INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

TAMEX: A TASK-STRUCTURE BASED MEDIATION ARCHITECTURE
FOR INTEGRATION OF WEB APPLICATIONS USING XML

by

Qihua Gina Situ ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2001

| Lg |

Nationai Lib
of Canada il

Acquisitions and
Bibliographic Services
385 Wellington Street

Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your file Votre réfdrence

Our Se Notre référence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-60498-5

University of Alberta

Library Release Form

Name of Author: Qihua Gina Situ

Title of Thesis: TaMeX: A Task-structure Based Mediation Architecture for In-
tegration of Web Applications Using XML '

Degree: Master of Science

Year this Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Qihua G fha Situ
Department of Computing Science
Computing Science Centre

University of Alberta Edmonton, Alberta
mod Canada, T6G 2E8

Date: Zzg I?%L 28 J

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled TaMeX: A Task-
structure Based Mediation Architecture for Integration of Web Appli-
cations Using XML submitted by Qihua Gina Situ in partial fulfillment of the
requirements for the degree of Master of Science.

Dr. Eleni Stroulia

Zi1 56

S
D

Date: Feb. (328 2e0/

To my loving parents and sister

Abstract

Nowadays, there exists an enormous number of Web-based applications that offer
information and services in support of a variety of activities. These services can
be competitive or complementary. Nevertheless, as they do not interoperate, it is
up to the user to access them individually, interpret their responses to his requests,
and compare or combine these services. In this thesis, in the content of the TaMeX
project, we develop a task-structure based mediation architecture for integration
of Web applications offering information and services in a specific domain. At the
center of an integrated TaMeX application is a mediator, whose behaviors are driven
by its task structure. Its responsibilities are to interact with the user and to effec-
tively integrate the available resource applications in order to accomplish the user’s
task. The integration of the resource applications is based on the availability of a
common domain model and a set of wrappers driving and extracting information
from their corresponding Web resources. The construction of a wrapper is based
on a hierarchical approach to generating grammars for information extraction from
HTML documents.

From a methodological point of view, in TaMeX, we explore the use of XML
and its related technologies. XML is used as a declarative modeling language for a
mediator’s domain ontology and task structure, and as an intermediate data struc-
ture for information exchange. XPath expressions are used for representing wrapper
extraction rules. In addition, XSL stylesheets are used for generating a mediator’s

user interface.

Acknowledgements

First, I would like to express my appreciation to my supervisor, Dr. Eleni Strou-
lia, for her insightful suggestions and invaluable comments guiding me towards the
completion of this project, for her constant encouragement and trust throughout
the course of this work, for her enthusiasm about her work inspiring me to become a
serious researcher, and for her being my mentor and friend teaching me the lessons
of more than just science.

I thank Roland Penner for his continuous patience and assistance. His experi-
ence, intelligence and love of his work gave me tremendous help in the implementa-
tion of the working system.

I thank Judi Thomson, Paul Iglinski, Yangjun Chen, Yigiao Wang, Babita Rana
and the rest members in the Software Engineering Research group for their assis-
tance, suggestions and comments.

I also thank Huaxin Vivian Wei, Yanxia Jia, Shu Lin, and Wenbin Alan Ma for
their friendship that made my life outside the lab joyful and memorable.

Finally, I thank my parents and my sister for their unconditional love and support
in their own different ways. I give my special thanks to my mom for her sacrifice
and understanding, and for giving me the opportunity and strength to become who
I am. Mom, you're the wind beneath my wings.

Contents

1 Introduction
1.1 Motivation o v o et e e e e e e e e e e e e e e e e e
1.2 Background
1.3 Problem Specification oo
14 AnExample. e
1.5 Anticipated Contributionso
1.6 ThesisQutline oo ittt it enenon.

2 Related Work
2.1 Wrapper Constructionot
21.1 WAF . . . e e e e
212 XWRAP . . . it e e
2.1.3 Kushmericketal..0...
214 SoftMealy
215 Stalker. v ittt
2.1.6 Chidlovskiietal. 0.
2.2 Integration Infrastructure
221 Ariadnet e e e e e e e e e e

223 XIB .. ittt e e e e e e e
2.3 Comparison with TaMeXc......

3 The TaMeX Development Environment
3.1 XML Specification of Domain Model Development
3.2 Development of a Task-structure Based Mediator
3.2.1 Task Structure Development
3.2.2 Mediator Development
3.3 Wrapper Constructiont
3.3.1 The Protocol Learning Process
3.3.2 The Grammar Learning Process

4 A Travel Assistant Prototype
41 TheMediator« i ittt e e e
42 The WIaPPeIS. . « - ¢ =t v v o ot e e m e s e oo e e e e s e e
4.3 The Run-time Behavior

5 Conclusions
5.1 Evaluation and Reflection
5.1.1 The Mediation Architecture
5.1.2 The Wrapper Construction Algorithm
52 PFuature Work v v v i e et e e e e e e e e e e e
53 Contributions« . . o o e e e e e e e e

Bibliography

A The Languages
A.l1 Domain Model Language
A2 TaskStructure DTD ot i i i it e e e e e s
A.3 Resource Protocol SpecificationDTD

List of Figures

1.1 The Interfaces of Various Travel Web Sites. 6
1.2 The Different Query Result Presentations 7
3.1 The Glossary Domain Model in XML Schema 22
32 TheDTD for Task Structureot 24
3.3 The Overall Wrapper Construction Process 27
3.4 A Domain-model Entity and its Instances in the HTML Responses

of Three Applications oononnn 31
3.5 The DTD for the XML Document in Figure 34(a) 32
3.6 The XML Document for the example shown in Figure 3.4(b) 32
3.7 The XML Document for the Example Shown in Figure 3.4(c) 33
3.8 The XML Document for the Example Shown in Figure 3.4(d) 33
3.9 The Algorithm for Learning Grammar for Encapsulated Concept . . 35
3.10 The HTML document of the fictitious glossary 36

3.11 An XML Document with Three Sample Instances of Glossary Entries 36
3.12 The XPath Expressions for the Locations of the Two Glossary Entries

intheRespomse oot v it ittt 37
3.13 The Generalized XPath Expressions for the Location of the Glossary

BOIieS . « o v v et et e e e e e e e e e e e e e e e 37
4.1 The Travel-planning Assistant 41
4.2 The Travel Domain Model in extended UML 42
4.3 The Task Structure of the Travel-assistant Mediator 43
44 The Generic Wrappert vo s 45
4.5 Snapshots of the Travel-assistant User Interface 47

4.6 'The Mediator’s DOMs at Different Stages 49

Chapter 1

Introduction

1.1 Motivation

As the size of the World Wide Web (WWW) rapidly increases, the scope of the ac-
tivities based on it expands. An enormous number of Web-based applications have
become available to the public. These applications offer information and services for
a variety of activities, such as stock-market trading, insurance purchasing, medical-
prescription ordering and travel planning. With the advent of electronic-commerce,
the need for interoperation of these applications arises for enabling both business-
to-business and customer-to-business types of electronic commerce activities. For
instance, suppose that a customer buying holiday gifts from an on-line store wishes
to have them shipped to their recipients. Furthermore, he wishes to use his personal
shipping service instead of the default service offered by the on-line store, because
he has a particular large-volume discount. The question that arises then is how
an aggregate application could be developed to combine these two currently sepa-
rate on-line applications, so that the customer could painlessly arrange the desired
combination of services. -
The interoperation of Web-based applications is a challenge, because there exists
neither an agreed upon representation and semaatics for the information that these
applications require and provide, nor a uniform access mechanism for the services
they offer. Even those that provide the same or complementary services employ
inconsistent terminology and incompatible interaction models. These problems are
due to the original metaphor underlying the design of the Web, i.e., document pub-
lishing. The present language of the Web (HTML) provides limited information on
the structure and presentation of the documents, but does not specify the seman-

tics of the information presented. Existing thin-client applications provide HTML

forms to their users’ browsers, sometimes enhanced with client-side scripts in dif-
ferent languages. Assuming that the user appropriately interprets the semantics of
the information required by the form and fills it out correctly, the server application
responds with another HTML document containing information that the user can
interpret as the answer to his original request. It is up to the user to combine the
information in the responses of multiple applications and to use it to formulate new
requests to yet other applications.

The object-oriented based integration frameworks, such as CORBA and DCOM,
provide protocols for repackaging existing applications as object libraries to sup-
port agreement of low-level representation and-behavior. However, they make no
agreement on the semantics of the information exchanged among the applications.
The TaMeX (Task-based Mediation through XML) project has been motivated
by the methodological assumption that the declarative representations for domain-
specific semantics, such as representations based on the eXtensible Markup Lan-
guage [18] (XML), is an approach fundamentally superior to the procedural inte-
gration advocated by the object-oriented integration frameworks. Moreover, it is
particularly well-suited to Web-based applications. Semantically rich communica-
tion protocols can be developed to provide a “semantic glue® among the existing
Web applications. Existing applications that do not “speak” these protocols can
be “wrapped” with intelligent adapters; the role of each adapter will be to use the
native interaction model of the application to “call” the appropriate application
methods, and to translate the results of these calls into messages conforming to
the communication protocol. In addition, specific types of intelligent intermediary
brokers can be developed to understand and execute value-added services, such as
price negotiation or comparison shopping.

This thesis investigates this XML-based declarative approach in the context of
developing an aggregate application by integrating a set of domain-specific Web

applications.

1.2 Background

The problem of integrating heterogeneous systems is not new. A variety of in-
tegration approaches have been proposed and developed for different instances of
the general problem based on different technologies. Irrespective, of the underlying
technology, an integration architecture should establish several types of agreement

2

among the underlying resources that it integrates.

Research in database federation has identified representation and semantic agree-
ment [38, 16] as necessary for semantic interoperability. Different applications may
model the same domain in different ways, depending on the types of entities they
choose to represent, their attributes, the relationships among them, and their seman-
tics.v The integration architecture should establish agreement among the divergent
resource ontologies. That is, it should eliminate or bridge the differences among the
application domain models assumed by the different database schema, as well as
their representations and their semantics.

However, from the end-user perspective, the-interaction model used by the user
is more important. This is especially true in the case of e-commerce aggregate appli-
cations that cater to all types of users, not necessarily computer savvies. Many Web-
based applications expose a cumbersome and counter-intuitive interaction model to
their users. For example, applications built as interfaces to legacy systems often
require navigation through several different documents and links to accomplish a
task. Even applications specifically designed for the Web often suffer from a static
interaction model and require a static set of inputs in a fixed order. To aggravate
the problem, the order in which information is provided by the user and required
by the different applications creates precedence relations, which the interoperation
mechanism has to accommodate. An integration architecture should support behav-
ioral agreement to provide a consistent model of interaction, i.e., communication and
information exchange, between the resources and their common users. Such a con-
sistent interaction model would be easy to learn, easy to remember, and easy to
transfer across applications.

Object-oriented integration frameworks, such as DCOM and CORBA, have been
proposed as mechanisms for creating interoperable applications. These frameworks
provide a protocol for specifying, advertising, requesting and delivering services.
The integration model for these frameworks proposes to repackage portions of (or
even whole) existing applications as object libraries. Their services are specified
using the framework IDL (Interface Definition Language) and then delivered to re-
questing clients by the Object Request Broker (ORB) of the framework. These
mechanisms support low-level representation and behavioral agreement, but they
make no provisions for specifying the semantics of the information exchanged. This
implies that for every type of interaction between two applications, if they make

different assumptions about the semantic content of the information they exchange,
error checks or “translation” procedures have to be involved in one or both of the
interacting applications. In addition, the repackaging of existing applications into
components of the framework can require intrusive, possibly error-prone, modifica-
tions to the original application code. Finally, .diﬁ'erent implementations of these
frameworks do not interoperate, and therefore an aggregate application developed
with one implementation would not be easy to integrate with another.

The emergence of the eXtensible Markup Language [18] (XML) suggests a new
solution to the problems of information integration. In recent years, much effort has
been directed towards the effective use of XML as an intermediate representation
for interoperating among heterogeneous resources. XML is a subset of SGML that
allows user-defined tags expressing .he semantics of the data content. The set of
tags annotating the entities in a particular domain, their attributes and their hierar-
chical relationships is described in a DTD (Document Type Definition) or an XML
Schema [42]. XML, in concert with the eXtensible Stylesheet Language (19] (XSL),
which enables the customization of the information presentation based on its an-
notation, promises to replace HTML as the language of the Web of future. XML
is fast becoming the de-facto standard for communicating on the Web. As more
resources provide XML-specified data, information extraction from these resources
will become easier. However, it seems unlikely that the existing body of material on
the Web will soon be revised to an XML representation, making the advantages of
user-defined semantic tagging unavailable to existing Web-based applications. This
is why a lot of effort is currently being devoted to the post-publication translation
of HTML documents into XML. Such translation processes enable the represen-
tation of information produced and consumed by different resources in a common
vocabulary. This is a necessary but not sufficient step towards enabling the col-
laboration between resources. In addition, an integration infrastructure has to be
developed for the coordinated communication of information between the user and

all the underlying resources.

1.3 Problem Specification

The objective of this thesis is to develop a mediation architecture for task-specific in-
teroperation among Web applications in the same domain. This architecture should

relieve the user from the responsibility of translating and integrating information

4

required and acquired when a complex request accesses multiple applications. To
that end, two questions must be addressed:

e How should the architecture enable the different applications share a common
semantics for the information they consume and produce, so that this infor-
mation can be unambiguously interpreted by all applications as well as human

users?

e How should the architecture control the process of information exchange
among the user and the applications, so that they can collaborate towards

accomplishing complex user tasks?

1.4 An Example

In this thesis, we use the example of a travel planning assistant to illustrate the
problems we are interested in and the solutions we provide. Today there are a
multitude of Web sites offering travel planning and reservation services. Knowl-
edgeable consumers with specific constraints and preferences must access several
different sites to identify available options. Suppose the user wanted to find the
lowest price of a round-trip air-ticket from Edmonton to London. He would have
to go to www.itn.net, www.travelocity.com, www.lowestfare.com, www.ezpedia.com,
and so on. He would have to submit his request several times, and then compare
the results from these different sites prior to making a decision. The integration of
existing travel-planning applications to support tasks such as comparative shopping
is a compelling instance of Web-based application integration.

However, the integration of these travel planning Web applications is not a sim-
ple task. Although these applications are in the same domain, their interaction
mechanisms and terminologies vary from one to another. For instance, as shown in
Figure 1.1, www.lowestfare.com requires the user to select a specific airport if there is
more than one airport close to his travel origin or destination, while vww. ezpedia.com
automatically uses all the nearby airports as the origin or destination to search the
desired flights; www.itn.net allows the user to specify the preferred travel time on an
hourly basis, www.ezpedia.com provides only ‘morning’, ‘noon’ and ‘evening’ as op-
tions, and www.travelocity.com does not provide any options; www.lowestfare.com

requires the departure and return dates in the format of ‘month/day/year’, and

Hellday & Spacials
Alrtare, Vacation Packages and Nere!
= Click Naral

Up To 70% Off Pares From 12 U.S.
Chtiest

e Advance Purchase Requked With
E-Tichets
« Click Nere?

Hetal Discounts up to 70% O
Sea Nenu Balow or Click Here

M

-'!
13
»

www.itn.net interface www.travelocity.com interface

Figure 1.1: The Interfaces of Various Travel Web Sites

= e
www.itn.net query result

Figure 1.2: The Different Query Result Presentations

www.ezpedia.com allows the user to select the dates by an online calendar. In addi-
tion, the resulting airticket information returned by these applications are presented
in different formats and schema. For example, as shown in Figure 1.2, www.itn.net
groups all the options of either leg of every ticket in a table, and allows the user to
build his own trip by selecting one option from either table; and www.ezpedia.com
displays every trip with information of both legs while hiding the details of each
flight in links.

These variations and inconsistencies make it difficult to perform a task such
as comparison shopping based on these different Web sites. Specific knowledge is
required by another application to access the service and to interpret the information
provided by each individual application. Therefore, additional software is needed
for the transformation of these Web sites, so that they can be accessed with the
same type of interaction method and can present the information with the same
style of organization.

Another problem involved with the integration of these travel Web sites is how
their services should be integrated and managed so that they work together to
provide extra functionalities and to accomplish complex goals, such as “finding a
cheap ticket to California in this summer”. To accomplish such tasks, extra Web
resources, such as an online airport database and a calendar, are needed to provide
the additional information. Furthermore, an integration infrastructure is needed to
support the collaboration among these different resources.

TaMeX aims to solve the above problems by providing a structured process and
a set of supporting tools to the user who needs to develop an aggregate system based

on a set of Web applications.

1.5 Anticipated Contributions

The central contribution of this thesis is the development of TaMeX, a mediation
architecture for task-specific interoperation among domain-specific Web applications
through XML.

In this architecture, Web-based resources providing information and services in
a particular domain are encapsulated within wrappers. The role of a wrapper is that
of an adapter between the resource’s original APl and a new API based on a common
XML schema for the domain. The wrappers interact with a mediator that acts as

an intelligent and task-specific intermediary between the user and all the wrapped

8

resources. The mediator is responsible for acknowledging the capabilities of the

wrappers and for coordinating their collaboration by appropriately communicating

with them and invoking their services. The mediator interacts with the user, receives

and elaborates the specification of the user’s task, sends requests to the wrapped

resources for solutions to sub-problems, post-processes the responses of the wrappers

and combines their responses into solutions for the complex user’s task.
Specifically, this thesis makes the following contributions.

e An XPath-based wrapper construction environment that supports a user in

1. defining the XML schema of the information of interest,

2. constructing parsers for sending requests and for extracting data of in-
terest from HTML pages,

3. and composing this data into XML documents conforming to the target

schema.

e A task-structure centered integration infrastructure environment for develop-
ing new applications on a set of existing Web resources in a specific domain, so
that they communicate in a common XML-defined language and collaborate
towards complex tasks.

1.6 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces the recent re-
search work in the area of information integration of Web applications. The research
mainly focuses on two types of problems, wrapper construction and integration in-
frastructure. Chapter 3 describes the process of developing an aggregate system
in the TaMeX environment, including model development, mediator construction
and wrapper generation. Chapter 4 illustrates the roles and run-time behaviors of
each component through a travel assistant mediator, a prototype developed in the
TaMeX environment. Finally, Chapter 6 concludes the thesis with discussions and
evaluations of TaMeX, and summaries of the future work and the contributions of

the thesis.

Chapter 2

Related Work

In general, there are two types of research work in the area of information integration

of Web applications.

e Wrapper construction to support a user to define the schema of the informa-
tion of interest, to construct parsers for generating requests and for extracting
data of interest from HTML pages, and to compose this data into documents
conforming to the target schemas.

o Integration infrastructure for designing new applications based on exist-
ing resources to be wrapped so they are able to communicate in a common

vocabulary and collaborate to accomplish complex tasks.

2.1 Wrapper Construction

A wrapper is a bi-directional procedure for translating an application problem to
a resource-specific query, and extracting tuples of information from the response
presented by the resource. A wrapper for a Web resource bridges an application
and a Web site by composing a resource-specific query in HTTP protocol using
the application input data and then mapping the HTML document responses to a
pre-defined schema.

The database community has been focusing on the development of SQL-like
languages (2, 40, 13] for querying Web sites, so that other applications are able to
access Web resources as if they were database. However, they make little effort on
mapping HTML documents to other structures. People in the Al community, on the
other hand, focus on information extraction from HTML documents. Many wrap-
pers have been developed based on the techniques of natural language processing.

10

They parse HTML documents through a linear inspection and attempt to identify
irrelevant parts at the beginning and the end of the HTML document, and generate
rules for parsing the rest for potentially useful information. Dynamically generated
documents can be a challenge for such approaches, since the size, the appearance
and the types of information contained in these irrelevant parts may change from
request to request. Another widely used approach is to identify the delimiters or
landmarks of the start and end of the data of interest in the HTML document while
parsing the document sequentially through a finite-state automaton.

In the area of wrapper construction, there are two dimensions of research focus.

One emphasizes on the development of toolkit -

o for providing users wizard-like interfaces to define and test the extraction
grammars and mapping rules to convert HTML documents to desired format
structures such as XML, and

o for generating wrappers based on these grammars and rules.

The other dimension of research works on how to automatically or semi-
automatically learn wrappers with various techniques in artificial intelligence. To
learn a wrapper for a specific target Web source, the learning samples include theb
example queries, the response pages corresponding to the example queries to the
source, and the labeled instances of the target concept on the pages. The output
is a wrapper that is able to query the source and extract all the concept instances
from all the pages of the same type as the learned pages.

The following lists some of the most recent works in this area. Among them,
WA4F and XWRAP concentrate on the development of toolkit and the rest address

the wrapper learning problem.
2.1.1 W4F

WA4F (World Wide Web Wrapper Factory) (3, 4] is a development environment for
constructing wrappers for Web sources. It offers a set of wizard-like visual tools for
a user to develop and test a wrapper by specifying the rules and grammars.

WAF provides two expressive languages, HEL (HTML Extraction Language)
and NSL (Nested String Lists), allowing a user to describe the extraction grammars
and store the extracted data, respectively. HEL is a DOM-centric language, like
XPath [41], though more expressive. It allows for the extraction of data in complex

11

structures using index variables, conditions, regular expressions, and some simple
operators, such as ‘split’ and ‘match’. NSL is a data structure used for storing
extracted data. It has its own API for manipulating data. W4F also supports a
declarative mapping from NSL to XML documents or JAVA objects with automatic
generation of the corresponding pre-defined structure, such as JAVA objects and
XML. After the user is satisfied with the extraction grammars and the mﬁpping
rules, they are compiled into a JAVA component to generate a wrapper.

The wizards provide user assistance during the process of wrapper construction.
The extraction wizard annotates each text field of the HTML document with its
canonical path in the document tree, and allows the user to ‘see’ the extraction
rule of the text of each of the instances of the desired attribute. The user then
generalizes the rule manually using HEL to generate the rules for extracting all the
instances of the desired attribute in the HTML document. Another useful wizard
is the one used for testing and refining the wrapper by visualizing the three steps
of wrapping a Web source in XML, namely fetching the HTML page, extracting
the data and mapping to the schema. Correspondingly, the user specifies the Web
source and request method, the extraction grammar in HEL, and the mapping rules
to the desired XML schema. The wizard displays the extracted data in NSL and
in XML. The user is then able to refine the grammars and the rules to achieve the
desired result.

The main contributions of W4F are
e the visual tools for a user to ‘see’ every step of the construction process, and

e the expressiveness of the languages that allow the manipulation of the data
through HEL and the NSL operators.

The limitations are the use of tags as delimiters instead of as containers, and the
lack of semantics in the rules. For instance, the information ‘hidden’ in an attribute
node would be overlooked. The information delimited by any punctuation could not
be distinguished.

2.1.2 XWRAP

XWRAP [29] is a project similar to W4F. It is an XML-enabled semi-automatic
system for constructing wrappers for Web sources using XML as an intermediate

data type for information exchange. It provides an interactive interface with a

12

library of commonly used functions and some source-specific facilities. It generates
the extraction rules by allowing a user to identify the key words and the presentation
layout structure. It targets only three types of regions in HTML documents: tables,
lists and paragraphs.

XWRAP consists of four components for constructing wrappers through four
interactive phases. Step one, Syntactical Structure Normalization, fetches the target
web document as a sample, cleans up the errors and parses it into a tree. The
Information Eztraction component derives the extraction rules through a sequence
of user interactions. A user identifies the interesting regions and semantic tokens
on the page, and the system determines the hierarchical structure for the content
presentation of the page. This component generates a set of declarative extraction
rules in XML. The third component, Code Generation, applies the extraction rules
to produce the wrapper program. The last phase is Testing and Packing, which
allows the user to supply a set of alternative URLS for testing the generated wrapper
program, and view the result. The wrapper is released and packaged once the user
is satisfied with the result.

In XWRAP, the extraction rules are also DOM-based. But unlike W4F, in
XWRAP, the tags are used to identify regions instead of simply as delimiters. In
addition, the semantic tokens play an important role in XWRAP for identifying the
data of interest.

2.1.3 Kushmerick et al.

Kushmerick et al. [33, 34] categorize wrappers into six different classes of complexity,
and describe inductive learning ! algorithms for the construction of wrappers of
each type. For the wrapper learning problem, instances correspond to pages, labels
correspond to the content of the pages, hypotheses correspond to wrapper template
parameters, and oracles correspond to sources of the example queries and labels
on the responses. Oracles are divided into PageOracles, which generate example
pages from a specific Web resource, and LabelOracles, which produce correct labels
on the example responses through some reusable, domain-specific heuristics, i.e.,
recognizers.

They identify six classes of wrappers, among which the Left-Right (LR) is the

!Inductive learning is learning by example - where a system tries to induce a general rule from
a set of observed instances.

13

least complex. This class of wrappers is for extracting data from pages in which every
element of the instance tuple is indicated by specific left- and right-hand delimiters.
Therefore, the wrappers can be characterized by a vector of delimiters. Learning
such wrappers involves collecting all the valid left- and right-hand delimiters for
each element, while executing such wrappers involves scanning the document text
sequentially to look for the left- and right- delimiters. The LR wrapper class is
simple and very restrictive. The variants are classified into five groups as follows.

1. The Head-Left-Right-Tail (HLRT) class extends the LR class for extracting
data from pages having the additional hea;l and tail delimiters indicating the
regions where all tuples are located.

2. The Open-Close-Left-Right (OCLR) class extends the LR class for extracting
data from pages having the additional open and close delimiters indicating the
start and end of each tuple.

3. The Head-Open-Close-Left-Right-Tail (HOCLRT) class has the properties of
both the HLRT and OCLR classes.

4. The Nested-Left-Right (N-LR) class extends the LR class for extracting data
from pages with nested structures, unlike the classes above that are for tabular

pages.

5. The Nested-Head-Left-Right-Tail (N-HLRT) class, the most complex, extends
both the HLRT and N-LR classes for handling more complicated pages.

All of the above classes are delimiter-based linear finite-state automata, where
each delimiter is a state with two out-going edges, one for extracting texts and the
other for skipping. According to the experiment, these six classes of wrappers are
able to handle 70% of the surveyed Web sites. The learning algorithm of each class
is similar to that of the LR class with certain degrees of variations.

2.1.4 SoftMealy

SoftMealy [12] presents a wrapper representation formalism. Similar to Kushm-
erick’s approach, SoftMealy also uses a finite transducer to model the wrapper
behavior. Instead of the delimiter-based linear approach, it discovers contextual

rules from training examples to describe the context for separating two adjacent

14

attributes, and encodes every distinct attribute permutation as a successful path
of the transducer. This approach is less restrictive than Kushmerick’s, which does
not accept attribute permutation and which does not work well where there are no
tags separating two distinct attributes. SoftMealy is more expressive in the sense
that it is able to tolerate Web pages with problems like missing attributes, multiple
attribute values, variant attribute permutations, exceptions and typos. However,
SoftMealy has to “see” all the cases in the training examples in order to create the
edges covering them.

2.1.5 Stalker

Stalker [24, 25] is a wrapper induction algorithm developed in the project Ariadne
described in 2.2.1. It takes a hierarchical approach to information extraction, based
on an embedded catalog formalism for modeling the hierarchy of semi-structured
documents.

In this formalism, a semi-structured page can be described as a tree with the
items of interest as leaf nodes, while an internal node is a homogeneous list with
each element a heterogeneous tuple of leaf node(s) and/or list(s). Each edge in the
tree is associated with an extraction rule, and every list node is associated with a
list iteration rule. To extract an item of interest is to find a path from the root
of the tree to the corresponding leaf by applying a set of extraction rules and list
iteration rules. The set of extraction rules in Stalker is called a disjunctive landmark
automaton which is used to consume the irrelevant text and search for the landmarks
of the interests, which is similar to Kushmerick’s use of delimiters. Stalker is a
sequential covering algorithm. It takes, as the input, a set of prefixes that need to
be consumed to extract the concept of interest, generates rules accepting as many
positive examples as possible by repeatedly refining the rules with the uncovered
positive examples.

While Stalker is able to handle missing attributes and various attribute orderings
like SoftMealy, it does not require “see”ing all the possible cases of ordering in order
to cover them. However, since each landmark automaton is only responsible for one

attribute, a Web page has to be scanned several times during the run-time.

15

2.1.6 Chidlovskii et al.

Chidlovskii et al. [7] present an incremental grammar induction algorithm for wrap-
per construction with an adaptation of the concept of string edit distance.

“The edit distance D(s1,52) between two strings of symbols s; and s; is the
minimal number of insertions or deletions of symbols, needed to transform s, into
so.” They adapted the algorithm to calculate the distance between a grammar and
an instance. Before learning, the example pages are pre-processed by inserting tags
to specifying the beginning and end of the first instance as well as every attribute
to be extracted. When the learning starts, the algorithm takes one pre-processed
Web page as input. It generates the initial extraction rule, called the item grammar,
based on the labeled instance. Then it iteratively finds the next instance, applies the
adapted string edit distance between the current instance and the first one to update
the item grammar. The process halts when all the instances on the page are found.
Finally the algorithm post-processes the grammar and returns it as the wrapper.
An item grammar is represented by a simple finite-state automaton (sFSA), similar
to SoftMealy. The wrapper execution takes two steps, locating the beginning and
end of every instance, and extracting each attribute with the item grammar.

The main feature of this approach is the limited user interaction. Only one page
is needed and only one instance is labeled. The grammar induction is based on the
string edit distance, which sometimes makes big generalizations. Therefore, sFSA is
able to tolerate any missing attributes or any different attribute orderings. But on
the other hand, this might produce incorrect wrappers. Another drawback is, like
Kushmerick’s approach, this algorithm only considers tags as separators. Therefore,
attributes not separated by tags cannot be extracted.

2.2 Integration Infrastructure

Information integration is not a new research problem. People in the database
community have been working on database middleware systems [44, 11, 5, 30] for
integrating data from multiple relational data sources. The resources we are in-
terested in are Web applications. These applications provide semi-structured data,
which is a set of data where the desired information can be located using a concise
and formal grammar and its data model is more implicit. Ariadne, MIX and XIB

are the recent examples of research in the development of integration infrastruc-

16

ture for Web resources. These systems focus on the collaboration among underlying

resources and the evaluation of complex user queries.

2.2.1 Ariadne

Ariadne [43, 10] is a project that focuses on developing an infrastructure for inte-
grating the wrapped resources of semi-structured documents using a planner.

In Ariadne, an HTML page is modeled by the embedded catalog formalism
described in 2.1.5. An application source is modeled in terms of a common do-
main model which ties the source together with others. The run-time process is
based on the models (the domain model and the source models) and a Planning-by-
Rewriting (PbR) method. The entire query process has two phases, a preprocessing
phase and a planning phase. During the first phase, the system finds all the possible
ways of combining the available sources to answer the ﬁuery by an source selection
algorithm, which, based on the domain model and the source models, dynamically
selects the source candidates according to the attributes in the query. In the sec-
ond phase, Ariadne first generates a sub-optimal plan from the candidates, and
iteratively improves it via a local search process.

The modeling-source-by-domain-model approach makes the system extensible
and flexible. However, it is unable to reason over recursive relations, such as a page
with a ‘more’ button or a site with variable depth of hierarchy like Yahoo.

2.2.2 MIX

MIX (Mediation of Information using XML) [8, 9] is a project that aims to de-
velop systems for mediation across heterogeneous information sources, including
databases, GIS systems and Web sites. MIX takes a database-centric approach to
integration and develops a query planning mechanism for querying various resources
viewed as XML databases.

In MIX, data exchange and integration relies entirely on XML. Instances are
stored in XML documents; the domain ontology and individual sources are rep-
resented in XML DTDs; and queries are expressed in XMAS, a XQL-like query
language with features for grouping and ordering new XML “objects” from the ex-
isting ones. Query execution is demand-driven through an interactive GUI, called
BBQ (Blended Browsing and Querying). It automatically generates an XML query
from the definition given by users through navigating the tree structure of the DTD

17

in the mediator view and adding desired constraints to corresponding attributes.
Complex queries are then unfolded based on the individual source DTDs resulting
in simpler queries against the underlying resources. The results are presented to
users as a DOM tree for browsing.

The integration in MIX is based on navigation-driven lazy mediators. A mediator
translates a complex user query, which is expressed as navigation on an XML view,
into an algebraic plan. Each operator of the algebraic plan acts as a lazy mediator.
This decomposition process finally produces a tree of lazy mediators with a set of
simpler algebraic plans corresponding to navigation on underlying sources. Thus,
an integrated query evaluation scheme is generated. Like Ariadne, algebraic plans
are optimized with respect to navigational complexity. Nevertheless, the order of
operators in a plan is deterministic, which limits the degree of optimization.

2.2.3 XIB

XIB (eXtensible Information Brokers) [27] is another project that utilizes XML
technologies for integration of Web services. XML DTDs are used for modeling
Web services. XSL is used for translation of information between HTML and XML.
XML-QL is used for composing query results.

In XIB, a mediator is considered as an information broker. XIB provides tools for
supporting interactive generation of wrappers and an integrated query interface. A
WrapperBuilder helps a user to wrap up a service by providing a service description
and registering the service in the service server. A BrokerBuilder allows a user to
define a broker by selecting the services to integrate and the logic of the integration.

XIB provides an information service description language, called XIBL, to model
Web services in terms of XML. It uses DTDs for the input and output of the service,
and uses XML elements for the input and output values. A service description
includes information on the location of the service, the types of input and output
of the service, and the information extraction rules that are defined in Compaq’s
Web Language [22]. As a consequence, the integration of Web services in XIB is
viewed as the integration of DTDs in the form of XML-QL, and the decomposition
of user queries is translated to the decomposition of XML elements. The service
description of a Web application to be integrated is critical in XIB. However, XIB

does not provide any support to its construction.

18

2.3 Comparison with TaMeX

In the research and development of TaMeX, we are equally interested in both the
wrapper construction problem and the integration infrastructure problem.

We have developed an example-based wrapper-construction process. Unlike the
pl;ojects mentioned in the previous sections, which mainly focus on the extraction
of the result information, our work also addresses the problem of learning resource
protocols with a simple XML-based language. In terms of the learning of informa-
tion extraction, the main feature of the TaMeX process is that it is designed for
more complex types of target concepts and pages. Documents may contain multiple
instances of the target concept intermingled ;vi\th an unknown amount of irrele-
vant information. According to Kushmerick’s definition, TaMeX is able to generate
N-HLRT wrappers, which is the most complex class in that system. In TaMeX,
an HTML page is represented by a DOM [14] structure. The wrapper learning is
achieved semi-automatically by observing the regularities of the tree structure of
the document, instead of collecting the delimiters or separators of the target con-
cept. The data extraction takes a hierarchical approach based on XPath, instead
of the sequential approach taken by SoftMealy and Chidlovskii et al., which are
based on fnite-state automata. Unlike W4F, which provides only assistance and
still requires significant effort from the developer to construct the extraction gram-
mar, the TaMeX wrapper-construction process learns the grammar automatically
from the concept instances provided by the developer without requiring the manual
inspection of HTML documents.

In terms of the integration infrastructure, the TaMeX mediation architecture is
task-structure centered. The task-structure of a TaMeX aggregate system reflects
the run-time behavior of the mediator. In addition, it provides a roadmap for
developing and integrating different components of the system. Similar to MIX
and XIB, TaMeX heavily relies on XML technology. XML is used not only for
information exchange and for domain and task modeling, but also for user interface
generation. However, in contrast to MIX, which focuses on single-step queries,
the TaMeX infrastructure aims at developing mediators in support of complex and
multi-step tasks. In that sense, it is more akin to Ariadne and XIB, with the
difference that the TaMeX mediators execute task-specific plans, instead of planning

from scratch every time they receive a user request.

19

Chapter 3

The TaMeX Development
Environment

The TaMeX development environment is designed to support a developer facing
the problem of constructing an aggregate system by integrating a set of existing
Web applications. These Web applications share a common domain but they may
have slightly different models of the entities in this domain and they most likely
have different representations for the their data. They interact with their users
through forms, implemented in various underlying technologies, and, in response to
their users’ queries they return dynamically produced HTML documents containing
multiple instances of the concept about which the users inquire. The developer’s

questions are:

o How should these different applications share a common semantics of the in-

formation?
e How should the collaboration among these applications be controlled?

e How could the information provided by any individual api)lica.tion be ex-
tracted, in order to be forwarded to the other applications?

The TaMeX environment provides a structured process and a set of supporting
tools as the solutions to the above developer’s questions. According to this process,
the developer needs to follow these three steps.

1. Develop the XML specification for a canonical model of the application do-

main.

2. Design the task-structure model of the applications’ interactions and develop
the mediator.

20

3. Construct wrappers for the existing Web-based applications, that will enable
the translation of information from(to) the canonical domain model to(from)

their internal representations.

At step 1, the application domain is modeled by describing the application do-
main objects, their composition through domain-specific relationships and their
constraints in XML. This domain model establishes a uniform vocabulary for com-
munication among the application user, the mediator and the wrappers.At step 2,
a mediator is developed by implementing the user interface and the logic of the in-
tegrated system process, based on the task structure of the aggregate system. The
last step involves the construction of a set of wra:ppers corresponding to the existing
applications, by learning a grammar for parsing the user queries to the application
and the application responses to the user in terms of the canonical domain model.

The rest of this chapter describes each of these three steps in detail through a
simple glossary example. Suppose that a certain developer! recognizes the need for
an on-line internet glossary. However, none of the ones he has found is complete.
To avoid the inconvenience of looking up several different glossaries, he decides to
develop a new glossary by integrating two existing ones. The following are the steos
he has to follow.

3.1 XML Specification of Domain Model Development

The domain model specifies the concepts in the application domain and the rela-
tionships among them. The role of the domain model is to establish a uniform
vocabulary among the user, the mediator and all the wrappers of the integrated
resources. This common model is used for specifying the information provided by
the user as part of the problem specification, the information produced by the me-
diator as it elaborates the user problem, and the information provided to and by
the wrappers.

The domain model consists of two components. One depicts the domain ontology
and the other specifies the domain constraints. The domain ontology describes, in
XML Schema [42], the hierarchical structure of the application domain. It specifies
the objects, their attributes and the relationships among them, such as inheritance

and composition. For example, in the glossary domain as shown in Figure 3.1, a

1The term “user” in this chapter refers to the TaMeX development environment user, i.e.e, the
aggregate dictionary developer

21

<?xml version="1.0" 7>
<Schema name="glossary” xmlns=" urn:schemas-microsoft-com:xml-data”
xmlns:dt="urn:schemas-microsoft-com:datatypes” >
<ElementType name="glossary” content="eltOnly”>
<element type="entry” />
< /ElementType>
<ElementType name="entry” content="eltOnly”>
<attribute type="word” />
<attribute type="definition” />
</ElementType>
<AttributeType name="word” dt:type="string” required="yes” />
<AttributeType name="definition” dt:type="string” required="no” />
</Schema>

Figure 3.1: The Glossary Domain Model in XML Schema

glossary contains zero or more entries; each entry has one word and one definition.
The purpose of this view is to define a uniform data schema for the information
exchanged among the user, mediator and the wrappers. For a more complex domain
model, such as the travel domain we will discuss later, there is also the domain
constraints component. It describes in XML a set of semantic constraints on the
domain objects and their attributes, and enhances the logical view of the domain. In
the travel domain, the origin of each leg should not be the same as the destination,
and the arrival time should be after the departure time after converting to the
same time zone. The constraints are to be used by the wrappers to reconstruct the

instances of the domain objects from a set of instances of the object attributes.

3.2 Development of a Task-structure Based Mediator

The mediator is the heart of a system developed within the TaMeX environment.
Its role is to interact with the user of the integrated applicz;.tion, and to coordi-
pate the communication among the wrappers of the underlying resources towards
accomplishing complex user tasks. The TaMeX environment adopts a declarative
approach to the development of the mediator and represents the mediator’s process-

ing mechanism with its task structure model.

3.2.1 Task Structure Development

Chandrasekaran [6] characterizes a task by the type(s) of information it consumes

as input and produces as output, and the nature of the transformation it performs

22

between the two. A complex task may be decomposed into a partially ordered set
of simpler subtasks. A simple, non-decomposable task, i.e., a leaf task, corresponds
to an elementary action. The control of processing moves from higher-level complex
tasks to their constituent subtasks. Information flows through the task structure as
it is produced and consumed by the tasks. The actual process is non-deterministic,
because there may exist more than one decomposition for a given task, and the
subtasks of each decomposition are only partially ordered. High-level complex tasks
get accomplished when all their subtasks have been accomplished.

This view of processing can be naturally mapped to the run-time process envi-
sioned for a TaMeX-developed integrated application consisting of a mediator and
a set of wrappers. The behavior of the overall application can be modeled in terms
of a non-deterministic task structure. The wrappers of the individual sources im-
plement elementary leaf tasks using the services of their underlying sources. The
mediator implements a set of high-level complex tasks, with non-deterministic de-
compositions. The user’s interaction with the mediator decides which task is active
at each point in time and which decomposition is employed. When a particular task
is sufficiently decomposed into elementary tasks, the mediator requests the relevant
wrappers to accomplish them and to return their results. In addition to decompos-
ing high-level tasks into elementary ones, the mediator task structure also provides
the road map for composing the individual wrappers’ results in a coberent solution
to the overall task at hand.

TaMeX adopts the SBF-TMK language [15, 16] 2 to describe the internal pro-
cesses of the mediator and the wrappers. We have developed an XML representation
for the SBF-TMK language, shown in Figure 3.2. In addition, we have also devel-
oped a general XSL Stylesheet 3 for presenting task-structure models as hierarchical
menus: the high level tasks of the mediator correspond to the top level menus whose
options become subtasks represented in sub-menus. This gives any specific mediator
a simple intuitive interface through which the user can traverse the mediator’s task
structure and invoke the tasks that it can accomplish.

The task structure of a TaMeX mediator consists of three different types of tasks.

e User-interaction tasks refer to the tasks performing communications between

2SBF-TMK (Structure-Behavior-Function models of Task Methods and Knowledge) models are
one of the various formalisms developed for representing task structures.

3Extensible Stylesheet Language (XSL) is a language with capabilities for presentation and
manipulation of XML documents.

23

<IELEMENT taskModel (task+)>
<IELEMENT task (input*, output*, (subtask+) | operator)>
<!'ELEMENT subtask EMPTY> '
<IELEMENT operator (#PCDATA)>
<!ELEMENT input (#PCDATA)>
<IELEMENT output (#PCDATA)>
<IATTLIST taskModel name CDATA #REQUIRED>
<!ATTLIST task
name CDATA #REQUIRED
id ID #REQUIRED
type CDATA #REQUIRED
description CDATA #REQUIRED
>
<IATTLIST subtask
name CDATA #REQUIRED
id IDREF #REQUIRED
>
<IATTLIST operator
xmlfilename CDATA #IMPLIED
xslfilename CDATA #IMPLIED
servlet CDATA #IMPLIED
>
<!ATTLIST input required (yes | no) #REQUIRED>

Figure 3.2: The DTD for Task Structure

24

the mediator and the user, including the mediator’s requests for information
from the user and display of information to the user.

e Information-collection tasks refer to the mediator’s interaction with the wrap-

pers of the underlying applications to collect information.

o Finally, internal tasks refer to information processing internal to the mediator.
Such tasks include the translation of a user’s problem to an XML specification
understood by the mediator and all the wrappers, as well as the composition
and post-processing of the information collected from the wrappers.

When designing a mediator in the TaMeX environment, the developer first iden-
tifies the exchanges of information between the mediator and the user of the aggre-
gate application. These exchanges constitute the user-interaction leaf tasks of the
mediator. The information exchanged between the user and the mediator is within
the domain of the application. Therefore each screen of the interface through which
the interaction is performed is easily constructed by writing an XSL Stylesheet to
specify how the concepts in the domain are to be presented to the user.

The information-collection leaf tasks are identified by examining the services
provided by the existing applications to be wrapped. The developer first determines
a set of existing Web applications providing the functionalities required by the me-
diator. For each of the distinct functionalities provided by an existing application, a
corresponding information collection task is identified and a wrapper is constructed
to deliver the functionality specified by the task from the underlying source appli-
cation. The wrapper construction process is described in Section 3.3. Any other
desired functionalities, not accomplished by the existing resources, are specified as
additional leaf tasks, for which, new components are developed to accomplish them.

Finally, every internal task is implemented individually within the mediator to
perform the operation required. After baving specified all the leaf tasks of the medi-
ator, they are composed in a hierarchical task structure by introducing intermediate
high-level tasks corresponding to the intermediate sub-goals of the overall process.

3.2.2 Mediator Development

The TaMeX mediator is designed as a client-server application. The thin client com-
ponent is supported by an XML-enabled Web browser, such as Internet Explorer,

to provide a user interface based on the domain model and the task structure of

25

the aggregate system. The server-side component is implemented as a Java Servlet
to support the logic of the mediator and the connection between the client-side
component and the wrappers providing the desired services.

The lightweight user interface heavily relies on XML and XSL technologies.
They are generated by applying XSL stylesheets to the domain model and the
task structure expressed in XML. The main screen of the TaMeX interface is a
menu presenting the higher level tasks in the task structure and allowing the user
to select the tasks to perform. The menu is produced by a generic XSL Stylesheet
conforming to the schema of the task model. This menu leads the user to a screen
either requesting input from the user or providing output to the user. Both the
input data and the output data are the instances of the concepts in the domain
model. For every concept in the domain that must be specified by or provided
to the user, there is a corresponding XSL Stylesheet defining the presentation of
this information, producing a lightweight interface for the mediator and enabling its
consistent interaction with the user.

The server-side component is implemented as a Java Servlet. It is connected
to the browser through the HTTP :: GET/POST(param,#) request. Along with
the input or output data exchanged between the client and the server, each request
specifies the task invoked by the user. For each different task, a method is im-
plemented to perform the appropriate action. If it is a user-interaction task, the
mediator either receives the data transported with the request, or returns the data
as the response of the request. Ifit is an information-collection task, it contacts the
appropriate wrappers to retrieve the desired information. If it is an internal task,
it processes the data accordingly. Thus, during run-time, the mediator is able to
dynamically perform the tasks in the task structure.

3.3 Wrapper Construction

The most critical step in the process of developing an integrated application is the
construction of wrappers for the existing Web applications.

In TaMeX, we exploit the hierarchical structure of HTML documents when in-
specting their contents. HTML pages served by Web applications in response to
a particular request are usually generated automatically. Although individual re-
sponses may differ in content, all responses from the same application for the same

type of requests usually have a similar organization. This implies that two HTML

26

1. Let a user demonstrate the use of the resource to be wrapped and generate
the training examples

(a) Define a set of example problems for the user to demonstrate

(b) For each such problem
While the user at his browser interacts with the resource server to solve
the problem, record the trace of the interaction and the final response
page that contains the instances of the target concept that are the solution
to the current problem.

2. Learn the protocol of the interaction with the resource

3. Learn the grammar for extracting the instances of the target concept from the
resource’s responses

Figure 3.3: The Overall Wrapper Construction Process

documents served by an application as a response to the same type of request are
more likely to have commonalities at (and close to) the documents’ roots than
at (and close to) their leaves. Once the regularities of the sub-trees containing
the data of interest are discovered, the HTML document can be parsed into a tree
representation rooted at the <html> tag, and the information of interest can be
efficiently located, using a DOM ({14] APL

To wrap a Web resource, first one needs to know the protocol by which a request
is sent to and the response is retrieved from the resource Web server. This ensures
that requests of the same type can be automatically sent by the wrapper to the
resource server in order that the correct responses can be obtained. Furthermore,
one needs to find out the rules for locating the instances of the target concept of
interest from a response, so that the data of interest can be extracted from the
HTML document.

The overall process for wrapper construction in TaMeX is shown in Figure 3.3. It
consists of a demonstration phase and a learning phase. The purpose of the demon-
stration phase (step 1 in Figure 3.3) is to collect examples, on the basis of which both
the parameters of the method to be invoked on the underlying application and the
grammar for parsing its response can be learned. The input to the demonstration
phase is the specification of a set of problems and their solutions that the application
can accomplish. The underlying idea is that the wrapper’s information-collection
task is already known when integrating a new application. Therefore, examples of
this task, i.e., particular problems and their solutions, can be defined and solutions

27

can be extracted from the application responses.

The demonstration phase relies on a proxy based on the Muffin library [32]. The
purpose of the proxy is to record the “conversations” between the application server
and the user’s browser. While the user sends a sequence of requests to the server to
perform the functionality of the resource to be wrapped, the proxy “sits” between
the browser and the server, and keeps track of their interactions, including both the
requests sent by the browser and the responses returned by the server.

The next phase of the wrapper-construction process is the learning phase (steps
2 and 3 in Figure 3.3). The objective of this phase is twofold. First, the resource
protocol for sending the resource server a request corresponding to a user’s problem
specification must be learned. Second, the grammar rules for parsing the response
into the solution corresponding to a user’s problem must be learned. The details
of these two learning processes are described in Section 3.3.1 and Section 3.3.2.
The knowledge learned about the resource is expressed as XML documents. They
are passed as input into a generic wrapper to generate a wrapper specific to this

resource. For details on the generic wrapper, see Section 4.2.

3.3.1 The Protocol Learning Process

The purpose of a wrapper in the context of an aggregate application is to automat-
ically perform translation on behalf of the user. Initially, a wrapper needs to know
how to translate a user's problem to a request to its corresponding Web resource.
In the TaMeX environment, the resource protocol is learned by observing the traces
of the “conversations” between the browser and the resource server captured during
the demonstration phase.

During the demonstration of sending a request to the Web resource, the proxy
records the trace including a sequence of HTTP requests sent by the browser to the
resource server and a sequence of responses returned by the server to the browser.
TaMeX is only interested in the first request that corresponds to the user’s action of
sending the request that initializes the subsequent interactions between the server
and the browser. The recorded request contains the resource URL location, the
request method, and the request parameters. For the same type of service provided
by the same Web resource, the URL location and the request method are constant
across different problem specifications. Some of the request parameters are part

of the variables in the problem specification, and vary with the different requests.

28

Then, the variables in the XML problem specification are mapped to the parameter
values in the corresponding trace. To a learned protocol, the parameter values in
a trace are replaced by the XPaths for locating the corresponding variables in the
XML problem specification.

The learned protocol for a specific resource is represented in XML. It specifies
the resource URL, the request method, and a set of method parameters. For those
parameters whose values vary with different problems, the mapping rules are speci-
fied in XPath for converting the parameters of a problem specification to those of the
corresponding request method. During run-time, a specific request can be produced
by assigning to the parameters the values located in the problem specification by
using the mapping XPath rules

As mentioned previously, often, a single user’s request might result in a sequence
of request-response “conversations” between the user’s browser and the resource
server. This is because the server sends to the browser cookies that the browser
uses to resubmit its request. Cookies are automatically bandled by the run-time
wrapper and need not be learned at the development stage.

3.3.2 The Grammar Learning Process

The more difficult, and arguably more important, step of wrapping a Web source is
to discover the grammar for extracting the information of interest from the HTML
documents and converting it into a desired schema. In TaMeX, we take a hierarchical
approach to semi-automatically learning extraction rules based on the tree-structure
of HTML documents. In the following, we first describe the properties of the HTML
documents we are interested in, and then introduce an algorithm for learning to

extract data from these types of documents.

A classification of HTML Documents

Our approach to wrapping Web applications relies on the use of XML technology
for creating a semantic map of document segments. As we have already mentioned,
the mediator’s domain model is represented in XML. When the mediator sends an
information-collection request to a wrapper, it expects to receive an XML document

containing instances of some entity in the domain model?. Let the target concept C;

AThere can be instances of more than one entity of interest contained in the response. However,
for the sake of clarity of the discussion we use the singular number. Our method can also deal with
multiple target concepts.

29

be the entity of the domain model, instances of which must be extracted from the
responses of the resources to be wrapped. It is important to note here that the
TaMeX environment focuses on wrapping applications of the target concept.

XML documents are hierarchical in nature. An XML element is composed of
simpler XML elements. In order to extract an instance of the target concept from
the application response, the instances of all the constituents of the target-concept
must be identified. Most Web-based applications provide information encoded using
HTML. Our wrapper construction process assumes that the resource response is
a well-formed HTML document, possibly “cleaned up” using an application like
the HTMLTidy [39] utility. Presently it cannot automatically create wrappers for
information that would normally require a browser plug-in for presentation (e.g.
PDF or Shockwave). Henceforth, the term resource response R will refer to an
HTML document returned by an application in response to an invocation of some
HTTP : GET/POST(param;*) method. A further assumption of the wrapper-
construction process is that several instances of the domain model concepts can be
extracted from the response and mapped into a well-formed XML document.

Figure 3.4(a) illustrates a hypothetical target concept k that consists of two
simpler concepts, d and w, which in turn get decomposed into a, b, ¢ and z, y,
z respectively. The set of k’s constituent components consists of all the concepts
represented by the trees rooted at k, d, w, @, b, ¢, z, y, z. The DTD of this concept
is shown in Figure 3.5.

Let us assume that there are at least two instances of k (and consequently two
instances of each d, w, a, b, ¢, Z, ¥, 2) in a particular HTML document produced
as a response of the application to be integrated. If the constituents of one instance
of concept k are separated from all the parts of all other instances of k, i.e., the
instances of the constituents of the different concept instances are not intermingled,
then k is said to be contiguous.

The three trees shown in Figure 3.4(b), Figure 3.4(c) and Figure 3.4(d) represent
the internal structure of three different HTML documents. Each circular node in
the tree represents a pair of matching HTML tags enclosing a part of the document.
k is contiguous in the trees of Figure 3.4(b) and (c). ‘However, in the tree (b), it is
also encapsulated, i.e., there is a distinct pair of HTML tags completely enclosing
all of the parts of one instance and none of the parts of any other instance. k is not

encapsulated in the tree (c), but d and w are. The tree (d) represents a case where

30

b/

(a) A tree representation of the target concept defined by Figure 3.5

Y
nhuglinss

(d) k is not contiguous; d and w are contiguous but not encapsulated

Figure 3.4: A Domain-model Entity and its insta.nces in the HTML Responses of
Three Applications

31

JELEMENT k (d, w)>
<IELEMENT d (a, b, ¢)>
<IELEMENT w (z, y, 2)>
<IELEMENT a (#PCDATA)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT ¢ (#PCDATA)>
<IELEMENT z (#PCDATA)>
<IELEMENT y (#PCDATA)>
<!ELEMENT z (#PCDATA)>

Figure 3.5: The DTD for the XML Document in Figure 3.4(a)

<root>
<k>
<d>
<a>al
bl
<e>cl</e>
</d>
<w>
<x>x1< /x>
<y>yl</y>
<z>z1<[z>
L[w>
</k>
<k>
<d>
<a>a2</fa>
b2
<e>e2< [e>
</d>
<w>
<x>x2< /x>
<y>yeL/y>
<z>22<[z>
<[w>
</k>
< /[root>

Figure 3.6: The XML Document for the example shown in Figure 3.4(b)

32

<root>

<d>
<a>al</fa>
bl
<c>cl</e>

</d>

<w>
<x>xl< /x>
<y>yl</y>
<z>z1<[2>

<[w>

<d>
<a>a2<fa>
b2
<e>e2</e>

</d>

<w>
<x>x2< /x>
<y>y2</y>
<z>22<[z>

<[w>

< [root>

Figure 3.7: The XML Document for the Example Shown in Figure 3.4(c)

<root>
<node>
<a>al
bl
<e>el</e>
<a>a2
b2
<e>e2< fe>
< /node>
<node>
<x>x1< fx>
<y>yl</y>
<z>z1< [2>
<x>x2< /x>
<y>y2<[y>
<z>22< [z>
</node>
< [root>

Figure 3.8: The XML Document for the Example Shown in Figure 3.4(d)

33

k is not contiguous, i.e., the component instances of the different concept instances
are interspersed in the HTML page. The corresponding XML documents of these
three tree structures are shown in Figure 3.6, Figure 3.7 and Figure 3.8.

In order to extract the instances of k from an HTML document, a set of rules
must be formulated specifying how to traverse the tree-structure of the document in
order to locate the instances of the constituents of k. Because the tree is traversed
hierarchically, the rules can be formulated using XPath [41] expressions. Therefore,
the main objective of the wrapper construction process is to learn a grammar, spec-
ified as XPath expressions, for the locations of the instances of the leaf components
in the target concept set.

The contiguity and encapsulation properties of the target concept in the appli-
cation response have an interesting effect on the structure of the grammar. If the
concept is encapsulated, then an XPath rule can be formulated in order to localize
the HTML subtree that spans all the concept constituents. The rules for its con-
stituents can then be formulated relative to the root of this subtree. If the concept
is not encapsulated but it is contiguous, then a set of indexed XPath rules can be
formulated in order to locate its constituents®. Finally, if the concept is not contigu-
ous, then rules for the extraction of its elements must be discovered and then the
constraints describing the invariants of the concept may be used to combine them
into concept instances. Next, we discuss the nature of these rules and the algorithms
to learn them in detail.

The Grammar Learning Algorithm

Each trace obtained from the demonstration phase includes the application’s re-
sponse. The second objective of the learning phase is to learn the grammar for
extracting each constituent of the target concept from the response. In TaMeX, we
focus on the tree structure of an HTML document and take a hierarchical approach
based on its XPath [41] expressions.

The HTML documents that are generated by the application as responses to the
user’s requests are produced automatically by programs. The page presentation is
structured, i.e. the organization of each instance of the target concept is the same.
This means that each instance has the same structure if viewed as a document
sub-tree, although the text content within each sub-tree is different. Therefore, the

5The underlying assumption is that the concept instances have a common internal structure.

34

1. FOR EACH instance, p, of the concept C;

(a) locate the components of the instance

(b) identify the XPath rule, consisting of the index and the attribute list, for
the location of the instance components

(c) identify the XPath rule, consisting of the index and the attribute list,
for the location of the instance as the minimum spanning tree® of its
components locations

(d) formulate the locations of the instance components, relative to the in-
stance location

i. IF the path expression of its parent component is the prefix of the
current path rule, remove the prefix from the current hypothesis

ii. IF it is a parent component, ger{e}alize the index of the last tag of
the path to include all instances

2. FOR EACH index of every rule hypothesis

(a) IF it is constant, remove its associated attribute list

(b) IF the set of XPath rules for the examples vary only by index number,

formulate one of the following (and increasingly general) hypotheses for
the rule zp(Ct)

i. FOR EACH variable index, generalize the expression to a domain
containing only 2 possible values

ii. FOR EACH variable index, generalize the expression to a linear pro-
gression of the index values

iii. FOR EACH variable index, generalize the expression to include all
possible index values

Figure 3.9: The Algorithm for Learning Grammar for Encapsulated Concept

paths from the root of a document to the different instances of a concept all consist

of the same sequence of HTML tag nodes but with different indices for some of the
tags. Our goal is to discover the regularities of the indices and find the general path
in the HTML document leading to all the concept instances.

The algorithm for learning how to extract instances of an encapsulated concept

from the HTML response is shown in Figure 3.9. Given a set of specific examples of

the target concept and a response that is known to contain the given examples, the

learning algorithm generates a set of XPath rules that will extract the information for

all instances of the target concept from resource responses with the same structure.

The following discussion illustrates the given algorithm with a small example from

a fictitious glossary Web page.

35

<html><body>
<table>...</table>
<table>...</table>
<table>...< /table>
<table>...</table>
<table border=“1">
<tr><td colspan=“2">A Fictitious Glossary</td></tr>
<tr><td>word</td><td>definition</td></tr>
<tr bgcolor="red” >
<td>abbey</td>
<td>convent</td>
<fte>
<tr bgcolor="“red"” >
<td>abduct</td>
<td>kidnap</td>
<[tr>
<tr>..<fte>
<tr>...<ftr>
<tr bgcolor="red” >
<td>capital</td>
<td>money</td>
</tr>
< /[table>
</body>< /html>

Figure 3.10: The HTML document of the fictitious glossary

<dictionary>
<entry>
<word>abbey< /word>
<definition>convent</definition>
< /entry>
<entry>
<word>abduct< /word>
<definition>kidnap</definition>
< /entry>
<entry>
<word>capital</word>
<definition>money</definition>
< /entry>
</dictionary>

Figure 3.11: An XML Document with Three Sample Instances of Glossary Entries

36

concept instance absolute path relative path
Example 1

Entry: /html/body/table[5]/tr{bgcolor="red”](3]/

Word: abbey /html/body/table[5]/tr[bgcolor="red”}[3]/td[0] td[1]
Definition: convent /html/body/table[5]/tr[bgcolor="red”][3]/td[2] td[1]
Example 2

Entry: /html/body/table[5]/tr[bgcolor="red"](4]/

Word: abduct /html/body/table[5}/tr[bgcolor="red"][4]/td[0] td[1]
Definition: kidnap /html/body/table[5)/tr[bgcolor="red"][4]/td[2] td[1]
Example 3

Entry: /html/body/table[5]/tx[bgcolor="red"](7]/

Word: capital /html/body/table{5)/tr[bgcolor="red"][7]/td[0] td[1]
Definition: money /html/body/table{5]/tr{bgcolor="red"}][7]/td[1] td[2]

Figure 3.12: The XPath Expressions for the Locations of the Two Glossary Entries
in the Response

concept grammar :
Entry /html/body/table{5]/tr{bgcolor="“red”]
Word td[1]

Definition td[2]

Figure 3.13: The Generalized XPath Expressions for the Location of the Glossary
Entries

Suppose that the resource response consists, in part, of a glossary containing a
list of words and their definitions, shown in Figure 3.10. Further, suppose that the
task is to find the rule for extracting all the entries in the glossary, but none of the
additional information on the page. Let us examine the process required to create
a grammar for extracting the word-definition pairs from this hypothetical example.

In the glossary example, the target concept is the glossary entry and its com-
ponents are the word and its definition. Figure 3.12 shows three instances of the
target concept that are included in the resource response. These instances are part
of the input of the algorithm. Let us assume that each glossary entry in the HTML
response of the resource is contained in a separate row of a table and the word and
its definition are data fields in the table. Let us further suppose that each entry’s
background is red. In the particular response page, the entries for the words “abbey”,
“gbduct” and “capital” are located in the fourth, seventh and eighth rows of that
table.

The first step of the algorithm (steps 1.a and 1.b) is to use a post-order search-

37

traversal of the response document tree to identify the locations of the entries on
the page and to formulate the XPath rules for these locations. Figure 3.12 shows
the rules for the locations of the components of the three entries in the page. The
word “abbey” can be located by the path “html/body/table(5]/tr(3]/td[0]" in the
HTML document tree, and the definition of the word, “convent’, can be located -
by the path “html/body/table[5)/tr(3]/td[1]". The word “capital® can be located
by the path “html/body/table[5]/tr[7]/td[0]", and its definition, “money”, can be
located by the path “html/body/table{5]/tr(7]/td{1]", and so on.

Based on the XPath rules of the locations of its components, the rule for
the location of the target concept instance can be formulated (step l.c). The
XPath rule for the location of each entry is the minimum-spanning tree contain-
ing its word and definition, i.e., the maximum common prefix of the locations of
its constituents. In this example, the location of the “abbey”, “abduct” and “cap-
itaP entries are at “html/body/table[5]/tr(3]/”, “html/body/table(5]/tr{4]/", and
“html/body /table[5]/tr[7}/" correspondingly. The fourth column of Figure 3.12
shows the locations of the constituents of each instance relative to the location of
the instance itself, produced by step 1.d of the algorithm.

At this point, step 1 of the algorithm shown in Figure 3.9 has been completed.
The goal of the next step is to formulate, first, an abstract hypothesis for the location
of all entry instances in the resource response relative to the root of the document
tree, and second, a set of hypotheses for the locations of the concepts’ constituents,
i.e., word and definition, relative to the locations of the concept instances.

Many of the resource servers respond with HTML pages constructed by scripts
collecting data from a database. These pages are highly regular in structure, and
more often than not, the XPath rules of the locations of all the instances are the
same with the exception of the indices for some of the path tags. Thus, the general-
ization step attempts to discover the regularity in the values of the differing indices.
Currently, in the case where the index values are not constant, our algorithm tries
three different choices of generalization, each using progressively more aggressive
“guessing” (step 3). If there are only two different index values, the algorithm gen-
eralizes the value of this tag index to be either one of the given values. If there
exist more than two different values, it tries to discover a linear progression over the
given index values. If it fails, it goes one step further and accepts all possible values.
When “guessing” is involved, the attributes are used as constraints for finding the

38

concept instances. In another words, when the document structure does not provide
enough knowledge to precisely locate the target, the visual presentation is used for
further recognition.

From the XPath rules for the location of the entry instances, shown in Fig-
ure 3.12, the learning algorithm can determine that the target concept (a glossary en-
try) is found consistently in rows of the fifth table of the document. The generalized
XPath rule for the location of all the glossary entries is “/html/body/table[5]/tr”,
i.e., the index of the row has been generalized to allow any value. Because this is
a quite aggressive generalization step, the attributes of presentation of each entry,
i.e., the red background, are kept as part of the XPath rule for its location.

The same generalization process applies to the XPath rules of the relative loca-
tions of the sub-components of the entry. In this example, the word and definition
of each entry can be found in the first and the second cells of the entry row. The
sub-components locations then are “td[0]” and “td[1]”. The final rule for extracting
the instances of the entry concept in the resource response is shown in Figure 3.13.

If the “abduct” instance were located in the tenth row instead, the algo-
rithm would have chosen to generalize the expression for the entry location to
“/html/body/table[5]/tr[bgcolor="red"][position() mod 2 = 3" instead.

If the target concept is not encapsulated, step 1.c of the algorithm will return the
XPath rules to the locations of multiple root nodes, instead of the root of a single tree
spanning all the constituents of the target concept. The rest of the algorithm steps
will be performed for each of these nodes, thus resulting in learning a set of rules for
extracting instances of the constituents of the target concept instead of the target
concept itself. The generic wrapper component of the architecture is capable of
using these fragments of the target concept and the invariants of the target concept
as defined in the domain model to combine the fragments into instances of the target
concept. This way, if sufficient variants are defined for the target concept, it can
be extracted even if it is not encapsulated in the response of the application to be

wrapped.

39

Chapter 4

A Travel Assistant Prototype

Let us now consider the problem of a traveler, who wants to check airfares online
by exploring different options from several different travel-planning applications on
the Web. He wants to compare the possible air tickets in terms of fare, number
of stops, and so on. At the same time, he does not want to commit to specific
airports, rather to his origin and destination cities. As the problem illustrated in
Section 1.4, the user! has to visit multiple Web sites and tentatively commit to origin
and destination airports and repeat the queries with different airports. Then he has
to save the intermediate solutions, infer additional attributes not explicitly produced
by the applications and finally compare the tickets manually. In this chapter, we
describe a travel assistant mediator developed in the TaMeX environment to assist
him in solving his problem.

The travel-assistant prototype integrates two popular travel-planning Web ap-
plications, www.lowestfare.com and wwuw.itn.net, and one static Web page offer-
ing worldwide airport code database, www.airportcitycodes.com/aaa/ctydef. The
overall architecture of the travel-assistant mediator is diagrammatically shown in
Figure 4.1. It consists of four layers. They are the user interface layer, the mediator
server layer, the wrapper layer and the resource layer. These four layers are mapped
to three physical tiers, with a thin-client interface at the top tier, a set of existing
resources at the lowest tier, and the “business logic” of the aggregate application
consisting of the mediator and the wrappers in the middle tier. The following sec-
tions describe the main components of the travel assistant and the run-time behavior

of the application with a simple scenario.

1The term “user” in this chapter refers to the traveler, who is using an aggregate planning
system developed by the TaMeX development environment

40

Mediator - Wrappers Resources

Ul Browser Serviet
input data —nT . uE execute:
display resuit = ._._,';!-a' vif‘:::’ers resources
Browser
User
Interface

Figure 4.1: The Travel-planning Assistant

4.1 The Mediator

Figure 4.2 shows the travel domain model in extended UML2. The shaded rect-
angles represent the objects and their attributes in the model; the lines show the
relationships, such as inheritance and composition, among the objects; and the
folded rectangles describe the constraints on the objects.

As shown in Figure 4.2, a two-way ticket is composed of a forward leg, a return
leg and an airfare. A leg consists of one or more Aops, such that the origin of a hop
is the destination of the previous hop, and the origin of the first hop of the forward
leg is the destination of the last hop of the return leg and vice versa. Each hop is
described in terms of the origin and destination, which are both of type of location.
the departure and arrival time, which are both of type of time, and the flight.

An interesting aspect of the domain model of the travel-planning assistant is that
location and time are both instances of domainLevelObject, i.e., the attributes of
both location and time have domain level relationships. For example, country, state,

city and airport are all attributes of location, but at different levels of specificity.

2We extend the vocabulary of UML with the notations for describing the domain constraints.

41

Figure 4.2: The Travel Domain Model in extended UML

state is at a lower (more specific) level than country, and at a higher (more general)
level than city. The underlying intuition is that values at one level are collapsed
and summarized at the next higher level, and a value at one level corresponds to a
collection of values at the next lower level.

The concept of domain level is very important for supporting flexible, exploratory
search for a desired service. It enables the interpretation of vague problem state-
ments, i.e., statements expressed in terms of attribute values at a higher level, into
a collection of specific ones, i.e., expressed in terms of their corresponding values
at lower levels. In such a way, the user can avoid early commitment to undesired
constraints. For example, when the user does not want to commit to a specific
destination airport but only to a city, the mediator is able to translate this vague
problem statement into a collection of problems, each of which has one of the air-
ports close to the given city as the destination airport. Alternatively, when the user
has made strong and mutually exclusive commitments, the mediator could explore
possible relaxation by replacing some specific elements of the problem statement
with more general ones at a higher level of abstraction, thereby providing the user

42

infer
attributes

Figure 4.3: The Task Structure of the Travel-assistant Mediator

additional search space for problem solutions.

The task, for which the travel-assistant mediator is designed, is to solve ill-
structured problems in the sense that a precise specification of the desired output
is not available. Instead, the user explores the solution space following a least
commitment strategy [35]. Consider, for example, the problem of finding air tickets
for a vacation “to California in July”. “July” and “California” are too vague for
querying any of the current travel-agent Web applications. The specific destination
and date may eventually depend on the availability of flight seats and the price
of the airfare. But in order to make more precise decisions, the user may want
to evaluate the possible options by comparing the tickets with different attributes,
some of which are presented by the resources, and some of which are inferred by
the mediator. For such problems, the specification of the problem may shift around
within the domain. The above specification implies a range of destinations and a
range of departure and arrival dates.

Figure 4.3 diagrammatically depicts the travel mediator’s task structure. In this

task structure, information-collection tasks are shown as ovals, interaction tasks are

43

shown as rectangles with folded corners, and internal tasks are shown as rectangular
boxes. The overall task of the mediator, i.e., to find airfares, involves three tasks.
The first one is to ask for the user problem by allowing the user to specify the
different attributes of the desired ticket. The second task is to solve the problem
by refining the problem, invoking the Web resources to find the desired tickets, and
inferring the additional attributes. The last task is to display the tickets to the user.
These tasks are further decomposed until reaching the non-decomposable operators.
Among them, there are user-interaction tasks, for which appropriate XSL stylesheets
are developed, and information-collection tasks, whose corresponding wrappers are

constructed with the process described in section 3.3.

4.2 The Wrappers

Every information-collection task, such as get ticket from ITN, is initiated by the
mediator and performed by a corresponding resource wrapper, such as the wrapper
for the Web resource www.itn.net. When invoked by the mediator, a wrapper
delivers two important functionalities. First, it maps the problem specification to
a set of parameters for a particular method of the application, and invokes this
method. Once the application response is returned, the wrapper parses the HTML
document to extract the relevant pieces of information expected as an answer by
the mediator.

Each wrapper in our integration architecture contains the following information:

e the common domain model including the domain ontology and constraints,
o the URL of the wrapped application,

e the resource protocol that the wrapper invokes, including the required param-
eters for the method and how to map a problem specification represented in

terms of the domain model to an HT'TP request, and

e the grammar for information extraction, i.e., a domain-model extension that
describes the XPath expressions for the location of instances of the target

concept in the application’s HTML response.

The canonical domain model, such as the travel domain described previously,

is shared by the mediator and all the wrappers of the integrated resources. The

44

[3
~re
Lokt]
IOINTE DAL 14
i &
Domain and Source - &
Spedfic Input

Request‘Response

Response

Figure 4.4: The Generic Wrapper

remaining items are specific to each wrapper. The resource protocol specifies the
translation of a user problem to a request understood by the underlying resource.
The extraction grammar defines a set of rules for appropriately interpreting the
resource information in terms of the common domain model.

In the TaMeX environment, a resource-specific wrapper is constructed by passing
the above information to a generic wrapper. The generic wrapper consists of five
components as shown in Figure 4.4. They are the Request Generator, the TaMeX
Client, the TaMeX Tidy, the TaMeX Parser and the TaMeX Combiner.

The Request Generator is responsible for mapping a problem specification to
a resource protocol. After receiving a problem specification from the mediator, it
uses the application-specific protocol template to compose the parameters of the
HTTP request method with the values extracted from the problem specification.
The generated resource protocol contains its URL, the HTTP request method, and
a set of request parameter-value pairs. The TaMeX Client is a generic HTTP client
built on the HTTP Client class library [23]. It is responsible for communicating
with the application server. It invokes HTTP requests, handles cookies and re-

45

ceives responses. The TaMeX Tidy is based on the HTMLTidy [39]. It transforms
HTML pages to well-formed documents by inserting missing closing tags, quoting
HTML attribute values, and removing invalid tags. The output of the TaMeX Tidy
is a well-formed HTML document conforming to the XML standards. The TaMeX
Parser is a generic parser based on the SAXON library [37]. It applies the extraction
rules to interpret the response document by extracting all instances of the concept
constituents based on the extraction grammar provided. Finally, the TaMeX Com-
biner is a piece of software that reconstructs the instances of the concept from the
extracted instances of its constituents based on the given domain constraints. Often
the instances of the concept constituents are more easily located than those of the
concept itself. This happens when there is a mismatch between the structures of the
target concept and the HTML document, such as missing intermediate concepts or
having non-encapsulated concepts. In such cases, the instances of the constituents
are used by the Combiner to reconstruct the instances of the concept based on the
domain ontology and its constraints. The output of the Combiner is an XML docu-
ment conforming to the domain model and containing all the instances of the target
concept extracted from the HTML response to the problem specification from the
mediator.

4.3 The Run-time Behavior

In this section, we illustrate the run-time behavior of the travel-assistant with
a simple scenario. Suppose the user wants to check the airfare from Edmonton
to Victoria departing on June 18th, 2000 and returning on July 19, 2000. Let
us walk through the process of accomplishing this task to show how the task
structure drives the behavior of the travel-assistant mediator, which integrates
www.itn.net, www.lowest fare.com, and www.airportcitycodes.com/aaa/ctydef as
indicated previously.

The mediator’s task structure is specified in XML. By applying a generic XSL
Stylesheet specifically for presenting the hierarchical structure of the task, the menu
shown in Figure 4.5(a) is produced on the user’s XML-enabled browser. The user
of the travel-assistant application interacts with the mediator through this menu by
browsing and selecting the task he wants to perform. He selects Airfare Checking by
clicking on the link. The menu expands and displays three subtasks, Enter Inputs,
Ezecute Query and Show Air Tickets, which lead the user to find solutions to his

46

Origin
Where are you leaving from? Enter one or more of the
followings.

Here is a list of the fights meet your recuest. Yon can modify
the ioput data by going back to step one or select auother task
for travet plamiitis,

e WS N Y PR G A

CANADIAN 641B0EING JUN 700 %
™ TEGIVRY A AM
CANADIAN 7503 YV yyy TV 810 833

(d)

Figure 4.5: Snapshots of the Travel-assistant User Interface

47

problem.

1. Specifying the Problem

The first step in the process is to specify the problem inputs, i.e., the attributes
of the air ticket the user is interested in. This first subtask (Enter Inputs in
Figure 4.3) is decomposed in a set of user-interaction tasks, each of which
corresponds to the specification of one of the ticket attributes, including the
origin and destination locations, and the departure and return dates. When
the user selects one of these tasks, an HTML request form is displayed asking
the user for the input. Each form corresponds to this concept in the domain
model, and is generated by the XSL Stylesheet specifying the presentation of
the form. Figure 4.5(b) shows the interface generated by applying to the do-
main a Stylesheet developed especially for the concept origin. The Stylesheet
for origin is designed to accommodate the different levels at which a location
can be specified, such as country, state, city, and airport code. The user spec-
ifies the origin of the ticket, Edmonton, at the city name field, and submits
the form by clicking Enter the Data button. The user’s input is sent to the
mediator server as the parameter of the HTTP :: POST (param;*) request.
Based on the caller name of the HTTP request, the mediator identifies the
corresponding task, which is enter origin. It updates the input DOM, which
is initially empty, with the data submitted as the request parameter. Simi-
larly, the user submits the information about the destination, the departure
date and the return date. And the mediator updates the input DOM as shown
in Figure 4.6(a).

2. Querying Web Resources

After the desired ticket attributes have been specified, the user activates the
next task, Ezecute Query, by sending another HTTP request to the mediator.
The mediator identifies the task and proceeds to accomplish the task, which

is in turn decomposed into a sequence of subtasks.

The first subtask is to refine the attributes specified at high levels of ab-
straction to their most specific domain levels (task refine inputs in Fig-
ure 4.3). This is an internal task; that is, it is further decomposed in a set

48

yeas moath
=000 =jue :'fg

(b) The DOM structure of the refined problem

(c) The DOM structure of the wrapper response

Figure 4.6: The Mediator’'s DOMs at Different Stages

49

of tasks®, each of which is tailored to refining some type of information with
a domain-level attribute, e.g., locations. The location-refinement task is an
information-collection task, that is, a task accomplished by invoking a request
to some of the wrapped resources. When an information-collection task is
reached, the mediator sends a request to the wrappers of the resources pro-
ducing the desired output given a particular set of inputs. For the location-
refinement task, the mediator queries the wrapper of the airport database at
www.airportcitycodes.com/aaa/ctydef, which is static. The wrapper finds all
the airports in Edmonton, which is YEG, and in Victoria, which are YYJ and
YWH. The mediator receives the airports and updates the DOM. As a result,
the origin and destination are defined at the lowest, most precise domain level
for locations. The refined input DOM is as seen in Figure 4.6(b).

Next, the mediator proceeds to the task of finding possible tickets for the re-
fined problem (task get tickets in Figure 4.3). This is yet another internal
task, and decomposed to two information-collection subtasks. One is get tick-
ets from ITN, and the other is get tickets from lowestfare. The task, get tickets
from ITN, is performed by the wrapper for the Web site, www.itn.net. When
the ITN wrapper receives the problem, i.e., the input DOM, from the medi-
ator, it generates two problems with the combination of different origin and
destination airports. Then, for each problem, it does the following. First, the
Request Generator maps the problem specification to the appropriate GET re-
quest based on the protocol template of www.itn.net. The request includes all
the required values of the parameters, such as the origin, destination, depar-
ture and return date, and is then taken by the TaMeX Client to invoke the ITN
Web site. After the HTML response is returned from the site, it is cleaned by
the HTML Tidy to produce a well-formed HTML document. Next, since ITN
response documents do not contain concepts for forward leg and return leg (see
5.1 for a detailed discussion), the TaMeX Parser extracts the instances of all
the constituents, namely hop and fare, according to the extraction rules speci-
fied in the domain-model extension. Then the TaMeX Combiner reconstructs
a set of instances of forward leg, return leg and air ticket from the extracted

instances of hop to conform to the domain model schema. Finally, it returns

3Although there is currently only one element in this set, the idea is that additional refinement,
such as time refinement, can be added.

50

all the instances of air ticket in the form of a DOM as shown in Figure 4.6(c)
to the mediator. Similarly, the mediator receives the other collection of tickets
as the response from the wrapper of www.lowestfare.com, and combines to
produce a DOM of all the tickets.

The last subtask of ezecute query is infer attributes. This is an internal task,
and thus is performed by one of the internal processes of the mediator itself.
The mediator derives additional attributes, such as the number of hops in
either leg, for each ticket in the collection.

. Displaying Results
The ticket results are displayed by two different XSL stylesheets.

As the response to the user’s request for the task of ezecute query, the summary
of the air ticket collection is displayed in the browser through a stylesheet as a
table capable of being sorted by the different ticket attributes. This function-
ality enables the user to compare the tickets based on his own preferences, such
as price, departure/arrival airports, and so on. Figure 4.5(c) shows the medi-
ator’s response including the problem specification on the top and a sortable

table of the result summary.

Finally, the user selects Display Tickets to view the detail of each ticket. The
mediator proceeds to another user-interaction task. The same collection of air
tickets is presented by being applied by another stylesheet to show the full
ticket details as in Figure 4.5(d).

51

Chapter 5

Conclusions

Incompatible interaction models and differences in terminology prevent users from
combining the services of different Web sites. These incompatibilities are, in some
cases, intentional and designed to prevent service and price comparisons for business
competition reasons. However, even in cases where the different Web sites offer
complementary services, such as air-travel reservations and weather forecasting, the
integration of information is often difficult and tedious. In general, the effort does
not transfer well to additional sites of the same domain. Nevertheless, users of
the World Wide Web would be provided with more and better services if some
interoperability were possible.

In this thesis, we designed and developed a task-structure based mediation envi-
ronment for establishing interoperation of Web-based applications that is extensible
and can be, at least partially, automated. The objective of the TaMeX environment
is to support task-specific interoperation of a collection of existing applications, as
opposed to transforming these applications into generally interoperable components.
Applications are wrapped to interoperate for supporting a particular user task. As
a result, the domain model of the mediator is designed to express the types of infor-
mation that are necessary for the accomplishment of the task, and not necessarily
all types of information that the underlying applications can process. Furthermore,
the application wrappers make available to the mediator not all the applications’
services, only the ones relevant to the mediator’s task. Finally, the mediator’s task
structure controls the locus of information exchange to deliver the solution to the

user’s task.

52

5.1 Ewvaluation and Reflection
5.1.1 The Mediation Architecture

In TaMeX, the mediation architecture is task-structure based. The main properties
of this design are that the implementation is explicitly separate from the specifica-
tion, and the aggregate system has a highly flexible integration architecture.

Separation of Specification from Implementation

In TaMeX, the task structure of the aggregate system is not only a specification
of the behavior designed in the mediator, but also a roadmap for the developer
designing and integrating different components of the aggregate system. High-level
tasks correspond to a menu-like interface allowing the user to select the services
provided by the mediator; information-tasks correspond to a set of wrappers through
which the mediator interacts with the underlying resources; user-interaction tasks
correspond to user interfaces through which the mediator exchanges information
with the user; and internal tasks correspond to additional methods or procedures
for further domain-specific reasoning. However, the implementation is absolutely
hidden from this specification. It depends on the user’s browser for the interaction
tasks, on the wrapped applications for the information-collection tasks, and on the
mediator’s implementation for the internal tasks. The separation of the system
implementation from the specification provides an abstract view of the aggregate
system and allows the flexibility of implementing each component of the system
independently.

Declarative modeling languages

Another two important elements of the mediator’s design in TaMeX are the domain
model and task structure, both expressed in XML. The declarative task-structure
language allows the lightweight and seamless integration of new resources. The
canonical domain model language, supported by XML Schema, provides a uniform
and semantic data schema for the domain-specific conversations among heteroge-
neous applications. This is a knowledge engineering effort, which could benefit from
research on ontology engineering [1]. In fact, various business and technology sec-
tors have embarked on the specification of standard XML schemas for exchanging
information in their domains of interest. As such standard domain descriptions be-

come more common, the design of TaMeX-style mediators, and correspondingly, the

53

integration of existing Web applications, will become more straightforward.

5.1.2 The Wrapper Construction Algorithm

The wrapper construction algorithm developed in TaMeX is based on the hierar-
chical structure of HTML documents. The representation languages for documents
and grammar are general. HTML documents and the extracted information are
both represented in Document Object Model (DOM). The extraction grammar is
specified in XPath expressions. In fact, we have constructed wrappers by hand that
conform to the same representation and behave similarly at run-time.

The grammar-learning algorithm has been evaluated using both generated test
data and actual HTML pages from travel planning Web applications. The generated
test data consisted of encapsulated and contiguous target concepts in a variety of
HTML structures including lists, tables, and paragraphs. The algorithm was able
to successfully learn the grammar for all six sets of test data when given a small set
of exclusive annotated examples for each set. The learned grammar was then used
to extract all instances of the encapsulated concept from the generated pages.

The algorithm was also used to wrap two popular travel planning Web sites:
www.ezpedia.com and www.itn.net. The target concept was encapsulated in the
first and contiguous but not encapsulated in the second. In the effort of wrapping
these sites, we encountered some problems that show the limitations of the current

algorithm in facing the following situations.

Missing intermediate concepts

Although all elementary leaf entries of the target concept exist in the responses
from ITN and Expedia, some intermediate constituents are not encapsulated. For
example, in Expedia, the ticket concept is encapsulated, but the forward and reverse
legs are not. This means that the forward and reverse legs are not delimited by
HTML tags in the application responses. In fact, the ticket simply consists of a
set of hops, some of which constitute the forward leg and some the reverse. In
this case, the algorithm fails to identify the XPath expressions for the forward and
reverse legs. In fact, this problem is due to a mismatch between the structure of
the concept in the domain model and the underlying database schema of the Web
application: the first assumes a more complex structure than the second does. At

this point, to address this problem, we present the algorithm with the examples

54

of the target concept assuming different variants of the canonical domain model
produced by removing the intermediate subconcepts. As soon as the examples of
one variant are identified, the grammar for this variant is produced. During run-
time, the instances conforming to the variants will be extracted and used to compose

the instances of the concept conforming to the domain model.

Non-encapsulated and non-contiguous concepts

A further complication occurs when the ticket concept itself is not encapsulated in
the application’s response, as is the case of ITN. In this case, the algorithm fails to
identify the examples of all concept variants. Currently, the algorithm hypothesizes
that the concept is not encapsulated. It then attempts to identify instances of its
constituents starting from the more complex toward the simpler ones. Again, once a
grammar is formulated, it is used to produce a wrapper for this application that will
construct instances of the target concept, as defined in the canonical model, based on
the constraints of this concept. The wrapper construction algorithm is still limited
in that it does not address the problem of learning non-contiguous concepts. The
algorithm needs to be extended in this dimension and we believe that the constraints
of the domain model will be extremely useful.

“Unified” constituents

The algorithm also faces problems if the HTML response of the application has
more than one constituent of the target concept in the same HTML node, such as
the origin and destination presented within the same <TD> tag and separated by a

 tag. An extension is needed to further enrich the language expressions for the
extraction grammars. The learned XPath rules can be extended with expressions of

semantic delimiters in addition to HTML tags.

“Hidden” constituents

The current algorithm is only able to “extract what can be seen”, i.e., the informa-
tion which is the value of an element node in the HTML document. Therefore, the
information that is presented as an attribute value, such as a link presented as the
value of <A href>, will be overlooked. To solve this problem, the rule expressions
need to be further extended to inciude HTML attributes.

55

The algorithm is effective but still quite brittle and limited. As the complexity
of the concepts to be extracted from the application response increase and the
structure of the response HTML document becomes flatter, the algorithm becomes
less effective. This is not surprising, since it corresponds to learning more from less.
To our knowledge, until now, related research has focused on simpler concepts.
Finally, another challenging problem we have encountered in the process of inte-
grating Web applications is the fact that Web-based applications frequently change
their request protocol and the presentation of their responses, and consequently
change the structure of the HTML documents. Currently, we recognize that the
underlying wrapped application has been changed when the resource wrappers fail
at run-time. A more robust technique is needed to recognize at run-time when the

wrapper needs to be updated and to proceed to the learning process automatically.

5.2 Future Work

In the future, we plan to extend TaMeX mainly in two dimensions. One is to
improve the complexity of the wrapper construction algorithm. The other is to
improve the intelligence of the mediator. More specifically, we will focus on the

following problems.

Extending the wrapper learning algorithm As we discussed in Section 5.1.2,
the current wrapper learning algorithm is useful but still fairly naive. When the con-
cept structure gets more complex, and more mismatches occur between the struc-
ture of the target concept and the schema of the underlying resource, the algorithm
becomes less effective. We believe that the variants of the concept and domain con-
straints can be useful to solve the problem. However, a more intelligent algorithm
is needed to diagnose the cause of failures, and to automatically take the correct
action, such as generating the concept variants. In addition, to be able to extract
more information from HTML documents, the grammar expressions need to be fur-
ther enriched so that semantic delimiters and HTML attribute values are included
in addition to HTML tags.

Wrapping Web resources that require multi-step interactions The current

wrapper is only able to simulate single-step user actions to interact with the Web

56

resource. However, for many existing Web sites, the user has to follow a sequence of
steps in order to obtain the desired information. In such cases, the wrapper has to
act on behalf of the user to have conversations with the Web resource. The difficulty
is that the sequence of interactions is non-deterministic and based on the various
user inputs. Ome possible solution is to have the learner record all the possible
interactions while an expert user interacts with the Web resource. The learner would
then generate a finite-state automaton modeling the resource. Each node would
represent every different screen and each edge would represent the possible user
action and possible user inputs. Such an automaton would be used as a “map” to

guide the wrapper in completing the sequence of interactions with the Web resource.

Supporting dynamic binding The main strategy of the task-based mediator is
its ability to interpret its non-deterministic task structure at run-time to dynamically
combine the wrapped applications. In the current version of the prototype, the
interpretation process is hard-coded. To achieve dynamic binding, during run-time,
the user could activate the higher level tasks which would be sent as part of a
request to the mediator. The mediator could then decompose the task based on
the task structure to the point where a set of non-decomposable operators would be
identified. For an operator corresponding to a task of collecting information from a
Web resource, the mediator would invoke the corresponding wrapper. This dynamic
run-time binding could result in highly flexible system integration.

Supporting wrapper registration One of the requirements for an aggregate
system is its extendibility. Therefore, it becomes very important for such a system
to be able to “employ” a new resource with the least effort from the developer and
with a minimum effect on the existing components of the system. This could be
done by having a wrapper registry table, which is a list of all the wrappers of the
underlying resources. The table would be represented in XML and would specify all
the resource-specific information, such as the location of each underlying resource,
the function or services it provides, its protocol to request the services, its grammars
to extract desired information, etc. The table would be expanded over time as new
resources are joined in. During run-time, the mediator will look up the table for the

wrappers that provide appropriate services to complete the specific tasks.

57

Problem Generalization One of the features of a TaMeX mediator is its ability
to solve ill-defined problems. The mediator is able to refine a problem by either
generalizing or specifying some of its attributes based on the domain level concept.
In the current version of the TaMeX mediator, only specialization is implemented.
However, generalization is extremely useful when the user’s query does not give any
solutions. It could provide the user with suggestions or alternatives to his original

problem.

Solving the naming problem A critical problem for integration of heteroge-
neous applications is the naming problem. Different resources have their own nam-
ing schemas. This can cause difficulties not only during the learning phase, such as
while the learner tries to match the user problem to the resource protocol, but also
during run-time while the wrapper attempts to translate the extracted information
to a common language. In the former case, the learner needs to have the full knowl-
edge of all the naming schemas in order to map the sample problem specifications to
the learning samples of the source protocol and extraction grammar. A solution can
be, for each type of object involved in the domain, to designate a recognizer that is
responsible for recognizing a specific type of object in different naming schema. In
the later case, the wrapper of each individual resource has to perform the transla-
tion, so every wrapper “speaks” in the same language. A possible solution is, for
each wrapper, to have a mapping table that contains the naming schema for each
object in the domain. During the run-time, the wrapper looks up the table for the
correct translation from the source-specific naming schema to the one agreed to by
all the wrappers and the mediator. Both the mapping tables and the recognizers

should be extendable as the number of integrated resources increases.

Supporting multiple users The current TaMeX mediator only deals with single
users. It can be extended to handle multiple users by using HTTP cookies and a
persistent XML database. Each user would be sent a cookie ID the first time using
the system. Every query and its response would be stored in the database under each

user based on the cookie ID. The database would also store each user’s preferences.

58

5.3 Contributions

The central contribution of this thesis is the development a task-structure based me-
diation architecture for the integration of domain-specific Web applications through
XML. More specifically, this thesis has made the following contributions.

e Knowledge Representation in XML

TaMeX provides the specification of two languages in XML in support of the
design of an aggregate system:

— the wrapper-specification language, and

— the mediator task-structure specification language and the associated

stylesheet for its presentation to the user.

The wrapper-specification language enables the description of the protocol for
accessing the underlying Web resources and the grammar for extracting the
data provided by the resources. The modeling language for the med:ator task
structure provides a clear view of the data flow of the application and easy
identification of its sub-components. Also, because the task-structure XSL
stylesheet is generic, i.e., conforming to the data schema of the task model,
it not only makes the interface design simpler, but also ensures the interfaces
of all TaMeX-developed applications give a consistent look and “speak” with
the same terminology. These features make the aggregate applications easy to

learn and to use.

¢ Grammar-Learning for Complex Concepts with Multiple Instances

The wrapper-learning algorithm of TaMeX is also novel. It takes advantage
of the hierarchical structure of HTML documents to discover the rules for
extracting the desired data. It observes the regularities within the tree struc-
tures of HTML documents, and generates a grammar for extracting multiple
instances of a domain concept interspersed among irrelevant HTML content
without requiring any special landmarks or delimiters. Furthermore, with the
support of the domain constraints, the algorithm is able to generate the most
complex class of wrappers identified by Kushmerick (33, 34].

e Generic, Reusable System Implementation

59

Although the TaMeX environment was not developed as an application frame-
work (36, 20], its design and, to some extent, the implementation of some of

its components, are generic and reusable across similar applications.

The development of a mediator is based on its task structure. The task struc-
ture describes the internal processing logic of the mediator and the informa-
tion flow within the aggregate application. The high level tasks correspond
to a user’s high level options of the tasks he can perform. The leaf tasks,
either user-interaction tasks or information-collection tasks, implement the
mediator’s information exchange with either the user or the wrappers of the
integrated resources. The internal tasks reflect the internal data processing
within the mediator. The task structure enables the lightweight and seamless

integration of newly developed components with the existing functionalities.

Furthermore, the generic-wrapper component, to which the wrapper proto-
col and response grammar are plugged, is generic. It consists of the Request
Generator for mapping application problems to resource protocols, the TaMeX
Client for sending requests and retrieving responses, the TaMeX Tidy for clean-
ing HTML response documents, the TaMeX Parser for extracting desired data
in HTML documents, and finally the TaMeX Combiner for constructing in-
stances of target concepts from their constituents. These components complete
the entire Web resource wrapping process, and are reusable for any Web re-
source in any domain. The construction of a source specific wrapper requires
simply specifying the domain model and learning the source description, in
the XML resource-description language, by way of the wrapper construction
toolkit.

The Travel-Planning Assistant: A Proof-of-Concept Prototype

The TaMeX development environment has been evaluated with the develop-
ment of a proof-of-concept prototype in the travel domain. The travel-assistant

mediator is connected to three wrappers for three different Web resources,
which are

~ a static online airport database, www.airportcitycodes.com/aaa/, the

wrapper for which was constructed manually, and

—~ two airfare-finding services of two Web applications,

60

www.lowest fare.com and www.itn.net.

The user of the travel-assistant prototype can specify a travel problem in tefms
of origin and destination locations and departure and arrival times. The medi-
ator can elaborate the problem specification to refine the locations into several
airports close to the specified origin and destination and then, it proceeds to
query the airfare-finding applications for specific ticket information. The re-
sults are collected, tabulated and displayed to the user, who can compare them
by sorting on different attributes, such as price, departure airport, etc.

This thesis has presented TaMeX, a task-structure based mediation architecture
for structurally developing new applications by integrating multiple Web resources
in a specific domain. An aggregate system developed in the TaMeX environment
enables the communication among heterogeneous Web applications in a common
XML-defined language and the collaboration among them towards the completion
of complex tasks. TaMeX also provides a semi-automatic toolkit for developing
wrappers for Web applications based on the hierarchical structure of HTML docu-

ments.

61

Bibliography

[1j A.Farquhar, R.Fikes, W.Pratt, and J.Rice: Collaborative Ontology Construc-
tion for Information Integration. Knowledge Systems Laboratory Department
of Computer Science, KSL-95-63, August 1995.

[2] A.O.Mendelzon, G,A.Mihaila, and T.Milo: Querying the World Wide Web. In
the proceedings of the International Conference on Parallel and Distributed
Information Systems (PDIS’'96), pp.80-91, Miami, Florida, 1996.

[3] A.Sahuguet, and F.Azavant. Looking at the Web through XML glasses.
Coopls’99, 1999.

[4] A.Sabuguet and F.Azavant: Building Intelligent Web Applications Using
Lightweight Wrappers. Data and Knowledge Engineering (to appear), 2000.

[5] A.Tomasic, L.Raschid, and P.Valduriez. Scaling Heterogeneous databases and
the Design of DISCO. In the proceedings of ICDCS, 1996.

[6] B.Chandrasekaran: Task Structures, Knowledge Acquisition and Machine
Learning. Machine Learning 4:341-347, 1989.

[7] B.Chidlovskii, J.Ragetli and M.Rijke: Wrapper Generation via Grammar In-
duction. In the proceedings of 11th European Conference in Machine Learn-
ing (ECML'2000), Barcelona, Catalonia, Spain, 30 May - 2 June 2000.

[8] B.Ludascher, and A.Gupta: Modeling Interactive Web Sources for Information
Mediation, Intl. Workshop on the World-Wide Web and Conceptual Model-
ing (WWWCM'99), Paris, France, LNCS, Springer, 1999.

[9] B.Ludascher, Y.Papakonstantinou, and P.Velikhov: A Framework for
Navigation-Driven Lazy Mediators, ACM Workshop on the Web and
Databases (WebDB'99), Philadelphia, USA, 1999.

(10] C.A.Knoblock, S.Minton, J.L.Ambite, N.Ashish, P.J.Modi, I.Muslea,
A.G.Philpot, and S.Tejada. Modeling Web Sources for Information Inte-
gration, Proceedings of the 15th National Conference on Artificial Intelli-
gence (AAAI'98), Madison, WI, USA, 1998.

[11] C.Bontempo. Datajoiner for AIX. IBM Corporation, 1995.

[12] C.Hsu and M.Dung: Generating Finite-state Transducers for Semi-structured
Dgas.;:a. Extraction from the Web. Information System, Vol. 23, No. 8, pp. 521-538,
1998.

[13] D.Konopnicki and O.Shmuelii WWW Information Gathering; The W3QL
Query Language and the W3QS System. In ACM Transactions on Database
Systems, September 1998.

{14] Document Object Model (DOM) Level 2 Specification. htip
/ [www.w3.org/TR[1999/CR — DOM - Level -2 — 19991210/

62

[15] E.Stroulia and A.K.Goel: A Model-Based Approach to Blame Assignment:
Revising the Reasoning Steps of Problem Solvers. In the Proceedings of the
13;11 Annual Conference on Artificial Intelligence, pp. 959-965, AAE Press,
1996.

[16] E.Stroulia and A.K.Goel: Redesigning a Problem Solver’s Operators to Improve
Solution Quality. In the Proceedings of the 15th International Joint Conference
on Artificial Intelligence, pp. 562-567, 1997.

[17] E.Stroulia, J.Thomson, Q.Situ: Constructing XML-speaking wrappers for Web
Applications: Towards an Interoperating Web. In the Proceedings of the 7th
Working Conference on Reverse Engineering (WCRE'2000) 23-25 November
2000, Brisbane, Queensland, Australia, IEEE Computer Society.

(18] Extensible Markup Language, htip : //www.w3c.org/ XML

[19] Extensible Stylesheet Language (XSL) Version 1.0 W3C Working Draft 27
March 2000. http : //www.w3.org/TR/zsl

[20] G.Froehlich, H.J.Hoover, L.Liu and P.Sorenson: Hooking into Object-Oriented
Application Frameworks. In the Proceedings of the 1997 International Confer-
ence on Software Engineering. Boston, May 1997.

[21] G.Wiederhold and M.Genesereth: The Conceptual Basis for Mediation Ser-
vices, IEEE Expert, 1997, pp. 38-47.

[22] H.Marais and T.Rodeheffer: Automating the Web with WebL. Dr.Dobb’s Jour-
nal, January, 1999.

(23] HTTPClient Library. http : //www.innovation.ch/java/ HTT PClient/

[24] L. Muslea, S.Minton and C.Knoblock: A Hierarchical Approach to Wrapper
Induction. 3rd Conference on Autonomous Agents 1999.

[25] I.Muslea, S.Minton and C.Knoblock: Hierarchical Wrapper Induction for
Semistructured Information Sources. (To appear) In the Journal of Autonomous
Agents and Multi-Agent Systems (special issue on “Best of Agents’99”).

[26] J.L.Ambite, C.A.Knoblock, I.Muslea, and A.Philpot: Compiling Source De-
scriptions for Efficient and Flexible Information Integration, Technical Report,
Information Sciences Institute, University of Southern California, 1998.

[27] J.Lu, J.Mylopoulos, and J.Ho: Towards Extensible Information Brokers
Based on XML, 12th Conference on Advanced Information Systems Engineer-
ing (CAiISE*00), 7-9 June 2000, Stockholm, Sweden.

[28] K.Syscara, J.Lu, M.Klusch, and S.Widoff: Matchmaking among Heterogeneous
Agents on the Internet, Proceedings of the 1999 AAAI Symposium on the
Intelligent Agents in Cyberspace, 22-24 March, 1999, Stanford University, USA.

(29] L.Liu, C.Pu and W.Han: XWRAP: An XMI-enabled Wrapper Construction
System for Web Information Sources.

(30] L.M.Haas, R.J.Miller, B.Niswonger, M.Tork Roth, P.M.Schwarz, and
E.L.Wimmers. Transforming Heterogeneous data with Datacase Middleware:
Beyond Integration. IEEE Data Engineering Bulletin, vol.22, no.1, pp.31-36,
1999.

[31] M.Craven, D.DiPasquo, D.Freitag, A.McCallum, T.Mitchell, K.Nigam and
S.Slattery: Learning to Extract Symbolic Knowledge from the World Wide
Web. Proceedings of the 15th National Conference on Artificial Intelli-
gence (AAAT'98), pp. 509-516, Madison, WI, USA, 1998.

63

[32] Muffin, World Wide Web filtering system. http : /[muf fin.doit.org/

[33] N.Kushmerick, D.Weld and R.Doorenbos: Wrapper Induction for Information
Extraction. In the proceeding of 15th International Joint Conference on Artifi-
cial Intelligence (IJCAT'97), Nagoya, Aichi, Japan, 23-29 August, 1997.

[34] N.Kushmerick: Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence 118, pp. 15-68, 2000.

[35] R.Elio, and A.Haddadi: On Abstract Task Models and Conversation Policies.
Specifying and Implementing Conversation Policies for Agents, 3rd Interna-
tignal Conference on Autonomous Agents, pp. 89-98. Seattle, WA, USA, May
1999.

[36] R.Johnson, and B.Foote: Designing Reusable Classes. Journal of Object-
Oriented Programming, June/July 1988, Volume 1, Number 2, pages 22-35.

[37) SAXON. http : / [users.iclway.co.uk/mhkay/sazon/

[38] S.Heiler: Semantic Interoperability. ACM Computing Surveys. 27(2):271-273,
June 1995.

[39] The HTML Tidy utility. http : / [www.w3.org/People/ Raggett/tidy/

[40] V. S. Lakshmanan, F. Sadri, and I. N. Subramanian: A Declarative Language
for Querying and Restructuring the Web. In the proceedings of 6th Interna-
tional Workshop on Research Issues in Data Engineering, RIDE'96, pp 12-19,
February 1996.

[41] XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November
1999. http : / /www.w3.org/TR/zpath

[42] XML Schema, http : //www.w3.org/TR/zmlschema — 1/, http
/ [www.w3.org/TR/zmischema —2/.

[43] Y.Arens, C.Y.Chee, C.Hsu, and A.Knoblock: Retrieving and Integrating Data
from Multiple Information Sources. International Journal of Intelligent and
Cooperative Information Systems. Vol. 2, No. 2, pp. 127-159, 1993.

[44] Y.Papakonstantinou, H.Garcia-Molina, and J.Widom: Object Exchange Across
Heterogeneous Information Sources. In the proceedings of IEEE Conference on
Data Engineering. pp. 251-260, Taipei, Taiwan, 1995.

Appendix A

The Languages

A.1 Domain Model Language

Domain model language is supported by XML Schema specified at
http : [[www.w3.org/TR/zmlschema -1/,
http : [/www.w3.org/TR/zmlschema —2/.

A.2 Task Structure DTD

<IELEMENT taskModel (task+)>
<'ELEMENT task (input*, output*, (subtask+) | operator)>
<!ELEMENT subtask EMPTY>
<!ELEMENT operator (#PCDATA)>
<IELEMENT input (#PCDATA)>
<!ELEMENT output (#PCDATA)>
<!ATTLIST taskModel name CDATA #REQUIRED>
<!ATTLIST task
name CDATA #REQUIRED
id ID #REQUIRED
type CDATA #REQUIRED
description CDATA #REQUIRED
>
<!ATTLIST subtask
name CDATA #REQUIRED
id IDREF #REQUIRED
>
<!ATTLIST operator
xmlfilename CDATA #IMPLIED
xslfilename CDATA #IMPLIED
servlet CDATA #IMPLIED
>
<IATTLIST input required (yes | no) #REQUIRED>

A.3 Resource Protocol Specification DTD
<!ELEMENT request method (cookie+) form)>

65

<!ELEMENT form (parameter+)>
<IATTLIST method type (GET | POST) #REQUIRED
url CDATA #REQUIRES >
<IATTLIST cookie name CDATA #REQUIRED
value CDATA #REQUIRES >
<!ATTLIST parameter
name CDATA #REQUIRED
value ID #REQUIRED
. input (YES | NO) “NO”

66

