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Abstract

A recent in vitro study demonstrated a non invasive method to

enhance local deposition in a small airway by controlling the

angular position of magnetic high aspect ratio particles. This

technique could mitigate the challenge of providing sufficient therapeutic

effects when using aerosolized chemotherapy techniques. To highlight

the potential of this new magnetic field alignment approach the

effect of increasing particle aspect ratio on the deposition efficiency

was studied using direct numerical simulations. Simulations were

done using an in house finite element algorithm. A steady air

flow, typical of tidal breathing, was simulated through a three

dimensional physiologically realistic bifurcation representing a

single symmetrical bifurcation between generations 14 and 15 in

the lung. For two different aspect ratios the deposition efficiency

was found for the case of an unconstrained particle and magnetically

aligned particle. Results indicate that forcing local alignment of

high aspect ratio particles can increase local deposition considerably.
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Chapter 1

Introduction

1.1 Pharmaceutical Aerosols and Localized Drug Targeting

Inhalation therapy has become well known in its use to treat lung disease

such as asthma, chronic obstructive pulmonary disease, cystic fibrosis(Finlay

et al., 2000), and chronic pulmonary infections(Golshahi et al., 2008) but

more recently there have been new developments in the inhalation treatment

of lung cancer. The American Cancer Society (2011) are estimating about

1.6 million new cancer cases for 2011 to be added to the already 11.7 million

(as of 2007) of people already affected by cancer. Lung cancer will account

for 14% of these newly diagnosed persons (American Cancer Society, 2011),

while in Canada it accounts for 27% of deaths due to cancer (Canadian

Cancer Society, 2011). Inhalation chemotherapy holds some advantages

in comparison to established forms of treatment such as intravenous (IV)

therapy. Inhalation chemotherapy has been shown to provide equal therapeutic

effects as the more commonly used method of IV administration but with

reduced systemic side effects(Wittgen et al., 2007; Otterson et al., 2007;

Gagnadoux et al., 2005). Aerosol therapy has the advantage of convenience



CHAPTER 1. INTRODUCTION 2

over IV therapy which is important for chemotherapeutic agents where efficacy

of the treatment is highly dependent on the administration schedule (Reddy

and Couvreur, 2008).

The problem all inhalation therapies involving aggressive medicine suffer

from is staying within dose limiting toxicity levels. Otterson et al. (2007)

found that Doxorubicin (a chemotherapeutic agent) reached the safe dose

limit before it could provide sufficient effect to be used as the sole treatment.

Currently inhalation chemotherapy is considered as an important adjuvant

to current treatment techniques (Wiedmann and Yi, 2010). Improving drug

delivery by targeting drug delivery where it is most effective would help

alleviate this problem. In the case of inhalation chemotherapy, deposition

could be targeted to the site of the tumor or for systemic therapy the alveolar

airways would be targeted as this is where the gas exchange with the blood

stream occurs.

There are many forms of targeted drug delivery with the simplest form of

targeting being a mechanistic approach. This includes controlling parameters

such as particle characteristics, inhalation waveform, particle concentration

and particle release positions (Kleinstreuer et al., 2008). Except this type

of targeting is very limited to targeting to a broad range of regions in the

lungs. For greater isolation other methods such as chemoembolization and

isolated lung perfusion exist but are considered extremely invasive techniques

(Bar et al., 2009). These surgical techniques also require the patient to be

in the condition to allow for such an invasive technique. Magnetic targeting

has been studied as a possible form of non invasive targeting. Dames et al.

(2007) studied the use of a magnetic targeting method where deposition

enhancement is encouraged by employing a magnetic field to change the
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trajectory of aerosol droplets containing superparamagnetic iron oxide nanoparticles.

The change in translational position of the particles is related to the magnetic

field gradient and unfortunately the magnetic field gradient decreases dramatically

with the distance from the magnetic field source. Considering the dimensions

of typical human lungs, until new magnetic field generating designs are made

this type of targeting method is limited (Bar et al., 2009).

Recently Martin and Finlay (2008b) have developed a form of magnetic

targeting that does not suffer from the magnetic gradient limitation. Deposition

is encouraged by controlling the angular position of high aspect ratio particles

in order to increase deposition due to interception. High aspect ratio particles

(elongated particles or fiber like particles) in the lungs tend to spend most

of their travel time with their longer axis aligned to the direction of the

flow (Jeffery, 1922). Thus these high aspect ratio particles have aerodynamic

properties equivalent to that of smaller spherical particles. This is advantageous

in terms of being able to penetrate into the distal airways with an increase

in drug dosage when compared to a spherical particle. Figure 1.1 shows

a schematic of how the magnet targeting method would work in a small

bifurcation in the lung. Martin and Finlay (2008c) theoretically proved that

the resulting magnetic torque on a high aspect ratio particle seeded with

ferromagnetic particles could be capable of overcoming the hydrodynamic

torque experienced by the particle. The theory was then validated by demonstrating

the difference in angular position of particles on membrane filter with and

without a magnetic field (Martin and Finlay, 2008a). Scanning electron

microscope of the filter demonstrated how the particles deposited where

aligned to the external magnetic field. Finally an in vitro study was completed

where deposition of high aspect ratio particles were recorded in a small
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bifurcation model with and without a magnetic field(Martin and Finlay,

2008b). For a polydispersed aerosol the deposition in the small bifurcation

model increased by a factor of 1.7 when the external magnetic field was

applied. More recently an in vivo study was done by Redman et al. (2010)using

the magnetic alignment technique to enhance deposition in rabbits. The

magnetic targeting technique resulted in enhanced deposition in the basal

and distal airways in the lungs of the rabbits.

These studies have demonstrated that there is potential to use the magnetic

targeting technique to enhance local deposition. This technique could be used

to enhance deposition in the unhealthy lobe and thus decrease side effects

in the healthy lobe. With an increase in drug delivery efficacy to the sites

of interest there would be an increase in therapeutic effects without having

to suffer from an increase in side effects. This would allow for effective use

of aggressive medicine such as chemotherapeutic agents without reaching

dose limiting toxicities. One of the most important parameters is the aspect

ratio of the particle since interception is highly dependent on the length of

the particle. Thus the end goal of this study is to use numerical methods

to quantify the relationship between the deposition enhancement and the

particle’s aspect ratio.
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Figure 1.1: A schematic showing the change in angular position of

magnetically susceptible high aspect ratio particles when a magnetic field

is introduced. Green zone represents the magnetic field. High aspect ratio

particles within magnetic field align with the magnetic field. Particles outside

magnetic field tend to align parallel to direction of the local flow in the lung

bifurcation.

1.2 Particle Deposition Models

A numerical approach was deemed appropriate due to the difficulty of precisely

controlling the different parameters in the experimental results. In the work

done by Martin and Finlay (2008b) and Redman et al. (2010) polydispersed
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aerosols were used and deposition was based on mass deposited. Therefore

it is difficult to quantify which size range contributed most significantly to

the local deposition enhancement. The use of numerical methods would

give insight into the trajectories of the particles when the particle has a

fixed angular position, something that would not normally be possible. To

accomplish this it would take a numerical method capable of accurately

simulating the trajectory of high aspect ratio particles through a three dimensional

bifurcation model.

Information on the deposition of fibers in the lung is limited compared to

the deposition of spherical particles and this is reflected in current computational

and theoretical methods. Since it is widely accepted that high aspect ratio

particles tend to spend most of their time aligned to streamlines, many

theoretical fiber deposition models rely on substituting an equivalent spherical

diameter with already established spherical deposition equations (Harris and

Fraser, 1976; Yu et al., 1986). Numerical studies on fibers base the particle

equations of motion on equivalent diameter theory (Hofmann et al., 2005)

or on past theoretical fiber motion results (Zhang et al., 1996). Hofmann

et al. (2005) used this concept with the addition of interception to study

the deposition of fibers in a third generation lung successfully. Their results

validated the idea that spherical approximations may be reasonable for high

shear flow (Broday et al., 1998). Although interception was incorporated into

the study they found that it did not contribute significantly. The FIBROS

program developed by Sturm and Hofmann (2009) uses a compilation of

empirical and analytical equations to calculate deposition of fibers in the

different generations of the lung. This model relies on equations that have

been adapted from spherical particles to be used with fibers. This program
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also does not allow for the particle’s angular position to be fixed. Many of

the above numerical studies focus on fiber deposition in the upper conducting

airways but interception does not play a significant role in these areas.

Therefore the importance of interception deposition has never been the main

focus of past studies. To the author’s knowledge, allowing for a fixed angular

position in order to study its effect on deposition has never been done. In

the present work the opportunity has been given to use a fictitious domain

algorithm capable of all the necessary simulations options needed to complete

such a study. The most recent version of the algorithm was used to study the

effect of particle shape on its angular movement in shear flow Roshchenko

et al. (2011a). The algorithm is described in more detail in Section 2.3.2.

1.3 Summary of Thesis

The goal of this study was to use a direct numerical algorithm to study

the trajectory of high aspect ratio particles in a small bifurcation model

while controlling the particle’s angular position. The particle trajectories

were then used to estimate the deposition with and without magnetic field

alignment. The ratio between the two cases is considered the deposition

enhancement factor. This was completed for a particle aspect ratio of 6 and

20 in order to quantify the effect of the particle aspect ratio on the deposition

enhancement factor. The first component of the model was to simulate the

flow of air through a small bifurcating airway representing generation 14 of

the lung. Following the simulation of the flow field, a sensitivity analysis was

completed on the particle trajectories. Finally simulations were completed to

find the deposition estimates. Chapter 2 introduces theory on lung geometry,
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particle behavior and particle deposition models. Chapter 3 describes the

method used for both the flow field simulations and the particle simulations.

Results from the study are given in Chapter 4, followed by a discussion in

Chapter 5. Chapter 6 summarizes the work completed.
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Chapter 2

Background

2.0.1 Lung Geometry and Models

The lung is made up of an intricate set of bifurcating tubes, starting with

the trachea which is located after the extrathoriac region (made up of the

nasal cavity, oral cavity, pharynx and larynx). From the trachea begins

the tracheo-bronchial region which leads into the gas exchange area of the

lung known as the alveolar or pulmonary region. Each sequential bifurcating

airway is assigned a generation number with the trachea being generation

zero. Due to the changes in physical characteristics and flow conditions as

one moves through the different generations most studies focus on a single

bifurcation or set of bifurcations representing the generations of interest.

These bifurcations are typically modeled using one of two methods. The

first method is the use of 3-D imaging, for example the use of computed

tomography (CT) images of human airway casts or a patient’s lung. The use

of 3-D imaging may provide detailed data that can be helpful in studying inter

subject variability or the effect of specific morphological features (De Backer

et al., 2008). From a numerical stand point the use of 3-D imaging models

can introduce complexities in the grid generation process and may require
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modifications in the model before it can be used (Choi et al., 2007). Thus the

use of idealized geometries has grown to be widely accepted. An idealized

geometry is typically created by inputting accepted morphological parameter

values into a mathematical model describing the bifurcation geometry. The

mathematical descriptions of the bifurcation surface typically separate the

bifurcation into three different regions. The parent tube, daughter tubes

and the transition zone which connects the former two regions and includes

the carinal ridge. How the transition zone is described is what differentiates

the different mathematical models. Earlier models like the “narrow” and

“wide” model (Balásházy and Hofmann, 1993; Balásházy, 1994) represent

the outer surface of the transition zone using straight lines connecting the

parent and daughter airways and a sharp wedge shape for the carina. A more

complex and realistic description is the physiologically realistic bifurcation

(PRB) model by Heistracher and Hofmann (1995). Balásházy et al. (1996)

showed how the PRB model can better represent the flow pattern and particle

deposition than the “wide” or “narrow” model. The morphologically realistic

bifurcation (MRB) was then created by Hegedűs et al. (2004) by fixing some

mathematical problems experienced when trying to create the PRB model.

More importantly Hegedűs et al. (2004) showed that computer aided design

(CAD) software could be used to accurately create the bifurcation model.

Figure 2.1 shows a symmetrical MRB model and the following parameters

Rc, R
∗, φ, L′, and D which represent the radius of carina roundness, curvature

radius, branching angle, cylindrical length, and diameter. The parent region

is made up of a straight cylindrical portion of length L′p and diameter Dp.

Two narrowing tubes following a curve with a radius of curvature R∗ and a

bifurcation angle of φ, is considered the transition region. The two daughter
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regions are straight cylindrical tubes.

D
d

Dp

ϴ

L’ d

L’p

R*

Rc

Figure 2.1: Schematic of symmetrical morphologically realistic bifurcation

(MRB) model given by Hegedűs et al. (2004) and all applicable parameters.

The length and diameters of each generation can be taken from the model

created by Finlay et al. (2000) who combined the results from several studies

(Phillips et al., 1994; Haefeli-bleuer and Weibel, 1988; Weibel, 1963) to create

a more accurate model. The lengths given by Finlay et al. (2000) corresponds

to the total length of each generation, therefore some calculations must be

completed before finding the daughter and parent lengths seen in Figure 2.1.

Hegedűs et al. (2004) gave the following equations
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L′p = 0.8Lp (2.1)

L′d = 0.2Ld + Ld − φR∗ (2.2)

Lp and Ld are the parent and daughter portions that include both the

straight and transitional portion of the bifurcation. Therefore to find the

lengths for a single a bifurcation Equations 2.1 and 2.2 can be calculate over

three consecutive bifurcations using the values given by Finlay et al. (2000).

The radius of curvature and carina radius for a normal human bronchial tree

was given by Horsefield et al. (1971) as

1 <
R∗

Dp

< 0.1forDp < 1.5mm (2.3)

Rc

Dp

< 0.1 (2.4)

The carina radius given by Horsefield et al. (1971) was verified by Olson

and Hammersley (1992) when studying small airway casts with diameters

less than 0.1 mm. Both Horsefield et al. (1971) and Olson and Hammersley

(1992) give the average bifurcation angle as 50o. With the above reference

geometries and the steps given by Hegedűs et al. (2004) a morphologically

realistic bifurcation can be created.

2.1 Particle Behaviour in the Lung

To better understand the magnetic targeting method it is important to review

the behavior of high aspect ratio particles in the lungs. The work done by
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Jeffery (1922) on the behavior of ellipsoid particles in linear shear flow is

considered to be a good representation of the behavior of high aspect ratio

particles in the lungs. For a neutrally buoyant solid ellipsoid particle, Jeffery

(1922) was able to define an equation for the hydrodynamic torque on a

neutrally buoyant solid ellipsoid particle

Ta = 2πµGd2
ele

(
d2
e cos2 φ+ l2e sin2 φ

3 (d2
eβo + l2eγ)

)
(2.5)

where φ, G, de, and le are the angular position, velocity gradient, ellipsoid

diameter, and ellipsoid length respectively. An angular position of 0 and

90 degrees corresponds to when the particle’s major axis is parallel and

perpendicular to fluid flow respectively. Jeffery (1922) was also able to show

that an ellipsoidal particle exhibits a periodic rotation (referred to as Jeffery’s

orbit) around the axis normal to the velocity gradient plane. The angular

velocity associated with Jeffery’s orbit is given by

dφ

dt
= G

d2
e cos2(φ) + l2e sin2(φ)

d2
e + l2e

(2.6)

The max and min value of the angular velocity from Equation 2.6 occurs

when the particle angular position is 0 and 90 degrees respectively. This

suggests that during its rotation the particle spends most of its time with its

major axis parallel to the fluid flow. The scenario of the particle spending

most of its time parallel to the linear velocity profile is one limiting case. The

other limiting case occurs with major axis initially positioned perpendicular

to the linear velocity profile and the particle exhibits a rolling motion. This

is due to the fact that the fluid inertia terms were ignored in the analysis.

Subramanian and Koch (2005) extended the analysis done by Jeffery (1922)
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by including the fluid inertia terms. Including the fluid inertia, they showed

that the particle’s major axis will tend to drift toward being parallel to the

velocity gradient plane.

During the derivation of Jeffery’s orbit the particle was assumed to be

neutrally buoyant. This is typically untrue in pharmaceutical aerosols where

particles are thousand times denser than air. Asgharian and Anjilvel (1995)

studied how the effect of the particle inertia can affect the particle orientation

described by Jeffery (1922). What they found is that the effect of the inertia

is a function of the particle aspect ratio and a non-dimensional parameter, κ

given by

κ =
ρeGd

2
e

µ
(2.7)

Asgharian and Anjilvel (1995) showed how the period of rotation of the

ellipsoid changed with κ when compared to the period of rotation without

the particle inertia. This result showed that at lower values of κ the period of

rotation agreed well with that derived from Jeffery’s analysis. On the other

hand with increasing values of κ the period of rotation decreased reaching a

minimum level before increasing. The ranges of κ where the period of rotation

is not affected by the particle’s density is dependent on the aspect ratio of

the particle. For particles with an aspect ratio between 5 and 20 a value of κ

less than one would be within the range where the particle inertia does not

affect its period of rotation. To gauge the importance of the particle inertia

the value of κ can be calculated for a ellipsoid particle with a diameter 0.5

µm and density of 1190 kg/m3 and with a velocity gradient seen near the wall

in a generation 14 bifurcation. The value of κ for these parameters is much
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lower than 1. The alignment behavior of fibers was validated experimentally

by Ding et al. (1993) who showed the alignment of the ellipsoid particles

in the direction of the streamlines of a bifurcating tube. With respect to

high aspect ratio particles in the lungs, the findings by Jeffery (1922) means

the particles will travel with their major axis aligned to the direction of the

streamlines. This is beneficial in that it allows high aspect ratio particles

to have the aerodynamic properties of smaller spherical particles but the

benefit of more mass. The particle’s tendency to align to the streamlines

decreases the probability of interception. The magnetic targeting method by

Martin and Finlay (2008b) changes the particle’s angular position in order

to increase the probability of interception and thus enhance local deposition.

2.2 Magnetic Alignment of High Aspect Ratio Particle

The theory and method of the magnetic targeting method has been discussed

in great detail in previous works; a brief description is given here with an

emphasis on the components that are pertinent to the computational method

used in this study. Shine and Armstrong (1987) gave the following equation

for the magnetic torque on an ellipsoid particle

~Tm = µo

∫ (
~M × ~H

)
dV (2.8)

The magnetic torque is a function of the magnetic gradient and field

strength reperesented by M and H respectively. Typical pharmaceutical

aerosols are not inherently magnetic but their magnetic susceptibility can

be altered by seeding magnetic nanoparticles onto the aerosol drug particle.

Using a permanent magnet, Martin and Finlay (2008a) where able to show
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the alignment of particles composed of non magnetic material coated with a

magnetic material. For the case where a non magnetic material and magnetic

material are combined the magnetization can be described by the equation

given by Skomski et al. (2007)

Mp = fmMm (2.9)

where Mp and Mm are the magnetization of the combined material and

the magnetic particles respectively. Then fm is the volume fraction made up

of the magnetic material. Skomski et al. (2007) also gave the demagnetization

factor for a composite material as

Dp = Dm(1− fm) +Dcfm (2.10)

where Dm and Dc are the demagnetization factor for the magnetic and

carrier particle respectively. These two equations above can be substituted

into the torque equation given by Shine and Armstrong (1987). This results

in the following equation

Tm = µoM
2
s V (Dmin −Dmaj) sin Φ cos Φ (2.11)

where Ms is the saturation magnetization and V is the volume of the

ellipsoid. Dmin and Dmaj are the demagnetization factors along the minor

and major axis of the particle. The angle between the ellipsoid’s major

axis and the saturating magnetic field is represented by Φ. Martin and

Finlay (2008c) point out that the above approach does not take into account

that the surface of the carrier particle is not completely covered by the
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magnetic particles. Martin and Finlay (2008c) found Equation 2.12 by

instead modeling the composite particle as a carrier particle with a row of

spherical ideal dipoles embedded along the major axis of the carrier particle.

Tm = µoV HM

(
dm

Lspacing

)3

sin Φ cos Φ (2.12)

where M is the magnetization of the magnetic particle modeled by the

dipole, dm is the diameter of the magnetic particles and Lspacing is the

spacing between the centers of the neighboring particles. Using Equation

2.11 and Equation 2.12, Martin and Finlay (2008c) were able to show that

the maximum magnetic torque is greater than the maximum aerodynamic

torque typically found in the bronchioles of the lung. During the magnetic

alignment of the particles there is an assumption that the particles align with

the magnetic field and at this point the magnetic torque is at its minimum.

Therefore in reality the angular position of the magnetically aligned particle

would be where the magnetic torque and aerodynamic torque are equal.

Using the same typical magnetic values given by Martin and Finlay (2008c)

and the flow rate conditions in a generation 14 bifurcation, the ratio between

the aerodynamic and magnetic torque can be calculated with respect to, Φ.

Figure 2.2 shows that the magnetic torque calculated using the equations

given by Shine and Armstrong (1987) is much larger for all values of fm. At

angle Φ of 1o the magnetic torque is over one hundred times greater than the

aerodynamic torque. Figure 2.3 shows that for the most part the magnetic

torque will be greater than the aerodynamic torque at low values of Φ. The

only exception may be for a dm/Lspacing value of 0.05 but even in that case the

particle need only change in angle by less than 5o before the magnetic torque
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is again larger than the aerodynamic torque. This analysis was also done

for a shear gradient seen in the parent tube. Even if the velocity gradient

is larger in the daughter tube the aerodynamic torque would not be at its

maximum because the magnetic field, and therefore the particle orientation,

is no longer perpendicular to the flow. Based on the above considerations

the assumption that the particle angular position is constant when immersed

in a magnetic field should be valid under the conditions seen in this study.

  fm = 0.05

  fm = 0.10

  fm = 0.15

  fm = 0.20

Tm/Ta

ϕ

Figure 2.2: Ratio between the magnetic torque and the aerodynamic torque

for a composite particle immersed in both a magnetic field and shear as

a function of the magnetic angle φ. The magnetic torque was calculated

using the equations given by Skomski et al. (2007) and Shine and Armstrong

(1987). The velocity gradient, saturation magnetization and Beta values

were 813 s−1, 4.7 x 105 A/m and 20 respectively.
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Figure 2.3: Ratio between the magnetic torque and the aerodynamic torque

for a composite particle immersed in both a magnetic field and shear as

a function of the magnetic angle φ. The magnetic torque was calculated

using the equations for the combined magnetic field of two dipoles and the

torque equation given by Shine and Armstrong (1987). The velocity gradient,

saturation magnetization and Beta values were 813 s−1, 4.7 x 105 A/m and

20 respectively.

2.3 Analytical Deposition Equations

This section gives an overview of the theory behind the analytical equations

used to determine deposition efficiency of a fiber. These analytical equations

can be broken down into the following different deposition mechanisms of

diffusion, sedimentation, impaction and interception.

2.3.1 Sedimentation

To predict the amount of deposition due to sedimentation the analytical

model given by Heyder and Gebhart (1977) can be used. The analytical

model gives the deposition of particles due to gravity in an inclined circular
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tube with a Poiseuille flow profile. The deposition efficiency is given as

ηs =
2

π

[
2κs

√
1− κ2/3

s − κ1/3
s

√
1− κ2/3

s + arcsin(κ1/3
s )

]
(2.13)

where

κs =
3νsLcosΘ

4UD
(2.14)

L, D, νs, U , and Θ are the tube length, tube diameter, particle settling

velocity, average velocity and the angle of inclination with respect to gravity.

For Equation 2.13 to be used, the following condition must be satisfied,

νs sin Θ/U << 1. For the conditions of interest in this study this restriction

is shown to be satisfied later in the Results section. Heyder and Gebhart

(1977) validated this analytical equation by comparing to their experimental

results. The settling velocity in Equation 2.14 can be derived by equating

the gravity force and drag force experienced by an ellipsoid particle. For a

prolate ellipsoid in Stokes flow this settling velocity is given as

νs =
d2
fβgρf

18µχs
(2.15)

Here, g and χ represent gravity and a sedimentation shape factor respectively.

Oseen (1927) determined the shape factor corresponding to a particle in

motion perpendicular and parallel to its major axis. Both shape factors are

given below
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χs⊥ =
8 (β2 − 1)

3

[
2β2−3√
β2−1

ln
(
β +

√
β2 − 1

)
+ β

] (2.16)

χs‖ =
4 (β2 − 1)

3

[
2β2−1√
β2−1

ln
(
β +

√
β2 − 1

)
− β

] (2.17)

2.3.2 Impaction and Interception

Cai and Yu (1988) gave deposition probabilities for an ellipsoid particle due

impaction and deposition. Their analysis is based on the stopping distance

of a particle. The stopping distance is defined as

s = Cvpτ
(

1− e
−1
τ

)
(2.18)

where C, vp, τ are the Cunningham slip factor, particle velocity and

relaxation factor. The relaxation factor is defined below

τ =
ρpd

2
p

18µ
(2.19)

Using the stopping distance, a deposition region is identified at a cross

section through the bifurcation near carina. Anything within the stopping

distance away from the inner wall is assumed to deposit due to impaction.

Deposition due to interception is included by extending the deposition region

by a constant interception distance. Assuming a uniform particle concentration,

the deposition efficiency is the ratio between deposition region flow rate

and the total flow rate. Cai and Yu (1988) used this method to develop

deposition efficiency equations for three different particle angular positions,

1) the major axis of the particle is aligned to the daughter tube, 2) the major
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axis of the particle stays aligned parallel to the inlet, 3) the major axis of the

particle is at a random orientation. The first case represents strong particle

alignment and therefore an interception term is not included. The second

case represents a particle with high inertia and the third case represents the

effect of mixing due to secondary flow. Cai and Yu (1988) gave Equation 2.20

and Equation 2.21 below to calculate the deposition efficiency corresponding

to case 1 and case 3 respectively.

η = G(α,Rd/Rp)(St)f1 (2.20)

η = G(α,Rd/Rp)(St)f3 + I3(α,Rd/Rp)le/Rd (2.21)

The first and second term in Equation 2.21 represent the deposition

efficiency due to impaction and interception respectively. The function G

corresponds to a Poiseuille velocity profile and is independent of the particle’s

angular position.

G(α,Rd/Rp) =
8 sin(αf1(α,R/Ro)

(R/Ro)fo(α,R/Ro)
(2.22)

where

fo = π

[
1− 1

4

(
R

Ro

)2
]
− 4

3

(
15

16
π − 2

)(
R

Ro

)2

cos2 α (2.23)

and
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f1 = 1− 1

3

(
R

Ro

)2

+

(
π − 11

3

)
cos2 α− 1

3

(
R

Ro

)2

sinα

+

(
2

3
− π

8

)(
R

Ro

)4

cos2 α +
1

5

(
R

Ro

)4

sin4 α

+

(
6− 15π

8

)(
R

Ro

)4

cos4 α +

(
7

15
− π

8

)(
R

Ro

)4

sin2 α cos2 α

(2.24)

The Stokes number term depends on the orientation of the ellipsoid

particle and for each case it is given as

Stf1 =
Cρd2

fµo

36µRo

(2.25)

and

Stf3 =
Cρd2

fβµo

36µ
[(

1− π2

16

)
df‖ + π2

16
df⊥
] (2.26)

Oseen (1927) has shown that df‖ and df⊥ are equal to the sedimentation

shape factors defined earlier as Equation 2.17 and 2.16 respectively. The

above equations allow for both the impaction and interception deposition

efficiency to be calculated for both a case where the particle is aligned and

randomly oriented with respect to the bifurcation.

Yu et al. (1986) also provided equations to calculate the deposition efficiency

of an ellipsoid particle due to impaction at small Stokes number. Their

model is based on an already established equation for impaction deposition

of spheres given by Chan and Yu (1982) and shown below

ηi = 0.768θSt (2.27)
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θ is the branch angle in radians and the 0.768 term is based on a bend to

pipe radius ratio is equal to 8. In the geometry used in the study the actual

bend to pipe radius ratio was equal to 3.21. For this value of bend to pipe

radius ratio Equation 2.27 becomes

ηi = 0.989θSt (2.28)

It should be noted that the equation given by Chan and Yu (1982) is

based on simple bend geometry and rotational velocity flow profile. The

Stokes number in this case is defined as

St =
ρod

2
eiU

36µR
(2.29)

ρo is equal is a given density equal to 1000 kg/m3; dei is an equivalent

diameter for impaction and is dependent on the orientation of the fiber.

For an ellipsoid particle with its major axis perpendicular to the flow the

equivalent diameter is given by Yu et al. (1986) as

dei = df
3

4

[
ρo
ρ

(
ln(2β) +

1

2

)]1/2

(2.30)

These equations give an alternate way to calculate the deposition due to

impaction of both the aligned and magnetically aligned case of an ellipsoid

particle.
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Chapter 3

Method and Theory

3.1 Governing Equations

This section introduces the governing equations and the numerical scheme of

the fictitious domain algorithm used in the study. The air traveling through

the bifurcation was assumed to be a Newtonian and incompressible fluid so

that the momentum and continuity equations can be described by Equation

3.1 and Equation 3.2 respectively.

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u (3.1)

∇ · u = 0 (3.2)

where u and p are the fluid velocity and fluid pressure respectively. The

Reynolds number Re is made up of a characteristic length, velocity and

viscosity used to scale all other parameters. The equations governing the

motion of the rigid particle are given below
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dU

dt
=
ρr − 1

ρr

1

Fr
eg +

1

ρrV
F (3.3)

d (Iω)

dt
(3.4)

where U, V, I, and ω represent the particle’s velocity, volume, inertia

tensor, and angular position respectively. The variable ρr is the ratio of the

particle density over of the fluid density. The effect of gravity is included

with the unit vector in the direction of gravity, eg, and the Froude number,

Fr. The hydrodynamic force and torque acting on the particle is defined as

F =

∫
∂Ωp

σ · nds (3.5)

T =

∫
∂Ωp

(x−X)× (σ · n)ds (3.6)

σ = −pδ +
∇u + (∇u)T

Re
(3.7)

X, σ, δ, and n are the particle’s center of mass position, stress tensor,

Kronecker tensor, and unit outward normal to the particle boundary respectively.

On the particle’s boundary, a no-slip boundary condition is given as

u = U + ω × (x−X) (3.8)
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3.1.1 Fictitious Domain Method

The algorithm used to solve both the fluid flow and particle trajectory is

based on a fictitious domain method (FDM). The finite element algorithm

was introduced by Diaz-Goano et al. (2003) as an improved method to that

developed by Glowinski et al. (1999). Diaz-Goano et al. (2003) use the

algorithm to study the sedimentation of a rigid spherical particle through a

three dimensional incompressible fluid. The Lagrange multipliers for imposing

the rigid body motion of the particle was removed and a more efficient

version of the fictitious domain algorithm was introduced by Veeramani et al.

(2007). This fictitious domain algorithm extends the fluid equations over

the whole domain, including the particle domain, allowing for the use of

a fixed Eulerian grid. A two-grid discretization component was added to

the FDM algorithm by Dechaume et al. (2010) in order to handle the large

difference in scales between the particle and bifurcation. The large-scale or

macro grid discretizes the three dimensional bifurcation model. The high

aspect ratio particle and fluid flow around it is discretized by a small-scale

or micro grid. The macro grid is used to solve for the fluid flow in the

absence of the particle. Due to the particle size and particle concentrations

(Finlay, 2001) typical of drug delivery it is valid to assume the particle only

affects the flow near its vicinity. Thus the resulting macro grid flow field

is interpolated on the external boundary of the micro grid and the fluid

and particle coupled equations are only solved over the micro grid. The

incompressible Navier-Stokes equations are approximated by a second-order

pressure-correction algorithm (Dechaume et al., 2010), combined with the

method of characteristics for the advection operator. The resulting split
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formulation is discretized in space by means of P2-P1 finite elements. A

preconditioned conjugate gradient solver is used to solve the resulting linear

system of equations. The discretization of the coupled equations in time is

completed over three different sub steps. The first sub step is the advection-diffusion

sub step. The position and orientation of the particle is predicted explicitly

during this step using the following equation.

Xp,n+1
i = Xn−1

i + 2δtUn
i (3.9)

δt in the above equation is the time step. Then u1
1 is solved over the

entire domain using the following equations

τ0u
∗
1 −

1

Re
∆2u∗1 = −τ1ũ

n
1 − τ2ũ

n−1
1 −∆pn1 +

ρ2,i − ρi
ρ1

G in Ω (3.10)

u∗1 = 0 on δΩ (3.11)

where τ0 = 3/(2dδ), τ1 = −2/(dδ) and τ2 = 1/(2dδ). The velocities from

time levels n and n−1 are represented by ũn1 and ũn−1
1 . The incompressibility

constraint is applied during the following projection sub step. The following

equations are used to apply this constraint.

τ0(u∗∗1 − u∗1) = −∆(pn+1
1 − pn1 ) in Ω (3.12)

∆ · u∗∗1 = 0 in Ω (3.13)

u∗∗1 · n = 0 on δΩ (3.14)
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For the detailed procedure and equations used to solve the advection-diffusion

and projection sub steps are given by Veeramani et al. (2007). The final sub

step is the rigid body constraint applied to the micro grid boundary. The

procedure to to apply the rigid body constraint and solve for the particle

position has been given in detail by Roshchenko et al. (2011b).

3.2 Geometry Generation

A model was generated using the method described by Hegedűs et al. (2004)

to create a morphologically realistic bifurcation using a computer aided design

(CAD) program. The symmetric single bifurcation model used in this study

is representative of a single airway found in generation 14-15. Figure 3.1

shows the three dimensional model. The dimensional parameters describing

the single bifurcation model can be found in Table 3.1. The lengths and

diameters were taken from Finlay et al. (2000). The radius of curvature,

carina radius and bifurcation angle were taken from Horsefield et al. (1971).

Table 3.1: Summary of single bifurcation dimensions in millimeters

Dp Ĺ
′
p Dd Ĺ

′

d R∗ Rc φ

0.61 0.62 0.49 0.92 0.98 0.049 50o

3.3 Bifurcation Mesh Generation

Once the bifurcation model geometry is created in the CAD program (Pro/

ENGINEER) it was exported into the three dimensional finite element mesh

generator program, Gmsh. For a in depth summary of the algorithms utilized

and the program’s capabilities the reader can refer to Geuzaine and Remacle
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Figure 3.1: Single Bifurcation Geometry

(2009). The program was chosen due to its ability to quickly create a finite

element grid compatible with the FDM algorithm. The disadvantage of this

program is its limited ways to control mesh size in specific areas of the

model. Grid spacing can be explicitly assigned to a geometry point but this

is only applicable to geometry created within Gmsh. Instead grid spacing

was based on a given minimum length, maximum length and the curvature of

the boundaries. Due to the curvature of the boundary near the carina Gmsh
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produces a smaller grid spacing in this area. With these options the 2-D

surface grid was created using a combination of a ”MeshAdapt” algorithm

(Geuzaine and Remacle, 2009) and a 2-D Delaunay algorithm (Frey and

George, 2000). Gmsh also allows for the grid spacing to be extended from the

boundaries, which means the grid spacing within the bifurcation is calculated

based on the nearest boundary. This constrained Gmsh to use the smallest

grid spacing near the boundary and the carina. The 3-D grid was created

using a Delaunay algorithm.

3.4 Steady Air Flow Analysis

3.4.1 Simulation Conditions

This section outlines the procedure used to simulate the steady air flow

through a morphologically realistic single bifurcation using the FDM algorithm.

Steady state fluid-only simulations were completed over five successively

refined macro grids of the bifurcation model. The macro grid dimensions and

flow parameters were rescaled to dimensionless values using a characteristic

velocity, length and viscosity of 174.99 mm/s, 0.73 mm and 15.08 mm2/s

respectively. These characteristic parameters result in a Reynolds and Froude

number of 8.47 and 4.28 respectively. Simulations were started with the

velocity everywhere being zero except for the inlet. The time step used by

the FDM method is given as a non-dimensional time step since all values

have been rescaled by the characteristic velocity, length and viscosity. A

non-dimensional time step of 1e-4 was used in order to ensure stability of

the time integration over the whole domain. Once the maximum velocity

residuals reached values less than 1e-7 the steady state simulation was considered
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converged. The equations describing the different boundary conditions placed

on the the bifurcation model are given below.

3.4.2 Inlet Boundary Conditions

A Poiseuille velocity profile, Equation 3.15, was prescribed at the inlet. A

Umax of 125.0 m/s was prescribed, corresponding to a trachea flow rate of

18 l/min when assuming symmetrically branching airways. This is also

considered to be a flow rate typical of tidal breathing flow. The validity

of the inlet velocity profile was explored by also simulating the flow when

an upstream bifurcation was added (see Appendix A). Poiseuille flow was

determined to be a good representation of the inlet velocity profile (see

Appendix A), given by

V = Umax(1−
r2

R2
p

) (3.15)

3.4.3 Outlet Boundary Conditions

Equation 3.16 and Equation 3.17 describe the condition placed on the velocity

and pressure at the outlet respectively.

∂u

∂n
= 0 (3.16)

poutlet = 0 (3.17)
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3.4.4 Bifurcation Wall Boundary Condition

The wall boundary of the bifurcation was given a no slip condition. Equation

3.18 represents this boundary condition.

wwall = vwall = uwall = 0 (3.18)

3.4.5 Flow Pattern Analysis

The fluid flow within the bifurcation was completed on five different refined

grids in order to ensure sufficient grid refinement. A grid convergence index

(GCI) value was calculated between grids using the expression given by Celik

et al. (2008),

GCI = Fs
εrms
rp − 1

(3.19)

where εrms, p, r and Fs are the root-mean-square (RMS) error, order of

method, refinement factor, and factor of safety respectively. The refinement

factor is the ratio of the number of nodes between the refined and coarse

grid. When proper grid halving (r=2) is not possible the GCI value can be

used to estimate the RMS error (Celik et al., 2008). A value of 3 was used for

the safety factor to account for the refinement fact r always being less than

2. The εrms value was calculated from the velocity relative error between

1000 points inside the bifurcation. A second-order procedure is used in the

discretization method so a value of 2 was used for p (Guermond et al., 2006).
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3.5 Particle Trajectory Simulations

3.5.1 Particle Geometry

The high aspect ratio particle geometry was represented by an ellipsoid

described by the equation below.

x2

a2
+
y2

b2
+
z2

c2
= 1 (3.20)

Where a, b are the equatorial radii and c is the polar radius of the ellipsoid.

The aspect ratio in this case is the ratio between the equatorial and polar

diameter. The equatorial diameter and aspect ratio in this study were 0.5

µm and 6 respectively. Particle dimensions were based on the VMD and

VML used in the in vitro study done by Martin and Finlay (2008b).

3.5.2 Micro Grid Geometry and Mesh Generation

The micro grid is made up of three different shapes in order to control the

grid sizing throughout the grid. Figure 3.2 shows a schematic of the micro

grid consisting of an outer rectangular box, middle cylinder and an inner

ellipsoid. The geometry was created using the geometry creation feature of

Gmsh. To create the 2-D surface grid was created using a combination of a

”MeshAdapt” algorithm (Geuzaine and Remacle, 2009) and a 2-D Delaunay

algorithm (Frey and George, 2000). Second order unstructured tetrahedral

elements were used to fill the micro grid domain. Grid spacing sized was

controlled by the characteristic length prescribed to the points making up

the different micro grid shape surfaces.
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Figure 3.2: Schematic of micro grid geometry consisting of three separate
control shapes. Different grid spacing was used within the rectangular box,
cylinder and ellipsoid.

3.5.3 Effect of Particle Time Step

For the particle trajectory simulations, a non-dimensionalized particle time

step is given explicitly. To study the effect of the time step on the particle

trajectory, several simulations were done at different time step values. This

was done for a particle which was allowed to naturally (i.e. free to rotate)

travel through the bifurcation. The particle translational and angular position

was compared between the simulations to find an acceptable time step to

utilize in the deposition simulations.

3.5.4 Effect of Micro Grid Size and Spacing

Another source of error is the micro grid where the fluid flow nearest to the

particle and particle forces are calculated. Particles were allowed to deposit

on the walls in simulations done with different degrees of refinement. The

change in particle trajectory due between these different simulations due to
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mesh refinement was calculated. Also studied was the effect of changing the

size of the rectangular box. With the results of this component of the study, a

suitable micro grid mesh could be chosen for the deposition study in Section

3.6.

3.5.5 Effect of Solver Convergence Criterion

The effect of changing the conjugate gradient solver convergence criterion on

the particle trajectory was also studied. The difference in particle trajectory

was recorded with the convergence criterion set to 1e-4, 1e-7 and 1e-9. The

final solver convergence criteria value was chosen based on the change in final

deposition point of the particle.

3.5.6 Computational Equipment and Simulation Run Time

All simulations were completed on Dell PowerEdge 2900 servers with two

Intel E5430 processors and 16 Gb of memory. A single server is capable of

running eight separate threads. A single particle simulation on four threads

resulted in a computational time per time step between 5 and 30 seconds.

For a single particle simulation with a non-dimensional time step of 1e-3

the simulation would be completed with 1-2 weeks depending on the inlet

position of the particle.

3.6 Deposition Simulations

3.6.1 Deposition Efficiency Calculation

The deposition efficiency was defined as the ratio between the flow rate

through a deposition area at the inlet and the total flow rate at the inlet
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of the bifurcation. This deposition efficiency is expressed below

Q = Qdeparea/Qinlet (3.21)

The definition of deposition used for this study is restricted to monodispersed

particles with a constant particle concentration density across the inlet. Thus

the number of particles entering a given location at the inlet is only affected

by the velocity profile of the inlet. The deposition area boundary is made

up of the initial inlet positions of particles which successfully deposited in

the single bifurcation. Since the initial positions of particles were isolated

to only one quarter of the inlet geometry there is an assumption made that

the deposition area is both continuous and symmetric across the two planes

of the bifurcation. The boundary of the area is made up of straight lines

between each data point. Thus between each injection point there is straight

line represented by the following equation.

Xi(z) = mz + b (3.22)

Figure 3.3 shows a schematic of the deposition area made up of the

particle initial starting points and curve fitted lines.

The flow rate through the deposition area was calculated knowing the

boundary of the area and the velocity profile at the inlet. The deposition

flow rate was defined as the following equation

Qdeparea =

∫ ∫
V (x, z)dxdy (3.23)

The velocity profile expressed earlier as Equation 3.15 can be expressed in
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Figure 3.3: Schematic of how the “deposition” area is defined

Cartesian coordinates and the deposition flow rate can be defined as Equation

3.24. Once the deposition inlet points (i.e. Xi) are known, Equation 3.24 can

be calculated to find the flow rate through the deposition boundary. This

method of calculating deposition follows the idea of a limiting trajectory

boundary that has been used previously in other studies to calculate deposition

(Cai and Yu, 1988; Asgharian and Yu, 1989).

Qdeparea =

∫ Zo

0

∫ Xi(z)

0

{
Vmax

(
1− x2 + z2

R2
p

)}
dxdz (3.24)

For the magnetically aligned case there is deposition along the outside

of the bifurcation wall that also must be accounted for. Once the particle’s

major axis is aligned with the x-axis, the particle may now deposit on the

bifurcation wall. Particles within half a particle length in the x direction are
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considered to be deposited and an outside deposition area can be defined. An

outside deposition efficiency was calculated by finding the flow rate through

the outside deposition area. This was not completed for the aligned case

since the flow rate within a particle radius of the outside wall is negligible.

3.6.2 Deposition Efficiency: Strong Streamline Alignment Case

In order to measure the enhancement in deposition due to the particle alignment

a base case to compare deposition is needed. Typically the base case deposition

efficiency would be calculated by allowing the particle to deposit with an

unconstrained angular position. However, during the time step sensitivity

analysis (see Section 4.2) it was found that for the particle’s angular velocity

to be simulated accurately a minimum time step of 1e-4 is needed. The

small time step in combination with the trial and error nature of calculating

the deposition made it unfeasible to calculate the deposition efficiency. The

solution was to initially prescribe the particle’s angular position to be constant

and parallel to the inlet streamlines. The angular position was then changed

again to align with the streamlines once the particle entered the daughter

bifurcation. This would in effect estimate the path of a particle with strong

tendency to align with the streamlines. With an aspect ratio of either 6 or 20

(the aspect ratio considered here), the rotational Peclet number Pe, which is

the ratio of the hydrodynamic rotation and the Brownian rotation, is much

greater than 1, so that induced rotation is negligible. Also, the current flow

conditions result in an average period of rotation (Jeffery, 1922; KR, 1928)

equal to 7 and 17 times greater than the average particle residence time for

a particle with an aspect ratio of 6 and 20, respectively. Therefore, although

the above procedure is not ideal, it is a reasonable approximation for the
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naturally occurring or unconstrained case. The particle was injected to the

inlet with a translational velocity identical to the surrounding fluid and a

non-dimensional time step of 1e-3 was used.

3.6.3 Deposition Efficiency: Magnetically Aligned Case

To estimate the deposition of the magnetically aligned particles the angular

position of the particles was again constrained. This major axis of the

particle was constrained so that it was parallel to the inlet boundary but

perpendicular to the inlet flow. This is the type of alignment that occurred

in the study done by Martin and Finlay (2008b). The initial translational

velocity of the particle was prescribed to match the surrounding fluid. A

non-dimensional time step of 1e-3 was used.

3.7 Theoretical Deposition Calculations

Theoretical deposition models were used to calculate the deposition probability

in order to both gain an understanding of the effect of changing certain

parameters and to be able to compare analytical model estimates to the

results using the FDM algorithm. The deposition due to impaction and

interception was calculated using the theory given by Cai and Yu (1988)

and Yu et al. (1986) for fibers in a bifurcating airway and under parabolic

flow conditions. The sedimentation deposition probability was calculated

using the model given by Heyder and Gebhart (1977) in combination with

the settling velocities for a fiber expressed by Harris and Fraser (1976).

The deposition probability for each deposition mechanism was calculated

separately and summed to find the total deposition. The particle geometry



CHAPTER 3. METHOD AND THEORY 41

used was an ellipsoid particle with a diameter of 0.5 µ m and a density of

1190 kg/m3. The deposition probability was calculated for an aspect ratio

of 6 and 20. The deposition probability due to sedimentation, impaction,

and interception was calculated for both a particle aligned with the flow and

a particle aligned perpendicular to the inlet flow. Finally these calculations

were done using the flow conditions and geometry used in this current study.
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Chapter 4

Results

4.1 Steady Flow Field

The flow pattern through the bifurcation model is shown in Figure 4.1. The

Poiseuille velocity profile from the parent inlet continues until the transition

region where the flow diverges symmetrically into the daughter airways. The

axial velocity profile along the line D-D’ is seen in Figure 4.2. Although the

velocity profile is parabolic, the point of maximum velocity is located slightly

towards the outer side of the bifurcation. The axial velocity profile regains

a Poiseuille shape in the straight portion of the daughter tube.
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Figure 4.1: Air velocity profile of inspiratory flow through the small

bifurcation model. Velocity profiles are from cuts at the center of the

bifurcation in two different planes A) y-x plane B) y-z plane
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Figure 4.2: Axial velocity profile along the line D-D
′

seen in Figure 4.1

The velocity profile at a distance 0.146 mm downstream of the transition

region was compared with different lengths L
′

d. Changing the L
′

d length from

0.0461 mm to 1.846 mm changed the three-dimensional velocity profile by

less than 0.01%, indicating that our outlet boundary placement does not

affect the simulation results.

The values associated with the GCI analysis are shown in Table 4.1. With

each grid refinement the GCI value decreased, resulting in a 1.39% GCI value

for the most refined grid. The most refined grid was used for all the particle

trajectory simulations. A fifth grid (with 894 x 103 elements) was created to

compare to the most refined grid. The available computation resources did
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not allow for a grid with a sufficient refinement with respect to the grid with

1314 x 103 elements to be created.

Table 4.1: Results of grid convergence index (GCI) analysis completed on

the macro grid representing the steady flow through the small bifurcation

model. Here, r is the refinement factor, εrms is the rms error and the GCI is

the grid convergence index (Celik et al., 2008)

Number of elements (103) r εrms GCI (%)

168-386 1.32 1.77 7.14

386-1314 1.50 2.15 5.12

894-1635 1.22 0.23 1.39

4.2 Particle Simulation Sensitivity Analysis

Table 4.2 shows the relationship between the dimensionless time step used

and the point of maximum and minimum angular velocity. These results are

also compared to the theoretical given by maximum and minimum angular

velocity Jeffery (1922). As the dimensionless time step decreased from 1e-3 to

5e-5 the results approached the theoretical results. In terms of the particle

trajectory, the dimensionless time step had a negligible effect, as will be

discussed in Chapter 5.
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Table 4.2: Change in angular position of the maximum and minimum angular

velocity of the particle occurring with different dimensionless time steps

Time

Step

Max. θ̇ Min. θ̇ θ at Max. θ̇ θ at Min. θ̇

(10−3) Result ∆

Theory

Result ∆

Theory

Result ∆

Theory

Result ∆

Theory

Theory* 3.03 - 0.08 - 180.0o - 90.0o -

1.0 2.15 0.89 0.80 -0.72 213.4o -33.4 119.2o -29.2

0.5 2.47 0.56 0.28 -0.20 205.8o -25.8 104.7o -14.7

0.25 2.77 0.27 0.09 -0.01 199.0o -19 90.9o -0.9

0.1 3.00 0.029 0.08 0 189.6o -9.6 90.2o -0.2

0.05 3.07 0.040 0.08 0 185.6o -5.6 89.6o 0.4

*Theory results based on equations given by Jeffery (1922)

The change in deposition point was also recorded with each change in the

micro grid. This was only done for a particle with a fixed angular position

corresponding to the magnetically aligned case. Doubling the number of

elements inside the micro grid resulted in a final position 0.019 mm further

downstream. Doubling the size of the micro grid resulted in the particle

depositing 0.05 mm farther downstream. Doubling the number of elements

for a particle with an aspect ratio of 20 resulted in the particle depositing

less than 0.001 mm downstream.

Changing the convergence criteria of the conjugate gradient solver from

1e-4 to 1e-7 resulted in the particle depositing 0.135 mm downstream. A

smaller difference in final position of 0.005 mm downstream was seen when

changing the convergence criteria from 1e-7 to 1e-9. Therefore a value of 1e-7
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was used for the solver criterion.

4.3 Deposition Efficiency

The inlet deposition boundaries for a particle with an aspect ratio of 6 and

20 are shown in Figure 4.3 and Figure 4.4 respectively. The x and z-axis in

both figures were normalized by the length of a particle with an aspect ratio

of 6 and correspond to the axes shown previously in Figure 3.3. For brevity

the unconstrained case and the magnetically aligned case will be defined as

Case [1] and Case [2], respectively. Near the center of the inlet the deposition

boundary for Case[1] and Case[2] are approximately the same. For both Case

[1] and Case [2] the deposition boundary begins to decrease at a normalized

z position of 10, with the Case [1] deposition boundary decreasing by a larger

amount. At a normalized z position equal to 65 the deposition boundary for

both Case [1] and Case [2] now begin to significantly curve. The Case [1]

deposition increases above the Case [2] boundary at a z position of 74 before

the Case [2] is larger again at a z position of 90.

For a particle with an aspect ratio of 20 the deposition boundaries have a

relatively constant slope boundary shape for both Case [1] and Case [2] near

the center. Both deposition boundaries begin to curve when nearing the

outside bifurcation boundary at a normalized z position of 40. The Case [1]

deposition boundary is never greater than the Case [2] deposition boundary.
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Figure 4.3: Case [1] and Case[2] isolated deposition regions at the bifurcation

inlet for a particle with an aspect ratio of 6. Deposition boundary lines

represent the division where the particles entering to the left deposit and

those to the right do not deposit. The x and z position correspond to the

axes located at the center of the inlet seen previously in Figure 3.3. The x

and z position were normalized by dividing the dimensionless position by the

length of a particle with an aspect ratio of 6. The bifurcation inlet wall is

the outer limit boundary of the fluid domain at the inlet.
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Figure 4.4: Case [1] and Case[2] isolated deposition regions at the bifurcation

inlet for a particle with an aspect ratio of 20. Deposition boundary lines

represent the division where the particles entering to the left deposit and

those to the right do not deposit. The x and z position correspond to the

axes located at the center of the inlet seen previously in Figure 3.3. The x

and z position were normalized by dividing the dimensionless position by the

length of a particle with an aspect ratio of 6. The bifurcation inlet wall is

the outer limit boundary of the fluid domain at the inlet.

The measured deposition efficiency and deposition boundary error for an

aspect ratio of 6 and 20 is given in Table 4.3. The deposition boundary

error has been defined as the difference between the deposition efficiency

given by the particles that deposited and the non-deposited particles. The

deposition boundary error ranged between 0.00057% and 0.00118%. The

deposition error was always less than 14% of the actual deposition efficiency.
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The deposition efficiency due to outside interception deposition at the inlet

for Case [2] was 0.0048% and 0.0540% for a particle with an aspect ratio of

6 and 20 respectively.

Table 4.3: Deposition efficiency results based on the inlet deposition

boundary for each case and aspect ratio. The deposition boundary error

is the difference between the deposition efficiency given by the deposition

region of particles that deposited and the deposition boundary of particles

that did not deposit.

Aspect Ratio Deposition

(%)

Deposition

Boundary

Error (%)

Case [1]
6 0.0092 0.00118

20 0.0149 0.00111

Case [2]
6 0.0131 0.00059

20 0.0515 0.00057

The enhancement factor, defined as the ratio between the Case [1] and

Case [2] deposition efficiency, is given in Table 4.4 for both an aspect ratio

of 6 and 20. The amount of deposition enhancement increased by a factor of

2.4 when the particle aspect ratio was changed from 6 to 20 (an aspect ratio

increase by a factor of 3.3). Also given in Table 4.4 is a deposition range

which takes into account the deposition boundary error for each deposition

efficiency measurement and represents the smallest and largest possible value

for enhancement. If the outside interception at the inlet is included, the

enhancement factors increase to a value of 1.95 and 7.09 for an aspect ratio
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of 6 and 20 respectively.

Table 4.4: Deposition enhancement between Case [1] and Case [2] for both

aspect ratio 6 and 20

Aspect

Ratio

Deposition

Enhancement

Deposition

Boundary Range

6 1.43 1.27-1.49

20 3.46 3.22-3.50

4.4 Theoretical Deposition Results

The theoretical deposition due to impaction, interception, and sedimentation

was calculated for each case. The portion of the deposition efficiency due to

each deposition mechanism is given in Table 4.5. A range was given for

the deposition efficiency due to impaction because two different theoretical

equations were tested. The lower limit and upper limit was calculated using

the theory given by Yu et al. (1986) and Cai and Yu (1988) respectively. It

was also assumed that there would be no deposition due to interception in the

unconstrained case. The deposition due to sedimentation and impaction was

comparable to each other for both unconstrained and magnetically aligned

case. The highest deposition efficiency was due to the interception in the

magnetically aligned case. Interception deposition is approximately 2 and 6

times larger than the interception and sedimentation deposition combined

for an aspect ratio of 6 and 20 respectively. An interesting result from

Table 4.5 is that without interception, the deposition efficiency is larger for

the unconstrained case than the magnetically aligned case. The deposition
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due to impaction and sedimentation alone is approximately 10 to 20 percent

more for the unconstrained case than the magnetically aligned case. The

deposition enhancement when the unconstrained case and magnetically aligned

case are compared was also calculated and is shown in Table 4.6. As expected,

the theoretical deposition for aspect ratio of 20 is larger than for an aspect

ratio of 6. The enhancement with aspect ratio of 20 is approximately 1.8

times that of the enhancement with an aspect ratio of 6.

Table 4.5: Theoretical deposition probabilities due to sedimentation,

impaction and interception for each Case and aspect ratio combination. The

lower and upper range for the impaction probability is due to two different

methods used.

Aspect Ratio = 6 Aspect Ratio = 20

Unconstrained

Case (%)

Magnetically

Aligned (%)

Unconstrained

Case (%)

Magnetically

Aligned (%)

Psed 0.0351 0.0418 0.0510 0.0608

Pimp 0.0363 - 0.0565 0.0273 - 0.0415 0.0582 - 0.0887 0.0383 - 0.0582

Pint N/Ac 0.216 N/Ac 0.720

Ptotal 0.0713 - 0.0916 0.2849 - 0.2992 0.1092 - 0.1397 0.8185 - 0.8384

Enhancement 3.27 - 3.99 6 - 7.49

a Impaction probability calculated using the theory given by Yu et al. (1986)was used.

b Impaction probability calculated using the theory given by Cai and Yu (1988) was used.

c Interception does not apply since the particle is assumed to be aligned with the flow.
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Table 4.6: Absolute and relative difference between the theoretical total

deposition and the numerically calculated total deposition.

Absolute Deposition Difference (%) Relative Deposition Difference

Aspect

Ratio

Unconstrained Magnetically

Aligned Unconstrained

Magnetically

Aligned

6 0.0695 - 0.0898 0.2718 - 0.286 7.57 - 9.77 20.69 - 21.78

20 0.1101 - 0.1406 0.767 - 0.7869 7.39 - 9.44 14.88 - 15.27
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Chapter 5

Discussion

5.1 Steady Flow Field

As expected, for a relatively low Reynolds number the flow pattern through

the bifurcation was laminar and a Poiseuille like velocity profile occurred.

The flow pattern through the transition area is no longer a symmetrical

Poiseuille profile but the point of maximum velocity is skewed towards the

outside of the bifurcation. This is the velocity profile near the inner wall

of the bifurcation and thus affects deposition. If the mass flow of particles

is concentrated near the inside wall (which is the case in higher Reynolds

number flow), more particles have the opportunity to deposit. The importance

of the flow pattern near the carina is discussed further when comparing our

results to the theoretical results. To ensure that flow pattern through the

bifurcation was not affected by the outlet boundary conditions the daughter

length L
′

d was increased by a factor of 4. With very little change in the

flow pattern it can be concluded that the value of L
′

d used in this study did

not have any effect on the upstream flow. Longest and Vinchurkar (2007)

studied the effect of the GCI value on an unstructured tetrahedral mesh
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in a bifurcation. During their study they found that the GCI values could

increase with refinement. They attributed this type of increase to round off

error. In this study the GCI values decreased with refinement. Longest and

Vinchurkar (2007) were also able to show that an unstructured tetrahedral

mesh with a GCI value of about 5% was able to give reasonably accurate

deposition results when compared to experiments.

5.2 Particle Simulation Sensitivity Analysis

An important result of the sensitivity analysis was the fact that a very

small time step is needed to accurately simulate the angular movement of

the particle as it travels through the bifurcation. The time step needed

makes it unrealistic to do enough particle simulations to get an estimate for

the deposition efficiency. The computational time would be increased from

approximately a week to months. Therefore we would not be able to obtain

our base case to compare to the case of the magnetically aligned particles.

This resulted in having to instead force the angular position of the particle to

align to the streamlines throughout the particle’s trajectory. Ideally we would

like to quantify the effect of changing the particle micro grid parameters by

comparing the change in deposition efficiency results. The combination of

long simulation time and the trial and error aspect of our method prevented

this. However we can still gauge the significance of our sensitivity results by

considering the relationship between the initial position and final position of

the particle trajectory. For a fixed particle with an aspect ratio of 6 to deposit

0.05mm farther downstream, the inlet normalized x position would have to

be increased by at most 0.0007. This change in the inlet position is less than
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the typical distance between the deposition boundary and the non deposited

boundary. Thus the deposition boundary error is the largest source of error

in our analysis, which in the next section is shown not to significantly change

our results. For both the aspect ratio of 6 and 20, changing the grid resolution

did not greatly change the final deposition point of the particle. Increasing

the solver convergence criteria from 1e-7 to 1e-4 had a significant effect on

the particle trajectory. Since decreasing the convergence criteria from 1e-7

to 1e-9 had a negligible effect on particle trajectory the convergence criteria

value of 1e-7 was prescribed for all the particle simulations used to estimate

deposition efficiency.

5.3 Deposition Efficiency

The shape of the different deposition boundaries can be rationalized by

considering the different deposition mechanisms involved. Since the velocity

profile and geometry near the center (i.e. x = z = 0) does not change

significantly, particles near this area encounter very similar flow conditions

and geometry. This explains why near the center the deposition boundary

is constant, while near the inlet wall the velocity profile and geometry is

changing much more drastically. Also as one nears the wall, the conditions

encourage deposition due to interception and sedimentation. The combination

of interception and sedimentation also explains why the value of z where the

deposition boundary begins to curve out in the x direction is different for

each aspect ratio. A higher aspect ratio would increase the probability of

deposition from sedimentation and impaction due to the particle’s increased

mass and length. Therefore it is reasonable for the position where the
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boundary begins to curve outward is further from the wall for a particle

with aspect ratio of 20 than for a particle with an aspect ratio of 6. The

unconstrained case deposition boundary being greater than the magnetically

aligned case boundary at a normalized z position of 74 can be explained

by understanding that the interception deposition becomes less important

than the sedimentation deposition. The orientation of the particle in the

unconstrained case is more ideal for sedimentation; therefore an aspect ratio

of 6 is not long enough to overcome the difference until much closer to the

wall. It is near the wall where the magnetically aligned case deposition

boundary is now extending past the unconstrained case deposition boundary.

Since the bifurcation diameter decreases as one enters the transition region

of the bifurcation, particles have a greater probability of depositing due to

interception near the wall.

The calculated theoretical deposition seen in Table 4.5 is 7-20 times

greater than our numerically measured deposition efficiency. The difference

between measured and theoretical deposition is much greater in the magnetically

aligned case than the unconstrained case. This is due to the theoretical

interception deposition being larger than the sedimentation and impaction

deposition efficiency combined. Although the theoretical interception calculation

corresponds to a randomly oriented particle the difference in angular position

does not account for the difference. Instead the discrepancy can be attributed

to the difference in the theoretical and simulation velocity profile near the

carina. The theoretical axial velocity profile near the carina (line D-D
′
in 4.1)

is a parabolic curve with a maximum velocity at the carina. The theoretical

velocity profile concentrates the flow near the carina and consequently this

would estimate higher deposition than a parabolic profile for impaction and
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interception case. This discrepancy was not unexpected since for a fiber with

a diameter between 1.2-2.3µm and an aspect ratio between 8.3-16.7, Cai and

Yu (1988) over estimated the results found by Myojo (1990) by 2.2-27.8 times.

The model by Yu et al. (1986) has also shown that their model tends

to over estimate experimental data. This is what the current results are

also showing. Happel and Brenner (1965) used a low Reynolds approach to

show for a spherical particle within 5 particle radii of a wall the settling

velocity of the particle decreases. The particle residence time near the

wall is large enough that the near wall effects can affect deposition due

to sedimentation. For the magnetically aligned case, the alignment of the

particle would actually cause the particle to translate away from the wall

once it enters the daughter tube. This is because the alignment of the particle

is no longer perpendicular to the flow but instead at an angle that results

in a hydrodynamic force normal to the wall and thus a decrease in settling

velocity. Therefore it is also not unexpected that the computational results

would underestimate deposition relative to the theoretical sedimentation

result.

Although it was assumed each deposition mechanism is occurring independently,

several common theories were used to combine the theoretical results but

there was no significant changes in the results(Asgharian and Anjilvel, 1994;

Balásházy et al., 1990).

The absolute deposition efficiencies given by the in vitro Martin and

Finlay (2008b) were much greater than what was found using the FDM

algorithm. Although the geometries are similar, there are differences in

both the geometry and particle properties that account for this discrepancy

between results. It is a combination of the Brownian motion and geometry
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that accounts for the largest difference. In order to manufacture the in vitro

models, both the parent and daughter lengths in Martin and Finlay (2008b)

were made much longer that was anatomically correct. For instance the

parent and daughter lengths are 10 and 5 times longer in the in vitro model

than in the computation model. Using the theory given by Asgharian and

Ahmadi (1998) we can estimate the amount of deposition due to Brownian

motion. For a particle with a diameter of 0.5 µm and an aspect ratio

of 6, the deposition due to Brownian motion in the parent and daughter

portion of our computational bifurcation is estimated to be 0.03% and 0.

068% respectively. However, for the in vitro model geometry and the same

particle parameters the deposition in the parent and daughter are 0.239%

and 0.155% respectively. Comparing the deposition between the in vitro and

computational model we see that the Brownian motion was more important

in the in vitro model due to the longer length parent and daughter lengths.The

difference due to Brownian motion between the in vitro and computational

model is increased due to a polydispersed aerosol being used in the in vitro

experiments. Thus there would be an increase in deposition due to particles

with much smaller diameters than 0.5m. It is known that when optimizing

delivery a monodispersed aerosol with a diameter in the range of optimal size

(Balásházy et al., 2007) should be used and thus it is expected that future

experimental iterations of this method would use monodispersed aerosol that

would not include or at least limit the smaller sized particles.

Considering these differences the deposition enhancement factor of 1.7

seen in the in vitro study is still in reasonable agreement with the computational

enhancement factor of 1.43 and 1.95 if the outside interception is included.
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5.4 Deposition Enhancement

Increasing the aspect ratio of the particle, the deposition efficiency of the

unconstrained case would also increase. In this study the deposition increased

by a factor of 1.62 when the aspect ratio increased from 6 to 20. By

magnetically aligning the particle, the effect of changing the particle aspect

ratio was larger, as the deposition increased by a factor of 3.92, suggesting

that the magnetic alignment method takes better advantage of increasing

particle lengths. This is important in terms of therapeutic effects since the

mass deposited also increases with increased particle length. The deposition

enhancement when applying the magnetic alignment method did not increase

in direct equality with the increase in aspect ratio. Instead, for a particle

aspect ratio change from 6 to 20 (a factor of 3.33) the deposition enhancement

increased by a factor of 2.42. This suggests that with the use of longer

fibers the magnetic method could be over 2 times more effective than what

was previously seen in the study done by Martin and Finlay (2008b). By

using aerosols where the VML and VMD produce an aspect ratio of at

least 20 the local deposition could be increased by a factor of 3.46. The

magnetic alignment could significantly improve drug delivery efficacy and in

turn improve therapeutic effects as such that aggressive drugs can be used

within their dose limiting toxicity.
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Chapter 6

Conclusion

In this study a fictitious domain algorithm was successfully used to simulate

the deposition of high aspect ratio particles through a morphologically realistic

bifurcation. The bifurcation flow conditions and geometry were based on

accepted values for typical tidal breathing through a generation 14-15 lung

bifurcation. A thorough numerical sensitivity analysis was completed for

all the numerical parameters involved in both the steady flow field and

particle trajectory simulations. An important conclusion from this study

was that for a particle with unconstrained angular position, the minimum

non-dimensional time step needed was 1e-4. Even with state of the art

computational equipment this resulted in particle trajectory simulations times

of up to a month. The computation time is the largest disadvantage to the

FDM algorithm and is a large obstacle if it is used for further deposition

simulations. In this study the author suggested a different approach to

estimating the deposition of a unconstrained particle. The particle’s angular

was constrained so that it remained aligned with the flow streamlines, an

assumption verified in this study. This allowed for a smaller time step to be

used to calculate the unconstrained case deposition efficiency.
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By simulating both the unconstrained and magnetically aligned case,

the deposition efficiency for each case could be estimated for an ellipsoid

particle with a diameter equal to 0.5 µ. Due to the computational resources

needed for a single simulation the deposition efficiency had to be calculated

using a method adapted from previously used limiting trajectory methods.

This resulted in a deposition area at the inlet for each case and aspect ratio

size. These deposition boundaries gave insight on the importance of different

deposition mechanisms (interception, sedimentation and interception) for the

different bifurcation regions, particle sizes and also between the unconstrained

and magnetically aligned case. The deposition efficiencies were verified by

comparing to well known theoretical deposition equations.

Finally it was found that increasing the aspect ratio of the particle from 6

to 20 could result in over 2 times more local enhancement. These results show

that the effectiveness of the magnetic alignment method can be increased

using aerosol particles with higher aspect ratios. High aspect ratio particles

have been shown to be capable of penetrating to the distal components of the

lung but with larger dosage when compared to their spherical counterpart.

Using the magnetic targeting method deposition, could be increased by 3.4

times in targeted locations of the lung and in the case of aggressive medicine

less damage would be done to healthy parts. This study has further shown

the great potential of the magnetic alignment with respect to pharmaceutical

aerosols (e.g. chemotherapeutic agents) to treat lung disease.
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Appendix A

Double Bifurcation

Before completing the single bifurcation steady flow analysis with the single

bifurcation model several simulations were completed using a double bifurcation

model. This was completed to validate the inlet condition on the single

bifurcation model. Since the lung is a series of bifurcations it was important

to ensure that that there were no flow patterns being missed by not including

an upstream bifurcation in our deposition analysis. This section shows the

results of a steady flow analysis on two different double bifurcation models.

A.1 Method

This section outlines the procedure used to simulate the steady air flow

through a morphologically realistic double bifurcation using the fictitious

domain algorithm.

A.1.1 Geometry Generation

Symmetric double bifurcation models were generated to represent two successive

airways that would be found in generations 13-14-15 of the human lung. One

model represents the situation when the all the parent and daughter branches
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are in the same plane. The second model represents the situation when the

first airway is located at a 90 degree plane to the daughter airway. Both

models can be seen in Figure A.1. The length and diameter dimension for

both models did not differ and were based on the symmetric lung geometry

given by Hegedűs et al. (2004). All the dimensional parameters of the models

are summarized in Table A.1 below.

B.A.

Figure A.1: Double bifurcation geometry A. Parent and daughter in same
vertical plane B. Parent and daughter in in a 90 degree plane

Table A.1: Summary of double bifurcation dimensions in mm
Dp Dd Ĺp Ĺd R∗ Rc φ

Generation 13 0.73 0.61 0.73 0.62 1.22 0.061 50o

Generation 14 0.61 0.49 0.62 0.92 0.98 0.049 50o
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A.1.2 Inlet Boundary Conditions

The inlet boundary conditions were based on the flow conditions found in

generation 13 of a human lung during typical tidal breathing. The flow rate

through the trachea of 18 l/min corresponds to typical tidal breathing of an

adult male breathing through an aerosol delivery device with a mouthpiece.

With the symmetrical branching model, the trachea flow rate results in a

maximum velocity of 174.99 mm/s at the generation 13 bifurcation inlet.

The inlet velocity profile was based on the condition that the flow is fully

developed and laminar. To satisfy this condition, the Reynolds number and

distance downstream must satisfy the following equations.

Re ≤ 2300 (A.1)

x

D
> 0.06Re (A.2)

The Reynolds number of 8.14 at the parent inlet and the geometry dimensions

used in this study satisfy both A.1 and A.2. Thus the inlet boundary

condition shown previously for the single bifurcation as Equation 3.15 is

reasonable.

A.1.3 Outlet Boundary Conditions

For the double bifurcation model two different types of boundary had to

be implemented to realistically simulate the flow patterns. The boundary

conditions placed on the generation 14 daughter outlets are described by

Equation (3.16) and Equation (3.17) for the velocity and pressure respectively.
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For the daughter outlet belonging to generation 13 the above conditions

could not be used. Applying the above boundary conditions would result

in asymmetric flow through generation 13 due to the difference in pressure

at the outlet of the gen 13 daughter and the straight portion between gen

13 and 14. Another daughter bifurcation was not added to the second

generation 13 to decrease the already expensive computational work. There

was also no available way to accurately calculate the pressure drop through

the generation 13 bifurcation. Instead the velocity at the generation 13

daughter outlet was prescribed to a Poiseuille flow condition as expressed by

Equation 3.15. Vmax was based on a even division of the parent flow rate into

two daughter tubes. This condition, though abnormal, gave the symmetric

flow expected in a symmetric bifurcation and the straight outlet portion is

long enough to not affect the flow condition experience between generation

13 and 14.

A.1.4 Bifurcation Wall Boundary Condition

The bifurcation wall was prescribed a no-slip boundary condition. Thus every

node belonging to the wall boundary was given the condition described by

Equation (3.18) in Section 3.4.4.

A.1.5 Flow Pattern Analysis

The main goal of this study was to gauge how the upstream bifurcation can

affect both flow pattern at the inlet of the daughter bifurcation and also see

if the upstream bifurcation affects secondary flow patterns (if any). An open

source visualization program, PARAVIEW was used to visualize the flow.

The velocity profile at the inlet of the daughter bifurcation was visualized to
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ensure that it corresponded to a Poiseuille velocity profile.

To gauge the presence of secondary flow in the bifurcation, a secondary

motion intensity factor (SMIF) was defined as the ratio between the local

radial velocity and the average velocity inlet velocity of the parent branch

(Heistracher and Hofmann, 1995). The SMIF was calculated and visualized

throughout the bifurcation and the maximum was recorded. The SMIF

values used in a comparison with the SMIF values of the single bifurcation

flow analysis study described in the next section.

A.2 Double Bifurcation Steady Flow Results

Figure A.2 shows the velocity profile at the cross section where the single

generation 14-15 single bifurcation would begin. On the same figure is the

velocity profile for both the in plane and out of plane model. The maximum

velocity found was found to be 125.91 m/s and 126.22 m/s for the in plane

and out of plane bifurcation respectively. The SMIF value was found to be

less than 0.1 in both the x and z direction except for very near the carina.

The SMIF magnitude and values within the generation 14-15 bifurcation did

not change significantly between the in plane and out of plane model.

A.3 Discussion

The goal of this section was to ensure that the single bifurcation flow conditions

were accurate in representing the flow through a real bifurcation that is

downstream of other bifurcations. The velocity through the straight section

of the first generation was found to follow a Poiseuille flow as expected. This

verifies the initial and boundary condition used at the inlet of the single
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Figure A.2: Double bifurcation velocity profile at the inlet of the single
bifurcation

bifurcation. Ensuring that the SMIF is below 0.1 means that there are

no significant secondary flows within the bifurcation that could affect the

particle trajectories. Since the secondary flow would not affect the particle

trajectory this validates the no mixing assumption that is needed for the

deposition calculations. The in and out of plane double bifurcation results

allow for the use of the single bifurcation model with confidence since the

flow is not affected by the upstream bifurcation.
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Appendix B

Spherical Particle Validation

Before this study, the fictitious domain method (FDM) had never been used

to simulate deposition of particles within a lung bifurcation. The goal of this

section was to compare the trajectory of spherical particle when simulated

using the FDM algorithm to results of a conventiona and widely accepted

CFD program.

B.1 Method

This section describes the method taken to complete an analysis of the

trajectory of a spherical particle in a single bifurcation. The bifurcation

model and flow conditions used were the same as those used in the study with

the FDM algorithm for a ellipsoid particle (See Section 3.4.1). This section

introduces some new conditions associated with CFX, the CFD program

used.

B.1.1 Bifurcation Geometry and Mesh Generation

The single bifurcation model used for this component of the study is the same

morphologically realistic bifurcation model described in Section 3.2. For all
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relevant geometrical parameters refer to Section 3.1.

The model was imported into the CFX Mesh program, where the grid

was created. An unstructured tetrahedral mesh combined with an inflated

boundary along the boundary of the bifurcation. The inflated boundary

creates prism like mesh elements aligned with the flow near the bifurcation

wall, where the velocity gradient is the highest. Elements sizes were chosen to

produce a similar number of elements as the macro grid used for the fictitious

domain algorithm.

B.1.2 CFX Solver

CFX-5 solves the particle transport equations corresponding to all three x,

y and z momentum as a post processing step. To solve these equations a

particle drag force option must be chosen. For sparsely distributed solid

particles CFX gives the option of using the Schiller Naumann drag model.

The following equations is used to calculate the coefficient of the drag force

experienced by the particle

CD = MAX

(
24

Re
(1 + 0.15Re0.687), 0.44

)
(B.1)

The maximum value of the drag coefficient is based the constant drag

force experienced by a spherical particle with a Reynolds number between

1000 and 200000.

B.1.3 Flow and Boundary Conditions

The fluid properties and flow conditions used for this component of the

study correspond to the same values prescribed in the FDM simulations.
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The inlet was prescribed a Poiseuille velocity profile described previously by

Equation 3.15.

The particle injection points at the inlet were prescribed by using the

injection with a user defined weighting option given by CFX. With this option

the face weighting factor, W , at the inlet was calculated using Equation B.2

W = 1− r2

R2
p

(B.2)

This equation prescribes a particle distribution profile that corresponds

to the particle mass flow rate particle distribution along the inlet. This type

of profile was also shown to match experimental results well by Zhang and

Kleinstreuer (2001). In combination with the prescribed weighting distribution

CFX also gives the option to either randomly place injection points or equally

space the particles injection points. With the number of particles injected

there was no real difference between either the random or equally space option

and thus equally spaced particle injection was chosen.

The conditions placed on the outlet boundaries by CFX correspond to

the same boundary conditions placed on the outlets in the FDM simulations.

Equation 3.16 and Equation 3.17 previously given describe the conditions

placed on the velocity and pressure at the outlets.

The fluid boundary condition at the bifurcation wall was prescribed as a

no slip condition. Both the parallel and perpendicular restitution coefficient

was given a value of zero so that particle would stick to the wall.
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B.1.4 Convergence Criteria

Simulations results were considered converged once the number of particles

deposited on the bifurcation wall no longer changed. This corresponded to

the RMS and MAX particle momentum residual values of less than 1e-7 .

The fluid momentum RMS and MAX residual values were also required to

be below 1e-7 .

B.1.5 Effect of Particle Time Step on Deposition

The maximum integration time step of the particle trajectory calculation

can be explicitly given in CFX. The maximum integration time step was

systematically decreased by a magnitude of 10 and the change in deposition

efficiency was recorded. To achieve a deposition efficiency change by less

than 0.01%, a maximum integration time step of 1e-7 was used. This time

step was then used for all the other simulations using CFX.

B.1.6 Mesh Convergence of Deposition

Due to the CFX not injecting the particles at the same exact positions for

each simulation the actual particle trajectory between the refined and coarse

mesh could not be compared. Instead the deposition efficiency was calculated

using both the coarse and refined mesh to gauge the effect of the mesh size

on the particle trajectories.

B.1.7 CFX Validation of FDM Code

To compare to the FDM particle trajectories were extracted from simulation

done using the refined mesh and an integration time step of 1e-7. The
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extracted particle trajectory from the CFX results was then compared to

a FDM simulation of a particle being injected at the identical position as the

CFX result.

B.2 Results

B.2.1 Effect of Time Step and Grid

The effect of the time step was recorded for both the coarse and refined grid.

Table 2 shows the change in ”regional” deposition of both grids with change

in time step. The phrase ”regional” deposition was used here because the

inlet position of the particles was limited to a rectangular region stretching

across the inlet and in line with the flow. This was done to ensure more

deposition of particles when compared to the parabolic particle inlet profile.

Since the trajectory of particles that deposit was the main interest, there was

no need to simulate particles near the outside wall that will not deposit.
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Table B.1: The relationship between the ”regional” deposition and time step

for both the coarse and refined grid. Also given is the absolute and relative

difference between the results given by the coarse and refined grid.

Time Step

(seconds)

Coarse Grid

Deposition Efficiency

(%)

Refined Grid

Deposition Efficiency

(%)

Relative

Difference

(%)

1.0e-3 6.920 6.491 3.10

1.0e-4 6.245 6.126 1.94

1.0e-5 5.331 5.826 0.85

1.0e-6 5.207 5.182 0.48

1.0e-7 5.198 5.176 0.43

The regional deposition decreased with time step in both the coarse and

refined grid. The relative and absolute difference between the two grids also

decreased with time step.

B.2.2 Spherical Particle Trajectory Comparison Between the CFX

and FDM Result

The table below summarizes the differences between the final position of

the CFX and the fictitious domain results. The first initial position tested

corresponds to the center of the inlet and the second position is near the

outer wall of the inlet. Table B.2 and Table B.3 correspond to the first and

second inlet injection position respectively.
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Table B.2: Final position results using CFX and the fictitious domain method

(FDM). The initial position of the spherical particle was x = 2.20E-5 and z

= 1.26E-3.

Final Position (mm) Absolute Difference (mm) Magnitude

x y z x y z (mm)

CFX 0.0884 -0.8440 0.0004
0.0417 -0.0388 -0.0004 0.0570

FDM 0.1301 -0.8829 0

Table B.3: Final position results using CFX and the fictitious domain

method. The initial position of the spherical particle was x = 2.40E-5 and z

= 2.45E-3.

Final Position (mm) Absolute Difference (mm) Magnitude

x y z x y z (mm)

CFX 0.0649 -0.7941 0.0943
0.0168 -0.0166 -0.0011 0.0237

FDM 0.0815 -0.8109 0.932

B.3 Discussion

The steady flow through the three dimensional bifurcation was successfully

using the CFD program, CFX. The sensitivity analysis of the bifurcation

grid found that the refined grid produced an acceptable convergence for the

deposition. The sensitivity analysis also resulted in a suitable time step to

use for the spherical trajectory simulations. This was completed to ensure
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confidence in the accuracy of the CFX model.

The FDM trajectories and deposition points agreed with that of the

CFX simulations. The difference between the results was less than 5%

of the daughter length. The FDM results were also consistently found to

deposit farther downstream when compared to the CFX result. This may be

explained by considering that the CFX particle simulations do not account

for the effects of the bifurcation wall. Utilizing a low Reynolds approach,

Happel and Brenner (1965) studied a sphere moving perpendicular to a rigid

plane wall, With the constraint that the sphere radius is small compared to

the gap between the sphere and plane. For this case the drag force on the

particle is given as

Fdragnearwall = 6πµUrpλ (B.3)

Here λ is a correction to the normal drag equation and is a function of

sphere radius and gap width ratio. The expression for λ is not straight

forward enough to solve without using a simple numerical approach but

Happel and Brenner (1965) do give a table with values of λ for various values

of the sphere radius and gap width ratio. For a gap width ratio of 1.12 and 6.1

the corresponding λ values are 9.25 and 1.12 respectively. So within 5 particle

radii the drag force increases and thus the settling velocity would decrease

due to the wall. This would explain why the FDM results show a decrease

in the settling velocity when compared to the regular settling velocity. This

also explains why the FDM results tended to deposit farther downstream

when compared to the CFX results. In conclusion these results verify that

the FDM algorithm is capable of accurately simulating the trajectory of a
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particle through a three dimensional bifurcation model.


