can see that the RMSE decreases when we increase the finite horizon length.

The reason is that ML-FIR achieves better estimates when more measurements are

included in the horizon. As a reference, the RMSE for the IIR filters are included in

the same figure.
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Figure 5.7: Effect of finite estimation horizon length (N). IRR-KF: Kalman
Filter. IRR-RTS: RTS Fixed-interval smoother. FIR-MLS1 (Algorithm 1): Fixed-
lag smoother within the same finite horizon, FIR-MLS2 (Algorithm 2): Fixed-lag
smoother from different finite horizons, FIR-MLS3 (Algorithm 3): Fixed-interval
smoother

5.7.3 Image Processing

In this section, we compare IIR and FIR smoothers performance on an image

restoration problem. A benchmark image is selected and contaminated with noise.

Then, it is restored through FIR smoothers developed in this paper, and the results

compared with traditional IIR smoothers

Image benchmark:

The benchmark image ’Coins’ is selected. Figure 5.8 displays the original image

on the left, and the contaminated image with Gaussian noise (σ2 = 1) on the right.

106



Figure 5.8: Benchmark image: ’Coins’. (a) Original image, (b) Image contaminated
with Gaussian noise, σ2=1.

Image Modeling:

A two-dimensional image is often represented as matrix M = xi,j with ri rows and

ci columns. The filtering procedure is then applied twice, first to each column and

then to each row, or vice versa [63].

A 1-pixel model is considered for the restoration. Thus, dynamic and

measurement equation of the image model can be specified by Equations 5.2 and 5.3

with

F =
[

1
]

G =
[

1
]

Q =
[

σ2
Q

]

H =
[

1
]

R =
[

σ2
R

]

Image Restoration:

Two different scenarios were simulated in order to illustrate the robustness of FIR

against IIR. In each scenario, we consider different values of Q and R (Scenario

1: Q=0.1 and R=1. Scenario 2: Q=0.01 and R=10). A finite horizon of N=20

is considered in all FIR smoothers; and for Algorithm 1 (fixed-lag smoother within

the same finite horizon) a lag of q=10 is used. Figure 5.9 and 5.10 illustrates both

scenarios with different noise model parameters.

When noise models parameters (Q and R) are known, both structures (IIR and
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FIR smoothers) give a similar estimation (Scenario 1 in Figure 5.9). However, whenQ

and R are incorrect, FIR estimations are more robust than IIR estimations (Scenario

2 in Figure 5.10). In Figure 5.10, we can observe that IIR restoration is blur which

makes it very hard to find the coins in the image. However, using the FIR restoration

the coins can be distinguished clearly.
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Figure 5.9: Scenario 1: IIR and FIR restoration considering Q = 0.1 and R =
1. (a) Kalman Filter, (b) RTS Smoother, (c) Maximum Likelihood FIR, (d) FIR-
MLS1 (Algorithm 1): Fixed-lag smoother within the same finite horizon, (e) FIR-
MLS2 (Algorithm 2): Fixed-lag smoother from different finite horizons, (d) FIR-
MLS3 (Algorithm 3): Fixed-interval smoother.
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Figure 5.10: Scenario 2: IIR and FIR restoration considering Q = 0.01 and R = 10.
(a) Kalman Filter, (b) RTS Smoother, (c) Maximum Likelihood FIR, (d) Algorithm 1:
FIR Maximum likelihood (within finite horizon), (e) FIR-MLS2 (Algorithm 2): Fixed-
lag smoother from different finite horizons, (d) FIR-MLS3 (Algorithm 3): Fixed-
interval smoother.
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Table 5.2 compares the RMSE for both Scenarios and confirms numerically what

was observed in Figures 5.9 and 5.10. In Scenario 1, the RMSE in all the methods is

around the same value, being a little bit smaller for FIR filters. However, in Scenario

2 the RMSE is considerably smaller in all FIR estimations.

Table 5.2: Filters Performance and Experimental Validation

Filter Structure Scenario 1 Scenario 2

(RMSE) (RMSE)

IRR-KF 0.0624 0.1837

IRR-RTS 0.0572 0.1743

FIR-ML 0.0624 0.1189

FIR-MLS1 Fixed-lag smoother 0.0561 0.0724

FIR-MLS2 Fixed-lag smoother 0.0569 0.0970

FIR-MLS3 Fixed-interval smoother 0.0571 0.1094

Figure 5.11 compares the IIR and FIR estimation of the same row data-set for

different Q and R values. We can appreciate how Q and R values affect gradually

the IIR estimation. However, the FIR smoother always provides a similar estimation

no matter which Q and R values are considered.
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Figure 5.12: RMSE as a function of ρQ and ρR. IRR-KF: Kalman Filter; IRR-RTS:
RTS Smoother; ML-FIR Filter [N=20]; FIR-MLS3 (Algorithm 3): Fixed-interval
smoother [N=20].

5.7.4 Interface level detection based on FIR-image
restoration and edge detection

One of the biggest challenges during image restoration is to remove the noise on the

image while preserving the features of interest. As it was described in Section 5.7.3,

one of the advantages of FIR smoothing is that it can capture faster and with more

accuracy the local dynamic changes in data as they only consider the closest

measurement to the estimation point. Thus, FIR smothers preserve the

edge-features of interest (level interface and remove) and remove the noisy pixels on

the homogeneous regions(middlings and froth). Finally, the vertical edge detector

can easily enhance the edge region of the real level.

The fixed-lag FIR smoother (FIR-MLS1) described in Section 5.6.2 is designed and

implemented on the sight glasses regions before using the vertical edge detector on

the images. The image restoration procedure is similar to the one described
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previously in Section 5.7.3. Figure 5.13 compares the level interface feature

detection with and without considering FIR smoothing. It shows that FIR

smoothing helps to remove the noise level on the homogeneous region (froth and

middlings) while keeping the information on the interface change region.

Figure 5.13: Top: Interface level detection on the raw image. Bottom: Interface
level detection with FIR smoothing

In addition, FIR smoothing is robust to uncertainties to modeling parameters

and noise statistics. Thus, Q and R are not necessary to be known to obtain a

smoothing estimation of the image. Therefore, two different scenarios were

simulated to illustrate the robustness of FIR against IIR. In each scenario, we

consider different values of Q and R (Scenario 1: Q=0.01 and R=0.1. Scenario 2:

114



Q=0.01 and R=10). A finite horizon of N=10 is considered in the FIR smoothing

algorithm. Figures 5.14 and 5.15 illustrates the edge level detection considering FIR

smoother and RTS smoother with the two different noise model scenarios.

When noise models parameters (Q and R) are known, both structures (IIR-RTS

and FIR smoothers) give a similar estimation (Scenario 1). However, when Q and

R are incorrect, FIR estimations are more robust than IIR estimations (Scenario 2).

In Figure 5.15, we can observe that IIR restoration blurs the image and makes very

hard to find the level location. However, using the FIR restoration, the level can be

distinguished clearly. The FIR smoother always provides a similar estimation no

matter which Q and R values are considered.
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Figure 5.14: Scenario 1: IIR and FIR edge detection with accurate noise parameters
(Q=0.01 R=0.1). Top: Level interface detection with RTS smoothing. Bottom: Level
interface detection with FIR smoothing.
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Figure 5.15: Scenario 2: IIR and FIR edge detection with incorrect parameters
(Q=0.01 R=10). Top: Level interface detection with RTS smoothing. Bottom: Level
interface detection with FIR smoothing.

5.7.5 FIR level tracking over time-based sliding windows

In computer vision, object detection is scanning and searching for an object in an

image or a video. It consist of knowing the location of an object (possible with some

attribute information). While tracking is the estimation of the state of a moving

object based on remote measurements. It is maintaining the state and identity of an

object over time despite detection errors(false negatives, false alarms), occlusions,

and the presence of other objects [64].

The static and dynamic image processing step described in Section 4.2 works as
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an object detection algorithm (low-level image processing) that scans and finds the

level location in the frames. While the time-based sliding window analysis in

Section 4.2.4 works as an object tracking algorithm (high-level image processing)

that estimates the level location based on the most recent measurements. The static

and dynamic image processing algorithm provides the detected level measurements

at every Ts seconds, but we know that these measurements could be imprecise by

different factors, such as Gaussian noise, the level behind sight glasses, the level

behind a stain, camera vibrations, occlusions by people or object in the

environment. Therefore, we proposed to employ an FIR level tracking algorithm

over the time-based sliding window to track the real level location given the noisy or

uncertain level detections.

We know from the process behavior that the interface level has coherence in time.

Thus, it can be model as an state-space tracking problem with constant velocity and

random acceleration. In this sense, by implementing an FIR tracking model, we can

estimate the level location given the noisy detection, or predict the level location

when the measurements are missing or not available.

Assuming a fixed sampling interval Ts, we can derive a second order state-space

level tracking model with constant velocity and random acceleration as:

xt = Ftxt−1 +wt , (5.25)

yt = Htxt + vt , (5.26)
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with:

xt =

[

x
ẋ

]

(5.27)

F =

[

1 Ts
0 1

]

(5.28)

Q = σ2
w ∗

[

T 4/4 T 3/2
T 3/2 T 2

]

(5.29)

H =
[

1 0
]

(5.30)

R = σ2
v (5.31)

where x is the level location, and ẋ is the level velocity given by the derivative of

the position (x) respect to time (Ts). F is the second order model of the level with

constant velocity, Q is the model noise covariance matrix, H is the measurement

model, and R is the measurement noise covariance.

Figure 5.16 illustrates the level tracking comparison between the IIR-KF and the

FIR-ML with modeling errors. We assumed a 25% modeling error in F parameters,

and we observe that IIR-KF deviates from the real level when there are errors in the

modeling parameters, while FIR-ML level estimation is more accurate and converges

faster to the actual location of the level.
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Figure 5.16: Level tracking comparison between the IIR-KF and the FIR-ML with
modeling errors.

Figure 5.17 illustrates the level tracking comparison between the IIR-KF and the

FIR-ML with presence of outlier measurements in the data. As FIR structure uses

the most recent measurements it adapts faster to the real level trend than the KF.
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have more advantages for on-line applications where a smoothed estimate with a

given lag q is required. FIR-MLS3 is a fixed-interval smoother which is more

convenient for off-line applications where the interval of measurements is fixed.

Finally, two different types of applications, an image restoration and object tracking

problems, are considered to compare the IIR and FIR filters performance. In both

applications, it is shown that the FIR estimations are more robust against

uncertainties in model parameters and noise statistics. When system model

parameters are known, both structures IIR and FIR, achieve similar results.

However, when there are errors in the model or noise parameters, FIR filters

accomplish much more accurate estimations than traditional IIR filters. The

computer vision algorithm described in Chapter 4 can be improved by implementing

the FIR smoothing in the static image processing step, and the FIR tracking in the

time-based sliding window analysis.
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Chapter 6

Conclusions

6.1 Summary of Thesis Research

This thesis addressed the problem of froth-middlings interface level detection and

estimation in Primary Separation Vessels utilizing image processing and analysis

techniques. In addition to applying existing image processing techniques, we

investigated and developed new approaches to improve the accuracy of the interface

level detection. An experimental lab setup and video camera data from industrial

PSV were employed to conduct the research and algorithms testings.

We introduced the field of image processing and analysis in Chapter 2. We

particularly focused on the computer vision science, which attempts to provide

machines and computers a comparable ability to the one that humans have in their

eyes. The tasks of computer vision consist of methods to acquire, process, analyze

and understand single or sequence of digital images. It automatically extracts

high-dimensional data from the real world to produce information and helps in the

decision-making process. Moreover, we provided the mathematical background to

extract information from images by performing low-level operations. We described

different feature extraction and segmentation methods, which are typical kickoff

tasks to enhance the features of interest in the image (forth-middlings interface

level).

In Chapter 3, we addressed the problem of detecting the froth-middlings interface

level through a vertical edge detector mask on a single digital image. However,
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images are always corrupted by noise, and thus, it requires a good image restoration

pre-processing step to increase the efficiency of the vertical edge detector. The aim

of image restoration is to remove the noise from an image without destroying objects

features(forth-middlings interface). We proposed a model-based image restoration

process which is more robust than regular restorations methods. Bayesian Networks

and Markov Random Field are utilized as prior graphical models.

In Chapter 4, we developed a computer vision system to process the online video

stream of a camera mounted to the PSV sight glasses. The video processing

algorithm is based on edge and motion detection performed on a sequence of digital

video frames. In addition, it is designed with a reliability image analysis operation

to handle the abnormal environmental conditions that affect the sight glass visuals.

The computer vision system detects and communicates the estimated

froth-middlings interface level to the distributed control system (DCS), facilitating

the implementation of closed-loop control in PSV. The results under the industrial

environment were presented, and they showed that the algorithm is more accurate

and reliable when compared to the other instruments already installed in the vessel.

We investigated the implementation of finite impulse response (FIR) structures

in image restoration and object tracking problems in Chapter 5. We addressed the

problem of smoother design for state-space models based on a finite number of

measurements collected in a finite horizon. Three finite impulse response (FIR)

smoothing algorithms were developed using the maximum likelihood FIR estimation

in a forward-backward structure along with combination. Besides, we provided

equivalent iterative Kalman-like structures of these algorithms for practical

implementation. Finally, we applied the FIR algorithms to the level detection

problem in PSV, and the level tracking in the time-based sliding window. The

results show that the FIR algorithms have better robustness against modeling and

noise uncertainties than traditional filtering and smoothing approaches.
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6.2 Directions for Future Work

In this thesis, we have proposed new approaches for froth-middlings interface level

detection in PSV. The motivation was to developed an accurate and reliable method

based on image processing techniques, and with a low computational load. To further

investigate image processing and analysis method in the froth-middlings interface level

problem, some directions for future work could be summarized as follows:

1. Perform automatic image detection of sight glasses: In the current computer

vision solutions, the sight glasses regions or Region of Interest(ROI) have to

be selected manually. The user has to select or crop the ROIs during the

initialization step, and then the algorithm performs the level detection

calculation inside the ROIs. Thus, a research direction is to investigate image

processing techniques, such as template matching, to locate the sight glasses

automatically in the frames. By having an automatic sight glasses region

detection, the vision system would be able to process the image frames

without any initialization step automatically. In addition, if the camera

accidentally moves, then the algorithm would be able to recalibrate to the new

location of the sight glasses automatically.

2. Other two properties that could be extracted using image analysis on the sigh

glasses visuals, which are the color of the froth layer, and the clarity of the

interface. The color of the froth layer is a very important indicator of bitumen

grade. High-grade froth tends to be a rich, almost black color. Low-quality froth

tends to be more brown, indicating a high clay content. Hence, an image based

algorithm can be used to estimate and correlate the quality of the bitumen froth

automatically. The clarity of the interface is the most important indicator of the

”health” of the gravity separation vessel. A well-performing vessel has a crisp,

clean interface, showing a sharp division between the froth and the middlings.

This indicates very good bitumen recovery and typically occurs when processing

oil sands with very little clay or fines. Conversely, a fuzzy interface indicates

poor separation efficiency and warnings of low bitumen recovery. Thus, an image
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based algorithm that measures the width of the interface can be developed to

diagnose the separation process performance in the PSV.

3. Track and predict the level outside the sigh glasses visuals. The current

computer vision system provides a level estimation in the regions where the

level is visible. However, when the level is occluded or outside the sight glasses

visuals, the algorithm described in Chapter 4 provides the most recent

accurate measurement. Hence, by investigating high-level Visual Object

Tracking (VOT) methods, it is feasible to track and predict the location of the

level when not visible. Also, information about other process variables, such

as PSV’s inlet flow rate, can be included to make the dynamic model more

accurate.

4. Make the computer vision method robust to camera vibrations. The current

algorithm described in Chapter 4 can estimate the level when there are low

vibrations on the camera. However, when the vibrations of the camera are high,

the algorithm gets confused and holds the last accurate level measurement.

Thus, the algorithm can be potentially improved by analyzing other image

processing techniques which are robust to the camera vibrations.

5. Improve the initialization of FIR algorithms described in Chapter 5. The

iterative maximum likelihood FIR filter must be initialized in a batch form for

each finite horizon. In this sense, we have to compute a batch calculation with

a few points at the beginning of the horizon to initialize the calculations,

implying that the accuracy of the initialization affects on the final filtering and

smoothing estimations. Hence, by substituting the batch initialization by

another more accurate initialization algorithm, the finals filtering estimation

would be improved.
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Appendix A

Appendix to Chapter 4

A.1 Video Processing Application Graphical User

Interface

The VPA is a standalone executable application that can be installed in any
machine. The Graphical User Interface (GUI) allows the user to configure, execute,
monitor and tune the video processing algorithm (Figure A1). On the left side, the
GUI has banners to establish the input video camera communication, the image
processing regions of interest, the tuning parameters values of the algorithm, the
level calibration values and the communication outputs tags to DCS. On the right
side, it has a video display to visualize the online video stream with the level
information overlay. In addition, the display can be switch to the static image
processing output or to the dynamic image processing output to visualize and tune
the video algorithm calculations.
The GUI provides a visualization trend to monitor the algorithm performance online
during the last hour. It is a figure with three charts, Figure A2. The first chart
displays the level estimation trend, the second chart displays the quality index of the
level estimation, and the third chart displays the reliability index of the estimation.
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A.2 Video processing application configuration

and tuning

The video processing algorithm has parameters that can be tuned to improve the
accuracy of the level estimation. These parameters depends on the process
behavior, the environmental conditions on the sight glasses room, and the image
quality provided by the acquisition device. The following sections describe the
parameters that can be tuned in the video processing algorithm.

A.2.1 Initial Configurations

Before starting the VPA online, there are initial settings and configuration that has
to be specified:

1. Sight glasses or regions of interest (ROI) in the frames.

2. Reliability reference region in the frames.

3. Web path for video output display in control room.

4. OPC settings to communicate the level output to the DCS.

Essentially, configurations 1 and 2 are related to the video-processing algorithm, while
configurations 3 and 4 are related to the communication of the outputs. Figure 4.3
shows an example of an image preview with configurations 1 and 2 already established
on the PSV sight glasses. The green rectangles correspond to the sight glasses region
where the algorithm executes the calculations to detect the level. The red rectangle
corresponds to the region where the algorithm executes the calculation to alert any
abnormal condition in the environment that affects the level estimation.

A.2.2 Sight Glasses or ROI

The target of the algorithm is the visuals through the sight glasses (SG). The user
has to define the regions where the algorithm looks for the interface level. The user
must manually select 3 regions (each corresponding to the each of the sight glasses).
This operation creates a mask that limits the algorithm calculations to within the
ROI mask. For example, if the vessel has 3 sight glasses, the user should select 3
rectangles (one for each SG). The green rectangles in Figure 4.3 represent the sight
glasses ROI selected by the user in this case. In section 4.2.2 we describe with more
detail the image processing calculations performed inside the sight glasses ROI.
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A.2.3 Reliability reference region (RRR)

The selection of a reliability reference region adds robustness to the video processing
algorithm, especially during scenarios, such as people/objects crossing in front of
the camera, unintentional camera motions or vibrations, lighting changes, and
conditions that affect quality of video acquisition (mist, condensations, ice). The
algorithm will hold the last reliably detected level if the image acquisition
conditions have been changed, or eventually alarm the user if the conditions have
been changed drastically that prevents the accurate tracking of the level. The user
has to define the regions where the algorithm performs the reliability image
analysis. This operation creates a binary matrix, BMR, that limits the analysis to
within the reliability region. The red rectangle in Figure 4.3 represent the reliability
region selected in this case.
The user can reset the reliability reference region in the VPA at any time. In this
case, the algorithm will consider the image at that particular instant as the
reliability reference region XR(tref ) = XR(ti). It is important to select a good
quality image (with no environmental obstructions) as the reliability reference
region.

A.2.4 Web path for video output display

The user should specify a web folder in which the VPA stores the information of the
live stream with the detected level as shown in Figure 17. The images from this web
folder are used by an Internet Information Services (IIS) to stream the images
online in a web browser. Therefore, any machine that has access to the network can
use the web browser to monitor the video processing application results in real time.
The main purpose of this web server is to have a visual monitoring of the level
detection in the DCS station located in the operation control room.
An IIS is an extensible web server created by Microsoft for use with the Windows
NT (New Technology) family. ISS supports HTTP, HTTP/2, HTTPS, FTP, FTPS,
SMTP and NNTP communication protocols. An HTTP script uploads the images,
saved by the VPA in the web folder, to the web browser. Then, the IIS extends the
web visualization to any machine in the same network.

A.2.5 Open Protocol Communication (OPC) Settings

The VPA has the function to create an OPC client and send/receive data to the
DCS server. The OPC operations are integrated into the video application
algorithm.
OPC connection:
The VPA creates an OPC data access (OPCDA) client and connects that client to
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the DCS server. First, an OPC data access object must be created for the host
specified by the server IP address and ID (the host could be a local server or a
remote server). Then, it connects the client to the DCS server.
DCS modules:
The user must specify the address of the DCS landing modules where the
parameters will be written in the DCS. A total of 8 parameters are written by the
VPA in the DCS. These parameters are the estimated level , watchdog , quality
status, reliability status, quality index, reliability index, quality threshold and
reliability threshold. The writing operations are performed inside the VPA once the
parameters are calculated.
The watchdog is a parameter that monitors the VPA operation and the camera
communication. Essentially, it is a random number that changes in every
calculation loop of the algorithm. Therefore, if the application fails the watchdog
value will keep frozen in a particular number alerting the user that the VPA is not
working. In addition, the watchdog value turns into 0 when the communication to
the camera is lost.

A.2.6 Number of frames for static-dynamic image processing

The algorithm needs a sequence of consecutive frames to analyze the dynamics of
the images over a period of time. These number of frames that the video application
accumulates into the image-sliding window can tuned. In this VPA example, the
trigger is set to automatically accumulate 5 frames in the image sliding window.
But, by increasing the number of frames, we can increase the robustness of the
motion detection operation.

A.2.7 Sample time for dynamic image processing

The frame period acquisition of the algorithm is set to 1 frame per second, and the
level estimation is calculated every 1 second. However, the user can specify the
image sampling rate Ts for the dynamic image calculation. This number determines
the interval between frame differences calculations. For example, if the user sets
Ts = 1, it implies that the application performs the frame differences calculation
between two consecutive frames, Xs(ti) and Xs(ti−1), with an interval of 5 seconds.
Increasing Ts increases the algorithms stability and robustness since there are higher
chances to observer image changes (motion) in consecutive frames over time.
Conversely, a very small Ts increases the influence of noise, which potentially leads
to reduced accuracy in the level detection.
Ts has to be tuned based on the properties of the camera ( fps, resolution) and the
time constant of the process (slow/fast). PSV interface level does not change
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rapidly, so the recommendation based on the process behavior is to use a dynamic
frame period time no less than Ts = 5.

A.2.8 Vertical edge filter

The user can tune the vertical sharpening filtering size by changing two parameters,
v and h, which are vertical and horizontal filter size, respectively. For instance, by
increasing vertical size, v, increases the number of rows to the filter mask, which will
consider more vertical neighbor pixels in the calculation. Increasing the horizontal
size, h, means that more horizontal neighbors pixels are considered in the filtering
calculation. In summary, by increasing the vertical size the filter will look for more
contrast changes between upper and lower region on the vertical axis, while in
increasing the horizontal size the filter will look for more similar pixel characteristic
over the horizontal axis.

A.2.9 Sliding window length

The user can specify the length of the time-based sliding window,W , which gives
stronger or weaker filtering effect to the level measurement in time. A larger time
sliding window increases the outliers/smoothing effect, while a shorter time sliding
windows decrease outliers/smoothing effect.

A.2.10 Quality index threshold

The quality index threshold Qth is a threshold beyond which the changes are
attributed to the real level motion in the frames(dynamic image processing). If Qth

is very small, the algorithm will be sensitive to any type of motion and also to noise,
while with a large Qth, the algorithm will be sensitive to only the significant changes
in the images. However, if no motion is detected because of the current detection
being below the threshold, the algorithm will keep the level at the closest edge
(static image processing). Therefore, the quality index threshold Qth can be
considered as the threshold between dynamic and static image processing
algorithms. Above Qth, the algorithm estimates the level based on both static and
dynamic image processing, while below Qth the algorithm estimates the level based
on the static image processing. The VPAs trends in Figure A2 displays the Qidx and
Qth for monitoring and tuning purposes. The task is to set a threshold number in
order to allow the algorithm to detect real level motion.
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A.2.11 Reliability index threshold

The reliability index threshold Rth is a threshold beyond which the changes in the
environment will be considered as abnormal for the image-processing algorithm.
The user can change and tune Rth based on the environmental condition in the
room where the video camera is installed. If Rth is very large, the algorithm will be
sensitive to any type of environmental changes, while with a small Rth, the
algorithm will be sensitive to only the significant changes in the environment. The
VPAs trends in Figure 19 displays the Ridx and Rth for monitoring and tuning
purposes.
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Appendix B

Appendix to Chapter 5

B.1 Interative ML-FIR estimation

Given the system models (5.2) and (5.3) with zero mean and white Gaussian noises
wn ∼ N (0,Qn) and vn ∼ N (0,Rn), the iterative ML-FIR estimate x̂ML

n|N and

covariance PML
n|N based on a finite horizon of measurements ym:n are

x̂i = Fix̂i−1 + (Ki + K̃i)(yi −HiFix̂i−1) ,

Pi|N = (I− (Ki + K̃i)Hi)(FiPi−1|NF
T
i +GiQiG

T
i )(· · · )

T

+ (Ki + K̃i)Ri(· · · )
T ,

with

Pi = Fi(I−Ki−1Hi−1)Pi−1F
T
i +GiQiG

T
i ,

Ki = PiH
T
i (HiPiH

T
i +Ri)

−1 ,

P̄i = Fi(I−Ki−1Hi−1)P̄i−1 ,

K̄i = P̄iH
T
i (HiPiH

T
i +Ri)

−1 ,

Zi = (Z−1
i−1 + K̄iHiP̄i)

−1 ,

K̃i = (I−KiHi)P̄iZiK̄i ,

where i ranges from ε = max(m + K,m + 2) to n, and the true outputs x̂ML
n|N = x̂i
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and PML
n|N = Pi|N are taken when i = n with initial states computed at α = ε− 1 as:

Pα = Ḡα,mQα,mḠ
T
α,m − FαD

T
α−1F

T
α ,

Zα = (HT
α,m∆

−1
α,mHα,m)

−1 ,

P̄α = Fm
α − FαDα−1∆

−1
α−1,mHα−1,m ,

KML
α,m = (Fm

α ZαH
T
α,m +Dα −Dα∆

−1
α,mHα,mZαH

T
α,m)∆

−1
α,m ,

x̂α = KML
α,mYα,m ,

Pα|N = (KML
α,mLα,m − Ḡα,m)Qα,m(· · · )

T

+KML
α,mRα,mK

ML
α,m

T
.

B.2 Algorithm 1 (FIR-MLS1): Fixed-lag FIR

smoothing within the finite horizon

Detail description of Algorithm 1 from Table 3 in Section 5.6.2. Perform the
following steps:

1. Forward ML FIR estimation:

1.1. Initialize the forward FIR estimation in a batch form from m to α:

Pα = Ḡα,mQα,mḠ
T
α,m − FαD

T
α−1F

T
α ,

Zα = (HT
α,m∆

−1
α,mHα,m)

−1 ,

P̄α = Fm
α − FαDα−1∆

−1
α−1,mHα−1,m ,

KML
α,m = (Fm

α ZαH
T
α,m +Dα −Dα∆

−1
α,mHα,mZαH

T
α,m)∆

−1
α,m ,

x̂α = KML
α,mYα,m ,

Pα|N = (KML
α,mLα,m − Ḡα,m)Qα,m(· · · )

T

+KML
α,mRα,mK

ML
α,m

T
.

1.2. For i = α, · · · , n perform the forward iterative ML-FIR estimation, and keep the
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prior and posterior estimates.

Pf,i = Fi(I−Kf,i−1Hi−1)Pf,i−1F
T
i +GiQiG

T
i ,

Kf,i = Pf,iH
T
i (HiPf,iH

T
i +Ri)

−1 ,

P̄f,i = Fi(I−Kf,i−1Hi−1)P̄f,i−1 ,

K̄f,i = P̄f,iH
T
i (HiPf,iH

T
i +Ri)

−1 ,

Zf,i = (Z−1
f,i−1 + K̄f,iHiP̄f,i)

−1 ,

K̃f,i = (I−Kf,iHi)P̄f,iZf,iK̄f,i ,

x̂−
f,i = Fix̂

+
f,i−1 ,

P−
f,i = FiP

+
f,i−1F

T
i GiQiG

T
i ,

x̂+
f,i = x̂−

f,i + (Kf,i + K̃f,i)(yi −Hix̂
−
f,i) ,

P+
f,i = (I− (Kf,i + K̃f,i)Hi)(P

−
f,i)(· · · )

T

+ (Kf,i + K̃f,i)Ri(· · · )
T .

2. Backward ML FIR estimation:

2.1. Initialize the backward ML FIR estimation x̂b,n using the forward ML FIR
estimation x̂f,n at the last point of the finite horizon:

x̂+
b,n = x̂−

f,n ,

P+
b,n = P+

f,n .

2.2. For i = n − 1, · · · ,m perform the backward iterative ML FIR estimation, and
keep the prior and posterior estimates. Remember that for backward estimations we
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need to consider the inverse model parameters F−1
i :

Pb,i = F−1
i (I−Kb,i+1Hi+1)Pb,i+1F

−T
i +GiQiG

T
i ,

Kb,i = Pb,iH
T
i (HiPb,iH

T
i +Ri)

−1 ,

P̄b,i = F−1
i (I−Kb,i+1Hi+1)P̄b,i+1 ,

K̄b,i = P̄b,iH
T
i (HiPb,iH

T
i +Ri)

−1 ,

Zb,i = (Z−1
b,i+1 + K̄b,iHiP̄b,i)

−1 ,

K̃b,i = (I−Kb,iHi)P̄b,iZb,iK̄b,i ,

x̂−
b,i = F−1

i x̂+
b,i+1 ,

P−
b,i = F−1

i P+
b,i+1F

−T
i GiQiG

T
i ,

x̂+
b,i = x̂−

b,i + (Kb,i + K̃b,i)(yi −Hix̂
−
b,i) ,

P+
b,i = (I− (Kb,i + K̃b,i)Hi)(P

−
b,i)(· · · )

T

+ (Kb,i + K̃b,i)Ri(· · · )
T .

3. Obtain ML FIR smoother estimates:

3.1. For i = n − 1, · · · ,m combine forward and backward ML FIR estimations to
obtain ML FIR smoother estimates x̂s,i. This calculation can be done synchronously
with backward ML-FIR estimation.

Ks,i = P−
b,i(P

+
f,i +P−

b,i)
−1 ,

x̂s,i = Ks,ix̂
+
f,i + (I−Ks,i)x̂

−
b,i ,

Ps,i = ((P+
f,i)

−1 + (P−
b,i)

−1)−1 .

B.3 Algorithm 2 (FIR-MLS2): Fixed-lag FIR

smoother from different finite horizons

Detail description of Algorithm 2 from Table 4 in section 5.6.4. Perform the
following steps:

1. Forward FIR estimation:

For i = m, · · · , n use forward ML-FIR estimation from Algorithm 1 to obtain prior
and posterior estimates at the end of the finite horizon x̂n, and keep them:

x̂−
f,n,P

−
f,n ,

x̂+
f,n,P

+
f,n .
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2. Backward FIR estimation:

For i = n, · · · ,m use the backward ML-FIR estimation from Algorithm 1 to obtain
prior and posterior estimates at the beginning of the finite horizon x̂m, and keep
them:

x̂−
b,m,P

−
b,m ,

x̂+
b,m,P

+
b,m .

3. Forward-backward FIR combination:

For i = n, · · · , N − m combine forward, x̂n, and backward, x̂m, ML-FIR estimates
from different finite horizons. Forward and backward estimates must coincide for the
same point of interest:

Ks,i = P−
b,i(P

+
f,i +P−

b,i)
−1 ,

x̂s,i = Ks,ix̂
+
f,i + (I−Ks,i)x̂

−
b,i ,

Ps,i = ((P+
f,i)

−1 + (P−
b,i)

−1)−1 .

B.4 Algorithm 3 (FIR-MLS3): Fixed-interval FIR

smoother

Detail description of Algorithm 3 from Table 5 in section ??. Perform the following
steps:

1. Forward FIR estimation:

For i = 1, · · · , N execute the forward ML-FIR from Algorithm 1 to obtain estimates
x̂i|ym:n

for each point in the fixed interval. Keep the prior and posterior estimates at
the end of each finite horizon estimation:

x̂−
f,i,P

−
f,i ,

x̂+
f,i,P

+
f,i .

2. Backward FIR smoother estimation:

2.1. Initialize the smoother as follow:

x̂N = x̂+
f,N ,

PN = P+
f,N .
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2.2. For i = N,N − 1, · · · , 1 executes the smoother estimation:

Ki = P+
i F

T
i (P

−
i+1)

−1 ,

x̂i = x̂+
f,i +Ki(x̂i+1 − x̂−

f,i+1) ,

Pi = P+
f,i −Ki(P

−
f,i+1 −Pi+1)K

T
i .
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