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Abstract

The exponential growth in the number of wireless broadband service users demands an

enormous increase in the available communication bandwidth, which inherently translates

into an increased demand for the radio frequency spectrum. Opportunistically accessing the

unused portions of the spectrum requires sensing the availability of unused bands. In this

thesis, non-coherent detectors such as the energy detector and its more generalized version,

the p-norm detector, which offer low-cost low-complexity spectrum sensing are considered

and comprehensive techniques for performance analyses are developed.

To this end, a new approximate representation for the wireless fading channels is pro-

posed and applied to facilitate accurate, asymptotic performance analysis for the energy

detector across a variety of operating conditions including fading, antenna/cooperative di-

versity and interference. To address the analytical difficulty involved in spectrum sens-

ing using the p-norm detector, several accurate analytical expressions are developed and

utilized to comprehensively characterize the spectrum sensing performance in generalized

fading channels and in fading channels with antenna diversity. To promote tractable spec-

trum sensing performance analysis for arbitrary sample sizes, five accurate approximations

are introduced and investigated. In another comprehensive system setup, spectrum sensing

performance of the p-norm detector under the cumulative effects of path-loss, fading, and

a large number of randomly deployed interfering nodes is characterized by developing a

comprehensive semi-analytical technique and extended to cooperative spectrum sensing.
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Chapter 1

Introduction

1.1 Global Mobile Data Traffic Trends

The tremendous popularity of state-of-the-art mobile devices such as smart phones, tablets

and ultra-books has catapulted the global multimedia data traffic from 1.5 exabytes per

month in 2013 to a staggering 2.5 exabytes per month in 2014, a growth of 69% [1]. More-

over, according to the recent forecast by Cisco (Fig. 1.1), the mobile data traffic is expected

to reach 24.3 exabytes per month by 2019 [1]. Furthermore, this study shows that in 2014,

almost half a billion (497 million) mobile device connections were added. The usage of

smartphones grew by 45%, and the mobile connected tablets increased by 1.6-fold. More-
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Fig. 1.1. Mobile data traffic forecast [1].

1



over, compared to 2014, the global mobile data traffic is expected to increase by almost

10-fold by 2019, thus reaching 24.3 exabytes per month, attributed to nearly 1.5 mobile

devices per capita by that time. Such exponential growth in the mobile device usage ex-

acerbates the inherent scarcity of the radio resources. Specifically, this near future trend

will impose serious increase in demand for the fundamental spectral resource, the radio

frequency (RF) spectrum which is becoming scarcer.

To alleviate this trend, in order to increase the efficient utilization of spectral resource

and to meet the enormously increasing demand for mobile connectivity, several new tech-

nologies are being investigated by wireless communication researchers and engineers across

leading industries and academia. Envisioning the massive number of interconnections, the

next generation of mobile communications, the fifth generation, more popularly known as

“5G”, is the upcoming big wave in communications. Next, we briefly review the 5G wire-

less access requirements and the corresponding technical enablers.

1.2 Next Generation of Mobile Communications: 5G

By the year 2020, billions of devices are envisioned to be mutually interconnected to enable

ubiquitous connectivity anytime, anywhere, and with any “thing”. Such interconnections

will give rise to an “Internet of Things” where everything from home appliances, surveil-

lance cameras, sensors, vehicles, displays, actuators, smart meters, disaster response com-

munication systems, and so forth, will be able to communicate with each other [4]. Thus,

the future of wireless access will not only be about connectivity among mobile devices but

also between any device which could benefit from network connectivity. All of such devices

could benefit from wireless networking thus enabling much wider wireless service use cases

with different requirements. Such futuristic era of next generation communications, 5G, is

envisioned in 2020. While the state-of-the-art 4G cellular access (LTE/LTE-A), which has

significantly improved the peak data rate, coverage and spectral efficiency compared to its

predecessors (2G-3G), will continue to drive the development and evolution of next gener-

ation high data rate systems, disruptive changes in the system architecture and components

on top of radical changes in the node architectural levels will be required to realize 5G

deployments [5]. To this end, the major requirements and capabilities of 5G are discussed

below.
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Overall Requirements and Capabilities of 5G

1. Massive Capacity. The emergence of new usage scenarios in 5G includes deployment

of billions of wireless sensors, actuators, smart meters, among others. While each

of these devices will generate a small amount of traffic, the major challenge lies in

terms of design of efficient signaling protocols to manage such massive number of

interconnections.

2. Very High Data Rates. Depending upon the various scenarios, some of the 5G net-

works must provide high data rates everywhere. For example, data rates could exceed

10Gbps in indoor and dense outdoor environments while it could be several hundred

Mbps in urban and suburban environments. Data rates of at least 10Mbps should be

essential everywhere including areas with low population density.

3. Ultra Low Latency, Very High Reliability and Availability. For a 5G network targeted

for critical applications, such as traffic safety, industrial control as well as for disaster

communication systems, the network is envisioned to have an end-to-end latency of

less than 1ms, ultra high reliability in connectivity, and all-time availability.

4. Very Low Cost and Energy Consumption. To enable the existence of billions of wire-

lessly connected sensors, actuators, smart meters, and similar devices, such devices

should be available at very low cost and with very long battery life (some up to 10

years).

Thus, these requirements and capabilities point towards a vastly diverse set of char-

acteristics for 5G networks. It is clear that the requirements of 5G are not only about

communications among humans but also among devices which may operate independently

without any human intervention thus leading to machine-type-communication (MTC). Due

to the wide range of different application scenarios, MTC devices are subdivided into two

streams; massive MTC and mission critical MTC whose features are highlighted in Fig. 1.2.

The 5G massive MTC networks are targeted to serve billions of devices which generate

sporadic data traffic, are cheap to deploy, and consume minimal battery. An example could

be a large number of sensors deployed in a parking lot which record the number of vehicles

and the duration of parking of each vehicle in a futuristic automated parking management
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Fig. 1.2. MTC use cases for 5G with requirements [2]

system in a busy airport. For instance, these sensors may need to only periodically report

their collected data to a central controller or gateway on a monthly basis for updating the

firmware in an automated light control system or the billing system in the parking spots. On

the other hand, the mission critical MTC networks must be designed to satisfy even more

disruptive requirements such as ultra low-latency and ultra-high reliability in applications,

for example, tactile surgery where the doctor needs to operate remotely on a patient using

the tactile devices. Another example of ultra high availability could be related to an all-

time available emergency control system in a very high-risk chemical plant to report the

malfunctioning of any container or temperature fluctuations. Hence, in order to fulfill such

diverse requirements and challenges, the 5G wireless access requires disruptive technolog-

ical innovation. The major technical enablers for such innovation, which are envisioned for

5G wireless access, are briefly summarized next.

Technical Enablers for 5G

1. Massive Beamforming. Massive number of antenna elements, popularly known as

massive multiple-input-multiple-output (MIMO) with advanced beamforming capa-

bilities, enhance the data rates. Even though the massive MIMO concept has been

incorporated into LTE-A, reaping its benefits in more challenging 5G usage scenarios

is seen as a potential solution for vigorously increasing the data rates and efficiently

managing interference. Deployment of massive MIMO in the mm-wave frequency
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bands (30-50GHz), where antenna dimensions become much more practical, is seen

as a key technology enabler for 5G by major industry players [2], [6].

2. Ultra-Lean Design. For promoting energy-efficiency and reducing the overall inter-

ference levels, it is necessary to minimize the transmission of control signals. For

example, reduced signaling for synchronization, channel estimation, and others is

beneficial for reducing the control channel overhead [7].

3. Design for Low Latency. For some 5G usage scenarios like mission-critical MTC

applications, low-latency is extremely important. It can be achieved by reduction of

the transmission-time intervals achieved via high transmission rates, and also from

availability of more transmission-bandwidth [7].

4. Device-to-Device Communications (D2D). The D2D concept which has been intro-

duced as an enhancement to LTE specifications could be an integral part of the 5G

wireless access. Because the D2D communication model is based on the proximity

of the users, the base stations and the core network have a minimal role to play (only

in terms of signaling to setup the direct connections) in the exchange of data traffic

among the devices [8]. This promotes the concept of low-latency wireless access, im-

proves cellular coverage, and may also increase the area spectral efficiency through

re-use of the same frequency spectrum as the macrocell or via use of the unlicensed

spectrum [6], [7].

5. Multiple Radio Access Technologies (RATs). Future devices in the 5G era need to

operate across a variety of RATs ranging from the legacy 2G/3G devices, D2D com-

munications based on, say, Wi-Fi Direct or LTE Direct, to mm-wave technologies

which may require a completely new RAT. Thus, none of the existing RATs alone

will be sufficient to satisfy all the requirements of the 5G era, and an integrated vir-

tual radio network could emerge as the best solution to manage the radio resources

across such diverse physical radio networks [6].

6. Flexible use of the RF spectrum. The premise of data rates in the orders of several

Gbps for the mission critical MTC applications or the support for billions of devices

for massive MTC applications would fundamentally demand much more RF spec-

trum than what is currently available. However, currently used RF bands are frag-
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mented across different frequency ranges, which makes the availability of contiguous

RF bands needed to support the gigabit data rates unrealistic. Moreover, the state-

of-the-art cellular, satellite as well as broadcasting systems are already crowding the

bands below 6GHz because of better propagation characteristics of these bands thus

rendering the large chunks of spectrum below 6GHz unavailable. Due to this fact,

the mm-wave bands (bands around 30-50GHz) with the advancements in RF tech-

nology components are being considered for future cellular systems deployments [6].

These bands could be particularly suited for dense deployment of small-cells [9] for

significantly boosting the spectral efficiency of the traditional cellular systems [10].

Moreover, the joint concept of exploiting small cells in high frequency bands along

with massive MIMO with the ultimate goal of achieving an overall increase in system

coverage and capacity are being considered.

Another means to collect RF spectrum for future wireless systems is via licensed

shared access (LSA) concept by identifying the underutilized spectrum in non-cellular

bands and cooperating with the incumbents in such bands for shared access of the

bands. Moreover, such underutilized non-cellular spectrum could also be used by

integrating with other cellular spectrum in a licensed manner with mutual agree-

ment between different classes of licensees [6]. In a different paradigm of unlicensed

shared access that is attracting interest is a concept called “LTE in unlicensed band

(LTE-U)” where the LTE-U devices may operate over the Wi-Fi spectrum, that is, the

5GHz band by exploiting the “listen-before-talk (LBT)” feature of the Wi-Fi devices

which triggers the Wi-Fi devices to go into silent mode on detection of an LTE-U

device in the given frequency slot(s) of interest. The Wi-Fi devices may then try

to listen to some other frequency slot(s) (to identify whether they are occupied or

vacant) for possible communication opportunities.

Fundamental Issue: RF Spectrum Scarcity

To fulfill the requirements of future 5G wireless access whether be it for the massive MTC

or the mission critical MTC paradigms, one of the fundamental resources is the RF spec-

trum, which is the common spectral resource needed to deliver the capabilities of future

wireless systems. Moreover, the usable RF spectrum is limited whereas accommodating

the upcoming innovations in the wireless ecosystem would require additional radio bands
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for successful deployment. An inherent question is how to make more radio spectrum avail-

able for enabling the future 5G services? We now proceed in search of the answer.

It is well-known that a fixed amount of electromagnetic spectrum is allocated sepa-

rately for each wireless system. For example, in the United States, the frequency band

512 − 608MHz is specifically used only for broadcasting TV channels 21-36. The allo-

cated spectrum band is further shared across a vast number of licensed users who utilize

it as the primary licensees of the band. Such users are called the primary users (PUs) of

that frequency band. Interestingly, a study by the Federal Communications Commission

(FCC) showed that the electromagnetic spectrum allocated to the licensed users is vastly

underutilized across time and space [11]. A study conducted in 2004-2005 for frequency

bands below 3GHz showed only 5.2% spectrum utilization in any location at a given time

revealing that the licensed spectrum is sparsely utilized [12]. These findings indicate the

two challenges: (i) the scarcity of the available RF spectrum, and (ii) its inefficient utiliza-

tion. In addition, the rigid spectrum allocation policies of the government agencies globally

have further exacerbated such inefficient spectrum utilization. In order to alleviate these

problems, a revolutionary paradigm called cognitive radio (CR), originally introduced by

Mitola in his PhD thesis [13], was brought into attention of the research community, much

later by Haykin [14]. The landmark premises of CR are discussed next.

1.3 Cognitive Radio for Dynamic Spectrum Access

As the radio spectra allocated to the PUs are not always utilized in time and across space,

chunks of frequency bands may become free at some point of time for a certain duration.

As shown in Fig. 1.3, these unoccupied (unused) frequency bands are called spectrum holes

[14] which offer opportunities for other devices to communicate over them whenever they

become available. Whenever the higher priority PU returns to the band of interest, the

unlicensed users must vacate the band. Such opportunistic unlicensed devices are termed as

secondary users (SUs) of the spectrum. Inherently, an SU should be capable of performing

the following tasks [14]:

1. Identification of the possible spectrum opportunities in its radio environment by de-

tecting the spectrum holes. This process is called spectrum sensing.

2. Estimating the condition of the communication channel, that is, channel state infor-
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mation (CSI) which is necessary for predicting the channel capacity.

3. Dynamic control of its transmission power for avoidance of any possible interference

to PUs.

The need to fulfill these tasks led to the birth of an intelligent radio, the CR [13], [14]. Thus,

a CR is vital in promoting the concept of dynamic spectrum utilization by enabling the

sharing of the underutilized spectrum across a vast number of users. Broadly, the dynamic

spectrum utilization paradigm may be classified as [15]:

(i) Underlay spectrum sharing in which the SUs communicate simultaneously with the

PUs in the band of interest. In this technique, the transmit power of the SUs is strictly

constrained so that they do not interfere with the PU transmissions.

(ii) Interweave spectrum sharing in which the SUs communicate opportunistically in the

band of interest. This technique is the original motivation for CR and is based on

utilizing the spectrum holes that temporally exist across time and space.

Thus, spectrum sensing is the fundamental task associated with the interweave spectrum

sharing paradigm while it is not mandatory for the underlay technique. In the interweave
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Fig. 1.4. Coexistence of CR networks with primary network in a licensed band. Spectrum sharing among two
CR networks in unlicensed band is also depicted.

sharing strategy, the CR has to gather information from its radio environment and decide

on the presence/absence of spectrum holes after rigorously analyzing the information. If a

spectrum hole exists, it must be used by the CR long as the PU remains idle. Whenever the

PU reappears, the CR should immediately vacate the channel so that it does not interfere

with the PU (which is the higher-priority user of the licensed spectrum) and search for other

opportunities. Thus, efficient spectrum sensing is important for establishing opportunistic

communication links for use by the SUs.

An example CR network architecture supporting the dynamic spectrum management

paradigm is presented in the next section.

1.3.1 Dynamic Spectrum Sharing Concept

Practically, the CR networks may not only be confined to operate in licensed spectrum. For

example, the work in [16] endorses that the secondary (CR) networks can coexist with the

PU network both in licensed as well as unlicensed bands. Such coexistence of primary and

secondary networks in the licensed spectrum as well as that among two CR networks in an

unlicensed band are depicted in Fig. 1.4. Spectrum holes existing in the licensed band must

be detected and exploited by the SU network ensuring no interruption to the PUs’ service.

Moreover, in the licensed band operation, the SUs have to vacate the band on which they

are operating immediately when the PUs are detected back in the band. Thus, the CR users
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are inherently considered lower priority users. Contrary to this, operation in the unlicensed

band relieves the CRs from such requirement. Similar to the operation in licensed band, any

CR vying for an opportunity in an unlicensed band has to first detect the presence of other

CRs in the band. Once an opportunity is detected successfully, the CR may communicate

without the requirement to vacate the band as in licensed band operation. However, the

CRs should keep sensing other portions of the spectrum to identify possible opportunities

which may be needed for, say, handoff or to maintain the quality of service. To facilitate

such processes (handoff, maintenance of quality of service), a spectrum broker may act

as a resource manger among different CR networks [16]. Nevertheless, regardless of the

licensed or unlicensed operation of the SUs, a highly reliable spectrum sensing mechanism

is the fundamental requirement to initiate and maintain (via continued sensing of other

opportunities) opportunistic communication via dynamic spectrum sharing.

1.3.2 Field Trials and Standardization activities on Dynamic Spectrum Ac-

cess

Before moving on to the details of the spectrum sensing mechanism for enabling the con-

cept of dynamic spectrum sharing, in this sub-section, we mention some of the interesting

industrial trials and standardization activities in the potential deployment of the CR devices.

In order to evaluate the possible deployment of the CR devices in the TV white-space

(TVWS) spectrum (between 54-790 MHz), the FCC field tested several prototype devices

from leading companies such as Motorola, Philips and Adaptrum in 2008. The FCC test re-

sults showed the possibility of reliably detecting the TV signals in practical settings, given

the spectrum sensing and geolocation databases are jointly consulted [17]. Another field

trial included the first public white-space launch in Claudville, Virginia, in 2009 by Spec-

trum Bridge, Microsoft and Dell, which eventually led to the wider-scale deployment of

one “Smart City” network in Wilmington, North Carolina, in 2010 [17].

Apart from the field trials, the industry has been committed to the standardization activ-

ities targeted for dynamic spectrum access using CR networks. Examples of such activities

include the IEEE 802.22 standard working group (WG) on Wireless Regional Area Net-

works (WRAN) for rural areas supporting fixed CR devices exploiting TVWS, the Ecma

392 targeting indoor areas for streaming high speed video, the IEEE 802.11af standard en-

abling Wi-Fi like protocol over the TVWS and the IEEE 802.19 technical advisory group
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(TAG) dealing with the co-existence issues among unlicensed wireless networks. [17].

Thus, all of these field trials and standardization activities clearly suggest that concept of

dynamic spectrum access has a remarkable potential for enabling the 5G networks in the

near future.

1.4 Spectrum Sensing Techniques

To identify any possible communication opportunities for the secondary users by ensuring

that the operation of primary licensees is not disrupted, the foremost task is to reliably

detect the presence or absence of spectrum holes in the specific frequency bands of interest.

Several spectrum sensing algorithms exist for this purpose. Four of the well-known ones

are briefly explained next.

1. Matched Filter: This detector is theoretically optimal for the specific case of known

signals embedded in Gaussian noise in the sense that it maximizes the received signal-

to-noise ratio (SNR). The matched filter receiver has an array of detectors coherently

matched to the transmitted signals [18]. However, perfect knowledge of the transmit-

ted signals and the channel response is required for such coherent detection, and the

matched filter detector performance degrades significantly if no such information is

available. Moreover, it needs a dedicated receiver matched to each class of PU signal

and thus requires large implementation complexity.

2. Energy Detector (ED): The ED, also known as the radiometer [19], is a blind sensing

technique which does not require any a-priori knowledge of the primary signal. It

operates by measuring the energy of the received signal and comparing it against a

pre-determined threshold to decide on the presence or absence of the PU signal. It

is one of the most popular detectors due to very low-complexity and non-coherent

nature. One inherent drawback is that its performance degrades at high levels of

uncertainty in noise variance and interference [20].

3. Cyclostationary Feature Detector: In wireless systems, the transmit data often pos-

sess characteristics such as built-in periodicity in terms of statistics like mean and

autocorrelation primarily induced due to modulation, coding and burst formatting

schemes (for example, cyclic prefix in orthogonal frequency division multiplexing

(OFDM) symbols, known pilot symbols, and others). This fact may be exploited to
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identify the presence/absence of the transmitted signal [21]. In case the PU is present,

the received data would possess some form of cyclostationarity, as opposed to the PU

absence case where only the noise is present. Thus, detection of any cyclostation-

ary features in the received signal indicates the presence of PU. Even though this

method may be effective in identifying PU signal buried in noise and interference,

high implementation complexity and need of a-priori PU signal information such as

the modulation format are the tradeoffs.

4. Covariance-based Detector: In general, the statistical autocorrelation of the signals

and noise are mutually independent. This knowledge may be utilized to differentiate

between the presence or absence of the PU signal [22]. The work [22] showed that

the presence (absence) of the PU signal would cause the off-diagonal elements of the

covariance matrix of the received signal to be non-zero (zero). Thus, the covariance-

based detector can be used even in absence of any a-priori knowledge of the PU

signal, channel and noise variance. However, these features entail an additional cost

and a relatively high computational complexity at the receiver.

It is important to note that the IEEE 802.22 WG does not impose any restrictions on

the spectrum sensing technique to be used as long as a reliable detection performance is

achieved [23]. However, the WG mostly targets at providing services to rural and remote

areas and thus a detector with low-complexity as well as low-cost is an implicit requirement

[12]. Hence, the popularity of the ED for such requirements is well motivated.

1.5 Impact of Wireless Propagation on Spectrum Sensing

Regardless of the spectrum sensing technique used, successful detection of the PU signal

heavily relies upon the received PU signal strength which, in turn, depends upon the wire-

less propagation environment. In practical wireless communication environments as shown

in Fig. 1.5, two inherent phenomena are multipath fading and shadowing, which degrade the

quality of the received signals [24]. Multipath fading (small-scale fading), arises when the

plane waves propagate from the source to the destination via multiple paths with different

delays and amplitude variations due to stochastic nature of the wireless channel. In severe

fading conditions, significant attenuation of the transmitted signal envelope diminishes the

received SNR to a very low level such that the detection of the PU signal becomes difficult.
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Another phenomenon called shadowing (large-scale fading), arises when large obstacles

interrupt the transmitter-to-receiver path and a reliable signal reception at the destination is

no longer guaranteed. This results in the hidden terminal problem [18], [21] in which the

CR cannot detect the PU presence and thus starts to transmit thereby interfering with the

PU transmission. Both of these phenomena severely impact the spectrum sensing reliabil-

ity. The utilization of spatial degrees of freedom via antenna- and cooperative- diversity are

known to be two of the potential solutions to these problems.

1.6 Motivation and Problem Statements

As low-hardware complexity and non-coherent operation are two of the most important

features for low-cost, rapid spectrum sensing, this research focuses on the ED and its more

generalized version, the recently introduced p-norm detector. As both of these detectors do

not require any a-priori information of the PU signal, they can sense a wide range of spec-

trum across a variety of PUs deploying different modulation schemes, signal formats, and

others. Moreover, their simple construction is attractive for practical hardware implementa-

tion resulting from agile operation and low-complexity. However, significant literary gaps

remain in the existing works related to ED and the p-norm detector. These important open
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problems, which are the focus of this study, are briefly summarized in problems P1-P4 as

follows.

P1: Asymptotic performance of the ED: The ED has received enormous attention from

the spectrum sensing research community. Thus, its performance has been exten-

sively analyzed in multipath fading, shadowing, with multiple antennas, in coopera-

tive networks, and others. However, the existing analyses often involve complicated

special functions, infinite series and/or residues and do not yield quick insights into

the effect of fading/diversity combining on the ED performance. The primary cause

of such drawbacks is the difficulty in averaging the generalized Marcum-Q func-

tion based expression for the detection probability over statistical distribution of the

fading/diversity combining, primarily due to limited Marcum-Q integrals in the lit-

erature. The asymptotic analysis of ED performance could be a potential solution to

the problem. However, a unified, accurate asymptotic analysis of the ED performance

over practical SNR ranges has been lacking previously.

P2: Accurate analysis of p-norm detector in fading and diversity: The existing analyses

of the p-norm detector, a more generalized version of the classical ED, have several

limitations, either on the sample-size, operating SNR, or both. These limitations

are because of the difficulty in deriving the exact statistical distribution of the p-

norm detector decision variable, which consists of a sum of p-th powered random

variables. Furthermore, an accurate, comprehensive performance analysis of the p-

norm detector in generalized fading channels and with antenna diversity combining,

which subsequently aids in the design and analysis of p-norm detector based spectrum

sensing, is not available in the literature.

P3: Finite sample approximations for performance of ED and p-norm detector: The ED

and p-norm detector performances are often analyzed by exploiting the central limit

theorem (CLT) which yields simple approximate performance expressions in terms

of the Gaussian-Q function. However, CLT based analyses are valid exclusively for

large samples. To minimize the delay in spectrum sensing, the number of samples

have to be chosen optimally (say, choosing the lowest number of samples that sat-

isfies the performance constraints). This requires the expressions to work without

any restrictions on the sample size. Although exact expressions which work for few
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(finite) samples exist, they often involve a combination of complicated special func-

tions, infinite series, and/or residues, which do not lend themselves to, say, parameter

optimization problems, where either the detection threshold or the number of samples

need to be chosen optimally to achieve the best sensing performance. Thus, a funda-

mental problem is to obtain simple approximate performance expressions for ED and

p-norm detector, which are valid for arbitrary number of samples. However, only one

such approximation, called the cube-of-Gaussian (CGA) approximation was avail-

able previously for the ED, which however, is not necessarily the only (or the best)

one. Thus, it is desirable to have more approximation techniques for accurately char-

acterizing the ED and p-norm detection performances.

P4: The p-norm detector in random network interference: Most of the ED based spectrum

sensing analyses have neglected an underlying phenomenon in spectrum sensing, the

presence of interfering transmissions in the vicinity of the sensing CR (see Fig. 1.6).

However, the powers from undesired transmitters leak into space over relatively large

distances thus interfering with the PU signal reception at the CR, especially in hetero-

geneous network settings where the interfering nodes may not be associated with the

CR base station. Moreover, in such networks with densely deployed nodes (say, small

cells), both the locations as well as number of interferers may vary randomly. The
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analytical performance evaluation in such scenario is further complicated by three

inherent phenomena in wireless propagation: path-loss, multipath fading and shad-

owing. As the ED performance degrades in interference, the p-norm detector may

prove to be a potential solution to yield enhanced performance than the ED. However,

a comprehensive framework for analyzing the possible performance gains offered by

the p-norm detector compared to the traditional ED subject to the cumulative effects

of path-loss, fading, and random network interference is lacking.

1.7 Outline of the Thesis

The rest of the thesis focuses on addressing the aforementioned problems P1-P4 in spectrum

sensing. Chapter 2 elaborates the relevant background needed for the topics covered in the

thesis. The aforementioned problems P1-P4 are treated through Chapters 3-6, respectively,

by providing detailed background, novel analytical treatment, and numerical results. Brief

summaries of each chapter are as follows.

• The problem P1 is addressed in Chapter 3, where a new approximate probability den-

sity function (PDF) for statistically modeling the fading channel gain is proposed. By

using it, accurate asymptotic performance of the ED is derived and unified across a

wide array of practical scenarios including various fading channel models, antenna

diversity combining schemes, cooperative spectrum sensing and co-channel inter-

ference. The proposed asymptotic framework is accurate across wide SNR ranges.

The framework is further extended to demonstrate its usefulness in deriving a unified

expression for the Complementary Area Under the receiver operating characteristic

(ROC) Curves (CAUC), which was recently introduced in the literature as a single

figure of merit to characterize the ED performance. Furthermore, for each of the sys-

tem settings considered, the method of retrieving the sensing gain is presented, which

reveals quick insights into the effect of operating conditions on the ED performance.

• In Chapter 4, the Problem P2 is given a rigorous treatment. As the existing analy-

ses are limited to ad hoc approximations and Rayleigh fading only, in this chapter,

comprehensive and accurate p-norm detection performance analysis frameworks are

proposed. Specifically, accurate computational methods, tight approximations and
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series expansions are developed. Moreover, the treatment is extended for quantify-

ing the p-norm detection performance in generalized fading channels. Furthermore,

performance of the p-norm detector with antenna diversity is analyzed.

• For facilitating the finite sample performance of the ED and the p-norm detector to

overcome the Problem P3, several accurate approximations for the classical ED prob-

lem are proposed in Chapter 5. The proposed approximations are accurate for any

number of samples unlike the existing CLT approximation based on the large-sample

assumption. Some of the proposed approximations also outperform the existing finite

sample based CGA approximation. Moreover, one of these approximations is then

further utilized to study the Area Under the ROC Curve (AUC) performance of the

p-norm detector. Furthermore, the AUC performance is extended to characterize the

effect of the underlying noise variance uncertainty on spectrum sensing.

• To overcome the issues outlined in Problem P4, a comprehensive semi-analytical

technique is developed in Chapter 6 by modeling the cumulative effects of path-loss,

fading and random network interference. This technique is utilized to study possible

performance gains achieved by the p-norm detector (compared to the traditional ED)

by deriving approximate, yet accurate expressions for the performance metrics of the

p-norm detector. The framework is further extended to cooperative spectrum sensing

involving multiple CRs. Possible performance gains compared to single CR based

spectrum sensing are quantified.
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Chapter 2

Background

This chapter reviews the background relevant to the rest of the thesis. The properties of the

wireless propagation environment, which includes the effects of small-scale and large-scale

fading, are elaborated. The formulation of the spectrum sensing problem and the widely

popular ED along with its generalized cousin, the p-norm detector, are subsequently de-

scribed. The inherent performance metrics for quantitatively characterizing the detection

performance are discussed. The discussion is extended to account for the analysis in fad-

ing channels. The well-known CLT approximation is introduced before finally concluding

the chapter with a summary of antenna diversity and cooperative diversity techniques for

spectrum sensing.

2.1 Characteristics of Wireless Channels

Radio signals propagating from the transmitter to the receiver through the wireless medium

are subject to various impediments resulting from the inherent characteristics of the propa-

gation channels. These impediments arise due to existence of path-loss, large-scale (macro-

scopic) fading and small-scale (microscopic) fading between the transmitter and the re-

ceiver. Path-loss essentially is the attenuation of the transmit signals due to dissipation

of the transmit power over large distances and thus depends upon the transmit frequency

(wavelength), antenna height and the separation distance between the transmitter and re-

ceiver. The large-scale fading also known as shadowing occurs when the transmitter to

receiver propagation path is affected by large obstacles such as buildings and hills, whose

sizes are in the order of tens of wavelength thus leading to random variations of the re-
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ceived power over distances which are tens of orders of wavelength. On the other hand, the

small-scale fading termed as the multipath fading arises when multiple plane waves arrive

at the receiver from various directions with different amplitudes, phases and delays thus

constructively and destructively combining at the receiver. Such combination gives a much

rapid fluctuation of the received signal envelope over shorter distances in the order of the

wavelength. This phenomenon results in rapid random fluctuations in the received signal

envelope which is termed as multipath fading.

To commonly characterize the time varying nature of the received signal envelope, var-

ious statistical models for characterizing the small- and large-scale fading exist. Next, a

short review of these models is provided.

2.1.1 Multipath Fading

Three well-known channel models for representing the small-scale or multipath fading are

Rayleigh, Rician and Nakagami-m fading which are briefly described below [25].

1. Rayleigh fading: When the received signal consists of a large number plane waves,

the amplitude of the fading envelope |h| is Rayleigh distributed with the PDF

f|h|(x) =
2x

Ω
e−

x2

Ω , x ≥ 0, (2.1)

where Ω = E[|h|2] is the mean-squared envelope power with E[·] denoting the ex-

pectation. Rayleigh fading is a reasonably suitable model for cases when no direct

line-of-sight (LOS) between the transmitter and the receiver exists.

2. Rician fading: In the presence of a direct LOS in addition to the existence of several

multipath components from the transmitter to the receiver, the fading envelope is

better modeled by the Rician distribution. The PDF of |h| for this distribution is

given by

f|h|(x) =
x

b0
exp

{
−x2 + s2

2b0

}
I0

(
sx

b0

)
, x ≥ 0, (2.2)

where s2 is the specular power (non-centrality parameter), 2b0 is the scattered power

and I0(·) represents the zero-th order modified Bessel function of the first kind. The

PDF (2.2) is also popularly expressed in terms of the Rice factor K = s2/(2b0),

defined as the ratio of the power of direct component to that of the scattered compo-

nents. The special case K = 0 reduces to the Rayleigh fading case.
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3. Nakagami-m fading: One of the most versatile fading channel models, the Nakagami-

m distribution, fits empirical data and provides a better match than other models to

some experimental data. For example, it accurately models land-mobile and indoor-

mobile propagation environments [24]. For Nakagami-m fading, the PDF of |h| is

given by
f|h|(x) =

2mm

Γ(m)Ωm
x2m−1 exp

{
−mx2

Ω

}
, x ≥ 0, (2.3)

where Γ(x) =
∫∞
0 tx−1e−tdt is the Gamma function [26, eq. (6.1.1)] and m ≥ 0.5

represents the severity of fading. Higher m means a less severe multipath effect.

The Nakagami-m PDF reduces to the Rayleigh PDF for m = 1 and it can closely

approximate the Rician PDF with m = (1+K)2

1+2K .

2.1.2 Shadowing

The large-scale fading or shadowing causes the mean envelope Ωp,dB to vary over large

distances. This variation is traditionally modeled by the log-normal distribution as [25]

fΩp,dB(x) =
1

σΩp,dB

√
2π

exp

{
− [10 log10(x)− μΩp,dB ]

2

2σ2
Ωp,dB

}
, (2.4)

where μΩp,dB and σΩp,dB are the mean and standard deviation of Ωp,dB = 10 log10(Ωp), re-

spectively. However, an underlying difficulty with the log-normal distribution is that the

performance analysis may not always be closed-form tractable. To overcome this difficulty,

the shadowing part is often approximated by using the Gamma distribution which is fre-

quently combined with the multipath fading model thus resulting in a composite fading

distribution [27]. The squared envelope of the composite Gamma-shadowed Nakagami-m

fading channel is popularly expressed by the KG distribution as [28]

f|h|(x) =
4

Γ(m)Γ(ms)

(
mms

Ωs

)m+ms
2

xm+ms−1Kms−m

(
2x

√
mms

Ωs

)
, x > 0, (2.5)

where Kv(·) is the v-th order modified Bessel function of second kind [26], the parameters

ms = 1

eσ
2
s−1

, Ωs = μs

√
ms+1
ms

are obtained by matching the mean and variance of the

lognormal PDF with those of the Gamma PDF, respectively. It is interesting to note that

recently, the composite fading distribution was also shown to be accurately representable in

terms of the Mixture-Gamma (MG) distribution where the KG distribution can be approx-

imated by a weighted sum of Gamma random variables [29]. Such representation may be
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more attractive for closed-form analysis.

2.2 Spectrum Sensing as a binary hypothesis testing problem

The task of detecting spectrum holes can be formulated as a composite binary hypothe-

sis testing problem such that the received signal y(t) at the detector at any time t can be

represented as [30]

y(t) =

⎧⎨⎩ w(t) : H0,

h(t)Sp(t) + w(t) : H1,
(2.6)

where Sp(t) is the signal transmitted by the PU, w(t) is zero-mean additive white Gaussian

noise (AWGN) at the receiver and h(t) is the wireless fading channel coefficient. The PU

signal is absent under hypothesis H0 while hypothesis H1 assumes its presence in the fre-

quency band of interest. The fundamental task of the detector is to perform a discriminatory

test and output a final decision in favor of one of the two hypotheses.

2.3 Non-Coherent Detectors for Spectrum Sensing

As emphasized in Section 1.4, non-coherent detectors such as the ED and its more general

cousin, the p-norm detector are attractive because of their low-complexity attributed to non-

requirement of PU signal information. This feature enables non-coherent detectors to be

applicable across a variety of wireless systems deploying various modulation techniques,

diversity combining schemes, and in disparity of wireless propagation conditions which

largely affect the received signal at the detector. These scenarios may typically arise when

CR networks aim to coexist with heterogeneous networks, where large variations in transmit

powers, modulation schemes, differences in PHY and MAC specifications, among others,

are prevalent [31].

2.3.1 The Energy Detector (ED)

The ED possesses a low implementation complexity as shown in Fig. 2.1. The received

signal is passed through the pre-filter to obtain a band-limited noise power spectral density

[19]. The filter output is then fed to a square-law device and subsequently integrated over a

finite time interval to extract the decision variable T . An equivalent digital implementation

of the ED essentially has an Analog-to-Digital Converter (ADC) at the filter output with a
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T = Decision 
variable  A/D 

Noise pre-filter Squaring device Integrator ADC 

2 

Fig. 2.1. Basic structure of an ED.

sufficiently high sampling rate followed by the squaring operation and a summing device to

add the results over the observation interval such that the decision variable is given by [20]

T =
1

N

N∑
i=1

( |yi|
σw

)2 H1

�
H0

λ, (2.7)

where yi is the digital signal sample at the output of the ADC, ∀i ∈ {1, 2, ..., N}, N is the

sample size and σ2
w is the noise variance. The decision variable T is then compared against

a pre-defined threshold λ to obtain a final decision on the hypothesis as shown in (2.7).

2.3.2 The p-norm Detector

 

T = Decision 
variable  A/D 

Noise pre-filter Power-p device Integrator ADC 

p 

Fig. 2.2. The p-norm detector.

The ED, introduced to the research community in 1967 by the pioneering work by

Urkowitz [19], has been very popular among researchers in its original form [30], [32]–

[38]. However, to further improve the ED performance, a more general version of the ED

with the squaring operation replaced by an arbitrary power p > 0 operation (see Fig. 2.2)

is gathering significant attention. This generalized version of the ED is also termed as the

improved ED [39] or the Lp-norm detector [40]. We refer to this detector as the p-norm

detector throughout this thesis. The decision variable, Tp, of the p-norm detector has the

following form

Tp =
1

N

N∑
i=1

( |yi|
σw

)p H1

�
H0

λ, (2.8)

where all the notations are consistent with (2.7). Clearly, the ED is a special case of it
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with p = 2. This parameter p gives the detector a flexibility to tune itself according to

various operating conditions to yield an improved performance compared to the traditional

ED, especially at low SNRs [39] or in non-Gaussian noise [40].

2.4 Detection Performance Metrics and Fading Channels

The reliability of any detector is characterized in terms of two metrics called the probability

of false alarm (Pf ) and the probability of detection (Pd) which are defined as follows [41]:

1. Probability of false alarm: The probability that the detector falsely decides on H1

when H0 is true, given by Pf = P (T ≥ λ|H0) where P(X|Y) denotes the probability

of an event X conditioned on the event Y . Naturally, for a reliable detection, a lower

Pf is desirable.

2. Probability of detection: The probability that the detector correctly decides on H1

when H1 is true, i.e. Pd = P (T ≥ λ|H1). Thus, a higher Pd means a more reliable

detector.

The fundamental requirement is to obtain analytical expressions for these metrics in order

to gain useful insights on the detector’s operating characteristics. Note that as only the

detection probability (and not the false alarm probability) is affected by the SNR, γ, it can be

denoted as Pd(γ). Thus, only Pd(γ) needs to be averaged over the fading statistics of γ for

quantifying the average effect of fading/shadowing channels on the detection performance.

Thus, in fading environments, the “average” performance over the fading distribution of the

instantaneous SNR, γ, is important and thus, the average detection probability (P d) over

the distribution of the received SNR is particularly of interest, which can be expressed as

P d = Eγ [Pd(γ)], (2.9)

where Eγ [·] is the mathematical expectation with respect to the PDF of γ, which in turn,

depends upon the underlying fading channel model under consideration.

In sub-section 2.4.2, the commonly adopted signal models in the ED literature, namely,

the unknown deterministic signal model and the random signal model, are described. The

corresponding expressions for the false alarm probability and the instantaneous detection

probability of ED are also presented. However, before moving on to those details, we

next briefly describe the Marcum-Q function which occurs in the representation of the in-
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stantaneous detection probability Pd(γ) in case of the unknown deterministic signal model

(details in sub-section 2.4.2.1)

2.4.1 The Marcum-Q function

One of the most frequently arising functions in differentially coherent, partially coherent

and non-coherent communication systems is the N -th order generalized Marcum-Q func-

tion, which is defined as [42]

QN (a, b) =

∫ ∞

b

xN

aN−1
e−

x2+a2

2 IN−1(ax)dx (2.10)

where a and b are non-negative real numbers and IM (·) is the M -th order modified Bessel

function of the first kind [26]. The Marcum-Q function often arises in practical cases, for

example, the complementary cumulative distribution function (CCDF) of the non-central

chi-square random variable occurring in signal detection problems; bit error probability

expression for binary and quaternary modulation schemes, and others [42].

Due to the complicated nature of the canonical form (2.10) an alternative representation

of the Marcum-Q function in terms of the contour integral is sometimes used [43]

QN (a, b) =
1

2πj

∮
Δ

e
a2

2
( 1
z
−1)+ b2

2
(z−1)

zN (1− z)
dz (2.11)

where Δ is a circular contour of radius r and j denotes the imaginary unit. Since the

singularities of the integrand are at z = 0 and z = 1, by Cauchy’s theorem [44], any r,

0 < r < 1, can be chosen. The form (2.11) has been shown to be useful for evaluating

the average probability of detection under many practical cases of interest in fading and

diversity combining [34], [36].

2.4.2 Classification of signals

According to the classical literature on signal detection theory, the signal to be detected

can be classified as one of the three basic types: (i) completely known - deterministic; (ii)

known except for a set of unknown parameters; (iii) completely random and thus specified

by using probability distribution [45]. Among these, the models (ii) and (iii) are more

practical ones in the communication theory problems and thus are interest of this thesis.
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These two models along with their respective expressions for the probability are discussed

in the following two sections.

2.4.2.1 Unknown deterministic signal model

Due to uncertain propagation characteristics of the mobile radio environment, it is common

to assume the parameters of the signal received at the detector to be unknown although

the signal generated at the PU transmitter is deterministic, that is, takes on the values de-

termined by the exploited signaling waveform (for example, “one” or “zero” in case of a

binary phase shift keying (BPSK) modulation). Thus, in the performance analysis of ED,

one of the most widely used PU signal models is to assume the PU signal as unknown deter-

ministic (non-random). The underlying notion for this model is that almost no information

about the PU signal form is known such that no assumptions about it can be made [19]. For

example, no assumptions on the amplitude, phase, time of arrival or frequency of the PU

signal can be made at the CR receiver [45]. Hence, in these situations, it is common to treat

the PU signal as deterministic (non-random) so that for the case when PU signal is present,

the input to the detector would be a Gaussian signal (due to AWGN) with non-zero mean.

To this end, the SNR can be defined as

γ =
|h|2Es

σ2
w

,

Es being the signal energy. Following the developments of the well-known work [30] for

the unknown deterministic signal model, the ED decision variable T under hypothesis H0

is central chi-square distributed with 2N degrees of freedom. Similarly, T conditioned on γ

under hypothesis H1 is non-central chi-square distributed with 2N degrees of freedom and

non-centrality parameter 2γ. Then, the detection probability and the false alarm probability

can be expressed as [30]

Pd(γ) = QN (
√

2γ,
√
λ),

Pf =
Γ(N,λ/2)

Γ(N)
,

(2.12)

respectively, where QN (·, ·) is the N -th order generalized Marcum-Q function [24]. The

notation Γ(a, x) �
∫∞
x ta−1e−tdt is the upper incomplete Gamma function [26]. Even-
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tually, as the interest is in evaluation of the average detection probability (2.9), it can be

expressed as the following well-known integral [30]

P d =

∫ ∞

0
Pd(γ) f(γ)dγ =

∫ ∞

0
QN (

√
2γ,

√
λ) f(γ)dγ, (2.13)

where f(γ) is the PDF of γ, which depends upon the fading environment. Hence, the

fundamental problem is to obtain a solution for the integral (2.13), whose rigor is largely

dependent upon the form of f(γ).

2.4.2.2 Random signal model

In communications, certain cases may arise when the origin of the PU signals possess com-

plex structure, for example, signals generated using spread spectrum modulation and en-

cryption techniques, or when the PU signal is composed of a large number of independent

but identical components such as: (i) large number of sub-carriers in an OFDM based sys-

tem or (ii) in frequency-shift keying (FSK) signals having complex time-structure (contin-

uous). In such cases, the resulting waveforms can be best modeled by a completely random

distribution. To this end, one of the most popular PU signal models in the signal detection

theory literature is that of the random Gaussian signal model [27], [45].

In this model, the PU signal SP (t) is treated as a complex Gaussian random variable

with mean zero and variance σ2
s such that the received signals under hypotheses H0 and

H1 are complex Gaussian with mean zero, variance σ2
w and σ2

w(1 + γ) where the SNR is

defined as

γ =
|h|2σ2

s

σ2
w

(abusing the notation γ). Then, the false alarm probability in this case is same as in (2.12)

while the detection probability is given by

Pd(γ) =
Γ
(
N, λ

2(1+γ)

)
Γ(N)

. (2.14)

Similar to the unknown deterministic model, subsequent use of (2.9) yields the desired

average detection probability for this signal model as

P d =

∫ ∞

0

Γ
(
N, λ

2(1+γ)

)
Γ(N)

f(γ)dγ, (2.15)

whose solution ease is largely determined by the form of f(γ).
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2.5 Central-limit theorem (CLT)

In probability theory, the CLT provides one of the most widely used approximations for

the distribution of the arithmetic mean of a sufficiently large number of occurrences of

independent random variables with given mean and variance. According to the Lindeberg-

Lévy’s CLT theorem, if X1, X2, ..., XN are independent and identically distributed (i.i.d.)

random variables with mean μ < ∞ and variance σ2 < ∞, then the normalized average

ZN = SN−mN
sN

, where SN =
∑N

k=1Xk, mN = E[SN ] and s2N = Var[SN ], converges in

distribution to the standard normal random variable as N → ∞ [46]. That is,

lim
N→∞

(
ZN �

N∑
k=1

Xk − μ√
Nσ

)
D−→ N (0, 1). (2.16)

Although other variations (by Lyapunov, Linderberg-Feller) of the CLT for independent but

non-identical random variables exist in the literature, the CLT (2.16) suffices the purpose

for this thesis study.

2.5.1 Application to Spectrum Sensing

In order to characterize and design sensing systems for the potential spectrum holes over

fading channels, the evaluation of (2.9) often becomes a critical limiting factor, mainly

because closed-form solutions for P d which requires solution of integrals (2.13) or (2.15)

are often lacking. The problem becomes often tedious because of the form of f(γ) which

is further attributed to the operating conditions (fading, shadowing, interference, diversity,

and others) under consideration. Closed-form solutions for P d are desirable mainly because

of their ease of applicability in parameter optimization problems. Thus, in order to impart

ease of analysis in further applications, a popular approximation, which yields a simpler

functional form (than the generalized Marcum-Q or the incomplete Gamma function), is

based on the CLT. According to CLT approximation, given a large number of samples

are available (N 
 1), the ED decision variable T can be approximated by a Gaussian

distributed random variable under both hypotheses as T |H0 ∼ N (m0, σ
2
0) and T |H1 ∼

N (m1, σ
2
1). Then, detection probability, P clt

d , and the false alarm probability, P clt
f for the
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CLT approximation can be easily expressed as

P clt
d ≈ Q

(
λ−m1

σ1

)
,

P clt
f ≈ Q

(
λ−m0

σ0

)
,

(2.17)

where Q(·) is the Gaussian-Q function. The approximate forms (2.17), although being

valid only for the large samples, have been widely used in analyzing problems related to

sensing-throughput tradeoff [47], low SNR parameter optimization [37], optimal multiband

joint sensing [48], and others.

2.6 Classical Antenna Diversity Schemes for Spectrum Sensing

Antenna diversity techniques are known to improve the signal reception by exploiting the

advantage of the spatial dimension at the receiver. Receiving multiple replica of the fading

signal via different antenna branches and combining them improves the overall received

SNR [24]. This technique has been known to combat the effect of multipath fading since

different diversity branches may not concurrently go into deep fading and the branches with

better SNR quality can compensate even if the signals in other branches are in deep fade.

The ED performance has been shown to significantly improve through the use of multiple

antennas [33], [34], [49], [50].

The signal received at the multiple antennas may be combined in different ways. Four

classical diversity combining schemes are briefly summarized below:

1. Maximal Ratio Combining (MRC): A coherent combining scheme which requires

CSI thus requiring estimation of both amplitude and phase of the fading branches.

Signals received at each branch are weighted by their respective channel coefficients

before combining [24]. This scheme is optimal in performance (in absence of in-

terference), the requirement of complete CSI being a tradeoff in terms of cost and

complexity.

2. Equal Gain Combining (EGC): The EGC scheme, unlike MRC, does not require the

amplitudes of the fading channels but only their phases thus reducing the estimation

complexity [24]. This scheme is particularly useful for symbols with equal energy

(such as symbols from phase shift keying constellation).
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3. Selection Combining (SC): A reduced complexity scheme which processes a single

branch with the largest SNR and thus does not require processing of the signals com-

ing from each branch [24]. This scheme requires continuous monitoring of signals

from each branch.

4. Square Law Combining (SLC): A non-coherent combining scheme in which the re-

ceived signal at each branch is squared before combining [33]. This scheme is par-

ticularly useful for non-coherent operation without any CSI.

2.7 Cooperative Diversity in Spectrum Sensing

To overcome the hidden terminal problem, one solution is to exploit a collaborative network

of CRs for the detection of the presence/absence of the PU. In such a collaborative network,

each CR independently senses the spectrum and reports its observation to the SU entity

called the fusion center (FC) (for example, a central coordinator such as the secondary

base station [16]). As shown in Fig. 2.3, the FC is shadowed from the PU transmission.

However, the other CRs (CR1,CR2, ...,CRK), which are not shadowed from the PU can

listen to the PU transmission and thus can forward their observations/decisions to the FC

which combines the individual observations/decisions to yield the final decision on the pres-

ence/absence of the PU. Several analytical and simulation studies with different protocols

have underlined the benefits of cooperative spectrum sensing in improving the detection

reliability [51]–[54].

At the FC, the possible schemes to combine the observations received from several CRs

can be broadly categorized into two: data fusion and decision fusion, as described next [36].

1. Data Fusion: In this fusion scheme, the cooperative nodes simply receive and for-

ward their observations without making any decision on the presence/absence of the

PU. One example of such scheme is the amplify-and-forward scheme where the co-

operative node scales the received signal and forwards the resulting one to the FC

[55]. This is a form of soft-combination of the individual CR observations. In this

case, the bandwidth of each CR-to-FC channel should be equal to the corresponding

PU-to-CR channel bandwidth for reporting the observation from the CR to the FC.
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Fig. 2.3. Cooperative spectrum sensing.

2. Decision Fusion: In the decision fusion scheme, the cooperative nodes independently

decide on the presence/absence of the PU signal based on their observation and for-

ward the resulting decisions to the FC. Thus, this scheme is a hard-combination of

the individual CR observations. Since only the binary decisions based on the received

signals are forwarded by the CRs to the FC, this scheme requires a lower CR-to-FC

channel bandwidth than that required for the data fusion scheme. Examples of de-

cision fusion rules are the OR and AND rules [21]. In case of the OR rule, the FC

decides on the presence of the PU if any one of the CRs have decided on its presence

whereas in case of the AND rule, the PU decides on the presence of the PU only if

all the CRs have their decisions in favor of its presence.
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Chapter 3

New Asymptotics for Performance of

Energy Detector in Fading and

Diversity Reception

Missed-detection probability expressions for ED often involve infinite series and do not

provide quick insights into the effects of operating conditions. To overcome these limita-

tions, in this chapter 1 we develop novel asymptotic analyses by proposing an approximate

PDF of a random variable β, which, in general, can characterize fading channels in diverse

operating conditions. The coefficients of the proposed approximate PDF of β are obtained

by matching the coefficients of the approximate PDF’s series expansion (or coefficients

of the approximate PDF’s moment generating function (MGF)) with those of the exact

PDF (or MGF) of β. By using the proposed approximation, a unified closed-form asymp-

totic missed-detection probability is derived. Its usefulness is then demonstrated for fading

channels without and with antenna diversity, for cooperative detection, and in co-channel

interference. For each case, the sensing gain, which reveals the effect of the operating con-

ditions on the spectrum sensing performance, is determined explicitly. Furthermore, the

asymptotic Complementary Area Under the receiver operating characteristic Curve, an al-

ternative performance metric, is derived, and found to reveal the sensing gain. Numerical

results verify the accuracy of our derived asymptotic expressions over a wider SNR range

compared to the existing asymptotic solution, which is accurate only for high SNRs.
1Chapter 3 has been published in the IEEE Transactions on Communications as [56] and also in part in the

Proceedings of IEEE Global Communications Conference as [57].

31



3.1 Introduction and Motivation

The ED performance is fundamentally measured by the false alarm probability, Pf , and the

detection probability, Pd, or, equivalently, the missed-detection probability Pmd = 1− Pd.

However, in fading channels, the average Pmd (Pd) denoted by Pmd (P d) is the critical mea-

sure. The process of determining Pmd (P d) involves two steps. First, Pmd(γ) (Pd(γ)) for a

fixed channel realization is given in terms of the generalized Marcum-Q function (see (3.2)

in Section 3.2), which depends on the random (instantaneous) SNR γ. By definition, γ can

be expressed as γ = γβ, where γ is the average SNR (referred to as “SNR” henceforth),2

and β is a non-negative random variable, which in turn depends on the operating conditions

(including the fading channel, antenna diversity, co-operative diversity, interference, and

others). For example, in case of fading, β can represent the squared channel amplitude as

β = |h|2. Thus, β being random, is characterized by a PDF f(β). In the second step,

Pmd(γ) (Pd(γ)) is integrated over f(β) to obtain the average detection performance (see

details in Section 3.2).

This process has been extensively used for accurately characterizing the ED perfor-

mance in a wide variety of operating conditions [30], [32]–[34], [58], [59]. Although these

results are exact (without any approximations), they have some limitations. For example,

(i) The multiple-antenna based results in [30] and [33] are restricted to the Rayleigh

fading model only, due mainly to the intractability of Marcum-Q integrals, in general.

(ii) The results for Nakagami-m and Rician fading derived by utilizing contour-integral

representation of the generalized Marcum-Q function consist of complicated higher-

order derivatives of composite functions [34].

(iii) The unified expressions presented in [58] and [59] involve infinite series, which re-

quire truncation (to finite terms). However, tight bounds on the truncation error are

often analytically intractable, and hence, trial-and-error methods are needed to deter-

mine the truncation point for the desired level of precision.

(iv) None of the derived expressions provide quick insights into the impact of the operat-

ing conditions, but require numerical analysis to reveal such insights.
2For brevity, in the remainder of this chapter, the term “SNR" without “instantaneous” means the “average

SNR”.
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These limitations, however, can be mitigated by using asymptotic techniques. Before

discussing their advantages, we will briefly elaborate on the meaning of the term “asymp-

totic.” For example, 1/x is an asymptotic of 1/(x+1) because lim
x→∞

x
x+1 = 1. More specif-

ically, if x → 0+ (x tends to 0 from above), then the notation h(x) = g(x) + O(xr+1),

where g(x) =
∑r

j=0 ajx
j , implies that the difference |h(x)−g(x)| is smaller than C|xr+1|

for a constant C as x → 0+. Then, g(x) is called an asymptotic (approximation) of h(x)

with an error term O(xr+1) as x → 0+. Similarly, for x → ∞, a series of x−j forms an

asymptotic expansion. Thus, for an ED, if P exact
md is the exact missed-detection probability,

and P
asy
md is an approximation at high SNR (γ 
 1), assume

P
exact
md = P

asy
md +O

(
1

γM

)
,

where M is a non-negative integer. Then, P asy
md is called an asymptotic (approximation)

of P exact
md with error term O(1/γM ). Moreover, since the error term decays as 1/γM , for

sufficiently large γ, the accuracy of P asy
md is good enough for all practical engineering appli-

cations. Hence, to derive such P
asy
md, we first note that as the SNR becomes large (γ 
 1),

detection errors occur only if the channel fades deeply. Since a deep fading is equivalent to

β → 0+, a suitable polynomial representation of f(β) near β = 0 can be used to derive the

average asymptotic missed-detection probability P
asy
md.

Despite having such advantages, the existing asymptotic analysis of ED is limited only

to [3]. This work utilizes the simple, approximate analysis presented in the seminal work

by Wang and Giannakis [60] to derive the asymptotic Pmd, which is accurate for the high

SNR regime (γ 
 1). The results of [3] are important for determining the “sensing gain,”

which is the magnitude of the slope of the log-log plot of Pmd vs. γ at high SNR. More

importantly, the sensing gain provides quick insights into how fading impacts the ED, and

thus is a useful performance indicator.

However, the asymptotic analysis [3] is inherently limited to the high SNR regime (say,

γ ≥ 20 dB). In practice, the operating SNR can be well below 20 dB, in, for example, the

IEEE 802.16 local and metropolitan area networks [61]. Thus, the analysis in [3] is not

sufficient for characterizing the ED performance over a wider SNR range (optimistically,

0 ≤ γ dB < ∞). Moreover, a unified expression for Pmd, which would be applicable

to a multitude of wireless communication scenarios thus providing an effective platform
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for designing practical spectrum sensing systems, is needed. However, such a platform is

lacking. To address these requirements, we propose a new simple approximation for the

PDF of β as β → 0+ and derive the corresponding asymptotic Pmd. The attractive features

of the results derived by using our proposed analysis are the following:

1. Unified expressions for multipath fading channels without and with antenna diversity,

with multiple cooperative relays, with interferers, and in other operating conditions;

2. Explicit sensing gain expressions;

3. Closed-form expressions without infinite-series sums or higher order derivatives; and

4. High accuracy over wider SNR ranges.

These features are achieved by our proposed approximation f app(β) (3.6), whose pa-

rameters can be obtained from the operating conditions by matching f app(β) to the exact

f(β) or by matching the MGF of β obtained by using f app(β) to that obtained by using the

exact f(β) (see details in Section 3.3). Besides these benefits, performance metrics other

than Pmd can also be analyzed. For example, we derive a unified asymptotic expression

for the average CAUC, which serves as a single figure of merit for characterizing the ED

performance [37].

The rest of this chapter is organized as follows. The problem is stated in Section 3.2.

The new approximation for the exact PDF is proposed in Section 3.3. The unified asymp-

totic Pmd is derived in Section 3.4. Analyses for fading channels without diversity, with an-

tenna diversity, with cooperative diversity, and in interference are presented in Section 3.5,

Section 3.6, Section 3.7 and Section 3.8, respectively. The asymptotic expression for the

average CAUC is derived in Section 3.9. Concluding remarks are made in Section 3.10.

3.2 Problem Statement

For the unknown deterministic signal model, from Chapter 2, the false alarm probability

and the miss-detection probability are

Pf =
Γ(N,λ/2)

Γ(N)
, (3.1)

Pmd(γ) = 1−QN (
√

2γ,
√
λ), (3.2)
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respectively, where, the instantaneous SNR is expressed as γ = γβ, with β being the

random variable depending upon the operating conditions (γ being the average SNR). Re-

iterating, the false alarm probability (3.1) is independent of β while the missed-detection

probability (3.2) depends upon β (as γ = γβ) and needs to be averaged over f(β) for

evaluating the overall (average) performance, as shown next.

3.2.1 Performance of Energy Detector over Fading Channels

The average probability of missed-detection, Pmd, is the expectation of (3.2) over f(β)

which can be expressed as

Pmd = Eβ [Pmd(γ)] = 1−
∫ ∞

0
QN (

√
2γβ,

√
λ)f(β)dβ, (3.3)

where Eβ [·] denotes the expectation with respect to β. Thus, the main challenge in (3.3) is

averaging the generalized Marcum-Q function over f(β). Since closed-form solutions for

integrals involving the generalized Marcum-Q function are limited [62], it is important to

find an approximate form of f(β) that facilitates the evaluation of (3.3) without leading to

tedious analytical expressions involving complicated special functions and/or infinite series.

3.2.2 Existing Approximation for f(β)

As stated in Section 3.1, the idea is to approximate the exact f(β) by using its polynomial

representation near β = 0. The underlying concept is that of the local approximations via

polynomials where a function’s behavior may be captured by using polynomial representa-

tion of the function. This concept is supported by the fact that many practical functions of

interest locally behave like the polynomials at most of the points in their domain, that is, the

functions can be thought of as “locally polynomial” [63], [64]. Then, the problem would

be to find the coefficients of the polynomials.

To this end, the Taylor’s theorem is one of the most suited concepts for approximating

an analytic function g(x) about a point x = a as

g(x) =
∞∑
n=0

g(n)(a)

n!
(x− a)n

where g(n)(a) denotes the n-th derivative of g(x) evaluated at x = a. Following this con-
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cept of using local approximations via polynomials, the work [3] utilizes the approximate

f(β) proposed by Wang and Giannakis [60], to derive the asymptotic Pmd. Suppose the

exact PDF f(β) can be expanded as a Taylor’s series as β → 0+ (Maclaurin’s series) in the

form

f(β) =
∞∑
i=0

aiβ
t+i, (3.4)

where ai for i = 0, 1, 2, ... are coefficients in the expansion, and t ≥ 0 represents the order

of smoothness of f(β) at β = 0. The main idea of [60] is to approximate f(β) by the

monomial [60]

fwg(β) = aoβ
t +O(βt+1). (3.5)

Here, the superscript ‘wg’ indicates ‘Wang and Giannakis’. Note that the expansion (3.4)

holds for all practical fading models like Rayleigh, Nakagami-q, Nakagami-n and Nakagami-

m [60]. Also, if antenna diversity is employed, the PDF of the combined β depends upon

the number of antennas and the underlying fading model. The representation (3.4) has been

shown to hold for different combining schemes such as MRC, SC, EGC as well.

By utilizing fwg(β), the authors in [3] derive an asymptotic Pmd and show that for large

SNRs (γ 
 1), the sensing gain is equal to t+1. However, their Pmd is accurate only in the

high SNR regime (say, γ ≥ 20 dB). Intuitively, this result suggests that an approximation

for f(β) other than fwg(β) is needed that can yield a closed-form Pmd which is accurate

over a wider range of SNRs (say, 0 ≤ γ dB < ∞). Furthermore, the derived Pmd at high

SNR should also reveal the sensing gain. With these goals in mind, we propose a new

approximation for the exact f(β) in the following section.

3.3 New Approximation for f(β)

The existing approximation (3.5) utilizes a single term in (3.4) and is accurate only for high

SNRs. The reason is that fwg(β) is accurate for β → 0+ only. When β → ∞, a0βt grows

unbounded. So, fwg(β) is only a localized approximation for f(β). One way to achieve

a better accuracy over wider SNR ranges may be to utilize more number of terms in (3.4).

However, simply considering more number of terms in (3.4) may still lead to a diverging

behavior of the approximate f(β) at β → ∞ (as shown in Fig. 3.1 later) which may further

lead to the average (over 0 ≤ β < ∞) Pmd to exceed 1 for small SNRs (as explained in
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Section 3.3.2). Thus, in addition to improving the accuracy, it is also necessary to ensure

that the approximate f(β) does not diverge as β → ∞. Additionally, the approximate f(β)

should facilitate a closed-form evaluation of (3.3).

3.3.1 Proposed Approximation

To this end, since an exponential function of the form e−β would converge to zero as β →
∞, we consider a new representation of f(β) by combining (3.5) with a dual exponential

sum to propose an approximation f app(β) of the form

f app(β) = aβt(e−θ1β + e−θ2β), as β → 0+, (3.6)

where a > 0, t is a non-negative integer, θ1 ≥ 0, and θ2 ≥ 0 are the parameters that

can be chosen to match the operating conditions (fading, antenna diversity, cooperative

diversity, etc.). Interestingly, the Maclaurin’s series expansion of (3.6) satisfies (3.4) (details

in Section 3.3.2). Note that fwg(β) is a special case of our f app(β) when θ1 = θ2 = 0.

Also, f app(β) is equivalent to [65, eq. (3)] for the case θ1 = θ2 = θ. Thus, f app(β) is more

general than either fwg(β) or [65, eq. (3)]. Moreover, f app(β), just like fwg(β), is not a

proper PDF; that is, the area under f app(β) is not necessarily 1. Next, the parameters of

f app(β) are derived from two methods based on the availability of the exact PDF or MGF

of β.

3.3.2 Parameter determination using the exact PDF of β

In some cases of interest, when the exact f(β) is known analytically and satisfies the

Maclaurin’s series (3.4), the parameters of f app(β) can be readily obtained as stated in

Proposition 1.

Proposition 1. Given a0, a1 and a2 from (3.4), the parameters of fapp(β) can be expressed

as

a =
a0
2

(3.7)

(θ1, θ2) =

(
b1 +

√
2b2 − b21
2

,
b1 −

√
2b2 − b21
2

)
, (3.8)

with b1 = −2a1/a0 and b2 = 4a2/a0.
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Fig. 3.1. f app(β), fwg(β) and exact f(β) for 4-branch SC in i.i.d. Rayleigh fading.

Proof. By Maclaurin’s series expanding (3.6) and grouping the resulting terms in ascending

powers of β, we get

f app(β) = 2aβt − (θ1 + θ2)aβ
t+1 +

(θ21 + θ22)

2
aβt+2 +O(βt+3). (3.9)

Then, by matching the coefficients of the first three terms in (3.4) with the corresponding

coefficients in (3.9), the parameter a in (3.6) is immediately given by (3.7) while the other

two parameters, θ1 and θ2, satisfy the simultaneous equations

θ1 + θ2 = −2a1
a0

� b1 and θ21 + θ22 =
4a2
a0

� b2, (3.10)

which can be easily solved to yield (3.8).

To quickly gain insights into the benefits of Proposition 1, we compare f app(β) and

fwg(β) for SC in i.i.d. Rayleigh fading with L = 4 antennas (Fig. 3.1). Here, the exact

f(β) is given by (3.25), and by using Proposition 1, the parameters of f app(β) are derived

in Section 3.6.2. Fig. 3.1 reveals that fwg(β) widely diverges from the exact f(β) as β gets

large. Thus, fwg(β) works only for β → 0+, which implies the deep fade condition. That
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is, fwg(β) requires the operating SNR to be large (γ 
 1) in order to yield low detection

errors. Another interesting observation in Fig. 3.1 is that the 3-term based expansion of

(3.4), which has been plotted for comparison, clearly shows the diverging behavior similar

to fwg(β) as β → ∞. This observation thus indicates that simply increasing the number

of terms in (3.4) may still lead to a diverging behavior of the approximate f(β) as β →
∞. To this end, these results inherently suggest that when fwg(β) is used in (3.3) for

averaging the missed-detection probability, the resulting probability can even exceed 1 for

small SNRs (γ → 0+). This finding indicates the breakdown of the asymptotic approach

of [3] (demonstrated later in Section 3.4 through Section 3.9). In contrast, Fig. 3.1 shows

that our proposed f app(β) follows the exact f(β) more closely (without-diverging) over

0 ≤ β < ∞. Thus, we can expect the resulting P
asy
md expression to not break down even as

γ → 0+. These advantages of f app(β) have two causes:

(i) f app(β) matches the first three terms of the series expanded exact f(β) (3.4) while

fwg(β) utilizes only the first term of (3.4). Thus, f app(β) uses more information

from the exact f(β), and this feature leads to highly accurate asymptotic results (see

Section 3.4.1).

(ii) f app(β) does not grow unbounded as β → ∞ because of the factor (e−θ1β + e−θ2β),

a sum of two exponentials. This characteristic extends the valid SNR range of the

resulting P
asy
md, thus maintaining reasonable accuracy even as γ → 0+.

These advantages are numerically verified with some practical examples presented in Sec-

tions 3.5-3.9. Next, an alternative method to obtain the parameters of f app(β) based on the

MGF of β is presented.

3.3.3 Parameter determination using the exact MGF of β

To use Proposition 1, one needs the exact analytical f(β). However, as β depends on the

fading model, antenna diversity combining schemes and other factors, the exact f(β) may

be be intractable in some cases. On the other hand, for say, multiple antenna systems, the

exact MGF of β may be readily obtainable (for example, when β is given by a sum of in-

dependent random variables, its MGF is the product of MGFs of those random variables).

Thus, in such cases, the MGF is easier to obtain than the corresponding PDF. So, when-

ever the exact MGF of β is directly available, the parameters of f app(β) can be derived as

39



follows.

Proposition 2. If the exact MGF of β, Mβ(s), s > 0 is expandable in the series-form

Mβ(s) =
X0

sα
+

X1

sα+1
+

X2

sα+2
+O

(
1

sα+3

)
, (3.11)

then as s → ∞, the parameters t and a of fapp(β) are given by

t = α− 1, a =
X0

2Γ(α)
, (3.12)

with the parameters θ1 and θ2 satisfying

θ1 + θ2 = − 2X1

X0α
� b1,

θ21 + θ22 =
4X2

X0α(α+ 1)
� b2.

(3.13)

Then, substitution of b1 and b2 from (3.13) into (3.8) immediately yields θ1 and θ2.

Proof. According to the initial value theorem for (one-sided) Laplace transforms, if F (s) =∫∞
0 f(t)e−stdt is the (one-sided) Laplace transform of f(t), then [66]

lim
t→0

f(t) = lim
s→∞ sF (s).

Thus, as suggested by this theorem, the behavior of f(β) at β → 0+ depends on its MGF

at s → ∞ [60]. Thus, the idea is to match the exact MGF of β with the MGF obtained by

using f app(β) as s → ∞, provided the MGFs exist. The MGF corresponding to f app(β),

denoted by Mapp
β (s), can be obtained as

Mapp
β (s) = a

∫ ∞

0
e−sββt(e−θ1β + e−θ2β)dβ

= aΓ(t+ 1)

[
1

(s+ θ1)t+1
+

1

(s+ θ2)t+1

] (3.14)

where the definition of Gamma function Γ(·) is used. Expanding (3.14) in a series-form as
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s → ∞, and re-arranging the terms, we get

Mapp
β (s) =

2aΓ(t+ 1)

st+1
− a(t+ 1)Γ(t+ 1)(θ1 + θ2)

st+2

+
a(t+ 1)(t+ 2)Γ(t+ 1)(θ21 + θ22)

2st+3
+O

(
1

st+4

)
.

(3.15)

Thus, matching (3.11) and (3.15) yields the parameters (3.12) and the two simultaneous

equations in (3.13), which have the same form as (3.10) with the solution given by (3.8).

Having shown how the parameters of f app(β) are retrieved, we next derive the corre-

sponding asymptotic missed-detection probability, P asy
md.

3.4 Average Missed-Detection Probability

To derive P
asy
md, we need to substitute f app(β) into (3.3) and evaluate the resulting integral.

However, direct evaluation of this integral would yield an infinite series expression [34, eq.

(5)]. To eliminate this problem, we use the MGF Mapp
β (s) (3.14) along with the contour

integral representation of the generalized Marcum-Q function [67], [68] to derive P asy
md. Al-

though such an approach has been utilized by [34], the results are given in terms of higher-

order derivatives. In contrast, we derive a simpler closed-form P
asy
md expression which does

not contain infinite series sums and/or higher-order derivatives. Furthermore, the derived

P
asy
md unifies the analysis for fading channel models without diversity (Section 3.5), with

antenna diversity (Section 3.6), with cooperative diversity (Section 3.7), and in interference

(Section 3.8). Moreover, the excellent numerical match of our derived P
asy
md with the exact

results is reported in the corresponding sections. Next, we give one of our principal results

in Proposition 3 below.

Proposition 3. Based on the proposed approximation fapp(β), the average missed-detection

probability P
asy
md can be expressed as (3.16),

P
asy
md =

⎧⎨⎩ 1− aΓ(t+ 1)e−λ/2
∑2

i=1
1

(θi+γ)t+1

[
Ψ(i) + Φ(i)

]
for N > t+ 1

1− aΓ(t+ 1)e−λ/2
∑2

i=1
1

(θi+γ)t+1Ψ(i) for N ≤ t+ 1,
(3.16)
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with Ψ(i) and Φ(i) given by

Ψ(i) =
eληi/2

t!

t∑
k=0

[(
t

k

)
(−1)k

∏k
j=1(N − t+ j − 2)

ηN−t−1+k
i

×
t−k∑
ν=0

(λ/2)t−k−ν

(1− ηi)ν+1

(t− k)!

(t− k − ν)!

]
,

Φ(i) =
(−1)−(t+1)

(N − t− 2)!

N−t−2∑
k=0

[(
N − t− 2

k

)∏k
j=1(t+ j)

ηt+k+1
i

×
N−t−k−2∑

ν=0

(λ/2)N−t−k−2−ν(N − t− k − 2)!

(N − t− k − 2− ν)!

]
(3.17)

with ηi = γ/(θi + γ), i = 1, 2.

Proof. The proof is given in Appendix A.1.

At a sufficiently high SNR (γ 
 1), P asy
md (3.16) reduces to the form P

asy
md ≈ 1 −

g(N, t, λ)γ−(t+1), where g(N, t, λ) is a function independent of γ. Clearly, the sensing

gain, which is equal to the magnitude of the slope of the log-log plot of P
asy
md vs. γ at

high SNR, is given by magnitude of the exponent of γ occurring in P
asy
md, which is equal

to (t + 1). This observation is consistent with the sensing gain given by [3]. Hence, our

derived asymptotic explicitly reveals the sensing gain.

3.4.1 Accuracy of (3.16)

The accuracy of the derived P
asy
md (3.16) and P

wg
md (asymptotic Pmd of [3]) is depicted

in terms of the log-log plots of the absolute error (AE) vs. γ in Fig. 3.2 for a 5-branch

SC in i.i.d. Rayleigh fading channels. The exact PDF f(β) (3.25) and the corresponding

parameters of f app(β) are given in Section 3.6.2. The absolute errors for P asy
md and P

wg
md

are defined as the difference |P asy
md − P

exact
md | and |Pwg

md − P
exact
md |, respectively, where P

exact
md

is computed from [30, eq. (30)]. At high SNR (say, γ ≥ 14 dB), the rate of decrease of

the absolute error of P asy
md (slope = −6) is greater by an order of magnitude than that of

P
wg
md (slope = −5). As well, the absolute error of P asy

md is 10−5 or less for γ ≥ 12.5 dB

while P
wg
md attains the same accuracy only for γ ≥ 19 dB. Therefore, the SNR gain of P asy

md

in attaining an absolute error of 10−5 is at least 6.5 dB relative to P
wg
md. Furthermore, for

SNRs as low as 0 dB, |P asy
md − P

exact
md | is still very small (≤ 0.1), while |Pwg

md − P
exact
md | is
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Fig. 3.2. Absolute error vs. SNR for a 5-branch SC in i.i.d. Rayleigh fading: Proposition 3 and [3].

far more than 1 (the breakdown mentioned in Section 3.3.2). Thus, P asy
md is more accurate

than P
wg
md throughout the practical SNR range. This result can be attributed to our finding

that f app(β) can indeed approximate the exact PDF more accurately for any β > 0, unlike

fwg(β), which is accurate for mainly β → 0+ (as discussed previously in the context of

Fig. 3.1 in Section 3.3.2).

Now that the accuracy of the derived P
asy
md has been numerically verified, next we will

assess the ED performance for various cases without and with antenna diversity reception,

with cooperative detection, and in interference. We will first apply Proposition 1 or Propo-

sition 2 (whichever most readily applies) to determine the parameters of f app(β) and then

use Proposition 3 to compute P
asy
md. To evaluate the performance, we consider log-log plots

of Pmd vs. γ. The magnitude of the slopes of these plots at large SNR (say, γ ≥ 20 dB)

yields the sensing gain. As well, since low false alarm probability is needed (for example,

Pf ≤ 0.1 for IEEE 802.22 CR networks [23]), we fix Pf = 0.01. The detection threshold

λ is then determined by solving (3.1) for the given Pf and used for evaluating Pmd.
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Fig. 3.3. Pmd vs. SNR in Nakagami-m fading channel for N = 3: exact, existing [3] and Proposition 3.

3.5 Fading channels without diversity

3.5.1 Nakagami-m fading

For the Nakagami-m fading model, the exact f(β) can be expressed as

f(β) =
mm

Γ(m)
βm−1e−mβ , β > 0, (3.18)

By comparing (3.18) with (3.6), it is clear that f app(β) exactly represents (3.18) when

a = mm/[2Γ(m)], t = m − 1 and θ1 = θ2 = m. Nevertheless, we will extract these

parameters by using our Proposition 1 for verification.

Thus, performing the Maclaurin’s series expansion of (3.18), we get

f(β) =
mm

Γ(m)
βm−1 − mm+1

Γ(m)
βm +

mm+2

2Γ(m)
βm+1 +O(βm+2). (3.19)

Then, comparing (3.19) with (3.9) and use of Proposition 1 leads to t = m − 1, a =

mm/[2Γ(m)], b1 = 2m and b2 = 2m2. The substitution of b1 and b2 into (3.8) then gives
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θ1 = θ2 = m, as expected. This result validates our Proposition 1.

Now that the parameters of f app(β) have been extracted, the use of Proposition 3 gives

the desired expression for P asy
md. In Fig. 3.3, our derived P

asy
md (3.16) is compared against

the exact Pmd computed from [34, eq. (5)] and against the asymptotic Pmd of [3]. As

discussed in Section 3.3.2, the asymptotic Pmd of [3] breaks down below a certain SNR.

For instance, at γ ≤ 8 dB for m = 1, the asymptotic Pmd of [3] exceeds 1. In contrast,

our derived P
asy
md does not suffer from such a drawback. In fact, P asy

md is virtually identical

to the exact values computed from [34, eq. (5)] over the entire SNR range (0 ≤ γ dB ≤
20), whereas the asymptotic Pmd of [3] approaches the exact values only for γ ≥ 19 dB.

Also, the exact Pmd computed from [34, eq. (5)] contains an infinite series, which requires

series-truncation. Moreover, the number of terms in such series has to be experimentally

determined for a given precision requirement for each set of parameters and must be updated

whenever the parameters change. In contrast, our derived solution (3.16) does not require

such computations. Finally, the magnitude of the slopes of the curves corresponding to

m = 1 and m = 2 at high SNR (say, γ ≥ 19) are observed to be 1 and 2, respectively, thus

verifying that the sensing gain is equal to m(= t+ 1).

3.5.2 Nakagami-q (Hoyt) fading

This fading is observed on satellite links suffering from strong ionospheric scintillation and

spans from one-sided Gaussian (q = 0) to Rayleigh fading (q = 1) [24]. For the Nakagami-

q fading channel, the exact f(β) is of the form

f(β) =
1 + q2

2q
e
− (1+q)2

4q2
β
I0

(
1− q4

4q2
β

)
, (3.20)

where I0(·) is the zero-th order modified Bessel function of the first kind. By Maclaurin’s

series expanding (3.20), grouping the terms in ascending powers of β, and comparing the

result with (3.4), we find that t = 0 and

a0 =
1 + q2

2q
, a1 = −(1 + q2)

2q

(
q4 + 2q2 + 1

4q2

)
,

a2 =
(1 + q2)

2q

(
3q8 + 8q6 + 10q4 + 8q2 + 3

64q4

)
.

(3.21)

Then, Proposition 1 readily yields a, θ1 and θ2, and Proposition 3 furnishes P asy
md.
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Fig. 3.4. Pmd vs. SNR in Nakagami-q channel with q = 0.7 for different N .

The comparative results for Nakagami-q fading are depicted in Fig. 3.4. Clearly, our

derived P
asy
md is virtually exact (it has 7-digit precision) over the entire SNR range (0 ≤

γ dB ≤ 20) while the asymptotic Pmd of [3] is accurate for γ ≥ 19 dB only. Also, the

magnitude of the slopes of the graphs at high SNR (γ ≥ 19 dB) are observed to be 1 (which

equals the sensing gain t+ 1).

3.6 Fading Channels with Antenna Diversity

Until now, only the single-antenna reception has been treated. Next, L(≥ 1) antennas with

mutually independent fading are considered. The parameters of f app(β) for MRC, EGC,

and SC are derived. The MRC and SC are coherent combining schemes which require CSI

at the ED. Although the CSI availability requirement contradicts the premise of ED (requir-

ing no a priori information), these combining schemes are important for establishing the

ED performance limits, a benchmark relative to which the performance of the alternative

diversity combiners can be measured. Thus, the ED performance with antenna diversity

combining assuming perfect CSI availability has been investigated extensively in the litera-
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ture [30], [33], [34], [58], [59]. Moreover, as highlighted by [34] (and the reference therein),

for CR networks, the CSI may be available at the CRs over control/broadcast channels (for

example, by using low-rate pilot signal exchanges as shown in [69]). Nevertheless, since

the purpose of this section is to demonstrate the applicability of our proposed analysis to

antenna diversity combining, we proceed with the CSI availability notion for MRC and SC.

On the other hand, EGC operates without any CSI.

3.6.1 MRC with L independent antennas

The optimal combining scheme in the absence of interference is the MRC which thus es-

tablishes an upper-bound performance for antenna diversity combining [24]. The MRC

receiver combines all the diversity branches after weighting each branch with the complex

conjugate of the corresponding fading channel coefficient to yield ymrc(t) =
∑L

l=1 h
∗
l yl(t),

where yl(t) is the received signal at the l-th branch, and h∗l is the complex conjugate

of the l-th fading channel coefficient. The overall channel gain can then be expressed as

β =
∑L

l=1 βl, where β1, β2, ..., βL are statistically independent fading channel gains. Re-

gardless of the fading channel model under consideration, if the MGF of each βl as s → ∞
can be expressed in the form 3

Mβl
(s) =

cl
sμl

+
dl

sμl+1
+

el
sμl+2

+O

(
1

sμl+3

)
, (3.22)

then, the MGF of β as s → ∞ can be expressed as

Mβ(s) =

L∏
l=1

[
cl
sμl

+
dl

sμl+1
+

el
sμl+2

+O

(
1

sμl+3

)]
,

which after some algebraic manipulations, can be expressed as (3.23)

Mβ(s) =

∏L
l=1 cl

s
∑

l μl
+

∑L
j=1 dl

∏L
l=1,l �=j cl

s
∑L

l=1 μl+1

+

∑L
j=1 ej

∏L
l=1,l �=j cl +

∑L−1
j=1 dj

(∑L
k=j+1 dk

∏L
l=1,l �=k,l �=j cl

)
s
∑L

l=1 μl+2

+O

(
1

s
∑L

l=1 μl+3

)
.

(3.23)

3For the cases of practical interest (for example, multi-branch reception in Rayleigh fading, Nakagami-m
fading), the MGF of each branch can be written in the form (3.22). This is demonstrated with an example,
shortly.
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Fig. 3.5. Pmd vs. SNR for MRC in i.n.i.d. Rayleigh fading channels for different {N,L}.

Then, comparing (3.23) with (3.11) yields

α =

L∑
l=1

μl; X0 =

L∏
l=1

cl; X1 =

L∑
j=1

dl

L∏
l=1,l �=j

cl,

X2 =

L∑
j=1

ej

L∏
l=1,l �=j

cl +

L−1∑
j=1

dj

( L∑
k=j+1

dk

L∏
l=1,l �=k,l �=j

cl

)
.

(3.24)

Thus, Proposition 2 readily gives the desired parameters t, a, θ1 and θ2, and Proposition 3

yields the corresponding P
asy
md.

To demonstrate the usefulness of (3.23), let us consider an example when the channel

gains of the branches are independent and non-identically distributed (i.n.i.d.) Rayleigh

random variables such that fβl
(x) = 1/l · e−x/l. Then, the MGF for each βl is Mβl

(s) =

1/(1 + ls). Performing the series expansion of Mβl
(s) as s → ∞ and comparing the

result with (3.22), we get μl = 1, cl = 1/l, dl = 1/l2 and el = 1/l3. Substituting these

coefficients in (3.24) immediately yields α, X0, X1, and X2. Then, the use of Proposition 2

followed by Proposition 3 gives P asy
md.

The high accuracy of our derived P
asy
md (3.16) over 0 ≤ γ ≤ 20 dB is visible in Fig. 3.5
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Fig. 3.6. Pmd vs. SNR for SC in i.i.d. Rayleigh fading.

while the asymptotic Pmd of [3] is accurate only for say, γ > 14 dB. Also, the magnitude

of the slopes of the graphs observed at γ ≥ 14 dB are 2 and 5, respectively, for L = 2

and L = 5. These results are equal to the corresponding sensing gains (thus verifying

t+ 1 = L).

3.6.2 SC in Rayleigh fading

For an L-branch SC in i.i.d. Rayleigh fading, the PDF of β is given by

f(β) = Le−β(1− e−β)L−1, β ≥ 0. (3.25)

The Maclaurin’s series expansion of (3.25) followed by some algebraic manipulations and

comparison of the resulting expression with (3.4) yields t = L − 1, ai = D(L−1+i)
(L−1+i)! for

i = 0, 1, 2, and D(·) is defined as

D(n) = L

L−1∑
k=0

(
L− 1

k

)
(−1)k+n(k + 1)n. (3.26)
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Then, the use of Proposition 1 provides a, θ1 and θ2, and Proposition 3 subsequently yields

P
asy
md. The graphs in Fig. 3.6 yet again depict the remarkable accuracy of our P asy

md (3.16)

compared against the asymptotic Pmd of [3] and the exact Pmd obtained from [30, eq.

(30)]. The observed sensing gain from all the graphs at high SNR (γ ≥ 15 dB) is clearly

equal to L (consistent with t+ 1 = L).

3.6.3 EGC and SC in Nakagami-m fading

For a 2-branch EGC in Nakagami-m fading, the exact f(β) can be obtained from [34, eq.

(32)] to be

f(β) =
22−2m√

πΓ(2m)m2m

Γ2(m)Γ(2m+ 1
2)

β2m−1e−2mβ
1F1

(
2m; 2m+

1

2
;mβ

)
, (3.27)

where 1F1(·; ·; ·) is the confluent hypergeometric function [70]. Maclaurin’s series ex-

pansion of (3.27) followed by comparison with (3.4) yields the parameters t = 2m − 1,

a0 = [22−2m√
πΓ(2m)m2m]/[Γ2(m)Γ(2m + 1/2)], a1 = −[2m(2m + 1)a0]/[4m + 1],

a2 = [2m2(4m2+6m+3)a0]/[(4m+1)(4m+3)]. Then, use of Proposition 1 and Propo-

sition 3 subsequently yields the desired P
asy
md. Note that we consider the 2-branch EGC case

here because the PDFs of SNR for the L(> 2)-branch EGC in Nakagami-m fading do not

have a closed-form and rather contain one or more infinite series (see [34, eq. (40)], [34, eq.

(45)]) for which the number of terms needed for obtaining a desired precision (accuracy) is

unknown. Thus, the parameters of f app(β) for such cases will be in terms of infinite series,

and the number of terms needed for precise truncation of the infinite series is unknown.

Next, we consider 3-branch SC in Nakagami-m fading. Using [34, eq. (50)] with

L = 3, we can write the exact PDF of β to be

f(β) =
3mm

Γ3(m)
βm−1e−mβ [G(m,mβ)]2, (3.28)

where G(a, z) = ∫ z
0 xa−1e−xdx is the lower incomplete Gamma function [26]. Maclaurin’s

series expansion of f(β) gives t = 3m−1, a0 = [3m3m−2]/[Γ3(m)], a1 = −[3m3m−1(2m+

1)]/[(m+1)Γ3(m)] and a2 = [3m3m(9m3+24m2+15m+2)]/[2Γ3(m)(m+1)2(m+2)].

Then, the use of Proposition 1 followed by Proposition 3 subsequently gives P
asy
md. It is

worth noting that SC cases with L ≥ 4 can be treated similarly because the exact f(β)

(obtained using [34, eq. (50)]) can still be Maclaurin’s series expanded in the form (3.9),
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Fig. 3.7. Pmd vs. SNR for 2-branch EGC (N = 5) and 3-branch SC (N = 2) in Nakagami-2 fading.

however, at the expense of additional algebraic manipulations. Nevertheless, those cases

are not treated any further for brevity.

The comparative results for the 2-branch EGC and 3-branch SC in Nakagami-2 fading

are depicted in Fig. 3.7 where the benefit of our P asy
md (3.16) over the asymptotic Pmd of

[3] is clear. The exact Pmd for EGC and SC are obtained by using [34, eq. (38)] and [34,

eq. (59)], respectively, which are infinite series expressions involving the hypergeometric

functions and thus the sensing gains from such expressions are not explicit. Unlike the

use of these equations, application of Proposition 1 clearly suggests a sensing gain of 2m

(= 4) for EGC and 3m (= 6) for SC, respectively (given by slopes of the graphs at, say,

γ ≥ 19 dB).

3.7 Cooperative Detection with Multiple Relays

In the previous section, the performance of an ED equipped with co-located multiple an-

tennas has been characterized for several antenna diversity combining schemes. Although

the benefits of co-located multiple antennas are widely accepted, deploying them may be
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Fig. 3.8. Pmd vs. SNR for multiple relays based detection (N = 2).

impractical in situations where size, cost, or hardware pose limitations. Examples include

low-cost handsets (where size is a limitation) and low-power, small-size nodes in a wireless

sensor network [71]. In these scenarios, the cooperative diversity by using multiple CRs for

sensing the presence/absence of the PU is more beneficial. We thus consider a cooperative

data fusion based spectrum sensing network where a number (n ≥ 1) of relays amplify-

and-forward their received signals to the FC, which then makes the final decision on the

presence/absence of the PU based on these n observations. Furthermore, the FC may have

access to CSI of the channels from the PU to the relays and from relays to the FC. This may

be possible via channel estimation at the relays through the use of low-rate pilot signals

[69] and control channel signaling [72].

The total instantaneous SNR γ of such a network can be upper-bounded by γup as

γ ≤ γup =
∑n

i=1 γ
min
i , where γmin

i = min{γpri , γrid}; γpri and γrid are the instantaneous

SNRs of the links from the transmitter to the i-th relay ri and from ri to the FC, respectively

[36].4 Assume the channels from each relay to the FC are statistically independent Rayleigh

4Since use of the exact MGF of γ to obtain a closed-form Pmd is analytically intractable [36], we use γup

instead, which can lead to a closed-form upper bound for Pmd.
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fading. The MGF of γup, Mγup(s), is given by [36, eq. (10)]

Mγup(s) =
n∏

i=1

γpri + γrid
γpriγrid

· 1(
s+

γpri
+γrid

γpri
γrid

) , (3.29)

where γpri and γrid are the average SNRs of the respective links. In general, the series

expansion of the MGF (3.29) at s → ∞ would result in MGF of the form (3.23), which

was derived for the MRC with L independent antennas. Without loss of generality and for

the sake of brevity, we omit similar details, and rather provide an example where the link

SNRs are identical, i.e., γpri = γrid = γ. This set-up allows (3.29) to be expressed in the

form

Mγup(s) =
(2/γ)n

sn[1 + 2/(γs)]n
.

We define γup = γβup. Then, by using the transformation of the random variables, the

MGF of βup can be obtained from that of γup as Mβup(s) = Mγup(s/γ). Performing a

series expansion of the resulting expression for Mβup(s) at s → ∞ gives

Mβup(s) =
2n

sn
− n2n+1

sn+1
+

n(n+ 1)2n+1

sn+2
+O

(
1

sn+3

)
.

Then, applying Proposition 2, we get α = n, X0 = 2n, X1 = −n2n+1 and X2 = n(n +

1)2n+1. These findings readily yield the parameters t, a, θ1 and θ2. Thus, Proposition 3 can

be applied to obtain P
asy
md. The results comparing the exact Pmd (based on γup) obtained

from [36, eq. (11)], the asymptotic Pmd of [3], and our derived P
asy
md (3.16) are depicted in

Fig. 3.8. Clearly, these results indicate the benefit of our derived P
asy
md over the asymptotic

Pmd of [3]. Also, the magnitude of the slopes of the graphs at high SNR (≥ 19 dB) are

found to be same as the number of cooperating relays n, which is equal to the sensing gain

(t+ 1 = n).

3.8 Detection in Interference

In the previous sections, as in existing works on ED performance analysis [3], [30], [32]–

[34], [36], [58], [59], the presence of interfering transmissions has been disregarded. In

emerging broadband technologies (such as LTE-Advanced), small cells (pico- and femto-

cells) are commonly deployed by overlaying them over the traditional macrocells of cellular
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Fig. 3.9. Pmd vs. γ for N = 2 in presence of NI = 8 interferers with powers
{P1, P2, P3, P4, P5, P6, P7, P8} = {−5,−3,−1, 1, 3, 5, 7, 9} dB, N0 = 0 dB.

networks, thus extending the wireless coverage and capacity [10]. This set-up results in a

heterogeneous network consisting of a large number of wireless nodes such that the recep-

tion (at the destination) of undesired transmissions (that have leaked in space over relatively

large distances) occurs inevitably [73]. Thus, all the heterogeneous nodes sharing the same

spectrum suffer from interference. In such situations, an ED equipped node will receive

interfering transmissions, which will deteriorate its sensing performance [74].

Thus, in the presence of interference, the received signal (at the ED) is composed of

the faded version of the PU, numerous interfering signals from other users, and AWGN. In

this situation, rather than SNR, the signal-to-interference-plus-noise ratio (SINR) has to be

taken into account, which is defined (with abuse of the notation γ) as

γ =
h0P0∑NI

i=1 hiPi +N0

, (3.30)

where N0 is noise variance, h0 and P0 are the desired transmitter-to-receiver channel gain

and the average power of the desired signal, respectively, while hi and Pi, ∀i ∈ {1, 2, ..., NI},

are the channel gain and average power of the i-th interfering link, respectively, with NI
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being the total number of interferers. We assume all the channels undergo Rayleigh fading.

Furthermore, the detector is equipped with L ≥ 1 antennas, whose signals are combined by

using MRC. Hence, SINR can still be expressed as γ = γβ, where γ = P0/(Itotal +N0) is

the average SINR with Itotal =
∑NI

i=1 Pi and β = h0(Itotal +N0)/[
∑NI

i=1 Pihi +N0]. This

set-up leads to the following PDF of β [75]

f(β) =
βL−1

(L− 1)!

NI∑
i=1

Aie
CiBL

i

(1 + Biβ)L+1
Γ
[
L+ 1, Ci

(
1 + Biβ

)]
, (3.31)

where Ai =
∏NI

k=1,k �=i Pi/(Pi−Pk), Bi = Pi/[Itotal+N0], and Ci = N0/Pi. With the abuse

of notations, we use β and γ here for presentation simplicity and for notational consistency.

Then, the Maclaurin’s series expansion of (3.31) yields t = L− 1,

a0 =

NI∑
i=1

AiBL
i e

CiΓ(L+ 1, Ci),

a1 = −
NI∑
i=1

AiBL+1
i [CL+1

i + eCi(L+ 1)Γ(L+ 1, Ci)],

a2 =

NI∑
i=1

1

2
AiBL+2

i

[
eCi(L2 + 3L+ 2)Γ(L+ 1, Ci)

+ CL+1
i

{
2 + 2L− eCiΓ(L+ 1)1F̃1(L+ 1;L;−Ci)

}]
,

(3.32)

where 1F̃1(·; ·; ·) is the regularized confluent hypergeometric function of the confluent hy-

pergeometric function 1F1(·; ·; ·) [76]. Thus, Proposition 1, and subsequently, Proposition 3

can be used to obtain the desired parameters and P
asy
md, respectively.

A numerical example for this case is depicted in Fig. 3.9, which indicates significantly

better accuracy of our derived P
asy
md over 0 ≤ γ dB ≤ 30, in contrast to the asymptotic Pmd

of [3], which is accurate only for say, γ ≥ 18 dB. Furthermore, the sensing gains are equal

to the number of antennas L (the magnitude of the slopes of the graphs at γ ≥ 20 dB are

equal to 1 and 2 for L = 1 and L = 2, respectively).

3.9 Average CAUC

Thus far, we have considered the problem of averaging the generalized Marcum-Q function

over f app(β) (Proposition 3). However, we emphasize that the application of f app(β) goes
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Fig. 3.10. A′ vs. SNR for SC in i.i.d. Rayleigh fading with N = 2.

beyond Proposition 3. In general, its wider applications could include analyses of the out-

age probability, bit error rates, average capacity, and symbol error rates, which are critical

performance metrics of practical digital wireless systems. However, since our scope is lim-

ited to the ED, we concentrate on the one more application for ED, the analysis of CAUC

performance.

Although the ROC curves graphically represent the ED performance, a single figure

of merit for concisely representing the ED’s overall sensing capability is desirable. For

this purpose, the area under the ROC curve (AUC), which varies between 1/2 and 1, was

recently proposed [37]. If the AUC is 1/2, then the decision is as reliable as that of a

coin toss, meaning Pmd = 0.5. Thus, a larger AUC implies a better detector. However,

neither the ROC curves nor the AUC graphs explicitly reveal the order of improvement in

sensing performance with increasing SNR. This shortcoming led to the introduction of yet

another single figure of merit, CAUC, which reveals the order of improvement in sensing

performance with increasing SNR, explicitly. The instantaneous CAUC for ED is given by

[38]
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A′(γ) =
N−1∑
k=0

1

2kk!
γke−

γ
2 −

N−1∑
k=1−u

Γ(N + k)

2N+kΓ(N)
e−γ

1F̃1

(
N + k; k + 1;

γ

2

)
. (3.33)

Intuitively, a lower CAUC implies a better sensing capability.

We are interested in evaluating the average asymptotic CAUC, denoted by A′
asy, which

can be obtained by integrating A′(γ)|γ=γβ over f app(β) as

A′asy =

∫ ∞

0
A′(γβ)f app(β)dβ, (3.34)

which can be derived to be

A′
asy = a

N−1∑
k=0

γk

2kk!
Γ(t+ k + 1)

2∑
i=1

1

(θi + γ/2)t+k+1

− a
N−1∑

k=1−N

Γ(N + k)Γ(t+ 1)

2N+kΓ(N)

·
[ 2∑
i=1

1

(θi + γ)t+1 2
F̃1

(
t+ 1, N + k; k + 1;

γ

2(θi + γ)

)]
(3.35)

(see Appendix A.3 for derivation details), where 2F̃1(·, ·; ·; ·) is the regularized confluent hy-

pergeometric function of the confluent hypergeometric function 2F1(·, ·; ·; ·) [77]. At large

SNRs (γ 
 1), (3.35) reduces to the form A′asy ≈ gauc(N, t)γ−(t+1), where gauc(N, t)

is a term independent of γ. Thus, magnitude of the exponent of γ occurring in A′asy at

large SNRs is equal to (t + 1), which in fact is the sensing gain obtained from our derived

asymptotic missed-detection probability P
asy
md (3.16) at high SNR. The same exponent is

equivalently defined as the “detection diversity gain order” in [38]. Hence, the sensing gain

is also given by the magnitude of the slope of the log-log plot of A′asy vs. γ at high SNR.

A numerical example for the average CAUC (denoted by A′) for SC in i.i.d. Rayleigh

fading (for which the parameters of f app(β) were derived in Section 3.6.2) is shown in

Fig. 3.10 where our derived asymptotic CAUC A′asy (3.35) is compared against the ap-

proximate and exact CAUCs computed by using the approximation fwg(β) (3.5) and the

exact f(β) (3.25), respectively. Interestingly, our A′asy is virtually identical to the exact

values over the entire SNR range (0 ≤ γ dB ≤ 20), while A′ computed by using fwg(β)

is accurate for only γ ≥ 19 dB. Furthermore, the sensing gains obtained from the graphs

at high SNR (γ ≥ 19 dB) are 2 and 4 for L = 2 and L = 4, respectively (thus verifying
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t + 1 = L). Thus, the proposed f app(β) serves as a unified approximation for the exact

PDF of β, which can also be applied for deriving the average performance metrics from the

instantaneous ones involving functions other than the generalized Marcum-Q function.

3.10 Conclusion

In this chapter, a new approximation f app(β) with parameters matching the operating con-

ditions (the fading channel, antenna diversity, cooperative diversity, and others) is proposed.

These parameters are obtained using the exact PDF or MGF of β. By utilizing the MGF

corresponding to f app(β) along with the contour integral representation of the generalized

Marcum-Q function, the unified asymptotic missed-detection probability P
asy
md of the ED

is derived in closed-form. The derived P
asy
md is then specialized to single-antenna systems,

antenna diversity, multiple-relay-based cooperative detection, and to interference environ-

ments. Our P asy
md is found to be highly accurate (achieving upto 7-digit precision for some

cases), and valid over a wider SNR range than that derived by using the approximation in

[3]. Thus, compared with [3], although our approximation requires only a simple addi-

tional step for extracting more information, this step improves both the accuracy and valid

SNR range of the asymptotic analysis. Moreover, the derived P
asy
md also explicitly reveals

the sensing gain. To show another application of our proposed f app(β), we also derive the

asymptotic CAUC, the result being highly accurate, and additionally revealing the sensing

gain. Thus, we have developed a unified comprehensive analytical framework to charac-

terize the ED performance in different practical communication scenarios. This framework

may subsequently help in designing robust detectors in state-of-the-art and future wireless

communication networks.

In this work, we consider f app(β) for analyzing ED performance only. However, the

application of our proposed f app(β) to analyze other crucial metrics , may be of interest to

wireless communication researchers and engineers. For example, metrics such as the sym-

bol error rate, outage probability, and others could be considered for characterizing wire-

less systems deploying space-time coding and modulations, MIMO, antenna/relay selection

schemes, and numerous other techniques [78]–[88]. Thus, this work opens up interesting

and diverse future research opportunities.
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Chapter 4

Performance of p-norm Detector in

AWGN, Fading and Diversity

Reception

Recent results have indicated that the ED does not necessarily achieve the best sensing per-

formance, especially in terms of maximizing the detection probability or minimizing the

probability of decision making at all SNRs. This has led to the evolution of the p-norm

detector, a more generalized version of the ED, where p = 2 represents the ED case. How-

ever, the existing p-norm detector performance analyses impose restrictions on either the

number of samples and/or the operating SNR, mainly for analytical tractability. Moreover,

the results are limited to Rayleigh fading channels only. In this chapter 1, we address these

issues by proposing several accurate analytical solutions to derive the performance metrics.

Then, the p-norm detection performance is characterized in two of the most generalized

fading channel models, the κ-μ and the α-μ. Furthermore, two new non-coherent combin-

ing schemes; p-law combining (pLC) and p-law selection (pLS) are proposed and found to

perform better (as good) than the coherent SC scheme at relatively high-SNR (low-SNR).

Numerical results are presented to reveal important insights. Interestingly, they also reveal

that the ED loses its optimality in fading (and diversity) channels, that is, p = 2 is not the

best performing detector in these conditions.
1Chapter 4 has been published in the IEEE Transactions on Vehicular Technology as [89].
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4.1 Introduction and Motivation

For the p-norm detector, recall that the decision variable is of the form

Tp =
1

N

N∑
i=1

|yi|p. (4.1)

Although the ED is one of the most popular detectors for spectrum sensing due to its blind

characteristics and low implementation complexity, it is not necessarily the better perform-

ing detector, when it comes to comparison with the p-norm detector. The p-norm detector

has several advantages compared to ED. First, choosing p �= 2 may yield a performance

gain and hence the best p value depends upon the probability of correct detection, the prob-

ability of false alarm, the SNR, and the received signal sample size [39]. Second, adaptive

optimization of p yields remarkable performance gain over the ED with the resulting per-

formance being closer (than ED) to the locally optimal detector2 at very low SNRs [40].

Moreover, the optimal p that minimizes the total error rate is not equal to 2 in general, and

other p values may provide more reliable (less erroneous) sensing performance [90], [91].

However, the existing p-norm detector performance analyses are limited by some ad

hoc assumptions. For example, reference [39] assumes Tp as Gamma distributed, an ap-

proximation that is more accurate for lower p, higher N and relatively low SNR. For CR

networks operating at low SNRs, reference [40] assumes a large N (N 
 1) such that

the CLT holds, and thus Tp is approximately Gaussian. However, in practice, the require-

ment of a low sensing time conflicts with the large sample assumption. The assumption

of a single received signal sample (N = 1) per CR and per antenna used in [90] and [91]

severely limits the reliability of detection. Overall, what is lacking is a more exact and

general performance analysis of the p-norm detector.

Moreover, the existing analyses are limited to AWGN (non-fading) [39] and Rayleigh-

fading [40], [90], [91]. However, spatially correlated non-homogeneous scattering occurs

in real propagation environments [92], which are better modeled by the κ-μ and the α-μ

distributions. The κ-μ distribution is a small-scale fading model where κ is associated with

the LOS conditions and μ is associated with the number of multipath clusters [92]. The κ-μ

model includes the Rayleigh, Rician and Nakagami-m fading models as special cases. On
2A locally optimal detector is asymptotically optimal at low SNR.
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the other hand, the α-μ fading model relates α and μ to the non-linearity and to the number

of multipath components, respectively [93]. Likewise, the α-μ model includes Weibull,

Gamma, Nakagami-m, Rayleigh, exponential and one-sided Gaussian models as special

cases. Moreover, field trials have confirmed that the κ-μ and the α-μ distributions outper-

form the classical fading models in fitting the experimental data due to the comprehensive

range (versatility) of these models’ parameter values [92], [93]. Thus, evaluation of the

p-norm detection performance in these generalized fading models is useful

(i) to quantify the performance loss (relative to the non-fading case) incurred in realistic

fading channels and, potentially, to help in designing detectors robust to such impacts,

and

(ii) to determine the required SNR and related parameter values necessary to achieve

a prescribed performance in non-homogeneous and non-linear propagation environ-

ments.

In addition, as wireless fading fundamentally limits performance, antenna diversity com-

bining techniques are used to mitigate its impact [24]. Thus, achievable performance gains

by integrating these techniques with the p-norm detector must be quantified. Hence, the

p-norm detection performance analysis in generalized fading channels and with diversity

reception is of interest.

Such analysis is challenging because the distribution of Tp in (4.1) appears intractable

(in general). This distribution is necessary to obtain the detection probability, Pd, and the

false alarm probability, Pf . Since the exact PDF-based analysis appears intractable, we

consider utilizing the MGF of Tp. Fortunately, the MGF of Tp can be obtained as a prod-

uct of MGFs of its summands (for statistically independent summands) and thus is more

amenable to a tractable analysis. Furthermore, we show that this approach facilitates analy-

sis in fading and diversity reception. To the best of our knowledge, no such comprehensive

p-norm detection performance analysis is currently available. This chapter addresses the

aforementioned issues in the following ways:

• First, for non-fading channels (i.e. channels with AWGN only), three solutions for Pd

and Pf are developed: (i) for even-integer values of p, a closed-form MGF of the deci-

sion variable Tp is derived. Then, by using the Talbot’s method for Laplace transform

inversion [94], which is highly accurate and easy to program [95], a computationally
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efficient solution is developed; (ii) for any arbitrary p, series-based MGF of Tp is

derived and utilized to obtain accurate infinite series expressions with convergence

acceleration based on the ε-algorithm [96]; (iii) a generalized Laguerre polynomial

series [97] for the distribution of Tp is used to derive new approximate expressions.

This approximation is more versatile than the Gamma approximation [39] and more

accurate than the CLT approximation (for a few samples).3

• Second, to characterize the p-norm detector performance across a wide range of re-

alistic multipath fading environments, the series MGF-based analysis is extended to

obtain accurate series-form expressions for the average probability of detection over

κ-μ and α-μ fading.

• Third, to assess the performance with antenna diversity reception (in fading), two

non-coherent combining schemes, pLC and pLS, are proposed. These combiners

are compared against the classical MRC and SC by deriving their performance in

Nakagami-m fading channels. Interestingly, both pLC and pLS perform similarly to

the traditional SC at low SNR but outperform it at relatively high SNR, with pLC per-

forming closer to the optimal MRC. Furthermore, since pLC and pLS do not require

any CSI, they are more useful than classical MRC and SC schemes for the p-norm

detector (which functions without any CSI).

The organization of this chapter is as follows. The system model is described in Section

4.2. The detection and false alarm probabilities in the AWGN channel are derived in Section

4.3. The series MGF-based analysis is utilized to derive the average detection probabilities

over κ-μ and α-μ fading and with antenna diversity reception over Nakagami-m fading in

Section 4.4. Numerical results are discussed in Section 4.5. Concluding remarks are made

in Section 4.6.
3The CLT approximation is a reference benchmark. It is considered for p-norm detection in [40] and in

general, for signal detection, in [20].
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4.2 System Model

After baseband down conversion and a sampling process, the i-th signal sample of y(t)

(2.6), ∀i ∈ {1, 2, ..., N} can be expressed in the digital form as

yi =

⎧⎨⎩ wi : H0,

hiSi + wi : H1,

where notations hi, Si and wi indicate i-th sample of the complex fading channel gain,

PU signal and noise, respectively. The signal and the noise samples are i.i.d. with Si ∼
CN (0, σ2

S)
4 and wi ∼ CN (0, σ2

w). The channel samples are i.i.d as well.5 The signal,

noise and the channel gain are statistically independent of each other.

Now we resort to the p-norm detector, whose decision variable given in (2.8), after

normalization with respect to the noise variance, may be written as

Tp =
1

N

N∑
i=1

Y p
i

H1

�
H0

λ, (4.2)

where we define Yi � |yi|/σw. Under the system model considered, the distribution of the

i-th received signal sample under H0 and H1 follows complex Gaussian distribution with

yi|H0 ∼ CN (0, σ2
w) and yi|H1 ∼ CN (0, σ2

w(1 + γi)), respectively, with γi � |hi|2σ2
S/σ

2
w

being the instantaneous received SNR of the i-th sample.

Note that Pd and Pf can be alternatively expressed as

Pd = 1− FTp|H1
(λ),

Pf = 1− FTp|H0
(λ).

(4.3)

Clearly, Pd and Pf are the complementary CDFs (CCDFs) of Tp under hypothesis H ∈
4Gaussian signal assumption is valid, for example, in an OFDM signal having a large number of sub-

carriers [98], [99]; in frequency-shift keying (FSK) signals that can be reasonably approximated as Gaussian
process due to the complex time-structure; in radio-spectroscopy where the radiation process can be approxi-
mated as a Gaussian process due to collision-broadening or other atomic effects; or in radio-astronomy where
the signals generated from radio-stars or gas clouds can be modeled as Gaussian which has varying intensities
over the radio spectrum[100].

5This assumption is valid for time-selective fading channels, which are typical in some practical situations
(e.g., when there is relative motion between the transceiver pair [25], or when the transceiver pair have a carrier
frequency offset due to their oscillators’ mismatch [101]). Nevertheless, the analytical approach developed in
the chapter can be readily extended for time-flat fading channels as well.
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{H1, H0}, respectively, with FT |H(·) denoting the CDF under hypothesis H . The baseline

objective of this work is to develop expressions for both Pd and Pf . Recall that Pd depends

on the received SNR whereas Pf does not. Thus, in the fading channels, only the detection

probability needs to be averaged over the PDF of the received SNR.

4.3 Derivation of Pd and Pf in AWGN

In AWGN, hi = 1, ∀i ∈ {1, 2, ..., N} and thus we define γ � σ2
S/σ

2
w dropping the subscript

‘i’. The results for AWGN derived in this section establish an upper bound on the achievable

sensing performance and also facilitate the subsequent extension to multipath fading and

diversity reception scenarios. Moreover, these results are important for a fair comparison

with the existing Gamma approximation [39].

As the distribution of yi under each hypothesis is complex Gaussian, the squared am-

plitude of normalized i-th sample Y 2
i is exponentially distributed as Y 2

i |H0 ∼ e−xu(x)

for H0, and Y 2
i |H1 ∼ [1/(1 + γ)]e−x/(1+γ)u(x) for H1, where u(·) denotes the unit step

funciton. The MGF of the detector’s decision variable Tp under hypothesis H is defined as

MTp|H(s) � ETp|H
[
e−sTp

]
. Since the noise samples as well as the signal samples are i.i.d.

and mutually independent of each other, the MGF of Tp can be expressed as a product of

the MGFs of Y p
i /N ∀i ∈ {1, 2, ..., N}, given as

MTp|H(s) =

[
ETp|H

(
e−

s
N

( |yi|
σw

)2· p2) ]N
=

[ ∫ ∞

0
e−

s
N
xp/2 ·AHe−AHxdx

]N
, (4.4)

where AH is a parameter under hypothesis H defined as

AH �

⎧⎨⎩ 1 H0,

1/(1 + γ) H1.

4.3.1 Closed-form MGF-based analysis for even-integer p

Talbot’s method for Laplace Transform Inversion

To this end, we need to obtain the detection and the false alarm probabilities from the MGF

(4.4), which are the CCDFs of Tp under H1 and H0 respectively. For this purpose, we resort

to the relation between the CDF and MGF of Tp where the CDF of Tp under H , FTp|H(λ),
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Fig. 4.1. Talbot’s deformation of the Bromwich contour

can be obtained from the inverse Laplace transform of MTp|H(s)/s as

FTp|H(λ) =
1

2πj

∫
B

MTp|H(s)

s
esλds =

1

2πj

∫
B
M̂Tp|H(s) esλds, (4.5)

where we define M̂Tp|H(s) = MTp|H(s)/s, and B is the Bromwich contour as shown in

blue in Fig. 4.1, which is a line defined by s = c + jw where −∞ < w < ∞ and c is

a constant such that the singularities of M̂Tp|H(s) are to the left of c [94]. Considering

even-integer p and using [102, eq. (4)] to solve the integral in (4.4) results in a closed-form

MGF of the form

MTp|H(s)=

[ √
p/2

(
√
2π)p/2−1

G
p
2
,1

1, p
2

(
2p/2A

p/2
H N

pp/2s

∣∣∣∣∣ 1
2
p ,

4
p , ..., 1

)]N
, (4.6)

where G·,·
·,·(·) is the Meijer’s G-function [103, eq. (4)]. Thus, substitution of (4.6) into

(4.5) suggest that an analytical expression for FTp|H(λ) appears intractable. To add more,

a direct computation of the integral (4.5) over the contour B is impractical due to possible

oscillations of esλ as |w| → ∞. To address the difficulty in evaluating such integrals, Tal-

bot, in his classical work [94] suggested deforming the Bromwich contour B to the form

as depicted in green in Fig. 4.1. The motive of the deformation was to improve the con-

vergence of the integral (4.5) by making the real component of s (negative) larger such that

the contour B is wrapped around the negative real axis without crossing any singularities

of M̂Tp|H(s) in the deformation process. Thus, according to Cauchy’s theorem [44], the

deformed contour is still a valid one.
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The classical numerical method suggested by Talbot attracted remarkable interest among

researchers. To this end, to improve the numerical stability of such evaluation in a fixed-

precision computing environment, a multi-precision method termed the “fixed Talbot method”

was proposed by the work [95], which derived an alternative form of the integral as

FTp|H(λ) =
1

2πj

∫ π

−π
M̂Tp|H [s(θ)] · s′(θ)eλs(θ)dθ, (4.7)

where

s(θ) = rθ(cot θ + j)

with |θ| < π, s′(θ) being the derivative of s(θ) w.r.t. θ, and r = 2W/(5λ) with integer W
controlling the desired precision for the fixed Talbot method [95]. The integral in (4.7) can

then be evaluated by using the trapezoidal rule with step size π/W and θk = kπ/W , and

hence the CDF FTp|H(λ) can be computed as [95], [104]

FTp|H(λ) =
r

W
(
1

2
M̂Tp|H(r)erλ +

W−1∑
k=1


{eλs(θk)M̂Tp|H [s(θk)] (1 + jσ(θk))}
)
, (4.8)

where σ(θ) = θ + (θ cot θ − 1) cot θ. Based on [95], the number of significant digits of

FTp|H(λ) calculated in (4.8) is approximately equal to 0.6W . Then, the CCDF of Tp|H can

immediately be expressed as

P(Tp ≥ λ|H) = 1− r

W
(
1

2
M̂Tp|H(r)erλ+

W−1∑
k=1


{eλs(θk)M̂Tp|H [s(θk)] (1+ jσ(θk))}
)
.

(4.9)

By substituting AH = 1/(1 + γ) and AH = 1, respectively, into (4.6) and subsequently

using (4.9), Pd and Pf can be computed accurately. Note that a numerical software package

such as MATHEMATICA can be readily used for the evaluation of (4.9). Hence, (4.9) offers

a computationally attractive solution for both Pd and Pf when p is an even-integer.

4.3.2 Series MGF-based analysis for arbitrary p

In this section, starting from the derivation of a series-form MGF of Tp, novel series

solutions are obtained for Pd and Pf which are valid for any arbitrary p. Substituting

e−x =
∑∞

v=0 (−1)vxv/v! inside the integral in (4.4), interchanging the order of integration
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TABLE 4.1
THE ε-TABLE.

c = −2 c = −1 c = 0 c = 1 ...

0 ε(0, 0) = S0 ε(0, 1) ε(0, 2) ...
0 ε(1, 0) = S1 ε(1, 1) ε(1, 2) ...
...

...
...

... . .
.

0 ε(η − 3, 0) = Sη−3 ε(η − 3, 1) ε(η − 3, 2)
0 ε(η − 2, 0) = Sη−2 ε(η − 2, 1)
0 ε(η − 1, 0) = Sη−1

and summation, and using [103, eq. (3.326.2)], we have

MTp|H(s) =

[
2

p

∞∑
v=0

(−1)vAv+1
H N2(v+1)/p

v! s2(v+1)/p
Γ

(
2(v + 1)

p

)]N
. (4.10)

By using [103, eq. (0.314)] to further simplify (4.10), the series-form MGF can be obtained

as

MTp|H(s) =
2N

pN

∞∑
v=0

Cv|HN2(v+N)/p

s2(v+N)/p
, (4.11)

where

Cv|H =
1

v Γ(2/p)AH

v∑
k=1

(kN − v + k)
(−1)k

k!
Γ

(
2(k + 1)

p

)
Ak+1

H Cv−k|H , v ≥ 1,

and C0|H = [Γ(2/p)AH ]N . The CDF FT |H(λ) can then be obtained by using the inverse

Laplace transform

L−1

[
Γ(a+ 1)

sa+1

]
= ta, a > −1,

on MTp|H(s)/s, and subsequently, the CCDF under hypothesis H can be expressed as

P(Tp > λ|H) = 1− 2N

pN

∞∑
v=0

Cv|H(Nλ)2(v+N)/p

Γ
(
2(v+N)

p + 1
) . (4.12)

Thus, the use of (4.12) after substituting AH = 1/(1 + γ) and AH = 1 for hypothesis H1

and H0 in the expression for Cv|H yields the detection probability Pd and the false alarm

probability Pf , respectively.

Moreover, (4.12) can be expressed as an alternating series-sum such that the CCDF
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under hypothesis H is P(Tp > λ|H) = 1−∑∞
v=0(−1)vDv|H , with

Dv|H � 2N

pN
· |Cv|H |(Nλ)2(v+N)/p

Γ
(
2(v+N)

p + 1
) .

Our experiments show that Dv|H is readily decreasing with increasing v. Thus, the infi-

nite sum S∞ =
∑∞

k=0(−1)nDk|H can be estimated by a partial sum of its nt terms of the

form Snt =
∑nt

k=0(−1)nDk|H , and the truncation error Etr can thus be upper-bounded as

|Etr| < |Dnt+1|H |. Although the absolute truncation error |Etr| readily decreases with in-

creasing nt, the rate of convergence may be accelerated by using the powerful ε-algorithm.

The ε-algorithm transforms the original series into convergents of its associated continued

fractions thus resulting in a faster rate of convergence (i.e. fewer terms to achieve a given

precision) [96].

The objective of the ε-algorithm is to estimate S∞ by using as few partial sums as

possible. This algorithm generates a two-dimensional triangular array called the ε-table as

shown in Table 4.1 with entries ε(k, c + 1), where k = 0, 1, 2, ... is the row index and

c = −2,−1, 0, 1, 2, ... determines the column index. The first two columns (column ‘−2’

and column ‘−1’) are initialized as ε(k,−1) = 0, ε(k, 0) = Sk, ∀k ∈ {0, 1, ..., η−1}, with

η representing the total number of terms used in the partial sum. The remaining columns

are updated as

ε(k, c+ 1) = ε(k + 1, c− 1) + [ε(k + 1, c)− ε(k, c)]−1,

where c ≥ 0. As the value of η is increased (which leads to the corresponding increase

in the number of columns), the even columns of the ε-table contain increasingly accurate

estimates of S∞ [96]. The algorithm stops (no further increase in η) when the desired

precision is attained at a particular even column (i.e., the values in the column converge with

the desired precision). Then, any value in the column can be used as an estimated S∞ and

the corresponding value of η represents the number of terms needed in the ε-algorithm. For

example, for a 2.5-norm detector at SNR of 0 dB, with N = 4 at Pf = 0.01, η = 21 terms

are sufficient for the ε-algorithm applied to (4.12) for computing Pd with 4-decimal points

accuracy, as compared to nt = 33 terms without convergence acceleration. More examples

in Table 4.2 (obtained with accuracy of 4-decimal points) clearly show the advantage of the
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TABLE 4.2
NUMBER OF TERMS NEEDED IN (4.12) FOR COMPUTATION OF Pd WITH AND WITHOUT (W.O.) USING

ε-ALGORITHM.

γ = −15 dB, λ = 5 γ = 0 dB, λ = 7 γ = 10 dB, λ = 7

p 1.8 2.5 3.5 1.8 2.5 3.5 1.5 4

N 2 4 2 4 2 4 4 4 4 5 10 5 10

w.o. ε-algorithm 41 79 25 47 19 33 59 33 23 29 59 7 7
with ε-algorithm 21 63 15 23 13 19 27 19 13 15 33 5 3

ε-algorithm in increasing the convergence rate (hence reducing the computation time).

4.3.3 Generalized Laguerre polynomial series-based approximation

In the approximation theory literature, the random variables which exhibit non-linear and

complex characteristics thus causing them to deviate from Gaussanity may be often approx-

imated by using generalized PDF forms with the parameters depending upon the underlying

statistical properties of the random variables to be approximated. The generalized Laguerre

polynomial approximation is one of such approaches where the PDF of any random vari-

able Z can be written in terms of a weighted sum of the generalized Laguerre polynomials

as

fZ(z) ≈
∞∑
n=0

ωnL
α
n(z) (4.13)

where

Lα
n(z) �

n∑
u=0

(−1)u

u!

Γ(α+ n+ 1)

Γ(n− u+ 1)Γ(α+ u+ 1)
zu

is the generalized Laguerre polynomial [105], and ωn are the corresponding weights (details

on their determination discussed shortly). The generalized Laguerre polynomial series ap-

proximation has been popularly used for addressing distribution problems in mathematical

physics, atomic theory and transmission line electromagnetics [97]. For these problems, the

weights in the Laguerre series sum have been chosen to depend upon the Gamma random

variable which has often proven to be useful for approximating non-Gaussian PDFs [97].

The series (4.13) converges when Z > 0. For an extensive convergence analysis of the

approximation, we refer the readers to [106]–[108]. However, we would like to emphasize

on few important conditions for the series to represent fZ(z) as follows.
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(i) fZ(z) is absolutely continuous in every finite interval, and

(ii) limz→0 z
α+1fZ(z) = 0.

Clearly, the decision variable Tp meets these conditions and thus it serves as a motivation to

pursue the applicability of the approximation for our problem at hand. Thus, in this section,

we derive approximate expressions for the detection and false alarm probabilities by using

a generalized Laguerre polynomial series representation of the p-norm detector decision

variable.

To this end, we propose approximating the PDF of the decision variable Tp by a weighted

(Ng + 1)-term sum of number of generalized Laguerre polynomials of the form [97]

fTp(z)≈
βzαe−z

Γ(α+ 1)

Ng∑
n=0

rnL
α
n(z), z ≥ 0, α ≥ −1, (4.14)

where the coefficient rn is given by6

rn =
n! Γ(α+ 1)

β Γ(n+ α+ 1)

n∑
ν=0

(−1)ν Γ(α+ n+ 1)βνmν

ν! Γ(n− ν + 1)Γ(α+ ν + 1)
, (4.15)

where mν = E(T ν
p ) is the ν-th moment of Tp, and the parameters α and β are given by

α =
2m2

1 −m2

m2 −m2
1

, β =
m1

m2 −m2
1

.

It is important to note that in this chapter, the usefulness of the Laguerre approximation is

demonstrated by using only a few summands Ng.

Note that the moment mν depends on the hypothesis H ∈ {H0, H1} and can be ob-

tained by multinomial expansion of (4.2) followed by some algebra as

mν |H =
1

Nν

∑
Λν

(
ν

k1, ..., kN

)
EY1,Y2,...,YN |H

[ N∏
i=1

Y kip
i

]
,

where Λν = [k1, ..., kN |k1 + ...+ kN = ν, k1, ..., kN ≥ 0]. Utilizing the i.i.d. property of

Yi ∀i ∈ {1, 2, ..., N} followed by evaluation of the mathematical expectation, we can show

6Note that the factor β in the denominator outside the summation in (4.15) necessary to normalize the area
under the PDF (4.14) to unity is missing in [97, eq. (10)].
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that

mν |H =
1

Nν

∑
Λν

(
ν

k1, ..., kN

) N∏
i=1

A
− kip

2
H Γ

(
kip

2
+ 1

)
. (4.16)

By substituting the definition of Lα
n(z) into (4.14), integrating the resulting expression from

z = 0 to z = λ, and changing the order of integration and summation followed by some

algebra, the CDF of Tp can be obtained as

F
Lag
Tp

(λ) =

Ng∑
n=0

rnβ

Γ(α+ 1)

n∑
u=0

ζ(u, n, α, λ), (4.17)

in which

ζ(u, n, α, λ) � (−1)uΓ(α+ n+ 1)

u!Γ(n− u+ 1)Γ(α+ u+ 1)
G(α+ u+ 1, λ),

and G(a, x) =
∫ x
0 e−tta−1dt is the lower incomplete Gamma function [26, eq. (6.5.2)].7

Since the moments mi of Tp are different under the two hypotheses as revealed by (4.16),

the parameters α, β and rn are also hypothesis-dependent. Using (4.16) for each hypothesis

H ∈ {H0, H1} in the definition of α and β, we get

α|H0 = α|H1 =
(N+1)Γ2(p/2+1)−Γ(p+1)

Γ(p+1)−Γ2(p/2+1)
,

β|H0 =
NΓ(p/2+1)

Γ(p+1)−Γ2(p/2+1)
,

β|H1 = A
p/2
H · β|H0.

Since α|H0 = α|H1, we simply denote them by α. Thus, the probability of Tp exceeding

λ under hypotheses H can be expressed as the CCDF of (4.17) as

P
Lag(Tp > λ|H)=1−

Ng∑
n=0

rn|H · β|H
Γ(α+ 1)

n∑
u=0

ζ(u, n, α, λ), (4.18)

where rn|H for each H ∈ {H1, H0} is obtained from (4.15) by replacing α, β|H1 and β|H0

for hypothesis H1 and H0, respectively. Hence, the resulting expressions under H1 and H0

yield the desired detection probability P
Lag
d and false alarm probability P

Lag
f , respectively.

Note that (4.18) is obtained by approximating the PDF of Tp by a weighted sum of

7The superscript ‘Lag’ is used as shorthand notation for ‘Laguerre’.
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a finite number (Ng) of identically distributed Gamma random variables whose weights

depend on the corresponding Laguerre-polynomials. Interestingly, our numerical results

in Section 4.5 reveal that the Laguerre approximation is more versatile than the Gamma

approximation and more accurate than the CLT approximation (for a few samples).

4.4 Analysis in Fading and Diversity Combining

In this section, a unified approach based on the series-MGF obtained in Section 4.3.2 is

developed for deriving the average detection probability in various fading and diversity

reception scenarios. Specifically, average detection probabilities over the κ-μ and the α-μ

fading are derived. As well, for a multiple-antenna p-norm detector, the performance of the

two proposed schemes, the pLC and the pLS, and of the classical MRC and SC schemes

are derived in Nakagami-m fading channels.

For fading channels, the instantaneous received SNRs γi = |hi|2σ2
S/σ

2
w, i = {1, 2, ..., N}

are random variables whose PDFs depend on the fading channel (and/or diversity-combining)

model. Then, the probability of detection would depend on the instantaneous SNRs γ =

{γ1, γ2, ..., γN}. Hence, the average probability of detection P d must be obtained by inte-

grating the instantaneous probability of detection Pd(γ) over the joint PDF (JPDF) f(γ).

Using (4.3) and (4.5), Pd(γ) can be expressed as

Pd(γ) = 1− 1

2πj

∫
B

MTp|H1
(s,γ)

s
esλds, (4.19)

where MT |H1
(s,γ) is the MGF of Tp|H1 conditioned on γ. Then, P d can be obtained by

integrating (4.19) over the JPDF f(γ) as

P d = 1− 1

2πj

∫
γ

∫
B

MTp|H1
(s,γ)

s
esλf(γ)dsdγ. (4.20)

Interchanging the order of integrations, (4.20) can be written as

P d = 1− 1

2πj

∫
B
esλ

MTp|H1
(s)

s
ds, (4.21)

where MTp|H1
(s) =

∫
γ MTp|H1

(s,γ)f(γ)dγ is the unconditional8 MGF of Tp|H1. Thus,

8Henceforth, the term “unconditional” implies averaging (integration) over the JPDF f(γ).
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(4.21) suggests that the average detection probability can be easily obtained once we have

the inverse Laplace transform of the unconditional MGF of Tp|H1.

To evaluate (4.21), first, the need is to find MTp|H1
(s). For independently faded sam-

ples, the JPDF f(γ) can be expressed as the product of each individual PDFs f(γi), ∀i ∈
{1, 2, ..., N}. Thus, we have MTp|H1

(s) =
∏N

i=1MY p
i /N |H1

(s), in which MY p
i /N |H1

(s)

is the unconditional MGF of Y p
i /N under H1 given as

MY p
i /N |H1

(s) =

∫ ∞

0
MY p

i /N |H1
(s, γi)f(γi)dγi

with f(γi) being the marginal PDF of the instantaneous SNR of the i-th sample while

MY p
i /N |H1

(s, γi) represents the conditional (on γi) MGF of Y p
i /N under H1. Here, we

can see that MY p
i /N |H1

(s, γi) can be expressed in a series-form following the steps similar

to those used in the derivation of (4.10) after replacing AH = 1/(1 + γi) as

MY p
i /N |H1

(s, γi)=
2

p

∞∑
v=0

(−1)vN2(v+1)/p

v! s2(v+1)/p

Γ
(2(v+1)

p

)
(1 + γi)v+1

. (4.22)

Thus, for i.i.d. fading, we can write MTp|H1
(s) = [MY p

i /N |H1
(s)]N . Then, the only need

is to obtain MY p
i /N |H1

(s). As we will consider various statistical models for f(γi), we

rewrite the unconditional MGF MY p
i /N |H1

(s), with the abuse of notations as

Mfd
Y p
i /N |H1

(s) =

∫ ∞

0
MY p

i /N |H1
(s, γ) ffd(γ)dγ, (4.23)

where the script ‘fd’ denotes the corresponding fading (and/or diversity-combining) model

under consideration. Solution of (4.23) would subsequently yield Mfd
Tp|H1

(s) and then the

application of inverse Laplace transformation on Mfd
Tp|H1

(s)/s (similarly to the applica-

tion in Section 4.3.2) yields the average probability of detection Pd,fd for the correspond-

ing fading (and/or diversity combining) scenario. In the following sections, the uncondi-

tional MGF (4.23) is derived for different channel models and various diversity-combining

schemes on a case-by-case basis.
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4.4.1 The κ-μ Fading-No Diversity

The κ-μ distribution can model a wide variety of fading environments with LOS propaga-

tion. The PDF of the instantaneous SNR for this fading model is given by [29]

fκ-μ(γ) =
μ(1 + κ)

μ+1
2 e−μκγ

μ−1
2

κ
μ−1
2 γ

μ+1
2 e

−μ(1+κ)
γ

γ
Iμ−1

(
2μ

√
κ(1 + κ)γ

γ

)
, (4.24)

where Iν(·) is the ν-th order modified Bessel function of first kind [26], γ ≥ 0, and γ is the

average received SNR. The parameter κ > 0 is the ratio of the total power of the dominant

components to that of the scattered waves, and

μ =
E
2{γ}

Var{γ}
(
1 +

2κ

(1 + κ)2

)

represents the number of multipath clusters. By replacing the modified Bessel function of

first kind in (4.24) with its infinite series representation [26, eq. (9.6.10)], substituting the

resulting series for fκ-μ(γ) into (4.23), interchanging the order of integration and summa-

tion, and finally, using the definition of the confluent hypergeometric function of the second

kind [109],

U(a, b, z) =
1

Γ(a)

∫ ∞

0
e−ztta−1(1 + t)b−a−1dt, a, z > 0, (4.25)

to solve the resulting integral, the unconditional MGF over κ-μ fading Mκ-μ
Y p
i /N |H1

(s) can

be derived to be

Mκ-μ
Y p
i /N |H1

(s) =
2μμ(1 + κ)μ

p eκμ γμ

×
∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)(
N

s

) 2(v+1)
p

×
∞∑
j=0

μ2jκj(1 + κ)j

γj j!
U

(
μ+ j, μ+ j − v,

μ(1 + κ)

γ

)]
.

(4.26)

The expression (4.26) is utilized to obtain the unconditional MGF of Tp|H1 over κ-μ fading

and subsequently used to deduce the expression for the average detection probability Pd,κ-μ

in Section 4.4.4. Truncation of the resulting infinite series occurring in Pd,κ-μ is discussed

in Section 4.4.5.
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Note that for any other generalized fading model, say, η-μ fading model [92], (which is

another generalized fading model for non-LOS conditions) is considered, the unconditional

MGF similar to (4.26) can be obtained. Further, the subsequent analysis would be similar

thus indicating the generality of our approach.

4.4.2 The α-μ Fading-No Diversity

In α-μ distribution, parameter α > 0 models the non-linearity of the propagation medium,

and parameter μ > 0 denotes the number of multipath clusters. The PDF of the instanta-

neous SNR under this fading model is given by [110]

fα-μ(γ) =
αμμ

2Γ(μ)γ̃αμ/2
γαμ/2−1e

−μ
(

γ
γ̃

)α/2

, (4.27)

where γ ≥ 0, and

γ̃ =
μ2/αΓ(μ)

Γ(μ+ 2/α)

Eb

N0
,

in which Eb/N0 is the energy per bit to noise power spectral density ratio. Substituting the

PDF (4.27) into (4.23) gives

Mα-μ
Y p
i /N |H1

(s) =
2

p

∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)(
N

s

) 2(v+1)
p

× 1

Γ(μ)

∫ ∞

0

αμμ

2γ̃αμ/2
γαμ/2−1e

−μ
(

γ
γ̃

)α
2

(1 + γ)v+1
dγ

]
.

(4.28)

Unfortunately, an exact closed-form solution for the integral in (4.28) appears to be in-

tractable. However, by substituting

t =
μ

γ̃α/2
γα/2,

the integral can be alternatively expressed as I =
∫∞
0 g(t)e−tdt with

g(t) = tμ−1

[
1 +

t2/α

μ2/α
γ̃

]−v−1

.
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The integral I can then be approximated by a Gaussian-Laguerre quadrature sum of the

form

I =

∫ ∞

0
g(t)e−tdt ≈

NQ∑
q=1

wqg(tq),

where tq and wq are the abscissas and weight factors for the Gaussian-Laguerre quadrature

integration [26, eq. (25.4.45)]. Thus, (4.28) can be evaluated as

Mα-μ
Y p
i /N |H1

(s) ≈ 2/p

Γ(μ)

∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)(
N

s

) 2(v+1)
p

NQ∑
q=1

wqg(tq)

]
. (4.29)

The unconditional MGF (4.29) provides the basis for obtaining the average detection prob-

ability Pd,α-μ in Section 4.4.4. As (4.29) is derived using Gaussian-Laguerre approximation

for the integral in (4.28), the accuracy of the approximation is discussed in conjunction with

the expression for Pd,α-μ in Section 4.4.5.

4.4.3 Analysis for Antenna Diversity

In this section, the input to the p-norm detector comprises of a total of L antennas. Two

non-coherent combining techniques, pLC and pLS, are proposed and compared against

traditional MRC and SC. Note that the proposed schemes can be readily analyzed for κ-μ

and α-μ channels. However, as the SNR of the MRC output is given by the sum of the

individual branch SNRs (see Section 4.4.3.3), its analysis in κ-μ or α-μ channel requires

an exact PDF of the sum of such variates. Such PDFs are not available in the literature.9

As we are interested in analyzing the effect of diversity-combining on the p-norm detection

performance and in determining the performance of pLC and pLS relative to classical MRC

and SC, i.i.d. Nakagami-m fading over the diversity branches is considered for further

analysis. Each of the diversity-combining scheme is treated separately in the following.

4.4.3.1 p-Law Combining (pLC)

A schematic diagram of the proposed pLC scheme is shown in Fig. 4.2 above. The received

signal at each branch is input to its p-norm device, which raises each sample to the p-

th power followed by sample-averaging. This yields a total of L independent decision
9Although approximations of the sum distributions of κ-μ and α-μ variates are available, respectively, in

[111] and [112], they require moment matching for estimating the relevant parameters and are beyond the scope
of this work.
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variables Tp1, Tp2 , ..., TpL , which are added together to obtain the pLC decision variable

Tplc =
L∑
l=1

Tpl =
1

N

L∑
l=1

N∑
i=1

(Yi,l)
p,

where Yi,l is the i-th normalized sample received at the l-th branch (this definition is similar

to the definition of Yi in (4.2) for a single branch).10 The final decision is made after

comparing Tplc against the threshold.

The PDF of the received SNR over a single branch Nakagami-m fading is given by [24]

fNak(γ) =
1

Γ(m)

(
m

γ

)m

γm−1e
−m

γ
γ
, γ ≥ 0. (4.30)

We define Mplc
(Yi,l)p/N |H1

(s) as the unconditional MGF of (Yi,l)p/N |H1, which can be ob-

tained by substituting (4.30) into (4.23) and using the definition of the confluent hypergeo-

metric function of the second kind (4.25) to solve the resulting integral as

Mplc
(Yi,l)p/N |H1

(s) =
2

p

(
m

γ

)m

×
∞∑
v=0

(−1)v

v!
Γ

(
2(v + 1)

p

)(
N

s

) 2(v+1)
p

U

(
m,m− v,

m

γ

)
.

(4.31)

As (Yi,l)
p/N are i.i.d. for all samples i ∈ {1, 2, ..., N} and for all branches l ∈

{1, 2, ..., L}, the unconditional MGF of the decision variable Tplc under H1 can be ex-

pressed as a product of the unconditional MGFs Mplc
(Yi,l)p/N |H1

(s) such that MTplc|H1
=

[Mplc
(Yi,l)p/N |H1

(s)]NL. Note that the MGF of Tplc under H0 is MTplc|H0
(s) = [MTp|H0

(s)]L,

where MTp|H0
(s) is given by (4.10) with AH = 1. These MGFs form the basis for obtain-

ing the average detection probability Pd,plc and the false alarm probability Pf,plc, respec-

tively, in Section 4.4.4.

4.4.3.2 p-Law Selection (pLS)

The proposed pLS scheme is shown in Fig. 4.3. In this scheme, the received signal at each

branch is passed through its p-norm device to obtain L decision variables Tp1 , Tp2 , ..., TpL .

Then, only the branch with the largest decision variable is selected such that the pLS deci-
10This scheme may be considered as a generalization of SLC scheme used in the conventional ED [33].
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Fig. 4.2. The proposed pLC scheme

Fig. 4.3. The proposed pLS scheme

sion variable is given by Tpls = max{Tp1 , Tp2 , ..., TpL}.11 The final decision is made after

comparing Tpls against the threshold. For the independent decision variables, the CDF of

Tpls can be expressed as

FT,pls = P(Tpls ≤ λ) = P(Tp1 ≤ λ, Tp2 ≤ λ, ..., TpL ≤ λ)

=

L∏
l=1

[1− P(Tpl > λ)].
(4.32)

Since the branches are i.i.d., the false alarm probability of the pLS scheme can be expressed

as

Pf,pls = 1− [1− Pf ]
L, (4.33)

where the Pf occurring in (4.33) is given by (4.12) for H = H0. Similarly, it is easy to

show that the average detection probability for the pLS scheme over Nakagami-m fading

channels can be obtained as

Pd,pls = 1− [1− Pd,Nak]
L, (4.34)

11This scheme may be thought of as generalization of the square-law selection (SLS) scheme used in the
ED [33].
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where Pd,Nak is the average detection probability of a single-branch p-norm detector over

Nakagami-m fading. Thus, to evaluate (4.34), only Pd,Nak is needed, which can be obtained

from the unconditional MGF (4.31). The derivation of Pd,Nak is discussed in 4.4.4.

4.4.3.3 MRC

Recall that the MRC is a coherent combining scheme that requires the complete CSI at the

receiver [24]. Although the p-norm detector can function without any CSI, the analysis in

MRC is important mainly because of its optimality, which helps to establish an upper bound

on the achievable sensing performance against which other combining schemes may be

compared. For this case, each of the branches is weighted with the complex conjugate of the

corresponding fading coefficient and combined to yield the signal ymrc(t) =
∑L

l=1 h
∗
l yl(t)

where h∗l and yl(t) denote the complex conjugate fading coefficient and the received sig-

nal respectively, for the l-th branch. The samples of ymrc(t) are then fed into the p-norm

detector.

For a total of L antennas, the MRC output SNR is given by γmrc =
∑L

l=1 γl, where γl

is the SNR of the l-th branch. For i.i.d. branches in Nakagami-m fading, the MRC output

SNR is [24]

fmrc(γ) =
1

Γ(Lm)

(
m

γ

)Lm

γLm−1e
−m

γ
γ
, γ ≥ 0. (4.35)

Then, the unconditional MGF of the i-th sample of the combined signal, Y p
i /N (with the

abuse of notation), can be obtained by substituting (4.35) into (4.23) as

Mmrc
Y p
i /N |H1

(s) =
2

p

(
m

γ

)Lm ∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)

×
(
N

s

) 2(v+1)
p

U

(
Lm,Lm− v,

m

γ

)]
,

(4.36)

where the definition of the confluent hypergeometric function of second kind (4.25) is

used to solve the resulting integral. The unconditional MGF of Tp|H1 is then obtained as

Mmrc
Tp|H1

(s) = [Mmrc
Y p
i /N |H1

(s)]N , which will be used to derive the corresponding average

detection probability Pd,mrc in Section 4.4.4.
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4.4.3.4 SC

For an L-branch SC, the resulting SNR is given by γsc = max{γ1, γ2..., γL}. Then, the

PDF of output SNR for an SC receiver in i.i.d. Nakagami-m fading channels with integer

m is given by [113]

fsc(γ) =
L

Γ(m)

L−1∑
l=0

[
(−1)l

(
L− 1

l

)
e
− (l+1)m

γ
γ
l(m−1)∑
ν=0

B(ν, l,m)

(
m

γ

)m+ν

γm+ν−1

]
(4.37)

for γ ≥ 0, where B(ν, l,m) is defined as

B(ν, l,m) =

ν∑
ı=ν−m+1

B(ı, l − 1,m)

(ν − ı)!
I[0,(l−1)(m−1)](ı),

with B(0, 0,m) = B(0, l,m) = 1, B(ν, 1,m) = 1/(ν!), B(1, l,m) = l, and

I[a,b](ı) =

⎧⎨⎩ 1 a ≤ ı ≤ b,

0 otherwise.

By substituting (4.37) into (4.23) and then using (4.25) to solve the resulting integral, the

unconditional MGF of Y p
i /N can be expressed in the form

Msc
Y p
i /N |H1

(s) =
2L

pΓ(m)

∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)

×
(
N

s

) 2(v+1)
p

L−1∑
l=0

(−1)l
(
L− 1

l

) l(m−1)∑
ν=0

ρ(m, γ, l, v, ν)

]
,

(4.38)

where ρ(m, γ, l, v, ν) is defined as

ρ(m, γ, L, v, ν) � B(ν, l,m)

(
m

γ

)m+ν

Γ(m+ ν)U

(
m+ ν,m+ ν − v,

(l + 1)m

γ

)
.

Similar to MRC, the unconditional MGF of Tp|H1 is then given by

Msc
Tp|H1

(s) = [Msc
Y p
i /N |H1

(s)]N ,

which will be used to derive the corresponding average detection probability Pd,sc in Sec-

tion 4.4.4.
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4.4.4 Unified Expression for Average Detection Probability Over Fading and

Diversity Cases

The derived unconditional MGFs of the decision variables for the respective cases can be

expressed in a series-form similar to (4.11) after using [103, eq. (0.314)]. We denote this

form by Mfd
Tp|H1

(s). Then, by applying the inverse Laplace transform on Mfd
Tp|H1

(s)/s

as in Section 4.3.2, the average detection probability for each of the fading and diversity-

combining cases, Pd,fd, can be expressed in a single compact form as

Pd,fd = 1− 2Nξfd

pN

∞∑
v=0

Cv,fd · (Nλ)2(v+N)/p

Γ
(2(v+N)

p

) , (4.39)

with

Cv,fd =
1

v Γ(2/p)a0,fd

v∑
u=1

(uN − v + u)
(−1)u

u!
Γ

(
2(u+ 1)

p

)
au,fdCv−u,fd, u ≥ 1,

and C0,fd = [Γ(2/p)a0,fd]
N . The coefficients au,fd appearing in the expression of Cv,fd are

dependent on the respective fading and diversity-combining cases and are derived to be

au,κ-μ =

∞∑
j=0

μ2jκj(1 + κ)j

γjj!
U

(
μ+ j, μ+ j − u,

μ(1 + κ)

γ

)
,

au,α-μ =

NQ∑
q=1

wqg(tq), au,mrc = U

(
Lm,Lm− u,

m

γ

)
,

au,sc =
L−1∑
l=0

(−1)l
(
L− 1

l

) l(m−1)∑
ν=0

ρ(m, γ, l, v, ν),

(4.40)

with ξfd for the corresponding cases defined as

ξκ-μ �
(
μ(1 + κ)

eκγ

)Nμ

, ξα-μ �
(

1

Γ(μ)

)N

,

ξmrc �
(
m

γ

)NLm

, ξsc �
(

L

Γ(m)

)N

.

(4.41)

For the pLC scheme, the average detection probability Pd,plc is given by (4.39) with au,plc =

au,mrc|L=1, and the false alarm probability Pf,plc is given by (4.12) (for H = H0), with each

N occurring in (4.39) and (4.12) replaced by NL except the one occurring as Nλ inside the
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TABLE 4.3
NUMBER OF TERMS IN (4.39) FOR COMPUTING Pd,κ-μ WITH 4-DECIMAL POINTS ACCURACY (λ = 7).

SNR (dB) p N κ μ Vκ-μ J

−15 4.5 6 1.5 2.4 19 15
0 2.7 3 3.2 1.5 25 16
5 1.8 2 4 3.2 36 31
5 3.3 4 1.5 2.2 17 12

TABLE 4.4
NUMBER OF TERMS IN (4.39) FOR COMPUTING Pd,α−μ WITH 4-DECIMAL POINTS ACCURACY.

(SNR (dB), λ) p N α μ Vα-μ NQ

(−10, 7) 4 3 1.5 2.5 18 21
(−5, 5) 3 3 1.5 1 23 10
(3, 5) 2.5 6 3 2 25 14
(3, 5) 1.8 6 2 3.3 74 5

summation. For the pLS scheme, the average detection probability Pd,pls in (4.34) requires

only Pd,Nak, which is given by (4.39) for MRC with au,mrc|L=1 and ξmrc|L=1.

4.4.5 Computation of Pd,fd in (4.39)

As is clear from (4.39) and (4.40), the final expressions for Pd,plc Pd,pls, Pd,mrc and Pd,sc

require the evaluation of only a single infinite series-sum similar to that for the AWGN case

in (4.12). The series expression for these cases can then be truncated with a finite number

of terms, and the truncation error can be upper bounded in a similar manner.

The expression of Pd,κ-μ contains two infinite series-sums in v and j, which have to

be truncated with a finite number of terms for computation. A tight truncation error up-

per bound for Pd,κ-μ is difficult to obtain due to occurrence of infinite sums in both the

numerator and denominator of the recursively computed coefficients Cv,κ-μ. Nevertheless,

our numerical experiments reveal that the sums are readily converging and can be truncated

with a finite number of terms, which can be chosen to achieve the desired precision. For ex-

ample, the number of terms in v and j (denoted by Vκ-μ and J respectively) for computing

Pd,κ-μ with 4-decimal points accuracy are shown in Table 4.3.

Similarly, the expression of Pd,α-μ requires the evaluation of an infinite series-sum in v

and further includes the computation of the Gaussian-Laguerre quadrature sum. Accurate
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computation of Pd,α-μ is possible by truncating the infinite series in v with Vα-μ terms and

simultaneously choosing a suitable number of terms NQ in the quadrature sum to satisfy

the overall precision requirement. Some examples with various sets of values for 4-decimal

points accuracy are shown in Table 4.4.

4.5 Numerical results and discussions

In this section, the p-norm detector performance is characterized with several Pd vs. SNR

curves, and the ROC curves, which are the plots of Pd against Pf . Since a low probability of

false alarm is highly desirable (for example, in IEEE 802.22, a CR requires Pf ≤ 0.1 [23]),

we set Pf = 0.01 for all of the Pd vs. SNR plots. The detection threshold λ is determined

based on this requirement and used for the computation of Pd. On the other hand, the ROC

curves are obtained by varying the threshold from a low to a high value (theoretically, from

0 to ∞), and plotting the corresponding Pd against Pf . Thus, the ROC curves are important

to jointly observe how Pd and Pf vary with the detector parameters (SNR, p, sample size,

fading severity, and/or the number of antennas).

A numerical analysis to provide insights into the derived results is presented next. Re-

sults of Monte-Carlo simulation performed in MATLAB with 106 iterations are included

wherever necessary for validating the analysis.

4.5.1 Performance in AWGN (Fig. 4.4)

In Fig. 4.4, the Talbot method (4.9), the series solution (4.12), the Laguerre approximation

(4.18), the Gamma approximation [39] (see Appendix B.1), and the CLT-based approxima-

tion (see Appendix B.2) are compared. The results plotted for two different combinations

of (p,N), namely (p = 2, N = 2) and (p = 4, N = 5), give the following insights:

(i) The Talbot solution (4.9) and the series-based solution (4.12) match exactly with the

simulation results for both sets of (p,N), thus validating the accuracy (exactness) of

these solutions.

(ii) For p = 2, the Gamma approximation is exact since the decision variable is then a

Gamma-distributed sum of N independent exponential random variables. However,

for another p (p = 4), the decision variable is no longer Gamma distributed, and
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Fig. 4.4. Comparison of the derived Talbot solution (4.9), series solution (4.12) and the Laguerre approxima-
tion (4.18) against the existing Gamma (Appendix B.1) and CLT (Appendix B.2) approximations for AWGN.

the Gamma approximation deviates from the simulation. Interestingly, the proposed

Laguerre approximation matches the simulation for both p values.

(iii) The Laguerre approximation has remarkably better accuracy than the CLT approxi-

mation.

Hence, from (ii)-(iii), we can say that the Laguerre approximation is more versatile than the

Gamma approximation and is more accurate than the CLT approximation (for small sample

size).

4.5.2 Effect of sample size N (Fig. 4.5)

The sample size N is a critical performance-determining parameter of the detector. Hence,

the effect of N on the average detection probability over the Rayleigh fading channel (ob-

tained from Pd,κ-μ in (4.39) with κ → 0, μ = 1) is studied in Fig. 4.5 for a 3.5-norm

detector. The CLT approximation is plotted for comparison. The results reveal the follow-

ing.

(i) The reliability of spectrum sensing improves drastically with the number of received
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Fig. 4.5. Average detection probability (Pd) vs. average SNR (γ) for 3.5-norm detector in Rayleigh fading
(using (4.39) with κ → 0, μ = 1) for various samples, compared to the CLT approximation and simulation.

signal samples as compared to the reliability of the detector with one sample (N = 1)

considered in [90] and [91]. For example, at SNR of 10 dB, the 2-samples-based

detector (N = 2) yields about 45% higher detection probability than the one-sample

detector. Furthermore, even at a low SNR of −10 dB, the 15-samples-based detector

obtains about an 86% gain in detection probability compared to the single sample-

based detector.

(ii) The CLT approximation12 deviates significantly, although its accuracy improves with

an increase in sample size.

4.5.3 Analysis in κ-μ fading (Fig. 4.6 and Fig. 4.7)

The effect of p on the detection probability Pd,κ-μ in (4.39) for a fixed LOS (κ = 1.5) and

fixed multipath (μ = 2.2) condition is illustrated in Fig. 4.6. The following observations

are made:
12Obtained by numerically integrating Pd,CLT (see Appendix B.2) over the Rayleigh fading PDF f(γ) =

1/γ · exp(−γ/γ), γ ≥ 0.

85



−5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average SNR(dB)

Av
er

ag
e 

P d

p = 2 (ED)
p = 2.5
p = 3.3
p = 4.5
AWGN (p = 2.5)

Fig. 4.6. Average detection probability (Pd,κ-μ) vs. average SNR (γ) in a κ = 1.5, μ = 2.2 fading channel
for various p with N = 6. The AWGN plot is included for comparison. Discrete marks indicate simulation
values.

(i) The ED (p = 2) does not necessarily yield the best sensing performance in κ-μ fading

channels compared to other detectors with p �= 2. For example, at SNR of 7 dB with

N = 6, the 2.5-norm detector achieves 7% higher Pd,κ-μ than that of the ED. The

3.3-norm detector is the second-best one, when the SNR exceeds 2 dB. Even the

4.5-norm detector possesses a higher Pd,κ-μ than that of the ED for a received SNR

above 6 dB. Thus, the ED is not necessarily the best choice among all p in non-

homogeneous LOS propagation.

(ii) The comparison with the AWGN (no fading) reveals that multipath fading severely

affects the p-norm detection performance. For example, at an SNR of 2 dB, the de-

tection probability reduces by as much as 40% compared to the corresponding case

without fading for a 2.5-norm detector.

In Fig. 4.7, the ROC curves (plotted in log-log scale for clarity) of a 3-norm detector with

N = 3 for several LOS and multipath conditions are shown. For a fixed multipath effect

(fixed μ), the detector performs better at stronger LOS (higher κ) conditions. Likewise,

the performance improves with the increased multipath effect (higher μ) for a given LOS
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Fig. 4.7. ROC curves (in log-log scale) for a 3-norm detector with N = 3 for various κ-μ channels at SNR of
7 dB. The discrete marks indicate the simulation results.

strength (fixed κ). These results indicate the advantages of propagation environments hav-

ing a stronger LOS and a higher number of multipath components on the sensing perfor-

mance.

4.5.4 Analysis in α-μ fading (Fig. 4.8)

The effect of non-linear propagation on the p-norm detection performance (p = 2.7) is

presented in Fig. 4.8 for various instances of the α-μ fading channel. Additionally, an

ED (p = 2) plot and the simulation results are included for comparison. The following

observations are made:

(i) The analytical results for Pd,α-μ in (4.39) and the simulation results match, thus vali-

dating the accuracy of the Gaussian-Laguerre quadrature integration used for deriving

Pd,α-μ.

(ii) The increased non-linearity of the propagation medium (higher α) for a fixed multi-

path effect (fixed μ) has a positive effect on the sensing performance. As well, the

performance is better for a larger multipath effect (higher μ) at a given non-linearity
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Fig. 4.8. ROC curves of a 2.7-norm detector for various α-μ channels at SNR = 3 dB, N = 5. The ED
(p = 2) plot is included for comparison. The discrete marks on the graphs indicate the simulation results.

(fixed α). For example, at Pf ≈ 0.1, when α increases from 1.5 to 2 at μ = 2, an

approximately 11% gain in Pd,α-μ is obtained. Likewise, about a 20% increase in

Pd,α-μ results when μ increases from 1 to 1.5 at α = 2.

(iii) The results also suggest that ED (p = 2) is not necessarily the best choice (among

all p) for detecting signals affected by the non-linearity of the wireless channel. For

example, at Pf ≈ 0.1, over a channel with α = 2 and μ = 2, the 2.7-norm detector

yields about a 7.5% higher Pd,α-μ than the ED.

4.5.5 Analysis with diversity-combining (Fig. 4.9)

The boost in p-norm detection performance due to antenna diversity is depicted in Fig. 4.9.

Furthermore, to assess the relative performance gains of the pLC, pLS, MRC and SC

schemes, they are compared against each other and with the no-diversity (single-antenna)

case as well. The following insights are evident:

(i) Antenna diversity boosts the p-norm detection performance: Even at a low SNR of

−10 dB with Pf ≈ 0.1, the 2.5-norm detector deploying a 3-branch MRC yields
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Fig. 4.9. Two sets of ROC curves at SNR −10 dB (p = 2.5, N = 3) and 0 dB (p = 3, N = 4) for various
diversity-combining schemes in Nakagami-3 fading channels with L = 3. No-diversity curves are included for
comparison. The discrete marks on the graphs indicate the simulation results.

about a 53% increase in detection probability compared to the no-diversity case.

(ii) Performance of pLC, pLS, MRC and SC: As expected, MRC has the best perfor-

mance among all the schemes. Interestingly, the proposed pLC and pLS schemes

perform quite similarly to the traditional SC at low SNR (plots at −10 dB), while

both of them outperform SC at a relatively high SNR (plots at 0 dB). For instance,

at an SNR of 0 dB for Pf ≈ 0.1, the 3-norm detector (N = 4) with SC, pLS, pLC

and MRC schemes yields, respectively, about 28%, 40%, 54% and 66% increase in

detection probability compared to the no-diversity case. Note that the pLC performs

closer (than pLS and SC) to the optimal MRC. As a final note, the MRC relies on the

availability of full CSI for each branch while the SC requires constant monitoring of

all the branches in order to find the branch with the maximum SNR [24]. However,

these requirements lead to higher complexity and cost for practical implementation.

Thus, the proposed pLC and pLS schemes may offer better alternatives than the MRC

and SC schemes, particularly, for a non-coherent device like the p-norm detector.
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4.6 Conclusion

In this chapter, a comprehensive p-norm detector performance analysis for non-fading

(AWGN), generalized fading and with several antenna diversity-combining schemes is pre-

sented by developing several analytical/numerical solutions for Pd and Pf . To evaluate Pd

and Pf for AWGN channels, the MGF of the decision variable is derived in two forms: (i)

closed-form for even-integer p, and (ii) series-form for arbitrary p. A numerical method

utilizing the Talbot inversion is developed for case (i), and infinite series expansion with

convergence acceleration based on the ε-algorithm is derived for case (ii). Additionally,

a new approximation based on the Laguerre polynomial series is shown to be more ver-

satile compared to the existing Gamma approximation and more accurate than the CLT

approximation. To quantify the impact of the fading channels, the series MGF-based anal-

ysis is extended to cover the κ-μ and α-μ fading channels, thus helping to quantify the

sensing performance in more realistic fading environments. To capitalize on antenna di-

versity, non-coherent pLC and pLS schemes which do not require any CSI are proposed.

Their performances along with those of the traditional MRC and SC schemes are derived

for Nakagami-m fading. Interestingly, both pLC and pLS perform similar to the SC at

low SNR, while outperforming it at relatively high SNR. Further, pLC performs the closest

(among all the schemes) to the optimal MRC at higher SNR. Moreover, the proposed pLC

and pLS schemes are more suitable than the MRC and SC schemes for the p-norm detector,

which can function without any CSI.
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Chapter 5

Approximations for Performance of

Energy Detector and p-norm

Detector

Although the CLT approximations for the detection probability of the ED and the p-norm

detector are accurate for large sample sizes, their accuracy is poor otherwise. A recent work

has addressed this problem by developing the CGA. However, CGA is not the only option

and thus this chapter introduces five other classical approximations for Pd. They tightly

match the exact values even for few samples and thus are more accurate than CLT. These

approximations have been unnoticed in the spectrum sensing research community and this

chapter 1 aims at making them known to a wider audience. Because the range of their

potential applications could be diverse, to demonstrate their utility, we derive a novel AUC

expression for the p-norm detector. Finally, the derived AUC is subsequently extended to

characterize the effect of noise variance uncertainty on the p-norm detection performance.

5.1 Introduction and Motivation

Spectrum sensing must focus on yielding quick decisions on the presence or absence of

the spectrum opportunities. As ED and the p-norm detector can operate blindly, they are

capable of quickly sensing the spectrum. Thus, these detectors must operate with as few
1Chapter 5 has been published in the IEEE Communications Letters as [114].
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number of samples as possible, and at the same time, ensure high sensing reliability.

As the IEEE 802.22 based CRs must detect potential spectrum opportunities rapidly, the

ED and the p-norm detector must operate with fewest possible samples while offering high

detection reliability. However, their probability of detection, Pd, is widely approximated by

using the CLT [27] which yields Pd in terms of the well-known Gaussian-Q function. The

CLT-based approximation has found widespread applications in solving practical problems

such as sensing-throughput tradeoff [47], multiple-band spectrum sensing [48], low SNR

spectrum sensing [115], [40], and numerous others. However, it is not accurate enough for

small sample sizes [116]. Small sample size based analysis is particularly important, say,

for highly delay-sensitive applications such as mission critical MTC in future 5G networks

[2].

Exact Pd (without approximations) has also been analyzed extensively. For example,

works in [30], [35], [36], [117], [118] treat ED with fading, shadowing, multiple antennas,

cooperative diversity, and other factors. For the p-norm detector, since exact closed-form

Pd and Pf are intractable, several computational methods were developed in Chapter 4.

However, such exact analyses often lead to complicated expressions (residues, infinite se-

ries, and so on) rather than closed-forms, which may hinder their rapid use in optimization

and low-SNR design [40], [47], [48], [115].

Thus, simple and accurate Pd approximations valid for arbitrary sample size are neces-

sary. To the best of our knowledge, only the work in [116] has attacked this problem with

the CGA, originally proposed by Abdel-Aty [119] for approximating non-central chi-square

distributions. However, the CGA is not the only option, and other more robust approxima-

tions may exist. Thus, in this chapter, we investigate five other classical approximations to

derive Pd. These approximations

(i) yield accurate Pd in closed form;

(ii) apply to an arbitrary number of samples;

(iii) need only the first few moments/cumulants, and thus are applicable to deterministic

or random signal model; and

(iv) may be extended to other applications, say, the p-norm detector for which we will

derive an approximate, compact expression for the AUC.
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A brief review of the problem is given in Section 5.2. The proposed approximations are

described in Section 5.3. Some important insights are discussed in Section 5.5. The AUC

performance of p-norm detector is treated in Section 5.6. The chapter is concluded with

Section 5.6.

5.2 Problem Statement

For the unknown deterministic signal based ED, recall the detection probability

Pd = QN (
√

2γ,
√
λ). (5.1)

The conditional decision variables T |H0 and T |H1 are distributed as χ2
2N and χ2

2N (2γ),

respectively. Thus, the problem at hand is to find accurate approximations to (5.1) for

arbitrary sample size, unlike CLT, which is limited to (N 
 1).

5.3 New Approximations

As expression (5.1) results from the CCDF of T |H1 which is χ2
2N (2γ) distributed, we seek

accurate approximations for this CCDF by approximating the distribution of T |H1. Let Y

denote T |H1. Among the numerous approximations available in the statistical literature, we

next consider five important ones to find accurate approximations to the distribution of Y

[120]–[124]. Note that for some of our derivations, the cumulant generating function of Y

is needed which is obtained as [125] g(t) = lnE
(
etY

)
= t

1−2γt−N ln(1−2γt), t ≤ 1
2γ .

Then, the Taylor expansion of g(t) yields the first three cumulants of Y to be κ1 = 2(N+γ),

κ2 = 4(N + 2γ), κ3 = 16(N + 3γ). On the other hand, for some of the approximations,

the method of moments is utilized and thus the moments of Y are needed. To this end, the

r-th moment of Y can be shown to be mr = 2re−γΓ(r +N)1F̃1(r +N ;N ; γ). Next, we

present the five approximations for deriving Pd.

5.3.1 Patnaik’s approximation

The first approximation that we present is the Patnaik’s approximation which essentially

relies on the method of moments for approximating the non-central chi-square distribution

by a scaled central chi-square distribution with its degrees of freedom and the scaling factor

determined by moment matching such that they depend upon the non-centrality parameter
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and the degrees of freedom of the non-central chi-square distribution. In particular, Patnaik

[120] proposed approximating the non-central chi-square random variable Y by a scaled

central one denoted Z1 ∼ χ2
v, as

Y ≈ ρZ1. (5.2)

The problem then is to find the scaling factor ρ and the new degree of freedom v. By

matching the first two moments of both sides of (5.2), these parameters are found to be

ρ =
2(N + 2γ)

N + γ
, v =

2(N + γ)2

N + 2γ
.

Then, the approximate detection probability, denoted P
pn
d , can be expressed as

P
pn
d = P(ρZ1 > λ)=

∫ ∞

λ/ρ
fZ1(z)dz =

1

Γ(v/2)
Γ

(
v

2
,
λ

2ρ

)
. (5.3)

Clearly, P pn
d is in terms of the upper-incomplete Gamma function (as opposed to the more

complicated generalized Marcum-Q function (5.1)) and thus may further lead to tractable

analysis (e.g., when averaging Pd over fading, shadowing, antenna/cooperative diversity, or

in other applications such as sensing-throughput tradeoff) for arbitrary sample size unlike

the CLT which is valid only for large sample sizes. The accuracy of (5.3) will be investi-

gated in Section 5.4.

5.3.2 Pearson’s approximation

Another approximation based on the method of moments is the Pearson’s approximation

which is similar to Patnaik’s approximation with an additional parameter introduced for a

possibly attaining a better accuracy than Patnaik’s approximation. In particular, Pearson’s

method is a generalization of Patnaik’s idea where Y is approximated with a linear trans-

formation of a central chi-square random variable denoted X ∼ χ2
v′ , as

Y ≈ Z2 = aX + b,

where a, b and v′ are to be determined via moment matching. By matching the first two

moments on both sides, we get [121]

Z2 =
X − v′√

2v′
Var(Y ) + E(Y ) =

N + 3γ

N + 2γ
X − 2γ2

N + 3γ
. (5.4)
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Parameter v′ is obtained by matching the third moments of Z2 (5.4) and Y as

v′ =
2(N + 2γ)3

(N + 3γ)2
.

Then, the approximate detection probability, P ps
d = P(aX + b > λ), is obtained as

P
ps
d =

1

Γ(v′/2)
Γ

(
v′

2
,

(
λ+

2γ2

N + 3γ

)
· N + 2γ

2(N + 3γ)

)
. (5.5)

Despite matching the first three moments, the final P ps
d expression has a form similar to P

pn
d

(5.3) and thus has the same computational ease. Intuitively, we expect (5.5) to be highly

accurate as it utilizes the first three exact moments.

5.3.3 Three-parameter Gamma

In this subsection, we present another approximation by using cumulants. The underly-

ing principle is to approximate the non-central chi-square distribution by a three-parameter

Gamma distribution, which is one of the classical distributions arising in the problems in-

volving heavy-tailed distributions [126]. The three-parameter Gamma distribution has been

known to have shapes similar to Weibull, Log-normal and Inverse Gaussian distribution

thus suggesting that it is well-suited for approximating diverse class of (non-Gaussian) dis-

tributions.

To this end, we utilize the three-parameter Gamma PDF to approximate the PDF of Y

as [122]

fY (y) =
(y − δ)α−1e−(y−δ)/β

βαΓ(α)
, (5.6)

where δ < y < ∞, α = 4κ32/κ
2
3, β = κ3/(2κ2) and δ = κ1−2κ22/κ3. Thus, the parameters

α, β and δ in (5.6) are readily obtained from the cumulants of Y . The approximate detection

probability, P tg
d , can hence be expressed as

P
tg
d =

∫ ∞

λ
fY (y)dy =

1

Γ(α)
Γ

(
α,

λ− δ

β

)
. (5.7)

Since both (5.7) and (5.5) utilize third-order statistics, their accuracy is expected to be

similar.

So far, we have presented all the approximations based on moment/cumulant matching.

In contrast, the next two approximations are based upon finding a rapid transformation of
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Y that approaches a Gaussian random variable. The basis is as follows. If we denote Y

as Y (N) (a function of N ), then we know Y (N) converges to a Gaussian random variable

when N → ∞. However, this condition requires a large number of samples. Alternatively,

if a transform F(·) can be found which makes F(Y ) Gaussian without the large-sample as-

sumption, that forms the basis for approximating the non-central chi-square tail probability.

Transforms of type F(x) = (ax+ b)β have been used in the literature with its variations as

discussed next.

5.3.4 Sankaran’s third approximation

Following the principle of transformation of the non-central chi-square random variable

to Gaussian as stated above, Sankaran proposed the transformation of the form F(Y ) =

(aY )β with β chosen such that the coefficient in the expansion of the third cumulants of

F(Y ) vanishes [123]. Inherently, the underlying concept of this approximation is based on

the Mann-Wald theorem which states that any continuous function of Y tends to a normal

distribution as κ1 → ∞ [124].

To this end, Sankaran proposed the following transformation of Y

X =

(
Y

κ1

)h

=

(
Y

2(N + γ)

)h

,

to be Gaussian with mean

μsk = 1 +
h(h− 1)(N + 2γ)

2(N + γ)2
− h(h− 1)(2− h)(1− 3h)(N + 2γ)2

8(N + γ)4
,

and variance

σ2
sk =

h2(N + 2γ)

(N + γ)2

[
1− (1− h)(1− 3h)

(N + 2γ)

2(N + γ)2

]
,

where

h = 1− 2(N + γ)(N + 3γ)

3(N + 2γ)2
.

As X is Gaussian distributed, the desired approximate detection probability, P sk
d , can thus

be obtained in terms of the Gaussian-Q function after some algebraic manipulations to be

P sk
d = P(Y > λ) = Q

(
λh − μsk2

h(N + γ)h

σsk2h(N + γ)h

)
. (5.8)

96



Similar to the CLT approximation, expression (5.8) avoids occurrence of the generalized

Marcum-Q function (in Pd), yet does not invoke the large-sample assumption needed for

the CLT. Thus, expression (5.8) should work for any number of samples (low to high).

5.3.5 Moschopoulos’ approximation

Another approximation utilizing the transformation of the non-central chi-square random

variable to a Gaussian random variable is the Moschopoulos’ approximation. This ap-

proach builds upon the same principle of Mann Wald’s theorem and improves the normal

approximation compared to that obtained using Sankaran by exploiting the following more

generalized transformation of Y (abusing the notation X)

X =

(
Y + b

κ1

)h

,

where h (abusing previous notations) and b are determined from the first three cumulants of

Y as h = 1− κ1κ3/(3κ
2
2) and b = κ2/(2κ1)− κ3/(4κ2). Then, X is Gaussian distributed

with mean

μmo = 1 +
h

κ1

(
(h− 1)κ2

2κ1
+ b

)
,

and variance

σ2
mo = h2

κ2
κ21

.

Then, similar to (5.8), the desired approximate detection probability, Pmo
d , is given by

Pmo
d = P(Y > λ) = Q

(
(λ+ b)h − κh1μmo

κh1σmo

)
. (5.9)

Since the detection probabilities (5.8) and (5.9) both utilize up to third-order statistics of

Y and have the same functional complexity, these approximations may possess similar

accuracy.

5.4 Numerical Results and Discussions

Section 5.3 presented five approximations for detection probability. Before moving into the

comparisons, it is important to note that for the CGA, the approximate detection probability,
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Fig. 5.1. ROC curves for various sample sizes for Pf ≤ 0.1, γ = 10 dB.

P
cga
d , can be derived following the transformation of Y to Gaussian as given in [119] to be

P
cga
d = Q

([(
λ

2(N + γ)

)1/3

+
N + 2γ

9(N + γ)2
− 1

]√
9(N + γ)2

N + 2γ

)
. (5.10)

Fig. 5.1 compares the ROC curves for the six approximations (along with the CLT approx-

imation) and the exact Pd (5.1). Note that we restrict Pf ≤ 0.1 (for example, as per the

specifications in IEEE 802.22 [27]). While the CLT is the least accurate, P cga
d (5.10) and

P
pn
d (Patnaik) almost match the exact values and become more accurate with increasing N .

The other proposed approximations tightly match the exact values.

Fig. 5.2 shows the AEs of the six approximations and of the approximation method in

[116] which uses CGA for both Pd and Pf . Here, AE is given as |P ex
d − P

app
d |, where P ex

d

is the exact (5.1) and P
app
d is the approximate. Clearly, for 4 ≤ γ dB ≤ 14, all except the

Patnaik and the two CGA approximations have AE ≤ 10−3. The average (over all SNRs)

AEs of the Pearson’s and the three-parameter Gamma are the lowest. Note that the CGA

[116] has lower AE than CGA (5.10) for γ < −1 dB. Another interesting observation

is that for low SNRs (γ ≤ −5 dB), the Patnaik approximation outperforms Sankaran’s,

98



−15 −10 −5 0 5 10 15
10−7

10−6

10−5

10−4

10−3

10−2

SNR (dB)

Ab
so

lu
te

 E
rro

r f
or

 P
d

Patnaik
Pearson
3−para. Gamma
Sankaran
Moschopoulos
CGA (5.10)
CGA [116]

Fig. 5.2. Absolute error for Pd vs. γ for Pf = 0.01, N = 5.

Moschopoulos’ and the CGA approximations.

5.5 AUC of the p-norm Detector

Recall the p-norm detector decision variable as Tp = 1/N
∑N

i=1 |yi|p. Clearly, the general

form of Tp makes the exact closed-form performance analysis of the p-norm detector in-

tractable. To demonstrate the applicability of one of the approximations, we thus consider

the p-norm detector in this section and derive its approximate AUC performance, its exact

AUC being analytically intractable.

Section 5.4 shows that P pn
d is highly accurate at low SNRs (with AE < 3 × 10−6 at

SNRs below −15 dB). For instance, IEEE 802.22 requires spectrum sensing at SNRs as

low as −22 dB [27]. We thus adopt P pn
d to derive the AUC of the p-norm detector. Similar

to [39], [40], we consider a random PU signal model [27], [47], [115]. In this model,

the PU signal samples and the AWGN samples are assumed to be si ∼ CN (0, σ2
s) and

ni ∼ CN (0, σ2
w), respectively, ∀i ∈ {1, 2, ..., N}. Recall that the exact distribution of Tp

is intractable as p > 0 is an arbitrary real number. In contrast, the Patnaik’s approximation
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for Tp|H1 and Tp|H0 yields (see Appendix C.1)

Pd =
1

Γ(θ/2)
Γ

(
θ

2
,

λ

2ψ1

)
, Pf =

1

Γ(θ/2)
Γ

(
θ

2
,

λ

2ψ0

)
, (5.11)

with the parameters expressed as

θ =
2NΓ2(p/2 + 1)

Γ(p+ 1)− Γ2(p/2 + 1)
, ψj =

Γ(p+ 1)− Γ2(p/2 + 1)

2NΓ(p/2 + 1)A
p/2
j

,

for j = 0, 1, with A0 � 1, A1 � 1/(1 + γ), and γ � σ2
s/σ

2
w. Then, by substituting (5.11)

into the definition of the AUC [27] AUC = − ∫∞
0 Pd(γ, λ)

∂Pf

∂λ dλ, and then using [103, eq.

(6.455.1)] to solve the integral, the AUC can be expressed as

AUC =

2Γ(θ)(1 + γ)pθ/42F1

(
1, θ; θ2 + 1; (1+γ)p/2

(1+γ)p/2+1

)
θΓ2(θ/2)(1 + (1 + γ)p/2)θ

. (5.12)

This new expression (5.12) helps to study the dependence of AUC on SNR, N and p as

depicted in Fig. 5.3 and Fig. 5.4.
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Fig. 5.3. AUC vs. SNR for different p and N .
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In Fig. 5.3, (5.12) is compared against the simulation results for p = 1.5 and p = 2.5.

The close match between (5.12) and the simulation results is evident, thus validating its

accuracy.

The dependence of AUC on p is depicted in Fig. 5.4 for a wide range of parameter

values: SNRs as low as −20 dB and N in the orders of 101 to 104. Clearly, it can be

seen that a 15 dB drop in SNR (from −5 dB to −20 dB) requires N to be increased by 3

orders of magnitude (101 to 104) to maintain a similar performance. Thus, (5.12) accurately

facilitates the p-norm AUC performance analysis for any SNR and any N .

5.5.1 Effect of noise variance uncertainty on AUC

In the previous analyses, we implicitly assumed a perfect knowledge of the noise variance.

However, the background noise in communication systems often comprises of thermal

noise, leaked signals from adjacent bands, aliasing due to imperfect filters, interfering trans-

missions from other users in the vicinity, noise variance estimation errors, and others [20],

[127]. This causes the actual noise power (denoted by σ2
a) to be different from the nominal
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level of noise (denoted by σ2
n) such that σ2

a ∈ [(1/ξ)σ2
n, ξσ

2
n], where ξ = 10x/10 > 1 for

x dB uncertainty in the noise power [20]. The work [20] discovered that the ED perfor-

mance degrades in presence of noise variance uncertainty. We thus seek to find the effect

of noise variance uncertainty for the case of p-norm detector.

The actual noise variance is assumed to take any of the K possible values, that is,

σ2
a ∈ {σ2

k|1 ≤ k ≤ K}, such that σ2
L = σ2

1 < σ2
2 < ... < σK

1 = σ2
H with probability

of occurrence of each σ2
k denoted by P(σ2

k) [128]. Thus, the AUC averaged over the noise

variance uncertainty, denoted by AUC, can be expressed in the form

AUC =

K∑
k=1

P(σ2
k)AUC(σk), (5.13)

where AUC(σk) can be easily derived following (5.12) to be

AUC(σk) =
2Γ(θ)

θΓ2(θ/2)
· [σp

k(σ
2
k + σ2

s)
p/2]θ/2

(σp
k + (σ2

k + σ2
s)

p/2)θ
2F1

(
1, θ;

θ

2
+ 1;

(σ2
k + σ2

s)
p/2

σp
k + (σ2

k + σ2
s)

p/2

)
.

(5.14)

The derived AUC (5.13) is used to study the effect of uncertain noise variance as shown

in Fig. 5.5 where a set of AUC vs. p curves are plotted for P(σ2
L) = 0.1,P(σ2

H) = 0.9
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(that is, K = 2). Clearly, increased levels of noise variance uncertainty severely impacts

the p-norm detection performance (about 15% and 21% degradation for 5 dB and 10 dB

uncertainty respectively, compared to the nominal case).

5.6 Conclusion

The CLT approximation for Pd, although offering computational ease, is not accurate for

small sample sizes. A previous remedy has been the CGA. This chapter investigates five

more classical approximations. As a further application, the Patnaik’s approximation is

utilized to derive a novel AUC expression of the p-norm detector. The AUC analysis is

further extended to quantify the effect of noise variance uncertainty on the p-norm detec-

tor performance. These analyses hence indicate the possibilities of potential applications

of the approximations to problems other than energy detection. This chapter thus intro-

duces these important but unnoticed approximations to the research community. Other than

detection performance analysis, these approaches may be applicable to more general perfor-

mance analysis problems involving antenna/co-operative diversity, stochastic interference

networks, relaying schemes, and others, which remain as interesting open research prob-

lems for researchers to explore further.
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Chapter 6

Spectrum Sensing Performance of

p-norm Detector in Random

Network Interference

The traditional ED’s spectrum sensing performance is known to degrade in presence a num-

ber of interferers around the sensing CR, where both the number as well as locations of the

interfering nodes from the CR are random. In such situations, the p-norm detector could

potentially yield improved spectrum sensing performance. Thus, this chapter 1 investigates

the p-norm detector performance in a more generalized setup where the received signal at

the CR is subject to the cumulative effects of path-loss, fading and random network in-

terference. Interestingly, fine tuning p in response to changes in the critical parameters

of operations, especially to the change in interferer density, is found to yield substantial

performance gains. Motivated by this and with the goal of further improving the sensing

performance, cooperative spectrum sensing is also investigated. To this end, significant

performance gains compared to the single CR based sensing are reported.

6.1 Introduction and Motivation

The near future concept of “networked everything” [2], where every wireless user (device)

is virtually connected to every other user, creates massive networks of interconnected de-
1Chapter 6 has been published in the Proceedings of IEEE International Conference on Communications

as [129].
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vices. This leads to leakage of powers from undesired transmitters in space over relatively

large distances thus causing interference to the sensing CR node [31]. Such scenarios may

typically arise in heterogeneous network settings, for example, while enabling co-existence

between IEEE 802.22 WRANs and IEEE 802.11af Super Wi-Fi in the TV white spaces

where an IEEE 802.11af based small-cell access point (AP) may receive interference from

other similar APs or even from the IEEE 802.22 based incumbents [130]. However, 802.22

and 802.11af based systems have different specifications. For example, maximum trans-

mit power of an 802.22 PU could go upto 1 kW while that for an 802.11af AP is 100mW

[31]. Thus, despite such disparate operating conditions, the CR must make correct deci-

sions on the presence/absence of vacant bands. Moreover, in addition to such disparities,

the CR must operate in the presence of a network of interferers where both the number

and locations (distances) of the interferers vary randomly. Clearly, such random network

interference impairs the spectrum sensing accuracy of the CR.

Although numerous works on ED [27], [33]–[37], [58], [59], [67] have uncovered in-

teresting insights on channel impairments and diversity configurations, the investigation of

the impact of random network interference on ED is extremely limited [74], [131], [132].

While these studies show that random interference from secondary users clearly degrades

ED’s ability to identify unused spectrum bands, [74], [131], [132] do not treat the inherent

effects of fading (which, henceforth refers to multipath/shadowing). Moreover, methods to

improve the sensing performance against the cumulative effects of fading/shadowing and

random network interference have not yet been reported.

To address these issues, we investigate the CR spectrum sensing performance in path-

loss, fading and random network interference. We consider the p-norm detector, which

being more versatile than the ED (regarding the choice of p) also outperforms the ED in

multipath-fading (Chapter 4). However, to the best of our knowledge, the performance of

p-norm detector has never been studied in presence of random network interference. In

summary, the contributions of this chapter are as follows:

(i) As the exact distribution of the p-norm detector decision variable is analytically in-

tractable, we utilize the Patnaik’s approximation developed in Chapter 5, which leads

to conditional detection probability Pd (conditioned on fading and random network

parameters) and false alarm probability Pf (conditioned on random network parame-

ters) expressions as functions of path-loss, fading and network parameters of interest.
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(ii) Further, the average Pd over fading channels is derived. The derived expression and

Pf (from (i)) are then utilized to devise semi-analytical evaluation of the detection

performance averaged over the random network model. The devised method saves

simulation run-times drastically compared to exhaustive Monte-Carlo iterations per-

formed over all random parameters (noise, fading, interferers).

(iii) Finally, the developed framework is extended to cooperative spectrum sensing to

explore further possible gains with multiple collaborating CR nodes.

The system model is introduced in Section 6.2. Approximate conditional expressions

for Pd and Pf are derived in Section 6.3. Average Pd and Pf over fading and random

network interference are derived in Section 6.4. Novel insights are discussed for single CR

based sensing in Section 6.5 and for cooperative sensing in Section 6.6 before concluding

the chapter with Section 6.7.

6.2 System Model

6.2.1 Network Model

The network model is shown in Fig. 6.1. Consider a CR located at the center of a circular

disc of radius R so that it can sense the presence/absence of PU transmission within the area

A = πR2. The PU transmitter is operating at a fixed distance r0 ≤ R from the CR node.

Within the same area A, there exist K interferers located at distances r = [r1, r2, ..., rK ]

from the sensing CR such that both K and r vary randomly. Such topological random-

ness in network interference can be modeled via spatial point processes [133]. While our

proposed semi-analytical method is not limited to any particular point process model, we

will consider the popular (homogeneous) Poisson point process (PPP) in this work [133]

(Section 6.5). The PPP model is valid when the interferers are randomly distributed over

a large area without any correlation between their locations. However, even for correlated

locations, the PPP model is known to be accurate to within 1-2 dB of the performance of

an actual LTE network [133].
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Fig. 6.1. Network Model. The total number of interferers K and the distances rk, ∀k ∈ {1, 2, ...K} are
random.

6.2.2 Link Model

Denoting the true presence and absence of the PU signal within the CR sensing region by H1

and H0, respectively, the n-th received signal sample yn, ∀n ∈ {1, 2, ..., N}, conditioned

on K, r and the PU-CR random fading channel coefficient h, can be expressed as

yn =

⎧⎨⎩ wn +
∑K

k=1 r
−α/2
k sk,n : H0,

hr
−α/2
0 sP,n + wn +

∑K
k=1 r

−α/2
k sk,n : H1,

(6.1)

where α is the path-loss exponent, sk,n ∼ CN (0, Pi) is the k-th interfering signal sample

assumed to be conditionally (on K and r) complex Gaussian with mean zero and variance

Pi, wn ∼ CN (0, σ2
w) AWGN sample and sP,n ∼ CN (0, Ps) is complex Gaussian PU

signal sample. Note that the statistical modeling of transmit signals as Gaussian is a widely

used approach [39], [47], [74], [115], [116], [131], [132], [134]. Also, we disregard the

effect of fading on the interfering signals since deep fading of the PU signal (rather than

interfering signals) is what limits the sensing performance. Without loss of generality, the

PU signal, noise and interfering signals are assumed to be mutually independent.
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6.3 Conditional Performance of the p-norm detector

As the p-norm detector decision variable Tp is a sum of arbitrary p-th powered random

variables, the distributions Tp|H1 and Tp|H0 are not amenable to an exact closed-form

analysis even in non-random (non-fading, AWGN) channels as demonstrated in Chapter 4.

Thus, to date, three distinct approaches for performance analysis of p-norm detector exist,

however, with some limitations as follows.

(i) Although highly accurate methods based on the moment-generating function, La-

guerre polynomials, and series-sum have been developed for evaluating Pd and Pf in

Chapter 4, the extension of these techniques to the random network and link model

at hand appears difficult.

(ii) The CLT approximation for the distribution of Tp [40] is only suitable for large sam-

ples (N 
 1) and does not facilitate the small-sample performance which is critical

to determine the minimum samples (to maintain low sensing times) required for at-

taining the target sensing performance [116].

(iii) Another approach based on approximating Tp by a Gamma random variable [39] does

not limit the sample size (as in CLT). However, it only considers AWGN channels

without encompassing path-loss, fading and/or random network interference.

To circumvent these limitations, we derive approximate Pd and Pf expressions to facilitate

analysis of the problem at hand.

We resort to the Patnaik’s approximation introduced in Chapter 5 to approximate the

scaled (by ρ) version of Tp by a central chi-square random variable Y with u degrees of

freedom as

Y =
1

ρ
· Tp. (6.2)

The scaling factor ρ and the degrees of freedom u can be determined by matching the first

two exact moments of Tp/ρ to those of Y . Then, the CCDFs of Y under hypotheses H0

and H1 yield Pf and Pd, respectively.

For the random signal model considered, the distribution of yn, ∀n ∈ {1, 2, ..., N},

under hypotheses H0 and H1, can be expressed as yn|H0 ∼ CN (0, v0) and yn|H1 ∼
CN (0, v1), respectively. The variables v0 and v1 denote variances conditioned on the ran-
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dom variables K, r = [r1, r2, ..., rK ] under H0, and additionally on h under H1, as

v0 = σ2
w +

K∑
k=1

Pir
−α
k

v1 = σ2
w +

K∑
k=1

Pir
−α
k + |h|2Psr

−α
0 .

(6.3)

Since yn is conditionally complex Gaussian distributed, its squared amplitude |yn|2 is ex-

ponentially distributed under each hypothesis Hj with the PDF f|yn|2(x) = 1/vje
−x/vj ,

j = {0, 1}. Since the samples are i.i.d., the mean of Tp|Hj , denoted by μj , can be ex-

pressed after interchanging the order of integration and summation as

μj =
1

N

N∑
i=1

∫ ∞

0
xp/2

1

vj
e−x/vjdx = v

p/2
j Γ

(
p

2
+ 1

)
, (6.4)

where definition of Gamma function, Γ(a) =
∫∞
0 xa−1e−xdx, is used. The variance of

Tp|Hj , denoted by var(Tp|Hj), can be obtained similarly as

var(Tp|Hj) =
vpj
N

[
Γ(p+ 1)− Γ2

(
p

2
+ 1

)]
. (6.5)

Then, by using the transformation (6.2), matching the corresponding means and variances

under each Hj , and solving the resulting equations for u and ρ|Hj denoted by ρj , j = {0, 1}
we get

u =
2NΓ2(p/2 + 1)

Γ(p+ 1)− Γ2(p/2 + 1)
, ρj = v

p/2
j g(N, p), (6.6)

where g(N, p) � [Γ(p + 1) − Γ2(p/2 + 1)]/[2NΓ(p/2 + 1)]. Then, the CCDFs of Y ,

for j = {0, 1}, can be readily derived in terms of the upper-incomplete Gamma function

Γ(a, x) =
∫∞
x ta−1e−tdt, to yield Pd and Pf , respectively, as

Pd � 1

Γ(u/2)
Γ

(
u

2
,
λ

2ρ1

)
, Pf � 1

Γ(u/2)
Γ

(
u

2
,
λ

2ρ0

)
. (6.7)

These approximate expressions (6.7) are simple enough to lend analysis in the random

network/link model of interest as will be discussed in the next section where we evaluate

the average of these metrics over the corresponding random variables.

Before proceeding to the next section, the derived expressions (6.7) are numerically

compared against the simulation results via the ROC curves (Fig. 6.2) for two p-norm de-
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Fig. 6.2. ROC curves comparing (6.7) and simulation. The p = 4, N = 100 graph is plotted for SINR =
−10 dB and p = 2.5, N = 10 is obtained with SINR = 0 dB.

tectors with different sample sizes and conditional (on K, r and h) SINRs, where SINR �

Psr
−α
0 /[σ2

w +
∑K

k=1 Pir
−α
k ]. For both cases, (6.7) and simulations match closely, thus

validating the accuracy of (6.7).

6.4 Average Detection Performance

As discussed in Section 6.3, Pf is conditioned on the number of interferers K and their

distances r while Pd is additionally conditioned on channel gain h. Thus, exhaustive simu-

lations would require averaging over realizations of the random signals, channel gain, noise

and the point process, which would result in long run-times, particularly for high interferer

densities where the number of interfering nodes can be very large. Thus, simulation-only

based evaluations are prohibitively expensive for multiple-parameter design perspectives

which require inter-relationship among various parameters (such as α, Ps, Pi, p, N and

others) with wide range of values. This motivates us to develop a semi-analytical method

for faster computation of average Pf (over K and r), denoted by P f , and average Pd,

denoted by P d (over K, r and h), next.
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Substituting ρ1 from (6.6) into the conditional Pd (6.7) and integrating over the PDF of

the squared amplitude of channel coefficient |h|2, denoted by f|h|2(x), results into

Pd|PP =
1

Γ(u/2)

∫ ∞

0
Γ

(
u

2
,

λ/[2g(N, p)]

(σ2
a + xPsr

−α
0 )p/2

)
f|h|2(x)dx, (6.8)

where we define σ2
a = σ2

w +
∑K

k=1 Pir
−α
k and the subscript PP indicates conditioning

on the point process (i.e. on K and r). Since p > 0 is a critical parameter of interest,

imposing any limitations on its range is unrealistic (for example, assuming p as an integer

or confining it to a particular interval, for ease of analysis) for achieving gains resulting

from fine tuning of p. Unfortunately, this requirement renders the integral in (6.8) virtually

intractable. However, with further algebraic manipulations, the integral can be simplified to

obtain Pd|PP as an integral over a finite support of the form

Pd|PP =

∫ π/2

0
Γ

(
u

2
,
λ/[2g(N, p)]

(σa sec θ)p

)
f|h|2

(
σ2
a tan

2 θ

Psr
−α
0

)
ξ(θ)dθ (6.9)

where we define ξ(θ) = 2σ2
a tan θ sec2 θ

Psr
−α
0 Γ(u/2)

. Note that (6.9) is a very general expression valid for

any multipath-fading, shadowing or diversity combining model with a known PDF f|h|2(x).

Moreover, it can be readily computed in software packages such as MATLAB. Finally, (6.9)

averaged over the point process yields P d as

P d = EK,r(Pd|PP), (6.10)

where EK,r(·) denotes the expectation over the random variables K and r. Thus, (6.10) only

needs to be iteratively averaged over the realizations of the point process while simulations-

only based evaluations would require additional iterative simulations over random signals,

channel gain h and noise. Note that since Pf (6.7) is independent of h, it only needs

averaging over the point process. Thus, P f is given by

P f = EK,r(Pf ). (6.11)

The main advantage of (6.10) and (6.11) is a drastic reduction in simulation time com-

pared to the direct (exhaustive) simulations over random signals, h, noise, and the point

process. For instance, for a homogeneous PPP with average interferer density β over the
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Fig. 6.3. ROC curves: semi-analytical (6.10) and (6.11) vs. simulations for 3-norm, N = 20 detector with
β = 0.0001 α = 4, Pi = 10 dB, Ps = −10 dB; and for 1.5-norm N = 10 detector with β = 0.005, α = 2.5,
Pi = 5 dB, Ps = 0 dB; m = 2, σs = 4.66 dB.

disc of radius R with the PU-CR link modeled by a Gamma-shadowed Nakagami-m chan-

nel (see Section 6.5), in order to attain a 3-digit accuracy for β = 0.0001 and β = 0.01

with R = 150, the direct simulations require 148 and 1555 seconds, respectively, while our

semi-analytical solutions only require 4 and 51 seconds, respectively (on an Intel® Core

i7™, 2.4GHz CPU). Moreover, say, for β = 0.1, the average number of interferers is in the

order of thousands (7069) and simulations could take more than one day to complete, while

our solution only takes 127 seconds.

6.5 Numerical Setup and Discussions

In this section, we present novel, interesting insights into how the p-norm detector per-

forms under the system model at hand. For numerical purpose, the interfering network is

generated via a homogeneous PPP. The PU-CR channel is modeled as a Gamma-shadowed

Nakagami-m fading channel. The CR sensing performance is illustrated via ROC curves

and the average probability of error, defined as P e = P(H1)(1 − P d) + P(H0)Pf where
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Fig. 6.4. P e vs. p for various Ps with N = 20, λ = 10, β = 0.0001, α = 4, Pi = 4 dB, σs = 8.686 dB and
m = 4.5.

P(Hj), j = {0, 1} denotes the probability of occurrence of Hj . Without loss of generality,

the P e results are obtained assuming equally-likely hypotheses.

For a homogeneous PPP with an average interferer density β, the total number of inter-

ferers K is a Poisson distributed random variable with probability mass function P(K =

k) = (βA)ke−βA/k!, while the distance rk of the k-th interferer ∀k ∈ {1, 2, ...,K}
from the sensing CR is uniformly distributed in the disc of radius R with PDF frk(x) =

2x/R2, 0 < x < R, and frk(x) = 0, x ≥ R.

The PDF of the squared envelope |h|2 for the Gamma-shadowed Nakagami-m fading

channel is given by [28]

f|h|2(x) =
2b

m+ms
2 x

m+ms
2

−1

Γ(m)Γ(ms)
Kms−m(2

√
bx) (6.12)

with b = msm/Ωs, where for a shadowing standard deviation σs, ms = 1/[exp(σ2
s) − 1]

represents the inverse shadowing severity, Ωs =
√
(ms + 1)/ms is the shadowed area

mean power, m is the Nakagami fading severity index, and Kν(·) is the modified Bessel

function of second kind of order ν.
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Fig. 6.5. P e vs. p for various interferer densities β with N = 10, λ = 10 Ps = 5 dB, Pi = 5 dB, α = 2,
σs = 6.52 dB and m = 2.5.

Without loss of generality, we normalize the distances with respect to the PU’s loca-

tion r0 = 1 and set R = 150. To validate our semi-analytical approach, ROCs obtained

using (6.10) and (6.11) are numerically compared with those generated from simulations

(Fig. 6.3) A tight match between the two clearly indicates the accuracy of our method.

The dependence of P e on p for various PU signal powers (Fig. 6.4) clearly indicates

that the ED (p = 2) is non-optimal in minimizing P e with its performance getting worse

for low PU power levels. An optimal p of 5, denoted by p∗ = 5, attains 71% lower P e than

that of ED when Ps = 10 dB. In fact, another p∗ = 5.4 detector possesses 15% lower P e

than the ED even at 10 dB lower (than that for the ED) Ps levels.

Another set of graphs (Fig. 6.5) illustrate the effect of interferer density on the choice of

optimal p, which in general, is not equal to 2 (ED). For example, with an optimal p = 4.8,

25% lower P e (than ED) is attained at β = 0.0001. More interestingly, the optimal p is

inversely proportional to β.

Although the p-norm detector performance in multipath-fading channels was well stud-

ied in Chapter 4, its performance in shadowing is not known. Motivated by this, the effect
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Fig. 6.6. ROC curves for a 3-norm, N = 10 detector for various σs dB with β = 0.0001, α = 2, Pi = 5 dB,
Ps = 0 dB and m = 2.5.

of shadowing is studied by varying the shadowing standard deviation, σs dB, as shown in

Fig. 6.6 for a typical outdoor environment (where 4 ≤ σs dB ≤ 12). Clearly, largely shad-

owed PU signals are more difficult to detect. For example, with a 6.1 dB increase in the

shadowing standard deviation, P d drops by about 23% (at Pf = 0.01). A typical solu-

tion to mitigate the effects of shadowing is to exploit cooperation among a number of CRs,

rather than having a single CR detect the PU, as discussed next.

6.6 Cooperative Spectrum Sensing Performance

In cases when the PU is heavily shadowed from the sensing CR, cooperation among multi-

ple CRs remarkably improves the sensing performance [21]. Thus, to mitigate shadowing

and more importantly, to explore further enhancements in the sensing performance, we now

allow multiple CRs to cooperate.

We now consider multiple CRs participating along with a FC to decide on the pres-

ence/absence of PU in the spectrum of interest. Since our primary interest is to evaluate

the benefits of cooperation rather than a particular fusion scheme, we do not seek any opti-
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mal fusion scheme but simply choose the M out of C fusion rule for the purpose. A more

detailed discussion of other common fusion rules can be found in [27]. For the M out of

C fusion rule, the co-operative (fused) detection probability and false alarm probability,

denoted by Qd and Qf , respectively, are [135].

Qd =

C∑
l=M

(
C

l

)
P

l
d(1− P d)

C−l; Qf =

C∑
l=M

(
C

l

)
P

l
f (1− P f )

C−l, (6.13)

where C is the total number of CRs and M is the threshold of cooperative detection such

that if the sum of individual 1-bit CR decisions (1 or 0) exceeds (or equals) M , the FC

decides in favor of H1, else it decides on H0.

Interestingly, cooperative spectrum sensing is advantageous for minimizing the overall

probability of error given by Qe = 1−Qd +Qf (Fig. 6.7). Say, for β = 0.05, an optimal

M , M∗ = 6 reduces the probability of error (Qe) by 30% as compared to that for single

CR (P e = 0.42) . Moreover, at larger interferer densities, having a higher M is better. For

example, as much as 27% reduction in Qe can be obtained when M is increased from 1 to
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8 for a relatively large interferer density (β = 0.1).

6.7 Conclusion

Spectrum sensing with p-norm detector based CR under cumulative effects of path-loss,

multipath-/shadow- fading and random network interference has been considered. Adaptive

tuning of p in response to varying PU signal power yields better performance, as compared

to the traditional ED (p = 2) Also, p can be chosen inversely to the interferer density to

reduce the impact of random network interference on the sensing performance. Increased

levels of shadow-fading degrades the p-norm performance. Additionally, cooperation fur-

ther improves the sensing performance even in the presence of random network interfer-

ence. The improvement is achieved by adapting the threshold of cooperative detection at

the FC in proportion to the interferer density. Thus, our technique can serve as a robust

tool to design, analyze and improve CR spectrum sensing performance which is pivotal for

promoting coexistence among current and next-generation wireless networks.
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Chapter 7

Conclusion and Future Work

In this thesis, several important open problems in performance analysis of two non-coherent

detectors, the ED and the p-norm detector, were considered.

7.1 Conclusion and contributions summary

• In Chapter 3, a novel asymptotic technique accurate over a wider SNR range as com-

pared to the existing asymptotic analysis valid only for high SNRs was proposed for

characterizing the ED performance. The technique offered unified analysis in fad-

ing channels with and without diversity, in cooperative networks and interference.

Furthermore, the proposed asymptotic analysis served as a unified tool to evaluate

an alternative figure of merit, the CAUC of the ED. Our proposed asymptotic also

yielded explicit expressions for the sensing gain, which is important to impart a quick

estimate of the ED performance in the operating conditions of interest.

• The lack of comprehensive analysis of the p-norm detector performance in fading,

diversity and AWGN was treated in Chapter 4. Several accurate tools were devel-

oped to overcome the limitations on the SNR range and the sample size, prevalent in

the existing analyses. The analysis was further extended to obtain novel performance

expressions for the p-norm detector in non-homogeneous and non-linear propagation

environments represented by two of the generalized channel models. These expres-

sions revealed that the ED is not the optimal detector in such environments. Further-

more, two new, non-coherent antenna diversity combining techniques were developed
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for the p-norm detector which outperformed the existing SC combining technique at

high SNRs while maintaining a performance similar to the SC at lower SNRs.

• To facilitate finite (small) sample performance of the ED and the p-norm detector,

five classical approximations were first introduced for ED performance, in Chapter 5.

The approximations were compared against the CLT approximation and the only ex-

isting finite sample approximation based on the CGA. The proposed approximations,

which yielded simple expressions for the detection probability, were found to tightly

match the exact detection probability expression based on the generalized Marcum-

Q function. One of the proposed approximation was further applied to derive novel,

finite sample AUC expression for the p-norm detector. The expression was found to

be versatile for any number of samples (low to high). As a further application, the

AUC analysis was extended to study the effect of noise variance uncertainty on the

p-norm detector performance.

• To address performance degradation in presence of random network interference,

where both the number as well as locations of the interfering nodes, are random,

the p-norm detector was considered in Chapter 6. Furthermore, the comprehensive

performance of spectrum sensing in an environment cumulatively affected by path-

loss, fading and random network interference was lacking previously. In Chapter 6,

these two issues were treated by devising a semi-analytical, unified framework for de-

tection performance analysis in path-loss, fading and random network interference,

without any restrictions on the fading or the random network model. Our devised

semi-analytical framework was exploited to quantify significant performance gains

(compared to ED) achievable by fine tuning the parameter p in response to the in-

terferer density. Furthermore, the framework was extended to cooperative spectrum

sensing, which yielded additional performance gains compared to single CR based

spectrum sensing.

For completeness, the contributions are summarized in Table 7.1 below.
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TABLE 7.1
SUMMARY OF CONTRIBUTIONS FOR CHAPTERS 3 - 6

Chapter Contributions Applied to

3 (a) Novel approximate f(β) ED
(b) Unified asymptotic analysis Unknown deterministic signal
(c) High accuracy across Nakagami-m/q
wider SNR range MRC, EGC, SC
(d) Reveals sensing gain Amplify-and-forward relays

Interference

4 (a) Novel exact analytical framework p-norm detector
(b) Unified exact analysis Random signal
(c) Generalized fading channels κ-μ, α-μ
(d) Analysis in diversity pLC (new), pLS (new), MRC, SC

5 (a) Five accurate, finite-sample ED
approximations for p-norm detector
non-central chi-square Noise variance uncertainty
(b) Simple closed-form for Pd effect on p-norm detector AUC
with reduced functional complexity
(compared to Marcum-Q)
(c) Novel, compact AUC (p-norm)

6 (a) Comprehensive, novel, p-norm detector
semi-analytical framework under Random signal
cumulative effects of random Gamma-shadowed Nakagami-m
network interference, path-loss Log-distance path-loss model
fading and shadowing Poisson field of interferers
(b) Cooperative spectrum sensing
(c) Significant performance boost
by fine tuning p (compared to ED)
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7.2 Impact of the study

This thesis study developed several novel analytical frameworks for the spectrum sensing

performance characterization of the low-cost, low-complexity detectors such as ED and the

p-norm detector which are practically implementable detectors of interest to the wireless re-

search community. The thesis primarily contributed in devising novel analytical techniques

for quantifying and characterizing the spectrum sensing performance of CR networks. The

quantification of the sensing performance of such detectors in fading channels, noise and

interference uncertainty is of utmost importance to any system designer for enabling the

overall concept of dynamic spectrum access using CR networks. Ultimately, the techniques

developed in this research will serve for the design and analysis of efficient spectrum sens-

ing systems for dynamic spectrum access in next generation wireless networks. Next, we

present two example usage scenarios where the concepts developed in this this work can be

of critical importance.

Example 1: Application to sensing-throughput tradeoff in spectrum sensing

To this end, one direct application of our devised methods for characterizing the reliability

of spectrum sensing is in efficient resource utilization for CR networks. Our devised analyt-

ical methods are pivotal to evaluate the performance metrics such as Pd, Pf , Pe and AUC,

which directly reflect the reliability of spectrum sensing. The spectrum sensing reliability,

in turn, determines the duration of the sensing and transmission phases of the CR device.

For instance, let us consider a scenario in a TDMA CR network where a specific time slot

is allocated to each CR such that within this slot, a CR needs to: (i) sense the channel and

(ii) transmit in case the channel is vacant. The sensing and transmission phases are mutu-

ally exclusive with the length of the sensing phase affecting the transmission phase such

that a longer sensing time would result in a reduced transmission time and vice versa. This

gives rise to the fundamental sensing-throughput tradeoff in CR networks [47]. In such

situation, if the sensing reliability (for example, Pd) is low (say, due to operation in low

SNRs) the CR may have to sense the channel for a longer period in order to collect enough

samples for the sensing reliability to increase to an acceptable margin. Sensing for a longer

period, however, reduces the allowable transmission period thus negatively impacting the

CR throughput (due to increased delay in start of a transmission). On the other hand, if
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the Pd for a given channel is sufficiently high (meeting the a pre-specified requirement), it

allows reduction of the channel sensing period which gives the CR more time to transmit

thus increasing the CR throughput. Thus, the sensing-throughput tradeoff analysis is one of

the most critical applications where the contributions of this thesis can impact crucially.

Example 2: Application to energy efficient spectrum sensing

Another example where the reliability of spectrum sensing is critical, is while determining

the energy consumption of the CR device. It is important to note that the increase/decrease

of sensing phase duration has a more dominant impact (than the transmission phase) on

the increase/decrease of the CR device’s energy consumption since the sensing phase con-

sumes more energy (up to 50% more) than the transmission phase [136]. To this end, one

practical usage scenario where spectrum sensing could impact critically is the energy ef-

ficient opportunistic communication. In practice, the PU often switches from active (ON)

to idle (OFF) states and vice versa over time which may be regarded as the PU activity.

When the impact of PU activity is considered on spectrum sensing, the ON/OFF duration

of the PU plays a critical role in determining the frequency (periodicity) of the CR sensing

phase, which directly affects the energy consumed by the CR. The ON/OFF behavior of

the PU could be estimated by the CR based on creation and maintenance of a database of

the correctly detected ON instants of the PU in the channel of interest. Such database re-

flects the PU activity at the CR based on which the CR may be able to increase/decrease the

frequency (periodicity) of its sensing phase whenever the PU is active for a longer/shorter

time. In case the PU is active very sparsely, the sensing database would reflect such sparse

PU behavior and thus would allow the CR to decrease the sensing periodicity and increase

the transmission periodicity. Reduction of the sensing periodicity thus reduces the CR en-

ergy consumption. Hence, our devised analytical frameworks which contribute in creating

and maintaining such PU activity database via spectrum sensing, enable the computation

and establishment of energy-throughput tradeoff regions, which eventually can be used for

optimizing the CR device’s energy efficiency.

Before concluding the chapter, we outline some of the interesting open problems related

to the thesis in the next section, which can be of interest in future research.

122



Sort and Censor

XN Xi X1

XN-T2 XN-T1

Fig. 7.1. TMOSCFAR detector principle.

7.3 Future work

• The approximate PDF proposed in Chapter 3 was explicitly used for asymptotic

analysing of ED performance only. However, other potential applications of the tech-

nique could include evaluation and analysis of other crucial metrics to characterize

wireless system performance. For example, applications of the proposed technique

for analyzing the symbol error rate, outage probability, or channel capacity of sys-

tems deploying space-time coding and modulations, MIMO, antenna/relay selection

schemes, and numerous other techniques are of high interest to wireless communica-

tion researchers and engineers.

• In this thesis, the decision variables of both the ED and the p-norm detector were con-

structed by utilizing all N received signal samples X1, X2, ..., XN . However, in pres-

ence of noise variance or interference uncertainty, the quality of the received samples

may vary across the sample space. Thus, as shown in Fig. 7.1, the received signal

samples may be ordered from smallest to largest in magnitude as |X1| < |X2| <
... < |XN | and trimmed from both upper end (discard the largest T2 samples) and

lower end (discard the smallest T1 samples) such that the resulting sample space is a

subset of the original sample space, but with more reliable samples. These samples

are then fed to the ED or the p-norm detector to yield the final decision which may

be more robust to noise and interference uncertainty. This detector can be referred to

as the trimmed-mean ordered statistics constant false alarm rate (TMOSCFAR) de-

tector. The TMOSCFAR has been traditionally utilized in radar communications to

yield improved target detection performance [137]. However, its performance in the

context of spectrum sensing for broadband wireless networks remains unexplored.
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Appendix A

Derivations for Chapter 3

A.1 Derivation of P
asy

md (3.16)

Substituting the contour integral representation for the generalized Marcum-Q function

given by [68, eq. (1)] into (3.3), we get

Pmd = 1− e−
λ
2

2πj

∮
Δ
Mγ

(
1− 1

z

)
e

λ
2
z

zN (1− z)
dz, (A-1)

where Δ is a circular contour of radius r such that 0 < r < 1, and j denotes the imaginary

unit. The MGF of γ, Mγ(s), in (A-1) can be expressed in terms of the MGF of β as

Mγ(s) = Mβ(sγ). Then, substituting the MGF Mapp
β (s) from (3.14) into the resulting

expression, and following some algebraic manipulations, we get

P
asy
md = 1− aΓ(t+ 1)e−

λ
2

2πj

∮
Δ
[g1(z) + g2(z)]dz, (A-2)

where gi(z) = 1
(θi+γ)t+1

eλz/2

(z−ηi)t+1zN−t−1(1−z)
, for i = 1, 2, with ηi � γ/(θi + γ). As gi(z),

for i = 1, 2, may contain a pole of order (N − t − 1) at z = 0 (for N > t + 1) and a pole

of order (t + 1) at z = ηi (see Fig. A.1), in order to evaluate the contour integral in (A-2),

we need the residues of gi(z) at these poles. Thus, two cases arise as follows.

Case I: N > t+ 1

In this case, the function gi(z), i = 1, 2, contains a (t + 1)-th ordered pole at z = ηi and a

(N − t− 1)-th ordered pole at z = 0.
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0 ηi
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1

Fig. A.1. Possible poles of gi(z), i = 1, 2, in the z-plane.

Case II: N ≤ t+ 1

For this case, gi(z), i = 1, 2, does not have any pole at z = 0, and only the pole at z = ηi

contributes to the contour integral.

The two cases thus lead to P
asy
md of the form

P
asy
md =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− aΓ(t+ 1)e−

λ
2
∑2

i=1 Res[gi(z); ηi, t+ 1]

+Res[gi(z); 0, N − t− 1], for N > t+ 1

1− aΓ(t+ 1)e−
λ
2
∑2

i=1 Res[gi(z); ηi, t+ 1], for N ≤ t+ 1

(A-3)

where the notation Res[g(z); z0, p] denotes the residue of the function g(z) at pole z = z0

of order p. This residue is defined as [138]

Res[g(z); z0, p] �
1

(p− 1)!

dp−1

dzp−1
[g(z)(z − z0)

p]

∣∣∣∣
z=z0

. (A-4)

The residue Res(gi; ηi, t + 1), i = 1, 2, can thus be expressed in closed-form as (see Ap-

pendix A.2)

Res[gi(z); ηi, t+ 1] =
1

(θi + γ)t+1t!

t∑
k=0

(
t

k

)
ψ(k)
ηi φ(t−k)

ηi , (A-5)

where ψ(k)
ηi is the k-th order derivative of ψ(z) � 1/(zN−t−1) with respect to z, and φ

(t−k)
ηi

is the (t− k)-th order derivative of φ(z) � eλz/2/(1− z) with respect to z, both evaluated

at z = ηi, which are given by

ψ(k)
ηi =

(−1)k

ηN−t−1+k
i

k∏
j=1

(N − t+ j − 2), (A-6)

φ(t−k)
ηi = e

λ
2
ηi

n∑
ν=0

(λ/2)n−ν

(1− ηi)ν+1

n!

(n− ν)!
. (A-7)
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By following the steps similar to those used in deriving Res[gi(z); ηi, t + 1], the residue

term Res[gi(z); 0, N − t − 1], i = 1, 2, can be obtained to be (details omitted for the sake

of brevity)

Res(gi; 0, N − t− 1) =
1

(θi + γ)t+1(N − t− 2)!

N−t−2∑
k=0

(
N − t− 2

k

)
χ
(k)
0 φ

(N−t−k−2)
0 ,

(A-8)

where χ
(k)
0 is the k-th order derivative of χ(z) � 1/(z − ηi)

t+1 with respect to z,

evaluated at z = 0 and can be derived to be

χ
(k)
0 =

(−1)−(t+1)

ηt+k+1
i

k∏
j=1

(t+ j), (A-9)

and φ
(N−t−k−2)
0 is the same as φ(t−k)

ηi with (t− k) and ηi replaced by (N − t− k− 2) and

0, respectively. Then, using (A-5)-(A-9) in (A-3) results in (3.16).

A.2 Derivation of (A-5)

By applying the definition of the residue given in (A-4), Res[gi(z); ηi, t+ 1], i = 1, 2, can

be expressed as

Res[gi(z); ηi, t+ 1] =
1

(θi + γ)t+1t!

dt

dzt
[ψ(z)φ(z)]

∣∣∣∣
z=ηi

. (A-10)

Then, utilizing the general Leibniz rule for finding the t-th order derivative of a product

[26, eq. (3.3.8)] on the right-hand side of (A-10), followed by evaluating the resulting

expression at z = ηi gives

dt

dzt
[ψ(z)φ(z)]

∣∣∣∣
z=ηi

=

t∑
k=0

(
t

k

)
ψ(k)
ηi φ(t−k)

ηi . (A-11)

Thus, substituting (A-11) into (A-10) yields (A-5). The coefficients ψ(k)
ηi of (A-11) can be

derived by mathematical induction to be as in (A-6). For deriving φ
(t−k)
ηi , the Leibniz rule

can be re-applied after expressing φ(z) as a product of the terms eλz/2 and 1/(1 − z) and

then, following some algebraic manipulations, to yield (A-7).
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A.3 Derivation of A′
asy (3.35)

By substituting (3.6) into (3.34), the average CAUC over f app(β) can be expressed as

A′asy = 1− a

N−1∑
k=0

γk

2kk!
I1 + a

N−1∑
k=1−N

Γ(N + k)

2N+kΓ(N)
I2, (A-12)

where I1 is defined as

I1 �
2∑

i=1

∫ ∞

0
βt+ke−(θi+

γ
2
)βdβ =

2∑
i=1

Γ(t+ k + 1)

(θi + γ/2)t+k+1
, (A-13)

where the definition of Gamma function Γ(·) is used to solve the integral, and I2 is defined

as

I2�
2∑

i=1

∫ ∞

0
βt

1F̃1

(
N + k; k + 1;

γ

2
β

)
e−(θi+γ)βdβ=

2∑
i=1

I2,i. (A-14)

To solve the integral I2,i, i = 1, 2, in (A-14), we proceed as follows. Given the gener-

alized hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z), the corresponding regularized

hypergeometric function is given by [139] (with the abuse of notation) as

pF̃q(a1, ..., ap; b1, ..., bq; z) =
pFq(a1, ..., ap; b1, ..., bq; z)

Γ(b1)...Γ(bq)

=
∞∑
v=0

∏p
j=1(aj)v z

v

v!
∏q

j=1 Γ(v + bj)
,

(A-15)

where (aj)v = Γ(aj + v)/Γ(aj) is the Pochhammer’s symbol. Then, using (A-15) with

p = q = 1 and substituting the resulting series expression into I2,i, we get I2,i = 2F̃1

(
t+

1, k + N ; k + 1; γ
2(θi+γ)

)
/(γ + θi)

t+1, where the definition of Gamma function Γ(·) is

applied to solve the resulting integral followed by the use of (A-15) for p = 2, q = 1. Thus,

substituting I2,i into (A-14) gives

I2 =
2∑

i=1

1

(γ + θi)t+1 2
F̃1

(
t+ 1, k +N ; k + 1;

γ

2(θi + γ)

)
. (A-16)

Then, substituting (A-13) and (A-16) into (A-12) yields A′asy (3.35).
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Appendix B

Gamma and CLT approximations for

Chapter 4

B.1 Derivation of Pd and Pf for Gamma approximation

If we assume the decision variable Tp to be Gamma distributed, the detection probabil-

ity (Pd,Gam) and false alarm probability (Pf,Gam) can be derived by matching the first two

moments of Tp|H1 and Tp|H0, respectively, to those of the Gamma random variable, thus

yielding

Pd,Gam = 1− G(λ/θ1, k1)
Γ(k1)

,

Pf,Gam = 1− G(λ/θ0, k0)
Γ(k0)

,

(B-1)

where the parameters can be derived to be

k0 =
NΓ2(p/2 + 1)

Γ(p+ 1)− Γ2(p/2 + 1)
,

θ0 =
Γ(p+ 1)− Γ2(p/2 + 1)]

NΓ(p/2 + 1)
, and

k1 = k0,

θ1 = (1 + γ)p/2θ0.

(B-2)
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B.2 Derivation of Pd and Pf for CLT approximation

If number of samples is very large (N 
 1), the CLT may be invoked such that Tp is

Gaussian distributed with mean μ0 = Γ(p/2 + 1) and variance σ2
0 = Γ(p+1)−Γ2(p/2+1)

N

under H0, or with mean μ1 = (1 + γ)p/2μ0 and variance σ2
1 = (1 + γ)pσ2

0 under H1. It

is straightforward to show that the CDF of Tp under both hypotheses can be expressed in

terms of the Gaussian-Q function Q(x) = (1/
√
2π)

∫∞
x e−t2/2dt. Then, the detection and

false alarm probabilities utilizing the CLT approximation can be easily expressed as

Pd,CLT = Q

(
λ− μ1

σ1

)
,

Pf,CLT = Q

(
λ− μ0

σ0

)
.

(B-3)
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Appendix C

Derivations for Chapter 5

C.1 Derivation of (5.11)

We have yi|H0 ∼ CN (0, σ2
w), and yi|H1 ∼ CN (0, σ2

w(1 + γ)). Thus, |yi|2 normalized

with respect to σ2
w under hypothesis Hj , |yi|2/σ2

w |Hj , is exponentially distributed with

parameter Aj , j = 0, 1. Since the samples are i.i.d., the mean of Tp|Hj , denoted Mj , can

be expressed as (after interchanging the order of integration and summation)

Mj =
1

N

N∑
i=1

∫ ∞

0
xp/2e−Ajxdx = Γ(p/2 + 1)/A

p/2
j .

Similarly, the variance of Tp|Hj , denoted by σ2
j , can be obtained to be

σ2
j =

Γ(p+ 1)− Γ2
(
p/2 + 1

)
NAp

j

.

Then, use of the transformation (5.2), matching the corresponding means and variances,

and solving for θ and ψj yields (5.11).
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