
Using SIMD Registers and Instructions to Enable
Instruction-Level Parallelism in Sorting Algorithms

Timothy Furtak, José Nelson Amaral, Robert Niewiadomski
{furtak,amaral, niewiado}@cs.ualberta.ca

Department of Computing Science,

University of Alberta, Edmonton, Canada

Abstract

Most contemporary processors offer some version of Single Instruction Multiple Data
(SIMD) machinery — vector registers and instructions to manipulate data stored in
such registers. The central idea of this paper is to use theseSIMD resources to im-
prove the performance of the tail of recursive algorithms. When a recursive compu-
tation reaches a set threshold, data is loaded into the vector registers, manipulated in-
register, and the result stored back to memory. Four implementations of sorting with
two different SIMD machinery — x86-64’s SSE2 and G5’s AltiVec — demonstrate
that this idea delivers significant performance improvement. The improvements pro-
vided by the tail optimization of sorting are orthogonal to the gains obtained through
empirical search for a suitable sorting algorithm [10]. When integrated with the Dy-
namically Tuned Sorting Library (DTSL), this new code generation strategy improves
the performance of DTSL by up to 18%. Performance ofd-heaps is similarly improved
by up to 35%.

1 Introduction

This paper addresses the automatic generation of efficient code to sort short sequences of
values. The idea is that an ahead-of-time optimizer searches for fast code for several se-
quence lengths and machine configurations. Then the compiler can simply instantiate such
code when generating an optimized library. While algorithm-specific optimizations and
empirical search have long been used both for scientific computation and for large parallel
machines [4, 5, 16, 18], only recently these techniques wereapplied to integer-intensive,
symbolic, computation. Liet al. developed the Dynamically Tuned Sorting Library that
adapts to the characteristics of the input to be sorted [10].The main contribution of this
paper is the insight that the resources implemented in contemporary processors to enable
SIMD computations can be put to good use to improve the performance of sorting short se-
quences. As demonstrated in this work the effective use of these SIMD resources improves
performance through the reduction of memory references andincrease in instruction level
parallelism.

The initial inspiration for this work was the need for fast sorting of short sequences in
the implementation of graphics rendering in interactive video-game applications. In such
applications it is often necessary to decide, for each pixelof the image, what is the order
of the elements that should be displayed [2]. Even though Z-buffer pixel-ordering compu-
tations are typically handled by a specialized Graphics Processing Unit (GPU), there are
plenty of similar ordering computations that are done by theCentral Processing Unit (CPU)
in computer games. For instance, sorting is used to characterize the intensity of the various
light sources that illuminate a character. Moreover, contemporary video-game application
have at their disposal a rich supply of SIMD registers and instructions. For example, the
PowerPC-based XBox 360 hardware features 128 AltiVec registers on each of its three
cores along with an expanded set of AltiVec instructions. Inaddition to interactive video-
game applications, sorting of short sequences is also present in particule-physics simulation
applications.

Thus, using SIMD registers and instructions to sort small sequences is natural. Once a
solution was created, applying it to the short sequences that must be sorted at the tail-end of
standard recursive sorting algorithms was the next logicalstep. The experimental evaluation
of the new vector-register-based sorting algorithms presented in this paper use commodity
processors (x86-64 and G5) and extensions to the DTSL library because these machines and
algorithms are more readily available and exploitable thanproprietary video-game hardware
and software. The algorithms presented are effective for sorting short sequences of floating-
point or integer values (keys), and pairs comprised of a key and a memory address,i.e.
key-pointer pairs, as well as computing the index of a specific (minimum or maximum)
element.

Three new SIMD-based algorithms use the concept of sorting networks that are effective
to sort small sets of numbers. Section 2 describes: (1) the operation of standard sorting
networks; (2) how the SIMD vectors can be used to implement sorting networks; and (3)
how a code generator can instantiate optimized vector code for sorting networks operating
in sequences of any length. The main contributions in this paper are:

• three algorithms that use the SIMD machinery of contemporary processors for effi-
cient in-register sorting of short sequences;

1

COMP(b, c)

a b c d

COMP(a, c)
COMP(b, d)
COMP(a, b)
COMP(c, d)

Figure 1: A 4-element sorting network.

• a method to use iterative-deepening search to find fast SIMD instruction sequences
to move data within the SIMD registers;

• a method to integrate these algorithms in an optimized general-purpose sorting li-
brary;

• a method to compute the minimum element in an array, with applications tod-heaps;

• and an extensive experimental study in three different processors that demonstrate
up to 18% improvement in the performance of DTSL and up to 35% in d-heaps.
This study also indicates that the elimination of loads, stores, branches, and branch
mispredictions correlates well with the improved performance.

Section 3 describes two algorithms that combine a first-passsorting in the SIMD reg-
isters with a second-pass sorting in memory. Section 4 describes an algorithm that sorts
shorter sequences completely within the SIMD registers, thus eliminating branch instruc-
tions altogether. Section 5 describes how to extend these key-sorting algorithms to sort
key-pointer pairs. Section 6 uses similar techniques to speed upheapify-down operations in
d-heaps. The experimental evaluation is presented in Section 7.

2 Sorting Networks

The inputs to an in-placecomparator, COMP (a, b), are two storage units — memory
locations, registers, or vector-register elements —a and b, each containing a numerical
input. After the comparator executes, the lower numerical value is stored ina and the
higher numerical value is stored inb. Knuth describes acomparator network as a device
that applies a fixed sequence of comparator operators to an input vector of a given size [7].
When a comparator network produces a sorted output for any possible input sequence, it is
called asorting network. Thesize of a sorting network is the total number of comparators
in the network. Thedepth of a sorting network is the length of the critical path in its
dependence graph. Therefore the depth provides a bound for the parallel execution of the
sorting network, while the size provides a bound for a sequential execution.

An example of a sorting network with size 5 and depth 3 is shownin Fig. 1. The network
is depicted as a set of value-carrying vertical rails and comparators. Values flow from top to
bottom. A heavy dot at a line crossing indicates that the value at the vertical rail is an input
to the comparator represented by the horizontal line. A comparator moves the larger value
to the left, and the smaller value to the right. For instance,if the inputs area = 7, b = 2,

2

c = 5, d = 9, then the sorted output at the bottom of the sorting network is a = 9, b = 7,
c = 5, andd = 2. The value9 moves from raild to rail b atCOMP (b, d), and then moves
from rail b to rail a atCOMP (a, b).

Although several algorithms are available to generate codefor sorting networks, Batcher’s
“odd-even mergesort” algorithm is often chosen for its efficiency [1]. Batcher’s algorithm
usesO(n log2 n) comparators and has a depth ofO(log2 n). Sorting networks can be
efficiently implemented in processors that provide amin and amax instruction. Sorting
networks implemented with these instructions avoid the performance penalties of branch
miss-predictions incurred by traditional branch-based sorting implementations. The experi-
mental results in Section 7 indicate that eliminating branches in the code of sorting networks
is a significant win in contemporary processors.

2.1 Supporting Hardware

Consider a machine that has the followingmin andmax instructions:

min(a, b) =

{

a : a ≤ b

b : otherwise
, andmax(a, b) =

{

a : a ≥ b

b : otherwise
.

The comparator required by a sorting network is easily constructed using these two
operations, a copy instruction, and a temporary variable. For instance, such instructions
are available in the x86-64 architectures supporting the SSE2 min and max operations that
return the minimum (maximum) packed single-precision floating-point values [6].1

The extension of sorting networks to operate on vector instructions requires the defini-
tion of vectorized min and max instructions.2 For input vectorsA andB, |A| = |B| = n, let
C = min(A,B) be the element-wise minimum vector, such thatCi = min(Ai, Bi), 1 ≤
i ≤ n. The vectorized max instruction is defined similarly. Thewidth of a (vectorized) sort-
ing network refers to the number of vectors being sorted. Given an ordered list of vectors
X1,X2, . . . ,Xn, a stream of data is formed by selecting theith element from each vector
in order, thus theith stream isX1

i
,X2

i
, . . . ,Xn

i
.

For instance, the x86-64 architecture has 16 XMM vector registers, and each register
can hold 4 floating-point values. Therefore, sorting the values inn XMM registers using a
sorting network produces 4 sorted streams of data of lengthn. Up to 15 XMM registers can
be used,i.e. 1 ≤ n < 16, because one register must be reserved as temporary storagefor
the swap of values in the comparator.

This compare-and-swap machinery offers several advantages to sort a small set of
values that fits within the SIMD registers: (1) its operationis unconditional and data-
independent; (2) it is inherently branch-free, and thus free of branch-prediction performance
penalties; (3) it increases the bandwidth of sorting by enabling the SIMD instruction-level
parallelism; and (4) each compare-and-swap requires the execution of only 3 instructions.

A code generator must be able to generate code to sort sequences of any length in a
machine withn+1 SIMD registers. The solution is to define size-optimal sorting networks
that use1, 2, . . . , n registers. The optimal code for the implementation of each of these sort-
ing networks is pre-generated and stored in a small codebaseavailable to the code generator

1SSE stands for Streaming SIMD Extensions. SSE2 improves upon the original SSE.
2These vector instructions are called a SIMD extension.

3

A1 B1 C1 D1 A2 B2 C2 D2 An Bn Cn Dn

Figure 2: Interleaved sorted streams fromn 4-element SIMD registers. The first register
contains elementsA1, B1, C1, andD1. A1 ≤ A2 ≤ · · · ≤ An, etc.

for deployment. Once data has been loaded into the SIMD registers the code generator in-
stantiates the code to perform the comparator operations specified by the sorting network,
and integrates the resulting streams.

3 Stream-Based Two-Pass Sorting

The first two SIMD-based sorting algorithms discussed in this paper operate in two phases.
In the first phase the SIMD registers and instructions are used to generate a partially-sorted
output. In the second phase a standard sorting algorithm — insertion sort and mergesort are
investigated in this paper — finishes the sorting. The choiceof algorithm for the second
phase dictates the best data organization for the first one.

For the first phase, consider the use of the SIMD sorting machinery described in Sec-
tion 2 for the task of sorting a sequence ofk ∗ n values usingn SIMD registers, each
register capable of storingk values. Each group ofk values is loaded from memory into a
separate SIMD register. For a moment, assume that the start of the sequence is aligned for
such a load operation. The sorting machinery is then appliedto producek sorted streams
of lengthn, and the sorted streams are written back in-place to memory in an interleaved
form. The organization of the data in memory fork = 4 is shown in Fig. 2. After sorting,
A1 ≤ A2 ≤ . . . ≤ An, B1 ≤ B2 ≤ . . . ≤ Bn, etc.

After this initial sorting the ordering relationship between elements from separate streams,
Ai, Bi, Ci, andDi, is still unknown. Now the output from the vectorized sorting network
must undergo an additional sorting pass. Let us examine the use of insertion sort and merge-
sort to finish sorting this partially sorted output.

3.1 Second Pass with Insertion Sort

A standard insertion-sort algorithm may be used to sort the output of the SIMD-based sort-
ing network. Insertion sort delivers the best performance when its input is mostly sorted
because the algorithm does not have to move elements very far. Thus a potential issue with
using insertion sort as a second pass is how the data should beloaded into the SIMD vectors
in the first phase to produce the most favorable input for insertion sort.

Consider an input sequence ofS values, and a machine withn+1 SIMD vectors. Each
vector can store up tok values. Letm = ⌈S/k⌉. If m ≤ n the entire array can be loaded
into the SIMD registers, sorted, and written back in-place.Then a call to insertion sort will
finish sorting the entire sequence.

If m > n, an in-place algorithm divides the array into subsets smallenough to fit in the
vector registers, sorts them with a sorting network, and writes each sorted subset back to
the same locations.

4

A naive approach would simply divide the array into⌈m/n⌉ almost equal-sized blocks.
However, if the data is uniformly distributed this partition results in⌈m/n⌉ similar blocks,
one after the other. The problem is that small elements from the last block would have
similar values to the small elements from the first block, andwould require insertion sort to
move many elements to far positions to combine these blocks.

A better approach is to load the blocks into the SIMD registers in a strided fashion.
Consider for examplen = 4 and m = 12 which requires three sorting network calls.
Instead of the first call acting on elementsA1, A2, A3, andA4, it acts onA1, A4, A7, and
A10. The second call acts on elementsA2, A5, A8, andA11, and the third onA3, A6, A9,
andA12. In this way the small values in the array are likely to end up in A1, A2, andA3.
A stride width greater than one improves insertion sort performance in cases of uniform
or mostly-sorted distributions. In this paper, this strided version of the vectorized sorting
network followed by an insertion sort pass is called ISort.

3.2 Second Pass with Mergesort

The mergesort algorithm, called MSort, uses a fixed-sized block of temporary storageT
that is large enough to hold the entire arrayA. Because the SIMD-based sorting is applied
to small sequences this array will not be large in practice. MSort proceeds as follows. Com-
pute the number of blocks of data to be sorted,⌈m/n⌉, as width, and allocate temporary
spaceT .

Call the sorting network on each block fromA and store the sorted streams toT . TheQ-
MERGE algorithm described by Wickremesingheet al. [17] is now used to store the sorted
data intoA: (1) Build a heap containing the first element in each stream,and associate
with each element a pointer to the next element in its stream;(2) Repeatedly extract the
minimum element from the heap. During the extraction, replace the removed element with
the next element in its stream, and rebuild the heap.

With a small number of streams, sufficient registers may be available to contain the
entire heap. Heapify operations are then efficient and the only flow of data to/from memory
is to fetch the next item from a stream or to store the next value toA. For heaps that are too
large to fit within the available registers, in-memory heap code may be used. Maintenance
operations on small heaps may be written using the known register locations of elements,
avoiding potentially costly memory accesses and pointer indirections.

MSort uses one merge heap, with the number of inputs being a multiple of v. That is,
each heap completely handles the output from one or more vectorized sorting network calls.
Further, only heaps which may be contained within the available registers are considered.

Further optimizations include placing a sentinel value of infinity at the end of each
stream to avoid checking if streams are empty [17]. Once the sentinel is loaded into the
head it will sink to the bottom. When any sentinel is extracted from the heap the sorting is
complete.

Each sorting network call places elements from the same stream a constant distance
away from each other. Thus the next element on a stream can be found by adding a constant
offset to the address of the current element, which makes themaintenance of the “next
element” pointer in the heap straightforward.

5

Table 1: SSE2 instructions used in the example of Fig. 3
Instruction Description
movaps Ra, Rb copy the contents ofRa to Rb
shufps Ra, Rb, i copy 2 elements ofRa to the 2 low-order words ofRa,

and 2 elements ofRb to the 2 high-order words ofRa.
The elements to be copied are specified byi .

movhlps Ra, Rb copy the 2 high-order words fromRb to the 2 low-order
words ofRa.

movlhps Ra, Rb copy the 2 low-order words fromRb to the 2 high-order
words ofRa.

4 One-Pass Vector Sorting

The third SIMD-based sorting algorithm accomplishes the sorting in a single pass. Intu-
itively this is possible by loading all of then elements to be sorted into the vector registers,
applying the comparators for ann-element (scalar) sorting network, and writing the ele-
ments back to memory in-place.

The difficulty with this approach lies in repositioning elements within the vector reg-
isters such that the vector comparator operations do not corrupt the values of elements not
involved in the comparison. Moreover, simply aligning comparator inputs may be challeng-
ing, depending on the fragmentation of free locations within the vector registers.

Since the cost of applying a vector comparator remains the same regardless of the num-
ber of “care” values in each input vector, a natural optimization is to execute more than
one (scalar) sorting-network comparator at a time. However, the cost of additional data-
movement instructions to properly position multiple comparator elements in each vector
register may outweigh the benefit of parallelization. Thus,the cost analysis takes into con-
sideration the costs of data movement and comparator instructions for the target architec-
ture.

4.1 Aligning Vector Elements

The sorting network shown in Fig. 1 will be used as a running example in the description
of the single-pass in-register sorting algorithm. This network has four vertical rails and
requires the execution of five comparison instructions.

An in-register sorting instance of the network of Fig. 1 for the x86-64 SSE(2) SIMD
machinery is shown in Fig. 3. The instructions used in this instance are described in Ta-
ble 1.3

The data dependencies in the sorting network define a partialordering for the execution
of the comparisons. The comparators can thus be partitionedinto sets in such a way that
all the comparators in each set can be executed in parallel. This partition corresponds to
the computation of the maximal anti-chains in a data-dependency graph [15]. The sorting

3Other SSE2 instructions frequently used for data movement but not included in this example are:pshufd ,
unpckhps , andunpcklps .

6

Step 2:

XMM1

XMM2

XMM3

XMM0

movhlps xmm1, xmm0 COMP(0,1)

COMP(0, 1)

movhlps xmm2, xmm1

XMM0

XMM1

XMM2

XMM3

c

XMM0

XMM1

XMM2

XMM3

movhlps xmm0, xmm1

shufps xmm0, xmm2, 0x13

XMM0

XMM1

XMM2

XMM3

shufps xmm1, xmm0, 0x2d

main memory

Step 12:

d c b a d

b

c

a

b a

b

c

a

d

d

b

c

a

d

b

c

a

b a d

c

c

a

b

a

a d

c

b

a

d

c

b

a

d b

a

c

d b

ac

c

d b

d

a

c

b

d

a

c

b

c

a

c

b

d

b

c

a

c

b

d

d

c

c b

c

b

d

a

Step 3:
shufps xmm1, xmm0, 0x88
Step 4: Step 5:

Step 6:
movaps xmm3, xmm0
Step 7:

COMP(2, 3)
Step 8:

Step 9: Step 10:
movlhps xmm1, xmm3

Step 11:

movaps [rsi+(0)], xmm1

Step 1:

Figure 3: Instruction sequence to apply an in-register 4-element sorting network in an x86-
64 architecture. The associated sorting network is shown inFig. 1.

network of Fig. 1 produces the following partitions:P1 = {COMP (a, c), COMP (b, d)};
P2 = {COMP (a, b), COMP (c, d)}; andP3 = {COMP (b, c)}.

The process of generating the vector instructions for the in-register instantiation of a
given sorting network starts with the assignment of each rail to an element of a vector. In
Fig. 3 the four rails are assigned the elements ofXMM0. Then the lowest-cost sequence
of vector instructions must be generated to align the rails in order to enable the execution
of the comparators inP1. In this example a single SSE2 instruction,movlhps in step 1,
alignsb with d anda with c. The comparatorsCOMP (b, d) andCOMP (a, c) can then be
executed in parallel (step2).4 After this comparison the value stored in railb is smaller than
the value stored in raild, and the value stored in raila is smaller than the value stored in rail
c. In Fig. 3 a blank square represents a vector element that contains an unknown value that
is not relevant to the sorting process. For instance, after the comparison in step 2 the values
that were in railsb anda in the low-order words ofXMM0may have moved. As they are not
part of the sorting process they are now represented by blanksquares. If the inputs to the
rails area = 7, b = 2, c = 5, andd = 9, this comparison would leave the highest-order
words ofXMM0andXMM1intact and would swap the contents of the second highest-order

4For SSE2, a comparator between the contents of two registersRa andRb requires a temporary registerT
and the execution of three instructions:movaps T, Ra ; minps Ra, Rb ; andmaxps Rb, T .

7

words. It may also swap the values in the two low-order words of these registers, but the
contents of those words are irrelevant.

Now the two comparators in partitionP2 are candidates for the next vector compari-
son. A heuristic search is used to find a low-cost sequence of vector instructions to obtain
this alignment. The initial state for the search is the position of the rails in the vectors at
the end of step 2. The search proceeds by computing the changeof state caused by each
possible vector instruction that could be applied to this state. Instructions that completely
eliminate a given rail from the set of vector registers are discarded. The iterative-deepening
search proceeds until a low-cost sequence of instructions that produces the alignments for
the comparators in partitionP2 is generated. Separate searches are also conducted for in-
struction sequences that produce alignments to enable onlya subset of the comparators in
P2. At this point the heuristic component of the search decideswhich sequence of align-
ment instructions to use. This decision will never be reconsidered. Intuitively the heuristic
attempts to select the sequence with the best ratio of numberof alignments produced versus
instructions required. There is an additional bias towardsproducing more alignments, since
this will reduce the expected number of parallel comparators. In the example in Fig. 3 a
sequence of two instructions,movhlps andshufps , is selected to align railsd with c and
b with a. Thus both comparators ofP2 can be executed in parallel in step 5.

A new heuristic search then starts to find the next vector instruction sequence. The
scheduling proceeds until all the comparators of the sorting network have been scheduled.
After the execution of the last comparator the input values are sorted within the rails, but
the rails do not appear in the order in which they must be written back to memory. A similar
iterative deepening search now finds the lowest-cost vectorinstruction sequence to obtain
the correct alignment. In Fig. 3 the initial state for this search is the configuration after the
comparison in step 8. The final state has the rails aligned in any of the vector registers used
for sorting. In this case three instructions are used to align the rails inXMM1. And finally
movaps writes the sorted sequence back to memory.

The vectorization of a sorting network only needs to be done once for each sorting
network and for each set of vector instructions. Thus all theheuristic searches described
above should be performed once and offline. The resulting schedule can then be instantiated
by the code generator whenever a sequence of the corresponding size needs to be sorted.

5 Sorting Key-Pointer Pairs

So far this paper addresses the problem of sorting an array offloating-point values. A more
general problem is that of sorting an array of data structures. Consider the case where each
structure has a well-defined floating-point key value. Efficient algorithms sort an array of
key-pointer pairs to avoid moving large data structures. This section describes an extension
of the vectorized sorting networks to handle key-pointer pairs with floating-point keys and
a byte sequence representing the pointer.

The solution to the key-pointer sorting problem consists ofstoring the keys and the
pointers into separate SIMD vectors. If keys and pointers appear interleaved in memory,
then they must be “swizzled” when loaded into the SIMD vectors and this swizzling must
be reversed when storing the sorted result to memory. With the keys and pointers in separate

8

vectors, the standard sorting network solution is implemented for the keys, while the point-
ers move in synchrony with the key movements. This is accomplished by using a bitmask
to apply the “swap” operations only to selected elements in the pointer vector. Specifically,
those elements which correspond to changes in the key vectorafter applying the key com-
parator. The construction of this bitmask is supported in architectures that support SIMD
operations. For instance, Figs. 11 and 12 show the code used to generate the masks for
the sorting-network comparators using the G5 AltiVec intrinsics and the Pentium 4 SSE2
assembly instructions.

6 Vectorizing d-Heaps

d-heaps are a straightforward generalization of binary heaps where each internal node has
d children instead of 2. Increasing the value ofd results in a shallower tree at the expense
of requiringdelete-min operations to perform more work when searching for the childnode
with minimum key value. For concreteness we assume that we are dealing withmin-heaps.

We also assume an implicit heap layout, with all elements stored in a contiguous array.
The root node is located at index 0, and thenth child of a node at indexi is located at
index i ∗ d + n, with 1 ≤ n ≤ d. The parent of any node may be similarly computed
by dividing its index-1 byd. In [8, 9] LaMarca and Ladner investigate the performance of
traditional implicit heaps and how they are affected by datacaches. They suggest increasing
the branching factord as well as the data alignment techniques described here and used in
our implementation.

We present here a method for increasingd-heap performance by using SIMD vector
instructions to quickly compute the index of the child with minimum key value. This com-
putation is used withinheapify-down operations, whileheapify-up remains unchanged.

This method is similar to the one used for sorting key-pointer pairs in that it relies on
the synchronous movement of values within a second set of registers. In this situation the
values moving in synchrony are theindexes of each child node (specifically the offset from
the first child, such that the values range from0 to d − 1).

For simplicity, assume thatd is a multiple ofk, the number of elements in a SIMD vec-
tor. Practically this also lends itself to aligning a node’schildren on cache-line boundaries.
This requires locating the root node at the end of a cache-line such that its first child is at the
beginning of a cache-line. This also avoids alignment issues when loading data into SIMD
vectors on those architectures which either do not support unaligned accesses, or do so at
the cost of increased instruction time.

It is likely that the nodes in the heap are key-pointer pairs,rather than just keys. In this
case, loading key values into a SIMD vector may require additional swizzle instructions
to interleave the keys from 2 separate vector loads. Only thekey values are required; the
associated pointers may be discarded.

When a block of keys is loaded into a SIMD vector, the index offsets for those keys
are loaded into another SIMD vector. These offsets are simply loaded from a constant and
preallocated (e.g. static) array with values0, 1, . . . , d − 1. The synchronous movement of
the index offsets is implemented in the same manner as the movement of the pointer values
in section 5. The loading and movement of these offsets is omitted for clarity.

9

The algorithm proceeds as follows: (1) load the firstk keys into one SIMD vector, call
this registerA; (2) while unread keys remain, read the nextk keys into a SIMD vectorB
and setA := min(A,B); (3) compare thek values inA against themselves to find the index
of the minimum element. If the node being examined does not have d children (this may
only occur at last internal node) then the vectorized searchis replaced by a straightforward
linear scan.

Assembly code for the comparisons in steps (2) and (3) is shown in Figs. 13 and 14.
Empirically it was found to be faster for step (3) to compute the index via in-register com-
parisons rather than writing the final key and index vectors back to memory and comparing
those keys using traditionalif statements.

7 Experimental Evaluation (Sorting)

The three versions of vectorized sorting described in this paper were evaluated by integrat-
ing them as the low-level algorithms for the DTSL quicksort.The main findings of this
experimental evaluation are:

• all the SIMD-based sorting algorithms for short sequences are more efficient than the
SN algorithm shipped with DTSL. The one-pass register sort algorithm requires 5%
of the cycles required by SN to sort a 32-input vector;

• the integration of SIMD-based sorting algorithms to sort sequences smaller than a
fixed threshold improves the performance of DTSL when sorting floating-point keys
by up to 18%;

• this performance improvement is due not only to a reduction in the number of loads,
stores, and branch instructions, but also to a significant decrease in the number of
branch mispredictions.

7.1 Integrating Algorithms into DTSL

Table 2: Algorithms studied
Algorithm Description
MSort X - Y MSort algorithm withX streams applied atY threshold.
ISort X - Y ISort algorithm withX streams applied atY threshold.
RSort - Y One-pass register sort applied atY threshold.
DTSL Original DTSL quicksort with SN as the low level algorithm.
Ins - Y Standard insertion sort applied atY threshold.

The SIMD-based algorithms presented in this paper were integrated in the quicksort
implementation of DTSL. The DTSL’s quicksort is not recursive. Instead it maintains an
in-function stack of current partitions. When the number ofelements to be sorted drops be-
low a threshold, DTSL switches to a low-level sorting algorithm. The version of quicksort
that produces the best, or close the best, performance when sorting floating-point keys in
DTSL uses a scalar sorting network SN as the low-level algorithm [10]. The single-element

10

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

In
s

-
18

0
In

s
-

12
0

In
s

-
52

In
s

-
32

In
s

-
16

D
T

S
L

-
16

R
S

or
t -

 5
2

IS
or

t1
2

-
18

0
IS

or
t8

 -
 1

20
IS

or
t4

 -
 6

0
M

S
or

t1
2

-
18

0
M

S
or

t8
 -

 1
20

M
S

or
t4

 -
 6

0

P
er

ce
nt

ag
e

T
im

e
D

ec
re

as
e

fr
om

 D
T

S
L

Low-level algorithm used

Reduction of Quicksort Time per Low-Level
 Algorithm (50000 keys, 5000 trials)

Figure 4: Quicksort wall-clock times rel-
ative to DTSL on a 64-bit 3.40 GHz Pen-
tium 4. FP keys.

-10

-5

 0

 5

 10

 15

 20

 25

In
s

-
48

In
s

-
40

In
s

-
32

In
s

-
24

In
s

-
16

D
T

S
L

-
16

R
S

or
t -

 5
2

IS
or

t1
2

-
18

0
IS

or
t8

 -
 1

20
IS

or
t4

 -
 6

0
M

S
or

t1
2

-
18

0
M

S
or

t8
 -

 1
20

M
S

or
t4

 -
 6

0P
er

ce
nt

 F
ew

er
 B

ra
nc

h
M

is
pr

ed
ic

tio
ns

 th
an

 D
T

S
L

Q
ui

ck
so

rt

Low-level algorithm used

Reduction of Branch Mispredictions per
 Low-Level Algorithm (50000 keys, 5000 trials)

Figure 5: Reduction of branch mispredic-
tions on a 64-bit 3.40 GHz Pentium 4.

comparators in this sorting network are written in the C language and use branch instruc-
tions to conditionally perform element interchanges. The default threshold to switch to this
low-level algorithm is sixteen elements. This version of DTSL’s quicksort is the baseline
for the comparative performance study in this paper. Table 2lists the algorithms used in
this performance evaluation. The standard insertion-sortalgorithm,Ins - Y , is included
to provide a familiar comparison point.

7.2 Wall-Clock Execution Time

Experiments were performed on a 64-bit 3.40GHz Pentium 4, anAthlon64 3500+, and
an IBM 2.7 GHz PowerPC G5. Fig. 4 shows the relative wall-clock execution times for
the sorting of a vector of floating-point keys in relation to the DTSL baseline. Each bar
represents the average runtime over 5000 trials on uniformly distributed data. The error
bar represents one standard deviation. A similar pattern emerges from the same set of
experiments run on the G5. The best performance in the G5 is for MSort 28- 840, which
results on an average execution-time reduction of 15%.RSort- 56 is on average 13% faster
than DTSL in the G5. The G5 has 32 vector register — instead of the 16 vector registers
available in the Pentium 4 — and its AltiVec instruction set offers greater flexibility in
the selection of destination registers, which result in RSort requiring fewer permutation
instructions with AltiVec than it does with SSE2.

11

There is no significant change in the pattern of the results when the problem of sorting
key-pointer pairs (see Section 5) is solved in both machines.

7.3 Clock Cycles and Branches

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 c

yc
le

s

Number of elements

Low-Level Algorithm Cycle Counts versus Array Size

MSort12
ISort12

RSort
SN

Insertion
CC Radix

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60

Figure 6: Clock cycles on a 64-bit 3.40 GHz Pentium 4.

Fig. 6 shows the number of clock cycles, obtained through thePAPI library, required
by each algorithm as the number of elements to be sorted varies to the maximum possible
for each algorithm. Each point in the graph is the average over 10000 trials with uniformly
distributed data. This graph shows that RSort is significantly superior to both the SN branch-
intensive algorithm and the CC-radix cache-conscious algorithm distributed with DTSL for
small sequences, and confirms that MSort is also an excellentchoice for the sorting of short
sequences. A measurement of the number of branches executed(not shown) confirmed that
the elimination of branches is responsible for the superiorperformance of RSort and MSort.

A detailed study of other performance counters showed a correlation between reduction
in the number of branches, loads, and stores executed and therelative performance of the
algorithms. One exception wasISort 12- 180 in the Pentium 4. Its wall-clock execution
time was on average 12% lower than DTSL, but it performed 5% more loads, 38% more
stores, and executed 20% more branches. The explanation, asshown in Fig. 5 seems to be
in the reduction in the number of branch mispredictions.

8 Experimental Evaluation (d-Heaps)

The performance ofd-heaps was investigated by comparing highly optimized versions with
different branching factors against SIMD variants where vector instructions were used dur-

12

ing heapify-down operations. The main findings of this experimental evaluation are:

• using SIMD instructions achieves a 20% reduction in cycle count for a large range of
heap sizes, with reductions up to 35%, compared to the best non-SIMD d-heap for
each heap size;

• these reductions seem to be tied to a reduction in the number of branch instructions,
rather than the number of loads and/or stores;

• the SIMD variants achieve far fewer branch mispredictions than regulard-heaps for
values ofd > 2.

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 4 6 8 10 12 14 16 18 20 22 24 26

T
ot

al
 C

yc
le

s

Heap size log2

1,000,000 Hold-model iterations (delete-min, insertion)
floating-point key-ptr elements

d=2
d=4
d=8

d=16
d=32

d=4 (SSE)
d=8 (SSE)

d=16 (SSE)
d=32 (SSE)

Figure 7: Cycle counts for each heap variant on a 64-bit 3.40 GHz Pentium 4.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4 6 8 10 12 14 16 18 20 22 24 26

R
el

at
iv

e
C

yc
le

 C
ou

nt

Heap size log2

1,000,000 Hold-model iterations (delete-min, insertion)
floating-point key-ptr elements

d=16 (SIMD) vs. d=2
d=16 (SIMD) vs. d=16

Figure 8: Ratio of the best SIMDd-heap to the 2 best traditional heaps in each range. Run
on a 64-bit 3.40 GHz Pentium 4.

13

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 4 6 8 10 12 14 16 18 20 22 24 26

B
ra

nc
h

In
st

ru
ct

io
ns

Heap size log2

1,000,000 Hold-model iterations (delete-min, insertion)
floating-point key-ptr elements

d=2
d=4
d=8

d=16
d=32

d=4 (SSE)
d=8 (SSE)

d=16 (SSE)
d=32 (SSE)

Figure 9: Number of branch instructions on a 64-bit 3.40 GHz Pentium 4.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 4 6 8 10 12 14 16 18 20 22 24 26

B
ra

nc
h

M
is

pr
ed

ic
tio

ns

Heap size log2

1,000,000 Hold-model iterations (delete-min, insertion)
floating-point key-ptr elements

d=2
d=4
d=8

d=16
d=32

d=4 (SSE)
d=8 (SSE)

d=16 (SSE)
d=32 (SSE)

Figure 10: Number of branch mispredictions on a 64-bit 3.40 GHz Pentium 4.

All source code was written in C++ and was compiled using g++ 3.4.6, with full op-
timizations and loop unrolling. The branching factord was known at compile time. The
heap itself was aligned in memory such that the root node’s children began on a cache-line
boundary. A consequence is that all children are aligned forSIMD vector accesses. The
binary heap had further optimized index computations.

Experiments were performed on a 64-bit 3.40GHz Pentium 4. Heap elements are key-
pointer pairs with floating point keys. Heap sizes are powersof 2, from 24 to 226. Heaps
are initialized by insertingn elements, wheren is the maximum size of the heap. Keys for
initial elements are drawn uniformly from0, . . . , n − 1.

1,000,000 iterations of the “hold” model were then performed. Each iteration consists
of a call todelete-min followed by insert-element. The key of the new element is equal to
the key of element last removed plus a value drawn uniformly from 0, . . . , n − 1.

As seen in Fig. 7, when the heap size becomes218 there is a crossover between values of
d in the performance of traditional heaps. For small heapsd = 2 performs better, whiled =

14

16 performs better for larger heaps, resulting from better locality of each node’s children as
well as decreased heap depth. For the SIMDd-heaps,d = 16 seems to consistently perform
the best, although almost identical tod = 32.

Fig. 8 shows the ratio of execution times between this best SIMD heap versus the two
best values ofd for traditional heaps. For a large range of values (n ≥ 210) the SIMD
version executes in at least 20% fewer cycles, up to an approximate 35% reduction in cycles
atn = 218.

Figs. 9 and 10 show the number of branch instructions and mispredictions respectively.
The branch instructions seems to closely track SIMDd-heap cycle counts, although in
general performance is not directly attributable to branches, mispredictions, or stores and
loads. For all heap sizes the traditional binary heap exibited a low and essentially constant
number of branch mispredictions, with all the SIMD variantsexibiting slightly fewer.

9 Related Work

The implementation of sorting in large-scale vector machines has been extensively stud-
ied. Siegel produced one of the earliest descriptions of howto implement Batcher’s sorting
network, also known asbitonic sorting, in SIMD machines [14]. Bittonet al. provides an
extensive description of such implementations [3]. The newcontribution of this paper is to
demonstrate how the well-known sorting networks can be implemented in the SIMD ma-
chinery of contemporary processors and to indicate that code generators can instance such
implementations to improve the performance of recursive sorting algorithms and heaps.

The idea of making better use of register resources within the processor to reduce the
number of load of stores, in our case to put the SIMD resourcesto good use in sorting, is also
explored by Argeet al. [17]. Their idea of forming cache-load-sized runs with quicksort is
similar to our idea of switching to SIMD-register-based sorting at an appropriate threshold.
The contrast is that we are also benefiting from the SIMD machinery which allows more
parallelism in the execution and the elimination of branches while they use the general-
purpose registers and the storage available at a cache line.

Recently compilers have been used more often to improve the code generation for SIMD
machinery in contemporary processors. Renet al.’s approach of using an optimization algo-
rithm to improve the data permutations is more general than our specific iterative-deepening
search [13]. Nuzmanet al. describes a compiler framework to generate vectorized codefor
interleaved data [12].

The relationship between the SIMD-register-based sortingalgorithms presented in this
paper and the development of DTSL is an orthogonal improvement to a library genera-
tor [10]. Li et al. focused on the dynamic identification of the best sorting algorithm for
a given input sequence [11]. They selected an efficient algorithm for the tail of their re-
cursive method. This paper offers a better solution for the sorting of sequences that are
small enough to benefit from the use of the SIMD machinery. Similarly, we provide a faster
mechanism for selecting a minimum (maximum) child in the implicit d-heaps studied by
LaMarca and Ladner [8, 9].

15

10 Conclusions

This paper proposes the use of the SIMD machinery provided inmodern processors to
improve the performance of recursion tails. The idea is thatwhenever the number of ele-
ments to be processed fits within the SIMD registers available in the processor, these values
should be loaded once into the SIMD registers and then an efficient SIMD execution should
be used. While the feasibility of this idea was demonstratedwith the integration of a more
efficient algorithm for sorting short sequences into DTSL, the idea should be generally
applicable to recursive computation.

Once efficient low-level SIMD algorithms are crafted, they can be generated into a solu-
tion database to be instantiated by code generators into optimized libraries. Alternatively, if
a suitable identification algorithm is created, the compiler should be able to integrate these
solutions directly into general programs.

Acknowledgments

The experimental evaluation of these ideas was made possible thanks to David Padua’s gen-
erous sharing of his group’s DTSL code. This research is support by grants from the Natural
Science and Engineering Research Council (NSERC) of Canada, and by IBM Corporation.

References

[1] K. E. Batcher. Sorting networks and their applications.In AFIPS Spring Joint Com-
puting Conference, pages 307–314, 1968.

[2] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz.Designing a PC game
engine.IEEE Computer Graphics and Applications, 18(1):46–53, 1998.

[3] D. Bitton, D. J. DeWitt, D. K. Hsiao, and J. Menon. A taxonomy of parallel sorting.
Computing Surveys, 16(3):287–318, September 1984.

[4] J. D. Frens and D. S. Wise. Auto-blocking matrix-multiplication or tracking BLAS3
performance from source code. InPrincipples and Practice of Parallel Programming
PPoPP, pages 206–216, Las Vegas, Nevada, 1997.

[5] M. Frigo. A fast Fourier transform compiler. InProgramming Language Design and
Implementation PLDI, pages 169–180, Atlanta, GA, June 1999.

[6] Intel. IA-32 Intel R©architecture software developer’s manual volume 1: Basic archi-
tecture. http://download.intel.com/design/Pentium4/manuals/25366519.pdf, 2006.

[7] Donald Ervin Knuth.The Art of Computer Programming, Vol. 3 - Sorting and Search-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,USA, 1973.

[8] A. LaMarca and R. E. Ladner. The influence of caches on the performance of heaps.
ACM Journal of Experimental Algorithms, 1:4, 1996.

16

[9] A. LaMarca and R. E. Ladner. The influence of caches on the performance of sorting.
In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoret-
ical and Experimental Analysis of Discrete Algorithms), 1997.

[10] X. Li, M. Garzaran, and D. Padua. A dynamically tuned sorting library. In Code
Generation and Optimization CGO, pages 111–122, Palo Alto, CA, 2004.

[11] X. Li, M. J. Garzarán, and D. Padua. Optimizing sortingwith genetic algorithms. In
Code Generation and Optimization CGO, pages 99–110, San Jose, CA, March 2005.

[12] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization ofinterleaved data for SIMD.
In Programming language design and implementation PLDI, pages 132–143, 2006.

[13] Gang Ren, Peng Wu, and David Padua. Optimizing data permutations for SIMD
devices. InProgramming language design and implementation PLDI, pages 118–131,
2006.

[14] H. J. Siegel. The universality of various types of SIMD machine interconnection
networks. InProceedings of the 4th Annual Symposium on Computer Architecture,
pages 23–25, Silver Spring, MD, March 1977. ACM SIGARCH/IEEE-CS.

[15] S. A. A. Touati. Register saturation in instruction level parallelism. International
Journal of Parallel Programming, 33(4):393–449, 2005.

[16] R. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of sotware
and the ATLAS project.Parallel Computing, 27(1-2):3–35, 2001.

[17] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter. Efficient sorting using
registers and caches.ACM Journal of Experimental Algorithmics, 7:9, 2002.

[18] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A language and compiler for
DSP algorithms. InProgramming Language Design and Implementation PLDI, pages
298–308, Snowbird, Utah, June 2001.

17

A Appendix

inline void COMP_VEC_PTR(vector float &key_a, vector floa t &key_b,
vector int &ptr_a, vector int &ptr_b)

{
vector float temp = key_a; // move the low key-values
key_a = vec_min(key_a, key_b); // into key_a, and the high
key_b = vec_max(key_b, temp); // values into key_b

vector int mask = vec_cmpeq(temp, key_a); // compare the ori ginal values of key_a with
// the new values, to see which have moved

vector int temp2 = ptr_a;
ptr_a = vec_sel(ptr_b, ptr_a, mask); // use the bitmask to se lect the appropriate
ptr_b = vec_sel(temp2, ptr_b, mask); // values for the point er vectors

}

Figure 11: Key-pointer comparator using the G5 AltiVec vector intrinsics.

asm("pshufd xmm15, xmm1, 0xE4"); // xmm15 := copy of key_a (x mm1)
asm("minps xmm1, xmm2"); // key_a := minimum(key_a, key_b)
asm("maxps xmm2, xmm15"); // key_b := maximum(key_b, orig_ key_a)

asm("cmpps xmm15, xmm1, 4"); // xmm15 := bitmask (key_a != or ig_key_a)
asm("pshufd xmm14, xmm3, 0xE4"); // xmm14 := copy of ptr_a
asm("xorps xmm14, xmm4"); // q := ptr_a XOR ptr_b
asm("andps xmm15, xmm14") // q := q AND bitmask
asm("xorps xmm3, xmm15"); // ptr_a := ptr_a XOR q
asm("xorps xmm4, xmm15"); // ptr_b := ptr_b XOR q

Figure 12: Key-pointer comparator using the Pentium 4 SSE2 assembly instructions. Vec-
tor registers xmm1 and xmm2 hold keys, registers xmm3 and xmm4 hold the respective
pointers. Registers xmm14 and xmm15 are used as temporary storage.

asm("minps xmm1, xmm2"); // xmm1 := minimum(key_a, key_b)
asm("cmpps xmm2, xmm1, 0x04"); // mask := bitmask (key_b != o rig_key_b)

// (key_a == orig_key_a)
asm("andps xmm3, xmm2"); // idx_a := idx_a & mask
asm("andnps xmm2, xmm4"); // idx_b := idx_b & ˜mask
asm("orps xmm3, xmm2"); // idx_a := idx_a | idx_b

Figure 13: Selecting the minimum key and its associated index in parallel using the Pentium
4 SSE2 assembly instructions. Vector registers xmm1 and xmm2 hold keys, registers xmm3
and xmm4 hold the respective indexes.

18

// compare the upper vector elements against the lower
{
asm("movhlps xmm2, xmm1");
asm("movhlps xmm4, xmm3");

// select_min(key_a=xmm1, key_b=xmm2, idx_a=xmm3, idx_b =xmm4)
// will invalidate b=1 in the process
asm("minps xmm1, xmm2");
asm("cmpps xmm2, xmm1, 4"); // neq
asm("andps xmm3, xmm2"); // idx_a := idx_a & mask
asm("andnps xmm2, xmm4"); // idx_b := idx_b & ˜mask
asm("orps xmm3, xmm2"); // idx_a := idx_a | idx_b
}

// compare the two lower vector elements
{
asm("pshufd xmm2, xmm1, 0x01"); // 00 00 00 01
asm("pshufd xmm4, xmm3, 0x01"); // 00 00 00 01

// final_select_min(key_a=xmm1, key_b=xmm2, idx_a=xmm3 , idx_b=xmm4)
// ONLY correctly updates idx_a (not key_a or idx_b)
// will invalidate key_b in the process
asm("cmpps xmm1, xmm2, 0x01"); // mask := key_a < key_b
asm("andps xmm3, xmm1"); // idx_a := idx_a & mask
asm("andnps xmm1, xmm4"); // idx_b := idx_b & ˜mask
asm("orps xmm3, xmm1"); // idx_a := idx_a | idx_b
}

// move the index of the minimum key into local variable "fina l"
asm("movss [%0], xmm3" : : "r" (final));

Figure 14: SSE2 data movement and comparison instructions to extract the index of the
minimum key in one vector. Vector register xmm1 holds keys, vector register xmm3 holds
the respective indexes.

19

