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Abstract 

 

Gearboxes are key components commonly employed to transfer torque and power and adjust speed 

in mechatronic systems, such as wind turbines, automobiles, and mining machines. Due to the 

harsh working environment, various faults may occur in gearboxes. Tooth cracks account for a 

large proportion of gearbox faults. Detection and severity assessment of early tooth cracks is of 

vital significance to prevent gearbox failures since it enables efficient condition-based 

maintenance activities, which not only improves system reliability but also reduces operation and 

maintenance costs. Vibration analysis has been widely utilized for gear tooth crack detection and 

severity assessment. In industrial applications, gearboxes may work under either constant or time-

varying operating conditions. Besides, gearboxes may suffer from either one single tooth crack or 

multiple tooth cracks depending on their working environment. All these factors render it 

challenging to get a good understanding of vibration characteristics of gearboxes with tooth cracks 

owing to their complexity, which undermines the effectiveness of vibration analysis for tooth crack 

detection and severity assessment.  

This thesis aims to procure some insights into vibration characteristics of fixed-axis spur gearboxes 

with tooth cracks through dynamic simulation, and the obtained insights are further adopted to 

guide the development of effective vibration signal analysis methods for tooth crack detection and 

severity assessment. To this end, the overarching objective of this thesis consists of four sub-

objectives, which aim to address four issues related to tooth crack detection and severity 

assessment for fixed-axis spur gearboxes. Firstly, inspired by the observation that the Crack 

Induced Impulses (CII) contain more information on tooth crack growth, two novel condition 

indicators are developed by a proposed method which conducts a thorough analysis on the CII and 
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are adopted for early tooth crack severity assessment. Secondly, to effectively track tooth crack 

severity progression under time-varying operating conditions, a comprehensive study on how 

time-varying operating conditions affect vibration signals of a fixed-axis spur gearbox with a tooth 

crack is conducted. A linear dependence of the Amplitude Modulation (AM) of the CII on the 

time-varying operating conditions is identified, through which a new condition indicator is 

proposed to track tooth crack severity progression under time-varying operating conditions. In 

addition, inspired by the finding that the AM of the CII is resulted from operating condition 

variations, a normalization method is proposed to remove the speed variation-induced AM of the 

CII and a normalized CII is obtained. The normalized CII preserve information on tooth crack 

growth and are free from gearbox speed fluctuations, which are used to track tooth crack severity 

progression under variable speed conditions. Lastly, insights into vibration characteristics of a 

fixed-axis spur gearbox with multiple tooth cracks are obtained using dynamic simulation and are 

further experimentally validated. Besides, inspired by the observation that the CII can well reflect 

tooth cracks, a method focusing on the CII is proposed to detect the number and locations of 

multiple tooth cracks in fixed-axis spur gearboxes. 

The research work conducted in this thesis enables us to procure a good understanding of vibration 

characteristics of fixed-axis spur gearboxes with tooth cracks working under both constant and 

time-varying operating conditions and provides effective vibration signal analysis methods for 

tooth crack detection and severity assessment of fixed-axis spur gearboxes. Future work will 

explore the effects of tooth lubrication and bearing faults on gearbox vibration characteristics.   
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Chapter 1: Introduction  

 

This chapter consists of three sections. Section 1.1 introduces the background of this thesis, which 

mainly includes the gearbox fundamentals, gear fault modes, gearbox operating conditions, 

fundamentals of gearbox dynamic simulation, vibration analysis for gear fault diagnosis. Section 

1.2 presents a review of the literature on dynamic simulation and vibration-based gear tooth fault 

diagnosis for fixed-axis spur gearboxes. The thesis objective, research topics and their 

contributions, and thesis organization are described in Section 1.3.  

1.1 Background 

1.1.1 Fundamentals of gearboxes and gears 

Gearboxes are key components of mechatronic systems used in the industry, such as wind turbines, 

automobiles, and mining machines. The main function of gearboxes is to transfer torque and power, 

adjust rotating speed, and change motion direction of transmission systems. A wind turbine 

gearbox and an automobile gearbox are shown in Fig. 1.1. A wind turbine gearbox is a critical 

component of the wind turbine drive train, which is used to increase the rotational speed from a 

low-speed rotor to a higher speed electrical generator [1]. A gearbox in an automobile is employed 

to vary the speed ratio and torque ratio between the car engine and the driving wheels [2]. 

  

(a) A wind turbine gearbox [1] (b) An automobile gearbox [3] 

Fig. 1.1: Gearboxes used in industrial applications 
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Gearboxes are mechanical devices mainly consisting of gears, shafts, bearings, and a housing. 

Gears are the core of a gearbox. There are various methods for classifying gearboxes based on the 

arrangement of gear axes. In this subsection, two classification methods of gearboxes are 

introduced, which are based on gear axis configuration and movement of gear axes, respectively. 

Firstly, gear axis configuration refers to the orientations of gear axes, along which the gear shafts 

lay and around which the gears rotate [4]. In the industry, there are three principal gear axis 

configurations in gearboxes: parallel, intersecting, and non-parallel and non-intersecting. On this 

basis, gear systems can be classified into parallel axes gears, intersecting axes gears, non-parallel 

and non-intersecting axes gears, which are shown in Fig. 1.2. Parallel configurations indicates that 

the gear shafts lay along parallel axes within the same plane, while for intersecting configurations, 

the gear shafts are on intersecting axes within the same plane. However, non-parallel and non-

intersecting configurations mean that gear shafts exist on axes which cross (non-parallel) but not 

on the same plane (non-intersecting) [4]. 

   

(a) Parallel (b) Intersecting (c) Non-parallel and non-intersecting 

Fig. 1.2: Three gear axis configurations [5] 

Secondly, according to the movement of gear axes, gearboxes can be generally classified into two 

categories, namely fixed-axis gearboxes, and planetary gearboxes. For a fixed-axis gearbox, it has 

a fixed-axis gear set, all the gear shafts of which are fixed. For a planetary gearbox, it has a 

planetary gear set, usually the planet gear shafts of which are not fixed and are always rotated 

along with the carrier. Fig. 1.3(a) shows a one-stage fixed-axis gear set, which consists of a pinion 

and a gear. Generally, the “pinion” refers to the smaller gear while the “gear” is the bigger one. It 

is noted that the terminology “gear” always refers to the bigger gear when it appears together with 

the “pinion”. However, in other situations, the terminology “gear” has a broader meaning [5]. Fig. 

1.3(b) shows a one-stage planetary gear set, from which it is seen that a planetary gear set is 

consisted of a ring gear, a sun gear, several planet gears (usually three or four), and a carrier. The 
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sun gear is located centrally, and the planet gears mesh with the sun gear and the ring gear 

simultaneously when they rotate alongside the carrier. 

  

(a) A one-stage fixed-axis gear set [6] (b) A one-stage planetary gear set [7] 

Fig. 1.3: Structures of two kinds of gear sets  

Gears can be classified into different categories according to gear body shapes, gear teeth 

placement, and gear tooth profile, respectively. According to gear body shapes, gears can be 

classified into circular gears and non-circular (elliptical or triangular) gears [8]. Most types of 

gears belong to circular gears, the gear body of which is a cylinder and has a circular face, and the 

gear teeth are arranged around the cylindrical gear body [8]. According to gear teeth placement, 

gears can be categorized as external gears and internal gears. In an external gear, all the gear teeth 

are placed on the outer surface of the gear body and point outward from the gear center. On the 

contrary, all the gear teeth of an internal gear are placed on the inter surface of the gear body and 

point inward towards to the gear center [8]. For example, in Fig. 1.3(b), the sun gear and the planet 

gears are external gears while the ring gear is an internal gear. According to gear tooth profile, 

gears can be categorized as involute gears, trochoid gears, and cycloid gears [8]. The teeth of an 

involute gear have the involute tooth profiles, which means that they follow a shape designated 

using the involute curve of a circle. In industrial applications, most gears are involute gears since 

they are easier to manufacture and to operate. In contrast, trochoid gears and cycloid gears are only 

used in limited and specialized applications.  

Besides, based on the gear axis configurations and gear design characteristics described above, 

gear sets can be divided into several types, such as spur gears, helical gears, and bevel gears, and 

so on. Fig. 1.4 shows spur gears, helical gears, and bevel gears. Spur gears usually have cylindrical 

gear bodies and transmit power through parallel shafts and teeth of spur gears are parallel to gear 

 ear

Pinion

Ring gear

Carrier

Sun gear

Planet gear
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shaft axes [4]. Helical gears also have cylindrical gear bodies and the parallel configuration, but 

their teeth are oriented at an angle to gear shaft axes [4]. The angle is termed “helical angle”. 

Unlike spur gears and helical gears, bevel gears are cone-shaped gears, which means that their 

teeth are placed along the conical surface [8]. Bevel gears have the intersecting configuration, so 

they are always adopted to transmit power between shafts that intersect at a 90-degree angle.  

   

(a) Spur gears (b) Helical gears (c) Bevel gears 

Fig. 1.4: Three different types of gears [9] 

To sum up, based on above descriptions, it is seen that different combinations of gear axis 

configurations, gear axis movements, and gears could result in various gearbox systems. In this 

thesis, only the parallel fixed-axis gearboxes with circular (cylindrical gear body) external involute 

spur gears are involved and studied, which are termed “fixed-axis spur gearboxes” for short in the 

rest of this thesis.  

1.1.2 Gear fault modes 

Due to their harsh working environment, gearboxes may suffer from severe failures resulting from 

their component faults. For example, wind turbine gearboxes can fail in drastically different ways 

due to gear faults, bearing faults, and lubricant contamination [10]. Gear faults account for a large 

proportion of gearbox damages [11]. Typical gear fault modes include tooth bending fatigue, tooth 

contact fatigue, and tooth wear [12].  

Tooth bending fatigues are always caused by repeated loading exerted on gear teeth, which include 

three specific modes: tooth root fillet cracks, tooth profile cracks, and tooth end cracks [12]. Tooth 

bending fatigues usually occur in three stages. Firstly, microscopic cracks are initiated in the areas 

of stress concentration or discontinuities. Afterwards, a smooth crack grows perpendicular to the 

maximum tensile stress [12]. Lastly, when a crack becomes large enough, it will result in sudden 

gear tooth fracture. Most gear tooth bending fatigues occur in the tooth root fillets, which means 

that tooth root fillet cracks are more commonly occurred in gears. The reason is that tooth root 
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fillets are the areas where stress concentration easily happens when gear teeth are subject to 

repeated loading. Because gearboxes have different loading conditions in different situations, there 

may exist one single tooth root fillet crack in some scenarios, while multiple tooth root fillet cracks 

may occur in other scenarios. The mechanism for the occurrence of multiple tooth root fillet cracks 

is that when a gearbox is operating, the cyclic loading can result in the initiation of a crack at the 

root fillet of one gear tooth. As the crack propagates, the cracked tooth is deflected, which leads 

to an extra load imposing on other teeth. In this situation, the load on the first cracked tooth is 

relieved, but the higher load on other teeth initiates cracks on their root fillets very soon. As a 

result, the repeated loading induces multiple tooth root fillet cracks [13,14]. Multiple tooth root 

fillet cracks include two possible categories: (1) cracks on the root fillets of two or more adjacent 

or nonadjacent teeth of a single gear; (2) cracks on the root fillets of teeth of two or more gears, 

usually on two mating gears [13–15]. 

Tooth contact fatigue is also called Hertzian fatigue, which mainly includes macro-pitting and 

micro-pitting. Macro-pitting is the severer form of micro-pitting. Macro-pitting can be categorized 

as nonprogressive macro-pitting, progressive macro-pitting, spalling, and flake [12]. Spalling is a 

fault mode that the pits coalesce and form irregular craters over a large area. On the contrary, 

micro-pitting refers to the case that tooth contact surface is covered by very tiny pits, which are 

less than 20 micrometers deep [12].  

Tooth wear refers to the fault that involves the removal or displacement of tooth material from 

tooth surfaces thanks to mechanical, chemical, or electrical actions [12]. Tooth wear mainly 

consists of three types, which are adhesion, abrasion, and polishing. To be specific, adhesion is the 

transfer of tooth material from one tooth surface to another, which is always caused by welding 

and tearing. Severe adhesion is usually termed scuffing [12]. Abrasion is resulted from lubricant 

contamination, such as the sand, dust, wear debris, and machining chips in the lubrication oil. 

Severe abrasion can reduce tooth thickness significantly and the tooth tip may be reduced to a 

sharp edge in some situations [12]. Lastly, polishing is the fine-scale abrasion, which gives a 

mirror-like finish to the gear teeth. Polishing is always promoted by chemically active lubricants 

which are contaminated with fine abrasives [12]. 

For illustration, some specific gear tooth fault modes, which include tooth root fillet crack, tooth 

pitting and spalling, and tooth wear, are shown in Fig. 1.5. In this thesis, the research scope is 
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within gear tooth root fillet cracks, including the case of one single tooth root fillet crack and the 

case of multiple tooth root fillet cracks in fixed-axis spur gearboxes. For simplicity, tooth root fillet 

cracks are termed “tooth cracks” for short in the rest of this thesis.  

   

(a) Tooth root fillet crack (b) Tooth pitting and spalling (c) Tooth wear (adhesion) 

Fig. 1.5: Gear tooth fault modes [12] 

1.1.3 Gearbox operating conditions 

In industrial applications, gearboxes may work under either constant or time-varying operating 

conditions. When gearboxes work under constant operating conditions, both the gearbox speed 

and the load are constant. It is noted that “load” is equivalent to “torque” herein and hereafter and 

vice versa. When gearboxes work under time-varying operating conditions, three scenarios are 

included, which are the constant load and variable speed condition, the variable load and constant 

speed condition, and the variable load and variable speed condition. Therefore, gearboxes may 

experience these four scenarios of operating conditions when working in the industry. 

Gearboxes are usually adopted to adjust the speed and load characteristics of electric motors in 

mechatronic systems in the industry. When electric motors are controlled using closed-loop control 

strategies, either the motor speed or the load can be set to the desired values [16]. In other words, 

it is feasible to make either the motor speed or the load time-varying, while the other keeps constant, 

thus realizing the two scenarios of time-varying operating conditions under which gearboxes work, 

namely the constant load and variable speed condition and the variable load and constant speed 

condition. Gearboxes may experience the constant load and variable speed condition when used 

to drive conveyors and plow systems in coal mining industries, and may experience the variable 

load and constant speed condition when used in wind turbines [17].  

When electric motors are operated in open-loop control status, the relationship between the motor 

speed and the motor torque is determined by the motor speed-torque characteristic curve [18,19], 

which means that the speed and the torque change simultaneously according to a certain law. For 
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example, if the external load exerted on a gearbox is variable, the driving torque of the electric 

motor will also vary accordingly, which makes the motor speed change according to the motor 

speed-torque characteristic curve, therefore changing the gearbox speed [20]. In this situation, 

gearboxes work under variable speed and variable load conditions. The scenarios that gearboxes 

experience variable speed and variable load conditions can be seen in the driving units of mining 

machines [19,21] and in wind turbine drive trains [22]. For a gearbox transmission system 

subjected to a constant external load, when the torque equilibrium status between the motor torque 

and the external load is obtained, the motor speed will become steady, thus render the gearbox 

speed constant. Therefore, in this situation, gearboxes work under constant speed and constant 

load conditions.  

1.1.4 Fundamentals of gearbox dynamic simulation  

To get a good understanding of the vibration characteristics and behaviours of gearboxes with or 

without gear faults under either constant or time-varying operating conditions, gearbox dynamic 

simulation is a good choice. The reason is that gearbox dynamic simulation techniques can not 

only eliminate the interferences of environmental noise but also isolate the effects of gear faults 

and gearbox operating condition variations on gearbox vibration signals, which helps obtain useful 

insights into gear fault generation mechanisms and gearbox vibration signal changes due to gear 

faults and operation condition variations. In addition, conducting gearbox dynamic simulation is 

more cost-efficient and effective to simulate various gear faults with different severity levels 

involving operating condition variations comparing to doing physical experiments [23,24]. 

Gearbox dynamic simulation generally consists of three aspects. The first aspect is to conduct 

gearbox dynamic modelling, the second one is to evaluate gear tooth mesh stiffness, and the last 

one is to conduct gear fault modelling and analyze the effects gear faults on vibration behaviours 

of gearbox systems.    

 earbox dynamic modeling usually utilizes physical laws, such as the Newton’s Laws of Motion 

and the law of Conservation of Energy, to simulate the vibration responses of gearbox systems 

[5,23]. Generally, to ease the construction of gearbox dynamic models, real gearbox systems are 

always simplified into a discrete model with main features kept [23]. The Lumped Parameter 

Modeling (LPM) and the Finite Element Modeling (FEM) are two techniques commonly used for 

gearbox dynamic modeling. For a lumped parameter model of a gearbox, gearbox components are 
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viewed as solid bodies with their mass concentrated at a set of points  [25] and vibration responses 

are obtained by solving motion equations of the gearbox system, and modelling accuracy can be 

guaranteed. For a finite element model, a gearbox system is discretized into finite elements and 

vibration responses are obtained by assembling the collection of all elements [25]. Because the 

FEM is sensitive to the types of elements, the mesh density, and the contact property, this thesis 

does not consider the FEM and only focuses on the LPM for gearbox dynamic modelling.  

Gear tooth mesh stiffness is one of the main internal excitations of gearboxes. Correct evaluation 

of gear tooth mesh stiffness is important to simulate dynamic responses of gearboxes. The time-

varying property of gear tooth mesh stiffness is induced by the variation of tooth contact number 

and contact position during gear teeth mesh process [26]. In the literature, four types of methods 

have been commonly adopted to evaluate gear tooth mesh stiffness, including the square waveform 

method, the finite element method, the experimental method, and the potential energy method [23]. 

For the square waveform method, a periodic square waveform is used to approximate the gear 

tooth mesh stiffness [19]. The period of a square waveform is used to determine the gear tooth 

mesh period, which is equal to the time duration of one gear revolution divided by the number of 

gear teeth [23]. However, the square waveform method can only reflect the change of tooth contact 

number, failing to represent the variation of tooth contact positions [27]. Besides, the magnitudes 

of square waveforms are always specified subjectively, which have no relationship to the physical 

parameters of gearbox systems. For the finite element method, it can implicitly evaluate the gear 

tooth mesh stiffness when used to simulate gearbox dynamic responses. In the finite element 

method, the gear tooth mesh stiffness is calculated as the ratio of the contact force carried out by 

a tooth to the corresponding total deformation of the gear tooth [28]. Generally, the finite element 

method can evaluate gear tooth mesh stiffness for gear teeth with all kinds of geometries and 

profiles. However, the accuracy of the gear tooth mesh stiffness obtained using the finite element 

method is sensitive to the types of elements, the mesh density, and the contact property. For the 

experimental method, some techniques have been employed to evaluate gear tooth mesh stiffness, 

including the photoelasticity technique [29] and the strain gauge technique [30]. However, the gear 

tooth mesh stiffness obtained by experimental methods are always affected by the precision of the 

experimental equipment and it is also very costly to conduct those experiments. For the potential 

energy method, gear teeth are assumed as non-uniform cantilever beams and the beam theory and 
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gear meshing theory are used to analytically evaluate the gear tooth mesh stiffness [23]. The gear 

tooth mesh stiffness obtained by the potential energy method is directly related to gear tooth 

geometry and material property, tooth fault types and severity levels. Besides, the gear tooth mesh 

stiffness can be expressed as a function of gear rotation angle using the potential energy method, 

which is very convenient for those who are unfamiliar with the beam theory and gear meshing 

theory [23]. In this thesis, the potential energy method will be used to evaluate the gear tooth mesh 

stiffness since it is a powerful and convenient tool. 

Gear fault modelling is used to represent gear tooth faults and how their severities progress via 

models. The effects of gear tooth faults on gear tooth mesh stiffness also need to be studied 

mathematically. Because this thesis only studies gear tooth cracks, only gear tooth crack modelling 

is introduced herein. As introduced in Subsection 1.1.2, gear tooth cracks always occur in the tooth 

root fillets, tooth root fillets are chosen as the places where tooth cracks initiate. After a tooth crack 

initiates, it will propagate gradually as the gear rotates. Gear tooth crack propagation path is 

affected by many factors, including gear rim and web thickness, initial crack location, gear tooth 

geometry factors (number of gear teeth, diametral pitch, tooth pressure angle), and backup ratio 

(rim thickness divided by tooth height), which have been studied in Ref. [31] via finite element 

method and principles of linear elastic fracture mechanics. It was also found that gear tooth crack 

propagation paths were generally smooth, continuous, and rather straight lines with only a slight 

curvature [32]. On this basis, gear tooth cracks have been always modelled as straight lines [26,33] 

or slight curves [34] initiating from tooth root fillets, which is illustrated in Fig. 1.6. In addition, a 

tooth crack may have three different propagation scenarios according to the distribution of the load 

exerted on the gear tooth [35]. In the first scenario, a tooth crack was assumed to propagate in both 

the crack depth and the crack length directions simultaneously. The second scenario assumed that 

a tooth crack extended through the whole tooth width with a uniform crack depth distribution. In 

the third scenario, a tooth crack was assumed to extend through the whole tooth width with a 

parabolic crack depth distribution. This thesis will involve the first and second scenarios of tooth 

crack propagation since they are more commonly occurred in the industrial applications and are 

easily to be manufactured for experimentation.  
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Fig. 1.6: Schematics of two simplified gear tooth cracks adopted for crack modelling [23]  

1.1.5 Vibration analysis for gear fault detection and severity assessment   

It is of great importance to conduct gear fault detection and severity assessment prior to gearbox 

failures since it can guarantee that gearbox systems are free from severe damages, thus improving 

system reliability and reducing downtime and maintenance costs. The fundamental idea behind 

gear fault detection is to analyze raw gearbox vibration signals in time domain or their 

transformations in other domains, such as frequency domain and time-frequency domain, to extract 

specific features that can characterize gear health status and compare them with thresholds, which 

are always obtained from reference signals (signals collected in healthy conditions) [36]. Once 

changes in extracted features are found, it indicates that there are faults emerged in gears, therefore 

the goal of gear fault detection is achieved. Afterwards, the gear faults can be assessed to see how 

severe they are, which is within the scope of fault severity assessment. Generally, gear fault 

severity progresses continuously, so severity of a gear fault can be tracked once the fault is detected. 

Another feasible way is to discrete gear fault severity into several levels and assess which severity 

level that the fault belongs to. 

To conduct gear fault detection and severity assessment, many techniques have been employed to 

monitor and diagnose the health states of gearboxes, which mainly consist of vibration analysis, 

acoustic analysis, and oil debris analysis. Generally, gearboxes with faults always have larger 

vibration levels than they are in healthy status. Therefore, provided that vibration signals of 

gearboxes are collected, vibration analysis is a powerful tool to monitor and assess the health status 

of gearboxes and their components and also predict their failures [37]. Acoustic analysis is also 

called sonic analysis, which is the measurement and analysis of sound waves caused by component 

contacts inside equipment [38]. Acoustic analysis has been commonly utilized in the music 

recording industry, but its application in the condition monitoring of gearboxes is relatively new. 
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Unlike vibration analysis, acoustic analysis relies on the analysis of audio signals to identify how 

healthy the gearboxes and their components are. Oil debris analysis has been used to analyze the 

debris or particles in the lubrication oil inside gearboxes to check if there exists mechanical wear. 

To be specific, the metallic particles in the lubrication oil usually indicate a wear condition that 

separates different sizes and shapes of metallic dust from components such as gears or bearings 

[39]. This thesis focuses on vibration analysis since gearbox vibration signals contain abundant 

information on gear tooth health conditions and are easy to acquire. 

Vibration analysis generally consists of several principles, such as time domain analysis, frequency 

domain analysis, time-frequency domain analysis, and modal analysis [37,40,41]. Time domain 

analysis mainly includes time-statistical analysis and Time Synchronous Average (TSA) [37]. 

Time-statistical analysis refers to the developments of health condition indicators using vibration 

signals and their variants, such as Root Mean Square (RMS), kurtosis, and so forth [37]. The latter 

is a signal processing method used to extract periodic components from noisy vibration signals, 

which has been demonstrated to be very suitable to process gearbox vibration signals [42]. 

Frequency domain analysis reveals the relationships between the amplitudes and phases of 

vibration signals and their frequency composition, which includes spectral analysis methods, such 

as amplitude spectrum, phase spectrum, power spectral density, energy spectral density, and so on. 

Time-frequency domain analysis has been commonly adopted to process nonstationary vibration 

signals in the filed of gearbox fault diagnosis, which comprises the approaches that study the 

nonstationary vibrations signals in both time and frequency domains simultaneously [43]. Time-

frequency domain analysis methods include Short-Time Fourier Transform (STFT) [44], Wavelet 

Transform (WT) [45], Wigner–Ville Distribution (WVD) [46], Hilbert–Huang Transform (HHT) 

[47], and so on. Modal analysis is always used to study the dynamic characteristics of mechanical 

systems, such as the natural frequencies, damping, and mode shapes [48]. A good understanding 

of the modal characteristics of a structure is very useful when conducting a structural dynamic 

analysis [48], which could facilitate the resonance demodulation analysis. To conduct vibration 

analysis, vibration signals need to be collected. Generally, vibration signals include three 

categories: displacement signals, velocity signals, and acceleration signals, which can be collected 

using displacement sensors, velocity sensors, and accelerometers, respectively. Acceleration 

signal is the easiest one to be collected among the three kinds of signals. Therefore, this thesis only 
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focuses on analyzing the acceleration signals of gearboxes when conducting vibration analysis for 

gearbox fault diagnosis. 

Although many vibration analysis methods for conducting gear tooth fault detection and severity 

assessment for fixed-axis spur gearboxes have been reported in the literature, the vibration 

characteristics of fixed-axis spur gearboxes with tooth cracks working under either constant or 

time-varying operating conditions have not been fully understood, which undermines the 

effectiveness of vibration-based gearbox diagnostics to some extent. To overcome this deficiency, 

this thesis aims to first get a good understanding of vibration characteristics of fixed-axis spur 

gearboxes with tooth cracks working under both constant and time-varying operating conditions 

via dynamic simulation. Afterwards, the obtained insights into gearbox vibration characteristics 

are employed to guide the development of new vibration analysis techniques for effective detection 

and severity assessment of gear tooth cracks under both constant and time-varying operating 

conditions.  

1.2 Literature review 

This section presents a detailed review of literature on dynamic simulation of fixed-axis spur 

gearboxes and vibration analysis methods for gear tooth crack detection and severity assessment. 

This section consists of two subsections: Section 1.2.1 reviews the reported studies on dynamic 

simulation of fixed-axis spur gearboxes; Section 1.2.2 reviews the vibration analysis methods 

employed for tooth crack detection and severity assessment for fixed-axis spur gearboxes. 

1.2.1 Dynamic simulation of fixed-axis spur gearboxes 

Dynamic simulation of fixed-axis spur gearboxes is a powerful tool to procure insights into the 

vibration characteristics of fixed-axis spur gearboxes with tooth cracks under either constant or 

time-varying operating conditions. A good understanding of gearbox vibration characteristics 

obtained via dynamic simulation is helpful to guide the development of effective vibration analysis 

methods for gear tooth crack detection and severity assessment. This subsection reviews the 

techniques which have been used for dynamic simulation of fixed-axis spur gearboxes, including 

the dynamic models of fixed-axis spur gearboxes, the evaluation of gear tooth mesh stiffness using 

the potential energy method, and the effect of tooth cracks on gear tooth mesh stiffness. 
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1.2.1.1 Dynamic models of fixed-axis spur gearboxes 

Gearbox dynamic models have been widely adopted to help gearbox diagnostic inference since it 

can give useful insights into gearbox vibration characteristics [49]. As discussed in Subsection 

1.1.4, there are two kinds of methods for gear dynamic modelling, namely the LPM and the FEM, 

and this thesis focuses on the former. Therefore, reported studies on dynamic modelling of fixed-

axis spur gearboxes using lumped parameter models are reviewed in this subsection.  

Dynamic modelling of gearboxes undergoes a process from simplicity to complexity. In the 1920s 

and early 1930s, studies on gear dynamics were emerged [50]. Those early studies on gear 

dynamics were mainly focused on the determination of dynamic loads on gear teeth, which 

contributed to the calculation of gear root stress. Afterwards, in 1950s and thereafter, studies on 

gear dynamics entered a new era because vibratory models were employed in the analysis of gear 

dynamics [50]. In those gear vibratory models, gear mesh interactions were modelled as spring-

mass systems [51–53], which were still too simple and were mainly used to calculate dynamic 

loads of gear systems, failing to represent other gearbox dynamic properties. Fig. 1.7 shows two 

examples of early gear vibratory models consisting of mass and spring components. 

  

(a) A mass-spring model for gear mesh [52,54] (b) A vibratory model for mating gears [53,54] 

Fig. 1.7: Two vibratory models of gears 

To represent dynamic behaviours of gearbox systems, more involved dynamic models were 

developed in the 1970s and thereafter by taking more factors associated with gearbox systems into 

consideration, such as time-varying gear tooth mesh stiffness, gear tooth mesh damping, backlash, 

transmission error, stiffness and damping of bearings and couplings, torsional and transverse 

(lateral) motions of gearbox components, and so on [50,55]. In order to obtain a more accurate 

analysis of gearbox dynamics, there are two feasible approaches for improving the modelling 

accuracy: the first one is to increase the degrees of freedom of gearbox dynamic models; the second 

one is to keep the degrees of freedom unchanged while considering more factors related to gearbox 
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properties [56]. Herein, the former is adopted as the thread to present the review of the reported 

studies on gearbox dynamic modelling.  

At the very beginning, a one Degree Of Freedom (1-DOF) dynamic model shown in Fig. 1.8 was 

used to represent a gear pair and analyze its torsional dynamics [56], where the gear tooth mesh 

stiffness and mesh damping were involved. In this 1-DOF model, the equivalent DOF is the 

dynamic transmission error (the difference between the displacements of the two gears along the 

line of action). Later, Kahraman and Singh [57] also adopted a 1-DOF dynamic model of a spur 

gear pair with backlash to study the effects of gearbox system parameters on the vibrations excited 

by the static transmission error. 

 

Fig. 1.8: A 1-DOF dynamic model of a pair of engaged gears [54,56] 

Soon after, to include the effects of shaft and bearing compliance, the 1-DOF dynamic model 

presented in Ref. [57] was further extended into a 3-DOF dynamic model by Kahraman and Singh 

[58], which considered the radial clearance in the rolling element bearings and backlash between 

a spur gear pair. The 3-DOF gearbox dynamic model is shown in Fig. 1.9, and the three degrees 

of freedom are the vertical displacements of the two gears and the difference between the dynamic 

transmission error and the static transmission error [58]. Parametric studies were conducted to 

obtain insights into the non-linear dynamic behaviours of a spur gearbox caused by gearbox system 

parameters, such as bearing stiffness, gear tooth mesh stiffness, and so forth [58,59]. Besides, Iida 

et al. [60] adopted a 3-DOF dynamic model of a spur geared system to study the coupled torsional-

flexural vibration of a shaft, which also considered the geometrical eccentricity of gears and mass 

unbalance. Recently, a 3-DOF dynamic model was also established to study the effect of tooth 

contact temperature on the tooth meshing surfaces on the gearbox dynamic behaviours, including 

system chaos, doubling bifurcation and Hopf bifurcation [61]. 
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Fig. 1.9: A 3-DOF dynamic model of a spur gearbox [54,58,59] 

The 3-DOF dynamic model of a spur geared system was further extended into a 6-DOF dynamic 

model by considering the x-axis displacements of the gear pair [62,63]. The 6-DOF dynamic model 

of a spur geared system is shown in Fig. 1.10, in which the six degrees of freedom were the x-axis 

displacements, the y-axis displacements, and the torsional displacements of the two gears, namely, 

𝑥𝑝, 𝑥𝑔, 𝑦𝑝, 𝑦𝑔, 𝜃𝑝, 𝜃𝑔. In this model, the coupling between the torsional and transverse vibrations 

of the two gears were considered. Gearbox responses to gear geometric eccentricities, mass 

unbalances, static transmission error, and gear tooth mesh stiffness variation were studied [62]. 

 

Fig. 1.10: A 6-DOF dynamic model of a spur gearbox [62,63] 
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The literature on gearbox dynamic modelling reviewed so far did not include the driving motor 

and the driven load machine, which are necessary components of a gearbox transmission system. 

To overcome this deficiency, Bartelmus [49] developed a spur gearbox dynamic model with 8-

DOF by considering both the torsional and lateral vibrations of the two engaged gears and the 

torsional vibrations of the driving motor and the load machine. The 8-DOF dynamic model is 

shown in Fig. 11, and the eight degrees of freedom are 𝑥𝑝 , 𝑥𝑔 , 𝑦𝑝 , 𝑦𝑔 , 𝜃𝑝 , 𝜃𝑔 , 𝜃𝑚 , and 𝜃𝑏 , 

respectively. Besides, if the x-axis displacements of the two gears are neglected, this 8-DOF model 

will be reduced to a 6-DOF model [63]. This 8-DOF dynamic model is well-developed enough to 

study the vibration characteristics of a one-stage spur gearbox transmission system with a driving 

motor and a load machine involved. Besides, the effects of time-varying gear tooth mesh stiffness, 

mesh damping, inter-tooth friction on gearbox dynamic behaviours can also be studied using this 

8-DOF dynamic model, which made this model very popular in modelling one-stage spur gearbox 

transmission systems [26,28,63–66].   

 

Fig. 1.11: An 8-DOF dynamic model of a spur gearbox [49,63] 

During the past decade, to model a one-stage spur gearbox transmission system, more factors of 

gearbox components or motions have been considered, thus resulting in some dynamic models 

with more than 8 DOF. For example, by considering the lateral vibrations of the gearbox casing 

apart from the 8 DOF of the gear pair, the driving motor, and the load machines, a 10-DOF 
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dynamic model was built [54,67]. In order to include the gyroscopic effects of the gear pair, two 

more rotational degrees of freedom of each gear were added into the 8-DOF dynamic model shown 

in Fig. 1.11, resulting in a dynamic model with 12-DOF [63], which is shown in Fig. 1.12. The 12 

DOF are 𝑥𝑝 , 𝑥𝑔 , 𝑦𝑝 , 𝑦𝑔 , 𝜃𝑝 , 𝜃𝑔 , 𝜙𝑝 , 𝜙𝑔 , 𝜓𝑝 , 𝜓𝑔 , 𝜃𝑚  and 𝜃𝑏 , respectively. All these models are 

actually the extensions and variations of the 8-DOF dynamic model reported in Ref. [49]. Besides, 

except for the dynamic models with various number of degrees of freedom of one-stage fixed-axis 

spur gearbox systems reviewed above, dynamic models of two-stage spur gearbox systems [49,68] 

have also been developed to study the gearbox vibration characteristics. Dynamic models of two-

stage spur gearbox systems are extensions of those for one-stage fixed-axis spur gearboxes. 

 

Fig. 1.12: A 12-DOF dynamic model of a spur gearbox [63] 

According to the literature reviewed above, it is found that various dynamic models have been 

developed to model fixed-axis spur gearboxes. However, for those dynamic models, most of them 

only focused on the scenario that gearboxes work under constant speed and constant load (torque) 

conditions. Although Ref. [66] considered load variations when conducting dynamic modelling, it 

failed to cover other scenarios of time-varying operating conditions. To overcome this deficiency, 

Chapter 3 of this thesis will consider time-varying operating conditions when modelling fixed-axis 

spur gearboxes and study the effects of operating condition variations on gearbox vibration 

characteristics. 
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1.2.1.2 Gear tooth mesh stiffness evaluation using the potential energy method 

As introduced in Subsection 1.1.4, four methods have been commonly employed to evaluate gear 

tooth mesh stiffness, which are the square waveform method, the finite element method, the 

experimental method, and the potential energy method, respectively. In this thesis, the potential 

energy method will be utilized due to its efficiency and effectiveness. Reported studies on the 

evaluation of tooth mesh stiffness of a spur gear pair using the potential energy method are 

reviewed in what follows. 

Yang and Lin might be the researchers who first proposed the potential energy method for 

evaluating the gear tooth mesh stiffness [69]. They pointed out that the total potential energy stored 

in a meshing gear pair consisted of three parts: the Hertzian energy, the bending energy, and the 

axial compressive energy. The formulae of these three types of energy were derived using the 

beam theory since gear teeth are assumed as non-uniform cantilever beams [69]. To be specific, 

the Hertzian energy was referred to the energy stored in the vicinity of the tooth surface contact 

due to the tooth elastic deformation, which was used to calculate the Hertzian contact stiffness. 

The bending energy was resulting from the bending deflection of the gear teeth and was adopted 

to calculate the bending stiffness. The axial compressive energy was caused by the compressive 

strain in the axial direction of the gear teeth, which was used for the calculation of the axial 

compressive stiffness. The Hertzian contact stiffness was found to be a constant along the entire 

line of action and was independent of the position of tooth contact. On the contrary, the bending 

stiffness and the axial compressive stiffness were time varying since they were dependent on the 

variation of the number of contact pairs and tooth contact points [69].   

However, Yang and Lin [69] did not consider the shear energy stored in a gear tooth when 

calculating the total potential energy of a meshing gear pair. To overcome this deficiency, Tian 

[26] analytically derived the formula for calculating the shear energy based on the beam theory as 

well. The shear energy was further used to calculate the shear stiffness. Based on the Hertzian 

stiffness, the bending stiffness, the axial compressive stiffness, the shear stiffness, and the gear 

meshing properties, the calculation formula of the total mesh stiffness of a gear pair for the double-

tooth-pair and single-tooth-pair meshing durations were derived. Each type of stiffness was also 

derived as a function of the pinion angular displacement. Besides, Tian [26] found that the values 

of the total mesh stiffness were about two times higher than those with the shear stiffness 
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considered, which indicated that the shear stiffness affected the total mesh stiffness of a gear pair 

greatly. The relations of the bending stiffness, the shear stiffness, and the axial compressive 

stiffness were also studied via their mutual ratios, which showed that the magnitudes of the axial 

compressive stiffness were close to those of the shear stiffness but were much smaller than those 

of the bending stiffness. Therefore,  the axial compressive stiffness and the shear stiffness can not 

be neglected when evaluating the total mesh stiffness of a gear pair [26].  

For the studies reported in Refs. [26,69], they all assumed that the gear bodies were rigid and the 

root of each tooth did not experience any deflection, which ignored the effect of fillet foundation 

deflection on the gear tooth mesh stiffness. To overcome this drawback, Sainsot et al. [70] 

investigated the effect of fillet foundation deflection on the gear tooth mesh stiffness and derived 

the mathematical formula of this deflection. The fillet foundation deflection was adopted to 

calculate the stiffness due to the fillet foundation deflection [35]. Later, Zhou et al. [71] assumed 

that both a gear tooth and the rim of a gear suffered the deflections and derived the bending 

stiffness and the shear stiffness under the new assumptions. They compared their stiffness results 

to those obtained using the formulae presented in Ref. [26] and the finite element methods, and 

found that their stiffness results were closer to the latter while smaller than the former. 

For the studies reported in Refs. [26,35,69–71] reviewed above, the evaluation of gear tooth mesh 

stiffness were conducted when gearboxes work under constant speed conditions, failing to involve 

time-varying speed conditions. However, in industrial applications, gearboxes oftentimes 

experience speed fluctuations. Therefore, the evaluation of gear tooth mesh stiffness under variable 

speed conditions needs to be conducted, which will be presented in Chapter 3 of this thesis.  

1.2.1.3 Effect of tooth crack on gear tooth mesh stiffness 

When there exists a tooth crack in a spur gearbox, the presence of a tooth crack in the spur gear 

pair will result in changes in gear tooth mesh stiffness since the tooth crack changes the tooth 

geometrical structure and its load-bearing capacity, consequently changing gearbox vibration 

characteristics. The changes in gear tooth mesh stiffness due to a tooth crack can be analytically 

represented using the potential energy method or calculated using the finite element method. This 

thesis will employ the potential energy method to study the effect of tooth cracks on the mesh 

stiffness of a spur gear pair. During the last few decades, many studies have been conducted to 



20 
 
 

evaluate the effect of a tooth crack on gear tooth mesh stiffness using the potential energy method, 

some representatives of which are reviewed in what follows. 

For a spur gear pair consisting of a pinion and a gear, Tian [26] evaluated the gear tooth mesh 

stiffness for the case that there was a root crack on one pinion tooth and the gear was healthy. The 

reason for considering the pinion tooth crack was that the pinion had higher rotational frequency 

and was easier to experience tooth cracks. In Ref. [26], Tian only considered the case when the 

crack depth was less than half of the base chordal thickness of one pinion tooth, which 

corresponded to a shallow crack in the tooth, and assumed that the tooth crack extended through 

the whole tooth face width with a uniform depth. It was found that a pinion tooth crack did not 

affect the effective work surface of the tooth, therefore the Hertzian stiffness was not affected by 

tooth crack. Besides, although a tooth crack existed, the crack part still had the capacity of bearing 

the axial compressive force as if there was no crack, which made the axial compressive stiffness 

the same as that under the perfect tooth condition. However, the bending stiffness and the shear 

stiffness were affected by a tooth crack, calculation formulae of which for the cracked case were 

derived based on the beam theory [26]. Bending stiffness and shear stiffness decreased greatly due 

to the presence of a tooth crack and the affected mesh stiffness lasted for the entire mating duration 

of the tooth with a root crack, and the total mesh stiffness of a gear pair also decreased significantly 

accordingly. Later, Wu et al. [33] extended the work presented in Ref. [26] by considering the case 

that the tooth crack depth was greater than half of the base chordal thickness of one pinion tooth. 

Accordingly, the calculation formulae for the bending stiffness and the shear stiffness were refined 

to cover the newly considered case of crack depth. They also studied the effect of tooth crack 

growth on the total mesh stiffness of a spur gear pair and found that as the crack depth increased, 

the total mesh stiffness when the cracked pinion tooth was in meshing became much lower. This 

observation could be used for tooth crack detection and severity assessment. Besides, Chaari et al. 

[72] developed a mathematical model to analytically quantify the gear tooth mesh stiffness 

reduction due to the presence and severity progression of tooth crack.  

In order to improve the accuracy of mesh stiffness of a spur gear pair with a tooth crack, the tooth 

crack propagation path needs to be modelled in a practical way. For the propagation path of a tooth 

crack, straight line segments were employed for crack modelling in Refs. [26,33]. However, 

Pandya and Parey [73] proposed a curved crack propagation path for representing tooth crack 
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severity progression and for evaluating gear tooth mesh stiffness. Besides, comparisons between 

the results of total mesh stiffness obtained using the proposed curved tooth crack propagation path 

and those obtained using the straight counterpart were made for two gear pairs with different 

contact ratios. For the gear pair with a contact ratio smaller than two, it was found that for early 

tooth crack, the total mesh stiffness results obtained using the two types of crack propagation were 

approximately equal. However, for advanced tooth crack, the total mesh stiffness obtained using 

the proposed curved tooth crack propagation path was smaller than that obtained using the straight 

one. On the contrary, for the gear pair with a contact ratio greater than two, the difference between 

the stiffness results for the straight and curved paths was insignificant [73]. In addition, various 

tooth crack propagation scenarios were also studied and compared in Refs. [35], including (1) 

tooth crack propagated in both the crack depth and the crack length directions simultaneously [74]; 

(2) tooth crack extended through the whole tooth width with a uniform crack depth distribution 

[26,33,71]; (3) tooth crack extended through the whole tooth width with a parabolic crack depth 

distribution [75]. It was found that the third scenario resulted in insignificant reflection on the 

decrease of gear tooth mesh stiffness.  

Although the studies reviewed above have been conducted to study the effect of tooth crack on 

gear tooth mesh stiffness, they only considered the case that there exists one tooth crack in a spur 

gear pair, which is not always the case in the gearboxes used in industrial applications since 

multiple tooth cracks may occur in gearboxes in some scenarios. To overcome this drawback, 

Chapter 5 of this thesis will analytically evaluate the mesh stiffness of a spur gear pair with 

multiple tooth cracks on the pinion and/or on the gear and reveal the effects of multiple tooth 

cracks on the total mesh stiffness and gearbox vibration responses.  

1.2.2 Vibration-based gear tooth fault diagnosis for fixed-axis spur gearboxes 

In this subsection, the composition of vibration signals of fixed-axis spur gearboxes is first 

introduced, which helps us get a good understanding of the constitutive components of vibration 

signals of fixed-axis spur gearboxes, therefore contributing to the development of effective 

vibration signal analysis methods for gear fault diagnosis for fixed-axis spur gearboxes. This is 

complementary to the gearbox dynamic simulation for understanding gearbox vibration signals. 

Afterwards, vibration signal analysis methods for gear tooth crack detection and severity 

assessment for fixed-axis spur gearboxes reported in the literature are reviewed, including the 
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Condition Indicators (CIs) employed for gear fault diagnosis, the extraction of the Crack Induced 

Impulses (CII), and the removal of the Amplitude Modulation (AM) and Frequency Modulation 

(FM) caused by operating condition variations.    

1.2.2.1 Composition of vibration signals of fixed-axis spur gearboxes 

For a spur gear pair works under constant speed and constant load conditions, if each gear is an 

ideal gear that is free of geometry and manufacturing errors, the gear meshing vibration will 

comprise the fundamental gear meshing frequency and its multiples [76]. However, for the 

vibration signals generated from healthy fixed-axis spur gearboxes used in real industrial 

applications, they mainly consist of the gear meshing harmonics and the associated sidebands and 

environmental noise [76,77]. The sidebands around the gear meshing harmonics are usually low-

order (first and second order) sidebands resulting from the AM and FM, which are caused by the 

transmission errors that are related to the manufacturing and assembly errors of the spur gear pairs.  

When a tooth crack is present in a fixed-axis spur gearbox which is working under constant speed 

and constant load conditions, impulses will be produced by the cracked tooth when it contacts with 

other gear teeth [77–79], and the impulses are termed CII in this thesis. The CII possess a short-

period property and have a comparatively low-energy level, which results in a cluster of high-order 

harmonic components with relatively low magnitudes spreading over the frequency spectrum of 

the gearbox vibration signal. The carrier frequencies of the CII are generally the resonant 

frequencies of a gearbox. Besides, the CII also induce additional AM and FM into the normal gear 

vibration where the carrier frequencies are the gear meshing harmonics, which modifies the 

original AM and FM of healthy gearbox vibration signals caused by the gear manufacturing and 

assembly errors. Therefore, for a practical fixed-axis spur gearbox with a tooth crack working 

under constant speed and constant load conditions, its vibration signal mainly consists of the gear 

meshing harmonics and the associated crack-related AM and FM, the CII, and environmental 

noises [77,79]. The crack-related AM and FM and the CII are the signal components which are 

closely related to the gear tooth crack, the information embedding in which can be extracted and 

used for gear tooth crack diagnosis. On this basis, many CIs have been developed using the crack-

related AM and FM and the CII for gear tooth crack diagnosis, which will be reviewed later in 

Subsection 1.2.2.2. Besides, it was also found that the CII provided more valuable information for 

the tooth crack diagnosis than the crack-related AM and FM [77,79]. Therefore, the CII need to be 
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extracted from gearbox vibration signals for the development of more effective methods for tooth 

crack diagnosis. The reported studies on the extraction of the CII from gearbox vibration signals 

will be reviewed in Subsection 1.2.2.3. 

When gearboxes work under time-varying operating conditions, where either the speed or the load 

or both vary with time, the speed and load variations will result in additional AM and FM into gear 

vibration signals [36,80,81], which are termed the operating condition variation-induced AM and 

FM in this thesis. Therefore, for a fixed-axis spur gearbox with a tooth crack which works under 

time-varying operating conditions, its vibration signal is a combination of the operating condition 

variation-induced AM and FM, gear meshing harmonics and the associated crack-related AM and 

FM, the CII, and environmental noises. However, the dependences of the operating condition 

variation-induced AM and FM on the time-varying operating conditions are unknown yet. Urbanek 

at al. [36] made an attempt to build a model of vibration signals that included the effects of time-

varying speed and load conditions by assuming that the operating condition variation-related AM 

was a compound function of both speed and load, but only a graphic representation of the operating 

condition variation-induced AM was presented, failing to give its mathematical expression. Later, 

Schmidt and Heyns [80] assumed that the measured vibration signals for gearboxes working under 

time-varying operating conditions were a product of a function of operating condition variables 

(speed and load), which denoted the AM induced by operating condition variations, and a 

stationary signal. But the mathematical form of the function representing the AM induced by 

operating condition variations was not described as well. To overcome this drawback, Chapter 3 

of this thesis will reveal the dependence of the AM induced by operating condition variations on 

the time-varying operating conditions. On this basis, a phenomenological model for the vibration 

signals of a fixed-axis spur gearbox with a tooth crack working under variable speed conditions 

will be introduced in Chapter 4 of this thesis. 

In addition, because the operating condition variation-induced AM and FM are interfering factors 

in terms of gearbox fault diagnosis since they do not reflect the changes of health status of gears 

and can mask the presence of gear tooth faults, they need to be removed when processing gearbox 

vibration signals for gear fault diagnosis. The reported studies on the removal of the operating 

condition variation-induced AM and FM will be reviewed in Subsection 1.2.2.4.  
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1.2.2.2 Condition indicators for gear tooth crack diagnosis  

During the last several decades, various CIs have been developed using raw gearbox vibration 

signals and gear TSA signals for gear tooth crack diagnosis. However, because raw gearbox 

vibration signals usually contain strong environmental noise that always masks the weak fault 

signature, CIs calculated using raw gearbox vibration signals are not effective enough for tooth 

crack diagnosis. To eliminate the effects of noise, the TSA signals of gears, which can be obtained 

by conducting the TSA operation on raw gearbox vibration signals, have been commonly 

employed for developing various CIs for gear tooth crack diagnosis. The CIs developed using the 

gear TSA signals are reviewed in the following. 

FM0 was developed by Stewart [82] to detect vibration changes caused by tooth cracks. FM0 was 

defined as the ratio of the peak-to-peak value of the signal to the sum of RMS values of the Gear 

Meshing Frequency (GMF) and its harmonics. Subsequently, to boost the performance of FM0, 

FM4 was designed to detect cracks limited to a small number of gear teeth. To calculate FM4, the 

difference signal was first created by removing the GMF and its harmonics along with the first 

order sidebands around them from the TSA signal. FM4 was calculated by dividing the fourth 

statistical moment of the mean by the square of the variance of the difference signal [83]. If the 

tooth fault only propagates locally, FM4 would keep increasing. However, as the occurrences of 

tooth cracks progressed in both number and severity, FM4 became less sensitive to tooth crack 

growth. To overcome the deficiency of FM4, NA4 was developed by making two changes to the 

FM4 [83]. The first change was that FM4 was calculated using the difference signal while NA4 

was calculated from the residual signal. The residual signal includes the first order sidebands that 

are removed from the difference signal. The second change was that trending was incorporated 

into the NA4 parameter. NA4 was more sensitive to tooth fault growth than FM4 [83,84]. NB4 

was another CI developed to detect localized gear tooth cracks [85]. The calculation of NB4 was 

like that of NA4 since it adopted the same operation to normalize the kurtosis. However, unlike 

NA4, NB4 used the envelope of the signal obtained by band-pass filtering about the dominant 

GMF [85]. These four CIs have been employed for gear tooth crack diagnosis, but they can only 

indicate tooth cracks in the advanced stage (close to complete loss of tooth), failing to reliably and 

accurately detect early tooth cracks [84]. Later, another CI called PS-I was developed to track tooth 

crack severity progression [86]. It was designed as the ratio of RMS of the residual signal to that 
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of the regular signal. Using the PS-I, the presence of a tooth crack could be detected. In addition, 

PS-I has been shown to be more sensitive towards tooth crack severity progression than the FM0, 

FM4, NA4, and NB4 [86]. However, from the perspective of tracking tooth crack growth in the 

early stage, PS-I cannot achieve satisfactory performance since its increase was still small from 

healthy state to early crack stage [86]. The reason accounting for the failure of these CIs to track 

tooth crack growth in the early stage is that the signal components based on which they are 

calculated comprise little signature reflecting early tooth crack severity progression. 

As discussed in Subsection 1.2.2.1, for a gearbox with a localized tooth crack, it has been reported 

that the CII in the gearbox vibration signal contain more valuable information for tooth crack 

diagnosis than the crack-related AM-FM [77]. Therefore, how to accurately extract the CII from 

the gear TSA signals and how to obtain tooth crack information from the CII are worth studying 

since it will contribute to early tooth crack diagnosis. Generally, for a gearbox with one tooth crack, 

there only exists one impulse induced by the tooth crack in one gear shaft revolution. Because a 

gear TSA signal has the length of one gear shaft revolution, it includes the average of the CII. For 

the consistency of nomenclature, the average of the CII included in a gear TSA signal is also 

termed “CII” in this thesis. However, the “CII” extracted from a gear TSA signal is the average of 

the “CII” obtained from the raw gearbox vibration signals, although they use the same abbreviation.  

Wang [77] made an attempt to extract features related to the CII from TSA signals of gearboxes 

with a tooth crack using a resonance demodulation technique. Firstly, the GMF and its harmonics 

were removed from the TSA signal to obtain the residual signal. The residual signal was then band-

pass filtered within the resonant frequency band in which the CII existed. However, in Ref. [77],   

the resonant frequency band was selected simply using visual inspection. Afterwards, the band-

pass filtered residual signal was squared, and the squared signal was low pass filtered to get the 

squared envelope signal. The resulting envelope signal was expected to indicate the abrupt change 

caused by the tooth crack. Kurtosis of the squared envelope signal was calculated, and the results 

showed that it provided a good indication of tooth crack. However, kurtosis of the squared 

envelope signal was not so good for continuously monitoring tooth crack severity progression. 

This deficiency may be resulted from the existence of the crack-related AM-FM sidebands in the 

visually selected resonant frequency band. In order to overcome the drawback of the method 

reported in Ref. [77], Man et al. [87]  proposed a multiple modulated sinusoidal model to represent 
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the TSA signals of both healthy and cracked gears. The batch learning of the least squares 

technique was adopted to optimize the sinusoidal model parameters. With the optimized model 

parameters, both the impulse vibration component induced by tooth cracking and the crack-related 

AM-FM in the TSA signal were identified. Besides, the identified impulse vibration component 

was further analyzed to get insight of tooth crack diagnosis. The energy of the identified impulse 

vibration component was employed as a CI to monitor the evolution of tooth cracking. Although 

the result presented in Ref. [87] showed that the energy of the impulse vibration component 

performed better than the energy of the residual signal in Ref. [77], it was still relatively stabilized 

when the tooth crack was in the early stage, which may result in poor performance on early tooth 

crack severity assessment. The problem of the methods reported in Refs. [77,87] is that the 

component of the CII that can effectively indicate early tooth crack severity progression is not 

identified and utilized for early tooth crack diagnosis. 

To overcome the deficiencies of the CIs reviewed in this subsection in terms of tracking tooth 

crack severity progression in the early crack stage, Chapter 2 of this thesis proposes a new method 

for extracting the CII from gearbox vibration signals and conducts a comprehensive study on the 

extracted CII to propose two new CIs for early tooth crack severity assessment.  

1.2.2.3 Extraction of crack induced impulses 

As mentioned in Subsection 1.2.2.1, the CII in gearbox vibration signals contain more valuable 

information for tooth crack diagnosis than the crack-related AM-FM. Therefore, better results of 

gear fault diagnosis will be achieved if the CII are employed for gear fault diagnosis. To this end, 

one critical step is to extract the CII accurately and effectively from gearbox vibration signals. 

However, to extract the CII directly from gearbox vibration signals is very demanding. A feasible 

way is to transform the extraction of the CII to the reconstruction of the CII, thus achieving the 

goal of extracting the CII. In the literature, many studies that follow the idea of reconstructing the 

CII have been conducted to extract the CII from gearbox vibration signals, some representatives 

of which are reviewed as follows.  

Wang [77] made an attempt to extract the CII from gearbox vibration signals using the band-pass 

filtering operation. To be specific, TSA was first conducted on gearbox vibration signals to get the 

gear TSA signals. Gear mesh harmonics were then removed from the gear TSA signal to generate 
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the residual signal. Afterwards, the residual signal was band-pass filtered with the pass band being 

the resonant frequency band to get the CII. Because the resonant frequency band was determined 

simply using the visual inspection, the extracted CII had many masking components related to gear 

mesh, which submerged the tooth crack information to some extent and undermined its 

effectiveness for early tooth crack diagnosis. Therefore, how to select the optimal resonant 

frequency band where the CII exist and extract the CII directly from TSA signals are very 

challenging and demanding. Later, Man et al. [87] used the idea of reconstruction to extract the 

CII via mathematical models. Specifically, the authors developed a multiple modulated sinusoidal 

model to represent the TSA signals of cracked gears, and the CII were reconstructed using the 

optimized model parameters of the multiple modulated sinusoidal models. However, it was 

difficult to determine the model order, and if the model order was not properly determined, the 

reconstructed CII could not cover all the information on tooth crack, thus failing to well extract 

the CII. To overcome the deficiencies of the studies reported in Refs. [77,87], in this thesis, Chapter 

2 will propose a new method for extracting the CII from gearbox vibration signals, which follows 

the idea of reconstruction as well, and conduct a thorough study on the extracted CII. Details of 

the new method for the extraction of the CII will be presented in Chapter 2 of this thesis.  

The CII can also be reconstructed using their corresponding frequency components. When a 

gearbox with a tooth crack is working under constant speed and constant load conditions, the CII 

are periodic in the time domain. Zhou et al. [88] observed that the CII resulted in a group of 

harmonics, namely a harmonic cluster, in the frequency spectrum of gearbox vibration signals, and 

the frequency interval between every two adjacent harmonics was the reciprocal of the repetition 

period of the CII. The authors also bridged the equivalence between the CII and the corresponding 

harmonic cluster via mathematical derivations [88]. On this basis, Zhou et al. [88] developed an 

Adaptive Harmonic Decomposition (AHD) method to extract all the harmonics in the frequency 

spectrum, which were related to the CII, using an iteration scheme. After all the harmonics related 

to the CII were obtained, they were further summed to reconstruct the CII, therefore achieving the 

goal of extracting the CII from gearbox vibration signals. The operations of the AHD method were 

conducted in the time and frequency domains, and the AHD method worked well in extracting the 

CII from gearbox vibration signals under constant speed and constant load conditions. However, 

when it comes to time-varying speed and load conditions, the CII are no longer periodic in the 
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time domain. In this case, the original AHD method becomes incompetent to extract the CII. To 

overcome this drawback, the original AHD method needs to be modified to extract the CII from 

vibration signals of gearboxes working under time-varying speed and load conditions. Details of 

the modified AHD method will be presented in Chapter 3 of this thesis.     

Another way is to reconstruct the CII by selecting desirable components of gearbox vibration 

signals obtained using the signal decomposition methods for summation, thus achieving the goal 

of extracting the CII from gearbox vibration signals. In the context of reconstructing the CII, the 

desirable signal components to be selected refer to the constitutive components of the CII, while 

the other unselected signal components can be regarded as unwanted interference or noise 

components. Therefore, the reconstruction of the CII based on the signal decomposition and the 

selection of desirable signal components is also called signal denoising in some papers since the 

CII are highlighted and kept while the unwanted signal components are discarded as noise. During 

the last several decades, various signal decomposition methods have been developed for signal 

denoising, which include Wavelet Transform (WT) [45,89,90], Empirical Mode Decomposition 

(EMD) [47,91], Ensemble Empirical Mode Decomposition (EEMD) [92], Local Mean 

Decomposition (LMD) [93],  Singular Value Decomposition (SVD) [94–97], and so forth. Among 

these signal decomposition methods, SVD has become increasingly popular since it is a non-

parametric signal analysis method which can be implemented without defining prior basis 

functions and it has relatively high computation efficiency [97]. Due to these metrics of SVD, it 

has been widely used to extract the CII in the research field of gearbox condition monitoring and 

fault diagnosis. The main idea behind the studies which adopted SVD to extract the CII is to first 

decompose a gearbox vibration signal into several Singular Components (SCs) using SVD. 

Subsequently, the SCs which are the constitutive components of the CII need to be identified and 

selected. To this end, a selection criterion needs to be designed. Conventionally, researchers 

always employed the energy of an SC as the selection criterion to pick out the SCs for signal 

denoising. The idea behind the conventional energy-based SVD methods is that an SC with a 

higher energy value is assumed to be a main signal component and needs to be picked out and kept 

for signal reconstruction, while those with lower energy values are discarded as noise [98,99]. 

However, the conventional energy-based SVD methods did not work well in extracting the CII 

since the energy of the CII is relatively lower than those of other signal components such as gear 
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meshing harmonics. To overcome this drawback, recently, Zhao and Jia [97] developed a new 

selection criterion for picking out the SCs most related to the CII, which was based on an index 

termed Periodic Modulation Intensity (PMI). PMI can effectively evaluate the information on the 

CII included in an SC since it measures the strength of CII and represents the energy ratio between 

the CII and other signal components [97]. Although Zhao and Jia [97] demonstrated that their 

PMI-based SVD method outperformed the conventional energy-based SVD methods, performance 

of their method was affected by the gear meshing harmonics which were not removed in their 

study. Chen at al. [96] observed that the non-fault related baseline vibration components affected 

the PMI values and adopted an auto-regression model to remove the baseline vibration components 

(such as gear meshing harmonics) to get the so-called residual signal. Afterwards, the residual 

signal was processed using the SVD-PMI scheme. However, it is difficult to select a good model 

order for the auto-regression model. If the model order is not well determined, the auto-regression 

model cannot work well in removing the baseline vibration components. To overcome this 

disadvantage, a new method for extracting the CII using the SVD-PMI framework is proposed, 

which will be detailed in Chapter 5 of this thesis. 

For the three kinds of methods for extracting the CII reviewed in this subsection, namely the 

reconstruction of the CII via mathematical models, the reconstruction of the CII via the 

corresponding frequency components, and the reconstruction of the CII via selecting the desirable 

signal components, each of them has its own advantages and disadvantages. It is difficult to tell 

which one is the best option. Each of the three methods has a room for further improvements to 

make itself more powerful and suitable to extract the CII. Therefore, in this thesis, the method 

adopted to extract the CII will be selected according to the application scenarios.  

1.2.2.4 Removal of the operating condition variation-induced AM and FM  

As discussed in Subsection 1.2.2.1, time-varying operating conditions of gearboxes induce 

additional operating condition variation-induced AM and FM into gearbox vibration signals, 

which can mask the presence of gear tooth faults. The reason is that due to the operating condition 

variation-induced AM and FM, changes in CIs may indicate the change of gear tooth health state, 

operating condition variations, or both. Therefore, in order to conduct effective and accurate gear 

tooth crack diagnosis under time-varying operating conditions, the operating condition variation- 

induced AM and FM need to be removed. Besides, during the removal process, the information on 
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tooth crack should not be attenuated. This subsection reviews the reported studies on the removal 

of the operating condition variation-induced AM and FM, some representatives of which are 

described in the following. 

For the removal of the operating condition variation-induced FM, it can be easily done using the 

order tracking techniques, which have been widely adopted to compensate for the FM induced by 

speed variations [100]. Because the order tracking techniques have been well developed, the 

relevant studies are not reviewed herein. On the contrary, the research work on the removal of the 

operating condition variation-induced AM is not mature and has been developing all the time. 

Therefore, the reported studies on the removal of the operating condition variation-induced AM 

are reviewed herein. Stander et al. [81] developed a Load Demodulation Normalisation (LDN) 

procedure to reduce the AM induced by cyclic stationary load conditions, but it also attenuated the 

information on tooth crack severity progression. Urbanek et al. [36] came up with a method for 

normalizing the amplitude of gearbox vibration signal to get rid of the AM induced by time-

varying speed conditions. However, this normalization method attenuated the information on gear 

tooth crack severity progression since the AM effect was estimated using the entire vibration signal. 

Abboud et al. [101] developed a method called Speed-Spectral Whitening (SSW) to reduce the 

amplitude fluctuation of frequency contents caused by variable speed conditions based on the 

Campbell diagram. However, the performance of the SSW method was highly dependent on the 

estimation of the Campbell diagram. Later, Abboud et al. [102] further proposed another method 

named Generalized Synchronous Average (GSA) to mitigate the AM induced by variable speed 

conditions. However, in the GSA method, estimation issues related to speed resolution, the number 

of regimes, and the repartition of the central frequencies were difficult to tackle [102], which 

makes the GSA method hard to implement in some applications.  

Recently, another method called Normalization of the AM caused by Varying Operating 

Conditions (NAMVOC) has been developed to remove the AM induced by time-varying speed 

conditions [80]. In the NAMVOC method, the square root of the moving median filtered squared 

envelope of the entire raw vibration signal was calculated and seen as the AM, through which the 

entire raw vibration signal was normalized, thus removing the AM induced by variable speed 

conditions [80]. The analysis results of both simulated gearbox signals and experimental gearbox 

data showed that the NAMVOC outperformed the GSA for reducing the AM. Although the 
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NAMVOC method alleviated the AM caused by variable speed conditions, it still suffered from 

several problems. To be specific, firstly, the NAMVOC method possesses an inappropriate 

assumption that variable speed conditions induce the same AM into all components of the gearbox 

vibration signal. This assumption leads to a significant simplification of the original problem since 

variable speed conditions could result in different AM effects on different signal components [36]. 

The utilization of the estimated AM result obtained from the entire raw vibration signal to remove 

the AM attenuates the information on gear tooth crack severity progression. The second problem 

is that it is not an easy job to determine the optimal length of the moving median filter for the 

NAMVOC method. Improper values of moving median filter length can highly affect the 

performance of the NAMVOC method [80]. In addition, the performance of the NAMVOC 

method on the removal of the AM effect was only qualitatively evaluated and compared, rather 

than being quantitatively evaluated [80].  

To overcome the deficiencies of the methods for removing the operating condition variation-

induced AM reviewed above, in this thesis, Chapter 4 proposes a new normalization method which 

not only removes the AM and FM induced by variable speed conditions but also preserves the 

information on tooth crack severity progression. Details of the proposed normalization method 

will be presented in Chapter 4.    

1.3 Thesis objective and outline 

The overarching objective of this thesis is to get a good understanding of the vibration 

characteristics of fixed-axis spur gearboxes with tooth cracks under either constant and time-

varying operating conditions, and develop effective vibration analysis methods for accurate tooth 

crack detection and severity assessment based on the obtained insights into gearbox vibration 

characteristics. The overarching objective is divided into four sub-objectives, which are described 

as follows.  

1) To propose a novel method to effectively extract the CII from gearbox vibration signals 

and conduct a thorough study on the CII to propose two new CIs for accurate early tooth 

crack severity assessment. 
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2) To conduct a comprehensive study on how time-varying operating conditions affect the 

vibration characteristics of a fixed-axis spur gearbox with a tooth crack using dynamic 

simulation and develop effective CIs for tracking tooth crack severity progression under 

time-varying operating conditions. 

3) To propose a novel normalization method to remove the speed variation-induced AM and 

FM without attenuating the tooth crack information and apply the proposed normalization 

method for tracking tooth crack severity progression under variable speed conditions. 

4) To obtain insights into the vibration characteristics of a fixed-axis spur gearbox with 

multiple tooth cracks using dynamic simulation and propose a method for detecting the 

multiple tooth cracks.  

The basic assumptions adopted in this thesis are listed in the following. 

1) The components in a fixed-axis spur gearbox, such as gears, bearing, and shafts, have no 

geometric, manufacturing, and assembly errors. 

2) The gearbox lubrication condition is perfect. 

3) The gear mesh interaction is modelled as a mass-spring-damper system. 

4) A gear tooth is regarded as a cantilever beam when calculating its potential energy. 

5) The gearbox casing is considered as a rigid body when conducting gearbox dynamic 

modelling. 

6) The effect of the transmission path on gearbox vibration signals is negligible. 

7) Gearbox acceleration signals and tachometer signals can be acquired accurately using 

accelerometers and tachometers or encoders, respectively. 

To achieve the four sub-objectives presented above, four research topics have been completed in 

this thesis, which are presented as follows.  

In the first research topic (Topic #1), two new CIs are developed using the CII for early tooth crack 

severity assessment, which outperform the three ones reported in Refs. [77,86,87]. To this end, a 

novel method is proposed to extract the CII and conduct a thorough analysis on the CII. In the 

proposed method, TSA is first adopted to process gearbox vibration signal to get the gear TSA 
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signal. The GMF and its harmonics and the crack-related AM-FM are then removed from the gear 

TSA signal using comb notch filters. The notch filtered signal mainly contains components related 

to the CII. A modal model is adopted to fit the dominant resonances in the notch filtered signal 

and modal parameters are obtained using the matrix pencil method. With the modal parameter 

estimates, the dominant resonances, which are Single Degree-Of-Freedom Impulse Responses 

(SDOF IRs), are identified and used to reconstruct the CII. Besides, the SDOF IRs are grouped 

according to their carrier frequencies. The energy of the reconstructed CII and the sum of the 

energy of the SDOF IRs with carrier frequencies in a specific frequency band are proposed as two 

new CIs for tooth crack diagnosis. The effectiveness of the proposed method and the two new CIs 

for early tooth crack severity assessment are demonstrated using both simulated gearbox vibration 

signals and experimental gearbox vibration datasets. The materials of this research topic have been 

published partially in a conference paper [103] and as a whole in a journal paper [104].  

In the second research topic (Topic #2), how time-varying operating conditions affect the vibration 

characteristics of a fixed-axis spur gearbox with a tooth crack is studied using dynamic simulation 

and signal processing. The limitations of the reported studies on dynamic simulation of fixed-axis 

spur gearboxes [26,33,49,66] have been overcome. To be specific, firstly, gear tooth mesh stiffness 

is evaluated considering both tooth crack severity progression and operating condition variations, 

through which gearbox vibration responses are generated under time-varying operating conditions. 

A signal analysis procedure is proposed with its focus placed on the CII, which are extracted from 

gearbox vibration signals using the AHD method or its modified version. Envelope analysis is 

conducted on the CII to study how the CII are affected by time-varying operating conditions, and 

a linear dependence of the AM of the CII on the time-varying operating condition is identified. 

Based on the identified linear dependence, a novel CI, which is sensitive to crack growth while 

insensitive to operating condition variations, is proposed to track tooth crack severity progression 

under time-varying operating conditions. The linear dependence of the AM of the CII on time-

varying operating conditions and the effectiveness of the proposed CI for tooth crack diagnosis are 

demonstrated using both simulated gearbox vibration signals and experimental gearbox vibration 

datasets. The materials of this topic have been presented in a journal paper [105] which is under 

review at present.  
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In the third research topic (Topic #3), a novel normalization method for removing the speed 

variation-induced AM and FM without attenuating the tooth crack information is proposed to track 

tooth crack severity progression under variable speed conditions. The proposed normalization 

method outperforms the reported studies [36,80,81] in terms of removing the speed variation-

induced AM and FM without attenuating the tooth crack information. Specifically, order tracking 

techniques are used to remove the FM induced by variable speeds. For the removal of the speed 

variation-induced AM, a novel normalization method focusing on the CII is proposed to remove 

the AM effect without attenuating the tooth crack information. The modified AHD method is 

adopted to obtain the CII under variable speed conditions. The peak envelope of the CII is 

determined using spline interpolation of its envelope peaks and is further employed to remove the 

AM of the CII by normalization. Two metrics are introduced to quantitatively evaluate the 

performance of the proposed normalization method on removing the AM and preserving the tooth 

crack information. The effectiveness of the proposed normalization method is demonstrated using 

both simulated gearbox signals and experimental gearbox datasets. The proposed method benefits 

tracking gear tooth crack severity progression under variable speed conditions. The materials of 

this topic have been published partially in a conference paper [106] and as a whole in a journal 

paper [107]. 

In the fourth research topic (Topic #4), the vibration characteristics of a fixed-axis spur gearbox 

with multiple tooth cracks are investigated and a novel method focusing on the CII is proposed for 

the detection of multiple tooth cracks. The limitations of the reported studies [26,33,64] that 

involved only one tooth crack have been overcome. To be specific, insights into the vibration 

characteristics of a fixed-axis spur gearbox with multiple tooth cracks are procured using dynamic 

simulation. Three scenarios of multiple tooth cracks are considered, including two nonadjacent 

tooth cracks on the pinion and a healthy gear, two adjacent tooth cracks on the pinion and a healthy 

gear, and one tooth crack on the pinion and one tooth crack on the gear. Gear tooth mesh stiffness 

is analytically evaluated using the potential energy method and is further inserted into the spur 

gearbox dynamic model to generate vibration responses. Analyses of gear tooth mesh stiffness and 

vibration responses are conducted in both time and frequency domains. Besides, a novel method 

focusing on the CII is proposed to detect the number and locations of multiple tooth cracks. Firstly, 

the CII are extracted from gearbox vibration signals using a new strategy based on the SVD. TSA 
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is conducted on the CII to get the TSA signals for both the pinion and the gear. Afterwards, 

detection of the number and locations of multiple tooth cracks is achieved via analyzing the 

squared envelopes of the TSA signals for both the pinion and the gear. The obtained insights into 

vibration characteristics of a fixed-axis spur gearbox with multiple tooth cracks and the 

effectiveness of the proposed method for detecting the number and locations of multiple tooth 

cracks are demonstrated using both simulated gearbox vibration signals and experimental gearbox 

vibration datasets. The materials of this topic have been documented in a journal paper [108] which 

is under review.  

The novel contributions of this thesis are summarized as follows. 

1) A novel method has been proposed to well extract the CII from gearbox vibration signals 

and conduct a thorough study on the CII, through which two new CIs have been developed 

for early tooth crack severity assessment. The effectiveness of the proposed method and 

the two new CIs for early tooth crack severity assessment are demonstrated using both 

simulated gearbox vibration signals and experimental gearbox vibration datasets. 

2) A comprehensive study has been conducted to investigate how time-varying operating 

conditions affect the vibration characteristics of a fixed-axis spur gearbox with a tooth 

crack. A linear dependence of the AM of the CII on the time-varying operating condition 

has been identified. The identified linear dependence has been employed to develop a new 

CI to track tooth crack severity progression under time-varying operating conditions. The 

correctness of the linear dependence of the AM of the CII on time-varying operating 

conditions, and the effectiveness of the proposed CI method for tracking tooth crack 

severity progression are demonstrated using both simulated gearbox vibration signals and 

experimental gearbox vibration datasets. 

3) A novel normalisation method focusing on the CII has been proposed to remove the speed 

variation-induced AM and FM of the CII without attenuating the tooth crack information, 

which benefits tracking tooth crack severity progression under variable speed conditions. 

The effectiveness of the proposed normalization method for tracking tooth crack severity 

progression is demonstrated using both simulated gearbox vibration signals and 

experimental gearbox vibration datasets. 
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4) A good understanding of the vibration characteristics of a fixed-axis spur gearbox with 

multiple tooth cracks has been procured and a novel method has been proposed to detect 

the number and locations of multiple tooth cracks in fixed-axis spur gearboxes. The 

obtained insights into vibration characteristics of spur gearboxes with multiple tooth cracks 

are validated, which fills the knowledge gaps in the field of gearbox tooth crack diagnosis. 

The effectiveness of the proposed method for the detection of multiple tooth cracks is 

demonstrated using both simulated gearbox vibration signals and experimental gearbox 

vibration datasets. 

The rest of this thesis is organized as follows. Chapter 2, Chapter 3, Chapter 4, and Chapter 5 

present the details of the four research topics, namely Topic #1, Topic #2, Topic #3, and Topic #4, 

respectively. Lastly, in Chapter 6, the research studies conducted in this thesis are summarized and 

the future explorations are also discussed. 

This thesis is written using the paper-based template which meets the formatting requirements of 

the Faculty of Graduate Studies and Research at the University of Alberta. 
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Chapter 2: Development of crack induced impulse-based 

condition indicators for early tooth crack severity assessment 

 

As mentioned in Section 1.3, the focus of this chapter is placed on early tooth crack severity 

assessment, which is covered by the first research topic (Topic #1). In this chapter, a novel method 

is proposed to extract the CII from gearbox vibration signals and conduct a thorough study on the 

CII. In addition, two new CIs are developed using the CII for early tooth crack severity assessment. 

The organization of this chapter is as follows. In Section 2.1, an introduction to the tooth crack 

severity assessment is presented. Section 2.2 introduces the fundamentals of the two techniques 

used in the proposed method. In Section 2.3, the proposed method, and the development of the two 

new CIs are described in detail. The effectiveness of the proposed method and the two new CIs is 

demonstrated with spur gearbox dynamic responses and experimental gearbox vibration datasets 

in Section 2.4 and Section 2.5, respectively. Lastly, Section 2.6 concludes the conducted study in 

this chapter. The results of this chapter have been published partially in a conference paper [103] 

and as a whole in a journal paper [104]. 

2.1 Introduction 

Due to their harsh working environment, gearboxes might suffer from various faults, such as tooth 

cracks and tooth pitting [23]. Tooth cracks are a kind of gearbox failure mode commonly seen in 

real industrial applications [109]. It is important to conduct gear tooth crack diagnosis, especially 

in the early stage of crack propagation. If early tooth crack severity is well assessed, precautions 

and maintenance activities could be scheduled as early as possible, thus improving gearbox system 

reliability and reducing operation and maintenance costs [110].  

For gearbox fault diagnosis, the TSA has been widely employed as a powerful tool [111]. TSA is 

capable of removing background noise and the vibration components that are not synchronous 

with the target gear shaft [42]. If the gearbox vibration signal is processed using the TSA technique, 

the obtained TSA signal will be an estimate of the average meshing vibration of the gear of interest 

over a complete gear shaft revolution [42]. For healthy gears, their TSA signals mainly consist of 
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gear meshing frequency (GMF) and its harmonics [77]. In addition, due to the transmission errors 

in the gear mesh pairs, there will also be low-order AM-FM sidebands around the GMF and its 

harmonics. However, when a localized gear tooth crack occurs, for the TSA signal, the AM-FM 

will be modified. Besides, a tooth crack will induce impulsive vibration components with a short 

period, reflecting the localized transient vibration around the tooth cracking area, into the gear 

meshing vibration [77,87]. Therefore, the crack-related AM-FM and the CII in the TSA signal 

comprise early tooth crack information. 

During the past several decades, various CIs developed using the gear TSA signals for tooth crack 

diagnosis have been reported, which have been reviewed in Subsection 1.2.2.2. The CIs reviewed 

in Subsection 1.2.2.2 include FM0 [82], FM4 [83], NA4 [83], NB4 [85], PS-I [86], the energy of 

the envelope of the resonant vibration in Ref. [77] (𝐸𝐶𝐼𝐼𝐸𝑛𝑣 ), and the energy of the impulse 

vibration component in Ref. [87] (𝐸𝐼𝑚𝑝𝑉𝐶). All these existing CIs failed to work well in assessing 

early tooth crack severity levels.  

To overcome the deficiencies of the CIs reviewed above, this chapter proposes a modification and 

improvement of the reported studies. Inspired by the findings obtained from the study focusing on 

how the CII is affected by tooth crack severity progression, which was conducted via dynamic 

simulation in Ref. [103], in the proposed method, the CII is thoroughly studied. Firstly, the 

proposed method conducts TSA on the gearbox vibration signals to get the gear TSA signal and 

removes the GMF and its harmonics along with sidebands around them from the gear TSA signal 

using comb notch filters. The notch filtered signal mainly consists of frequency components 

related to the CII. Afterwards, the notch filtered signal is fitted using a modal model to identify 

the dominant resonances, which are the Single Degree-Of-Freedom Impulse Responses (SDOF 

IRs), excited by the tooth crack. The modal parameters are obtained using the Matrix Pencil 

Method (MPM) [112,113]. With the obtained modal parameters, the SDOF IRs can be regenerated. 

The SDOF IRs are combined to get the Reconstructed CII (RecCII) without background masking 

components. The energy of the RecCII is used to track early tooth crack severity progression. In 

addition, the sum of the energy of the SDOF IRs with carrier frequencies in a specific frequency 

band is also adopted to track early tooth crack severity progression, which provides additional 

promising tooth crack prognosis information. These energy metrics are proposed as new CIs in 

this chapter. The effectiveness of the proposed method and the new CIs for early tooth crack 
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severity assessment is demonstrated using both simulated gearbox vibration signals and 

experimental gearbox vibration datasets. 

The novel contributions of this chapter include: 1) By using the proposed method, dominant SDOF 

IRs have been identified from the gear TSA signal and the CII has been reconstructed without 

masking components by combining the SDOF IRs; 2) Two new CIs have been proposed for early 

tooth crack severity assessment, the first CI is the energy of the RecCII and the second one is the 

sum of the energy of SDOF IRs with carrier frequencies in a specific frequency band. 

The remainder of this chapter is organized as follows: the fundamentals of TSA and MPM, which 

are used in the proposed method, are introduced in Section 2.2. Section 2.3 describes the proposed 

method and the development of the new CIs. Effectiveness of the proposed method and the new 

CIs is demonstrated using spur gearbox dynamic responses and experimental gearbox vibration 

datasets in Sections 2.4 and 2.5, respectively. Lastly, conclusions are made in Section 2.6. 

2.2 Fundamentals of TSA and MPM 

In two key steps of the proposed method to be presented in Section 2.3, TSA and MPM are adopted 

to analyze gearbox vibration signals. Therefore, for the ease of reference later when describing the 

proposed method in Section 2.3, brief introductions to TSA and MPM are presented in this section. 

2.2.1 Time synchronous average 

TSA is a powerful signal processing technique widely used to extract periodic components from 

noisy vibration data [42,111]. Because TSA can separate the target gear fault signature under 

analysis from vibration sources of other components and environmental noise in the gearbox which 

are not synchronous with the gear to be monitored, it has been shown to be very suitable to conduct 

gearbox fault diagnosis [114,115]. To remove signal components which are not synchronous with 

the gear to be monitored, the entire vibration signal is divided into separate segments using the 

tachometer signal of the target gear shaft, and then the segments are averaged out. The ensemble 

average of all the divided segments is the resultant signal obtained by TSA, which always has the 

length of one target gear shaft revolution [42]. The signal that is synchronous with the target gear 

shaft rotation gets enhanced while the non-synchronous components get cancelled out. To conduct 

TSA on experimental gearbox vibration signals, pulse times are always needed. Pulse times can 
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be calculated by analyzing the signals obtained from tachometers. Because TSA technique has 

been widely used for gearbox fault detection and diagnosis during the last several decades, its 

fundamental theory and algorithms are not introduced herein for brevity. Those who are interested 

in the details of TSA can refer to Ref. [42] for more detailed information. 

2.2.2 Matrix pencil method 

The fundamental theory of MPM is presented herein [112,113]. Before introducing MPM, the 

concept of “matrix pencil” is explained. The matrix pencil of two N × M matrices P, Q, is defined 

as the matrix shown in Eq. (2.1) [112]. Although “𝑃 − 𝜆𝑄” is not an equation, it is still treated as 

an equation herein for the convenience of description. 

𝑃 − 𝜆𝑄                                                                  (2.1) 

where 𝜆 is a parameter.  

For the matrix pair {P, Q}, its generalized eigenvalues are those values of 𝜆 that make “𝑃 − 𝜆𝑄” 

to reduce its rank. A generalized eigenvector corresponding to such a 𝜆 is a vector in the null space 

𝑁(𝑃 − 𝜆𝑄), so a matrix pencil is seen as a generalization of the eigenvalue concept to non-square 

matrices. Define two (𝑁 − 𝐿) × 𝐿 matrices 𝑌1 and 𝑌2 based on the 1-D input signal 𝑦 as follows. 

[𝑌2] = [

𝑦(1)             𝑦(2)

𝑦(2)             𝑦(3)
⋯ 𝑦(𝐿)

⋯ 𝑦(𝐿 + 1)
⋮ ⋮

𝑦(𝑁 − 𝐿) 𝑦(𝑁 − 𝐿 + 1)
 ⋮
⋯ 𝑦(𝑁 − 1)

]

(𝑁−𝐿)×𝐿

                       (2.2) 

[𝑌1] = [

𝑦(0)             𝑦(1)

𝑦(1)             𝑦(2)
⋯ 𝑦(𝐿 − 1)

⋯ 𝑦(𝐿)
⋮ ⋮

𝑦(𝑁 − 𝐿 − 1) 𝑦(𝑁 − 𝐿)
 ⋮
⋯ 𝑦(𝑁 − 2)

]

(𝑁−𝐿)×𝐿

                       (2.3) 

where 𝐿 is referred to as the pencil parameter, 𝑦(𝑖) (𝑖 = 1, 2, … ,𝑁 − 1) is an element of the 1-D 

input signal 𝑦. 

Also, matrices 𝑌1 and 𝑌2 can be rewritten as the following forms. 

[𝑌2] = [𝑍1][𝑅][𝑍0][𝑍2]                                                     (2.4) 

[𝑌1] = [𝑍1][𝑅][𝑍2]                                                         (2.5) 

where  
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[𝑍1] = [

1              1    
𝑧1           𝑧2

⋯ 1
⋯ 𝑧𝑀

⋮ ⋮
𝑧1
𝑁−𝐿−1     𝑧2

𝑁−𝐿−1
 ⋮

         ⋯ 𝑧𝑀
𝑁−𝐿−1

]

(𝑁−𝐿)×𝑀

                              (2.6) 

[𝑍2] =

[
 
 
 
1     𝑧1     
1    𝑧2    

⋯ 𝑧1
𝐿−1

⋯ 𝑧2
𝐿−1

⋮     ⋮    
1      𝑧𝑀   

  ⋮
⋯ 𝑧𝑀

𝐿−1]
 
 
 

M×𝐿

                                                (2.7) 

[𝑍0] = 𝑑𝑖𝑎𝑔[𝑧1 𝑧2 , … , 𝑧𝑀]                                                     (2.8) 

[𝑅] = 𝑑𝑖𝑎𝑔[𝑅1 𝑅2 , … , 𝑅𝑀]                                                     (2.9) 

The matrix pencil of matrices 𝑌1 and 𝑌2 is constructed and listed as follows: 

[𝑌2] − 𝜆[𝑌1] = [𝑍1][𝑅]{[𝑍0] − 𝜆[𝐼]}[𝑍2]                                         (2.10) 

where [𝐼] is the 𝑀 ×𝑀 identity matrix. 

If 𝜆 = 𝑧𝑖, the rank of [𝑌2] − 𝜆[𝑌1] is 𝑀 − 1. Therefore, 𝑧𝑖 in Eq. (2.6) through Eq. (2.8) could be 

obtained as the generalized eigenvalues of the matrix pair {[𝑌2]; [𝑌1]}. In other words, the problem 

of solving for 𝑧𝑖 can be converted into an ordinary eigenvalue problem listed in Eq. (2.11). 

{[𝑌1]
+[𝑌2] − 𝜆[I]}                                                            (2.11) 

where [𝑌1]
+ is the Moore-Penrose pseudoinverse of [𝑌1] and is calculated using Eq. (2.12). 

[𝑌1]
+ = {[𝑌1]

𝐻[𝑌1]}
−1[𝑌1]

𝐻                                                (2.12) 

where the superscript “H” represents the conjugate transpose. 

To eliminate the effect of environmental noise in the input signal 𝑦, the MPM constructs the data 

matrix [𝑌] by combining matrices [𝑌1] and [𝑌2] as 

[𝑌] = [

𝑦(0)             𝑦(1)

𝑦(1)             𝑦(2)
⋯ 𝑦(𝐿)

⋯ 𝑦(𝐿 + 1)
⋮ ⋮

𝑦(𝑁 − 𝐿 − 1) 𝑦(𝑁 − 𝐿)
 ⋮
⋯ 𝑦(𝑁 − 1)

]

(𝑁−𝐿)×(𝐿+1)

                    (2.13) 

To remove noise, the pencil parameter 𝐿 is chosen between 𝑁/3 to 𝑁/2. Next, the singular value 

decomposition is applied to the matrix [𝑌]. 
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[𝑌] =  [U][Σ][V]𝐻                                                         (2.14) 

where [U] and [V] are unitary matrices, and [Σ] is a diagonal matrix containing the singular values 

of [𝑌], i.e. 

[𝑈]𝐻[𝑌][𝑉] = [𝛴]                                                          (2.15) 

The determination of the parameter 𝑀 is made by checking the ratio of the various singular values 

to the largest one. By specifying a proper threshold for the ratio, the dominant resonance modes 

excited by the CII can be selected out [112]. After determining the value of 𝑀, [𝑉′] is constructed 

so that it contains only 𝑀 dominant right-singular vectors of [𝑉]: 

[𝑉′] = [𝑣1, 𝑣2, … , 𝑣𝑀]                                                     (2.16) 

Therefore,  

[𝑌1] =  [𝑈][𝛴
′][𝑉1

′]𝐻                                                      (2.17) 

[𝑌2] =  [𝑈][𝛴
′][𝑉2

′]𝐻                                                     (2.18) 

where [V1
′] is obtained from [V′] with the last row of [V′] deleted; [V2

′]  obtained by removing the 

first row of [V′]; and [Σ′] obtained from the first 𝑀 columns of [Σ] corresponding to the first 𝑀 

dominant singular values. Then for the noiseless case,  

[𝑌1]
+[𝑌2] = {[V1

′]𝐻}+[V2
′]𝐻 = [V2

′]𝐻{[V1
′]𝐻}+                               (2.19) 

Calculating the eigenvalues of [V2
′]𝐻{[V1

′]𝐻}+ can lead to all 𝑧𝑖 (𝑖 = 1, 2, … ,𝑀). So far, 𝑀 and all 

𝑧𝑖 are known. 𝑅𝑖 are calculated by solving the least-squares problem listed in the following. 

[

𝑦(0)

𝑦(1)
⋮

𝑦(𝑁 − 1)

] = [

1       1    
𝑧1    𝑧2

⋯       1
⋯       𝑧𝑀

⋮ ⋮
𝑧1
𝑁−1     𝑧2

𝑁−1   
 ⋮

 ⋯     𝑧𝑀
𝑁−1

] [

𝑅1
𝑅2
⋮
𝑅𝑀

]                              (2.20) 

Eq. (2.20) can be re-written as  

[𝑦] =  [z][𝑅]                                                              (2.21) 

In Eq. (2.21), [𝑅] is a column vector, which is different from the diagonal matrix [𝑅] in Eq. (2.9), 

but their non-zero elements are the same. The least-squares solution of Eq. (2.21) is  
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[𝑅] =  [z]+[𝑦]                                                              (2.22) 

Based on all the formulae listed above, the values of 𝑀, 𝑧𝑖, and 𝑅𝑖 could be estimated. The values 

of 𝑀, 𝑧𝑖, and 𝑅𝑖 will be used to estimate the modal parameters of the SDOF IRs, which is to be 

presented in Section 2.3.  

2.3 The proposed method and development of new condition indicators 

In this section, the proposed method is introduced. The scope of the proposed method is limited to 

the case where only one gear has a tooth crack, although there may be multiple gear pairs in the 

gearbox. This is the same case considered in Refs. [77,86,87]. In this study, the gear with a tooth 

crack is seen as the “target gear” and the shaft on which the target gear is mounted is the “target 

shaft”. As claimed in Refs. [77,87], a tooth crack induces both the crack-related AM-FM and the 

CII into gearbox vibration signals, and the CII provides more significant crack signature than the 

crack-related AM-FM. Thus, the proposed method focuses on the thorough analysis of the CII. 

As claimed in Ref. [116], the CII in the vibration signal of a gearbox with a localized tooth crack 

has a transient nature and could be modelled using the Impulse Response (IR) of the gearbox 

system, the frequency spectrum of which is dominated by resonance peaks. For a SDOF vibration 

system considering the effect of damping, its IR is represented with one Exponentially Damped 

Sinusoid (EDS), which results in one resonance peak in the frequency spectrum. For a gearbox 

system with multiple degrees-of-freedom, its IR could be represented using the sum of several 

EDSs [117], which results in several resonance peaks in the frequency spectrum. In other words, 

for the CII, it consists of several resonance peaks and each of them is seen as a SDOF IR, which 

can be modelled as an EDS [117,118]. Several SDOF IRs forms a CII component. Besides, an 

individual SDOF IR may react uniquely to tooth crack growth. Specifically, some SDOF IRs are 

more sensitive to crack severity progression in the early crack stage while others have more 

obvious changes in the advanced crack stage [117]. The constitutive SDOF IRs of the CII will be 

identified from the TSA signal using the MPM and used to reconstruct the CII. In addition, the 

SDOF IRs will be grouped according to their carrier frequencies. The energy of the reconstructed 

CII and the sum of the energy of SDOF IRs with their carrier frequencies in a specific frequency 

band are proposed as new CIs to assess early tooth crack severity. 
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2.3.1 Procedure of the proposed method 

Procedure of the proposed method is illustrated in Fig. 2.1, from which it is seen that there are 5 

steps in total. The novelty of the proposed method is that a modal model is used to identify the 

dominant resonance peaks of the gear TSA signal as SDOF IRs, through which the CII is 

reconstructed without masking components. Besides, the identified SDOF IRs are grouped, and 

the sum of the energy of the grouped SDOF IRs provide promising tooth crack diagnosis 

information. The proposed method conducts a thorough analysis of the CII, reduces the masking 

effects caused by gear mesh components and crack-related AM-FM, and extracts signatures that 

can well indicate early tooth crack severity progression. These are the advantages of the proposed 

method over the studies reported in Refs [77,86,87]. 

 

Fig. 2.1: The procedure for the proposed method 

In Step 1, the TSA technique is applied to the gearbox vibration signal to remove the background 

noise and vibration components that are not synchronous with the target shaft. If only one gear 

with a tooth crack is mounted on the target shaft for which TSA is carried out, the obtained TSA 

signal mainly includes the GMF and its harmonics of the gear with a tooth crack, the crack-related 

AM-FM and the CII. If there are more than one gear on the target shaft, such as a gear with a tooth 
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crack and several other healthy gears, the TSA signal would also include the meshing harmonics 

of the other healthy gears. Based on the energy spectral density of the TSA signal displayed on a 

log amplitude scale, the frequency range in which the evident resonance peaks excited by the gear 

tooth crack exist is identified. The identified resonant frequency range will be used in Step 4. 

In Step 2, the GMF and its harmonics alongside the sidebands around them for all gears on the 

target shaft are removed from the TSA signal using comb notch filters of the Infinite Impulse 

Response (IIR) type. The number of comb notch filters is equal to the number of gears on the target 

shaft. A comb notch filter is a series of band-stop filters with same bandwidth but with different 

center frequencies. Center frequencies of a comb notch filter are set as the GMF and its harmonics 

of the target gear. Bandwidth of a notch filter is defined by the width of the notch. The order of a 

comb notch filter is specified as 𝑛 = 𝑟𝑜𝑢𝑛𝑑(𝐹𝑠 𝑓𝑚𝑒𝑠ℎ⁄ ), where 𝐹𝑠 is the sampling frequency and 

𝑓𝑚𝑒𝑠ℎ is the GMF of the target gear. Number of the notches of a comb notch filter is 𝑛 + 1. After 

conducting the comb notch filtering on the TSA signal, the resulting signal mainly comprises the 

CII caused by the gear with a tooth crack. The CII excites resonance peaks in the frequency domain. 

In Step 3, dominant resonance peaks in the comb notch filtered signal obtained in Step 2 are fitted 

to a modal model. The dominant resonant peaks are selected by specifying a threshold for the ratio 

to the highest peak. As reviewed at the beginning of Section 2.3, the CII can be represented as a 

sum of several EDSs. Each EDS is an SDOF IR, which results in a resonance peak in the frequency 

domain. Therefore, the CII is represented by the modal model shown in Eq. (2.23). 

𝑦(t) = ∑ 𝐴𝑖𝑒
(−𝐷𝑖𝑡)cos (2𝜋𝑓𝑖𝑡 + 𝜃𝑖)

𝑀
𝑖=1 ;  𝑡 ≥ 0                                    (2.23) 

where 𝑦(t) is the CII, 𝑀 is the number of the EDSs (or SDOF IRs); 𝐴𝑖 is the amplitude, 𝐷𝑖 the 

damping factor, 𝑓𝑖 the carrier (resonance) frequency, and 𝜃𝑖 the phase of the 𝑖𝑡ℎ EDS, respectively. 

To obtain modal model parameters, several operational modal analysis methods could be adopted, 

such as the Hankel Total Least Square Method (HTLSM) [119], the Prony’s Method (PM) [120], 

and the MPM [112]. In Ref. [121], MPM was demonstrated to be more computationally efficient 

than HTLSM and PM. Therefore, MPM is used to obtain modal model parameters. As described 

in Subsection 2.2.2, MPM can be used to estimate the parameters of each SDOF IR in Eq. (2.23). 

For Eq. (2.23), after sampling with the sampling period 𝑇𝑠, the time variable 𝑡 is replaced by 𝑛𝑇𝑠, 

where 𝑛 is the sampling point. Then Eq. (2.23) can be rewritten as 
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𝑦(𝑛𝑇𝑠) = ∑ 𝐴𝑖𝑒
(−𝐷𝑖𝑛𝑇𝑠)cos (2𝜋𝑓𝑖𝑛𝑇𝑠 + 𝜃𝑖)

𝑀
𝑖=1 , for 𝑛 = 0,1, … , 𝑁 − 1.                (2.24) 

Rewrite the signal in Eq. (2.24) into its complex form, and it yields: 

𝑦(𝑛) = ∑ 𝑅𝑖
𝑀
𝑖=1 𝑧𝑖

𝑛                                                           (2.25) 

where  

𝑅𝑖 =
𝐴𝑖

2
𝑒𝑗𝜃𝑖                                                                (2.26) 

𝑧𝑖 = 𝑒(−𝐷𝑖+𝑗2𝜋𝑓𝑖)𝑇𝑠                                                          (2.27) 

Because 𝑅𝑖 and 𝑧𝑖 can be determined using the formulae presented in Subsection 2.2.2, parameters 

𝐴𝑖, 𝐷𝑖, 𝑓𝑖, and 𝜃𝑖 of each SDOF IR are calculated as follows. 

𝐴𝑖 = 2abs(𝑅𝑖)                                                              (2.28) 

𝜃𝑖 = arctan (
imag(𝑅𝑖)

real(𝑅𝑖)
)                                                      (2.29) 

𝐷𝑖 = −ln(abs(𝑧𝑖))/𝑇𝑠                                                      (2.30) 

𝑓𝑖 = arctan (
imag(𝑧𝑖)

real(𝑧𝑖)
) /(2𝜋𝑇𝑠)                                             (2.31) 

As shown in Eq. (2.28) to Eq. (2.31), the modal model parameters, namely amplitude 𝐴𝑖, initial 

phase 𝜃𝑖 , damping factor 𝐷𝑖  and carrier frequency 𝑓𝑖  of each SDOF IR, are calculated. Their 

accuracy can be verified using the results obtained via modal tests. Based on these parameters, 

each SDOF IR is regenerated, thus being identified. Because the identified SDOF IRs are excited 

by the tooth crack on a particular gear, their carrier frequencies should be close to the natural 

frequencies of that gear and its associated torsional and radial springs. If the natural frequencies of 

all the gears on the target shaft are known, by comparing the carrier frequencies of the SDOF IRs 

to the natural frequencies of each gear, it will help decide which gear is the one with a tooth crack, 

that is, the target gear, that causes the CII in the vibration signal. Besides, if natural frequencies of 

all the gears on the target shaft are unknown, the target gear can be decided by inspecting the 

differences between the frequency spectrum of the vibration signal for the healthy gear case and 

that for the cracked gear case, especially by inspecting if there are newly emerged sidebands 

around the gear mesh harmonics of a particular gear in the frequency spectrum of the cracked gear 

signal. If there are newly emerged sidebands, that gear is the target gear. 
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In Step 4, the identified SDOF IRs are summed to reconstruct the CII. The Reconstructed CII 

(RecCII) is expected to get rid of the masking effects caused by extraneous frequency components. 

The energy of the RecCII is calculated, which is named 𝐸𝑅𝑒𝑐𝐶𝐼𝐼. For a continuous-time signal 𝑥(𝑡), 

its energy can be numerically estimated using its discrete-time counterpart 𝑥[𝑛] (𝑥[𝑛] = 𝑥(𝑡𝑛), 

𝑡𝑛 = 𝑛𝑇𝑠, 𝑇𝑠 is the sampling period) and is calculated using Eq. (2.32). 

𝐸𝑥 = 𝑇𝑠 ∑ (𝑥[𝑛])2𝑁
𝑛=1                                                         (2.32) 

where 𝑛 is the index of 𝑥[𝑛] and 𝑁 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥[𝑛]). 

Therefore, based on Eq. (2.32), 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 is calculated using Eq. (2.33). 

𝐸𝑅𝑒𝑐𝐶𝐼𝐼 = 𝑇𝑠 ∑ (𝑅𝑒𝑐𝐶𝐼𝐼[𝑛])2𝑁
𝑛=1                                                (2.33) 

The resonant frequency range identified in Step 1 is divided into separate frequency bands. 

Harmonics of the GMF of the target gear decided in Step 3 are used as dividers and the width of 

each frequency band equals the GMF. If 𝐾 frequency bands are obtained, the 𝑖𝑡ℎ one is named 𝐹𝐵𝑖 

(𝑖 = 1,… , 𝐾). The obtained frequency bands are used to group the SDOF IRs. If the carrier 

frequency of a SDOF IR, i.e., 𝑓𝑖, is in the frequency band 𝐹𝐵𝑖, that SDOF IR is classified into the 

group related to the 𝐹𝐵𝑖. Several SDOF IRs will be grouped together if their carrier frequencies 

are in the same frequency band. The sum of the energy of the SDOF IRs with carrier frequencies 

in the frequency band 𝐹𝐵𝑖 is named 𝑆𝐸𝐹𝐵𝑖 (𝑖 = 1,… , 𝐾) and is calculated using Eq. (2.34).  

𝑆𝐸𝐹𝐵𝑖 = ∑ 𝐸𝑚
𝑀
𝑚=1 , (𝑚 = 1, 2,… ,𝑀)                                          (2.34) 

where 𝑀 is the number of the SDOF IRs with carrier frequencies in the frequency band 𝐹𝐵𝑖, 𝐸𝑚 

is the energy of the 𝑚𝑡ℎ SDOF IR, i.e. 𝑆𝐷𝑂𝐹 𝐼𝑅𝑚, and is calculated using Eq. (2.35). 

𝐸𝑚 = 𝑇𝑠 ∑ (𝑆𝐷𝑂𝐹 𝐼𝑅𝑚[𝑛])
2𝑁

𝑛=1                                               (2.35) 

For different gearboxes, the number of 𝑆𝐸𝐹𝐵𝑖 may be different. Besides, not all the 𝑆𝐸𝐹𝐵𝑖 can well 

track tooth crack growth. However, some of them can provide additional promising crack 

diagnosis information, which can be proposed as new CIs for early tooth crack severity assessment. 

In Step 5, two new CIs are proposed for early tooth crack severity assessment. The first CI is the 

energy of the RecCII, i.e., 𝐸𝑅𝑒𝑐𝐶𝐼𝐼. The second CI is selected from the 𝑆𝐸𝐹𝐵𝑖 (𝑖 = 1,… , 𝐾) which 
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are obtained in Step 4. The 𝑆𝐸𝐹𝐵𝑖  with the best ability to track early tooth crack severity 

progression is employed as the second CI. This will be illustrated in Section 2.4 and Section 2.5. 

2.3.2 Performance comparison criteria 

To compare the performance on early tooth crack severity assessment of the proposed CIs to that 

of the three reported ones in Refs. [77,86,87], the Average Increase Rate (AIR) [106] and tooth 

crack severity assessment accuracy are used as two comparison criteria. The three reported CIs 

are: (1) energy of the envelope of the resonant vibration, namely 𝐸𝐶𝐼𝐼𝐸𝑛𝑣 [77]; (2) energy of the 

impulse vibration component, namely 𝐸𝐼𝑚𝑝𝑉𝐶 [87]; and (3) PS-I [86]. AIR is used to measure the 

sensitivity of a CI towards tooth crack severity progression. A higher value the AIR has, the more 

sensitive a CI is towards tooth crack severity progression. The AIR is calculated using Eq. (2.36). 

AIR(𝑣) = (((𝑣𝑒𝑛𝑑−𝑣1) 𝑣1⁄ ) (𝑐𝑙𝑒𝑛𝑑 − 𝑐𝑙1)⁄ ) × 100%                             (2.36)             

where 𝑣 is the value vector of a CI; and 𝑐𝑙 is the value vector of the tooth crack level; subscripts 

“1” and “𝑒𝑛𝑑” denote the first and last elements of a vector, respectively. 

Tooth crack severity assessment accuracy is a numerical metric to evaluate the ability of a CI to 

separate different tooth crack levels, which is measured with the Linear Discriminant Analysis 

(LDA) classifier [122]. A higher accuracy means that a CI has better separating ability. Since the 

LDA classifier is a supervised classification model, tooth crack levels need to be labelled. Inputs 

of a LDA classifier are CIs and outputs are the predicted labels for tooth crack levels. Tooth crack 

severity assessment accuracy is measured by comparing the predicted labels to their true values 

and is illustrated using confusion matrices. The more tooth crack information a CI has, a higher 

tooth crack severity assessment accuracy a LDA classifier can obtain. Therefore, tooth crack 

severity assessment accuracy can be used as a metric to evaluate the performance of a CI on early 

tooth crack severity assessment. For different CIs, their values may differ greatly. To illustrate 

how CIs track crack severity progression in the same scale, CIs are normalized using Eq. (2.37). 

𝑉𝑛𝑜𝑟𝑚 = 𝑙𝑛(𝑉 𝑉𝑟𝑒𝑓⁄ )                                                  (2.37) 

where 𝑉 is the value of a CI for a specific tooth crack level, 𝑉𝑟𝑒𝑓 denotes the CI value for the 

reference crack level (healthy case or 0% crack level), 𝑙𝑛(∙) is the natural logarithm, 𝑉𝑛𝑜𝑟𝑚  is 

normalized result of 𝑉. 
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2.4 Illustration of the proposed method using simulated gearbox vibration data 

In this section, simulated gearbox vibration responses are used to demonstrate the effectiveness of 

the proposed method and the new CIs for early tooth crack severity assessment. Each step of the 

proposed method is illustrated by analyzing the simulated gearbox vibration responses. 

2.4.1 Generation of simulated vibration response using a gearbox dynamic model 

The dynamic model of a one-stage fixed-axis spur gearbox system reported in Refs. [26,49], which 

has been experimentally validated using a real one-stage gearbox system in Ref. [67], is adopted 

to generate simulated vibration responses. Schematic of the gearbox system is shown in Fig. 2.2. 

The cracked tooth is on the pinion 𝑚1, so the pinion is the target gear. Its acceleration signal in the 

y direction is studied. Number of pinion teeth is 𝑁𝑝 = 19. The pinion shaft rotating frequency is 

𝑓𝑠 = 30 Hz and the torque load applied on the load motor 𝑀2 is 48.8 Nm. Thus, GMF is 𝑓𝑚𝑒𝑠ℎ =

570 Hz and the pinion shaft rotating period is 𝑇𝑝 = 1/𝑓𝑠 = 0.033 s. 

 

Fig. 2.2: The schematic of the model of a spur gearbox system [26,49] 
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The cracked tooth model displayed in Fig. 2.3 is used to simulate the root crack of one tooth of the 

pinion 𝑚1. Tooth crack propagation path is simplified as a straight line starting from the tooth root 

fillet. In Fig. 2.3, the line segment 𝑞𝑝 denotes the crack depth. To simulate the early tooth crack, 

the considered maximum value of 𝑞𝑝  is set to 3 mm. The percentage of a crack depth to the 

theoretical maximum crack depth is defined as the crack level (cl), which is given by Eq. (2.38). 

𝑐𝑙 = (𝑞𝑝 𝑞𝑚𝑎𝑥⁄ ) × 100%                                              (2.38) 

where 𝑞𝑝 is the pinion tooth crack depth; 𝑞𝑚𝑎𝑥 denotes the value of the maximum tooth crack 

depth that the cracked tooth can have theoretically, which is 7.8 mm (complete loss of tooth).   

 

Fig. 2.3: The schematic of the cracked pinion tooth model [26,33] 

Based on Eq. (2.38), the crack level corresponding to an arbitrary crack depth is calculated. When 

𝑞p = 0 mm, it is the healthy gear case and 𝑐𝑙 = 0%. When 𝑞𝑝 = 3.0 mm, it is the maximum tooth 

crack depth considered in this study and 𝑐𝑙 = 38.46%. To mimic the environmental noise, a white 

Gaussian noise with SNR=10 dB is added to the simulated gearbox vibration responses. Fig. 2.4 

shows the time domain waveforms of the simulated vibration responses for four different tooth 

crack levels. 
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(a) Healthy gear cl=0% (c) Faulty gear cl=25.64% 

  

(b) Faulty gear cl=12.82% (d) Faulty gear cl=38.46% 

Fig. 2.4: Time waveforms of simulated vibration signals for four tooth crack levels 

2.4.2 Application of the proposed method to the simulated gearbox vibration response 

In this subsection, the simulated gearbox vibration response for 38.46% crack level is used as an 

example to illustrate the procedure of the proposed method shown in Fig. 2.1. In Step 1, the TSA 

technique is used to process the simulated vibration responses. The TSA signal and its energy 

spectral density are shown in Fig. 2.5. From Fig. 2.5(a), it is seen that there is an abrupt change 

between 10 and 50 degrees of the shaft angle, which is caused by the CII. Further examining the 

energy spectral density (displayed on log amplitude scale) shown in Fig. 2.5(b), it is found that 

there are evident resonance peaks located in the frequency range [1710, 4560] Hz. Therefore, the 

dominant resonant frequency range in which the CII exists is identified as [1710, 4560] Hz. For 

the vibration responses of other tooth crack levels, this conclusion still holds. 

In Step 2, a comb notch filter of the IIR type is adopted to remove the GMF and its harmonics 

alongside the sidebands of the pinion from the TSA signal. The bandwidth of the notch filter is set 
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as 5 sideband pairs, which covers the sidebands caused by the crack-related AM-FM, thus 

removing the crack-related AM-FM. The comb notch filtering operates in time-domain, but the 

operation has a corresponding effect in the frequency domain. After conducting the comb notch 

filtering, the resulting signal mainly includes components related to the CII. The removal of 5 pairs 

of sidebands around the GMF and its harmonics causes distortion to the resulting spectrum, but 

the distortion impact on the dominant resonance peaks is not significant. The reason is that the 

harmonics of the CII spread over a wide frequency range and have relatively lower amplitudes and 

the removal of 5 pairs of sidebands does not affect the harmonics of the CII too much. The time 

domain waveform and energy spectral density of the notch filtered signal are shown in Fig. 2.6. 

From Fig. 2.6(a), it is seen that the notch filtered signal has a transient impact with short-period 

nature, which results in a broadband frequency property. As shown in Fig. 2.6(b), the frequency 

range dominated by the dominant resonance peaks is also about [1710, 4560] Hz, which is the 

same as the one identified in Step 1. It is also seen that the resonance peaks in Fig. 2.6(b) have 

lower damping than the original ones in Fig. 2.5(b), which is resulted from the removal of GMF 

and its harmonics and 5 pairs of sidebands around them using the comb notch filters.  

 

(a) TSA signal 

 

(b) Energy spectral density of TSA signal 

Fig. 2.5: TSA signal and its energy spectral density (Faulty gear 𝑐𝑙 = 38.46%) 
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(a) Notch filtered signal 

 

(b) Energy spectral density of notch filtered signal 

Fig. 2.6. Time waveform and energy spectral density of notch filtered signal (Faulty gear 𝑐𝑙 = 38.46%) 

In Step 3, the modal model shown in Eq. (2.23) is used to fit the dominant resonance peaks of the 

notch filtered signal displayed in Fig. 2.6(b). The dominant resonance peaks are defined as those 

within about 20 dB of the highest one. Each resonance peak is identified as an SDOF IR. Modal 

parameters of the SDOF IRs are obtained using the MPM. Ten dominant SDOF IRs are obtained, 

the amplitudes, carrier frequencies, phases, damping factors and energy of which are displayed in 

Table 2.1, in which the unit of phase is “rad”.  ased on the estimated modal parameters tabulated 

in Table 2.1, each SDOF IR is regenerated. The ten identified SDOF IRs are shown in Fig. 2.7. 

In Step 4, by summing the ten SDOF IRs shown in Fig. 2.7, the CII is reconstructed. For 

comparison, time waveforms and energy spectral densities of the reconstructed CII and the notch 

filtered signal obtained in Step 2 are plotted in Fig. 2.8 and Fig. 2.9, respectively. As shown in Fig. 

2.8, the reconstructed CII matches the notch filtered signal very well. The coefficient of 

determination is used to measure their difference, and its value is 0.903, indicating that the 

difference between the reconstructed CII and the notch filtered signal is very small. As shown in 

Fig. 2.9, dominant resonance peaks are identified from the notch filtered signal. All these indicate 
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that the MPM works well in identifying dominant resonances in the notch filtered signal as SDOF 

IRs and estimating the modal parameters of each SDOF IR. 

Table 2.1: Amplitudes, carrier frequencies, phases, damping factors, and energy of the ten identified 

SDOF IRs (Faulty gear 𝑐𝑙 = 38.46%) 

 

1st 

SDOF 

IR 

2nd 

SDOF 

IR 

3rd 

SDOF 

IR 

4th 

SDOF 

IR 

5th 

SDOF 

IR 

6th 

SDOF 

IR 

7th 

SDOF 

IR 

8th 

SDOF 

IR 

9th 

SODF 

IR 

10th 

SDOF 

IR 

Amplitude 1.58 2.75 16.44 34.90 30.47 1.00 5.58 11.06 4.38 0.75 

Carrier 

frequency 
2026.8 2599.9 3063.9 3167.2 3289.4 3410.6 3477.8 3767.7 3926.6 4348.8 

Phase 4.84 11.79 16.40 12.32 14.46 14.98 15.72 15.69 11.63 9.23 

Damping 

factor 
386.0 203.6 619.0 441.3 654.7 130.7 507.8 400.8 503.5 99.46 

Energy 0.0016 0.0094 0.1085 0.7141 0.3616 0.0019 0.0158 0.0783 0.0098 0.0014 

 

 

Fig. 2.7. Time waveforms of the ten identified SDOF IRs (Faulty gear 𝑐𝑙 = 38.46%) 
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Fig. 2.8: Time waveforms of the reconstructed CII and the notch filtered signal obtained by comb notch 

filtering (Faulty gear 𝑐𝑙 = 38.46%) 

 

(a) Energy spectral density of reconstructed CII 

 

(b) Energy spectral density of notch filtered signal 

Fig. 2.9:  Energy spectral densities of the reconstructed CII and the notch filtered signal obtained by comb 

notch filtering (Faulty gear 𝑐𝑙 = 38.46%) 

In addition, the resonant frequency range identified in Step 1, i.e. [1710, 4560] Hz, is divided into 

five separate frequency bands, namely 𝐹𝐵𝑖  (𝑖 = 1,… ,5). Harmonics of the GMF of the pinion 

(𝑓𝑚𝑒𝑠ℎ = 570 Hz) are used as dividers and the width of each frequency band is equal to the GMF. 
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The five frequency bands are tabulated in Table 2.2. Based on these five frequency bands, the 

identified SDOF IRs shown in Fig. 2.7 are grouped by their carrier frequencies. For example, for 

the 3rd, 4th, 5th, and 6th SDOF IRs, their carrier frequencies are 3063.9 Hz, 3167.2 Hz, 3289.4 Hz, 

and 3410.6 Hz (shown in Table 2.1), respectively, which are in the third frequency band 𝐹𝐵3 [2850, 

3420] Hz. Therefore, these four SDOF IRs are grouped together, and this group is related to the 

𝐹𝐵3. Likewise, other SDOF IRs shown in Fig. 2.7 are also grouped into the groups related to 

specific frequency bands. The grouping results are shown in Table 2.3.  

Table 2.2: Five frequency bands (simulated analysis) 

Frequency band 𝐹𝐵1 𝐹𝐵2 𝐹𝐵3 𝐹𝐵4 𝐹𝐵5 

Range/Hz [1710, 2280] [2280, 2850] [2850, 3420] [3420, 3990] [3990, 4560] 

 

Table 2.3: Grouping result for the ten identified SDOF IRs (Faulty gear 𝑐𝑙 = 38.46%) 

Group  
group related 

to 𝐹𝐵1 

group related 

to 𝐹𝐵2 

group related 

to 𝐹𝐵3 

group related 

to 𝐹𝐵4 

group related 

to 𝐹𝐵5 

SDOF IR 1st  2nd  3rd, 4th, 5th, 6th  7th, 8th, 9th  10th  

Afterwards, the energy of the RecCII is calculated using Eq. (2.33), and the result is 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 =

0.12. Besides, the sums of the energy of the SDOF IRs in the groups shown in Table 2.3 are 

calculated using Eq. (2.34). For example, 𝑆𝐸𝐹𝐵3 = 0.1085 + 0.7141 + 0.3616 + 0.0019 ≈ 1.2. 

Likewise, the sums of the energy of the SDOF IRs in other groups are also calculated. The energy 

results are tabulated in Table 2.4, from which it is seen that 𝑆𝐸𝐹𝐵3 is much greater than 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 for 

a specific crack level. This means that some certain 𝑆𝐸𝐹𝐵𝑖  can provide additional tooth crack 

diagnosis information, which can be utilized as promising CIs for early crack severity assessment.   

Table 2.4: Results of the 𝑆𝐸𝐹𝐵𝑖 and 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 (Faulty gear 𝑐𝑙 = 38.46%) 

Energy 𝑆𝐸𝐹𝐵1 𝑆𝐸𝐹𝐵2 𝑆𝐸𝐹𝐵3 𝑆𝐸𝐹𝐵4 𝑆𝐸𝐹𝐵5  𝐸𝑅𝑒𝑐𝐶𝐼𝐼 

Value 0.0016 0.0094 1.2 0.11 0.0014 0.12 

In Step 5, repeating Steps 1-4 of the proposed method shown in Fig. 2.1 for the simulated vibration 

responses of other crack levels, 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 and 𝑆𝐸𝐹𝐵𝑖 (𝑖 = 1, … , 5) for all the considered crack levels 
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are calculated. To compare them in the same scale, their values are first normalized using Eq. 

(2.37), and the normalized values of 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 and 𝑆𝐸𝐹𝐵𝑖 (𝑖 = 1,… , 5) with regard to the crack level 

are shown in Fig. 2.10. It is seen that 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 has a good performance on tracking early tooth crack 

severity progression. Besides, 𝑆𝐸𝐹𝐵3 has the best ability to track crack growth among the 𝑆𝐸𝐹𝐵𝑖 

(𝑖 = 1,2,3,4, 5), which provides additional promising crack diagnosis information. Therefore, the 

energy of the RecCII, i.e., 𝐸𝑅𝑒𝑐𝐶𝐼𝐼, and the sum of the energy of the SDOF IRs with their carrier 

frequencies in the frequency band 𝐹𝐵3, i.e., 𝑆𝐸𝐹𝐵3, are proposed as two new CIs for early tooth 

crack severity assessment. 

 

Fig. 2.10:  Energy metrics versus crack level (simulated analysis) 

2.4.3 Performance comparison 

To make performance comparison, the CIs reported in Refs. [77,86,87] are also calculated using 

the simulated gearbox vibration responses. The two comparison criteria presented in Subsection 

2.3.2 should be adopted.  However, for the simulated signal analysis, it can only generate one result 

for each CI at a specific crack level, which makes it impossible to conduct crack severity 

assessment. The reason is that conducting tooth crack severity assessment needs more than one 

dataset, some of which are used to train the classification model while others for assessment. 

Therefore, for simulated gearbox vibration responses, only the AIR values of the CIs are calculated 

for comparison. AIR values of the two proposed CIs, i.e., 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 and 𝑆𝐸𝐹𝐵3, and the three reported 

ones, namely 𝐸𝐶𝐼𝐼𝐸𝑛𝑣, 𝐸𝐼𝑚𝑝𝑉𝐶, and PS-I, are tabulated in Table 2.5. As shown in Table 2.5, 𝑆𝐸𝐹𝐵3 

and 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 have higher AIR values, which means that they outperform the three reported CIs for 
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tracking early tooth crack severity progression. 𝑆𝐸𝐹𝐵3 has the highest AIR value, indicating that it 

performs best. This means that the sum of the energy of SDOF IRs with carrier frequencies in a 

specific frequency band can provide additional promising crack diagnosis information.  

Table 2.5: AIR values of the condition indicators (simulated analysis) 

Condition indicator 𝐸𝐶𝐼𝐼𝐸𝑛𝑣 [77] 𝐸𝐼𝑚𝑝𝑉𝐶 [87] 𝑃𝑆 − 𝐼 [86] 
𝑆𝐸𝐹𝐵3 

(proposed) 

𝐸𝑅𝑒𝑐𝐶𝐼𝐼 
(proposed) 

AIR value (%) 8.54 6.66 2.36 626.81 16.69 

 

Besides, to visually illustrate how the CIs track tooth crack growth, the normalized values of these 

CIs are calculated using Eq. (2.37). The normalized CIs versus tooth crack level are shown in Fig. 

2.11, from which it is seen that 𝑆𝐸𝐹𝐵3 and 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 are more sensitive to early tooth crack severity 

progression than the three reported ones. Based on the higher AIR values of the two proposed CIs, 

it is expected that they can also achieve higher accuracy for early tooth crack severity assessment, 

which will be validated using experimental gearbox vibration datasets in Section 2.5. 

 

Fig. 2.11:  Condition indicators versus crack level (simulated analysis) 

2.5 Application to experimental gearbox vibration dataset 

In this section, to further validate the effectiveness of the proposed method and the newly proposed 

CIs, they are applied to the experimental vibration datasets of a fixed-axis spur gearbox with a 

tooth crack in the early crack stage. The three reported CIs, namely 𝐸𝐶𝐼𝐼𝐸𝑛𝑣, 𝐸𝐼𝑚𝑝𝑉𝐶, and PS-I, are 

also calculated using the experimental vibration datasets for comparison. 
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2.5.1 Experimental setup 

The experimental vibration datasets were collected using the planetary gearbox test rig in the 

Reliability Research Lab at the University of Alberta. The planetary gearbox test rig, schematic of 

the target fixed-axis spur gearbox, and locations of accelerometers are shown in Fig. 2.12. As 

shown in Fig. 2.12(a), the test rig includes a drive motor, a bevel gearbox, a two-stage planetary 

gearbox, two speed-up fixed-axis gearboxes, and a load motor. In the experiment, the 2nd stage 

Speed-up gearbox was used as the target gearbox. Its schematic is shown in Fig. 2.12(b), from 

which it is seen that the target gearbox has two gear mesh pairs: input mesh pair and output mesh 

pair. The input pinion with 18 teeth was selected as the target gear in the experiment and its 

specifications are tabulated in Table 2.6. As shown in Fig. 2.12(c), accelerometer 1 is installed on 

gearbox casing, accelerometer 2 is vertically installed on the bearing cab, accelerometer 3 is 

parallelly installed on the bearing cab, accelerometer 4 is laterally installed on the bearing cab. 

 

Fig. 2.12: Experimental setup: (a) Planetary gearbox test rig, (b) Schematic of the target fixed-axis spur 

gearbox, (c) Accelerometer locations 

Input shaft  utput shaft

 utput gear (Nog  64)

 utput pinion (Nop  24)

Input pinion (Nip 18)

Input gear (Nig 48)

1 

2

3

4

(a) 

(c)Target pinion(b) Intermediate shaft

Input mesh pair  utput mesh pair
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Table 2.6: Specifications of the target pinion 

Parameter Value 

Face width (cm) 5.08  

Pitch diameter (cm) 7.62 

Diametral pitch (DP) 6 

Pressure angle (Deg) 20 

Number of teeth 18 

A localized tooth crack was artificially seeded on the root fillet of one tooth of the 18-tooth input 

pinion in Fig. 12 (b) with an electric discharge machine. Tooth crack propagation of the target 

pinion is illustrated in Fig. 2.13, in which w is whole tooth face width, w0 is tooth crack length, q 

is half-length of the tooth chordal thickness, 𝑞0  is crack depth, and 𝛼𝑐  is crack angle. In the 

experiment, 4 health conditions including a healthy case and 3 cracked cases were considered, 

which are tabulated in Table 2.7. In Table 2.7, the crack level is defined as the product of the crack 

length ratio 𝑤0/𝑤 and the crack depth ratio 𝑞0/(2𝑞), namely 𝑐𝑙 =
𝑤0

𝑤
×
𝑞0

2𝑞
× 100%. When w0 =

w and 𝑞0 = 2𝑞, which corresponds to the case of complete loss of tooth, 𝑐𝑙 = 100%. Crack levels 

of the three faulty cases are figured out as 2%, 8%, and 18%. For the healthy case, its crack level 

is 0% since there is no crack seeded on the tooth root fillet. The considered crack levels belong to 

the early tooth crack stage. 

 

Fig. 2.13: Tooth crack propagation scenario for the target pinion 
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Table 2.7: Tooth crack levels considered in the experiment 

Health condition (Label) Crack parameters Crack level (𝑐𝑙) 

Healthy (F0) w0 = 0; q0 = 0;  0% 

Faulty 1 (F1) w0 = 0.2w; q0 = 0.2q; αc = 60° 2% 

Faulty 2 (F2) w0 = 0.4w; q0 = 0.4q; αc = 60° 8% 

Faulty 3 (F3) w0 = 0.6w; q0 = 0.6q; αc = 60° 18% 

 

In the experiment, gearbox vibration datasets were collected when the target pinion run at a 

constant rotational frequency of 2.955 Hz and the applied torque on the load motor was 80 Nm. 

GMF of the input gear mesh pair (the one with the cracked pinion) is GMFin = 53.19 Hz, and 

GMF of the output gear mesh pair is GMFout = 189.12 Hz. The sampling frequency was set to 

25.6 kHz to avoid frequency aliasing. Vibration signals were collected for the four health 

conditions shown in Table 2.7. Time length of each signal sample was 10 s, and 10 signal samples 

were collected for each health condition. Four accelerometers (model: PCB 352B, sensitivity is 

1000 mv/g, frequency range is 1 to 15000 Hz with an error range of ±10%) were used for signal 

acquisition and their mounting locations are shown in Fig. 2.12 (c). Without loss of generality, the 

vibration signals collected by the accelerometer 3 are analyzed in this paper. Besides, a tachometer 

signal was also acquired using an encoder simultaneously with vibration signal collection. The 

collected experimental vibration signals of the target gearbox under each health condition are 

shown in Fig. 2.14. It is seen that there are strong environmental noise and random impacts in the 

experimental vibration signals. It is difficult to assess tooth crack severity by observing the time 

waveforms since tooth crack signatures are completely submerged in the vibration signals.  

  

(a) “Healthy” case (c) “Faulty 2” case 
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(b) “Faulty 1” case (d) “Faulty 3” case 

Fig. 2.14: Time waveforms of experimental gearbox vibration signals 

2.5.2 Application of the proposed method and new condition indicators 

As illustrated in Section 2.4, the effectiveness of the proposed method and the proposed CIs has 

been verified with simulated gearbox vibration responses. In this section, their effectiveness is 

further validated with experimental gearbox vibration signals. One sample of the experimental 

gearbox vibration signals for the health condition case “Faulty 3” is used as an example to show 

the analysis results obtained using the proposed method.  

In Step 1 of the proposed method, the TSA signal and its energy spectral density are obtained, 

which are shown in Fig. 2.15. From Fig. 2.15(a), no obvious abrupt change caused by the tooth 

crack is observed due to the existence of the masking effect of the regular meshing components of 

both the target input pinion and the output gear. From Fig. 2.15(b), it is seen that there are evident 

resonance peaks located in the frequency range from about 212.7 Hz to 425.5 Hz. Therefore, the 

dominant resonant frequency range in which the CII exists is identified as [212.7, 425.5] Hz. For 

experimental vibration signals for other health conditions, this conclusion still holds. 

 

(a) TSA signal 
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(b) Energy spectral density of TSA signal 

Fig. 2.15: The TSA signal and its energy spectral density (Faulty 3 case) 

In Step 2, the comb notch filter of the IIR type is used to remove the GMF and its harmonics 

alongside the sidebands from the TSA signal. There are two gear mesh pairs in the target gearbox 

shown in Fig. 2.12(b), so two comb notch filters are used to remove the meshing components of 

the two gears on the target shaft: (1) GMFin and its harmonics and the associated sidebands for the 

18-tooth input pinion; (2) GMFout and its harmonics and the associated sidebands for the 64-tooth 

output gear. For the comb notch filter used to remove the meshing components of the input pinion, 

its center frequencies are set to GMFin and its harmonics, and its bandwidth is set to 5 sideband 

pairs. For the comb notch filter used to remove the meshing components of the output gear, its 

center frequencies are set to GMFout and its harmonics, and its bandwidth is set to 5 sideband pairs. 

After conducting comb notch filtering, the gear meshing components and sidebands of the two 

gears are removed. The removal of 5 pairs of sidebands causes distortion to the resulting spectrum, 

but the distortion impact on the main resonance peaks excited by the CII is insignificant. The 

reason is that harmonics of the CII spread over a wide frequency range and have low amplitudes 

and the removal of 5 pairs of sidebands does not affect the harmonics of the CII too much. The 

notch filtered signal mainly includes components related to the CII. The notch filtered signal and 

its energy spectral density are shown in Fig. 2.16. As shown in Fig. 2.16(b), frequency range [212.7, 

425.5] Hz is dominated by the resonance peaks, which is the same as the one identified in Step 1.  

In Step 3, the modal model shown in Eq. (2.23) is employed to fit the dominant resonance peaks 

of the notch filtered signal displayed in Fig. 2.16(b). The dominant resonance peaks are defined as 

those within about 20dB of the highest one. The model parameters of the resonance peaks, i.e., 

SDOF IRs, are obtained using the MPM. Eight dominant SDOF IRs are obtained, the amplitudes, 

                                

Frequency   Hz

    

   

   

   

   

E
n
er
g
y
 f
re
q
u
en
c
y
 (
d
 
 H
z)



64 
 
 

carrier frequencies, phases, damping factors and energy values of which are displayed in Table 2.8, 

in which the unit of phase is “rad”.  ased on the estimated modal parameters tabulated in Table 

2.8, each SDOF IR is identified. The eight identified SDOF IRs are shown in Fig. 2.17. 

 

(a) Notch filtered signal 

 

(b) Energy spectral density of notch filtered signal 

Fig. 2.16: Time waveform and energy spectral density of the notch filtered signal obtained by comb notch 

filtering (Faulty 3 case) 

Table 2.8: Amplitudes, frequencies, phases, damping factors and energy of the eight identified SDOF IRs 

(Faulty 3 case) 

 

1st 

SDOF 

IR 

2nd 

SDOF 

IR 

3rd 

SDOF 

IR 

4th 

SDOF 

IR 

5th 

SDOF 

IR 

6th 

SDOF 

IR 

7th 

SDOF 

IR 

8th 

SDOF 

IR 

Amplitude 0.0055 0.0158 0.0148 0.0038 0.0173 0.0328 0.0113 0.0026 

Frequency 228.05 235.28 240.39 303.27 327.01 330.49 337.33 411.30 

Phase -11.32 -10.98 -8.16 -9.87 -9.97 -8.10 -6.62 -6.15 

Damping 

factor 
2.51 6.10 7.90 4.66 9.12 5.54 3.01 0.50 

Energy 2.4E-06 1.0E-05 1.7E-05 7.3E-07 8.3E-06 4.7E-05 9.2E-06 9.9E-07 
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As stated in Subsection 2.3.1, if the natural frequencies of the two gears on the intermediate shaft 

shown in Fig. 2.12(b) are known, the comparison of the carrier frequencies of the SDOF IRs in 

Table 2.8 to the natural frequencies of the two gears would help determine which gear is the one 

with a tooth crack, i.e., the target gear. Specifically, if the carrier frequencies of the SDOF IRs are 

close to the natural frequencies of the 18-tooth input pinion, the input pinion is the target gear. 

Otherwise, the 64-tooth output gear is the target gear. But in this study, since the natural 

frequencies of the two gears are unknown, we need to resort to the method of inspecting the 

frequency spectrum differences. By comparing the frequency spectrum of the vibration signal for 

the “Healthy” case to that for the “Faulty 3” case, it is found that in the spectrum for the “Faulty 

3” case, there are newly emerged sidebands located around the GMFin  (53.19 Hz) and its 

harmonics while there are no newly emerged sidebands around the GMFout (189.12 Hz) and its 

harmonics, which means that the 18-tooth input pinion has a tooth crack. This agrees with the fact 

that the tooth crack was seeded on one tooth of the 18-tooth input pinion in the experiment, which 

was presented in Subsection 2.5.1. This indicates that the target gear can be determined by 

inspecting the differences between the frequency spectrum of the healthy gear vibration signal and 

that of the cracked gear case, even in the actual cases where the gear with a tooth crack is unknown.  

 

Fig. 2.17: Time waveforms of the eight identified SDOF IRs (Faulty 3 case) 
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In Step 4, by summing the eight identified SDOF IRs shown in Fig. 2.17, the CII was reconstructed. 

The time waveform and energy spectral density of the reconstructed CII are plotted in Fig. 2.18. 

From Fig. 2.18(a), it is seen that the reconstructed CII has a maximum amplitude between 90 and 

150 degrees of the target input pinion shaft rotational angle, although the beginning of the 

reconstructed CII is at time zero. The maximum amplitude of the reconstructed CII is resulted from 

the interaction of the amplitudes and phases of all the identified SDOF IRs used to reconstruct the 

CII. For comparison, time waveforms of the reconstructed CII and the notch filtered signal 

obtained in Step 2 are plotted in Fig. 2.19, and their energy spectral densities are plotted in Fig. 

2.20. From these two figures, it is found that there are much less extraneous masking components 

in the reconstructed CII. In addition, the resonant frequency range identified in Step 1, i.e. [212.7, 

425.5] Hz, is divided into four separate frequency bands, namely 𝐹𝐵𝑖 (𝑖 = 1,… ,4). Because the 

18-tooth input pinion is the target gear, harmonics of GMFin (GMFin = 53.19 Hz) are used as 

dividers and the width of each frequency band is equal to GMFin. The four frequency bands are 

tabulated in Table 2.9. Based on these four frequency bands, the identified SDOF IRs shown in 

Fig. 2.17 are grouped by their carrier frequencies. For example, for the 1st, 2nd, and 3rd SDOF IRs, 

their frequencies are 228.05 Hz, 235.28 Hz, 240.39 Hz (shown in Table 2.8), respectively, which 

are in the first frequency band 𝐹𝐵1  [212.7, 265.9] Hz. Therefore, these three SDOF IRs are 

grouped together, and this group is related to the 𝐹𝐵1. Likewise, other SDOF IRs shown in Fig. 

2.17 are grouped into the groups related to other frequency bands by their carrier frequencies. The 

grouping results are shown in Table 2.10.  

Table 2.9: Four frequency bands (experimental analysis) 

Frequency band 𝐹𝐵1 𝐹𝐵2 𝐹𝐵3 𝐹𝐵4 

Range/Hz [212.7, 265.9] [265.9, 319.1] [319.1, 372.3] [372.3, 425.5] 

 

Table 2.10: Grouping result for the identified SDOF IRs (Faulty 3 case) 

Group  
group related to 

𝐹𝐵1 

group related to 

𝐹𝐵2 

group related to 

𝐹𝐵3 

group related to 

𝐹𝐵4 

SDOF IR 1st, 2nd, 3rd 4th 5th, 6th, 7th 8th 
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(a) Reconstructed CII 

 

(b) Energy spectral density of reconstructed CII 

Fig. 2.18: Time waveform and energy spectral density of the reconstructed CII (Faulty 3 case) 

 

Fig. 2.19: The reconstructed CII and the notch filtered signal (Faulty 3 case) 
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(a) Energy spectral density of reconstructed CII 

 

(b) Energy spectral density of notch filtered signal 

Fig. 2.20: Energy spectral densities of the reconstructed CII and the notch filtered signal (Faulty 3 case) 

The energy of reconstructed CII is calculated using Eq. (2.33), which is 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 = 6.1 × 10−5. The 

sum of the energy of the SDOF IRs in each group shown in Table 2.10 is calculated using Eq. 

(2.34). For example, 𝑆𝐸𝐹𝐵3 = 8.3 × 10−6 + 4.7 × 10−5 + 9.2 × 10−6 = 6.5 × 10−5 . Likewise, 

the sums of the energy of the SDOF IRs in the other groups are also calculated. The energy results 

are tabulated in Table 2.11, from which it is seen that 𝑆𝐸𝐹𝐵3 is greater than 𝐸𝑅𝑒𝑐𝐶𝐼𝐼. This means 

that 𝑆𝐸𝐹𝐵3 can give additional promising crack diagnosis information. 

Table 2.11: Results of the 𝑆𝐸𝐹𝐵𝑖 and 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 (Faulty 3 case) 

Energy 𝑆𝐸𝐹𝐵1 𝑆𝐸𝐹𝐵2 𝑆𝐸𝐹𝐵3 𝑆𝐸𝐹𝐵4 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 

Value 2.9 × 10−5 7.3 × 10−7 6.5 × 10−5 9.9 × 10−7 6.1 × 10−5 

In Step 5, repeating all Steps 1-4 of the proposed method for the experimental gearbox vibration 

signals of all health conditions, 𝐸𝑅𝑒𝑐𝐶𝐼𝐼  and 𝑆𝐸𝐹𝐵𝑖  ( 𝑖 = 1,… , 4 ) are calculated. To study the 

repeatability of the proposed method, for each health condition, the collected 10 datasets were used 

to calculate the energy metrics. The boxplots of the energy metrics are shown in Fig. 2.21, in which 
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the central red mark on the box denotes the median value of the 10 values of a CI, the edges of the 

box represent the 25th and 75th percentiles, whiskers extend to the most extreme data points, and 

outliers are plotted as red crosses. As shown in Fig. 2.21, 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 shows better ascending trend 

towards early tooth crack severity progression.  𝑆𝐸𝐹𝐵3 has the best ability to track crack growth 

among 𝑆𝐸𝐹𝐵𝑖  (𝑖 = 1,2,3,4), which provides promising crack diagnosis information. Therefore, 

𝑆𝐸𝐹𝐵3 is proposed as a new CI together with 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 for early tooth crack severity assessment.  

  

(a) 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 (c) 𝑆𝐸𝐹𝐵2 

  

(b) 𝑆𝐸𝐹𝐵1 (d) 𝑆𝐸𝐹𝐵3 

 

(e) 𝑆𝐸𝐹𝐵4 

Fig. 2.21: Boxplots for 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 and  𝑆𝐸𝐹𝐵𝑖 (for 𝑖 = 1,… ,4) 
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2.5.3 Performance comparison 

As mentioned in Subsection 2.3.2, the AIR and tooth crack severity assessment accuracy are used 

for performance comparison between the two proposed CIs, namely 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 and 𝑆𝐸𝐹𝐵3, and the 

three reported ones, i.e., 𝐸𝐶𝐼𝐼𝐸𝑛𝑣  [77], 𝐸𝐼𝑚𝑝𝑉𝐶  [87], and PS-I [86]. In the experiment, 10 data 

samples were collected for each health condition. Therefore, for each health condition, 10 results 

were obtained for each CI, which were used to calculate the median values. Median values of the 

CIs were adopted to calculate their AIR values, which are tabulated in Table 2.12. As shown in 

Table 2.12, 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 and 𝑆𝐸𝐹𝐵3 have much higher AIR values than the three reported CIs, which 

means that they are more sensitive towards early tooth crack severity progression. To illustrate this 

visually, the obtained median values are normalized using Eq. (2.37). The normalized median 

values of the CIs with regard to the gear healthy conditions are plotted in Fig. 2.22, from which it 

is seen that 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 outperforms the three reported CIs, and 𝑆𝐸𝐹𝐵3  has the best performance in 

terms of tracking early tooth crack severity progression. 

Table 2.12: AIR values of the condition indicators (experimental analysis) 

Condition indicator 𝐸𝐶𝐼𝐼𝐸𝑛𝑣 [77] 𝐸𝐼𝑚𝑝𝑉𝐶 [87] 𝑃𝑆 − 𝐼 [86] 
𝑆𝐸𝐹𝐵3 

(proposed) 

𝐸𝑅𝑒𝑐𝐶𝐼𝐼 
(proposed) 

AIR value (%) 678.76 716.44 275.35 4180.08 1419.93 

 

 

Fig. 2.22: Normalized median values of condition indicators versus health condition 

To obtain the tooth crack severity assessment accuracy, an LDA classifier [122]  was trained. The 

data was randomly partitioned into training and testing datasets where the training set holds 60% 
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and the testing set 40%. Classification result was converted into tooth crack severity assessment 

accuracy using the confusion matrix. Three trials of tooth crack severity assessment were 

conducted, which resulted in three overall accuracy values for each CI. Confusion matrices of the 

CIs for the third trial are shown in Fig. 2.23 for illustration. As shown in Fig. 2.23, the overall 

accuracy is displayed in the last cell at the bottom rightmost corner of the confusion matrix. 

  

(a) Confusion matrix for 𝐸𝐶𝐼𝐼𝐸𝑛𝑣 (c) Confusion matrix for PS-I 

  

(b) Confusion matrix for 𝐸𝐼𝑚𝑝𝑉𝐶 (d) Confusion matrix for 𝑆𝐸𝐹𝐵3 

 

(e) Confusion matrix for 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 

Fig. 2.23: Confusion matrices for all the five condition indicators (third trial) 
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The average overall accuracy of these three trials is used as the final assessment accuracy. The 

overall assessment accuracy for each CI in each trial and their average values are tabulated in Table 

2.13, from which it is found that the average accuracy values of 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 and 𝑆𝐸𝐹𝐵3 for early tooth 

crack severity assessment are 87.5% and 91.7%, which are much higher than those of 𝐸𝐶𝐼𝐼𝐸𝑛𝑣, 

𝐸𝐼𝑚𝑝𝑉𝐶, and PS-I, i.e. 56.3%, 60.4%, 52.1%, respectively. On this basis, it is concluded that when 

the inputs of the LDA classifier are the proposed CIs, i.e., 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 and 𝑆𝐸𝐹𝐵3, it can result in much 

higher accuracy values for early tooth crack severity assessment than those for the three reported 

ones. This indicates that the proposed method can extract better signatures of early tooth cracks 

from gearbox vibration signals and the two proposed CIs can better track early tooth crack severity 

progression, thus resulting in better performance on early tooth crack severity assessment. 

Table 2.13: Early tooth crack severity assessment accuracy results for the condition indicators 

Condition indicator 𝐸𝐶𝐼𝐼𝐸𝑛𝑣 [77] 𝐸𝐼𝑚𝑝𝑉𝐶 [87] 𝑃𝑆 − 𝐼 [86] 
𝑆𝐸𝐹𝐵3 

(proposed) 

𝐸𝑅𝑒𝑐𝐶𝐼𝐼 
(proposed) 

Trial 1 accuracy 62.5% 68.8% 50.0% 93.8% 93.8% 

Trial 2 accuracy 56.3% 50.0% 50.0% 87.5% 87.5% 

Trial 3 accuracy 50.0% 62.5% 56.3% 93.8% 81.3% 

Average accuracy 56.3% 60.4% 52.1% 91.7% 87.5% 

 

2.6 Conclusions 

In this chapter, a novel method is proposed to conduct a thorough analysis of the CII extracted 

from gearbox vibration signals and two new CIs are proposed to assess tooth crack severity in the 

early crack stage. The proposed method focuses on the CII since it consists of structural resonances 

and provides more crack information than other vibration components. There are five steps in the 

proposed method. Firstly, the TSA technique is adopted to remove the components that are not 

synchronous with the gear with a tooth crack from gearbox vibration signals. The resonant 

frequency range in which the CII exists is identified from the energy spectral density of the TSA 

signal. Afterwards, the GMF and its harmonics and the sidebands around them of all gears on the 

target shaft are removed using comb notch filters. A modal model is used to identify the dominant 
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resonances as SDOF IRs, and modal parameters are estimated using the MPM. The identified 

SDOF IRs are used to reconstruct the CII. In addition, the resonant frequency range is divided into 

separate frequency bands, through which the SDOF IRs are grouped. Lastly, the energy of the 

reconstructed CII and the sum of the energy of SDOF IRs with their carrier frequencies in a specific 

frequency band are proposed as two new CIs for early tooth crack severity assessment. 

The effectiveness of the proposed method and the proposed CIs is demonstrated with both 

simulated gearbox vibration responses and experimental gearbox vibration signals. In addition, a 

comparison of performance on assessing early tooth crack severity is made between the proposed 

CIs, i.e., 𝐸𝑅𝑒𝑐𝐶𝐼𝐼 and 𝑆𝐸𝐹𝐵3, and the three reported ones, namely  𝐸𝐶𝐼𝐼𝐸𝑛𝑣 [77], 𝐸𝐼𝑚𝑝𝑉𝐶 [87], and 

PS-I [86]. The AIR and tooth crack severity assessment accuracy are used as two comparison 

criteria. Comparative results show that the proposed CIs perform much better than the three 

reported ones in terms of early tooth crack severity assessment with larger AIR values and higher 

tooth crack severity assessment accuracy values. By conducting a thorough analysis of the CII, the 

proposed method can extract signatures that well indicate early tooth crack severity progression, 

which demonstrates the superiority of the proposed CIs in terms of assessing early tooth crack 

severity. 

In this chapter, the proposed method and the new CIs were developed under constant speed and 

constant load conditions. Future studies will explore the scenarios of early tooth crack diagnosis 

under time-varying working conditions. 
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Chapter 3: The effect of time-varying operating condition on 

the crack induced impulses and its application to gearbox 

tooth crack diagnosis 

 

This chapter focuses on studying how time-varying operating conditions affect vibration 

characteristics of a fixed-axis spur gearbox with a tooth crack. The effect of time-varying operating 

condition on the CII is identified and is further adopted to develop a new CI for tracking tooth 

crack severity progression under time-varying operating conditions. The materials in this chapter 

are covered by the second research topic (Topic #2), which is introduced in Section 1.3. The 

organization of this chapter is as follows. In Section 3.1, an introduction to the reported studies on 

fixed-axis spur gearbox dynamics involving operating condition variations is made. Section 3.2 

presents the proposed methodology for conducting a comprehensive study on how time-varying 

operating conditions affect vibration signals of fixed-axis spur gearbox with a tooth crack. 

Simulation analysis and experimental validation for the proposed methodology are presented in 

Section 3.3 and Section 3.4, respectively. Discussions of the proposed CI are presented in Section 

3.5 and the conducted study is concluded in Section 3.6. Results of this chapter are documented in 

a journal paper [105] which is under review at present. 

3.1 Introduction 

During the last several decades, tooth crack diagnosis has been a research hotspot since it can 

prevent gearboxes failures, but many reported studies only focused on tooth crack diagnosis under 

constant operating conditions [33,77,103,104,123,124]. However, gearboxes oftentimes work 

under time-varying operating conditions, which makes tooth crack diagnosis methods for constant 

operating conditions incompetent. Time-varying operating conditions indicate that either the 

applied load (torque) or the rotating speed is variable, or both are variable. When gearboxes work 

under time-varying operating conditions, operating condition variations induce AM and FM into 

gearbox vibration signals [66,125,126]. For the operating condition variation-induced AM, it 

results in difficulties in distinguishing between changes of tooth crack severity and operating 
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condition variations [80]. For the operating condition variation-induced FM, it causes frequency 

smearing, which makes it hard to capture crack characteristic frequencies. Therefore, the AM and 

FM induced by time-varying operating conditions may lead to incorrect results of tooth crack 

diagnosis if not properly tackled. 

To effectively conduct tooth crack diagnosis under time-varying operating conditions, the 

operating condition variation-induced AM and FM of gearbox vibration signals need to be well 

interpreted. To this end, dynamic model-based methods are preferred since they can eliminate the 

interferences of environmental noise and isolate the effects of time-varying operating conditions 

on vibration signals. Bartelmus et al. [125] adopted a dynamic model of a spur gearbox to study 

gearbox vibration responses under piecewise constant load conditions. They found that there was 

a linear relation between the load and the arithmetic sum of spectral components in the limited 

load range. However, they did not involve tooth cracks and how the load affects raw gearbox 

vibration signals was not revealed. Chaari et al. [66] studied the effect of a variable load on gearbox 

vibration signals using a dynamic model of a gearbox transmission system. They observed that 

load variation induced an AM into gear mesh harmonics. However, the relation between the 

variable load and the AM of gear mesh harmonics was not explicitly and mathematically described, 

and they also did not consider tooth cracks. Besides, a square waveform was used to represent the 

gear tooth mesh stiffness, which leaded to a significant simplification of the tooth meshing process. 

Later, another two studies have been conducted to study gearbox vibration responses under time-

varying operation conditions [127,128]. Although tooth cracks were considered in these two 

studies, they still shared some common drawbacks: (1) square waveforms were used to 

approximate the gear tooth mesh stiffness, which made it difficult to evaluate the mesh stiffness 

of a gear mesh pair considering tooth crack severity progression under time-varying operating 

conditions; (2) the relations among the operating condition variation-induced AM and FM of the 

gearbox vibration signals, the time-varying operating conditions, and tooth crack severity 

progression were not identified. 

Recently, Shu et al. [21] studied the dynamic properties of a gearbox in a multi-motor driving 

system under time-varying operating conditions. For the variable load and constant speed 

condition, gearbox accelerations changed as the load varied. For the variable load and variable 

speed condition, gearbox accelerations were the result of the interaction between the load and the 
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speed. However, in Ref. [21],  the effects of variable load and speed on gearbox vibration signals 

were only qualitatively described, no mathematical representations were provided. Besides, 

vibration signals of gearboxes with tooth cracks were not studied. Bachar et al. [24] studied the 

effects of operating conditions on gearbox vibration signals. They examined the effects of 

operating conditions on healthy gearbox vibration signatures using constant loads and constant 

speeds and found that the energy of the signal component including the FM sidebands depended 

mainly on speed variation but was least affected by load variation. The energy of the signal 

component comprising the FM sidebands was adopted to track tooth fault growth under various 

constant speeds. However, in Ref. [24], tooth cracks were not involved and the relation between 

the operation condition variations and the AM and FM was not identified. Besides, in these studies, 

only conventional CIs, such as RMS and kurtosis, were used to differentiate tooth fault severity 

levels, failing to propose novel CIs to track tooth crack severity progression under time-varying 

operating conditions. 

To overcome the deficiencies of the studies reviewed above, this chapter conducts a 

comprehensive study on how time-varying operating conditions affect vibration signals of a fixed-

axis spur gearbox with a tooth crack. A gearbox system including a driving motor, a spur gear 

mesh pair, and a load machine is first modelled. For the time-varying operating conditions, two 

scenarios are considered, i.e., the variable load and constant speed condition, and the constant load 

and variable speed condition. As an internal excitation of the gearbox system, the gear tooth mesh 

stiffness is evaluated using the potential energy method under time-varying operating conditions. 

The gear tooth mesh stiffness is inserted into the gearbox dynamic model to simulate gearbox 

vibration signals under time-varying operating conditions. Because the CII contain more tooth 

crack information [77,104], the focus of signal analysis is placed on the CII extracted from gearbox 

vibration signals using the Adaptive Harmonic Decomposition (AHD) method or its modified 

counterpart. The AM of the CII is obtained using the envelope analysis and a linear dependence 

of the AM of the CII on the time-varying operating condition is identified. The identified linear 

dependence is used to propose a novel CI which is sensitive to tooth crack severity progression 

while insensitive to operating condition variations. By analyzing both simulated gearbox vibration 

signals and experimental gearbox vibration datasets, the linear dependence of the AM of the CII 



77 
 
 

on the time-varying operating condition and the effectiveness of the proposed CI for tracking tooth 

crack severity progression under time-varying operating conditions are demonstrated. 

The novel contributions of this chapter include: (1) Evaluation of gear tooth mesh stiffness 

considering tooth crack severity progression under time-varying operating conditions, which is 

achieved by deriving gear tooth mesh stiffness obtained using the potential energy method as an 

implicit function of time. On this basis, gearbox dynamic responses for different tooth crack 

severity levels under time-varying operating conditions are generated; (2) A new procedure is 

proposed to analyze gearbox vibration signals, and a linear dependence of the AM of the CII on 

time-varying operating condition (variable load or variable speed) is identified; (3) Based on the 

identified linear dependence of the AM of the CII on the time-varying operating condition, a novel 

CI is proposed to track tooth crack severity progression under time-varying operating conditions.  

The remainder of this chapter is organized as follows. Section 3.2 describes the proposed 

methodology, mainly including the gearbox dynamic simulation under time-varying operating 

conditions, the signal analysis procedure, and the development of a novel CI. The demonstration 

of the linear dependence of the AM of the CII on the time-varying operating condition and the 

effectiveness of the proposed CI for tooth crack diagnosis using simulated gearbox vibration 

signals and experimental gearbox vibration datasets are presented in Section 3.3 and Section 3.4, 

respectively. Discussions of the proposed CI are presented in Section 3.5 and the work conducted 

in this study is finally concluded in Section 3.6. 

3.2 The proposed methodology  

The proposed methodology consists of four parts, including the generation of simulated vibration 

signals of a spur gearbox with a tooth crack under time-varying operating conditions, the procedure 

for analyzing gearbox vibration signals, the development of a novel CI for tracking tooth crack 

severity progression under time-varying operating conditions, and the quantitative evaluation of 

the performance of the proposed CI on tooth crack diagnosis.  

3.2.1 Gearbox dynamic simulation under time-varying operating conditions  

In this subsection, simulated vibration signals of a spur gearbox involving tooth crack severity 

progression under time-varying operating conditions are generated. To this end, a spur gearbox 
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system with a tooth crack subject to a variable load or a variable speed is modeled, and the gear 

tooth mesh stiffness is obtained using the potential energy method and is further expressed as a 

function of time to consider tooth crack severity progression and operating condition variations. 

3.2.1.1 Dynamic model of a spur gearbox transmission system 

A spur gearbox system subject to time-varying operating conditions is modelled, and the fixed-

axis spur gearbox shown in Fig. 2.2 in Section 2.4 is used as the spur gearbox system herein. As 

shown in Fig. 2.2, the gearbox system includes a driving motor, a pinion, a gear, and a load 

machine. A tooth crack is seeded on the pinion. The gearbox system is driven by the driving motor 

with a torque 𝑀1 and a speed 𝑆𝑃𝐷, and the torque exerted on the load machine is 𝑀2. The values 

of the load machine torque 𝑀2 and the driving motor speed 𝑆𝑃𝐷 are controlled to achieve the time-

varying operating conditions. The driving motor shaft and the pinion shaft are directly coupled 

with a flexible coupling, so their speeds are the same. In Section 2.4, gearbox dynamic responses 

are generated under constant operating conditions, which has already been completed in Refs. 

[26,33], so gearbox motion equations are not introduced in Section 2.4. However, in this subsection, 

gearbox dynamic responses will be generated under time-varying operating conditions, which is 

different from the work conducted in Refs. [26,33]. To facilitate generating gearbox dynamic 

responses under time-varying operating conditions, gearbox system motion equations introduced 

in Refs. [26,33] are rearranged into the Lagrange formulation herein, which is shown in Eq. (3.1). 

𝑀�̈� + 𝐶�̇� + 𝐾𝑢 = 𝐹                                                         (3.1) 

where 𝑀 is the mass matrix, 𝐶  the damping matrix, 𝐾 the stiffness matrix, 𝑢 the displacement 

vector, and 𝐹 the force vector.  

The mass matrix 𝑀 is a diagonal matrix, which is expressed in Eq. (3.2). 

𝑀 =

[
 
 
 
 
 
 
 
 
𝑚1

𝑚2

𝑚1

𝑚2

0

0

𝐼1
𝐼2

𝐼𝑚
𝐼𝑏 ]
 
 
 
 
 
 
 
 

                                         (3.2) 
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where 𝑚1 and 𝐼1 are the mass and the mass moment of inertia of the pinion, respectively; 𝑚2 and 

𝐼2 are the mass and the mass moment of inertia of the gear, respectively; 𝐼𝑚 is the mass moment 

of inertia of the driving motor; 𝐼𝑏 is the mass moment of inertia of the load machine. 

The displacement vector 𝑢 is shown in Eq. (3.3). 

𝑢 = {𝑥𝑝 𝑥𝑔 𝑦𝑝 𝑦𝑔 𝜃𝑝 𝜃𝑔 𝜃𝑚 𝜃𝑏}
𝑇                                        (3.3) 

where superscript “𝑇” is the vector transposition; 𝑥𝑝 and 𝑥𝑔 are linear displacements of the pinion 

and gear in the x direction, respectively; 𝑦𝑝 and 𝑦𝑔 are the pinion and gear linear displacements in 

the y direction, respectively; 𝜃𝑝 and 𝜃𝑔 are the pinion and gear angular displacements, respectively; 

𝜃𝑚 and 𝜃𝑏 are angular displacements of the driving motor and load machine, respectively. 

The force vector 𝐹 is expressed using Eq. (3.4). 

𝐹 = {0 0 0 0 0 0 𝑀1 −𝑀2}
𝑇                                          (3.4) 

where 𝑀1 is the driving motor torque, 𝑀2 the load machine torque. 

The stiffness matrix 𝐾 is expressed in Eq. (3.5). 

𝐾 = 𝐾𝑏𝑐 + 𝐾𝑚𝑒𝑠ℎ                                                        (3.5) 

where 𝐾𝑏𝑐 is the stiffness matrix for the bearings and couplings, and 𝐾𝑚𝑒𝑠ℎ is the matrix for the 

gear tooth mesh stiffness, which are shown in Eq. (3.6) and Eq. (3.7), respectively.  

𝐾𝑏𝑐 =

[
 
 
 
 
 
 
 
 
𝑘𝑥1 0 0 0 0 0 0 0
0 𝑘𝑥2 0 0 0 0 0 0
0 0 𝑘𝑦1 0 0 0 0 0

0 0 0 𝑘𝑦2 0 0 0 0

0 0 0 0 𝑘𝑝 0 −𝑘𝑝 0

0 0 0 0 0 𝑘𝑔 0 −𝑘𝑔
0 0 0 0 −𝑘𝑝 0 𝑘𝑝 0

0 0 0 0 0 −𝑘𝑔 0 𝑘𝑔 ]
 
 
 
 
 
 
 
 

                             (3.6) 

where 𝑘𝑥1 and 𝑘𝑥2 are the horizontal radial stiffness of the input and output bearings, respectively; 

𝑘𝑦1 and 𝑘𝑦2 are the vertical radial stiffness of the input and output bearings, respectively; 𝑘𝑝 and 

𝑘𝑔  are the torsional stiffness of the input and output couplings, respectively. Values of these 

parameters can be determined through experimental measurements and theoretical calculations. 
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𝐾𝑚𝑒𝑠ℎ = 𝑘𝑡

[
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 −1 −𝑅𝑏1 𝑅𝑏2 0 0
0 0 1 −1 −𝑅𝑏1 𝑅𝑏2 0 0

0 0 −𝑅𝑏1 𝑅𝑏1 𝑅𝑏1
2 −𝑅𝑏1𝑅𝑏2 0 0

0 0 𝑅𝑏2 −𝑅𝑏2 −𝑅𝑏1𝑅𝑏2 𝑅𝑏2
2 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

                       (3.7) 

where 𝑘𝑡 is the gear tooth mesh stiffness, which is to be evaluated in Section 3.2.1.2;  𝑅𝑏1 and 𝑅𝑏2 

are the base circle radii of the pinion and the gear, respectively.  

The damping matrix 𝐶 is expressed using Eq. (3.8). 

𝐶 = 𝐶𝑏𝑐 + 𝐶𝑚𝑒𝑠ℎ                                                        (3.8) 

where 𝐶𝑏𝑐 is the damping coefficient matrix for the bearings and couplings, and 𝐶𝑚𝑒𝑠ℎ is the gear 

tooth mesh damping coefficient matrix, which are shown in Eq. (3.9) and Eq. (3.10), respectively.  

𝐶𝑏𝑐 =

[
 
 
 
 
 
 
 
 
𝑐𝑥1 0 0 0 0 0 0 0
0 𝑐𝑥2 0 0 0 0 0 0
0 0 𝑐𝑦1 0 0 0 0 0

0 0 0 𝑐𝑦2 0 0 0 0

0 0 0 0 𝑐𝑝 0 −𝑐𝑝 0

0 0 0 0 0 𝑐𝑔 0 −𝑐𝑔
0 0 0 0 −𝑐𝑝 0 𝑐𝑝 0

0 0 0 0 0 −𝑐𝑔 0 𝑐𝑔 ]
 
 
 
 
 
 
 
 

                             (3.9) 

where 𝑐𝑥1 and 𝑐𝑥2 are the horizontal radial damping coefficients of the input and output bearings, 

respectively; 𝑐𝑦1 and 𝑐𝑦2 the vertical radial damping coefficients of the input and output bearings, 

respectively; 𝑐𝑝 and 𝑐𝑔 the damping coefficients of the input and output couplings, respectively.  

𝐶𝑚𝑒𝑠ℎ = 𝑐𝑡

[
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 −1 −𝑅𝑏1 𝑅𝑏2 0 0
0 0 1 −1 −𝑅𝑏1 𝑅𝑏2 0 0

0 0 −𝑅𝑏1 𝑅𝑏1 𝑅𝑏1
2 −𝑅𝑏1𝑅𝑏2 0 0

0 0 𝑅𝑏2 −𝑅𝑏2 −𝑅𝑏1𝑅𝑏2 𝑅𝑏2
2 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

                     (3.10) 

where 𝑐𝑡 is the time-varying tooth mesh damping coefficient, which is calculated using Eq. (3.11).  
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𝑐𝑡 = 𝜇𝑘𝑡                                                           (3.11) 

where 𝜇 is a scale constant with the unit of second (s). 

3.2.1.2 Evaluation of gear tooth mesh stiffness 

To overcome the drawback of using square waveforms to represent gear tooth mesh stiffness in 

the reported studies [66,127,128], the potential energy method [26,33] is modified to evaluate the 

mesh stiffness 𝑘𝑡 in order to involve tooth crack severity progression and time-varying conditions. 

To evaluate the mesh stiffness for a gear pair with a pinion tooth crack, the cracked tooth model 

shown in Fig. 2.3 in Section 2.4 is used to simulate the pinion tooth crack. In this chapter, crack 

depth 𝑞𝑝 is used to represent tooth crack severity level, and seven tooth crack depths are considered, 

namely the values of 𝑞𝑝 are 0mm, 1mm, 2mm, 3mm, 4mm, 5mm, and 6mm, respectively.  

The total potential energy stored in a gear mesh pair was assumed to include four parts: the 

Hertzian energy, the bending energy, the axial compressive energy, and the shear energy. For the 

single-tooth-pair meshing duration, the gear tooth mesh stiffness is expressed in Eq. (3.12) [33]. 

𝑘𝑡 =
1

1
𝑘ℎ
⁄ +1 𝑘𝑏1

⁄ +1 𝑘𝑎1
⁄ +1 𝑘𝑠1

⁄ +1 𝑘𝑏2
⁄ +1 𝑘𝑎2

⁄ +1 𝑘𝑠2
⁄

                                   (3.12) 

where 𝑘ℎ, 𝑘𝑏, 𝑘𝑎, and 𝑘𝑠 are Hertzian stiffness, bending stiffness, axial compressive stiffness, and 

shear stiffness, respectively; subscripts 1 and 2 denote the pinion and the gear, respectively.  

For the double-tooth-pair meshing duration, gear tooth mesh stiffness is shown in Eq. (3.13) [33]. 

𝑘𝑡 = ∑
1

1
𝑘ℎ,𝑖
⁄ +1 𝑘𝑏1,𝑖

⁄ +1 𝑘𝑎1,𝑖
⁄ +1 𝑘𝑠1,𝑖

⁄ +1 𝑘𝑏2,𝑖
⁄ +1 𝑘𝑎2,𝑖

⁄ +1 𝑘𝑠2,𝑖
⁄

2
𝑖=1                          (3.13) 

where 𝑖 = 1 represents the first pair of meshing teeth, 𝑖 = 2 the second pair of meshing teeth.  

Formulae of 𝑘ℎ , 𝑘𝑏 , 𝑘𝑎 , and 𝑘𝑠  are not presented herein, those who are interested in their 

derivations can refer to Refs. [26,33]. In Refs. [26,33], 𝑘𝑡 was only evaluated under constant speed 

conditions, and the relation between 𝑘𝑡 and time was not described. To overcome these drawbacks, 

derivation of 𝑘𝑡  as an implicit function of time is conducted herein, through which 𝑘𝑡  can be 

evaluated considering tooth crack severity progression under time-varying operating conditions. 𝑘𝑡 

is a periodic function of the pinion angular displacement, which is shown in Eq. (3.14).  

𝑘𝑡 = 𝐺(Φ𝑝𝑖𝑛)                                                              (3.14) 
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where 𝐺  denotes a periodic function; Φ𝑝𝑖𝑛  is the angular displacement of the pinion, which is 

calculated by Eq. (3.15).  

Φ𝑝𝑖𝑛 = 2𝜋 ∫𝑆𝑃𝐷(𝑡)𝑑𝑡                                                      (3.15) 

where 𝑆𝑃𝐷 is the rotational speed of the pinion.  

Therefore, 𝑘𝑡 can be expressed as an implicit function of time 𝑡, which is shown in Eq. (3.16). 

𝑘𝑡 = 𝐺(Φ𝑝𝑖𝑛) = 𝐺(2𝜋 ∫𝑆𝑃𝐷(𝑡)𝑑𝑡) = 𝐻(𝑡)                                     (3.16) 

From Eq. (3.16), it is seen that for either the variable load and constant speed condition, i.e., 𝑆𝑃𝐷 

is constant, or for the constant load and variable speed condition, i.e., 𝑆𝑃𝐷 is time varying,  𝑘𝑡 can 

be expressed as a function of time 𝑡. Besides, under the constant load and variable speed condition, 

the effect of speed variation on 𝑘𝑡 is included in the function 𝑘𝑡 = 𝐻(𝑡). Therefore, 𝑘𝑡 includes 

information on both tooth crack severity progression and time-varying operating conditions. 

3.2.2 Procedure for analyzing gearbox vibration signal 

3.2.2.1 Overall implementation procedure 

A new procedure displayed in Fig. 3.1 is proposed to study how time-varying operating conditions 

affect gearbox vibration signals. The procedure consists of several parts: (1) time-frequency 

analysis of gearbox vibration signals; (2) extraction of the CII; (3) envelope analysis of the CII. 

Descriptions of each part of the procedure are presented in the following subsections. 

 

Fig. 3.1:  The proposed procedure for analyzing gearbox vibration signals 
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3.2.2.2 Time-frequency analysis 

To illustrate how time-varying operating conditions affect gearbox vibration signals, the time-

frequency spectra of gearbox vibration signals are obtained using the Short Time Fourier 

Transform (STFT). The STFT is a Fourier transform-related operation that can be used to 

simultaneously represent the time, frequency, and amplitude properties of a signal. The STFT 

result of a continuous signal 𝑦(𝑡) is calculated using Eq. (3.17).   

𝑆𝑇𝐹𝑇(𝑡, 𝑤) = ∫ 𝑦(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗𝑤𝑡𝑑𝑡
+∞

−∞
                                      (3.17) 

where 𝑤(𝑡) is a window function.  

3.2.2.3 Extraction of the crack induced impulses 

In this chapter, the focus of signal analysis is placed on the CII since the CII contain more tooth 

crack information than other signal components [77,104], so the CII are extracted from gearbox 

vibration signals and are further analyzed for tooth crack diagnosis. As mentioned in Subsection 

1.2.2, for a spur gearbox with a tooth crack, its vibration signal consists of the gear meshing 

harmonics and the associated crack-related AM and FM, the CII, and the environmental noise. The 

gear meshing harmonics and the associated crack-related AM and FM have no direct relationship 

with the CII, so they need to be removed before extracting the CII, which can be achieved using 

comb notch filters. Afterwards, the CII are extracted from the comb notch filtered signal. To this 

end, it is necessary to get a good understanding of the spectral property of the CII under the two 

considered scenarios of time-varying operating conditions, i.e., the variable load and constant 

speed condition, and the constant load and variable speed condition.  

For the variable load and constant speed condition, the CII result in a harmonic-cluster in the 

frequency spectrum. A harmonic-cluster is a group of frequencies with a uniform interval of the 

tooth crack characteristic frequency. The tooth crack characteristic frequency is the rotational 

frequency of the gear with a tooth crack. Zhou et al. [88] demonstrated the equivalence between 

the CII and the harmonic-cluster under constant speed conditions, which is shown in Eq. (3.18).  

𝑠(𝑡) = ∑ 𝑠𝑖(𝑡)
𝐼
𝑖=1 = ∑ 𝑎𝑖 cos(2𝜋𝑓𝑖𝑡 + 𝑏𝑖)

𝐼
𝑖=1                                   (3.18) 

where 𝑠(𝑡) denotes the CII; 𝑠𝑖(𝑡) is the 𝑖𝑡ℎ harmonic of the harmonic-cluster; 𝑎𝑖, 𝑓𝑖, and 𝑏𝑖 are the 

amplitude, frequency, and initial phase of 𝑠𝑖(𝑡), respectively.  
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Based on the equivalence shown in Eq. (3.18), Zhou et al. [88] developed a method called the 

Adaptive Harmonic Decomposition (AHD) to extract all the CII-related harmonics, i.e., 𝑠𝑖(𝑡), and 

the CII was reconstructed by summing all the 𝑠𝑖(𝑡). However, how to extract the CII under constant 

load and variable speed conditions was not involved in Ref. [88].  

For the constant load and variable speed condition, the CII cannot result in a harmonic-cluster in 

the frequency spectrum due to the FM effect caused by speed variation, so the AHD method is 

incapable of obtaining the CII in this case. However, if the CII is resampled in the angle domain 

to remove the FM effect, the resampled CII would result in an order-cluster in the order spectrum. 

An order-cluster is a group of orders with a uniform interval of the tooth crack characteristic order, 

and the tooth crack characteristic order is the rotational order of the gear with a tooth crack. There 

is an equivalence between the resampled CII and the order-cluster, which is shown in Eq. (3.19). 

𝑠𝑟𝑒𝑚(𝜃) = ∑ 𝑠𝑘(𝜃)
𝐾
𝑘=1 = ∑ 𝐴𝑘(𝜃) cos(𝑅𝑘𝜃 + 𝐵𝑘(𝜃))

𝐾
𝑘=1                        (3.19)                      

where 𝑠𝑟𝑒𝑚(𝜃) is the resampled CII; 𝑅𝑘 is the 𝑘𝑡ℎ order in the order-cluster; 𝑠𝑘(𝜃) corresponds to 

the 𝑅𝑘 in the order spectrum; 𝐴𝑘(𝜃) and 𝐵𝑘(𝜃) are the amplitude and phase of 𝑠𝑘(𝜃), respectively. 

Enlightened by the idea that the AHD method in Ref. [88] was used to extract 𝑠𝑖(𝑡) of the CII 

shown in Eq. (3.18) under constant speed conditions, a modified AHD method is developed in this 

chapter to extract 𝑠𝑘(𝜃) of the resampled CII shown in Eq. (3.19) under variable speed conditions. 

This strategy will also be used to obtain the CII from gearbox vibration signals generated using a 

phenomenological model of gearbox signals under variable speed conditions in Chapter 4. The 

modified AHD method focuses on the operations for the resampled CII in the angle domain. If an 

initial estimate of the 𝑘𝑡ℎ order is specified as 𝑅�̃�, 𝑠𝑘(𝜃) in Eq. (3.19) is expressed as    

𝑠𝑘(𝜃) = 𝐴𝑘(𝜃) cos(𝑅𝑘𝜃 + 𝐵𝑘(𝜃)) = 𝑢𝑘(𝜃) cos(𝑅�̃�𝜃) + 𝑣𝑘(𝜃) sin(𝑅�̃�𝜃)           (3.20) 

where 𝑢𝑘(𝜃) and 𝑣𝑘(𝜃) are two demodulated signal components, which are shown in Eq. (3.21). 

{
𝑢𝑘(𝜃) = 𝐴𝑘(𝜃) cos ((𝑅𝑘 − 𝑅�̃�)𝜃 + 𝐵𝑘(𝜃))

𝑣𝑘(𝜃) = −𝐴𝑘(𝜃) sin ((𝑅𝑘 − 𝑅�̃�)𝜃 + 𝐵𝑘(𝜃))
                                  (3.21) 
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When 𝑅�̃� = 𝑅𝑘, 𝑢𝑘(𝜃) and 𝑣𝑘(𝜃) are shifted to zero-order positions in the order spectrum. The 

amplitude and phase of 𝑠𝑘(𝜃)  are calculated using Eq. (3.22), based on which 𝑠𝑘(𝜃)  is 

reconstructed. 

{
𝐴𝑘(𝜃)|𝑅�̃�=𝑅𝑘 =

√(𝑢𝑘(𝜃))
2
+ (𝑣𝑘(𝜃))

2

𝐵𝑘(𝜃)|𝑅�̃�=𝑅𝑘 = arctan [
−𝑣𝑘(𝜃)

𝑢𝑘(𝜃)
⁄ ]

                                       (3.22) 

To calculate 𝐴𝑘(𝜃) and 𝐵𝑘(𝜃), 𝑢𝑘(𝜃), 𝑣𝑘(𝜃), and 𝑅�̃� need to be obtained, which can be achieved 

by solving the optimization problem shown in Eq. (3.23). 

min
{𝑢𝑘,𝑣𝑘,𝑅�̃�}

{‖
𝑑2𝑢𝑘

𝑑𝜃2
‖
2

2

+ ‖
𝑑2𝑣𝑘

𝑑𝜃2
‖
2

2

+ 𝜆‖z − (𝑢𝑘 cos(𝑅�̃�𝜃) + 𝑣𝑘 sin(𝑅�̃�𝜃))‖2
2
}          (3.23) 

where ‖∙‖2 is the 𝐿2-norm, 𝜆 is the penalty coefficient, z is the comb notch filtered signal with gear 

meshing harmonics and the associated crack-related AM and FM removed in the angle domain.  

To numerically solve the optimization problem shown in Eq. (3.23), it needs to be discretized into 

the form shown in in Eq. (3.24). 

�̂� = 𝑎𝑟𝑔min
𝑄
{‖𝑫𝒖𝒌‖2

2 + ‖𝑫𝒗𝒌‖2
2 + 𝜆‖𝐳 − (𝑪𝒌𝒖𝒌 + 𝑳𝒌𝒗𝒌)‖2

2}                     (3.24) 

where 𝑄 = (𝑢𝑘, 𝑣𝑘 , 𝑅�̃�)  are the variables to be estimated; 𝑫  is a matrix for the second-order 

difference operator, the square of the 𝐿2-norm of 𝑫 is used to quantify the smoothness of the 

demodulated components 𝑢𝑘(𝜃) and 𝑣𝑘(𝜃). 

The variables sampled at different angle values {𝜃1, 𝜃2, … , 𝜃𝑚, … , 𝜃𝑀} are expressed as  

𝐳 = [z(𝜃1), z(𝜃2),… , z(𝜃𝑀) ]
𝑇                                                (3.25) 

{
𝒖𝒌 = [𝑢𝑘(𝜃1), 𝑢𝑘(𝜃2), … , 𝑢𝑘(𝜃𝑀) ]

𝑇

𝒗𝒌 = [𝑣𝑘(𝜃1), 𝑣𝑘(𝜃2), … , 𝑣𝑘(𝜃𝑀) ]
𝑇                                           (3.26) 

{
𝑪𝒌 = diag[𝑐𝑜𝑠(𝑅�̃�𝜃1), 𝑐𝑜𝑠(𝑅�̃�𝜃2), … , 𝑐𝑜𝑠(𝑅�̃�𝜃𝑀) ]

𝑳𝒌 = diag[𝑠𝑖𝑛(𝑅�̃�𝜃1), 𝑠𝑖𝑛(𝑅�̃�𝜃2), … , 𝑠𝑖𝑛(𝑅�̃�𝜃𝑀) ]
                        (3.27) 

The algorithm used to solve the discretized form of the optimization problem in Eq. (3.24) is 

presented in Algorithm 1, in which 𝜂 is the penalty parameter used to control the smoothness of 

order correction, q is the iteration count, and 𝜀 is the tolerance used to stop the iteration. When 
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implementing Algorithm 1, the value of the parameter 𝜀  is set to 1 × 10−8  for analyzing both 

simulated and experimental gearbox vibration signals, while the values of parameters 𝜆 and 𝜂 are 

determined through trial and error. The optimization problem shown in Eq. (3.24) will be solved 

iteratively until the preset conditions are satisfied, and the order estimate 𝑅�̃�  and the order 

component 𝑠𝑘(𝜃) will be obtained. Likewise, conducting Algorithm 1 on the residual signal 𝐳 −

𝑠𝑘(𝜃) recursively, all the other desired order components can also be obtained. Afterwards, the 

reconstruction of the CII in the angle domain is conducted by summing all the obtained order 

components, therefore realizing the goal of extracting the CII from gearbox vibration signals under 

constant load and variable speed conditions.  

Algorithm 1. The modified AHD method  

1: Input the comb notch filtered signal 𝒛 obtained in the angle domain, set the values for the 

tolerance 𝜀 and the penalty parameters 𝜆 and 𝜂; 

2: Initialize the values for the variables related to the order component 𝑠𝑘(𝜃) 

𝑞 = 1,    𝑅�̃�
1
,    𝑪𝑘

1 = diag [𝑐𝑜𝑠 (𝑅�̃�
1
𝜃𝑚) ],     𝑳𝑘

1 = diag [𝑠𝑖𝑛 (𝑅�̃�
1
𝜃𝑚) ], 

    𝒖𝑘
1 = [

𝑫𝑇𝑫

𝜆
+ (𝑪𝑘

1)𝑇𝑪𝑘
1]
−1

(𝑪𝑘
1)𝑇𝐳,    𝒗𝑘

1 = [
𝑫𝑇𝑫

𝜆
+ (𝑳𝑘

1)𝑇𝑳𝑘
1]
−1

(𝑳𝑘
1)𝑇𝐳, 

    𝑠𝑘(𝜃)
1 = 𝑪𝑘

1𝒖𝑘
1 + 𝑳𝑘

1𝒗𝑘
1 ; 

3: While 
‖𝑠𝑘(𝜃)

𝑞+1 − 𝑠𝑘(𝜃)
𝑞‖2

2

‖𝑠𝑘(𝜃)𝑞‖2
2⁄ >  𝜀, do 

4: Iteration count 𝑞 = 𝑞 + 1; 

5: 

{
 
 
 

 
 
 𝒖𝑘

𝑞 = [
𝑫𝑇𝑫

𝜆
+ (𝑪𝑘

𝑞−1)
𝑇
𝑪𝑘
𝑞−1]

−1

(𝑪𝑘
𝑞−1)

𝑇
(𝐳 − 𝑳𝑘

𝑞−1𝒗𝑘
𝑞−1)

𝒗𝑘
𝑞 = [

𝑫𝑇𝑫

𝜆
+ (𝑳𝑘

𝑞−1)
𝑇
𝑳𝑘
𝑞−1]

−1

(𝑳𝑘
𝑞−1)

𝑇
(𝐳 − 𝑪𝑘

𝑞−1𝒖𝑘
𝑞−1)

∆𝑹𝑘
𝑞 =

[𝒗𝑘
𝑞 (
𝑑𝒖𝑘

𝑞

𝑑𝜃
⁄ ) − 𝒖𝑘

𝑞 (
𝑑𝒗𝑘

𝑞

𝑑𝜃
⁄ )]

[(𝒖𝑘
𝑞)
2
+ (𝒗𝑘

𝑞)
2
]

⁄

; 

6: 𝑅�̃�
𝑞
= 𝑅�̃�

𝑞−1
+ (𝑰 + 𝑫

𝑇𝑫
𝜂⁄ )

−1

∆𝑹𝑘
𝑞
;    

7: 𝑪𝑘
𝑞 = diag[𝑐𝑜𝑠(𝑅�̃�

𝑞
𝜃𝑚) ],     𝑳𝑘

𝑞 = diag[𝑠𝑖𝑛(𝑅�̃�
𝑞
𝜃𝑚) ],    𝑠𝑘(𝜃)

𝑞 = 𝑪𝑘
𝑞𝒖𝑘

𝑞 + 𝑳𝑘
𝑞𝒗𝑘

𝑞
; 

8: End while; 

9: Output the the 𝑘𝑡ℎ order component 𝑠𝑘(𝜃)=𝑠𝑘(𝜃)
𝑞 and its order 𝑅𝑘 = 𝑅�̃�

𝑞
, and the 

resulting residual signal 𝒛 − 𝑠𝑘(𝜃). 



87 
 
 

3.2.2.4 Envelope analysis of the crack induced impulses 

For the envelope analysis of the CII, two kinds of envelopes of the CII are calculated, i.e., the 

upper envelope of the CII and the peak envelope of the CII. The upper envelope of the CII is called 

the CII Envelope (CIIEnv), while the peak envelope of the CII is the AM effect of the CII (CIIAM) 

since it is induced by time-varying operating conditions. For the CII obtained under variable load 

and constant speed conditions, which is denoted as 𝑠(𝑡) shown in Eq. (3.18), its Hilbert Transform 

is expressed in Eq. (3.28). 

HT(𝑠(𝑡)) = ∑ 𝑎𝑖 sin(2𝜋𝑓𝑖𝑡 + 𝑏𝑖)
𝐼
𝑖=1                                           (3.28) 

Therefore, the corresponding analytical signal of 𝑠(𝑡) is expressed as [47] 

𝑑(𝑡) = 𝑠(𝑡) + 𝑗HT(𝑠(𝑡)) = 𝐴𝑑(𝑡)exp(𝑗Ψ(𝑡))                                 (3.29) 

where 𝐴𝑑(𝑡) is the upper envelope of the CII, which is calculated using Eq. (3.30).  

𝐴𝑑(𝑡) = √(𝑠(𝑡))
2
+ (HT(𝑠(𝑡)))2                                             (3.30) 

Therefore, 𝐴𝑑(𝑡)  is the CII Envelope, i.e., CIIEnv, under variable load and constant speed 

conditions. Based on 𝐴𝑑(𝑡), the local maxima of the CIIEnv can be identified. Afterwards, by 

joining all the identified local maxima of the CIIEnv using the cubic spline interpolation, the peak 

envelope of the CII is obtained. The obtained peak envelope is further smoothed via the moving 

median filtering, and the smoothed peak envelope is regarded as the AM of the CII, i.e., CIIAM. 

For the constant load and variable speed conditions, by implementing the above operations to the 

resampled CII obtained in the angle domain, the corresponding CIIEnv and CIIAM can also be 

obtained. Besides, the relationship between the CIIAM and the time-varying operating condition 

is further studied in the next subsection.  

3.2.3 Development of a new condition indicator 

As reviewed in Section 3.1, in Refs. [21,24,125,127,128], only some conventional CIs were 

adopted for tooth crack diagnosis, failing to propose novel CIs to track tooth crack severity 

progression under time-varying operating conditions. This is attributed to the fact that the relations 

among tooth crack severity progression, time-varying operating conditions, and the operating 

condition variation-induced AM on the gearbox vibration signal were not identified. Some 
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researchers have tried to study how time-varying operating conditions affect vibration signals of 

gearboxes with tooth cracks, but not explicitly. Bartelmus et al. [129] studied the relation between 

the envelope of the first gear meshing harmonic component and the variable load, and found that 

the envelope was proportional to the load variation. Besides, they observed that gearboxes in good 

condition and bad condition had different load susceptibilities, based on which fault detection was 

achieved. However, no explicit representation of the relation between the load susceptibility and 

gearbox health condition was presented, and no new CIs were proposed. Later, Bartelmus et al. 

extended the idea of load susceptibility in Ref. [129] and discovered a linear dependence between 

a diagnostic feature, i.e. the sum of amplitudes of 10 meshing components, and the operation 

condition variations [130]. The slope of the linear dependence was used as a new CI to detect 

gearbox fault, but its effectiveness for tracking tooth crack growth was not demonstrated. 

In this section, a novel CI is proposed using the CIIAM obtained in Subsection 3.2.2, which 

contains information on tooth crack severity progression. Inspired by the studies reported in Refs. 

[129,130], we propose a hypothesis that there is a linear dependence of CIIAM on the time-varying 

operating condition, which is mathematically expressed as 

𝑌 = 𝐴 ∙ 𝑋 + 𝐵                                                          (3.31) 

where 𝑌 denotes the CIIAM; 𝑋 represents the time-varying operating condition, which refers to 

either a variable load or a variable speed; 𝐴 and 𝐵 are the model parameters. 

Because the linear model shown in Eq. (3.31) represents the linear relation between the CIIAM 

and the time-varying operating condition, and the CIIAM includes the information on tooth crack 

severity progression, it is expected that the model parameter 𝐴 (slope of the linear relation) is 

sensitive to tooth crack severity progression while insensitive to operating condition variations. 

Therefore, the model parameter 𝐴  is proposed as a novel CI to track tooth crack severity 

progression under time-varying operating conditions, and it is named Ratio of CIIAM to Operating 

Condition Variation (RCOCV). The correctness of the hypothesis shown in Eq. (3.31) and the 

effectiveness of RCOCV in terms of tracking tooth crack severity progression under time-varying 

operating conditions will be first verified using simulated gearbox vibration signals in Section 3.3 

and be further validated using experimental gearbox vibration datasets in Section 3.4. 
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3.2.4 Performance comparison metrics 

Performance comparisons are made between the RCOCV and the RMS of the CII in terms of 

tracking tooth crack severity progression under time-varying operating conditions. The reason why 

the RMS is selected for performance comparison is that it has shown its effectiveness for tooth 

crack diagnosis under both constant and time-varying operating conditions [24,33]. To make 

quantitative performance comparisons, two aspects are measured. The first aspect is the sensitivity 

of a CI to tooth crack severity progression and the second one is the insensitivity of a CI to 

operating condition variations. The sensitivity of a CI to tooth crack severity progression is 

measured with the AIR, which has been introduced in Subsection 2.3.2 and can be calculated using 

Eq. (2.36). The bigger the AIR value is, the more sensitive a CI is to tooth crack severity 

progression. The insensitivity of a CI to operating condition variations is measured by the Frechet 

Distance (FD) [131,132], which is calculated using Eq. (3.32). 

FD(𝑃, 𝑄) = 𝑚𝑖𝑛{𝑚𝑎𝑥(𝑑(𝑃, 𝑄)) }                                             (3.32) 

where 𝑃 is the CI curve obtained under an operating condition, 𝑄 is the CI curve obtained under 

another operating condition, 𝑑(𝑃, 𝑄) is the distance operator. 

FD is a metric to measure the similarity between two curves. When two curves are the same, FD 

is 0. When the dissimilarity between two curves becomes larger, FD value gets bigger. If a CI is 

completely insensitive to operating condition variations, the curves of this CI with regard to crack 

severity level under different operating conditions should be the same, and the FD values are 0. 

On the contrary, if a CI is sensitive to operating condition variations, the resulting FD are not 0. 

The smaller value the FD is, the more insensitive a CI is to operating condition variations. To sum 

up, if a CI is sensitive to tooth crack severity progression while insensitive to time-varying 

operating conditions, it will result in a high AIR value and a small FD value.  

3.3 Simulation analysis 

3.3.1 Generation of simulated gearbox vibration signals 

To simplify dynamic simulation, some assumptions are made [26]: (1) the bearing radial 

stiffnesses 𝑘𝑥1 , 𝑘𝑥2 , 𝑘𝑦1 , and 𝑘𝑦2  are equal to a constant 𝑘𝑟 ; (2) the bearing radial damping 
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coefficients 𝑐𝑥1, 𝑐𝑥2, 𝑐𝑦1, and 𝑐𝑦2 are equal to a constant 𝑐𝑟; (3) the coupling torsional stiffnesses 

𝑘𝑝 and 𝑘𝑔 are equal to a constant 𝑘𝑐; (4) the coupling damping coefficients 𝑐𝑝 and 𝑐𝑔 are equal to 

a constant 𝑐𝑐. Main parameters of the one-stage fixed-axis spur gearbox system are tabulated in 

Table 3.1. The gear tooth mesh stiffness is calculated using the potential energy method described 

in Section 3.2.1.2. Afterwards, the gear tooth mesh stiffness and time-varying operating conditions 

are substituted into the gearbox system motion equation shown in Eq. (3.1), and gearbox vibration 

responses are calculated using the Newmark integration algorithm. Because one tooth crack is 

seeded on the pinion, the y-direction acceleration signal of the pinion is used as the simulated 

gearbox vibration signal. To mimic the environmental noise, a white Gaussian noise with SNR of 

10 dB is added into simulated gearbox vibration signals. 

Table 3.1: Main parameters of the gearbox transmission system [26] 

Parameter value 

Gear type standard involute spur gear 

Modulus of elasticity  𝐸 = 2.068 × 1011 Pa 

Poisson’s ratio 𝜐 = 0.3 

Number of teeth  pinion 𝑁𝑝 = 19; gear 𝑁𝑔 = 48 

Pressure angle 𝛼0 = 20
° 

Diametral pitch  𝑃 = 8 𝑖𝑛𝑐ℎ−1 

Base radius of the pinion  𝑅𝑏1 = 0.02834 𝑚 

Base radius of the gear  𝑅𝑏2 = 0.07160 𝑚 

Width of teeth  𝐿 = 0.016 𝑚 

Mass of the pinion  𝑚1 = 0.96 𝑘𝑔 

Mass of the gear  𝑚2 = 2.88 𝑘𝑔 

Mass moment of inertia of the pinion 𝐼1 = 4.3659 × 10
−4 𝑘𝑔𝑚2 

Mass moment of inertia of the gear 𝐼2 = 8.3602 × 10
−4 𝑘𝑔𝑚2 

Mass moment of inertia of the drive motor 𝐼𝑚 = 0.0021 𝑘𝑔𝑚2 

Mass moment of inertia of the load machine 𝐼𝑏 = 0.0105 𝑘𝑔𝑚
2 

Torsional stiffness of the coupling  𝑘𝑐 = 4.4 × 10
4 𝑁𝑚/𝑟𝑎𝑑 

Radial stiffness of the bearing  𝑘𝑟 = 6.56 × 10
7 𝑁/𝑚 

Damping coefficient of the coupling  𝑐𝑐 = 5.0 × 10
5 𝑁𝑚𝑠/𝑟𝑎𝑑 

Damping coefficient of the bearing 𝑐𝑟 = 1.8 × 10
5 𝑁𝑠/𝑚 

Scale constant 𝜇 = 3.99 × 10−6𝑠   
 

3.3.2 Simulated signal analysis for the variable load and constant speed condition 

For the variable load and constant speed condition, four variable loads (torque 𝑀2) are exerted on 

the load machine of the gearbox transmission system shown in Fig. 2.2, which are the sinusoidal 

(sin), run-up (run), coast-down (coa), and harmonic (har) load profiles. The formulae of the four 
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load profiles are shown in Eq. (3.33) and the profiles are plotted in Fig. 3.2. The driving motor 

speed is set to 𝑆𝑃𝐷 = 30 Hz, which is equal to the pinion rotational speed.  

{
 
 

 
 
  sin:  𝑀2 = 30 + 24 𝑠𝑖𝑛(2𝜋 ∙ 8 ∙ 𝑡)   

  run: 𝑀2 = 10 + 70𝑡

  coa: 𝑀2 = 60 − 100𝑡

  har: 𝑀2 = 30 + 12 𝑠𝑖𝑛(2𝜋 ∙ 8 ∙ 𝑡) + 12 𝑠𝑖𝑛(2𝜋 ∙ 4 ∙ 𝑡)  

                         (3.33) 

  

(a) sinusoidal (sin) (c) coast-down (coa) 

  

(b) run-up (run) (d) harmonic (har) 

Fig. 3.2: Four profiles for the load machine torque 𝑀2  

The dynamic simulation results for the case that the pinion tooth crack depth is 6 mm under the 

sinusoidal load profile and constant speed condition are used for illustration. The gear tooth mesh 

stiffness is shown in Fig. 3.3. It is seen that the frequency spectrum is dominated by the pinion 

rotational speed (30 Hz) and its multiples and gear mesh harmonics (570 Hz and its multiples). No 

frequency smearing phenomenon is observed, and no sidebands are found around either pinion 

rotational speed and its multiples or gear mesh harmonics. Therefore, it is concluded that variable 

load and constant speed conditions do not induce any AM or FM into the gear tooth mesh stiffness. 

The simulated gearbox vibration signal is shown in Fig. 3.4. From Fig. 3.4(a), it is seen that there 

is an AM in the signal. The frequency spectrum is dominated by the gear mesh harmonics, and no 

frequency smearing phenomenon is observed, which indicates that there is no FM effect in the 

signal. There are several clusters of harmonics located in the frequency range [2280, 4560] Hz, 
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which are caused by the CII. By checking the zoomed-in view of the frequency spectrum shown 

in Fig. 3.4(b), it is found that there are sidebands around the harmonics, and the interval between 

a harmonic and its nearest sideband is 8 Hz. For example, for the harmonic 3420 Hz, there are two 

nearest sidebands around it, i.e., 3412 Hz and 3428 Hz, and both intervals are 8 Hz (3420-3412=8 

Hz, 3428-3420=8 Hz). 8 Hz is equal to the frequency of the sinusoidal load profile shown in Eq. 

(3.33), which means that the sidebands around the harmonics are induced by the AM effect 

resulting from the variable load. Therefore, the variable load and constant speed condition only 

induces an AM into the simulated gearbox vibration signal. The reason why a variable load induces 

an AM effect is due to the load dependence of the tooth deflection effect and gearbox vibration 

amplitude is sensitive to the tooth loading, when the torque load varies, amplitude of gearbox 

vibration will vary in sympathy, thus resulting in an AM of gearbox vibration signals [78,81]. 

 

Fig. 3.3: The gear tooth mesh stiffness (crack depth 6mm, sinusoidal load profile and SPD=30Hz) 

 

(a) Time waveform and frequency spectrum of the simulated signal 
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(b) Zoomed-in view of the frequency spectrum of the simulated signal in [3200, 3600] Hz 

Fig. 3.4: The simulated signal (crack depth 6mm, sinusoidal load profile and SPD=30Hz)   

The gear meshing components are first removed from gearbox vibration signal using a comb notch 

filter, and the AHD method is conducted on the comb notch filtered signal with the parameters 𝜆, 

𝜂, and 𝜀 being set to 10−10, 10−11, and 10−8, respectively, to extract the CII. The obtained CII is 

shown in Fig. 3.5, from which it is seen there is no FM and the CII amplitude is modulated. The 

upper envelope of the CII, i.e., CIIEnv, is shown in Fig. 3.6. Frequency spectrum of CIIEnv is 

dominated by pinion shaft rotational speed (30 Hz) and its multiples, which are the characteristic 

frequencies for the pinion tooth crack. There is a spectral line at 8 Hz, which is the same as the 

frequency of the applied sinusoidal load. There are symmetric sidebands around 30 Hz and its 

multiples with an interval of 8 Hz, such as 30-22=8 Hz and 38-30=8 Hz. These observations 

indicate that the AM of the CII is induced by the sinusoidal load 𝑀2 shown in Fig. 3.2(a).  

 

Fig. 3.5: The CII and its frequency spectrum (crack depth 6mm, sinusoidal load profile and SPD=30Hz)   
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Fig. 3.6: CIIEnv and its frequency spectrum (crack depth 6mm, sinusoidal load profile and SPD=30Hz)   

The CIIAM is obtained and is shown in Fig. 3.7 alongside the CII and the sinusoidal load 𝑀2. As 

shown in Fig. 3.7(a), the CIIAM has a sinusoidal variation pattern. Comparing Fig. 3.7(b) to Fig. 

3.7(c), it is found that the frequency of the CIIAM is 8 Hz, which is equal to that of the load 𝑀2. 

This means that there exists a linear dependence of the CIIAM on 𝑀2 , which verifies the 

correctness of the hypothesis shown in Eq. (3.31). This observation reveals that the variable load 

induces an AM effect on the CII and the AM effect is linearly dependent on the variable load. The 

linear model shown in Eq. (3.31) is used to fit the linear relation between the CIIAM and the load 

𝑀2, and the fitting result is shown in Fig. 3.8. It is seen that the relation between the CIIAM and 

𝑀2  is well fitted and the fitting result is 𝐶𝐼𝐼𝐴𝑀 = 1.651𝑀2 + 3.028  (with 95% confidence 

bounds). The coefficient of determination is 𝑅2 = 0.9944, which indicates a high goodness of the 

linear fit. In this case, the proposed condition indicator RCOCV is equal to 1.651.  

 

(a) Waveforms of the CIIAM, sinusoidal load 𝑀2, and the CII 
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(b) Frequency spectrum of CIIAM (c) Frequency spectrum of sinusoidal load 𝑀2 

Fig. 3.7: The CIIAM, 𝑀2, and CII (crack depth 6mm, sinusoidal load profile and SPD=30Hz)   

 

Fig. 3.8: The linear fitting result for the CIIAM and the sinusoidal load 𝑀2    

After analyzing the simulated signals for all the tooth crack depths under the four variable load 

and constant speed conditions, RCOCV results are obtained. The results of RCOCV versus tooth 

crack depth are shown in Fig. 3.9. For comparison, the results of RMS of the CII versus tooth crack 

depth are shown in Fig. 3.10. In these two figures, the subscript “sin” means that the CI results are 

for the sinusoidal load profile, “run” the run-up profile, “coa” the coast-down profile, and “har” 

the harmonic profile. From Fig. 3.9, it is seen that the RCOCV is not only sensitive to tooth crack 

severity progression, but also insensitive to load variation. On the contrary, as shown in Fig. 3.10, 

the RMS of the CII is very sensitive to load changes due to the big spreads among the four curves.  
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Fig. 3.9: RCOCV versus tooth crack depth (variable load and constant speed condition)    

 

Fig. 3.10: RMS of the CII versus tooth crack depth (variable load and constant speed condition)    

To make quantitative performance comparison between RCOCV and RMS of the CII in terms of 

tracking tooth crack severity progression, the AIR and FD metrics in Section 3.2.4 are calculated. 

The AIR and FD results for the RCOCV are shown in Table 3.2 and Table 3.3, respectively, and 

those for the RMS of the CII are shown in Table 3.4 and Table 3.5, respectively. In Tables 3.2 and 

3.4: the suffix “_sin” denotes the sinusoidal load profile, “_run” run-up, “_coa” coast-down, and 

“_har” harmonic. In Tables 3.3 and 3.5: the suffix “_sr” denotes the F  between the CI curve for 

the sinusoidal load profile and that for the run-up profile, “_sc” sinusoidal and coast-down, “_sh” 

sinusoidal and harmonic, “_rc” run-up and coast-down, “_rh” run-up and harmonic, “_ch” coast-

down and harmonic.  
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Table 3.2: AIR results for the RCOCV (variable load and constant speed condition) 

RCOCV Average Increase Rate (AIR %) 

RCOCV_sin 129.82 

RCOCV_run 133.60 

RCOCV_coa 162.52 

RCOCV_har 145.45 

Average: 142.85 

 

Table 3.3: FD results for the RCOCV (variable load and constant speed condition) 

RCOCV Frechet Distance (FD) 

RCOCV_sr 0.1997 

 RCOCV_sc 0.3359 

RCOCV_sh 0.1036 

RCOCV_rc 0.2795 

RCOCV_rh 0.1084 

RCOCV_ch 0.2712 

Average: 0.2164 

 

Table 3.4: AIR results for the RMS of the CII (variable load and constant speed condition) 

RMS Average Increase Rate (AIR %) 

RMS_sin 50.24 

RMS_run 55.27 

RMS_coa 50.78 

RMS_har 52.06 

Average: 52.09 

 

Table 3.5: FD results for the RMS of the CII (variable load and constant speed condition) 

RMS Frechet Distance (FD) 

RMS_sr 2.8179 

RMS_sc 2.5911 

RMS_sh 0.8894 

RMS_rc 5.3771 

RMS_rh 1.9301 

RMS_ch 3.4574 

Average: 2.8438 

By comparing the AIR and FD results shown in Tables 3.2 through 3.5, two results are obtained: 

(1) Higher sensitivity of the RCOCV to tooth crack severity progression. Comparing Table 3.2 

and Table 3.4, it is seen that the RCOCV has a higher average AIR value than the RMS 

(142.85%>52.09%), which indicates that the RCOCV is more sensitive to tooth crack severity 
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progression than the RMS; (2) Higher insensitivity of the RCOCV to load variation. Comparing 

Table 3.3 and Table 3.5, it is seen that the RCOCV has a much smaller average FD value than the 

RMS (0.2164<2.8438), which means that the RCOCV is much more insensitive to load variations 

than the RMS. Therefore, it is concluded that the RCOCV is not only sensitive to tooth crack 

severity progression but also insensitive to load variations, which demonstrates its effectiveness 

of tracking tooth crack severity progression under variable load and constant speed conditions. 

3.3.3 Simulated signal analysis for the constant load and variable speed condition 

For the constant load and variable speed condition, four variable speeds of the driving motor are 

considered, including the sinusoidal (sin), run-up (run), coast-down (coa), and harmonic (har) 

speed profiles. Their formulae are shown in Eq. (3.34) and they are plotted in Fig. 3.11. The pinion 

rotational speed is equal to the driving motor speed. The load machine torque is set to 𝑀2 = 48 Nm.  

{
 
 

 
 
  sin: 𝑆𝑃𝐷 = 20 + 15 𝑠𝑖𝑛(2𝜋 ∙ 5 ∙ 𝑡)   

  run: 𝑆𝑃𝐷 = 10 + 80𝑡

  coa: 𝑆𝑃𝐷 = 85 − 65𝑡

  har: 𝑆𝑃𝐷 = 20 + 3 𝑠𝑖𝑛(2𝜋 ∙ 10 ∙ 𝑡) + 12 𝑠𝑖𝑛(2𝜋 ∙ 5 ∙ 𝑡)  

                        (3.34) 

  

(a) sinusoidal (sin) (c) coast-down (coa) 

  

(b) run-up (run) (d) harmonic (har) 

Fig. 3.11: Four profiles for the driving motor speed 𝑆𝑃𝐷  
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The dynamic simulation results for the case that the pinion tooth crack depth is 6 mm under the 

constant load and sinusoidal speed profile are used for illustration. Gear tooth mesh stiffness is 

shown in Fig. 3.12. It is seen that there exists frequency smearing in the frequency spectrum, 

indicating that the variable speed induces an FM effect in the mesh stiffness. The spectrogram of 

the mesh stiffness is shown in Fig. 3.13, from which it is seen that there are sinusoidal frequency 

ridges. The resampled mesh stiffness is shown in Fig. 3.14. It is seen that the order spectrum is 

dominated by the pinion rotational order (1) and its multiples and gear mesh orders (19 and its 

multiples). Therefore, it is concluded that the constant load and variable speed condition only 

induces an FM effect into the gear tooth mesh stiffness. 

 
Fig. 3.12: The gear tooth mesh stiffness (crack depth 6mm, 𝑀2 = 48Nm and sinusoidal speed profile)   

 
Fig. 3.13: Spectrogram of mesh stiffness (crack depth 6mm, 𝑀2 = 48Nm and sinusoidal speed profile) 
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Fig. 3.14: The resampled mesh stiffness (crack depth 6mm, 𝑀2 = 48Nm and sinusoidal speed profile) 

The simulated gearbox vibration signal is shown in Fig. 3.15, and it is seen that the signal 

amplitude is modulated and there exists an FM in the signal. As shown in Fig. 3.16, there are 

sinusoidal ridges in the spectrogram. The resampled signal is shown in Fig. 3.17. From Fig. 3.17(a), 

it is seen that there are gear mesh orders (19 and its multiples) and several clusters of orders located 

in the order range [57, 171]. By checking the zoomed-in view of the order spectrum shown in Fig. 

3.17(b), it is seen that there are sidebands around the orders and the interval between an order and 

its nearest sideband is 0.25 order. For example, there are two nearest sidebands around the order 

95, i.e., 94.75 and 95.25, and both intervals are 0.25 (95-94.75=0.25, 95.25-95=0.25). The interval 

0.25 is equal to the ratio of the frequency of the sinusoidal speed profile shown in Eq. (3.34) to the 

mean value of the sinusoidal speed, i.e., 5/20=0.25, indicating that the sidebands are resulting from 

the speed variation-induced AM. Therefore, the constant load and variable speed condition induces 

both AM and FM into the simulated gearbox vibration signal. Under CLVS conditions, the reasons 

why a variable speed induces AM and FM effects into gearbox vibration signals include: (a) when 

the gearbox rotational speed varies over a reasonable range, the frequency components may pass 

through resonances, or experience variation in the transfer function [107]. Therefore, not only do 

the response signals vary in the frequency (FM), but also vary in amplitude (AM); (b) a variable 

speed causes variations of gearbox system power intake, which induces an AM into gearbox 

vibration signals as well [102]. 
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Fig. 3.15: The simulated signal (crack depth 6mm, 𝑀2 = 48Nm and sinusoidal speed profile)   

 

Fig. 3.16: Spectrogram of simulated signal (crack depth 6mm, 𝑀2 = 48Nm and sinusoidal speed profile) 

 

(a) Angle domain waveform and order spectrum of the resampled simulated signal  
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(b) The zoomed-in view of the order spectrum of the resampled simulated signal  

Fig. 3.17: The resampled simulated signal (crack depth 6mm, 𝑀2 = 48Nm and sinusoidal speed profile) 

The gear meshing orders are removed from the resampled signal shown in Fig. 3.17(a) with a comb 

notch filter. Afterwards, the modified AHD method shown in Algorithm 1 is conducted on the 

comb notch filtered signal with the parameters 𝜆, 𝜂, and 𝜀 being set to 10−10, 10−11, and 10−8, 

respectively, to extract the CII. The obtained CII is shown in Fig. 3.18, from which it is seen that 

the CII amplitude is modulated. The CIIEnv is calculated and is shown in Fig. 3.19 together with 

its order spectrum. As shown in Fig. 3.19, the order spectrum of CIIEnv is dominated by the pinion 

rotational order (1) and its multiples, which are the crack characteristic orders. There is a spectral 

line at 0.25 order, which is the order of the sinusoidal speed. There are sidebands around the tooth 

crack characteristic orders with an interval of 0.25 order, such as 1-0.75=0.25 and 1.25-1=0.25. 

These observations indicate that the AM effect of the CII is induced by the sinusoidal speed 𝑆𝑃𝐷 

shown in Fig. 3.11(a).   

 

Fig. 3.18: CII and its order spectrum (crack depth 6mm, 𝑀2 = 48Nm and sinusoidal speed profile) 
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Fig. 3.19: CIIEnv and its order spectrum (crack depth 6mm, 𝑀2 = 48Nm and sinusoidal speed profile) 

The CIIAM is calculated and is shown in Fig. 3.20 alongside the CII and the sinusoidal speed 𝑆𝑃𝐷. 

From Fig. 3.20(a), it is seen that the CIIAM has a quasi-sinusoidal pattern. Comparing Fig. 3.20(b) 

to Fig. 3.20(c), it is found that frequency of the CIIAM is 5Hz, which is equal to that of the 𝑆𝑃𝐷. 

This means that there exists a linear dependence of the CIIAM on the speed 𝑆𝑃𝐷, which verifies 

the correctness of the hypothesis presented in Eq. (3.31). This observation reveals that the variable 

speed induces an AM effect on the CII and the AM effect is linearly dependent on the variable 

speed. The linear model shown in Eq. (3.31) is adopted to fit the linear relation between the CIIAM 

and the 𝑆𝑃𝐷, and the fitting result is shown in Fig. 3.21. The ellipse pattern is caused by the big 

phase difference between the the CIIAM and the 𝑆𝑃𝐷. As shown in Fig. 3.21, the relation between 

the CIIAM and the sinusoidal speed 𝑆𝑃𝐷  is properly fitted and the fitting result is 𝐶𝐼𝐼𝐴𝑀 =

1.792𝑆𝑃𝐷 + 47.87 (with 95% confidence bounds). In this case, the RCOCV is equal to 1.792.  

 

(a) Waveforms of the CIIAM, sinusoidal speed 𝑆𝑃𝐷, and the CII 
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(b) Frequency spectrum of the CIIAM (c) Frequency spectrum of the 𝑆𝑃𝐷 

Fig. 3.20: The CIIAM, 𝑆𝑃𝐷, and CII (crack depth 6mm, 𝑀2 = 48Nm and sinusoidal speed profile) 

 

Fig. 3.21: The linear fitting result for the CIIAM and the sinusoidal speed 𝑆𝑃𝐷    

After analyzing simulated gearbox vibration signals for all tooth crack depths under the four 

considered constant load and variable speed conditions, the RCOCV results are obtained, which 

are plotted versus tooth crack depth in Fig. 3.22. RMS of the CII versus tooth crack depth are 

shown in Fig. 3.23. In these two figures, the subscript “sin” means that the CI results are obtained 

for the sinusoidal speed profile, “run” run-up, “coa” coast-down, and “har” harmonic. To make 

quantitative performance comparison between RCOCV and RMS of the CII, AIR and FD metrics 

are calculated. AIR and FD results for RCOCV are tabulated in Table 3.6 and Table 3.7, 

respectively, and those for RMS of the CII are shown in Table 3.8 and Table 3.9, respectively. 

Comparing Table 3.6 and Table 3.8, it is seen that the RCOCV has a higher average AIR value 

than the RMS of the CII (235.89%>42.22%), which means that RCOCV is more sensitive to tooth 
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crack severity progression than RMS of the CII. Comparing Table 3.7 and Table 3.9, it is seen that 

the RCOCV has a much smaller average FD value than the RMS (0.2788<11.7285), which means 

that RCOCV is more insensitive to speed variations than RMS of the CII. Therefore, the RCOCV 

is not only sensitive to tooth crack severity progression but also insensitive to speed variations, 

which demonstrates its effectiveness of tracking tooth crack severity progression under constant 

load and variable speed conditions. 

 

Fig. 3.22: RCOCV versus tooth crack depth (constant load and variable speed condition)    

 

Fig. 3.23: RMS of the CII versus tooth crack depth (constant load and variable speed condition)    

Table 3.6: AIR results for the RCOCV (constant load and variable speed condition) 

RCOCV Average Increase Rate (AIR %) 

RCOCV_sin 232.22 

RCOCV_run 188.99 

RCOCV_coa 267.36 

RCOCV_har 254.99 

Average: 235.89 
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Table 3.7: FD results for the RCOCV (constant load and variable speed condition) 

RCOCV Frechet Distance (FD) 

RCOCV_sr 0.2125 

RCOCV_sc 0.3084 

RCOCV_sh 0.4571 

RCOCV_rc 0.1795 

RCOCV_rh 0.2851 

RCOCV_ch 0.2300 

Average: 0.2788 

 

Table 3.8: AIR results for the RMS of the CII (constant load and variable speed condition) 

RMS Average Increase Rate (AIR %) 

RMS_sin 37.33 

RMS_run 56.48 

RMS_coa 49.54 

RMS_har 25.51 

Average: 42.22 

 

Table 3.9: FD results for the RMS of the CII (constant load and variable speed condition) 

RMS Frechet Distance (FD) 

RMS_sr 15.5965 

RMS_sc 12.0858 

RMS_sh 4.3699 

RMS_rc 4.3008 

RMS_rh 18.8492 

RMS_ch 15.1688 

Average: 11.7285 

 

3.4 Experimental validation 

In this section, the identified linear dependence of the CIIAM on the variable load or variable speed, 

and the effectiveness of the proposed condition indicator RCOCV in terms of tracking tooth crack 

severity progression under time-varying operating conditions are further validated using the 

experimental gearbox vibration datasets.     
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3.4.1 Experiment setup 

The experimental gearbox vibration datasets were collected from a fixed-axis spur gearbox of the 

test rig shown in Fig. 2.12 in Section 2.5. The details of the experimental fixed-axis spur gearbox, 

the locations of the accelerometers, and the specifications of the pinion on which a tooth crack was 

seeded have been introduced in Subsection 2.5.1. The tooth crack propagation path of the target 

pinion has been illustrated in Fig. 2.13. In the experiment, 5 health conditions of the pinion 

corresponding to 5 tooth crack levels were considered, which are tabulated in Table 3.10. The 

tooth crack severity level is defined as the product of the crack length ratio 𝑤0/𝑤 and the crack 

depth ratio 𝑞0/(2𝑞), namely 𝑐𝑙 =
𝑤0

𝑤
×
𝑞0

2𝑞
× 100%, so the crack severity levels of the 5 cases are 

figured out as 2%, 8%, 18%, 32%, and 50%. The target pinions with 5 different tooth crack severity 

levels are shown in Fig. 3.24. 

Table 3.10: Five health conditions of the target pinion considered in the experiment 

Pinion health condition Tooth crack parameters Crack severity level (𝑐𝑙) 

Faulty 1 (F1) w0 = 0.2w; q0 = 0.2q; αc = 60° 2% 

Faulty 2 (F2) w0 = 0.4w; q0 = 0.4q; αc = 60° 8% 

Faulty 3 (F3) w0 = 0.6w; q0 = 0.6q; αc = 60° 18% 

Faulty 4 (F4) w0 = 0.8w; q0 = 0.8q; αc = 60° 32% 

Faulty 5 (F5) w0 = 1.0w; q0 = 1.0q; αc = 60° 50% 

 

 

Fig. 3.24: Five tooth crack severity levels of the target pinion (from left to right: Faulty 1 to Fault 5) 

In the experiment, the target fixed-axis spur gearbox was operating under two scenarios of time-

varying operating conditions: (1) variable load and constant speed condition, (2) constant load and 

variable speed condition, which were controlled using a variable frequency drive. For the variable 

load and constant speed condition, the drive motor speed was set to 20 Hz, and the target pinion 

rotational speed was 2.955 Hz. In this case, the gear mesh frequency of the input mesh pair (the 
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one with the cracked pinion) is GMFin = 53.19 Hz, and that of the output mesh pair is GMFout =

189.12 Hz. Two types of load (torque) profiles were applied to the load motor to generate the 

variable load conditions, namely the Load Profile I (LPI) and the Load Profile II (LPII), and the 

measured torque signals are shown in Fig. 3.25. For the constant load and variable speed condition, 

the torque applied to the load motor was set to 13% of the full torque, which generated a torque of 

120 Nm to the target pinion shaft. Two types of speed profiles were applied to the drive motor to 

generate the variable speed conditions, namely the Speed Profile I (SPI) and the Speed Profile II 

(SPII), and the measured speed signals are shown in Fig. 3.26.  

Acceleration signals of the target fixed-axis spur gearbox for the 5 pinion health conditions defined 

in Table 3.10 were collected with the four accelerometers shown in Fig. 2.12(c) under the two 

considered scenarios of time-varying operating conditions. The accelerometer model is PCB 352B 

and its sensitivity is 1000 mv/g. The sampling frequency was set to 25.6 kHz. For each pinion 

health condition under each load profile, 5 data samples were collected, each sample had a time 

length of 20 seconds. For each pinion health condition under each speed profile, 5 data samples 

were collected, each sample had a time length of 40 seconds. In this study, without loss of 

generality, the acceleration signals acquired by the accelerometer 3 shown in Fig. 2.12(c) are 

analyzed. 

  

(a) Load Profile I (LPI) (b) Load Profile II (LPII) 

Fig. 3.25:  Measured torque signals of the target pinion shaft for the LPI and LPII load profiles 
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(a) Speed Profile I (SPI) (b) Speed Profile II (SPII) 

Fig. 3.26:  Measured speed signals of the target pinion shaft for the SPI and SPII speed profiles 

3.4.2 Experimental signal analysis for the variable load and constant speed condition 

For this scenario, the vibration signal for the pinion health condition “Faulty 5” collected under 

the variable load (LPI) and constant speed condition is used as an example to show the analysis 

results. From Fig. 3.27, it is seen that the frequency spectrum is dominated by gear mesh harmonics 

of the two gear mesh pairs of the target gearbox, i.e., GMFin = 53.19 Hz, GMFout = 189.12 Hz, 

and their multiples, and there is no frequency smearing phenomenon. Besides, the signal amplitude 

is modulated, although the AM is not obvious due to the strong noise. Therefore, the variable load 

and constant speed condition only induces an AM into the gearbox vibration signal. 

The meshing components of the two mesh pairs are removed from the vibration signal using comb 

notch filters. Afterwards, the AHD method is conducted on the comb notch filtered signal to obtain 

the CII, and the obtained CII is shown in Fig. 3.28. As shown in the top plot of Fig. 3.28, the time 

interval between every two neighbouring pulses is about 0.34 s, such as 4.32-3.98=0.34 s, which 

is the reciprocal of the target pinion rotational speed, i.e., 0.34 s ≈ 1/2.955 Hz. Therefore, the CII 

result in a group of harmonics with a uniform interval of 2.955Hz in the frequency spectrum, such 

as 209.81 − 206.86 ≈ 2.955 Hz . There is no frequency smearing in the spectrum, indicating that 

there is no FM in the CII. The CII amplitude is modulated. Therefore, the variable load and 

constant speed condition only induces an AM into the CII.  The CIIEnv and its frequency spectrum 

are shown in Fig. 3.29. As shown in Fig. 3.29, the spectrum is dominated by the crack characteristic 

frequencies, i.e., the target pinion rotational speed (2.955 Hz) and its multiples. There are two 
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spikes at 0.05 Hz and 0.35 Hz, which equal the frequencies of LPI, i.e., the torque 𝑇𝑟𝑞 shown in 

Fig. 3.25(a). There are sidebands around the crack characteristic frequencies with an interval of 

0.05 Hz or 0.35 Hz, which means that the AM of the CII is induced by the variable torque 𝑇𝑟𝑞.   

 

Fig. 3.27: Vibration signal (health condition “Faulty 5”, variable load (LPI) and constant speed) 

 
Fig. 3.28: The obtained CII (health condition “Faulty 5”, variable load (LPI) and constant speed) 

 
Fig. 3.29: The CIIEnv (health condition “Faulty 5”, variable load (LPI) and constant speed) 
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The CIIAM is shown in Fig. 3.30 alongside CII and torque 𝑇𝑟𝑞. CIIAM and 𝑇𝑟𝑞 are scaled to make 

them on the same scale of CII, which is shown in Fig. 3.30(a). Comparing Fig. 3.30(b) to Fig. 

3.30(c), it is seen that two main frequencies of CIIAM are 0.05 Hz and 0.35 Hz, which are equal 

to those of 𝑇𝑟𝑞. This means that there is a linear dependence of CIIAM on 𝑇𝑟𝑞, which validates 

the correctness of the hypothesis shown in Eq. (3.31). This observation reveals that the variable 

load induces an AM on the CII, and the AM is linearly dependent on the variable load. A linear 

model is used to fit the linear relation between CIIAM and 𝑇𝑟𝑞, and the fitting result is shown in 

Fig. 3.31. The relation between CIIAM and 𝑇𝑟𝑞  is well fitted and the result is 𝐶𝐼𝐼𝐴𝑀 =

0.00016𝑇𝑟𝑞 + 0.0032 (with 95% confidence bounds). The coefficient of determination is 𝑅2 =

0.85, indicating a high goodness of the linear fit. In this case, the RCOCV is equal to 0.00016.  

 

(a) Waveforms of the CIIAM, the applied LPI torque 𝑇𝑟𝑞, and the CII 

  

(b) Frequency spectrum of the CIIAM (c) Frequency spectrum of the torque 𝑇𝑟𝑞 

Fig. 3.30: The CIIAM, 𝑇𝑟𝑞, and CII (health condition “Faulty 5”, variable load (LPI) and constant speed) 

                 

Time   s

    

     

 

    

   

    

M
ag
n
it
u
d
e 
 

     

   

   

      

Frequency   Hz

 

  

  

  

  

M
ag
n
it
u
d
e 
 

    

    



112 
 
 

 

Fig. 3.31: The linear fitting result for the CIIAM and the applied torque 𝑇𝑟𝑞    

After analyzing vibration signals for all tooth crack severity levels under the two considered 

variable load and constant speed conditions, the RCOCV results are obtained. For each pinion 

health condition under each load profile, 5 data samples were collected, so 5 results are obtained 

for the RCOCV for each tooth crack severity level under each load profile. The median value of 

the 5 results is used as the final value of the RCOCV. Likewise, the final value of RMS of the CII 

is also calculated for performance comparison. The results for RCOCV versus crack severity level 

are shown in Fig. 3.32 and those for RMS of the CII versus crack severity level are shown in Fig. 

3.33. In these two figures, the subscript “LPI” denotes the results are obtained for the torque LPI, 

“LPII” the torque LPII. As shown in Fig. 3.32, RCOCV is not only sensitive to tooth crack severity 

progression but also insensitive to load variation. On the contrary, as shown in Fig. 3.33, the RMS 

of the CII is not insensitive to load changes due to the big spread between the two curves.  

 

Fig. 3.32: RCOCV versus tooth crack severity level (variable load and constant speed condition)    
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Fig. 3.33: RMS of the CII versus tooth crack severity level (variable load and constant speed condition)    

To make quantitative performance comparison, AIR and FD results for RCOCV and RMS of the 

CII are calculated and tabulated in Table 3.11 and Table 3.12, in which suffix “_LPI” denotes the 

LPI load profile, “_LPII” the LPII load profile. By comparing the AIR and FD values shown in 

Table 3.11 and Table 3.12, two conclusions are made: (1) Higher sensitivity of RCOCV to tooth 

crack severity progression. From Table 3.11, it is seen that RCOCV has a higher average AIR 

value than the RMS (296.74%>171.49%), indicating that RCOCV is more sensitive to tooth crack 

severity progression than RMS; (2) Higher insensitivity of RCOCV to load variation. As shown in 

Table 3.12, the RCOCV has a much smaller average FD value than the RMS (0.000020<0.0061), 

which means that RCOCV is much more insensitive to the load variation than RMS.   

Table 3.11: AIR for the median values of RCOCV and RMS of the CII (variable load and constant speed) 

Condition indicator for a load profile Average Increase Rate (AIR %) 

RCOCV_LPI 370.78 

RCOCV_LPII 222.70 

Average for RCOCV 296.74 

RMS_LPI 193.24 

RMS_LPII 149.74 

Average for RMS 171.49 

Table 3.12: FD for the median values of RCOCV and RMS of the CII (variable load and constant speed) 

Condition indicator  Frechet Distance (FD) 

RCOCV 0.000020 

RMS 0.0061 
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3.4.3 Experimental signal analysis for the constant load and variable speed condition 

For this scenario, the vibration signal for the pinion health condition “Faulty 5” collected under 

the constant load and variable speed (SPI) condition is used as an example to show the analysis 

results. As shown in Fig. 3.34, the signal amplitude is modulated and there exists a frequency 

smearing effect in the frequency spectrum. Therefore, the constant load and variable speed 

condition induces both AM and FM into gearbox vibration signals. The signal spectrogram is 

shown in Fig. 3.35, from which it is seen that there are ridges with variation patterns similar to that 

of the SPI shown in Fig. 3.26(a). The vibration signal is resampled in the angle domain and the 

resampled result is shown in Fig. 3.36, from which it is seen that the order spectrum is dominated 

by the mesh orders of the input gear mesh pair (order 18 and its multiples) and the output gear 

mesh pair (order 64 and its multiples).   

 

Fig. 3.34: Vibration signal (health condition “Faulty 5”, constant load and variable speed (SPI)) 

 

Fig. 3.35: Signal spectrogram (health condition “Faulty 5”, constant load and variable speed (SPI)) 
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Fig. 3.36: Resampled signal (health condition “Faulty 5”, constant load and variable speed (SPI)). 

Before extracting the CII, the mesh orders of the two gear mesh pairs are first removed from the 

resampled vibration signal shown in Fig. 3.36 using comb notch filters. Afterwards, the modified 

AHD method shown in Algorithm 1 is conducted on the comb notch filtered signal to obtain the 

CII, and the obtained CII is shown in Fig. 3.37. As shown in the top plot of Fig. 3.37, the angle 

interval between every two neighbouring pulses is 6.28 rad, such as 140.1-133.82=6.28 rad and 

485.58-479.3=6.28 rad, which is the angular displacement of the target pinion in one revolution. 

This means that the pulses are induced by the pinion tooth crack. The CII result in a group of orders 

with a uniform interval of 1 order in the order spectrum, which is shown in the bottom plot of Fig. 

3.37. Besides, the CII amplitude is modulated. Therefore, the constant load and variable speed 

condition induces both AM and FM into the CII.  

 

Fig. 3.37: The obtained CII (health condition “Faulty 5”, constant load and variable speed (SPI)) 
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The CIIEnv is shown in Fig. 3.38 alongside its order spectrum. As shown in the bottom plot of Fig. 

3.38(a), the order spectrum is dominated by the pinion shaft rotational order (order 1) and its 

multiples, which are the tooth crack characteristic orders. There are two spikes at 0.02 order and 

0.069 order, which are the equivalent orders of the variable speed SPI, i.e., the 𝑆𝑝𝑑 shown in Fig. 

3.26(a), i.e., 0.05/2.48=0.02 order and 0.17/2.48=0.069 order (0.05 Hz and 0.17 Hz are the 

frequencies of the variable speed 𝑆𝑝𝑑, 2.48 Hz is the mean value of the variable speed 𝑆𝑝𝑑). 

Besides, as shown in Fig. 3.38(b), there are sidebands around the tooth crack characteristic orders 

with intervals of 0.02 order or 0.069 order, which means that the AM of the CII is induced by the 

variable speed 𝑆𝑝𝑑. 

 

(a) The CII envelope and its order spectrum 

 

(b) The zoomed-in view of the CII envelope order spectrum 

Fig. 3.38: The CIIEnv (health condition “Faulty 5”, constant load and variable speed (SPI)) 
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The CIIAM is shown in Fig. 3.39 together with CII and speed 𝑆𝑝𝑑. Because CIIAM, 𝑆𝑝𝑑, and CII 

have different magnitudes, CIIAM and 𝑆𝑝𝑑 are scaled to make them on the same scale of CII. 

Comparing Fig. 3.39(b) to Fig. 3.39(c), it is found that two main frequencies of CIIAM are 0.05 

Hz and 0.17 Hz, which are equal to those of 𝑆𝑝𝑑. This means that there exists a linear dependence 

of the CIIAM on the 𝑆𝑝𝑑, which validates the correctness of the hypothesis shown in Eq. (3.31). 

This observation reveals that the variable speed induces an AM on the CII and the AM is linearly 

dependent on the variable speed. A linear model is used to fit the relation between the CIIAM and 

𝑆𝑝𝑑, and the fitting result is shown in Fig. 3.40, from which is seen that the relation between the 

CIIAM and the 𝑆𝑝𝑑 is well fitted and the fitting result is 𝐶𝐼𝐼𝐴𝑀 = 0.024𝑆𝑝𝑑 − 0.031 (with 95% 

confidence bounds). The coefficient of determination is 𝑅2 = 0.96 , which indicates a high 

goodness of the linear fit. In this case, the proposed condition indicator RCOCV is equal to 0.024.  

 

(a) Waveforms of the CIIAM, speed 𝑆𝑝𝑑, and the CII 

  

(b) Frequency spectrum of the CIIAM (c) Frequency spectrum of the speed 𝑆𝑝𝑑 

Fig. 3.39: The CIIAM, 𝑆𝑝𝑑, and CII (health condition “Faulty 5”, constant load and variable speed (SPI)) 
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Fig. 3.40: The linear fitting result for the CIIAM and the variable speed 𝑆𝑝𝑑    

After analyzing the vibration signals for all the considered tooth crack severity levels under the 

two constant load and variable speed conditions, the RCOCV results are obtained. For each pinion 

health condition under each speed profile, 5 data samples were collected, so 5 results are obtained 

for the RCOCV for each tooth crack severity level under each speed profile. The median value of 

the 5 results is used as the final value of the RCOCV. Likewise, the final value of the RMS of the 

CII is also calculated for performance comparison. The results for the RCOCV versus tooth crack 

severity level are shown in Fig. 3.41 and those for the RMS of the CII versus tooth crack severity 

level are shown in Fig. 3.42. In these two figures, the subscript “SPI” means that the results are 

obtained for the speed SPI, “SPII” the speed SPII. 

 

Fig. 3.41: RCOCV versus tooth crack severity level (constant load and variable speed condition)    
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Fig. 3.42: RMS of the CII versus tooth crack severity level (constant load and variable speed condition)    

To make quantitative performance comparison, AIR and FD results for RCOCV and RMS of the 

CII are calculated and tabulated in Table 3.13 and Table 3.14, in which the suffix “_SPI” denotes 

the SPI speed profile, “_SPII” the SPII speed profile. Comparing the AIR and FD results shown in 

Table 3.13 and Table 3.14, two conclusions are made: (1) Higher sensitivity of RCOCV to tooth 

crack severity progression. From Table 3.13, it is seen that RCOCV has a higher average AIR 

value than the RMS of the CII (235.51%>209.69%), indicating that RCOCV is more sensitive to 

tooth crack severity progression than RMS; (2) Higher insensitivity of RCOCV to speed variation. 

From Table 3.14, it is seen that RCOCV has a smaller average FD value than RMS of the CII 

(0.0013<0.0077), which means that RCOCV is more insensitive to the speed variation than RMS. 

Table 3.13: AIR for the median values of RCOCV and RMS of the CII (constant load and variable speed) 

Condition indicator for a speed profile Average Increase Rate (AIR %) 

RCOCV_SPI 248.79 

RCOCV_SPII 222.22 

Average for RCOCV 235.51 

RMS_SPI 177.70 

RMS_SPII 241.67 

Average for RMS 209.69 

Table 3.14: FD for the median values of RCOCV and RMS of the CII (constant load and variable speed) 

Condition indicator  Frechet Distance (FD) 

RCOCV 0.0013 

RMS 0.0077 
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3.5 Discussion of the proposed condition indicator RCOCV 

The effectiveness of the RCOCV in terms of tracking tooth crack severity progression under time-

varying operating conditions has been demonstrated using simulated gearbox vibration signals in 

Section 3.3 and experimental gearbox vibration datasets in Section 3.4. In this section, the 

advantages, requirements, and limitations of RCOCV are discussed by qualitatively comparing to 

other conventional tooth crack diagnosis techniques. Besides, the way to use RCOCV for the 

diagnosis of gearboxes with unknown tooth crack levels is also briefly described. 

Many tooth crack diagnosis techniques have been reported in the literature, a large proportion of 

which are the CIs developed for crack diagnosis. Generally, CIs were developed using raw gearbox 

vibration signals or their pre-processed results such as those obtained using the TSA. Typical CIs 

which have been widely used for tooth crack diagnosis include RMS, Kurtosis, FM0 [82], FM4 

[83], NA4 [83,84], NB4 [85], and so on. Although these conventional CIs have been used for tooth 

crack diagnosis, they still have some drawbacks. Firstly, they were initially developed under 

constant load and constant speed conditions, therefore their performance on tooth crack diagnosis 

will deteriorate significantly if gearboxes work under time-varying operating conditions. Besides, 

they were not developed using the signal components which can well reflect tooth crack severity 

progression, so their sensitivities to tooth crack growth were not so good. 

On the contrary, as compared to the conventional tooth crack diagnosis techniques described above, 

the RCOCV performs better in terms of tracking tooth crack severity progression under time-

varying operating conditions due to its advantages. Advantages of the RCOCV include: (1) 

RCOCV is defined as the ratio of CIIAM to the operating condition variation and CIIAM is 

obtained from the CII which contain more valuable information on tooth crack, therefore RCOCV 

is more sensitive to tooth crack severity progression than the conventional CIs; (2) RCOCV is not 

only sensitive to tooth crack severity progression but also insensitive to operating condition 

variations since it keeps tooth crack information and removes the interferences of operating 

condition variations. The advantages of RCOCV have been demonstrated by its better performance 

than the RMS on tracking tooth crack severity progression under time-varying operating 

conditions, which has been illustrated by analyzing simulated gearbox vibration signals and 

experimental gearbox vibration datasets in Section 3.3 and Section 3.4, respectively. To guarantee 
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the good performance of the RCOCV, some requirements need to be met. To be specific, CIIAM 

needs to be calculated accurately if an accurate value of RCOCV is required. To this end, advanced 

signal processing methods are needed to pre-process gearbox vibration signals to extract the CII 

with a high SNR, through which the CIIAM can be obtained accurately. In the present study, the 

AHD method and its modified version and envelope analysis are used to meet these requirements. 

However, these requirements in turn result in one limitation of RCOCV, which is that if the CII 

cannot be well extracted from raw gearbox vibration signals and CIIAM cannot be accurately 

calculated using the extracted CII, the performance of RCOCV on tooth crack diagnosis under 

time-varying operating conditions may deteriorate to some degree. 

Besides, if the mapping relationship between RCOCV and gear tooth crack severity levels can be 

obtained by analyzing vibration signals of gearboxes with known tooth crack sizes using advanced 

data processing approaches such as neural networks, the obtained mapping relationship can be 

adopted to tell tooth crack level. To be specific, RCOCV is first calculated using the vibration 

signals of a gearbox with an unknown tooth crack level, through which the tooth crack level can 

be inferred together with the obtained mapping relationship. 

3.6 Conclusions 

This chapter proposes a new methodology to study the effects of time-varying operating conditions 

on vibration signals of gearboxes with tooth cracks comprehensively and explicitly. Firstly, a 

fixed-axis spur gearbox system with a tooth crack subject to time-varying operating conditions is 

modelled. Two scenarios of time-varying operating conditions of the gearbox system are 

considered, namely the variable load and constant speed condition, and the constant load and 

variable speed condition. The relation between the gear tooth mesh stiffness and time is derived, 

thus facilitating the evaluation of the mesh stiffness of a gear mesh pair considering tooth crack 

severity progression under time-varying operating conditions. By substituting the tooth mesh 

stiffness and the time-varying operating conditions into the gearbox system motion equation, 

gearbox vibration responses under the two considered scenarios of time-varying operating 

conditions are generated. A signal analysis procedure with its focus placed on the CII is proposed. 

The CII are extracted from gearbox vibration signals using the modified AHD method or its 

original counterpart. The findings obtained from signal analysis are summarized in the following. 
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(1) For the variable load and constant speed condition, it induces neither AM nor FM into the gear 

tooth mesh stiffness, and it only induces an AM into the gearbox vibration signal and the CII. 

There is a linear dependance of the AM of the CII on the variable load.  

(2) For the constant load and variable speed condition, it induces an FM into the gear tooth mesh 

stiffness, and it induces both AM and FM into the gearbox vibration signal and the CII. There is a 

linear dependance of the AM of the CII on the variable speed. 

The identified linear dependence of the AM of the CII on the time-varying operating condition, 

i.e., the variable load or the variable speed, can be well fitted using a linear model. The model 

parameter specifying the slope of the linear dependence is proposed as a novel CI, which is named 

RCOCV, to track gear tooth crack severity progression under time-varying operating conditions. 

The RCOCV is not only sensitive to tooth crack severity progression but also insensitive to 

operating condition variations. The correctness of the identified linear dependence and the 

effectiveness of RCOCV in terms of tracking tooth crack severity progression under time-varying 

operating conditions have been demonstrated using both simulated gearbox vibration signals and 

experimental gearbox vibration datasets. Besides, quantitative comparisons of performance on 

tracking tooth crack severity progression are made between the RCOCV and the RMS of the CII, 

and the AIR and FD are adopted as two comparison metrics. Comparative results show that the 

RCOCV outperforms the RMS of the CII with a higher AIR value and a smaller FD value, which 

demonstrates the superiority of the RCOCV in terms of tracking tooth crack severity progression 

under time-varying operating conditions. 

In this chapter, only two scenarios of time-varying operating conditions are considered, i.e., the 

variable load and constant speed condition, and the constant load and variable speed condition. In 

the future, tooth crack diagnosis under variable load and variable speed conditions will be 

conducted. 
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Chapter 4: Normalization of gearbox vibration signal for 

tooth crack diagnosis under variable speed conditions 

 

As revealed in Chapter 3, when gearboxes work under variable speed conditions, speed variations 

induce AM and FM into gearbox vibration signals, which may lead to incorrect results of tooth 

crack diagnosis if the speed variation-induced AM and FM are not removed. To overcome this 

problem, this chapter proposes a novel normalization method to remove the speed variation-

induced AM and FM without attenuating the tooth crack information, which benefits tracking tooth 

crack severity progression under variable speed conditions. The materials in this chapter are 

covered by the third research topic (Topic #3), which is introduced in Section 1.3. The organization 

of this chapter is as follows. In Section 4.1, an introduction to the reported methods for removing 

the speed variation-induced AM and FM is presented. Section 4.2 presents the proposed 

normalization method for removing the speed variation-induced AM and FM. Analysis of 

simulation gearbox vibration signals and experimental validation for the proposed normalization 

method are presented in Section 4.3 and Section 4.4, respectively. Lastly, conclusions of the 

conducted study are made in Section 4.5. The results of this chapter have been published partially 

in a conference paper [106] and as a whole in a journal paper [107]. 

4.1 Introduction 

In industrial applications, gearboxes oftentimes work under variable speed conditions and speed 

variations induce AM and FM into gearbox vibration signals [36,66]. The speed variation-induced 

AM and FM can mask the existence of a tooth crack and make it difficult to distinguish between 

changes of tooth crack severity and speed variations [80]. The reason accounting for this difficulty 

is that due to the speed variation-induced AM and FM, changes in CIs may indicate gear tooth 

crack severity progression, speed changes, or both. In such cases, reported methods for gearbox 

tooth crack diagnosis under constant speed conditions become incompetent. 

In order to conduct gear tooth crack diagnosis under variable speed conditions, the speed variation-

induced AM and FM need to be removed from gearbox vibration signals. However, the 
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information on tooth crack severity progression should not be attenuated when removing the speed 

variation-induced AM and FM. Order tracking techniques have been well developed and widely 

adopted to compensate for the FM induced by speed variation [100]. Under variable speed 

conditions, the passage through resonances or the changes of static transmission errors will induce 

AM into the gear mesh harmonics. Besides, the speed variation also changes the forcing function 

of the gearbox system, thus changing the amplitudes of the repetitive impact responses caused by 

tooth cracks. For the speed variation-induced AM, it also needs to be removed since it makes CIs 

sensitive to changes of rotating speed, which undermines the effectiveness of CIs to track gear 

tooth crack severity progression. Some studies on removing the speed variation-induced AM 

[36,101,102] have been reported during the last decades, which are reviewed in Subsection 1.2.2.4. 

These reported studies did not work well in tackling the speed variation-induced AM since they 

attenuated the tooth crack information greatly in the removal process. Recently, another method 

called NAMVOC has been developed to remove the speed variation-induced AM [80]. The 

NAMVOC method outperformed the GSA method in terms of reducing the speed variation-

induced AM, but it still suffers from some problems, which are discussed in Subsection 1.2.2.4.   

To overcome the deficiencies of the NAMVOC method, this chapter proposes a new normalization 

method to remove the AM and FM induced by variable speed conditions. In order to remove the 

speed variation-induced AM without attenuating the information on tooth crack severity 

progression, the focus of the proposed normalization method in this chapter is placed on the CII 

since they have more valuable information on tooth crack than other components of gearbox 

vibration signals, which follows the idea of signal analysis adopted in Chapter 3. Firstly, the raw 

vibration signal is processed using the computed order tracking technique to remove the speed 

variation-induced FM [100]. Afterwards, the modified AHD method presented in Chapter 3 is 

employed to extract the CII from vibration signals of gearboxes working under variable speed 

conditions. Lastly, the peak envelope of the CII is obtained via the envelope analysis scheme 

presented in Chapter 3. The peak envelope of the CII is regarded as the AM induced by variable 

speed conditions, through which the normalization process is conducted on the CII, thus removing 

speed variation-induced AM of the CII. In addition, quantitative evaluations of the performance 

of the proposed normalization method on the removal of the speed variation-induced AM and the 

preservation of tooth crack information are made. 
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The contributions of this chapter are summarized as follows: (1) A new normalization method is 

proposed, which not only removes the speed variation-induced AM and FM but also preserves the 

information on tooth crack severity progression; (2) Two evaluation metrics are introduced to 

make quantitative evaluation of performance of the proposed normalization method on removing 

the speed variation-induced AM and preserving the tooth crack information; (3) The superiority 

of the proposed normalization method over the NAMVOC method is demonstrated using both 

simulated gearbox vibration signals and experimental gearbox vibration datasets.  

The remainder of this chapter is organized as follows. In Section 4.2, the proposed normalization 

method for removing the AM and FM induced by variable speed conditions is introduced. Section 

4.3 presents the analysis results of simulated gearbox vibration signals. The validation of the 

effectiveness of the proposed normalization method using experimental gearbox vibration datasets 

is conducted in Section 4.4. Lastly, conclusions are made in Section 4.5.  

4.2 The proposed normalization method 

In this section, the proposed normalization method for removing the AM and FM induced by 

variable speed conditions is presented with a detailed description. Because the proposed 

normalization method is adopted to process gearbox vibration signals to track tooth crack severity 

progression, it is necessary to first introduce the composition of vibration signals of gearboxes 

working under variable speed conditions. Afterwards, the procedure of the proposed normalization 

method is illustrated. In addition, two metrics are introduced for quantitative evaluation of the 

performance of the proposed normalization method on removing the speed variation-induced AM 

and preserving the tooth crack information.  

4.2.1 Phenomenological model of gearbox vibration signals  

As reviewed in Subsection 1.2.2.1, when a gearbox works under variable speed conditions, speed 

variations induce AM and FM into gearbox vibration signals. However, the mathematical forms 

of the speed variation-induced AM and FM have not been known yet. The research outcomes 

obtained in Chapter 3 indicate that there exists a linear dependence of the speed variation-induced 

AM of the CII on the variable speed condition. Besides, some studies on the composition of 

vibration signals of a gearbox with a tooth crack have also been reported [36,77,133]. Based on 
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these preliminary research work, a phenomenological model for the vibration signals of a fixed-

axis spur gearbox with a tooth crack working under variable speed conditions is introduced herein, 

which is shown in Eq. (4.1). 

𝑦(𝑡) = 𝑦𝐴𝐹(𝑡) + 𝛽𝑦𝐼𝑚𝑝(𝑡) + 𝑁(𝑡)                                               (4.1) 

where 𝑦𝐴𝐹(𝑡) denotes the gear mesh-related components; 𝛽𝑦𝐼𝑚𝑝(𝑡) is the CII and β is the CII 

magnification factor representing the tooth crack severity level; 𝑁(𝑡) is the background noise. 

Under variable speed conditions, 𝑦𝐴𝐹(𝑡) can be expressed using Eq. (4.2). 

𝑦𝐴𝐹(𝑡) = ∑ 𝑄𝑚
𝐴𝐹(𝑡)[1 + 𝑎𝑚(𝑡)] cos[2𝜋𝑚𝑁𝑔 ∫𝑓𝑠𝑑𝑡 + 𝜃𝑚 + 𝑏𝑚(𝑡) + 𝑃𝑚

𝐴𝐹(𝑡)]𝑀
𝑚=1       (4.2)                        

where 𝑄𝑚
𝐴𝐹(𝑡)  and 𝑃𝑚

𝐴𝐹(𝑡)  denote the AM and FM induced by variable speed conditions, 

respectively; 𝑎𝑚(𝑡) and 𝑏𝑚(𝑡) are the tooth crack-related AM and FM, respectively; 𝜃𝑚  is the 

initial phase, 𝑁𝑔 is the number of gear teeth, 𝑓𝑠 is the variable rotational frequency of the gear shaft.  

Under variable speed conditions, 𝛽𝑦𝐼𝑚𝑝(𝑡) is expressed using Eq. (4.3).  

𝛽𝑦𝐼𝑚𝑝(𝑡) = 𝐻(𝑡 − 𝑡𝑜𝑐) ∑ 𝑄𝑖
𝐼𝑚𝑝(𝑡 − 𝑡𝑜𝑐)𝑋𝑖𝑒

−𝐷𝑖(𝑡−𝑡𝑜𝑐) cos[2𝜋𝑓𝑟𝑖(𝑡 − 𝑡𝑜𝑐) + 𝜃𝑖
𝐼𝑚𝑝]𝐼

𝑖=1     (4.3)                                            

where I is the number of terms; 𝑄𝑖
𝐼𝑚𝑝(𝑡) denotes the AM induced by variable speed conditions; 𝑡𝑜𝑐 

is the occurrence time vector of the CII pulses (effect of the speed variation-induced FM is included 

in 𝑡𝑜𝑐); 𝐻(𝑡) denotes the Heaviside function; 𝑋𝑖, 𝐷𝑖, and 𝜃𝑖
𝐼𝑚𝑝

 represent the amplitude, damping 

factor and initial phase, respectively; 𝑓𝑟𝑖 is the 𝑖𝑡ℎ resonance frequency. 

From Eq. (4.1), it is seen that for a gearbox with one tooth crack, its vibration signal includes three 

parts, namely the gear mesh-related components, the CII, and the background noise. Based on the 

gearbox vibration signal composition shown in Eq. (4.1), each part of the proposed normalization 

method is illustrated in the next subsection. Besides, the phenomenological model shown in Eq. 

(4.1) will be used to generate simulated vibration signals of a fixed-axis spur gearbox with a tooth 

crack for the simulation analysis presented in Section 4.3. 
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4.2.2 Procedure of the proposed normalization method  

The procedure of the proposed normalization method is shown in Fig. 4.1, from which it is seen 

that the proposed normalization method consists of three parts: removal of FM, extraction of CII, 

and removal of AM. Each part is introduced in the following. 

 

Fig. 4.1: Procedure of the proposed normalization method 

4.2.2.1 Part 1: Removal of FM 

The variable speed condition induces an FM into gearbox vibration signals. The speed variation-

induced FM effect needs to be removed, which can be done using the well-developed computed 

order tracking technique [100]. To compensate for the speed variation-induced FM, a speed signal 

is required for angle domain resampling, which can be obtained using a collected tachometer signal. 

After removing the FM, the original gearbox vibration signal in the time domain is converted into 

its counterpart in the angle domain, namely 𝑦(𝑡) is converted into 𝑦𝑎𝑑(𝜑). 

4.2.2.2 Part 2: Extraction of CII 

For the vibration signal of a fixed-axis gear with a tooth crack with its FM effect removed, its order 

spectrum is mainly dominated by gear mesh order and its multiples and the sidebands around them, 
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which is related to the angle-domain resampled counterpart of 𝑦𝐴𝐹 in Eq. (4.1), and the order-

cluster resulting from the CII (𝛽𝑦𝐼𝑚𝑝 in Eq. (4.1)). The order-cluster is a group of characteristic 

orders of the tooth crack, with uniform spacing in the order spectrum. The gear mesh order and its 

multiples and the sidebands around them have no direct relationships with the order-cluster 

resulting from the CII, even though they may overlap in the order spectrum. Therefore, they need 

to be removed before extracting the CII, which can be done using comb notch filtering. Afterwards, 

the resulting signal is supposed to include the CII and environmental noise. But due to the strong 

environmental noise, it is still hard to extract the CII from the resulting signal. In this chapter, the 

modified AHD method presented in Subsection 3.2.2.3 of Chapter 3, which is a modified version 

of the original AHD method [88], is adopted to extract the CII from gearbox vibration signals 

under variable speed conditions, which is briefly introduced in the following.  

Under constant speed conditions, the CII, which is the 𝛽𝑦𝐼𝑚𝑝(𝑡) in Eq. (4.1), are periodic in the 

time domain. In addition, the CII can be equivalently represented as the summation of their 

corresponding harmonic-cluster [88], which is shown in Eq. (4.4). This is the same as Eq. (3.18) 

in Chapter 3. 

𝛽𝑦𝐼𝑚𝑝(𝑡) = ∑ 𝑠𝑝(𝑡)
𝑃
𝑝=1 = ∑ 𝑎𝑝 cos(2𝜋𝑓𝑝𝑡 + 𝜃𝑝)

𝑃
𝑝=1                              (4.4) 

where 𝑠𝑝(𝑡) denotes the 𝑝𝑡ℎ harmonic of the harmonic-cluster resulting from the CII; 𝑎𝑝, 𝑓𝑝, and 

𝜃𝑝 are the amplitude, frequency, and initial phase of the 𝑝𝑡ℎ harmonic, respectively; the difference 

of 𝑓𝑝 and 𝑓𝑝−1 is the same, which is the tooth crack repetition frequency.  

The original AHD method was used to obtain each harmonic harmonic 𝑠𝑝(𝑡) in Eq. (4.4) [88]. After 

all the desired harmonics are obtained by AHD recursively, the CII is reconstructed by adding all 

the obtained harmonics together, thus achieving the goal of extracting the CII from gearbox 

vibration signals under constant speed conditions. 

Under variable speed conditions, the CII is shown in Eq. (4.3). In this situation, it has an FM due to 

speed variation and is no longer periodic in the time domain, thus cannot be represented as the 

summation of a group of harmonics. Therefore, the original AHD algorithm [88] is no longer 

suitable to extract the CII under variable speed conditions. To tackle this problem, the CII is first 

resampled in the angle domain to remove the FM caused by the variable speed conditions. Without 
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loss of generality, one term is considered in Eq. (4.3) for simplicity of derivation, namely 𝑖 = 1. 

Similar to the case of constant speed conditions, for the variable speed conditions, the resampled 

CII become quasi-periodic in the angle domain, which means that the repetition angles of the pulses 

of the CII are equally spaced while the resonance frequency and the damping factor are variable in 

the angle domain. The resampled CII result in an order-cluster in the order domain, i.e., the 

equivalent tooth crack characteristic order and its multiples in the order spectrum. For different 

variable speed conditions, their corresponding equivalent tooth crack characteristic orders may be 

different. The equivalent conversion between the resampled CII and its corresponding order-cluster 

can be expressed using Eq. (4.5), which shares the same mathematical representation as Eq. (3.19). 

𝛽𝑦𝐼𝑚𝑝_𝑎𝑑(𝜑) = ∑ 𝑠𝑘(𝜑)
𝐾
𝑘=1 = ∑ 𝑎𝑘(𝜑) cos(𝑅𝑘𝜑 + 𝜃𝑘(𝜑))

𝐾
𝑘=1                  (4.5)                      

where K is the number of orders in the order-cluster; 𝑅𝑘 = 𝑘 ∗ 𝑂𝑅𝐶 denotes the 𝑘𝑡ℎ order in the 

order-cluster, i.e. 𝑘𝑡ℎ multiple of the 𝑂𝑅𝐶, and the 𝑂𝑅𝐶 is the equivalent tooth crack characteristic 

order; 𝑠𝑘(𝜑) is the component of the resampled CII, which corresponds to the 𝑅𝑘  in the order 

spectrum; 𝑎𝑘(𝜑) and 𝜃𝑘(𝜑) are the amplitude and phase of 𝑠𝑘(𝜑), respectively. 

The modified AHD method presented in in Subsection 3.2.2.3 of Chapter 3 is adopted to obtain 

each order component 𝑠𝑘(𝜑) of CII in E. (4.5) under variable speed conditions. For simplicity, 

details of the modified AHD method are not introduced herein. After all the other desired order 

components 𝑠𝑘(𝜑) are obtained, the reconstruction of the CII in the angle domain can be completed 

by summing them, thus achieving the goal of extracting the CII from gearbox vibration signal under 

variable speed conditions. 

4.2.2.3 Part 3: Removal of AM 

The speed variation-induced AM of the CII is the peak envelope of the CII, which is the same as 

the CIIAM presented in Subsection 3.2.2.4 in Chapter 3. To remove the CIIAM, two steps need to 

be completed, namely the calculation of the CIIAM and the implementation of amplitude 

normalization. The calculation of CIIAM can be conducted using the envelope analysis method 

presented in Subsection 3.2.2.4 in Chapter 3. Afterwards, the obtained CIIAM is used to normalize 

the CII, thus removing the speed variation-induced AM of the CII. The normalized CII is 

calculated using Eq. (4.6), which not only removes the speed variation-induced AM of the CII but 

also preserves the crack information. 
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𝐶𝐼𝐼𝑛𝑜𝑟𝑚 = (𝐶𝐼𝐼 𝐶𝐼𝐼𝐴𝑀⁄ ) ∙ 𝑀𝐶𝐼𝐼𝐴𝑀                                             (4.6) 

where 𝐶𝐼𝐼𝑛𝑜𝑟𝑚 is the normalized CII with the speed variation-induced AM removed; 𝑀𝐶𝐼𝐼𝐴𝑀 is the 

mean value of 𝐶𝐼𝐼𝐴𝑀, which contains tooth crack growth information.    

After completing all steps of the procedure shown in Fig. 4.1, the normalized CII is obtained and 

is further utilized to calculate CIs to track tooth crack severity progression. In this study, the RMS 

and the Envelope Harmonic-to-Noise Ratio (EHNR) [134] are employed to track tooth crack 

severity progression since they have shown their effectiveness in the condition monitoring and 

fault diagnosis of rotary machinery. Therefore, RMS and EHNR of the normalized CII (𝐶𝐼𝐼𝑛𝑜𝑟𝑚) 

are calculated to track tooth crack severity progression under variable speed conditions. In Ref. 

[80], the CII were also extracted from the normalized raw vibration signal by removing the gear 

meshing-related components in the angle-domain. For comparison, the CII obtained using the 

NAMVOC method in Ref. [80] is also used to calculate CIs for tracking tooth crack severity 

progression under variable speed conditions. 

4.2.3 Metrics for quantitative performance comparison  

In Ref. [80], the performance of the NAMVOC method on removing the speed variation-induced 

AM was only evaluated qualitatively, failing to obtain accurate evaluation results. This chapter 

aims to make a quantitative evaluation of the performance of either the proposed normalization 

method or the NAMVOC method in terms of removing the speed variation-induced AM and not 

attenuating the crack information. To this end, its performance is evaluated in two aspects. The 

first aspect is the extent of removing the speed variation-induced AM. A higher extent of removing 

the speed variation-induced AM indicates a better performance. The second aspect is the degree 

of attenuating the tooth crack information. A lower degree of attenuating the crack information 

indicates a better performance. Because RMS and EHNR are used to track tooth crack severity 

progression, the first aspect of performance evaluation is equivalently achieved using the 

insensitivities of RMS and EHNR values to speed changes and the second one by the sensitivities 

of RMS and EHNR values to crack severity progression. 

In this chapter, the FD metric, which is introduced in Subsection 3.2.4 in Chapter 3, is adopted 

quantitatively measure the insensitivity of RMS or EHNR values to speed changes. The Overall 
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Increase Rate (OIR) metric is introduced to quantitatively measure the sensitivity of RMS or 

EHNR values to tooth crack severity progression, which is calculated using Eq. (4.7).  

𝑂𝐼𝑅(𝑣) = ((𝑣𝑒𝑛𝑑 − 𝑣1) (𝛽𝑒𝑛𝑑 − 𝛽1)⁄ ) × 100%                                       (4.7) 

where 𝑣 is the value vector of a CI; β is the magnification factor vector representing tooth crack 

severity level; subscripts “1” and “𝑒𝑛𝑑” denote the first and last elements of a vector, respectively; 

𝑣1 is the CI value calculated using the signal of a gearbox with a tooth crack of crack level 𝛽1. 

The bigger the OIR value is, the more sensitive a CI is to tooth crack growth, thus indicating a lower 

degree of attenuating the information on tooth crack severity progression.  

4.3 Simulated gearbox vibration signal analysis 

In this section, simulated gearbox vibration signals under variable speed conditions, with constant 

torque load, are generated using the gearbox vibration signal model shown in Eq. (4.1). The 

proposed normalization method is applied to analyze the simulated signals. Each part of the 

proposed normalization method is illustrated during the analysis process. In addition, the 

NAMVOC method is also applied to process the simulated signals. Lastly, performance 

comparison is quantitatively made between the proposed normalization method and the NAMVOC 

method using the FD and OIR metrics 

4.3.1 Generation of simulated gearbox vibration signal  

To mimic the variable speed conditions, three speed profiles are adopted, namely coast-down 

(COA), run-up (RUN), and harmonic (HAR) profiles. COA and RUN speed profiles can represent 

the stop and start process of a gearbox used in a metro train. HAR speed profile can represent the 

speed variations encountered in the wind turbine gearboxes. The three speed profiles, i.e., COA, 

RUN and HAR, are expressed using Eq. (4.8), Eq. (4.9), and Eq. (4.10), respectively, and are 

plotted in Fig. 4.2. 

𝑓𝑠 = 12 − 3𝑡                                                                     (4.8) 

𝑓𝑠 = 7 + 2𝑡                                                                      (4.9) 

𝑓𝑠 = 9 + 3 𝑠𝑖𝑛( 𝜋𝑡) + 𝑠𝑖𝑛( 4𝜋𝑡)                                                 (4.10) 
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(a) (b) 

 

(c) 

Fig. 4.2: Three variable speed profiles: (a) COA; (b) RUN; (c) HAR 

Gearbox vibration signals for variable speed and constant load (load means the torque applied to 

the gearbox) conditions are generated using Eqs. (4.1), (4.2), and (4.3). Without loss of generality, 

for the gearbox vibration signal model shown in Eq. (4.1), two terms in Eq (4.2) and one term in 

Eq. (4.3) are considered to generate simulated signals. Parameters for each term of 𝑦𝐴𝐹(𝑡) are 

listed in Eqs. (4.11) through (4.15) and those for 𝑦𝐼𝑚𝑝(𝑡)  are shown in Eq. (4.16). In these 

equations, the unit for amplitude variables is “ms−2”, the unit for phase variables is “rad”, the unit 

for damping factor is “rad/s”, the unit for frequency variables is “Hz”, and the unit for the time 

variables is “s”. A white Gaussian noise with SNR=10 dB is added to mimic environmental noise. 

𝑄1
𝐴𝐹(𝑡) = 0.01𝑓𝑠

3 + 0.1𝑓𝑠;            𝑄2
𝐴𝐹(𝑡) = 0.02𝑓𝑠

3 + 0.2𝑓𝑠                       (4.11)                                                            

𝑃1
𝐴𝐹(𝑡) = 0.1 cos(2𝜋 ∫ 𝑓𝑠𝑑𝑡);           𝑃2

𝐴𝐹(𝑡) = 0.2 cos(4𝜋 ∫ 𝑓𝑠𝑑𝑡)                   (4.12)                                                                     

𝑎1(𝑡) 0.4 𝑠𝑖𝑛(2𝜋 ∫ 𝑓𝑠𝑑𝑡);           𝑎2(𝑡) 0.8sin(4𝜋 ∫𝑓𝑠𝑑𝑡)                         (4.13) 

𝑏1(𝑡) 0.1 𝑠𝑖𝑛(2𝜋 ∫𝑓𝑠𝑑𝑡);           𝑏2(𝑡) 0.2sin(4𝜋 ∫𝑓𝑠𝑑𝑡)                         (4.14) 

𝜃1 0.5𝜋 ;       𝜃2 0.25𝜋 ;      𝑁𝑔 100                                        (4.15) 

𝑄1
𝐼𝑚𝑝(𝑡) = 𝑓𝑠; 𝑋1 1; 𝜃1

𝐼𝑚𝑝
 0; 𝐷1 0.5; 𝑓𝑟1 1000                                 (4.16)                                                                                               

To mimic different gear tooth crack severity levels, the magnification factor β in Eq. (4.1) is ranging 

from 0 to 6 with an increment of 1 and ranging from 6 to 12 with an increment of 2. Therefore, 10 

tooth crack severity levels are considered. For the HAR speed profile shown in Fig. 4.2(c), its 
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simulated vibration signals are displayed in Fig. 4.3 as an example. Simulated vibration signals for 

COA and RUN speed profiles are not shown herein for brevity. 

  

(a) β=0 (f) β=5 

  

(b) β=1 (g) β=6 

  

(c) β=2 (h) β=8 

  

(d) β=3 (i) β=10 

  

(e) β=4 (j) β=12 

Fig. 4.3: Simulated gearbox vibration signals under harmonic speed profile for 10 crack severity levels  

The RMS results of the raw simulated vibration signals under the three considered speed profiles 

are calculated and are shown in Fig. 4.4, from which it is seen that although the crack severity levels 

(β values) are the same, the RMS results are different for the three speed profiles. This means that 

other than gear tooth crack severity progression, variable speed conditions also result in changes in 
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the RMS values. Therefore, it will be hard to distinguish between changes of tooth crack severity 

and speed changes using the CIs if the AM induced by variable speed conditions is not removed. 

 

Fig. 4.4: The RMS values for the raw simulated vibration signals under three speed profiles 

4.3.2 Analysis results  

To remove the AM induced by variable speed conditions, the proposed normalization method is 

used to process the simulated vibration signals. Analysis results are presented to illustrate each 

part of the proposed normalization method. The simulated signal for β=5 under the HAR speed 

profile shown in Fig. 4.5 is used as an example for illustration. From Fig. 4.5, it is seen that there 

exists a frequency smearing phenomenon due to the FM effect induced by speed variation. 

 

Fig. 4.5: Time waveform and frequency spectrum for raw simulated vibration signal (β=5, HAR) 
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In Part 1 of the proposed normalization method shown in Fig. 4.1, the FM induced by speed 

variation is removed using the order tacking technique. The obtained signal with FM effect 

removed and its order spectrum are displayed in Fig. 4.6. The order spectrum in the bottom plot 

of Fig. 4.6 is displayed on a log amplitude scale. This can benefit identifying the resonance excited 

by the tooth crack, which is in the order band from 50 to 120. As shown in the bottom plot of Fig. 

4.6, the gear mesh related orders are clearly seen in the order spectrum, which means that the FM 

is well removed. In Part 2, the comb notch filter is first adopted to remove the gear mesh order and 

its multiples and the sidebands around them. Subsequently, the modified AHD is utilized to extract 

the CII. For the modified AHD algorithm, parameters 𝜆, 𝜂, and  𝜀 are set to be 10−12, 10−14, and 

10−8, respectively. The extracted CII is shown in Fig. 4.7 together with its zoomed-in view from 

32 rad to 42 rad, from which it is seen that the CII are well extracted without distortion and 

amplitude attenuation. This is due to the robustness of the modified AHD to interfering factors, 

such as the strong background noise, and its suitability for CII extraction. In addition, from the 

zoomed-in view of the CII shown in Fig. 4.7(b), it is found that for each pulse (or impact response) 

of the CII, its angular duration is about 0.3rad, which means that one tooth crack affects about 5 

tooth mesh cycles. In Part 3, the first step is to calculate the peak envelope of the extracted CII 

shown in Fig. 4.7(a). The peak envelope of the CII is seen as the AM induced by variable speed 

conditions, namely the CIIAM. The identified envelope peaks and the CIIAM are plotted in Fig. 

4.8. The CIIAM is used to normalize the CII. The normalized CII is shown in Fig. 4.9. Comparing 

Fig. 4.9 to Fig. 4.7(a), it is seen that after normalization, the AM of the CII is removed and the 

information on the tooth crack severity is not attenuated.  

 

Fig. 4.6: Raw simulated vibration signal with the FM effect removed and its order spectrum 
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(a) Full-scale view 

 

(b) Zoomed-in view in the angle range [32, 42] rad 

Fig. 4.7: The CII obtained using the modified AHD method 

 

Fig. 4.8: The CIIAM (speed variation-induced AM of the CII) and envelope peaks 
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Fig. 4.9: The normalized CII (with AM effect removed) obtained by the proposed method 

4.3.3 Performance comparison  

To make performance comparison between the proposed normalization method and the NAMVOC 

method, the latter is also applied for simulated signal analysis. The length of the moving median 

filter is set to be 1 second. The speed variation-induced AM obtained by the NAMVOC method is 

shown in Fig. 4.10(a) and the normalized raw signal is shown in Fig. 4.10(b). From Fig. 4.10(b), 

it is seen that the speed variation-induced AM is not completely removed since these still exists 

amplitude fluctuation in the normalized raw signal. The normalized raw signal is resampled in the 

angle domain to remove the FM induced by speed changes. Gear meshing-related components are 

removed from the resampled normalized raw signal using comb notch filtering to obtain the CII. 

The obtained CII is shown in Fig. 4.11, from which it is found that the CII obtained by the 

NAMVOC method still has large amplitude fluctuation induced by variable speed conditions, 

which means that the speed variation-induced AM is not well removed. 

 

(a) The AM 

                           

Time   s

 

  

  

M
ag
n
it
u
d
e 
A



138 
 
 

 

(b) The normalized raw signal 

Fig. 4.10: The AM and the normalized raw signal obtained by the NAMVOC method  

 

Fig. 4.11: The CII obtained by the NAMVOC method 

After adopting both the proposed normalization method and the NAMVOC method for simulation 

analysis, two kinds of CIIs are obtained: (1) the CII obtained by the proposed normalization 

method, which is named CII-Proposed, (2) the CII obtained by the NAMVOC method, which is 

named CII-NAMVOC. Based on these two types of CIIs, RMS and EHNR values are calculated. 

RMS and EHNR results for CII-Proposed are plotted in Fig. 4.12 and those for CII-NAMVOC are 

plotted in Fig. 4.13. As shown in Fig. 4.12, RMS and EHNR results for the CII-Proposed are not 

only sensitive to crack severity progression due to the monotonic increasing trend of CIs, but also 

are insensitive to speed changes since there is almost no spread between the three curves. On the 

contrary, as shown in Fig. 4.13, the RMS values for the CII-NAMVOC are less sensitive to tooth 

crack severity progression and the EHNR values are sensitive to speed changes due to bigger 

spread between curves of EHNR. These observations are obtained based on qualitative evaluations. 
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Fig. 4.12: The RMS and EHNR values calculated using the CII-Proposed 

 

Fig. 4.13: The RMS and EHNR values calculated using the CII-NAMVOC 

In addition, to make quantitative evaluation of the performance on removing the speed variation-

induced AM and preserving the tooth crack information, the OIR and FD metrics are adopted to 

measure the sensitivities of the RMS and EHNR values to the changes of tooth crack severity and 

their insensitivities to speed changes, respectively. The OIR and FD values calculated using the 

RMS and EHNR results of the CII-Proposed are tabulated in Table 4.1 and Table 4.2, respectively. 

The OIR and FD values calculated using the RMS and EHNR results of the CII-NAMVOC are 

shown in Table 4.3 and Table 4.4, respectively. It should be noted that in Table 4.2 and Table 4.4, 

suffix “_CH” denotes the F  between CI curves for coast-down and harmonic speed profiles, 

“_RC” the F  between CI curves for run-up and coast-down speed profiles, “_RH” the F  

between CI curves for run-up and harmonic speed profiles. 
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Table 4.1: The OIR values for RMS and EHNR of the CII-Proposed (simulated signal) 

CI for CII-Proposed under a speed profile OIR (%) 

RMS_CII-Proposed_COA 43.08 

RMS_CII-Proposed_RUN 40.42 

RMS_CII-Proposed_HAR 40.75 

Average of OIR of RMS_CII-Proposed  41.42 

EHNR_CII-Proposed_COA 180.42 

EHNR _CII-Proposed_RUN 171.17 

EHNR _CII-Proposed_HAR 176.67 

Average of OIR of EHNR_CII-Proposed 176.08 

 

Table 4.2: The FD values for RMS and EHNR of the CII-Proposed (simulated signal) 

CI curves for CII-Proposed under two speed profiles FD 

RMS_CII-Proposed_CH 0.3632 

RMS_CII-Proposed_RC 0.6048 

RMS_CII-Proposed_RH 0.3528 

Average of FD of RMS_CII-Proposed  0.4403 

EHNR_CII-Proposed_CH 1.6155 

EHNR _CII-Proposed_RC 2.1376 

EHNR _CII-Proposed_RH 1.2934 

Average of FD of EHNR_CII-Proposed 1.6822 

 

Table 4.3: The OIR values for RMS and EHNR of the CII-NAMVOC (simulated signal) 

CI for CII- NAMVOC under a speed profile OIR (%) 

RMS_CII- NAMVOC _COA 32.58 

RMS_CII- NAMVOC _RUN 32.17 

RMS_CII- NAMVOC _HAR 34.17 

Average of OIR of RMS_CII- NAMVOC 32.97 

EHNR_CII- NAMVOC _COA 61.58 

EHNR _CII- NAMVOC _RUN 73.25 

EHNR _CII- NAMVOC _HAR 48.67 

Average of OIR of EHNR_CII- NAMVOC 61.17 
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Table 4.4: The FD values for RMS and EHNR of the CII- NAMVOC (simulated signal) 

CI curves for CII- NAMVOC under two speed profiles FD 

RMS_CII- NAMVOC _CH 1.2807 

RMS_CII- NAMVOC _RC 0.8102 

RMS_CII- NAMVOC _RH 2.0854 

Average of FD of RMS_CII- NAMVOC  1.3921 

EHNR_CII- NAMVOC _CH 1.6653 

EHNR _CII- NAMVOC _RC 1.5331 

EHNR _CII- NAMVOC _RH 3.1871 

Average of FD of EHNR_CII- NAMVOC 2.1285 

 

By comparing Table 4.1 and Table 4.3, it is seen that for either RMS or EHNR of the CII-Proposed, 

its average OIR value is greater than that of the CII-NAMVOC. Specifically, the average OIR 

value for RMS: 41.42%>32.97%, the average OIR value for EHNR: 176.08%>61.17%. This 

means that the RMS and EHNR of the CII-Proposed are more sensitive to crack severity 

progression than those of the CII-NAMVOC, indicating that the proposed normalization method 

results in a lower degree of attenuating the crack information than the NAMVOC method in the 

normalization process. 

By comparing Table 4.2 and Table 4.4, it is seen that for either RMS or EHNR of the CII-Proposed, 

its average FD value is smaller than that of the CII-NAMVOC. To be specific, the average FD 

value for RMS: 0.4403<1.3921, the average FD value for EHNR: 1.6822<2.1285. This means that 

RMS and EHNR of the CII-Proposed are more insensitive to speed changes than those of the CII-

NAMVOC, thus indicating that the proposed normalization method results in a higher degree of 

removing the AM effect induced by variable speed conditions than the NAMVOC method.  

Therefore, based on the quantitative performance comparisons for the simulated signal analysis, it 

can be concluded that the proposed normalization method outperforms the NAMVOC method in 

terms of removing the AM induced by variable speed conditions and preserving the information 

on tooth crack severity progression.  
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4.4 Experimental validation  

In this section, the effectiveness of the proposed normalization method in terms of removing the 

AM and FM induced by variable speed conditions and preserving the crack information is further 

validated using experimental gearbox vibration datasets. 

4.4.1 Experiment setup  

Details of experiment setup have been introduced in Subsection 3.4.1, including the introduction 

to the experimental fixed-axis spur gearbox, the considered pinion tooth crack severity levels, the 

specifications of variable speed conditions, and the configurations of data collection. The 

experimental gearbox vibration signals collected under the constant load and variable speed 

conditions shown in Fig. 3.26 are used in this chapter.  

4.4.2 Analysis results  

The proposed normalization method is adopted to analyze the experimental datasets of the fixed-

axis gearbox with a pinion tooth crack collected under both SPI and SPII speed conditions shown 

in Fig. 3.26. The raw acceleration signal for “Faulty 3” pinion health state under SPI speed 

condition, which is shown in Fig. 4.14, is used as an example to illustrate the proposed 

normalization method. As shown in the bottom plot of Fig. 4.14, there exists a frequency smearing 

phenomenon in the frequency spectrum, which means that the variable speed condition causes an 

FM into the gearbox vibration signal. The raw vibration signal is resampled in the angle domain 

to compensate for the FM effect using the order track technique. The obtained signal with the FM 

effect removed and its order spectrum are displayed in Fig. 4.15, from which the gear mesh related 

orders are clearly seen in the order spectrum, which means that the speed variation-induced FM is 

well removed. 

The comb notch filter is adopted to remove the gear mesh order and its multiples and the sidebands 

around them. There are two gear mesh pairs in the target fixed-axis gearbox as shown in Fig. 

2.12(b): (1) the input gear mesh pair with mesh order of 18; (2) the output mesh pair with order of 

64. To remove all the gear mesh related components, both two groups of mesh orders and their 

multiples and the associated sidebands around them are removed using comb notch filters. The 

comb notch filtered signal mainly contains the components related to the CII and the 
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environmental noise. Subsequently, the modified AHD is employed to extract the order 

components resulting from the CII, by which the CII can be reconstructed. For the modified AHD 

algorithm, parameters 𝜆, 𝜂, and 𝜀 are set to be 10−14, 10−15, and 10−8, respectively. The obtained 

CII is shown in Fig. 4.16 together with the zoomed-in view from 130 order to 150 order. From Fig. 

4.16(b), it is found that the CII is well extracted since the angle difference between two adjacent 

pulses is about 2𝜋 rad, which is the angular displacement of one pinion shaft revolution. For the 

pinion with one tooth crack, there exists one pulse in one pinion shaft revolution. This 

demonstrates the advantages of the modified AHD algorithm of extracting CII in the angle domain. 

Although the CII is well extracted, it still has large amplitude fluctuation caused by the variable 

speed conditions. 

 

Fig. 4.14 Raw vibration signal (Faulty 3, SPI speed condition) 

 

Fig. 4.15: Angle-domain resampled vibration signal (Faulty 3, SPI speed condition) 
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(a) Full-scale view 

 

(b) Zoomed-in view in the angle range [130, 150] rad 

Fig. 4.16: The extracted CII (Faulty 3, SPI speed condition) 

Envelope peaks of the extracted CII are identified and are interpolated to get the peak envelope of 

CII. Besides, the peak envelope is smoothed. The smoothed peak envelope is regarded as the speed 

variation-induced AM of CII, namely CIIAM. The identified envelope peaks and CIIAM are shown 

in Fig. 4.17 together with the CII. The CIIAM is used to normalize the CII. The normalized CII is 

named “CII-Proposed” and is shown in Fig. 4.18. Comparing Fig. 4.18 to Fig. 4.16, it is seen that 

the speed variation-induced AM is removed by the proposed normalization method to a great 

extent since there is almost no amplitude fluctuation in the CII-Proposed in Fig. 4.18. The CII-

Proposed will be used to calculate the RMS and EHNR values to track tooth crack severity 

progression. 
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Fig. 4.17: The CIIAM and envelope peaks (Faulty 3, SPI speed condition) 

 

(a) Full-scale view 

 

(b) Zoomed-in view in the angle range [130, 150] rad 

Fig. 4.18: The normalized CII by the proposed method: CII-Proposed (Faulty 3, SPI speed condition) 
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4.4.3 Performance comparison  

To make performance comparison between the proposed normalization and the NAMVOC method, 

the latter is also applied to process the experimental gearbox datasets. The length of the moving 

median filter is set to be 1 second as well. The speed variation-induced AM obtained by the 

NAMVOC method is shown in Fig. 4.19(a) and the normalized raw signal is shown in Fig. 4.19(b), 

from which it is seen that the speed variation-induced AM is not completely removed since there 

still exists amplitude fluctuation in the normalized raw signal. The normalized raw signal is 

resampled in angle domain to remove the FM resulting from speed variation. Gear mesh order and 

its multiples and the associated sidebands are removed from the resampled normalized raw signal 

using comb notch filters, thus obtaining the CII. The obtained CII is named “CII-NAMV C” and 

is shown in Fig. 4.20, from which it is seen that the CII-NAMVOC still has large amplitude 

fluctuation induced by variable speed conditions, which means that the AM effect is not well 

removed by the NAMVOC method. 

 

(a) The AM 

 

(b) The normalized raw signal 

Fig. 4.19: The AM and the normalized raw signal obtained by NAMVOC method (Faulty 3, SPI speed 

condition) 
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Fig. 4.20: The normalized CII obtained by the NAMVOC method: CII-NAMVOC (Faulty 3, SPI speed 

condition) 

After adopting the proposed normalization method and the NAMVOC method to process the 

experimental gearbox datasets, two kinds of CIIs are obtained for each dataset, namely CII-

Proposed and CII-NAMVOC. Based on them, the RMS and EHNR results are calculated. Because 

in the experiment, for each pinion health state, five data samples were collected under either the 

SPI or the SPII speed condition, five results are obtained for either RMS or EHNR for each pinion 

health state under each speed condition. The median value of the five results is calculated and is 

used to track tooth crack severity progression. Fig. 4.21 shows the median values of RMS and 

EHNR for the CII-Proposed versus pinion health state under both SPI and SPII speed conditions. 

Fig. 4.22 shows the median values of RMS and EHNR for the CII-NAMVOC versus pinion health 

state under both SPI and SPII speed conditions. As shown in Fig. 4.21, the RMS and EHNR values 

of the CII-Proposed are not only sensitive to tooth crack severity progression, but also insensitive 

to speed variation since the spread between the two curves in each plot is very small. On the 

contrary, as shown in Fig. 4.22, RMS values of the CII-NAMVOC are more sensitive to speed 

changes and EHNR values are less sensitive to tooth crack severity progression.  

In addition, quantitative comparisons of the performance of the proposed normalization method 

and the NAMVOC method are also made. The OIR and FD metrics are adopted to measure the 

sensitivities of the RMS and EHNR values to the changes of tooth crack severity and their 

insensitivities to speed changes, respectively. The OIR and FD values calculated using the RMS 

and EHNR results of the CII-Proposed are tabulated in Table 4.5 and Table 4.6, respectively. The 
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OIR and FD values calculated using the RMS and EHNR results of the CII-NAMVOC are shown 

in Table 4.7 and Table 4.8, respectively.  

 

Fig. 4.21: Median values of RMS and EHNR results versus pinion health state (CII-Proposed) 

 

Fig. 4.22: Median values of RMS and EHNR results versus pinion health state (CII-NAMVOC) 

Table 4.5: The OIR values for RMS and EHNR of the CII-Proposed (experimental data) 

CI for CII-Proposed under a speed profile OIR (%) 

RMS_CII-Proposed_SPI 4.1875 

RMS_CII-Proposed_SPII 3.6250 

Average of OIR of RMS_CII-Proposed  3.9603 

EHNR_CII-Proposed_SPI 507.6042 

EHNR _CII-Proposed_SPII 438.5833 

Average of OIR of EHNR_CII-Proposed 473.0937 
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Table 4.6:  The FD values for RMS and EHNR of the CII-Proposed (experimental data) 

CI curves for CII-Proposed under two speed profiles FD 

RMS_CII-Proposed 0.0040 

EHNR_CII-Proposed 0.4017 

 

Table 4.7: The OIR values for RMS and EHNR of the CII-NAMVOC (experimental data) 

CI for CII- NAMVOC under a speed profile OIR (%) 

RMS_CII- NAMVOC _SPI 3.4583 

RMS_CII- NAMVOC _SPII 4.0623 

Average of OIR of RMS_CII- NAMVOC 3.7604 

EHNR_CII- NAMVOC _SPI 6.1667 

EHNR _CII- NAMVOC _SPII 11.3542 

Average of OIR of EHNR_CII- NAMVOC 8.7604 

 

Table 4.8: The FD values for RMS and EHNR of the CII- NAMVOC (experimental data) 

CI curves for CII- NAMVOC under two speed profiles FD 

RMS_CII- NAMVOC 0.0206 

EHNR_CII- NAMVOC  0.0354 

 

By comparing Table 4.5 and Table 4.7, it is found that for either RMS or EHNR calculated using 

the CII-Proposed, its average OIR value is greater than that using the CII-NAMVOC. To be 

specific, the average OIR value for RMS: 3.9063%>3.7604%, the average OIR value for EHNR: 

473.0937%>8.7604%. This means that the RMS and EHNR values of the CII-Proposed are more 

sensitive to tooth crack severity progression than those of the CII-NAMVOC, thus indicating that 

the proposed normalization method results in a lower degree of attenuating the information on 

crack severity progression than the NAMVOC method. 

By comparing Table 4.6 and Table 4.8, it is observed that for the RMS values calculated using the 

CII-Proposed, its FD value is smaller than that using the CII-NAMVOC. To be specific, the FD 

value for RMS: 0.0040<0.0206. This means that the RMS of the CII-Proposed are more insensitive 

to speed changes than that of the CII-NAMVOC. However, the FD value of the EHNR calculated 

using the CII-Proposed is a little bit greater than that using the CII-NAMVOC. 

Based on the quantitative performance comparison using the OIR and FD values, it is observed 

that the RMS and EHNR results of the CII-Proposed have higher sensitivities to pinion tooth crack 
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severity progression, and the RMS result of the CII-proposed has higher insensitivity to speed 

changes. Therefore, it can be concluded that the proposed normalization method overall 

outperforms the NAMVOC method in terms of removing the AM induced by variable speed 

conditions and preserving the information on pinion tooth crack severity progression. 

4.5 Conclusions 

In this chapter, a new normalization method is proposed to remove the AM and FM of gearbox 

vibration signal induced by variable speed conditions. The focus of the proposed normalization 

method is placed on the CII rather than the entire vibration signal, for the purpose of avoiding 

attenuating the information on tooth crack severity progression. The CII is extracted using the 

modified AHD in the angle domain. The peak envelope of the CII is calculated and is regarded as 

the speed variation-induced AM of the CII and is further used to normalize the CII. The normalized 

CII is employed to calculate the RMS and EHNR values to track tooth crack severity progression.  

The proposed normalization method is investigated using both simulated gearbox vibration signals 

and experimental gearbox vibration datasets. Analysis results show the benefits of using the 

proposed normalization to conduct gear tooth crack diagnosis under variable speed conditions. 

Quantitative comparisons of the performance on the removal of the speed variation-induced AM 

and preservation of the crack information between the proposed normalization method and the 

NAMVOC method are made using the OIR and FD metrics. Comparison results indicate that both 

RMS and EHNR of the CII-Proposed have higher sensitivities to gear tooth crack severity 

progression than those of the CII-NAMVOC, and RMS of the CII-proposed has higher insensitivity 

to speed variation. This means that the proposed normalization method is more robust to speed 

changes than the NAMVOC method. Besides, the proposed method preserves more information on 

tooth crack severity progression during the normalization process than the NAMVOC method. 

In this chapter, only the scenario of the variable speed and constant load condition is involved. The 

effectiveness of the proposed normalization method in terms of removing the operating condition 

variation-induced AM and FM will be further investigated for other scenarios of time-varying 

operating conditions, such as constant speed and variable load conditions and variable speed and 

variable load conditions.  
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Chapter 5: Analysis of vibration signals and detection for 

multiple tooth cracks in spur gearboxes 

 

Due to the harsh working environment, gearboxes may suffer from either one single tooth crack 

or multiple tooth cracks. However, for fixed-axis spur gearboxes with multiple tooth cracks, their 

vibration characteristics and detection methods have rarely been studied. To overcome this 

problem, as mentioned in Section 1.3, this chapter aims to get a good understanding of the vibration 

characteristics of a fixed-axis spur gearbox with multiple tooth cracks and propose an effective 

method for detecting the number and locations of multiple tooth cracks. The materials in this 

chapter are covered by the fourth research topic (Topic #4). The organization of this chapter is as 

follows. In Section 5.1, an introduction to the reported studies on tooth crack diagnosis of fixed-

axis spur gearboxes is made. Section 5.2 presents the proposed overall methodology for procuring 

insights into the vibration characteristics of a fixed-axis spur gearbox with multiple tooth cracks 

and detecting the number and locations of multiple tooth cracks. Simulation analysis and 

experimental validation for the proposed methodology are presented in Section 5.3 and Section 

5.4, respectively. Lastly, the conducted study is concluded in Section 5.5. The results of this 

chapter are documented in a journal paper [108] which is under review at present. 

5.1 Introduction 

During the last few decades, many studies for tooth crack diagnosis using various techniques have 

been reported. TSA is a useful tool to remove the vibration components that are asynchronous with 

the shaft on which the gear to be monitored is mounted [42,111]. Based on TSA signals, some 

tooth crack diagnosis methods were developed. Wang [77] developed a resonance demodulation 

method to extract crack features from cracked gear TSA signals for crack detection, but it failed 

to track early tooth crack growth. To overcome the deficiency of the study reported in Ref. [77], 

Yang et al. [104] conducted a thorough study on the cracked gear TSA signals and developed two 

powerful condition indicators for early tooth crack severity assessment. In industrial applications, 

there exists speed fluctuations in gearboxes, which makes it hard to diagnose tooth cracks. To 

tackle this problem, a normalization strategy was developed to remove the effects on gearbox 
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signals caused by speed variations, thus facilitating tooth crack diagnosis [107]. To assess tooth 

crack severity more accurately, many intelligent diagnosis methods were also developed. 

Weighted K nearest neighbor classification algorithms were adopted to process diagnostic features 

characterizing gear conditions to classify different tooth crack levels under constant operating 

conditions [123,135]. Aiming at the challenge of lacking sufficient samples of cracked gear 

vibration signals, He et al. [136] developed a deep transfer multiwavelet auto-encoder to assess 

tooth crack severity. To deal with strong environmental noise and imbalanced datasets, Li et al. 

[137] designed a fusion confidence weight support matrix-based framework to diagnose gear tooth 

cracks. 

Although many reported methods have been developed for tooth crack diagnosis, most of them 

only considered the scenario of one tooth crack in a gearbox, which is not always the case since 

gearboxes may suffer from multiple tooth cracks in some situations owing to their harsh working 

environment [13–15]. The mechanism for multiple tooth cracks occurring in gearboxes is 

introduced in Subsection 1.1.2, which is not described herein for brevity. For the multiple tooth 

cracks occurred in fixed-axis spur gearboxes, they include two possible categories: (1) cracks on 

two or more adjacent or nonadjacent teeth of a single gear; (2) cracks on teeth of two or more gears, 

usually on two mating gears [13–15]. For two mating gears, the smaller gear is called the pinion, 

and the larger one is called the gear or wheel. 

Because multiple tooth cracks may occur in industrial applications, it is worthy of studying their 

vibration characteristics and detection methods. To this end, dynamic model-based methods are 

preferred since they can eliminate interferences of environmental noise and get a good 

understanding of gearbox vibration behaviors. Recently, Mohamed et al. [138] generated vibration 

signals of a spur gearbox with multiple tooth cracks using dynamic modelling and vibration signals 

were studied in both time and frequency domains. In Ref. [138], four categories of multiple tooth 

cracks on the pinion were considered, and several CIs, such as RMS and kurtosis, were adopted to 

track crack severity progression. However, no method for detecting the number and locations of 

cracked teeth was presented. Herein, “locations of cracked teeth” refers to where the cracked teeth 

are in gearboxes. Later, Rezaei et al. [139] developed a method for detecting multi-crack locations 

and lengths using the transmission error ratio, which worked well when the cracks were located 

far enough. However, for adjacent tooth cracks, the method became incompetent [139]. Besides, 
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in Refs. [138,139], all the cracked teeth were only located on the pinion, failing to involve the 

scenario of multiple tooth cracks on both the pinion and the gear in a spur gearbox. 

To overcome the deficiencies of the studies reported in Refs. [138,139], this chapter aims to first 

get a good understanding of the vibration characteristics of a spur gearbox with multiple tooth 

cracks using dynamic modelling. Firstly, a dynamic model of a spur gearbox including a pinion 

and a gear is built. To mimic multiple tooth cracks, three scenarios are considered, which includes: 

(1) Scenario 1: two nonadjacent tooth cracks on the pinion and a healthy gear; (2) Scenario 2: two 

adjacent tooth cracks on the pinion and a healthy gear; (3) Scenario 3: one tooth crack on the pinion 

and one tooth crack on the gear. Tooth mesh stiffness formulae for each scenario is analytically 

derived using the potential energy method [26,33,69] and is further substituted into the gearbox 

dynamic model, thus generating vibration responses for the three scenarios of multiple tooth cracks. 

Subsequently, mesh stiffness and vibration signals are analyzed in both time and frequency 

domains to gain insights into the vibration characteristics of a spur gearbox with multiple tooth 

cracks. Inspired by the obtained insights, a novel method is proposed to detect the number and 

locations of multiple tooth cracks, the focus of which is placed on the CII since they contain more 

information on tooth cracks [77,104,107]. A new strategy based on the SVD is developed to extract 

the CII from gearbox vibration signals. Afterwards, TSA is conducted on the CII to obtain the TSA 

signals for both the pinion and the gear, the squared envelopes of which are adopted to detect the 

number and locations of multiple tooth cracks. By analyzing simulated gearbox vibration signals 

and experimental gearbox vibration datasets, a good understanding of the vibration characteristics 

of spur gearboxes with multiple tooth cracks is obtained and the effectiveness of the proposed 

method for detecting the number and locations of multiple tooth cracks is demonstrated. 

The novel contributions of this chapter include: (1) Gear tooth mesh stiffness for the three 

scenarios of multiple tooth cracks are analytically evaluated for the first time; (2) Insights into the 

vibration characteristics of a spur gearbox with multiple tooth cracks are obtained, such as two 

nonadjacent pinion tooth cracks induce two nonadjacent impulses in the vibration signal in one 

pinion revolution, two adjacent pinion tooth cracks induce two adjacent impulses in the vibration 

signal in one pinion revolution, and one pinion tooth crack and one gear tooth crack result in two 

groups of impulses in the vibration signal; (3) A novel method focusing on the CII is proposed to 

detect the number and locations of multiple tooth cracks in spur gearboxes.  
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The remainder of this chapter is organized as follows. Section 5.2 describes the proposed overall 

methodology. Simulated gearbox vibration signal analysis and experimental validation are 

presented in Section 5.3 and Section 5.4, respectively. Conclusions of the study conducted in this 

chapter are drawn in Section 5.5. 

5.2 The overall methodology 

The overall methodology consists of several parts, mainly including: (1) Dynamic modelling of a 

spur gearbox; (2) Derivation of gear tooth mesh stiffness formulae for the three scenarios of 

multiple tooth cracks; (3) Analysis of gear tooth mesh stiffness and gearbox vibration signals; (4) 

Development of a novel method for detecting the number and locations of multiple tooth cracks. 

Each part of the overall methodology is introduced in what follows. 

5.2.1 Dynamic model of a spur gearbox  

This chapter aims to model a one-stage fixed-axis spur gearbox, the dynamic model of which is 

shown in Fig. 2.2 in Section 2.4 of Chapter 2. The number of teeth of the pinion and the gear are 

𝑁𝑝 and 𝑁𝑔, respectively. The motion equations of the spur gearbox dynamic model are expressed 

with the Lagrange formulation, which is given by Eq. (3.1). Details of Eq. (3.1) are presented in 

Subsection 3.2.1.1 of Chapter 3. Gear tooth mesh stiffness is included in the stiffness matrix 𝐾. 

Analytical evaluation of the tooth mesh stiffness for the three considered scenarios of multiple 

tooth cracks is presented in Subsection 5.2.4 of this chapter, and the evaluated tooth mesh stiffness 

is inserted into Eq. (3.1) to generate gearbox vibration responses 

5.2.2 Meshing process of a pair of engaged teeth  

Before describing how to calculate gear tooth mesh stiffness, the meshing process of a pair of 

engaged teeth is first introduced. For a gear set with a contact ratio smaller than two and greater 

than one, which is the case considered in this thesis, contact usually takes places either between 

one single pair of teeth or two pairs of teeth [140]. Fig. 5.1 shows a gear set consisting of a pinion 

and a gear. 𝜔1 and 𝜔2 are the angular velocities of the pinion and the gear, respectively; 𝜃1 is the 

pinion angular displacement; 𝜃𝐿𝑃𝑆𝑇𝐶, 𝜃𝐻𝑃𝑆𝑇𝐶 , and 𝜃𝑒𝑛𝑑 are the pinion angular displacements at the 

Lowest Point of Single Tooth Contact (LPSTC), at the Highest Point of Single Tooth Contact 

(HPSTC), and at the end of the engagement, respectively.   
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(a) Beginning of tooth engagement (b) Lowest point of single tooth contact 

  

(c) Highest point of single tooth contact (d) End of tooth engagement 

Fig. 5.1: Schematic for the meshing process of a pair of engaged teeth [140] 

Referring to Fig. 5.1, the meshing process of a pair of engaged teeth is described. As shown in Fig. 

5.1, the two shaded teeth “Pinion tooth 2 and  ear tooth II” forms a meshing pair, which is selected 

to introduce the gear meshing process herein. In Fig. 5.1(a), the target tooth pair “Pinion tooth 2 

and  ear tooth II” starts to engage when the pinion tooth 2 contacts the tip of the gear tooth II 

[140]. This position is set as 𝜃1 = 0 and is the reference point. Two pairs of teeth, namely the 

second pair “Pinion tooth 2 and  ear tooth II” and the first pair “Pinion tooth 1 and  ear tooth I”, 

will be in mesh simultaneously after this position. Therefore, this position is the beginning of the 

first Double-tooth-pair mesh duration [26]. Fig. 5.1(b) shows the meshing situation at the position 

where 𝜃1 = 𝜃𝐿𝑃𝑆𝑇𝐶, from which it is seen that the first pair will disengage after this position and 

only the second pair will be in mesh. This position is the end of the first Double-tooth-pair mesh 

duration and the commencement of the first Single-tooth-pair mesh duration [26]. Furthermore, it 

can be inferred that the lasting angle of one Double-tooth-pair mesh duration, which is termed 𝜃𝑑, 

is equal to 𝜃𝐿𝑃𝑆𝑇𝐶 − 0, so 𝜃𝑑 = 𝜃𝐿𝑃𝑆𝑇𝐶 . Afterwards, as shown in Fig. 5.1(c), when 𝜃1 = 𝜃𝐻𝑃𝑆𝑇𝐶 , 
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the third pair “Pinion tooth 3 and  ear tooth III” starts to engage, and both the second pair and the 

third pair will be in mesh after this position. Hence, this position is the end of the first Single-

tooth-pair mesh duration and the beginning of the second Double-tooth-pair mesh duration, and it 

is concluded that the lasting angle of one Single-tooth-pair mesh duration, which is termed 𝜃𝑠, is 

equal to 𝜃𝐻𝑃𝑆𝑇𝐶 − 𝜃𝐿𝑃𝑆𝑇𝐶, so 𝜃𝑠 = 𝜃𝐻𝑃𝑆𝑇𝐶 − 𝜃𝐿𝑃𝑆𝑇𝐶. In Fig. 5.1(d), when 𝜃1 = 𝜃𝑒𝑛𝑑 , the second 

pair begins to disengage. After this position, only the third pair will be mesh. Therefore, this 

position is the end of the second Double-tooth-pair mesh duration and the beginning of the second 

Single-tooth-pair mesh duration. It can also be inferred that 𝜃𝑒𝑛𝑑 − 𝜃𝐻𝑃𝑆𝑇𝐶 = 𝜃𝑑.  

In sum, for a certain pair of engaged teeth, such as the pair “Pinion tooth 2 and  ear tooth II” 

shown in Fig. 5.1, its meshing process lasts for an angular duration of 𝜃𝑒𝑛𝑑 − 0, which is equal to 

𝜃𝑑 + 𝜃𝑠 + 𝜃𝑑. Calculations of 𝜃𝑑 and 𝜃𝑠 were presented in Ref. [26]. Mesh stiffness of a pair of 

healthy teeth is a periodic function with regards to the pinion angular displacement and its period 

is 𝜃𝑑 + 𝜃𝑠 = 2𝜋 𝑁𝑝⁄ (𝑟𝑎𝑑), which is termed “one mesh period” [26,141]. The meshing process of 

a pair of engaged teeth lasts for two mesh periods since 𝑟𝑜𝑢𝑛𝑑[(𝜃𝑑 + 𝜃𝑠 + 𝜃𝑑) (𝜃𝑑 + 𝜃𝑠)⁄ ] = 2. 

Likewise, it can be found that the meshing process of 𝑁 (𝑁 ≥ 2) adjacent pairs of engaged teeth 

lasts for 𝑁 + 1 mesh periods, and the meshing process of 𝑁 (𝑁 ≥ 2) nonadjacent pairs of engaged 

teeth lasts for 2𝑁 mesh periods. These conclusions will be used in the following sections. 

5.2.3 Tooth mesh stiffness evaluation for a pair of engaged teeth  

For a pair of engaged teeth of a gear set, such as the shaded tooth pair in Fig. 5.1, it consists of a 

pinion tooth and a gear tooth, the total mesh stiffness of which is calculated using Eq. (5.1) [26]. 

𝑘𝑡 =
1

1
𝑘ℎ
⁄ +1 𝑘𝑏_𝑃

⁄ +1 𝑘𝑎_𝑃⁄ +1 𝑘𝑠_𝑃⁄ +1 𝑘𝑏_𝐺
⁄ +1 𝑘𝑎_𝐺⁄ +1 𝑘𝑠_𝐺⁄

                                   (5.1) 

where 𝑘𝑡 is the total mesh stiffness;  𝑘ℎ, 𝑘𝑏, 𝑘𝑎, and 𝑘𝑠 represent the Hertzian contact stiffness, the 

bending stiffness, the axial compressive stiffness, and the shear stiffness, respectively; subscripts 

“P” and “ ” denote the pinion tooth and the gear tooth, respectively.  

For the Hertzian contact stiffness of a pair of engaged teeth, it is given in Eq. (5.2) [26]. 

𝑘ℎ =
𝜋𝐸𝐿

4(1−𝑣2)
                                                              (5.2) 
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where 𝐸, 𝑣, and 𝐿 denote the Young’s modulus, the Poisson’s ratio, and the width of tooth face, 

respectively.  

For the calculations of 𝑘𝑏 , 𝑘𝑎 , and 𝑘𝑠  of a healthy tooth, a healthy pinion tooth is used as an 

example for illustration. The schematic of a healthy pinion tooth is shown in Fig. 5.2, in which 𝛼1 

denotes the angle between the action force 𝐹 and its vertical component 𝐹𝑏, 𝛼2 denotes the half of 

the base tooth angle of the pinion tooth, 𝑅𝑏1 is the base circle radius of the pinion.   

 

Fig. 5.2: Schematic of a healthy pinion tooth [26]  

The reciprocals of 𝑘𝑏, 𝑘𝑎, and 𝑘𝑠 of a healthy pinion tooth are given in Eq. (5.3) through Eq. (5.5) 

[26]. 

    
1

𝑘𝑏_𝐻𝑃
= ∫

3{1+cos𝛼1[(𝛼2−𝛼) sin𝛼−cos𝛼]}
2(𝛼2−𝛼) cos𝛼

2𝐸𝐿[sin𝛼+(𝛼2−𝛼) cos𝛼]3

𝛼2
−𝛼1

𝑑𝛼                          (5.3) 

    
1

𝑘𝑎_𝐻𝑃
= ∫

(𝛼2−𝛼) cos𝛼sin
2𝛼1

2𝐸𝐿[sin𝛼+(𝛼2−𝛼) cos𝛼]

𝛼2
−𝛼1

𝑑𝛼                                                        (5.4) 

1

𝑘𝑠_𝐻𝑃
= ∫

1.2(1+𝑣)(𝛼2−𝛼) cos𝛼cos
2𝛼1

𝐸𝐿[sin𝛼+(𝛼2−𝛼) cos𝛼]

𝛼2
−𝛼1

𝑑𝛼                                                  (5.5) 

where subscript “𝐻𝑃” denotes a healthy pinion tooth. 

By changing 𝛼1 and 𝛼2 to their counterparts for a gear tooth, namely 𝛼1
′  and 𝛼2

′ , the reciprocals of 

𝑘𝑏 , 𝑘𝑎 , and 𝑘𝑠  of a healthy gear tooth are calculated using Eq. (5.6), Eq. (5.7), and Eq. (5.8), 

respectively.  

F

Fa

Fb

Rb1
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1

𝑘𝑏_𝐻𝐺
= ∫

3{1+cos𝛼1
′ [(𝛼2

′−𝛼) sin𝛼−cos𝛼]}
2
(𝛼2

′−𝛼)cos𝛼

2𝐸𝐿[sin𝛼+(𝛼2
′−𝛼) cos𝛼]

3

𝛼2
′

−𝛼1
′ 𝑑𝛼                          (5.6) 

    
1

𝑘𝑎_𝐻𝐺
= ∫

(𝛼2
′−𝛼)cos𝛼sin2𝛼1

′

2𝐸𝐿[sin𝛼+(𝛼2
′−𝛼)cos𝛼]

𝛼2
′

−𝛼1
′ 𝑑𝛼                                                        (5.7) 

1

𝑘𝑠_𝐻𝐺
= ∫

1.2(1+𝑣)(𝛼2
′−𝛼)cos𝛼cos2𝛼1

′

𝐸𝐿[sin𝛼+(𝛼2
′−𝛼) cos𝛼]

𝛼2
′

−𝛼1
′ 𝑑𝛼                                                  (5.8) 

where subscript “𝐻𝐺” denotes a healthy gear tooth. 

For the calculations of 𝑘𝑏, 𝑘𝑎, and 𝑘𝑠 of a cracked tooth, a pinion tooth with a root crack is used as 

an example for illustration, the schematic of which is shown in Fig. 2.3 in Chapter 2. Tooth crack 

propagation path is simplified as a straight line starting from the tooth root fillet, 𝑞𝑝 is the pinion 

tooth crack depth and 𝜙 is the crack angle. In this chapter, the case where 𝑞𝑝 is no greater than half 

of the base chordal tooth thickness of the pinion is considered, which corresponds to a shallow tooth 

crack [26]. Tooth cracks do not affect Hertzian contact stiffness 𝑘ℎ since the width of tooth face 

remains unchanged. Besides, for a tooth with a root crack, its axial compressive stiffness, namely 

𝑘𝑎_𝐶𝑃  or 𝑘𝑎_𝐶𝐺, is the same as that of a healthy tooth since the crack part can still bear the axial 

compressive force as if there is no crack [26]. 

However, the bending stiffness 𝑘𝑏 and the shear stiffness 𝑘𝑠 are influenced by a pinion tooth crack 

[26], the reciprocals of which are calculated using Eq. (5.9) and Eq. (5.10), respectively. 

    
1

𝑘𝑏_𝐶𝑃
= ∫

12{1+cos𝛼1[(𝛼2−𝛼) sin𝛼−cos𝛼]}
2(𝛼2−𝛼) cos𝛼

𝐸𝐿[sin𝛼2− 
𝑞𝑝

𝑅𝑏1
sin𝜙+sin𝛼+(𝛼2−𝛼) cos𝛼]

3

𝛼2
−𝛼1

𝑑𝛼                          (5.9) 

1

𝑘𝑠_𝐶𝑃
= ∫

2.4(1+𝑣)(𝛼2−𝛼) cos𝛼cos
2𝛼1

𝐸𝐿[sin𝛼2− 
𝑞𝑝

𝑅𝑏1
sin𝜙+sin𝛼+(𝛼2−𝛼) cos𝛼]

𝛼2
−𝛼1

𝑑𝛼                                  (5.10) 

where subscript “𝐶𝑃” denotes a cracked pinion tooth. 

In Ref. [26], stiffness calculation for a cracked gear tooth was not involved. In this paper, 𝑘𝑏 and 

𝑘𝑠 of a gear tooth with a root crack are derived, the reciprocals of which are shown in Eq. (5.11) 

and Eq. (5.12), respectively.  

    
1

𝑘𝑏_𝐶𝐺
= ∫

12{1+cos𝛼1
′ [(𝛼2

′−𝛼) sin𝛼−cos𝛼]}
2
(𝛼2

′−𝛼)cos𝛼

𝐸𝐿[sin𝛼2
′− 

𝑞𝑔

𝑅𝑏2
sin𝜙+sin𝛼+(𝛼2

′−𝛼) cos𝛼]
3

𝛼2
′

−𝛼1
′ 𝑑𝛼                          (5.11) 
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1

𝑘𝑠_𝐶𝐺
= ∫

2.4(1+𝑣)(𝛼2
′−𝛼)cos𝛼cos2𝛼1

′

𝐸𝐿[sin𝛼2
′− 

𝑞𝑔

𝑅𝑏2
sin𝜙+sin𝛼+(𝛼2

′−𝛼)cos𝛼]

𝛼2
′

−𝛼1
′ 𝑑𝛼                                  (5.12) 

where subscript “𝐶𝐺” denotes a cracked gear tooth; 𝑞𝑔 is the depth of the gear tooth crack, 𝑅𝑏2 is 

the base circle radius of the gear, 𝛼2
′  is the half of the base tooth angle of the gear tooth, 𝛼1

′  is the 

counterpart of 𝛼1 for the gear tooth; 𝜙 is the gear tooth crack angle, which is set to be the same as 

the pinion tooth crack angle for simplicity.    

In Eq. (5.3) through Eq. (5.12), 𝛼1and 𝛼1
′  can be expressed as functions of the pinion angular 

displacement 𝜃1 [26], while 𝛼2 and  𝛼2
′  are two constants related to the pinion and gear geometry 

parameters. Therefore, 𝑘𝑏_𝐻𝑃, 𝑘𝑎_𝐻𝑃 , 𝑘𝑠_𝐻𝑃 , 𝑘𝑏_𝐻𝐺 , 𝑘𝑎_𝐻𝐺 , and 𝑘𝑠_𝐻𝐺  are functions of 𝜃1; 𝑘𝑏_𝐶𝑃  and 

𝑘𝑠_𝐶𝑃  are functions of both 𝜃1  and 𝑞𝑝 ; 𝑘𝑏_𝐶𝐺  and 𝑘𝑠_𝐶𝐺  are functions of both 𝜃1  and 𝑞𝑔 . The 

formulae shown in Eq. (5.3) through Eq. (5.12) are the bases of the derivations of the total mesh 

stiffness of a pair of engaged teeth presented in what follows. 

For a pair of engaged teeth, it may result in four mesh cases according to the health conditions of 

the pinion tooth and the gear tooth, which are shown in Fig. 5.3. The four mesh cases are: (1) a 

healthy pinion tooth and a healthy gear tooth, which is the “HP-HG” shown in Fig. 5.3(a); (2) a 

pinion tooth with a root crack and a healthy gear tooth, which is the “CP-HG” shown in Fig. 5.3(b); 

(3) a healthy pinion tooth and a gear tooth with a root crack, which is the “HP-CG” shown in Fig. 

5.3(c); (4) a pinion tooth with a root crack and a gear tooth with a root crack, which is the “CP-CG” 

illustrated in Fig. 5.3(d). Different combinations of these four mesh cases of a tooth pair result in 

different scenarios of multiple tooth cracks for a gear set. Therefore, before introducing how to 

evaluate the mesh stiffness for multiple tooth cracks, formulae of the mesh stiffness for these four 

cases are first derived. For the convenience of descriptions in Subsection 5.2.3.1 to Subsection 

5.2.3.4, in Fig. 5.3, let the serial number of the pinion tooth HP or CP be 𝑝 (1 ≤ 𝑝 ≤ 𝑁𝑝) and that 

of the gear tooth HG or CG be 𝑔 (1 ≤ 𝑔 ≤ 𝑁𝑔). 
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(a) First mesh case: HP-HG (c) Third mesh case: HP-CG 

  

(b) Second mesh case: CP-HG (d) Fourth mesh case: CP-CG 

Fig. 5.3: Four mesh cases of a pair of engaged teeth of a gear set  

5.2.3.1 A healthy pinion tooth and a healthy gear tooth  

This case is shown in Fig. 5.3(a), its mesh stiffness is termed 𝑘𝑡_𝐻𝑃
𝑝
𝐻𝐺
𝑔  and is given in Eq. (5.13).  

𝑘𝑡_𝐻𝑃
𝑝
𝐻𝐺
𝑔 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐻
𝑃
𝑝⁄ +1 𝑘

𝑎_𝐻
𝑃
𝑝⁄ +1 𝑘

𝑠_𝐻
𝑃
𝑝⁄ +1 𝑘

𝑏_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑎_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑠_𝐻
𝐺
𝑔⁄
                (5.13) 

5.2.3.2 A pinion tooth with a root crack and a healthy gear tooth   

This case is shown in Fig. 5.3(b), its mesh stiffness is termed 𝑘𝑡_𝐶𝑃
𝑝
𝐻𝐺
𝑔  and is given in Eq. (5.14). 

𝑘𝑡_𝐶𝑃
𝑝
𝐻𝐺
𝑔 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐶
𝑃
𝑝⁄ +1 𝑘

𝑎_𝐶
𝑃
𝑝⁄ +1 𝑘

𝑠_𝐶
𝑃
𝑝⁄ +1 𝑘

𝑏_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑎_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑠_𝐻
𝐺
𝑔⁄
                (5.14) 

5.2.3.3 A healthy pinion tooth and a gear tooth with a root crack   

This case is shown in Fig. 5.3(c), its mesh stiffness is termed 𝑘𝑡_𝐻𝑃
𝑝
𝐶𝐺
𝑔 and is given in Eq. (5.15). 
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𝑘𝑡_𝐻𝑃
𝑝
𝐶𝐺
𝑔 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐻
𝑃
𝑝⁄ +1 𝑘

𝑎_𝐻
𝑃
𝑝⁄ +1 𝑘

𝑠_𝐻
𝑃
𝑝⁄ +1 𝑘

𝑏_𝐶
𝐺
𝑔⁄ +1 𝑘

𝑎_𝐶
𝐺
𝑔⁄ +1 𝑘

𝑠_𝐶
𝐺
𝑔⁄
                (5.15) 

5.2.3.4 A pinion tooth with a root crack and a gear tooth with a root crack  

This case is shown in Fig. 5.3(d), its mesh stiffness is termed 𝑘𝑡_𝐶𝑃
𝑝
𝐶𝐺
𝑔  and is given in Eq. (5.16).  

𝑘𝑡_𝐶𝑃
𝑝
𝐶𝐺
𝑔 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐶
𝑃
𝑝⁄ +1 𝑘

𝑎_𝐶
𝑃
𝑝⁄ +1 𝑘

𝑠_𝐶
𝑃
𝑝⁄ +1 𝑘

𝑏_𝐶
𝐺
𝑔⁄ +1 𝑘

𝑎_𝐶
𝐺
𝑔⁄ +1 𝑘

𝑠_𝐶
𝐺
𝑔⁄
                (5.16) 

In Eq. (5.13) through Eq. (5.16), subscript “𝐻𝑃
𝑝
” denotes a healthy pinion tooth whose serial number 

is 𝑝, subscript “𝐻𝐺
𝑔
” denotes a healthy gear tooth whose serial number is 𝑔, subscript “𝐶𝑃

𝑝
” denotes 

a cracked pinion tooth whose serial number is 𝑝, and subscript “𝐶𝐺
𝑔
” denotes a cracked gear tooth 

whose serial number is 𝑔. The derived mesh stiffness formulae shown in Eq. (5.13) through Eq. 

(5.16) are for a pair of engaged teeth, which will be used in Subsection 5.2.4. 

5.2.4 Tooth mesh stiffness evaluation for a gear set with multiple tooth cracks  

As mentioned in Section 5.1, three scenarios of multiple tooth cracks of a spur gearbox are studied 

in this paper. Based on the descriptions presented in Subsection 5.2.2 and Subsection 5.2.3, mesh 

stiffness formulae for the three scenarios of multiple tooth cracks are analytically derived, which 

are presented in what follows.  

5.2.4.1 Scenario 1: two nonadjacent tooth cracks on the pinion and a healthy gear 

Fig. 5.4 shows a gear set with two nonadjacent tooth cracks on the pinion and all the gear teeth are 

healthy. Let the serial numbers of the two cracked pinion teeth be “I” and “J” (1 ≤ I ≤ Np, 1 ≤

J ≤ Np , 2 ≤ |𝐼 − 𝐽| ≤ Np − 2), respectively. Depths of the two tooth cracks are 𝑞𝑝1  and 𝑞𝑝2 , 

respectively. Because all gear teeth are healthy, each gear tooth is assumed to be equivalent in 

terms of stiffness calculation. As the pinion and the gear rotate, the cracked pinion tooth “I” will 

first mesh with a healthy gear tooth, afterwards, the crack pinion tooth “J” will mesh with a healthy 

gear tooth. Let the position where the cracked pinion tooth “I” starts to mesh with a gear tooth be 

the reference point 𝜃1 = 0, then after M revolutions of the pinion, namely when 𝜃1 = M ∗ 2𝜋 𝑟𝑎𝑑 

(M is a positive integer), the two cracked pinion teeth “I” and “J” will return to their original 

positions when 𝜃1 = 0. Mesh stiffness of the gear set for “Scenario 1” is the same in each pinion 

revolution since it is a periodic function with regards to 𝜃1, and the period is 2𝜋 𝑟𝑎𝑑.  
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Fig. 5.4: Two nonadjacent tooth cracks on the pinion and a healthy gear 

The cracked pinion tooth “I” and a healthy gear tooth forms the mesh case “CP-HG” shown in Fig. 

5.3(b), which is also appliable to the cracked pinion tooth “J” and a healthy gear tooth. For other 

healthy pinion teeth, each of them and a healthy gear tooth forms the mesh case “HP-HG” shown 

in Fig. 5.3(a). The meshing process of “CP-HG” lasts for two mesh periods, namely [0,2
2𝜋

𝑁𝑝
]. 

Besides, in one Double-tooth-pair mesh duration, such as [0, 𝜃𝑑], there are two meshing pairs, so 

the total mesh stiffness is the sum of the mesh stiffness of the two meshing pairs. While in one 

Single-tooth-pair mesh duration, such as [𝜃𝑑 ,
2𝜋

𝑁𝑝
], there is only one meshing pair, so the total mesh 

stiffness is the mesh stiffness of the meshing pair. Based on above analysis, the mesh stiffness for 

“Scenario 1” is calculated using Eq. (5.17). 

𝐾𝐼 =

{
 
 

 
 𝑘𝑡_𝑞𝑝1 , 𝜃1 ∈ [0,2

2𝜋

𝑁𝑝
] + (I − 1)

2𝜋

𝑁𝑝
+ (𝑚 − 1)2𝜋

𝑘𝑡_𝑞𝑝2 , 𝜃1 ∈ [0,2
2𝜋

𝑁𝑝
] + (J − 1)

2𝜋

𝑁𝑝
+ (𝑚 − 1)2𝜋

𝑘𝑡_𝐻, 𝜃1 𝑒𝑞𝑢𝑎𝑙𝑠 𝑜𝑡ℎ𝑒𝑟 𝑎𝑛𝑔𝑙𝑒𝑠

                          (5.17) 

where 𝑚 is the number of pinion revolutions (𝑚 is a positive integer); 𝑘𝑡_𝑞𝑝1 is the mesh stiffness 

for the meshing pair consisting of the cracked pinion tooth “I” and a healthy gear tooth, 𝑘𝑡_𝑞𝑝2 is 

the mesh stiffness for the meshing pair consisting of the cracked pinion tooth “J” and a healthy 

gear tooth, and 𝑘𝑡_𝐻 is the mesh stiffness for the meshing pair consisting of a healthy pinion tooth 

and a healthy gear tooth, the values of which in one pinion revolution are given by Eq. (5.18), Eq. 

(5.19), and Eq. (5.20), respectively. 
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𝑘𝑡_𝑞𝑝1 =

{
 
 
 

 
 
 𝑘𝑡_𝐻𝑃𝐼−1𝐻𝐺

𝑔−1 + 𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 , 𝜃1 ∈ [0, 𝜃𝑑] + (I − 1)

2𝜋

𝑁𝑝

𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (I − 1)

2𝜋

𝑁𝑝

𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 + 𝑘

𝑡_𝐻𝑃
𝐼+1𝐻𝐺

𝑔+1 , 𝜃1 ∈ [
2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+1𝐻𝐺
𝑔+1 , 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + (I − 1)

2𝜋

𝑁𝑝

                   (5.18) 

where 𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐶𝑃
𝐼⁄ +1 𝑘

𝑎_𝐶𝑃
𝐼⁄ +1 𝑘

𝑠_𝐶𝑃
𝐼⁄ +1 𝑘

𝑏_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑎_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑠_𝐻
𝐺
𝑔⁄

, in which 𝑘𝑏_𝐶𝑃𝐼
, 𝑘𝑎_𝐶𝑃𝐼

, and 

𝑘𝑠_𝐶𝑃𝐼
 are the bending stiffness, axial compressive stiffness, and shear stiffness for the cracked 

pinion tooth “I” whose crack depth is 𝑞𝑝1, respectively.  

𝑘𝑡_𝑞𝑝2 =

{
 
 
 

 
 
 𝑘𝑡_𝐻𝑃

𝐽−1
𝐻𝐺
𝑔−1 + 𝑘

𝑡_𝐶𝑃
𝐽
𝐻𝐺
𝑔 , 𝜃1 ∈ [0, 𝜃𝑑] + (J − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐽
𝐻𝐺
𝑔 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (J − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐽
𝐻𝐺
𝑔 + 𝑘

𝑡_𝐻𝑃
𝐽+1

𝐻𝐺
𝑔+1 , 𝜃1 ∈ [

2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + (J − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐽+1
𝐻𝐺
𝑔+1 , 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + (J − 1)

2𝜋

𝑁𝑝

                (5.19) 

where 𝑘
𝑡_𝐶𝑃

𝐽
𝐻𝐺
𝑔 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐶𝑃
𝐽⁄ +1 𝑘

𝑎_𝐶𝑃
𝐽⁄ +1 𝑘

𝑠_𝐶𝑃
𝐽⁄ +1 𝑘

𝑏_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑎_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑠_𝐻
𝐺
𝑔⁄

, in which 𝑘
𝑏_𝐶𝑃

𝐽 , 𝑘
𝑎_𝐶𝑃

𝐽 , and 

𝑘
𝑠_𝐶𝑃

𝐽  are the bending stiffness, axial compressive stiffness,  and the shear stiffness for the cracked 

pinion tooth “J” whose crack depth is 𝑞𝑝2, respectively. 

𝑘𝑡_𝐻 = {

𝑘
𝑡_𝐻𝑃

𝑝−1
𝐻𝐺
𝑔−1 + 𝑘𝑡_𝐻𝑃

𝑝
𝐻𝐺
𝑔 , 𝜃1 ∈ [0, 𝜃𝑑] + (𝑝 − 1)

2𝜋

𝑁𝑝

𝑘𝑡_𝐻𝑃
𝑝
𝐻𝐺
𝑔 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (𝑝 − 1)

2𝜋

𝑁𝑝

                          (5.20) 

where 𝑘𝑡_𝐻𝑃
𝑝
𝐻𝐺
𝑔 is shown in Eq. (5.13). 

5.2.4.2 Scenario 2: two adjacent tooth cracks on the pinion and a healthy gear 

Fig. 5.5 shows a gear set with two adjacent tooth cracks on the pinion and all the gear teeth are 

healthy. Let the serial numbers of the two cracked teeth be “I” and “I 1” (1 ≤ I < 𝑁𝑝). Depths of 

the two pinion tooth cracks are 𝑞𝑝1 and 𝑞𝑝2, respectively. As the pinion and the gear rotate, the 

cracked pinion tooth “I” will first mesh with a healthy gear tooth, afterwards, the crack pinion 
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tooth “I 1” will mesh with a healthy gear tooth. Let the position where the pinion tooth “I” starts 

to mesh with a gear tooth be the reference point 𝜃1 = 0, then after M pinion revolutions, namely 

when 𝜃1 = M ∗ 2𝜋 rad, the two cracked pinion teeth “I” and “I 1” will return to their original 

positions when 𝜃1 = 0. Mesh stiffness of the gear set for “Scenario 2” is the same in each pinion 

revolution since it is a periodic function with regards to 𝜃1, and the period is 2𝜋 rad.  

 

Fig. 5.5: Two adjacent tooth cracks on the pinion and a healthy gear 

Either cracked pinion tooth “I” or “I 1”and a healthy gear tooth forms the mesh case “CP-HG”. 

The meshing process of two adjacent pairs of “CP-HG” lasts for three mesh periods, namely 

[0,3
2𝜋

𝑁𝑝
]. Therefore, mesh stiffness for “Scenario 2” is calculated using Eq. (5.21). 

𝐾𝐼𝐼 = {
𝑘𝑡_𝑞𝑝1_𝑞𝑝2 , 𝜃1 ∈ [0,3

2𝜋

𝑁𝑝
] + (I − 1)

2𝜋

𝑁𝑝
+ (𝑚 − 1)2𝜋

𝑘𝑡_𝐻, 𝜃1 𝑒𝑞𝑢𝑎𝑙𝑠 𝑜𝑡ℎ𝑒𝑟 𝑎𝑛𝑔𝑙𝑒𝑠
                      (5.21) 

where 𝑘𝑡_𝐻 is the mesh stiffness for a healthy meshing pair shown in Eq. (5.20); 𝑘𝑡_𝑞𝑝1_𝑞𝑝2 is the 

mesh stiffness for two adjacent meshing pairs consisting of the cracked pinion teeth “I” and “I 1” 

and two healthy gear teeth, the value of which in one pinion revolution is given by Eq. (5.22). 
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𝑘𝑡_𝑞𝑝1_𝑞𝑝2 =

{
 
 
 
 
 

 
 
 
 
 𝑘𝑡_𝐻𝑃𝐼−1𝐻𝐺

𝑔−1 + 𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 , 𝜃1 ∈ [0, 𝜃𝑑] + (I − 1)

2𝜋

𝑁𝑝

𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (I − 1)

2𝜋

𝑁𝑝

𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 + 𝑘

𝑡_𝐶𝑃
𝐼+1𝐻𝐺

𝑔+1 , 𝜃1 ∈ [
2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼+1𝐻𝐺
𝑔+1 , 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + (I − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼+1𝐻𝐺
𝑔+1 + 𝑘

𝑡_𝐻𝑃
𝐼+2𝐻𝐺

𝑔+2 , 𝜃1 ∈ [2
2𝜋

𝑁𝑝
, 2

2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+2𝐻𝐺
𝑔+2 , 𝜃1 ∈ [2

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 3

2𝜋

𝑁𝑝
] + (I − 1)

2𝜋

𝑁𝑝

          (5.22) 

where 𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐶𝑃
𝐼⁄ +1 𝑘

𝑎_𝐶𝑃
𝐼⁄ +1 𝑘

𝑠_𝐶𝑃
𝐼⁄ +1 𝑘

𝑏_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑎_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑠_𝐻
𝐺
𝑔⁄

, in which 𝑘𝑏_𝐶𝑃𝐼
, 𝑘𝑎_𝐶𝑃𝐼

, and 

𝑘𝑠_𝐶𝑃𝐼
 are the bending stiffness, axial compressive stiffness, and shear stiffness for the cracked 

pinion tooth “I” with crack depth 𝑞𝑝1, respectively; 

𝑘𝑡_𝐶𝑃𝐼+1𝐻𝐺
𝑔 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐶𝑃
𝐼+1⁄ +1 𝑘

𝑎_𝐶𝑃
𝐼+1⁄ +1 𝑘

𝑠_𝐶𝑃
𝐼+1⁄ +1 𝑘

𝑏_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑎_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑠_𝐻
𝐺
𝑔⁄

, in which 𝑘𝑏_𝐶𝑃𝐼+1
, 𝑘𝑎_𝐶𝑃𝐼+1

, 

and 𝑘𝑠_𝐶𝑃𝐼+1
 are the bending stiffness, axial compressive stiffness, and shear stiffness for the 

cracked pinion tooth “I 1” with crack depth 𝑞𝑝2, respectively. 

5.2.4.3 Scenario 3: one tooth crack on the pinion and one tooth crack on the gear 

Fig. 5.6 shows a gear set with one tooth crack on the pinion and one tooth crack on the gear, depths 

of which are 𝑞𝑝 and 𝑞𝑔, respectively. Let the serial numbers of the two cracked teeth be “I” and 

“J” (1 ≤ I ≤ 𝑁𝑝, 1 ≤ J ≤ 𝑁𝑔), respectively. As the pinion and the gear rotate, the cracked pinion 

tooth “I” will first mesh with the cracked gear tooth “J”. Afterwards, the cracked pinion tooth “I” 

will mesh with a healthy gear tooth, and a healthy pinion tooth will mesh with the cracked gear 

tooth “J”. Let the position where the cracked pinion tooth “I” starts to mesh with the cracked gear 

tooth “J” be the reference point 𝜃1 = 0, then after 𝑆 ∗ 𝑁𝑔 pinion revolutions, namely when 𝜃1 =

𝑆 ∗ 𝑁𝑔 ∗ 2𝜋 rad (𝑆 is a positive integer), the two cracked teeth “I” and “J” will return to their 

original positions when 𝜃1 = 0. Mesh stiffness of the gear set for “Scenario 3” is the same in every 

𝑁𝑔 pinion revolutions since it is a periodic function with regards to 𝜃1, and the period is 𝑁𝑔 ∗ 2𝜋 

rad.  
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Fig. 5.6: One tooth crack on the pinion and one tooth crack on the gear 

As shown in Fig. 5.3, a tooth pair may result in four mesh cases. For mesh cases “CP-HG” and “HP-

CG”, when the spacing between them is no greater than one tooth pair, they can form four variants: 

“Variant 1”, “Variant 2”, “Variant 3”, and “Variant 4”, which are shown in Fig. 5.7. These four 

variants represent the mesh cases of the “Scenario 3” of multiple tooth cracks at four different 

points in time and they have an equal possibility of occurrence. 

  

(a) Variant 1: “CP-HG” and “HP-CG” (b) Variant 2: “CP-HG”, “HP-HG”, and “HP-CG” 

  

(c) Variant 3: “HP-CG”, “HP-HG”, and “CP-HG” (d) Variant 4: “HP-CG” and “CP-HG” 

Fig. 5.7: Four variants formed by the mesh cases “CP-HG” and “HP-CG” 

 ear

Pinion

 1

 2

  

  

 
 

 ear

Pinion

 1

 2

  

  

  
  

    

  

 ear

Pinion

 1

 2

  

  

  
  

  

  

    

  

 ear

Pinion

 1

 2

  

  

 

 

  

  

  

    

  

 ear

Pinion

 1

 2

  

  

  

  

  

  

  



167 
 
 

Based on the analysis in Subsection 5.2.2, it is known that the meshing process of either “HP-CG” 

or “CP-CG” lasts for two mesh periods, namely [0,2
2𝜋

𝑁𝑝
]; the meshing process of either “Variant 1” 

or “Variant 4” lasts for three mesh periods, namely [0,3
2𝜋

𝑁𝑝
]; the meshing process of either “Variant 

2” or “Variant 3” lasts for four mesh periods, namely [0,4
2𝜋

𝑁𝑝
]. Therefore, mesh stiffness for 

“Scenario 3” is calculated using Eq. (5.23). 

𝐾𝐼𝐼𝐼 =

{
 
 
 
 

 
 
 
 
𝑘𝑡_𝑞𝑝_𝑞𝑔 , 𝜃1 ∈ Ω1

𝑘𝑡_𝑞𝑝 , 𝜃1 ∈ Ω2 

𝑘𝑡_𝑞𝑔 , 𝜃1 ∈ Ω3

𝑘𝑡_𝐻 , 𝜃1 ∈ Ω4
𝑘𝑡_𝑉1 , 𝜃1 ∈ Ω5
𝑘𝑡_𝑉2 , 𝜃1 ∈ Ω6
𝑘𝑡_𝑉3 , 𝜃1 ∈ Ω7
𝑘𝑡_𝑉4 , 𝜃1 ∈ Ω8

                                                        (5.23) 

where 𝑘𝑡_𝑞𝑝_𝑞𝑔 is the mesh stiffness for “CP-CG”; 𝑘𝑡_𝑞𝑝 is the mesh stiffness for “CP-HG”; 𝑘𝑡_𝑞𝑔 is 

the mesh stiffness for “HP-CG”; 𝑘𝑡_𝐻 is the mesh stiffness for “HP-HG”; 𝑘𝑡_𝑉1 is the mesh stiffness 

for “Variant 1”; 𝑘𝑡_𝑉2 is the mesh stiffness for “Variant 2”; 𝑘𝑡_𝑉3 is the mesh stiffness for “Variant 

3”; 𝑘𝑡_𝑉4 is the mesh stiffness for “Variant 4". 𝑘𝑡_𝐻 is calculated using Eq. (5.20), the remaining 7 

stiffness components in one period of 𝐾𝐼𝐼𝐼 are calculated using Eq. (5.24) through Eq. (5.30). Ω1, 

Ω2, Ω3, Ω4, Ω5, Ω6, Ω7, and Ω8 are the corresponding value ranges of 𝜃1 for 𝑘𝑡_𝑞𝑝_𝑞𝑔, 𝑘𝑡_𝑞𝑝, 𝑘𝑡_𝑞𝑔, 

𝑘𝑡_𝐻, 𝑘𝑡_𝑉1, 𝑘𝑡_𝑉2, 𝑘𝑡_𝑉3, and 𝑘𝑡_𝑉4, respectively, which are shown in Eq. (5.31). 

𝑘𝑡_𝑞𝑝_𝑞𝑔 =

{
 
 
 

 
 
 𝑘𝑡_𝐻𝑃𝐼−1𝐻𝐺

𝐽−1 + 𝑘
𝑡_𝐶𝑃

𝐼𝐶𝐺
𝐽 , 𝜃1 ∈ [0, 𝜃𝑑] + |I − J|

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐶𝐺
𝐽 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + |I − J|

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐶𝐺
𝐽 + 𝑘

𝑡_𝐻𝑃
𝐼+1𝐻𝐺

𝐽+1 , 𝜃1 ∈ [
2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + |I − J|

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+1𝐻𝐺
𝐽+1 , 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + |I − J|

2𝜋

𝑁𝑝

                     (5.24) 

where 𝑘
𝑡_𝐶𝑃

𝐼𝐶𝐺
𝐽 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐶𝑃
𝐼⁄ +1 𝑘

𝑎_𝐶𝑃
𝐼⁄ +1 𝑘

𝑠_𝐶𝑃
𝐼⁄ +1 𝑘

𝑏_𝐶
𝐺
𝐽⁄ +1 𝑘

𝑎_𝐶
𝐺
𝐽⁄ +1 𝑘

𝑠_𝐶
𝐺
𝐽⁄

, in which 𝑘𝑏_𝐶𝑃𝐼
, 𝑘𝑎_𝐶𝑃𝐼

, and 

𝑘𝑠_𝐶𝑃𝐼
 are the bending stiffness, axial compressive stiffness, and shear stiffness of the cracked 
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pinion tooth “I” whose crack depth is 𝑞𝑝, respectively; 𝑘
𝑏_𝐶𝐺

𝐽 , 𝑘
𝑎_𝐶𝐺

𝐽 , and 𝑘
𝑠_𝐶𝐺

𝐽  are the bending 

stiffness, axial compressive stiffness, and shear stiffness of the cracked gear tooth “J” whose crack 

depth is 𝑞𝑔, respectively. 

𝑘𝑡_𝑞𝑝 =

{
 
 
 

 
 
 𝑘𝑡_𝐻𝑃𝐼−1𝐻𝐺

𝑔−1 + 𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 , 𝜃1 ∈ [0, 𝜃𝑑] + (I − 1)

2𝜋

𝑁𝑝

𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (I − 1)

2𝜋

𝑁𝑝

𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 + 𝑘

𝑡_𝐻𝑃
𝐼+1𝐻𝐺

𝑔+1 , 𝜃1 ∈ [
2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+1𝐻𝐺
𝑔+1 , 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + (I − 1)

2𝜋

𝑁𝑝

                   (5.25) 

where 𝑘𝑡_𝐶𝑃𝐼𝐻𝐺
𝑔 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐶𝑃
𝐼⁄ +1 𝑘

𝑎_𝐶𝑃
𝐼⁄ +1 𝑘

𝑠_𝐶𝑃
𝐼⁄ +1 𝑘

𝑏_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑎_𝐻
𝐺
𝑔⁄ +1 𝑘

𝑠_𝐻
𝐺
𝑔⁄

, in which 𝑘𝑏_𝐶𝑃𝐼
, 𝑘𝑎_𝐶𝑃𝐼

, and 

𝑘𝑠_𝐶𝑃𝐼
 are the bending stiffness, axial compressive stiffness, and shear stiffness of the cracked 

pinion tooth “I” with crack depth 𝑞𝑝, respectively.  

𝑘𝑡_𝑞𝑔 =

{
 
 
 

 
 
 𝑘𝑡_𝐻𝑃

𝑝−1
𝐻𝐺
𝐽−1 + 𝑘

𝑡_𝐻𝑃
𝑝
𝐶𝐺
𝐽 , 𝜃1 ∈ [0, 𝜃𝑑] + (J − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝑝
𝐶𝐺
𝐽 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (J − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝑝
𝐶𝐺
𝐽 + 𝑘

𝑡_𝐻𝑃
𝑝+1

𝐻𝐺
𝐽+1 , 𝜃1 ∈ [

2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + (J − 1)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝑝+1
𝐻𝐺
𝐽+1 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + (J − 1)

2𝜋

𝑁𝑝

                  (5.26) 

where 𝑘
𝑡_𝐻𝑃

𝑝
𝐶𝐺
𝐽 =

1
1
𝑘ℎ
⁄ +1 𝑘

𝑏_𝐻𝑃
𝑝⁄ +1 𝑘

𝑎_𝐻𝑃
𝑝⁄ +1 𝑘

𝑠_𝐻𝑃
𝑝⁄ +1 𝑘

𝑏_𝐶
𝐺
𝐽⁄ +1 𝑘

𝑎_𝐶
𝐺
𝐽⁄ +1 𝑘

𝑠_𝐶
𝐺
𝐽⁄

, in which 𝑘
𝑏_𝐶𝐺

𝐽 , 𝑘
𝑎_𝐶𝐺

𝐽 , and 

𝑘
𝑠_𝐶𝐺

𝐽  are the bending stiffness, axial compressive stiffness, and shear stiffness of the cracked gear 

tooth “J” with crack depth 𝑞𝑔, respectively.  
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𝑘𝑡_𝑉1 =

{
 
 
 
 
 

 
 
 
 
 𝑘𝑡_𝐻𝑃𝐼−1𝐻𝐺

𝐽−2 + 𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽−1 , 𝜃1 ∈ [0, 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽−1 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽−1 + 𝑘

𝑡_𝐻𝑃
𝐼+1𝐶𝐺

𝐽 , 𝜃1 ∈ [
2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+1𝐶𝐺
𝐽 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+1𝐶𝐺
𝐽 + 𝑘

𝑡_𝐻𝑃
𝐼+2𝐻𝐺

𝐽+1 𝜃1 ∈ [2
2𝜋

𝑁𝑝
, 2

2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+2𝐻𝐺
𝐽+1 𝜃1 ∈ [2

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 3

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

       (5.27) 

𝑘𝑡_𝑉2 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑘𝑡_𝐻𝑃𝐼−1𝐻𝐺

𝐽−3 + 𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽−2 , 𝜃1 ∈ [0, 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽−2 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽−2 + 𝑘

𝑡_𝐻𝑃
𝐼+1𝐻𝐺

𝐽−1 , 𝜃1 ∈ [
2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+1𝐻𝐺
𝐽−1 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+1𝐻𝐺
𝐽−1 + 𝑘

𝑡_𝐻𝑃
𝐼+2𝐶𝐺

𝐽 𝜃1 ∈ [2
2𝜋

𝑁𝑝
, 2

2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+2𝐶𝐺
𝐽 𝜃1 ∈ [2

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 3

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+2𝐶𝐺
𝐽 + 𝑘

𝑡_𝐻𝑃
𝐼+3𝐻𝐺

𝐽+1 𝜃1 ∈ [3
2𝜋

𝑁𝑝
, 3

2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+3𝐻𝐺
𝐽+1 𝜃1 ∈ [3

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 4

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

       (5.28) 

𝑘𝑡_𝑉3 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑘𝑡_𝐻𝑃𝐼−3𝐻𝐺

𝐽−1 + 𝑘
𝑡_𝐻𝑃

𝐼−2𝐶𝐺
𝐽 , 𝜃1 ∈ [0, 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼−2𝐶𝐺
𝐽 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼−2𝐶𝐺
𝐽 + 𝑘

𝑡_𝐻𝑃
𝐼−1𝐻𝐺

𝐽+1 , 𝜃1 ∈ [
2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼−1𝐻𝐺
𝐽+1 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼−1𝐻𝐺
𝐽+1 + 𝑘

𝑡_𝐶𝑃
𝐼𝐻𝐺

𝐽+2 𝜃1 ∈ [2
2𝜋

𝑁𝑝
, 2

2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽+2 𝜃1 ∈ [2

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 3

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽+2 + 𝑘

𝑡_𝐻𝑃
𝐼+1𝐻𝐺

𝐽+3 𝜃1 ∈ [3
2𝜋

𝑁𝑝
, 3

2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+1𝐻𝐺
𝐽+3 𝜃1 ∈ [3

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 4

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

       (5.29) 



170 
 
 

𝑘𝑡_𝑉4 =

{
 
 
 
 
 

 
 
 
 
 𝑘𝑡_𝐻𝑃𝐼−2𝐻𝐺

𝐽−1 + 𝑘
𝑡_𝐻𝑃

𝐼−1𝐶𝐺
𝐽 , 𝜃1 ∈ [0, 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼−1𝐶𝐺
𝐽 , 𝜃1 ∈ [𝜃𝑑 ,

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼−1𝐶𝐺
𝐽 + 𝑘

𝑡_𝐶𝑃
𝐼𝐻𝐺

𝐽+1 , 𝜃1 ∈ [
2𝜋

𝑁𝑝
,
2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽+1 𝜃1 ∈ [

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 2

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐶𝑃

𝐼𝐻𝐺
𝐽+1 + 𝑘

𝑡_𝐻𝑃
𝐼+1𝐻𝐺

𝐽+2 𝜃1 ∈ [2
2𝜋

𝑁𝑝
, 2

2𝜋

𝑁𝑝
+ 𝜃𝑑] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

𝑘
𝑡_𝐻𝑃

𝐼+1𝐻𝐺
𝐽+2 𝜃1 ∈ [2

2𝜋

𝑁𝑝
+ 𝜃𝑑 , 3

2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝

       (5.30) 

    Ω1 = [0,2
2𝜋

𝑁𝑝
] + |I − J|

2𝜋

𝑁𝑝
+ (𝑠 − 1)𝑁𝑔 ∗ 2𝜋                                                       (5.31.1)  

Ω2 = [0,2
2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝
+ (𝑠 − 1)𝑁𝑔 ∗ 2𝜋, (𝑎 = 1, 2, … , 𝑁𝑔 − 1, except the  

values that make 1 ≤ |(I − 1 + 𝑎𝑁𝑝) − (J − 1 + 𝑏𝑁𝑔)| ≤ 2)                  (5.31.2) 

Ω3 = [0,2
2𝜋

𝑁𝑝
] + (J − 1 + 𝑏𝑁𝑔)

2𝜋

𝑁𝑝
+ (𝑠 − 1)𝑁𝑔 ∗ 2𝜋, (𝑏 = 1, 2, … , 𝑁𝑝 − 1, except the  

values that make 1 ≤ |(I − 1 + 𝑎𝑁𝑝) − (J − 1 + 𝑏𝑁𝑔)| ≤ 2)                (5.31.3) 

       Ω5 = [0,3
2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝
+ (𝑠 − 1)𝑁𝑔 ∗ 2𝜋, (𝑎 equals the values that makes            

(I − 1 + 𝑎𝑁𝑝) − (J − 1 + 𝑏𝑁𝑔) = −1)                                                     (5.31.4) 

Ω6 = [0,4
2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝
+ (𝑠 − 1)𝑁𝑔 ∗ 2𝜋, (𝑎 equals the values that makes 

(I − 1 + 𝑎𝑁𝑝) − (J − 1 + 𝑏𝑁𝑔) = −2)                                                    (5.31.5) 

Ω7 = [0,4
2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝
+ (𝑠 − 1)𝑁𝑔 ∗ 2𝜋, (𝑎 equals the values that makes 

(I − 1 + 𝑎𝑁𝑝) − (J − 1 + 𝑏𝑁𝑔) = 2)                                                      (5.31.6) 

Ω8 = [0,3
2𝜋

𝑁𝑝
] + (I − 1 + 𝑎𝑁𝑝)

2𝜋

𝑁𝑝
+ (𝑠 − 1)𝑁𝑔 ∗ 2𝜋, (𝑎 equals the values that makes 

(I − 1 + 𝑎𝑁𝑝) − (J − 1 + 𝑏𝑁𝑔) = 1)                                                     (5.31.7) 

Ω4 = [0, 𝑆 ∗ 𝑁𝑔 ∗ 2𝜋] − Ω1 − Ω2 −Ω3 − Ω5 − Ω6 − Ω7 − Ω8                        (5.31.8) 
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where 𝑠 is the number of periods of 𝐾𝐼𝐼𝐼 (𝑠 is a positive integer); 𝑎 is the number of “one pinion 

revolution (𝑁𝑝
2𝜋

𝑁𝑝
)”, and 𝑏 is the number of “one gear revolution (𝑁𝑔

2𝜋

𝑁𝑝
)”. In Eq. (5.27) through 

Eq. (5.30), 𝑎 takes the values that satisfy the conditions shown in Eq. (5.31.4) through Eq. (5.31.7).   

5.2.5 Analysis of tooth mesh stiffness and gearbox vibration signals  

To procure insights into vibration characteristics of spur gearboxes with the three scenarios of 

multiple tooth cracks considered in this chapter, tooth mesh stiffness for each scenario is first 

analyzed in both angle and frequency domains to reveal the effects of multiple tooth cracks on 

tooth mesh stiffness. The reason why mesh stiffness is analyzed in angle domain is to verify the 

descriptions presented in Subsection 5.2.4, namely mesh stiffness for multiple tooth cracks are 

periodic functions with regards to the pinion angular displacement 𝜃1. Because constant working 

condition is considered in this chapter, analyses of mesh stiffness in angle domain are equivalent 

to those in time domain. In the angle domain, mesh stiffness corresponding to each scenario of 

multiple tooth cracks will be illustrated to show how tooth cracks affect mesh stiffness. Besides, 

mesh stiffness will be analyzed in frequency domain to reveal its frequency composition. 

Differences of mesh stiffness for the three scenarios of multiple tooth cracks will also be described. 

Besides, vibration signals of spur gearboxes with the three scenarios of multiple tooth cracks will 

be analyzed in both time and frequency domains. Firstly, time domain waveforms of gearbox 

vibration signals will be displayed to show how they are affected by multiple tooth cracks. In 

addition, frequency spectra of gearbox vibration signals will be examined to identify the frequency 

components corresponding to gear mesh and those related to multiple tooth cracks. Differences of 

gearbox vibration signals for the three scenarios of multiple tooth cracks will be discussed as well. 

5.2.6 Detection of the number and locations of multiple tooth cracks  

5.2.6.1 Procedure for the proposed method 

Fig. 5.8 shows the procedure for the proposed method for detecting the number and locations of 

multiple tooth cracks in spur gearboxes. The proposed method consists of two parts: (1) extract 

the CII from gearbox vibration signals using an SVD-based strategy; (2) conduct TSA on CII for 

both the pinion and the gear to get their TSA signals, squared envelopes of which are obtained 
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using envelope analysis. According to the squared envelopes of the pinion and gear TSA signals, 

the number and locations of multiple tooth cracks are detected.  

 

Fig. 5.8: Procedure for the proposed method  

5.2.6.2 Extraction of crack induced impulses using an SVD-based strategy 

Inspired by the obtained insights into vibration characteristics for multiple tooth cracks, it is known 

that the CII include information on multiple tooth cracks. Besides, the CII contain more 

information on tooth cracks than other signal components [77,104,107]. Therefore, for the 

proposed method, its focus is placed on the CII, and one key step of it is to extract the CII from 

gearbox vibration signals. To this end, SVD is a feasible approach since it has been widely 

employed to analyze gearbox vibration signals [96,97]. However, there are still some deficiencies 

of the studies reported in Refs. [96,97] when using SVD to extract CII from gearbox vibration 

signals, which are overcome in this chapter by proposing a new SVD-based strategy. To show the 

limitations of the studies reported in Refs. [96,97] and illustrate the new SVD-based strategy, 

fundamentals of SVD are first introduced. SVD is a method for conducting the orthonormal 

decomposition of an 𝑚× 𝑛 real matrix 𝑯, which is given by Eq. (5.32) [95–97]. 

𝑯 = 𝑼𝚺𝑉𝑇                                                               (5.32) 

where 𝑼 = [𝒖1, 𝒖2, 𝒖3, … , 𝒖𝑚] ∈ 𝑹
𝑚×𝑚  and 𝑽 = [𝒗1, 𝒗2, 𝒗3, … , 𝒗𝑛] ∈ 𝑹

𝑛×𝑛  are orthonormal 

matrices; 𝚺 is a diagonal matrix storing the singular values of the matrix 𝑯 in the descending order, 

namely 𝚺 = [𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, 𝜎3, … , 𝜎𝑙), 𝟎] ∈ 𝑅
𝑚×𝑛, in which 𝑙 = 𝑚𝑖𝑛(𝑚, 𝑛) and 𝟎 is a zero matrix, 

and 𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ ⋯ ≥ 𝜎𝑙; superscript “𝑇” denotes the operation of matrix transposition. 
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To apply SVD to a 1-D signal, such as 𝒙 = [𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑁)], the 1-D signal needs to 

be first converted into a matrix. The Hankel matrix is a good choice since it has the unique property 

of zero phase shift [142]. The construction of the Hankel matrix of signal 𝒙 is shown in Eq. (5.33). 

𝑯 = [

𝑥(1) 𝑥(2) ⋯ 𝑥(𝑛)

𝑥(2) 𝑥(3) ⋯ 𝑥(𝑛 + 1)
⋮ ⋮ ⋱ ⋮

𝑥(𝑚) 𝑥(𝑚 + 1) ⋯ 𝑥(𝑁)

]                                         (5.33) 

where 𝑚 = 𝑁 − 𝑛 + 1; parameter 𝑚 is used to determine the number of the singular values of the 

Hankel matrix 𝑯, and usually 𝑚 is set to be smaller than 𝑛. 

According to Eq. (5.32), the SVD result of the Hankel matrix 𝑯 can be expressed in the form of 

𝑚 sub-matrix 𝑯𝑖 (𝑖 = 1, 2, … ,𝑚), which is given by 

 𝑯 = [𝒖1, 𝒖2, 𝒖3, … , 𝒖𝑚] [

𝜎1 0 ⋯ 0 𝟎
0 𝜎2 ⋯ 0 𝟎
⋮ ⋮ ⋱ ⋮ 𝟎
0 0 ⋯ 𝜎𝑚 𝟎

]

[
 
 
 
𝒗1
𝑇

𝒗2
𝑇

⋮
𝒗𝑛
𝑇]
 
 
 
 

                                        = 𝜎1𝒖1𝒗1
𝑇 + 𝜎2𝒖2𝒗2

𝑇 +⋯+ 𝜎𝑚𝒖𝑚𝒗𝑚
𝑇 = 𝑯1 +𝑯2 +⋯+𝑯𝑚     (5.34)                         

where 𝒖𝑖 ∈ 𝑹
𝑚×1  is the 𝑖𝑡ℎ  column vector of the left singular matrix 𝑼, 𝒗𝑖 ∈ 𝑹

𝑛×1  is the 𝑖𝑡ℎ 

column vector of the right singular matrix 𝑽.  

Each sub-matrix 𝑯𝑖 in Eq. (5.34) corresponds to a Singular Component (SC) of the input signal 𝒙, 

namely 𝒙𝑖, which can be procured from the sub-matrix 𝑯𝑖 by averaging its anti-diagonals [97]. On 

this basis, all the components of the input signal 𝒙, namely 𝒙1, 𝒙2, …, and 𝒙𝑚, can be obtained. 

For different purposes, a signal with specific information can be reconstructed in different ways 

by choosing different SCs to sum. Therefore, the reconstructed signal 𝒔 is expressed as follows: 

𝒔 = ∑𝒙𝑖                                                          (5.35) 

where 𝒙𝑖 are the SCs selected to get a reconstructed signal for a particular purpose. 

Singular values of the Hankel matrix 𝑯 reflect the energy of their corresponding SCs [95], and an 

SC with a larger singular value has a higher energy. In conventional SVD-based methods, SCs 

with larger singular values were selected for signal reconstruction to remove noise. However, the 

energy-based criterion for selecting SCs is not suitable to extract weak tooth crack features 
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embedded in gearbox vibration signals since SCs with higher energy do not necessarily have more 

information on tooth cracks [95]. To overcome this deficiency, Zhao et al. [97] developed another 

criterion to select SCs for signal reconstruction, which was based on an indicator termed Periodic 

Modulation Intensity (PMI). PMI measures the strength of CII and represents the energy ratio 

between CII and other signal components. An SC with a larger PMI value has more significant 

signature for tooth cracks. PMI is calculated as follows [97]. 

𝑃𝑀𝐼 =
𝑅𝐸𝑛𝑣(𝑇𝑐𝑟𝑎𝑐𝑘)

𝑅𝐸𝑛𝑣(0)−𝑅𝐸𝑛𝑣(𝑇𝑐𝑟𝑎𝑐𝑘)
                                                   (5.36) 

where 𝑇𝑐𝑟𝑎𝑐𝑘 is the repetition period of the CII; 𝑅𝐸𝑛𝑣(𝑇𝑐𝑟𝑎𝑐𝑘) is the autocorrelation of the envelope 

signal 𝐸𝑛𝑣 at 𝑇𝑐𝑟𝑎𝑐𝑘, which represents the energy of the CII; 𝑅𝐸𝑛𝑣(0) is the autocorrelation of the 

𝐸𝑛𝑣 at 0, which represents the energy of the envelope signal.   

The envelope of a signal is calculated using Eq. (5.37). 

𝐸𝑛𝑣(𝑡) = 𝑎𝑏𝑠[𝑥(𝑡) + 𝑗𝐻𝑇(𝑥(𝑡))]                                         (5.37) 

where 𝑗 is the imaginary unit; 𝐻𝑇 represents the Hilbert Transform. 

The advantages and disadvantages of the PMI-based SVD methods [96,97] have been discussed 

in Subsection 1.2.2.3. To overcome the disadvantages, this chapter utilizes the comb notch filtering 

to remove the gear meshing harmonics since it is easier to implement. The proposed SVD-based 

strategy for extracting the CII consists of the following steps. 

Step 1: Pre-process the raw signal. Conduct comb notch filtering on the raw gearbox vibration 

signal 𝑦(𝑡) to remove the gear meshing harmonics and their associated sidebands, thus obtaining 

the residual signal 𝑅𝑒𝑠(𝑡). Find out the frequency band in which the CII exist using the energy 

spectral density and conduct band-pass filtering on the residual signal using the identified 

frequency range to get the band-pass filtered residual signal 𝑅𝑒𝑠𝐵𝑝𝑓(𝑡). 

Step 2: Implement SVD. Apply the SVD to decompose the band-pass filtered residual signal 

𝑅𝑒𝑠𝐵𝑝𝑓(𝑡) into 𝑚 SCs. The value of 𝑚 is determined using the guidance presented in Ref. [97]. 

Step 3: Evaluate crack information. Calculate the PMI values of all the 𝑚 SCs using Eq. (5.36). 

Step 4: Extract the CII. The SCs with PMI values greater than the preset threshold 𝑝𝑇𝐻 are selected 

for signal reconstruction, and the reconstructed signal is regarded as the CII. The threshold 𝑝𝑇𝐻 is 
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determined as the average of the PMI values of the SCs obtained from healthy gearbox vibration 

signals. Therefore, the CII is expressed in Eq. (5.38). 

𝐶𝐼𝐼 = ∑𝑆𝐶𝑘 ∗ 𝑃𝑀𝐼𝑆𝐶𝑘                                                            (5.38) 

where 𝑆𝐶𝑘 are the SCs with PMI values greater than the threshold 𝑝𝑇𝐻, 𝑃𝑀𝐼𝑆𝐶𝑘  is the PMI value 

of 𝑆𝐶𝑘; 𝑘 ∈ Ρ, Ρ is the set storing the indices of the PMI which are greater than 𝑝𝑇𝐻 (Ρ is a subset 

of the set {1,2, … ,𝑚}). 

5.2.6.3 Time synchronous average and envelope analysis 

TSA has been widely used to extract periodic components related to a target shaft from gearbox 

vibration signals [42,111]. TSA can separate the target gear tooth crack signature under analysis 

from interfering vibration components which are asynchronous with the gear to be monitored 

[77,104]. Details of TSA have been introduced in Subsection 2.2.1, which are not described herein 

for brevity. TSA is conducted on the CII for both the pinion and the gear shafts, thus procuring 

TSA signals for both the pinion and the gear, namely the 𝑇𝑆𝐴𝑝 and 𝑇𝑆𝐴𝑔 shown in Fig. 5.8, which 

contain the information about if there are tooth cracks on the pinion and the gear or not. Squared 

envelopes of 𝑇𝑆𝐴𝑝and 𝑇𝑆𝐴𝑔 are calculated using Eq. (5.39) and Eq. (5.40), respectively.     

𝑆𝐸𝑛𝑣𝑝 = {𝑎𝑏𝑠[𝑇𝑆𝐴𝑝 + 𝑗𝐻𝑇(𝑇𝑆𝐴𝑝)]}
2
                                         (5.39) 

𝑆𝐸𝑛𝑣𝑔 = {𝑎𝑏𝑠[𝑇𝑆𝐴𝑔 + 𝑗𝐻𝑇(𝑇𝑆𝐴𝑔)]}
2
                                         (5.40) 

where 𝑗 is the imaginary unit; 𝐻𝑇 represents the Hilbert Transform.  

By examining the distinct impulses in 𝑆𝐸𝑛𝑣𝑝 and calculating the time interval between them, the 

number and locations of tooth cracks on the pinion can be detected. Likewise, the number and 

locations of tooth cracks on the gear can also be detected by examining the impulses in 𝑆𝐸𝑛𝑣𝑔. On 

this basis, the number and locations of multiple tooth cracks in spur gearboxes are detected. 
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5.3 Simulation analysis 

5.3.1 Generation of simulated gearbox vibration signals  

In this chapter, parameters of the spur gearbox system shown in Fig. 2.2 are set to be the same as 

those tabulated in Table 3.1. Besides, the driving motor torque is 𝑀1 = 19 Nm, the driving motor 

speed is 𝑆𝑃𝐷 = 30 Hz, and the torque exerted on the load machine is 𝑀2 = 48 Nm. Parameters 

for the three scenarios of multiple tooth cracks are shown in Table 5.1, Table 5.2, and Table 5.3, 

respectively. Tooth mesh stiffness for the three scenarios of multiple tooth cracks can be evaluated 

using the mesh stiffness formulae derived in Subsection 5.2.3 and Subsection 5.2.4. The tooth 

mesh stiffness is substituted into the gearbox system motion equation shown in Eq. (3.1), and 

gearbox dynamic responses are calculated using the Newmark integration algorithm. The y-

direction acceleration signal of the pinion is used as the simulated gearbox vibration signal. 

Table 5.1: Parameters for the first scenario of multiple tooth cracks (Scenario 1 in Fig. 5.4) 

Parameter value 

Serial number of the first cracked pinion tooth I = 1 

Serial number of the second cracked pinion tooth J = 7 

Crack depth of the first cracked pinion tooth 𝑞𝑝1 = 3 𝑚𝑚 

Crack depth of the second cracked pinion tooth 𝑞𝑝2 = 2.4 𝑚𝑚 

Crack angle 𝜙 = 45° 

 

Table 5.2: Parameters for the second scenario of multiple tooth cracks (Scenario 2 in Fig. 5.5) 

Parameter value 

Serial number of the first cracked pinion tooth I = 1 

Serial number of the second cracked pinion tooth I + 1 = 2 

Crack depth of the first cracked pinion tooth 𝑞𝑝1 = 3 𝑚𝑚 

Crack depth of the second cracked pinion tooth 𝑞𝑝2 = 2.4 𝑚𝑚 

Crack angle 𝜙 = 45° 

 

Table 5.3: Parameters for the third scenario of multiple tooth cracks (Scenario 3 in Fig. 5.6) 

Parameter value 

Serial number of the cracked pinion tooth I = 1 

Serial number of the cracked gear tooth J = 1 

Crack depth of the cracked pinion tooth 𝑞𝑝 = 3 𝑚𝑚 

Crack depth of the cracked gear tooth 𝑞𝑔 = 2.4 𝑚𝑚 

Crack angle 𝜙 = 45° 
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5.3.2 Analysis of gear tooth mesh stiffness and simulated gearbox vibration signals  

In this subsection, gear tooth mesh stiffness and simulated gearbox vibration signals for the three 

scenarios of multiple tooth cracks are analyzed using the scheme described in Subsection 5.2.5, 

thus procuring insights into the vibration characteristics of spur gearboxes with multiple tooth 

cracks.  

5.3.2.1 Scenario 1: two nonadjacent tooth cracks on the pinion and a healthy gear 

The angle domain waveform and frequency spectrum of the gear tooth mesh stiffness for “Scenario 

1” (𝐾𝐼) are illustrated in Fig. 5.9 and Fig. 5.10, respectively. As shown in Fig. 5.9(a), gear tooth 

mesh stiffness 𝐾𝐼 has a period of 2𝜋 𝑟𝑎𝑑 since its values in every 2𝜋 𝑟𝑎𝑑 are the same. From Fig. 

5.9(b), it is observed that either 𝑘𝑡_𝑞𝑝1 or 𝑘𝑡_𝑞𝑝2 lasts for two mesh periods, so two nonadjacent 

pinion tooth cracks affect four mesh periods. Either 𝑘𝑡_𝑞𝑝1 or 𝑘𝑡_𝑞𝑝2 appears once in one period of 

𝐾𝐼. Besides, the decrease of the mesh stiffness of the first pinion tooth crack (𝑘𝑡_𝑞𝑝1) is larger than 

that of the second pinion tooth crack (𝑘𝑡_𝑞𝑝2 ). These observations demonstrate the correct 

implementation of gear tooth mesh stiffness evaluation presented in Subsection 5.2.4.1. From Fig. 

5.10(a), it is seen that the frequency spectrum of 𝐾𝐼  is mainly dominated by gear meshing 

frequency (570 Hz) and its multiples. Besides, there are many frequency spikes in the frequency 

range [0,400] Hz, which are shown in Fig. 5.10(b). It is seen that the spikes are the pinion rotational 

frequency 30Hz and its multiples, and their magnitudes are much smaller than those of the gear 

meshing harmonics.  

 

(a) Mesh stiffness for multiple tooth cracks “Scenario 1” (𝐾𝐼 in two periods 2 ∗ 2𝜋 𝑟𝑎𝑑) 
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(b) 𝑘𝑡_𝑞𝑝1 (2 mesh periods [0, 2
2𝜋

19
]), 𝑘𝑡_𝑞𝑝2 (2 mesh periods [6

2𝜋

19
, 8

2𝜋

19
]), and 𝑘𝑡_𝐻 

Fig. 5.9:  Mesh stiffness for multiple tooth cracks “Scenario 1” (𝐾𝐼)  

  

(a) Full-scale view (b) Zoomed-in view in [0, 400] Hz 

Fig. 5.10: Frequency spectrum of mesh stiffness 𝐾𝐼 

The time waveform and frequency spectrum of the gearbox dynamic response for “Scenario 1” are 

illustrated in Fig. 5.11. As shown in the top plot of Fig. 5.11(a), it is observed that there are two 

nonadjacent impulses (in each red dashed rectangle) in one pinion revolution. The frequency 

spectrum shown in the bottom plot of Fig. 5.11(a) is dominated by gear meshing harmonics 

(multiples of 570 Hz). Besides, there is a frequency cluster in the frequency range [2900, 3900] 

Hz, details of which are shown in Fig. 5.11(b). It is seen that the frequency cluster consists of a 

group of spikes with a uniform interval of 30 Hz, such as 3330-3300=30 Hz, which is the pinion 

rotational speed. Therefore, the frequency cluster consists of frequency components of the 

impulses induced by the two nonadjacent pinion tooth cracks.   
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(a) Time waveform and frequency spectrum (full-scale view) 

 

(b) Frequency spectrum (zoomed-in view in [2900, 3900] Hz) 

Fig. 5.11: Time waveform and frequency spectrum of gearbox dynamic response (Scenario 1) 

5.3.2.2 Scenario 2: two adjacent tooth cracks on the pinion and a healthy gear 

The angle domain waveform and frequency spectrum of the gear tooth mesh stiffness for “Scenario 

2” (𝐾𝐼𝐼) are illustrated in Fig. 5.12 and Fig. 5.13, respectively. As shown in Fig. 5.12(a), gear tooth 

mesh stiffness 𝐾𝐼𝐼 has a period of 2𝜋 𝑟𝑎𝑑 since its values in every 2𝜋 𝑟𝑎𝑑 are the same. From Fig. 

5.12 (b), it is observed that 𝑘𝑡_𝑞𝑝1_𝑞𝑝2 lasts for three mesh periods [0,3
2𝜋

19
], so two adjacent pinion 

tooth cracks affect three mesh periods. 𝑘𝑡_𝑞𝑝1_𝑞𝑝2 appears once in one period of 𝐾𝐼𝐼. Besides, the 

decrease of the mesh stiffness of the first pinion tooth crack (3 mm) is larger than that of the second 

pinion tooth crack (2.4 mm). These observations demonstrate the correct implementation of mesh 

stiffness evaluation presented in Subsection 5.2.4.2. From Fig. 5.13(a), it is seen that the frequency 

spectrum of 𝐾𝐼𝐼 is mainly dominated by the gear meshing harmonics (570 Hz and its multiples). 
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Besides, there are many frequency spikes in the frequency range [0,500] Hz, which are shown in 

Fig. 5.13(b). It is seen that the spikes are the pinion rotational frequency 30 Hz and its multiples, 

and their magnitudes are much smaller than those of the gear meshing harmonics. Besides, the 

magnitudes of the spikes in Fig. 5.13(b) change in a regular pattern, which is totally different from 

that shown in Fig. 5.10(b). This means that the effect of two adjacent pinion tooth cracks on the 

frequency spectrum of gear tooth mesh stiffness is different from that of two nonadjacent pinion 

tooth cracks. 

 

(a) Mesh stiffness for multiple tooth cracks “Scenario 2” (𝐾𝐼𝐼 in two periods 2 ∗ 2𝜋 𝑟𝑎𝑑) 

 

(b) 𝑘𝑡_𝑞𝑝1_𝑞𝑝2 (3 mesh periods [0, 3
2𝜋

19
]), and 𝑘𝑡_𝐻. 

Fig. 5.12:  Mesh stiffness for multiple tooth cracks “Scenario 2” (𝐾𝐼𝐼)  
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(a) Full-scale view (b) Zoomed-in view in [0, 500] Hz 

Fig. 5.13: Frequency spectrum of mesh stiffness 𝐾𝐼𝐼 

The time waveform and frequency spectrum of the gearbox dynamic response for “Scenario 2” are 

illustrated in Fig. 5.14. As shown in the top plot of Fig. 5.14(a), there are two adjacent impulses 

(in each red dashed rectangle) in one pinion revolution. The frequency spectrum shown in the 

bottom plot of Fig. 5.14(a) is dominated by gear meshing harmonics. Besides, there is a frequency 

cluster in the frequency range [2900, 3900] Hz, details of which are shown in Fig. 5.14(b). It is 

found that the frequency cluster consists of a group of spikes with a uniform interval of 30 Hz, 

such as 3390-3360=30 Hz, which is the pinion rotational speed. This indicates that the frequency 

cluster consists of frequency components of the impulses induced by the two adjacent pinion tooth 

cracks. Comparing Fig. 5.14(b) to Fig. 5.11(b), it is found that magnitudes of the frequency spikes 

in [2 00, 3 00] Hz for “Scenario 2” are different from those for “Scenario 1”.   

 

(a) Time waveform and frequency spectrum (full-scale view) 
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(b) Frequency spectrum (zoomed-in view in [2900, 3900] Hz) 

Fig. 5.14: Time waveform and frequency spectrum of gearbox dynamic response (Scenario 2) 

5.3.2.3 Scenario 3: one tooth crack on the pinion and one tooth crack on the gear 

The angle domain waveforms of the gear tooth mesh stiffness for “Scenario 3” (𝐾𝐼𝐼𝐼) are illustrated 

in Fig. 5.15. As shown in Fig. 5.15(a), gear tooth mesh stiffness 𝐾𝐼𝐼𝐼 has a period of 48 ∗ 2𝜋 rad 

since its values in every 48 ∗ 2𝜋 rad are the same. In one period, such as [0, 48 ∗ 2𝜋] rad, it is 

found that 𝐾𝐼𝐼𝐼 has eight types of mesh stiffness components, which is consistent with Eq. (5.23). 

The eight types of components of 𝐾𝐼𝐼𝐼 are marked in Fig. 5.15(b), which are the 𝑘𝑡_𝑞𝑝_𝑞𝑔, 𝑘𝑡_𝑞𝑝, 

𝑘𝑡_𝑞𝑔 , 𝑘𝑡_𝐻 , 𝑘𝑡_𝑉1 , 𝑘𝑡_𝑉2 , 𝑘𝑡_𝑉3 , and 𝑘𝑡_𝑉4 . These eight components are shown in Fig. 5.16, from 

which it is seen that either 𝑘𝑡_𝑞𝑝_𝑞𝑔, or 𝑘𝑡_𝑞𝑝, or 𝑘𝑡_𝑞𝑔 lasts for 2 mesh periods [0, 2
2𝜋

19
]; either 𝑘𝑡_𝑉1 

or 𝑘𝑡_𝑉4 lasts for 3 mesh periods [0, 3
2𝜋

19
]; either 𝑘𝑡_𝑉2 or 𝑘𝑡_𝑉3 lasts for 4 mesh periods [0, 4

2𝜋

19
]. 

Besides, in one period of 𝐾𝐼𝐼𝐼, either 𝑘𝑡_𝑞𝑝_𝑞𝑔, or 𝑘𝑡_𝑉1 , or 𝑘𝑡_𝑉2, or 𝑘𝑡_𝑉3, or 𝑘𝑡_𝑉4 only appears once, 

𝑘𝑡_𝑞𝑝  appears 43 times, 𝑘𝑡_𝑞𝑔  appears 14 times. All these observations demonstrate the correct 

implementation of mesh stiffness evaluation presented in Subsection 5.2.4.3. Besides, by 

comparing Fig. 5.16(b) and Fig. 5.16(c), it is seen that although the gear tooth crack depth (𝑞𝑔 =

2.4 𝑚𝑚) is smaller than the pinion tooth crack depth (𝑞𝑝 = 3 𝑚𝑚), the gear tooth crack results in 

a larger decrease of the mesh stiffness during the Single-tooth-pair mesh duration. 
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(a) Mesh stiffness for multiple tooth cracks “Scenario 3” (𝐾𝐼𝐼𝐼 in two periods 96 ∗ 2𝜋 𝑟𝑎𝑑) 

 

(b) Mesh stiffness for multiple tooth cracks “Scenario 3” (𝐾𝐼𝐼𝐼 in one period 48 ∗ 2𝜋 𝑟𝑎𝑑) 

Fig. 5.15: Mesh stiffness for multiple tooth cracks “Scenario 3” (𝐾𝐼𝐼𝐼) 
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(a) 𝑘𝑡_𝑞𝑝_𝑞𝑔 (2 mesh periods [0, 2
2𝜋

19
]) and 𝑘𝑡_𝐻 (b) 𝑘𝑡_𝑞𝑝 (2 mesh periods [0, 2

2𝜋

19
]) and 𝑘𝑡_𝐻 

  

(c) 𝑘𝑡_𝑞𝑔 (2 mesh periods [0, 2
2𝜋

19
]) and 𝑘𝑡_𝐻 (d) 𝑘𝑡_𝑉1 (3 mesh periods [0, 3

2𝜋

19
]) and 𝑘𝑡_𝐻 

  

(e) 𝑘𝑡_𝑉2 (4 mesh periods [0, 4
2𝜋

19
]) and 𝑘𝑡_𝐻 (f) 𝑘𝑡_𝑉3 (4 mesh periods [0, 4

2𝜋

19
]) and 𝑘𝑡_𝐻 
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(g) 𝑘𝑡_𝑉4 (3 mesh periods [0, 3
2𝜋

19
]) and 𝑘𝑡_𝐻 

Fig. 5.16: Eight components of mesh stiffness 𝐾𝐼𝐼𝐼 

Frequency spectrum of 𝐾𝐼𝐼𝐼  is illustrated in Fig. 5.17. As shown in Fig. 5.17(a), frequency 

spectrum of 𝐾𝐼𝐼𝐼 is mainly dominated by gear meshing harmonics. There are frequency spikes in 

the frequency range [0,500] Hz, part of which are shown in Fig. 5.17(b). It is seen that there are 

two group of spikes: (1) the pinion rotational frequency 30 Hz and its multiples, (2) the gear 

rotational frequency 11.875 Hz (11.875=30*19/48) and its multiples. This phenomenon is different 

from those observed from the frequency spectra of 𝐾𝐼  and 𝐾𝐼𝐼  shown in Fig. 5.10(b) and Fig. 

5.13(b). Therefore, it is concluded that if multiple tooth cracks are only on the pinion, there is only 

one group of spikes in the frequency spectrum of mesh stiffness and the spike interval is the pinion 

rotational frequency. However, if there are multiple tooth cracks on both the pinion and the gear, 

there exists two groups of spikes in the frequency spectrum of mesh stiffness, the interval between 

every two neighbouring spikes in each group is either the pinion or the gear rotational frequency.  

  

(a) Full-scale view (b) Zoomed-in view in [0, 200] Hz 

Fig. 5.17: Frequency spectrum of mesh stiffness 𝐾𝐼𝐼𝐼 
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Time waveform and frequency spectrum of the gearbox dynamic response for “Scenario 3” are 

illustrated in Fig. 5.18. As shown in the top plot of Fig. 5.18(a), there are two groups of impulses 

in the signal, those with higher magnitudes are caused by the gear tooth crack, while others with 

lower magnitudes are caused by the pinion tooth crack. The frequency spectrum shown in the 

bottom plot of Fig. 5.18(a) is dominated by gear meshing harmonics. There is a frequency cluster 

in the frequency range [3000, 3600] Hz, details of which are shown in Fig. 5.18(b). It is found that 

the frequency cluster consists of two group of spikes, the first group of spikes have a uniform 

interval of 30 Hz, such as 3390-3360=30 Hz, which is the pinion rotational frequency; the second 

group of spikes have a uniform interval of 11.875 Hz, such as 3408.125-3396.25=11.875 Hz, 

which is the gear rotational frequency. Therefore, the frequency cluster consists of frequency 

components of the impulses induced by both the pinion tooth crack and the gear tooth crack. 

 

(a) Time waveform and frequency spectrum (full-scale view) 

 

(b) Frequency spectrum (zoomed-in view in [2900, 3900] Hz) 

Fig. 5.18: Time waveform and frequency spectrum of gearbox dynamic response (Scenario 3) 
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5.3.2.4 Summary of the obtained insights into gearbox vibration characteristics 

In this subsection, the insights into the vibration characteristics of a spur gearbox with the three 

considered multiple tooth cracks obtained in Subsection 5.3.2.1 through Subsection 5.3.2.3 are 

summarized, which are as follows.  

For “Scenario 1”, two nonadjacent pinion tooth cracks affect four mesh periods of mesh stiffness 

𝐾𝐼  in one pinion revolution. Frequency spectrum of mesh stiffness 𝐾𝐼  is dominated by gear 

meshing harmonics and pinion rotational frequency and its multiples. For “Scenario 2”, two 

adjacent pinion tooth cracks affect three mesh periods of mesh stiffness 𝐾𝐼𝐼  in one pinion 

revolution. Frequency spectrum of mesh stiffness 𝐾𝐼𝐼 is dominated by gear meshing harmonics 

and pinion rotational frequency and its multiples. However, magnitudes of the pinion rotational 

frequency and its multiples for “Scenario 2” vary in a regular pattern, which is different from those 

for “Scenario 1”, indicating that the effects of two adjacent pinion tooth cracks on the mesh 

stiffness are different from those of two nonadjacent pinion tooth cracks. For “Scenario 3”, the 

mesh stiffness 𝐾𝐼𝐼𝐼 has eight types of components. Frequency spectrum of mesh stiffness 𝐾𝐼𝐼𝐼 is 

dominated by gear meshing harmonics and two groups of frequency spikes, which are (1) the 

pinion rotational frequency and its multiples; (2) the gear rotational frequency and its multiples. 

This phenomenon is different from those observed from the frequency spectra of the mesh stiffness 

of “Scenario 1” and “Scenario 2”. Besides, for either “Scenario 1” or “Scenario 2”, a cracked 

pinion tooth with a larger crack depth leads to a bigger decrease of mesh stiffness. However, for 

“Scenario 3”, although a cracked gear tooth has a relatively smaller crack depth than that of a 

cracked pinion tooth, it can result in a bigger decrease of mesh stiffness, thus causing impulses 

with higher magnitudes. 

For “Scenario 1”, two nonadjacent pinion tooth cracks induce two nonadjacent impulses in one 

pinion revolution. For “Scenario 2”, two adjacent pinion tooth cracks induce two adjacent impulses 

in one pinion revolution. For “Scenario 3”, one pinion tooth crack and one gear tooth crack induce 

two groups of impulses in the vibration signal. Frequency spectrum of the simulated vibration 

signal for either “Scenario 1” or “Scenario 2” is dominated by gear meshing harmonics and one 

single group of frequency spikes, and the frequency spikes are caused by pinion tooth cracks since 

the interval between every two neighboring spikes is the pinion rotational frequency. However, 

for “Scenario 3”, except the gear meshing harmonics, there are two group of spikes in the 
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frequency spectrum of simulated vibration signal. The first group of spikes have a uniform interval 

of the pinion rotational frequency, which are caused by the pinion tooth crack, while the second 

group of spikes have a uniform interval of the gear rotational frequency, which are caused by the 

gear tooth crack. 

The insights into the vibration characteristics of a spur gearbox with multiple tooth cracks 

summarized above fill the knowledge gaps in the field of gearbox tooth crack diagnosis since 

multiple tooth cracks have rarely been studied in the literature. Besides, the relationships between 

multiple tooth cracks and their associated impulses in the vibration signals are revealed, which 

inspires the idea that the focus of the proposed method for detecting the number and locations of 

multiple tooth cracks is placed on the CII. 

5.3.3 Detection of the number and locations of multiple tooth cracks  

To verify the effectiveness of the proposed method for detecting the number and locations of 

multiple tooth cracks in fixed-axis spur gearboxes, a white Gaussian noise with SNR=1 dB is 

added to simulated gearbox vibration signals to mimic environmental noise. The simulated 

gearbox vibration signals with white noise added for the three scenarios of multiple tooth cracks 

are shown in Fig. 5.19, from which it is difficult to obtain any information on the number and 

locations of multiple tooth cracks.   

  

(a) Simulated signal for “Scenario 1” (b) Simulated signal for “Scenario 2” 
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(c) Simulated signal for “Scenario 3” 

Fig. 5.19: Simulated vibration signals (with noise) for the three scenarios of multiple tooth cracks 

The proposed method described in Subsection 5.2.6 is adopted to analyze the simulated gearbox 

vibration signals for multiple tooth cracks. Herein, analysis results of the simulated vibration signal 

for “Scenario 1” (two nonadjacent tooth cracks on the pinion and a healthy gear) are used as an 

example to illustrate the procedure for the proposed method shown in Fig. 5.8. Firstly, comb notch 

filtering is conducted on the simulated signal for “Scenario 1” to remove the gear meshing 

harmonics and the associated first two pairs of sidebands, thus obtaining the residual signal 𝑅𝑒𝑠(𝑡). 

Center frequencies of the comb notch filter are set as the gear meshing harmonics, namely 570 Hz 

and its multiples. The bandwidth of the notch filter is set as 2 sideband pairs. The residual signal 

and its energy spectral density are shown in Fig. 5.20, from which it is seen that the frequency 

range in which the CII exist is about [2000, 5000] Hz. Therefore, [2000, 5000] Hz is used as the 

pass band to band-pass filter the residual signal. The band-pass filtered residual signal 𝑅𝑒𝑠𝐵𝑝𝑓(𝑡) 

and its energy spectral density are illustrated in Fig. 5.21. 

 

Fig. 5.20: Residual signal and its energy spectral density (Scenario 1) 
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Fig. 5.21: Band-pass filtered residual signal and its energy spectral density (Scenario 1) 

Afterwards, SVD is applied to decompose the band-pass filtered residual signal shown in Fig. 5.21. 

The value of 𝑚 is empirically set to 60, therefore 60 SCs are obtained, the PMI values of which 

are calculated using Eq. (5.36). Besides, the threshold 𝑝𝑇𝐻 is set to 0.06, which is the average of 

the PMI values of the SCs obtained from healthy gearbox vibration signals. PMI values of the 60 

SCs are shown in Fig. 5.22 together with 𝑝𝑇𝐻 (red dashed horizontal line), from which the PMI 

values that are greater than 𝑝𝑇𝐻 are identified, further being used to pick out their corresponding 

SCs. In this case, 34 SCs are picked out from the 60 obtained SCs. The index set of the selected 

34 SCs is P={1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 15, 16, 17, 18, 25, 26, 28, 29, 30, 31, 34, 35, 36, 37, 

38, 39, 40, 45, 46, 54, 56, 58, 59, 60}. Based on the obtained index set P, the reconstructed signal, 

namely the extracted CII, is calculated using Eq. (5.38). The CII is illustrated in Fig. 5.23, from 

which it is seen that the impulses are more significant than those shown in Fig. 5.21. 

 

Fig. 5.22: PMI values of the SCs obtained using the SVD (Scenario 1) 
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Fig. 5.23: The extracted CII (Scenario 1) 

Finally, TSA is conducted on the CII shown in Fig. 5.23 using both the pinion and the gear shaft 

rotational information. The pinion TSA signal 𝑇𝑆𝐴𝑝 and the gear TSA signal 𝑇𝑆𝐴𝑔 are obtained, 

which are shown in Fig. 5.24. Squared envelopes of 𝑇𝑆𝐴𝑝 and 𝑇𝑆𝐴𝑔, namely 𝑆𝐸𝑛𝑣𝑝 and 𝑆𝐸𝑛𝑣𝑔, 

are calculated using Eq. (5.39) and Eq. (5.40), respectively, which are illustrated in Fig. 5.25. As 

shown in Fig. 5.25, there are two distinct impulses in 𝑆𝐸𝑛𝑣𝑝 and the time interval between them 

is 0.01045 s, which approximately equals six mesh periods since 𝑟𝑜𝑢𝑛𝑑(0.01045 0.00174⁄ ) = 6 

(when the pinion rotational speed is 30 Hz, time length of one pinion revolution is 0.033 s, so one 

mesh period lasts for 0.00174 s since 0.033 19⁄ = 0.00174). This indicates that there are two 

nonadjacent tooth cracks on the pinion and the difference between the serial numbers of the two 

cracked teeth is 6, which is consistent with the specifications of “Scenario 1” tabulated in Table 

5.1 (I=1, J=7, J-I=6). However, there is no impulse in 𝑆𝐸𝑛𝑣𝑔, which indicates that there are no 

cracked teeth on the gear.   

 

Fig. 5.24: Pinion TSA signal 𝑇𝑆𝐴𝑝 and gear TSA signal 𝑇𝑆𝐴𝑔 (Scenario 1) 
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Fig. 5.25: Squared envelopes 𝑆𝐸𝑛𝑣𝑝 and 𝑆𝐸𝑛𝑣𝑔 for “Scenario 1” 

Likewise, by applying the proposed method to the simulated vibration signals for “Scenario 2” and 

“Scenario 3”, the corresponding squared envelopes of the pinion and gear TSA signals can be 

obtained as well. The 𝑆𝐸𝑛𝑣𝑝 and 𝑆𝐸𝑛𝑣𝑔 for “Scenario 2” are illustrated in Fig. 5.26, and those for 

“Scenario 3” are shown in Fig 5.27. For “Scenario 2”, as shown in Fig. 5.26, there are two distinct 

impulses in 𝑆𝐸𝑛𝑣𝑝 and the time interval between them is 0.00174 s, which is equal to one mesh 

period since 𝑟𝑜𝑢𝑛𝑑(0.00174 0.00174⁄ ) = 1. This indicates that there are two adjacent tooth 

cracks on the pinion, namely the difference between the serial numbers of the two cracked teeth is 

1, which is consistent with the specifications of “Scenario 2” presented in Table 5.2. However, 

there is no impulse in 𝑆𝐸𝑛𝑣𝑔, which indicates that there are no cracked teeth on the gear. For 

“Scenario 3”, as shown in Fig. 5.27, there is only one distinct impulse in 𝑆𝐸𝑛𝑣𝑝, which means that 

there is only one tooth crack on the pinion. Besides, there is only one significant impulse in 𝑆𝐸𝑛𝑣𝑔, 

indicating that the gear has one cracked tooth as well. This is consistent with the specifications of 

“Scenario 3” shown in Table 5.3. Therefore, all these simulation signal analysis results verify that 

the proposed method shown in Fig. 5.8 can accurately detect the number and locations of the 

cracked teeth for the three scenarios of multiple tooth cracks in spur gearboxes. 
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Fig. 5.26: Squared envelopes 𝑆𝐸𝑛𝑣𝑝 and 𝑆𝐸𝑛𝑣𝑔 for “Scenario 2” 

 

Fig. 5.27: Squared envelopes 𝑆𝐸𝑛𝑣𝑝 and 𝑆𝐸𝑛𝑣𝑔 for “Scenario 3” 

5.4 Experimental validation 

In this section, the insights into vibration characteristics of spur gearboxes with multiple tooth 

cracks obtained from simulation analysis and the effectiveness of the proposed method for 

detecting the number and locations of multiple tooth cracks are further validated using 

experimental gearbox vibration datasets. Experimental validations are performed for “Scenario 1” 

(two nonadjacent tooth cracks on the pinion and a healthy gear) and “Scenario 2” (two adjacent 

tooth cracks on the pinion and a healthy gear) due to the data availability. 

5.4.1 Experiment setup  

Details of the test rig and experimental fixed-axis spur gearbox have been described in Subsection 

2.5.1 of Chapter 2. Specifications of the target pinion on which the multiple tooth cracks were 
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seeded have been introduced in Table 2.6. For “Scenario 1”, cracks were seeded on the root fillets 

of two nonadjacent teeth of the target pinion, which is shown in the two red circles in Fig. 5.28(a), 

and the mating gear is healthy. For “Scenario 2”, cracks were seeded on the root fillets of two 

adjacent teeth of the target pinion, which is illustrated in the two red circles in Fig. 5.28(b), and 

the mating gear is healthy as well. All tooth cracks were artificially created using an electric 

discharge machine (EDM). Each cracked tooth was assumed to have the same crack propagation 

path, which is shown in Fig. 5.29. In Fig. 5.29, w is crack length, 𝐿𝑏 is half-length of tooth base 

chordal thickness, q is crack depth, 𝛼𝑐 is crack angle, t is crack thickness. Tooth crack is assumed 

to extend through the whole tooth face with a uniform crack depth. Depth of each tooth crack is 

different by specifying different values of q, and t is determined by the diameter of the EDM wire 

electrode, which was 0.2 mm in the experiments. Specifications of the pinion tooth cracks for 

“Scenario 1” and “Scenario 2” are tabulated in Table 5.4. 

  

(a) Two nonadjacent tooth cracks (Scenario 1) (b) Two adjacent tooth cracks (Scenario 2) 

Fig. 5.28: Target pinion with multiple tooth cracks “Scenario 1” and “Scenario 2” 

 

Fig. 5.29: Crack propagation schematic of the target pinion cracked tooth 
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Table 5.4: Specifications of the two scenarios of multiple tooth cracks on the target pinion 

Scenario 

Crack lengths of 

two cracked teeth 

(w/cm) 

Crack angles of 

two cracked teeth 

(𝛼𝑐/Deg) 

Crack depths of 

two cracked teeth 

(q/mm) 

Difference between 

serial numbers of 

two cracked teeth 

Scenario 1 5.08 and 5.08 60 and 60 4 and 3.2  6 

Scenario 2 5.08 and 5.08 60 and 60 4 and 3.2 1 

 

In the experiments, vibration datasets of the target spur gearbox for the two scenarios of multiple 

tooth cracks were collected when the target pinion rotational frequency was 2.955 Hz and the 

applied torque on the load motor was 120 Nm. Therefore, GMF of the input mesh pair shown in 

Fig. 2.12(b) is 𝐺𝑀𝐹𝑖𝑛 = 53.2 Hz, and that of the output mesh pair is 𝐺𝑀𝐹𝑜𝑢𝑡 = 189.2 Hz. The 

sampling frequency was 25.6 kHz. Time length of each vibration signal was 3 seconds. A 

tachometer signal was collected using a speed sensor simultaneously with vibration signal 

collection. Without loss of generality, vibration signals collected using the accelerometer 3, which 

is shown in Fig. 2.12(c), are analyzed in this chapter.  

5.4.2 Analysis of experimental gearbox vibration datasets  

In the experiments, gearbox acceleration signals were collected, but gear tooth mesh stiffness was 

not experimentally acquired. Therefore, only gearbox acceleration signals are analyzed in both 

time and frequency domains to validate the insights into vibration characteristics of spur gearboxes 

with multiple tooth cracks obtained from simulation analysis. Time waveform and frequency 

spectrum of the acceleration signal for “Scenario 1” are illustrated in Fig. 5.30, and those for 

“Scenario 2” are shown in Fig. 5.31. 

 

(a) Time waveform and frequency spectrum (full range) 
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(b) Frequency spectrum in [0, 600] Hz 

 

(c) Frequency spectrum in [1100, 1800] Hz 

Fig. 5.30: Experimental gearbox vibration signal for “Scenario 1” 

 

(a) Time waveform and frequency spectrum (full range) 

 

(b) Frequency spectrum in [0, 600] Hz 
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(c) Frequency spectrum in [1100, 1800] Hz 

Fig. 5.31: Experimental gearbox vibration signal for “Scenario 2” 

As shown in Fig. 5.30(a), there are many impulses in the time waveform, but it is difficult to get 

any information on the number and locations of tooth cracks due to strong background noise. 

Frequency spectrum of vibration signal is mainly dominated by gear meshing harmonics of the 

input mesh pair of the target spur gearbox, namely 𝐺𝑀𝐹𝑖𝑛 (53.2 Hz) and its multiples. Although 

there are also gear meshing harmonics of the output mesh pair in the spectrum, namely 𝐺𝑀𝐹𝑜𝑢𝑡 

(189.2 Hz) and its multiples, their magnitudes are relatively smaller. Gear meshing harmonics of 

the two mesh pairs are mainly located in the frequency range [0, 600] Hz, details of which are 

shown in Fig. 5.30(b). There are either one or two pairs of sidebands around the gear meshing 

harmonics, which are caused by gear manufacturing errors and are not related to pinion tooth 

cracks. For brevity, only the significant sidebands around the dominant gear meshing harmonics 

are labelled and marked in blue. Besides, there are a group of frequency spikes in the range [1100, 

1800] Hz (in the red dashed rectangle), details of which are shown in Fig. 5.30(c). It is seen that 

the frequency interval between every two neighbouring frequency spikes is about 2.955 Hz, such 

as 1702.08-1699.13=2.95 Hz and 1285.43-1282.47=2.96 Hz, which is the target pinion rotational 

frequency, indicating that the spikes in [1100, 1800] Hz are caused by the two nonadjacent tooth 

cracks on the target pinion. These observations are consistent with those obtained from the 

simulated signal analysis for “Scenario 1” shown in Subsection 5.3.2.1, which means that obtained 

insights for “Scenario 1” are correct, validating the correctness of the mesh stiffness formulae for 

“Scenario 1” derived in Subsection 5.2.4.1. 

As shown in Fig. 5.31(a), frequency spectrum of acceleration signal for “Scenario 2” is mainly 

dominated by the gear meshing harmonics of the input mesh pair (53.2 Hz and its multiples), which 

are in the frequency range [0, 600] Hz. From Fig. 5.31(b), it is found that there are either one or 
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two pairs of sidebands around the gear meshing harmonics, which are caused by gear 

manufacturing errors as well and are not related to pinion tooth cracks. Likewise, only the 

significant sidebands around the dominant gear meshing harmonics are labelled and marked in 

blue. Besides, there is also a group of frequency spikes in the frequency range [1100, 1800] Hz, 

details of which are illustrated in Fig. 5.31(c). It is found that the frequency interval between every 

two neighbouring frequency spikes is about 2.955 Hz, such as 1702.08-1699.13=2.95 Hz and 

1512.96-1510=2.96 Hz, which is the target pinion rotational frequency. This indicates that these 

frequency spikes are caused by the two adjacent tooth cracks on the target pinion. However, 

magnitudes of the frequency spikes in [1100, 1800] Hz for “Scenario 2” are different from those 

for “Scenario 1”, which means that the effects on gearbox vibration signals caused by “Scenario 

1” and “Scenario 2” are different. All these observations are consistent with those obtained from 

simulation signal analyses presented in Subsection 5.3.2.2, which demonstrates the correctness of 

the obtained insights into gearbox vibration characteristics, further indicating that the mesh 

stiffness formulae for “Scenario 2” derived in Subsection 5.2.4.2 are correct.  

5.4.3 Detection of the number and locations of multiple tooth cracks in a spur gearbox  

To further validate the effectiveness of the proposed method for detecting the number and locations 

of multiple tooth cracks, the proposed method is adopted to process experimental gearbox 

vibration signals for the two scenarios of multiple tooth cracks described in Table 5.4. Analysis 

results of experimental vibration signal for “Scenario 1” are used as examples to illustrate the 

procedure for the proposed method. Because there are two meshing pairs in the target spur gearbox, 

the corresponding gear meshing harmonics, namely 𝐺𝑀𝐹𝑖𝑛  (53.2 Hz) and its multiples, and 

𝐺𝑀𝐹𝑜𝑢𝑡 (189.2 Hz) and its multiples, and the first two pairs of sidebands around them are removed 

using comb notch filtering. The obtained residual signal 𝑅𝑒𝑠(𝑡) is shown in Fig. 5.32 together with 

its energy spectral density, from which it is seen that the frequency range in which the CII exist is 

about [1100, 1800] Hz, which is consistent with the observations obtained from Fig. 5.30(c). 

Therefore, [1100, 1800] Hz is used as the pass band to band-pass filter the residual signal, and the 

obtained band-pass filtered residual signal 𝑅𝑒𝑠𝐵𝑝𝑓(𝑡)  and its energy spectral density are 

illustrated in Fig. 5.33. 
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Fig. 5.32: Residual signal and its energy spectral density for “Scenario 1” 

 

Fig. 5.33: Band-pass filtered residual signal and its energy spectral density for “Scenario 1” 

Afterwards, SVD is applied to decompose the band-pass filtered residual signal shown in Fig. 5.33. 

The value of 𝑚 is set to 60, therefore 60 SCs are obtained, the PMI values of which are calculated 

using Eq. (5.36). The threshold 𝑝𝑇𝐻 is set to 0.1261, which is the average of the PMI values of the 

SCs obtained from healthy gearbox vibration signals. PMI values of the 60 SCs are shown in Fig. 

5.34 together with 𝑝𝑇𝐻, from which the PMI values that are greater than 𝑝𝑇𝐻 are identified, further 

being used to pick out their corresponding SCs. In this case, 18 SCs are picked out from the 60 

obtained SCs. The index set of the 18 selected SCs is P={1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 17, 18, 19, 

20, 21, 22, 23, 24}. Based on the obtained index set P, the CII is calculated using Eq. (5.38). The 

obtained CII is illustrated in Fig. 5.35, from which it is seen that the impulses are more significant 

than those shown in Fig. 5.33. 
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Fig. 5.34: PMI values of the SCs obtained using the SVD (experimental signal, Scenario 1) 

 

Fig. 5.35: The extracted CII (experimental signal, Scenario 1) 

Finally, TSA is conducted on the CII shown in Fig. 5.35 using both the pinion and the gear shaft 

rotational information. The pinion TSA signal 𝑇𝑆𝐴𝑝 and the gear TSA signal 𝑇𝑆𝐴𝑔 are obtained 

and are shown in Fig. 5.36. Squared envelopes of 𝑇𝑆𝐴𝑝 and 𝑇𝑆𝐴𝑔, namely 𝑆𝐸𝑛𝑣𝑝 and 𝑆𝐸𝑛𝑣𝑔, are 

calculated using Eq. (5.39) and Eq. (5.40), respectively, which are illustrated in Fig. 5.37. As 

shown in Fig. 5.37, there are two distinct impulses in 𝑆𝐸𝑛𝑣𝑝 and the time interval between them 

is 0.11282 s, which is about six mesh periods since 𝑟𝑜𝑢𝑛𝑑(0.11282 0.0188⁄ ) = 6 (when the 

target pinion speed is 2.955 Hz, time length of one pinion revolution is 0.338 s, so one mesh period 

lasts for 0.0188 s since 0.338 18⁄ = 0.0188). This indicates that there are two nonadjacent tooth 

cracks on the target pinion and the difference between the serial numbers of the two cracked pinion 

teeth is 6, which is consistent with the specifications of “Scenario 1” shown in Table 5.4. There is 

no distinct impulse in 𝑆𝐸𝑛𝑣𝑔, indicating that there are no cracked teeth on the mating gear of the 

target pinion, which is true since all teeth of the mating gear were healthy in the experiments.   
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Fig. 5.36: Pinion TSA signal 𝑇𝑆𝐴𝑝 and gear TSA signal 𝑇𝑆𝐴𝑔 (experimental signal, Scenario 1) 

 

Fig. 5.37: Squared envelopes 𝑆𝐸𝑛𝑣𝑝 and 𝑆𝐸𝑛𝑣𝑔 (experimental signal, Scenario 1) 

Likewise, by applying the proposed method to the experimental vibration signal for “Scenario 2”, 

the corresponding squared envelopes of the pinion and gear TSA signals are obtained as well, 

which are illustrated in Fig. 5.38. It is seen that there are two distinct impulses in 𝑆𝐸𝑛𝑣𝑝 and the 

interval between them is 0.0199 s, which is approximately equal to one mesh period since 

𝑟𝑜𝑢𝑛𝑑(0.0199 0.0188⁄ ) = 1. This indicates that there are two adjacent tooth cracks on the target 

pinion, namely the difference between the serial numbers of the two cracked pinion teeth is 1, 

which is consistent with the specifications of “Scenario 2” in Table 5.4. There is also no distinct 

impulse in 𝑆𝐸𝑛𝑣𝑔, indicating that there are no cracked teeth on the mating gear, which is true since 

no cracks were seeded on the gear in the experiments.   
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Fig. 5.38: Squared envelopes 𝑆𝐸𝑛𝑣𝑝 and 𝑆𝐸𝑛𝑣𝑔 (experimental signal, Scenario 2) 

Therefore, based on the analysis results of experimental gearbox vibration signals for both 

“Scenario 1” and “Scenario 2” presented above, the number and locations of the two scenarios of 

multiple cracked teeth on the target pinion can be accurately detected using the proposed method, 

which validates the effectiveness of the proposed method for detecting the number and locations 

of multiple tooth cracks in spur gearboxes. 

5.5 Conclusions 

This chapter brings some insights into the vibration characteristics of spur gearboxes with multiple 

tooth cracks and proposes a novel method for detecting the number and locations of multiple tooth 

cracks. In this chapter, three scenarios of multiple tooth cracks in spur gearboxes are studied. 

Firstly, gear tooth mesh stiffness formulae for each scenario of multiple tooth cracks are 

analytically derived, and how multiple tooth cracks affect gear tooth mesh stiffness is studied in 

both angle and frequency domains. Afterwards, gear tooth mesh stiffness is exerted into the spur 

gearbox dynamic model to generate simulated vibration signals, which are further analyzed in both 

time and frequency domains to reveal the effects of multiple tooth cracks on gearbox vibration 

signals. The insights into gearbox vibration characteristics obtained from simulation analysis is 

validated using experimental vibration datasets of a spur gearbox with multiple tooth cracks on the 

pinion. The obtained insights into vibration characteristics of spur gearboxes with multiple tooth 

cracks fill the knowledge gaps in the field of gearbox tooth crack diagnosis.  
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In addition, a novel method focusing on the CII is proposed to detect the number and locations of 

multiple tooth cracks in spur gearboxes. The CII are first extracted from gearbox vibration signals 

using a new SVD-based strategy. TSA is conducted on the CII to get the TSA signals for both the 

pinion and the gear, the squared envelopes of which are calculated. By identifying the distinct 

impulses in the squared envelopes of the pinion and gear TSA signals and calculating the time 

interval between the identified impulses, the number and locations of multiple tooth cracks can be 

accurately detected. The effectiveness of the proposed method is demonstrated using both 

simulated gearbox vibration signals and experimental gearbox vibration datasets. 

In this chapter, the two scenarios of multiple tooth cracks on the pinion in spur gearboxes are 

studied for experimental validation, and only constant working conditions are considered. In the 

future, the scenario of multiple tooth cracks on both the pinion and the gear will be studied 

experimentally and the time-varying working conditions will be involved. 
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Chapter 6: Summary and future work  

 

In this chapter, the novel contributions of the research work conducted in this thesis are 

summarized in Section 6.1. In addition, several research problems that are worth to be explored in 

the future are presented in Section 6.2. 

6.1 Summary 

Vibration analysis has been widely utilized for fault detection and severity assessment of fixed-

axis spur gearboxes since vibration signals are easy to acquire and contain abundant information 

on gearbox health conditions. To develop effective vibration analysis methods for fixed-axis 

gearbox fault diagnosis, a good understanding of the vibration characteristics of a fixed-axis 

gearbox in both healthy and faulty conditions is of necessity. The overarching objective of this 

thesis is to procure some insights into vibration properties of a fixed-axis spur gearbox with tooth 

cracks under either constant and time-varying operating conditions through dynamic simulation, 

and the obtained insights are further employed to guide the development of effective vibration 

signal analysis methods for gear tooth crack detection and severity assessment. The contributions 

of this thesis are summarized in four aspects, which are presented in the following four subsections. 

6.1.1 Development of new condition indicators for early tooth crack severity assessment  

Diagnosis of gear tooth cracks at an early stage is important to prevent catastrophic failures of 

gearboxes, which helps improve gearbox reliability and decrease gearbox system operation and 

maintenance costs. Many studies have been reported to assess tooth crack severity, but they failed 

to work well when a tooth crack was in the early stage. To overcome this problem, this thesis 

proposes a new method to extract the CII from gearbox vibration signals, conduct a thorough 

analysis on the CII, and develop two new CIs based on the CII for early tooth crack severity 

assessment. The idea that the proposed method focuses on the CII is inspired by the observation 

that the CII can well reflect tooth crack severity progression, which is obtained via gearbox 

dynamic simulation. Details of the proposed method have been presented in Chapter 2. To be 

specific, the TSA technique is first applied to gearbox vibration signals to get the gear TSA signal. 
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Afterwards, gear meshing harmonics and their associated sidebands are removed from the gear 

TSA signal using comb notch filters. The matrix pencil method is further utilized to identify SDOF 

IRs (dominant resonances) from the comb notch filtered signal, and the identified SDOF IRs are 

used to reconstruct the CII. Lastly, the energy of the reconstructed CII and the sum of the energy 

of the SDOF IRs with their carrier frequencies in a specific frequency band are proposed as two 

new CIs for early tooth crack severity assessment. The effectiveness of the proposed method and 

the two new CIs for early tooth crack severity assessment have been demonstrated using both 

simulated gearbox vibration signals and experimental gearbox vibration datasets. 

6.1.2 Investigation of the effects of time-varying operating conditions on gearbox vibration 

signals  

It has been reported that time-varying operating conditions induce AM and FM into gearbox 

vibration signals. However, the relationship between time-varying operating conditions and 

gearbox vibration signals are not known yet. In Chapter 3 of this thesis, a comprehensive study is 

conducted to investigate how time-varying operating conditions affect vibration characteristics of 

a fixed-axis spur gearbox with a tooth crack. The involved time-varying operating conditions 

include two scenarios, namely the variable load and constant speed condition, and the constant 

load and variable speed condition. Firstly, gear tooth mesh stiffness of a gear pair involving tooth 

crack severity progression is evaluated under time-varying operating conditions, through which 

gearbox vibration responses are generated. Gear tooth mesh stiffness and gearbox vibration signals 

are analyzed to reveal the effects caused by time-varying operating conditions. Besides, the 

relationship between the CII and the variable load or variable speed is studied as well, and a linear 

dependence of the AM of the CII on the variable load or variable speed is identified. The identified 

linear dependence is further used to develop a novel condition indicator for tracking tooth crack 

severity progression under time-varying operating conditions. The linear dependence of the AM 

of the CII on time-varying operating conditions and the effectiveness of the proposed condition 

indicator for tracking tooth crack severity progression have been demonstrated using both 

simulated gearbox vibration signals and experimental gearbox vibration datasets. 
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6.1.3 Removal of the speed variation-induced AM and FM for tracking tooth crack severity 

progression 

As revealed in Chapter 3 of this thesis that variable speeds induce both AM and FM into gearbox 

vibration signals, which can mask the existence of a tooth crack and make it difficult to distinguish 

between changes of tooth crack severity and speed variations. To tackle this problem, in Chapter 

4 of this thesis, a novel normalization method has been proposed to remove the speed variation-

induced AM and FM for effectively tracking tooth crack severity progression under variable speed 

conditions. The focus of the proposed normalization method is placed on the CII since the CII 

contain abundant information on tooth crack growth, which has been demonstrated in Chapter 2 

and Chapter 3 of this thesis. For the proposed normalization method, firstly, the raw gearbox 

vibration signal is processed using the computed order tracking technique to remove the speed 

variation-induced FM. Afterwards, the CII and the speed variation-induced AM of the CII are 

obtained using the modified AHD method and the envelope analysis method, respectively. Based 

on the speed variation-induced AM of the CII, the CII is normalized, thus removing the interfering 

AM caused by variable speed conditions. The normalized CII not only eliminate the effect of speed 

variation-induced AM and FM but also preserve information on tooth crack growth. Condition 

indicators such as RMS and EHNR calculated using the normalized CII work well in tracking tooth 

crack severity progression under variable speed conditions. The effectiveness of the proposed 

normalization method for removing the speed variation-induced AM and FM in terms of tracking 

tooth crack severity progression under variable speed conditions has been demonstrated using both 

simulated gearbox vibration signals and experimental gearbox vibration datasets.  

6.1.4 Study of vibration characteristics and detection of multiple toot cracks 

In industrial applications, gearboxes may suffer from multiple tooth cracks due to their harsh 

working environment. However, analysis of vibration properties of gearboxes with multiple tooth 

cracks and detection of multiple tooth cracks have rarely been conducted in the literature. To 

overcome this problem, in Chapter 5 of this thesis, vibration characteristics of a fixed-axis spur 

gearbox with multiple tooth cracks have been studied via dynamic simulation, and the obtained 

insights into gearbox vibration characteristics have been adopted to guide the development of a 

new method for detecting the number and locations of multiple tooth cracks. To be specific, three 

scenarios of multiple tooth cracks are considered, including two nonadjacent tooth cracks on the 
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pinion and a healthy gear, two adjacent tooth cracks on the pinion and a healthy gear, and one 

tooth crack on the pinion and one tooth crack on the gear. Gear tooth mesh stiffness for the three 

scenarios of multiple tooth cracks have been evaluated analytically using the potential energy 

method and have been inserted into gearbox dynamic model to generate dynamic responses. 

Analyses of gear tooth mesh stiffness and gearbox dynamic responses have been conducted, which 

reveal that the CII contain useful information on multiple tooth cracks. Inspired by this finding, a 

new method with its focus on the CII has been proposed to detect the number and locations of 

multiple tooth cracks in fixed-axis spur gearboxes. Firstly, an SVD-based method is developed to 

extract the CII from gearbox vibration signals. TSA is further conducted on the CII using both 

pinion and gear rotational information to get the pinion and gear TSA signals, squared envelopes 

of which are calculated. Lastly, by identifying the distinct impulses in the squared envelopes of 

the pinion and gear TSA signals and calculating the time interval between the identified impulses, 

the number and locations of multiple tooth cracks can be detected. The insights into gearbox 

vibration properties and the effectiveness of the proposed method have been demonstrated using 

both simulated gearbox vibration signals and experimental gearbox vibration datasets. 

6.2 Future work 

Although the studies conducted in this thesis have overcome the limitations and drawbacks of the 

relevant reported research work on dynamic simulation and vibration-based tooth crack detection 

and severity assessment of fixed-axis spur gearboxes, there still exists some challenges and 

problems that need further considerations and explorations, which are described in the following 

subsections. 

6.2.1 Assessment of early tooth crack severity under time-varying operating conditions  

In this thesis, two new CIs have been developed for early tooth crack severity assessment under 

constant load and constant speed conditions. However, in real industrial applications, gearboxes 

oftentimes work under time-varying operating conditions. The CIs proposed in Chapter 2 of this 

thesis will become incompetent to assess early tooth crack severity under time-varying operating 

conditions since changes in CIs may indicate the changes of gearbox vibration signals caused by 

either the deterioration of gear health conditions, or the operating condition variations, or both. 
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Therefore, early tooth crack severity assessment under time-varying operating conditions deserves 

a further study. 

6.2.2 Investigation of the effects of variable load and variable speed conditions on gearbox 

vibration characteristics  

In this thesis, only two scenarios of time-varying operating conditions have been considered when 

studying their effects on gearbox vibration properties, namely the variable load and constant speed 

condition, and the constant load and variable speed condition. However, industrial gearboxes may 

also experience variable load and variable speed conditions when their driving motors are 

controlled by open-loop control strategies. In this situation, the load and speed are correlated since 

they need to follow the driving motor torque-speed characteristic curve [20,66], which is totally 

different from the two scenarios considered in Chapter 3 of this thesis. The effects of the variable 

load and variable speed conditions on gearbox vibration characteristics and tooth crack diagnosis 

under variable load and variable speed conditions need to be further investigated. 

6.2.3 Investigation of the effect of tooth lubrication on gearbox vibration characteristics 

In this thesis, tooth lubrication is not considered when conducting dynamic simulations for fixed-

axis spur gearboxes with tooth cracks. However, in industrial applications, gear teeth are always 

lubricated. To make gearbox dynamic simulation more practical, it is of necessity to take tooth 

lubrication into account when modelling the mesh interactions between engaged gear teeth. To be 

specific, the oil film stiffness and oil film damping produced by the lubrication oil film between 

engaged gear teeth should also be considered when evaluating the total stiffness and total damping 

of the gear tooth mesh interactions apart from the conventional tooth mesh stiffness and tooth mesh 

damping [54,143–145]. For the calculations of the oil film stiffness and oil film damping of tooth 

lubrication oil film, the elastohydrodynamic lubrication theory can be adopted to model the gear 

tooth lubrication [146–148]. On this basis, the obtained total stiffness and total damping include 

the effects of tooth lubrication, tooth mesh, and tooth crack severity progression. After inserting 

the total stiffness and total damping into gearbox motion equations, gearbox dynamic responses 

can be generated. Afterwards, the effect of tooth lubrication on the vibration characteristics of 

gearboxes with tooth cracks can be revealed by analyzing the gearbox dynamic responses. 
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6.2.4 Dynamic simulation and diagnosis of gearboxes with both gear and bearing faults  

In this thesis, only diagnosis of gear faults (gear tooth cracks) is studied using dynamic simulation 

and signal processing, which means that all the bearings in a gearbox are assumed to be healthy. 

However, for practical gearboxes used in the industry, they may suffer from both gear faults and 

bearing faults simultaneously [15]. Therefore, it is worthy of conducting dynamic simulation and 

diagnosis of gearboxes involving both gear and bearing faults. To consider both bearing and gear 

faults simultaneously in gearbox dynamic simulation, the gearbox dynamic model presented in the 

thesis needs to be modified. The required modifications include: (1) bearing faults need to be 

simulated using a bearing dynamic model; (2) the coupling effect of bearings and gears need to be 

considered. To be specific, the inner race of a bearing is connected to a pinion by a rigid rotating 

shaft, therefore the motion of the bearing inner race of the pinon needs to be considered by taking 

both the gear tooth mesh force and the contact force between the bearing rollers and races into 

consideration. After conducting dynamic simulation, vibration characteristics of gearboxes with 

both bearing and gear faults will be known well. It is expected that when bearing faults occur in a 

gearbox, the bearing stiffness and damping will change accordingly, thus affecting the loading 

conditions and vibrations of the gears. Besides, for the diagnosis of gearboxes with both bearing 

and gear faults, advanced signal processing methods such as blind source separation and signal 

decomposition approaches are first needed to separate signal components related to bearing faults 

and those related to gear faults. Afterwards, the signal analysis developed in this thesis can be used 

for gear fault diagnosis and bearing fault diagnosis can be achieved using the signal demodulation 

and envelope analysis methods. More endeavour is needed for the study on dynamic simulation 

and diagnosis of gearboxes with both gear and bearing faults. 

6.2.5 Evaluation of gear tooth mesh damping  

In this thesis, the gear tooth mesh damping is assumed to be linearly proportional to the gear tooth 

mesh stiffness [26,149]. This assumption may work well for some situations but may not for other 

ones. Given that the damping effect of gear tooth mesh interactions is related to the energy 

dissipation of a gearbox system [150], which may be affected by gearbox geometry parameters 

and working condition properties, how to evaluate the gear tooth mesh damping of a gearbox 

working under specific conditions needs to be further investigated. In addition, the effect of gear 

tooth mesh damping on gearbox vibration characteristics needs further explorations as well.  



210 
 
 

6.2.6 Development of advanced methods for fault diagnosis under variable load conditions 

Variable load conditions include two possible scenarios, namely constant speed and variable load 

condition, and variable speed and variable load condition. Gearboxes oftentimes experience 

variable load conditions in the industry, so it is important to conduct gearbox fault diagnosis when 

load fluctuations exist. Variable load conditions induce additional AM and FM into gearbox 

vibration signals, which lead to difficulties of fault diagnosis. Therefore, the load variation-induced 

AM and FM needs to be removed. In Chapter 4 of this thesis, the proposed normalization method 

has demonstrated its effectiveness in terms of removing the speed variation-induced AM and FM. 

The effectiveness of the normalization method proposed in Chapter 4 in terms of removing the 

load variation-induced AM and FM needs to be further checked. If it cannot work well, new 

advanced methods need to be developed to eliminate the load variation-induced AM and FM for 

gearbox fault diagnosis under variable load conditions. 
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