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ABSTRACT

An experimental study was conducted to investigate systematically the effect of
air flow over an exposed surface on heat transfer through porous insulation. Tests were
carﬁed out in a small, non-recirculating wind tunnel with standard thickness insulation
sample of 89 mm mounted flush with the floor of the tunnel. Temperature distributions
and heat fluxes were measured at several locations with each sample for a range of tunnel
velocities from 0 to 9 m/s. Glass fibre based porous insulation was tested for a range of
permeabilities of 2 x 10° m2 to 5 x 10”° m?, the latter limit corresponding to commercial
glass fibre insulation.

Experimental results indicate that the mean hea: flux increases significantly with
increasing air flow velocity over the exposed surface of the insulation. This is a direct
result of air intrusion into the porous insulation. Effective thermal resistance values were
decreased by a factor of 2 to 3 for velocities up to 7 m/s. For the highest permeability
sample ( lowest density) tested, the zero velocity R-value is approximately twice the value
of commercial glass fibre insulation but is much more sensitive to the effects of air flow.
For a range of velocities from 0 to 9 m/s, the R-value decreases from 4 to 2 |

This study showed that heat transfer through porous insulation can be increased
significantly by air flow over an exposed surface of the sample. This has implications for

the use of this type of insulation in certain areas of butlding envelopes.
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CHAPTER 1

INTRODUCTION

Porous media are encountered in a broad range of engineering problems associated
with such diverse areas as ground water hydrology, oil and gas reservoirs, and the use of
porous media as insulation. Porous insulation may have an open-pore configuration
consisting of glass fibres, wood fibres or granular materials. In this type of insulation the
pore spaces are interconnected and open to the surrounding air at its surface. Other types
of insulation such as foam rigid board have isolated pockets which are not interconnected.
It is the low thermal conductivity of the trapped air that gives insulation its high
resistance to heat flow. The thermal performance of insulation is largely governed by its
ability to prevent air movement within its structure.

In some applications, open-pore insulation such as glass fibre batt may be subject
to air flow parallel to one surface of the batt. In houses, such cases occur in cathedral
ceilings where the roof insulation has air flowing over the upper cold side of the
insulation in a small air gap between the roof sheathing and the insulation; this ventilation
air flow is required to remove moisture on the sheathing and prevent over-heating of the
sheathing, (Fig.1.1). A similar case is encountered in flat-ceiling houses where the open-
faced permeable insulation in the attic may be subject to ventilation air flow, ( Fig.1.2).
In either case, air flow over a free surface of porous insulation may induce some air
motion within the insulation. If this occurs, then this convective air motion will alter the
temperature profiles within the insulation producing a change in the heat flux.

A survey of the literature revealed that some work has been done on related
problems but no systematic study has been conducted to quantify this effect. The first
attempt to study the boundary conditions at an open permeable wall was made by Beavers
and Joseph (1969). They described experiments which were designed to examine the

nature of the tangential flow in the boundary region of a permeable interface. The
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experimental arrangement consisted of flow through a long porous block and flow
through a small uriform gap immediately above thisblock. The porcus block was inserted
into an open rectangular channel which connected an upstream reservoir with two
downstream reservoirs. This arrangement was modeled as flow in which the Navier-
Stokes equations were satisfied in the free fluid, Darcy flow was satisfied in the interior
of the permeable material but not necessarily in the boundary regions, and the normal
component of the velocity and the pressure were continuous at the porous boundary. The
tangential component of velocity presumably changes across this layer from its
statistically averaged Darcy value to some slip value immediately outside the permeable
block. A simple theory based on replacing the effect of the boundary layer with a slip
velocity proportional to the exterior velocity gradient is proposed and shown to be in
reasonable agreement with experimental results. The result of the experiment indicated
that the effect of viscous shear appeared to penetrate into the permeable material in a
boundary layer region, producing a velocity distribution similar to that depicted in Fig 1.3.
The tangential component of velocity of the free fluid at the porous boundary could be
considerably greater than the mean filter velocity within the body of the porous material.
This boundary layer could alter the nature of the tangential motion near the nominal

boundary.

impermeable
wall

R O X

ur flaid
permeable interface I layer

porous
medium

Figure 1.3 Velocity profile for unidirectional flow in a horizontal channel bounded by
an impermeable upper wall and a saturated porous medium.



This work was soon followed by Saffman (1971), who used a theoretical
Justification for the empirical boundary condition proposed by Beavers and Joseph (1969),
Eqn 1.1. He used a statistical approach to extend Darcy's law to non- homogeneous
porous medium. The problem was regarded as a special case of flow through a non-
homogeneous porous medium with the porosity and permeability changing from the value
of unity and infinity to the values for the porous medium forming the boundary. The
boundary condition, Eqn.1.1, could then be deduced by the application of standard

boundary layer techniques to the equations describing flow through non-homogenecus

media.
du _ y _
—_ = _l_.( uf u ) 1.1

where u; is the velocity in the fluid, u, 1s the mean filter velocity (flux per unit area) in
the porous medium, K is the permeability of the porous medium and 7y is a dimensionless
quantity independent of the viscosity of the fluid and dependent on the material
parameters that characterize the structure of the permeable material within the boundary
region.

Berlad er al. (1980) have examined the applicability of the classical thermal
resistance or R-values to commonly encountered insulation systems where air intrusion
is physically possible. One set of experimental apparatus ( Fig.1.4) was employed to
examine the existence-nonexistence of free convection effects within the body of a
permeable insulation system. In this experiment, a sealed permeable ‘glass fibre batt was
vertically situated between parallel warm and cold boundaries, Extensive thermocoup!»
arrays were employed to determine the horizontal temperature profiles within the body
of glass fibre batt at three different heights. Temperature profiles shown in Figs 1.5 and
1.6 were obtained for a total temperature difference of 33.3°C and 73.9°C respectively.
In each case the dashed (straight) line corresponds to the pure conduction case. The solid
curve was drawn through the temperature data for the three planes. A second apparatus
(Fig.1.7) was employed to examine the effect of intrusion on a specimen of permeable

insulator. Three cases corresponding to an insulator heated from below, and open to room

Ch.1 Introduction 5
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air at its top surface were studied. For the apparatus and experiments of Fig.1.7 observed
temperature profiles are shown for the case of no imposed flow, for the case of free steam
of air at 1.3 m/s parallel to the open surface, and for the case of free stream flow of air
at 3.0 m/s at 45 deg with the horizontal. The experimental results showed that natural
convection in sealed permeable insulators could occur and that natural convection as well
as air intrusion into partially sealed permeable insulators could degrade the effective R-
value of a permeable insulator.

Dale and Ackerman (1991) conducted a study to determine the effect of ventilation
air flow on the performance of glass fibre insulation in the comer region of an attic as
shown in Fig.1.8. Temperature measurements were made on the interior surface of the
drywall and within the insulation. Figure 1.8 shows the locations of the thermocouples
fitted inside the insulation. Results showed that the effectiveness of the insulation in
reducing heat transfer was reduced substantially by air being forced through the insulation

in the corner region. The effective R-value was reduced by a factor of 2 for the given

conditions.
1.1 Scope of the Thesis

This study was initiated to investig=te systematically the effect of air flow on heat
transfer through porous insulation. The main empbhasis, here, was to conduct controlled
experiments in a small wind tunnel, and measure any change in heat flux through the
insulation. A small sample of the insulation was mounted flush with the floor of a wind
tunnel and the air velocity was varied up to 9 m/s. Both heat flux and temperature
distributions were measured at several locations within the sample. From these
measurements, an effective thermal resistance was calculated. Several different samples
of insulation were tested with varying permeability which is related to the density of the
insulation.

The material presented in this thesis is divided into five chapters. Chapter 1
presented a brief review and set the scope of the thesis work. Chapter 2 reviews some

basic theory used to develop the foundations and background for the experiment analysis.

Ch.l Introduction 9
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This includes the flow of fluids through porous media and the effect of convective flow
on temperature distribution in porous media. Chapter 3 combines a brief description of
the design of the experimental apparatus, the measuring techniques, and the experimental
procedures. A discussion of results of the tests including temperature distribution, and heat
flux through the insulation are considered in Chapter 4. Finally, conclusions and

recommendations for further study are presented in Chapter 5.

Ch.1 Imtroducticn 12



CHAPTER 2

THEORY AND BACKGROUND

In this chapter, some of the fundamental aspects of flow and heat transfer in
porous media applied to the scope of this thesis, are briefly discussed. The first deals with
the flow through porous media as described by Darcy's law where the concept of
per..aeability is introduced. The second involves the flow of heat through porous media
which is governed by the energy equation including conduction and convection. The effect
of flow on temperature distributions within porous insulation is derived for two distinct
flow situations: air flow parallel to heat flux and perpendicular to heat flux. These cases
represent two extreme cases of air motion that are induced in porous medium due to air
flow over the exposed surface of the insulation. This analysis will heip tc interpret

qualitatively the temperature distributions that are presented in Chapter 4.
2.1 Darcy's Law for Flow Througi; Porous Media

Darcy's law was developed to represent quantitatively the behaviour of fluids
flowing through porous media. Based on experiments, Darcy, (Bejan, 1984), in 1856

concluded through experimental observations, the following relationship for flow through

porous media:

Kdp 2.1

where u is the velocity in the x-direction, dp/dx is the pressure gradient, K is a constant
characteristic of the medium defined as permeability, and p is the dynamic viscosity of

the fluid flowing through the porous medium.



This law states that macroscopically', the velocity of a fluid flowing through a porous
medium is directly proportional to the pressure gradient acting on the fluid. Darcy's law
is valid when the volume-averaged velocity is small. This criterion is usually expressed

in the form of a Reynolds number which is based on the length scale, K*. For Darcy's law

to be valid

1
u_ K2

\Y

Re <1

where v is the kinematic viscosity. For typical situations encountered in leakage air flow
through insulation in houses, Nikel (1993) found u_ to be on the order of 0.01 m/s. Based
on this velocity and K which is typically on the order of 10 m? for glass fibre insulation,
the Reynolds number is 0.03. This shows that the Darcy's law is valid for the case
presented in this thesis.

As pointed out by Muskat (1937), the direct experiment relating to Darcy's law
was restricted to a column or beds of porous material in which the macroscopic flow is
necessarily of a one-dimensional character. It is, however, necessary to generalize this
empirical result to two-dimensional flow. The resultant velocity at any point is directly
proportional to the resultant pressure gradient at that point. In .he absence of boay forces,

Darcy's law in two dimensions is

u - -E%

H 2.2
w= -Kop

B Oz

where u and w are the velocities in the x direction and z direction respectively.

1 . . . . .

The qualification "macroscopicallv” means that the volume element 1o which the velocity and pressure

refer arc suppose to contain a large number of pores and the dynamical variables are averaged over a large
number of pores.

Ch.2 Theory & Background 14



The permeability K may vary from point to point and may be different for the two
components of the velocity. However, it will generally suffice to consider the medium to

be isotropic (the case of this thesis), and K shall hereafter be taken as independent of

direction.

For the case of one-dimensional flow through a porous medium under the action

of uniform pressure gradient, Darcy's law reduces to

a = KAP 2.3
B

d

where d is the thickness of the porous layer and AP is the pressure difference imposed
across the porous layer. This equation will be used in Chapter 3 to measure the

permeability, K.
2.2 Energy Equation

In order to calculate steady-state temperature distributions within a porous medium
(or any medium), the energy balance including convection and conduction yields (Bejan,

1984)

uﬂ{-wgza(ﬂ'ﬁa‘,‘[‘) 2.4
ox oz ox2 2
where o is the thermal diffusivity defined as
k
a = —
Pe,

To help interpret the measured temperature profiles that will be presented in Chapter 4,

two extreme cases are presented together with analytical solutions for the temperature
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profiles. For both cases a horizontal porous layer of thickness d has a temperature gradient
imposed on it by maintaining the bottom surface of the layer at T, and the top at T, in
btoth cases, T, is greater than T,. Case (a) has uniform air flow parallel to the direction
of heat flow, while case (b) consider uniform air flow perpendicular to the heat flow.

These are the two extreme cases considered.

2.2.(a) Air flow parallel to heat flux

The case is shown in Fig.2.1 where a porous layer has two horizontal surfaces kept
at different temperatures. Heat transfer is in the vertical upward direction and air flows
vertically downward through the upper surface. For the one-dimensional steady state

Eqn.2.4 reduces to

ar _ 4T 2.5

Equation 2.5 for temperature was solved analytically for the case where the boundary
conditions are:
T (z=0)
T (z=d)

I f
-

The analytical solution to Eqn.2.5 satisfying the boundary conditions yields the

temperature distribution

TW—TC w
T(z)=T, + | —% < [exp (=2) —IJ 2.7
1- exp(d) *
o
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Figure 2.1 Porous medium with vertical air Slow.
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The effect of various flow velocities was calculated for the typical case where
c, = 1.0057 kJ /kg.°C,
k =0.042 W/m.°C,

@ = 1.17 kg /m? air at 1.01 atmospheric pressure and a temperature of 23°C,
T, =23 °C,

T, = 47 °C,

w = 0.001 m/s, 0.0005 m/s, and -0.001 m/s.

d =89 mm.

Figure 2.2 shows the temperature profiles for the typical conditions listed above for two
velocities in the direction of the imposed temperature gradient, and one velocity opposite
to the temperature gradient. For an imposed temperature across the medium, an increass
in the flow velocity results in a deviation of the temperature profile from the linear
profile. For the case where the imposed velocity is in the same direction as the heat flux,
the temperature profiles deviate to the left side indicating an increase in temperature
within the medium. However when the velocity direction is in the opposite direction of
heat flux, the temperature profile deviates to the other side of the linear profile indicating
a decrease in temperature within the medium. In both cases an imposed velocity affects
the temperature within the medium and, therefore, on the heat flux for an imposed

temperature across the porous layer.

2.2.(b) Air flow perpendicular to heat flux

In this case, a horizontal porous layer is bounded by two isothermal planes
maintaining a vertical temperature gradient. Uniform air flow is imposed in a horizontal
direction as shown in Fig.2.3. The governing equation for temperature was solved
analytically for the case where the boundary conditions on the warm side was T, while

on the cold side the temperature was T,. The steady state energy equation reduces to
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Porous medium

Air flow

Fignre 2.3 Porous medium with horizontal air flow.
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oT 2.8

subject to the boundary conditions defined by

Tx0 =T,
T (xd) =T, 29
T3z =7,

The last condition allows the air to enter the horizontal layer at temperature T, different
from T, or T.. Heat transfer between infinite walls with flow was discussed by McCuen
(1962), Reynolds et al. (1963), and Lundberg (1963). Forest et al. (1993) used the

solution method presented by McCuen (1962) to solve for the temperature distribution for

the case under consideration. The analytical solution is

1_§+i2[Tc -~ T cosam) , T.-T. 1 Jsm(n—nz)e"l’[-ﬁf)zx”+ r a10

T(x,2)= -T,
wa)= @, ‘){ T,-T, an T,-T.ox d

a=1

The effect of various flow velocities was calculated for the typical case where
¢, = 1.0057 kJ /kg.°C,

=0.042 W /m.°C,
1.17 kg /m* at 1.01 atmospheric pressure and temperature of 23°C,

o =
T, = 23 °C,
T, =24 °C,
T, = 47 °C,

w

u = 0.001 m/s and 0.015 m/s.

d =89 mm.
Figure 2.4 shows the temperature profile for the typical conditions listed above for two

velocities in the direction of the imposed temperature gradient. For an imposed
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temperature difference across the medium an increase in the flow velocity results in a
deviation of the temperature profile from the linear profile. Air flow affects the
temperature profile within the medium and thus, alters the heat flux across the porous
layer for an imposed temperature difference. This shows the manner in which heat loss
rates through partialiy sealed permeable insulatars can increase as the velocity increases.

This result will be used in Chapter 4 to help interpret the experimental results.

2.3 Stability

In the preceding analysis, the horizontal porous layer was heated from below. It
is well know that the existence of a temperature gradient parallel to the gravity vector
may give rise to fluid movement. This fluid movement (natural convection) leads to flow
instability characterized by Benard convection (natural convection) if the imposed
temperature difference exceeds a critical value. A stability analysis for this situation was
given by Horton and Rogers (1945), Lapwood (1948}, and Bejan (1986) for a porous
media. The critical condition for the onset of natural convection is expressed in terms of

a Darcy-modified Rayleigh number defined as

_ BPK(T, - T, )d 2.11
av

Ra

where g is the gravitational acceleration, B = /T is the coefficient of thermal expansion
of air, d the porous medium thickness, T, and T, are the temperatures of the bottom and
upper surface of the sample respectively, and o is the thermal diffusivity of the fluid
saturated medium. Stability analysis shows that the onset of natural convection motion
corresponds to a critical Rayleigh number, Ra, of 4 n?. From an enginering heat transfer
standpoint, for a Rayleigh number less than approximately 40, the heat transfer rate is
accurately predicted by pure conduction. For Rayleigh numbers much larger than 40,

natural convection has to be taken into consideration.
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For the range of permeability, K, used in this study (K =24x 10%m? to
5.4 x 10° m?), the critical temperature difference for a porous layer of thickness d = 89
mm between two horizontal rigid boundaries varies from 76°C to 340 °C. This critical
temperature difference is much larger than the temperature difference range used in this
study. This calculation shows that a large AT is required to induce natural convection

within the porous layer, and that the effects of natural convection can be neglected in this

study.
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CHAPTER 3

EXPERIMENTAL APPARATUS AND TEST PROCEDURE

In this chapter, the experimental apparatus and procedures for determining the
effect on heat transfer of air flow over the exposed surface of porous insulation are
described. Tests were conducted in a small, open (non-recirculating) low speed wind
tunnel. The exposed surface of the insulation was mounted flush with the floor of the
tunnel. The bottom of the insulation was heated electrically by maintaining a constant
temperature above the ambient temperature. Temperature profiles and heat fluxes were
simultaneously measured for a number of mean tunnel velocities. These tests were
repeated for insulation with varying permeabilities. The experimental apparatus and test

procedure are described in this chapter.

3.1 Wind Tuunel

The wind tunnel used in the expsriments was a small non-recirculating tunnel with
a working cross section 305 mm by 305 mm; the lenght of the test section is 920 mm.
Air from the room was drawn in by a fan mounted at the end of the tunnel; at the inlet,
a bell-mouth and flow straighteners (a honeycomb and screens) ensured a uniform velocity
profile. The air, then, entered a nozzle where its velocity was increased. To provide a
gradual transition from the nozzle to the test section, the air came in through a straight
square section (305 mm x 305 mm). The air was continuously exhausted to the room
by means of an axial flow fan (AEROVENT, Type CDE 1 31643) connected to a 10
horse-power electric motor. The velocity in the tunnel was varied by opening or closing
a gap between the end of the tunnel (diffuser) and the fan assembly. The flow velocities

in the test section varied from approximately 0.8 m/s to 12 m/s. Lower velocities than 0.8



m/s were achieved by adding more resistance to the inlet using a large mat of filter fibre.
This allowed velocities down to 0.4 m/s. A schematic of the model is given in Fig. 3.1.
The flow-velocity was measured with a pitot-static tube attached to a differential pressure
transducer (Validyne Model DP 45-16). In order to average the pressure fluctuations, the
output of the transducer was measured with an averaging voltmeter. An averaging time
of 100 sec was used for all velocity measurements. The pitot tube was mounted on a
positioning device that allowed the pitot tube to be positioned at a desired height above
the insulation sample. A set of a typical velocity profiles in the tunnel are shown in
Fig.3.2. As can be seen from Fig.3.2, over a large part of the cross section the velocity
is approximately uniform, forming a large "core" below which the tested body was placed.
Outside this core the velocity decreases to zero at the wails. Mean velocities were

measured at a height of 153 mm above the exposed surface of the insulation.
3.2 Insulation Sample Holder

The insulation sample was mounted in a metal box so that the upper surface of the
insulation was flush with the floor of the tunnel in the test section. It consisted of a large
rectangular 711 mm long x 406 mm wide x 153 mm deep metal box to hold the body
of the sample. A schematic diagram is given in Fig.3.3. The vertical sides of the box were
insulated with 51 mm thick (RSI = 1.76) rigid foam insulation to reduce the lateral heat
loss. Two 25 mm thick plexiglass plates were bounded to the longitudinal sides of the box
where the thermocouple arrays were held in place. The sample holder was attached and
sealed to the bottom of the tunnel so that no air leakage occurred. The san.ple spanned
the full width of the tunnel; the sample thickness was set to 89 mm which is
approximately a standard thickness for glass fibre insulation. The sample was located

approximately 2.5 m from the inlet of the tunnel.
33 Heaters and Control System:

The insulation sample (Fig.3.4) was heated from below using an electrical sheet
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heating element. The heating element (OMEGALUX model SRFG-1224) was 610 mm
X 305 mm and could generate a maximum heat flux of 720 W. It was connected to a
metered power supply (KROHN-HITE Model UHR-T3610R, D.C 0-36 volts, 0-10 amps).
The power input to the heating element was controlled by a variable transformer in order
to maintain a constant plate temperature. The temperature of the plate could be controlled
to within + 1.5°C of the desired temperature. The bottom side of the heater was bounded
by a layer of plexiglass 13 mm thick. In order to minimize the heat loss to the bottom
of the holder, a similar heater was placed on the bottom of the plexiglass layer. The two
heaters were connected to a temperature difference controller and maintained at a fixed
AT of 7°C. Plate temperature sensors (AD 594 transistor sensors) were placed in the
middle of the plate. In order to ensure that the heaters were at uniform temperature, the
heaters were bounded to thin (1 mm thick) copper plates. The main heater was separated
from the bottom of the insulation by a 4.4 mm air gap. The air gap was used for

measuring heat flux as detailed in Sec. 3.5.

34 Temperature Measurements

In order to determine the effect of air intrusion on heat transfer through the
insulation, temperature profiles were measured at seven locations along the sample as
shown in Fig.3.5. At each location the temperature profile was measured with an array
of 8 copper-constantan thermocouples (28 gauge). Thermocouples were installed in thin
metal guide tubes which allowed the thermocouples to be accurately located in the
insulation. In addition by pushing in the metal tubes, the temperature profiles at any
location across the width of the tunnel were obtained. Seven thermocouples were taped
on the heated plate to provide its temperature distribution. In all tests, the maximum
difference between the seven readings was less than 2°C, therefore, the average of the
seven reading was taken as the plate temperature. For each experiment, with a measured
heat input to the heating element, the output of the thermocouples was monitored using
a computer-data acquisition system. The temperatures were recorded with an analog

digital convertor (Sciemetric board, Model 641 D.C.) where temperature could be resolved
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to 0.03°C (0.05°F), and the measuring accuracy (including gain, A/D conversion , and
reference temperature errors) was + 0.5 °C (£ 0.9°F). The thermocouples and data
acquisition system were calibrated by placing the active junction in a temperature
controlled calibration bath. Taking readings over a range 0 °C to 85 °C, the recorded
temperatures were then compared with a digital thermometer (Fluke, model 2180
A RTD ) also emersed in the bath. The combined data acquisition and measurement error

was within 1.1 °C of digital thermometer reading.
3.5 Heat Flux Measurements

In order to evaluate the effective resistance of the insulation, heat flux through the
insulation must be measured. As shown in Fig.3.4 the sample holder was equipped with
a small air gap. The air gap of 4.4 mm thick was located between the main heater and the
copper plate supporting the porous medium. This air gap was maintained in all sides with
wooden strips (4.4 x 4.4 mm? cross section) sealed to the copper plates. The temperature
difference across the air gap was measured at 4 locations. The heat flux across the air gap
will be the sum of the heat transfer by conduction, convection and radiation. For the onset
of natural convection in the air gap, the critical Rayleigh number defined as, (Bejan,

1984)

Ra = M 3.1
.V

must exceed the value of 1108. For the given gap size,d equal to 4.4 mm, and air as the
intervening medium, natural convection will set in when AT exceeds 140 °C. For all
experiments, the maximum measured AT was less than 10 °C; thus, natural convection is
not present. The last heat transfer mechanism is radiation. Modelling the air gap as two
parallel infinite planes and assuming that the air is a transparent medium, the calculated

radiation heat flux for a measured AT of 10°C was on the order of 0.042 W/m2. This is
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two orders of magnitude smaller than the conduction heat flux. Thus, the air is motionless

and the heat flux can be calculated using pure conduction across the gap; that is
= k.. — 3.2
q =k 3

3.6 Testing Procedure

The insulation sample was properly installed and sealed in the test section of the
wind tunnel, and the upper surface of the insulation was flush with the floor of the tunnel.
Before starting any test, it was first established that the porous medium and the walls of
the holder were all at ambient temperature. Then, a temperature difference across the
insulation sample was established by increasing the power input to the main heater. After
each new setting of the temperature difference the wall temperature and the heat flux were
monitored in 3- to 5- minute intervals until equilibrium was reached, which was usually
less than 30 min. The main heater temperature was set by adjusting the temperature
controller. Three different plate temperatures of 47 °C, 60° C and 67°C were selected for
the tests.

For each experimental condition, two tests were ~onducted. The first test involved
covering the exposed surface of the insulation with a thin aluminium plate and measuring
temperature profiles and heat fluxes after the system reached steady state. For this case,
the temperature profiles in the insulation should be linear. In addition, the measurement
procedure was corroborated by calculating the insulation thermal conductivity from the
measured temperature gradient and heat flux. For the second test, the aluminum plate was
removed exposing the insulation to the air stream; after steady state was reached,
temperature profiles and heat fluxes were measured. Several tests were repeated to test
the reproducibility and accuracy of the results.

Different insulation samples were tested with a range of permeabilities. The initial

sample was a commercially available glass fibre insulation with a standard thickness of
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89 mm. Subsequent tests were conducted with different samples consisting of glass fibre
furnace filter material which has very high permeability. The filters are available in a
standard 25 mm thickness. Thus several layers were placed in the holder to achieve a
thickness of 89 mm. The permeability of these samples was varied by compressing more
and more layers into the sample holder. Up to 20 layers of filter were placed in the
sample holder. In Sec 3.7, the permeability of these different samples, was measured in

a separate apparatus.
3.7 Permeability Measurements

The permeability, K, was calculated using the one-dimensional form of Darcy's
law, Eqn.2.3. By measuring the pressure difference and flow rate of air through a sample
with a given cross sectional area and length, K could be calculated.

The insulation sample was uniformly packed in a cylindrical tube. The holder was
a cylinder 62 mm internal diameter and 178 mm long. Air was drawn through the sample
holder and then through a positive displacement flow meter (DTM-115 SINGER) by
means of a small air pump. A schematic of the flow apparatus is shown in Fig.3.6. The
pump was adjusted to achieve a certain flowrate. For each sample the fowrate and
pressure difference, AP, were set to several values in order to measure the dependence of
flow on AP. The results, as shown in Fig.3.7, corroborate a linear dependance of flow on
AP as Darcy's law requirs. The pressure across the sample was very small when taking
the standard thickness, 89 mm; therfore, a thickness of 178 mm was chosen for all
samples. Data for the commercial glass fibre insulation are shown in Fig. 3.7. From the
slop of this figure, the measured permeabilty is 5.4 x 10" m2 Th's measured value was
compared with a correlation for K developed by Jackson and James (1986). The

correlation was based on the mean filter diameter and volume fraction of solid material.
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where a is the mean filter diameter and ¢ is the volume fraction defined as

¢ =§ 3.4

where V; is the solid volume and V; is the total volume of the porous medium. From
the definition of ¢ the density of porous insulation can be related to the density of the

solid matrix and density of air by
p =p,(l - ) +p.d 3.5

where p, , p, are respectively the density of the air at room temperature and density of
glass. For the commercial glass fibre insulation p, is 1.17 kg/m’® at room conditions and
P, is 2700 kg/m’ (Holman, 1981). The mean fibre diameter, a, was measured by taking
fibres from the insulation sample and measuring the diameter by using a microscope over
a range of 30 fibres for both insulation samples. The value of diameter was found to be
17 x 107 mm for glass fibre and 31 x 10 mm for the glass fibre furnace filter material.

For the glass fibre insulaticn, the measured density was 11.2 kg/m3, which yields
a volume fraction ¢ of 0.0037. Using the Jackson and James correlation (Eqn.3.3), the
estimated value of K for glass fibre insulation is 6.0 x 10° m®. This value is very close
to the measured value, 5.4 x 10° m*. Similar measurements of density and permeabilities
were carried out for glass fibre furnace filter material. These were tested at different

densities. Results of the measurements and calculation of permeabilities are given in

38



Fig. 3.8. Figure 3.8 shows reasonably good agreement between the measurements and the
Jackson and James correlation. The lower limit corresponds to a density of 0 kg/m?® and
permeability of infinity; the upper limit corresponds to a permeability of 0 m? which

correspond to a solid medium.
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CHAPTER 4

DISCUSSION OF RESULTS

The results of the experimental investigation concerning the effect of the air flow
over porous media using a low speed wind tunnel are presented in this chapter.
Measurements of temperature profiles and heat flux show that the effective R-value of the
insuiation decreased significantly with increasing free stream velocity. The non-linear
temperature profiles within the insulation indicated that air flow was induced within the

insulation as a result of the air flow over the exposed surface of the insulation.
4.1 Temperature Distribution Within the Inszlation

In order to detect any changes in thermal performance of the insulation,
temperature profiles were measured at different locations along three directions; x-
direction (along the axial direction), y-direction (along the lateral length of sample), and
z-direction (through the thickness of the sample). Figure 4.1 defines the axis-coordinates
and origin. Two tests were conducted at each free stream velocity. The first test involved
covering the exposed sutface of the insulation with a thin aluminum plate and measuring
temperature profiles and heat flux after the system reached steady state. For the second
test, the aluminum plate was removed exposing the insulation to the air stream. After
steady state was reached, temperature profiles and heat fluxes were measured. In each

case, the temperature field in the porous medium was measured at various locations.

4.1.1 Lateral temperature variation (y-direction)

Figure 4.2 shows the measured lateral temperature profiles at four different

locations, i.e. 25mm, 122mm, 2 4mm and 366 mm from the leading edge for the case



Floor of the tunnel

Air flow
>

Figure 4.1 Axis coordinates and origin used in this thesis.
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Figure 4.2 Lateral temperature profiles for the glass fibre insulation sample
covered with aluminum plate for different locations along the centre-line.
The plate temperature is 47°C .
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where the glass fibre insulation sample was covered with the aluminum plate. This set of
figures shows that except for a slight decrease in temperature at the edges of the sample
there was no temperature variation in the lateral direction (y-direction). Essentially, the
same results were obtained when the sample was uncovered.

Figure 4.3 shows the measured lateral temperature profiles at a location of 305 mm
from the leading edge, for a range of velocities from 1.80 m/s to 5.09 m/s and a plate
temperature of 47°C. For the exposed insulation, there is, again, very little change of
temperature in the lateral direction except near the edge of the sample. A similar set of
results showing little temperature variation in the lateral direction, was obtained at the
plate temperatures of 60°C and 67°C. Based on these results, all subsequent temperature
measurements were carried out only along the centre-line of the sample in order to

minimize the amount of data collection.

4.1.2 Horizontal temperature variation (x-directicrn)

Figure 4.4 shows the measured horizontal temperature profiles along the centre line
of glass fibre insulation for the case where the sample was covered and the piate
temperature was 47°C. With the exception of the upstream and downstream edges,
temperature profiles were constant in the axial direction. For the covered samples there
was no indication of air motion within the sample. Thus, heat trarsfer should occur by
conduction only. This is corroborated by the linear vertical temperature profiles presented
in Sec 4.1.3. Figure 4.5 shows the axial variations (x-direction) in temperature when the
glass fibre sample is exposed to air flow over the surface. This case is for a bottom plate
temperature of 47 °C. In each of the six figures, the top protile corresponds to the
temperature of the plate which can be seen to be at uniform temperatuse. Ir: addition, the
bottom profile corresponds to the temperature of the upper surface of the insulation
sample. Again, the measurement shows that the upper surface temperature is more or less
uniform. However, at intermediate locations within the sample, the temperature profiles
are distinctly non-linear. Even at a low velocity of 0.87m/s, there is quite a noticeable

non-linearity in temperature profiles, which indicates the presence of air motion within
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Figure 4.5 Horizontal temperature prcfiles measured along the centre-line
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the insulation as result of air flow over the surface of the insulation. Similar results are
shown in Fig.4.6 and 4.7 for glass fibre for plate temperature of 60°C and 67°C. The
implications of these measured temperature profiles will be discussed further in section

4.1.3 once the vertical temperature profiles have been presented.

4.1.3 Vertical temperature variation (z-direction)

Figure 4.8 shows the measured temperature profiles in glass fibre insulation at
different locations for a range of air stream velocities from 0.87 to 6.45 m/s with a plate
temperature of 47°C. Similarly, Figs. 4.9 and 4.10 present data for plate temperatures 60°C
and 67°C respectively. The dotted line in all figures represents the linear best fit to the
temperature profile for the insulation sample covered with the aluminum plate. In all
covered cases the temperature measurements were very close to linear, indicating that the
heat loss wes purely by conduction. However, for the case where the aluminum plate was
removed, all sets of results clearly show that the temperature profiles deviate significantly
from the linear, with a point of inflection about 2 ¢cm from the bottom of the sample. This
deviation from the linear profile increases as the free stream velccities increase. Near the
top of the sample, the temperature profiles suggest that there was air motion within the
insulation in the direction of the stream velocity. These temperature profiles are similar
to the temperature profiles presented in Sec 2.2. The fluid shear at the upper surface of
the insulation was transmitted to the air within the porous medium and created this
motion. On the other hand, near the bottom of the sample the deviation of the temperature
profiles was in the opposite direction to the free stream velocity. This would suggest that
the induced velocity in this region is in the upstream direction. These results imply some
sort of recirculation pattern may be set up within the insulation sample (Fig.4.11). The
S-shape temperature profiles were observed for all the locations along the length of the
sample. It 1s interesting to note that at the upstream and downstream ends of the sample,
the temperature profiles are similar to those presented in Sec. 2.2(a) indicating that the
vertical component of the velocity is more pronounced. However, at intermediate space

of the sample, the profiles seem to be a combination of the two cases presented in Secs.
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2.2(a) and 2.2(b) indicating some recirculaiion zone.
4.1.4 Corroboration of measurements

The non-linear temperature profiles shown in the previous figures for the exposed
insulation can be corroborated with the measured heat fluxes at different locations. Near
the heated plate where air motion is negligible, the heat flux through the insulation can

be expressed using Fourier's law of heat conduction;

The heat flux, q was measured and if the temperature gradient at the heated plate can be
estimated from the temperature profiles, then the thermal conductivity of the insulation
can be calculated from Eqn.4.1. The value of k should be clo.e to the literature value of
0.0425 W /m.°C for glass fibre insulation (ASHRAE Fundamentals, 1989) and, tnoreover,
the value of k should be independent of the effect of air mc.ion within the sample.
The temperature profiles at the heated plate were =stimated by fitting a pc rnomial
of order 4 to the data points. The polynomial was chosen to fit the data near the bottom
where the temperature gradient would be calculated. The estimated values of the boundary
temperature gradient were calculated using both a fourth and fifth order polynomial fit
and there was very little difference (2%) betwecn thiese estimates. In all subsequent
estimates of temperature gradient, a fourth order polyno.nial fit was used. Results of this
analysis for glass fibre insulation are presented in Tables 4.1 to 4.3 for plate temperatures
of 47 °C, 60 °C and 67 °C, respectively. In all cases, the estimated values ¢ k varied
tiom 0.044 to 0.049 W/m.°C which is close to the accepted value for glass fibre of 0.042
W/n.°C. The results, also, show that the thermal conductivity is independent of x and the
free stream velocity. Thus, the measured temperature profiles are consistent with the

measured heat fluxes.

'The resistance or "R-Value" for a given thickness of insulation was cziculated as
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Table 4.1 Calculated thermal heat conductivity for commercial glass fibre insulation
at plate temperature of 47°C.

Measurements taken @ x= 25 mm

Measurements taken @ x= 244 mm |

u Heat loss Heat loss
; measured measured
mis across air gap «(9T/0z) k across thie air gap k
°C/m -(d1/62),0 /
q W/m.C AT q “CO/m W/m.°C
Wim? °C W/m?
—_“‘r'—-—srﬁ'-'é r—_—-—w
9.1 1.8 11.3 256.0 0.044
9.9 2.0 12.6 280.0 0.045
,;'3 2.4 154 317.6 0.045
i3.7 2.7 17.2 346.2 0.047
14.9 2.8 17.8 370.7 0.048
19.R8 3.2 20.3 424.9 0.048
22.6 5.9 249 509.9 0.049
29.1 5.4 34.1 731.4 0.046
8.09 5.2 33.2 721.7 0.046 5.9 375 833.3 0.045
Measurements taken @ x= 365 mm || Measurements taken @ x= 584mm
u Heat loss Heat loss
m/s measured measured .
across the air gap | ((0T/92), k across the air gap | “(0T/02), k
°C/m °C/m i
AT q W/m.°C AT q W/m.°C
°C W/m? °C W/m?
r R —- e R P e
- 1.9 12.4 255.8 0.048 1.8 11.4 255.8 0.044
0.87 2.1 13.5 300.0 0.045 22 13.6 362.2 0.045
1.80 23 147 334.1 0.044 2 14.1 3025 0.046
2.38 2.7 17.4 378.7 0.046 2.6 16.5 349.6 0.047
2.88 l 3.0 18.9 405.5 0.046 2.9 18.3 384.2 0.047
3.85 35 225 {4853 0.046 3.5 21.9 466.8 0.047
5.09 43 26.7 489.1 .056 4.2 26.4 568.7 0.046
7.42 5.6 348 734.3 u.047 5.5 34.4 745.9 0.046
8.09 II 6.0 374 831.1 0.045 6.0 37.8 804.2 0.047




Table 4.2

at plate temperature of 60°C.

Calculated thermal heat conductivity for glass fibre insuiation

Measurements taken @ x= 25 mm

Measurements taken @ x= 244 mm

u Heat loss Heat loss
m/s measured measured
across the air gap across the air gap
-(0T/02) .4 ~«0T/02)q )
AT q °C/m ' AT q Wim? Clm k )
| oC W/m?2 Wi, . oC Wy
I N .
0.043 2.9 18.1 3654 G.049 .
[
317.8 0.045 3.1 101 406.4 U.047 !
351.1 0.045 3.2 19.7 410.4 0.048
392.2 0.044 3.2 20.1 441.0 0.045
433.3 0.042 3.6 223 4693 0.647
546.8 0.045 4.5 28.0 584.6 0.048
661.9 0.041 5.0 315 642.9 0.049
. 776.7 0.043 6.4 39.8 904.5 0.044
H 6.6 969.0 0.043 8.0 50.2 966.1 0.049

Measurements taken at x= 365 mm || Measurements taken @ x = 584mm
u Heat loss Heat loss
m/s measured measused
across the air gap across the air gap
SCL ] -
AT q (°C/m) k AT foq (0T/82),- k
o W/m? (W/m.°C) °oC W/m? °C/m W/m.°C
18.1 365.1 0.049 32 20.1 410.2 0..49
19.0 387.8 6.049 3.2 20.1 i 104.0 0.050
20.2 420.8 0.048 33 204 416.3 0.049
215 438.8 0.049 33 20.4 424.5 0.049
22.7 434.8 0.047 3.5 21.7 442.8 0.049
293 609.5 0.048 4.5 28.0 570.3 0.049
318 658.6 0.048 4.9 308 630.4 0.049
l 385 819.1 0.047 6.0 37.6 800.0 0.047
6.45 " 7.1 48.6 ~95.1 0.049 7.7 48.3 1005.5 0.048
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Table 4.3
at plate temperature of 67°C.

Calculated thermal heat conductivity for glass fibre insulation

=
[ Measurements taken @ x= 25 mm

Measurements taken @ 244 mm

u Heat loss Heat loss
m/s measured measurcd
across the air gap across the air gap
‘ -(0T/0z),4 ~«0T/92),
AT q C/m k AT q °C/m k
o W/n? W/m.°C °C W/m? __J W/m.°C
S S R
28 17.5 4223 0.041 34 213 49011 0.044
3.0 18.6 442.9 0.042 35 220 4783 0.046
35 21.¢ 534.4 0.040 3.7 23.2 487.9 0.047
r4.2 26.2 630.7 0.041 4.7 295 594.4 N N49
43 27.1 | 655.7 0.041 4.9 306 612.6 Cots i
5.2 323 781.5 0.041 59 37.1 789.4 eusy I
5.8 36.1 885.1 0.041 6.7 41.6 843.9 0.0&"
6.6 41.5 9222 0.045 7.6 47.8 1062.2 0.045 ‘
7.9 49.1 1115.9 0.044 89 55.8 1079.8 0.042

[Measurements taken @ x = 365mm

Measurements taken @ x= 584 mm

u Heat loss Heat loss
measured measured
m/s . .
across the air gap across the air gap
R ~(0T/92) g
AT q 0T/02),- k AT q °C/m k
°C W/m? °C/m Wim.*C oC W/m? W/m.°C
N —— AR *
3. 22.5 4m 0.049 3.3 20.7 4223 0.049
23.4 497.9 0.047 3.7 229 487.2 0.047
26.1 553.8 G647 39 24.6 S11.4 0.048
30.7 636.2 0.048 4.7 29.2 595.9 0.049
322 663.6 0.048 5.0 31.0 632.6 0.049
37.7 771.3 0.049 5.8 36.5 744.9 0.049
44.2 $51.4 0.049 6.6 41.2 340.8 0.049
49.1 1022.9 0.048 7.8 482 1086.7 0.045
56.7 1148.6 0.049 9.0 56.4 1226.1 0.046




the ratio of the temperature difference sample over the heat flux across the insulation

sample;

AT 4.2

At each of the different velocities, these R-valiues should be interpreted as “effective” R-
values since the definition in Eqn 4.2 is based on pure conduction. Table 4.4 gives the
“effective” R-values for the three plate temperatures. The values based on the covered
samples reflect the true R-value for the insulation and are very close to standard R-values
quoted for glass fibre insulation. However, for the exposed insulation at different air
velocities, the effective R-values are significantly less than the standard value. The loss

in insulating property can be significant with a reduction by a factor of 3 to 4 for air

velocity on the order 6 to 7 m/s.
4.2 Effect of Permeability

The permeability as discussed in Chapter 2 is a measure of the resistance of the
porous media to flow. In the present case, changing permeability should change the heat
loss through the sample. Increasing the permeability should increase the amount of air
intrusion into the sample and cause an increase in heat loss; conversely, decreasin;-
perineability should decrease the heat loss by restricting air intrusion in the insulation
sample. A set of tests was carried out using a glass fibre furnace filter material and
compressing it to different densities to achieve different permeabilities.

Hoerizontal and vertical temperature profiles are shown in Figs 4.12 (a) and 4.1 2(b),
and Figs. 4.13 (a) and 4.13(b) respectively for iwo selected values of K of 2.49 x 10*
m? and 7.62 x 10° m2 Tests at intermediate values of K were conducted but the results
are not presented here. In cach case, the measured temperature profiles are similar to
those shown for the glass fib; > sample, cxcept that the effect of the free stream velocity

is mor: pronounted. For examnle at the inlet (x = 25 mm) the vertical temperature
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Table 4.4 Effective R-values for commercial glass fibre insulation.

Temperature : 47°C Temperature ;: 60°C Temperature : 67°C

Velocity R-value | Velocity R-value || Velocity R-value

(m/s) (m?.°C/W) (m/s) (m2.°C/W) (m/s) (m2.°C/W)
---- 2.06 ---- 2.01 ---- 1.97
0.87 1.94 0.89 1.92 0.95 1.88
1.80 1.67 1.22 1.71 1.89 1.58
2.38 1.55 1.48 1.62 2.25 1.29
2.88 1.39 1.86 1.51 2.65 1.22
3.85 1.09 3.37 1.19 3.35 1.02
5.09 0.88 4.78 0.¢ 411 0.86
7.42 0.64 5.14 0.77 5.55 0.72
9.09 0.50 6.45 0.60 6.45 0.€!
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profiles, shown in Fig. 4.12(b) indicate a izrge downward z component of velocity which
keeps the temperature constant at 21 °C approximately 2/3 of the way down through
insulation. This is not unexpected since the permeability of the sample is 7.62 x 10 m?
which is almost 1 order of magnitude larger than the glass fibre sample. It is interesting
to note that the temperature profiles for the high permeability insulation do not exhibit an
inflection as did the glass fibre temperature profiles shown in Figs 4.8 to 4.10.

The values of the thermal conductivity were estimated using the same procedures
as outlined above and these results are shown in Tables 4.5 to 4.11. For each
permeability, the thermal conductivities were independent of x and u; (free stream
velocity) but the value did change for different permcabilities. For higher permeabilities,
k should approach the value for air (0.026 W/m.°C, Holman, 1963) at room temperature.
For the largest permeability tested (K= 7.62 x 10®* m?), the thermal conductivity is 0.036
W/ m.°C, while for the lowest permeability of glass fibre furnace filter tested (2.49x 10®
m?) k 12 0.036 W/ m.°C. The inferred k values are shown in Fig.4.14 as a function of K.

The corresponding R-values for the glass furace filter sample are oiven in
Fig.4.15. For a given air flow velocity, R-values increase with increasing perme. v sue
to the decrease in thormal conductivity as K increases. But at the highest permeability
tested, the effective R-value is very sensitive to the effects of air intrusion and decreases

rapidly with increasing air flow velocity. This effect is not as dramatic for the lowest

permeability tcsted.

4.3 Nusselt Number Correlation

A summary of the measured results can be presented in the usual form of a
correlation between the Nusselt number and the Reynolds number for the effect of the

flow velocity on heat transfer through insulation. The effect of the permeability on heat

transfer can be expressed in terms of the Darcy number which is defined as
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Table 4.5 Calculated thermal conductivity for glass fibre furnace filter.
Permeability is 2.49 x 10° m*.

Velocity

Measurements taken @ location x = 305 mm

measured across the air gap

Heat loss

k

(m/s)
q -(dT/0z),., (V//m.°C)
(W/m?) (°C/m)

£)039

ﬂ 0.039

1.46 Il 1.9 12.5 3125 0.040
2.04 4l 2.0 13.1 3275 0.040
2,48 l 2.1 13.6 331.7 0.041
2.96 22 14.1 335.7 0.042
4.48 2.6 16.7 4073 0.041
6.89 3.0 19.4 485.0 0.040
7.45‘" 32 20.6 515.0 0.040
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Table 4.6 Calculated thermal conductivity for glass fibre furnace filter.

Permeability is 2.74 x 10° m*.

Measurements taken @ location x = 305 mm

Velocity
(m/s) Heat loss
measured across the air gap
; -(9T/3z),., k
(W/m?) (°C/m) (W/m.°C)
2556 0.036
2583 0.036
260.5 0.038
283.8 0.037
341.2 0.034
3559 0.034
3722 0.036
4889 0.036
565.8 0.038
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Table 4.7 Calculated heat conductivity for glass fibre furnace filter.
Permeability is 3.42 x 10° m*.

Measurements taken @ location x = 305 mm

Velocity
(ms) messred o o i g
-(dT/9z),. k
A(;rc) (Wi iy (W/m.C)

8.6 2457 D 0.035
8.8 251.4 0.035
92 255.6 0.036
10.7 2672 0.036
12.7 362.9 0.035
134 3722 0.036
14.7 4323 0.034
159 441.7 ) 0.036
185 s2C | 0035
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Table 4.8 Calculated thermal conductivity glass fibre furnace filter.
Permeability is 4.22 x 10°° m*

[ Measurements taken @, location x = 205 mm
Velocity
(in/s) Heat loss .
measured across the &ir gup
-(d0/9z), k
| A(;rc) (Wim) ((°C/m)‘ | wmec)

- I-_— 1.3 8.2 241.2 0.034
0.80 N 1.4 8.4 240.0 0.035
1.40 1.5 8.9 261.8 0.4
1.88 1.6 9.7 2853 0.034
2.45 Ii 1.7 ! 10.6 321.2 2.033
3.06 Tr 1.8 IS 338.2 0.036
5.06 " 2.0 12.8 376.5 0.034
5.19 " 2.5 16.2 . 450.0 0.036
8.66 ]i 2.7 17.4 411.8 0.034
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e 4.9 Calew. <4 «2rmal heat conductivity for glass fibre furnace filter.

Pemn 15356 x 100 m°.
Mezasurements taken /2 location x = 305 mm
Velocity . I
(nifs) Heat loss ‘
measured across the air gnp ‘
ar T
¢C) (W/m?) (7m) | (Wias)
- ! 1.0 6.4 206.4 I 0.031
0.89 i 1.2 7.8 2264 0032
112 1.4 8.8 26€.7 0.033
142 | 1.7 10.¢ 331.2 0.032
|
1.8 1.8 11.7 3545 0.032
S A o
187 2.0 12.5 ; 357.1 0.035
2.36 22 13.3 403.0 0.033
413 23 138 404.9 0.034
6.15 2.4 14.6 442 .4 0.033
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Table 4.10 Calculated thermal heet conductivity for v ss fibrefurnace filter.
Permeability is 6.63 x 10" >,

=
|
Ia Measurements tai:zz @ location x = 305 mm
Velocity Heat loss !
(12/s) measured across the air gap :
AT § b -1aT/02),. k
o~ o (°C/m) (W/m.°C)
L4 O ____(“/_ml__[__ . S
e e e e e, s
i_ — 0.9 6.2 213.8 0.029
0.9% | 1.0 6.3 217.2 0.029
1.50 I.1 7.3 243.3 0.6290
2.10 1.4 8.7 280.6 0.030
2.75 " 1.5 93 250.6 0.031
3.75 1.6 9.7 303.6 0.032
4.27 1.7 10.3 312.8 0.032
S5.14 1.8 11.1 382.8 0.029
6.38 1.9 12.2 420.7 0.029
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Table 4.1} ulated thermal heat condricii-iiy i Jlass fibre furnace filtor.
cerieability is 7.62 x 107 m*.
— 1
Measurements taken @ location x = 305 mm
Velocitv Heat loss
(m/s) 7 measured across the nir gap
-(dT/92),., k
AT q (72/m) (W/m.°C)
“C) (W/m?) L ]
=
--- 0.8 56 214 8 0.028 :
0.92 0.9 5.9 2179 0.027
0.99 1.6 ¢l 230.0 0.028
.25 2 6.9 2433 C.030
(.95 1.2 73 270.0 0.030
215 13 8.1 3352 0.030
435 1.6 103 4179 0.029
6.15 1.8 11.7 4242 0.028
7.50 1.9 123 4242 0.028




0.05

0.04

kK (W/°C.m)

0.02

Figure 4.14

R
N — — — Linear best fit
> ¥ Commerdial glass fibre
~ N ¥
T ‘f,‘J Glass fibre fumace fitter
-
~
™ ~
~
\;”
3L 3n
i~ g

(-

R ¢

~

~
~ .
i
T T T T e
6 7 8 2 3 4 5
1.0E-8
K{(m?

Thermal heat conductivity for different permeabilities.

73

6 7 8

TryTTYTYTIOCO T

9
1.0E-7



—ofe— K=274exp(-8) m?
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LS 4.3
a2

Da

where a is the mean fibre diameter. Dimensional analysis on the basic variables involved

in the problem indicates a relationship of the form (Dybbs et al, 1986)

f( Nu, Re, Da) = 0 4.4

where Nu is the heat conduction-based Nusselt number defined as the ratio of the average
measured heat flux, q, aver the average heat flux, q.,,, which is nicasured when the

sample is covered with the aluminum plate:

qcond

The Reynolds numuer, Re 15 defined as

In the present case, Re is based on the frec stream velocity, u;, and the length of the
insulation sample, L. For these tests the length of the insulation sample is 610 mm. Figure
4.16 shows the measured Nu-Re for the case of glass fibre for three different plate
temperatures. These results are independent of plate temperature over the range tested, and
provide an additional corroboration of the measurements. Using a linear best fit to the

data of Fig. 4.16 , Nu-Re correlation would be a power law correlation;
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Nu = C Re®” 4.5

wiiere (i, 1 constant. Figure 4.17 shows the Nu-Re for glass fibre furnace filter material
for different Darcy numbers. Figure 4.18 shows the Nu-Da ccrrelation for 2 values of
Reynolds number. At each Darcy number, the Nusselt number increases significantly over
the range tested. The largest change in Nu occurs for the insulation with the largest Darcy
number. This simply reflects the very open structure of the insulation and its low

resistance to air intrusion.

Ch.4 Discussion of Results 79



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

An experimental study was conducted to investigate systematically the effect of
air flow over an exposed surface on heat transfer through porous insulation. Glass fibre
based porous insulation was tested for a range of permeabilities of 2 x 10¥ m?to 5 x 10
m?, the laiter limit corresponding to « mercial glass fibre insulation.

This study showed that heat transfer through porous insuiation can be increased
significantly by air flow over an exposed surface ¢f the sample. This has implications for
the use of this type of insuiation in certain areas of building enveiopes. Intrusive air flow
serves to degrade the R-value of porous insulation san'nle. A permeable insulator sealed
on all sides except one could have its effective R-valuz degraded by forced air flow
coupled at its unsealed surface. The data presented l..r2 appzar to indicate that ihe air
flow over the surface of a permeable material induces flow within the porous medium.
The temperature profiles suggest that thzre -as air movement within the insulation in the
direction of the free stream velocity The fluid shear at the upper surface of the insulation
was transmitted to the air within the porous medium .nd created this motion. The net
result was that the heat loss through the sample increased us the free stream velocity
increased. For the range of conditions tested, the relative effect of air velocity on
enhancement of heat flux v :ce independent of the temperature difference across the
sample. These results showed that the R-values of the porous insulation can be reduscit
by a factor of 2 to 3 for a moderate air flow over the surface of the insulation up to

9 m/s.



5.1 Conclusions

I- Air flow over surface increases the heat flux by creating forced convective
motidn within the insulation. For velecity up to 9 m/s the heat flux increases by a factor
of approximately 3. Effective R-values for glass fibre insulation changes by a factor of
2 to 3 for a range of velocity from 0 to 9 m/s.

2- High permeable insulation has low thermal conductivity (close to that of air)
and therefore high R-value. But heat flux is very sensitive to effects of air intrusion.
Effective R-value changes from 6 to 2 °C m*W for velocities up to 7 m/s while the
lowest permeable insuiation tested had R-value from 2 te 5. These results suggest using

lower density insulation in buildings.
5.2 Recommendations for Further Studies

For fuither anaiysis, tests should be repeated in a larger cross section vind tunnel
where the expansion in flow area is small compared to the cross-section of the tunnel.
Furtherm~re. tests should be done using an open systemn where air is simply blown over
the expo: - surface of the insulation. Wit's these tests, the turbulence level and scale in

the free strearn should be measured.
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