Using SIMD Registers and Instructions to Enable
Instruction-Level Parallelism in Sorting Algorithms

Timothy Furtak, José Nelson Amaral, Robert Niewiadomski
{furtak,amaral, niewiado} @cs.ualberta.ca
Department of Computing Science,
University of Alberta, Edmonton, Canada

Abstract

Most contemporary processors offer some version of Singd&rliction Multiple Data
(SIMD) machinery — vector registers and instructions to ipalate data stored in
such registers. The central idea of this paper is to use t8Hd® resources to im-
prove the performance of the tail of recursive algorithmsha a recursive compu-
tation reaches a set threshold, data is loaded into the megisters, manipulated in-
register, and the result stored back to memory. Four impigations of sorting with

two different SIMD machinery — x86-64's SSE2 and G5’s Alté/e— demonstrate
that this idea delivers significant performance improvemdihe improvements pro-
vided by the tail optimization of sorting are orthogonalle tgains obtained through
empirical search for a suitable sorting algorithm [10]. Whetegrated with the Dy-

namically Tuned Sorting Library (DTSL), this new code gaatam strategy improves

the performance of DTSL by up to 18%. Performancé-baps is similarly improved
by up to 35%.

1 Introduction

This paper addresses the automatic generation of efficgate to sort short sequences of
values. The idea is that an ahead-of-time optimizer searfdrefast code for several se-
guence lengths and machine configurations. Then the cangpifesimply instantiate such
code when generating an optimized library. While algoritbpecific optimizations and
empirical search have long been used both for scientific coatipn and for large parallel
machines [4, 5, 16, 18], only recently these techniques w@ppdied to integer-intensive,
symbolic, computation. Lét al. developed the Dynamically Tuned Sorting Library that
adapts to the characteristics of the input to be sorted [TO main contribution of this
paper is the insight that the resources implemented in ogrdeary processors to enable
SIMD computations can be put to good use to improve the padiace of sorting short se-
guences. As demonstrated in this work the effective useas&ISIMD resources improves
performance through the reduction of memory referencesimmrdase in instruction level
parallelism.

The initial inspiration for this work was the need for fasttitg of short sequences in
the implementation of graphics rendering in interactivéed-game applications. In such
applications it is often necessary to decide, for each mke¢he image, what is the order
of the elements that should be displayed [2]. Even thoughiffebpixel-ordering compu-
tations are typically handled by a specialized Graphicx&ssing Unit (GPU), there are
plenty of similar ordering computations that are done byGleatral Processing Unit (CPU)
in computer games. For instance, sorting is used to chaizetibe intensity of the various
light sources that illuminate a character. Moreover, congerary video-game application
have at their disposal a rich supply of SIMD registers antrugsions. For example, the
PowerPC-based XBox 360 hardware features 128 AltiVec tegison each of its three
cores along with an expanded set of AltiVec instructionsadidition to interactive video-
game applications, sorting of short sequences is alsorasparticule-physics simulation
applications.

Thus, using SIMD registers and instructions to sort smajuseaces is natural. Once a
solution was created, applying it to the short sequencesrihat be sorted at the tail-end of
standard recursive sorting algorithms was the next logitegd. The experimental evaluation
of the new vector-register-based sorting algorithms preskin this paper use commodity
processors (x86-64 and G5) and extensions to the DTSL Vilmecause these machines and
algorithms are more readily available and exploitable {maprietary video-game hardware
and software. The algorithms presented are effective fidingpshort sequences of floating-
point or integer values (keys), and pairs comprised of a k&y & memory address.e.
key-pointer pairs, as well as computing the index of a spe¢ifiinimum or maximum)
element.

Three new SIMD-based algorithms use the concept of sorgtgarks that are effective
to sort small sets of numbers. Section 2 describes: (1) tleeatipn of standard sorting
networks; (2) how the SIMD vectors can be used to implemeningpnetworks; and (3)
how a code generator can instantiate optimized vector amdgofting networks operating
in sequences of any length. The main contributions in thgepare:

¢ three algorithms that use the SIMD machinery of contempopaocessors for effi-
cient in-register sorting of short sequences;

bcd

—o

COMP(a, c)

I COMP(b, d)
_i COMP(a, b)

COMP(c, d)
COMP(b,)

Figure 1: A 4-element sorting network.

a method to use iterative-deepening search to find fast SihdbLiction sequences
to move data within the SIMD registers;

e a method to integrate these algorithms in an optimized gdperrpose sorting li-
brary;

¢ a method to compute the minimum element in an array, withiegibns tod-heaps;

e and an extensive experimental study in three different ggsors that demonstrate
up to 18% improvement in the performance of DTSL and up to 36%-heaps.
This study also indicates that the elimination of loadstestpbranches, and branch
mispredictions correlates well with the improved perfonoa.

Section 3 describes two algorithms that combine a first-paging in the SIMD reg-
isters with a second-pass sorting in memory. Section 4 tescan algorithm that sorts
shorter sequences completely within the SIMD registenss #liminating branch instruc-
tions altogether. Section 5 describes how to extend thegedwing algorithms to sort
key-pointer pairs. Section 6 uses similar techniques tedpgheapify-down operations in
d-heaps. The experimental evaluation is presented in $e¢tio

2 Sorting Networks

The inputs to an in-placeomparator, COM P(a,b), are two storage units — memory
locations, registers, or vector-register elementsa-and b, each containing a numerical
input. After the comparator executes, the lower numericue is stored i: and the
higher numerical value is stored tn Knuth describes aomparator network as a device
that applies a fixed sequence of comparator operators tqoamh wector of a given size [7].
When a comparator network produces a sorted output for assilple input sequence, it is
called asorting network. Thesize of a sorting network is the total number of comparators
in the network. Thedepth of a sorting network is the length of the critical path in its
dependence graph. Therefore the depth provides a bountdgrarallel execution of the
sorting network, while the size provides a bound for a setiagleexecution.

An example of a sorting network with size 5 and depth 3 is shioviig. 1. The network
is depicted as a set of value-carrying vertical rails andgamtors. Values flow from top to
bottom. A heavy dot at a line crossing indicates that theevalithe vertical rail is an input
to the comparator represented by the horizontal line. A amatpr moves the larger value
to the left, and the smaller value to the right. For instanicthe inputs aren = 7, b = 2,

¢ =5,d =9, then the sorted output at the bottom of the sorting netwstk+ 9, b = 7,
¢ =5, andd = 2. The value9 moves from raild to rail b at COM P(b, d), and then moves
from rail b to rail a at COM P(a, b).

Although several algorithms are available to generate émdsrting networks, Batcher’s
“odd-even mergesort” algorithm is often chosen for its @ficy [1]. Batcher’s algorithm
usesO(nlog?n) comparators and has a depth @flog?n). Sorting networks can be
efficiently implemented in processors that providena and amax instruction. Sorting
networks implemented with these instructions avoid thdgperance penalties of branch
miss-predictions incurred by traditional branch-baseatirsgpimplementations. The experi-
mental results in Section 7 indicate that eliminating bheascin the code of sorting networks
is a significant win in contemporary processors.

2.1 Supporting Hardware

Consider a machine that has the followimin andmax instructions:
a.agb- , andmaz(a,b) = a.aZb-
b : otherwise b : otherwise

The comparator required by a sorting network is easily coogtd using these two
operations, a copy instruction, and a temporary variabler ifistance, such instructions
are available in the x86-64 architectures supporting the238in and max operations that
return the minimum (maximum) packed single-precision ftagpoint values [6}

The extension of sorting networks to operate on vectoruesions requires the defini-
tion of vectorized min and max instructioAg=or input vectorsd andB, |A| = |B| = n, let
C = min(A, B) be the element-wise minimum vector, such that= min(4;, B;),1 <
1 < n. The vectorized max instruction is defined similarly. Mielth of a (vectorized) sort-
ing network refers to the number of vectors being sorted.e@ian ordered list of vectors
X1 X2 ..., X", astream of data is formed by selecting th& element from each vector
in order, thus the'® stream isX}, X2,..., X"

For instance, the x86-64 architecture has 16 XMM vectorstegs, and each register
can hold 4 floating-point values. Therefore, sorting theigalinn XMM registers using a
sorting network produces 4 sorted streams of data of lengthp to 15 XMM registers can
be usedj.e. 1 < n < 16, because one register must be reserved as temporary sforage
the swap of values in the comparator.

This compare-and-swap machinery offers several advastégeort a small set of
values that fits within the SIMD registers: (1) its operatisnunconditional and data-
independent; (2) itis inherently branch-free, and thus &branch-prediction performance
penalties; (3) it increases the bandwidth of sorting by énglthe SIMD instruction-level
parallelism; and (4) each compare-and-swap requires teudrn of only 3 instructions.

A code generator must be able to generate code to sort sezgiehany length in a
machine withn + 1 SIMD registers. The solution is to define size-optimal sgytmetworks
that usel, 2,. .., nregisters. The optimal code for the implementation of ed¢hese sort-
ing networks is pre-generated and stored in a small codebasiable to the code generator

min(a,b) =

1SSE stands for Streaming SIMD Extensions. SSE2 improves tigooriginal SSE.
2These vector instructions are called a SIMD extension.

NENENEN PN AT CE

Figure 2: Interleaved sorted streams frand-element SIMD registers. The first register
contains elementd, B;, Cq,andD;. A; < A5 < ... < A, etc.

for deployment. Once data has been loaded into the SIMDtezgithe code generator in-
stantiates the code to perform the comparator operatioasifigrl by the sorting network,
and integrates the resulting streams.

3 Stream-Based Two-Pass Sorting

The first two SIMD-based sorting algorithms discussed is ffaiper operate in two phases.
In the first phase the SIMD registers and instructions ard tsgenerate a partially-sorted
output. In the second phase a standard sorting algorithmsetrtion sort and mergesort are
investigated in this paper — finishes the sorting. The chofcalgorithm for the second
phase dictates the best data organization for the first one.

For the first phase, consider the use of the SIMD sorting nmaehidescribed in Sec-
tion 2 for the task of sorting a sequence fok n values using: SIMD registers, each
register capable of storing values. Each group df values is loaded from memory into a
separate SIMD register. For a moment, assume that the $titie sequence is aligned for
such a load operation. The sorting machinery is then apptig@toducek sorted streams
of lengthn, and the sorted streams are written back in-place to memmoay iinterleaved
form. The organization of the data in memory for= 4 is shown in Fig. 2. After sorting,
A1 §A2 <... §An,B1 < By <...<B,,etc.

After this initial sorting the ordering relationship betareelements from separate streams,
A;, B;, C;, and D, is still unknown. Now the output from the vectorized sogtimetwork
must undergo an additional sorting pass. Let us examinesthefunsertion sort and merge-
sort to finish sorting this partially sorted output.

3.1 Second Passwith Insertion Sort

A standard insertion-sort algorithm may be used to sort thipud of the SIMD-based sort-
ing network. Insertion sort delivers the best performand¢envits input is mostly sorted
because the algorithm does not have to move elements vefjifas a potential issue with
using insertion sort as a second pass is how the data sholddde into the SIMD vectors
in the first phase to produce the most favorable input forrtiwe sort.

Consider an input sequence ®falues, and a machine witt+ 1 SIMD vectors. Each
vector can store up tb values. Letn = [S/k]. If m < n the entire array can be loaded
into the SIMD registers, sorted, and written back in-platieen a call to insertion sort will
finish sorting the entire sequence.

If m > n, an in-place algorithm divides the array into subsets seralgh to fit in the
vector registers, sorts them with a sorting network, andesreach sorted subset back to
the same locations.

A naive approach would simply divide the array ifta/n| almost equal-sized blocks.
However, if the data is uniformly distributed this partiticesults in[m /n| similar blocks,
one after the other. The problem is that small elements fleenldst block would have
similar values to the small elements from the first block, adld require insertion sort to
move many elements to far positions to combine these blocks.

A better approach is to load the blocks into the SIMD regssiara strided fashion.
Consider for examples = 4 andm = 12 which requires three sorting network calls.
Instead of the first call acting on elemems$, A2, A3, and A%, it acts onA!, A*, A7, and
A9, The second call acts on element$, A%, A%, and A'!, and the third omd3, A%, A?,
and A'2. In this way the small values in the array are likely to endmpif, A%, and A3.
A stride width greater than one improves insertion sort grenfance in cases of uniform
or mostly-sorted distributions. In this paper, this stddesrsion of the vectorized sorting
network followed by an insertion sort pass is called ISort.

3.2 Second Passwith Mergesort

The mergesort algorithm, called MSort, uses a fixed-sizedkbf temporary storagé’
that is large enough to hold the entire artdy Because the SIMD-based sorting is applied
to small sequences this array will not be large in practic&olM proceeds as follows. Com-
pute the number of blocks of data to be sorted,/n]|, as width, and allocate temporary
spaceT’.

Call the sorting network on each block frafand store the sorted streams/toTheQ-
MERGE algorithm described by Wickremesingbeal. [17] is now used to store the sorted
data intoA: (1) Build a heap containing the first element in each streamdl, associate
with each element a pointer to the next element in its stre@nRepeatedly extract the
minimum element from the heap. During the extraction, replde removed element with
the next element in its stream, and rebuild the heap.

With a small number of streams, sufficient registers may [@lade to contain the
entire heap. Heapify operations are then efficient and theftmw of data to/from memory
is to fetch the next item from a stream or to store the nextevtdlA. For heaps that are too
large to fit within the available registers, in-memory heapge& may be used. Maintenance
operations on small heaps may be written using the knowrsteagiocations of elements,
avoiding potentially costly memory accesses and pointireations.

MSort uses one merge heap, with the number of inputs beingliptawf v. That is,
each heap completely handles the output from one or morensed sorting network calls.
Further, only heaps which may be contained within the abkglaegisters are considered.

Further optimizations include placing a sentinel value rdinity at the end of each
stream to avoid checking if streams are empty [17]. Once ¢éméirgel is loaded into the
head it will sink to the bottom. When any sentinel is extrddi®m the heap the sorting is
complete.

Each sorting network call places elements from the samarsti@ constant distance
away from each other. Thus the next element on a stream caubd by adding a constant
offset to the address of the current element, which makesrthiatenance of the “next
element” pointer in the heap straightforward.

Table 1: SSEZ2 instructions used in the example of Fig. 3

Instruction Description
movaps Ra, Rb copy the contents dRato Rb
shufps Ra, Rb, i copy 2 elements oRa to the 2 low-order words oRa,

and 2 elements oRb to the 2 high-order words dRa.
The elements to be copied are specified by

movhlps Ra, Rb copy the 2 high-order words fromRb to the 2 low-order
words ofRa.

movlhps Ra, Rb copy the 2 low-order words frorRb to the 2 high-order
words ofRa.

4 One-Pass Vector Sorting

The third SIMD-based sorting algorithm accomplishes theirgp in a single pass. Intu-
itively this is possible by loading all of the elements to be sorted into the vector registers,
applying the comparators for anrelement (scalar) sorting network, and writing the ele-
ments back to memory in-place.

The difficulty with this approach lies in repositioning elents within the vector reg-
isters such that the vector comparator operations do notigibthe values of elements not
involved in the comparison. Moreover, simply aligning cargior inputs may be challeng-
ing, depending on the fragmentation of free locations withie vector registers.

Since the cost of applying a vector comparator remains tmesagardless of the num-
ber of “care” values in each input vector, a natural optiigais to execute more than
one (scalar) sorting-network comparator at a time. Howeler cost of additional data-
movement instructions to properly position multiple comgtar elements in each vector
register may outweigh the benefit of parallelization. Thhe,cost analysis takes into con-
sideration the costs of data movement and comparator ati&tns for the target architec-
ture.

4.1 Aligning Vector Elements

The sorting network shown in Fig. 1 will be used as a runningneple in the description
of the single-pass in-register sorting algorithm. Thiswwgk has four vertical rails and
requires the execution of five comparison instructions.

An in-register sorting instance of the network of Fig. 1 fbetx86-64 SSE(2) SIMD
machinery is shown in Fig. 3. The instructions used in thsance are described in Ta-
ble 13

The data dependencies in the sorting network define a partlating for the execution
of the comparisons. The comparators can thus be partitioiedsets in such a way that
all the comparators in each set can be executed in paraltdb partition corresponds to
the computation of the maximal anti-chains in a data-depecyl graph [15]. The sorting

30ther SSE2 instructions frequently used for data movemetmdi included in this example arpshufd
unpckhps , andunpcklps .

Step 1: Step 2:

movhlps xmm1, xmmO COMP(0,1)

XMMO d|ic|b|at+—Nd|c|b|a d* c‘ Vo
XMM1 ~—tbla vl 7
XMM2
XMM3
Step 3: Step 4: Step 5:
movhlps xmmO, xmm1 shufps xmm1, xmmO, 0x88 COMP(0, 1)
XMMO | d d b d b d,

c c B a c a :) b\ }
XMML | blal | | lbkTay” [1—FcTala . c o
XMM2 Iy =
XMM3
Step 6: Step 7: Step 8:
movhlps xmm2, xmm1 movaps xmm3, xmmO COMP(2, 3)
XMMO | d b d b d b d
XMM1 | ¢ a c RN =N a a
XMM2 1 | =cl \c\ SR

X X B X ; ; 4
XMM3 d b v
Step 9: Step 10: Step 11:
shufps xmmO, xmm2, 0x13 movlhps xmm1, xmm3 shufps xmm1, xmmO, 0x2d
o — — Step 12:
XMMO d c d c d I c d movaps [rsi+(0)], xmm1
4
XMM1 a a b a \d felb|a main memory
ra A r v

XMM2 ¢t c I R e i B
XMM3 b b b b

Figure 3: Instruction sequence to apply an in-registerefreint sorting network in an x86-
64 architecture. The associated sorting network is shoviignL.

network of Fig. 1 produces the following partitions; = {COM P(a,c), COMP(b,d)};
P, ={COMP(a,b),COMP(c,d)}; andP3s = {COMP(b,c)}.

The process of generating the vector instructions for theegister instantiation of a
given sorting network starts with the assignment of eadioaan element of a vector. In
Fig. 3 the four rails are assigned the elementXbfMO Then the lowest-cost sequence
of vector instructions must be generated to align the railsrder to enable the execution
of the comparators itP;. In this example a single SSE2 instructionpvlhps in step 1,
alignsb with d anda with c. The comparator§ OM P(b, d) andCOM P(a, c¢) can then be
executed in parallel (step2)After this comparison the value stored in rais smaller than
the value stored in rail, and the value stored in railis smaller than the value stored in rail
c. In Fig. 3 a blank square represents a vector element th&iogran unknown value that
is not relevant to the sorting process. For instance, dfeecomparison in step 2 the values
that were in rail$ anda in the low-order words oKMMU@nay have moved. As they are not
part of the sorting process they are now represented by ldguéres. If the inputs to the
rails area = 7, b = 2, ¢ = 5, andd = 9, this comparison would leave the highest-order
words of XMM@and XMMlintact and would swap the contents of the second highest-ord

“For SSE2, a comparator between the contents of two regiReeendRb requires a temporary regist@r
and the execution of three instructiomsovaps T, Ra ; minps Ra, Rb ;andmaxps Rb, T.

words. It may also swap the values in the two low-order woridhese registers, but the
contents of those words are irrelevant.

Now the two comparators in partitiof, are candidates for the next vector compari-
son. A heuristic search is used to find a low-cost sequenceatbrinstructions to obtain
this alignment. The initial state for the search is the pasiof the rails in the vectors at
the end of step 2. The search proceeds by computing the cludrajate caused by each
possible vector instruction that could be applied to thadest Instructions that completely
eliminate a given rail from the set of vector registers asedided. The iterative-deepening
search proceeds until a low-cost sequence of instructimaisproduces the alignments for
the comparators in partitiof, is generated. Separate searches are also conducted for in-
struction sequences that produce alignments to enableaosifpset of the comparators in
P;,. At this point the heuristic component of the search decidegh sequence of align-
ment instructions to use. This decision will never be reaesred. Intuitively the heuristic
attempts to select the sequence with the best ratio of nuafladignments produced versus
instructions required. There is an additional bias towgrdslucing more alignments, since
this will reduce the expected number of parallel compagatdn the example in Fig. 3 a
sequence of two instructionsjovhlps andshufps , is selected to align railé with ¢ and
b with a. Thus both comparators &% can be executed in parallel in step 5.

A new heuristic search then starts to find the next vectoruotbn sequence. The
scheduling proceeds until all the comparators of the spmietwork have been scheduled.
After the execution of the last comparator the input valuessarted within the rails, but
the rails do not appear in the order in which they must be @nitiack to memory. A similar
iterative deepening search now finds the lowest-cost véesbruction sequence to obtain
the correct alignment. In Fig. 3 the initial state for thigusdh is the configuration after the
comparison in step 8. The final state has the rails alignedyrofithe vector registers used
for sorting. In this case three instructions are used tanalig rails inXMM1 And finally
movaps writes the sorted sequence back to memory.

The vectorization of a sorting network only needs to be doneedor each sorting
network and for each set of vector instructions. Thus allttearistic searches described
above should be performed once and offline. The resultingdidk can then be instantiated
by the code generator whenever a sequence of the corresgoside needs to be sorted.

5 Sorting Key-Pointer Pairs

So far this paper addresses the problem of sorting an arrfyating-point values. A more
general problem is that of sorting an array of data strustu@onsider the case where each
structure has a well-defined floating-point key value. Hdfitialgorithms sort an array of
key-pointer pairs to avoid moving large data structuress Ehction describes an extension
of the vectorized sorting networks to handle key-pointdrspaith floating-point keys and
a byte sequence representing the pointer.

The solution to the key-pointer sorting problem consiststofing the keys and the
pointers into separate SIMD vectors. If keys and pointeygeap interleaved in memory,
then they must be “swizzled” when loaded into the SIMD vextamd this swizzling must
be reversed when storing the sorted result to memory. Witlkélys and pointers in separate

vectors, the standard sorting network solution is implet@eifior the keys, while the point-
ers move in synchrony with the key movements. This is accistmgdl by using a bitmask
to apply the “swap” operations only to selected elementhapbinter vector. Specifically,
those elements which correspond to changes in the key vaitésrapplying the key com-
parator. The construction of this bitmask is supported ohiéectures that support SIMD
operations. For instance, Figs. 11 and 12 show the code osgénerate the masks for
the sorting-network comparators using the G5 AltiVec iméics and the Pentium 4 SSE2
assembly instructions.

6 Vectorizing d-Heaps

d-heaps are a straightforward generalization of binary bedpere each internal node has
d children instead of 2. Increasing the valuedafesults in a shallower tree at the expense
of requiringdelete-min operations to perform more work when searching for the ahilde
with minimum key value. For concreteness we assume that evdealing withmin-heaps.

We also assume an implicit heap layout, with all elementedton a contiguous array.
The root node is located at index O, and ikl child of a node at index is located at
indexi x d + n, with 1 < n < d. The parent of any node may be similarly computed
by dividing its index-1 byd. In [8, 9] LaMarca and Ladner investigate the performance of
traditional implicit heaps and how they are affected by daizhes. They suggest increasing
the branching facto#i as well as the data alignment techniques described heresauoldin
our implementation.

We present here a method for increasiiipeap performance by using SIMD vector
instructions to quickly compute the index of the child witinimum key value. This com-
putation is used withimeapify-down operations, whildeapify-up remains unchanged.

This method is similar to the one used for sorting key-paipirs in that it relies on
the synchronous movement of values within a second set @fteeg. In this situation the
values moving in synchrony are tivadexes of each child node (specifically the offset from
the first child, such that the values range fréno d — 1).

For simplicity, assume thatis a multiple ofk, the number of elements in a SIMD vec-
tor. Practically this also lends itself to aligning a node'sldren on cache-line boundaries.
This requires locating the root node at the end of a cacleeslirch that its first child is at the
beginning of a cache-line. This also avoids alignment issueen loading data into SIMD
vectors on those architectures which either do not suppwtigned accesses, or do so at
the cost of increased instruction time.

Itis likely that the nodes in the heap are key-pointer paather than just keys. In this
case, loading key values into a SIMD vector may require amtit swizzle instructions
to interleave the keys from 2 separate vector loads. Onlkéyevalues are required; the
associated pointers may be discarded.

When a block of keys is loaded into a SIMD vector, the indexsets for those keys
are loaded into another SIMD vector. These offsets are sitoplded from a constant and
preallocated€.g. static) array with value§, 1,...,d — 1. The synchronous movement of
the index offsets is implemented in the same manner as themav of the pointer values
in section 5. The loading and movement of these offsets istedrior clarity.

The algorithm proceeds as follows: (1) load the firseys into one SIMD vector, call
this registerA4; (2) while unread keys remain, read the néxteys into a SIMD vecto3
and setd := min(A, B); (3) compare thé values inA against themselves to find the index
of the minimum element. If the node being examined does nat fahildren (this may
only occur at last internal node) then the vectorized sesrobplaced by a straightforward
linear scan.

Assembly code for the comparisons in steps (2) and (3) is showrigs. 13 and 14.
Empirically it was found to be faster for step (3) to compute index via in-register com-
parisons rather than writing the final key and index vectaskito memory and comparing
those keys using tradition#l statements.

7 Experimental Evaluation (Sorting)

The three versions of vectorized sorting described in thjzep were evaluated by integrat-
ing them as the low-level algorithms for the DTSL quicksofhe main findings of this
experimental evaluation are:

¢ all the SIMD-based sorting algorithms for short sequencesreore efficient than the
SN algorithm shipped with DTSL. The one-pass register dgardhm requires 5%
of the cycles required by SN to sort a 32-input vector;

¢ the integration of SIMD-based sorting algorithms to sodusmnces smaller than a
fixed threshold improves the performance of DTSL when sgrioating-point keys
by up to 18%;

¢ this performance improvement is due not only to a reductiotiné number of loads,
stores, and branch instructions, but also to a significaotedse in the number of
branch mispredictions.

7.1 Integrating Algorithmsinto DTSL

Table 2: Algorithms studied
Algorithm Description
MSort X - Y | MSort algorithm withX streams applied at threshold.
ISort X - Y | ISortalgorithm withX streams applied at threshold.
RSort - Y One-pass register sort appliedyathreshold.
DTSL Original DTSL quicksort with SN as the low level algorithm.
Ins - Y Standard insertion sort applied gtthreshold.

The SIMD-based algorithms presented in this paper wergrated in the quicksort
implementation of DTSL. The DTSL's quicksort is not recussi Instead it maintains an
in-function stack of current partitions. When the numbeeleiments to be sorted drops be-
low a threshold, DTSL switches to a low-level sorting algfum. The version of quicksort
that produces the best, or close the best, performance vdmngsfloating-point keys in
DTSL uses a scalar sorting network SN as the low-level algori[10]. The single-element

10

Reduction of Quicksort Time per Low-Level Reduction of Branch Mispredictions per
Algorithm (50000 keys, 5000 trials) Low-Level Algorithm (50000 keys, 5000 trials)

25

25

20 [% —

20 |

-

15 e |

‘ =

10 FH 1 T

10 FIHI| t]

(&)
T T
1
|
; :
1 1

-10

S15 |

-25

-10

Percentage Time Decrease from DTSL

o (3}
T

—o

B

: : : (=R : : :
1
Percent Fewer Branch Mispredictions than DTSL Quicksort

Ins-16 [
Ins-32 |
Ins -52 |

Ins - 120 |
Ins - 180 |-

MSort4 - 60
MSort8 - 120 |-
MSortl12 - 180
ISort4 - 60 |-
1Sort8 - 120 -
1Sort12 - 180 |-
RSort - 52 -
DTSL-16 |
MSort4 - 60 |-
MSort8 - 120 |
MSortl2 - 180
1Sort4 - 60 -
1Sort8 - 120 |-
1Sortl2 - 180 |
RSort - 52

Low-level algorithm used Low-level algorithm used

Figure 4: Quicksort wall-clock times rel- Figure 5: Reduction of branch mispredic-
ative to DTSL on a 64-bit 3.40 GHz Pen-tions on a 64-bit 3.40 GHz Pentium 4.
tium 4. FP keys.

comparators in this sorting network are written in the C laamge and use branch instruc-
tions to conditionally perform element interchanges. Tafadlt threshold to switch to this
low-level algorithm is sixteen elements. This version of 826 quicksort is the baseline
for the comparative performance study in this paper. Tabiet the algorithms used in
this performance evaluation. The standard insertionagudrithm,Ins - Y, isincluded
to provide a familiar comparison point.

7.2 Wall-Clock Execution Time

Experiments were performed on a 64-bit 3.40GHz Pentium 4Athton64 3500+, and
an IBM 2.7 GHz PowerPC G5. Fig. 4 shows the relative walldlegecution times for
the sorting of a vector of floating-point keys in relation teetDTSL baseline. Each bar
represents the average runtime over 5000 trials on unifodidtributed data. The error
bar represents one standard deviation. A similar patterarges from the same set of
experiments run on the G5. The best performance in the G5 BI8brt 28- 840, which
results on an average execution-time reduction of 1B%ort- 56 is on average 13% faster
than DTSL in the G5. The G5 has 32 vector register — insteatiefl6 vector registers
available in the Pentium 4 — and its AltiVec instruction séfers greater flexibility in
the selection of destination registers, which result in R®equiring fewer permutation
instructions with AltiVec than it does with SSE2.

11

There is no significant change in the pattern of the resulsnithe problem of sorting
key-pointer pairs (see Section 5) is solved in both machines

7.3 Clock Cyclesand Branches

Low-Level Algorithm Cycle Counts versus Array Size

80000 T T T T T T T T
14000 T T T T T

70000

60000

50000

40000

Number of cycles

30000

20000

10000

0 20 40 60 80 100 120 140 160 180
Number of elements

MSortl2 —a— RSort —=— Insertion —+—
1Sort12 —— SN —e— CC Radix —e—

Figure 6: Clock cycles on a 64-bit 3.40 GHz Pentium 4.

Fig. 6 shows the number of clock cycles, obtained throughP#RI library, required
by each algorithm as the number of elements to be sortedsviarithe maximum possible
for each algorithm. Each point in the graph is the average D@00 trials with uniformly
distributed data. This graph shows that RSort is signiflgamtperior to both the SN branch-
intensive algorithm and the CC-radix cache-consciousralgo distributed with DTSL for
small sequences, and confirms that MSort is also an excehemte for the sorting of short
sequences. A measurement of the number of branches exénatesthown) confirmed that
the elimination of branches is responsible for the supgrasformance of RSort and MSort.

A detailed study of other performance counters showed &lation between reduction
in the number of branches, loads, and stores executed amdl#tiee performance of the
algorithms. One exception waSort 12- 180 in the Pentium 4. Its wall-clock execution
time was on average 12% lower than DTSL, but it performed 5%entmads, 38% more
stores, and executed 20% more branches. The explanatishpas in Fig. 5 seems to be
in the reduction in the number of branch mispredictions.

8 Experimental Evaluation (d-Heaps)

The performance ai-heaps was investigated by comparing highly optimizedioasswith
different branching factors against SIMD variants wheretorinstructions were used dur-

12

ing heapify-down operations. The main findings of this experimental evatuaire:

¢ using SIMD instructions achieves a 20% reduction in cyclentdor a large range of
heap sizes, with reductions up to 35%, compared to the besSHdD d-heap for
each heap size;

e these reductions seem to be tied to a reduction in the nunillbeanch instructions,
rather than the number of loads and/or stores;

¢ the SIMD variants achieve far fewer branch mispredictidrantregular-heaps for
values ofd > 2.

1,000,000 Hold-model iterations (delete-min, insertion)
floating-point key-ptr elements

8e+09 T T T T T T T T T T
d=2 —+— ; ; ; ; ; ;
d=4 ---x--

7e+09 - d=8 —--x--

d=16 -
d=32 --m—

6e*09 I ge4(SSE) - o -
d=8 (SSE) ----e---

5e+00 | 0=16 (SSE) -4
d=32 (SSE) -+~

4e+09

Total Cycles

s
2e+09

le+09

4 6 8 10 12 14 16 18 20 22 24 26
Heap size log,

Figure 7: Cycle counts for each heap variant on a 64-bit 3.4@ Bentium 4.

1,000,000 Hold-model iterations (delete-min, insertion)
floating-point key-ptr elements

11 T T T T T T T T
Lol 71 d=16 (SIMD) vs. d=2 —+—
LFN 7 d=16 (SIMD) vs. d=16 ——-x—
IV e
0.8
07 |
06 |
05 |

0.4 .
4 6 8 10 12 14 16 18 20 22 24 26

Heap size log,

Relative Cycle Count

Figure 8: Ratio of the best SIMB-heap to the 2 best traditional heaps in each range. Run
on a 64-bit 3.40 GHz Pentium 4.

13

1,000,000 Hold-model iterations (delete-min, insertion)
floating-point key-ptr elements

2.5e+08 T T T
d:2 —t
d=4 ——
d=8 —-x--
2e+08 | d=16 & o
0 d=32 —=- -
5 d=4 (SSE) - -0 - R
B 15e+08 | 0=8(SSE) —-e- P
2 ’ 0d=16 (SSE) — & p !
2 d=32 (SSE) -4+ | w-m-W R
= - B
5 1e+08 gom- Bl B
I : (===t
m o--
23
0 1

Heap size log,
Figure 9: Number of branch instructions on a 64-bit 3.40 GldatRim 4.

1,000,000 Hold-model iterations (delete-min, insertion)
floating-point key-ptr elements

3e+07 T T

d=4 —x—
2.5e+07 |- d=8 ---%--- e
» d=16 & ./1
S d=32 = .
g 2e+07 |- d=4(SSE) ---o- g g
5 d=8 (SSE) --e- - o)
o d=16 (SSE) -4 o A
& 15e+07 | d=32(SSE) -4~ - o
g B % -
E a 1[]» L K X
2 1le+07 P R -
5 R e
5e+06 L
0 & -804 ¢ o g C BT T L AT T O

Heap size log,

Figure 10: Number of branch mispredictions on a 64-bit 3.4&®entium 4.

All source code was written in C++ and was compiled using g#:63 with full op-
timizations and loop unrolling. The branching factbwas known at compile time. The
heap itself was aligned in memory such that the root nodeldreim began on a cache-line
boundary. A consequence is that all children are aligned5fMD vector accesses. The
binary heap had further optimized index computations.

Experiments were performed on a 64-bit 3.40GHz Pentium &apHeements are key-
pointer pairs with floating point keys. Heap sizes are powér, from 2 to 226, Heaps
are initialized by inserting: elements, where is the maximum size of the heap. Keys for
initial elements are drawn uniformly frof ..., n — 1.

1,000,000 iterations of the “hold” model were then perfodm&ach iteration consists
of a call todelete-min followed byinsert-element. The key of the new element is equal to
the key of element last removed plus a value drawn uniformadynfo, ..., n — 1.

As seen in Fig. 7, when the heap size becomi@shere is a crossover between values of
d in the performance of traditional heaps. For small heaps2 performs better, whileg =

14

16 performs better for larger heaps, resulting from bettealibg of each node’s children as
well as decreased heap depth. For the SIfAReapsd = 16 seems to consistently perform
the best, although almost identicaldoe= 32.

Fig. 8 shows the ratio of execution times between this bagisheap versus the two
best values off for traditional heaps. For a large range of values>* 2'°) the SIMD
version executes in at least 20% fewer cycles, up to an appate 35% reduction in cycles
atn = 218,

Figs. 9 and 10 show the number of branch instructions andredsgions respectively.
The branch instructions seems to closely track SliHReap cycle counts, although in
general performance is not directly attributable to braschmispredictions, or stores and
loads. For all heap sizes the traditional binary heap edbit low and essentially constant
number of branch mispredictions, with all the SIMD variaexsbiting slightly fewer.

9 Redated Work

The implementation of sorting in large-scale vector magbkihas been extensively stud-
ied. Siegel produced one of the earliest descriptions of teovwplement Batcher’s sorting
network, also known akitonic sorting, in SIMD machines [14]. Bittoret al. provides an
extensive description of such implementations [3]. The newtribution of this paper is to
demonstrate how the well-known sorting networks can be emginted in the SIMD ma-
chinery of contemporary processors and to indicate tha¢ gaherators can instance such
implementations to improve the performance of recursivérgpalgorithms and heaps.

The idea of making better use of register resources withenpiflocessor to reduce the
number of load of stores, in our case to put the SIMD resouregeod use in sorting, is also
explored by Argeet al. [17]. Their idea of forming cache-load-sized runs with dusiart is
similar to our idea of switching to SIMD-register-basedtsw at an appropriate threshold.
The contrast is that we are also benefiting from the SIMD nraealyi which allows more
parallelism in the execution and the elimination of brarchdile they use the general-
purpose registers and the storage available at a cache line.

Recently compilers have been used more often to improveoitie generation for SIMD
machinery in contemporary processors. keal.'s approach of using an optimization algo-
rithm to improve the data permutations is more general thauspecific iterative-deepening
search [13]. Nuzmaat al. describes a compiler framework to generate vectorized tmde
interleaved data [12].

The relationship between the SIMD-register-based soglggrithms presented in this
paper and the development of DTSL is an orthogonal improvrteea library genera-
tor [10]. Li et al. focused on the dynamic identification of the best sortingidtigm for
a given input sequence [11]. They selected an efficient gfgorfor the tail of their re-
cursive method. This paper offers a better solution for theirsg of sequences that are
small enough to benefit from the use of the SIMD machinery.il@ry, we provide a faster
mechanism for selecting a minimum (maximum) child in the ligip d-heaps studied by
LaMarca and Ladner [8, 9].

15

10 Conclusions

This paper proposes the use of the SIMD machinery provideshadern processors to
improve the performance of recursion tails. The idea is wianever the number of ele-
ments to be processed fits within the SIMD registers availabthe processor, these values
should be loaded once into the SIMD registers and then anegitiSIMD execution should
be used. While the feasibility of this idea was demonstratikd the integration of a more
efficient algorithm for sorting short sequences into DTSie idea should be generally
applicable to recursive computation.

Once efficient low-level SIMD algorithms are crafted, theyde generated into a solu-
tion database to be instantiated by code generators initmiapt libraries. Alternatively, if
a suitable identification algorithm is created, the com@leould be able to integrate these
solutions directly into general programs.

Acknowledgments

The experimental evaluation of these ideas was made peskdiks to David Padua’s gen-
erous sharing of his group’s DTSL code. This research isatffyy grants from the Natural
Science and Engineering Research Council (NSERC) of Caaadsby IBM Corporation.

References

[1] K. E. Batcher. Sorting networks and their applicatiohs AFIPS Spring Joint Com-
puting Conference, pages 307-314, 1968.

[2] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantbesigning a PC game
engine.lEEE Computer Graphics and Applications, 18(1):46-53, 1998.

[3] D. Bitton, D. J. DeWitt, D. K. Hsiao, and J. Menon. A taxany of parallel sorting.
Computing Surveys, 16(3):287-318, September 1984.

[4] J. D. Frens and D. S. Wise. Auto-blocking matrix-muligaition or tracking BLAS3
performance from source code. Pnincipples and Practice of Parallel Programming
PPoPP, pages 206-216, Las Vegas, Nevada, 1997.

[5] M. Frigo. A fast Fourier transform compiler. IRrogramming Language Design and
Implementation PLDI, pages 169-180, Atlanta, GA, June 1999.

[6] Intel. 1A-32 Intel®architecture software developer's manual volume 1: Basihia
tecture. http://download.intel.com/design/Pentiumeiionls/25366519.pdf, 2006.

[7] Donald Ervin Knuth.The Art of Computer Programming, Vol. 3 - Sorting and Search-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, NUSA, 1973.

[8] A. LaMarca and R. E. Ladner. The influence of caches on #réopmance of heaps.
ACM Journal of Experimental Algorithms, 1:4, 1996.

16

[9] A. LaMarca and R. E. Ladner. The influence of caches on #mfopgnance of sorting.
In SODA: ACM-SAM Symposium on Discrete Algorithms (A Conference on Theoret-
ical and Experimental Analysis of Discrete Algorithms), 1997.

[10] X. Li, M. Garzaran, and D. Padua. A dynamically tunedtisgr library. In Code
Generation and Optimization CGO, pages 111-122, Palo Alto, CA, 2004.

[11] X. Li, M. J. Garzaran, and D. Padua. Optimizing sortimigh genetic algorithms. In
Code Generation and Optimization CGO, pages 99-110, San Jose, CA, March 2005.

[12] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorizationmérleaved data for SIMD.
In Programming language design and implementation PLDI, pages 132-143, 2006.

[13] Gang Ren, Peng Wu, and David Padua. Optimizing data yations for SIMD
devices. IrProgramming language design and implementation PLDI, pages 118-131,
2006.

[14] H. J. Siegel. The universality of various types of SIMDachine interconnection
networks. InProceedings of the 4th Annual Symposium on Computer Architecture,
pages 23-25, Silver Spring, MD, March 1977. ACM SIGARCH/EEES.

[15] S. A. A. Touati. Register saturation in instruction ééparallelism. International
Journal of Parallel Programming, 33(4):393—449, 2005.

[16] R.Whaley, A. Petitet, and J. Dongarra. Automated eioglioptimizations of sotware
and the ATLAS projectParallel Computing, 27(1-2):3-35, 2001.

[17] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vittefficient sorting using
registers and cachesCM Journal of Experimental Algorithmics, 7:9, 2002.

[18] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL:guége and compiler for
DSP algorithms. IfProgramming Language Design and Implementation PLDI, pages
298-308, Snowbird, Utah, June 2001.

17

A Appendix

inline void COMP_VEC_PTR(vector float &key_a, vector floa t &key_ b,
vector int &ptr_a, vector int &ptr_b)
{
vector float temp = key_a; /I move the low key-values
key _a = vec_min(key_a, key b); /I into key_a, and the high
key b = vec_max(key_b, temp); /I values into key_b
vector int mask = vec_cmpeq(temp, key_a); // compare the ori ginal values of key a with

/I the new values, to see which have moved
vector int temp2 = ptr_a;
ptr_a = vec_sel(ptr_b, ptr_a, mask); /I use the bitmask to se lect the appropriate
ptr_b = vec_sel(temp2, ptr_b, mask); /I values for the point er vectors

Figure 11: Key-pointer comparator using the G5 AltiVec wecntrinsics.

asm("pshufd xmm15, xmm1, OxE4"); /I xmm15 := copy of key_a (x mm1)
asm("minps xmm1, xmmz2"); /I key_a := minimum(key_a, key_b)

asm("maxps ~ xmm2, xmml5"); Il key_b := maximum(key_b, orig_ key_a)
asm("cmpps xmml5, xmml, 4"); /I xmm15 := bitmask (key_a != or ig_key_a)
asm("pshufd xmmi4, xmm3, OxE4"); /[xmm14 := copy of ptr_a

asm("xorps xmm14, xmm4"); Il q = ptr_a XOR ptr_b

asm("andps xmm15, xmm14") Il q := g AND bitmask

asm("xorps xmm3, xmml5"); /I ptr_a := ptr_a XOR q

asm("xorps xmm4, xmml5"); /I ptr_b := ptr_b XOR q

Figure 12: Key-pointer comparator using the Pentium 4 SSiS2rably instructions. Vec-
tor registers xmm1 and xmm2 hold keys, registers xmm3 and 4&raid the respective
pointers. Registers xmm14 and xmm15 are used as tempooaagst

asm("minps xmm1, xmmz2"); /I xmml := minimum(key_a, key_b)

asm("cmpps xmm2, xmml, 0x04"); // mask := bitmask (key_b != o rig_key_b)
I (key_a == orig_key_a)

asm("andps xmm3, xmm2"); /I idx_a = idx_a & mask

asm("andnps xmm2, xmm4"); /I idx_b = idx_b & “mask

asm("orps xmm3, xmm2"); /I idx_a = idx_a | idx_b

Figure 13: Selecting the minimum key and its associatedkiimdparallel using the Pentium
4 SSE2 assembly instructions. Vector registers xmm1 andXhwotd keys, registers xmm3
and xmm4 hold the respective indexes.

18

/I compare the upper vector elements against the lower
{

asm("movhlps xmm2, xmm1");

asm("movhlps xmm4, xmm3");

/I select_min(key_a=xmml, key b=xmm2, idx_a=xmm3, idx_b =xmm4)
/I will invalidate b=1 in the process

asm("minps xmml1, xmm2");

asm("cmpps xmm2, xmm1, 4"); // neq

asm("andps xmm3, xmmz2"); /I idx_a = idx_a & mask
asm("andnps xmm2, xmm4"); /I idx_b = idx_b & "mask
asm("orps xmm3, xmm2"); /I idx_a = idx_a | idx_b
}

/I compare the two lower vector elements

{
asm("pshufd ~ xmm2, xmm1, 0x01"); // 00 00 00 01
asm("pshufd ~ xmm4, xmm3, 0x01"); // 00 00 00 01

/I final_select_min(key_a=xmm1, key b=xmm2, idx_a=xmm3 , idx_b=xmm4)
/I ONLY correctly updates idx_a (not key_a or idx_b)
/I will invalidate key b in the process

asm("cmpps xmml, xmm2, 0x01"); // mask := key_a < key_b
asm("andps xmm3, xmm1l"); /I idx_a = idx_a & mask
asm("andnps xmml, xmm4"); /I idx_b = idx_b & "mask
asm("orps xmm3, xmm1"); Il idx_a = idx_a | idx_b

/I move the index of the minimum key into local variable "fina
asm("movss [%60], xmm3" : : “r* (final));

Figure 14: SSE2 data movement and comparison instructmesttact the index of the
minimum key in one vector. Vector register xmm21 holds keystor register xmma3 holds
the respective indexes.

19

