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ABSTRACT

A two dimensional axisymmetric finite element model was developed to examine
the behaviour of a homogeneous, transversely isotropic, infinite ice cover under long
term loading. A power law relationship was used to predict incremental creep strains at
each time step and a 4™ Order Runge-Kutta method was used to advance the solution
through time. The creep parameters consisted of a coefficient (7)) and exponent (n).
Using experimental field data, the model was calibrated against 33 tests, of which most
were either constant load or increasing load tests. The values obtained for 77 consistently
ranged from 1.5x10% to 2.5x10% s'Pa™, and n ranged from 3.02 to 3.50. Young’s
modulus (E) was also calibrated, with values obtained ranging from 0.1x10° to

5.0x10° Pa.

The power law was found to be an acceptable method for predicting the creep

behaviour of ice for the types of situations examined here.
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is a value in the i,j location in the horizontal element stiffness matrix;
is a value in the i,/ location in the vertical element stiffness matrix;

is a value in the i,/ location in the foundation element stiffness matrix;
are constants (coefficients used in chapter 3 by various researchers);
is the diameter of a plate;

is any numerical value in a matrix (Appendix A);

is the characteristic length of the ice cover;

is a constant (Szyszkowski et. al., 1985);

are the number of sampling points for Gaussian quadrature;

is the number of interpolation functions;

is the total number of elements in a finite element formulation;

is the total number of nodes in a finite element formulation;

is a material parameter for ice (creep exponent);

are constants (creep exponents used in chapter 3 by various researchers);
is the lower bound for calibrated values of #;

is the upper bound for calibrated values of #;

is the penalty number;

is a concentrated (point) load;

is a variable for Gaussian quadrature;

is a value in location i in the element vertical load vector;

is the heat of activation (also known as activation energy);
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is a uniform applied load (vertical);

is the universal gas constant;

is a value in location / in the global mechanical load vector;
is the radial direction (from the centre of the load);

is the inner radius of an element;

is the outer radius of an element;

is the outside radius of the farthest element from the load;

is the total number of equations to be solved in a matrix system;
is a variable for Gaussian quadrature;

is temperature;

is temperature in °C below zero;

is relaxation time;

is the time at the end of a test;

is time;

denotes the time step at which the solution is known;

denotes the time step for which a solution is being calculated;
is a constant (Szyszkowski et. al., 1985);

is elastic strain energy density;

is elastic strain energy;

are components of elastic strain energy;

is the strain energy associated with the deflection of the foundation;

is radial displacement (or radial displacement field);

is the radial displacement at node 1 of an element;
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is the radial displacement at node 2 of an element;

is the radial displacement at any node, i;

is volume;

is the work done on a body;

is vertical deflection (or transverse displacement field);

is the vertical displacement at node 1 of an element;

is the vertical displacement at node 2 of an element;

is elastic deflection;

is the vertical displacement at any node, i;

is rotation in the vertical direction (slope = dw/dr);

is the slope at node 1 of an element;

is the slope at node 2 of an element;

is the slope at any node, i;

is the vertical deflection of any solution (using x and y number of integration
points in the radial and vertical directions, respectively);

is the vertical deflection of the “exact” solution (using 10 integration points in
each direction);

is a non-dimensional coordinate;

is a quantity based on x, a, and ry;

is a non-dimensional coordinate;

is any variable in the Bessel function equations (Appendix D);
is the transverse direction;

is distance measured up from the bottom of an ice sheet;
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is the radius of a load;

is a constant (Barnes et. al., 1971);

is an angle in the Bessel function equations (Appendix D);
is a time step increment;

are unequal time step increments;

is a least squares value;

is strain (uniaxial);

is strain rate (uniaxial);

is instantaneous strain;

is the proof strain rate;

is creep strain;

is an average strain,

is creep strain rate;

is effective shear strain rate;

is initial elastic settlement;

are elastic sfrains;

is a material parameter in the creep model;
is total strain in the radial direction;

is creep strain in the radial direction;

is elastic strain in the radial direction;

is creep strain rate in the radial direction;

is shear strain;
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is a secondary creep strain rate;

is creep strain rate in the z direction;

is total strain in the tangential direction;
is creep strain in the tangential direction;
is elastic strain in the tangential direction;

is creep strain rate in the tangential direction;

is a value in location 7 in the vector of unknowns;

is an interpolation function for the transverse direction;
is the subgrade modulus (unit weight of water);

is minimum shear strain rate;

is a viscosity constant (creep coefficient);

is viscosity;

are viscosity moduli (dashpot constants);

is the lower bound for calibrated values of 77;

is the upper bound for calibrated values of 77;

is an interpolation function for the radial direction;

is total creep curvature;

is creep curvature in the radial direction;

is creep curvature in the tangential direction;

is a coefficient in the Bessel function equations (Appendix D);
is Poisson’s ratio;

is the potential energy function;
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is an angle in Bessel function equations (Appendix D);

is a non-dimensional coordinate;

is density of ice;

is density of water;

is stress (uniaxial);

is effective shear stress;

is a material parameter in the creep model;

is radial stress;

is transverse shear stress;

is tensile strength of ice;

is normal stress;

is tangential shear stress;

is tangential stress;

is proof stress;

is a resultant stress (function of o; and oy);

is shear stress;

is time required for ice deflection to reach twice the elastic deflection;
are weighting factor for Gaussian quadrature;

is a function of yy used in the Bessel function equations (Appendix D);
is a coefficient in the Bessel function equations (Appendix D);

is the global stiffness matrix;

is the global horizontal stiffness matrix;
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is the element horizontal stiffness matrix;

is the global vertical stiffness matrix;

is the element vertical stiffness matrix;

is the global elastic foundation stiffness matrix;
is the element elastic foundation stiffness matrix;
is the global horizontal load vector;

is the element horizontal load vector;

is the global vertical load vector;

is the element vertical load vector;

is the global creep load vector;

is the element creep load vector;

is the element horizontal creep load vector;

is the element vertical creep load vector;

is the global mechanical load vector;

is the vector of unknowns;



1.0 INTRODUCTION

The creep of materials can have a significant effect on engineering structures.
Creep can be defined as the time dependent plastic deformation of a material, which is
also influenced by temperature (Beer and Johnston, 1992). Since ice is a material that
exists relatively close to its melting point, the effects of creep can become much more
significant than the material’s elastic response to loading (Ashton, 1986).

The study of creep is important because it is often necessary to be able to predict a
material’s response to stationary loading over time. Numerical modelling of this
behaviour can be a useful tool in predicting the response of a material to loading,
allowing the user to predict when failure might occur, and enabling one to remove the
load before failure actually does occur. Ice is often subjected to long term loading in

construction applications, as well as numerous other types of situations described below.

1.1 Construction Applications

In northern regions, ice is often used as a construction platform, and therefore it is
important to be able to predict the deflection of the ice cover over time in response to
long term loading. Some typical construction scenarios include cranes lifting materials,
material storage, and the parking of loaded vehicles on the ice cover (Hicks and Fayek,
1999). According to Kerr (1975), logging operations use ice platforms to store materials
and construction of river structures can also be performed from an ice platform.

Another common use of ice covers is as a platform on which to erect drilling rigs
in the Arctic (Ekelund and Masterson, 1980; Masterson and Kivisild, 1980; Baudais et.

al., 1976). Sea ice is thickened by flooding or spray ice production and drilling rigs



weighing in the order of 845 tons (Baudais et. al., 1976) to 1350 tonnes (Ekelund and
Masterson, 1980) can be constructed on these ice platforms. These platforms must
support their large loads for one to three months or longer (Masterson and Kivisild,
1980). It is important to be able to calculate the deflection of the platform as time
progresses and to predict when the loss of freeboard will occur, as this will likely make
people working on the platform uncomfortable; loss of freeboard will likely happen
before the complete failure of the ice cover (Masterson and Kivisild, 1980). With
deflections greater than the freeboard, allowing water to fill the deflection bowl, the

bearing capacity of the ice could also be reduced (Beltaos, 1978).

1.2 Other Applications

Ice platforms can also experience long term loading in situations other than
construction. Some examples include aircraft storage, temporary car parking lots, and
festivals on an ice cover.

Freshwater lake or river ice, as well as sea ice, have been used as airfields in
northern climates for many years (Assur, 1956; Barthelemy, 1992). After landing on an
ice sheet, an aircraft may need to be parked for a period of time. Assur (1956) states that
parking aircraft on an ice cover is acceptable under certain conditions, but that if
deflection of the ice cover becomes noticeable, the aircraft should be moved immediately.
Barthelemy (1992) developed parking curves for various weights of aircraft, giving the
allowable parking time based on sea ice thickness, using the criterion that the ice sheet is

allowed to deflect 10% of its thickness.



Another example of long term loading of an ice cover is the Blackstrap Lake
(Saskatchewan) parking lot (Meneley, 1974). This parking lot was designed for the
Canada Winter Games, as parking areas on land were insufficient for the number of
spectators expected at the games. This parking lot held over 4000 parked cars at a time in
February 1971 (Meneley, 1974). Keeping deflections less than the freeboard of the ice
cover, and therefore keeping water from appearing on the ice surface, was considered
essential in order to keep the general public feeling safe. This was accomplished by
continuously measuring the ice deflection and controlling parking and traffic (Meneley,
1974), but a predictive model could have been very useful in this situation.

Ice covers have also been used as a platform on which a festival was held in
February of 1985 and 1986, as described by Sinha (1990, 1992). The Winterlude festival
in Ottawa, held on Dow’s Lake, included a snow sculpture competition as well as a large
opening ceremony on the ice cover. Each year the snow sculptures were restricted in size
and shape and were distributed across the ice cover. The opening ceremony in 1985
involved a concert on two large stages placed on the ice cover near the edge of the lake,
and approximately 60,000 spectators were in attendance (Sinha, 1990). For the 1986
festival the stage was constructed in the middle of the lake but, unfortunately, when the
opening night concert was about to begin 40,000 people rushed to the stage causing large
deflections. The ice surface became flooded with water, forcing organizers to cancel the
show (Sinha, 1992). This is another situation in which the prediction of time dependent

deflection could be very useful.



1.3 Organization of Thesis

This thesis contains 7 chapters. Chapter 1 contains a brief introduction.
Chapter 2 describes the physical behaviour of ice under both short and long term loading.
The different types of creep (primary, secondary and tertiary) are discussed. Also
described are the physical properties of different types of ice. Chapter 3 describes some
of the previous model studies performed on the creep of ice.

In chapter 4, the formulation of the finite element model is discussed. A
rheological model for ice is described. The assumptions used in this model are discussed,
followed by the Principle of Minimum Potential Energy and the Rayleigh-Ritz Method.
The finite element system of equations to be solved is described along with the
interpolation functions used by the model. Expressions for various model elements are
developed, including the element and foundation stiffness matrices, and the mechanical
load and creep load vectors. Two choices of method for estimating the creep strains over
time are described: the Euler method, and the 4™ Order Runge-Kutta method. Finally, the
implementation of the boundary conditions through the use of the penalty method is
discussed, followed by various issues pertaining to the boundary elements.

Chapter 5 contains sections on the verification of various parts of the finite
element model. An analytical solution and an elastic behaviour test for a simple elastic
plate are illustrated. A pure bending test and an artificial creep strain test for an elastic
plate with creep are summarized. An analytical solution for an elastic plate on an elastic
foundation is outlined, along with an elastic behaviour test. The spatial and temporal
discretization scales for an elastic plate on an elastic foundation with creep are

determined for both concentrated and distributed loading cases. Also included is a



discussion on the number of integration points required for reasonable accuracy within
the numerical solution.

In chapter 6, the finite element model is applied to large scale load test data from
two sources. The sources of the field data are described, along with the justification for
the exclusion of certain sets of test data. A summary of the spatial and temporal
discretization scales to be used for the model application is given. A brief discussion on
the model calibration parameters is given. Calibration of two creep parameters and one
elastic parameter is performed for various types of loading situations: constant loading,
increasing loading, and other loading. An attempt to relate the calibrated parameters to
ice temperature is made, and a summary of the findings from this chapter is presented.

Chapter 7 contains a summary of each chapter, and discusses the assumptions and
decisions that were made as the model was developed and verified. A discussion on the
conclusions obtained from the model application is presented. Some recommendations

for future research are discussed.



2.0 PHYSICAL BEHAVIOUR OF ICE UNDER LOADING
2.1 Introduction

Ice exhibits different behaviour under short term loading and long term loading
conditions. A long term load is considered to be any load present on a floating ice cover
for longer than about ten minutes (Beltaos, 1978). According to Michel (1978a), when
ice is loaded at a rapid rate, it will behave perfectly elastically; however, when ice is
loaded slowly, or a static load is present, the ice will undergo creep and permanent
deformation will occur. For any material, creep can depend on several factors including
the magnitude and duration of loading, the temperature, and the dimensions and
orientation of the ice grains (Puswewala and Rajapakse, 1993).

This chapter begins with a brief explanation of the behaviour of ice under short
term and long term loading conditions, and the primary, secondary and tertiary stages of
creep are explained. Some of the failure criteria used in practice are discussed. The
physical properties of various types of ice (lake, river, and sea) are discussed, and some
typical values of these properties are reported. Finally, a brief section on ice

crystallography is presented.

2.2 Behaviour of Ice under Short Term Loading

A brief overview of the behaviour of ice under short term loading is presented
here, and is summarized from Ashton (1986). Under short term loading (in the order of a
few minutes or less) a floating polycrystalline ice sheet behaves elastically; it can be

considered as an elastic plate on an elastic foundation.



When a vertical load is placed on a floating ice sheet for a short period, the elastic

deflection, w, is governed by the following equation (thin plate theory):

2V4w+w=q—" (2.2.1)
4 4

where D is the bending stiffness of the ice:

3
D=L2_
12(—v?)

(2.2.2)
and where E is Young’s modulus of elasticity, 4 is the ice thickness, v is Poisson’s ratio,
v is the foundation modulus (in this case, the unit weight of water), and g, is the applied
vertical load. Thus, for any load configuration the deflection is governed by D/y which

has the units of length raised to the fourth power.

The characteristic length of the ice cover, /, is defined as:

!

l= (Q—JA (2.2.3)
7

Gold (1988) reported that the characteristic length is not strongly dependent on the elastic
properties of the ice; it is much more dependent on the ice thickness. From examination
of previous observations on the deflection of ice covers under moving and static loading,
Gold (1988) observed that the characteristic length, /, for columnar freshwater ice ranged
from about 15.94%7 to 17.5%7° where both 4 and [ are measured in metres. This range

can be extended to 12.6 h°7 for granular ice. Using the following empirical relationship

for / was found to be acceptable for the short term loading of freshwater ice (Gold, 1971):

[=16K"" (2.2.4)



The elastic deflection of an infinite ice sheet under a point load, w,., can be

calculated from:

we = o')
8y~

~
)
o
(%]
~

where P, is the concentrated load. When considering a point at a distance r away from
the centre of loading, thin plate theory is not valid if »// <0.5. Thin plate theory cannot
accurately predict stresses in this region, and thick plate theory must be used instead (see
Ashton, 1986). Hicks and Fayek (1999) have fit a polynomial to calculate the elastic
deflection of an ice cover under a point load, valid for the range of /I <7 (the influence

of the load is negligible beyond r//>5). The deflection, w, at any point r can be found

w r r\ rY rY rY rY
-;v:—zao+a, 7 +a, 7} +a; n +a, 7 +a; n +ag 7 (2.2.6)

where ap=1.00, a;=-0.195, a>=-0.315, a;=0.171, a;=-0.0356, as=0.00342, and

from:

as=-0.000126.
Hicks and Fayek (1999) also fit a polynomial to Nevel’s (1968) curve describing

the stress, o, caused by the deflections for thin plate theory, valid when r// > 0.5:

oh 1.305-0.0522(r /1) +0.0120(r /1) |
1+0.870(r /1) — 0.223(r /1) + 0.0200(r /1)’

2.3 Behaviour of Ice under Long Term Loading
The behaviour of ice under long term loading is briefly described here. For the

purposes of this discussion, any stationary load present on an ice cover for more than



about ten minutes is considered to be a long term load. This section summarizes
Michel’s (1978a) description of the ductile behaviour of ice.

Ice, as a crystalline material, contains many imperfections in its lattice structure
including point defects, line defects and stacking faults. A point defect occurs when an
atom is missing from a lattice site, weakening the crystal. A dislocation is small
compared to the size of visible crystals, but large on an atomic scale. Some types of
dislocations include edge, screw and mixed dislocations.

When a crystalline material is loaded the elastic response is followed by an
increase in deflection over time, known as creep. Creep deflection will not be recovered
upon removal of the load as elastic deflection will. This increase beyond the elastic
deflection is caused by dislocation movement through the stressed crystal. In ice, the
creep mechanism is generally a climbing movement (movement perpendicular to the slip
plane). Climb can only occur by thermally activated mass transport (diffusion), which is
very slow compared to the slip process. Other types of creep mechanisms observed have
been:

“grain boundary slip, cavity formation at the grain boundaries, formation

of low-angle boundaries, polygonization and recrystallization” (Michel,

1978a).

Recrystallization, by grain boundary migration or new crystal growth, was observed

when ice deflections were large.



2.4 Types of Creep

Michel (1978a) gives a description of the types of creep mechanisms present
during the primary, secondary and tertiary creep stages. These mechanisms include:

“elastic deformation and plastic deformation by climb of dislocation

...observed by grain boundary slip, cavity formation at the grain

boundaries, formation of low-angle boundaries, polygonization and

recrystallization. Recrystallization was noticed mainly when the ice
deformations became large. It either took the form of grain boundary
migration, i.e. some grains growing at the expense of others, or the
formation of completely new crystals (Michel, 1978a).”
Increasing numbers of microcracks (cracks within a crystal) also formed at certain levels
of compressive stress during primary creep, but stopped if the stress did not increase
beyond a certain level (Michel, 1978a). This process continues at higher stresses,
eventually leading to accelerated creep and failure of the ice (Michel, 1978a). According
to Ashton (1986), at temperatures below -10°C the creep of polycrystalline ice is
dominated by slipping along the basal planes; above -10°C, grain boundary slip and
melting at joints is the dominant creep mechanism.

Figure 2-1 shows a typical creep curve for polycrystalline ice, and illustrates the
three stages of creep: primary, secondary and tertiary creep. As can be seen from this
figure, primary (or transient) creep begins following the elastic deformation with a
decreasing strain rate. Ashton (1986) states that in this stage, the creep rate is much more
dependent on the stress than on the temperature. According to Michel (1978a), primary

creep is a visco-elastic process and can include an increasing number of mobile
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dislocations or cracking. Strain hardening occurs when impurities or grain boundaries
stop the dislocation movement. When loading is initially applied, or more loading is
added, the creep of the ice is characterized by retarded elasticity (Michel and Gagnon,
1979).

At low stresses and temperatures secondary and tertiary creep may never be
achieved, and the creep curve may appear to have a decaying form (Puswewala and
Rajapakse, 1993). If the stress level is high enough, a steady state creep rate will be
attained, known as secondary creep.

Secondary (or stationary) creep is characterized by an essentially constant strain
rate. It is a purely viscous process and recrystallization may or may not occur during this
stage (Michel, 1978a). According to Hult (1966), the strains developed in numerous
materials during secondary creep are rnuch larger than those developed during primary
creep, and a straight line can be used to approximate the creep curve.

Under high stresses, after a period of steady creep, the creep rate can eventually
begin to accelerate (tertiary creep) and ultimately failure will occur (Morgenstern ez. al.,
1980). Azizi (1989) states that for ice, the secondary creep stage is often very brief and
becomes an inflection point on the strain-time curve between primary and tertiary creep.

Tertiary (or accelerating) creep signals the onset of failure. Viscous strain
softening occurs, and there is no elasticity remaining in the ice (Michel, 1978a). An
increase in crack formation can accelerate deformation and cause the ice to rupture

(Michel, 1978a).
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2.5 Short Term Failure Criteria

Various failure criteria have been proposed for the short term loading of floating
ice covers. According to Barthelemy (1992), a failure criterion is based on either stress
or deflection requirements. Often it possible to keep stresses within allowable limits, but
keeping deflections within safe limits can be much more difficult (Masterson and
Kivisild, 1980).

“Several short term failure criteria are discussed in detail by Hicks and Fayek
(1999) including Gold’s safe criterion, Michel’s first crack criterion, the freeboard
criterion, and Beltaos’ strain energy criterion. For concentrated load, P,, Gold’s (1971)
safe criterion suggests:

P, <350h* (2.5.1)
where P, is in kN and the ice thickness, A, is in metres. For any load, few failures are
reported when the ice thickness is greater than that specified using equation (2.5.1);
however, the data Gold examined does not extend beyond around 300 to 400 kN, and this
criterion should not be extrapolated to loads greater than this.

According to Michel (1978a), one failure criterion for the short term bearing
capacity of ice is to limit the load to that which produces the first radial crack in the ice
cover. It is easy to verify when the first crack has occurred in the field, and this criterion
provides a factor of safety of about two. Michel (1978a) proposed the following
relationship between grain size, d, and tensile strength, or, of the ice under short term

loading:

_ -3
o—,=79.4\/1 0'9d",10 T (2.5.2)
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where T is temperature (°C), d" is in mm and or is in kPa. Typical values of 4" range
from 1 to 4 mm for snow ice, and from 5 to 25 mm for columnar ice (Michel, 1978a).

Several researchers (e.g. Frederking and Gold, 1976) have suggested a freeboard
criterion to determine the bearing capacity of ice covers. This criterion limits the
maximum allowable deflection under the load to the freeboard of the ice cover. Aside
from stress and strain considerations, there are several reasons which make this a
practical design criterion. Once the freeboard has been exceeded, water can flow onto the
ice cover through cracks; this water can:

“interfere with operations, damage stored material, and freeze around

equipment or stores, making removal difficult. If freezing does not occur,

the flood water must be considered as a load effectively neutralizing part

of the buoyant force over the area that it covers (Frederking and Gold,

1976).”
The additional load resulting from surface water can increase the rate at which the ice is
creeping, hastening the failure of the ice cover (Michel, 1978a). This water also
increases the temperature of the upper portion of the ice, which could result in a reduction
in strength properties (Frederking and Gold, 1976). In order to determine the allowable
concentrated load, P,, the freeboard is set equal to the elastic deflection (equation

(2.2.5)), giving:

P $8y12(1—-—&J
p.

where yis the unit weight of water, / is the characteristic length of the ice cover, p; is the

density of the ice, and p, is the density of water (Hicks and Fayek, 1999). With /
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calculated from equation (2.2.4), and the density of ice assumed to be 92% of the density

of water, this reduces to:

P, <160047% (2.5.4)
where £ is the ice thickness in metres and P, is in kIN.

Beltaos (1978) proposed the strain energy criterion as a failure criterion for long
term loading; it should also be applicable for short term loading if the strain energy is
indepéndent of time and actually representative of a material property of ice. According
to Beltaos (1978):

“failure occurs when the maximum work done by internal stresses on a

unit volume of material equals or exceeds a critical value.”

The cumulative strain energy at the onset of tertiary creep, 30047, can be equated to the
product of the concentrated load, P, (kN), and the maximum elastic deflection, w,,
ultimately giving:

P, <2455hK° (2.5.5)

where 4 is the ice thickness in metres and the characteristic length was calculated from

equation (2.1.4) (Hicks and Fayek, 1999).

2.6 Long Term Failure Criteria
The strain energy criterion has been proposed by Beltaos (1978) as a failure
criterion for the bearing capacity of ice under long term loading. According to Beltaos

and Lipsett (1979):
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“the onset of failure occurs when the work done by the load reaches a
critical value. This value is proportional to the ice thickness raised to the
power 5/2.”
They analyzed bearing capacity test data obtained from 1974 to 1977 and found that an
empirical relationship exists between deflection and time (for instantaneously applied

constant loads) of the following form:

Y o1+ fi 2.6.1)
w, T,

where w is the deflection under the centre of the load, w. is the elastic deflection
(equation (2.2.5)), ¢ is time, and 7. is the time needed to reach twice the elastic deflection.
This relationship was found to adequately represent the deflection over time for these
types of loading conditions (Beltaos and Lipsett, 1979).

From the 25 sets of data analyzed by Beltaos and Lipsett (1979), 7. was found to
range from 40 to 210 minutes, and Young’s modulus ranged from 1.0x10° to
4.8x10° Pascals. They believed these variations were related to load intensity and
temperature dependent variations in the ice properties.

According to Beltaos (1978), the deflection at failure is smaller for concentrated
loads than for distributed loads, which is believed to be a result of the failure mode;
concentrated loads often experience punching failure while distributed loads experience

bending failure.
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2.7 Physical Properties of Ice

The various physical properties of ice influence the elastic and plastic behaviour
of the material. Some of these properties include Young’s modulus (£), Poisson’s ratio
(1), grain size (d'), and ice density (o). These properties can have different values,
depending on the type of ice and the temperature at which it exists. Experimental
evidence indicates that:

“the crystal structure as well as the mechanical properties are significantly

affected by its temperature and stress history as well as the meteorological

and hydrodynamic conditions existing at the time of its formation

(Szyszkowski et. al., 1985).

According to Ladanyi and Saint-Pierre (1978), sea ice is heterogeneous and anisotropic,
and because the ice crystals can be quite large, mechanical properties can also be scale
dependent.

Ice density remains relatively constant, ranging from about 917 kg/m? at 0 °C and
varying almost linearly to about 921 kg/m® at -30 °C (Ashton, 1986). No significant
differences could be detected between densities for single crystals and columnar grained
ice samples (Ashton, 1986).

It will be shown in section 6.1.4 that the behaviour of ice is much more sensitive
to changes in E than changes in v. Ashton (1986) took values from several sources to
obtain average elastic constants for lake ice, and Poisson’s ratio ranged from 0.314 to
0.345. Gold (1988) obtained values ranging from 0.29 to 0.43 for v from laboratory
experiments. For most situations Poisson’s ratio is taken as approximately 0.333

(Beltaos, 1978).
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The values reported for the elastic modulus, E, of ice vary greatly in the literature.
According to Michel (1978a), the higher values occur when loading is rapidly applied,
and the lower values when loading is slowly applied or static. Ashton (1986) found that
Young’s modulus for lake ice ranged from about 8.4x10° to 9.5x10° Pa. Other
researchers have determined different values for E at different temperatures. Michel
(1978a) gives several equations for the elastic modulus of polycrystalline ice as a
function of temperature and ice type, as well as reporting on values found by Ewing et.
al. (1934), Northwood (1947) and Gold (1958). These values can be seen in Figure 2-2.

The four types of ice for which Michel (1978a) has given equations for Young’s
modulus are S1, S2, T, and S4. SI ice is columnar ice with large, irregular grains that
form vertically (parallel to the flow of heat). It is found in lakes, and low flowing rivers,
but not in the sea. S2 ice is similar to S/, but the grains are oriented more randomly, and
the size of the crystals increases with depth more rapidly than in S/ ice. The grains of S2
ice become oriented more horizontally at increasing depths, and this type of ice can be
found in Arctic sea ice. T/ ice is snow ice with fine to medium grain sizes. It is formed
when snow is flooded and freezes. S4 ice is congealed frazil slush, with fine to medium
grain sizes. It can be found in rivers, and lakes which have an inflow of turbulent water,

as well as at sea. For horizontal S/ and vertical S2 ice:

E=9.62x10°(1-1.07x107T) @.7.1)
For vertical S/ ice: E=11.79x10’ (1 ~1.40x 10'3T) (2.7.2)
For horizontal S2 ice: E=927x10°(1-1.36x107T) (2.7.3)

and for T] or S4 ice, with any grain orientation:

E=893x10°(1-1.28x107°T) (2.7.4)
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where T is the temperature in °C, and £ is in Pascals.

The data points on Figure 2-2 represent elastic modulus values found for
polycrystalline ice. Gold (1988) obtained values ranging from 7.6x10° to 12.3x10° Pa for
laboratory grown ice at -10 °C. Tinawi and Murat (1978) give values of E for laboratory
grown saline ice at several temperatures. Barthelemy (1992) gives several values of E for
sea ice at different temperatures. Masterson and Gamble (1986) report values of £ for
flooded ice and spray ice. From these sources, it can be seen that the value of Young’s
modulus ranges anywhere from around 1x10° to 12x10° Pa for different ice types at

different temperatures.

2.7.1 Ice Crystallography

Work was done in a cold room at the University of Alberta to qualitatively
examine the crystal structure of lake and river ice with ice samples obtained in March of
2000. The ice samples were obtained from Joseph Lake (approximately 56 km southeast
of Edmonton) and from the North Saskatchewan River in Edmonton upstream of the
Quesnell Bridge. The ice from Joseph Lake is of interest because that was the location of
the load tests performed from November 1975 to February 1976, and the data from these
will be analyzed in Chapter 6. The river ice was examined for comparison purposes.

The samples were cut from the ice covers using a chainsaw (see Plate 2-1). The
river sample was taken from ice approximately 38 cm thick, but the ice cover on the lake
was thicker than the length of the chainsaw, and the sample (see Plate 2-2) had to be
broken off at a depth of approximately 70 cm. The samples were cut into smaller

sections which were then reduced to a very thin layer, using a microtome, for observation
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between crossed polarized lenses. The microtome used to reduce the ice to a single layer
of crystals can be seen in Plate 2-3.

Plates 2-4 and 2-5 show vertical sections through the lake and river ice samples,
respectively. For an idea of the scale of the ice crystals, the upper layer of snow ice in
Plate 2-4(a) is approximately 4 cm thick, and the layer of snow ice in Plate 2-5(a) is about

5 cm thick.
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Figure 2-1: Typical creep curve for polycrystalline ice:
(a) strain, and (b) strain rate (adapted from Hult, 1966).
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Plate 2-1: Cutting . an ice sample from Joseph Lake.
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Plate 2-2: Ice sample from Joseph Lake.

23



Plate 2-3: Microtome used in cold room for reducing ice samples to thin sections.

24



AR R
- ° -

gl S

from (a) to (e).

.

increasing

ions of ice from Joseph Lake with depth

Vertical sect

.
.

Plate 2-4

25



Plate 2-5: Vertical sections of ice from the North Saskatchewan River with depth
increasing from (a) to (c).
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3.0 PREVIOUS STUDIES MODELLING ICE CREEP
3.1 Introduction

A brief review of the literature pertaining to creep of ice and finite element
modelling of this problem is presented here. Glen (1955) was one of the first to propose
an empirical power law relationship between stress and strain rate for the creep of
polycrystalline ice under uniaxial stress. Since then, many researchers have used the
power law, or other equations, to model the creep behaviour of ice (and frozen soils) for
primary and secondary creep.

Butkovich and Landauer (1959) proposed three empirical creep relationships to
compare to experimental data, but found that the power law most accurately reflected
their data. Mellor and Testa (1969) found that a power law relationship modelled the
creep of ice under very low stresses. Barmnes et. al. (1971) described the creep of ice
using superposition. Nixon and McRoberts (1976) proposed a secondary creep power
law for geotechnical applications. Tinawi and Murat (1978) performed laboratory
experiments on ice beams and plates, and found that the deflection over time followed a
power law. In 1979, Michel and Gagnon proposed a linear creep model, but this did not
represent the behaviour of ice during primary creep very well. Masterson and Strandberg
(1979) examined deflection data from an Arctic drilling platform and found that its
behaviour did follow a power law. Tinawi and Murat (1979) proposed a power law for
the creep behaviour of non-homogeneous floating ice sheets, and also suggested a
relationship for Young’s modulus as a function of location within the ice. Morgenstern
et. al. (1980) combined the experimental data from several researchers and developed a

power law relationship for ice creep. Sego and Morgenstern (1983) developed a power
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law relationship for creep that was normalized to one temperature and ice grain size.
Szyszkowski et. al. (1985) performed experiments on a simply supported rectangular
column of ice, and analyzed the results using a power law. In 1989 Azizi modelled the
primary creep of ice using a power law, assuming that secondary creep can be reduced to
an inflection point on a deflection-time graph. Azizi and Whalley (1994) used primary
creep parameters to predict secondary creep behaviour.

Other researchers have expanded these ideas to involve more complex scenarios.
Michel (1978b) proposed a two dimensional model for polycrystalline ice creep which
accounts for deformations within each crystal. Khoo and Hrudey (1992) examined the
indentation of a floating ice sheet and the inclusion of postpeak softening. Fish (1992)
and Puswewala and Rajapakse (1993) adapted models to includc multiaxial states of
stress. Sunder et. al., (1993) examined problems which are dominated by tertiary creep.
Mahrenholtz and Wu (1993) extended a one-dimensional primary creep law to three
dimensions. Azuma (1995) examined the deformation of anisotropic polycrystalline ice
under uniaxial loading. Meglis er. al. (1999) performed triaxial tests on granular ice to
determine its mechanical behaviour under various confining stresses.

The remainder of this chapter will focus on research that has examined the
behaviour of isotropic polycrystalline ice under uniaxial loading in the primary and
secondary creep stages. For comparison purposes numerical quantities and equations
have been transformed to dimensions consistent with those used in the model developed

here whenever possible.
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3.2 Glen (1955)

Glen believed that creep or plastic deformation of ice was primarily caused by the
shear component of stress; however, as loading a specimen in uniform shear is difficult,
he performed laboratory compression tests on blocks of polycrystalline ice at different
stresses and at different temperatures. Stresses for these tests ranged from about 100 to
1000 kPa, and temperatures ranged from 0 to -13 °C.

In 1955, Glen proposed the following empirical power law relationship between
stress and strain rate for polycrystalline ice:

E=ko™ 3.2.1)
where & is the strain rate, o is the stress, and n; and k; are constants. Glen found that
while n; did not vary noticeably with temperature, k; did vary with temperature according
to an Arrhenius (Zumdahl, 1993) type of equation:

k =B, exp(-Q/RT) (3.2.2)
where R is the universal gas constant, 7 is absolute temperature, Q is a heat of activation,
and B, is a constant dependent on stress. From Glen’s experiments, the value of O was
found to be 32 kcal/mol, n; was approximately 3.2, and B; was 7x10%* if the strain rate is
measured in (years)” and the stress in bars.

Combining equations (3.2.1) and (3.2.2), Glen’s equation can also be written as:

£=222exp(-16114/T)c>? - (3.2.3)

where the temperature is measured in degrees Kelvin, the stress is measured in Pascals,

and the strain rate is measured in (seconds)™.
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The creep curves obtained by Glen were similar to curves obtained for other solid
substances. The power law was found to be an acceptable model for primary and

secondary creep between -13 °C to 0 °C, but not for tertiary (accelerating) creep of ice.

3.3 Butkovich and Landauer (1959)

Butkovich and Landauer performed laboratory creep tests on different types of
ice, such as single crystals, glacier ice, and ice obtained from an ice plant (commercial
ice), using both shear and uniaxial loading conditions. Tests were performed at high and
low stresses. The low stress tests were performed at stresses ranging from around 49 to
294 kPa (0.5 to 3 kg/cmz); these test durations were approximately five days, unless
failure occurred sooner. The high stress tests were performed at stresses ranging from
about 687 to 2747 kPa (7 to 28 kg/cm?) at temperatures ranging from -4 to -6 °C, and the
lower stresses in this range had test durations of about 2500 s.

Three empirical relationships were proposed to fit the creep data obtained from
the shear tests including a hyperbolic sine function, a cubic polynomial, and a power law
function. Of the three, a power law of the following form was found to fit the data the
best:

7=k" (3.3.1)

where 7 is the minimum shear strain rate, zr is the shear stress, and k; and n, are

constants. The shear stress and shear strain rate can be related to uniaxial stress, o; and

uniaxial strain rate, £, using the following relationships:

-
r=7 (3.3.2)
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and 7=+3& (3.3.3)
The constants k; and 7, had values of 0.863x10® and 2.96 respectively when z was
measured in kg/cm? and 7 in (seconds)™.
Using equations (3.3.2) and (3.3.3), Butkovich and Landauer’s equation (3.3.1)
can be rewritten in terms of oand & as:
£=1.646x107% o> (3.3.4)

where ois measured in Pascals and & is measured in (seconds)™.

3.4 Mellor and Testa (1969)

In 1969 Mellor and Testa performed experiments on polycrystalline ice at very
low stresses (like those observed in glaciers) in the laboratory. They investigated the
effects of long term uniaxial compression on homogeneous, isotropic samples of
polycrystalline ice. Since large amounts of data already existed for stresses ranging from
100 to 2000 kN/m?, the axial stresses used in these tests ranged from 9.1 to 42 kN/m”.

The results from the experiments indicated that the secondary creep strain rate
(using a simple power law such as equation (3.2.1)) was proportional to ¢ '®. This
exponent is significantly lower than the values found for higher stresses, where the
exponent ranged from 3 to 4.

These results did not conclusively establish a relationship between stress and
strain rate for low stresses. Mellor and Testa believed that prolonged testing at the lowest

stress might have produced a higher strain rate.
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3.5 Barnes, Tabor and Walker (1971)

Barnes et. al. studied the deformation of polycrystalline ice through uniaxial
compression tests with strain rates ranging from 10° to 102 s™! and temperatures ranging
from 0 to -48 °C. They assumed that the deformation caused by transient (primary) and
steady-state (secondary) creep could be described by the superposition of two
independent processes:

e=&y+at + &t (3.5.1)

where ¢is the strain at any time ¢, & is instantaneous strain, @, is a constant and &, is the

1/3

secondary creep rate. When ¢ is small the transient creep (i.e. the apt'™) term is

dominant; £ is the steady-state creep which is approached asymptotically.
According to Barnes et. al., the secondary creep rate of ice can be described by an
Arrhenius type of equation:
& =A'c™ exp(—Q/RT) (3.5.2)
where ¢, is the secondary creep rate, o is the stress, Q is the activation energy, R is the
universal gas constant, 7T is temperature, and 4’ and n; are constants. However, as this

equation is only applicable over a limited range of stress, they used an empirical
relationship to describe their data over the entire stress range:
£, = A" (sinh ¢y0)™ exp(—Q/ RT) (3.5.3)
where 4"’ is a constant and all other variables have been previously defined.
Over the entire range of strain rates and temperatures studied, n3; was found to

have a value close to 3 for secondary creep behaviour (i.e. equation (3.5.3)). @ had two

distinct values, depending upon the temperature at which the experiment was
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performed: for temperatures below -8 °C, Q was 78 kJ/mol, and for temperatures between
8°C and -2°C, Q was 120kl/mol. Values for 4’ ranged from 1.88x10" to
4.60x10'® 5!, and ayranged from 0.254 to 0.282 m*/MN for experiments performed over
the entire stress and temperature range.

For the temperature range of -8 to -45 °C, equation (3.5.3) can be written as:

& =2.72x10" exp(—9393/ T)(sinh(0.262 x 107 5))** (3.5.4)

where the temperature is measured in degrees Kelvin, the stress is measured in Pascals,

and the strain rate is measured in (seconds)™.

3.6 Nixon and McRoberts (1976)

Nixon and McRoberts were interested in long term pile settlement in frozen soils;
since there was little data on the creep of frozen soils at low stresses they based their
analysis on the creep of ice, which would be a conservative estimate. They reviewed
creep data from several sources and found that the deformation of ice consisted of a brief
period of primary creep followed by constant secondary creep.

According to Nixon and McRoberts, the empirical deformation versus time
relationship for any uniaxial creep test performed at low stress can be written as:

E=¢g + &t 3.6.1)
where ¢ is uniaxial strain at any time ¢, & is initial elastic settlement, and &, is the

secondary creep rate. Since the strain occurring from the secondary creep is usually
much greater than the initial elastic strain, the secondary creep rate alone may be used to

represent the strain.
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For geotechnical applications, Nixon and McRoberts wrote the flow law for ice

as:
£, = B,0™ + B;o™ (3.6.2)
where B;, B3, n4, and ns are constants which must be determined from tests at a stress of
o and at a constant temperature. The experimental data obtained from previous

publications was plotted as logo versus logé,, and several observations were made.

While the portion of the graph below a stress of about 138 kN/m* was very close to a
straight line, at stresses greater than this value the slope of the data showed a noticeable
change. That is, the value of the creep exponent increased. As a consequence,
extrapolation of results of tests performed at high stresses would underestimate the strain
rates at low stresses, which is not conservative.

Nixon and McRoberts also found that for any stress level, as the test temperature
is decreased the strain rates also decrease, i.e. the constants B, Bj, ny, and ns depend on

the temperature. The creep parameters were related to temperature using the following

relationships:
B, =8x107(T, + )" (3.6.3a)
n, =1.35(T, +1)*? (3.6.3b)
B, =1.0x107%(T, +1)™"* (3.6.4a)
n, =4 (3.6.4b)

where T, is the temperature in °C below zero, the stress is measured in psi and the strain

rate is measured in (years)'. Equations (3.6.3) and (3.6.4) can be combined with
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equation (3.6.2) to give an empirical equation for secondary creep strain rate as a function

of uniaxial stress and temperature.

3.7 Tinawi and Murat (1978)

In 1978 Tinawi and Murat performed short and long term experiments on
artificially grown saline ice beams and ice plates in a laboratory cold room. Tests
included instantaneous and long term flexural loading of simply supported beams and
circular plates, with water underlying the ice in the beam tests. The salinity of the ice
was approximately 4 to 5%. The cold room temperature was -10 °C, and the water
temperature was -2 °C; the ice temperature varied linearly throughout the ice thickness in
cases where water was present, and was isothermal at -10 °C in cases where water was
not present. The applied stresses ranged from 276 to 552 kPa for beam tests and from
120 to 412 kPa for plate tests.

From the instantaneous flexural loading of beams, the elastic modulus, E, was
found to have an average value of 3.9x10° kPa. The values for E obtained from the plate
tests were approximately '/3 of the value found for the beam tests. According to Tinawi
and Murat, the elastic modulus is greatly affected by the rate of loading. They state that
the elastic modulus is less for plates than for beams because of the large differences in
stress rate across the plate, and that the elastic modulus should be made variable across
the radius of the plate.

Tinawi and Murat proposed a power law relationship to fit the creep data from the
beam tests, obtaining the following empirical equation:

£=0.269%x10"2c** (3.7.1)
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where ¢ is the strain rate (minutes™) and ois the stress (in kPa). They compared this to
a theoretical solution found by Hult (1966) which yields:
£=2305x10"2c*? (3.7.2)
For the creep of simply supported ice plates with no underlying water, Tinawi and Murat
found the empirical power law relationship was found to be:
£=1.625x10"%5" (3.7.3)
Converting these equations to units of Pascals for o and (seconds)’ for £,
equation (3.7.1) becomes:
£=4.916x102 5" (3.7.4)
and equation (3.7.3) becomes:

£=2.708x1025"° (3.7.5)

3.8 Michel and Gagnon (1979)

In 1979 Michel and Gagnon developed a linear viscoelastic creep model and
performed experiments on simply supported freshwater ice plates to test the validity of
the model. The linear model was chosen because it was a simple representation of the

secondary creep, however it did neglect part of the primary creep.

The model could be solved analytically from two differential equations. The

vertical deflection over time, w, was found to be:

W=W(3K+GJ K+G(_t_}_ G? ’ GAD)
3K+4G) K \T, (3K+G)K¢xp({[;fc)%})

r
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where w, is the elastic deflection, K and G are the bulk modulus and the rigidity modulus,
respectively, T is relaxation time (7,/G), 75 is viscosity, and ¢ is time. This model did
not predict the deflection well in the primary stages of creep, giving deflections greater
than those observed during experiments.
For the secondary creep portion of the experimental curves, a power law
relationship like equation (3.2.1) was fit to the data, giving:
&=Bo* (3.8.2)
where £ is the strain rate, o is the stress, and B is a constant. Michel and Gagnon
believed that the exponent in this equation was low (it is usually around 3) because

secondary creep was never actually reached in these experiments.

3.9 Masterson and Strandberg (1979)

Drilling rigs in the Arctic have been constructed on platforms of man-made ice
which are built up over a natural ice cover and are in place throughout the winter season.
Masterson and Strandberg (1979) took deflection data from one such ice platform, and
using a finite element model, obtained creep parameters for the ice platform. They also
examined the effect of having a hole (called the moonpool) in the ice cover, but
determined that its effect on the overall behaviour of the platform was negligible.

The creep law used in the finite element model was Glen’s power law (equation
(3.2.1). The strain rate determined for this case was:

£=164.55x107"2c"" (3.9.1)
where the stress, o; is measured in kPa and the strain rate, &, is measured in (days)™.

The material parameters used in this analysis were: Young’s modulus, £= 690 MPa;
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Poisson’s ratio, ¥= 0.20; and foundation modulus, = 9.8 KN/m>.
This equation can be converted to units of Pascals for o-and (seconds)™ for &
giving:

£=9.545x10" o (3.9.2)

3.10 Tinawi and Murat (1979)

In 1979 Tinawi and Murat developed an axisymmetric solid finite element model
for a non-homogeneous floating ice sheet, which could examine both short and long term
loading scenarios. They used this model to solve the problem of a circular load on an
infinite ice sheet, and compared their results to another model that used thin plate theory.

Tinawi and Murat proposed the following creep law:

£ =3.105x10" 5% (3.10.1)
where £° is the creep strain rate (minutes™), and o is the stress (kPa). They also
suggested the following relationship for the variation of the elastic modulus, E, (a

function of temperature and salinity), as determined from laboratory experiments:
Z Z, 2
E(z,) =121x 106[0.572 +0.93 1(70) - 0.655(7°) } (3.10.2)

where E is in kPa, # is the ice thickness, and z, is measured up from the bottom of the ice
sheet.

The stress-strain relationship of equation (3.10.1) can be converted to units of
Pascals for stress and (seconds)™ for strain rate giving:

& =1.33x10"" > (3.10.3)
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After running both models and comparing the results, Tinawi and Murat found
that the deflection at the centre of the plate did not change noticeably between
homogeneous (£ = constant) and non-homogeneous (£ = E(zg)) cases. They did find,
however, that the stresses and strains were significantly different when comparing
homogeneous and non-homogeneous cases, which will have an effect on the creep

behaviour of the ice.

3.11 Morgenstern, Roggensack, and Weaver (1980)

Morgenstern et. al. performed an extensive literature review of long term creep
tests on ice (and ice rich soils) and, by combining the experimental results from many
researchers, proposed the following empirical power law for creep:

£, =B,o¢ (3.1L.1)
where £, is the effective shear strain rate, o is the effective shear stress, and By and ng

are constants which depend on temperature. This relationship has been suggested for
temperatures colder than —1°C. The value of the exponent, ns, was found to be 3, and By
ranged from 4.5x108 (kPa™s year™') at -1 °C to 5.6x107 (kPa™" year™) at-10 °C.

Converting these quantities into units of Pascals and (seconds)™, at -1 °C equation
(3.11.1) becomes:

& =1426x105° (3.11.2)

and at -10 °C: & =1775x107%o° (3.11.3)
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3.12 Sego and Morgenstern (1983)

Following Glen’s (1955) power law, Sego and Morgenstern proposed a form of

equation more useful for geotechnical problems:

f—{—”—} (3.12.1)

Go
where £ is the axial strain rate, o is axial stress, and n; is a constant. &, is defined as the

proof strain rate, and op as the proof stress; the proof strain rate is a quantity against
which the experimental results can be normalized, and the proof stress is the stress level
which will produce this strain rate. Equation (3.12.1) can be related to Glen’s (1955)
equation (equation (3.2.1)) by:
ky=&,/(c,)" (3.12.2)
The experimental data of Sego and Morgenstern was normalized to -2 °C, and
combined with data from Barnes et. al. (1971), Glen (1955), and others. A relationship
for the strain rate in the stress range of 100 to 1000 kPa using this combined data was

found to be:

3.0
£=0.001 —”—) (3.12.3)
150.0

where the strain rate is measured in hours™, and for a grain size ratio (the average crystal
diameter divided by the average sample diameter) of 0.030.
Equation (3.12.3) can also be written as:
£=8.23%x10%5*° (3.12.4)

where the stress is measured in Pascals, and the strain rate is measured in (seconds)'l.
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3.13 Szyszkowski, Dost, and Glockner (1985)

According to Szyszkowski ef. al., some of the factors affecting the mechanical
properties of ice include crystal structure, temperature, stress history, and the
meteorological and hydrodynamic conditions which were present at the time of ice
formation. Therefore, while different types of ice (such as river, lake, or sea ice) have
varying mechanical properties, viscoelastic models can be used to approximate the

mechanical behaviour of ice.

Empirical or semi-empirical creep functions can often be expressed in the
following form:

& =BT+ f()o™ (3.13.1)
where £° is the creep strain rate, B(7) is a function of temperature (7), f{?) is a function of
time (¢) which defines the primary creep, ois a stress, and #ns is a constant (ranging from
1.5 to 4.0). The six-parameter creep function used in the model developed by
Szyszkowski et. al. is:

e mbt'

£ = +l/£<° 1+ — o™
2] e

where b,, Ky, m, ng, and ¢’ are constants. The instantaneous elastic response of the model

(3.13.2)

to loading is characterized by o/Er, with E7 being the sixth constant of the model. This
model analyzes the primary and secondary stages of creep, but does not include tertiary

creep.
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To compare equation (3.13.2) with equation (3.13.1), Szyszkowski et. al. used the

following values:

Kop=2.59x10™ °C/( hr(Pa)™ ) Er=4(1+0.0125|T) GPa
ng=18 b;=0.5hr'!

¢’ =100 hr m=1.0

T=-5C

The results found using equation (3.13.2) agree very well with the results found from
equation (3.13.1) at stress levels of 0.5 MPa and 4.0 MPa for primary and secondary
creep.

Using the above values, and converting all quantities to units of Pascals and

(seconds)™, equation (3.13.2) becomes:

£=9.583x107"% 1+ >0 o't (3.13.3)
(1+1.389x107]

Szyszkowski et. al. tested their model on a simply supported rectangular ice
column with an initial imperfection, which was subjected to a constant axial load. They
concluded from their numerical results that the size of the time interval required for rapid
convergence and adequate accuracy of the solution is a function of the model parameters,
and not of the load conditions or geometry of the problem. This suggests that the

duration of primary creep is not dependent on the stress level or the temperature.
3.14 Azizi (1989)

According to Azizi (1989), primary creep of ice is of greater importance than

secondary creep since secondary creep is often reduced to an inflection point on strain
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time curves, characterizing the transition between primary and tertiary creep.
Cofnpression test data was analyzed by Azizi under the assumption that the primary creep
of ice can be modelled using a power law. The form of the power law used by Azizi was:

& =K,oMt™ (3.14.1)
where £ is the creep strain, o is the applied stress, ¢ is time, and K}, b, and d; are
constants.

The uniaxial compression tests that were analyzed were performed at stresses
ranging between. 1 and 4 MPa, and at a temperature of -5 °C. The results of the analysis
indicated that K7 = 1.27x10™, b, =7, and d; = 2.43 when o is measured in MPa and ¢ in
minutes. The constant b, was determined to be independent of stress.

Converting the units for all quantities into seconds and Pascals, equation (3.14.1)
becomes:

& =3.63x1072 >33 (3.14.2)

3.15 Azizi and Whalley (1994)

In 1994 Azizi and Whalley related the secondary creep parameters of ice to the
parameters determined from primary creep. They used Hult’s (1966) expression for
primary creep:

& = K,oMt> (3.15.1)
where & is the creep strain, ois the stress, and ¢ is time. The parameters b3, d> and K are
determined empirically. Using Glen’s power law (equation (3.2.1)) to represent the

secondary creep gives:

i =B,o™ (3.15.2)
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with B, =K_exp(—Q/RT) (3.15.3)
where £° is the creep strain rate, ng is an empirical exponent, K, is the fluidity
coefficient, Q is the activation energy, R 1is the universal gas constant and T is

temperature.

The derivative of equation (3.15.1) with respect to time is:
£° =K, g7 gl (3.15.4)

where & is the average strain. According to Azizi and Whalley, the average strain, &, at
the minimum strain rate is 0.9%, so equation (3.15.4) can be written as:

& = A0 (3.15.5)
where 4, =b,K,"”£® """ | This is similar to equation (3.15.2), and therefore:
/b = B.o™ (3.15.6)

e
Eminy = 40

The minimum creep strain rate can then be written as:

& iy = Bso™ (3.15.7)
where B, =b,K, "0 g0 (3.15.8)
and ng=d, /b, (3.15.9)

with the primary creep parameters >, b3, and K> used to predict the secondary creep

minimum strain rate.

Using the results of uniaxial creep tests, the relationship between stress and

minimum strain rate was found to be:

£y =1.34%107° 07 (3.15.10)

where ois in MPa and £, is in minutes™. Conversion of this equation to units of Pa



and (seconds)™ gives:

Eoiny =3.88x107 57 (3.15.11)

3.16 Summary

A summary of the type of creep modelled by each of the studies described in this
chapter, along with some of the test conditions, can be found in Table 3-1. Also shown in
this table are the creep rate equations, which have been transformed to be dimensionally
consistent for comparison purposes.

As can be seen from Table 3-1, several researchers have used similar equations to
model the creep rate for the long term behaviour of ice. These relationships are similar to
the one used in the model developed here. The differences lie in the results obtained for
the creep coefficient and exponent, which are seen to be quite inconsistent. The values
obtained for the creep exponent ranged from 1.8 to 3.64. In many cases, the values found
for Young’s modulus were not reported. It should also be noted that the majority of these
results were obtained from small scale laboratory experiments rather than large scale field
tests.

The purpose of this research was to perform a comprehensive analysis of large
scale creep test data over a range of temperatures and stresses in order to determine if a
consistent set of creep parameters (creep coefficient, exponent, and Young’s modulus)
can be obtained for the power law creep model. As the mechanical properties of ice can
be scale dependent (Ladanyi and Saint-Pierre, 1978), small scale tests in a laboratory may
not accurately represent the behaviour of a larger sheet of ice; analyzing large scale test

data would be more desirable. The data sets analyzed here, from both Beltaos and
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Frankenstein, are from large scale load tests on effectively infinite ice sheets. A complete
range of calibrated parameters (creep coefficient, creep exponent, and Young’s modulus)
will be obtained and reported for each set of data. These results will also be examined to
determine if any correlation can be observed between the calibrated parameters and the

temperature at which the data was obtained.
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4.0 FINITE ELEMENT FORMULATION
4.1 Introduction

A two dimensional axisymmetric finite element model was developed to examine
the time dependent deformation of an elastic plate of infinite extent, such as a floating ice
cover, under a circular distributed load. The model was developed in three stages: first
by examining an edge supported elastic plate; second, by adding an elastic foundation;
and finally, by refining the model to allow for creep deflection over time.

In this chapter, a rheological model for ice is described, followed by the
underlying theory of the finite element model and the assumptions made when
implementing the model. The Principle of Minimum Potential Energy and the
Rayleigh-Ritz Method are discussed, leading to the system of equations to be solved and
the interpolation functions used in the solution. Expressions are obtained for the element
and foundation stiffness matrices, as well as the mechanical load vector. In calculating
the creep load vector, the creep strains are obtained using either the Euler method, or the
4™ Order Runge-Kutta method. The boundary conditions are implemented using a

penalty method, and the boundary elements are discussed.

4.2 Rheological Model

Figure 4-1 illustrates the deformation-time relationship for an ice sample which is
loaded (with stress, o) and unloaded instantaneously. This behaviour can be described
using a simple rheological model consisting of a Maxwell unit in series with a Kelvin or
Voight unit, such as the one seen in Figure 4-2 (Ashton, 1986). The Maxwell unit

consists of a spring and dashpot in series, with the spring and the dashpot representing
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elastic deformation and permanent viscous deformation, respectively; the Kelvin or
Voight unit contains a spring in parallel with a dashpot, and represents the elastic lag,
also known as retarded elasticity (Ashton, 1986). The spring constants are the elastic
moduli, E; and E;, while the dashpot constants are the viscosity moduli, 77,and 7,.

The model developed here is analogous to a Maxwell unit with one elastic

constant, £, and one viscosity constant, 7.

4.3 Finite Element Model

For the circular load configurations to be examined here, this problem is annular
in nature, as seen in Figure 4-3. The ice cover is broken down into annular elements,
with the outer radius (r;) of one element being the inner radius (r;) of the next element.
Mathematically, each element can be represented one dimensionally since the
displacements are assumed to be axisymmetric. Figure 4-4 illustrates the cross sectional
view of an element, where w(¥) and w(r) are the displacements in the radial (») and

transverse (z) directions, respectively and 4 is the thickness of the plate.

4.3.1 Assumptions

Several assumptions are made when implementing the model developed here.
Two physical properties of ice are used as parameters in this model: Poisson’s ratio ()
and Young’s modulus (E). Although other properties such as ice density and ice grain
size can influence the behaviour of ice, the density remains relatively constant and grain
size is not often measured (Ashton, 1986), making E and v logical choices for the

physical parameters to represent the elastic behaviour of ice.
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One assumption made is that the ice sheet is homogeneous and transversely
isotropic. According to Premachandran and Horii (1994), for a single crystal of ice the
elastic properties are not constant in every direction, but a polycrystalline ice sheet with
random particle orientation generally has isotropic properties. Consequently, constant
values can be used for E and v, as these material parameters are assumed not to change
through the depth of the ice cover or at a distance away from the load.

Another assumption made in the model application is that the ice sheet is infinite
in extent. Ashton (1986) states that stresses are insignificant at distances greater than five
times the characteristic length (» > 5/) from the centre of loading; an ice sheet larger than
this can be considered infinite. Test data was obtained from S. Beltaos (INational Water
Research Institute) and from Frankenstein’s (1963) paper. Joseph Lake (the location of
Beltaos’ tests) was observed to be much larger than 5/ when ice samples were obtained
from that location in March of 2000, making the assumption of an infinite ice sheet a
valid one. The test locations for Frankenstein’s (1963) data were not described in detail,
but they are also assumed to be sufficiently large to make this a valid assumption.

A third assumption made is that the unit weight of water (3) is 9,806 N/m’. The
density of water (and thus ») does change with temperature; however, the temperature of
the water underlying the ice cover will essentially be 0 °C. The density of water at this

temperature is approximately 1,000 kg/m3 , giving a unit weight of 9,806 N/m’.
4.3.2 Principle of Minimum Potential Energy

This model is formulated based on the Theorem of Minimum Potential Energy,

which is derived from the Principle of Virtual Work (Ugural and Fenster, 1995). This
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theorem applies to linear elasticity problems. Although the creep problem is not linear in
nature, the creep strains here will be treated as initial strains, and the problem will be
solved as a sequencé of linear elastic problems.

The potential energy, /7 is defined as the difference between the elastic strain
energy, U, of a body and the change in potential of the applied loads, £; (Ugural and
Fenster, 1995) giving:

n:VjU(a,,)dV—ny@dV 4.3.1)

where g; are elastic strains, & are components of the displacement field (the vector of
unknowns), V is the volume of the body, and i and ;j are location indices within the
vectors. This function assumes a minimum value when the displacements satisfy the
boundary conditions and the equilibrium conditions, that is, the exact solution is obtained
when /7is minimized (Ugural and Fenster, 1995).

For the axisymmetric problem illustrated in Figures 4-3 and 4-4, in a typical

element the elastic strain energy density, U, can be written as:

U= %(a,ef +0,8s) (4.3.2)

where o; and &°, and o and &5, are the stresses and elastic strains in the radial and
tangential directions, respectively. The radial and tangential directions are principal
directions for stress and strain. The stress normal to the plate (oz) is zero, and so plane
stress conditions exist. The stresses in the principal directions can be related to the

strains using the following expressions:

E
1—-v (4.3.3)
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e e

I-v 4.3.9)
where E is Young’s modulus, and v is Poisson’s ratio.

The total radial and tangential strain components (& and &) are calculated from:

o2 2
T o (4.3.5)
o U _zOw
¢ r ror (4.3.6)

where u and w are the displacements in the radial (r) and transverse (z) directions,
respectively. The shear strain &4 is zero because of the symmetry of the problem. The
total strain in each direction (& and &) is a combination of the elastic (§° and &) and

creep (&° and &) strains:

& =& Te (4.3.7)
and f6=647 %5 (4.3.8)
The elastic strains can then be expressed as:
&= %—-zazw —&
" \er “ort) T (4.3.9)
g U_ZOW)_ .
and *“\r ror) ¢ (4.3.10)

Equations (4.3.3) and (4.3.4) can be substituted into equation (4.3.2), giving a

total strain energy, U, of:

E +h12) r=n R
=5(1_—;2_5_;,‘[2 j ((gf)' +(g§)z +2vef£§)27rrdr dz @3.11)

r=n
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where 4 is the plate thickness. By substituting from (4.3.9) and (4.3.10), expanding and

rearranging the terms in the integrand, (4.3.11) can be written as:

where

with

U,y=———
2o2-vY) .,

T

U=U,+U,+U,

r=ry 2 2
U, =£ (@ + E‘_J +£/-u§u— 2zrdr
2, 5 |\er r r or

D72 (*wY (1aw) 2va*wow
+= I — | +| —— | +— == |2ardr
2 or r Or r Or° or

r=n

E +h/2| r=n
218 +£,65 +2V(E,60 + £,65) ) 2xrdr | dz

r=n

E +"f [’f((é‘f Y ()} +2 Vé‘fa;) 2;zrd,~:l d=

-h/2| r=n

_ Eh
" (1-v*) (in-plane stiffness)

D= ERW’
" 12(1-v?*) (bending stiffness)

(4.3.12)

(4.3.13)

(4.3.14)

(4.3.15)

(4.3.16)

(4.3.17)

The stiffness matrix, [K], will result from equation (4.3.13), and an additional load

vector, {O°}, arising from equation (4.3.14) will include the effects of the creep strain.

Equation (4.3.15) is independent of the displacement fields « and w, and as a result does

not affect the finite element formulation.

4.3.3 Finite Element System of Equations

The finite element method is an application of the Rayleigh-Ritz Method

(Chandrupatla and Belegundu, 1997).  With this method, displacement fields
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(interpolation functions) are assumed for each element which must satisfy the specified
boundary conditions. The interpolation functions, which define the displacement fields
for this problem, will be discussed in the next section.

Through the process of minimizing /7and applying the Rayleigh-Ritz Method, a
set of finite element equations arises of the following form:

(K1{&} = {R} 43.18)

where [K] is the global stiffness matrix, {&} is the vector of unknowns, and {R} is the
mechanical load vector.

The global stiffness matrix will be the combination of the global horizontal and
vertical stiffness matrices ([K*] and [K"]), as well as the global foundation stiffness
matrix ([K/']):

[K]=[KT + [K"] + [Kf'] (4.3.19)

Three degrees of freedom are chosen for each node: displacement in the radial

direction, u; displacement in the transverse direction, w; and rotation in the transverse

.. ow
direction, w, = P Hence, the vector of unknowns has the form:
r

(DY ={.. .. s Uiy Wiy Wiy e} (4.3.20)

where:

e ;s the radial displacement at any node i (1 < i < N,, where N, is the total number

of nodes);

e w;is the vertical displacement at any node i (1 <7 < Ny);

e w,is the slope at any node i (1 <i < N,).
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The mechanical load vector will be the addition of the global horizontal and

vertical applied load vectors ({P.} and {Pu}):

{R}={R}+{R} (4.3.21)

Expressions will be developed for the components of the global stiffness matrix,
[K], in sections 4.4 and 4.5, and for the mechanical load vector, {R}, in section 4.6. In
the next section the interpolation functions, which describe the displacement fields within

each element, will be discussed.

4.3.4 Interpolation Functions
It is convenient to define a non-dimensional coordinate, p, for any element such
that its value is zero at node 1 and its value is one at node 2 (see Figure 4-5):

r—n

P=""" with a=(@rrr) (4.3.22)

where r is the distance from the centre of the load and r; and r; are the inner and outer

radii of the element, respectively. Between the nodal values, the displacements can be
interpolated from the following expressions:

u(p) =uipr + w2 (4.3.23)

w(p) =wid + wrdr + wads + weady (4.3.24)

where u; and u; are the radial displacements, w; and w; are the vertical displacements,

and w,; and w,> are the slopes at nodes 1 and 2, respectively. The interpolation functions
for the radial displacement (¢; and ¢,) and the vertical (£, &, ¢, and &) displacement

are defined respectively as:
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a7

4| [1-3p"+2p%)
(4= | _Jalp-2p" +p’)
#; Gt -20%) (4.3.26)

4, a(=p* + /)
These interpolation functions can be seen graphically in Figure 4-5.

w

u, _|w,
Letting {"}={u } and = W, (4.3.27)

2
w

the radial and vertical displacement fields (x and w) can be expressed as:
u=<g> {u} (4.3.28)
and w = <g> {w} (4.3.29)
Using the various equations developed in section 4.3, expressions can now be
obtained for the global horizontal and vertical stiffness matrices ([K“] and [K™]), the

global elastic foundation stiffness matrix ([K/*]), and global mechanical and creep load

vectors ({R} and {O°}).

4.4 Element Stiffness Matrix

Each element will generate a horizontal and vertical stiffness matrix ([¥*] and
[£*]), which can then be assembled (see Appendix A) into a global horizontal and vertical
stiffness matrix ([K*] and [K*]). The element stiffness matrices arise from equation

(4.3.13), which, after substitution of equations (4.3.28) and (4.3.29) gives:
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U, =%<u>[k“]{u}+%<W>[kw]{W} “4.4.1)

where

r=r

wy_ 1 L
[k*]=C I[{¢,}<¢, >+ {¢,}<¢,>+r({¢,}<¢, >+Hp, } <o, >)} 27rdr (4.4.2)

r=g

| ) <8, >+ 1B} < 4, >
[k*1=D | r 27zrdr

4.4.3
|+ 2,y <, >0 <4, >) o

and

The subscripts r and rr indicate derivatives of gand ¢ with respect to r.

The portion of the element stiffness matrix based on the radial displacement is
[£“], and the portion based on the transverse displacement is [£”]. The element stiffness
matrix can be evaluated in closed form from equations (4.4.2) and (4.4.3).

For any element, from equation (4.4.2):

% (de dp, 1 v|de, do;
’ rT[ ( ar dr R0 r{ ar Ci T gy e (4.4.42)

where ¥*; is located in row i and column j of the element horizontal stiffness matrix, [£"].

Applying the assembly operator (see Appendix A) gives:

[K*1= A1), (4.4.4b)

where the index e refers to a specific element, N, is the total number of elements, and i
and j vary from 1 to 2 (for the interpolation functions given in equation (4.3.25)).
It is necessary to change the bounds of the integral in (4.4.4a) from the global to

the local coordinate system (in terms of p rather than r). In order to accomplish this, it is

necessary to express r, dr, and d@/dr in terms of p:
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r=p-a+n

(4.4.5)
do. _d¢. dp
and dr dp dr (4.4.6)
dp 1
From equation (4.3.22), dr a and therefore dr=a-dp 4.4.7)
o _dp 1
and so, dr dpa (4.4.8a)
dp; _ do; 1
Similarly, dr dp a (4.4.8b)
Now, substituting equations (4.4.7) and (4.4.8) into equation (4.4.4a):
dp. do; r de, do;
ki =2xC (b AN +n—"Lp. +p.—L}|d
J‘(dp dpa r ¢'¢ {dp Orr o dp a (4.4.9)

For each combination of i and j (a total of four combinations), equations (4.3.25) and
(4.4.5) are substituted into equation (4.4.9), which is then integrated to yield an equation
in terms of r; and .

For each element, from equation (4.4.3):

d’¢ d’¢; 14dg dé

o =']-D dr® dr? r dr dr > rdr

v ; d’g dg; d¢ d- ¢5 (4.4.10a)
{dr ar dr dr? }

where k" is located in row i and column j of the element vertical stiffness matrix, [£*].

Applying the assembly operator (see Appendix A) gives:

[K"]1= ;ﬂ[k L (4.4.10b)

where the index e refers to a specific element, N, is the total number of elements, and {
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and j vary from 1 to 4 (for the interpolation functions given in equation (4.3.26)).
Equation (4.4.10) must also be modified to reflect the local coordinate system. In
this case, the second derivative of #is required. Replacing @ with & in equation (4.4.8a)

and taking the derivative again with respect to r (using the product rule):

g%ﬁzi(m 1J=d¢,.’0+1 d (d;é,.]=

dr* dr\dpa) dp adr\ dp
1d(dg\dp_d’¢ 1 (¢4.11)
adp\dp )dr dp*a®

A similar result is found for &4. Using the results of equations (4.4.7), (4.4.8), and

(4.4.11), equation (4.4.10a) becomes:

d’4d’¢, r 1 d¢ds

P2 dp* dp* @ r-adp dp
ky=2xD | , 7 (44.12)

{d 444,  dsd ¢,}

p=0| . YV

a* | dp* dp dp do’
For each combination of i and j (a total of 16 combinations), equations (4.4.6) and
(4.3.26) are substituted into equation (4.4.12), which is then integrated.

The results of the integration of equations (4.4.9) and (4.4.12) can be found in

Appendix B.

4.5 Elastic Foundation Stiffness Matrix
In cases concerning the creep of ice, water is invariably supporting the elastic
plate (ice cover). The water is considered to be a linear elastic foundation with the

foundation modulus equal to the unit weight of water, y(Ashton, 1986).
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The deflection of the foundation beneath one element yields the following strain

energy, Ur:

U, =Z [2zrwdr

2, “4.5.1)
Substitution of equation (4.3.29) gives:
U —l< w>[k7]{w}

S 2 s (4.5.2)

where les1= j 2zryigr <@ >dr (4.5.3)
For each element, from equation (4.5.3):
kfij = r:[7¢i¢j27rrdr (4.5 42)

where A/ is located in row i and column j of the element foundation stiffness matrix,

[%7']. Applying the assembly operator (see Appendix A) gives:
Nt
[Kf]zﬁ[kf]e (4.5.4b)

where [K/"] is the global foundation stiffness matrix, the index e refers to a specific
element, N, is the total number of elements, and / and j vary from 1 to 4 (for the
interpolation functions given in equation (4.3.26)). Substituting expressions for r and dr,

equations (4.4.5) and (4.4.7), into equation (4.5.4a) gives:

p=l !
kj‘.",j = Io Yo 2xradp = 2727’(!¢,¢j (p-a+n)adp (4.5.5)
o=

For each combination of i and j, equation (4.5.5) was integrated and the results can be

found in Appendix B.

61



4.6 Mechanical Load Vector

The mechanical load vector {R} is also developed from a potential energy
perspective. The work done is the change in potential of the applied loads as they move
through the displacements (Ugural and Fenster, 1995). In the case of a distributed load,
this is the integral of force multiplied by displacement, integrated over the entire area of
loading.

Certain elements of the load vector arise as a result of vertical loading (the
elements corresponding to w; and wy; in the vector of unknowns, {&}), and others arise as
a result of horizontal loading (the elements corresponding to u; in {&}). The loads
corresponding to u; and w; are force loads, and the loads corresponding to w,; are moment
loads. The global mechanical load vector {R} is the assembly of the global load matrices

from both vertical and horizontal loading ({P"} and {P“}).

4.6.1 Vertical Loading

The type of load considered by this model is a circular vertical load of uniform
magnitude g, applied to the elastic plate over an area, 4. This load can have a constant
value, or a magnitude that changes over time. The work done by this vertical load in
moving through displacement, w, is:

work = [q,w-dd=gq, J <w>{g)2zxrdr=<w>{p,} (4.6.1)

where p}=4, Ajw}zzrrdr 4.62)
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For each element, from equation (4.6.2):

2

p’ =q, jyﬁierdr

; (4.6.3a)
where p;” is located in row i of the element vertical load vector, {p"}. Applying the

assembly operator (see Appendix A) gives:

Nf
PW = w
{ } é{p }e (4.6.3b)
where the index e refers to a specific element, and i varies from 1 to 4 (for the

interpolation functions given in equation (4.3.26)). Substituting expressions for r and dr,

equations (4.4.5) and (4.4.7), into (4.6.3) gives the following for any element:

p=l e
pl'=q, [#27(p-a+r)adp=27q, [#(p-a+nr)adp
0

o - (4.6.4)
For each interpolation function, expressions for ¢& are substituted into equation (4.6.4),

which is then integrated, and the resulting equations can be found in Appendix B.

4.6.2 Horizontal Loading

As the solutions for vertical and horizontal displacements are not coupled
(because Young’s modulus, E, is constant throughout the thickness of the ice sheet), it is
not necessary to include a horizontal load vector in order to solve for the vertical
deflection of the ice sheet. The global horizontal load vector, {P“}, has been set to zero
for all of the cases considered here. Should a situation arise which requires the inclusion
of a horizontal load vector, this finite element model would only require expressions for
the components of the element horizontal load vector, {p“}, to be derived and

implemented (in a similar fashion to those expressions found for {p"}).
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4.7 Creep Load Vector

The vertical deflection of ice over time has been shown experimentally to be a
nonlinear relationship. One version of a constitutive model used to represent the viscous

creep of ice under uniaxial loading conditions is:

(n-1)

e & o

n

0,

n

o

q,

n

(4.7.1)

where £°1is the creep strain rate, ois the stress, £, and o, and n are material parameters..

Equation (4.7.1) reduces to:

& =n0" (4.7.2)
-— é’l
with the constant, 77 taking the form: 7= o’ 4.7.3)

Considering ice to be an isotropic material, the plane stress version of this

constitutive equation (4.7.1) becomes:

c
&= d&',_ — ’75:("-1)(

7 o _EJ") (4.7.4)

=% _ 77&“‘”(09 —%o*,)

dt (4.7.5)

~ 2 2
. G =40, —0,0,+0
with ‘/ 6 e (4.7.6»
where o; and &7, and opand &, are the stresses and creep strain rates in the radial and

tangential directions, respectively, and & is a resultant stress.
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It is commonly assumed that the volume of ice does not vary during creep (Khoo

and Hrudey, 1992), and therefore the creep strain rate in the z direction, &7, is:

. ac -c
E,=—& —&y

4.7.7)

o _ | P
or 8: - 2 ’70. (0-9 + O',) (47.8)

The transverse shear stress, o5, is ignored because of the plane stress assumption, and the
tangential shear stress, oy-, is zero due to axisymmetry.

At any given time, the creep strain rates (which are used to estimate the creep
strain increments) can be calculated at any location within an element from the current
stress solution, using equations (4.7.4) and (4.7.5). The strain rates will actually be
calculated at a number of integration points within each element and will be used to
calculate the horizontal and vertical components ({g““} and {g"“}) of the element creep
load vector, {¢°}. From equations (4.3.5), (4.3.6), and (4.3.14):

+h12| 72
U2=_—E2— J' IZ @gf+ﬁgg+l{£af+%£;j 2xrdr |dz
20-v7) 7, or r r or

n

E MG o*w z Ow z Ow *w (4.7.9)
b 2| z—5 & +——¢Eo+ V| ——¢&f +z— &, | | 27rdr |dz
20-v?) _s or- r or r or or-

n

N U,=—<u>{g“}-<w>{g"} (4.7.10)

where

c 1 (o
E +hi2| s {¢r}£r +7{¢}€0
{q"“ } 2zrdr | dz

=s— 37 2
2(1-v°) i no |+ V(l {p)ef + {¢r}€;) (4.7.11)
r
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4
+h/2| Z{¢r’.}8: +—{¢r}g; +

wlo__ E
and )= 20— 1) aerdridz 4 712)

2
k12| n {§{¢r}&‘f+z{¢”}5;)

In order to evaluate these components of the element creep load vector, the creep
strains in the radial and tangential directions, &° and &5 (equations (4.7.4) and (4.7.5)),
are calculated at a set of integration points at each time step. Once these values have
been obtained, {g“‘} and {¢g"°} can be evaluated, and added together to form the element

creep load vector {¢°}:
{g°t=1{g"} +{g™} 4.7.13)

These element creep load vectors are then assembled (see Appendix A) into the global

creep load vector, {Q°}, giving:

Nt
where the index e refers to a specific element. This global creep load vector is then
added to the mechanical load vector {R}. The new system to be solved at each time

step is:

[K1{®} = {R} + {0} (4.7.15)

4.7.1 Numerical Integration
The integration in equations (4.7.11) and (4.7.12) is performed using a common
method of numerical integration known as Gaussian quadrature (Stasa, 1985). The

integrand is evaluated at a number of sampling points, and the value at each sampling
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point is multiplied by a weighting factor. For example, for a two dimensional (p, s)

integration the integrand, /, can be written as:

+1+1 my my
1= [[1(p.)dpds =33 2,/ () (47.16)

where f{p,s) is any function, p; and s; are sampling points, z; and z; are weighting factors,
and m,; and m; are the number of sampling points chosen in the p and s directions,
respectively (Stasa, 1985). These sampling points and weighting factors can be seen in
Table 4-1. The number of integration (Gauss) points chosen within each element will
affect the accuracy of the solution. According to Stasa (1985), a Gaussian quadrature
routine using m; sampling points will integrate a polynomial of the order 2m,-1 exactly,
therefore a greater number of Gauss points will produce a more accurate solution.

To implement this numerical integration, the limits of integration must range from
—1 to +1 for each variable (Stasa, 1985). As the limits of integration in equations (4.7.11)
and (4.7.12) do not meet this requirement, the equations are transformed into functions of
a non-dimensional coordinate, x (-1 < x < +1), where:

a a
r--z(x+1)-i-rl and dr—adx 4.7.17)

In the z direction, another transformation takes place, changing z to a non-dimensional

coordinate, y (-1 < y < +1), where:

h
_h dz="4
z=5y and 2 (4.7.18)

Equations (4.7.11) and (4.7.12) can now be expressed in terms of x and y, giving the
following expressions for the element horizontal and vertical creep load vectors (which

must be evaluated for each value of i):
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=t | x=1
Eh V3| =t a dx x, ra

uc = ne dx d
e (l—vz)yj_l ,J_l 1 . 2dp |2 ¥ (4.7.19)
— @& +=—Lg
2 a dx
2hy d’4, . hy dé . |
—Ep 7 = & dx? £r+ax dxgg-*- a
g t=—a || | © [P xdx|dy
A=), 2 Ll [ by dB . 2hydPd )| 2 (4.7.20)
ax, dx & a® dx? o
b =l(x+1)a+r
where x, is defined as: e 2 ! (4.7.21)

Evaluation of the creep strains, &° and g5 (with equations (4.7.4) and (4.7.5)),
requires the elastic strains (&° and &¢) at each integration point, as well as radial and
tangential stresses (o; and o) at each point. Transforming equations (4.3.10) and (4.3.11)
from functions of r to x, the elastic strains in the radial and tangential directions can be

calculated from:

2
. =££du hy d WJ_gc

rTadlax a at) (4.7.22)

&5 = L(u —@iﬂ) - &

a dx (4.7.23)

The radial and tangential stresses (o; and o) can be calculated from equations (4.3.3) and
(4.3.4).

As equations (4.7.4) and (4.7.5) are ordinary differential equations, the creep
strains in the radial and tangential directions can be estimated at each time step using one
of several common methods. These include the Euler and the 4 Order Runge-Kutta

methods.
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4.7.2 Estimating Creep Strains Using an Euler Method

One method for solving first order ordinary differential equations is the Euler
method (Gerald and Wheatley, 1984). In this model, the Euler method can be used to
evaluate the creep strains, &° and &5. The Euler method is an explicit method, and so the
solution for the current time step, f:+;, is based entirely upon the solution from the

previous time step, ¢; (where 4t =t —t;). The creep strain rates can be approximated as:

i & (4.7.24)

- (o4 — c
dgg - gﬂlid 69(,-

dt At (4.7.25)

where the subscripts #+; and ¢ denote the time step at which the various quantities are

being evaluated. Substitution into (4.7.4) and (4.7.5) yields:

) -
c _ € ~(n-1)
&, =&, + 4t | no (0', —50},

(4.7.26)

~(n-1)

& =& +At- o o, ——1-0' |
N A *72°)] (4.7.27)

Equations (4.7.26) and (4.7.27) are used with equations (4.7.19) and (4.7.20) to
evaluate the creep load vector at each time step. A flowchart of the solution procedure
using the Euler method can be found in Figure 4-6, with T, being the time at the end of

the test.

4.7.3 Estimating Creep Strains Using a 4™ Order Runge-Kutta Method
Another method for solving first order ordinary differential equations is the

4" Order Runge-Kutta Method (Gerald and Wheatley, 1984). It is often advantageous to
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use this method as it is more accurate than the Euler method (for four times the
computational effort), as well as being more numerically stable (and therefore a larger
time step can be used). This method takes the solution from the previous time step (;)
and makes intermediate calculations at the centre and end of the time step before yielding
a final solution for the current time step (¢;+/).

There are four intermediate calculation steps involved in solving this problem
using the 4" Order Runge-Kutta method, as illustrated for the radial equations in
Figure 4-7. The equations to be solved are (4.7.4) and (4.7.5), and slope functions in the

radial and tangential directions ( f- and fg) can be defined as:

1
e
J-=no (J' 2”"} (4.7.28)

1
=gy o L
Jo=10 ("” 2"7) (4.7.29)

For each intermediate calculation, f; and fy can be calculated using equations (4.3.3),
(4.3.4), (4.7.6), (4.7.22) and (4.7.23).
For the first stage of the intermediate calculations, the quantities in equations

(4.7.28) and (4.7.29) are calculated from the solution at the previous time step, #;:

— t c c
Stage I Ja fr(.,fr,,.,ga,,) (4.7.30a)
f;?l = f;(t,.,é‘;l'_ > gfr,—) (4.7.30b)
"
EN=EL T Ja (4.7.31a)
"
£ =0, * 5 Jo (4.7.31b)
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where the numerical subscripts on f;, fa & and & indicate the stage of the calculations.
P g

These quantities are used to evaluate the global creep load vector {Q°}, which is then

added to the mechanical load vector and the system in equation (4.7.15) is solved for

(D).

This process is repeated for intermediate calculation stages 2 through 4, with the

following expressions used to evaluate the creep strains at each stage (each being based

on the solution from the previous stage):

Stage 2:

Stage 3:

S = f;-(ti +0.54, 551’5;1)

Jo =.f9(ti +0.54, 521*551)

At
5, = €a, +7faz

S = fr(ti +0.541, 5:2’522)

Jos = -ﬂ?(ti +0.5At,&‘;2,6‘f2)

€ _. A€
€r3 —5”‘ +At'ﬂ3

- 4
503 —ga"_ +At'f’03
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(4.7.32b)

(4.7.33a)

(4.7.33b)

(4.7.34a)

(4.7.34b)

(4.7.35a)

(4.7.35b)



fua= S+ 4,655, 65,) (4.7.36a)

Stage 4:
fou = Lolt+ 2t 655, 65,) (4.7.36b)
£ =8, + e (fy+ 2 S+ 2 oat o)
r4 re; 6 rl r2 r3 ré (4.7.373)
by = &5, + e (f+ 2 fa+ 2 fon + fd)
64 = Cor, T T VA 02 03T Jos (4.7.37b)

These last values for the creep strains, &°4 and &5, are used to calculate the final
creep load vector for this time step and solve for the deflections and rotations, { &}, at the
end of the time interval, #;+;. A flowchart describing the entire solution process using the
4™ Order Runge-Kutta method can be found in Figure 4-8, where T is the time at the end

of the test.

4.8 Boundary Conditions

The boundary conditions were imposed upon the matrix system by the use of a
penalty method (Chandrupatla and Belegundu, 1997). In order to implement this, the
system of equations was prepared as if all degrees of freedom at each node were
unknown, and then the system was forced to the boundary condition values by
introducing a penalty, P. For example, in a simple system like the following (where S is

the total number of equations):

K” KlZ KIS d)l Rn
KZI Kzz Kzs (Dz - Rz

: P : : (4.8.1)
Ks Ks o Kg ||Ps Rg
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where Kj; are stiffness matrix values, & are unknown values, and R; are load vector
values (with 1 <i<S§ and 1 <;<S). If & is known to have a value of @&, then the

penalty and known boundary condition are included to give the following system:

(K +P) K, - Kjs||P, R +®,-P
KZI Kzz Kzs (Dz — Rz
: ST : : (4.8.2)
Ks Ksy o Kg [|Ps R

where @ is now forced to the value of @&, and the system is solved for the remaining
unknowns. If more than one boundary condition is specified, the penalty is imposed on

each location in the load and stiffness matrices corresponding to that boundary condition.

4.8.1 Penalty Size
The size of the penalty, P, imposed on the matrix system can affect the accuracy
of the solution obtained. According to Chandrupatla and Belegundu (1997), an

acceptable approach for choosing the value of P is:

P= male,-jlxlo4 (4.8.3)

with 1<i<S and 1 <<, that is, P is 10* times the largest absolute value in the
stiffness matrix. As the magnitude of the penalty approaches infinity, the solution for &,
will approach the exact value of &, (Rao, 1989).

A simple test was performed to determine the sensitivity of the model to the size
of the penalty. The elastic solution of the model for both a simply supported beam and a
clamped edge beam was compared to an analytical solution (see section 5.2) for various
penalty numbers. The maximum absolute value of the stiffness matrix was multiplied by

three different values: 10°, 10%, and 10° to obtain the penalty, P. A slight improvement
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was seen in the model solution when increasing the multiplier from 10 and 10%, but no
noticeable improvement was found between 10* and 10°. To be conservative, the penalty

was set at:

P=max|K,.j|x105 4.8.4)

4.8.2 Boundary Elements

Since the situations considered by this model are axisymmetric, the first node of
the interior element is directly below the centre of the load and therefore the inner radius,
r;=0. This presents a problem when calculating the stiffness matrices, as certain
equations used in these calculations contain terms involving the natural logarithm, /n(r;),
which is undefined when r;=0. These stiffness matrix equations can be found in
Appendix B.

Within the horizontal and vertical element stiffness matrices, [£*] and [£"], the
terms in equations (B.1), (B.3), and (B.8) which contain the natural logarithm can be set
to zero (for the first element only). These locations in the matrices correspond to
specified boundary conditions (¥; =0, w,; =0, and uy, = 0, where N, is total the number
of nodes) for all cases considered here, and these terms will become insignificant once
the penalty is added. The other terms in [£“] and [£"] which contain /n(r;) will approach
zero as r; approaches zero. This can be shown by taking the limit as r; approaches zero
using I"Hospital’s Rule (Stewart, 1991). As a result, for the first element, these terms can
also be set to zero.

The distance from the load to the farthest element will be discussed in the spatial

discretization analysis of section 5.5.1.
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4.9 Summary

The finite element model described in this chapter was developed into a computer
application using Visual Basic. A brief explanation of the program and interface can be
found in Appendix C; a more detailed explanation of the model inputs, outputs and

general information can be found in the Readme file accompanying the program.
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Table 4-1: Sampling points and weighting factors for Gaussian quadrature.

(adapted from Zienkiewicz, 1977)

Number Sampling Weighting
of sampling point factor
points, n tp,; oy

1 0.000000000000000 2.000000000000000
2 0.577350269189626 1.000000000000000
3 0.774596669241483 0.555555555555556
0.000000000000000 0.888888888888889

4 0.861136311594053 0.347854845137454
0.339981043584856 0.652145154862546

5 0.906179848938664 0.236926885056189
0.538469310105683 0.478628670499366
0.000000000000000 0.568888888888889

6 0.932469514203152 0.171324492379170
0.661209386466265 0.360761573048139
0.238619186083197 0.467913934572691

7 0.949107912342759 0.129484966168870
0.741531185599394 0.279705391489277
0.405845151377397 0.381830050505119
0.000000000000000 0.417959183673469

8 0.960289856497536 0.101228536290376
0.796666477413627 0.222381034453374
0.525532409916329 0.313706645877887
0.183434642495650 0.362683783378362

9 0.968160239507626 0.081274388361574
0.836031107326636 0.180648160694857
0.324253423403809 0.312347077040003
0.000000000000000 0.330239355001260

10 0.973906528517172 0.066671344308688
0.865063366688985 0.149451349150581
0.679409568299024 0.219086362515982
0.433395394129247 0.269266719309996
0.148874338981631 0.295524224714753
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Deflection

4 g, = elastic deformation

g, = transient creep

g, = elastic deformation recovery

g, = elastic lag

€, = permanent viscous deformation

£,

&

——— __.]{ ...........

-_x-_ \
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| i ' g
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Loading Unloading Ime

Figure 4-1: Deflection-time relationship for an ice sample subjected to instantaneous
loading and unloading (adapted from Ashton, 1986).
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Figure 4-2: Composite rheological model of ice (adapted from Ashton, 1986).
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Figure 4-3: Plan view of one element.
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Figure 4-4: Element cross section.
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Have the solution from the previous time step, ¢;

* Loop over time steps, ¢ [Do While t <= T ]

» Loop over elements, n

A

Loop over integration points (radial direction), i

»| Loop over integration points (vertical direction), j

Calculate elastic strains €°(n,,j) and &,"(n,,j) {equations 4.7.22 and 4.7.23}

Calculate stresses 6.(n,i,)), G(n,i,j), and o~(n,i,j)
{equations 4.3.3, 4.3.4, and 4.7.6}

Calculate creep strains £(n,i,) and g,°(n,i,j) {equations 4.7.26 and 4.7.27}

Calculate creep load vectors {g*} and {¢g™} {equations 4.7.11 and 4.7.12}

next integration point (vertical), j

next integration point (radial), i

next element, n

y
Assemble creep load vector {Q°} and add to mechanical load vector {R}

Solve [K]{®} = {R} + {O°} {equation 4.7.15}

Reset variables for the next time step (e.g. w, w,, w,))
Increment the time (¢ = ¢ +Ar)

Ifr<=T,
Ift>T,

STOP

Figure 4-6: Flowchart for Euler method of solution.
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Figure 4-7: 4th Order Runge-Kutta Method.
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Have the solution from the previous time step, Z,

A

Loop over time steps, ¢ [Do While t <=T]

»| Loop over intermediate calculation stages, indx

y
Loop over elements, n

» Loop over integration points (radial direction), {

» Loop over integration points (vertical direction), j

Calculate elastic strains &7(n,i,j,indx) and &, (n.i,/,indx)
{equations 4.7.22 and 4.7.23}

Calculate stresses o (n,ij,indx), c4(n,i,j,indx), and 6~(n,i,j,indx)
{equations 4.3.3, 4.3.4, and 4.7.6}

Calculate slopes f(n,i,j,indx) and fy(n,i,j,indx)
{equations 4.7.30, 4.7.32, 4.7.34 and 4.7.36}

Calculate creep strains &°(n,i,j,indx) and &, (n,i,/,indx)
{equations 4.7.31, 4.7.33,4.7.35 and 4.7.37}

Calculate creep load vectors {g“} and {g™} {equations 4.7.11 and 4.7.12}

next integration point (vertical), j

next integration point (radial), /

next element, n

Assemble creep load vector {O°} and add to mechanical load vector {R}

Solve [K]{®} = {R} + {Q} {equation 4.7.15}

next intermediate calculation stage, indx

Reset variables for the next stage or time step (e.g. u, w, w,,)
Increment the time (z =t +Af)

STOP

Ift<=T,

If:>7T,

Figure 4-8: Flowchart for 4th Order Runge-Kutta method of solution.
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5.0 MODEL VERIFICATION

5.1 Introduction

In order to verify the finite element model, the solutions found for several test
problems were compared to analytical solutions. For elastic behaviour, analytical
solutions exist for several cases including vertical loading of a simply supported or
clamped edge plate, as well as vertical loading of an elastic plate on an elastic foundation.

Situations involving the creep of ice are very complex and therefore an analytical
solution has not yet been developed for the long term deflection of an ice beam or plate
on an elastic foundation. This model predicts the time dependent ice deflection using a
numerical method such as the Euler method or the 4™ Order Runge-Kutta method. The
creep calculations of the model will be tested for some simple cases.

This chapter contains a section on the analytical solution for an elastic plate with
no elastic foundation and describes a test case. Another section deals with two test cases
involving an elastic plate with no elastic foundation that is experiencing creep. The next
section describes an analytical solution and test case for an elastic plate on an elastic
foundation. Finally, appropriate spatial and temporal discretization scales for an elastic
plate on an elastic foundation with creep are examined, and values to be used for the

model application in the following chapter are decided.

5.2 Elastic Plate
5.2.1 Analytical Solution
Timoshenko (1959) derived an analytical solution for uniform vertical loading of

a circular elastic plate with no elastic foundation. For the case of a plate with simply
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supported edges (see Figure 5-1), the expression for vertical deflection, w, is:

q,(@ -rz)[5+v s
w= a“ — 5.1.1
64D 1+v 4 ( )

and the slope, w,, can be calculated from:

=2 [(5+Vaz_rz)+(az_rz)] (5.1.2)

64D\ 1+v

where « is the radius of the load (and in this case the radius of the plate as well), g, is the
uniform applied load, D is bending stiffness, v is Poisson’s ratio, and r is the distance
from the centre of the plate. If the edges of the plate are clamped (see Figure 5-2), the

equation for deflection is:

q 22
=—2—|a" - 5.1.3
v=ap @ ) 13
and the slope can be found from:
4rg, ( 2 >
=——2a" - 5.14
7 ks ) G148

5.2.2 Elastic Behaviour Test

A simple example was designed to test the elastic response of the model to the
loading of a simply supported or clamped edge plate, and to compare this to the analytical
solution derived by Timoshenko (1959).

The simply supported elastic plate is illustrated in Figure 5-1. In this example the
plate thickness 2 = 0.10 m, Young’s modulus £ = 9x10° Pa, v=0.333 and g, = 18000 Pa.
Because of the axisymmetry of the problem, the elements extended from » =0 to » = L/2,

where L is the diameter of the plate. Ten elements were used in this analysis (each 0.5 m
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long). The deflected shape of the plate, as calculated by the model and by Timoshenko’s
equation (5.1.1), can be seen in Figure 5-3. The two solutions are in excellent agreement
with a maximum percent difference of approximately 0.002%.

The clamped edge plate (Figure 5-2) example also uses A=0.10m, £ = 9x10° Pa,
v=0.333 and g, = 18000 Pa. The same element discretization was used as in the simply
supported case. Figure 5-4 shows the deflected shape of the plate as computed by the
model and Timoshenko’s equation (5.1.3). The two methods produce results that agree

very well, with the maximum percent difference of about 0.3%.

5.3 Elastic Plate with Creep

Two simple examples were formulated to test the model calculations for the
vertical creep load vector for a case in which no elastic foundation is present. The first
example examines a pure bending situation in which the creep load vector contains only
moment loads; the second examines vertical loading in which “artificial” creep strains are

imposed on the system to obtain deflections directly proportional to these creep strains.

5.3.1 Pure Bending Test

The pure bending example can be solved analytically, and assumes that the
deflected shape of the plate (due to creep only) is spherical. This situation would cause
each element’s creep load vector to contain values in the moment locations only with no
vertical forces present (i.e. loads corresponding to the local w,; and w,, positions of the
creep load vector only). When the element creep load vectors are assembled, the moment

values at the adjoining ends of elements will be equal in magnitude but opposite in
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direction, cancelling each other out, and leaving loads in the first and last global moment
positions. The innermost moment will be proportional to the inner radius of the first
element (r; =0) leaving only one load in the last moment position of the creep load
vector.

Looking at the element vertical creep load vector, {¢"“}, equation (4.7.12) can be

rewritten as:

E hl12 ry

we c c 1 c c
{g"}=- a5 _,,'[2 ;l[z[{¢,,}(€, + vEy) +:{¢,}(5€ + VEL )] 2xrdrdz (5.3.D)

27 FE hiz s __[ - c c c ]
) [ [zlrig. 1 +veg) + {83 (5 + veD) draz (5.3.2)

-h/i2 R

or (g} =-

Transforming this relationship into a function of non-dimensional coordinates o and y

(where 0 < p< 1 and -1 <y < 1), using equations (4.4.5), (4.4.7) and (4.4.13) gives:

r (A (p+§)§{¢p,,}(a:+ve;)
{7} =- ( )a [ I dpdy (5.3.3)

1_
( * el

wy th2 !
or {g"=- ”}’I:(ﬂ*' ){(épp}(g +veg) +{g,} (g5 +ve, )} dpdy (5.3.4)

where the subscripts p and pp denote derivatives with respect to p.

Next, a “spherical” creep shape is assumed, such that the curvature in the radial
and tangential directions (& and x%°) are equal to the total creep curvature, &
K =kf=Ky (5.3.5)

&S =—zK =——K (5.3.6)
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Substitution of this relationship into equation (5.3.4) gives:

ER: L' h , ] l
{g"}= —z—g—_;z—) _”(— EJJ’ 1+v)x Kp+§){¢m} + {¢p}jl dpdy (5.3.7)

-10

which can be reduced to:

wes  TERKS ' r
{q }=m ;l{¢pp}+,0{¢pp}+{¢p}} dp (5.3.8)
0
Evaluation of the integral yields:

0

7ER K | —h
1= 539
=251 (5.3.9)

£

This equation is used to evaluate the element creep load vectors which will then be
assembled into the global creep load vector.

It was found while running the model that certain combinations of integration
points gave identical results to the values from the analytical solution, while other
combinations of integration points did not. Using the same plate characteristics as the
simply supported case of section 5.2.2, the assembled analytical creep load vector
contains all zero values, except for the moment at r =5 m which is 1.77x10’ Nm. The
model was run using, for example, four integration points in the radial direction and six
in the vertical direction, giving the same results as the analytical solution. However,
when the number of integration points was changed to, say, three and five in the radial
and vertical directions, respectively, the model gave slightly different results for the creep
load vector. The effect that the number of integration points chosen has on the solution is

investigated further in the section on spatial discretization (5.5.1.3).
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5.3.2 Artificial Creep Strain Test

A second simple test of the creep load vector involves the use of “artificial” creep
strains. Based on the elastic solution, the elastic strains are calculated. Rather than
calculating the creep strains using the Euler or the 4™ Order Runge-Kutta method, the
creep strains are replaced by “artificial” creep strains set equal to 50% of the elastic
strains. Once the creep load vector is added to the mechanical load vector and the system
of equations is solved, the deflections should be 50% larger than the deflections of the
elastic solution.

Using the same inputs as for the simply supported example of section 5.2.2, the
model found the deflection bowl, which included the creep load vector effects, to be 50%

greater than the elastic deflection bowl, as can be seen in Figure 5-5.

5.4 Elastic Plate on Elastic Foundation
5.4.1 Analytical Solution

Wyman (1950) obtained a solution for the instantaneous deflection of an infinite
elastic plate on an elastic foundation under uniform loading. In the case of uniform
circular loading (see Figure 5-6), two equations are required to define the deflection over

the entire radial extent of interest. For a point internal to the load, (i.e. 0 < r < &, where

a is the radius of the load), the deflection of the plate, w, is calculated by:

w=2o 4 b [ker’ (b)ber(r/1)—kei'(b) bei(r/! )] (54.1)
Yy r
and for a point external to the load (r > @) the deflection is found from:

w= -q—"},—b-[ber' (b) ker(r/ I) — bei' (b) kei(r / 1)] (5.4.2)
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where b = /1, [ is the characteristic length of the ice cover, g, is the uniform applied
load, and yis the unit weight of water. The functions ber, bei, ber’, bei’, ker, kei, ker’,

and kei’ are Bessel functions for which expressions can be found in .Appendix D.

5.4.2 Elastic Behaviour Test

A second example was designed to test the elastic response of the model to
loading on an infinite elastic plate supported by an elastic fcundation in order to compare
the model results to Wyman’s (1950) analytical solution.

The finite element solution for the elastic plate supported by an elastic foundation
(Figure 5-6) was compared to the analytical solution using the following parameters: ice
thickness #=10.10 m, Young’s modulus £ = 9x10° Pa, Poisson’s ratio v=0.333 and
go = 18000 Pa. The load radius was 5 m, and the model solved the problem up to a radius
of 50 m from the centre of the load. From =0 to 10 m the elements were each 0.5 m
long, and from r = 10 to 50 m the elements were each 1.0 m long. A plot of the deflected
shapes from the model and from Wyman’s equations (5.4.1) and (5.4.2) can be seen in
Figure 5-7. From this figure, it can be observed that the two solutions are virtually

indistinguishable (< 1% difference).

5.5 Elastic Plate on Elastic Foundation with Creep
In the next chapter, several sets of test data from actual field measurements will
be analyzed using the finite element model developed here. ¥n order to maintain

consistency between different tests, standards need to be set for spatial and temporal
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discretization, after which the creep parameters n and 77, along with the material

parameters vand £, can be calibrated.

5.5.1 Spatial Discretization

The number and size of element chosen, as well as the number of integration
points used within each element affects the accuracy of the solution found by the finite
element model. For both concentrated and distributed loading scenarios a sensitivity
analysis was performed to determine an appropriate element discretization. The number
of integration points was chosen based on testing of the pure bending example described
in section 5.3.1.

Masterson and Strandberg (1979) state that the radial extent of modelling can end
at three to four times the characteristic length of the ice from the centre of the load.
According to Tinawi and Murat (1979), modelling four times the characteristic length of
the ice cover in the radial direction is sufficient. Beyond this radius, the load has a
negligible effect on the ice cover. The characteristic length, /, of the ice cover is defined
by Gold (1971) as:

[ =16A%7 (5.5.1)
where 4 is the ice thickness, and both 4 and / are given in metres. The outside radius of

the farthest element from the load, r,, to be used in this model, therefore, will be:

r, = 64h°" (5.5.2)

For each test, the ice thickness, calculated value of r,, and a summary of other test

conditions can be found in Tables 5-1 and 5-2 for Beltaos’ data and for Frankenstein’s
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data, respectively. Since the largest value of r, from all of the tests is approximately

50 m, this will be used as the outside radius for all tests.

5.5.1.1 Concentrated Loading

Data set C04 (see Table 5-1) was used to determine the number of elements to be
used in all concentrated load cases (defined here as load radius <0.3 m). It has a
relatively long test duration and any errors that are propagated will be most noticeable
near the end of the test. Therefore, if acceptable accuracy is achieved with this data set,
the shorter duration tests should also have acceptable accuracy.

In order to determine the number of elements necessary for suitable accuracy, all
other model parameters were kept constant between runs. The values used for the other
model parameters can be found in Table 5-3. First, a very dense grid with 71 elements
was created, in order to have a conservative solution with which to compare all other
discretization schemes. In this grid, the first element was 5 mm long, with each
subsequent element 10% larger than the previous element. The other grids contained 40,
33, 20, and 14 elements. The radius at each node can be seen in Table 5-4 for each grid.

On the deflection-time plot (Figure 5-8), the upper line represents the solutions
for 71, 40, 33, and 20 elements, while the lower line is the solution using 14 elements.
Based on these results, using 20 elements for the concentrated load cases would be
considered acceptable (as it is indistinguishable from the 71 element case), however, 33
elements were chosen to be more conservative. The maximum percent difference

between the 71 and 33 element solutions was approximately 0.4% at 235 minutes.
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5.5.1.2 Distributed Loading

Data set C16 (see Table 5-1) was used to determine the number of elements to be
used for all distributed load cases (defined here as load radius > 0.3 m). Similar grids
were used as in the concentrated load cases, with the 71 element case being the most
conservative. The other grids created contained 40, 33, 20, 13, 9, and 6 elements. The
nodes and radii for data set C16 can be seen in Table 5-5.

Figure 5-9 shows the deflection-time results for the distributed load cases. The
upper line encompasses the results for 71, 40, 33, 20, 14, and 9 element grids. The lower
line shows the solution found using 6 elements. Using only 9 elements would give
results very close to the 71 element solution, however, 20 elements were chosen to be
more conservative. The maximum percent difference between the 71 and 20 element

cases was approximately 0.007%.

5.5.1.3 Integration Points

The number of integration (or Gauss) points chosen within each element affects
the accuracy of the model solution. As a greater number of Gauss points is used, the
stress and strain situation within each element can be represented more realistically;
however, the time required to run the model also increases as the computations become
more involved. The model is configured to allow the number of Gauss points to be input
by the user; the same number of Gauss points can be specified in the radial and vertical
directions but it is not required that they be equal. The model can calculate a maximum
of ten Gauss points in each direction (for a total of 100 integration points within the

element).
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The pure bending test (section 5.3.1) was used to determine the number of
integration points to use in all final calibration runs. Both data sets C04 (concentrated
loading) and C16 (distributed loading) were examined. The solutions calculated using
ten integration points in each direction were taken as the “exact” solutions, as this was the
maximum number of points given by Zienkiewicz (1977); all other solutions were judged
based on these. Other solutions were compared to the exact solution using a least squares

analysis on the deflection values over time, with:

=
o= Z(Wlo.m - Wx.y)z (5.5.3)
=0

where J'is the least squares value for the solution, 7, is the time at the end of the solution
(which approaches zero as the solution approaches the exact solution), and wyg ;0 and wy,
are the deflection values for the exact solution and any other solution at time ¢,
respectively. The results for data set C04 can be found in see Table 5-6.

From Table 5-6, it can be seen that several combinations of Gauss points give the
exact solution. In general, using even numbers of Gauss points in the vertical direction
gave better results than using odd numbers; for example, using 6 and 8 points in the
radial and vertical directions, respectively, gave a smaller value for o than using 6 and 9
points. Using 5 Gauss points in the radial direction and 10 in the vertical direction is the
combination that uses the fewest number of integration points (and therefore takes the
least computational time) while still producing a solution identical to that found with 10
Gauss points in each direction. The same process was repeated for data set C16, and it
was found that 5 points in the radial direction and 10 points in the vertical direction was

sufficient to reproduce the exact solution for this case.
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5.5.2 Temporal Discretization

The size of the time step increment (4f) used in the model also has a significant
effect on the accuracy of the solution. Since a numerical method like the Euler or the
4" Order Runge-Kutta method is used to predict strains over time, the larger the time step
increment is, the less accurate the predicted strain is likely to be. However, as the size of
the time step increment decreases, the time required to run the model increases. A

balance must be reached between accuracy of the solution and computational efficiency.

5.5.2.1 Distributed Loading

For the distributed loading case (data set C16: increasing load magnitude) all
parameters except 4t were kept constant (see Table 5-7). The time step was varied from
5sto 10, 30, 60, 120, 240, and 360 s. The solution found using 4¢ = 5 s was taken as the
“exact” solution for comparison purposes. As less than 0.5% difference was found
between the deflection at the end of the tests when using 4t=10s and 4r=35s,
decreasing the time step increment any further would not significantly increase the

accuracy of the solution.

At the end of the test duration (about 60 minutes), the deflection found using
At =360 s was 3 mm larger than the “exact” solution (about 2.5% difference), and using
At =30 s gave results only 1 mm different from the “exact” solution (0.9% difference).
As even the largest difference was insignificant, it is apparent that any of these time steps

would give acceptable accuracy.
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5.5.2.2 Concentrated Loading

As with the distributed loading case of the previous section, for the concentrated
loading case (data set C04: constant load magnitude) all model parameters were kept
constant while A4r was varied (see Table 5-7). Since a time step of 30 s was found to be
quite accurate in the distributed loading case, it was taken as the “exact” solution for
comparison with the other time step sizes in this case. The time step for distributed
loading was varied from 30 s to 60, 120, 240, 360, and 480 s.

At the end of this test duration (about 235 minutes), the deflection found using
Ar=480s was 0.1 mm larger than the “exact” solution (0.7% difference), using
At =240 s gave a deflection 0.02 mm larger than the exact solution (0.1% difference),
and using 4f = 120 s gave results only 0.01 mm larger than the “exact” solution (0.06%
difference). These differences are even less significant than those from the concentrated
loading case are; any of these time steps should give an acceptable result when used in
the model.

One thing that became apparent with this case (since a brief period of increasing
load was followed by constant loading for the remainder of the test) was that the size of
the time step did affect the solution near the transition between increasing and constant
loading. It can be seen from Figure 5-10 that as the size of the time step increases, the
deflection deviates somewhat from the “exact” solution in this transitional region.
Consequently, the size of the time step should be kept quite small until the full load is
applied (while the plate is responding rapidly), at which point 4 can be increased,

decreasing the overall computational time required to run the model.
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Several different combinations of time steps were examined. It was found that a
sudden change in A4t created an abrupt jump in the deflection-time graph, and that the
larger the difference in the size of the time steps, the larger this jump became. Instead of
having a sudden change from say, 4t; to 4t; (where 4¢; and A4t; are unequal time step
increments), a transitional region was created. In this region, the size of the time step
was increased by a percentage of the current time step size, until the new time step size
(4t;) was reached. After trying several different percentages (e.g. 33%, 16.7%, 10%), it

was found that increasing 4t by 10% each time gave a smooth transition from 4¢; to 4t,.

5.6 Summary

The results of the elastic analyses (with comparisons to analytical solutions) and
simple creep tests indicate that this model performs with acceptable accuracy in these
cases. The model will next be extended to more complex loading situations in the

following chapter.
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Table 5-1: Summary of test conditions for Beltaos' data.

Air Temperature

Test# Date ice thickness| Load Radius | Test Duration | Outside radius
°c)* {m) (m) (minutes) ro (m)

Cco1 14-11-1975 6.1 0.076 0.292 22 9.3

co2 17-11-1975 -8.3 0.058 0.292 34 7.6

co3 17-11-1975 -8.3 0.067 0.292 11 84

co4 17-11-1975 -8.3 0.069 0.292 235 8.6

Ccos 18-11-1975 45 0.076 0.292 131 9.3

Co6 18-11-1975 45 0.089 0.292 25 104
co7 19-11-1975 6.5 0.089 0.292 300 104
cos 19-11-1975 -6.5 0.086 0.292 187 10.2
Co9 20-11-1975 -6.4 0.124 0.292 124 134
c10 26-11-1975 -11.1 0.178 0.915 25 17.5
C11 27-11-1975 -11.2 0.191 0.915 300 18.5
Cc12 (27-28)-11-1975 -13.1 0.216 0.915 64 20.3
Cc13 (2-5)-12-1975 -16.9 0.274 0.915 4264 243
C14 (3-4)-12-1975 -17.9 0.305 0.915 1619 26.3
Cc15 09-12-1975 -3.8 0.348 0.915 338 29.0
c16 11-12-1975 -25.4 0.363 2.195 58 29.9
c19 23-01-1976 -3.1 0.640 1.753 30 458
Cc20 27-01-1976 4.1 0.671 1.753 47 474
c21 29-01-1976 0.4 0.648 1.753 70 46.2
c22 03-02-1976 -14.4 0.747 1.753 98 51.4

* taken at Edmonton International Airport (average of hourly readings)
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Table 5-3: Parameters used for determination of spatial discretization.

Concentrated Distributed
Load Case Load Case

Young's modulus, £ (Pa) 9x10° 9x10°
Poisson's ratio, v 0.333 0.333
Creep exponent, n 3.0 3.0
Creep coefficient, n 2x10% 2x10%
# of Gauss points in radial direction 2 2
# of Gauss points in vertical direction 5 4
Size of time step, At (s) 240 120

Numerical method

4th Order Runge-Kutta

4th Order Runge-Kutta
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Table 5-4: Grid nodes and radii for concentrated loading.

71 element case

40 elament case

33 element case

20 element case

14 element case

Node | Radius (m})] Node | Radius (m}] Node | Radius (m)} Node | Radius (m)] Node | Radius {m
1 0 1 [*] 1 4] 1 2] 1 [+]
2 0.005 2 0.1 2 0.292 2 0.292 2 0.292
3 0.011 3 0.2 3 0.5 3 0.5 3 2
4 0.017 4 0.292 4 1 4 1 4 4
5 0.023 S 0.4 5 1.5 5 2 5 6
6 0.031 6 0.5 6 2 6 3 6 8
7 0.039 7 0.6 7 2.5 7 4 7 10
8 0.047 8 0.7 8 3 8 5 8 15
] 0.057 9 0.8 g 3.5 9 6 9 20

10 0.068 10 0.9 10 4 10 7 10 25
11 0.08 11 1 11 4.5 11 8 11 30
12 0.093 2 1.5 12 5 12 9 12 35
13 0.107 i3 2 13 5.5 13 10 13 40
14 0.123 14 25 14 6 14 15 14 45
15 0.14 15 3 15 6.5 15 20 15 50
16 0.159 16 3.5 16 7 16 25
17 0.18 17 4 17 7.5 17 30
18 0.203 18 4.5 18 8 18 35
19 0.228 19 5 19 8.5 19 40
20 0.256 20 5.5 20 9 20 45
21 0.292 21 6 21 9.5 21 50
22 0.332 22 6.5 22 10

23 0.376 23 7 23 11

24 0.424 24 7.5 24 12

25 0.477 25 8 25 13

26 0.535 26 8.5 26 14

27 0.599 27 9 27 15

28 0.67 28 9.5 28 20

29 0.747 29 10 29 25

30 0.833 30 11 30 30

31 0.927 31 12 31 35

32 1.03 32 13 32 40

33 1.144 33 14 33 45

34 1.269 34 15 34 50

35 1.406 35 20

36 1.557 36 25

37 1.724 37 30

38 1.907 38 35

39 2.108 39 40

40 2.329 40 45

41 2.573 41 50

42 2.841

43 3.136

44 3.46

45 3.816

46 4.209

47 4.64

48 5.115

49 5.637

50 6.211

51 6.843

52 7.538

53 8.302

54 9.143

55 10.068

56 11.086

57 12.205

58 13.436

59 14.79

60 16.28

61 17.918

62 19.721

63 21.703

64 23.884

65 26.283

66 28.922

67 31.825

68 35.018

69 38.531

70 42.395

71 46.645

72 51.32
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Table 5-5: Grid nodes and radii for distributed loading.

71 slemaent case 40 elemaent case 33 slement case 20 eiement case 13 element case 9 element case 6 element case
Node | Radius (m)| Node | Radius (m)]| Node | Radius (m)} Node | Radius (m)] Node | Radius (m)] Node | Radlus (m)] Node | Radius (m)
1 0 1 0 1 0 1 1] 1 0 1 0 1 [1]
2 0.005 2 0.1 2 0.5 2 0.5 2 2.195 2 2.195 2 2.185
3 0.011 3 0.2 3 1 3 1 3 4 3 5 3 10
4 0.017 4 0.3 4 1.5 4 2 4 6 4 10 4 20
5 0.023 5 0.4 5 2 5 2.195 5 8 5 15 5 30
6 0.031 6 0.5 6 2.195 6 3 6 10 6 20 6 40
7 0.039 7 0.6 7 2.5 7 4 7 5 7 30 7 50
8 0.047 8 0.7 8 3 3 ) 8 20 8 40
9 0.057 9 0.8 9 35 ] 6 9 25 9 50
10 0.068 10 0.9 10 4 10 7 10 30
11 0.08 11 1 11 4.5 11 8 11 35
12 0.093 12 1.5 12 5 12 9 12 40
13 0.107 13 2.195 13 5.5 13 10 13 45
14 0.123 14 2.5 14 6 14 15 14 50
15 0.14 15 3 15 6.5 15 20
16 0.159 16 3.5 16 7 16 25
17 0.18 17 4 17 7.5 17 30
18 0.203 18 4.5 18 8 18 35
19 0.228 19 5 19 8.5 19 40
20 0.256 20 5.5 20 9 20 45
21 0.292 21 6 21 9.5 21 50
22 0.332 22 6.5 22 10
23 0.376 23 7 23 11
24 0.424 24 7.5 24 12
25 0.477 25 8 25 13
26 0.535 26 8.5 26 14
27 0.599 27 g 27 15
28 0.67 28 9.5 28 20
29 0.747 29 10 29 25
30 0.833 30 1 30 30
31 0.927 31 12 31 35
32 1.03 32 13 32 40
33 1.144 33 14 33 45
34 1.269 34 15 34 50
35 1.406 35 20
36 1.557 36 25
37 1.724 37 30
38 1.907 38 35
39 2.195 39 40
40 2.329 40 45
41 2.573 41 50
42 2.841
43 3.136
44 3.46
45 3.816
46 4.209
47 4.64
48 5.115
49 5.637
50 6.211
51 6.843
52 7.538
53 8.302
54 9.143
55 10.058
56 11.086
57 12.205
58 13.436
59 14.79
60 16.28
61 17.918
62 19.721
63 21.703
64 23.884
65 26.283
66 28.922
67 31.825
68 35018
69 38.531
70 42.395
71 46.645
72 51.32
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Table 5-6: Summary of least squares analysis for data set C04.

Number of Number of Least
Gauss Points Gauss Points Squares

Radially {x) Vertically (y) Value (5)
0.00783460
0.00444926
0.00133398

0.00110111

0.00039194

0.00045920
0.00012920
0.00025405

0.00002963
0.00448980

0.00130952
0.00113260
0.00036530
0.00048897
0.00010161

0.00028330
0.00000116
0.00130851
0.00113384
0.00036423
0.00049014
0.00010050
0.00028445
0.00000005
0.00113387
0.00036420
0.00049018
0.00010046
0.00028449
0
0.00036420
0.00049018
0.00010046
0.00028449
0
0.00049018
0.00010046
0.00028449
0
0.00010046
0.00028449
0
0.00028449
0
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Table 5-7: Parameters used for determination of temporal discretization.

Concentrated Distributed
Load Case Load Case

Young's modulus, E (Pa) 9x10° 9x10°
Poisson's ratio, v 0.333 0.333
Creep exponent, n 3.0 3.0
Creep coefficient, n 2x10% 2x10™%
# of Gauss points in radial direction 5 5
# of Gauss points in vertical direction 10 10
Number of elements 33 20

Numerical method

4th Order Runge-Kutta

4th Order Runge-Kutta
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Figure 5-1: Cross section of a vertically loaded simply
supported elastic plate.

9.

g e e ey e e

Figure 5-2: Cross section of a vertically loaded clamped edge
elastic plate.
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Figure 5-3: Deflected shape from model and Timoshenko for a simply supported
elastic plate.
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Figure 5-4: Deflected shape from model and Timoshenko for a clamped edge
elastic plate.
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6.0 MODEL APPLICATION
6.1 Introduction

The response of the model to elastic loading was verified and some simplified
creep scenarios were examined in chapter 5. In this chapter, the model is tested on more
complex situations involving the creep of ice, for which analytical solutions do not exist.
The secondary creep behaviour predicted by the model (using a power law) is compared
to large scale experimental data. The 4™ Order Runge-Kutta method is used to predict
the creep strain increments for all the cases described in this chapter.

This chapter contains a section describing the sources of the large scale
experimental field data used to verify the model developed here, and a brief justification
for the exclusion of certain sets of data. A discussion on the calibration parameters is
presented. The results of the model calibration runs, which are grouped according to the
type of loading applied, are compared with the field data. An attempt to correlate the
calibrated parameters to ice temperature is presented. Finally, the results obtained in this

study are summarized.

6.1.1 Sources of Experimental Data

The model developed here will be verified using data obtained from two sources.
A total of 22 sets of long term deflection data were acquired from S. Beltaos (National
Water Research Institute). This data is from large scale load tests performed by the
Alberta Research Council on the ice cover at Joseph Lake (near Edmonton) during
November 1975 to February 1976, and has not been previously analyzed with any creep

model. The ice thickness in these tests ranged from approximately 6 cm to 75 cm (see
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Table 5-1). These tests were performed at stresses ranging from approximately 15 to
79 kPa, with air temperatures ranging from about +6 to -26 °C. Various tank diameters
were used to distribute the load, with water being pumped in from the lake to load the
tanks (Beltaos, 1978). Of the 22 sets of load-deflection-time data obtained, 9 were from
concentrated load tests and 13 were from distributed load tests.

The second source of load test data was Frankenstein’s (1963) paper, which
includes load and deflection data for 13 large scale tests. This data was obtained from
load tests performed on the ice covers on a lake and a bay in Michigan, as well as a
reservoir in North Dakota from January to March of 1956, 1957, and 1959. The ice
thickness for these tests ranged from about 28 cm to 60 cm (see Table 5-2). The stresses
in these tests ranged from about 15 to 1750 kPa, and the ice temperatures ranged from
-0.1 to -12 °C. For the seven distributed load tests, a 3.66 m (12 ft) diameter tank was
placed on the ice surface and water was pumped in from the lake; for the six concentrated
load tests, this tank was balanced on a 0.44 m (17.3 in) diameter cylinder.

For both sources of data, the deflection measurements were taken with surveying

levels and rods.

6.1.2 Exclusion of Test Data

In total, 35 sets of field data were available for comparison with the model. Of
these, two sets of Beltaos’ data were discarded. Data set C17 was not used because the
loading curve was in question. According to the loading curve most of the load was
removed early in the test, but this is believed to be due to a leak of some sort (personal

communication: Beltaos, January 2001). The magnitude of the load was calculated based
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on the water level in the tank, and while the leaked water may have remained on the ice
surface (as a much more distributed load), it would no longer be accounted for by the
loading curve. Data set C18 was also discarded because the load configuration was

rectangular rather than circular; this model only deals with circular loads.

6.1.3 Spatial and Temporal Discretization

From the results of the model verification discussed in the previous chapter it was
decided that 33 and 20 elements would be used for the spatial discretization of the
concentrated and distributed loading cases, respectively, for the model applications in this
chapter. Five integration points in the radial direction and ten integration points in the
vertical direction were chosen, producing a total of 50 integration points within each
element.

The choice of time step increment(s), 4, to be used depended on the loading
configuration and the total duration of each individual test. For any tests less than
5,000 seconds (about 83 minutes), a time step increment of 30 seconds was used. If the
test duration was longer than 5,000 seconds, a 30 second time step increment was used
until after full loading was applied, followed by a transition to a time step increment of
120 seconds. In most cases, if the test lasted longer than about 10,000 seconds
(167 minutes), another transition was implemented to a time step increment of
240 seconds. Test C13 is a notable exception to this, with a transition to Ar=240
seconds occurring earlier (at 167 minutes) since the duration of this test is relatively long
(over 4,000 minutes). Test C03 is also an exception and 4r = 15 seconds is used for the

640 second duration of the test. A summary of the time step increments and their
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durations for each test can be found in Table 6-1(a) for Beltaos’ data, and Table 6-1(b)

for Frankenstein’s data.

6.1.4 Calibration Parameters

Four parameters can be calibrated using this model: Young’s modulus, E;
Poisson’s ratio, v; the creep exponent, n; and the creep coefficient, 7. In the early stages
of model verification, it was discovered that the model results were not very sensitive to
changes in Poisson’s ratio, v, that is, the other three parameters were found to have a
much greater effect on the creep behaviour of ice. As a result, Poisson’s ratio was set at
the typical value of /3 for ice (Beltaos, 1978) for all cases, and the three remaining
parameters were calibrated for each set of data.

While any one parameter was being calibrated, all other parameters were kept
constant. The parameters were generally calibrated in the following order: n, followed by
E, and finally 7. The creep exponent, n, was modified first to approximate the correct
shape of the deflection-time curve. Next, £ was adjusted to obtain the proper order of
magnitude for the deflection. Finally, 7 was varied to fine-tune the model results. The
goodness of fit of the model to the experimental data was judged by visual inspection.

Various combinations of the three calibration parameters could be found to give
similar deflection-time curves, and so a range of values for each parameter is reported,

rather than trying to choose the “best” value for each parameter.
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6.2 Calibration of Beltaos’ Data

The results obtained from the calibration of Beltaos’ test data are discussed here.
The results have been grouped according to the type of loading applied. Beltaos’ tests
have been separated into groups of constant loading, increasing loading, and other
loading (see Table 6-2). For each test, the figures described in the following sections
contain one graph for each of the calibrated parameters. Graph (a) shows the upper and
lower bounds (Ey and E;) found for Young’s modulus, graph (b) shows the upper and
lower bounds (77y and 77;) for the creep coefficient (denoted as efa in the figure legend),
and graph (c) shows the upper and lower bounds (ny and n;) for the creep exponent. The
majority of these graphs show an average value for each parameter. These figures also

illustrate the magnitude of loading over time.

6.2.1 Constant Load Tests

The tests in which the load increased until a certain magnitude was reached, and
the load was then kept at that magnitude for the remainder of the test were classified as
constant load tests here. Some of the test durations were not very long; the time required
to apply the load in some cases was approximately as long as the period of constant
loading, but these were still grouped with the constant load tests.

The results for the calibration of the fifteen constant load tests can be seen in
Figures 6-1 through 6-15. The values obtained for Young’s modulus, £, ranged from

-25

0.6x10° to 2.4x10°Pa. The creep coefficient, 7, ranged from 1.5x10 to

3.0x10% s7'Pa™" and the creep exponent, n, ranged from 3.02 to 3.43. A summary of the

results can be found in Table 6-2.
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The model predicts the deflection of the ice cover very well during secondary
(steady state) creep for the tests shown in Figures 6-1 through 6-8 and 6-10. As the
model approaches a steady state, the solution begins to deviate from the deflection data at
the onset of tertiary (accelerated) creep, as expected. In Figures 6-9 and 6-11, the model
is seen to overpredict the deflection as the load is being applied and during the early
stages of secondary creep, but matches the data more closely as secondary creep
progresses. For the tests shown in Figures 6-12, 6-14 and 6-15, the predicted deflection
is higher than that observed during load application, but matches the data quite well
during secondary creep. The deflection data in Figure 6-13 does not seem to have a
significant period of steady state creep. The model deflections are high as the load is
being applied and fit the data acceptably from a time of approximately 15 to 25 minutes;
this is followed by accelerated creep which this model cannot predict.

For the tests in which the model overpredicts the deflection as the load is being
applied, the elastic modulus needed to match the secondary creep data is too low to match
this initial data. According to Ashton {1986), Young’s modulus for ice can be dependent
on several factors including temperature, density, type and purity of ice, stress (time or
frequency, and history), and grain size. Some of these parameters may change as the ice
deforms, causing Young’s modulus to change as well. This could explain the apparent

need for different values of E at various stages of the test.

6.2.2 Increasing Load Tests

Three tests were performed with linearly increasing loading. The results of these

calibration runs can be seen in Figures 6-16 through 6-18, and are summarized in
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Table 6-2. For these cases E ranged from 3.0x10° to 5.0x10° Pa, 77 ranged from 1.5x10%

to 2.5x1072° s7'Pa™", and n ranged from 3.15 to 3.28.

The model results match the deflection data quite well for these three tests. The
predicted deflections are slightly higher than the actual deflections in the early stages of
tests C10 and C16 (Figures 6-17 and 6-18), which could be due to the fact that Young’s
modulus for the ice could be changing as the test progresses. Again, as accelerated creep
begins, the model cannot predict the behaviour of ice and the model deflections remain

less than the observed deflections.

6.2.3 Other Loading Scenarios

Two of the loading scenarios did not fit the constant or increasing load
descriptions. Test C13 was conducted using a step function type of loading, and test C12
consisted of a constant load followed by a linearly increasing load. For test C13, E varied
from 1.3x10° to 1.7x10° Pa, 7 ranged from 1.9x10° to 2.1x10% s'Pa™, and n ranged
from 3.07 to 3.09. For test C12, E ranged from 2.5x10° to 4.0x10° Pa, 7 varied from

1.8x107% to 2.2x10% s™'Pa™", and n ranged from 3.34 to 3.36. These calibration results
can be found in Figures 6-19 and 6-20, with the findings also summarized in Table 6-2.
The model predicted the deflection for test C13 (Figure 6-19) reasonably well for
the first half of the test, but at later times, the predicted deflection was higher than the
measured values. This could be due in part to the long duration of test C13 and error
propagation (resulting from the use of the 4" Order Runge-Kutta method) may have
occurred near the end of the test. This error was thought to be due partly to the fact that a

large time step increment (¢ = 240 s) was implemented quite early in this test in order to
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decrease computational time. However, when this test was run again with 4r =30 s for
the entire duration, no noticeable difference (<0.2%) in the deflection-time graph
resulted.

With test C12 (Figure 6-20) the model predicts the deflection of the ice very well
up to the time when the load changes from a constant magnitude to a linearly increasing
magnitude (occurring at about 35 minutes). At this point, it appears from the deflection
data that accelerated creep is beginning, and this model cannot predict the deflection

beyond this point.

6.3 Calibration of Frankenstein’s Data

The results obtained from the calibration of Frankenstein’s test data are discussed
next. These results have been separated into groups of constant loading and increasing
loading (see Table 6-3). For each test, the figures discussed in the following sections

contain one graph for the calibration of each parameter, in the same manner as described

earlier in section 6.2.

6.3.1 Constant Load Tests

The results of the model calibration for the four constant load tests can be found

in Figures 6-21 through 6-24. For these cases Young’s modulus, E, ranged from 0.1x10°
to 1.4x10° Pa. The creep coefficient, 7, ranged from 1.5x10% to 2.5x10% s™'Pa™ and
the creep exponent, n, ranged from 3.29 to 3.50. The results from each test are

summarized in Table 6-3.
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For tests FO5 and FO7 (Figures 6-21 and 6-23) the model predicted the observed
deflections quite well, with model values only slightly larger than the measured values
during the stage of load application. Test FO6 does not have a lengthy secondary creep
stage, but the model seems to fit the data very closely until the onset of tertiary creep.
The model does not fit the data from test FO8 well (Figure 6-24); the predicted
deflections are significantly larger than the measured deflections. In tests FO5, FO6 and
FO7 the loads are distributed (load radius = 1.829 m) and the three tests have similar rates
of loading (the load is fully applied in the order of 45 to 60 minutes). Test FO8 had a
concentrated load (load radius = 0.22 m) which was fully applied after about 20 minutes.
The ice was deforming rapidly as the load was quickly applied; the elastic modulus may
have been changing rapidly in this region as well, and may have been quite different from

the elastic modulus reached in the secondary creep stage.

6.3.2 Increasing Load Tests
Nine tests were performed with increasing loading. The results of the calibration
for these tests can be seen in Figures 6-25 through 6-33, with a summary in Table 6-3.

-25

For this group E ranged from 0.4x10° to 3.5x10° Pa, 7 ranged from 1.5x10™ to

2.5x102%° s7'Pa™, and n ranged from 3.20 to 3.40. These findings are also summarized in
Table 6-3.

Of the increasing load tests, four had a distributed load configuration and five had
a concentrated load configuration. Tests FO1 through F04 (Figures 6-25 through 6-28)
were the distributed load tests; the model predicted the deflection quite well, except near

the beginning of each test (and at the end during tertiary creep). However, the measured
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data in these tests is somewhat questionable as the deflections remained at zero for
several minutes even though there was an increasing magnitude of load applied.

For the remaining five concentrated load tests (Figures 6-29 through 6-33), the
model deflections matched the measured deflections quite well. Again, during the early
stages of load application, some of the predicted deflections are slightly higher than the
observed deflections. As discussed earlier, this could be due to the fact that the actual

value of Young’s modulus was changing throughout the test.

6.4 Model Parameters vs. Temperature

The calibrated model parameters were plotted against temperature to determine if
any type of correlation was present. For each test, the upper, lower and average values of
Young’s modulus (E), the creep coefficient (7), and the creep exponent (n) (see
Table 6-4) were plotted against the temperature, and can be seen in Figures 6-34, 6-35
and 6-36, respectively. Frankenstein’s data was plotted against the measured ice
temperature. Since the ice temperature was not measured in Beltaos’ tests, it was taken
as one half of the air temperature. The temperature at the bottom of the ice sheet will be
very close to the water temperature (which is approximately 0 °C directly beneath the
ice), and the temperature at the top of the ice sheet will be near to the air temperature. As
a result, the average of the water and air temperatures can give an approximate average
temperature for the ice sheet.

For Young’s modulus, it can be seen from Figure 6-34 that there is a great deal of
scatter in the results, reinforcing the belief that £ is a function of more than just

temperature. The creep coefficient (7) values (see Figure 6-35) lie in a2 band between
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1.5x10% and 2.5x10%° s'Pa™", but this does not necessarily imply any temperature
dependence. The creep exponent () data is also quite scattered (Figure 6-36), suggesting
that no real correlation exists between n and temperature. All of the calibration

parameters here appear to be functions of more than temperature alone.

6.S Summary

Of the three calibrated parameters (£, 7, and #n), the model seemed most sensitive
to changes in Young’s modulus, and then to changes in the creep exponent. It seemed to
be the least sensitive to changes in the creep coefficient. The minimum, average, and

maximum values for E, 7, and » can be seen in Table 6-4 for constant, increasing, and all

types of loading combined.
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Table 6-1(a): Summary of time step increments and durations for Beltaos' data.

Test # At, Aty Aty Duration of At, | Duration of At; | Duration of At,
(seconds) {seconds) (seconds) up to (seconds)| up to (seconds)] up to (seconds)
CO01 30 - - 1340 - -
Cco2 30 - - 2040 - -
co3 15 - - 640 - -
Cco4 30 120 - 500 10880 -
C05 30 120 - 800 7860 -
C06 30 - - 1500 - -
Cco7 30 120 240 700 10000 18000
Cco8 30 120 - 1000 11220 -
C09 30 120 - 1500 7000 -
c10 30 - - 1450 - -
C11 30 120 240 1100 10000 18000
c12 30 - - 3894 - -
C13 30 120 240 1000 5000 255825
C14 30 120 240 1500 10000 98157
C15 30 120 240 2700 10000 20282
C16 30 - - 3473 - -
C19 30 - - 1810 - -
C20 30 - - 2830 - -
C21 30 - - 4202 - -
Cc22 30 - - 5890 - -

Table 6-1(b): Summary of time step increments and durations for Frankenstein's data.

Test # Aty Aty Aty Duration of At, | Duration of At, | Duration of At
{seconds) {seconds) (seconds) up to (seconds)| up to (seconds)] up to (seconds}
F01 30 - - 3948 - -
F02 30 - - 6120 - -
F03 30 - - 2388 - -
F04 30 - - 5298 - -
F05 30 120 240 2700 10000 16956
Fo6 30 120 - 3700 9570 -
FO7 30 120 240 3100 10000 12240
F08 30 120 240 1300 10000 13830
F09 30 - - 1980 - -
F10 30 - - 1956 - -
F11 30 - - 1890 - -
F12 30 - - 2970 - -
F13 30 - - 1710 - -
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Table 6-2: Summary of calibration results for Beltaos' data.

Creep Exponent Creep Coefficient Young's Modulus Type
n, ny |nc(s'Pa”)iny(s'Pa")]| E. (Pa) | Ey (Pa) of
Test # (x10%) (x10%) (x10°) | (x10% | Loading
C01 3.21 3.23 1.7 24 1.55 1.75 1|
C02 3.08 3.11 1.8 3.0 1.50 1.65 1
C03 3.27 3.28 1.7 2.1 3.00 3.50 2
C04 3.08 3.12 1.5 2.2 1.30 1.50 1
C05 3.11 3.14 1.8 2.2 0.90 1.05 1
C06 3.32 3.34 1.8 2.2 1.40 1.65 1
co7 3.18 3.20 1.8 2.2 0.90 1.20 1
C08 3.02 3.04 1.8 2.5 1.90 2.40 1
C09 3.12 3.14 1.7 2.3 1.30 1.50 1
C10 3.24 3.26 1.5 2.5 3.50 4.50 2
C11 3.156 3.17 1.8 2.2 1.30 2.00 1
c12 3.34 3.36 1.8 2.2 2.50 4.00 4
C13 3.07 3.09 1.9 2.1 1.30 1.70 3
C14 3.11 3.13 1.9 21 0.78 0.84 1
C15 3.11 3.13 1.8 22 0.90 1.20 1
C16 3.14 3.16 1.8 2.5 3.00 5.00 2
C19 3.37 3.39 1.9 2.3 1.00 1.40 1
C20 3.37 3.43 1.5 2.5 0.80 1.10 1
C21 3.24 3.26 1.9 2.1 1.80 2.10 1
Cc22 3.37 3.39 1.7 2.1 0.55 0.65 1
Table 6-3: Summary of calibration results for Frankenstein's data.
Creep Exponent Creep Coefficient Young's Modulus Type
ng ny |no(s'Pa”)|ny(s'PaT)| E. (Pa) | Ey (Pa) of
Test # (x10%%) (x10%) (x10°%) (x10%) | Loading
FO1 3.24 3.27 1.8 2.2 2.50 3.50 2
F02 3.20 3.25 1.5 2.5 1.30 2.00 2
FO3 3.25 3.28 1.8 2.5 2.50 3.50 2
FO4 3.23 3.27 1.5 2.5 1.50 2.50 2
F05 3.29 3.31 1.8 2.2 1.00 1.40 1
FO6 3.35 3.37 1.5 2.5 0.50 1.00 1
FO7 3.33 3.35 1.8 2.2 0.80 1.00 1
F08 3.47 3.50 1.8 2.5 0.10 0.20 1
FO9 3.30 3.40 1.5 2.5 0.40 0.60 2
F10 3.35 3.40 1.5 2.5 1.00 1.50 2
F11 3.31 3.33 1.5 2.5 1.50 2.00 2
F12 3.25 3.27 1.5 2.5 0.90 1.10 2
F13 3.31 3.35 1.5 2.3 1.50 2.50 2
Type of Loading:

= constant loading
2 = increasing loading

3 = stepped loading
4 = constant loading, followed by increasing loading
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Figure 6-1(c): Range for creep exponent, n (Test COl: n =2.0e-25, £ = 1.65e9).
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Figure 6-2(c): Range for creep exponent, n (Test C02: n = 2.3e-25, E = 1.60e9).
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Figure 6-3(c): Range for creep exponent, n (Test C04: = 2.0e-25, £ = 1.40e9).
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« deflection data
=3.11 - 45
0.25 =3.13 - 40
------ n=3.14
E‘ 0.2 . = anplied load L. 35
~ - 30
§
5 0.15 4 R I 25
D
% o1 o L 20
Q 014 .o B e 15
0.05 1 10
-5
©
] . . — T r T o]
0 20 40 60 80 100 120 140
Time (min)

Figure 6-4(c): Range for creep exponent, n (Test C05: n = 2.0e-25, £ = 0.90e9).
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0.12

Deflection (m)
o o
= o e
/] w -

?

o deflection data
=1.40e9
—E=1.50e9
------ E=1.65e9
= applied lcad

45
- 40
“F 35
- 30
I 25
20
15
- 10
-5

5 10 15 20
Time (min)

Figure 6-5(2): Range for Young's modulus, £ (Test C06: n =3.33, n = 2.0e-25).

25

0.12

0.1 4

o

o

[<+]
L

Defiection (m)
o
&

deflection data
eta=1.8e-25
eta=2.0e-25
------ eta=2.2e-25
~~-==applied load

T T T T

S 10 15 20
Time (min)

Figure 6-5(b): Range for creep coefficient, n (Test C06: n =3.33, £ = 1.5029).

0.12

0.1 1

Deflection (m)
o
&

o deflection data
n=3.32
n=3.33
------ n=3.34

applied load

5 10 15 20
Time (min)

Figure 6-5(c): Range for creep exponent, n (Test C06: n = 2.0e-25, E = 1.50e9).

130

Load (kPa)

Load (kPa)

Load (kPa)



0.35 50
o deflection data
03 - E=0.90e9 4 45
: ~——E=1.00e9 L 40
------ E=1.20e9 9
e 0.25 4 |~—-applied load - 35
£
= 02 T eec %
£ 0®° L 25
o
& 0.15 - 0’ L 20
Z e
0.1 1 R o,d’ - 15
gl -4 4 L 10
: -5
0 v T T T v 0
0 50 100 150 200 250 300
Time (min)
Figure 6-6(a): Range for Young's modulus, £ (Test C07: n = 3.19, nn = 2.0e-25).
0.35 50
o deflection data
0.3 4 eta=1.8e-25 445
eta=2.0e-25 o 40
------ eta=2.2e-25
3 0.25 + ~~applied load 35
c 02 , °°° Y
'.—g °° ® - 25
(-]
2 0151 0°® L 20
a *°°
f - 10
0.05 -j['k
L - 5
Q r T v v r 0
0 50 100 150 200 250 300
Time (min)
Figure 6-6(b): Range for creep coefficient, n (Test C07: n =3.19, £ = 1.00e9).
0.35 - 50
o deflection data
0.3 n=3.18 q95
: n=3.19 o 40
~-----n=3.20
__0.251 applied load L35
E
c 0.2
°
2o
2 .15 4
-]
a
0.1 4
0.05
i - 5
0 T T T " r 0
0 50 100 150 200 250 300

Time (min)

Figure 6-6(c): Range for creep exponent, n (Test C07: n=2.0e-25, £ = 1.00e9).
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Load (kPa)
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03
o deflection data L 70
| e—E=1.90e9 °
0.25 4 |——E=2.10e9 - 60
------ E=2.40e9
~eseere applied load
£ 021 - ° - 50
~ °
= °
2 0.15 1 ¢ - 40
8 o
% 30
a 0.1 °
-4
o - 20
0.05 4 il L 10
o
o] T T r T y v r T T 0
0 20 40 60 80 100 129 140 160 180 200
Time (min)
Figure 6-7(a): Range for Young's modulus, £ (Test C08: n = 3.03, n = 2.0e-25).
0.3
o deflection data - 70
eta=1.8e-25 °
0.25 4 eta=2.2e-25 - 60
------ eta=2.5e-25
E 0.2 . ~e=ee- anplied foad : | 50
= 7 $
o -
Soisd |/ s 40
O ] °
k-] ; °
S / »° - 30
a 014 A
{ UDIRSTSIEPFPED = e - 20
0.05 - f 10
4
0 r v T T T T T T v [
0 20 40 60 80 100 120 140 160 180 200
Time (min)
Figure 6-7(b): Range for creep coefficient, n (Test C08:n =3.03, £ = 2.10e9).
0.3
o deflection data - 70
——n=3.02 °
0.25 4 n=3.03 - 60
------ n=3.04
g 024 e 3pplied load : | 50
= 4 g
o o - 40
2 0.15 / $
(-] o
% o - 30
a 0.1 o ° e
!’ U PPRPPS T = B S L 20
0.05 ! 10
o
0 T T T T T T T T T 0
[ 20 40 80 80 100 120 140 160 180 200
Time (min)

Figure 6-7(c): Range for creep exponent, n (Test C08: n = 2.0e-25, £ = 2.00e9).
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Load (kPa)

Load (kPa)

Load (kPa)



Deflection (m)

Deflection (m)

Deflection (m)

0.25 90
- 80
o
0.2 70
-]
- 60
0.15 1 °
° - 50
o
° - 40
0.1 4
M o deflectondaa] [ 3°
—E=1.30e9
0.05 - ——E=1.40e9 20
/ ------ E=1.5Ce9 L 10
A ~gpplied load
0 A T T T v g T T T T T v T o]
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time (min)
Figure 6-8(a): Range for Young's modulus, £ (Test C09: n =3.13, n = 2.0e-25).
0.25 90
- 80
©
0.2 4 / L 70
’ o
f - 60
0.15 °
/ ° - 50
o
° e I 40
T o deflection data] | 30
eta=1.7e-25 L 20
0.05 - eta=2.0e-25
------ eta=2.3e-25 L 10
———applied {oad
0 A T v v T T T T T T T T r 0
0 10 20 30 40 50 60 70 80 g0 100 110 120 130
Time (min)
Figure 6-8(b): Range for creep coefficient, n| (Test C09: n =3.13, £ = 1.40e9).
0.25 90
I . 80
0.2 4 f,; L 70
o
- 60
0.15 4 °
° - 50
-3
P - 40
o1d S e eeesssocssesczoczITIiTS
s A o deflection dawm| | 30
n=3.12
0.05 n=3.13 20
------ n=3.14 - 10
."J applied load
0 — T T T T . T T T T T T 0
0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time (min)

Figure 6-8(c): Range for creep exponent, n (Test C09: i = 2.0e-25, £ = 1.40e9).
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Load (kPa)

Load (kPa)

Load (kPa)



Deflection (m)

Deflection (m)

Deflection (m)

0.35 25
of
0.3 4
°L 20
-3
0.25 3
s L1
0.2 4 . & 5
o o o 020
0.15 4 10
0.1 4 o deflection data
) ——E=1.30e9
———E=1.50e9 -5
eos{ £ e E=2.00e9
~gapnolied load
0 T T T T T ]
0 50 100 150 200 250 300
Time (min)
Figure 6-9(a): Range for Young's modulus, £ (Test C11:n =3.16,n = 2.0e-25).
0.35 25
o
0.3 4§
oL 20
i °
0.25 r P
j ;s 15
0.2 !' °o°° Mo
i L0002 e
S v = 10
0.1 4 / o o deflection data
. —gta=1.8e-25
eta=2.0e-25 S
o054 /e eta=2.2e-25
~-—applied load
0+= r T T T T 0
] 50 100 150 200 250 300
Time (min)
Figure 6-9(b): Range for creep coefficient, n (Test C11: n =3.16, £ = 1.50e9).
0.35 25
o]
0.3
°l20
-3
0.25 / s
f L15
0.2 &
2800 e
L T — [ 10
ol o deflection data
’ n=3.15
n=3.16 - S
0054 /° e n=3.17
/ ~—-applied load
0+ T v T T T 0
0 50 100 150 200 250 300

Time (min)

Figure 6-9(c): Range for creep exponent, n (Test C11: n = 2.0e-25, £ = 1.50e9).
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Load {kPa)

Load (kPa)

Load (kPa)



Deflection (m)

Deflection (m)

Deflection (m)

0.35 45
0.3 40
- 35
0.25 A
- 30
0.2 - 25
0.15 4 - 20
o1 ] o deflection data 15
E=0.78¢9 10
——E=0.82e9
eosqy e E=0.84e9 L 5
applied load
ok - - . : . . : . 0
0 200 400 600 800 1000 1200 1400 1600
Time (min)
Figure 6-10(a): Range for Young's modulus, £ (Test C14: n = 3.12, 1 = 2.0e-25).
0.35 45
031 L 40
- 35
0.25 -
- 30
0.2 -j - 25
0.15 i - 20
0.1 -i o deflectiondatal | 15
ets=1.9e-25 L 10
eta=2.0e-25
eos4 eta=2.1e-25 | 5
~e—agpplied load
0 v v v v T T Y v 0
0 200 400 600 800 1000 1200 1400 1600
Time (min)
Figure 6-10(b): Range for creep coefficient, n (Test C14: n =3.12, £ = 0.84¢9).
0.35 45
04 - - 40
- 35
0.25
r 30
0.2 1 - 25
0.15 4] - 20
0.1 _; o deflectiondata] | 15
n=3.11 | 10
n=3.12
eos4, n=3.13 | 5
applied load
0 v T T r r T T r 0
[ 200 400 600 800 1000 1200 1400 1600

Time (min)

Figure 6-10(c): Range for creep exponent, n (Test C14: n = 2.1e-25, £ = 0.84e9).
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Load (kPa)

Load (kPa)

Load (kPa)



Time (min)

Figure 6-11(c): Range for creep exponent, n (Test C15: n = 2.0e-25, £ = 1.00e9).
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0.7 90
06 ° tao
-2 o
: - 70
0.5 1 ° 60
E & B
= &
g 04+ 000’ - 50
% ! o © o0 © ° ——r
2 0.3 - / e o o L 40
@
e 0.2 4 e 0 O e o defleciondaa] [ 20
o © ° ——£=0.90e9 L 20
——E=1.00e9
------ E=1.20e9 L 10
applied load
T T T T T 0
100 150 200 250 300 350
Time (min)
Figure 6-11(2): Range for Young's modulus, £ (Test C15: n =3.12, = 2.0e-25).
0.7 90
-]
0.6 - _ _ oo
s / e 70
.9 ] °
? f o - 60
= H &°
e 0.4 ; o |
2 1‘1“ . 0 ooa ° 50
- F 0% -
o034y 4 ae. 2% MPPP - 40
5 A
e 02d F S o deflecton daa] | 30
eta=1.8e-25 L 20
eta=2.0e-25
01494 Ao e eta=2.2e25 | | 10
applied load
0 v ™ T v T v 0
0 50 100 150 200 250 300 350
Time (min)
Figure 6-11(b): Range for creep coefficient, n (Test C15: n =3.12, £ = 1.00e9).
0.7 90
056 - ° Lso
- -4
/f 2 o
0.5 H °
T / A - 60
= &
- ©
594 / et 50
-t 0% ¥ ee-
% 031 4 eeneces RS - 40
a o2d £ o defecton daa] [ 30
TH e n=3.11 | 20
n=3.12
0144 A e n=3.13 L 10
applied load
0 fo— v T v T T T 0
0 50 100 150 200 250 300 350

Load (kPa)

Load (kPa)

Load (kPa)



0.3 50
° - 45
0.25 - L 40
E 02 ] - 35
E - 30
&
= 0.15 - r 25
3
% - 20
a 0.1+ o deflectiondata| | 15
——E=1.00e9
0.05 | —E=1.20e9 - 10
------ E=1.40e9 5
~—==applied load
0+—=2 r T v . T . 0
0 5 10 15 20 25 30 35
Time (min)
Figure 6-12(a): Range for Young's modulus, £ (Test C19: n = 3.38, n = 2.0e-25).
03 50
> - 45
o2s4 S - L 40
3 0.2 4 “f %
= s 30
o o L
g 0.15 _ /‘ 2
% / I 20
a 0.1 4 / deflection data| | 15
eta=1.9e-25
0.05 4 eta=21e-25 | [ 10
------ eta=2.3e-25 L 5
~~-applied load
0 2 v T T T v r 0
0 5 10 15 20 25 30 35
Time (min)
Figure 6-12(b): Range for creep coefficient, n (Test C19:n =3.38, £ = 1.20e9).
03 50
- 45
4
0.25 I 40
E 02 ) - 35
E - 30
s
= 0.15 4 - 25
]
2 - 20
2 0.1
[=] . Z o defleciondatal | 15
n=3.37
oos] * n=3.38 - 10
4 n=3.39 L 5
° ~———anplied load
0 2 T . r v T . 0
0 5 10 15 20 25 30 35
Time (min)

Figure 6-12(c): Range for creep exponent, n (Test C19:n=2.2¢-25, £ = 1.20e9).
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0.5 50
0.45 o deflection data ° L 45
|——E=0.80e9 %o,
0.4 { |——E=1.10e8 ’//’— °° e, - 40
~—=applied load
__0.354 L 35
é 0.3 4 - 30
s
S - 25
2
< - 20
a 15
- 10
- 5
0
50
Time (min)
Figure 6-13(a): Range for Young's modulus, £ (Test C20: n = 3.40, n = 2.0e-25).
0.5 50
o deflection data
0.45 4 eta=1.56-25 o, . - 45
| eta=2.0e-25 ° ° o |
041 ... eta=2.56-25 ° ®e 4
0.35 4 |~=-—applied load L 35
£
= 0.3 1 ° 30
2 0.25 L 25
]
&= 0.2 - 20
a
0.15 - ,,/’////, - 15
0.1 4 // - 10
0.05 4 5
el ' . . . . . . 0
0 5 10 15 20 25 30 35 40 45 50
Time (min)
Figure 6-13(b): Range for creep coefficient, nj (Test C20: n = 3.40, £ = 1.00e9).
0.5 50
o deflection data
0.45 1 n=3.37 oo, - 45
n=3.40 ° ®o,
s I =3.43 ° ®o 40
— 0.35 4 applied load - 35
E
= 0.3 - ° - 30
2 0.25 - L 25
H
= 0.2 - 20
a
0.15 4 - 15
0.1 4 r 10
0.05 + -5
0 0
0 50

Time (min)

Figure 6-13(c): Range for creep exponent, n (Test C20: 1 = 2.0e-25, £ = 1.00e9).
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Deflection {m)

Deflection (m)

Deflection (m)

0.25

0.2 1

Q

-

wn
'

o
>
2

0.05 4

o defiection data
——E=1.80e9
-——E=2.00e9
------ E=2.10e9
-~~~ gpplied load

I 50

- 40

- 30

- 20

- 10

T T T Y T T T T T T

T T T

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.25

Time (min)

Figure 6-14(a): Range for Young's modulus, £ (Test C21: n =3.25,

n = 2.0e-25).

0

75

0.2 4

0.15 4

0.1 1

0.05 -

o deflection data
eta=1.9e-25
eta=2.0e-25
------ eta=2.1e-25

~~~—applied load

60

I 50

40

- 30

- 20

F 10

0.25

T T T T T T T T T T T

T T T

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Time (min)

Figure 6-14(b): Range for creep coefficient, nt (Test C21: n = 3.25, £ = 2.00e9).

0

75

0.2 4
0.15 A
0.1 1

0.05 4
I

o deflection data
n=3.24
n=3.25
~~~~~~ n=3.26

~—~applied load

T T T 2 T Y -—T T T T L3 T

T T

0 5 10 15 20 25 30 35 40 45 S50 55 60 65 70

Time {(min)

Figure 6-14(c): Range for creep exponent, n (Test C21: n = 2.0e-25, E = 2.00e9).
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0.6 70
0.5 - /|60
j (-3 °
I 50
T 041 /h o
H f 40
= 0.3 N o 2
& . L 30
=
-] ¢
a o deflectiondata} | 55
E=0.55e9
——E=0.60e9
------ E=0.65¢9 - 10
~~—=applied load
T T T T — T 0
40 50 60 70 80 a0 100
Time (min)
Figure 6-15(a): Range for Young's modulus, £ (Test C22: n =3.38, n = 1.8e-25).
0.6 70
0.5 4 / . [ 60
V4 °
r 4 °
I 50
-4
F 041 / S
g / 0
= 0.3 1 Vi
8 3 30
2 /
o 0.2 1 7 -
¥ o deflectiondatal | ,q
eta=1.7e-25
0.1 eta=1.9e-25
------ eta=2.1e-25 - 10
R v applied load
0 o . ; — , . . — — : 0
0 10 20 30 40 50 60 70 80 Q0 100
Time (min)
Figure 6-15(b): Range for creep coefficient, n (Test C22:n =338, £ = 0.60e9).
0.6 70
R
4
0.5 - / o [ 80
f/ °
4 O Fso
‘E‘ 0.4 4 °
g = I 40
= 0.3 1
[3}
Q| A e 30
= -
S 0.2 /
a 6. o deflectiondataj | oq
n=3.37
0.1 1 n=3.38
------ n=3.39 - 10
R |~——applied load
0 fal y . - . . , . - . 0
0 10 20 30 40 50 60 70 80 90 100
Time (min)

Figure 6-15(c): Range for creep exponent, n (Test C22: 1y
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= 1.8e-25, E =0.60e9).
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Load (kPa)

Load (kPa)



0.12 45
o deflection data
———E=3.00e9 L 40
0.1 { |——E=3.25¢s
------ E=3.50e9 - 35
+=eeeeapplied load
£ 0.08 - BES L 30
s - 25
= 0.06 -
§ - 20
o
Q
Q 0.04 4 - 1S
- 10
0.02 4
- 5
0 T T T T 0
¢} 2 [ 8 10 12
Time {min)
Figure 6-16(a): Range for Young's modulus, E (Test C03: n =3.28, n = 2.0e-25).
0.12 45
o deflection data
eta=1.7e-25 - 40
0.1 4 eta=1.9e-25
------ eta=2.1e-25 - 35
e applied load
£ 0.08 - FEReC =2 L 30
g - 25
2 0.06 -
9 - 20
f~—d
-1}
Q 0.04 - 15
- 10
0.02 4
- 5
¢} T T T T 0
o 2 6 8 10 12
Time (min)
Figure 6-16(b): Range for creep coefficient, rj (Test C03: n =3.28, £ = 3.50e9).
0.12 45
o deflection data
0.1 - n=3.27 ° - 40
n=3.28 - 35
e applied load
E 0.08 4 - 30
s - 25
2 0.06 -
8 L 20
B
Q 0.04 A - 15
- 10
0.02
S
0 v v — T T [§]
0 2 4 6 8 10 12
Time (min)

Figure 6-16(c): Range for creep exponent, n (Test C03: n = 2.0e-25, £ = 3.50e9).
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0.2
o deflection data
0.18 4 }——E=3.50e9 °
———E=4.00e9 -
0161 | ... E=4.50e9
. 0.14 4 ~~=applied load
£ 012
s
= 0.11 5
3
E 0.08 A
0.06 - 1
0.04 -
0.02 A
0 ° r . r :
0 5 10 15 20 25
Time (min)
Figure 6-17(a): Range for Young's modulus, £ (Test C10: n =3.25, 1 = 2.0e-25).
0.2
o deflection data
0.18 A eta=1.5¢-25 °
eta=2.0e-25 o
eta=2.5e-25
e anplied load
25
Time (min)
Figure 6-17(b): Range for creep coefficient, nj (Test C10: n = 3.25, £ = 4.00e9).
0.2
o deflection data
0.18 - n=3.24
0.16 n=3.25 [
------ n=3.26
. 0.14 1 - anplied load
g’ 0.12 4
s
= 0.14 5
3
% 0.08
S 0.06- "
0.04 4
0.02 -1
0 T y T v
0 S 10 15 20 25
Time (min)

Figure 6-17(c): Range for creep exponent, n (Test C10: n =2.0e-25, £ = 4.00¢9).
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Deflection (m)

Deflection (m)

Deflection (m)

0.35
o deflection data
E£=3.00e9
031 | E=4.0009 -
------ E=5.00e9
0.25 4 |+===applied load i
0.2 4
0.15 1
0.1
0.05 4 i
0
o] 60
Time (min)
Figure 6-18(a): Range for Young's modulus, £ (Test C16: n = 3.15, n = 2.0e-25).
0.35
o deflection data
eta=1.8e-25
031 eta=2.2e-25 -
0.25 4 |--—-applied load |
0.2 4
0.15 A
0.1 4
0.05 4 [
0
0 60
Time (min)
Figure 6-18(b): Range for creep coefficient, n (Test C16: n = 3.15, £ = 4.00e9).
0.35
o deflection data
n=3.14
031 n=3.15 -
------ n=3.16
0.25 1 applied load |
0.2 4
0.15
0.1
0.05 A [
0
0 60

Time (min)

Figure 6-18(c): Range for creep exponent, n (Test C16: n = 2.0e-25, £ = 4.00e9).
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0.18
. mms 0o
0.16 |
smm an
20
E - 15
=
2
g
% 10
a o deflection data
——E=1.30e9
——E=1.50e9 -5
s £=1.7029
m_ applied load
- T T v T T 0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (min)
Figure 6-19(a): Range for Young's modulus, £ (Test C13: n = 3.08, n = 2.0e-25).
0.18 25
e mEe oo
0.16 A
aEm ss
0.14 - - 20
= 0.12 4
% 15
S 0.1 4
k5]
0.08 A
% L 10
Q 0.06 4 o deflection data
0.04 4 eta=1.9e-25
e eta=2.0e-25 5
0.02 8 eta=2.16-25
F ® applied foad
0 T T T T v T r T 0
0 500 1000 1500 2060 2500 3000 3500 4000 4500
Time (min)
Figure 6-19(b): Range for creep coefficient, n (Test C13: n = 3.08, £ = 1.50e9).
0.18 25
| EBEE -1
0.16 A
0.14 1 - 20
0124
% 15
S 0.1 1
S 0.08 A
2 L 10
3 0.06
a 0. o deflection data
0.04 - n=3.07
e n=3.08 -5
0.02 ¥ n=3.09
k & applied load
0 T r Y r T v T . 0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (min)

Figure 6-19(c): Range for creep exponent, 7 (Test C13: n=2.0e-25, £ = 1.50e9).
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Time (min)

Figure 6-20(c): Range for creep exponent, n (Test C12: n = 2.0e-25, £ = 3.00¢9).
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0.25 40
o deflection data
——E=2.50e9 a5
——E=3.00e9
021 ... E=4.00e9 39
= applied foad
E 015 - 25
=
_g - 20
H
< 0.1 - 15
a
- 10
0.05 4 -
rev* ------- i L 5
0 r T T T v T 0
0 10 20 30 40 50 60 70
Time (min)
Figure 6-20(a): Range for Young's modulus, £ (Test C12: n = 3.35, n = 2.0e-25).
0.25 40
o deflection data
eta=1.8e-25 L 35
eta=2.0e-25
021 L. eta=2.2e-25 | 30
— applied load
E s - 25
c
g I 20
Q
2 o
s Y11 15
a
10
0.05 A <
/-’"-—' ° L5
0 r T T T T T 0
0 10 20 30 40 50 60 70
Time (min)
Figure 6-20(b): Range for creep coefficient, n (Test C12: n = 3.35, £ = 3.00¢9).
0.25 40
o deflection data
n=3.34 - 35
n=3.35
021 ]..... n=3.36 .
—_ ~~—=applied load
- 25
‘E’ 0.15 A
=
_g - 20
2
< 0.1 - 15
a
- 10
0.05
/,,dr——f ° L s
0 T T T T T \ 0
[¢] 10 20 30 40 50 60 70

Load (kPa)

Load (kPa)

Load (kPa)



30

0.2
0.18 4
0.16 ss = - [] s [ ] a - - 25
. « e
‘é‘ 0.14 - - 20
‘g’ 0.12 4 - = =
= 0.1 . L 15
g ,.
$o0084 2
a 0.06 4 . o deflectondaa] [ 10
" ——E=1.00e9
00441 g ——E=1.20e9 s
2 E=1.40e9
0.02 1 o°°° = appiied load
0 r T T T T o]
o 50 100 150 200 250 300
Time (min)
Figure 6-21(a): Range for Young's modulus, £ (Test F05: n = 3.30, 1 = 2.0e-25).
0.2 30
0.18 _—
0.16 - as = a n = e s - - - 25
J P
‘é‘ 014 - 20
‘:’ 0.12 4 .
2 0.1 . ; L 15
3
$ 008 8 .
Ooos{ * o deflectondam| | 10
. ° eta=1.8¢-25
0044 & / ea20e25 | | g
o024 5 eta=2.2e-25
° s applied ioad
(4
0 T T v ¥ T [}
0 50 100 150 200 250 300
Time (min)
Figure 6-21(b): Range for creep coefficient, i (Test F05: n = 3.30, £ = 1.20e9).
0.2 30
0.18
0.16 - LR s s . - e - . 25
.14 4 s s
T o1 - - 20
= 0.12 4 .
2 0.1 . 5= L 15
]
$o0o08]
(-2
a 0.06 4 - o o deflectiondata] | 10
o n=3.29
0044 & / n=3.30 L 5
{2 n=3.31
002 1u 4 o° s applied ioad
0 Y v T - T (o]
o 50 100 150 200 250 300

Time (min)

Figure 6-21(c): Range for creep exponent, n (Test FOS: 1 = 2.0e-25, £ = 1.20e9).
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0.8 35
o deflection data
07 4 |~ E=0.50e3 . a s . . 8 - 30
——E=0.70e9
o064 I E=1.00e9
& = applied load a - 25
E o5
c 20
S 04 - °
[3)
o - 15
"g 0.3 . °
= - - 1
02 - A 0
. =
0.1 4 -5
]
0 T r Y T T v T T T - T T T T T ~r 0
0 1C 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Time (min) ’
Figure 6-22(a): Range for Young's modulus, £ (Test F06: n = 3.35, 1 = 2.0e-25).
0.8 35
o deflection data
074 ! eta=1.5e-25 a - - - - a 30
eta=2.0e-25
064 |7 eta=2.5e-25
- ® applied foad = - 25
£ 05
pes - 20
2 04 - = °
[*]
e 15
8 0.3 4 - e
024 e o—---"‘° ------------- - 10
y . 5
014 -
L-4
0 T T T v T T v Y v T T T T T — T 0
0 10 20 30 40 50 60 70 80 90 1C0 110 120 130 140 150 160 170
Time (min)
Figure 6-22(b): Range for creep coefTicient, | (Test F06: n =3.35, £ =0.70e9).
0.8 35
o deflection data
071 |—n=335 L = ] L] ] [] L 30
—n=3.37
0.6 1 u_applied load - L 25
E o5
< - 20
2 04 - °
] F 15
g 0.3 - a °
-1
02 4 = 0
n
0.1 4 rs
[
0 T T 7 T T T T T T T T T T T T Y 0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 180 170
Time (min)

Figure 6-22(c): Range for creep exponent, n (Test F06: n = 2.0e-25, £ =1.00e9).
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30

o defiection data
0.9 - E=0.80e9 o
0.8 - E=0.90e9 s - = = . s " s Esssm - 25
----- E=1.00e9
0.7 1 w_applied load °
g - 20
~ 0.6 - s °
S °
— d ° -
E 0.5 . 15
= 0.4 1 L] o
3 - 10
0.3 4 °
o
0.2 1 . -
ry 5
0.1 1 4
3
0 — r v T T T T v T T 0
o] 20 40 60 80 100 120 140 160 180 200 220
Time (min)
Figure 6-23(a): Range for Young's modulus, £ (Test FO7: n = 3.34, n = 2.0e-25).
1 30
o deflection data
0.9 4 eta=1.8e-25 R
0.8 4 eta=2.0e-25 L] [] [ ] [ ] [ ] ] " 5§ ssswm 25
----- eta=2.2e-25
0.7 4 @ applied load °
T ' L 20
~ 0.6 1 a °
s °
§ 0.5 1 . ° L 15
% 0.4 1 L] °
=) 0.3 ° R - 10
O ooz
0.2 4 =
= 5
0.1 9 °
3
0 r - T T T T T T r T 0
0 20 40 60 80 100 120 140 160 180 200 220
Time (min)
Figure 6-23(b): Range for creep coefficient, n (Test FO7: n = 3.34, £ = 0.90e9).
1 30
o deflection data
0.9 - n=3.33 o
0.8 n=3.34 [ = [ ] s n ] = 8 ssamm - 25
----- n=3.35
0.7 4 = applied load °
T o L 20
~ 0.6 = °
S °
= 0.54 ° - 15
3 o
E 0.4 1 - °
0.3 1 . -"-1' - 10
0.2 e o
> ]
0.1 4 4
0 —r x v r . T T T v — 0
0 20 40 60 80 100 120 140 160 180 200 220
Time (min)

Figure 6-23(c): Range for creep exponent, n (Test FO7: n =2.0e-25, £ = 0.90e9).
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0.35 1000
o 3 a8 8 &= [ ] a [ 3 - a [} [ 3 [ ] [} | o 900
I 800
__ 0251 L 700
E
g 0.2 4 - 600
.§ ) - 500
g 0187 L 400
Q 014" 0 ° ° o deflectiondata| } 300
L ° E=0.10e9
0.05 ° ——E=0.15¢9 - 200
0547 e £=0.20e9 | 100
s applied load
0 v T v T 0
0 50 100 150 200 250
Time (min)
Figure 6-24(a): Range for Young's modulus, £ (Test FO8: n =3.48,n = 2.0e-25).
0.35 1000
- 900
0.3 4
- 800
- 0.25 1 - 700
£
g 0.2 4 - 600
.§ - 500
g 0157 L 400
a 014°® o ¢ ° o deflectiondata| |} 300
o eta=1.8e-25
0.05 ° eta=2 0e-25 200
o1 /o e eta=2.5e-25 !
® applied load | 100
0 r r T T 0
0 50 100 150 200 250
Time (min)
Figure 6-24(b): Range for creep coefficient, 1| (Test FO8: n = 3.48, £ = 0.15e9).
0.35 1000
0 3 asn a e a [ . | ] [ } [ L ] - L 3 | [ | I 900
’ - 800
0251 - 700
E
g 0.2 4 - 600
§ - 500
2 0.15 400
- 014" o 7 o deflectiondata] |- 300
o n=347
0.05 ° n=3.48 - 200
A1/ e e n=3.50
e applied load 100
0 T T T T 0
0 50 100 150 200 250

Time (min)

Figure 6-24(c): Range for creep exponent, n (Test FO8: n =2.0e-25, £ = 0.15¢9).
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0.3 18
o deflection data o
E=2.50e9 L 16
0.25{ |——E=3.00e9 -
~~~~~ E=3.50e9 aas 2 - 14
— a appiied load ..-.-' o
g 0.2 4 . ans” o° - 12
€ - 10
2 0.151
e 8
=
-]
a 0.1 - 6
x
0.05
2
0 ? T T T T 0
0 10 20 30 40 50 60 70
Time (min)
Figure 6-25(a): Range for Young's modulus, £ (Test FOl: n = 3.26, n = 2.0e-25).
0.3 18
o deflection data °
eta=1.8e-25 16
0.25 + eta=2.0e-25 -
----- eta=2.2e-25 ..""" N - 14
®__applied load Ll °
‘E‘ 0.2 4 -‘.l. o - 12
= L e
g f'.. > L 10
= 0.154
3 - 8
3
o 0.1 - 6
4
0.05
2
o R0 v v T T 0
0 10 20 30 40 50 60 70
Time (min)
Figure 6-25(b): Range for creep coefficient, nj (Test FOl: n =3.26, £ = 3.00e9).
0.3 18
o deflection data °
n=3.24 16
0.25 - n=3.26 -
~~~~~ n=3.27 _..--" ° 14
= 02 & applied load . assma® °o° 12
E ] - o . i
& " o L 10
= 0.154
H - 8
3
a 0.14 -6
-4
0.05
2
o] ? T T T T 0
4} 10 20 30 40 50 60 70
Time (min)

Figure 6-25(c): Range for creep exponent, n (Test FOl: n =2.0e-25, £ = 3.00e9).

150

Load (kPa)

Load (kPa)

Load (kPa)



0.45

25
o deflection data
04 4 |~———E=1.30e9 el = = g
——E=1.50e9 an®™
. " - 20
0354 |----- E=2.00e9 -" . °
w _applied load a o°
T 031 .",pﬁ' o
= - 15
§
3
2
..g - 10
-5
S
— o]
0 10 20 30 40 50 60 70 80 90 100 110
Time (min)
Figure 6-26(a): Range for Young's modulus, £ (Test F02: n = 3.23, n = 2.0e-25).
0.45 25
o deflection data
0.4 - eta=1.5e-25 aumnS RTINS - §
eta=2.0e-25 _.pl" 20
0359 {...-- eta=2.5e-25 - . ° i
s applied load L o°
T 031 -‘,.F*' o
- o 15
s
S
2
g 10
- S
f o}
0 10 20 30 40 50 60 70 80 90 100 110
Time (min)
Figure 6-26(b): Range for creep coefficient, n (Test F02: n = 3.23, £ = 1.50e9).
gu g P
0.45 25
¢ deflection data -
0.4 4 =3. pomsRSS IR TES o g
a2 -
=3. ™™ - 20
- »
0354 i..... n=3.25 - ] °
® applied ioad a o
£ 031 f o
- - 15
§
5
= L 10
a
- 5
0

40 50 60

Time (min)

70 80 90 100

Figure 6-26(c): Range for creep exponent, n (Test F02: n = 2.0e-25, £ = 1.50e9).
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0.35 25
o deflection data -
E=2.50e9 = "
031 | —E=3.00e9 « " 1 50
----- E=3.50e9 - " i
0.25 4 = applied load a ¥ °
_— [ ]
E - ° L 15
0.2 4 L]
s . :
=
8 0.15 "
= 7] " - 10
8 a® =
0.1 4 . -
= = | 5
0.05 L] ° °
- s [ ] e o
0 == ram oo o . . . . . 0
0 5 10 15 20 25 30 35 40
Time (min)
Figure 6-27(a): Range for Young's modulus, £ (Test FO3: n = 3.26, n = 2.0e-25).
0.35 25
o deflection data -
eta=1.8e-25 = []
0.3 . o
eta=2.0e-25 - . °1 o0
----- eta=2.5e-25 [
0254 | & appliedload « * °
e [ Lot
g [ o - 15
& - . - o
§ 0.2 - s
E o " g
g 0.15 A . e L 10
a al "’»_,..
0.1 4 - " e
0.0 ) 2 °
.05 4 [ rellc
. a a purs o
0 4= > a2 2 v v r r v 0
0 5 10 15 20 25 30 35 40
Time {min)
Figure 6-27(b): Range for creep coefficient, n) (Test FO3: n = 3.26, £ = 3.00e9).
0.35 25
o deflection data .
n=3.25 [
03 1 n=3.26 . " o 20
----- n=3.28 [
0.25 4 & applied load « " °
— 3 -
‘E' . e L 15
e 021 L] .
2 a -3
.g - " o
2 0151 . oz 10
a z"” - >
0.1 4 - s
" e
= L s
0.05 1 [ °
| .® °o ¢ °°
0 8= - ao o . . . . . 0
0 5 10 15 20 25 30 35 40
Time (min)

Figure 6-27(c): Range for creep exponent, n (Test FO3: i = 2.0e-25, £ = 3.00e9).
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0.6 45
o deflection data
~——E=1.50e9 o |40
0.54 {——€e=2.00e9 a® [} ssscmas l: [
----- =2.50e9 qun® 0 ® - 35
-
=04 4 8 applied load - -~ °® | a0
E at® °
g s" °0°®
5 .e" ° 25
= 0.3 4 n
Q . o2 - 20
= al °
-] o 3
Q 0.2 o 15
i
" - = - 10
0.1 4 ® L
a® L 5
| ]
0 $S—xEEE IS C° . : : . . . 0
0 10 20 30 40 50 60 70 80 a0
Time (min)
Figure 6-28(a): Range for Young's modulus, £ (Test F04: n =3.25, n = 2.0e-25).
06 45
o deflection data
eta=1.56-25 =  F TR NIRRT : - 40
0.5 A eta=2.0e-25 a® °
----- eta=2.5e-25 un® . ° - 35
s__applied load -t °
T 041 " o® - 30
- 2 s o ° °
& h ° - 25
= 0.3 - .
2 L 20
=
-]
a 0.2 - 15
- 10
0.1 4
S
0 0
o] 10 20 30 40 50 60 70 80 90
Time (min)
Figure 6-28(b): Range for creep coefficient, n (Test F04: n =3.25, E = 2.00¢9).
0.6 45
o deflection data
n=3.23 [] sEsseEsn ll:-40
0.5 4 n=3.25 st °
----- n=3.27 i s" 0 ® - 35
- 04 4 8 applied load ...- o | 39
é - «® o ® °
g h o ° _t2s
= 0.3 1 e e
S s® 0% e - 20
= a® 0®
D O .t
Q 0.2 4 P - 15
L
L e - 10
0.1 1 e
a" L5
[ ]
0 = xR AAA : : . . . : 0
0 10 20 30 40 50 60 70 80 90
Time (min)

Figure 6-28(c): Range for creep exponent, n (Test F04: n = 2.0e-25, £ = 2.00e9).
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0.25

0.2 1

o
b
-
(4]
n

Deflection (m)
o

0.05 4

o deflection data
E=0.40e9
——E=0.50e9

& applied load

2000
- 1800
- 1600
- 1400
- 1200
- 1000
- 800
- 600
- 400
- 200

0.25

Time (min)

Figure 6-29(a): Range for Young's modulus, £ (Test F09: n = 3.35, n = 2.0e-25).

35

2000

0.2 1

o

-

[3)]
I

Deflection (m)
o

0.05

o deflection data
eta=1.5e-25
eta=2.0e-25
----- eta=2.5e-25

« applied load

- 1800
- 1600
- 1400
- 1200
- 1000
- 800
- 600
- 400
- 200

0.25

T T T Y T

10 15 20 25 30
Time (min)

Figure 6-29(b): Range for creep coefficient, nj (Test F09: n = 3.35, £ = 0.50e9).

35

0.2 1

o

-

(3]
1

Deflection (m)
g

o deflection data
—n=3.30
n=3.35
----- n=3.40

= applied load

2000
I 1800
- 1600
- 1400
- 1200
- 1000
- 800
- 600
- 400
- 200

10 15 20 25 30
Time (min)

Figure 6-29(c): Range for creep exponent, n (Test F09: n = 2.0e-25, £ = 0.50e9).
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1400

0.14
o deflection data
E=1.00e9
0.12 £-1.20e9 - 1200
----- £=1.50e9
0.1 4 = applied load - 1000
E
e 0.08 - 800
=l
©
S 0.06 4 - 600
=
D
a
0.04 A L 400
0.02 4 - 200
b = -
0 +— 5 x : : r T 0
[¢] S 10 15 20 25 30 35
Time (min)
Figure 6-30(a): Range for Young's modulus, £ (Test F10: n = 3.40, n = 2.0e-25).
0.14 1400
o deflection data
) eta=1.5e-25 - ™ 1
0.12 eta=2 0e-25 ° 1200
--e- eta=2.5e-25 .
__ 014 | = appliedioad - et - 1000
£ .
= 0.08 4 - 800
k=]
k]
2 0.06 4 - 600
=
-]
a
0.04 1 - 400
0.02 4 - 200
P =
0 < T — T v T T 0
0 5 10 15 20 25 30 35
Time (min)
Figure 6-30(b): Range for creep coefficient, nj (Test F10: n = 3.38, £ = 1.20¢9).
0.14 1400
o deflection data
] n=3.35 = = |
0.12 e H 1200
----- n=3.40 =
— 0.1 4 m applied load = L . - 1000
E -
e 0.08 - 800
2
Q9
@ 0.06 4 - 600
=
[}
(=1
0.04 - 400
0.02 1 200
[ ]
0 A . : . r . 0
0 5 10 15 20 25 30 3S
Time (min)

Figure 6-30(c): Range for creep exponent, n (Test F10: 1 =2.0e-25, E = 1.20e9).
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0.14
o deflection data
———E=1.50e9 - ™ ] °o =
0124 | e<1.3068 = H
----- E=2.00e9 - - -
— 0.1 4 u appiied load
E
< 0.08 4 |
o
K X
2 0.06
-]
a 5
0.04
0.02 R
0 2 T T T T
0 5 10 15 20 25 30 35
Time (min)
Figure 6-31(a): Range for Young's modulus, £ (Test Fl1: n =3.32, n = 2.0e-25).
0.14
o deflection data
ata=1.5e-25 a = [ ] ° -
012 1 eta=2.0e-25 . S .
----- eta=2.5e-25 . -
- 0.1 4 apptied load |
E
e 0.08 L
]
K] X
2 0.06 4
Q
[} -
0.04
0.02 L
0 r T T . T v
0 S 10 15 20 25 30 35
Time (min)
Figure 6-31(b): Range for creep coefficient, n (Test Fil: n =3.32, E = 1.80e9).
0.14
o deflection data
n=3.31 » = [] ° =
0.12 1 n=3.32 = S .
----- n=3.33 . [ -
- 0.1 4 | u applied load . - |
E
e 0.08 1 R
2
S A
S 0.06 4
Q
Q =
0.04
0.02 4 ]
0 - T Y v T r
0 S 10 15 20 25 30 35
Time (min)

Figure 6-31(c): Range for creep exponent,n (Test F11: 1 = 2.0e-25, £ = 1.80e9).
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Deflection (m)

Deflection (m)

Deflection (m)

0.14 1800
o defiection data
0.12 €=0.90e9 o % 1600
127 [——E=1.0089 . o
----- £=1.10e9 - ° - 1400
0.1 4 = applied load = S ee———— T
__________________ - 1200
0.08 - - 1000
0.06 - - 800
- 600
0.04 -
- 400
0.02 4 - 200
04— . . . — . . . . . 0
o} 5 10 15 20 25 30 35 40 45 50
Time (min)
Figure 6-32(a): Range for Young's modulus, £ (Test F12:n =3.26,n= 2.0e-25).
0.14 1800
o deflection data
012 | |[——ea=15e:25 s TR SR e 8L 1600
: eta=2.0e-25 . o
----- eta=2.5e-25 - SR o 1400
0.1 4 | = _appiied load $----0
- 1200
0.08 - 1000
0.06 4 - 800
- 600
0.04 4
- 400
0.02 4 I 200
0 2 T T T v r T T v r 0
0 5 10 15 20 25 30 35 40 45 50
Time (min)
Figure 6-32(b): Range for creep coefficient, n (Test F12: n =3.26, £ = 1.00e9).
0.14 1800
ion d
Eibuyvalay = " & "= os s B0
0-12 1 n=3.26 . o °
..... n=3.27 L4 ° .- 1400
0.1 4 fied load . 6 o oemzonos
= gpplediead | T e L 1200
0.08 - 1000
0.06 1 - 800
- 600
0.04 1
- 400
0.02 A - 200
0 2 T T T T v T T T r 0
0 S 10 15 20 25 30 35 40 45 50
Time (min)

Figure 6-32(c): Range for creep exponent, n (Test F12: n = 2.0e-25, £ = 1.00e9).
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Deflection (m)

Deflection (m)

Deflection (m)

0.12 1800

o deflection data
E=1.50e9 - 1600
0.1 { [——E=2.00e9 =
..... =2 50e9 - - 1400
ied load
0.08 | =288t L 1200
- 1000
0.06 A
- 800
0.04 4 - 600
______ L 400
0021 ==
e - 200
0+ 2 T T T T T 0
o] 5 10 15 20 25 30
Time (min)
Figure 6-33(a): Range for Young's modulus, £ (Test F13: n =3.33, n = 2.0e-25).
0.12 1800
o deflection data R
eta=1.5e-25 - T .= 1600
0.1 1 eta=2.0e-25 - " L
----- eta=2.3e-25 - s - - 1400
lied load ez
0.08 { —S2gpfedlod . - L 1200
- 1000
0.06 |
- 800
0.04 4 - 600
- 400
0.02
- 200
0 T T r T T 0
4] 5 10 15 20 25 30
Time (min)
Figure 6-33(b): Range for creep coefficient, 1 (Test F13: n = 3.33, £ =2.00e9).
0.12 1800
o deflection data o
=331 . % = L1600
0.1 1 n=3.33 " -
----- n=3.35 - L 1400
& applied load
0.08 | - 1200
- 1000
0.06 |
- 800
0.04 | - 600
- 400
0.02 -
I 200
0 2 r T T T T 0
4] 5 10 15 20 25 30

Time (min)

Figure 6-33(c): Range for creep exponent, n (Test F13: n = 2.0e-25, E = 2.00e9).
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7.0 CONCLUSION
7.1 Summary and Conclusions

The ability to predict the response of an ice sheet to long term loading is
important in many situations. Ice sheets have been used as construction platforms,
drilling rig platforms, airfields, parking lots, and festival platforms. Numerical models
can be used to predict the deflection of an ice sheet over time, essentially allowing the
load to be removed prior to the ultimate failure of the ice.

In this thesis a brief description of the behaviour of ice under both short and long
term loading was given. Under short term loading ice behaves elastically, and any
deflection resulting from the load is recovered upon removal of the load. Under long
term loading permanent deformation (creep) occurs, caused by the movement of
imperfections in the crystal structure. A typical creep curve for polycrystalline ice was
described, differentiating between the three stages of creep: primary (transient),
secondary (steady state) and tertiary (accelerating). Various short term failure criteria for
ice were discussed, and the strain energy criterion was presented as a failure criterion for
the long term loading of ice. Physical properties of ice, including Young’s modulus,
Poisson’s ratio, ice grain size and ice density were discussed and some typical values
found in the literature were presented. Ice crystallography was briefly discussed, and
some photographs of thin sections of lake and river ice were shown.

A review of several previous model studies performed relating to the creep of ice
was presented. Most of these studies involved modelling data obtained from small scale
laboratory experiments conducted at various temperatures with various applied stresses.

A power law relationship was used to model the creep behaviour of ice, with the creep
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exponents ranging from about 1.8 to 3.64. The creep coefficient was given as a function
of temperature or time in several instances; in other cases, the coefficient reported ranged
from about 3.9x10* to 1.3x107" (when stresses were measured in Pascals and strains
were measured in seconds™).

A rheological model for ice was described and a two dimensional, axisymmetric
finite element model was developed to examine the time dependent deflection of a
floating ice cover under a distributed load. Several assumptions were made during the
model development: the ice sheet was homogeneous and transversely isotropic; the ice
sheet was infinite in extent; and the unit weight of water was 9,806 N/m>. The derivation
of the finite element equations was presented, and brief discussions on the Theorem of
Minimum Potential Energy and the Rayleigh-Ritz method were included. Equations,
which could be evaluated in closed form, were derived for the stiffness matrices and
mechanical load vector. A power law type of relationship was used to predict the creep
strain rate. The effects of creep were incorporated into the system of equations by means
of an additional creep load vector. In order to evaluate the creep load vector, creep strain
increments could be estimated using either the Euler or the 4™ Order Runge-Kutta
method. The 4™ Order Runge-Kutta method was used for all cases considered here
because it is more numerically stable, and a larger time step increment can be used than
with the Euler method. The creep load vector was evaluated numerically, using Gaussian
quadrature. A penalty method was used to impose the boundary conditions on the system
of equations, with the penalty being set equal to 10° times the largest value in the global

stiffness matrix, based on a sensitivity analysis.
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The elastic solution of the model was verified using existing analytical solutions
(from technical literature), and the creep calculations were checked against simple
analytical solutions that have been derived and presented here. The effects of changes in
spatial and temporal discretization on the results from the model were examined for both
concentrated (radius of load < 0.3 m) and distributed (radius of load > 0.3 m) loading
cases. For concentrated loading cases, it was found that using 33 elements (of varying
size) over a 50 m extent gave acceptable accuracy for the deflection of the ice cover over
time; for distributed loading cases, 20 elements gave acceptable accuracy. Changing the
number of integration points within each element also had an effect on accuracy. Using 5
integration points in the radial direction and 10 in the vertical direction (for each element)
was found to produce results that were identical to using 10 points in each direction (the
maximum possible for this model, and therefore the most accurate). The time step
increments (4f) were chosen by comparing the solution using each 4 to an “exact”
solution (using a very small 4. The time step increments chosen were 30's, 120s and
240 s (or a combination), depending on the total duration of the test.

The model was applied to 33 sets of long term load test data from large scale field
experiments performed on lake, bay, and reservoir ice. Three parameters were calibrated
for each test: Young’s modulus, E; the creep exponent, n; and the creep coefficient, 7.
The model results were found to be relatively insensitive to changes in Poisson’s ratio
(1), therefore v was kept constant at /3 (a typical value for ice).

The model predicted the deflection of an infinite ice sheet under constant loading
and under increasing loading very well, as verified by numerous tests. In several of these

tests, Young’s modulus appeared to be changing as the test progressed; different values
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of E were needed to match the predicted model deflection to the measured data at
different times. For the step function type of loading the model results were quite
accurate for the first half of the test, but less accuracy was obtained near the end of the
test. This was determined not to be a result of the size of the time step increment used.
In the one case of constant loading followed by increasing loading, the predicted
deflection during constant loading was quite good, but the model solution became
unstable during the ircreasing loading phase.

The values obtained for the creep exponent, n, in all of the cases examined here
ranged between 3.02 and 3.50, with an average of n=3.25. These results are more
consistent (the range of exponents is significantly smaller) than the results found from
earlier researchers, as discussed in chapter 3, which varied from about 1.8 to 3.64. The
creep coefficient, 7, consistently ranged from about 1.5x107% to 2.5x10*° s™'Pa™, with
an average value of 2.0 x10%° s™'Pa™. These values for 7 are all in the same order of
magnitude; previous researchers reported coefficients varying from the order of 107 to
10", Young’s modulus, E, showed the greatest variation here; for Beltaos’ data, £
ranged from about 0.6x10° to 5.0x10° Pa (average E = 1.8x10° Pa) and for Frankenstein’s
data E ranged from 0.1x10° to 3.5x10° Pa (average E = 1.5x10° Pa). However, the
majority of these values for E fall within the range of previously reported results
(Figure 2-1).

Each calibrated creep parameter (E, 7, and n) was plotted against temperature, but
no correlation was found. These parameters appear to be dependent on more than

temperature alone.
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Based on the results given here, the power law creep model seems to be an
acceptable method for predicting the time dependent deflection of an infinite floating ice
cover during primary and secondary creep, for both constant and increasing loading
situations. A set of relatively consistent creep parameters was obtained. As expected,
this model cannot predict the deflection of an ice cover during tertiary (accelerated)
creep; the model solution approaches a steady state. Before using this type of model to
predict the deflection of an ice cover under loading, the model should be calibrated using

as much site specific historical and field test data as there is available.

7.2 Recommendations for Future Research

As this model only considers secondary creep, it would be beneficial to extend the
scope of the model to include tertiary creep as well. The ability to identify the time at
which tertiary creep begins would be helpful as this signals the onset of failure of the ice
cover. An examination of the stresses and strains (elastic and creep) within the ice cover
at the onset of tertiary creep might be useful in this regard, and the model has been
modified to allow the output of these values along with the deflection at each time step.

It might also be interesting to model a non-homogeneous, anisotropic ice cover, to
determine if any more accuracy can be obtained than when assuming a homogeneous,
isotropic ice cover. This would require an expression for Young’s modulus as a function
of depth in the ice. Ice grain size could also be examined quantitatively rather than

qualitatively (as described in chapter 2), and incorporated into the model as input.
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APPENDIX A: THE “ASSEMBLY” OPERATOR

In a finite element medel, the governing equations to be solved can be reduced to
equations for each element. After these equations are evaluated on an element by
element basis using local coordinates (forming an element matrix), they must be
accumulated to solve the global system. This procedure of combining the element
matrices into a global matrix system to be solved is called assembly.

Each element consists of two nodes, described locally as node 1 and node 2.
Every one of these nodes is also assigned a global index (1..N,, where N, is the total
number of nodes in the finite element formulation). The assembly procedure takes the
values computed in each element matrix, local index location (1..2), and stores it in its
position in the global matrix, adding the contributions from overlapping nodes on
adjoining elements.

For example, in a system with three elements (see Figure A-1), the following type

of element matrices may be formed:

A, B,]

Element1: | = ° (A.1)
Ca Da__
E, F]

Element2: | * ° (A.2)
Ga Ha =
I, J

Element3: | ¢ ¢ (A.3)
Ka La
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where A, through L, represent a numerical value. The assembly procedure would

combine the above element matrices into a global matrix:

4, B, 0 0
C, D, +E, F, 0
0 G, H,+I, J, (A-4)
0 0 K L

The position (2,2) in element 1 and position (1,1) in element 2 are both at global
node 2, and the position (2,2) in element 2 and position (1,1) in element 3 are both at
global node 3, therefore the contributions from both elements are combined at these

locations.

The assembly operator shall be denoted as:
N(
4

where e is the element number, and N, is the total number of elements.
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global node: 1 2 3

—e
element 1 element 2 t element 3
element 1 1 2
local node: element 2 1 2
element 3 1

Figure A-1: Example of a 3 element system.
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APPENDIX B: EQUATIONS FOR k“j, k”j, kf”;; AND p”;
From equation (4.4.9), the element horizontal stiffness matrix, [£*], can be
evaluated for each combination of interpolation functions, / and j. The element stiffness

matrix is symmetric, that is &*; = kj; only £*; will be shown here:

2 2
kul.l :—-2C7’(1+ V4 rz 1‘n'(rl) _ r2 ltl(rz)J (B.l)

(rn-n) (n-n)

_ 2Cxnr(In(r) —1n(r))

e (5 =)’ -
. _rRn(r)  #ln(n)
k*2. _2c/{1+ % ) + = _rl)zj (B.3)

where all variables have been defined in chapter 4.

From equation (4.4.12), the element vertical stiffness matrix, [£"], can be
evaluated for each combination of interpolation functions, i and j. This element stiffness
matrix is also symmetric, that is £*;; = k”j; again, only £*; will be shown here:

18Dx

k= G F (—r* +4r’r, —4nrd + 1 — 4571 In(r) + 4r7r; In(ry)) (B.4)
2 1
= 3Dz (-3r+107°r + 2527 —10n7 +1 + 8171 In(r) B.5)
T (=) \—4nr In(rn) + 8177 In(r,) + 4575 In(ry)
k™3 = (LSD—ﬂ)-é('f - 4"13"2 + 4"1"23 - "24 + 4"12"22 In(#) "4"12"22 ln(rz)) (B.6)
n—h
v 3D7 |- rt +107°r, —2r%r} —=10nr; +3r' —4r’r, In(r) B.7)
14 =—F R .
(r, — 1)’ \ - 81272 In(ry) + 4r°r, In(r,) + 8577 In(ry)
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f_’rf@nm)’la(r.)) )
\ (n _rz)4
K12 = 2D2 (—13r* —4vr +40r3r, +16vrr — 12027} = 24vrr} —8rr} (B.8)
+16vrr; —7r —4vr} +165°r In(r,) + 1617 In(r,) + 41, In(r,)
4(r,—n )
\ \ /

Dx (3r-10-r —2r2F2 +10rr? — r} + 813t In()
_ 1 172 172 12 2 172 1

k%3 =——m-7=— B.9
(n—- rl)5 [+ 4r, r23 In()— 8r,2r22 In(r,) - 4n, r; In(r,) J (B.9)

—3r* +24r’r, —24rr; +3r; —8r’r, In(r)

“r0 =22 | 20272 1n(r) ~8r7 In(r) + 8, In(r,) (B.10)

k%24

B 2(r, — r)4
(2=, 207272 In(ry) + 81,3 In(r,)
ka5 = ___(:SD:‘; _(—r* + 47, —4nrd + =42 In(r) + 42 In(r))  (B.11)
274
v, o 3D7 (7' =10R’r, + 25% +1077 =31 +4r’r, In(r) (B.12)
38 = —— .
(r,— ’i)s \t 8’12"22 In(r) — 4r|3r2 In(r,) - 8r;2r22 In(r,)

(7r* +4vr® +8r7r, —16vR’r, + 12177 + 24vR’r}
_ Dr | —40n5 —16vnr; +135 +4vry —4x In(r) (B.13)
2(r, —r)* | =167’ In(r) —16K7r; In(r) + 47" In(r,) '

\+167’r, In(ry) + 161713 In(r)

w
4,4

where all variables have been defined in chapter 4.

From equation (4.5.5), the element elastic foundation stiffness matrix, [4"], can
be evaluated for each combination of interpolation functions, / and j. This matrix is also

symmetric, with k'; = k/";; again, only k/*; will be shown here:

fu= 375/7(_10"12'*'7"1"2'*'3"22) (B.14)
1o =2l:%(rz —r ) (155 +7n) (B.15)
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k=2 (7 -r) (B.16)

M3 70

k7,4 =—2Lf5(’z -r) (75 +6n,) (B.17)
ks =4—7;)(rz —1,) (57 +3n) (B.18)
kf, s 2%("2 —r)(6r,+7n) (B.19)
k7, =174—7;(n -n)(n+n) (B.20)
K, =-g§757[—(—3r12 —Trr, +10r2) (B.21)
kf =_2_71ﬂ(-)("2 —r)(7r +15n,) (B.22)
k7, s =%("2 -1y (3r +5n) (B.23)

where all variables have been defined in chapter 4.

From equation (4.6.4), the element vertical load vector, {p"}, can be evaluated for

each interpolation function,

pr = 7%" (772 +4rn + 312) (B.24)

py = ";‘é (r, —r ) (3r +2n) (B.25)
pY = %(_3r3 —4rr, +7r2) (B.26)
py=- ’;‘(’)" (=) (2n +3n) (B.27)

where all variables have been defined in chapter 4.
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APPENDIX C: VISUAL BASIC APPLICATION

The finite element model described in chapter 4 was developed into a computer
application using Visual Basic. The program, Creep Mode! 1.0, consists of a simple user-
friendly interface, and requires the user to create one input file detailing the element
discretization, load durations and magnitudes, and boundary conditions. The Readme file
accompanying the program contains information pertinent to the proper use of the model.

After passing the start-up window for the model, the user is presented with the
main interface window, which can be seen in Figure C-1. By clicking the /nput button, a
window appears that allows the user to choose an input file (see Figure C-2). An
example of an input file can be seen in Figure C-3. An explanation of the various
components of the input file can be found in the Readme file accompanying the program.

The user must next choose the output files for the model to create (Output button),
and a destination folder for these output files (see Figure C-4). The default choice is to
print a summary file, an elastic solution file (which also contains the elastic analytical
solution), and file containing the deflection under the centre of the load at each time step.
Three other files can be created if desired: the deflection bowl at each time step; the
radial and tangential stresses at each time step; and the elastic, creep and total strains
throughout the ice cover at each time step. These files can grow quite large, depending
on the spatial and temporal discretization chosen, and selecting them as output files
increases the computational time required to run the model.

The main model interface window (Figure C-1) allows the user to specify if an

elastic foundation is present, and if so, give a value for the foundation modulus ().
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Values for Young’s modulus (E) and Poisson’s ratio () must also be chosen prior to
solving the elastic problem (Solve button).

In the creep solution section of the main interface window, the user is given a
choice of using the Euler method or the 4™ Order Runge-Kutta method to estimate the
creep strain increments at each time step (discussed in detail in chapter 4). Values for the
creep exponent () and the creep coefficient (77) must be specified, along with the number
of integration (Gauss) points to use in the radial and vertical directions.

Next, the time step increments (4r) must be specified. Clicking the Time Steps
button brings up a window in which the user can specify three different 4¢ values and the
duration of each 4 (see Figure C-5). Each of these fields must contain a value in order
for the model to run, but all 4¢ fields can contain the same value if only one time step
increment is required.

Finally, by selecting the Solve button in the creep solution section (Figure C-1),
the model calculates the solution and writes information to the appropriate output files at
each time step. The computational time required for the model to run varies depending
on the speed of the computer, the spatial and temporal discretization, and on the output
files that are required; the start and finish times are shown at the bottom of the window

once the model has finished all calculations.
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: n Ctéep Modei

Figure C-1: Creep model main interface window.
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w Choose an input file:
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Figure C-3: Sample input file for creep model.
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Figure C-5: Model time step increment selection window.
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APPENDIX D: BESSEL FUNCTIONS

In the computation of the analytical solution for an infinite elastic plate on an
elastic foundation, it is necessary to evaluate certain Bessel functions. In Wyman’s
(1950) analytical solution, eight Bessel functions (ber(yo), bei(yo), ber’(yo), bei’(yo),
ker(yo), kei(yo), ker '(yo), and kei ‘(yp)) need to be evaluated for values of yp = 0.

For each of these Bessel functions, McLachlan (1955) gives expressions for the
function for 0 < yy < 1, and for yp > 10. For 1 < yg < 10, McLachlan (1955) gives a table
of values for each function, which we used to fit curves for this research for the purpose
of more convenient implementation in a computer program or spreadsheet. Thus, each
Bessel function is comprised of three distinct continuous functions for all values of
y0=0.

In the range of 0 <y,< 1, the eight Bessel functions are evaluated with the

following expressions:

4 8
Yo Yo
ber =1- + —— 1
(¥o) 22.42 22 .42.62.82 (D.D)
Yo Vo'
bei(y,) = 2°2 ~ o 4°2 = (D.2)
v 4}' } 8y 7
ber (yo) == 22 '042 + 22 . 42 ‘062 ’82 - (D'3)
-y 2 6y,
Petve) = 2};0 22 .Zg.sz o (D.4)
1 1 3 o 1 1 25
ker()’o) = Aa +era)2 _‘4‘(1‘1,, '*'5)0) "'mﬂ'&)G +§E(Ao +EJ&)8 (D.S)
kei(y,) = ‘L’”‘(A +1a? +Lret "L(A +1_1')06 S D.6)
vooa ’ 16 6L ° 6 2304
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kei'(y,) = (Aa +%)a) +-81-7m)3 ——I—[A,, +£)a)5 ——I—-;mﬂ (D.8)

where = 0.5y, and 4, =0.1159315-In(yy).

Between yo = 1 and yp = 10, the curves fit to the Bessel functions took one of three

forms:
a+clny, +e(lny,)* + g(ny,)* +i(lny,)* + k(ln y,)’
fiye) = > n — - (D.9)
1+blny, +d(Inyy)* + f(Iny,)” + A(In y,)" + j(In y,)
a+cy, +ey 2-+-g‘y ’ + iy f +ky 5
or f2 (o) = 0o =0 -0 =0 (D.10)
L+by, +dy,” + fyy +hye + ¥
2 3 4 5 6 7 . 8
or fJ(J’o)=a+bJ’o+C.VO +dy, tey, +fy, +& +hy, +iy, (D.11)

where the values of the coefficients a through k can be found in Table D-1.

For yp > 10, the functions took one of two forms:

()’o/ﬁ)
fie) = 0398 [f-sin(cto.s 14y, +0) +
NBZ

8”’ sin(40.514y, + ,5’)"] (D.12)

(4}

(-¥0132)
or L) = %——[g’-sin@o.smh +8Y +-sin(40.514y, + /3)“] (D.13)
\/;0' 8o

where values for 4, £, & and  can be found in Table D-2.
The eight Bessel functions can be seen graphically in Figures D-1 and D-2 for

O0<yp<Il.
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Bessel Function value
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Figure D-1: Bessel functions ber(y ), bei(y ), ber'(y ¢) and bei'(y ,).
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Figure D-2: Bessel functions ker(y ), kei(y ), ker'(y o) and kei'(y 5 )-
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