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Abstract

Learning concepts from studying concept exemplars is an important type of inductive
learning that has been studied intensively from both cognitive science and artificial
intelligence perspectives. Emipirical studies have identified many factors that affect leaming
performance of human concept learning. These include the orders in which training
exemplars are encountered during learning, the analytic versus nonanalytic learning
stzaiegies, and the interaction between the two. However, these issues have not been
investigated much from a machine learning perspective, and there is no computer model
that can account for these effects. This research presents a computational model called
LANA that simuiates the empirical results on analytic and nonanalytic learning strategies
and their interaction with exemplar order. The LANA simulation has identified a small set
of basic processes as critical for simulating the effects of different learning strategies. Key
aspects of the cognitive simulation approach, examples of other concept lcaming

simulations, and the behavior of general learning systems are also discussed.
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Chapter 1

Introduction

Learning from past experience is a fundamental element of hurnan intelligence. The
study of learning has a long history of research from both the cognitive psychology and
artificial intelligence (A.L) perspectives. These fields of studies attempt to understand the
key mechanisms underlying basic intelligence behavior and both address a similar set of
issues. One of the most studied learning behaviors is concept learning. The main idea of
concept learning from examples is induction, i.c., the creation of general information from

a set of specific instances that describes these instances [Michalski, Carbonell, and

Mitchell, 1983].

1.1. Cognitive Psychology Perspective

In cognitive psychology, concept learning is often called category learning. The
landmark of category learning research was best marked by the work of Bruner,
Goodnow, and Austin [1956]. They pointed out that learning and utilizing categories
represent one of the most elementary and general forms of cognition by which we adjust to
our environment. They identified the following reasons as to why caiegory learning is so
fundamental to human thinking: (a) by categorizing discriminably different events as
equivalent, we reduce the complexity of our environment; (b) categorizing is the means by
which objects of the world about us are identified; identifying something is in fact an act of
“placing” it in an equivalence class; (c) established categories provide abstract general
properties that may cover future encounters and reduce the necessity of constant learning:
(d} established categories allow inferences to be drawn about the properties of the
individual members by virtue of knowing their membership; and (¢) categorizing allows

the description of relations among groups of things withoui referencing individual



members. We map and give meaning to our world by relating classes of objects or events
rather than by relating the individuals. Since human thinking can be viewed as a
computational process, similar arguments about the utilization of categorization processes
can be made with respect to machines.

From z cognitive psychology perspective, the key issues of category learning concern
identifying the nature of the category information abstracted from studying individual
category members and the processes that create and use this information. Experimental
evidence has been reported that both supports and disconfirms existing models that differ
fundamentally in their characterization of what is learned from exposure to category
exemplars and how it is used to make judgements on novel items. So fer, there is no single
model that accounts for all the empirical results obtained. Besides, there are certain
empirical findings about the factors affecting performance of human concept learning that
have not yet been accounted for by any existing model. These factors include, for
example, the orders in which training exemplars are encountered during learning, the
analytic versus nonanalytic learning strategies, and the interaction between the two.
Computational models are yet to be developed to account for these basic results.

As researchers gain greater umderstanding in both human and machine learning
behaviors, they found that certain basic processing mechanisms and constraints believed to
govern human learning also underlie many machine learning systems [Medin,
Wattenmaker, and Michalski, 1987]. For instance, some researchers have discovered that
::cinans have difficulty learning disjunctive concept descriptions [e.g., Bruner et al., 1956];
similarly, algorithms for learning disjunctive concepts are rarely as straightforward as their
conjunctive counterparts [Michalski et al., 1983). Common mechanisms believed to
associate with human learning, such as similarity-based pattern matching, retrieval of past
experiences, generalization, discrimination, and refinement of existing knowledge, are also

found to underlie most machine learning systems in one form or another. This includes



systems under the framework of production-based learning [Klahr, Langley, and Neches,
1987], case-based learning [Kolodner, 1983], autcrated knowledge acquisition [Michalski
et al., 1983], and so on. Thus, advances in computational models of human concept

learning have profound implications to theories of both machine and human learning.

1.2. Artificial Intelligence Perspective

Since the early days of A.L, learning has been held as a critical element of human
intelligence to achieve for machines. From the historical view point, machine learning went
through three major periods [Michalski et al., 1983]: neural modelling and decision-
theoretic techniques, symbolic concept learning, and knowledge intensive leamning.

The symbolic machine learning paradigm has intimate relations to the research on
descriptive and process models of human concept learning. However, parallel and
distributed processing and the connectionist approach present additional computational
paradigms that bridge the research focuses of cognitive psychologists interested in process
models, and artificial intelligence researchers interested in building learning systems that
better match certain human learning abilities. In symbolic concept learning, systems learn
by constructing a symbolic representation of a given set of concepts through the experience
of individual examples and counter-examples of these concepts. Their representations are
iypically in the form of logical expressions, a decision tree, production rules, or a semantic
network. The attributes or predicates rclevant to the concept are explicitly provided for
these systems. Some of the landmark works within symbolic concept learning paradigm
include, Winston's [1975] influential ARCH system in learning structural descriptions,
Michalski's [1980] inductive learning algorithm INDUCE, and Quinlan's [1979]
discriminative learning program ID3.

Given any finite set of experiences, there are infinite inductive generalizations :hat

may describe these experiences [Michalski et al., 1983). The question of how to constrain



this virtually unlimited set of generalizations is at the core of concept learning from
examples. Computationally, concept learning is essentially a constrained search problem
[Mitchell, 1982]. The search space contains all possible states representing alternative
concept descriptions (or hypotheses). The initial state corresponds to the observed
descriptions of a certain example. As examples are learned, inductive operators, such as
generalization and discrimination, move the system from one state to another. The goal
state of the search is the "best" concept to be learned with respect to certain predefined
criteria, and the task of concept learning is to identify such a goal state in this space within
certain computational resource constraints.

According to another scheme, machine learning research can also be organized
around the following three paradigms: theoretical analysis, cognitive simulation, and
domain-specific studies [Michalski et al., 1983]. Cognitive simulation involves developing
computstional models to investigate the underlying mechanisms contributing to human
intelligence behaviors in order to build learning machines. A cognitive simulation is a
learning program with a set of computational processes similar to those believed to underlie
human learning. Although mary research efforts primarily belong to one of the three areas,
progress in one often benefits the research in the others. Specifically, to investigate the
space of possible learning methods, a reasonable starting point may be to consider certain
known examples of human learning behavior [Michalski et al., 1983]. Similarly,
psychological investigations of human learning have been advanced by the dev~lopment of

A.I. medels and algorithms.

1.3. Overview of LANA Simulatiom
This research proposes and verifies a computational model, LANAL, that simulatss

certain empirical results of human category learning. Specifically, the research has

1 LANA stands for Leaming Analytically and NonAnalytically.



explored and identified alternative models that account for the effects of exemplar order,
learning strategy, and the interactions between the two on concept learning performance.
Elio and Anderson [1984] found that category learning proceeds better if the leamer first
studies a sample with only typical exemplars, and gradually'encounters the less typical
category exemplars, than if a learner is trained on samples that are representative, i.c.,
containing typical as well as non-typical exemplars. However, this result interacts with the
learning strategies; if the leamer actively forms rules and tests hypotheses about category
membership during learning, the opposite trend occurs, and learning is better with
representative samples.

The LANA simulation has implications beyond accounting for these results. First,
it proposes computational processes underlying analytic and nonanalytic leaming, which
to date have only descriptive accounts. Secondly, it investigates the exemplar order
effects on concept learning. Thirdly, it addresses a number of issues related to rule-based
generalization learning and case-based learning. Fourthly, it looks at the key aspects of
cognitive modelling.

The LANA simulation approach is essentially a constrained search for valid model(s)
in a space of all possible models. One effective way to constrain the search is to start by
investigating a small but plausible set of processing assumptions. The model validation is
based on matching behaviors and evaluating the psychological plausibility of model
processes.

The preliminary search covered a space with a few hundred models. Identified
through this exercise was a small set of architectural assumptions, a set of processes, and
associated parameter settings that define a family of models that can account for the
empirical results. LANA's analytic and nonanalytic learning strategies were simulated by
alternating some critical aspects of a few pfocesses. Specifically, nonanalytic learning

trends were simulated through requiring: (a) partial match for all pattern matching; (b) a



higher strength threshold as a generalization retrieval constraint; (c) items to compete with
generalizations on an equal basis in the pattern selection process; and (d) frequently used
items being “"permanently remembered" in the form of generalizations. With almost the
opposite parameter settings, analytic learning trends were achieved by requiring: (a) full
match between a presented item and stored generalizations; (b) a relatively lower strength
threshold as a generalization retrieval constraint; (C) items not to compete with
generalizations in the pattern selection process; and (d) frequentiy-used items not being
remembered permanently as generalizations. These results represent anotker discovery of
this research.

Still another important aspect of this work, which has not been studied much in the
literature, was the exemplar order cffects. Different presentation orders of training
examples have been found affecting the learning behavior of both humans [e.g., Elio and
Anderson, 1981, 1984] and machines [e.g., Lebowitz, 1986}, especially for incremental
learning where examples encountered earlier may have significant impact on what can be
learned next. Therefore, it is important to understand, through simulation, the effects of
exemplar orders on the evolution of category knowledge. In this regard, thiis work has
direct implications to computer assisted instruction (CAI) as well as human education.

Finally, to test LANA's generality, it has been applied to duplicating 6ne other
concept leaming result by Hayes-Roth and Hayes-Roth [1977] that supported a feature-set
model.

1.4. Thesis Organization

The remaining chapters are organized as follow. Chapter 2 reviews selected empirical
results on category learning, A.L research on concept learning, and cognitive simulation
paradigm and systems. Chapter 3 outlines the LANA simulation methods and architectural
assumptions. Chapter 4 presents the details of the LANA framework, followed by chapter



5 that provides information about implementation. Chapter 6 presents LANA's
performance data in accounting for the effects of strategy, exemplar order, and their
interactions. Chapter 7 discusses some remaining issues. The thesis closes by discussing

relations to other work and areas for future research.



Chapter 2

Literature Review

2.1. Introduction

It is a ubiquitous phenomenon that humans group objects, events and experiences in
the world into categories. To understand the underlying principles that govern category
learning of natural as well as artificial categories, various empirical studies have been
performed and many descriptive models have been proposed. These include: (a) Katz and
Postal's [1964] classical thzory of concepts specified by necessary and sufficient features,
(b) Rosch and Mervis's {1975] family resemblance theory, (c) the notion of category
validity [Rosch and Mervis, 1975] defined as the conditional probability that an objects has
certain attribute(s), given that it belongs to the category, (d) the notion of cue validity
[Tversky, 1977] defined as the conditional probability that an object is in a category, given
that it has certain attribute(s) or cue(s) associated with the category, and (¢) Murphy and
Medin's [1985] conceptual coherence. Various category learning models have been
constructed to accou ‘1 for empirical results, including prototype models [e.g., Posner and
Keele, 1968], instance models [e.g., Medin and Schaffer, 1978], and feature-set models
[e.g., Hayes-Roth and Hayes-Roth, 1977]. They differ chiefly on their assumptions about
the nature of representations of category information abstracted and the processes acting on
them. So far, empirical evidence has been found both for and against these models.

Parallel to these investigations, there has been concept leamning research in machine
learning and A L, some of which have been inspired by the results from empirical studies.
Research approaches such as the case-based learning [Kolodner, 1983], production-based
learning [Klahr, Langley, and Neches, 1987], and knowledge-based expert problem-
solving [Jackson, 1986) are closely related to their empirical counterparts.

Computational modelling of human leaming behaviors through computer simulations

combines the initiatives of both the empirical studies and the AL research. In the last few

8



decades, cognitive simulation has led to the development of a wide range of approaches and
systems, including EPAM [Feigenbaum, 1963], ACT [Anderson et al., 1979], and
MINERVA and MINERVA 2 [Hintzman et al., 1980; Hintzman, 1986}, and INDUCE and
PATCH [Medin et al., 1987]. This research falls into the cognitive simulation category.
The rest of the chapter contains three sections. Section 2 introduces the empirical
paradigm of human category learning. It reviews the key experimental results, altemnative
models, and the descriptive characteristics of analytic and nonanalytic concept learning
strategies. It also describes the empirical results by Elic. ::nd Anderson [1984] that LANA
simulates. Secticn 3 reviews the cognitive simulation methodology and describes five
selected simulation systems and their applications to concept learning tasks. It also
discusses the mechanisms common to other concept learning systems. The final section is

a summary of the entire chapter.

2.2. Category Learning Theories and Empirical Findings
To facilitate understanding of the empirical research in the area, the general paradigm
for empirical studies of concept learning is briefly introduced first.

2.2.1. Empirical Paradigms for Category Learning

Most empirical studies of human leaming involve conducting controlled experiments
with either carefully designed artificial or natural categories. Artificial categories may
include instances ranging from simple geometric patterns to fairly complicated artificial
grammars or human faces. Categories are constructed as meaningful collections of
individual instances! . Some categories may contain subcategory structures, item types, or

prototypes.

1 We use the terms instance, exemplar, and item inter-changeably to mean cateJory member.



Category members are often represented as a discrete set of attributes, normally with
discrete values. For example, a typical member canary of the natural category bird may be
represented as (flies, sings, has feathers, lays eggs, and builds nest in trees), which has
five attributes!, each having binary or multiple values.

A typical experiment involves a learning or training phase, followed (immediately or
with a delay) by a classification or transfer test phase which contains some novel
exemplars. During learning, learners are presented with category exemplars to study and to
classify into available categories. They are given feedback as to whether a judgment is
correct or incorrect. During the test phase, learners are given a classification or recognition
task over both previously-seen exemplars and novel exemplars. Accuracy, confidence
rating, typicality rating, reaction time, and written protocol are the usual dependent
measures. It is the performance on the carefully constructed test items that supports

hypotheses about the underlying representations and processes.

2.2.2. Theories of Category Learning

The primary objective of category learning theories is to determine, and hence difer
in their assumptions about, the following: (a) the nature of internal category representations
constructed during learning, (b) how this representation is stored, retrieved and applied to
classify novel instances, and (c) what kind of underlying processes are responsible for (a)
and (b). Category learning models can be distinguished into three major types [Anderson,
Kline, and Beasley, 1979]: prototype, instance-based, and feature-set models.

Prototype models. Prototype models assert that a single representation of the
category is formed that represents some kind of a central tendency or prototype of all the
category exemplars seen. Other instances belong to the category with varying degrees

depending on how similar they are to the category prototype. According to prototype

1 We will interchangeably use the terms dimension, property, and feature to mean attribute.
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models, classification of a new or old instance is based on the distance between the instance
and the category prototype, where the distance is defined by Posner and Keele [1968] as
the number of transformation necessary to convert the instance into the category prototype.

Posner and Keele [1968] conducted several experiments that provided cvidence for
prototype formation. They defined categories by randomly choosing their prototypes first,
and then systematically distorted these prototypes to create other category members. After
learning these categories, learners were given a transfer task that contained novel patterns.
The main finding was that the prototype pattern, which was never presented, had the best
classification and recognition ratings. Other results indicated that never-studied prototypes
were sometimes better classified than much-studied instances [Posner and Keele, 1970] .

A similar line of research investigating the formation of a category prototype was
conducted by Franks and Bransford [1971). They found an inverse relationship between
recognition ratings and the instances' transformational distance from the prototype, with the
prototype rectiving the highest recognition rating. Therefore, they concluded that the
representation of visual pattern schema consisted of a prototype and a set of
transformations.

Since Posner and Keele's work, the prototype theory spawned a considerable number
of subsequent experiments aimed at confirming or extending the theory. These included
studies by Posner and Keele [1970], Read [1972], and Rosch and Mervis [i975).

The notion of prototypicality is intuitive in that it captures the characteristics
commonly seen in natural categories. This notion has been used in A.L to build effective
knowledge-based systems [Aikins, 1983]. However, this does not necessarily mean that
people form prototypes as category representations. In fact, there exist some major
shortcomings for prototype models. For example, prototype models cannot explain the
effects of frequency of instances exposure demonstrated by Hayes-Roth and Hayes-Roth

[1977), discussed in more detail below. Another shortcoming is that prototype models
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assume that all attributes are equally salient and attribute information is combined in an
additive (independent-cue) fashion. This independent-cue assumption makes the complete
learning of linearly-nonseparabie catégories impossible [Medin and Schaffer, 1978].
Anderson et al. [1979] pointed out that prototype models seem to over-simplify the
complexity of natural categories in the sense that many natural categories have complicated
subcategory struc.ares which can not be captured by a single prototype.

Instance-based Model. In contrast to prototype models, instance-based models posit
that specific exemplars are stored during learning and the judgments of novel instances are
based on the similarity between the novel instance and the stored instances. Medin and
Schaffer's [1978)] corntext model was the first and the most significant effort of this
theoretical line.

The key idea of the context model is that a novel instance serves as a retrieval cue to
access the stored instances similar to the cue. The major assumptions of the context model
are: (a) only the specific exemplar information is stored; (b) classification of an item is an
increasing function of its similarity to the items in a particular category and a decreasing
function of its similarity to the items of other categories; similarity is the sole criterion for
classification decision; (c) similarity between two instances is assumed to be the
multiplication of the similarity along each dimension of the instances. This multiplication
rule is referred to as interactive-cue, in contrast to the independent-cue approach whivh
counts important features. As a result of (c), dimensions of an instance do not have 1 be
equally salient as implied by prototype models, making it possible to learn Yr.:arly-
nonseparable categories.

In their experiments, Medin and Schaffer [1978] found that transfer pe:tinnance was
better predicted by the context model than by a prototype model. They ¢ that learning
and transfer performance on novel iteas was not a function of their ¢::ignce from the

prototype, but a function of the interitem similarity among the exemplars. They argued that
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the evidence for a prototype was an artifact of how category members were typically
generated as distortions of the prototype so that the prototype was most similar to members
of its own category and least similar to items of the contrasting categories. The superior
recognition and classification performance of the protctype after delay was actually due to
the prototype's resemblance to the remembered exemplars of the category. Thus, they
argued that one does not need to posit an abstraction process to a:count for the
performance; the retrieval of stored exemplar information will do.

An instance-based model possesses the following merits: (a) it posits only the level of
representation which leads to simplicity: (b) it is naturally related to similarity-based
analogical learning and to the evidence about learners' memory for instances [Brooks,
1978; Reber, 1976]; (c) it makes it easier, relative to a prototype model, to update existing
.. formation when new information is a¢quired [Elio and Anderson, 1984).

One major point against instance models is that a mere collection of individual
instances does not usually reflect the intention of a category. Therefore, some category
level information seems necessary { Anderson et al., 1979]. Another difficulty for instance-
based models is that learners frequently report verbally that they use rules to make category
judgment [Elio and Anderson, 1984].

Feature-Set Models. Feature-set models posit that learners are sensitive to, and
encode representations of, co-occurring feature patterns. These feature patterns are more
general than specific instances and they carry predictive information about category
memberships. In most feature-set models, each feature combination has an associated
strength that serves as a measure of the pattern's relative successfulness during past
experience. This is why such models are also called frequency or strength models.
Models in this category include Hayes-Roth and Hayes-Roth's [1977] property-set model,
Reitman and Bower's [1973] frequency model, Anderson et al.’s [1979] ACT model, and
variations of the ACT model [Elio and Anderson, 1981; 1984].
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Using category exemplars with multiple attributes zad values, Hayes-Roth et al.
[1977] compared a collect:on of models of all three types and demonstrated the advantages
for feature-set models. They proposed a property-set model, which assumed that the
elements of the power set of all individual properties, called property sets, form the
representation of category knowledge. To associate frequency information with each
property set, they defined an associative strength as the frequency with which a property
set was encountered in all the exemplars szen in a category. They defined diagnosticity of a
property set for a given category as an increasing function of its associative strength to that
category and a decreasing function of its associative strength to other categories.

By carefully controlling an exemplar's presentation frequency and distance from a
central tendency, Hayes-Roth et al. found that instances farther away from the prototype
may have higher property-set diagnosticity than instances closer to the prototype. This
evidence is inconsistent with the assumption that the distance from the prototypes is the
only relevant factor influencing item recognition and classification. Instead, their results
supported the notion that recognition and classification are influenced by a rather complex
mixture of both frequency of exposure and distance from prototype. In additios, they
found a rather low correlation between recognition and classification ratings, a result that
the context model has difficult explaining. According to Hayes-Roth et al., the prototypes
received the highest classification ratings but the frequently-studied non-prototypes
received the highest recognition ratings.

Elio and Anderson [1981] also conducted a series of experiments which supported
the feature-set models. Firstly, they found that the accuracy and confidence ratings on
transfer items were better in a leaming situation that was conductive to making
generalization, than in one that was non-conductive to generalization, where conductive
simply meant that items presented were classifiable by generalizations. However, they

observed that for both learning situations, transfer was also a function of interitem
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similarity, a result consistent with the findings by Medin and Schaffer [1978)]. Secondly,
they discovered highly significant correlations among accuracy, confidence rating, and
similarity for transfer items in both situations, which would not be predicted by ar
instance-based model. Thirdly, they found that learming speed and accuracy were better
when generalizable items appeared in close temporal proximity than when they were
randomly ordered. However, they also reported evide::::e that could be explained by an
instance-based model but not by any existing feature-set model.

Based on these findings, Elio and Anderson suggested that the representation of
instances be augmented with, rather than replaced by, category level information. They
argued that it may be both unnecessary and inadequate for a general theory to choose
between the generalization framework and the similarity-based analogical mechanism.
D+ ver, it seems that no such theory has yet emerged from the current experimental
literature, nor from the machine learning literature.

Compared to using prototypes, a feature set model seems less economical in
representation because the set of possible feature patterns can be very large. However, it is
claimed that this might be necessary in capturing the complex subcategory structures of
many categories [Anderson et al, 1979]. Studies have suggested that most natural
categories have neither a set of defining features nor a prototypical instance to which all
other members should be compared. However, these categories do not appear to be
unstructured as in the case of a collection of instances [Anderson et al., 1979].

Feature-set models can account for most results that can be explained by either a
prototype model or an instance-based modei. The power of feature-set models can be
‘antniated to the following: (a) co-occurzing feature patterns are a powerful concept which

- 5 the notion of interitem similarity as well as frequency of exposure; (b) feature
..n be seen as containing both exemplar level information and category level

. lon; they can be viewed as segments of instances and can be matched the same way
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instances are matched; (c) feature patterns reflect the notion of correlated features, and the
idea of predictive relations; (d) feature-set models do not assume independence of

individual features (indeperdest-cue assumption), rather they rely on feature relationships.

2.2.3. Analytic and Nonanralytic Learning Strategies

The fact that strategies affect human concept learning has been repeatedly feported
and analyzed in a number of studies [Brooks, 1978; Elio and Anderson, 1984; Medin and
Smith, 1981; Reber, 1976]. Strategies can be induced either by learning task feaiures
(e.g., learning material, instructions) or by learners' existing knowledge (e.g., learners'
theories of the world) {Medin and Smith, 1981]. The formation cf strategies does not
appear to be an arbitrary phenomenon, rather, it is often found operative in association with
certain learning conditions.

Researchers have frequently studied two type of learning strategies: analytic and
nonanalytic strategy [Brooks, 1978; Elio and Anderson, 1984; Reber, 1976]. Some
researchers prefer to use different terms to contrast the two strategies, such as explicit
versus implicit learning [Reber, 1976], rule versus analogical learning, and deliberate
versus intuitive learning [Brooks, 1978].

Analytic learning strategy has been characterized as the explicit encoding of category-
level information (e.g., correlated attributes) and conscious hypothesis testing activities
[Elio and Anderson, 1984; Kemler and Nelson, 1984; Medin and Murphy, 1987].
Learners using this strategy usually focus on the detection of regularities, salient attributes,
and co-occurring feature patterns, and on testing explicit hypotheses [Elio and Anderson,
1984; Kemler and Nelson, 1984]. One characteristic of this strategy is that analytic
learners have poor memory for instances they have actually studied, but good memory for
hypotheses they tested [Reitman and Bower, 1973]. The protocol analysis by Elio and
Anderson [1984] and Kemler and Nelson [1984] indicated that learners were generally
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successful in indicating which attribute(s) or feature relations were salient and used to make
pre .ictions.

Nonanalytic ieaming strategy, on the other hand, has generally been characterized as
the unconscious encoding of exemplar information and the use of similarity-based analogy
[Brook 1978; Reber, 1976]. Learners under this strategy focus more on overall similarity
of category exemplars [Kemler and Nelson, 1984]. There is evidence that learners under
this strategy have better memory for instances because they rely on them more than analytic
learners do. This naturally leads to their inability to discover category level features or their
inter-relations [Kemler and Nelscn, 1984]. The protocol analysis from several studies
repeatedly demonstrated that learners adopting this strategy were generally unable to
describe verbally what was responsible for their category judgments [Brooks, 1978}, yet
their performance were fairly good.

2.2.4. The Interaction of Exemplar Order and Learning Strategy

This subsection introduces the empirical findings by Elio and Anderson [1984],
which have been the focus of the LANA simulation.

Elio and Anderson [1984] investigated the effects of exemplar variance order and
concerning category learning. The categories were relatively large with several item types
and with no defining feature or simple rule that could perfectly predict category
memberships, reflecting their ill-defined nature.

To study the differential effect on the evolution of concepts ever time from receiving
representative and non-representative samples, they constructed twol sampling conditions:
centered and representative conditions, which differed over how samples were drawn from
the population and presented to learners. The centered condition began with a low variance

sample and introduced more category variation in later samples, while the representative

11n fact, they used four different sample conditions, but only two are relevant here.
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condition drew its samples in proportion to the item frequency in the whole population.
Although all the category items were contained in the samples under both centered and
representative conditions, the variance of each sample and the presentation orders were
different for different conditions. The detailed experiment design, categories, and
procedures are described in chapter 3.

In a series of experiments, Elio and Anderscn [1984] found a main effect for
exemplar order but this effect interacted with learning strategies induced by experiment
instructions. Specifically, when learners were instructed that the category was too complex
to look for rules and encouraged to simply memorize items, there was a transfer advantage
for learners in the centered condition over learners in the representative condition. Ir: other
words, centered-condition learners gave significantly higher typicality ratings and had
slightly higher classification accuracy than those given by representative-condition leamers.
However, subsequent experiments indicated that this result reversed completely if learners
were encouraged 10 look for regularities, to form rules, and to actively test hypotheses. In
this case, learners receiving representative samples had the superior transfer performance

on classification typicality and accuracy.

2.3. Cognitive Simulation and Machine Learning
This section describes the cognitive simulation paradigm and its relation with other
areas of machine learning research. It also presents five simulation systems in symbolic

concept learning: EPAM, ACT, MINERVA and MINERVA 2, and INDUCE.

2.3.1. Cognitive Simulation Paradigm
Cognitive simulation, or computer modelling, aims at developing computational
models to simulate and investigate the underlying mechanisms contributing to intelligence

behaviors of humans and machines. A cognitive simulation is a computer learning system
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and contains a set of computational processes believed to underlie human leamning
behavior. Therefore, the differences between simulation systems and performance learning
systems are mainly reflected in the objectives.

Normally, a model simplifies the mechanisms which it is meant to describe by
specifying only the most important elements and ignoring the rest. In much the same way,
a computer model of cognitive behavior, either for humans or machines, involves a
substantial amount of simplifications based on some assumptions about the key processing
principles and constraints [Feigenbaum and Feldman, 1963; Slatter, 1987]. Thercfore,
assumptions are the underlying keystones of a particplar model architecture, and the testing
of models can sometimes be viewed as the test of alternative assumption sets.

There are two levels at which one can specify a model: a descriptive level and a
prescriptive (process) level [Murphy an¢ Medin, 1985]. At the descriptive level, one
normatly describes "what is done", while at the prescriptive ievel one needs, in addition, to
state "how it is done." For example, the family resemblance principle is basically
descriptive while classification by retrieving matched instances is a prescriptive model.

One related distinction to the above is between product simulation and process
simulation [Medin et al., 1987]. Product simulation only compares the end products (input
and output) of a cognitive behavior without addressing the internal processes. On the other
hand, process simulation deals with both the match of products and the match of processes
responsible for the products. In other words, production simulation is based on behavior
(product) validation while process simulation must be based on both product and process
validation. Under this view, some A. L. programs might be regarded as only product level
simulation to human behavior if they could duplicate the behavior, since they are not
concerned with the (internal) processes responsible for the corresponding human behavior.

Cognitive modelling can be viewed as an inductive search process over a space of

possible models. A computational model is a specific set of processing assumptions and
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constraints, realized through a specific algorithm. The space of different models can be
viewed as a space of different parameter combinations (i.e., how assumptions are realized
as processes), and the corresponding search has been called a parameter search [Anderson
et al., 1979]. The search process involves repeatedly going through simulation "cycles,"
each of which involves specifying a model, implementing the model, and then comparing
the model's results with the observed data. A set of criteria for evaluating a model must be
speciiied, which may involve model assumptions, implementation of processes, and
behavior. The manner in which the model results match the observed data may suggest
further direction of search, and the cycle continues [Feigenbaum and Feldman, 1963]. The
target (goal) state of the search is the model which best satisfies the specified criteria.

Obviously different criteria may, therefore, lead to different target models.

2.3.2. Importance of Cognitive Simulation

It is important to appreciate the role that cognitive simulation plays with respect to
advances in other areas of artificial intelligence and cognitive science. Cognitive simulation
has been adopted not just in symbolic concept learning, but also in connectionist leamning
[Wisniewski and Anderson, 1988], statistical learning [Feigenbaum, 1963], and areas
outside machine learning such as problem-solving [Newell and Simon, 1963].

In general, simulation systems can serve a number of purposes. Firstly, it may help
to gain better understanding of human cognitive behavior by : (a) forcing theories to
provide complete and explicit descriptions of the cognitive processes; (b) testing the
theory's ability to accurately predict and explain observed data; (c) clarifying vague
boundaries between theories by evaluating existing assumptions; (d) enabling detailed,
directed, and controlled investigation of various mechanisms and allowing for substantive

analysis of differential effects for interactive factors; and (e) contributing new clues and
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insights to further theoretical and empirical investigations of both human and machine
intelligent behaviors [Feigenbaum et al., 1963; Slatter, 1987].

Secondly, it may serve to bridge the gap that often exists between theories and
application systems (e.g., learning systems and expert systems) by: (a) illustrating
characteristics of certain computational systems and the influence of the assumption set; (b)
demonstrating performance of learning systems under the impacts of a set of factors such
as exemplar order, bias, and input noise; and (c) providing evidence and techniques for
application systems such as knowledge-based systems and, therefore, contributing to ine
application of artificial intelligence systems [Slatter, 1987].

There are, however, disadvantages and pitfalls associated with computer simulations
[Feigenbaum et al., 1963; Siatter, 1987]. Firstly, there is a lack of general consensus as to
the proper relationships between theories and simulation programs. Secondly, ad hoc
assumptions may easily be introduced which may alter the original intended model; i.c.,
one may have a right theory but choose a wrong realization. Lastly, a process model in the
form of an operatable system makes it easy for one to over-generalize from the model

behavior.

2.3.3. The EPAM Simulation

As one of the earliest influential simulation program in symbolic learning, EPAM -
Elementary Perceiver and Memorizer - successfully simulated a number of tasks in human
verbal learning behavior [Feigenbaum, 1963]. One of the experiments EPAM was
designed to simulate was rote memorization of nonsense syllables (items) in associated
pairs or serial lists. For paired association learning tasks, the goal is to learn which
response is paired with a particular cue. The cue item is presented first followed by the
response item. In serial learning, the learner must learn the (N+I)th item in the list, given

the Nth item as the cue.
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EPAM is a process model with two major components: a learning component and a
performance component [Feigenbaum, 1963). During learning, EPAM discriminates and
associates the paired items. During testing, EPAM produces responses to the cue items.
Specifically, the performance component works as follows: when a cue item is presented, a
discriminator sorts the cue item in a discrimination net (a tree of tests and branches) to find
a stored representation for the cue item. A response cue (a link) associated with the
representation of this cue item is accessed, and fed to the discriminator which sorts it in the
net and finds the full respot2se representation.

The learning component grows the discrimination net. Each time a pair is
encountered, EPAM sorts, separately, cue and response items to find terminal nodes to
store each of them. New branches may have to be built and new tests added to locate them.
The discriminatior. of any new item depends on finding a difference between the terminal
nodes to be discriminated. The response cues (links) are represented with partial
information enough to retrieve the full response item from the net at tii= moment of
association, while the response item contains full information. The net continues to grow
as additional pairs are learned, and it is eventually used in the test phase to make
associations.

EPAM has two additional features: generalization and forgetting. Since each paired-
association consists of a cue and a response, there is cue generalization and a response
generalization. Specifically, if X and X' are similar cue items, and Y is the correct
response to the presentation of X, then if Y is given as association with X', this is called
cue generalization, Likewise, response generalization is defined in a similar way.

EPAM's forgetting is a type of functional forgetting, i.c., information becomes lost
or inaccessible in a large growing, associative network, but not physically destroyed.
Forgetting occurs as a direct result of subsequent learning because the cue information

stored at the moment of association may become insufficient at a later time as new items are
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added to the net. This forgetting is often temporary, i.c., a lost association can be
reconstructed by storing more response cue information to differentially locate the intended
full response item. As Feigenbaum indicated, EPAM was the first concrete demonstration
of this type of (functional) forgetting in learning machines.

EPAM was tested on a large set of rote learning tasks and was proven to be fairly
successful. The later versions of EPAM explored the different "sense mode" associated
with human rote learning [Feigenbaum, 1963]. For example, "visual" input and "written"
output, "auditory"” input and “oral" output, and so on. Each mode corresponds a perceptual
input coding scheme and a discrimination net, with easy internal transformation between
them.

As a classic work of symbolic learning, EPAM has inspired various kinds of
architectures. The idea of the discrimination net has been widely used in many learning
systems, most recently evidenced in the MOP architecture used for case-based learning and

memory system [Kolodner, 1983; Lebowitz, 1986].

2.3.4. The ACT System

ACT [Anderson et al., 1979] and its successors ACT* [Anderson, 1986] are theories
of general human cognition, including memory, skill acquisition, problem-solving, and
learning. The original ACT theory embodies the powerful thesis that a single set of
learning processes - generalization, discrimination, and strengthening - underlies the
general human learning.! The validity of ACT theory has been tested by evaluating its
ability to simulate a wide range of empirical data and the plausibility of its learning

mechanisms.

1 The more recent ACT* theory realized that separation of generalization and discrimination processes was
unnecessary and, it posited only one geneial learning mechanism: proceduralization [Anderson, 1983].
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Knowledge in ACT is divided into two categories: declarative and procedural
[Anderson et al., 1979]. The declarative knowledge is represented in a propositional
network similar to the semantic network representations [Michalski, et al., 1983]. While
the declarative knowledge representation aspect of the model is important, it is not
particularly relevant for this discussion of their simulation work. In ACT, the procedural
knowledge is represented as a set of productions. Specifically, a production is a condition-
action rule, where the condition part is an abstract specification of a set of propositions. If
a set of propositions that satisfy this specification is active in the knowledge base, the
production will perform its action.

In ACT, the basic control structure iterates through successive cycles, where each
cycle consists of a production selection phase followed by an execution phase. On each
cycle, a probablistically-defined subset of all the producﬁons whose conditions are satisfied
by active propositions is computed. The probability that a production will be included in
the subset depends on the ratio s/S, where s is the strengin of that production and § is the
sum of the strengths of all the productions whose conditions are active propositions. This
ratio is meant to reflect how successful the past applications of a production have been.
Another selection criterion for productions is called the specificity principle, which says
that all other things being equal, productions with more constant conditions, as opposed to
variable conditions, are preferred. Successful application of a production leads to an
increment in its strength, while a failure reduces its strength. Further details about the
general ACT framework are given by Anderson [1976, 1986).

When given a category learning task, for each instance presented, ACT designates a
production that recognizes and classifies the iﬁstance. Automatic generalization occurs by
comparing pairs of these productions, which produces a more general production. For
example, production 1 and production 2 can be generalized to form production 3 by making

the shape attribute a variable condition:



Production 1: IF the object is large, green, and triangle, THEN it is drawn by Tom

Production 2: IF the object is large, green, and circle, =~ THEN it is drawn by Tom

Production 3: IF the object is large, green, and any shape, THEN it is drawn by Tom

If feedback on the correctness of the production applications is provided, a
discrimination process may be evoked. In ACT, the discrimination process serves the
purpose of converting over-generalizations to more specific, and hence, discriminative
productions. A production can be made more discriminative either Ly adding constant
clauses as conditions or by replacing variables by constant conditions. For cxample below,
production 1 can be discriminated into a more specific version such 2: nroduction 2 by
adding a constant clause [Anderson et al., 1979]:

Production 1: IF climate of a place is warm, and has ample rainfall. THEN the place can grow rice

Production 2: IF climate is warm, has ample rainfall, and the terrain is flat, THEN it can grow rice
Obviously, with the underlined condition, production 2 is more useful than production 1 by
being more discr.minative in this context.

In the simulation of recognition confidence rating, Anderson et al. used the tctal
number of constant features (conditions) in the decision-making production. The
classification confidence rating was based on the total number of constant features in the
production weighted positively for correct classifications and negatively for incorrect ones.

Using a simplified version of the general ACT framework, Anderson et al. [1979]
demonstrated that ACT's learning mechanism has straightforward applications to concept
learning in ill-defined categories. The model successfully simulated the results by Franks
and Bransford [1971], Hayes-Roth and Hayes-Roth [1977], and Medin and Schaffer
[1978]. These three empirical results have been discussed earlier as the important results

supporting prototype models, instance-based models, and feature-set models, respectively.
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2.3.5. MINERVA and MINERVA 2

Hintzman has developed two simulation models, MINERVA [Hintzman and Ludlam,
1980) and MINERVA 2 [Hintzman, 1986}, based on episodic memory theory and
instance-based process models of concept learning. MINERVA is a specific simulation for
eccounting the differential forgetting of prototypes and old instances, while MINERVA 2 is
a more general memory process model.

MINERVA is an instance-based model with the following assumptions: (a)
classification of a new item is based on the exemplar most similar to the test item, and (b)
individual properties are lost from the example trace over time in an all-or-none fashion.
The category instances are represented as a propositional structure of both properties and
e property relationships with separate strength. The initial encoding of the memory trace
was sim.ly a copy of the item description. A new item is matched for similarity against all
traces in ~memmy and the degree of match between the item and the trace is computed using
certain nearest-neighbor formula. An arbitrary retrieval threshold was used to control the
minimum degree of match and the size of the retrieval set. Two different schemes of the
forgetting were used: (a) decrement the stnéngth of the trace by a proportion of its present
value on each cycle, and (b) delete a property from the trace in an all-or-none fashion with a
given probability. |

The version of MINERVA with all-or-none forgetting scheme reproduced the
ordering of the confidence ratings reported by Medin and Schaffer [1978] with a high
correlation between the simulated data and the observed data. The finding provided a
process model for the claim that the evidence for prototypes is due to differential forgetting
of prototypes and old instances.

Hintzman [1986) extended the original MINERVA into MINERVA 2 which became a
general multiple-trace memory process model for concept learning. The memory structure

of MINERVA 2 consists of a primary memory (PM) and a secondary memory (SM).
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Representation of an experience is a unique memory frace. A theoretical assumption is
made (as in MINERVA) that no matter how similar traces may be they are separate entities
(traces) and represent difference experiences. Every trace is represented as a list of
primitive properties. The communication between the two memories is straightforward: PM
sends a retrieval cue (instance) to all traces in SM, and SM sends a response to PM.

The process in which stored traces are matched and retrieved is referred to trace
activation by Hintzman. The activation of stored traces is based on their similarity to a
given cue. As the result of an activation, a response is returned which has two
characteristics: intensity and content. The intensity of the response depends on the total
amount of activations triggered by the cue, reflecting the degree of familiarity or judgment
of frequency with respect to the cue. The content of the response is the summed pattern of
activation among primitive properties contributed by the reactions of all stored traces to the
cue, each responding to its similarity to the cue.

MINERVA 2 has accounted for the following empirical findings: (a) the classification
of prototypes is more stable over time thar the classificaticn of old exemplars; (b) old
exemplars are classified better than new exemplars on both the immediate test and the test
after a delay; (c) transfer to classification from the old exemplars to new patterns is best for
prototypes, intermediate for item similar to prototypes, and worst for items very different
from prototypes; (d) transfer to new patterns improves with increasing category size, that
is, the number of training exemplars in the category; this result has been taken as eviderice
for the hypothesis that the greater the number, and hence, the greater the variance of the
category, the more effective the hypothetical prototype abstraction process becomes; (¢) the

tendency of erroneously assign patterns to a category increases with category size.
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2.3.6. The INDUCE Algorithm

In their experimental study and comparison of human and machine behaviors, Medin,
Wattenmaker, and Michalski [1987] examined the constraints and preferences employed by
both human and machine in learning decision rules from preclassified examples. They
chose the INDUCE program as their machine simulation of human behavior and
developed, with the inspiration of INDUCE, a process model called Patch, to account for
specific patterns in human results and for easy comparison with INDUCE.

Motivated in part by some psychological considerations, the INDUCE algorithm
realizes the STAR method of induction [Michalski, 1983] which focuses on various single
positive examples and contrasts them with negative examples. INDUCE starts with a set of

descriptions of entities, then selects a target category to proceed as follow:

a. First randomly select a seed example from the target (positive) category.

b. Generalize the seed (star) in various general ways without describing
counter-examples of the contrasting category. This includes using both selective
generalization rules (e.g., turning constants into variables, dropping constant

conditions, and closing intervals) and constructive generalization rules (e.g.,
counting rule, and generating chain properties).

c. Concept descriptions on a cardidate list are evaluated according to a preference
criterion. This criterion is predefined and contains consistency and completeness
constraints. A description is consistent if it does not apply to any members of the
contrasting category or has no counter-examples. A description is complete if it
applies to all members of the target category. Descriptions that are both consistent

and complete represent alternative solutions and are saved.

d. Altemative descriptions are ordered according to the preference criterion and the
best description is selected as the final concept description.

e. If the description covers all the positive examples, then a solution has been found
and the process stops. Otherwise, all positive examples cc.vered by this description
are removed from the original set. Then a new seed is selected from the remaining
positive examples, and the process repeats from a.
Note that the solution is either a single conjunctive description or a disjunction of

such descriptions, which happens when the above process repeats itself. Thus INDUCE
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has an inherent bias toward conjunctive descriptions; when it cannot find one, it creates a
disjunctive description.

Medin et al. [1987] observed that, in general, the rules developed by INDUCE
through inductive learning tasks were fairly similar to what people obtained. They foun-
that both people and INDUCE preferred conjunctive rules much more than disjunctive
rules. Another finding was the bias of both human and INDUCE towards positive
features over negative features.

Medin et al. pointed out that people set out to find descriptors that span the target
category without using examples from contrasting categories. The first possibility was that
if an assertion was consistent (covered no counter-examples) but not complete (did not
span the target category), it was retained, and the attention shifted to the members of the
target category not covered by the original assertion. Then new assertions were sought that
were consistent and complete with the reduced set. This was precisely how the main
algorithms in INDUCE worked. The second possibility was that an assertion would be
complete but not consistent. In this event, the Patch model assumed that people focused on
eliminating the counter-examples through specializing their description by negating
properties that were true for the counter-examples but not for the positive examples (i.¢.,
opportunistic conjunctions). Unfortunately, the INDUCE algorithm does not allow for
these opportunistic conjunctions.

Based on their findings, Medin ¢ al. suggested that descriptions of constraints should
be in terms of model processes rather than in terms of the products or outputs. Although
many A.L induction programs may become candidate psychological process models
because they are prescriptive models, only a handful of them have the potential to account
for existing results, since most are not intended to be models of human rule induction

[Medin et al., 1987]. The key point is that inductive learning experiments with humans can
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suggest new algorithms or improvements of the existing ones. Medin et al.'s research is

one such example.

2.3.7. Learning Mechanisms Shared by Machine Learning Systems

Some mechanisms believed to underlie human concept leamning, *...¢ been intensively
studied and widely used in different types of machine learning systems. For example,
pattern matching and retrieval, generalization and discrimination with a strength assignment
mechanism, and forgetting underlie a broad range of machine learning systems, including
the classic symbolic learning system EPAM {Feigenbaum, 1963], the statistical learning
systems [Uhr and Vossler, 1963], most production-based learning systems such as ACT
and ACT* [Anderson, 1979, 1986], genetic algorithm learning systems [Holland, 1975],
case-based learning systems such as CYRUS [Kolodner, 1983] and UNIMEM [Lebowitz,
1986].

To see why statistical learning systems adopt essentially the same set of mechanisms,
Uhr and Vossler's [1963] classic pattern recognition system is a good example. Briefly
speaking, their program works as follows [Uhr and Vossler, 1963]): unkrown patterns are
presented to the computer in a matrix of ones and zeros with certain size. The program
generates and composes operators to transform the unknown input matrix into a list of
characteristics. These characteristics are then compared to each set of the stored
characteristics in memory to determine match. The most similar characteristics in memory
will be chosen as the response for the input. The characteristics are then examined on
whether they individually contributed to the success or failure in identify the in:vat. Their
corresponding strength adjustment processes are then turned up ard down in a way rather
similar to the strengthening and weakening of rules in production systems. As a result,
poor characteristics with low strength are eventually dropped out of system (or forgotten)

and replaced by new ones.
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It may be argued that one reason for these mechanisms to underlie a large number of
systems is that they reflect the "intuitive idea" of learning, i.e., find good rules,
descriptors, or operators, and reward them when they lead to correct decisions. When they
lead to errors, punish them, remove them, or replace them by new ones. In doing so,
systems have to depend on some kind of strength, weight, and score to distinguish
promising candidates from the poor ones, and reward and punish them accordingly.

Genetic algorithm (or classifier) systems are also based on this idea [Holland, 1975].
Both production systems and genetic algorithms use the cendition->action type of
productions (or classifiers) and both require assignment (or apportionment) of strength to
rules. The rule retrieval, generalization and discrimination, and strength assignment
processes in a production system correspond to the rule discovery, rule generating with
genetic operators (crossover, mutation, and inversion), and credit apportionment processes
in a genetic algorithm system. One major difference is that any number of rules can be
activated at the same time in a classifier system. However, the basic idea of encouraging
competition among rules, rewarding useful rules, and punishing bad ones is clearly there.

The idea of buiiding effective reconstructive memory and corresponding retrieval
mechanisms to do case-based learning [Kolodner, 1983; Lebowitz, 1986] represents
another large collection of systems. One common feature of many case-based learning
systems is the possession of a powerful memory for past experiences (cases) coupled with
a set of efficient processes in case indexing, memory reorganization, generalization, and
retrieval. The idea of generalization may seem incompatible with case-based reasoning.
But without some form of generalization, the training received by a system would not be
easily transferable to a new problems or cases. In CYRUS, there arz two types of
generalizations. One is the initial generalization which compares old z:d new events to
extract out commonalities and add to the norm of the new E-MOP. The other is

generalization refinement which corrects under-generalization and +yver-generalization.
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These characteristics of case-based systems are fairly similar in nature to the corresponding

processes in rule-based systems.

2.4. Summary

Concept learning from exemplars is an important type of intelligent activity that has
been intensively studied. Researchers have proposed many cognitive theories and models
to answer the question of what is the representation of abstraction from exernplars and the
nature of the processes operating on it. For many characteristics of human learning, there
are only empirical results or descriptive models. However, process models are important
to understand theories and to transfer theories into real systems. One such example is the
analytic versus nonanalytic strategies on concept learning, which yields fundamentally
different classification performance. Unfortunately, there is no process model for analytic
and nonanalytic concept learning.

Artificial intelligence and machine learning have not been concerned much with these
strategy differences for learning algorithms and with the excmplar order effects on concept
learning. Yet some paradigms such as case-based learning are extremely order sensitive.
Therefore, it is important to understand the mechanisms that underlie the effects of strategy

and order influence. This research is such an attempt in achieving this goal.
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Chapter 3
Overview of Approach

3.1. Introduction

The target of the LANA simulation was the interaction reported by Elio and Anderson
[1984] about the exemplar order and learning strategy. Recall that exemplar order was the
manner in which learners encountered category variance while learning strategy was the
instructional bias to either passively memorize the items during learning or actively generate
and test hypotheses. One primary goal of the simulation effort was to explore specific
mechanisms that might account for this interaction of exemplar order and leamning strategy.
The approach focused on mechanisms that were psychologically plausible and consistent
with the descriptive and prescriptive learning models proposed by other researchers.
Simplicity, plausibility, and parsimony reflected LANA's basic design philosophy.
However, the possible combinations of even a small set of processing assumptions and the
various alternative ways to implement them created an extremely large space of potentially
viable models. Through a systematic search in this model space, a small set of mechanisms
was identified that seemed critical to account for the empirical results.

This chapter presents the LANA simulation approach. It first describes the simulation
of the experimental categories, procedures, and learning strategies. It then describes the
basic model assumptions and a few important aspects of the model specification and
implementation related to this approach. Subsequently, it gives the criteria and procedure

of the model validation for LANA simulation, followed by a bri¢f summary of the chapter.

3.2. Method of Simulation
The simulation used the same categories, sample structures, learning and testing
procedures that corresponded to those used in the original experiments. This section

describes the method for simulating these components.
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3.2.1. Categories

The system's task was to learn to correctly classify category items into either of two

given categories. Table 1 below lists all members of the two categories.

Table 1
Category Items of Simulation
Category 1 Category 2
Member Types Member Types
C B A B C C B A B' c
Prototypes Prototypes
22211 22111 21111 11122 11222 | 33344 33444 34444 44433 44333
12211 12111 11221 43344 43444 4334
11211 44344
11121 44434
11112 44443
Category Members Category Members
22231 22113 21113 31221 13222 | 33324 33442 34412 24334 42333
22241 22114 21114 41221 14222 | 33314 33441 34441 14334 41333
22213 22311 21131 13221 31222 | 33342 33244 34424 42334 24333
22214 22411 21141 14221 41222 | 33341 33144 34414 41334 14333
12231 12311 11322 43324 43244 44233
12241 12411 11422 43314 43144 44133
12213 13211 31122 43342 4234 24433
12214 11241 41122 43341 44314 14433
31211 24344
11214 44341
11321 44234
11421 44134
31112 24443
41112 14443
13112 42443
14112 41443

As shown in Table 1, each category had 51 members (including 11 prototypes and 40

ordinary category members) that could be characterized as belonging to one of five member

types A, B, B, C, and C' defined by separate sets of generating rules. Each category

member was notationally represented as a S-dimensional and 4-valued tuple. Each
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dimension represented an attribute of a member and the corresponding value denoted the
specific characteristic of that attribute. For example, a five-digit tuple, 11214, represented
a member of category 1. Categories were defined such that one category (e.g., category 1)
is dominated by attribute values 1's and 2's while the other (e.g., category 2) by 3's and
4's. Note that there was no defining feature or simple rule that perfectly determined
category membership, reflecting the categories' ill-defined nature. However, some
attribute values (e.g., 1's and 2's) are better predictors of one category (e.g., category 1)

than the other, given particular combinations.

3.2.2. Simulating Experimental Procedures
The basic procedures of the simulation matched the original experiment procedure. A

schematic description of the procedures is shown in Figure 1 below.

Figure 1. Experimental Procedure

Training Input Test Input
1 sample = 20 items All 102 items
Learning Phase l | Test Phase )

Pass = Pass +1
4

Block = Block + 1
4'

One Pass 4

-

One Block

. "

Each simulation run corresponded to one learner. A simulation run received samples
of training items that were constructed according to either a centered or representative

sampling condition. Each experiment contained 30 simulation runs corresponding to 30
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learners, 15 for each sample condition and each run used a different random presentation
of training items during learning.

Each experiment consisted of four experiment blocks; each block had a learning phase
and a classification (test) phase. Each leaming phase was further divided into three passes
iterating through one sample of 20 items in different random orders. The processing of
each item formed a cycle. On each learning cycle, an item from the sample was represented
to the system for classification into either category 1 or category 2 and feedback was
provided after each decision. Each learning phase was immediately followed by a test
phase in which the system classified all category items without feedback. For each test
item classified, an accuracy and a typicality rating was recorded. The typicality rating was
computed based on the charactexistics of the pattern making the classification decision. The

exact way in which typicality rating was computed is described in chapter 4.

3.2.3. Manipulating Exemplar Order

Exemplar order was defined as the distribution of category items presented over
learning blocks, which corresponded to using centered versus represented samples. The
exemplar presentation orders within a block were completely randomized. The difference
between the centered and representative sampling conditions was the amount of variation in
the category members included in each sample. In the first block, centered sample over-
represented the most frequently-occurring item type (i.e., type A) while it under-
represented types B and C. Subsequent centered samples gradually introduce more
variations by including more type B items in blcck 2 and type C items in block 3. All four
representative samples correctly reflect the relative proportion of each item type. Despite
the differences in sample variations in the first three blocks, all category items are
eventually presented under each sampling condition. Thus, the only difference is the order

in which LANA encounters them. Table 2 below gives the distributions of item types for
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both sampling conditions.

Table 2. Sample Structure

Block 1 Block 2 Block 3 Block 4
Proportion | 01 8 1 0

13231

22222112421

Centered
Samples

Proportion

Representa-
tive
Samples

B Item types correctly-represented Il Over-represented [J Under-represented

3.2.4. Simulating Learning Strategies

In specifying a computer model of strategy effects, one can take two different
theoretical stances. One view of strategy believes that different strategies are associated
with different category learning models, which implies that both representation and
architecture are altered by strategies. In other words, a change in strategy implies a change
in the basic model. Under this assumption, one needs, as Medin and Smith [1981]
indicated, the following knowledge in order to understand categorization: (a) a list of
possible strategies that might be used in a task, (b) a separate theory mapping each strategy
onto performance, and (c) a meta-level theory specifying the factors governing strategy
selection. Under this view, current theories of category learning are merely alternative
procedures. In other words, all the models are correct and incorrect at least some of the
time, depending on whether the strategies implied by a model are operative or not [Medin
and Smith, 1981].

An alternative view has been proposed by Medin and Smith [1981], and supported
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either directly or indirectly by other researchers [e.g., Elio and Anderson, 1981; Medin,
Dewey, and Murphy, 1983]. It argues that strategies induced by instructions alter the
representation but not the fundamental nature of the underlying inductive processes. For
example, a learning strategy may quantitatively change the criterion for pattern retrieval
while leaving the nature of the basic retrieval process intact. In this thesis, it is assumed
that learning strategies do not change the nature of the underlying architecture, nor do they
add or remove processes.

Basically, the simulation of learning strategies was realized by alternating a few
strategy parameters associated with a small set of basic processes. The last section in
chapter 4 presents the mapping from behavioral and descriptive characterizations of analytic

and nonanalytic learning to the changes in the processing mechanisms.

3.3. Basic Model Assumptions
This section describes the basic model assumptions and points out the key aspects of
model architecture. Most models explored in the simulation were based on the following
basic assumptions:
(a) A generalization process underlies the category learning. This process forms
patterns of co-occurring features associated with a category.
(b) Feature patterns have an associated strength reflecting their proven "usefulness."
(c) Both the associated strength of a pattern and its similarity to an item influence
whether the pattern is retrieved and used to classify the item or not.
(d) Learning strategies involve alternating strategy parameters associated with some
basic processes, but they do not remove existing processes or add new ones.
In LANA, a limited item memory holds recently-seen items. To store category level
abstractions, the model has a long-term memory for generalizations. The precise

characteristics of these memories - size, retrieval process, and forgetting process -
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constitute alternative models. The exact manners in which the generalizaticn and

discrimination processes operate and the schemes which reward and punish patterns also

constitute different models.

An important theoretical .ssumption is whether item patterns and generalization
patterns are distinguished in terms of prucessing assumptions. Under one view, the
processes operating on them would be govémed by different constraints, while an
alternative view promotes the idea that both items and generalizations are simply patterns
with equal processing status.

Alternative specifications of these assumptions and processes define the scope of the
model space. Normally, a model's specification can be implemented in a number of
different ways, and some implementations may implicitly correspond to additional
assumptions which are undesirable or unintended. For example, to implement the
forgetting of patterns, one could explicitly delete those that do not meet certain criteria
(e.g., a pattern strength threshold). Alternatively, one could implement forgetting by
specifying retrieval constraints so that those patterns failing to meet the constraints are not
retrieved. However, these rules might still be available for other processes, which is not
the case of explicit pattern-deletion. Thus, alternative ways of implementing a notion like
"retain only useful patterns" may have profound effects.

Attempts have therefore been made to separate the assumptions from their specific
implementations and to make sure that the implementations do not entail other unintended
assumptions. The implementation itself is not imporeant per se, the prior observation
notwithstanding. The mapping between assumptions and their intended implementations is
a difficult and challenging part of the simulation. Considering altemnative implementations,
the space of possible simulation models becomes extremely large and complex.
Interactions frequently occur among various mechanisms in unforeseeable ways, making

the isolation of effects from individual processes a difficult task.

39



3.4. Model Validation

Model validation procedure is a criicial aspect of any simulation work. in the LANA
simulation, a model was evaluated by assessing its assumptions, its individual processes,
and the degree of maich between the model behavior and observed human data. The
specific validation criteria were the following:

(a) Validation of assumptions and processes: A model’s assumptions need to be
consistent with empirical findings and psychological constraints; alternative
implementations of assumptions as processes were verified.

(b) Validation of behavior: It was not important to match the exact numbers reported
in the original experiments, but rather to simulate the main trends in the observed data. The
first result to simulate was the interaction between exemplar order and learning strategy.
When the system runs under a nonanalytic strategy, there should be a consistent advantage
for centered exemplar order over that of the representative exemplar order. When the
system runs under an analytic strategy, the reverse must occur. The second set of results to
simulate was the interaction of performance with item types. Given centered samples, the
system's block 1 classification performance should be better on type A items relative to
types B and C items. This result was found for human learners and made intuitive sense,
because block 1 included virtually no type B and C items. This advantage should decrease
over blocks as the system encounters more B and C items. On the other hand, there should
be a consistent improvement across blocks on all item types for the representative
condition. Thus a model that simulated the interaction between learning strategy and
exemplar order would have been rejected if these data trends were not observed.

Regarding model validation procedures, a rather informal approach was adopted
which divided the evaluation into two steps; preliminary and final evaluation. During the

preliminary evaluation, models whose results did not simulate the empirical data were
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rejected. This is very necessary for large scale preliminary exploration in order to cope

with large model search space. Hence only those models that satisfied all the basic criteria

in (b) were kept as candidates for final selection. During the final evaluation, plausible

models were evaluated for their ability to simulate all the empirical trends as well as for the

plausibility and parsimony of their assumptions. Compromises were often taken during the

selection because some models simulated certain behavior aspects better than other models,

but they did less well on certain other behavior aspects.

Preliminary Evaluation. This procedure considered the following:

1.

the accuracy difference between the centered and the representative conditions on

block 4 for correct direction and magnitude.

. the typicality difference between the centered and the representative conditions

over blocks 4 for correct direction and magnitude.

. the accuracy difference between the centered and the representative conditions

over blocks 1, 2, 3, and 4 for correct direction and magnitudes.

. the typicality difference between the centered and the representative conditions

over blocks 1, 2, 3, and 4 for correct direction and magnitudes.

. the guess rates for both the centered and the representative conditions over all

blocks (< 40% on block 4 was required). If LANA was making & large number
of its decisions based on random guesses, this was taken as a signal that there
was something fundamentally wrong with the model. Aithough we have no idea
what the guess rate for humans was, we used 40% as the maximum acceptable

guess rate for block 4 decisions.

. the basic empirical trends presented in (b) listed above. For example, a basic

upward trend (i.e., block 4 performance is better than block 1 performance) for

both accuracy and typicality scores must be present.

These issues represented the informal guidelines used in the investigation and were
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not nec=ssarily considered in order.
Final Evaluation. This procedure involved the following considerations:
1. the plausibility and riecessity of the basic assumptions.
2. the total number of parameters involved in simulating the analytic and
3. the plausibility and significance of effect of parameters involved.
4. the degree to which a model simulated specific human data
(discussed further in chapter 6).

It is clear that the final evaluation procedure is more subtle than the preliminary
evaluation and involves a more comprehensive set of criteria. Also it emphasizes model
comparison as opposed to model screening. It needs to be pointed out that the model
validation was completely determined by the set of criterion used and the way in which they

were applied.

3.5. Summary

This chapter has described the approach adopted for the LANA simulation, which is
an instantiation of the general cognitive simulation approach outlined in chapter 2.
However, there are a number of key simulation aspects that need to be summarized here.

Firstly, the target categories for learning were relatively large and ill-defined with
various subcategory {item type) structures. Moreover, the approach must deal with the
stmulation of concept learning behavior over various learning "stages” (blocks), during
which training samples were presented with different variance and order. The addition of
this temporal dimension represented a further constraint on the part of the simulation
models and the approach to be used.

Secondly, this particular approach must address the issue of how to simulate
alternative learning strategies within a single architecture. This approach eliminated

possibilities of simulating alternative learning strategies by adding extra processes or

42



altering the existing ones in fundamental ways. As a results, the approach encouraged both

simple and plausible ways to simulate learning strategies.
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Chapter 4
LANA Framework

4.1. Overview

LANA's control structure has two components; a learning component and
performance (classificatior) component, each defined by a set of processes. Adjustments
in parameters associated with these processes correspond to the simulation of analytic and
nonanalytic learning strategies. Since there are so many different processes and
parameters explored in the simulation, this chapter describes only the set that constitutes the
final models.

Section 2 describes the representation of patterns which include instances and
generalizations. Section 3 explains how generalization patterns are formed and
discriminated. Section 4 outlines LANA''s control structure with learning and classification
procedures. Section 5 describes the major processes and the associated parameters,
followed by section 6 which characterizes the simulation of analytic and nonanalytic

learning strategies. The last section summarizes the whole chapter.

4.2. Pattern Representation

The basic information-carrying structures in LANA are called patterns. There are two
types of patterns: instance patterns and generalization patterns. Both instance patterns and
generalization patterns consist of 5-dimension ordered tuples, with 4 possible values on
each dimension. Each pattern also has an associated category membership tag, indicating
the category this pattern belongs. Generalizations are distinguished from instances by the
presence of a variable marker in place of a specific attribute value.

Both instances and generalizations have an associated strength. Pattern strength is a
reflection of the pattern's past usefulness. The ways pattern sizength are used and updated

to influence processing can vary as a function of theoretical assumptions. In the models
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explored here, patterns with higher strength are generally preferred for making decisions

over those with lower strength, other criteria being held constant.

Examples of typical instances and generalizations are shown in Table 3.

Table 3. Examples of Instances and Generalizations

Feature Pattern ~ Strength Remarks
instance: 12213 ->cat.1 10 "->" separates condition-action
Generalization: 1-2-- ->cat.l 12 Variable "-" means any value

The semantics for these representations is: "when the feature pattern on the left-hand side of
'->' is matched, classify the item into the category denoted by the category membership tag

(either cat.1 or cat.2) on the right-hand side of '->'."

4.3. Generalization and Discrimination

A generalization represents a frequently co-occurring feature pattern. In most
learning systems, generalizations are formed when two patterns occurring in close temporal
proximity are compared. A new pattern is formed that retains the common elements of the
two patterns and replaces the different attributes by variables. Generalization is often
accompanied by a discrimination mechanism to adjust overly-general patterns that lead to
incorrect judgments by reintroducing feature constant into the generalized pattern.

Pattern Generalization. Generalization occurs under two circumstances. The first is
when a presented item is matched and correctly classified by a retrieved instance pattern in
the same category. For example, if 11214 -> cat.1 is presented and 12231 -> cat.1 is the
best pattern retrieved, then a generalization 1-2-- -> cat.1 would be formed and added to
the generalization memory. This generalization is the maximum specific generalization
(MSG) of the two patterns. In LANA, only the MSG is formed and added to memory

when generalization occurs.
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The second circumstance for generalization occurs when a generalization pattern
partially matches a presented item and makes a correct classification. For example, when
item 11214 -> cat.1 is partially matched by pattern 1-2-1 -> cat.1, then the classification of
this item into category 1 is a correct decision. A new pattern, 1-2-- -> cat.1 is then formed,
representing the portion of the retrieved generalization that is responsible for the correct
decision.

Pattern Discrimination. If the pattern, --2-4 -> cat.2, is selected as the best match for
item 11214 -> cat.1, the resulting decision would be wrong. Some learning mechanism
should now operate to reduce the likelihood that this wrong decision will be made again.
One such mechanism is discrimination, which is widely used in various learning systems.
Discrimination tries to isolate what is responsible for the incorrect decision by focusing on
the differences between the two patterns, Discrimination forms a new pattern more specific
than the previously incorrect pattern by adding one or more features of the item to the
incorrect generalization pattern. For the above example, a new generalization 1-2-4 ->
cat.1 might be created by adding the first feature "1" and keeping the item's membership
"cat.1". In models that prefer patterns with more constants, the new patiern wiil be
selected over the original wrong pattern when similar situations arise, and therefore, reduce

| the chance of making the same mistake again.

Discrimination also operates when an item pattern leads to an incorrect decision.
The result is a new pattern with the common attributes, plus one or more different attributes
of the presented item. For example, if instance pattern 43244 -> cat.2 is retrieved from
item memory and selected as the best match for the item 11214 -> cat.1, it will lead to an
incorrect decision. Again, the goal is to create a pattern that would correctly classify the
presented item by examining how the misclassified item differs from the retrieved item. In
this case, a discrimination 1-2-4 -> cat.1 might be formed. This discrimination situation

may be viewed as a kind of generalization, because it operates on specific items and
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generates a more general pattern in the same category as the presented itern.

For discrimination, it is not always certzin what aspect of the knowledge or what
decision cavses poor performance, hence it is not always clear how to assign "blame" in
order to correct a wrong pattern. The difference between a presented item and an
incorrectly appiied pattern is the discriminative information, but there can be more than one
difference. Suppose that the item 11214 -> cai.1 is incorrectly categorized by the pattern --
2-4 -> cat.2. Table 4 below shows the set of differences between these two patterns and the

possible discriminative feature sets.

Table 4. Components of Discrimination

Commonality Difference Discriminative Feature Set Discrimination Set
--2-4 11-1- 1o, <leee, —--1- 1-2-4 -> cat.l -12-4 ->cat.1
11-—, -1-1-, i--1- --214 ->cat.1 112-4->cat.1

-1214 ->cat.l 1-214->cat.l

One may choose to add any subset of these discriminations. In the model presented
here, a simple random selection of a single discrimination was used because no justifiable
ground has found in order to prefer one discrimination over another.

Generalization and discrimination processes are the primary sources of generalization
pattern formation in LANA simulation. However, under the nonanalytic learning
condition, LANA specifies that the frequently-used items (stored in the item memory) can
be remembered permanently. This is implemented by transferring the items in item
memory that are used twice or mnore to the generalization memory. However, some of the
attributes of these items are dropped (at random) so that the items become item segments
which resemble the form of a true generalization. As will be pointed out later, this scheme
in fact provides LANA with a "psrmanent” memory for frequently-used items and it is

related to the notion of analogy when these items are used.
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4.4. Contrel Structure

LANA has a set of processes for learning and classification procedures operating
under learning and testing phases, respectively. Learning consists of a classification
judgr- : with feedback, followed by changes to the set of instance and generalization
pattern. a: _onstitute the category knowledge. The control structure and processes used
for classification are identical to those used for learning, except that no feedback is given

and no change is made to the category knowledge.

4.4.1. Learning Procedure

Figure 2 on the next page presents a flow chart of the learning procedure based on
one complete learning cycle.

Each learning cycle starts with thz presentation of a training item to be classified to a
category. Patterns that meet retrieval criteria are then retrieved. The retrieval criieria
(described below) are also functions of theoretical assumptions, and the primary criteria
used in LANA are pattern strength and similarity to the presented item. The precise
definition of similarity is discussed in more detail later. The retrieved patterns may include
both instance patterns and generalization patterns. These patterns are then scored using
certain criteria and the "best" one is selected as the basis for classifying the training item. If
no pattern is retrieved, a random classification is made. After feedback is given, the system
may revise its generalizations in the memory, depending on what type of pattern (instance
or generalization) was used for the judgment and what the outcome was. The revision
could involve adding new patterns to generalization memory or increasing/decreasing a
pattern's strength. The system updates its generalization and item memories, according to
whatever forgetting schemes are in place. The system is now ready for the next learning

cycle.
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4.4.2, Test Procedure

Classification decisions during the test phase are made exactly as they are in the
learning phase. However, it is assumed that the test phase does not change category
knowledge because the classirication decisions are not followed by any feedback. There is
one additional step required in classification but not in learning; a typicality decision is
made by the system along with each classificauun decision, indicating how typical the test
item is with respect to its assigned category.

Both confidence and typicality ratings have been measured in various experiments
appearing in the literature [Anderson et al., 1979; Elio and Anderson, 1984; Hayes-Roth et
al., 1977; Hintzuan, 1986). Generally speaking, confidence represents the degree of
certainty about the learner's classification decision while typicality has to do with the
representativeness of the item relative to its assigned category. For example, an instance
such as penguin may be classified into the bird category with high certainty, but may
receive a low typicality rating. Despite the differences, both measures are useful
indications of learning performance, and both have been widely used in the same ways as
has classification accuracy or error.

Although the distinction seems intuitive, it is difficult to know how confidence and
typicality ratings can be accurately and differenially simulated. There have been
experimental attempts to quantify ore o the other, but there does not seem to be any
experimental data that measure both. Intuitively, it would seem that confidence is more of a
function of pattern strength while typicality must include some component of pattern
similarity.

The LANA simulation was concerned only with typicality ratings, and various
schemes were explored based on strength, similarity, and combinations of these two.
Strength-based typicality was a computed score from the strength of the selected pattern.

Similarity-bascd typicality was a measure of the similarity between the selected pattern and
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the test item. The combined typicality was defined as a function of both the pattern's

strength and similarity. Typicality results based on the similarity scores and on the

combined scores gave better fit to the observed data.

4.5. Major Processes

This section provides details on the basic processes governing forgetting, pattern
matching, retrieval, generalization and discrimination, strengthening and weakening. In the
descriptions of each process, we also discuss if and how they operate in quantitatively

differently manners under analytic and nonanalytic learning strategies.

4.5.1. Forgetting Patterns from Memories

There are two memory structures in LANA: item memory (IM) and generalization
memory (GM). Item memory is a temporary buffer of training items presented during
learning. Generalization memory is a permanent store for holding generalizations for:ned
during learning. No additional memory structure is assumed. Both item and generalization
memories have corresponding forgetting mechanisms.

Forgetting Items. Item patters in item memory obey the first-in-first-out rule. The
oldest item is forgotten once the item memory capacity (typically set at 3) is reached. The
memory size of 3 represents a plausible limit on the number of items that could be retained
in the short term memory.

Item memory was modelled in a simple way because the focus was on learning
mechanisms not on the short-term memory structures. However, the simulation tests did
investigate the affects of different item forgetting schemes, that were motivated by
considerations of analytic versus nonanalytic memory data. Both item memory capacity
and forgetting schemes have implications for learning, because they define the item

population on which learning mechanisms operate. These implications are discussed in
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subsequent chapters.

Forgetting Generalizations. Forgetting patterns from generaliza.;n mcmory may be
modelled in two ways: (a) explicitly eliminating generalizations that fall beneath thresholds
for some criteria metrics, and (b) coastraining the retrieval process so that only
generalizations that meet thresholds for the criteria metrics are retrieved and made available
for subsequent decision making. This latter scheme has been referred to as functional
forgetting [Feigenbaum, 1963].

All the forgetting schemes explored here have been based on the intuitive assun' * on
that "useful” generalizations are more likely to be remembered and made available for use
than "less useful” generalizations, where "useful” means that a pattern has led to correct
decisions in the past. In LANA, this "usefulness" is reflected as the pattern strength.
However, &e usefulness is not to be cunfused with the "potential applicability” of a pattern
to a particuiar item due to similarity.

In LANA, only the generalizations that exceed a strength threshold (if other criteria
are also met) are available for retrieval during each cycle. Those that do not qualify for
retrieval may still be available to other process such as strengthening recreated patterns.
Each time a generalization participates in a correct decision, its strength increases, therefore
increasing its likelihood of being retrieved again. As the strength of patterns increase over
time (blocks), the strength threshold is adjusted accordingly. Therefore, the old "useful”
patterns may not be retrievable if they do not lead to correct decisions in subsequent
leaming.

Although not in the final models, one forgetting scheme based on explicit elimination
of forgotten patterns was explored. This scheme eliminated any generalization patterns
whose strength was below threshold before moving from learning to testing. This scheme
could be used in controlling pattern population and created an advantage for the centered

sampling condition.
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4.5.2. Retrieving Patterns

Both the learning and test phase require a classification judgment of some presented
item. That judgment is based on a single ".«:st" pattern retrieved from either itess or
generalization pattern memory.

The retrieval process can be divided into the following subprocesses:

» Match existing patterns to a given item, applying any matching constraints.

* Retrieve matched patterns, applying any retrieval constraints.

» Score patterns, applying the scoring procedure.

« Select the "best" pattern for decision, applying the selection criteria.
This division of the retrieval process into separate matching, retrieval, scoring, and
selection steps is more for the sake of descriptive convenience than for theoretical reasons.
They are implemented as sequential steps in LANA although they may well be parallel in
human learning,

Similarity plays an important role in pattern retrieval. In LANA, similarity is defined
as a function of degree of match and degree of mismatch.. The degree of march is defined
as the number of corresponding attributes matched. For example, patterns 11214 -> cat.1
and 12213 -> cat.1 match on three attributes. The degree of mismatch is defined as the
maximum number of specific features not matched. For example, the degree of mismatch
between 11214 -> cat.1 and 31122 -> cat.1 is four, and that between 11214 -> cat.1 and 1-
2-3 ->cat.1 is only one. The category membership tags (i.e., cat.1 or cat.2) and variables
are not counted towards the degree of match or mismatch. |

A model may require either a full match or allow a partial match, depending on
whether it is the analytic or nonanalytic version of the model. Under full matching, all
attributes in one pattern must completely match the corresponding attributes in the other

pattern for the two patterns to match. Therefore, items will never fully match each other
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unless they are identical. In the case of a partial match, there may be specific attributes in
the retrieved pattern that are not matcted. In LANA, a minimum degree of mﬁtch is
specified as a parameter for controlling the similarity of matched patterns, and is currently
set at 2 for both full and partial match.

Normally, there are multiple patterns that satisfy all matching and retrieval constraints
and, therefore, are all retrieved. However, only one pattern is selected for classification
decision in both learning and testing (although thi; could either be a frequency-based
selection among conflict-set patterns or a group-voting type of decision making). To select
the best pattern, a selection process scores patterns on the basis of their strength and their
similarity to the presented item. Similarity score is ar linearly increasing function of the
degree of match (DM) and decreasing function of the degree of mismatch (DMM):
similarity score = DM - DMM/3. Strength score is simply the pattern strength (scaled
multiplying a constant). The inclusion of a strength component is equally important
because it reflects how successful a particular pattern was in the past. Since there was no
theoretical commitment to any complex weighing function, a summation function was
chosen to combinc them for simplicity so that: total score = (similarity score + strength
score) / 2. The pattern with the highest total score is selected for the classification decision.
When patterns tie for the highest score, LANA simply selects one at random.

However, the select-best criterion is sometimes criticized for over-emphasizing the
importance of a single pattern. The argument is that a group-vote criterion may overcome
this drawback by allowing multiple patterns to simultaneously participate in the final
decision. Unfortunately, any group-vote scheme is computationally more expensive and
likely to make the final decision more sensitive to the retrieval-set. Furthermore, it is more
difficult to define a credibility of a group of patterns with highly variable individual
credibilities. The LANA preliminary experiments showed that the select-best scheme is in
fact quite powerful.
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4.5.3. Pattern Strengthening and Weakering

Most generalization-based learning models include strength as an associated feature of
abstracted patterns. Even some instance-based models borrowed the idea of using
associative strength of memory instances to facilitate instance retrieval [Hintzman and
Ludlam, 1980]. The key id=a of strengthening patterns is that successful application of a
pattern should increase its chance of being used again. In other words, pattern strength
reflects the pattern’s successfulness in leading :o correct decisions in the past which, in
turn, indicates its potential usefulness in the future.

All patterns receive an initial strength (e.g., 10) when they are created. Instance and
generalization patterns may have different initial strength, depending on the strategies.
Patterns are strengthened whenever they participate in a correct decision and weakened
whenever they participate in an incorrect decision. However, the retrieval strength
threshold might be set at 12. This means that patterns cannot participate in any decisions
until their strength is at least 12. The other circumstance under which swengthening occurs
is pattern recreation. If a pattern already exists, but it is formed again via the learning
mechanisms, duplicate copies are not maintained. Instead, the original version of the
generalization has its strength increased, which makes it more likely to be selected. This
approach has profound implications for the simulation of information order effects,
becaus¢ the recreation of certain patterns will be influenced by the order in which items are
presented.

Recreation effects can be viewed in two fundamentally different ways, either as
resulting from some automatic, unconscious process, or as resulting from a conscious
process by which a learner explicitly "notices" the reoccurrence of familiar patterns. The
former can be realized as having a tight recreation requirement while the latter can be

realized a. having a loose recreation requirement. These two perspectives on pattern
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recreation seemed consistent with nonanalytic and analytic processing, respectively. The
tighter/looser recreation requirements can be implemented by imposing a higher/lower
strength thresholds for the corresponding generalization retrieval, respectively.

The function which assigns the strength increments and decrements has important
effects on the learning curve. One type of strengthening method adds a small and absolute
increment to the original strength as a reward and subtracts a decrement from the existing
c. v 2rn strength as punishment. Alternatively, the amount of increment/decrement can be
pcoportional to the pattern's current strength (e.g., 10%). The ACT model has used an
absolute strength increment (+0.02) and a relative strength decrement (-25%). Note the
behavioral implications of this approach: generalizations gain strength slowly by fixed
increments for each reward. But each error has increasingly large and immediate ffects on
the strength of the pattern responsible for the error, and hence immediate affects on the
pattern's likelihood of being used again. In other words, a pattern proves itself slowly, but
if it has accumulated a very high strength that leads to its constant selection, one error will
serve to temper this high strength.

In LANA, various methods regarding strength reward have been explored and
compared including strengthening and/or weakening by an absolute amount, by a relative
amount, by an amount proportional to the specificity of the pattern, and so on. In the end, .
it was found that a simple version wo:ked adequately, which was to strengthen or weaken

by one basic strength uniz each time a generalization was to be rewarded or punished.

4.6. Simuiating Analytic and Nonanalytic Strategies

The simulation of analytic and nonanalytic learning tried to ideatify processes or
features of processes that might be consistent with previous empirical results, descriptive
strategies, and theoretical assumptions about these two strategies. The following sections

identify empirical results or theoretical assumptions presented in the literature and how they
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were realized in the LANA simulation.

A. Nonanalytic learning is more analogical in nature than analytic learning. Analytic
learning is induced by stressing explicit rule-formation and hypothesis-testing [Brooks,
1978; Reber, 1976; Medin and Schaffer, 1978].

LANA's interpretation of other researchers' characterization of nonanalytic leaming
as more analogical and analytic learning as less analogical rests primarily on how pattern
matching was done. In the LANA simulation, the "more analogical" aspect of nonanalytic
learning was realized by allowing partia! matching in all pattern matching circumstances.
The "less analogical" aspect of analytic learning was realized by insisting on full matches
between stored generalization patterns and a given item.

In analytic learning, the learner is generating and testing specific hypotheses about
category membership rules. One interpretation of this perspective is that a hypothesized
category assignment rule either matches an item or not. Hence, the full-match retrieval
process further distinguishes the generalizations as explicit hypotheses. Nonanalytic
learners, even though they are not consciously testing and generating hypotheses,
nonetheless learn and make correct classification decisions. Its "more analogical" process
may be based on varying degrees of similarity by permitting a less-than-perfect match to
stored patterns.

B. Conscious %ypuseses-testing in analytic learning may mean a greater likelihood of
noticing when their nypotheses re-occur. Nonanalytic learners, by concentrating on
memorizing items, may e less likely to notice these re-occurrences.

There is no direct empirical evidence for this conjecture, but it seems a plausible
extension of Reitman and Bower's [1973] finding that analytic learners have better memory
for hypotheses they tested than for items they saw. This conjecture was implemented in the
model by specifying a lower strength threshold for generalization pattern retrieval under the

analytic strategy than under the nonanalytic strategy. Recall that strength can increase
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through recreation. Thus, if the retrieval strength threshold is 12 and the initial pattern
strength is 10, a pattern must re-occur twice before it can even participate in any decisions.
This was the setting for nonanalytic, which meant that classification decisions were based
primarily on item patterns in the buffer. This is consistent with a more analogic view of
nonanalytic leamning. In the analytic versions, any generalization created was immediately
available for retrieval decision making, consistent with the notion that generalization
represent consciously-formed rules the learner is interested in verifying.

C. Analytic learners are actively testing rules during learning and have poorer
memory for items studied during learning [Reitman and Bower, 1973]. Nonanalytic
learners have better memory for instances and rely more on instances to make judgments.

This suggested that, in analytic learning, the representation of studied training
instances and the representation of generalizations are somehow distinguished in their
representation or their processing. The mapping of this notion into an analytic model was
done by instituting a preference to use generalizations, if they existed, over instance
patterns, even if the generalizations did not match as well to the item presented. This was
accomplished by giving instance patterns a lower initial strength than generalization
patterns, making it unlikely for instances to compete with generalizations.

Under nonanalytic learning, LANA's pattern selection process treated all the patterns
the same, whether they represented an instance or a generalization. Instance patterns
received the same initial strength as generalizations and hence could compete on an equal
footing in the pattern selection process.

The better memory for instances was implemented by transferring frequently-used
items (in item memory) to the memory for generalizations, after randomly dropping scme
atiributes. Therefore, if an item in item memory was used, say twice, in making a

classification decision, part of it was remember as a pattern in the generalization memory

pcrmahemly.
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The parameter settings for the final LANA model and an alternative model were

included in Appendix 3 and Appendix 4 for reference.

4.7. Summary

There are two components to indicate in the LANA simulation. The first is the
process that constitute the general architecture and the second is how analytic and
nonanalytic learning strategies were simulated as small, theoretically-motivated adjustments
to the parameters associated with a small set of these processes.

The LANA architecture is basically an instantiation of a feature-set model of category
learning. Hence, it includes generalization, discrimination, and strengthening mechanisms
that are sensitive to frequently co-occurring sets of features across exemplars.

The following characteristics ccastitute the general architecture that underlies both the
analytic and nonanalytic versions of LANA: the representation of instances and
generalizations; how the generalization, discrimination, and strengthening mechanisms
operate; how a pattern is selected to make a classification decision; and how instance and
generalization patterns are memorized and forgotten.

Table 5 below presents a summary of the important parameters for simulating the
analytic and nonanalytic strategies. The plural "models" indicates that there is a set of
models, with slight differences among them, that are reasonabile fits to both the analytic and

non-analytic data.

Table 5. Summary of Analytic/Nonanalytic Model Differences

— Model Aspect Analytic Nonanalytic
Pattern Matching Full Partial
Strength Threshold for Retrieval Low High
Items Compete with Generalizations No Yes
Frequently-Used Items Become Generalizations =~ No Yes
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The full versus partial match distinction is straightforward. The presence or absence
of a processing distinction between instance and generalization patterns is realized under the
analytic strategy primarily as a retrieval preference for generalization over items. If there
are generalizations available, they are always preferred over any available instance pattern.
Furthermore, the only way generalization patterns emerge in the analytic models is via
generalization/discrimination mechanisms. In the nonanalytic models, they may emerge via
generalization/discrimination processes, as well as imperfect permanent memory for
frequently-used instance segments. Although both versions of LANA model employ a
generalization process, the context in which generalization operates in the nonanalytic case
is a more implicit, unconscious detection of co-occurring pattemns: it takes longer both for
abstracted generalization patterns to emerge and longer for them to have an impact on
decisions. Finally, the full versus partial match difference further distinguishes how
generalized patterns are treated under nonanalytic strategy as compared with their treatment
under the analytic strategy: they are not intended to be rules, but rather patterns that

imperfectly match.



Chapter §

Implementation Details

5.1. Overview

From the implementation view point, LANA can be seen as a narrowly defined
simulation environment. By proper manipulation of a set of parameters provided in LANA
interface, one may simulate a relatively broad range of models with different characteristics.
including models of different architectures (e.g., certain instance-based models). Within
this simulation environment, various tools have been developed to facilitate the analysis and
understanding the simulation behavior, and to allow flexible use of the system (e.g.,
experimental data collection, analysis, and plotting; batch simulation). The implementation
of the key functions such as assessment of similarity, scoring, and strexxgth assignment are
implemented either by parameters or by separate functions. The environment provides a
convenient interface through which users set the parameters for the simulation. The

simulation output can be selectively displayed through this interface.

5.2. Simulation Details

The system is implemented using Xerox CommonLisp and runs on Xerox Lisp
workstations running the Lyric operating system. The LANA simulation program contains
around 5000 lines of Lisp code, organized into about 150 functions. The average (real)
execution time for a standard experiment (i.e., 15 centered and 15 representative data files)
ranges roughly from one to two hours, depending on the particular parameter settings and

system resources.

5.3. Parameters and Their Settings
In LANA, models are defined by setting parameters to particular values. There are

total of about 48 parameters that can be set by an experimenter, 32 of which are actual
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model parameters that define the characteristics of a model. The remaining parameters
control other aspects of the experiment such as simulation input, output, and trace,
experimental control, and the environment. Each parameter has a set of values ranging
from two values up to 20 values. This gives at least a rough estimate of the size of the
search space, not counting the major architectural changes not parameterized (e.g.,
calculation of similarity score between two patterns). For each model, however, often only
a subset of the 32 parameters need to be set explicitly each time because many parameters
can take d- “ault values. Figure 3 shows a subset of these parameters that became the focus

of the most vigorous experimental testing.

Figure 3. Model Parameters and Their Defaults
(A subset of the total 32 parameters)

Parameter Name Default Value
Maximum-item-memory 3
Maximum-genecralization-memory 1000
Item-memory-scheme forget oldest pattern per cycle
Functional-forgetting no
Initial-generalization-strength 10
Pattern-matching full match
#-of-generalizations-formed 1
#-of-item-discriminations-formed 1
Item-similarity-threshold 2
Discrimination-strength initial strength
Generalization-similarity-threshold 2
Strength-threshold 10
Threshold-adjusted yes
Strength-increment

Strength-decre:nent 1
Item-compete-with-generalization | y&s
Item-become-generalization no

#-of -dimensicns-to-drop 3
Pattern-scoring-method sumn
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This list of parameters are briefly explained below.

Maximum-item-memory:

Max-generalization-memory:

Item-memory-scheme:

Functional-forgetting:

Initial-generalization-strength:

Pattern-matching:

Form-generalizations:

#-item-discrimit:ation-formed:

#-gen-discrimination-formed:

Item-similarity-threshold:

Discrimination-strength:

The maximum number of items retained in item memory.
The maximum number of generalizations retained in the
generalization memory. The default value of 1000 does
not mean that this many will actually be available for
processing; it is determined by other retrieval parameters.
The manner in which items are forgotten from the item
me::s¥ey atihe end of each cycle. An example of schemes
explored inicludes forgerting the given item if a
generalization retrieved successfully classified it.
Determines if below threshold generalization patterns

will be removed from the permanent memory or not.

The initial strength given to newly-formed-generalizations.
The manrer in which patterns match each other. Possible
values are full match and partial match.

Total number of generalizations to form as a result of
comparing two similar instances.

Specifies th number of discriminations to form when
items are compared : :1d discriminated.

Specifies the number of discriminations to form when

a generalization is compared with a given item and
discriminated.

Specifies the minimum number of matched attributes
before e!igible for the retrieved item to register a match.
Specifies what strength a newly created discrimination

should take. Possible values include values given by
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Gen-similarity-threshold:

Strength-threshold:

Threshold-adjusted:

Strength-increment:

Strength-decrement:

Item-compete-with-gen:

Item-become-generalization:

#-of-dimensions-to-drop:

Pattern-scoring-method:

5.4. Key Functions

initial-strength, or the strength of the parent patterns, i.e.,
the patterns from which the discrimination is formed.
Specifies the minimum: number of matched attributes
before eligible for retrieved generalization to claim a match.
Specifies the threshold above which generalization will
become retrievable and useable.

Specifies whether strength-threshold will be adjusted over
blocks. If the value is no, strength threshold is fixed.
The amount of strength to be rewarded to useful patterns.
The amount of strength to remove from unuseful patterns.
Whether items compete with generalizations during pattern
selection process or not.

Frequently-used items are transfered as generalization and
remembered permanently. Certain dimensions are dropped
as specified by #-of-dimensions-to-drop.

Effective only when item-become-generalization is set to
yes and it controls how many dimensions to drop before
frequently-used items become generalizations.

Controls the ways the similarity and strength scores

are combined.

In order to ensure that the LANA simulation results can be duplicated, the following

key functions are provided to indicate how certzin calculations are done.

(a) Strength score = {pattern strength - strength threshold) + 1
(b) Similarity score =DM - DMM | 3



where, DM is the degree of match for the patterns involved, and DMM is the
degree of mismatch between the patterns. (Both (a) and (b) arc used to rank
retrieved patterns.)
(c) Typicality scores:
» Strength typicality = ((pattern strength - strength threshold} ! 5) - 1
o Similarity typicality = similarity score
o Combined typicality = (strength typicality + similarity typicality) [ 2
(d) Average typicality scores for a particular item type:

Average typicality score = (accumulated-correct - accumulated-incorrect ) | totas

where, accumulated-correct is the accumulated individual typicality score for
all the correct decisions; accumulated-incorrect is the accumulated individual

typicality for the incorrect decision.
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Chapter 6

Simulation Results

6.1. Overview

The entire simulation effort investigated a search space of more than 500 models.
Through this investigation, a family of models have been identified that can account for the
basic results to varying extents. What seems important is that a small set of processes and
associated parameters have been discovered as critical for simulating the effects of exemplar
order, learning strategy, and their interaction. Although there were a large number of
models that could simulate the interaction of order and strategy on the final block, only a
subset reproduced the intended behavior across learning blocks and item types. It is
interesting to note that a small number of parameters associated with some basic processes
underlain most "successful" models. It turned out that these parameters produced the
intended behaviors by properly influencing LANA's category knowledge development
during learning. The sensitivity analysis provided evidence that these parameter settings
were necessary to reproduce the behavior at least for the given assumption.

It must be pointed out that matching exact numbers were not important per se, rather
the simulation concentrated on important behavior trends in the observed data. Models that
seemed to match the numbers more closely but did not simulate the basic behavior trends
were rejected. The generality of LANA models were tested by simulating one other
empirical result by Hayes-Roth and Hayes-Roth [1977], which had been simulated by
Anderson et al.'s ACT model [Anderson et al., 1979].

The rest of the chapter is organized as follows. Section 2 presents the resuits of
LANA in matching the human data trends. This include comparisons of performances on
the final block as well as across blocks and item types. Sec:ion 3 analyzes and explains
LANA's bekavior in terms of its knowledge structure and evolution. Aspects of the results

not covered in section 2 are also discussed here. Section 4 discusses findings related to the
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major strategy parameters. Section 5 describes LANA's application to simulating one of

Hayes-Roth and Hayes-Roth's [1977] results. Section 6 summarizes the entire chapter.

6.2. Basic Results

Before presenting the data, several clarifications must be made here. During test
phase, both accuracy and typicality scores were recorded for each block as a function of
item types. Typicality scores were based on either similarity or the average of pattern
strength and similarity. The mean typicality score for an item type! was computed using
the method by Elio and Anderson [1984]. It was the mean of the sum of typicality scores
from correct classifications minus the sum of the typicality scores from the incorrect
classifications, i.e., (summed typicality on correct decisions - summed typicality on
incorrect decisions) / total number of item in the item type. The mean typicality scores were
within the range of (-5, +5), same as the observed typicality data.

All the observed data presented here are taken from the results of Elio and
Anderson's [1984] Experiment 3. The simulated data presented in this section correspond
to the results from a particular analytic version and a particular nonanalytic version of the
final LANA model, which was described in chapter 4. The parameter settings for the
analytic and nonanalytic versions of this final model can be found in appendix 3. Table 6
on the next page presents the observed and simulated Block 4 accuracy and typicality data
as a function of sampling condition and leaming strategy. It shows the basic interaction
between sample condition and learning strategy on block 4. Despite the minor
discrepancies among the scales of these numbers, the exact ordering of the observed data
for all conditions are correctly simulated. As indicated earlier, there were many models that

simulated this reversal (interaction) when only Block 4 data were examined.

1 There were five item types A, B, B', C, and C', but B and B' types and C and C' types were grouped as
type B (B + B") and type C (C + C’) for presentation convenience.
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Table 6. Quiserved and Simulated Mean Block4 Accuracy and
Typicality as 2 Function of Sample Condition and Learning Strategy

Nonanalytic Analytic
{  Observed Simulated | Observed | Simulated
Accuracy 86 81 78 .83
Centered | picality 1| 2.60 L1 2.11 1.38
Typicality2|  2.60 2.24 2.11 1.85
AccuraCy .81 a7 .87 .88
CpreSenANve Typicality 1] 2.14 101 2.80 1.63
Typicality2|  2.14 2.07 2.80 2.37

Note: Typicality 1: typicality scores based on similarity only
Typicality 2: typicality scores based on both strength and similarity

However, it seemed important to simulate the trends in performance on item types as
a function of blocks. The ways in which accuracy and typicality scores changed as human
learners encountered additional variance differed depending on the learning strategy and the
sample condition in the observed data. Therefore, it was important to reject models that did
not simulate some aspect of these learning trends. Table 7 on the next page presents the
observed and simulated mean typicality and accuracy as a function of learning block, item
typel, and strategy. Since the typicality based on strength did not simulate some data
trends as well as the other two typicality scores, it is not presented in Table 7.

In Table 7, consider first the observed accuracy trends in nonanalytic learning (top

left). Performances in both centered and representative conditions improve over blocks.

1 Elio and Anderson combined the data for the types B and C as "noncentered" item type, in contrast to A
type items as "centered” type.
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Table 7.

Observed and Simulated Mean
Accuracy and Typicality as a Function of
Block, Item Type, and Sample Condition

Nonanalytic Strategy Analytic Strategy 7
Accuracy

_entered A  B+C A B+C _Pbsn% A DR
Block 1 .76 71 82 .68 .80 59 90 .69
Block 2 81 80 81 70 74 74 .88 .74
Block 3 82 82 81 .74 74 .76 .89 i
Block 4 85 84 .83 19 .76 .80 .88 .80

[Representative
Block 1 T .13 .13 69 79 5 .82 .86
Block 2 .79 17 75 74 84 .86 .86 .90
Block 3 81 .76 74 7 84 85 .88 91
Block 4 .80 82 a5 .18 83 90 .86 .90
Typicality (Similarity Only)

Cr itered A B+C A B+C i ﬂ+£ % ﬁ+£
Prock 1 208 1.56 132 0.63 213 163 192 078
Einck 2 232 219 1.21 0.76 178 174 1.95 1.26
Fitack 3 239 258 1.23 1.02 165 190 189 136
I''xk 4 279 257 1.29 1.00 192 2.4 1.68 1.18

ep- “entative
Bi+k1 1.91 1.53 077 0.75 218 194 1.41 1.65
Blo:: 2 201 1.97 090 092 251 262 163 180
Block 3 216 190 095 1.00 263 260 1.6 176
Block 4 205 223 1.01 1.03 255 297 147 172
Typicality (Strength and Similarity)

Centered A B+C A B+C —thsﬂ—— _%mH‘
Block 1 208 1.56 127 064 213 163 185 0.76
Block 2 232 219 1.64 1.04 178 1.74 206 122
Biock 3 239 258 205 1.60 165 19 219 147
Block 4 279 257 255 205 192 224 227 153

[Representative
Block 1 191 1.53 081 0.75 218 1% 1.32 1.55
Block 2 201 1.97 1.23 1.22 251 262 1.74 197

Block 3 216 190 1.59 L59 263 260 195 228

Block 4 205 223 206 206 25 297 210 255




The representative performance increases slightly and nonsignificantly while centered
performance shows a fairly large increase from blocks 1 to block 2 and levels off after after
block 2. These sets of trends are well matched by the corresponding simulation data,
except that type A simulated accuracy is high on block 1. In other words, the performance
advantage of centered over representative is small on block 1 but larger on subsequent
blocks for the observed data, but the LANA's performance shows steady differences even
on the first the learning block. This phenomenon occurs in most cases for the observed
data, where the differences in performance under alternative strategies is considerably small
on block 1 compared to other blocks.

Now consider accuracy in the analytic learning case. In contrast to the above
nonanalytic counterparts, the representative performance shows a large gain from block 1
to block 2 on both A and B+C type items. However, the accuracy for the centered
condition on type A items shows a dip from block 1 to block 2 and levels off after that.
The simulated accuracy data shows a similar trend, but the dip is considerably smaller.
Similar to the nonanalytic accuracy data, the simulated analytic accuracy shows a larger
difference between the centered and the representative for type A on block 1, but the the
observed data has only a small difference. This can perhaps be explained by the fact that
during the experiments, human learners did not start to get fully biased towards analytic
strategy until the end of block 1 while LANA's corresponding strategy became operative at
the very beginning of block 1. In general, although these accuracy trerds in the observed
data did not reach statistical significance, it seemed important to simulate the increase in
accuracy as a function of block, and a differential trend in accuracy across blocks as 2
function of sample condition and learning strategy.

Table 7 indicates that all the observed B+C typicality ratings are simulated well by
the corresponding simulation data. In fact, the improvement of type B+C over blocks

holds true for both observed and simulated data, for both strategies, and for both sample
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conditions. For centered sample condition, these improvements should be even more
notable because the samples introduce type B+C items mostly after the first block. This
makes intuitive sense because as more items are studied, learners should perform better on
these items. Now consider the observed analytic typicality data (middle and bottom right).
As the corresponding observed accuracy data, there is a significant block by item type
interaction for analytic typicality ratings: note how the observed typicality ratings drop on
type A items and rise on type B+C under. This contrasts to the corresponding trends for
nonanalytic learning typicality (middle and bottom left), in which both the observed and
simulated results for type A items improve even as additional category variance is
encountered in subsequent blocks. In this sense, the simulated analytic typicality scores
(middle and bottom left) do not quite match the type A observed data. However, the
similarity-based typicality does show a decline after block 2, but the shape of the curve is
convex as opposed to concave for the observed data. This observed performance dip on
type A items is not contradictory to intuition when considering the possible interference
among different item types. This issues is addressed again at a later point.

In general, Table 7 shows that performances of B+C type are better simulated than
performances of type A items for most situations. The concave accuracy curve for the
analytic learning with centered sample condition is roughly simulated while the
corresponding concave typicality curve is not adequately simulated. One quick explanation
for these concave curves would be that interference among knowledge for different item
types occurs and causes performance drop as one item type is intensively studied, followed
by studying very different types of sample items. Since B+C type items are never
presented with as high concentratior: as with A type items in the first centered sample, the
gradual improvement seems intuitive. The fact that the last centered sample is

representative explains the final boost in type A performance in this case.
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As pointed out earlier, the data presented here is from a particular version of a LANA
model. There are several competing models with slight differences that could account for
these basic results. However, certain trends were better simulated by some models while
certain other trends were simulated by a different set of models. The simulation results
presented in appendix 1 is one such example, in which the concave cutves of the type A
centered accuracy and typicality under analytic learning and the nonanalytic type A centered
accuracy, seem to be better simulated. Appendix 4 includes the parameter settings for both
the analytic and nonanalytic strategy versions of this alternative model.

The results in Table 6 and Table 7 are based on nonprototype items, not including
category prototypes. As expected, the performance on prototype types are consistently
higher than the corresponding performance on the item types. One important reason is that
prototypes have the highest intra-category similarity and least inter-category similarity,
making them easier to be classified correctly. This is consistent with the {indings by Medin
and Schaffer [1978] that item classification is an increasing function of the intra-category
similarity and decreasing function of inter-category similarity. However, performance on
prototype:s behaved rather differently, at least from the data reported by Elio and Anderson
[1984]. Specifically, the observed block 4 accuracy and typicality for prototypes had no
interaction between sample condition and leazing strategy. However, LANA's prototype
data did show interactions in the way similar to those presented in Table 6.

One performance related measure of the quality of the LANA simulation was the
classification guess rate (not available for the observed data). Wher LANA can not retrieve
category knowledge to classify an presented item, it has to guess. Therefore, the guess rate
associated with any simulation can be considered as an indicator for the availability of
category knowledge, and hence performance. Although LANA's guess rates could not be
compared with the corresponding human data, they were used to detect progress in

learning. For example, several models were rejected because their corresponding guess
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rates were too high (say, 2 50% at the end of block 4). Normally, guess rates formed a
inverse relation with respect to classification accuracy. A flat learning curve would imply a
slow reduction of guess rates. For the models presented here, guess rates were in the

range of 20% to about 40% for both analytic and nonanalytic learning.

6.3. Behavior Analysis and Explanation

Given the results in Table 6 and 7, it is important to also understand, in terms of
underlying processes, how and why LANA simulated the observed results. The following
discussion explains the basic interaction simulated by LANA.

Under the nonanalytic learning straiegy, the centered condition begins with a very
low variance sample with mostly type A items. The high concentration of similar items
makes it easier to generalize. However, since nonanalytic strategy, many generalizations
are formed and used. In addition, under this strategy, many classification decisions are in
fact based on the retrieval of instances instead of generalizations, showing similarities to the
notion of classification by analogy. However, the few newly-formed generalizations do
get recreated more cften and then used duyiig learning because they are, by definition,
similar to most type A items. As a results, some of them (mostly from type A items) do
become relatively strong in terms of strength. Since there is barely any type B items and no
type C items in the first centered sample, almost no generalizations are formed, creating a
highly biased knowledge structure.

Due to the tight retrieval constraint under this strategy, only those highly strong type
A generalizations can be retrieved and used during test phase. This leads to good
performance on type A items, and relatively poor performance on type B and C items (see
Table 7). The partial match here allows these type A generalizations to match some type B

or even type C items, contributing to the otherwise very poor performance on types B and
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Citems. Overall, the centered seems to get a "good start.” (In fact the simulated data for
this block is higher than it should be. See Table 7.)

In the second block for centered sampling, there is a higher proportion of type B
items and fewer type A items. The partial match scheme permits the "surviving"
generalizations (mostly formed from type A patterns on block 1) to match some of the type
B items. The generalization and discrimination processes provide the centered the
opportunity to discriminate some type A generalizations in order to cover some type B
items without deteriorating type A performance. The concentration of type B items helps to
form and recreate some new type B generalizations. As a results, the type A and some type
B generalizations have relatively high strength due to the concentration of strength rewards.
At the end of block 2, a centered run has less biased knowledge which leads to a notable
performance increase for type B items and at least 2 steady performance for type A items.

For the third centered sample, which over-represents type C items a similar scenario
happens. The big improvement is now on type C items and those on types A and B items
remain steady or slightly increased, keeping centered runs in an clearly advantaged position
(see TaBleJ).

Under the representative condition for nonanalytic learning, the situation is very
different because there is no over-concentration of particular iter types in any sample. For
example, on block 1, the high variance representative sample creates a wide range of
generalizations with relatively smaller chance of pattern recreation. Therefore, few of the
generalizations are sufficiently strong to be retrieved under the tight generalization retricval
constraint for this strategy. The high variance sample also makes it hard for any qualified
generalization to match enough items to gain strength. The shear number of generalizations
creates a highly competitive situation in which the strength rewards become highly
distributed. The partial match scheme makes this situation even worse. As a result,

representative runs have a balanced but generally weak patiern distribution. Under the
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LANA's forgetting scheme, most of the generalizations are in fact functionally forgotten for
the subsequent blocks. The same scenario happens again and again on the subsequent
learning blocks, keeping the overall performances at a relatively lower level compared to
those under the centered condition (refer to Table 7).

The key point here is that the sample structure should match the strategy of learning
in order to maximize performance [Elio and Anderson, 1984). As they observed, when
learning is basically passive and inaccurate, it is better off for learners (human or machine)
to start with narrow but representative material as the first centered sample. The excessive
representativeness or frequent re-occurring of similar instances allows these "passive”
learners to get hold of something to reply and to improve on. On the other hand,
representative samples, though reflective of the true category variabilities, provide
nonanalytic learners relatively fewer opportunities to pick up regularities “rocm examples
and to reinforce on the abstracted regularities. If they continue to be nonanalytic, they
would likely end up with a confused piciure of the categories because any regularities
abstracted at the beginning encounter counter-examples, which may discourage them from
pursuing further.

Rowecver, the above effects severse themselves when LANA models an analytic
learning sirategy. To explain this, consider the representative condition first. Under
representative sampling, the high-variance samples lead to generalization that can cover
wide range of items. These generalizations are used immediately under the analytic
strategy. As a result, most of these representative generalizations (which are forgotten
under the nonanalytic strategy) are retained and frequently used. The fact that items are not
used for decisions under the znalytic strategy makes it easier for generalizations to be used
more often and to gain strength. The large population of generalizations implies that cnly
highly useful patterns could become strong and remembered for later blocks. As a result,

the classification performance for the representative is fairly good over all item types.
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Under the analytic strategy, the centered condition begins with a biased category
knowledge. The hypothesis testing strategy promotes full match as oppose to partial
match. As a result, the set of biased generalization (mostly formed from typ= A items) can
match few iterns other than those of type A, causing very poor performance on types B and
C items (see Table 7). The average performance for the centered, therefore, is relatively
low, creating a reversed situation as compared with the case under the nonanalytic strategy.

During the subsequent blocks, the centered starts to see more variance on types B
and C items but with fewer type A items. The previously-developed type A
generalizations, under the full match scheme, are not successful in matching or correctly
classifying these type B and C items. As a result, fewer of them become strong. The
subsequently abstracted generalizations are relatively weak because they have smaller item
population to which they can fully match. Thus fewer generalizations are of high strength
and they are mostly fr iv;0 4 “i.wwever, the initial advantage on the type A items geis
lost (the beginning dip in tyye A :eriormance in Table 7) due to the fact that some type A
generalizations are forgotten because they cannot match enough items and gain strength
when new variance is encountered. However, for types B and C items, the improvements
are steady because both types are introduced relatively more gradually over time.

The intuition for this analytic iearning situation is simply the reverse of the
nonanalytic situation. Analytic learners are better off when they are presented with
category material representative of the true category variance, because their stratcgy allows
them to hypothesize and test various category contingencies and obtain a non-biased
knowledge at the very beginning. In this case, the low variance centered samples cannot
heip them but provide hiarmful initial biases. The full match constraint prevents a revision
of knowledge.

The basic model behavior can be considered as the result of LANA's knowledge

structure development, i.e., the generalization base forimed over time. At any given point
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in time, LANA's knowledge structure determines not only the its behavior at the current
time but also influences what may be learned in the near future.

The following two types of generalization distributions are useful in characterize
LANA's evolving knowledge: (a) coverage distribution, and (b) strength distribution. The
coverage is defined in term:s of the total number of items that can be matched by
generalization(s) from a certain population. According to this definition, rule coverage
reflects the category types which can be covered by generalizations and, therefore, it is
particularly useful in examining the impact of similarity-related processes. The strength
distribution is defined as the relation between pattern strength and total number of patterns
having that strength. It is more useful in monitoring how strength-related processes
influence knowledge structure.

Not surprisingly, the coverage distributicn mirrors the sample variance distribution,
i.e., when additicnal variance in certain item type is encountered, that part of the coverage
distribution stazts to grow. This explains in part the performance istributions over item
types (see Table 7.). The coverage distribution also helps to understand the effect of using
partial versus full match in overcoming type-sensitivity of generalizations. Note that the
level of coverage tends to predict, but is different from, the level of performance because
(a) generalizations make mistakes, (b) generalizations overlap on their covered territories.

The investigation of strength distribution revealed that LANA's functional forgetting
scheme play the role as intended. This distribution makes it easy to see what part of the
generalization population is being remember for any given level of retrieval thresheld and

how is population changes over time as retrieval threshold is adjusted over blocks.

6.4. Reiated Findings
One important finding that emerged from the exploration of potential analytic and

nonanalytic learning was that it was difficult to simulate nonanalytic learning without
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allowing partial matches. In other words, most nonanalytic models that showed reasonable
benefits for beginning with a low-variance allowed partial wmatching. If full match was
used, the advantage cither disappeared or went in the opposite direction. Similarly, it was
difficult to model an analytic advantage for the representative condition over the centered
condition without constraining the matching between retrieved generalizations and the test
items to only full match.

This finding seems intuitively reasonable. First, it is not possible for an instance
pa. .. iy match a presented item (unless they are identical). Second, generalizations
that m..st be fuily matched to be retrieved correspond more closely to what one might think
of 25 conscious "rules" about category membership. This fits the analytic learning strategy,
where a representative sample yields "raies” that =+ ~.zu likely to fully match on
subsequent blocks due to their coverages. This accou: ... 1or the accuracy and typicality
disadvantage found for analytic learners, given a starting centered sample, who performed
relatively poorly as they encountered more category variance.

The differential forgetting under differert learning strategy is the second mcst
important parameter for simulating the results. Recall that the functional forgetting of
generalizations is implemented as paitern retrieval strength threshold, and it is set to
different levels according to different strategies. A largs number of simulaticn experiments
jnd’~ated that it was critical to set a higher (i.e., 12) retrieval strength threshold for
simulating a performance advantage for the centered condition, and it was equally important
to set it at a lower level (i.c., 10) or base level to simulate the performance advantage for
representation condition. The key to getting a "good start" for the centered condition is to
set a higher strength threshoid so that only frequently-appearing feature patierns can
become strong enough to be retrieved. The strength distribution indicated that under
centered condition, the first sample created quite a few very strong gencralizations while the

representative condition had a more even distribution of pattern strength.
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The above two parameters were sufficient to roughly simulate the basic interaction of
sampling condition and learning strategy. Two additional parameters (the third and the
fourth parameters in Table 5 at the end of chapter 4) were important in simulating the key
trends and the acceptable performance lcvels, i.e., items-compete-with-generalizations and
frequently-used-items-become-generalizations. In general, the configuration of analytic
parameter settings fosters a processing distinction in the formation and use of "rules". The
configuration of nonanalytic parameter settings fosters a more similarity-driven approach
that treats instance representations and generalization representations in similar manners in
pattern selection process. It is interesting to note that the intt;racﬁon was easily simulated
for the first or even the second block. It was difficult to maintain an initial wrong bias in
the centered-analytic simulation as new information was encountered over later blocks.

The above discussion regarding importance of parameters was further supported by
the data from a set of experiments aimed at evaluating the relative importance of specific
parameters to simulating the observed data. These experiments systematically changed
individual parameters while holding the other parameters constant. It was found that by
changing anyone in the set of four parameters in Table 5, the results were significantly
deteriorated. For example, to test the relative importance of partial match, the remaining
parameters were set to final values but used full match instead. The results were compared
with those from the final nonanalytic model to examine significance of impact. This same
procedure was repeated for all four parameters one at a time under both the analytic and
nonanalytic learning strategies. Therefore, the results from the total of eight sensitivity
experiments were sufficient to test the impact of each of the four final parameters under the
two strategies. These results are summarized below.

Analytic Model Tests. Under the analytic strategy and using the final LANA model

reporied here, the following percentage differences (i.e., difference of percentages. e.g.,
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86% - 83.5% = 2.5) were observed and they were based on average accuracy performance
over all item types.

(@) Pattern-matching: when pattern matching was set to partial match instead of full
match, the representative advantages for blocks 1 - 4 were greatly reduced, eliminated, or
even reversed. By block 4, there was a slight or no real advantage for the representative
condition (0.5%).

(b) Strength-threshold-for-retrieval: when strength threshold was set to high (12)
instead of low (10), the representative advantages over all blocks again disappeared or
reversed. By block 4, there was a clear advantage for the centered condition instead of the
representative condition (-4.0%). The guess rate for all blocks and under both sampling
conditions were too high to accept (2 70% guess rate on block 4).

(c) Items-compete-with-generalizations: when items were allowed to compete with
generalizations in the pattern selection process, the representative advantages for blocks 1 -
4 were significantly reduced. Block 4 showed an advantage for the representative
condition (2.4%).

(d) Frequently-used-items-become-generalizations: when frequently-used items
became generalizations, the representative advantages over blocks 1 - 4 were again greatly
reduced. By block 4 there was an advantage for the representative condition (2.5%).

Nonanalytic Model Tesss. Under the nonanalytic learning strategy, the same
measurement was used and the same procedure was followed.

(a) Parttern-matching: when pattern matching was set to full match instead of partiai
match, the centered advantages for blocks 1 - 4 disappeared or even reversed. Block 4
shovsed an advantage for the representative instead of the centered condition (2.0%).

(b) Strength-threshold-for-retrieval: when strength threshold was set to low (10)
instead of high (12), the centered advaniages over all blocks disappeared or reversed. By

block 4, there was again an advantage for the representative condition (2.5%).
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(¢) Items-compete-with-generalizations: when items were not allowed to compete
with generalizations in the pattern selection process, i.c., when generalizations patterns,
and not items patterns, were ased for decisions, the centered advantages for blocks 1 - 4
were significantly reduced or eliminated; and block 4 showed an advantage for the centered
condition (3.0%).

(d) Frequently-used-items-become-genergiizations: when frequently-used items were
not allowed to become generalizations, the centered advantages over blocks 1 - 4 were
maintained. However, the guess rate became unacceptzirlely high for both conditions and
over all blocks (2 60% on block 4). By block 4, the cente 24 condition maintained a wide
margin over the representative condition (8.0%).

The above sensitivity data were based on the accuracy differences only. In fact,
similar deteriorations were found on other dependent variables such as typicalirv scores and
data trends when the settings for the four parameters were different from =whut were
proposed. These facts seemed to support the discussions made earlier aboui ¢ - :lidity
and necessity of these four paramctcis in their proposed settings.

Furthermore, above experiments varied only one parameter at a time. Naturally,
parameters interact and une could investigate all possible combinations of all parameters
even within this constrained set. However, it was the previous experimentation that lead us
to this particular set of parameters and we had a fairly good intuition that these parameters,
in their final combination, constituted viable models. The only questionable parameter is
the one that controls whether processing distinctions are made between item and
generalization patterns. We claim that an analytic strategy is best modeled if only rule
patterns are the basis for a decision, and several parameters in combination implemented
that aspect of the model. Conversely, we claim that non-analytic learning is more analytic
in nature and uses exemplar patterns primarily, "noticing" generalizations only with some

difficulty. The parameter that prohibits exemplar patterns from being used under analytic
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strategy may not be as important as the others. Changing this parameter to allow exemplar
pattern decisions reduced the magnitude of the desired effect, but not reversed the desired

nonanalytic trends.

6.5. Simulating Other Results Using LANA

As a way of evaluating the generality of these models, both the analytic and
nonanalytic versions of LANA model have been applied to Hayes-Roth and Hayes-Roth's
[1977] experiments.

Specifically, their data on confidence ratings of classification decisions were
simulated by using LANA's three types of typicality ratings based on strength, similarity,
and both combined. The simulation of the experimentai procedure followed the same
procedure reported by Hay:s-Roth and Hayes-Roth [1977]. A total of 30 simulation runs
(corresponding to 30 learaers) were conducted per experiment, each run receiving a
different random input order. For further details on the experiment categories, design, and
procedure, refer to either Hayes-Roth and Hayes-Roth [1977] or Anderson et al. [1979].

Table 8 below shows that under both analytic and nonanalytic strategies, LANA's
simulations match the exact ordering of the observed data under all three confidence
measures. Since Anderson et al. [1979] also simulated the same results using the ACT
model, their data is also included here. It was discovered that this set of data was relatively
easy to simulate and a number of the analytic and nonanalytic versions of LANA could
simulate the exact ordering. The factors this thesis identified as central for analytic and
nonanalytic processing are not relevant nere. This was somewhat surprising, given the
performance differences thezse parameters yield for the Elio and Anderson’s {1984] task.
One reason may be that Hayes-Roth and Hayes-Roth manipulated the frequency with
which particular patterns may make certain generalizations salient even for our nonanalytic

model.
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Table 8. Observed and Simulated Mean
Confidence Ratings Over Four Types of Items

LANA Simulation

Hayes-Roth|  ACT Analytic Version Nonanalytic Version
Daa | Simulation 1ot Simitarity Overall | Strength Similarity Overall

N ticed
proonpee | 261 | 094 | 153 134 14123 1s2 138

Much practiced
Nonmwtyms 2.34 0-86 1-31 1.30 1.30 1.08 1.05 1.06

Little practiced
close-to-prototype 2.27 0.70 1.27 1.11 1.19 | 0.96 101 098

Little practiced .

far-from-prototype 2.01 041 0.97 1.02 099 { 0.77 094 0.86

Note: Overall confidence ratings are based on the combination of both strength and similarity

6.6. Summary

This chapter has presented the basic set of results produced from certain versions of
LANA model. However, there was a family of competing models which could account for
the results to different extents. The selected LANA model did a reasonable job as indicated
in Table 7. The results from one competing model also simulated the results reasonably
well as shown in the Appendix 1. The analysis of LANA's behavior in terms of its
underlying mechanism and knowledge evolution formed a coherent picture with respect to
the psychological explanation by Elio and Anderson [1984] for their empirical findings.
The sensitivity analysis regarding the importance of all the four parameters confirmed that
they are key components _for this simuiation.

The fact that a large number of models have been able to simulate the set of empirical

results suggests that exemplar order, strategy, and their interactions in concept learning is
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computational in nature. In other words, there is at least one set of assumptions under
which a computer model can explain these effects. Therefore, it is a phenomenon not just

happening to human learners but to learning machines as well.
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Chapter 7

General Discussions

This chapter discusses remaining issues related to LANA simulation. It highlights
relations between this research and other areas of research including machine leaming and

cognitive science. The thesis closes by pointing out directions for future research.

7.1. Simulation Using Instance-Based Models

The preliminary exploration with LANA has led to some success. The interaction
between information order and learning strategy has been simulated by alternating only a
handful of strategy parameters. A variety of observed data trends were also simulated,
including behavior patterns with respect to sample structure, learning block, learning
strategy, and their interactions. The explanation of LANA's behavior based on its
knowledge structure is basically consistent with the psychological explanations for the
corresponding human behavior.

. However, it would be interesting to know how other models other than LANA might
perform on the same learning task and possibly account for some results. To investigate
this possibility, three different instance-based models were constructed and tested. The
first model was based on Hintzman's [1980] assumptions, but used LANA's existing
memory settings and pattern matching scheme. The other two models were based on
Medin's assumptions for instance-based models; one (Model B) stored identical instances
as a single case and the other (Model C) stored them as separate cases. Forgetting schemes
on all three model were based on all-or-none attribute forgetting with a given probability.
The typicality ratings were computed and collected in the same way as in the LANA
simulation. However, since Medin's assumptions did not include a strength component,

the strength-plus-similarity typicality was not available for these models.
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The block 4 mean classification accuracy and typicality for both the observed and
simulated are presented in Appendix 2 (a). The mean accuracy data as a function of block
and item type are given in Appendix 2 (b). The data indicate that in most cases there are
slightly advantages for the representative condition over the centered condition across
blocks and item types. However, as one would expect that an instance-based model should
be able to simulate the nonanalytic learning more easily, the results suggested otherwise.
This discovery led to the conjecture that an instance-based model may not be able to
simulate the interaction results as easily as a feature-set mc |, if at all. The simplest
reason may be that, in LANA simulation, nonanslytic learning is best simulated by
promoting certain characteristics associated with instance-based models within a

generalization-based architecture.

7.2. Relation to Other Research

In addition to accounting for certain empirical results, LANA has implications to
various areas of research in both machine learning and cognitive science. The LANA
framework embodies a set of computational mechanisms for investigating human analytic
and nonanalytic concept learning strategy, which has not yet been done with ~omputer
models. LANA simulation can also be viewed as an empirical study of a rule-based
incremental concept learning system which is sensitive to a particular type of exemplar
order and can be adjusted with alternative learning strategies. The learning mechanisms of
LANA have characteristics of many other concept learning systems. The assessment of
similarity, pattern matching, conflict resolution, knowledge reirieval, generalization,
discrimination, strength assignment, and information forgetting processes are shared by
many machine learning systems across various research paradigms. LANA's results are
relevant to better understanding the effects of exemplar order for production-based learning

and problem-solving systems.
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As indicated in the literature review, the effects of exemplar variance and presentation
order in learning samples have not been studied much with machine learning systems. Yet
many concept learning systems are inherently order dependent, such as those in case-based
learning (e.g., UNIMFM [Lebowitz, 1986]), rule-based learning (e.g., ACT [Anderson,
1979, 1986]), and other symbolic learning systems (e.g., Winston's system [1975]). This
is simply because early experience affects the learning of later examples. Generally, most
incremental concept learning systems are more likely to be order sensitive than
nonincremental systems, although there are incremental learning systems that are not very
sensitive to example order {e.g. version space [Mitchell, 1982]). The point is that if all the
information from siudied examples is remembered, a learning system tends to be less
sensitive to order. Order effects often become a concern for systems that do not store all
the information. Therefore, understanding the computational nature of order sensitivity
may have direct influence on the understanding of the behavior of these learing systems.
Although there are various "types” of exemplar orders, the one studied in this research has
certain generality, especially when a relatively large set of training examples is learned
incrementally.

The results of LANA simulation and related findings also have implications to the
studies in computer-aided instruction (CAI) or intelligent tutoring systems (ITS). Having a
model of human learning is important fo designing such systems, which must infer the
internal knowledge state of the learr.ex from his or her behavior. In this regard, the effect
of using different training materials and icamers adopting different strategies may have
profound influence on how a student modet might be built for 2 CAI/ITS system.

The impact of different sample variance and orders on the abstracted concept
descriptions also has direct relations to the automatic knowledge acquisition [Quinlan,
1983]). Automatic knowledge acquisition tries to effectively automate the process of

knowledge engineering which involves acquiring iarge amount of facts and knowledge.
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Presumably, the manner in which thi 1arge set of input is acquired portion by portion may
influence the effectiveness of this - juisition process.

In cognitive science, this research helped to clarify and adjust the previous empirical
explanations on the effects of exemplar order, strategy, and their interactions. The
simulation model has not only supported the basic assumptions underlying feature-set
models, but also tried to incorporate components of an ii.;stance-based model into feature-
set model framework. Therefore, LANA simulation is related to those efforts trying to

combine salient elements of different types of models.

7.3. Directions for Future Research

There are a number of improvements to be made to the current LANA framework.
One area of improvement regarding the simulation of learning strategies is to define a
"neutral” strategy (according to any empirical results) and to map it to LANA
computational processes and strategy-parameter settings. Although the analytic and
nonanalytic learning strategies were simulated by LANA as two "extreme" cases, there is
no reason to believe that these strategies are "all-or-none" phenomenon. Currently, it is not
clear what the exact behavior characteristics are for a neutral learning strategy; it seems that
it must be a strategy compromising the two extremes. Once defined, a neutral strategy
provides a "logical" case to which both strategies can and should be compared.

It is certainly important to continue testing the model presented here on other
capirical results generated for different type of category leaming tasks and with different
type of categories. For example, it would be interesting to see how well LANA would
perform on categories tasks for investigating analytic or nonanalytic learnings, such as
those used by Reber [1976] and Brooks {1978].

Similarly, it is perhaps also interesting to see how the LANA framework compares

with other existing machine learning systems on common learning tasks. One possibility is
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to choose a well studied machine learning system and make it perform the category learning
task assigned to LANA. The results from such comparison may shed light on the possibie
applications of LANA's strategy simulation to performance systems. They may also

suggest further improvement to the current LANA framework.
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Appendix 1. Simulation Results of Alternative Model

Appendix 1 (a). Observed and Simulated Mean Block4 Accuracy and
Typicality as a Function of Sample Condition and Leaming Strategy

Nonanalytic Analytic
Observed | Simulaed | Obscrved | Simulaed

Accuracy 85 86 78 83

Contered | ropicality 1] 2.60 1.44 2.11 1.49
Typicality2|  2.60 2.41 2.11 1.81

Accuracy 81 .81 .87 .87

Represer iV rypicality 1] 2.14 1.27 2.80 1.68
Typicaliy2|  2.14 1.84 2.80 2.39

Note: Typicality 1: typicality scores are based on similarity only
Typicality 2: typicality scores are based on both strength and similarity
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Appendix 1 (b). Observed and Simulated Mean Accuracy and
Typicality as a Function of Block, Item Type, Sample Condition, and Strategy

Nonanalytic Strategy Analytic Strategy
Accuracy
. Ol i ]

Centered A B+C A B+C A B+C A B+C
Block 1 .76 N)! 81 .70 80 69 90 .68
Block 2 81 .80 84 .76 74 74 .89 .74
Block 3 82 82 82 a7 74 .76 .88 82
Block 4 85 84 89 24 .76 80 90 .79

Fleprescmative
Block 1 7 13 .62 68 .79 a5 81 85
Block 2 .79 77 4 19 84 86 85 92
Block 3 81 .76 .76 i 84 85 .88 92
Block 4 .80 82 a7 83 33 90 84 .89
Typicality (Similarity Only)
Q1 l Simulased .

Centered A B+C A B+C * E+C % E+C
Block 1 2.08 1.56 1.24 0.62 2.13 1.63 1.92 0.79
Block 2 232 219 138 095 1.78 1.74 1.94 1.29
Block 3 2.39 2.58 1.47 1.26 1.65 1.90 1.85 142
Block 4 2.79 2.57 1.55 1.38 192 224 1.77 1.29

[Representative
Block 1 1.91 1.53 0.43 0.58 2.18 1.94 141 1.69
Block 2 2.01 1.97 079 093 2.51 262 1.67 1.87
Block 3 2.16 1.90 1.04 1.19 263 260 1.59 1.82
Block 4 205 223 1.16 1.35 255 297 1.51 1.79
Typicality (Strength and Similarity)

Centered A B+C A B+C A + +C
Block 1 2.08 1.56 1.05 0.53 2.13 1.63 1.79 0.75
Block 2 232 219 1.61 1.10 1.78 1.74 193 1.20
Block 3 239 258 2.04 1.70 1.65 190 2.05 149
Block 4 279 257 2.59 229 192 224 2.19 1.56

[Representative
Block 1 1.91 1.53 0.45 0.53 2.18 1.94 1.29 1.57
Block 2 2.01 1.97 0.88 1.05 2.51 2.62 1.77 1.96
Block 3 2.16 1.90 1.29 149 263 260 197 231
Block 4 205 223 1.66 1.95 255 297 210 257
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- Appendix 2. Simulation Results using Instance Models

Ay,  +..2(a). Observed and Simulated Mean Block 4 Accuracy
and Ty, 'y as a Function of Sample Condition and Learning Strategy
Observed Simulated
Human Data Model A Model B Model C
Accuracy .85 .95 90 90
Comiored typicatiy1] 260 1.79 171 1.09
Typicality 2 2.60 2.96 - -
Accuracy 81 94 93 24
e rypicality 1] 2.14 1.76 1.61 1.14
Typicality 2 2.14 .07 - -

Note: Typicality 1: typicality scores based on similarity only
Typicality 2: typicality scores based on both strength and similarity
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Appendix 2 (b). Observed and Simulated
Mean Accuracy and Typicality as a Function of Block,
Item Type, and Sample Condition for Three Instance-Based Models

Accuracy
Observed Simulated

Human Data Model A Model B Model C

Centered A B+C A BsC A B+C A B+C

Block 1 J6 1 82 .78 89 81 81 ¥

Block 2 81 .80 87 87 S0 87 86 &

Block 3 .82 .82 90 94 89 89 .88 B

Block 4 .85 .84 93 96 89 90 89 91

[Representative

Block 1 a1 13 19 83 86 82 8

Block 2 .19 a7 88 93 85 86 88 88

Block 3 81 .76 91 94 92 90 91 93

Block 4 .80 82 93 95 93 93 93 95

Typicality (Similarity Only)

Centered A B+C A B+C A B+C A B+C
Block 1 2.08 1.56 137 106 LSt 128 105 103
Block 2 232 219 159 148 1.63 161 106 1.03
Block 3 2.39 2.58 165 173 192 152 1.07 151
Block 4 279 257 177 183 198 150 108 110

{Representative

Block 1 191 153 L15 126 | 149 125 | 105 105
Block 2 2,01 1.97 1.57 170 .11 1S 1.07 108
Block 3 2.16 1.90 167 174 180 LT L1 114
Block 4 2.05 2.23 1.75 180 1.66 1.58 L 117




Appendix 3. Final Model Parameter Settings

A: Parameter Setting for Nonanalytic Strategy

Maximum-item-memory
Maximum-generalization-memory
Item-memory-scheme
Functional-forgetting
Initial-generalization-strength
Pattern-matching
#-of-generalizations-formed
#-of-item-discriminations-formed
Item-similarity-threshold
Discrimination-strength :
Generalization-similarity-threshold
Strength-threshold
Threshold-adjusted
Strength-increment
Strength-decrement

Item-compete-with-generalization

Item-become-generalization
#-of-dimensions-to-drop
Pattern-scoring-method

3

1000

forget oldest pattern per cycle
yes

10

fI'ull match

1

2

zzmual strength
10 (low)

yes

g-88~"

B: Parameter Setting for Nonanalytic Strategy

Maximum-item-memory
Maximum-generalization-memory
Item-memory-scheme
Functional-forgetting
Initial-generalization-strength
Pattern-matching
#-of-generalizations-formed
#-of-item-discriminations-formed
Item-similarity-threshold
Discrimination-strength
Generalization-similarity-threshold
Strength-threshold
Threshold-adjusted
Strength-increment
Strength-decrement

Item-compete-with-generalization

Item-become-generalization
#-of-dimensions-to-drop
Pattern-scoring-method

3

1000

forget oldest pattern per cycle
yes

10

fatial maich

1

2

tzmnal strength
12 (high)

yes

1

1

yes

yes

add

Note: Highlighted parameters are the ones that require different
parameter settings for the alterative strategies.



Appendix 4. Alternative Model Parameter Settings

A: Parameter Setting for Analytic Strategy

Maximum-item-memory 3
Maximum-generalization-memory 1000
Item-memory-scheme forget oldest pattern per cycle
Functional-forgetting yes
Initial-generalization-strength 10
Pattern-matching Patial match
#-of-generalizations-formed 1
#-of-1tem-discriminations-formed 1
Item-simiarity-threshold 2
Discrimination-strength initial strength
Generalization-similarity-threshold 2
Strength-threshold 12 (high)
Threshold-adjusted yes
Strength-increment 1
Strength-decrement 1
Item-compete-with-generalization yes
Item-become-generalization yes

#-of -dimensions-to-drop 3
Pattern-scoring-method add

B: Parameter Setting for Nonanalytic Strategy

Maximum-item-memory 3
Maximum-generalization-memory 1000 '
Item-memory-scheme forget oldest pattern per cycle
Functional-forgetting yes
Initial-generalization-strength 10
Pattern-matching Patial match
#-of-generalizations-formed 1
#-of-item-discriminations-formed 1
Item-similarity-threshold 2
Discrimination-strength initial strength
Generalization-similarity-threshold 2
Strength-threshold 12 (high)
Threshold-adjusted no (i.e., fixed at 12)
Strength-increment 1
Strength-decrement 0
Item-compete-with-generalization yes
Item-become-generalization yes
#-of-dimensions-to-drop

Pattern-scoring-method add

Note: Highlighied parameters are the ones that require different
parameter settings for the alternative strategies.
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