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' ABSTRACT
A caustic flooding study, uiing Ottawa sand and native-
, ¢rude oil, was conducted to investigate the effects of

linear rate.end'adsorbtion on qi] recovery. Thirteen ruhe»

 were conducted, twelQe with the sodium Hydroxide solutions
‘displacing the Wainwright crude oil and a final displacement
of an artificial brine by a 0.1 % by weight sodium hydroxide‘

solutioq. A1l displacements were carried out at 23°C.

Three different sodium hydroxide concentrations were
used and an improvement in oil recovery, over that obtained
for a brine flood, was noted for the 0.01 and 0.1 % by
weight displacemdMts but not for the 2.0 % displacement. 0il

‘ recovery at two pore velumes injected‘was superior in the
0.01 % displacement, while the breathrough recovery was °
superior in the'O:1';;displapements.lginear rate had
differing effects on the 0.0t and 0.1 % displacements.

The oil recovery in the 0.1 % by weight displacements,
where the7recovery mechanism appeéred to be emulsification
and entrainment, seeﬁed essentially independent of rate.
Only at the extremelrates, 0.03 and 14.49 m/day, was the

14

recovery significantly affected. ~ .

The oil recovery in the O.Q1 % by weight displacements,
where,fha#;eéovery mechanism was postulated to be 
emulsifipatibn and entrapment, exhibited a maximum of 75.5 %
of the initial oil in place at 3.05 m/day;.‘,f% . ‘ |

Consumption of sodium hydroxide by the Sandpeckhwas

found to be significant.

e .
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NOMENCLATURE
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1. INTRODUCTION
Large quantities of viscous crude oil exist throughout the
wor id: maximizing the recovery from these deposjts is of
great interest in theée days of ever-increasing/oil prices.
It is well known that conventiondl water flooding, although
increasing the recovery of oil, leaves a substantial
residﬁal oil saturation. The possibility of reducing this
residual saturation via the use of chemical additives is, as
a result, being actively investigated.

Caustic is just one of the many possible additives that
has been, and cpntinues to be, studied. Although many
vafiables, such as interfacial tension, are known to affect
{Le recovery process, little theoretical work has been
attempted, and no satisfactory mathematical representation
- of the process exists at this time. -

The present study was devoted to the study of the
effect of rate on oil recovery in caustic floods, and the
adsorption of caustic on the rock surfaces. It is hoped that
a better understanding of the adsorption phenomenon could

lead to a more complete theoretical framework for caustic

flooding.

1.1 Organization of the Thesis

A review of the major works relating to caustic
flooding is presented in Chapter 2. The vast quantity of

literature on the many aspects of caustic flooding



neceséitates that this is not a comprehensive review, but

" “"rather a review of sélected works.{The proposed recovery
mechanisms are presented, and some of th& factors affecting
them examined. |

Some of the factors effect1ng caustic flooding are
g1ven in the third sect1on of this chapter. The recently
reported possibility of time dependence is briefly examined
in the fourth section.

The final section of thi§ chapter is devoted to the
basic principles of adsorption and dispersion theory as
applied to miécibfe displacements The evaluation of the
various rate and d1sper51on constants is examined.

The third chapter states the various specific areas
that the study investigated. ‘

The materia]s_and exberimental technique employed
during this study are outlined in the fourth chapter. As the
techniques used are routine, they are“hentioned dnly
brieffy. ‘

Presented in Chapter 5 are the results of the tests.
These results are discussed in an atteﬁpt to relate them to
the currently accepted mechanisms'of'éaustic floodihg. The
results and conclusions of this study are summarized in
Chapter 6.

The final chapter outlines specific recommendations for
fur ther ﬁtudy. It is hoped thatework in these areas will
providé further insight into the mechanisms of caustic~

flooding.
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2. THEORY AND LITERATURE REVIEW

A\

2.1 History of Chemical Water Floqg¢ag \

| € \
\

The use of .chemical additives in flood water was

proposed by Atkinson(1927). The benefits of alkaline flood
water additives were Known even before this as she$p by the
works of Nutt1ng(1925) Uren and Féhmy(1927) and Begktrom

and Van Tuy1(1927). . \\

\
Nutting(1925) described the add1;10n of alkali saf&s,

" such as sodium carbonate, to the flood\water in order to

improve waterflood recovery. He dismissed the use of \
stronger bases, sodium hydrémige/fbr exémple, on the grounds
that they would be excessively reactive with the crude oil

and would be used up by the oil before they could be

effective. Desp1te this, Atkinson's paten of 1927 described

the benefits of stronger bases 1nc1ud1ng sodium and
potassium hydrox1de Bekstrom and Van Tuyl| 1927) also
repor ted improved 011 recovery w1th the use of both strong
and weak bases. Uren and Fahmy(1827) confirmed the results
of Bekstrom and Van Tuyl(1927) and attributed the increase
to the release of trapﬁed oil from the roc:’surface. | ,
Nutting(1925) had found that the aikali prevented the
formatiqﬁ of semi-solid, crude-oil-water interfacial fiims;
however, he did not correlate this with increased recovery.
Atkinson(1927), on the other hand;, recognized that the

capillary and adhesive properties of the oil would cause it

to be held in the pore structure, and that the addition of

3 - | “ »®



an alkali overcame these forces and released the oil. This
mechanism was postulated to be a combinatién of wettability
-alteration and interfacial tension reduction in agréeement
with the findings of Bekstrom and Van Tuyl(1927). |

Bekstrom and Van fhy1(1927) also maintained that the
formation of emulsions was undesifablgf This conflicts with
the views of Subkow(1942), who considered émulsification'to
be the essent:;l first step in the recovery process. He
stated that emulsification must be followed by the

entrainment of the emulsion in the flowing alkali .stream in

order to increase oil recovetry. T

2.2 Proposed Recovery Mechanisms

" Johnson(1976) performed a thorough review of the status -

of caustic flooding methods and classified the proposed

mechanisms into }he following four types: -
1) Emulsification and Entrainment
2) Wettability Reversal (oil-wet to water-wet)
3f- Wettébility Reversal (water-wet to oi]-wet).
4) Emulsification and Entrapment

Eagp of these mechanisms 55 reviewed below.

\

2.2.1 Emulsification and Entrainment

This mechanism was first proposed by Subkow(1842) in
relation to the recovery of bitumen. He stated that the
formation of an emulsion“was the essential first step in the

recovery pfocess, followed by fhe entrainment of this



emulsion in the flowing alkali with the mixture subsequent ly
produced. He postulated that the alkali solution caused thé ’
formation of emulsification agents which lowered the
interfacial tension. These agents were formed from ftactions
between the sodium hydroxide and the organic acids pfesent
in the bitumen. The bitumen was emulsified into an
oil=in-water emulsion and stripped from the sand grains. He
foresaw the dangers of using high concentratiqns of alkalj
on two grounds: /
1) Excessive alkali could cause the formation of a
waferﬁin-éil emulsion.
2) Tﬁe high electrolytic concentrations could
prevent the format'ion of the emulsien. ’
Reisberg and Doscher(1956) studied the effect of pH on
the oil-water interface usfﬁg a Ventura, California, crude
oil. They concluded that for the same interfaci&i tension to
"0il, a caustic solution would displace the oil, while an
acid solution would not. They éttributed this to the
stability of the rigid films at the interface confirming the
earlier work of Nutting(1925). The rigid film was isolated
and found to be a highly oxygenated, low melecular weight
constituent of the resins and asphaltenes found ih the oil.
This confirmed the earlier work of Dodd, et al.(1852).
Reisberg and Doscher (1956} felt that thé abilﬁt9 of the
causfiq to prevent adherence of the oil.to the rock surfaces
was important; however, they placed brimary importance on

the emulsification and entrainment mechanism. They concluded .

\ ’ ' -
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that caustic flooding wasvimpractiéal because adsorption on,
and reactlon w1th, the rock and dlsplacement of connate
‘water would Cause, the alkali to fall\beh1nd the oil-water
v1nterface. As a result. they concludég that an jncrease in
oil recovery would not be evident pnt%l severai pore volumes
of caustié had béen iﬁ&ected, an economjcally‘prohibitive
situatibn. |

Chan(1879), working with Wainwrighé crude oil,
concluded emulsification of the oil to be vital for
increased oil recovery. This conclusion was based on the
insignificant recovery increase in tests where

emulsification did not occur.

2.2.2 Wettability Reversal (0il-wet to Water-wet)

Wagner and Leach(1958) obtained improved oil recovery
through the injection of chemical solutions which reversed
rock wettability from oil-wet to water-wet. The chemicals
included acids, bases and certain salts. They recognized
that the improvement could be attributed to the lmproved
mob111ty ratio, due to favourable changes in oil and water
ﬂ‘ég&wve permeabilities, in the region where oil was still
f1dwing. This decrease in mobility ratio could also

tenqﬁ%frily halt fhe gradual increase in producing water-oil

rat19 Ny _ .
;xreasoned that the injected water would displace
'the*connate water in féont of it and, thus, the injected

chemical would only. contact the residual oil left behind the



. ~ A
connate water bank. Since, in a water-wet system, the

residual oil is discontinuous they concluded that a
water-wet system would not reépond to this wettability
éhange,‘

The acidic solutions were ‘dismissed on the grounds that
‘they are too reactive with most resequir rocks. -
Consequently Leach, et al.(1962) performed both laboratory
énd field iests using sodium hydroxide and obtained
impéovements in oil recovery in the regions where the
wettability change took place. These improvements were
similar to those obtained by Wagner and Leach!( 1958).

Mungan(13966.a) performed laboratory tests similar to
those of Leach, et al.(1962), and confirmed the improvement
in mobility ratio. He also found that, for his system, ‘the
process was temperdture dependent. The recovery mechanism
worked well at 71.1°C (160°F) but not at 21.1°C (70°F). This
temperature dependence was later confirmed py Cooper{13971),
ana attributed to the temperature senijtivity of interfacial
tension. A later paper by Mungam(1966.b) confirmed the
benefits of a wettability alterafion.from‘oil-wet to
water-wet on thé recovery of oil from Teflon cores.™

Ehrlich, et al.(1974) concluded that wettabi]ity
reversal was a viable process in light oil reservoirs. They
noted, hdweverj that if the interfacial tension w#s too low,
oil recovery would still increase, but the mechanism would
be emulsification and entrainment.

Scott, et al.(1965) found a significant increase in oil

o
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recovery with the use of weak caustic solutions. They
attributed the increase in oil recovery to a shift tn
wettability toward water-wet. Their core was initially-
"neutral or slighty oil-wet". The obserQed shift in the
unsteady state relative permeability curve, toward increased
o1l permeability, was offered, as evidence for the proposed
mechanism. -

Minssfeux(197;) presented similar evidence to support
his conclusion that the éddi;ion of caustic increased phe

wettability to water of the reservoir rock surfaces. He did

not,. however, report the original state of his system.

2.2.3 Wettability Reversal (Water-wet to oil-wet)

Cooke, e al.(1974) reported a third mechanism by which
sodium Rydroxide could imprbve oil recovery. They showed
that, under certain conditions of pH, sq]inity and -
temperature, some systems coy]d be converted from water-wet
to oil-wet. With the right crude oil, this reversal would be
accompanied by a dramatic reduction in interfacial tension.
The low values of interfacial ténsion aré due to the
reaction of the alkali with organic acids, at the water-oil
interface, forming'soaps. The solubility of tHese soaps, in
théxaqueous phase, is highly depenaent on its salinity. The
steps in the process are:,

1) Coﬁversion of the rock from Qater-wet to
oil-wet.

2) The previously discontinuous residual oi)

a



saturation becomes continuous, and oil is able
to flow.

3) The low interfacial tensioh induces the
formation of oil-in-water emulsions.

4) The emulsion droblets block off the smaller pore
throats causing large pressure drops in the
region. "

5/ The high pregsure gradients overcome the
capillary forces, already lessened by the lower

Ainterfécial tension. This further reduces the
residual oil saturation.
‘The result is that a high water content emulsion is left
behind in the pore structure. - . |
The most distinctive feature of this mechanism is the
wettability change. In this regard, as can be seen from
Figure 1, the bH and salinity of the aqueous pZyse appear
critjcal.‘ |
The work of Minssieux(1977), however, showed that when
salt was present in the ;austic solution the inferfacial
tension was not as low as that obtained in its absence. The
Emeraude crude used in part of his study typified this
finding; “however, the improvements obtained in oil recovery
were still attributed to a wettability shift toward oil-wet.
This would suggest that only part of the proposed mechanism

is required to improve oil recovery.
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¢
2.2.4 Emulsification and Entrapment

This final mechanism was proposed by
vennings, et al.(1974), and is restricted to water-wet
osystems. In this mechnism the emulsion is not produced as in
ehdlsificatidn and entrainﬁent. rather, it, blocks off the
smaller pore throats and increases vertical.and areal sweep
efficiencies. The residual oil saturation is not
substantially reduced and, as a result, this hechanism is
best suited to viscous oils where sweep efficiency is
normally poor.

This mechanisim invoiQes the residual oil being
emulsified in situ, due to the low interfacial iensiom, and
being carried by the flowing alkali until the oil droplets
are trapped in the pore throats. Thié résults in reduced
water mobility that improves both vertical and areal sweep
efficiencies.'Due to fhe fact that the emulsified oil
droplets are quickly trapped, the .residual oil saturation is
- not rqguced.

The two possible reasons the o%l droplets are not
pushed through the throats are : .

1) The interfacial tension is not low enough and/or

2) The pressure gradient is not high enough.

2.3 Factors Effecting Caustic Flooding

‘Various factors have been repQrted to effect the
caustic flooding procesé. These include:

1) Crude 0il Composition: It is agreed that the

nature of the polar compounds in the oil

s
‘“
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2)

3)

4)

12

]

" ) :
' determines whether the caustic will aid the

- recovery process. A good review of the subject

has been published.by Ehrlich(1974).

Minssieux(1977) suggested that the acid index
should be greater than about 0.5 mg KOH/g of
erude.

Water gomposifion: This is also an important

variable as significant amounts of multivalent
positive ions, such as calcium, can cause
excessive consumption of the caustlic.

Rock Reactivity: Minss1eux(1977) suggested that

the‘mlneralogy of the rock does not 1mpose any

f
special 11m1tat1ons, except in the case of large
amounts of gypsum. Johnson(1976), on the other

hand, states that the rock is important as it

,accounts for both consumption and adsorption of

“the caustic, in addition to playing a major role

in deciding which recovery mechanism will
C :

dominate:

. o)
Caustic Congentration: It-appears that the

optimal level of caustic concentration depends
upon the prevailing recoveryjmeehanism.
Johnson(1976) reports concentrations as low as
0.001 weight percent fof emulsification

i

mechanisms and as h1gh as 15 weight percent for

‘wettab111ty reversals.
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2.4 Time Dependence of Caustic FlggQ\hg -

Recent work by Chan(1979) has suggested the pog§vble

need of a minimum residence time for the caus&;c to reaét

] ,‘<
TS

‘ He suggested that the formation of the oil ?h -water
emu Mions was dependent on the time during wthh the caustic

#ms in contact with the system. He offered no explanation

for this (
- Minssieux(1977) studied the effect of time on the \l
1%terfécial tension between caustic solut{ons and various
crude oils. He found, with a Lacq crude (acid index 0.5 mg
KOH/g crude), Ehat the interfacial tensionc%ncreased with
time for any particular caustic concentration WAn Emeraude .
crude (Acid index 1.2 mg KOM/g crude) showed: the rsame- “trend *
Re1sberg and Doscher (1956) also studied the gffect of .
time\on interfacial tension aga1nst}de1onlzed“wa§er for 5
crﬂde'oils and purified‘penzene In afl cases, they*reported
a rapid decrease in 1nterfac1a1 ten51on’followed by a
gradual reduction toward some equflibrium value.. =;5> -
McCaffery(1975) studled interfacial tension,and ag1ngq;
behav1our of 4 crude oils. Le found that the interfacial
tension between the bils and sodium hydroxide solutions
increased with the interface age. The oils he studied
included Viking Kinsella Wainwright B, which displayed an L
ﬁnterfacia];tension minimum at about 0.25 wt. ¥% Sodium
hydroxide iﬁ injection water. This injection weter contafned

) ’
2 total calcium and magnesium ion content of approximately

12 grams/h3 (12 parts per million)._For“this system, the .\

v

e

[} 2

£,

»
*o

.l’

13
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intecfacial tension increased from abotit 8x10-5 N/m
_(0.08 dynes/cm) to about 4x10-3.N/m (4 dyngs/cm) over some .
70 minutes. An agueous phase of limesgoﬁe equilibrated
water.~containing.some 26 grams/m3 (26 parts per million)
calcium and magnesium jons, displayed a similar initial
interfacial tension, but increased more rapidly with aging,
reaching 1x10-2 N/m (10 dynes/cm) after only 20 minutes.
McCaffery(1975) also observed that the aging period
increased with the size of the oil droplet uséd. This was
believed to account for the longer duration of a low
interfacial tension for the injection water system.
Itlﬁas found that the sodium hydroxide in the aquééus

phase was not-noticeébly consumed during the aging periods.

2.5 Dispersion and_Adsorption

2.5.1 Introduction : ¢

Miscible displacement has been the subjéct of intensive
investigation due to its great potential in tertiary oil
recovery. Although caustic floéding is not a miscible
proéess, the theory developed for miscible ahd miséible-type
displacements’al]ows»the study of the adsorption phenomenon.
Adsorption is believed to play a major role in the caustic
recovery mechanisms but little theoretical work on the
aﬂsorption of caustic on rock sﬁrfacés has been performed. A
'%étudy of a misc%ble caustic flood, (e.g. caustic displacing
brine) should provide much needed insight into the

phenomenon.
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2.5.2 Dispersion Theory

In any miscible displacement process, the mixing of two

fluids is influehced by diffusion and dispersion phenomena.
Dispersion is caused by the uneven movement of fluid, or by
tHé‘concentration g;édient between the two fluids. Two types
of dispersion may take pface in a porous medium; the first
is longitudinal, which is in the direction of flow, and the
seéond.is transverse, which is perpendicula- fo the
direction of flow. The "diffusion eqUatioh" for longitudinal
dispersioﬁ is well understood and has been solved by several
workers, including Brigham, et al.(1961), using appropriate

boundary conditions. One of the solutions presented is:

X _
éL = ~% [1 - erf ! (1)
0 2/Dt ’ o

_/

Xy = distance from the midpoint of the flood front, m

where:

C = concentration of solute in the fluid phase, kg/m?3
Cr = éoncentration of solute in input, Kkg/m3

D = longitudinal dispersion coefficient, m2/sec

t = time, seconds
As reported by Brigham, et al.(1961), there is a simple
relationship between X, and the distance from the inlet of

the porous medium x, as shown below:

X = x-ut = x- (L/T)t ’ (2)

e 8 e el aribant e viaems e o 4 el
- ‘

s e doe e e




where:

L = length of the porous medium, m

T = time to inject one pore volume, seconds

U = average pore velocity, m/sec '
Equation (1) gives the well known "S" shape

concentration profile ih the porous medium at a given time.
bﬁxperimentally, concentration data is obtained at a single
pbint. norha]ly the ountliet, therefore, some modification of
Equation (1) is needed to make it convenient for .

expérimental purposes. Brigham, et al.(1961) have suggested

the following:

x, = L2 (3)
1 .V ,
p : :
t=TVl- (4)
P N .
where:
Vp = total pore volume of sand pack, ml
Vo= volume of liquid recovered at time of sample, ml

Then the argument of the error function may be rew;itten as,

X Llv, - vl . - ‘ '
1 p = L U (5)
2/0t 2/OV, VT 2/DTV

where:

-~
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The error function parameter, U, may be used to préaict the
growth.éf'the transition zone. A plot of U versus
concentration on arithmetic probability paper shouldkresult.
in a stréight line.

Brigham, et al.(1361)-obtained the following
relationship bet“éen the dfspersion coefficieht. D, and the

error function parameter U:

0 . Ugg = Uyg 6]
VT ~ :
p 3.625
. &

\

where: ,

LUgo = Value of U at C/Cjy = 0.8
Uy = Value ?f U at,f.C/CO,= 0.1

Equation- (8) allows evaluation of D from experimental data.
Raimondi, et al.(1959) presented the following
relationship between the~]on61tudiha1 dispersion coefficient

D, and the mixing-coeffié{ent a:
D = D*+au - ~ )

The hixing coefficient, bais dependent upon core litholpgy
qyand is independent of fluid properties. At high flow rates,
’ fhe parameter D* ; the diffﬁsion cbefficieht, may be =

neglécted.IKaSraie(1979) found that the mixing coefficient

was rate sensitive with a maximum occurring.
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2.5.3 Simultaneous Dispersion and Adsorption

Banks and A1i(1964) modified the dispersion equation to
include the adsorption phenomenon. The resulting mass

balance on an incremental volume yields:

3C. V2
3 , 1-9 s 3 . o€
3t T T 3t T Yok D 2 (8}

The general form of the rate equation expressing solute

transfer between the solid and fluid phases is:

aC

S _ .
= = f(C.C) | (9)

Once the precise form of the rate equation is specified,

equations (8) and (9) may be solved for specified initial

- and boundary conditions.

- Rate equations'commonly used in this-sqlution are:

aCs . '
and
C, = KiC + k' | ‘ (11)

where-K'];Ké,K] and K, are rate constants. Equafion (11)
indicates the condition 6f local %quilibﬁium between the
fluid and solid phases at all points in the porous medium.

This is a special case of Equation (10) which is the s

N

e mn A kil 5 W AN i Y i it - i} et 2 ottt o <
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nonequ1l1br1um relationship. Carslaw and Jaeger(1959) solved

the equilibrium case for the follow1ng boundary and 1n1t1a1

cond1t1ons

C(x, 0) = 0
| C(x, 0) = 0
clo, t) = co'

The solution of Equation (7) with Equations (11),

and (14) is: {
C
= = o(ga n)
Co

where:

and ‘

¢ 1

= ut
£ 7 ox
- D
n ux
o = 1+t

(12),

(12)

(13)

(14)

(13)

(16)

(17)
(18)

(19)
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The general solution of the nonequilibrium case is

obtained from Equations (8), (10), (12), (13) and (14). For

this case Lapidus and Amundsoni 1952) obtained:

t
' él = exp [;S] G(t) + K, J- G(t) dt| _ (20)
0 | 0
in which
o _LZ- A
“K,t. 1 . iy T ¢ .
G(t) = e f 2‘/ Ky Ky (£-2) e a (21
' ZTTD)\3 ' ,
where
2 . - :
- U 1-9¢p _ - , 5

and IO is the modified Bessel function of the first Kind.
Banks and A1i(1964) presented two special cases of this
general solution. The first assumes K] z 0, Kz = 0 and

D # 0. With these assumptions, the solution redices to.the

ferm: B »
é;; - %‘ exp (12‘T 0>' erfc [ =9k
+ ‘exp(,]; ‘c) erfc (J—f——c—gﬂ . (23).
. en A 2 4/Egn . oo ,
in which

[
x|S

- (24)
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n o= 2 ~ | (25)

and

1

1< DK ]2
]‘*“—& ‘ (26)

The second case assumes K, z 0, Ky # 0 and D = 0. In

- Q
i
|

this instance, with adsorption but no dispersion, Banks and = -

_A1i(1964) report the result to be:

= = s ) : (27)
0 o
in which
w
J Hw, v) = 1-e“"f eAIO{Z/ﬂT}_dA {28)
O .
and
i
K, X
o = 1ot 7 (29)
) u '
- X

@

2.5.4 Application to Experimental Results

) The results presented in.the7pﬁevious two sections

o o

provide a .theoretical framework within which to examine

experimental data. The major difficulties in'attembting to
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match the theory to the results lie in the evaluatibﬁ of the
rate constants and dispersion coefficient. Assigning values
to thése quantities involves the use of history matching
techniques, and consequently invokes the assumptions -
embedded in the theories. That is, it is required to assume
the validity of the theory prior to any attempt to match it

with experimental data.

~

© 2.5.4.1 Evaluation of the Dispersion Coefficient

The dispersion coefficient, D, may be easily obtained
using the procedufe of @righam, et al.(1961), ouf1ined in
Section 2.5.2. An experimental system,where_adsorption is
not present must be used, as the theory upon‘which their
method is based is for dispersion only. Since the'dispérsion
~coefficient is dependent Sdlely on core properties, a value
obtained from a simpié dispersion system may subsequently be
used.in a dispersion and adsorptioﬁ system. The\same flow
rate must be used in bothfexperimgntsbsince Equation (7)
shows that the relative effects of'diffusion and diépersion
are vélocity dependent. |

-

2.5.4.2 Evaluation of the Rate Constants for the

. Noneguilibrium Case | |
-The valuesupf&the nonequilbrium rate constants, K] and

K2 » may both be evaluated from the experimental data vié

the second specialvcase of Banks and.Ali(1964), presented in

Section 2.5.3. The assumption for this case, that D = 0,

f
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does not affect the constant evaluation, as might first be
suspected. In the gpsence of adsorption, it is clear that, -
with or without disbersion, the concentration distribution
curve must pass through the pqQint C/C0 = 0.5, g = 1.0.

Therefore any delay in reachjng_gbjﬁkpoint'is due entirely
. N -

®
Ky may be evaluated by point matching at ¢, = 1.0; from

to adsorption effects.

Equations (27) and (30) we obtain:

= = J(u, 0) (31)
0. Eo=] .
n_Adis special case, the J-function reduces to a Sjmple
exponential, and Equation (31) becomes: ' A
éL = ¥ (32)
0 €0=] ’ :

Thus, K, is simply evaluated from the above equation. Having
evaluated K] ) K2 may be evaluated by point matching at
C/Cy = 0.5. This may be done either graphidally (e.g. from

Figure 2 from Banks and Ali(1964)) or numerically.




3. STATEMENT OF THE PROBLEM
The objective of this study was to examine the effect
of rate on caustic displacements in an unconsolidated porous
medium. Specifically, it was desired to investigate:

1. The recovery of Wainwr ight c}ude oil as a function
of injection rate for a continuous sodium hydroxide
diéé]acement. |

2. The sensitivity of the rate dependence td the
concentration of sodium hydroxide in thekdisplacing'
fluid. |

3. The adsorption phenomenon, both experimentally and

theoretically.

24



4. EXﬁERIMENTAL EQUIPMENT, MATERIALS AND PROCEDURE

4.1 Experimental Equipment

The core flooding apparatus is shown in Figure 2. The
displacemeht pump was a constant injection rate Ruska pump
with mercuﬁy as the disblacing fluid. All lines connecting
the pumps with the stainless steel cylinders were 3.175x10-3
metre (1/8 inch) stainless steel tubing. All lines upstream.
of the cylinders were 6.35x10-2 metre (1/4 inch) stainless
stee] tubing. "

The cylinders had capacities of approximately 3.6x10-3
cubic metres (3.6 litres) and were fitted with pressure
rupture discs at the Lbstream end. The system was designed
for a maximum pressure of 13.1 MPa (1900 psi).

A hercury manometer and 5 Hei§é pressure gauge were
used to meaéure the pressure drop ae}osi\the coré'packr' *

Pressure transducers connected to a chart recorder were also

used to provide a pressure history for each run.

~

4.2 Porous Media

4.2.1 Sand

Unconsolidated sandpacks were used thrqughout‘%hi53
stbdy The sandpacks were an Ottawa silica sand with a
reported grain-size range of 80- 120 mesh (F1sher Scientific

S$-151). The sand was used as recewved from the supplier.

25
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4.2.2 Coreholders

The sandpacks were housed in stainless steel
!%reholders of 5.04 ch nominal diameter. The lengths were

all in the range of one metre.

L

4.2.3 Packing Procedure

A wet packing procedure was used in an attempt to
produce similar core properties from run_tg,run. This
procedure involved the following step#:

1) The steel coreholder was placed in a Vertica;
position with the downstream endcap in placé
2)# Approx1mately seven cent1metres of d1st1lled
‘water were placed in the coreholder. Sand and.
water were alternateTy added in an attempt to
insure the sahd always fell through the same
head 6f water. .
3) During the filling process the coﬁéﬁolder was.“
vibrated by an air vibrator L < e
4) Addition continued until the coreholder was "
full. The system was then vibrated 0vern1ght

5) Finally the upstream endcap was screwed in.

place. ¢ .
_ ™
The core was then ready for use. : L.

— i ~

o
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4.3 Fluids
The following fluids were used throughout the

experilbnts:

4.3.1 Brine ' _

An artiffcial brine was prepared using 88.84.kg/m3 of
reagent grade sodium chloride dissolved in distilled water.
ThHS'was the same brine as used by Gardiner(1977),
Scott(1965) and Scott(1971). This brine was used as both

connate water and as the displacing fluid for the brine

flood.

v o R

4.3.2 Caustic Solution

In light of previous erK done in the area of optimum
caustic concentration, 0.1 % by weight sodium hydroxide in
briné was nsed for the initial runs. This concentration was -
judged to be optimal by Flock, et al.(1977) and
Férouq Ali, et al.(1979). For Runs 8,10,11 and 12 the

”dncaustic concentration was reduced to 0.01 % by weight sodium

hydrbxide in brineﬁﬂand fo} Run 9 was increased to 2.0 % by
weight.! These run¥ were- performed in order to invesigate the

sensitivity of recovery to caustic concentration. The

caustic solutions were made up from reagent grade sodium

. hydroxide and the brine solution described above.

4.3.3 041

The oil used in this study was from the Waipwright B

a'nl,ﬂ q:;:’(‘]'tfm"‘b"““‘“““"""' B
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Pool. Excess water was removed from the received sample by

the ure of a rotary dryer.

4.4 Fluid Properties

4.4.1 Surface and Interfacial Tensions
| The interfacial tensions between the crude oil and the
various concentrations of sodium hydroxide in brine were
obtained using the spinning drop apparatus.The den;T?Tés——”
" required for the calculation of the interfacial tensions
were measured with a density meter.

The surface tensions were obtained with a du Nouy

L]

tensiometer. These measurements were performed at 23°C.

4.4.2 Viscosities

The viscosities of”the various‘f]ujds were obtained by
the use of Canon-Fenske viscometers. The detérminations.were
made at 23°C.

Appendix A details the proberties of the various

fluids.

4.5 Sandpack Property Determination

Prior to saturation of the sandpacks with oil, various
physical properties were measured. These measurements were
performed by routine methods and consequently are only

t

briefly described below.
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When the effluent contatned less than 1% water the pack was

4.5.1 Porosity

| The porosity of the pack was determined via a material
balance approach using the displacement of distilled water
by brtne. ¥

. Once the pack was tuﬁlyoeaturated with distilled water,
the water was displaced horizontatTﬁymat a constant rate, by
brine, and the chloride content of the etttﬁéht monitored by
refractive index. Once the chloride content of the efFluent
reached that of the displacing fluid, the displacement was N
stopped. A plot, such as Figure 3, was constructed and the
area above the curve, obtained with a planimeter, yielded
the displaced volume.‘The pdre'vo]ume was then evaluated by

subtraction of the endcap volumes.

4.5.2'Permeability
The absolute permeability was obtained by flowing
distilled water through the horizontal pack at various rates

and utilizing Darcy’s Linear Flow Equation.

The physical properties of the cores are provided in

Appendix B. M. ' A i

4.5.3 Fluid Saturations.
| Once,the sandpack had been saturated with the brine
solution it was sUspended vertically. Crude oil was then ' T

1n3ected down through the pack and the effluent collected.
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i
\

assumed to be at the irreducible water saturationi The fluid

saturations were then calculated via material balance.

o

4.6 Displacement Procedure
| The displacement tests were run at flow rates from‘
6.94x10-° m3/sec to 3.33x10-% m3/sec (2.5 to 1200 cc/hour ),
which correspond to apparent lineaf rates of between 0.003
m/day and 14.4 m/day (0.01 to 47.6 feet/day). The preduced
‘effluent was collected in 50 ml centrifuge tebes by an
indexihg sample collector. Where required.‘the water and oil
pheses were separated by the addition of toluene and
subsequent‘centrifuging. The pH of the aqueous phase was
determined by a digital pH meter. Table 1 summarizes the
initialdconditions of the cores prior to the commencement of
the runs. Table 2 provides a summéry of the conditions under
which fheAruns were pefformed

In an attempt to reduce the effect of gr%iﬁfy in- the
very slow floods, Runs 4,6 and 11 were performed vertically.
The cr1ter1on that on]y rates less than 0.3 m/day need be
done vertically was arbitrary.’/ \

A brine flood (Run 1) was perFormed as a standard’fOr
the sodium hydroxide floods. This run was dore-at an
apparent 11near veloc1ty of 0.48 m/day’ and the complete
results are presented in Append1x C. '

Run 3 involved the use of a "soak period" of 100 hours.
This was.dene by firsf injecting 0.25 pore volumes of 0.1 %

by weight sodium hydroxide in brine. The core was then



Run #

Na QOO WN —

Core #

Initial Conditions of Cores

Table 1

N_b—-*w-bl\)wbdl\)ww

Displacing
Fluid

Brine
Caustic
Caustic
Caustic
Caustic
Caustic
Caustic
Caustic

Caustic

Caustic
Caustic

. Caustic

Initial
Water in Place
(ml) (%pv)
63.2 8.3
64.7 8.5
108. 1 15.4
115.0 14.6
94.0 13.0
117.9 14.5
76.9 11.1°
72.9 10.1
94.5 11.7
' 81.3 11.3
74 .1 10.5
91.7 12.4

Initia

\
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1
0il in Place
(m1)  (%pv)
698.5 91.7
697.0 91.5
5983.6 84.6
675.0 85.4
630.0 87.0
693.0 85.5
618.6 88.9
649.7 89.9
715.4 88.3
637.1 88.7
632.4 89.5
650.5 87.6
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)
Table 2
Run Summary‘
\
Volumetric Apparent bInjected Caustic
' flow Rate Linear Rate Concentration
Run # f(cc/hour) (m3/sec) (m/day) (feet/day) (Wt %)
- 40.0 1.1x10-7  0.48 1.58 0.00
2 40.0 1.1x10-7 0.48 1.58 0.10
* 3 40.0 1.1x10-7 0.48 1.58 0.10
# 4 2.5 6.9x10-9 0.03 0.10 0.10
5 1200.0 3.3x10-6¢ 14.49 47 .55 0.10
£ 6 12.5 3.5x10-¢ 0.15 0.49 0.10
7 250.0 6.9x10-7 - 3.01 9.87 0.10
8 250.0 6.9x10-7 3.02 9.91 0.01
9 250.0 6.9x10-7 3.01, 9.87 2.00
10 40.0 1.1x10-7 (.48 1.58 0.01
# 11 12.5 3.5x10-8 0.15 0.49 0.01
12 1200.0 3.3x10-5 14,49 47.55 0.01
+ 13 1200.0 3.3x10-¢ 14.49 47.55 0.10
* This run involved a soak period. ,
# These floods were performed vertically upwards.
+

This was the caustic displacement of brine.
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sealed and alldwed to soak for 100 hours without rotation.
Afier this period:the displacement was restarted and
continued until 2 poﬁe volumes had. been injected.

Run 13 Was designed to study the adsorption phenoﬁenon,”
and 1nvo]ved the d1splacement of br1ne by 0.1 % by weight T
sodlum hydrox1de in brine. The core was prepared in the

normal way and the displacement of brine was carried out at

3.3x10-6 m3/sec (1200 cc/hour) .



5. DISCUSSION OF RESULTS
The'eXperimental part of this study involved thirteen~ﬁuns.
The theoretical work involved the determination of the
adsorption kjnetics parameters, and a predicted

concentration profile. Run 1 was a brine flood for use as as

a reference run for the caustic tests. Runs 2 to 7 involved =

0.1 ¥ by weight caustic dieplacing the Wainwright crude at
varioue different linear retes. Runs 8, and 10 to 12 were
performed with 0.01 % by Wéight sodium hydroxide in brine.
Run 13 was a simple displ%cement of brine by 0.1 % by weighf
sodium'hydroxide in brine, with a view to testing 'the

adsorptioh theory.

5.1 Sandpack Properties f

The wet pack1ng procedure employed dur1ng this study,
- discussed in Section 4. ﬁ 3, was expected to provide
reproduqdb111ty in sanddack properties such as, porosity and
absolute permeability. The average poros1ty obta1ned was
34.6 % with a standard dev1at1on of 1.2 %. The average
.absolute permeab111ty‘whs 19.3 darcys with a standard
. deviation of 1.7. A summary of the physical propert1es of .
the individual sandpaeks is provided in Table B-1. |

THe undesireably large variatiods observed in the
physical properties reflect the need for standardizing’the
~packing procedure. More important, one should insure that

all packs are made, not only with the same grade df sand

Y
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-

but, from the same manufacturers’ lot number. This point is
emphasized by the fact that the sandpacks for Runs 4 and 6,

which yielded high values of porosity and permeability,
employed sand from a different lot than the one used for
mos t 6} the‘other runs. The sandpack for Run 13, which

yielded a below average permeability was from a third lot.

!

|

5.2 Initial Fluid Saturations

The initial saturations of the sandpacks are detailed '
in Table 1 in the previous chapter. The average initial
water saturation obtained in the sandpacks for Runs 1 to 12
was 11.8 % with a standard deviation of 2.2 %.

" The variation in the iqitiai water saturation was '
greater than expected, and is again partly attributed to the
variations in the sand in the different lots. The sandpacks
for Runs 4 and 6, for example, had initial water saturations
of‘14.6 % and 14.5 %, respectively, 2.8 % and 2.7 % greater‘
~than ﬁhe average. The sandpack for Run 3, however, exhibited
vanbther high value'despite the fact that the porosity and
permeability were close to the average values.‘

. In all, however, the fluid\saturations‘are acceptable
for quantitative comparison of fhe ruhs. The normalizing of
the water saturation in the relative permeability ratio
caﬂculétions is an attempt to further reduce the effect of

these variations.

e
T
RCREM

4
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5.3 Interfacial Tension

The_interfacial'tensioh data between various sodium
hydroxide solutions and the Wainwright crude are shown in
Figure 4., It is evident from Figure 4 that there is no well
defined minimum in interfacial ténsion in the range of
caustic concentrations studied.

The interfacial tension is, however, reduced by the
addition of sodium hydroxide. There is a low value of
interfab{al tension at 0.1 ¥ by weight and this was faken as
sufficient evidencé to use this concentration for the
initial tests. “

Thgé finding is in conflict with the work of
Chan(1879), who found a distinct minimum in th; interfacial
_tension at 0.1 % by weight. Although Chan(19;9) used the
Wainwright crude, it éhou]d be noted that the viscosity was
markedly different, 800 mPa.s versus 408 mPa.s. He also
employed formation water, while this study employed an

artificial brine.

o

5.4 Displacement Tests

A summary of the diéplacement‘tests has been given as
Table 2 in Chapter 4. For the purpose of initial discussion
the displaCemeﬁt tesfs‘have beeh dfvided into five sectiong:

1) Run 1: A brine flood to be used as a base run
for comparing the caustic flodds. |
2) Runs 2 - 7: These runs were performed using

0.1 % by weight sodium hydboxide in brine, in
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order to investigate the effect of rate on oil
recovery. Run 3 also studied the effect of a
soak period.

Runs 8, 10 - 12: These runs investigated the

rate effect for a different caustic

~concentration, 0.01 ¥ by weight sodium hydroxide

in brine.

ng_gl This run was for a sodiUm hydroxide
concentration of 2.0 % by weighf. This allowed
companiggn of the oil recovery at a partﬁcu O
rate fof'g different cauétic‘;oncentrations.v

Run 13: This run involved the displacement of

‘brine by 0.1 % by weight sodium hydroxidek in

brine, to obtain an experimental caustic

concentration profile in the efflgent’for

comparison with that predictec{’t‘he theory.

$.4.1 Brine Flood

Run 1 involved the flooding of 'a core with an
artificial brine containing 88.84 kg/m?® sodium chloride. The
production history for this run is provided as Table C-1 and
Figure C;1 in Appendif C. This test was performed-at an
apparent.Jinear rate of,0;48 m/day. The recovery at 2 pore

volumes injected was 53.9 % of the initial oil in place.

Thé behaviour of the flood was as classically expected,

and the plot of relative permeability ratio versus a

normalized water séturation produced the expected straight

s



| (0°.48 en/day) and differed only 1n'}rat Run 3 utilized a

N

line relationship. This graph is presented as Figure C-3 in
Appendix C,

The calculation of the”hglative permeability réf?o was

performed using the Welge integration of .the <"

Buckley Leverett equat1on from displacement data, as given

by Collins(1961). The dec1s1on to use a nqrmal1zed water

saturation rather than the actual saturafion, as suggested

N

by Coll1ns(1961). was based on the desire¥to. quant1tat1vely

compare the relative permeability Qatlp. from the var1o§s
tests, on a cons1stent basis. Due ﬁo the lack ‘ef knowledge

of the residual oil saturation, Phq foltowing definition of

. y o *
nopmalized saturation was used: b
;

‘ Sw - Swi \ v

ot
.y

\

5.4.2 Tests with 0.1 % by Weight Sodium.Hydroxide

The initial caustic floods weré per formed using 0 1%
by weight sodium hydrox1de in br1ne as the d1sp1ac1ng fluid.

Runs 2 and 3 were performed at the same linear rate

v
W

“soak period". .
_ Run 3 was performed to examlne whether°the ‘real time"
concept proposed by Chan(1979) pla&s a role in the system
under study. It is apparentffrom Figure 5 that the recawe#}
histories for the two runs were essentially the sage .

8
Chan( t879) found that the recovery: improved dramatical1y,

o
%,

et
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once the contact time exceeded some minimum. As fhis did not
appear to be the case for the systeh under study the ¢oncept
of a time dependence was not studied further.

The remaining 0.1 % by weight floods, Runs 4 to 7,
studied the effect of rate on oil recovery at both
breakthrough, and two pore volumes injected. The complete
series of>production histories is shown on Figure 6. The
individual run histories are provided in both tabular and
graphical form in Appendix q. Figure 6 demonstrates the
apparent insénsitivity of the recovery process to fa&g? AN
the testsl with the exception of Run 5, follow an almost
identical path. The breakthrough in Run 5, performed at
14.49 m/day (4%755 ft/day), was earlier than §n fBe other
runs, but the recovery at 2 pore volumes injected is
difficult to.distinguish from the other runs. .

:Thﬁs data is more elegantly displayed‘in Figure 7 from
which it may be clearly seen th;t there is little '
significant difference in oil recovery. except at- the
extremes bf linear velocity. .

This would suggest that the dominant recovery mechanism
is largely insensitfve to rate. This wil] ae diécussed

further in Section 5.5

.

5.4.3 Tests'with 0.01 % by Weight Sodium Hydroxide

These floods were undertaken to invesigate the
sensitivity of the dominant displacement mechanism to

caustic concentration. Also, by performing-a series of tests

<
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at different apparent linear rates, the rate sensitivity
could be further investigated.

It is 1mmed1ate1y clear from Figure 8 that the dom1nant
recovery mechanism is s1gn1f1cant1y affected by the caustic
concentrat1on. This figure shows that, at an apparent linear
velocity of 3.01 m/day (9.87 ft/day), the 0.01 % by weight
solution is superior to the 2.0 or the'0.1;% by weight
solutions. The jmprovement over the 0.1 % case is only.
evident after the ihjection of approximately 1.05 pore -
volumes. As can be seen from the oil cut histories, provided
in Appendix C, the breakthrough in Run 8, using 0.01 %
caustic, was earlier but; the oil cut was higher for the
remainder of the displacement. This.trend persisted fcr all
the rates studied but is most appareht in this particular
~case. “ | "

" Examination of Figure 7 shows that in all cases the
breakthrdhgh recovery for the 0.01 % by weight solutioﬁ\was
lower than for the corresponding 0.1 % case. The recove%y at
2 pore volumes injected, on the other hand, was higﬁer ﬁp
all cases, except Run 11 which had essentielly the same )
value as its counterpart Run 6. | |

A further 1nterest1ng point from Figure 7 is that the
recovery_appears to be more rate sens1t1ve in the 0.01 % by \>
weight eystem. than in the 0.1 %.by‘weight system; For the
former, the recovery at 2 pore volumes injected goesvthrcugh
a maximum at epprOXimately 3 m/day. It appears then, that

the floods performed with the 0.01 % by weight causttc'
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~involved a different recovery mechanism ?rom that operating’
in the 0.1 % case. Possible explanations for this behaviour

will be presented in Section 5.5

. . | .
5.4.4 Tests with 2.00 % by Weight Scodium Hydroxide

This run was designed to further examine the effect of
céustjc.¢once5tration on the recovery from the
sand/oil/water sgétem under study. It is apparent from both
Figure 7 and Figure 8 that there was little significant
improvement in oil recovery, over the brine flood, when
using the 2.0 % by weight solution. .

An'é&amfnatidn of the respective relative permeabilipy
ratio plots for the brine and 2;0 % caustic fioods,'

Figures C-3 and C-27, shows that‘fhere was ho major shift in
the re]atfve permeability ratio, as was expebieﬁced with the
other th caustic concentrations. This infoqmafion {s"
‘presented fn“Figure 9. I} is also aébarent from fthis figure
~ that despite the faCf that breaKthrougH oécurred later in
the 2.0 % by weight case, there is little or n&limpfovemenf
in relative permeabflity ratio beyond a normalized
saturation of approximately 0.3 ;.This is'also evident from
the réchery curves in Figure 8 where Runs 1 and_9-provfd¢
‘much the same production history.

It appears then}-from Rﬁn Q.Vthat'an excessively large
. caustic concentration is in faét detrimental té recovery
enhancement . Subkow(1942) stated that high electolytic

concentrations could prevent the formation of oil-in-water

“
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emulsiohs,.which is an essential step in both the
emulsification and entrépment, and emulsification and
- entrainment recovery mechanisms.
Emulsion. formation, reduction of the.interfacial
‘tension at the oil-water interface and wettability

“alterations will all cause a shift in the relative

50

permea5i1ity ratio towards a less favourable water mobility.

' The fact that,

suggests that none of these mechanisms were present in tQAf

flood.

for the 2.0 % case, no shift occurred

5.5 Comparison of the Effect of Rate on the 0.1 and 0.01 %

or all, of the following factors:

1)

- 2)
3)

" 4)

R 5)

The displacements at low flow rates were performed

by Weight Tests

The effect of rate on oil recovery may be due to any,

Emulsions

Viscous fofces
Capillary forées

Adsorption

Gravity

vertically in an attempt to negate the influence of gravity.

- There is, however, l;ttle that can be done'fo control any of

the other factors.

A study of total caustic consumptfon(in the 0.1 % by
weight_floods shows that the consumption, at this

concentration, is insensitive to rate. This total caustic
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consump}ion incorporates both adsorption oh the sand, and
reactions with the oil and sand. There lguzome scatter in
‘the data, which can be seeﬁ on Figure 10, but the general
trend is obvious. It thus appears that the system has
reached an equilibrium with the flowing caustic stream. The
consumption of caustic by reaction with the oil apdears to
be the major element in the total consumption. The
consumption infRun 13, shoWn~as * on Figure 10, when no oil

-_

was present, is a full order of magnitude less than the
corresponding Eun with oil present. B
It was noted that the apparent linear rate had markedly -
di fferent effects in the 0.01 % by weight and 0.1 % by |
wéight caSeér’Thé differing effects of rate may be seen in
Figure 11, where the character of the two curves is notably
different, with the 0.1 % by weight flood breaking through
later and the ﬁercentage of oil in the effluent dropping off
quicker than in the 0.01 % by weight case. The recoveries at
two pore volumes injected are similiar, 1.4 % for the‘0.1
and 61.2 % for the 0.01 % by weight case. This, despiﬁgﬁghe,‘
markedly different oil cut histories. This fact suggestéﬁ
different recovery mechanisms are in play for the two cases.
© An examinatibn of the relative permeability ratio
curves on Figure 9 shows that the two cases produce curves
of different character. The 0.01 % by weight displacement
produces an "S; shaped curve, while the 0.1 % by weight

displacement yields a slighty concave curve. In both cases,

when compared with the brine curve, the curves are shifted
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towards a less favouFable water mobility. The crossover of
the two eaustic curves shows that early in the life of the
displacement the 0.1 %'%ase/ng superior; but in the latter
stages, the 0.0t % case is superior.
. A possible explanation for this behaviour may be found
in the mechanisms in play. It appears that in the 0.1.%
system, the improved'otl recovery is due to emulsification
and entrainment. The interfacial tension is low in this
system, and the oil will be emuisified intsitu and carried
w1th the flowing alkali and then produced The fact that no
-;muls1ons were observed in the effluent does not rule out
“th1s mechanism.. The emuls1ons may have been so unstable that
they hroke down in the collection tubes. It was noted;dur1ng
the displacements that the effluent took a finite time to
separate 1nto distinct 011 and water phases.

In the 0.01 % case, on the other hand, the dominant
mechanism appears to be emulsification and entrabment.-The
1nterfac1a1 tens1on in th1s system was higher. thaq that in
the 0.1 % case and as a result the emulsified oil could
not be pushed through the pore throats. It appears from the
relative permeab1l1ty ratio clrve on Figure 9 that, the oil
droplets-block off the swept region, causing the decreased
water mobility demonstrated by the flattened section of the
curve at intermedtate values of normalized saturatidn._This

. fggéégs in an iqcreased displacement efficiency. The
1¥ified 0oil in the entrainment mechanism does not block

off the pore throats and, as a result, the oil] cut dbops off

k) ’é“
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rapidly after breakthrough.

The differing effects of linear rate o recovery are
dueoto these dwffenent mebhan1sms The entrainment mechanism
is essentially 1ndependent of rate, as the entrainment
process itself is rate independent. The differences in -
recovery, at the extreme rates. are swmply due to the N
dnfferences in dxsplacement efficiency, wh1ch are caused by
the viscous and cap1llary forces. In the entrapment
mechanism, however, the l1near rate effects . the.recovery 1k
two ways: ‘ ) , |

1) The increased rates, Under increased gradients,
will push the oil droplets through'the‘pore'
throats, thereby preventing the blocking'ofa-5”
these throatst ,9 o o

2) At reduced rates, the caustic consumption will

':( - | resulf.in the interfacial tension not being

in the entrainment mechanism because of the
maonitude of.the.input concentration.

In the case of the entrapment mechanism, less sodium
hydroxide ,should be produced as the displacing fluld
contacts mgre of the sandpack The pH of the effluent was
mon1t6red and it. is evident that the majority" of the caustic

/dﬁgglbewng consumed amination of experimental results, in
" Tables C-1 to C- 1?’ s a maxiTum value for C/C, of 0.285
(Run 10). This compares with-a minimum value ot'0.530min the

entrainment displacements.

250 =
'

i

.

\ ; sufficientlyareduced. This factor isrnot.onucjal"
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data. It is apparent from this flgure that -the préd1ctad -

"uTherefore it -is not pushed ahead by the br1ne as assumed by

. concentrations the accuracy of the readihbs:would be

56

"

5.6 Adsgrption Study
-~
Run 13 was undertaken to quantijtatively study the

phenomena of caustic dispersion and adsorption in the
: »

v

M .
sandpack. The flood was conducted ysing 0.1 & by weight
sodium hydroxide in brine solution’displacing?brine. Prior

to the caustic flood, the displacement of distilled water by 2
brine, used in the porosity determlnatlon was used to ,sf
evalS:te the d1spers1on-coeff1c1ent Q by the method |
propof¥ed by Brigham, etwgi.(1961). A )

‘».As a check on the value of D, the prcfﬁe predicted by
Equation 1 was plotted on Figure'12 with the eXperimental
profile is a resonable f&\ up to h1gﬁrvalues of . norma112ed

condéntrat1on The exper1mental data exhibits a tail1ng

of f" not pred1cted by the d1spersion equat1og Tnis “tail” |

is due to dead end spaces in the sandpack, from which the .

dist1lled water w1l?.p1ffuse as the br1ne bypasses 1t

the theory. The exper1mental and theoret1cal results are

also presented in tabular form in Kppendlx D.

&
following the caustic flood'@ﬁe rate constant K1 was
obtained by pownt matching a& descrihed in. Sect1on 2. 5 4.2 .

This procedure to obta1n l<.1 has a serious shortcom1ng In- -

~ this system the value‘Pf C/Co at an- 1.0 1s very small, the

exper1mental valug be1ng less than 0.02 . At these very Tow

questionable and, as a result, the value of K, must also be
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in doubt. This problem is -eased somewhat by the relationship

.in Equation 32 which relates the value of K, to the natural
. . e 4
log of the concentration. A functional relajis

this tends *-~ smooth out possible errorg™ &

hip such as

. The experimental caustic concentrad .”roftle is shown
in Figure 13. In the case. of zero adsorpfaon the profile

would be 1dent1ca1 to that obtatned in the brine '}P. .

displacement of dlsttlled watert Comparison of Frgure Al a4

gnd 13 shows this is not the case. The concentratton proff‘gb ‘

has_been shifted to the'right. This delay in the caustic
breakthrough has been caused by adsorpt1on of the causttc
;éhto the rock surfaces ; - ' ‘{i

4

The next step was to atrempt to f1t Lhts exper’mental )
profile to the theoretical models. An attempt was first made
to use the Case I so]ut1on of Banks and A1i(1964), gtven as
Equattons (23) to (26) he resulting prediction is shown in
F1gure 13. It appears giim this f1gune that the prediction

is resOnabTe for & < 1.0 . Thts ftndﬁng is_in agreement.

with thaf of. Banks and Al1(‘~34) A possible explanation for.

the level1ng of the pred1cted prof1le is that with K2 = 0.0
1n the rate equation, there is no reduct1on in adsorption
rate as C increases. The result is, then, that C will .
"1ncrease w1th time until some equ111br1um¢as reached w1th
bthe pa551ng stream. This valueﬂ1s however, much h1gher than
that obtatned in reallty -

Follow1ng the failure of the Case I model to accurately

sy pFedtct the exper1mental results, the logical place to turn

- . . . .
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was the general solut1on, Equat1on (20). A value for K, was

obta1ned by po1nt match1ng, but attempts to use the general’

‘solution failed due to mathematical dlffleult1es. It was

found that the eXponential'tebms'Gf Equations.. gp) and, (21)

- generated numbers of such extreme magnitdde that computation

. 2.7 Experimental Accuracy .

became impossible. Attempts were made to rewrite the

equations. i gre _manageable forms, but these met with
Pe Sl |

little success. , | R ‘
Due to the obvious effects of d1spers1on the Case 11I
model of Banks and A1i(1964) was not used. This mode1

assumes that there is no d1spers1on It is proposed'that the

dispersion- adsorpt1on equat1on be solved numerﬁcally, using .

a more appropr1ate adsorpt1on relatxonshﬁp

N D )
It is important in quantitative research, such as thls

study, to fully appre01ate the 11m1tat1ons of the

_experimental results. The data collected in this study may

R 1) Volumetric measurements of the,effluent.

!

be divided into 2 sections:

.
k]

2) ‘Measurement of the effluent concentrations.

.

-

b ‘The effluent from the dlsplacement tests was collected

-13*50 m] centrlfuge tubes These tubes allow accuracy of no

lk o ¢ . e

bettéb than tﬁﬁ 5 ml. In the early stages of the

thsp?ggqpen(s w1th large oil volumes, this represents a'

poss1ble error of 1%. In the tater stages however, when oil

volumes are Yeduced to as little as 2% of the effluent, this

a, .

ey

A
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possible error is much moreé dramatic. In the case of the
production history, any error is damped out by'?ﬁe targe
cumuiative prodection but, in the calculation of the
reIEtiye permeability ratio, it is not. This is due to these
éa]culations using the slope of the productien'histehy :
between individeal pointe. To overcome this, these
calculations were performed on yvarious average points,
obtained by fitting a straight line to 5 data points. The

straight line sections Were over lapped to provide
, .

continuity.

The brine concentration in the efftuent (trom the
porosity -determination displacements) was monitored by
refractive indext The Spencer Refractometer used, allowed
readings to * 0. 0665 ‘his represents a possible error of
+ 3.4% in the result conCentrations

The caustic concentrdt1ons could not'%e 'moni tored. byv
refraft1ve index as the dlfference between the 1nd1ces of
the caustic solut1ons ,and that of the brine was too small.
These concentrations were obtained through pH. The
relationshib'between’concentration and pH, as shown in
Figdre 14 is such that the aéburacy would vary from ).5 i
to 11 %. At ‘low values of sodium hydroxwde concentration the
pH increases rapidly for small increases in concentrat1onz
-wh1le a? “higher values the pH increases much more slowly N
Thls mea:s that the possible error increases w1th caust1c

concentrat1on. This may lead torconSIderab]e errors. in the

calculationlof sodium ﬁydroxide consumptfon.
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1

The consumption of sodium hydrogide\in Run 13 may be
due "to adsorption on and/or reaction with the silica sand.
The solubility of silica in hot alkali is reported by Perry
and Chilton(1973) to be "verytélight“. In the syétem under
study, where the‘displacements were performed ét 23°'C, the
‘§O}Qbility, and as a result the caustic consumption due to

the silica, should be negligible.

o

¢
)
S
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6. SUMMARY AND CONCLUSIONS

p oy

» Laboratory caustic floods were conducted in ”
?gg,

unconsolidated sandpacks saturated with an artificial br

~and the Wainwright crude. A displacement of brine by caustic

was also performed, to examine the adsorption behaviour. The
following cpnciusions were drawn from the experimental
results obtained:

1. The addition of 0.1 énd OﬂOi % by weight sodium
Hydroxide to the displacing fluid improves oil
_;écover§.

2. The dominant recovéry mechanism appears to be
géverned by the sodium hydroxice concentre}ion.
Emulsification and entrainment is suggested as;the
dominantirecovery mechanism in the 0.1 % by weight
displaééments,,while emulsification and entrapment
is used to explain the behaﬂiéur of the 0.01 ¥ by
weight displacements.'

3. The dominant recovery mechanism in "the 0.1 % by
weight displacements seems tolbé essentially

v

independent of r;te, within the framework of this
study. ﬂ | !
4..»The dominant recovery mechanism in the 0.01 % by

wéight disﬁlacements‘appears to be rate dependent.

5. In the 0.1 % by weight displacements the total
caustic consuhption appeared insensitive to rate.
‘Thé oil present consujed a greater'ppqportion of the

: —

-tqta] than the sandpack. s

° . i
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6. Consumption of caustic, by adsorption on and/or

reaction with the rock did occur during the

displacement of brine by 0.1 ¥ by weight caustic.

65
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7. RECOMMENDAT IONS

The fo]lowinghpossible areas of study are proposed to

extend this study:

1.

.The magnitude of sodium hydroxide adsorption should
be éxamiﬁed in relation to both the input
concentration'ané the linear displacement rate.

An attempt should be maae to improve the
mathematical‘representation of the adsorption

phenomenon; with spegia] attention to the rate

equation. & ’ _
The effect of rate on smalle‘m hydroxide

concentrations should be invesfigatgd.

The sensitivity of .both the adsorption phenomenon

- and the rate effect to%%ock type should be examined.

&,
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Table B- 1
' . Physical Properties of Core_Packs
I ¥
s Bulk Pore Absolute
Run Core Length f Volume Volume Porosity Permeability
#. # (cm) (cc) (cc) (%) (darcys)
oy 1 3¢ 113.0. 2254.4  761.7  33.8 (17>8
Y 2 3 113.0_ $254.4  781.7 33.8 178~
g 3 2 105.1% 2096.8 - 701.7 - 33.5 ® 18.1
Q 4 1 105.1 -2088.5 790.0 37.8 22.9.
5 4 ®105.7 2100.4 724-.0 34.5 - & 18.5
6 3 ™3.0 2254 .4, 810.9 . 36.0 - 22.4
7 2 105.1 2096.8  695.5 ' 33.2 19.9
8 4 105.7 2100.4 722.6° 34.4: 18.1
$ 3 113.0 2254 .4 809.9 35,9 » 201
10, 1 - 105.1 2096.8  718.4 34.3 1 19.4
- 11 4  105.,9 2104.4 706.5 33.6 12,7
AN 12 -2 T 6. 4 2%22.7 742.2 35.0% 19.0
;‘ _A13 %-'” 305 1. 2096.8 7Q9.2 33.6° 1676
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FIG C.10 : RECOVERY AS A FUNCTION OF
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FIG C.13
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FIG C.14 : PRESSURE AND OIL CUT
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RELATIVE PERMERBILITY RATIO (Kr/Keo)
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T.Ho, C.22 : RECOVERY AS A FUNCTION OF
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FIG C.25 : RECOVERY AS A FUNCTION OF
| - PORE VOLUMES INJECTED
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FIG C

26 : PRESSURE AND OIL CUT
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RELATIVE PERMEABILITY RATIO (Kn/Kro)
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FIG C.27 : RELATIVE

&, PERMERBILITY RATIO RUN 9
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FIG C.28 : RECOVERY RS A FUNCTIOGN OF
- | PORE VOLUMES INJECTED

0o

90 SYMBOL | "DISPLACING FLUID o
0 88.84 kg/m® BRINE (0.48 M/DAY RUN. 1)

804 «® 0.01%Z NAGH IN BRINE (0.48 M/DAY RUN 10)

~J
o
L

R
Q
1

......
. - O o e gy s

n w Lol
o o o
A 1 L.

-
o

~

Ve

]

Y
¥

i 3 H EH 1 3 3

6.0 0.2 o o6 0.8 1.0 | 1z | 1w 18 1s 2.0
. | PORE VOLUMES INJECTED ,

¥ k]

RECOVERY 7% INITIAL GIL IN PLACE
W
Q

Pt

gern



- FIG C.29 : PRESSURE AND OIL CUT
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:  RECOVERY AS A FUNCTION OF

FIG C.31
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FIG C.34 : RECOVERY AS A FUNCTION OF
|  PORE VOLUMES INJECTED
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FIG C.35 : PRESSURE AND gIL cuT A //
| HISTORIES FBR RUN 12 7 \_ )
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RELATIVE PERMEABILITY RATIO (Kn/Kro)
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FIG C.36 : RELATIVE
PERMEABILITY RATIO RUN 12
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. . Data from Adsorption Study.
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Table D- 1

Comparison of Measured and Prggicted
Normalized Brine Concentration Profiles

Predicted Profile from Equation-1
Experimental Data from Run 13

Dispersion Coefficient: 2.312x10-7 m?/sec

Time to Inject 1 PV -~ : 2128.6- = sec

Pore Volume : 709.2 - ml

: 4 )
" Pore Volumes Measured Calculated -

Injected Concentration. Concentration \
0.890 =, 0.000 0.000
0.949 ¢ 0.014 0.040-

. 0.969 0.077 0.146
0.992 0.239 - 0.394
1.010 0.585 0.631 :
1.038 0.796 0.894 - 4
1.054 0.873 - 0.961

. 1.072 0.930 0.990
1.093 0.937 0.998
1.114 0.944 1..000

10141 0.951 1.000 .
1160 0.958 1.000”
.178 0.965 1.000 )"

1.196 0.993 1.000
1.239 0.993 1.000
1.250 1.000 1.000

~ .




N 138

Table D- 2

Comparisan offﬂeasg;ed and Predicted s .
Normalized Caustic foncentration Profiles‘ (r>j

Predicted Profile from Eduation 23
Experimental Data from Run 13

Dispersion Coefficient: 2.312x10-7 m?/sec

Rate Constant Ky - : 9.750x10-4 sec- "
TN ,
Pore Volumes Measured Calculated
Injected Concentration théentrationQ

0.849 0.000 ' 0.000

0.908 0. 001 ~ 10,000

0.930 0.801 . y 0.000 '
. 0.953 -0.003 ‘0,001 . @
& 0.973 0.005 v 0.004

0.996 Q.007" ° 0.009

1.017 0.027 - - 0.014

1.037 0.106 0.016 *,

1.058 0.208 - 0.018

1.077 0.295 0.018

1.097 0.379 : 0.018

1.121 0.464 i 0.018

1.148 : 0.566 . + 0.018

1.169 ' 0.663 - .0.018

1.193 - 0.783 0.018 P

1.215 0.819 : - 0.018

1.239 0.843 = - 0.018

1.272 0..892 v 0.018

1.561 0.952 ' i 0.018

1.778 0.976 0.018

[}



