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ABSTRACT

A nonlinear elastic (hypoelastic) constitutive relation is
proposed for analysis of plane and axisymmetric reinforced and/or
prestressed concrete structures. The constitutive relation is based
on the equivalent uniaxial strain concept. A now characterization
of Poisson's ratio is introduced. Strain softening behavior is
assumed in tension and post failure conditions are imposed on three
dimensional ultimate strength and corresponding equivalent uniaxial
strain surfaces. Special isoparametric finite elements are developed
for representation of reinforcing bars and prestressing layers.

The finite element model as well as the proposed constitutive
relations are incorporated in a finite element program (FEPARCSS)
for nonlinear analysis of axisymmetric or plane reinforced and/or
prestressed concrete structures. Program FEPARCSS is then used to
analyze a finite element model of an axisymmetric prestressed
concrete test structure resembling a secondary containment building
under increasing internal pressure. The results of the analysis
are then compared to the results of the test structure and a

theoretical elastic plastic analysis of the same test structure.
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CHAPTER ONE

INTRODUCTION

1.1 Background to the Problem

In the field of nuclear energy, extreme risks are associated
with accident conditions such as overpressure, earthquake loads or
catastrophic impact. Therefore, the ability to predict the entire
response of a structure such as a secondary containment building
or a primary containment vessel and to identify the conditions under
which limit states occur in order to assess possible damage is
highly desiragble. This task calls for complicated nonlinear
analyses which are generally expensive. Often economic constraints
lead the analyst either to abandon or to oversimplify the problem.
These considerations call for the development of more efficient and
versatile solution procedures (Almroth, Stren and Brogan, 1979).

There are sever@i aspects to the nonlinear analysis of
such structural problems. Some of the major aspects are the con-~
stitutive modelling of the material, the finite element modelling
of the structure and the loads, and the numerical solution tech-
nique of the nonlinear problem. In addition, it is important to
realize that there is a strong interaction between these aspects
(Bathe and Ramaswamy, 1979).

Since 1974 a research program has been underway at the
University of Alberta, Edmonton sponsored by the Atomic Energy

Control Board of Canada to investigate the effect of over-pressure



on Gentilly-2 type secondary containment structures which house
CANDU nuclear reactors. An advanced elastic plastic constitutive
relation for biaxial behavior of concrete has been developed
(Epstein and Murray, 1978 and Murray, et al., 1978) and implemented
by Murray, Chitunyanondh and Wong (1978) in a modification of the
BOSOR5 code (Bushnell, 1973). Subsequently, a series of tests

were conducted on reinforced and prestressed concrete wall segments
under biaxial and uniaxial tension to assess the performance and
parameters of the constitutive relation. In addition, a reinforced
and prestressed test structure composed of a cylinder and a dome
was built and tested under internal pressure. The test results
have been compared to the modified BOSOR5 analysis of the same

test structure in order to assess the capability of the program

and the constitutive relation to predict the behavior of the test
structure.

Although this thesis is not, formally, a part of that
research program, the motivation behind the work reported herein, is
to develop a parallel sophisticated capability founded upon alterna-
tive technology. A three dimensional constitutive relation is deve-
loped to take account of thick and thin shell action and an axisym-
metric finite element thickshell model is used to accommodate it. Both
are implemented in a nonlinear finite element program for analysis

of axisymmetric reinforced and/or prestressed concrete structures.



1.2 Scope and Objectives of Thesis

The scope of this thesis is the nonlinear static analysis
of three dimensional (axisymmetric) reinforced and/or prestressed
structures. Displacements are small, rotations are negligible and
strains are assumed to be infinitesimal. High temperature and creep
effects are outside the scope of this work.

The objectives of the study can be listed as

1. To develop a three dimensional nonlinear elastic
constitutive relation for concrete.

2. To formulate a finite element model capable of
representing axisymmetric behavior of reinforced
and/or prestressed concrete structures.

3. To develop a nonlinear finite element program for
analysis of such structures.

4. To demonstrate the capabilities of this program
through application to a complicated structure such
as a prestressed concrete containment structure and
to identify the limit states associated with over-

pressure loading of this structure.

1.3 Organization of Thesis

Chapter Two contains a literature review of some of the
existing constitutive relations for multiaxial behavior of concrete,
and the development and description of a proposed nonlinear elastic
constitutive relation for three dimensional (axisymmetric) behavior

of concrete.



In Chapter Three a finite element model for incremental
displacement analysis of axisymmetric reinforced and/or prestressed
concrete structures is presented. The necessary incremental vari-
ational principles are discussed. Finite elements representing
concrete, meridional reinforcing and circumferential reinforcing
are formulated and the associated boundary conditions and the work
equivalent loads are derived.

A finite element program (FEPARCS5) for nonlinear analysis
of axisymmetric reinforced and/or prestressed concrete structures
is described in Chapter Four. The solution techniques incorporated
in the program, as well as special capabilities such as initial
stress and post-tensioning simulation, are discussed and the flow of
operations is presented.

A preliminary investigation of the capabilities of program
FEPARCS5 is carried out in Chapter Five. Chapter Six contains an
analysis, using program FEPARCS5, of a prestressed containment
structure under internal pressure which was built and tested to
failure, in the I.F. Morrison Structural Laboratory. The test
structure and procedure are briefly described. The finite element
model of the test structure is presented. The results of the
analysis are compared with the test results as well as with the
results of an elastic plastic analysis. Finally some of the limit
states associated with the loading program are identified.

In Chapter Seven conclusions are drawn on the performance

of the constitutive model and the capabilities of program FEPARCSS.



CHAPTER TWO

CONSTITUTIVE THEORY

2.1 Introduction

A multiaxial constitutive relationship is an essential com-
ponent in any finite element nonlinear analysis of reinforced
concrete structures. Unfortunately, the behavior of concrete under
multiaxial states of stress is complex both in the strength and in
the deformation domains. While information on uniaxial response of
concrete is abundant, biaxial and triaxial responses are not yet
fully understood. This situation is not improved by the scarcity
of reliable data on which to base analytical models. There is a
general lack of strain data particularly near and beyond peak
strengths. Cracking and post-crushing behavior are major problems
since a large part of the response to failure of a reinforced con-
crete structure must of necessity be traced after part or most of
the structure have cracked and some concrete may have crushed.

The scope of analysis of concrete structures can range
frdm linear small displacement infinitesimal strain analysis to
large displacement finite stfain analysis. Therefore, choice of
constitutive relations suitable to the type of analysis enhances
efficiency. However, the physical nonlinearity of concrete is
always dominant. Approaches to the material model range from
elastic-plastic to nonlinear elastic. One popular approach to
modelling the behavior of concrete under multiaxial states of

stress is to consider the material to be orthotropic nonlinear



elastic and to organize the constitutive model around some equiva-
lent uniaxial relation. éince 1972 a number of studies have been
published along that line; Liu, Nilson and Slate (1972), Coon and
Evans (1972), Kupfer and Gerstle (1973), Romstadt, et al. (1974),
Darwin and Pecknold (1974, 1977a and 1977b), Sarne (1974), Link
(1976) and Bashur and Darwin (1978).

In this chapter a brief review of some of these models is
presented and a nonlinear three dimensional (axisymmetric) consti-

tutive relation for concrete is developed.

2.2 Literature Review

Truesdell (1955) defines hypoelastic materials as those for
which the rate of stress is a function of the rate of deformation
and the stress history. Argyris, et al. (1976) and Schnobrich (1977)
classify the models referred to in Section 2.1 as hypoelastic. The
following discussion is confined to this approach since the model
proposed by the writer falls under the same classification. The
underlying assumption of these models besides the definition of
Truesdell is that the material is nonlinear elastic. Therefore,
tangent or secant constitutive equations are used in the form of
the generalized Hooke's Law. The problem then is to determine the
variation of the moduli involved in a given form of Hooke's Law
throughout the loading history. 1In the absence of time dependent
effects and high temperatures, these moduli become functions of

the level, type and ratios of the stresses and/or the strains.



Liu, Nilson and Slate (1972) have proposed a biaxial ortho-
tropic model of concrete. 1In this model a stress-strain curve which
takes into consideration Poisson's ratio and the ratio of principal

stresses is defined as

o, = eiEo/{(l— va) [1+(E/E; (1-va) - 2) (e,/e ;)

2 .
+ (ei/eci) 1}, i=1,2 (no sum) (2.1)

where, Es is the secant modulus at peak strength, ec is the strain
at peak strength and 0 is the principal stress ratio. The incre-

mental constitutive equation is written as

Ao, FA Elb/Ezb Av 0 Ag,
Ao, = AV A 0 Ae,
Ati2 i 0 0 (Eyp Ezb)/(E1b+E2b+2E2b\)L Ayis
(2.2)
where,
A o= E /(B /E, - V) (2.3)

and Elb and E2b are effective tangent moduli, derived by differen-
tiation of Eq. 2.1 with respect to the strain ei. Eg. 2.1 is used
in compression only, while in tension a straight line relation
ending with a tension cut off criterion is used.

Kupfer and Gerstle (1973) have suggested a secant isotropic
model for biaxial behavior of concrete in which the shear and bulk
moduli, respectively Gs and Ks, are used as expressed in the

equation.



B ]
01 (3Ks4-Gs) (BKS-GS)/Z 0 €1
Os = 4Gs/(3K34-4Gs) (3Ks-Gs)/2 (3Ks4-GS) 0 €7
Ti2 i 0 0 (3Ks4-4Gs)/€d Yi2

(2.4)
Kupfer and Gerstle suggest relationships for the shear and bulk moduli
as functions of the octahedral shear strain as

m
Go(l-a (Toc/fcu) ) (2.5a)

Q
Il

~
I

p
KO(GS/GO) exp (chc) (2.5b)

where Go and Ko are the initial shear and bulk moduli respectively,
Toc and Yoc are the octahedral shear stress and strain, fcu is the
uniaxial compressive strength and a, m, ¢ and p are constants. These
authoré have used the failure surface proposed by Kupfer, Hilsdorf
and Rusch (1969) as a biaxial failure criterion. This type of
analysis agrees well with test data in the compression
zone but is not successful in other zones (Darwin and Pecknold,
1977b and Kupfer and Gerstle, 1973).

Cedolin, Crutzen and Poli (1976 and 1977) have suggested
an extension of the same concept to three dimensional cases. However,

the bulk modulus in this case is assumed to be a function of the

normal octahedral strain ao. Their recommended expressions are

=Yoc/.002

(9]
It

G (.81 (2 Yy -2y +.9) (2.6a)
o oc

-€5/.0014

~
It

Ko (.85 (2.5 ) + .15) (2.6Db)



While Argyris, et al. (1974) admit that there may be a
relation between the deviatoric and hydrostatic moduli, they
state that the assumption of isotropy is limiting under general
conditions such as nonproportional load paths and cyclic loading.

Romstadt, et al. (1974) has defined a strain space which is
divided into several progressive damage zones. As the material
strains from one damage zone to another, Young's modulus and
Poisson's rafios assume different values. The variation of Young's
modulus takes into account the previous history of damage. Although
this concept is very interesting, it has not been pursued by other
investigators.

Link (1976 and 1977) has developed a number of functions to
describe Young's moduli and Poisson's ratios to be used in a two
dimensional orthotropic material model. These functions employ the
level and ratio of principal stresses as independent variables.

The functions are extremely complicated and have not been extended
to three dimensional behavior.

Geistfeldt (1977a and 1977b) has suggested a hyperelastic
approach to obtain the required elastic moduli for an isotropic
biaxial behavior of concrete. Geistfeldt (1977b) suggests that
limited extension to three dimensions can be achieved.

Darwin and Pecknold (1974, 1977a and 1977b) have developed
the concept of equivalent uniaxial strains for orthotropic biaxial
behavior of concrete. The incremental constitutive relation is of

the form
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Aoy E; VE1E2 0 Ae,
Ao, = 1/(1-v?) |V/EE; Eg 0 Ae,
ATi2 _ 0 0 Glz(l-vz) AYi12
(2.7)
The equivalent uniaxial strain increment is defined as
Aeui = Aoi/Ei (no sum) , 1 =1,2 (2.8)

Egs. 2.7 and 2.8 are defined in the principal axes of orthotropy

which are assumed to lie along the axes of principal stresses. The
accumulation of the increments of equivalent uniaxial strains yields
the total equivalent uniaxial strains which generally do not form a

second order tensor and, therefore, are not transformable.

eui = ZAOi/Ei (no sum) , i = 1,2 (over loadpath) (2.9)

Darwin and Pecknold have chosen the uniaxial compressive
stress strain relation of Saenz (1964) to act as an instantaneous
stress equivalent uniaxial strain relation in compression. A
straight line relation ending in a cut off has been used in tension.
The parameters of peak strength appearing in the relation are
obtained from a modified form of the Kupfer, Hilsdorf and Rusch
failure envelope (1969).

It is noted that most investigators have used a tension
cutoff criterion. The proponents of the gradual softening approach
in tension claim that cracking (when treated in a smearing fashion)
cannot occur over every point in a region where stiffness is rep-

resented by an integral. Therefore, the material must retain/a/
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a certain measure of stiffness represented by a descending branch
(Scanlon and Murray, 1974, and 1972, Murray, et al., 1978 and
Elwi and Murray, 1979). The descending branch in tension is observed
in indeterminate tests, e.g. Evans and Marathe (1968), and its
characteristics must be functions of the steel ratio in real
structures.

The above has been a brief discussion of some of the
proposed models for the behavior of concrete under multiaxial
states of stress, and has been confined to hypoelastic proposals.
Many other contributions of equal importance have been published.
Coon and Evans (1972) have introduced a true hypoelastic approach;
Murray (1979) has developed octahedral based tangential stiffness
matrices; Sarne (1974) has extended the hypoelastic approach to
~three dimens%ons; Ottosen and Andersen (1975 and 1977) have proposed
yet different models; Ottosen (1979) has recently proposed a secant
based constitutive relation which tackled the post failure behavior.
On the other hand, elastic plastic models have been used and are
still being developed. BAmong these are the Chen and Chen (1975)
three dimensional elastic plastic model, the investigation by
Mroz (1972) of nonassociated flow rules, the three parameter
elastic plastic biaxial constitutive theory suggested by Epstein
and Murray (1978) and the further developments by Murray, et al.
(1978). In a separate category the endochronic theory developed by

Bazant and ¢oworkers (1975 and 1976) must be mentioned.



2.3 The Proposed Material Model

2.3.1 Introduction

A constitutive relationship based on a hypoelastic
orthotropic approach is proposed to model the behavior of a three
dimensional (axisymmetric) concrete continuum. The model assumes
small displacements, infinitesimal strains and negligible rotations.
No rate, temperature or creep effects are provided for. It is
defined in the form of an incremental stress-strain constitutive
equation in which the material parameters are obtained from stress-
equivalent uniaxial strain relationships. The model draws heavily
on the earlier work of Darwin and Pecknold (1974, 1977a and 1977b),
of Saenz (1964) and of Willam and Warnke (1975). In the following,
the constitutive matrix, the stress equivalent uniaxial strain
relation, the constitutive or material par;meters and the ultimate
strength and corresponding equivalent uniaxial strain criteria,

incorporated into the model, are discussed.

2.3.2 The Constitutive Eguation

The proposed constitutive relation is intended for use in
the analysis of axisymmetric structures. Therefore, the constitu-
tive matrix is 4 x 4. When orthotropy is assumed, the number of
independent variables in the constitutive matrix is restricted to
ten. When the relation is referred to the principal axes of ortho-
tropy it can be written in the form of an incremental Hooke's

Law as follows



de,
des
des

dyiz

It will be assumed

1/E1 -V12/Ez -V13/E3 0 do:
-V21/E1 1/E2 -V23/E3 0 doz

) -V31/E1 -V32/E2 1/E3 0 do;
0 0 0 1/Gi2{ [aT12

symmetric throughout the analysis. This symmetry gives rise to

the following relations

Viz2 Ex

Vi3 E;

Va3 E2

V21 E2

V31 E3

V32 E3

13

(2.10)

that the constitutive matrix will remain

(2.11a)
(2.11b)

(2.11c)

substituting Eqs. 2.1l into Eq. 2.10 and rearranging, the following

symmetric form of Eq. 2.10 can be obtained,

de;
de;

degs

dyi2

1/E; -N12/YE1E2 -N31/vVE1Es O _W do:
1/E2 -N23/vVE2E3 0 do,

Sym. 1/E, 0 dos

1/G12| [dATi2

which when inverted yields

do
doa

dos

dTi2

1/¢

{;1(1"n2 ) VE1E2 (N3iNa3+N12) VYE1E3 (MN12N23+N31)
23

2
Ep (1 -N3,) VE2E3 (M12N31+N23)
2
Sym. E3(1-1;,)

(2.12)

0

0

Gi2¢

(2.13)

de
des
des

dYi2




where

3 3 3
w N -
- w N

I I ]

-
I

Egs. 2

relation. The

and will be enlarged upon later.

2.3.3 The Eéuivalent Uniaxial Strain Concept

Viz2 V23
V23 V32

Vi3 V3.

2 2 2
(1-Ny; —Ny5 ~Ngy — 2N12N23N31)

.13 and 2.14 are the basis of the constitutive

symmetry assumed above is by no means trivial

14

(2.14a)

(2.14b)

(2.14c¢)

(2.144)

Having defined the form of the incremental constitutive

equation it remains to determine the variation of the tangential

hypoelastic moduli.

For this purpose, the concept of equivalent

uniaxial strains which has been developed by Darwin and Pecknold

(1974, 1977a, 1977b) is used with slight modifications.

concept is briefly described as

Let Eq

do,
dGz.
dos

dT2

in which the coefficients Bij
terms of Eq. 2.15 with the corresponding terms of Eq. 2.13.

Carrying out the multiplications of Eq. 2.15, yields

. 2.13 be written

—

E1Bi11

E2B2)

E3B3)

0

E1B12

E2B22

E3Ba2

0

follows.

as

E1B13

E2B23

E3B33

0 |

0
0

Gz

de)
de,
des

dyiz

(2.15)

are defined by identifying the matrix
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doy = Ei1 (Byide; + Bjy2d€2 + Bjgdes) (2.16a)
do2 = Ez (Bz1de; + Bsad€sz + Bjadej) (2.16b)
dos3 = E3 (B3i1de; + B3pd€s + Bjades) (2.16c)
dTi2 = Giz2 dYiz (2.164)

Egs. 2.16 is written in matrix form as follows

do, Ex 0 0 0 d€1u
doo 0 E2 0 0 d€2u
= (2.17)
dos 0 0 Ej 0 d€3u
dtis 0 0 0 Giz2| [dY12

where < deu > is defined as the equivalent uniaxial strain increment

and is written in terms of the actual strain increment as

3

dc .= I B,.d, , i=1,3 (2.18)
ul j=l lJ J

The equivalent uniaxial strain increment can be evaluated from

Eq. 2.17 in the simple form
de , = do0./E, (no sum) , 1i=1,3 (2.19)
ui i"7i

and the total equivalent uniaxial strain may be determined by

integrating Eq. 2.19 over the load path

Eui = f dOi/Ei (no sum) , i =1,3 (2.20)

(over 1oad path)

Egs. 2.16 are defined in the principal axes of orthotropy.

Darwin and Pecknold assumed that the principal axes of orthotropy



follow the principal axes of stresses. However, in axisymmetric
shell structures the meridional and circumferential stress directions
predominate. Therefore, the proposed model assumes that the princi-
pal axes of orthotropy at a point are fixed in the local meridional,
circumferential and normal directions. The equivalent uniaxial
strains will be treated in the same manner as real strains and will
be transformed using the usual coordinate transformation methods. A
physical interpretation for the equivalent uniaxial strains and the
diagonal matrix of Eq. 2.17 is attempted in the following. The
increment equivalent uniaxial strain of Eg. 2.19 is the increment

of the strain in direction i that the material would exhibit if
subjected to a stress increment doi while all other stress increment
contributions are equal to zero. In other words, the matrix of

Eqg. 2.17 is the constitutive matrix of a fictitious material with

zero Poisson's ratios.

2.3.4 The Equivalent Uniaxial Strain-Stress Relation

In the hypoelastic theory developed by Truesdell (1955)
the stress strain relation follows from the incremental constitutive
equations. 1In the material model proposed herein it is assumed
that the total stresses are functions of the current equivalent
uniaxial strains.

For the purposes of this work, the uniaxial compressive

stress strain relationship of Saenz (1964) is generalized in a

16
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manner similar to that proposed by Darwin and Pecknold (1974, 1977a
and 1977b) and used to describe compressive as well as tensile
responses on the ascending part of the stress-equivalent uniaxial
strain curve. Writing Saenz's relationship in terms of the equi-

valent uniaxial strain yields

O, = Eoi€yi/[1+ (R -2) (eyj/e5) + (gy3/€04)7%] (2.21)
where

RE = Eoi/Esi (no sum) (2.22a)

Eig = Ogi/€ci (no sum) (2.22b)

The type of curve described by Eq. 2.21 is illustrated in Fig. 2.1
on which the variables of Egs. 2.21 and 2.22b are shown. More
specifically, Eos is the initial modulus of elasticity in direction i
and O,; and €_; are the maximum stress associated with direction i
and the corresponding equivalent uniaxial strain respectively.

The descending branch of Eq. 2.21 is too steep for lightly
reinforced concrete in tension. Therefore, in this study a bilinear

descending branch is adopted, as follows (no sum)

O, = 0g (-o1 (g,3/8-1)) 1 <€,/eq; <B (2.23a)
O, = 0g 02 (B2 - €,/€) Br < €y3/€ci £ B2 (2.23Db)
o, =0 B2 < €44/€ci (2.23c)

where o), 02, B1 and B2 are shown on Fig. 2.2.
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In compression, Eq. 2.21 is retained up to Eui = zeci at which
point it is assumed that concrete crushes. The complete curves
for compression and tension are shown on Figs. 2.1 and 2.2
respectively. |

Eg. 2.16d shows that the shear strain can be accumulated

directly. For the purposes of this study the Saenz relation was

adopted for shear and is written as

Tiz = G Yi2/[1- (Ry-2) (Yiz/Yy )+ (Y12 Y, %] (2.24)
where

R.G = Gslz/G012 (2.25a)

Gslz N TC12/Y012 (2.25b)
and G012 is the initial shear modulus, and Tc12 and YC12 are the

maximum shear stress and the corresponding shear strain respectively.
Eg. 2.24 is adopted up to the peak of the shear curve. For the
descending branch of the shear response a straight line is used

as follows
— -— <
Ty, = T s (1-o0,4 (le/‘Yc12 1)) 1 le/Tclz (2.26)

where 03 is a constant. The shear stress strain curve is shown in
Fig. 2.3. In this study shear deformations are expected to be low

in the particular coordinate system chosen. Therefore, the difference
between Eg. 2.24 and the equations of Kupfer and Gerstle (1973)

or Cedolin, et al. (1976 and 1977) is expected to be of no importance

and the point is not further pursued.
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2.3.3 Young's Moduli and the Shear Modulus

Eg. 2.21 serves to define the incremental elastic moduli

of Eq. 2.17, for by Eq.'2.19

Ei = doi/deui (no sum) (2.27)

Differentiating Eg. 2.21 with respect to eiu yields

- 2 _ _ 272
E, = Eo; (1~ (gy/€.4) /(1 (Re 2) (,4/€,5) + (€576 ;) ]

(no sum) (2.28)
which defines Young's moduli.
The incremental shear modulus G;; can be obtained from

Eq. 2.24 using similar reasoning as

Giz = G, (1= (Y12/7,, ) ")/ 11 = (Ry=2) (Y),/Y,,) + (Y12/Y, )22

O12 cl2

(2.29)
Egs. 2.28 and 2.29 are confined to the ascending branches of the
respective responses, except in compression where Egs. 2.28 is still
used for the descending branch. In tension and shear however, the

required moduli are assumed to be

Ei = -0y E; 1< Eui/tci < B (2.30a)
E, = -02 E; B1 < €1i/Cci < B2 (2.30b)
Giz = - Q3 G, 1< Yi2/%,, (2.30c)

The choice of a1, 02, Bi1, B2 and 03 depends on the amount

of steel in the neighbourhood of the point under consideration. 1In
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order that a tangential stiffness approach be successful, it is
recommended that the overall uniaxial stiffness of a region
including steel be required to be positive definite (Chitnuyanondh,

et al., 1979).

2.3.6 Poisson's Ratio

Prior to implementing the incremental stress strain relation-
ship it is necessary to determine the values of Poisson's ratios
appearing in Eq. 2.13. It is assumed herein that a strain de-
pendent Poisson's ratio may be applied to each equivalent uni-
axial strain, that is, three independent Poisson's ratios are

postulated in the form

vV, = vo £ (gui/gc, (no sum) (2.31)

1 l)

in which Vo is the initial Poisson's ratio. Egs. 2.14a to 2.1l4c

may now be written as

Tllz = V; V, (2.32a)
2

Ny = YV, Yy (2.32b)
2

N3, = Vi V) (2.32¢)

In compression, the function f(eui/eci) appearing in
Eq. 2.31 has been determined from the uniaxial compression data of
Kupfer, Hilsdorf and Rusch (1969) by a least squares fit of a cubic

polynomial. This results in the approximation

v = v (1.0000+1.3763 (g/c ) -5.3600 (/e )2
(o] cu cu

3
+ 8.5860 (€/€cu) ) (2.33)
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in which € is the strain in the direction of loading and Ecu is the
strain at ultimate strength. Substituting Eui and Eci for € and
Ecu respectively, Eq. 2.33 assumes the form of Eq. 2.31.

Micro-cracks exist in concrete along the aggregate mortar
interfaces even at the virgin state (Hsu, et al., 1963). At 30% of
ultimate strength these cracks increase in number, width, and length.
At approximately 75% of ultimate strength these cracks penetrate
the mortar between pieces of aggregate forming a continuous pattern
appropriate to the stress condition. Although Hsu, et al. (1978)
studied concrete in compression, the same behavior may be expected
in tension but developing more rapidly than in compression. Consider
a block of concrete under tension in direction i with a pattern of
internal cracks as shown in Fig. 2.4. Let the block be subjected
to tension or compression in any direction perpendicular to
direction i. The contraction or expansion in direction i due to
the applied stresses in a perpendicular direction will be absorbed,
in part, by filling or increasing the volume of cracks. 1In other
words the total Poisson's ratio effect on the block will be diminished.
Once the material has reached its ultimate strength in tension in
direction i, these cracks may become wide enough to inhibit inter-
action between direction i and the normal plane, except for the shear
provided by aggregate interlock, etc. Therefore, it has been
assumed that Poisson's ratio in tension is constant up to the
appearance of mortar cracks. It is further assumed that a definite
pattern of mortar cracks in tension starts to appear at 50% of the
ultimate tensile strength. At this point it is assumed that Poisson's

ratio starts to degrade becoming zero at ultimate tensile strength.
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This is expressed as follows, (see Figures 2.5a and 2.5b)

vV, = V 0 < g .,/e ., < 0.5 (2.34a)
1 (o] ul cl —

= - .5 < ) . < 1. .
vi 2Vo(1 eui/ec ) 0.5 €u1/€01 < 1l.0 (2.34b)
vV, = 0.0 1.0 < € ./ . (2.34c¢)
1 ui’ ci

At this point it should be noted that the variable ¢ appearing
in Eg. 2.13 should always be non negative. A limiting value of 0.5
has therefore been placed on the values of vi in compression. This
value corresponds to a limit of zero incremental volume change.
Kotsovos and Newman (1977) have noted that the point at which this
limit is reached corresponds to the onset of unstable micro-crack
propagation. This is the process that causes the dilatation phenomena
observed in concrete upon approaching the ultimate strength under
uniaxial and biaxial compression. Therefore, it can be argued that
the dilatation has no meaningful constitutive significance. More-
over, no dilatation is observed under triaxial compression (Schickert
and Winkler, 1977). Rather, the material appears to flow which

supports a limit of 0.5 on Poisson's ratio in compression.

2.3.7 The Ultimate Surfaces

The evaluation of the hypoelastic moduli described in
Section 2.3.5 and 2.3.6 requires the specification of the parameters

appearing on the right hand side of Egs. 2.21 to 2.34, i.e. Oci and

eci. Since these parameters vary with the changing stress config-

uration as well as the loading history, the evaluation can be done

by specifying a surface in stress space to define the three values



23

of Oci and a surface in the equivalent uniaxial strain space to
define the three values of €oi that correspond to the Oci's.

A surface in stress space that defines the ultimate strengths
Oci for any ratio of stresses is called a "failure surface”. This
name is somewhat misleading in case of a material with strain
softening behavior. It is proposed to call such a surface an
"ultimate strength surface"” (Elwi and Murray, 1979). The five
parameter surface proposed by Willam and Warnke (1975) and illu-
strated in Fig. 2.6a is used in this work to define the ultimate
strength surface as well as the corresponding equivalent uniaxial
strain surface. The characteristics of this surface are reviewed

briefly in the following.

Let the mean (average) normal stress be defined as

Oa = Oii/3 (2.?5)

and let the mean (average) shear stress be defined as

T = v s,. 8,./5 (2.36)

a ij "ij
where Si' is the deviatoric stress tensor which is written as

Sy = Oij_okk éij/3 (2.37)
Dividing by the uniaxial compressive strength fcu' the variables

Oa and Ta are nondimensionalized such that

Oa = Oa/fcu (2.38a)

Ta = Ta/fcu (2.38b)
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The surface under consideration is assumed to intersect the
deviatoric plane (Ga = constant) in three symmetric elliptical
segments forming a closed convex and continuous curve. This trace
is shown in Fig. 2.6b on a triaxial plot, with the axes representing
the main deviatoric stresses Oi. The elliptic trace may be mathe-

matically described as
T = r(8,0.) (2.39)
a a

where 8 is called the angle of similarity and is expressed in terms

of the principal stresses as (Willam and Warnke, 1975)

cos8 = (01 +03 - 203)/W2[(01-02)% + (02 - 03) 2 + (03 - 01) 212}
(2.40)

For 0y > Oz > O3, then O <6 f_60°, as may be seen in Fig. 2.6b. The

function r in Eq. 2.39 is defined as (Willam and Warnke, 1975)

1/2

2r2rlzcose4-r2(2r1-r2)(4r1zco§6+-5r§-4r1rz)

r = (2.41)
4r1200526 + (rz--2r1)2

in which

ri2 = r,-r (2.42)

The variables r, and r; are respectively the maximum (6 = 60°) and
minimum (6 = 0°) radii of the deviatoric trace of the surface. These
variables are assumed to be parabolic functions of the hydrostatic

stress and are expressed as (Willam and Warnke, 1975)

= = 2
r a_ + + .
1 o T2 0,12 o, (2.43a)

~ =~ 2
= +
r, bo b Oai-bz Ua (2.43b)
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Plotted on the so called "rendulic plane”, the functions r, and r,
are illustratedin Fig. 2.6c. The values of the coefficients ag to
b, in Egs. 2.43 are chosen such that the variables r, and r, pass
through a set of control points, as illustrated in Fig. 2.6c.
Appendix A describes how these coefficients are evaluated. The
surface proposed by Willam and Wanke (1975) is now completely defined
and serves to evaluate the three Oci's required in Sections 2.3.4
and 2.3.5.

However, Eqgs. 2.21 to 2.34 also require the evaluation of
the equivalent uniaxial strains eci associated with 0ci° For this
purpose it is postulated that there is a surface in equivalent uni-
axial strain space which has the same form as the stress surface
described above. Therefore, the strain quantities ea and Ya are
defined to correspond with Oa and Ta respectively by replacing 0,,
0,, O3 in Egs. 2.35 to 2.43 by the principal components of the
equivalent uniaxial strain tensor. The analogous nondimensionalization
of Eqs. 2.38 is carried out with ecu' the strain corresponding to
uniaxial compressive strength, replacing fcu' Analogous quantities
for the strain control points follow directly and Egs. 2.40 to

2.43 together with the equations of Appendix A can be used.

2.3.8 Failure Modes

The usage of the ultimate surfaces as implemented by Darwin
and Pecknold assumes that instantaneously, the loading is pro-
portional. Thus, joining the origin and thg current stress point
with a straight line and extending the straight line to intersect

the surface the required ultimate point can be obtained. This
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procedure has been found to be quite adequate in triaxial and
biaxial compression, (Elwi and Murray, 1979). However, in other
situations it becomes inadequate since it is conceivable that a
point under tension may crack normal to the direction of loading,
but can still support increasing stress in the other two directions
in tension or compression, (Chitnuyanondh, et al., 1979). Therefore,
the failure mode must be taken into consideration.

For the purpose of imposing failure modes on the evaluation
of the parameters, Oci and eci' a number of conditions are stipulated
as follows:

(1) Compression-Compression-Compression:

In this case the parameters are obtained from the ultimate
surfaces described in Section 2.3.7.

(ii) Compression-Compression-Tension:

In this case the tensile components are obtained from the
ultimate surfaces. The compression components if greater than fcu
in case of stresses or greater than ecu in case of equivalent
uniaxial strains may be taken equal to fcu oxr ecu as the case may
be. The term "greater than” in the last sentence is meant in the
algebraic sense.

(iii) Tension-Tension-Compression:

Tn this case, the larger tensile components are obtained
from the ultimate surfaces. The smaller tensile components may be
taken as ftu or Etu as the case may be. The compressive components
may be taken as fcu or ecu as the case may be.

(iv) Tension-Tension-Tension:

In this case all components may be taken as ftu or Etu as
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the case may be.
The stress paths that may produce conditions (ii) to (iv)

are illustrated in Figures 2.7a to 2.7c.

2.3.9 Verification of the Constitutive Relation

In order for the constitutive relation proposed in this
chapter to have validity, it should be able to predict strains
associated with test results in the literature. The available
experimental studies are associated with a predefined stress path.
In this type of application stress increments are applied and it is
required to find the associated strain increments. A flow chart for
this type of application, which requires iteration, is shown in
Fig. 2.16.

A comparison of predicted strains with selected sets of
measurements by Kupfer, Hilsdorf and Rusch (1969), hereinafter
refered to as the KHR data, in a series of biaxial tests is shown
in Figs. 2.8 to 2.11, inclusive. The parameters that have been used
to model this material are given in Table 2.1. Fig. 2.8 shows the
uniaxial compression comparison, and Fig. 2.9 shows the biaxial
compression comparison. Since the peak stresses and corresponding
strains are control points on the associated ultimate surfaces,
exact correlation is obtained at these points. Fig. 2.10 shows
the comparison for biaxial compression in the ratio of -1:<52.
Since the chosen ultimate strength surface does not predict the
same strength as the KHR failure surface there is a discrepancy
of approximately 8% in this instance. A comparison of typical

response in tension-compression is shown in Fig. 2.11.
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The above comparisons are those of the three dimensional
theory with plane stress tests. A comparison of the theory with
some of the three dimensional tests of Schickert and Winkler (1977),
hereinafter refered to as the SW data, has also been carried out.
First, the parameters of Egs. 2.43 have been evaluated for the control
points and are shown in Table 2.2. The correspondence of these
equations on the rendulic plane with the SW data is shown in Fig.
2.12. The values of r; and r, are seen to agree suitably with
this data set. The SW tests were carried out by loading along a
hydrostatic stress pathlwith deviatoric stress equal to zero, and
then incrementing the three principal stresses in such a way that
the hydrostatic stress remained constant while the deviatoric
stress varied. Fig. 2.13 illustrates results for deviatoric stress
path along line 0-A of Fig. 2.6b (8 = 60°). Fig. 2.14 illustrates
results for a deviatoric stress path along line 0-C of Fig. 2.6b
(6.= 30°). Fig. 2.15 illustrates results for a deviatoric stress
path along line 0-B of Fig. 2.6b (8 = 0°). It can be seen that
the model reasonably simulates the SW data along each of these non-

trivial stress paths.
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Ultimate Strength
Surface Parameters

Equivalent Uniaxial
Strain Surface Parameters

Elastic Moduli

£ _* -4650.0 € -0.00215 * 4.7 *10°

cu cu 01
o 1.15 o 1.7512 E * 4.7 * 10°
c o) 02

i *
at 0.091 at 0.046 E03 0
* * 106

£, 13.50 g, 50.0 12 2.1 %10
N 0.0 P, 0.0 UM 0.195
£, 4.0 g, 4.3 V), 0

0, 0.0 P, 0.0 V), 0

Table 2.1 KHR Material Model Parameters

(* in psi)

Ultimate Strength
Surface Parameters

Equivalent Uniaxial

Strain Surface Parameters

Initial Elastic
Moduli

f
cu

*

-4435.0

1.21

€
cu

~0.00283

1.3

0.0461

22.5

E,, * 3.8 *10°
E,,* 3.8 *10°
E,,* 3.8 *10°
Gy p* | 1.6 *10°
Vo, 0.18
Voo 0.18
Vs 0.18

Table 2.2 Schickert-Winkler Material Mode

Parameters
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{a) General View of Argyris Failure Surface
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Fig. 2.7 Failure Conditions
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Read control parameters similar to those shown
in Tables 2.1 or 2.2

T

Calculate the parameters ag, ai, a2, bo, b1 and b;
for both stress and equivalent uniaxial strain surfaces
(Appendix A)

J

Read stress increment Acj

T

Define unbalanced incremental stress Aoi* = A0
current total stress 0, = Ui-+AOi

!

Compute oic and eic from the current total stress

and the ultimate surfaces defined by the parameters
a to b, and subject to the failure conditions of
Section 2.3.8.

}

Evaluate Ei’ Vi’ nij from Egs. 2.28 to 2.30
and Egs. 2.32 to 2.34

}

Calculate the matrix of Eq. 2.12 ([D])
{ae} = [p] {Ao*}

<ege>=<¢€g >+ < Ae >
<

€ >+ < Ao*/E >
u u

l

Evaluate < 0* > using Egs. 2.21 to 2.26

< Aog* > =<0g > -<0g* >

|

YES NO

< < A0 > > Tolerance -

Fig. 2.16 Flow Chart for a Specified
Stress Path



CHAPTER THREE

FINITE ELEMENT MODEL

3.1 Introduction

As described in Chapter One, it is the purpose of this study
to develop a sophisticated tool for the analysis of reinforced con-
crete structures, for axisymmetric and planar problems, under static
short term loads and small displacement fields. The rectangular
serendipity family of finite elements (Zienkiewicz, 1971) has been
chosen as the basis of program FEPARCS5. (FEPARCS is an acronym for
'Finite Element Program for the Analysis of Reinforced Concrete
Structures'.) These elements can be converted easily from plane
stress to axisymmetric state or vice versa without changing the frame
of reference or the description of the strain field (Zienkiewicz,
1971) . The main difference between axisymmetric and planar problems
is in the description of material properties and the addition of cir-
cumferential strains (in case of axisymmetric formulation).

Three types of elements were developed; the solid element;

a meridional reinforcing element and a circumferential reinforcing
element. The meridional reinforcing element represents the rein-
forcing bars or prestressing tendons acting in z - r plane. The
z-axis is the vertical axis of symmetry and the r-axis is horizontal
radial axis. The circumferential reinforcing element represents

the circumferential reinforcing bars or prestressing tendons. These
elements are empty solid elements except for layers of reinforcing

or prestressing. Strain compatibility between the steel and the
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concrete is preserved by using the same shape functions and order of
integration for all elements, (Buyucozturk, 1977).

A variational approach was used to derive the element
stiffness matrices as well as different types of element loads such
as gravity, thermal, and psuedo loads and surface tractions. 1In
this chapter an incremental variational principle is reviewed,
the element stiffness matrices are formulated, the loads resulting
from body forces and surface tractions are derived and the boundary

conditions are described.

3.2 Fundamental Variational Formulation

Before attempting to formulate the various element property
matrices and vectors, it is necessary to establish the functional
relationships governing the problem. The variational approach
provides a powerful formulation technique for finite element theory.
In this section the necessary variational principles are presented
in incremental form based on small displacement fields.

Let the body shown in Fig. 3.1 be divided into "K"
number of elements. Let Ve be the volume of an element and let Sqe
and SOe be those portions of the element surface on which the dis-
placement and stresses are prescribed respectively. The superscript
( )° indicates initial guantities at the beginning of a load step,
and the prefix A( ) denotes incremental quantities. Prescribed
quantities will be denoted by (7). The incremental field equations

can be written as



g% . +Ac.. . +F.P4+AF, = o0 (3.1a)
ijr3 ijn i i

Ae.. = L(q® .+q’ ) +2 (Aq, . +Aq, ) -€° (3.1b)
ij 2 ir5g jri 2 i73 jri ij

Aoij = Cijkl Aekl (3.1c)

Egs. 3.la to 3.lc are, respectively, the equilibrium equation, the
strain displacement relation and the instantaneous stress increment
strain increment relation. The symbols 0, €, F, g and C denote
respectively the stress tensor, the strain tensor, the body force
per unit volume vector, the displacement field and the constitutive
tensor (Pian, 1976).

The mechanical boundary conditions on SOe are defined as

(Pian, 1976)
T, = 0,. n, (3.2a)

AT, = Ao.. n. (3.2b)

in which T denotes surface tractions and n denotes a unit vector
normal to the surface. The displacement boundary conditions on

Sqe are written as (Pian, 1976)

0 . =~ 0 -
q; *+ Aqi = q + Aqi (3.3)

Writing the first variation of Egs. 3.1b and 3.3 and noting
that initial and prescribed quantities do not vary, the following

conditions are obtained.

= 1
§ Aeij = 3 (6 Aqi:j + 8 qu’i) (on Vé) (3.4a)

42
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8 Aqi ( Sqe) (3.4b)

1
o

Let the structure be forced through a virtual displacement
field § Ag subject to the condition stated in Eg. 3.4b. The virtual
work 86U of the internal forces and the virtual work OW of the external
forces are expressed as

su = I { Jv (cgj+Aoij) GAsij av} (3.5a)

K
e

— =0 = m 0 ™
sw = ¢ | [v (F; +AF,) <SAqi dv+[ (T, +A T,) GAqi as}

K S
e e

(3.5b)

Substituting Egs. 3.2 into the second term of Eq. 3.5b, applying
the divergence theorm to the same term and using Egs. 3.la, 3.4a
and 3.4b it can be proven that the virtual work of internal forces
equals the virtual work of external forces subject to the conditions
stated in Egs. 3.4 which is called the "principle of virtual work"
and can be written as

L[]0, +A0,.,) SAe,. - (F)+AF,) 8Aq,] av

X ij ij ij i i i

v
e

-f (T.° +AT,) 8Aq, as} = O (3.6)
i i i
S
e
If the initial state is in equilibrium, then the virtual
work associated with it must vanish. In this case Eq. 3.6 reduces

to the form

) {L[Aoij 8¢, - AF, GAqi]dV—J AT, Shq, ds} = 0 (3.7)

K S
e



which is the incremental form of the principle of virtual work
(Horrigmoe and Bregan, 1976).
The potential energy ﬂp associated with an increment of

displacement Agq is defined as (Pian, 1976)

- 0 1 — (O =
np(Aq) = 12<{ f[cij Aeij +3 AeijcijklAEkl (F, + AFi)Aqi] av

v
e

- f (T + AT.%) Aq, as} (3.8)
i i i
S
e
Carrying out the first variation on Eq. 3.8 the right hand side
becomes identical to the left hand side of Eq. 3.6. This means
that the potential energy is stationary subject to the conditions
stated in Egs. 3.4. It is understood here that the material is
linear elastic in the incremental region. 1In addition it can be
. . 1 .
proven that if the strain energy denoted by (2 Aeij Cijkl Aekz) is
positive definite, then the stationary value of the potential

energy is a local minimum (Fung, 1965). These two principles

can be mathematically stated as
dm. = 0O (3.9a)
ﬂp(Aq-%GAq) - ﬂp(Aq) > 0 (3.9b)

Having presented the incremental variational principles it

44

becomes possible to formulate the set of equations necessary to solve

the problem. Eq. 3.8 is written in matrix forxm as
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T = Z{J [<0>°{A€}-<E‘>°{Aq}]dv-J <1’ >{Aq} as
p Kk Jv s
e e
+J [%<A€>[C]{A€}-<A§‘>{Aq}]dv
Ve
- J <AT>{Aq} as} (3.10)
S
e

Using interpolating functions, the displacement and strain fields can

be described in terms of the nodal displacements as
{Aq} = [N]l{Aq} (3.11a)
{ae} = [B){Aq} , (3.11b)

where [N] is the matrix of interpolating functions, [B] is a differential
operaters matrix and {Ag} are the nodal displacements. Substituting

Egs. 3.11 into Eq. 3.10, the latter assumes the form

T = % {J [<o®>[B1{Aq } - <F® >[N]{Aq }av -J<’I‘°>[N]{A<_;_} as
X \Y

e

+ J [z <bg>[B1T[C1(BI{Ag} - <AF>[NI{Agq}] av
\Y

e

- J <AT>[N]{Ag} as} (3.12)
S
e
The summation over the elements making up the continuum under
consideration can be carried out over the individual terms of

Eq. 3.12 yielding
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1 -
T = =% <Aq> [k H{Aql -z <Aq>{AF }
P 2 K = e = K = e
-Z<Ag>{AEe} +<Ag>{AQe} (3.13)
K
where
T
[Ke] = J"e [B] [c]lB] av (3.14a)
- r T o -
{AFe} = Jve [N]1" {AF} av (3.14b)
{aT } = J [n)T{AT} as (3.14c¢)
e Se
_ T 0 T - T =0y
(ag,) = J, [=17(a®d- [N) {Fo}]dv-JSe[N] (i) as

(3.144)
The terms [Ke]; <A§e> and <A5e> represent, respectively, the
element stiffness matrix, the increment of body forces and the
increment of surface tractions. The term <AQe> should vanish if
the initial state is in equilibrium and may represent the unbalanced
forces othexrwise. The principle of Eq. 3.9a can be applied to
Eg. 3.13 subject to the conditions stated in Egs. 3.4, recognizing

the arbitrary nature of <6Ag>, yielding

It

Z[Ke]{Ag}-z{Afe}-z{Aie}+z{AQe} 0 (3.15)

K K K K

It must be noted that the summations of Eq. 3.15 are carried

out in the direct stiffness sense and can be summarized as

[k1{Ar} - {ArR} + {Ap} = o (3.16)
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where [ K] is the structure stiffness matrix, <Ar > is the incre-
ment of nodal displacements, <AR> is the increment of prescribed
loads and <AQ > is the unbalanced load at the end of the previous
load step. Eg. 3.16 together with the condition of Egq. 3.4b make
up a nonsingular system of equations which can be solved for the

increment of displacement <Ar >,

3.3 Isoparametric Element Formulations

3.3.1 Solid Element Formulation

The formulation of a finite element depends on the unique
description of unknown functions within the element in terms of
parameters associated with the values of the functions at the nodes,
(Zienkiewicz, et al., 1970). These parameters are based on what are
called "shape functions”. The shape functions depend on the spatial
description of the element and must satisfy two conditions:

a) Continuity of the function and derivatives up to the
order required by the variational formulation which is
one order less than the maximum order of differentiation
appearing in the functional (continuity of class C° is
required in this study).

b) The agility to represent a constant field of the unknown
function over the entire volume of the element.

Condition (a) can be satisfied if the number of nodes on a boundary
is sufficient to determine uniquely the variation of the function
along the boundary and if only the interboundary nodes between two

adjacent elements influence the value of the unknown function on
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this boundary. In this study only linear, quadratic and cubic rect-
angular isoparametric elements of the serendipity family are used
(see Fig. 3.2). The shape functions for these elements are given
in Appendix B.

Since the elements used are isoparametric elements, the same
shape functions can be used to interpolate geometry as well as dis-

placements as follows

<rz> = <¢>[rz] (3.17a)

<uv> = <¢>[uv] (3.17b)

where r and z are horizontal radius and vertical coordinate respec-
tively (axisymmetric formulation), u and v are the horizontal and
vertical displacements respectively, the symbol () denotes nodal
values and < ¢ > is the set of shape functions.

A differential element of volume 4V representing a

radian sector in any axisymmetric continuum can be written as

where dA is an element of area and is defined as the magnitude of

> >
the cross product of the two vectors db; and db, making up the sides
of the element of area as shown in Fig. 3.3b. Writing the cross

product in terms of the r and z components, Eq. 3.18 assumes the form

Idrl dz, |
dav = r (3.19)
dra dza

The components dr and dz can be written in terms of the normalized

coordinates £ and U (see Fig. 3.3a) as



<drdz> = <dg aqu>[J] (3.20a)

e 22
of

[g] = ?E (3.20b)
or 3z
ou ol

where [J] is the Jacobian matrix. This matrix is expressed in

terms of the shape function derivatives as

[g] = [r z] (3.21)

>
Since dA is arbitrary it can be chosen such that db; corresponds to
<df o> and db, corresponds to <odU>. Thus Eq. 3.19 can be

written as

av = r|J|atau (3.22)

where the symbol (| l) denotes a determinant.

The purpose of this section is to evaluate the integral
of Eq. 3.14a. Assuming that the constitutive matxrix [C] is known
and that the element of volume can be represented by the right hand
side of Eq. 3.22, it remains to evaluate the matrix [B ] in terms of
the shape functions and derivatives. Let the strains of Eq. 3.1lb

be expressed for axisymmetric strain fields as (Zienkiewicz, 1971).

Ae_ P 3¢/dr > 0 {Au}
be, 0 < 3¢/3r>
- (3.23)
Aee <¢/r> 0
Ay, <3$/3z> < 3¢/dr> {Av}



The derivatives appearing in Eg. 3.23 may be evaluated as

l,< 3¢/0r > _1 | <3¢/03E>
= [J] (3.24)

L< 24/22> | < 36/5u >

Since the matrix [ J]~! has polynomials in the denominator
it becomes impractical to try to integrate Eg. 3.l14a in closed form.
Therefore, integrations are evaluated numerically. For the purposes
of this study, Gaussian integration was selected as a viable scheme.

Thus Eg. 3.14a may now be written as

n m
_ T n m

where n and m are the order of Gaussian integration in directions
. n . .
£ and U respectively, and wi and w? are the weights associated

with each point in directions & and | respectively.
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3.3.2 PFormulation of the Meridional Reinforcing Isoparametric Element

In order to model the meridional reinforcing and prestressing

layers within a solid element, a compatible element can be described
such that the integration is carried out only along the required
layers. An element which can accommodate layers along the | or §
directions is formulated in this section, see Fig. 3.4a.

Let the potential energy of the element be written as

T (A€) = J (0% + * AcAe) av (3.26)
P v 2

e
where the strain and the stress are defined only along the layer

under consideration. The element of volume AV is written in terms
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of the element of length along the layer 4%, the area of the layer

per unit width A and the radius (axisymmetric formulation) as

dav = radl (3.27)

The strain increment is expressed in terms of the global strain and

the orientation of the layer as

Ae = Ae cos?6 + Ac sin?6 + Y__sinBcosH (3.28)
r z rz
where,
dr
cosf = ar (3.29a)
. _ dz
sinb = T (3.29b)

Using the definition of the strain increment stated in Eq. 3.1b
neglecting initial strains and using Egs. 3.29, Eq. 3.28 may be

written as

3lAu dr dr 9Av dz dz oAu dr dz dAv dr dz

be = rratmaa T maatw aa O30
Eqg. 3.30 can be rearranged such that
Ae = dAudr |, dAv dz (3.31)

—_— e
daf ag as aL
Let the layer under consideration be in the U direction.
The element of length 4% and the direction cosines are expressed
in terms of the normalized coordinates as
ar = Jau (3.32a)

_ 9r ,
cosb = 5 / J (3.32b)
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. _ 9z .
sinf = B / J (3.32c)

where J is a transformation factor which can be derived using Eqs. 3.20

and is written as

1/2
b}
J' = |(dr/ow? + (8z/8u)2J (3.33)

Eqg. 3.31 can now be stated as

pe - dlu du dr du  div du dz du

an af dap af " ap at ap af (3.34)

Using the definitions of Egs. 3.32, Eq. 3.34 can be simplified as

_ |[dAu div . .
Ae = an cosb + au sinb}{ / J (3.35)

The increment of stress appearing in Eq. 3.26 can be stated
in terms of the increment of strain A€ and the current elastic

modulus E as

Ao = E Ae (3.36)

Substituting for A0 and A4V in Eq. 3.26 using Egs. 3.27 and 3.36

yields
(o] 1
T = J [0 Ae + E-Ae E Ae] radl (3.37)
v

The second term of Eq. 3.37 yields the element stiffness matrix as

cosb

¢} 0]
o {¢,,}

<> O
E < cosf sinf >

[Ke] = I {

sinb 0 < ¢'I—1 >

Ar (3.38)
J i
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where w" is the Gaussian weight and m is a suffix denoting the order
of Gaussian integration. When the layer is along the & direction, g
is substituted for Y in all the pertinent equations of this section.

3.3.3 Formulation of A Circumferential Reinforcing
Isoparametric Element

Hoop reinforcing and prestressing layers can be modelled in
the same manner as the meridional layers described in Section 3.3.2.
Again, an element which can accomodate circumferential layers parallel
to the P and & coordinates has been formulated. In this case the
potential energy of the element is defined as statedin Eq. 3.26. The

element of volume is defined as

dv = 1rAdl (3.39)

where A is the area of the layer under consideration and dl is an
element of length parallel to the direction of the layer. The strain

however is defined as

Ae = Au/r (3.40)

Let the layer under consideration be in the U direction. The
element of length A% is defined in terms of the normalized coordinate

M as

dt = J'au (3.41)

where J is the transformation factor defined by Eg. 3.33. For
this element, the stiffness matrix is obtained from Eq. 3.37 by
substituting the right hand side of Eq. 3.36 for the increment

of stress and Eq. 3.40 for the strain increment as



_ {0}
[Ke] = i{ {0}

E<<¢p> <o>>A%'wT} (3.42)

m . \ .
where wi's are the Gaussian weights and m denotes the Gaussian order

of integration.

3.4 Body Forces

The body forces that arise in this study are gravity loads
and equilibrating loads. The latter are equivalent to the internal
forces in the structure. Although this type of load is not applied
to the structure its evaluation is required to check equilibrium and
to evaluate the unbalance between the applied loads and the state of
stress in the structure. 1In this section gravity loads and equili-
brating loads as well as thermal loads arising from possible thermal

fields are formulated on a work equivalent basis.

3.4.1 Gravity Loads

In this study gravity loads are assigned to the negative z
direction and are calculated for the solid element alone. Let AF

be an increment of gravity load per unit volume. The virtual work
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done by this load in going through the virtual displacement 8Aq, which

is compatible with the condition stated in Egq. 3.4b, is the second

term on the right hand side of Eq. 3.7 and can be isolated as

S(AF) = '[ YSAv av (3.43)
VR

where Y is the specific weight of the solid element material. 1In

matrix form Eg. 3.43 can be written as
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<6A36AX>{A§e} = -<<SA9_6A!>J av (3.44)

Y l ©
w oy

Substituting for the element of volume 4V in Eq. 3.44 by the right
hand side of Eg. 3.22 and carrying out the integration numerically,

the work equivalent gravity loads ‘<A§e3> are expressed as

(hE ) n n Io } n m
= - z z - J ) , 3.45
AFE Y i=1 =1 ¢ (Ei,uj) rw; wj ( )

where J, r, w, n and m have been defined in Section 3.3.1.

3.4.2 Thermal Loads

Thermal loads arise when deformation due to the presence of
a temperature distribution is partially or fully constrained by the
presence of a gradient, external indeterminate restraints, variations
in material thermal properties or internal indeterminacy. Let the
increment of strain arising in a body, where one or more of the above

described situations exist, be written as

A e Ack + Ae, .t (3.46)

i35 = Rixe %% ij

where A, , 2 is the compliance tensor associated with ¢ ., _defined
ijk ijke
in Chapter Two and Aeijt is the increment of strain occuring due to

thermal change alone and is defined as
A e = a,. At (3.47)

where At is the increment of temperature and aij is the thermal
expansion tensor. It must be noted that in an orthotropic material

shear stresses in the orthotropic directions do not occur due to
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thermal changes. 1In the principal axes of orthotropy aij is defined as

a,.. = 0o, (no sum) (3.48a)
ii i

aij = 0 (i # 3) (3.48b)

where ui is the thermal expansion coefficient in direction i.

Inverting and rearranging Eg. 3.46 the increment of stress due to

the increment of temperature can be written as

- Q.

Ao X4,

(Ae At) (3.49)

i3 = Ciske ke

Ignoring external work, Eq. 3.7 is reduced to the form

{f (A €0~ %0 At) CiijL § A Eij av} = 0 (3.50)

\Y
e

z
X

The first term of equation 3.50 gives rise to the element stiffness
matrix. The second term gives rise to the thermal loads. Using
Eq. 3.4a and Eg. 3.11b, the second term of Egq. 3.50 is stated in
matrix form as

we) = 2t (517 (e ] (o) be av) (3.51)

K \
e

The increment of temperature At isexpressed in terms of the nodal

values and shape functions as
At = <¢> {At} (3.52)

Using Eg. 3.52 and numerical integration, Eg. 3.51 can be written as
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{ar } = ¢ b} } {At}
— < >
F . ljzl [B(gi,uj) 17 [c] {a q>(£i,uj) eri wj At

(3.53)

The foregoing formulation has been for a solid element.
Similar formulations can be carried out for the meridional and
the circumferential reinforcing elements described in Sections 3.3.2

and 3.3.3 resulting respectively, in

_ - {¢} 0 - sinb n
{AFt} = i igl[: 0 {¢}~I lcose} <¢> oAr Ew, {AE} (3.54a)
n [{¢} a
{Ar } = I z <<¢><o>> Ear A J w, | { At} (3.54b)
K |i=1l{{o} =

where the appropriate definitions of Sections 3.3.2 and 3.3.3 apply.
The summations enclosed in square brackets in Egs. 3.53,
3.54a and 3.54b are carried out for a particular solid element and
all the meridional and circumferential reinforcing layers within,
summed up and then multiplied once by the element nodal temperatures.
In this manner, efficiency of calculations is increased. Egs. 3.53

and 3.54 are summarized in one equation as

{ar ) = i{ [th]_ + [Th] + [Th]cr:l {at 1} (3.55)

where [Th]s, [Th]mr and [Th]cr and the summations enclosed in square

brackets in Eqs. 3.53, 3.54a and 3.54b respectively.
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3.4.3 Equilibrating Loads

Equilibrating loads are fictitious loads that are work equi-
valent to the state of stress in a structure. The estimation of
these loads is necessary to check equilibrium and to calculate.the
unbalanced loads in case equilibrium is not satisfied. The equili-
brating loads associated with an element constitute the first integral
on the right hand side of Eqg. 3.14d4. Thus, for a solid element,
using Gaussian integration and the definition of the element of

volume in Eg. 3.22, the equilibrating loads are evaluated as

n m
T
{o} = % I [BEE )] {of raw w, (3.56)
e . . i’ i
i=1l j=1
The equilibrating loads associated with a meridional reinforcing

element with layers running in the u and & directions can be

evaluated respectively as

{¢,u.}{o}— (sind |
]

—~—
iO
—

1
N ™3

CraA w? (3.57a)

j=1 RTP 0
371 | (o3 (omy| lcos

n {d.g;} {o} ] [ cosb
z Or A wi (3.57b)

1 {o} {¢,£§ sin6

H

{o}
3

For a circumferential reinforcing element the equilibrating loads

are written as

m ({9} -
{Qe} = I AJin (3.58)
i=1 {o}
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3.5 Surface Tractions

Program FEPARCSS accepts surface tractions in the form of
nodal pressure intensities which may be normal or tangential to an
element surface. An element surface is defined as a group of adjacent
nodes forming one side of an element. The normal pressure component
is positive when prescribed along the right hand normal to an element
surface. The tangential pressure component is positive when it
describes 90° counterclockwise angle with right hand normal to the
element surface, see Fig. 3.5a. The right hand normal to an element
surface points to the right when the nodes which define the element
surface are traversed in the order they are specified.

The third integral on the left hand side of Egqg. 3.7 represents
the virtual work done by surface tractions when acting through a
virtual displacement field which satisfies the condition stated

by Eq. 34b. This statement is mathematically expressed as

<8A > {AT} = I J <80q> {Ap} as (3.59)
S

a K

where <Ap > is the pressure field, <8Aq > is the virtual displacement
field and <AT > is the nodal force vector equivalent to the pressure
field. The pressure field is defined in terms of vertical and
horizontal components, or alternatively in terms of the normal and

tangential components as shown in Fig. 3.5b as follows

<bp> = <fp_ bp > (3.60)



sino -coso| [ Ap
n
{Ap} = (3.61)
cosd  sino Apt
where 0 is the angle which the right hand normal to the surface

describes with the vertical axis as shown in Fig. 3.5¢, and is

defined mathematically as

dz/a% (3.62a)

sino

i

cosa dr/4al (3.62b)

where d¢ is an element of length along the surface. In terms A of

a normalized coordinate, e.g. U, d% can be written as
ar = J'au (3.63)

where J'is a transformation factor defined as

J = /(311)2 + (3—z 2 (3.64)

ou ou

The element of surface dS appearingin Eq. 3.59 is defined for a

one radian sector as
ds = r dl (3.65)

Using Egs. 3.65, 3.63 and 3.61, the surface tractions are expressed

in terms of shape functions and normal and tangential components as

1
- {6} {o} in0 -cosa
S z[ [ J[sm o] |, r3' i (3.66)

K {o} {¢} |[cosa sina | Apt
-1

Using numerical integration and writing the pressure components in

terms of nodal pressure intensities, Eqs. 3.66 can be written as
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{¢} o |[sina -cosa][ <¢> o m { ABn }
{AE:} = I X rdw.
K i o {¢}H|coso sina o <¢> 1 {AEt}
(3.67)

If the conditions of compatibility between elements described
in Section 3.3.1 are satisfied, the same shape functions defined in

Appendix B can be used.

3.6 Boundary Conditions

Boundary conditions in program FEPARCSS5 are applied in the
form of linear springs of very high stiffness compared to the
stiffness of the structure under consideration. These springs can
have any orientation in the plane r-z. Let the virtual work

associated with a boundary element be written as
§u = 6w Fs (3.68)

where 6w is the virtual displacement and Fs is the force in the

spring. Since the spring is linear Fs is written as
Fs = wkr/% (3.69)

for a one radian sector where k is the spring stiffness and 2 is

the length and r is the radius of the point at which the boundary
element is attached. If the spring is inclined 0° to the vertical
axis, the displacement w is writtgn in terms of the horizontal and

vertical components as

w = usinb + v cosf (3.70)
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Substituting the right hand sides of Egs. 3.70 and 3.69

into Eq. 3.68 the latter is written in matrix form as

sinb u
U = <8u dv> < sinb cosB> Kr (3.71)
cosb v

The contribution to the variation of the total internal

virtual work of the structure due to the boundary element is therefore

Su = <8u bv> [Kbe] (3.72)
‘ v

where [Kbe ] is the stiffness matrix of the boundary element and is

written as

sin?6 cosB sinb

[Kbe] = Kr (3.73)

cos® sinb® cos?6

This stiffness matrix is added to the appropriate stiffness coefficents
of the point (node) at which the boundary element is attached.

The reactions are calculated by multiplying [Kbe ] by the
actual displacements obtained at any stage in the solution. The
reactions are necessary in the equilibrium check. They are added to
the equilibrating loads obtained in section 3.4.3 as a method of
applying the condition stated by Eq. 3.4b to virtual displacement

field.
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CHAPTER FOUR

PROGRAM FEPARCS5

4.1 Introduction

?rogram FEPARCSS is a finite element code for analysis of
axisymmetric or plane, reinforced and/or prestressed concrete structure.
In this program it is assumed that displacements are small, rotations
are negligible and strains are infinitesimal. Although the program
can handle linear problems, it is designed for problems with nonlinear
material response.

In this chapter a general description of the program is
presented, the basic solution techniques are discussed and the flow

of operations for the program is briefly described.

4.2 General Description

Program FEPARCS5 is based on the finite element model formu-
lated in Chapter Three. The proéram can handle combinations of linear,
quadratic or cubic isoparametric elements. The solid element
formulated in Section 3.3.1 represents the concrete continua.

The meridional reinforcing layers and prestressing tendons are
represented by the meridional element described in Section 3.3.2.
Finally the element formulated in Section 3.3.3 represents the
circumferential reinforcing layers and prestressing tendons.

The constitutive relation proposed in Chapter Two for three

dimensional (axisymmetric) nonlinear elastic behavior of concrete is
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implemented in program FEPARCS5 as the material model for concrete.
A simple one dimensional elastic plastic constitutive relation is
adopted for the reinforcing layers and prestressing tendons.

The program can handle five types of loads. Each type is
stored in a separate load vector. These load vectors can be combined
using load factors specified by the user for each load step to form a
load increment vector. Dead loads can be a combination of gravity
loads, hydrostatic pressures, and concentrated nodal loads. A
separate vector for live concentrated nodal loads is provided. A
load vector is provided for thermal loads. Normal and tangential
surface pressures are handled by two separate load vectors. Besides
those types of loads, program FEPARCS5 can simulate post tensioning
using a specially prescribed thermal distribution. This procedure
is described in detail in Section 4.4.1.

The input to the program is composed of control parameters,
material properties, nodal geometry, boundary conditions, solid
element information and topology, reinforcing and prestressing
layer information, concentrated nodal loads, normal and tangential
surface pressure nodal intensity distributions, hydrostatic pressure
nodal intensity distribution and a thermal distribution. The speci-
fication of each load combination is done separately for each load
step.

The output is composed of nodal displacements and incre-
ments of displacements in the global coordinates, local coordinate
stress components (in the U and £1 directions of Fig. 3.3) for
solid elements and stresses and strains of the reinforcing layers

and prestressing tendons.
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The program uses numerical integration for the evaluation of
the different element relations as well as the loads wherever possible.
A number of Gaussian integration rules have been provided ranging
from one point rule for a linear displacement four node element to
a three by seven two dimensional rule for higher order elements.

The program can use a tangential stiffness approach to the
solution or alternatively the initial load method. Both these
methods will be described in Section 4.3.1. The equation solving
is done by a skyline equation solving in-core package (see Elwi,

1977 and Wilson and Bathe, 1975). Dynamic dimensioning is imple-
mented through a data managing package described by Elwi (1977).
Element shape functions and derivatives evaluated at the integration
points as well as all integration point information such as stresses,
strains, and material properties are stored on sequential files.

In this manner the size of storage regquired by the program is kept

to a minimum.

4.3 Basic Solution Techniques

4.3.1 The Numerical Solution Strategy

In Chapter Two a three dimensional constitutive relation

for concrete was proposed. This relation can be summarized as
dc = F (de ,.[do) (4.1)

in which F represents a functional relationship, (Elwi and Murray,
1979). Eq. 4.1 implies that the stress increment is dependent on

the previous stress history. In Chapter Three a finite element
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model was formulated for axisymmetric reinforced concrete structures.
This model is a displacement model. Therefore, it satisfies kine-
matic compatibility everywhere and it approximately satisfies
equilibrium only on a global level. The incremental variational
formulation included in Section 3.2 leads to the following set of

equations.

[k] {ar} = {Ar} - {A0} (4.2)

which is identical to Eg. 3.16. This equation is considered a piece-
wise linearization of the nonlinear structural response.

since {AR} appearing in Eq. 4.2 is of finite predetermin-
ed magnitude, the result of solving the set of equations is an
increment of displacement. The increment of displacement yields
an increment of strain which through the constitutive matrix yields
an increment of stress. The difference between the applied loads
and the equilibrating loads, equivalent to the stress state which
satisfies' the constitutive law, is called the unbalanced load. One
way to arrive at the state of stress which is kinematically compatible
and at the same time satisfies equilibrium, is to eliminate the
unbalanced load through an iterative scheme. Iterative schemes of
the Newtonian type can be divided into two main categories. These
are the tangential stiffness method (Argyris, et al., 1974) which
is sometimes known as the Newton Raphson Method (Zienkiewicz, 1971)
and the initial load method (Argyris, et al., 1974) which is sometimes
known as the modified Newton Raphson method (Zienkiewicz, 1971).

In the tangential stiffness method, a new stiffness matrix

is evaluated at the beginning of each load increment, based on the
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current material properties. This method is powerful and comes near
to simulating the actual load process. The main disadvantage of
this method appears when strain softening behavior is exhibited. 1In
this case, the tangential stiffness matrix may lose its positive
definite character or at least become ill conditioned. 1In this
study, however, it has been assumed that the amount of steel rein-
forcing and prestressing tendons is enough to retain the positive
definiteness of the problem. In addition, the stiffness matrix

may become nonsymmetric when nonhomogeneous materials are present
or where nonassociated flow rules are used (Argyris, et al., 1974).
In this case, the computational effort associated with re-evaluating
the stiffness matrix may become prohibitive.

In the initial load method a positive definite stiffness
matrix (usually the initial stiffness matrix) is retained and the
softening is simulated by altering the unbalanced load vector
(Argyris, et al., 1974). Although this method avoids some of the
problems associated with the tangential stiffness method, a much
larger number of iterations may be required to satisfy equilibrium
particularly when approaching the ultimate load.

The two methods described above can be illustrated schema-
tically as shown in Figures 4.la and 4.lb. Many improvements can
be introduced for both methods. For example, over-relaxation may be
used to improve the convergence rate of the initial load method.
Under-relaxation and numerical damping can be used to enlarge the
convergence domain of the tangential stiffness method (Almroth,
Stren and Brogan, 1979 and Fellipa, 1974 and 1976). Re-evaluation
of the stiffness matrix every few iterates within a load step can

be carried out in association with the tangential stiffness method.
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In program FEPARCS5 both the tangential stiffness approach
with the capability of re-evaluating the stiffness matrix every few
iterates and the initial load approach have been implemented.
Provisions: have been made for a relaxation factor. Convergence of
the iterative scheme is based on both the displacements and the

loads. The test for convergence is carried out as follows

(4.3a)

Ei
X
(o3
I A
>

=S
L o]
'.l-
| A
>

(4.3b)

where Ar and AR are the user specified tolerances on the displace-

ments and loads respectively, Ari is the increment of displacement
vector obtained in the ith iteration, r is the current displacement
vector, AQi is the unbalanced load at the end of the ith iteration

and R is the total load vector. The symbol || II denotes the Eucleadian

norm.

4.3.2 The Subincrement Method

The piecewise linearization process described in Section
4.3.1 requires that the load increment be reasonably small. When
the constitutive law is path dependent the resulting strain increments
may still be large enough to cause drift of the solution,particularly
when strain softening behavior is exhibited. The ultimate strength
parameters defined in Section 2.3.4 lie on the intersection of a
stress path with the ultimate surfaces described in Section 2.3.7.

Complicated ultimate surfaces may yield false parameters or roots
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outside the defined range when a stress point, which does not yet
satisfy the constitutive relation, falls outside the surface.

The subincrement method avoids these problems by dividing
the strain increments into a number of smaller subincrements. In
this manner, the stress point is changed gradually allowing close
simulation of the behavior and the constitutive law remains stable
even when the first derivative of the stress strain curve is not
linear. Many investigators have used this method successfully such
as Stricklin, Haisler and von Reissmann (1971), Bushnell (1973)
and Murray, et al. (1978).

wWhile the subincrement method ensures convergence to the
right answer, it is expensive because the material handling
routines consume a substantial portion of the execution time in
nonlinear programs. Therefore, choosing the size of the subincrements
must be done carefully. Murray, et al. (1978) have used a scheme
based on the size of the strain increment as compared to the
strain range. In FEPARCS5, however, the number of subincrements
is set by the user for each load step. Thus, the economy of the

solution is closely controlled.

4.3.3 Implementation of the Constitutive Relation

The implementation of the constitutive relation proposed in
Chapter Two is divided into two main parts. 1In the first part the
ultimate surfaces proposed in Section 2.3.7 are prepared by
evaluating the constants of Egs. 2.43a and 2.43b defined in
Appendix A. This part is carried out in the problem preparation

phase of FEPARCSS.
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The second part of the implementation of the constitutive
relation is related to active usage during the solution phase. 1In
this part, the increments of strain are evaluated, the equivalent
uniaxial strains are updated and the corresponding material properties
and stresses are calculated at all integration points. Rather than
using the increments of displacement. resulting from the solution
of Eq. 4.2 in each iterate, the increments are added to form a total
increment of displacement vector starting at the beginning of each
load step. This vector is then used to trace the variation of the
stress point from the last converged position. 1In this manner
drift of the solution is minimized. 1In the following the mechanics
of this phase will be described in detailed steps.

1. The strain increment is calculated using the shape

functions and derivatives as
{Ae} = [BlH{Aq} (4.4)
2. The strain subincrement is calculated as

<A€>S = <Ae>/N (4.5)

where N is the number of subincrements.
3. The strain subincrement is then transformed into the
integration point local coordinates (chosen in Section 2.3.3 as

the fixed orthotropy axes) as

<Ae >2 : <Ae >s + local coordinate system (4.6)
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The program then loops over the number of subincrements to perform
the next steps.

4. The local stresses are updated as
i+1 i
to}y = {o}£+[c]{Ae}£ (4.7)

where "i" indicates the number of subincrement which varies from "o"

to "N-1" with "o" denoting the state of stress at the end of the
previous load increment.

5. The equivalent uniaxial strains are updated as

i+1
2

1 .
<g >t = <¢g¢ > 1 <@
u

i i
a - 02)/E > (4.8)

6. The strength and deformation parameters are calculated

. i+ .
for the stress point < 02> ! and the ultimate surfaces

i+1 i+l )

<Oc>; : <(5>2 =+ stress ultimate surface (4.9a)
i+l i+l . .

<€c >£ : <Eu>£ 2 strain ultimate surface (4.9b)

7. The stress point is now updated using the stress equi-
valent uniaxial strain curves described in Section 2.3.4, the
matexrial properties are updated using the functions described in
Sections 2.3.5 and 2.3.6 and the constitutive matrix is updated

using the form described in Section 2.3.2 as

i+l
<g, > = <fi(¢e , e, 0, E)> (4.10a)
L u’ ¢’ "¢’ o
i+l
<E> = <f,(e , € ,0 ,E)> (4.10Db)
u C o} (o]
i+l
<y > = <f (e , €, v)> (4.10c)
u’ ¢’ ‘o



74

[c] = [f.,(<E>i+1,<\>>i+1)] (4.104Q)

in which f denotes functions.

8. At the end of the loop over the subincrements the program
transforms the local stresses into the global coordinate system and
obtains principal stresses.

The eight steps described above are repeated at each inte-
gration point for all elements. It must be noted that the constitu-
tive matrix has been formed and stored in the local coordinate
system. Therefore, when formulating the stiffness matrix of the
structure care must be taken to transform the constitutive matrix
into the global coordinate system.

Initial strains caused by temperature, if present, must be
removed from the strain increment calculated in step 1 by modifying

Eq. 4.4 to become

{ae} = [B]{Aq} - {a}<o¢>{At} (4.11)

where < ¢ > is the vector of shape functions, <At > is the tempera-
ture increment and <0 > contains the thermal expansion coefficients

which are assumed not to be affected by orthotropy.

4.4 Special Capabilities

4.4.1 1Initial Stresses

In some problems where a self-equilibrating stress distribution
exists, it becomes necessary to evaluate the corresponding strain
field before the solution proceeds. This option has been implemented

in FEPARCSS in the initialization phase. Thus instead of initializing
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the stresses and strains to zero and material properties to the
initial state, the program reads the stress state from a file and
calculates a corresponding strain field that satisfies equilibrium
but may not satisfy compatibility. This process is carried out in

steps similar to the flow chart of Fig. 2.16.

4.4.2 Post Tensioning

Post fensioning is a common prestressing method in axisym-
metric structures. The method consists of running ducts through
the structure before pouring the concrete. When the concrete is
poured and has attained sufficient strength, the prestressing tendons
are inserted in the ducts, tensioned and anchored to the concrete.
During this process the structure deforms but there is no compatibility
between the tendons and the concrete. The next step is to grout
the ducts to protect the tendons and to establish compatibility
of deformation between tendons and concrete under all subséquent
loading stages.

Program FEPARCS5 has an option which simulates this process
very successfully. For this purpose the program reads a special
thermal distribution which is applied only to the prestressing tendons
causing an initial strain equal in magnitude to the strain caused by
the prestressing excluding elastic losses (approximately). The
program then assigns each tendon a level of Prestressing corresponding
to the initial strain. Nodal loads are then calculated from the
prestressing elements alone using Egs. 3.57 and 3.58 of Section 3.4.3.

Since at that stage there is no compatibility between tendons

and concrete, the program evaluates the stiffness matrix of the



structure excluding the prestressing elements. The loads calculated
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from the prestressing elements are then subtracted from the initialized

load vector which is then applied to the structure. At the end of
this process a self-equilibrating state of stress exists in the
structure which simulates a post tensioning procedure.

This process is considered a load step, the end results of
which are used as initial conditions for the next load step, except
that the displacements and loads are reassigned to the state before

prestressing once convergence is obtained.

4.5 Flow of Operations for Program FEPARCSS

From the operational point of view, program FEPARCSS5 is
divided into two main ekecution stages, namely the problem prepara-
tion stage and the solution stage. The former is pexformed only
once or as many times as it takes to check the data, whereas the
latter is performed for each load step.

As outlined in Section 4.2 the problem preparation stage

reads and generates the structural and the loading data, calculates

and stores the element shape functions and derivatives at all Gaussian

integration points, forms the sky line of the structure stiffness
matrix and initializes the stresses, strain and material properties
at all integration points. Finally, for each load type (dead loads,
live concentrated nodal loads, thermal loads, and normal and tangen-
tial surface pressure loads) a separate load vector is formed. If
requested an initial stiffness matrix is formulated, triangularized

and stored to be used in the initial load method.



Program FEPARCS5 does not choose the size of the load step
automatically. This is done by the user. At the beginning of every
load step, the user specifies the number.of subincrements and whether
the tangential stiffness method is to be used or the initial load
method. If the former, the user specifies the number of iterates
after which the stiffness matrix is to be reevaluated. Also required
are the tolerances on convergence, the relaxation factor and finally
load factors to specify the load combination for this load step.

Having read the user load step specification and having
formed the load increment accordingly, the program proceeds as
follows.

1. The program formulates and triangularizes the stiffness
matrix in the case of the tangential stiffness method or reads the
initial triangularized stiffness matrix from out of core in the
case of the initial load method.

2. The program then, solves for an increment of displacement,
updates the total displacement vector and updates the total increment
of displacement vector.

3. The program updates the stresses and material properties
according to the scheme described in Section 4.3.3.

4. 1If the problem is linear, the program outputs the
results. If the problem is nonlinear the program calculates the
equilibrating loads using the equations of Section 3.4.3, obtains
the unbalanced load vector and checks for convergence as described
in Section 4.3.1.

5. 1If convergence has been obtained the results are output

and the load step is considered ended. If convergence has not been
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obtained, and the number of iterates has not exceeded the specified
maximum, the program'uses the unbalanced load vector to obtain a
further increment of displacement. For this purpose the program
branches back to either step 1, if re-evaluation of the stiffness
matrix is required or step 2 if this is not required.

If numerical prgblems, such as an ill conditioned stiffness
matrix, oscillatory conveyrgence, or exceeding the maximum number of
iterates, occur, the program automatically stops and prints out the
current state of stress and displacement for the user's consideration.

Fig. 4.2 and 4.3 show the flow charts of the operations for

the two stages described above.
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CHAPTER FIVE

PRELIMINARY INVESTIGATION

5.1 Introduction

A constitutive relation for three dimensional (axisymmetric)
behavior of concrete has been proposed in Chapter Two. In Chapter
Three a finite element model for incremental analysis of axisymmetric
reinforced and/or prestressed concrete structures has been formulated.
Chapter Four describes program FEPARCS5 in which the features
proposed and formulated in Chapters Two and Three have been imple-
mented. In this Chapter a preliminary investigation of the capabili-
ties of program FEPARCS5 and its ability to characterize the axisym-
metric behavior of concrete is conducted.

A series of tests on prestressed concrete wall segments
were carried out at the I.F. Morrison Laboratory, University of
Alberta by Dr. J.G. MacGregor, Dr. S. Simmonds, Dr. D.W. Murray and
Dr. S. Rizkallah during the year 1978 (Chitnuyanondh, et al., 1979).
These experiments formed a part of the research program into the
effects of overpressure on secondary containment structures mentioned
in Section 1.1 In this Chapter a simulation of some of these tests
is carried out using program FEPARCS5. The results are compared
with the experimental results and with the results of an elastic
plastic analysis (Chitnuyanondh, et al., 1979). Only two segments
out of fourteen will be compared. These are segments no. 1 and no. 3.
Segments no. 1 and no. 3 are identical in details but have

been tested under different load paths.
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5.2 Wall Segment Test Description

The wall segment specimens were 31.5 x 31.5 inches and 10.0
inches thick. The reinforcing consistedof two #3 @3 inches meshes
placed one half inch from each face. The prestressing tendons
consisted of four 7 wire tendons in one direction and three 6 wire
tendons in the other direction. The tendons were placed in ducts
1.07 inches 0.D., tensioned and anchored at the ends. Load cells
were placed between the anchor heads and the bearing plates. Figures
5.1 to 5.3 show the details of the wall segments.

The primary instrumentation consisted of electric strain
gages, placed on the concrete on each face parallel to the main direc-
tions of prestressing. A number of Demec points were also installed
on both faces.

Loading was applied through two independent perpendicular
systems attached to both the steel reinforcing and the prestressing
tendons. Segment 1 was tested under biaxial tension with a 2:1
lgading ratio. Segment 3 was also tested under biaxial tension but
the loading ratio was 1l:1 up to 375.0 kips at which point the load in
direction 2 was kept constant while the load in direction 1 was
increased. Direction 1 was the direction parallel to the 7-wire
tendons, while direction 2 was that parallel to the 6-wire tendons.
The prestressing level in the tendons in direction 1 wés 134.6 psi
and in direction 2 it was 124.2 ksi (losses included). The prestress-

ing system was identical in both segments 1 and 3.
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5.3 FEPARCS5 Modelling of the Wall Segments

Wall segments no. 1 and no. 3 have been modelled for analysis
by program FEPARCS5 as parts of a cylinder 31.5 inches high and 10.5
inches thick having an 110.5 inches internal radius as shown in
Fig. 5.4. The finite element model consists of one 12 node cubic
element resting on roller boundary conditions as shown in Fig. 5.5.
The steel rebars and prestressing tendons are smeared in meridional
and circumferential layers as shown in Fig. 5.6.

The material properties are based on data published by
Chitnuyanondh, et al., (1979). Table 5.1 contains the material
properties required for the proposed constitutive relation. Table 5.2
describes the stress strain curves for the prestressing tendons and
the steel rebars.

Surface pressure is applied on the internal face of the cylinder
in order to induce tensile stresses in the circumferential direction
which, henceforth, is called direction 2. A consistent set of
concentrated nodal loads is applied to the top edge in order to induce
tensile stresses in the meridional direction which, henceforth, is
called direction 1. The prestressing is applied using the post-
tensioning option described in Section 4.4.2. The tangent stiffness
approach is used throughout the analysis of both segments as a

solution strategy.

5.4 Comparison of FEPARCS5 Analysis with the BOSOR5 Theoretical
Analysis and with the Experimental Analysis

As mentioned in Section 5.2, segment no. 1 has been loaded

with a ratio of 2:1. Fig. 5.7 shows the load-strain response of
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this segment. On this figure, the response of FEPARCS5 in direction 1
agrees well with that of BOSOR5 and with the experimental results.
In Direction 2 FEPARCS5 and BOSOR5 agree well but both predict
higher cracking load and subsequently a response stiffer than that
of the experiment.

Segment no. 3 has been loaded with a l:1 ratio up to 375.0
kips, at which point the loading in direction 2 has been maintained
constant, while the loading in direction 1 has been continued.

Fig. 5.8 shows the load-strain response of this segment. 1In this
case FEPARCS5 shows a more flexible response in direction 1 compared
to both BOSOR5 and the experiment. Direction 2 shows good agreement
between all three responses. Table 5.3 contains the loads at which

cracking, rebar yield and tendon yield have occurred.

5.5 The Stress Path

The stress path observed for segment no. 3 gives strong
evidence supporting the assumption of Section 2.3.8 that in biaxial
and triaxial tension cracking in one direction does not precipitate
cracking in the perpendicular direction. This stress path is shown
in Fig. 5.9. Fig. 5.9 indicates that although direction 2 reaches
the maximum tensile strength and starts to descend, direction 1
continues to accept increasing stresses until it assumes the maximum
uniaxial tensile strength. At this point cracking normal to direction
2 occurs and the stress in this direction starts to decrease. The
stress paths for segment no. 3 obtained from the experiment and

BOSOR5 analysis (Chitnuyanondh) are shown on Fig. 5.9 together with



that of FEPARCS5. Agreement between all three paths is fair as

far as values are concerned. The pattern discussed above however is

very distinct in all three paths.
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Ultimate Strength
Surface Parameters

Equivalent Uniaxial
Strain Surface Parameters

Elastic Moduli

cu

-5090.0
1.2
0.034

13.75
0.0
3.75
0.0

€
cu

0.002
1.3
0.095
22.5
0.0
22.5
0.0

*
Ed1

.1 x 10%"
4.1 x 10°
4.1 x 10°
1.7 x 10°

(a) Wall Segment No. 1

Ultimate Strength
Surface Parameters

Equivalent Uniaxial
Strain Surface Parameters

Elastic Moduli

cu

*

-5690.0
1.2
0.034

13.75
0.0

3.75
0.0

€
cu

0.002
1.3
0.12
22.5
0.0

22.5
0.0

4.3 x 10°
2.2 x 10°
2.2 x 10°
1.2 x 10°

(b) Wall Segment No.

Table 5.1 Wall Segment Material Parameters (Concrete)
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#3 Rebars Prestressing Tendons

g € g €
(ksi) (10™°) (ksi) (107%)

0 0] 0 0]
58.20 2.04 205.0 6.97
69.60 40.00 228.0 8.40

—-—— - 237.0 10.0
240.0 12.0
250.0 20.0
251.2 41.0

Table 5.2 Wall Segment Material Parameters
(Steel)



Wall Segment No. 1 Wall Segment No. 3

FEPARCS5| BOSOR5| TEST| FEPARCS5 BOSORS5 |TEST
Cracking of
Direction 1 310 295 320 300 263 330
Cracking of
Direction 2 430 350 359 225 200 207
Vertical Rebar
Yield 490 475 465 500 530 530
Horizontal Rebar
Yield —— -— —-— 350 350 355
Vertical Tendon
Yield 510 495 500 500 - -
Horizontal
Tendon Yield - -— - 375 425 375

Table 5.3 Limit State Loads (all loads shown are
those in direction 1 in kips)
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Fig. 5.4 Axisymmetric Modelling of Wall
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CHAPTER SIX

ANALYSIS OF A CONTAINMENT STRUCTURE

6.1 Introduction

In Chapter Five a preliminary investigation of the capabili-
ties of program FEPARCS5 has been undertaken. The next step is to
use the progrém to analyse a complicated structure which makes more
rigorous demands on the different features of the program. In this
chapter a finite element model of the test structure mentioned in
Section 1.1 is described, an analysis of the model using program
FEPARCSS5 is presented, and a comparison of the results both with
those obtained from the actual test and with those of an elastic
plastic theoretical analysis of a similar model carried out by
Murray, et al. (1978) using a modified form of program BOSORS5 is

discussed.

6.2 Description of Test Structure and Procedure

The test structure, shown in Figures 6.1 to 6.4, was composed
of a 3'-6" thick base, a 5" thick - 10' high cylindrical wall which
had an internal radius of 4'-10", a ring beam and a 4" thick
spherical dome which had an internal radius of 9'-8". A smooth
transition between the dome and ring beam was obtained by gradually
thickening the dome at the springing line. Four buttresses were
placed at 90° intervals around the cylinder to provide anchorage

for the circumferential post-tensioning strands. The dome prestressing
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tendons were placed on two orthogonal geodetic nets as shown in the
upper right hand quadrant of Fig. 6.2. The dome reinforcing was
placed on meridional and circumferential lines as shown in the lower
right hand quadrant of Fig. 6.2.

The levels of prestressing and the thicknesses have been
designed to yield a cracking sequence similar to that expected in
the Gentilly-2 containment structure, (Murray et al. 1978).

However, the wall has been designed to have lower cracking strength
relative to that in the dome than would be expected in the Gentilly-2
structure. In this manner more information can be obtained about

the behavior of all components of the test structure before final
failure occurred.

Testing of the structure was carried out by water pressure
applied through a thin elastic membrane which prevented leakage
through the wall of the structure. Five preliminary tests, in which
the pressures were kept within 20.0 psi, were carried out to check
instrumentation. Subsequently, two actual tests were conducted. 1In
the first test, pressure was raised up to 80.0 psi which was well
above cracking pressure. The structure was then unloaded since
substantial leaking of water through a damaged membrane made it
impossible to maintain pressure. A new liner was installed and the
final test was carried out up to failure at 159.9 psi.

First visible cracks were observed at 40.0 psi in the cylinder
wall along meridional and circumferential lines. At 140.0 psi
splitting cracks at the anchorage of a circumferential tendon ap-
peared on the southwest buttress. At 158.0 psi failure occurred at

this location with concrete spalling off. At 159.0 psi three
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horizontal tendons in the wall either fractured or lost their
.anchorage and the adjacent rebars fractured. The liner then
ruptured releasing all pressure and ending the test.

Electronic readings were taken at intervals of internal
pressure of 5.0 psi. There were 207 electric strain gages placed on
the steel reinforcing and 38 electric strain gages placed on concrete
face. In addition 74 Demec gages were located along and across a
meridional line midway between the northeast and northwest buttresses.

The information on the test contained in this section and
the next sections have been obtained from progress reports to the
Atomic Energy Control Board of Canada, since final reports have not

been published up to the time of writing.

6.3 Finite Element Model of Test Structure

6.3.1 General Description

The finite element mesh for the structure is controlled by
the locations of the prestressing strands, the shape of the ring
beam and the anticipated stress gradients at the junction of the
ring beam and the cylinder wall. Quadratic displacement element are
used exclusively to construct the mesh. These elements have been
found to give greater flexibility in modelling the geometry of the
structure than do linear elements. At the same time the problem
size is kept reasonable. Two elements are used through the thickness
of the dome and the cylinder wall to enable accurate positioning of
the prestressing tendons in the dome and to resolve the problem of

intersection of vertical and dome prestressing tendons inside the
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ring beam. Figures 6.5 to 6.8 show the mesh and the prestressing
and reinforcing layers superimposed on the solid elements.

It hés been found by Murray et al. (1978), that the base
provides complete fixity at the bottom of the cylinder wall.
Therefore, the base has been eliminated from the finite element model
and in its place a set of boundary elements have been used as shown
in Figures 6.6b and 6.6c. Since only one half of the vertical cross
section is modelled, the end of the dome on the axis of symmetry has
been provided with a set of horizontal boundary elements as shown
in Fig. 6.6a in order to prevent the vertical line from rotating or
translating in the horizontal direction.

The connectivity of the elements has been defined so that
the local u-£ coordinates be as shown in Fig. 6.9. The order of
the Gaussian integration rule is 2 x 2 for all solid elements. A
two point rule is used for each reinforcing or prestressing layer
within a solid element. Altogether, the problem has 226 nodes, 14
boundary elements and 55 solid elements on which a total of 63 longi-
tudinal reinforcing layers, 57 hoop reinforcing layers, 29 longi-
tudinal prestressing layers and 28 circumferential prestressing layers

are imposed.

6.3.2 Modelling of Dome Prestressing

In program FEPARCS5 prestressing layers have to be described
as meridional or circumferential layers. Therefore, it has been
necessary to transform the dome prestressing layers from the actual
orthogonal geodetic nets into equivalent meridional and circumferen-

tial layers. This has been accomplished by deriving weighting
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functions for the contribution of each tendon to the meridional

and circumferential directions at the points of intersection of the
tendons. The weighting functions have been plotted against the radii
of the points of intersection for meridional contributions and
circumferential contributions. These plots have been used to obtain
the average contribution of meridional tendons per unit width and
circumferential tendons per unit length. This process is described

in detail in Appendix C.

6.3.3 Materials

The stress strain curves for the different kinds of steel

rebars are shown in Figs. 6.10a and 6.10b (Murray, et al, 1978).
The maximum strain allowed in rebars is 4%. The stress strain
curves for the prestressing tendons are shown in Figs. 6.1la and
6.11b (Murray, et al., 1978). The maximum strain allowed in the
dome tendons (0.62"¢) is 8%, while the wall prestressing tendons

(0.5"¢) are allowed only 5% strain.

Two different types of concrete are used in the body of the
model. Normal cast in place concrete is used for the cylinder wall
up to an elevation of 5.0 ft., and in the ring beam and the dome.
Gunite concrete is used in the cylinder wall from elevation of 5.0 ft.
to 10.0 ft. The properties of those materials are shown in Table 6.1.

No thermal analysis of this model is required, hence concrete
and all rebars are assigned zero thermal properties. However,
since the prestressing strains in the tendons are assigned through
a thermal field, the tendons are assigned thermal properties corres-

ponding to the required levels of prestressing. There are essentially
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three levels of prestressing: 137.7 ksi for the circumferential
prestressing in the wall and the ring beam, 90.0 ksi for the vertical
prestressing in the wall and 113.1 ksi for the dome prestressing
(losses included). The first two levels are induced in 0.5"¢ tendons.
Therefore, two different material types are defined to simulate the
0.5"¢ tendons with two different thermal expansion coefficients. The
dome prestressing is composed of 0.62"¢ tendons and these are defined

to have a different thermal expansion coefficient.

6.3.4 Loads

This model is subjected to a variety of loads; gravity loads,
tangential friction loases in the dome, hydrostatic pressure,
prestressing loads and the internal pressure. Gravity loads are
simulated as described in Section 3.4.1. Friction losses in the dome
are simulated by meridional tangential tractions on the middle line
of the dome. Hydrostatic pressures are simulated by a normal pressure
distribution on the inside face of the model. These three load
vectors are added to one dead load vector. Prestressing simulation
has been carried out using the procedure outlined in Section 4.4.2.
A normal internal pressure of 1.0 psi is used to form an equivalent
internal pressure load vector which is incremented in the subsequent

pressurization of the structure.

6.4 Analysis of Test Structure

The analysis of the finite element model described in Section
6.3 is performed in several stages. In the problem preparation stage

data is read and generated, element shape functions and derivatives
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are evaluated, column heights and the addressing array of the stiff-
ness matrix are formed, stresses, strains and material properties
are initialized at all integration points, and all basic load
vectors are formed. In the second stage the tendons are tensioned,
equivalent prestressing loads are evaluated and applied to the
structure excluding the tendons. In the third stage dead loads
composed of gravity, friction and hydrostatic loads are applied to
the structure as one load increment. In the subsequent stages, incre-
ments of internal pressure are added to the structure simulating
the pressurization of the test structure which ultimately leads to
failure. Failure in this analysis is characterized by the inability
of the program to obtain convergence on both loads and displacements.
Table 6.2 contains a breakdown of all runs on thé Amdahl
470/V7 computer unit at the University of Alberta, Edmonton. The
number of iterates required for each load step and the CPU time
consumed are shown. Table 6.2 also shows the tolerances on the
displacements and the loads, Ar and AP respectively. The number of
subincrements (NS) vary between 5 and 10. The maximum number of
iterates allowed per load step is 31 up to 125.0 psi, after which the
limit is increased to 70 iterates. 1In the initial stages and up
to 40.0 psi the stiffness matrix is evaluated at the beginning of
each load step and re-evaluated after each third iterate. 1In
subsequent stages, the material properties available at 20.0 psi are
used to formulate, triangularize and store a constant stiffness
matrix which is used for all load increments above 40.0 psi. It has
been found that this stiffness matrix gives better convergence than

the initial stiffness matrix.



103

6.5 Comparison of Results with the Experimental Results and the
BOSOR5 Theoretical Analysis

Program FEPARCS5 outputs nodal displacements, stresses at
the Gaussian points for solid elements, and stresses and strains at
the Gaussian points for the rebar and prestressing layers. At the
time of writing, the experimental results and the BOSOR5 results
available consist of displacement profiles and surface strains
obtained from Demec readings. Comparisons, therefore, will be re-
stricted to displacement history and profiles, and surface strains.

In addition, cracking patterns are discussed.

6.5.1 Displacements

Deflection patterns determined from the FEPARCSS analysis
are reasonably similar to those of BOSORS and the test. Fig. 6.12
shows a deflection profile at 120.0 psi. It can be seen that the
reéults of FEPARCS5 on the cylinder wall represent a stiffer behaviour
than for the other two sets of results. On the dome, however,
FEPARCSS and BOSOR5 match reasonably up to a point two feet away from
the crown. At this point FEPARCS5 maintains the displacement gradient
an extra short distance, thereby approaching the test results,
while BOSOR5 results level off more rapidly. On this figure it is
observed that the displacement gradient of the test structure at
120.0 psi is higher than either that of BOSOR5 or FEPARCSS.

Fig. 6.13 shows the deflection-pressure curves at two
points near the top of the dome and the middle of the cylinder.
These are the points of maximum deflection. On this figure, BOSOR5

and FEPARCS5 agree well up to 80.0 psi at the top of the dome and
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up to 110.0 psi at the middle of the cylinder. After 80.0 psi
FEPARCSS deflection response at the top of the dome approaches the
test results while BOSOR5 predicts a somewhat stiffer response. This
agrees well with the deflection profiles shown in Fig. 6.12.

FEPARCS5 deflection response at the middle of the wall after 110.0
psi predicts more carrying capacity than that shown by BOSOR5. The
reason must be that BOSOR5 uses a better descending branch representa-
tion of the tensile stress strain curve of concrete. The difference,

however, is within 2.5%.

6.5.2 Surface Strains

As mentioned before the strains plotted from the test
results are measured from Demec readings, i.e. are measured from
displacements over a finite length. Hence, at points, where there
is a relatively high displacement gradient, a discrepancy must show
between those results and the strain predicted by FEPARCSS5. The
latter, as mentioned in Chapter Three, are calculated assuming
infinitesmal strain and negligible rotations. This is parti-
cularly noticeable in the cylinder wall near the base where there
is a point of inflection and rotations are not negligible.

Figs. 6.14 to 6.19 show a series of strain histories against
internal pressure at a variety of points on the outside surface of
the structure. Fig. 6.14 shows the meridional strains at a point
28" above the base of the cylinder. The response of FEPARCS5 agrees
reasonably with that of BOSOR5 and the test results up to 105 psi.
At this point the response of FEPARCS5 shows considerable stiffening

as shown by the curve denoted by Ei. This discrepancy is to be
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expected since this curve is derived from an infinitesmal strain field
and the point under consideration lies very near the point of in-
flection as can be seen in Fig. 6.12. The curve denoted €f shows
finite (Green's) strains computed from the displacement field of
FEPARCSS5. This curve reflects the influence of rotations on the
strain at this point.

Fig. 6.15 shows the circumferential strains at the same point.
Agreement here is reasonable between all three sets of results,
although the stiff behavior predicted by FEPARCS5 in the cylinder
wall can be observed.

Figs. 6.16 and 6.17 show respectively the meridional and
circumferential strains at a point 65" above the base on the outer
surface of the cylinder. 1In the neighborhood of this point, the
displacement gradient is very small (see Fig. 6.12) and FEPARCS5
predicts a meridional strain response in good agreement with BOSORS5.
The test results, however, are much stiffer. Confirmation of the
test results may be obtained once the electric strain gage results
are published. 1In the circumferential direction agreement is good
between all three sets of results, although the slightly stiffer
wall response of FEPARCS5 is again observed.

Fig. 6.18 shows the meridional strains at a point approxi-
mately 8.5" away from the crown on the outer surface of the dome.
FEPARCS5 response indicated by Ei exhibits the stiff behavior
characterizing points of high displacement gradient. The curve
indicated Ef is obtained including the rotation from the displacement

field of FEPARCS5. The improvement in response is noticeable.

Fig. 6.19 shows the circumferential strain at the same point.
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FEPARCS5 response agrees well with that of BOSOR5 and the test

results. &

6.5.3 Cracking Sequence

Program FEPARCS5 outputs cracking information at the Gaussian
points. The term "cracking" means that the point has reached its
ultimate strength and is forced to deform beyond the corresponding
strain. The term 'vertical crack' is used to describe cracks occurring
due to circumferential strains, while the term 'horizontal crack'
is used to describe those cracks occurring due to meridional strains.

Fig. 6.20 show the progress of verfical cracks as predicted
by FEPARCS5. Vertical cracks occur as early as 40.0 psi at the crown
of the dome and spread slowly outward on the outer surface of the
dome. Extensive vertical cracks appear on the entire length of the
cylinder with the exception of the upper and lower two feet at 60.0
psi. As pressure increases vertical cracks spread up and down on
the cylinder but never reach the ring beam nor the base. Throughout
the analysis the ring beam and the springing line of the dome remain
free of vertical cracks. BOSORS5 predicts extensive vertical through
cracks in the cylinder wall at 62.0 psi (Murray, et al., 1978).
Vertical cracks in the dome start appearing at 67.0 psi and spread
slowly in the BOSOR5 analysis. However, at 120.0 psi the pattern of
vertical dome cracks predicted by BOSOR5 is similar to that of
FEPARCS5. Again the ring beam and the springing region of the dome
remain free of vertical cracks throughout the analysis (Murray,
et al., 1978). 1In the test the first visible signs of vertical

cracks were observed at 40.0 psi in the wall. At 80.0 psi these
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cracks became as extensive as has been predicted by both BOSOR5 and
FEPARCSS5. The ring beam and the springing of the dome remained free
of vertical cracks to the end of the test.

Fig. 6.21 shows the progress of horizontal cracking. The
onset of horizontal cracks is predicted by FEPARCS5 at 50.0 psi\on
the inside surface of the ring beam and the springing of the dome. At
60.0 psi FEPARCS5 predicts horizontal cracks at upper surface of the
dome at and near the crown and on the outside surface of the wall two
feet below the ring beam. The cracked region on the inside surface
of the ring beam continued to spread up and down slowly penetrating
the ring beam. At 70.0 psi extensive horizontal cracks are predicted
in the dome and the wall. However, the upper surface of the ring
beam and the springing of the dome remain crack free. At 120.0 psi
horizontal cracks appear everywhere in the structure except in the
upper surface of the springing of the dome the outer portion of the
ring beam and the outside surface of the wall near the base. BOSOR5
predicts the first horizontal cracks at 30.0 psi on the inside
surface of the ring beam. The outside surface of the dome near the
crown and the outside surface of the wall under the ring beam are
predicted to crack horizontally at 62 psi. After that BOSOR5 shows
a pattern of horizontal crack progress which is very similar to that
predicted by FEPARCS5. Test results indicate similar behavior on
the outside surface. On the inside surface, no information is avail-

able since it was inaccessible.



6.6 Limit States for Containment Structures

The objective of the application of the technology developed
in this work is to simulate the response of a containment structure
to internal over pressure. Internal pressure in nuclear containment
structures may occur due to failure of the primary or secondary
cooling systems within the structure. Under such hypothetical

situations a series of limit states can be defined to indicate the
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degree of damage (Murray and Epstein, 1976). Damage to such structures

may result in a deterioration of the containment function and/or
danger to the systems inside the structure. The limit states which
may lead to such problems have been identified by Murray and Epstein
(1976) as
1. The pressure which causes cracking over a significant
portion of the internal surface.
2. The pressure which causes yielding of the reinforcing
steel.
3. The pressure at which cracks may penetrate the structure.
4. The pressure at which the prestressing tendons may yield,
thus seriously damaging the ability of the structure to
reseal itself upon relief of pressure.
5. The pressure at which spalling of concrete may lead to
debris inside the structure.
6. The pressure causing rupture of the reinforcing steel or
prestressing tendons.
7. The pressure which may initiate a structural mechanism.
8. The pressure at which relative displacements may damage

the systems inside the structure.
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These limit states may or may not occur in the order they
are listed. In Table 6.3 some of these limit states are identified.
Ultimate failure of this type of structure may be characterized by
rupture of the prestressing tendons. This stage has not been reached
in FEPARCS5 analysis. It is possible however to predict rupture of
the prestressing tendons by studying the strain profiles and the rate
at which strain increases with respect to pressure in the late stages
of the analysis. The strain profiles at 140.0 psi for the meridional
and circumferential prestressing tendons are shown in Figs. 6.22 and
6.23 respectively. Fig. 6.22 indicates that rupture of the meridional
Prestressing tendons may occur at the top of the dome. Assuming that
the maximum strain of the dome tendons is .05, the based on the
strain increment between 137.5 psi and 140.0 psi of internal pressure,
rupture may be expected at 181.4 psi. Fig. 6.23 shows two possible
points at which rupture of the circumferential tendons may occur;
the top of the dome and the middle of the cylinder. The latter,
however, possesses higher strain rate loading to failure at 183.5 psi.
A discussion with Dr. S. Simmonds has revealed that actual failure of
the test structure took place in the form of slippage of two nonadjacent
circumferential tendons leading to a partial transfer of load to the
middle tendon which then ruptured ending the experiment at 159.9 psi.
This is consistent with the findings of FEPARCSS5, but it shows the
need to establish slippage criteria in programs used for analysis of

prestressed concrete structures.
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Surface Parameters Strain Surface Para. Moduli
£ -5680.0 € -0.00217 E 3.1*107
cu cu 01l
a 1.2 ) 1.3 Egp 3.1*10’
C C
o, 0.032 o .055 Egs 3.1 %107
£, 13.75 £, 22.5 Go1p | 1.3*107
P1 0.0 P1 0.0 Vo 0.2
£, 3.75 £, 22.5 Vo 0.2
P2 0.0 02 0.0 Vs 0.2

(a) Material No. 1

(Normal Concrete)

Ultimate Strength

Equivalent Uniaxial

Initial Elastic

Surface Strain Surface Moduli

£ -3540.0 € -0.00238 Eo, 1.8 * 107
cu cu

o 1.2 o 1.3 Eop 1.8+%107
(o] (o]

a .048 a 0.05 Egs 1.8*107
t t

£ 13.75 £ 27.5 Ggyp | 0.75%107
p1 0.0 01 0.0 Vo, 0.2

£z 3.75 £2 22.5 Voo 0.2
P2 0.0 P2 0.0 Vs 0.2

(b) Material No. 2 (Gunite)

Table 6.1 Concrete Material Properties of Test Structure
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Load Description CPU No. of A A URF**( NS*
Step (Sec) | Iterates t p
0 Problem Preparation 2.05 - - - -- -—
1 Prestressing 37.60 6 0.001f 0.005( 0.5 10
2 (G + F + H)**%* 60.88 10 0.001| 0.003| 0.5 10
3 20.0 psi 48.00 0.001| 0.003} 0.5 10
4 40.0 psi 46 .65 0.001| 0.001; 0.5 10
5 50.0 psi 73.08 17 0.001| 0.001; 0.5 10
6 60.0 psi 65.34 17 0.001§ 0.003} 1.0 10
7 70.0 psi 88.05 23 0.001{ 0.005| 1.0 10
8 75.0 psi 50.79 21 0.001} 0.005f 1.0 5
9 80.0 psi 48.34 20 0.001| 0.007| 1.0 5
10 85.0 psi 49.37 21 0.001} 0.007| 1.0 5
11 90.0 psi 47.65 20 0.001| 0.008| 1.0 5
12 95.0 psi 43.52 18 0.001; 0.008f 1.0 5
13 }100.0 psi 46,12 19 0.001| 0.008| 1.0 5
14 1105.0 psi 42.98 18 0.001} 0.008| 1.0 5
15 |110.0 psi 47.47 20 0.001f{ 0.008| 1.0 5
16 |115.0 psi 59.61 26 0.001] 0.008( 1.0 5
17 [117.3 psi 55.04 24 0.001| 0.008| 1.0 5
18 1120.0 psi 56.98 25 0.001; 0.009| 1.0 5
19 [122.5 psi 79.14 33 0.001} 0.010f 1.0 5
20 1125.0 psi 71.16 30 0.001f 0.010| 1.0 5
21 |127.5 psi 79.24 33 0.001] 0.011| 1.0 5
22 [{130.0 psi 91.20 3° 0.001; 0.012§ 1.0 5
23 |132.5 psi 107.90 48 0.001f 0.013] 1.0 5
24 1135.0 psi 110.09 49 0.001; 0.015| 1.0 5
25 1137.5 psi 86.06 38 0.001] 0.017| 1.0 5
26 (140.0 psi 144.29 64 0.001y 0.019) 1.0 5

Table 6.2 Load Steps of FEPARCSS Analysis of Finite

k% G

F

H

* NS:

Element Model of Test Structure

gravity load
friction losses

: hydrostatic pressure
** URF:

under-relaxation factor
number of subincrements
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Limit State Description

Pressure

Location

extensive vertical cracks
extensive horizontal cracks

ring beam cracks

yielding of dome circumferential
6 mm rebars (72.5 ksi)

yielding of wall circumferential
3 mm rebars (48.0 ksi)

yielding of dome meridional 6 mm
rebars (72.5 ksi)

yielding of wall meridional 6 mm
rebars (48.0 ksi)

yielding of wall circumferential
prestressing tendons (240.0 ksi)

yielding of dome circumferential
prestressing tendons (220.0 ksi)

yielding of wall meridional
prestressing tendons (240.0 ksi)

yielding of dome meridional
prestressing tendons (220.0 ksi)

spalling*of concrete

60.0

70.0

50.0

90.0

117.5

90.0

110.0

130.0

110.0

120.0

115.0

cylinder wall
cylinder and dome

horizontal cracks on
inside surface

top of dome

from 2' to 8.5' above

base

top of dome

inside surface immedi-
ately below ring beam

from 3' to 7.0' above
base

top of dome

top of dome

inside surface of dome
near ring beam

Table 6.3 Pressures Corresponding to Limit States of the
Finite Element Model

* spalling is defined as cracking parallel to the surface and may

cause concrete to separate from the structure
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Fig. 6.20 Progress of Vertical Cracking
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CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

A nonlinear elastic (hypoelastic) constitutive relation has
been proposed for analysis of plane and axisymmetric reinforced and/or
prestressed concrete structures. This constitutive relation is based
on the equivalent uniaxial strain concept which has been introduced
by Darwin and Pecknold (1974, 1977a and 1977b). A new characteriza-
tion of Poisson's ratio has been introduced and post failure conditions
have been imposed on the failure surface such that the determination
of the stress-equivalent uniaxial strain relation parameters may be
more realistic.

Special isoparametric finite elements have been developed
for representation of reinforcing bars and prestressing tendons in
the meridional and circumferential directions. These elements
together with the well known isoparametric axisymmetric serendipity
finite element family (Zienkiewicz, 1971) have been incorporated in
a finite element program (FEPARCS5) for nonlinear analysis of plane
or axisymmetric reinforced and/or prestressed concrete structures.

The proposed constitutive relation has been incorporated in program
FEPARCSS as well as a number of features such as a post-tensioning
simulation procedure.

Program FEPARCS5 has been used to analyse two prestressed
wall segments under biaxial tension (Chitnuyanondh, et al., 1979)
with results comparing favorably with the test results and with BOSORS5

results. In analysing these segments the numerical instability of the
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original constitutive relation (Elwi and Murray, 1979) has been
eliminated by the addition of controls on the post failure behavior.
Convergence has been good up to the yielding of the prestressing tendons.
In these analyses the tangential stiffness method has been used as an
iteration scheme with re-evaluation of the stiffness matrix every

three iterations.

Finally, program FEPARCS5 has been used to analyse a finite
element model of the test structure erected and tested under internal
pressure at the I.F. Morrison Laboratory in 1978 by J.G. MacGregor,

S. Simmonds, D.W. Murray and S. Rizkalla. The results of the FEPARCSS
analysis have been compared with the test results and with the results
of an elastic plastic analysis of BOSOR5 (Murray, et al., 1978). The
comparisons have been based on progress reports since the final

reports on the test and the BOSOR5 analysis commissioned by the

Atomic Energy Control Board of Canada have not been published at

the time of writing.

The constitutive relationship developed herein appears to
be adequate for the nonlinear analysis of prestressed concrete
structures of the type under consideration. On a material level the
relationship has shown reasonable agreement with the two-~dimensional
test results of Kupfer, Hilsdorf, and Rusch (1969), as indicated in
Figs. 2.9 to 2.11, and with the three-~dimensional test results of
Shickert and Winkler (1977), as indicated in Figs. 2.13 to 2.15.

When combined with the strain softening characteristics in tension,
shown in Fig. 2.2, it allows a reasonable simulation of the nonlinear
response of cracked concrete under biaxial stress conditions, as

indicated by the comparisons in Figs. 5.7 to 5.9.
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However, a number of problems with the constitutive model
require further investigation. More (numerical) testing is required
to see if the softening branch is significantly affected by the
reinforcing ratio. The tendency of a multiaxial stress state to
degenerate to a uniaxial state under iteration, which has been curbed
herein by adopting the failure mode constraints described in Sect.
2.3.8 require further study. The model should also be compared
against material tests in which the principal stress directions do
not remain constant.

The FEPARCS5 program, which has been developed in associ-
ation with this work, has been shown to be capable of reasonably
simulating the nonlinear behavior of a prestressed concrete secondary
containment structure and hence to be suitable for the analysis of
thin-walled structures of this type. Prestressing effects and non-
linear (time-independent) response are treated without major problems.
The primary difficulties are the determination of convergence
criteria and the deterioration of the convergence characteristics when
a substantial portion of the concrete in the structure has reached
the strain-softening range. The latter difficulty has been dealt
with by using the tangent stiffness matrix at 20 psi as the matrix
for iteration of unbalanced forces at higher pressures. However,
the entire area of convergence criteria and solution procedures for
structures containing strain-softening materials is one which

appears to require further study.
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APPENDIX A

PARAMETERS OF ULTIMATE SURFACES

As mentioned in Section 2.3.7 the values of the coefficients
in Egs. 2.43 are chosen such that the principal radii of the ultimate
surface r, and r, pass through a set of control points. for
0, = 0,4 < 0,, then 6 = o° (Fig. 2.6b) and the points on the surface
trace the variation of r, as g, varies. This curve must pass through
" the uniaxial tensile strength point where 0, = 03 = o and g, = ft
(and hence is called the extension branch). I: mu-t also pass through
the biaxial compression point where 0, =0, = fCb and 0; = o. The
nondimensional values of the tensile and biaxial compression strengths

may be defined as

at = ft/fcu (A.la)

o = fcb/fcu (A.1b)

One additional point on the extension curve is required to define the
parabolic variation of r, for Eq. 2.43a. An arbitrary high compression
point with aa = £ may be selected from experimental data to serve

this purpose. Let the value of %a at this point be P, as illustrated
in Fig. 2.6c.

To define the variation of r, (6 = 60° on Fig. 2.6b) it is

2
required that o, = 03 2 0,. This curve must pass through the uni-
axial compression point 0,=03 =0 and 0, = --fCu (and hence is called

the compression branch). It is also required to intersect the hydro-

static axis on the rendulic plane at the same location as the

144



145

extension curve (Sa = Eo), and to pass through the experimental
point (£, P,) where p, is determined in the same manner as Py

The values of the coefficients in Egs. 2.43 can be deter-
mined from the 5 control points described above and the additional

condition of intersection at Eo as follows

V1.2 £ (at—ac) - v1.2 atac + P (2ac+at)
(2a_+a) (3 - 2ac) (3¢ ta)

(A.2)
1 v1l.2 (at-ac)
a, = 3 (@ -0) a, + —me— (A.3)
[o} t
2 4 2
ao = ?)"(].ca1 - gaé a, + /E ac (A.4)
Eo = -(a, +V a’f-—4a°a2)/2a2 (A.5)

0, (E,+1/3) - V2715 (E_+E)

by = E+E)(E-D(E_+1  ° (A.6)

b, = (§+1/3)b, + (V1.2 - 3p,)/(3E-1) (A.7)

b, = &, b, - g2 b, (a.8)

The ultimate surface for stresses is therefore completely
defined and serves to evaluate the oic's required in Egs. 2.21 to
2.26.

However Egs. 2.21 to 2.34 also require the evaluation of the
equivalent uniaxial strains eic associated with the ultimate strength

points oic as mentioned in Section 2.3.7. This is done through the
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definition of an equivalent uniaxial strain surface analogous to the
stfess ultimate surface. Control points for strain can be defined
analogous to those described for stresses and Egs. A.1 to A.8 can

be used directly with the appropriate change of variables. It should
be noted, however, that uniaxial strains are available from tests
only forlcontrol points corresponding to ft and fcu' Equivalent
uniaxial strains at the other three control points are fictitious
strains that cannot be observed directly (Elwi and Murray, 1979).
These points have been determined, herein, by trial and error until

reasonable strain correspondence was obtained.



APPENDIX B

ISOPARAMETRIC SHAPE FUNCTIONS

The shape functions for the linear, quadratic and cubic
rectangular isoparametric elements used in program FEPARCS5 are
defined in terms of the normalized coordinates U and £ as follows

(Zienkiewicz, 1971).

(i) Linear Elements:
¢i = (1+F,£i) (1+uui)/4 , i=1,2,3,4 (B.1)
(ii) Quadrétic Elements:
¢i = (14—551)(1-+uui)(ggi-+uui-1)/4 , i=1,3,5,7 (B.2)
o, = (A-EH@+u)/2 , i=2,6 (B.3)
¢, = (L+EEDA-u%)/2 , i=4,8 (B.4)

(iii) Cubic Elements:

¢, = (L+EE) (1+uuy) [9(E* +p?) -10]/32 , i=1,4,7,10 (B.S5)
6, = 9(1+ggi)(1—u2)(1+9uui)/32 , i=5,6,11,12 (B.6)
¢, = 9@+ (1—£2)(1+9€£i)/32 , i=2,3,8,9 (B.7)

where i refers to the node numbers appearing in Fig. 3.2, and Ei and

ui are the nodal normalized coordinates.
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APPENDIX C

MODELLING OF DOME PRESTRESSING TENDONS

The prestressing tendons in the dome of the test structure
are arranged in two orthogonal geodetic meshes as shown in Fig. 6.2.
In order to model those tendons in terms of stiffness as well as
forces and stresses for use in an axisymmetric finite element program,
the geodetic meshes must be transformed into an equivalent meridional
and circumferential mesh. This task is performed using vector
analysis.

‘Let subscript £ denote tendons which lie in planes passing
through the y axis and let subscript U denote those tendons which
lie in planes passing through the x-axis as shown in Fig. C.1l.
Lef 6E denote the angle plane & describes with plane y-z and let Gu
denote the angle that plane U describes with plane x-z. The coordin-

ates of the point of intersection of two tendons is written as

X = 2z tan 6E (C.la)
Yy = =z tan eu (C.1b)
z = R _ (C.1lc)

where R is the radius of the dome and
& = 1.0/(tan? 8 + tan? eu +1.0)1/2 (C.2)

X :
Let P be the unit vector along the position vector of the

point of intersection of two tendons.
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> > > >
P=atan6£.i+atan6uj+ak (C.3)

5> > >
where i, j and k are the base vectors of system x-y-z. The unit

normals to planes £ and U are written respectively as

o 6, 1 + sin 6, X (C.4a)
= = CO0Ss 1l «4a
g gl Sng

o = 6 3 +sin6 % : (C.4b)
L cos 6, 3 + sin 8 .

The vectors tangent to tendons & and U at the point of intersection

are written as

g g :
u u ( :

where ¥ a cross product. Using the definitions of Egs. C.3 and C.4,

Egs. C.5a and C.5b can be written as

> . T 2 e
Qg = (BS sin 65 tan Gu) i (BE cos Gg (tan 95 +1.0))j
+ (BS cos Gg tan Gu) ﬁ (C.6a)
Q = - (B cos ® (tan? 6 + 1.0)) 1 + (B sin 6 tan 6.) 2
Qu = u 0S u an u . i U sin u an £ J
+ (B, cos B, tan 8;) k (C.6b)
where Bg and Bu are defined as
- 2 2 1/2
Bg 1.0/ (tan Bu + 1.0/cos Gg) (C.7a)
= 2 2 1/2
BU 1.0/ (tan Bg + 1.0/cos Ou) (C.7b)
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The unit vector in the circumferential direction at the point of

intersection of two tendons is written as

> > >
C = k X p (c.8)

>
substituting for P from Eq. C.3, Eq. C.8 can be written as

>
C

Y tan eui - Y tan eg ; (C.9)

where,

1.0/(tan? 6

» « tan? 0 )1/2 (c.10)

g

>
The unit vector M 1lying along the meridian at the point of inter-

section is written as
-> > > *
M = C X p (C.11)

->
Substituting for ¢ and P using Egs. C.3 and C.9, Eq. C.1l1 is written as

=¥
I

e g 2 2 >
§ tan Gg i+ § tan Gu j - 6(tan Gg + tan Gu) k
(c.12)

where,

O
[]

2 2 2 2 2,1/2
1.0/ (tan 65 + tan eu + (tan Gg + tan eu) )

(C.13)

The contributions of tendons £ and U to the circumferential direction

can be written respectively as

ch = QE * C (C.1l4a)
> >
w =3 28 (C.14b)

cu u
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The contribution of tendons £ and U to meridional direction can be

written respectively as

=3 -mM 15

wmg = Qg M (C.15a)
= 9, * M (C.15b)

wmu = Qg .

Egs. C.1l4a to C.15b can be written as

ﬁcg = YBE (sin eg tan? eu + tan eg {cos BE) (C.16a)
N ; 2

wcu N YBu (sin Gu tan Bg + tan Gu (cos eu) (C.16b)
_ 2

wh& = a° 6 Bg tan eu cos BE {C.16c)
_ 2

wmu = o § BU tan eg cos Bu (C.164)

Egs. C.16a to C.16d describe weight functions to be applied at the
point of intersection of two tendons. The required form of contri-
bution must be an average per unit width for the meridional direction
and an average per unit length for the circumferential direction. For -
this purpose Eg. C.16d4 has been plotted for the 6 tendons appearing
in Fig. 6.2 for mesh U as shown in Fig. C.2. The average meridional

contribution was then obtained using the formula

W = (Wml + 2 (2 W + ...+ wms))/(ﬂ R/2) (C.17)

This average was then plotted on the same figure. Since both
stiffness and prestressing force as described in Sections 3.3.2 and
4.4.2 are directly related to the area of a meridional tendon, the
average weight function obtained by Eq. C.17 can be applied directly

to a tendon area.
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To obtain the contribution to the circumferential direction
Eg. C.16b has been plotted for the 6 tendons appearing in Fig. 6.2
for mesh U as shown in Fig. C.3. The average meridional contribution

was then obtained for each ten inch arc length using the formula

W, = (1.0 + Z(wc2 + oo wcn))/n (C.18)

where n is the number of tendons appearing in the band described
by a particular 10 inch arc length. These contributions were then
plotted on the same figure. As with the meridional contributions,
the circumferential weight functions can be applied directly to the
area of a tendon to simulate both stiffness and prestressing force

formulated in Sections 3.3.3 and 4.4.2 respectively.
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