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Abstract
Algorithms for the classificatioii of voice-band signals in digital telephone net-
works are studied, developed, tested, and evaluated. Signal types that are resolvable
include speech. white noise. voice-band data (VBD) modems, and facsimile (i*AX). VBD
and FAX signals can be further classified into subgroups based on the modulation method.
The algorithms developed are designed to be used in the real-time monitoring of multiple
voice-band channels. To achieve this objective, the algorithms must be of low computa-

tional complexity, have highly accurate classification rates, and be able to resolve useful

signal classification groups.

The developed algorithms are based upon time series discriminant variables com-
puted from normalized autocorrelation lags of the passband signal, and the normalized
central second-order momeni of the full-wave rectified passband signal. Classification per-
formance is evaluated using provably optimal linear discriminant functions, quadratic dis-
criminant functions. and heuristic method<. Quadratic discriminant functions are found to
yield the greatest classification accuracy. Overall misclassification error rates are less than
0.2% percent for most signal types, and on the order of one percent for two particular
groups. These classification performances are achievable after monitoring only 256 milli-
seconds of signal activity. The length of time required for classification depends upon the

specific algorithm implementation, and ranges from 32 to 256 milliscconds.

Other classification methods are evaluated including statistical signal characteriza-

tion, amplitude and phase histogramming, and monitoring for Frequency Shift Keying sig-

naling between facsimile stations.
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Chapter 1

1.0 Introduction

Within telephone networks it is often necessary to determine what type of voice-
band (VB) traffic is being carried on network channels. There are several reasons why a
solution to the classification problem is desirable: First is security. Often telephone com-
panies (telcos) provide different billing rates for voice, data, and FAX users. Thus, some
users attempt to save money by paying for one type of service while using it for another
purpose. Second, tclcos may want to use the traffic type information to encourage heavy
data or FAX users to purchase special lines for their specific needs. A third reason is net-
work planning. It would be useful to any network planner to have knowledge of the char-
acterisuics of the different types of traffic which are on the network, such as the specific
holding times and the distribution of calls of each traffic type. For example, the peak times
for FAX traffic may tend to be frora 12:00 midnight to 1:00 am. This is known as the busy
hour. Thus, planners may provide for network capacity for these special services and even
create new services for non-voice traffic. A final reason that we give is signal compres-
sion. If telcos wish to perform compression on signal streams, then they should be aware
of the type of traffic being compressed. For example, speech signals can be easily com-
pressed with very little loss in signal quality or comprehensibility. However, if a 28.8 kbps
data signal is compressed using ADPCM, the encoded digital data will be destroyed.
Clearly only lossless compression methods should be used on data signals. Thus knowl-

edge of the signal type is critical when selecting a compression method.



Several classification methods have been proposed in the literature: some simply
address the problem of discriminating voice from non-voice traffic [79, 64, 47]; other
methods distinguish between various voice-band data (VBD) signal types |8, 27, 53].
Since both facsimile machines and data modems utilize the same types of modulation
standards, we will refer to both signal t\ per :s VBD. Fig. 1 shows the context of the prob-
lem we are considering in this thesis. At the customer’s premises different types of equip-
ment may be connected to the Public Switched Telephone Network (PSTN) analog loop.
The figure shows three possible devices including an ordinary telephone, a facsimile
machine, and a computer with a VB modem. Within the PSTN, the telephone companics

may wish to know what types of traffic are being carried over their digital carrier systems.
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Modem
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FIGURE 1. Generalized conceptual model of problem statement.

The time series of four different signal types are plotted in Fig. 2. Actual cal!
recordings were used to generate the plots. The signais have been sampled at 8000 sam-

ples per second as they would be within an internal digital trunk in the network. The first



plot in Fig. 2 is of a portion of a spoken word. Plots two, three, and four are from a
recorded 28.8 kbps V.34 modem, a 14.4'kbps V32bis modem, and a 9600 bps V.29 facsim-
ile machine, respectively. These signals represent the dominant types of signals that vould
be observed in the PSTN today. From the plots it is clear that speech signals are quite dif-
ferent from high-speed modem and facsimile signals. Some portions of unvoiced speech
sounds (e.g. “shhhh”) are more similar (o the non-voice signals shown. In contrast to the
obvious differences between speech and non-speech signals, the time series of the non-
speech signals appear to be very similar. This observation forces us to search for other rep-

resentations of the signals that will make their differences more apparent.

0.5 T | T ] T L]
S =y
e N NN
Q.
%)
__0‘5 —d - I | 1 . |
(0] 20 40 60 80 100 120
0 T T T ] Ll T
]
= 0 m il
_0.5 —l 1 i Ll 1 1 i
0 20 40 60 80 100 120
0.5 { Ll T T T T
@ btk x |
8 o
I | | T ' e
> ) r
_0.5 1 i i l 1 . 1
o 20 40 60 80 100 120
0 5 T T T ] ) T
>' 0 1 ‘ i n ' "
_0.5 1 1 ) . 1 A 1
o 20 40 60 80 100 120
Time (ms)

FIGURE 2. Time series of four signal types

The Power Spectral Density (PSD) for the same four signals is shown in Fig. 3.

The signal length used to generate the PSD is the same as the signal length used in Fig. 2



(i.c. the signal lengths are 125 ms, or 1000 samples). The plots show a ditterence in the
PSD of each signal type, the greatest di%fcrcnce being between the voice and non-voice
PSDs. Even though the PSDs of each of the non-voice signals are quite similar, there are
differences in their center frequencies and bandwidths. These ditferences could be used as
the basis for a classification system, however there are drawbacks to this simplistic solu-
tion, the worst of which being high computational complexity. Computing the PSD of a
signal, or even estimating it, requires a relatively large number of computations. For
example, if the PSD was computed from the Discrete time Fourier Transform (DFT) of the
signal, the complexity of the PSD algorithm would be of order N? where N is the sequence
length. Another drawback is the length of the signal sequence required to form an accurate
PSD. As the plots in Fig. 3 show, the differences between the spectra of some non-voice
signals are very subtle, and thus require an accurate PSD to differentiate them. A final
drawback is the difficult task of matching an observed PSD to the expected classes of
PSD. This problem can be solved by pattern matching, however the complexity of match-
ing arrays of PSD values is relatively high when compared to other classification methods

that are based on single-valued variables.
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FIGURE 3. Power Spectra! Densities of four signal types.

The intent of this thesis was to evaluate algorithms that have been developed for
iining what type of traffic is being carried on the digital channels within the PSTN.
ition, new, improved algorithms were to be developed and their performance stud-
1e traffic was to be sorted into one of three major categories including voice, data
\X (facsimile). Data and FAX traffic were to be further divided into sub-categories
ling to the transmission protocol and the data rate. The monitoring point will gener-
: a T1 digital telephone signal which carries 24 X 64 kbps time-division-multiplexed

els, using 8-bit PCM (Pulse Coded Modulation) and p-law companding. This is not




a restriction to the validity of the classification methods, however, but simply an expected

application environment.

In approaching the classification problem we made the following additional
assumptions: We assume that knowledge of temporal call boundaries is not available to
the classifier, and that only one direction of a bidirectional call is observable. We also
assume that full-time monitoring of a channci is not possible or cannot be guaranteed.
These assumptions immediately eliminate solutions that rely on observing modem train-
ing and handshaking sequences. Our assumptions are convenient and appropriate for sev-
eral reasons: (1) a traffic monitor may only have access to a single direction of a call, (2)

network signalling information may not be easily accessible, and (3) full-time monitoring

of every channel may nst be feasitle.

A few products are available commercially for solving aspects of the problem
under consideration, some that meet our assumptions and others that do not. These include
the CTel NET-MONITOR System 2432 [16]; the AT&T Voice/Data Call Classifier [2]; the
Tellabs Digital Channel Occupancy Analyser [72]; and the MPR Teltech Ltd. Service Dis-
crimination Unit [50]. These systems have the disadvantages of being physically large,
relatively expensive, and restricted in their classification resolution. As an example, one of
the above machines was tested under working conditions by a TRLabs corporate sponsor,
and found to perform with a 38% misclassification rate given typical network traffic. Our
goal was to operate with a misclassification rate of less than 1% using compact, inexpen-

sive hardware. The above mentioned products are discussed further in Section 2.2 on

page 35.



The organization of this thesis is as follows: Chapter i gives an introduction to the
classification problem. Chapter 2 provicies useful background on non-voice signals and
discriminant analysis. Chapter 3 reviews published voice-band signal classification algo-
rithms and describes commercially available products. Chapter 4 discusses the research
equipment used in this study. Chapter 5 presents the proposed classification algorithms
and their resulting performance. Chapter 6 discusses other classification algorithms that
were explored, but not included in the final proposed classifier design. Chapter 7 contains
a discussion of classification system design considerations and recommendations. Finally,
Chapter 8 concludes the thesis and gives directions for future follow-up work in the area

of voice-band signal classification.
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JAterature Review

In this chapter we present a review of the published literature and of commercial
ts that are relevant to this thesis work. Several other papers have been written on
ic of speech vs. non-speech discrimination as well as VBD signal discrimination.
nave also been other machines developed to solve problems similar to the or.¢ pro-
here. We review the papers and devices, and justify the need for this further

th.

ignal Discrimination Theory

A common thread between much of the work done on voice-band signal discrimi-
is that there are very few papers that build upon previous research. Most of the
; reviewed here stand on their own, and present methods that are not proven optimal,
n provably superior to any other. Many of the most popular discriminant variables
ed by several researchers, such as zero-crossing detectors and second-order statisti-
riables. The major differences between the papers are often only slight variations of
he discriminant variables are applied and how the classification is performed. Little
1 is apparently given to optimal discrimination methods, even though discriminant

sis has been a well-established research field in mathematics for many years.

Speech Versus Non-Speech Discrimination

First we address the problem of speech vs. non-speech discrimination. A major

:ation of systems with this capability is the real-time statistical multiplexing of




speech and data signals into a single channel. On average, speech activity occurs only
about 40% of the time [79]. Thus it is d.esirable to be able to detect when speech activity
occurs, and then multiplex a data signal into the frequent intervals with no speech activity.
This requires only a speech detector. Speech vs. non-speech discrimination is required
when receiving a signal that has been multiplexed with both speech and data signals. The

discriminator must separate the interwoven streams of data and speech signals.

Since the average talk spurt activity lasts only about one second [79], the detector
and discriminator must respond very quickly. The length of time required to detect speech
is often called the “hangover time”’, while we will call the time required for discrimination
between VBD and speech the “response time”. For large scale applications it may also be
necessary to monitor several channels simultaneously in real time. This requires low com-
plexity algorithms. Finally, the accuracy of the discriminator must be very high for the
multiplexor to function properly. Thus we have three criteria for evaluation of discrimina-

tion methods: response time, algorithm complexity, and classifier accuracy.

We note that many of the papers dealing with speech vs. non-speech discrimina-

tion also address the topic of VBD sub-class discrimination.

2.1.1.1 Y. Yatsuzuka

Y. Yatsuzuka [79] wrote a key paper on the problems of speech detection and VBD
discrimination as they applied to DSI-ADPCM systems. DSI (Digital Speech Interpola-
tion) channrels can utilize pauses in speech to multiplex in other signals, which usually
carry data. ADPCM refers to a method of performing adaptive differential pulse code

modulation, which effectively compresses a 64 kbps digital voice-band signal into a lower



bit-rate digital signal (32 kbps) by utilizing the fact that speech signals do not vary as rap-

idly from sample to sample as VBD.

Yatsuzuka based the speech detector discriminants on short-time energies, zero-
crossing rates, and sign bit sequences (which effectively indicate zero crossings). The
speech detector also has classification capabilities, and can group speech signals into nar-
row-band, wide-band, or low-power sound subclasses. Figures 4 and 5 give block dia-

grams for Yatsuzuka’s speech detector and voice-band data discriminator, respectively.

Discrimination between VBD and speech is performed using discriminant vari-
ables based on short-time energy, zero-crossing rate, and the coefficients of an adaptive
predictor. VBD subclasses include 4800 bps 8-phase PSK or 8-QAM, or 9600 bps 16-
QAM. (Since the paper was published in 1982, the VBD signals that were considered in
[79] no longer correspond to those in use in modern communications systems.) These sub-
classes are discriminated using a coefficient of variation of the short-term amplitude distri-
bution of the input signal and a prediction gain. We are most interested in the

discrimination abilities of Yatsuzuka’s algorithm, not the spe=ch detector.

To discriminate between VBD and speech, a complex set of heuristics is followed.
Short-time energy, zero-crossing rate, and predictor coefficients are all considered. To
compute the short-time energy, a signal segment of 32 ms (256 samples) is divided into r

blocks. Each block is 2 ms long, therefore the number of blocks is 16 and the length of

each block m is 16. The short time energy of the % block containing m samples is com-

puted as shown in equation (1), where X is the received signal sample stream and X[¢] is a

particular sample at time 7.
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The zero-crossing rate is also computed for every block, and then the average of the cross-
ing rates for all blocks. The ~daptive predictor coefficients are also used as shown in Fig.

5. The adaptive predictor has 4 taps, each of which is used as a discriminant variable.
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Energy
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Variation of Spectrum
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Time Control

FIGURE 4. Configuration of Yatsuzuka’s speech detector.

These variables, combined with a complex set of heuristics, form the speech vs.
VBD discriminator. To subclassify VBD signals, the average of the adaptive predictor
gains and the coefficient of variation of the signal are both used as discriminant variables.
The two subclasses are separated by another set of heuristic rules. Yatsuzuka mentions
that the performance of the VBD subclassifier was only tested on simulated signals with

no simulated line impairments. Performance was reported to be good, but it could be
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improved further by allowing the classifier to have more time to analyze the signals (i.c.

by using longer signal segments and a longer hangover time).

Zero-crossing
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Power
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Adaptive
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Comparison of
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Discrimination
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Non-voice-band
Data

Classification
Logic Circuit
of Detected
Voice-band Data

FIGURE 5. Configuration of Yatsuzuka’s voice-band data discriminator.

The discriminant variables presented in [79] are relatively complex. Several func-

tions must be computed, and an adaptive predictor must be implemenied. The discrimina-

tor utilizes 16 energy computations (one for each block), 4 adaptive predictor taps, the

average of the adaptive predictor taps, 16 coefficient of variation computations (one for

each block), and a zero-crossing average over all blocks. The classification strategy is

based upon a large set of heuristic rules. For example, “For voiceband data, Av(Z,) appears

always to have a value in a range between 3 and 11 because of the energy distribution

around 2 kHz.” Another drawback is that the system was only tested with ideal simulated

VBD signals, although line impairments are known to cause difficulties for classifiers.
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Finally, only 2 types of VBD signals were considered, which were considered fast at the
time of Yatsuzuka’s writing; however, they no longer represent mainstream VBD commu-
nications signals. On the plus side, Yatsuzuka’s algorithms perform very well for detecting

speech and classifying speech into wideband, narrowband and low power subclasses.

2.1.1.2 C. Roberge and J.P. Adoul

Roberge and Adoul [64] published a paper in 1986 on the topic of speech vs. VBD
discrimination, again intending the algorithms to be used for the statistical multiplexing of
speech with VBD. For this technique to work, the transmitter must be capable of detecting
speech and silence intervals, when VBD signals can be inserted. At the receiver end,
unless special markers are inserted in the signal, speech and VBD signals must be discrim-
inated. Roberge and Adoui present a method for discriminating between these two types
of signals. The only VBD signal considered was 9600 bps QAM. The authors claim that
this type of signal is more difficult to identify since FSK and PSK signals have constant
envelopes, while QAM signals do not. FSK and PSK signals can be easily identified by a

constant envelope detector.

Roberge and Adoul define a method for computing discriminants that is based on a

fixed window length N. The first discriminant, Z,, is the zero-crossing count in the win-

dow. This discriminant is said to roughly reflect the dominant frequency of the signal. The

second discriminant, Z;, is the zero-crossing count of the difference signal. The difference

signal is the received signal subtracted by a time delayed version of itself, where the time

delay is one sample period. This is effectively the discrete first derivative of the received
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signal. This discriminant is said to represent the second resonant frequency of the vocal

tract, or the second formant.

The authors note that the longer the observation windows are made, the better the
classifier performs. However, the misclassification rate will not reach zero. (Misclassifica-
tion rates do not necessarily reach zero since the probability density functions of the dis-
criminant variable(s) for each group may overlap somewhat. In the case of quadratic
discrimination, the variables may not be sufficiently correlated to perform accurate classi-
fication. Perfect separation is required for 0% misclassification of all cases, which is not
generally achievable for many of the signal generation processes that exist in nature.
Speech is one such signal type.) Also, in some cases the response time of the classifier is a

factor, and thus observation window lengths must be kept to a minimum.

Three classification methods are presented, all based on the use of simple decision
boundaries. Fig. 6 shows the concept of each classification method. The diagrams show

shaded areas which represent the region in the two-dimensional discriminant space that

belongs to VBD signals.
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FIGURE 6. Three classification methods from Roberge and Adoul.



‘The authors claim that their algorithm performed with approximately 0.03% mis-
classification of speech signals as VBD.in normal conditions, as compared to a reported
misclassification rate of 0.09% reported by Yatsuzuka [79]. The hangover and response
times are not given however. In addition, there was only one type of modem signal, 9600
bps QAM, was considered. Details of the modem structure were not given. Basing the
tests on only one type of modem is a major weakness; however, it was a realistic assump-
tion given the problem being considered. The discriminator was designed to operate on a
channel in which it was known a priori that speech would be multiplexed with a specific
implementation of 9600 bps VBD. This assumption is not valid for the more general prob-

lem that we are considering in this thesis.

The authors have shown that separation of speech from VBD should be an easy
task, and can be performed well with two simple zero-crossing discriminant variables.
Although the discriminant variables are simple, the classification strategy again is not. The
classifier uses a set of heuristic rules which, while not as complex as Yatsuzuka'’s, still can-
not be shown to be optimal. Decision boundaries are drawn from observations of actual

tests. No optimal or automated method for choosing decision boundaries is given.

2.1.1.3 8. Casale, C. Giarrizzo, and A. La Corte

Casale et al. [13] published a paper in 1988 reporting on a speech vs. VBD dis-
criminator implemented on a DSP. The discriminator is intended to be used as a filtering
stage prior to the compression of voice-band signals. The job of the discriminator is to
prevent VBD signals from being compressed since the intended compression scheme

would destroy the VBD signal.
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Discriminant variables presented in [13] include the short-time energy of an N
sample window, and the zero-crossing 1:ate of the received signal and its first derivative.
The short-time energy is said to be lower in general for speech signals, and it varies from
window to window considerably more for speech than for VBD. We note that the discrim-

inants utilized here appear to be a combination of those presented by Yatsuzuka [79] and

Roberge et al. [64].

The above discriminants present nothing new; however, they were implemented
on a real-time system based on a Texas Instruments TMS320C20 DSP. An interesting fea-
ture of the system is that the received signal was separated into three streams. One stream
is filtered by a high-pass filter, a second stream is filtered by a low-pass filter, and the third
stream is not filtered at all. The discriminant variables are computed for all streams. A

value of N = 256 samples was chosen as a compromise between misclassification rate and

response time.

The types of VBD signals tested include V.21 channel 1, V.21 channel 2, V.23, and
V.27, Misclassification rates are reported to be below 0.2% for all classes. An interesting
table is included in the paper that reports the number of instructions as well as memory
recuirements for each stage of the classifier. We include that table here. Note that the

instruction cycle time for the TMS32020 fixed-point processor is 200 ns.

TABLE 1. Processor cycles and memory requirements, per sample.

Instruction ROM RAM
Routines Cycles (bytes) (bytes)
Companded PCM to linear PCM conversion 9 532 2
Synchronization 5 8 2
Low-pass and high-pass filters 132 396 28
Revision buffer memory pointers 12 28 8
Differenced signals and zero-crossings 62 124 12
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TABLE 1. Processor cycles and memory requirements, per sample.

Instruction ROM RAM
Routines Cycles (bytes) (bytes)
Short-time energy computation and test 26 64 14
Tests of zero-crossing results 54 144 30
Revising output condition 6 14 -
Start of the processor 83 196 32
TOTAL 389 (77.8 ps) 1506 128

The totals in the table indicate that 389 processing cycles are required per sample.
Each 256 sample window sees 160,000 processing cycles, and the discriminator requires
99,584 of those cycles. Therefore we can conclude that the processor load due to the clas-
sifier is about 62%. The authors claim that two channels can be classified using a single
processor of this type, however their own test data appears to refute this claim unless cer-
tain functions can overlap when monitoring two channels. If we consider instead a modern
(but still inexpensive) fixed-point digital signal processor with a cycle time of 16.7 ns,

then it would appear that this classifier could perform full-time monitoring of 19 channels.

These results indicate that roughly 34% of processing cycles are spent filtering the
incoming data. Also, since the data is split into 3 streams, all other functions must be com-
puted in triplicate. Obviously if the filtering stages could be removed, and only one data
stream was required, the number of processing cycles could be substantially reduced. We
will argue later on that in this way full-time monitoring of at least 24 channels is feasible

using an inexpensive DSP.

2.1.14 K. Shimokoshi and Y. Hashitsume

In 1989 K. Shimokoshi and Y. Hashitsume [68] described a neural network imple-
mentation of a speech vs. non-speech discriminator. Their system is intended to be used in
a packet-switched network for identifying the type of traffic being transmitted. Certain
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types of traffic, such as VBD signals, are susceptible to signal degradation caused by
bandwidth compression, silence compréssion. and echo cancelling. For these reasons, the
authors proposed a method for discriminating speech from non-speech signals. One type
of packet network alluded to by the authors is ATM (Asynchronous Transfer Mode). The
authors predict that speech signals will still make up the bulk cf traffic carried via ATM, so
various lossy compression methods such as DSI will continue to be used extensively. The
authors also assume that VBD signals will continue to be used extensively. (This may be a

false assumption if technologies such as N-ISDN achieve wide acceptance.)

The authors propose a method for discriminating speech vs. non-specch signals by
combining a back propagation neural network with digital signal processing. Test results
are presented for an implementation on the general purpose TMS320C25 DSP. A block

diagram of the resulting classifier is given in Fig. 7.
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FIGURE 7. Shimokoshi and Hashitsume’s voice/non-voice discrimination model.

To perform discrimination, an 8-channel octave filter bank converts the incoming

signal to its respective spectra. Each node in the filter bank consists of a DFT implement-



ing Goertzel’s algorithm. The DFT frame length is equal to the packet length of four ms
(32 samples) in the test system. The rcs;xlting discrete spectra are input into a neural net-
work which performs learning via a back propagation algorithm. The neural net was
trained using Japanese speech from an adult male, five different DTMF (Dual Tone Multi-
Frequency) tones, and a V.23 modem. (Note that a V.23 modem is a 1200 bps FSK

modem, similar to V.22.)

The system was also tested using signals from an adult male speaking English as
welil as Japanese, a 200 bps V.21 modem, 300 bps V.21, 1200 bps V.23, and DTMF sig-
nals. Even though these were signals that were tested but not learned explicitly, the classi-
fier still handled them reasonably well. The misclassification rate for speech as non-speech
was 13.8% for Japanese and 10.5% for English. Non-speech data signals were never mis-
classified; however, DTMF tones were misclassified as VBD 0.7% of the time. The
authors conclude that the high misclassification rate for speech signals is not important
since this would simply result in fewer signals being compressed in the network. That is,

the cost of misclassifying VBD as speech is much higher than vice versa.

We note that the modems tested in [68] are not representative of the most common
modems used today. Also, the amount of computation required for performing the 8-chan-
nel DFT bank is very great. (This is the portion of the system implemented by a DSP. The
neural network was also implemented using the DSP chip. Future work was to include
mapping the neural network to specialized hardware.) It is reported that the overall classi-
fication system requires 5 MIPS (Million Instructions Per Second). This represents a

heavy load on the DSP that was used. (A standard 40 MHz TMS320C25 DSP can ideally
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perform 10 MIPS if every instruction can be performed in one cycle. This is rarely possi-

ble.) The authors do not report the response times of the system.

2.1.1.5 Summary

The papers surnmarized above generally yielded acceptable classifier accuracies,
depending upon the intended application. Shimokoshi and Hashitsume {68] presented a
neural network system that yielded a very high rate of misclassification of speech signals
and was also relatively computationally intensive. The other methods proposed yielded
acceptably low misclassification rates for our application. However, all of these methods
utilize discriminant variables that are computationally intensive and classification strate-
gies that are heuristically based. Thus it is still desirable to develop more efficient discrim-
inant variables that still yield low misciassification rates. It is also desirable to study thesc
discriminant variables in a systematic way to evaluate their effectiveness. The classifica-
tion strategy should be based upon provably optimal methods where available. Heuristic

rules are difficult to form, and they cannot be proven optimal.

2.1.2 VBD Signal Discriminzition

Next we consider the separate problem of classifying VBD signals into subclasses.
For example, we may wish to identify the modulation method in use, the carrier frequency,
baud rate, or bit rate. We define classifier resolution to be the number of subclasses that a
classification algorithm can resolve from the original group. We also retain the three crite-
ria for algorithm evaluation given in the previous section. Thus we now have four criteria

for evaluating discrimination methods: response time, algorithm complexity, classifier res-

olution, and classifier accuracy.
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2.1.2.1 Radio Signal Monitoring

The problem of menitoring com}nunicaﬁons with the intent of identifying the type
of signal being transmitted is not limited to voice-band applications. It is also a major con-
cern of law enforcement agencies or military groups who are interested in monitoring
radio signals. The purpose may be to be able to intercept communications, to ensure that
operators are obeying the limits of operation parameters, or to identify unauthorized use of
a particular channel. Four papers were selected for review on this topic in order to deter-
mine the amount of cross-over between classification of radio communications signals and
voice-band signals. The four papers were as follows: F. Jondral [46], J. Aisbett [1], Y.T.
Chan and L.G. Gadbois [14], L.V. Dominguez, J.M.P. Borrallo, J.P. Garcia, and B.R.

Mezcua [18].

In general the goal of these papers is developing methods for identifying the mod-
ulation method being used for communications in the short wave band (3 MHz to 30
MH?z). This problem is of interest because there is no fixed channel allocation pattern in
this band. When a fixed channel pattern exists, the problem of sigral identification is sig-

nificantly reduced.

We do not consider the different methods of constructing receivers here, although
this is a major concern in the four papers mentioned. What we are interested in are the dis-

criminant variables used, and the classification methods for obtaining conclusions.

Jondral [46] specified that histograms of the amplitude, instantaneous frequency,

and relative zero phase of the received signal at time instants ¢,,, are stored for signal seg-

ments M = 4096 samples long. The sampling rate in this case is one of {2.2, 4.4,5.5, 11.1,
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22.2} kHz, depending upon the bandwidth of the signal being test~d, The amplitude,
instantaneous frequency, and relative zero phase histograms have 32, 128, and 32 bins,

ey

respectively.

Classification is performed using the histograms of these three variables and what
are called polynomial classifiers. Unfortunately, the reference for polynomial classifica-
tion given by Jondral [46] is a paper written in German. We were unable to locate a com-
parable English language paper describing this classification method; however, it appcars
to simply be a variation of the optimal linear and quadratic discriminant functions
described by Shumway [{69]. The method is based on computing a discriminant function
that minimizes the mean square error in classification. The resulting discriminant func-

tions are a system of linear or quadratic equztions. Thus the discriminant polynomial may

take on the form of a linear or quadratic equation.

The classes that are discriminaied by Jondral’s method are two-level ASK, two-
state FSK, four-state FSK, two-state PSK, amplitude modulation, single-sideband modu-
lation with suppressed carrier, and noise. QAM signals were not included. Results pre-
sented by Jondral indicate that the total misclassification rate of the test set was 2.3%
using a quadratic discriminant polynomial with 496 terms. The linear discriminant func-
tions lead to poorer resuits, with a total misclassification rate of 7.8%. This indicates that a
slight improvement is achieved by using a quadratic discriminant function since the cova-
riance matrices of the discriminant variables are different. We can conclude that the
method proposed yields reasonably good misclassification rates, has a reasonably small
and simple discriminant variable set, and resolves the considered signal types into useful

subclasses for the intended application. However, the response time of the system is quite
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long (from 0.18 to 1.86 seconds), and the subclasses identifiable by the given discriminant
variables are not applicable to the VBD signals we are considering. Also, the discriminant
variables used are not particularly sensitive to discriminate signals that use identical mod-

ulation methods, but differ in their power spectra in some small way.

Aisbett [1] extended Jondral’s work to allow the classifier to identify further sub-
classes of signals based upon the estimated signal-to-noise ratio (SNR). The estimators are
based on the way in which Gaussian noise affects the variance of the existing discriminant
variables. In total, six variables were considered. The classification method used by Ais-
bett was strictly linear. Only mean differences in discriminant variables were considered.
The signal types considered were slightly different from Jondral’s, and include AM voice,

AM binary, DSB voice, DSB binary, FM voice, FM binary, CW, and noise. No experimen-

tal results were reported.

The important contribution of Aisbett’s [1] work is that it was shown theoretically
that standard time-domain parameters of signal envelope and instantaneous frequency are
strongly influenced by both the modulation type and the SNR. The author notes that fur-

ther work needs to be done to understand the effects of non-Gaussian noise.

Cha:. . ; Gadbois [14] presented a novel technique for classifying signals based
upon their modulation method. The discriminant variable R is the ratio of the variance of
the analytic envelope to the square of the mean. Since FM has a constant envelope, and
AM does not, this variable is effective for discriminating these two classes. However, the

authors conclude that more work needs to be done to discriminate between signals such as
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FM and PM since they will have the same R values. Due to the limited number of discrim-

inable subclasses, we will not consider this algorithm further.

Finally, we consider the work of Dominguez, et al. [18]. The authors present a uni-
fied system for the general automatic classification of radio communication signals. Three
parts of the system are identified including pre-analysis. discriminant extraction, and clas-
sification. Again, we are only concerned with discriminant extraction and classification

since the pre-analysis section is dependant upon the transmission medium of the signals

under test.

Discriminant variable vectors are formed from the complex envelope, phase, and
instantaneous frequency histograms. The entire histogram contents were used as discrimi-
nant variables, thus the number of variables was quite high. Note that the computation of

the complex envelope requires more calculations than all of the other discriminant vari-

ables combined.

The classifier took into account the correlation between discriminant variables.
Thus we can say that the classification method is similar to a quadratic discriminant func-
tion, although it is not identified as such in [18]. The classes that the algorithm attempted
to discriminate are based on AM, FM, and PSK modulation methods. Again, these classes
are not directly related to the problem of VBD signal discrimination since the dominant
modulation methods used are QAM and combined ASK-PSK. Later we will sce that in
fact the variance of the complex envelope of a VBD signal is a poor discriminant variable

for most signals used in modern VBD modems. It is an excellent discriminant, however,

for FM and AM signal discrimination.
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Although the problem of classifying radio communication signals is similar to that
of classifying VBD signals, there are fl;ndamental differences that generally render the
algorithms incompatible with one another. The main difference lies in the vastly different
types of modulation methods used in each situation. For effective subclassification of
VBD signals we need to discriminate between FSK, PSK, combined PSK-ASK, and
QAM signals. Also, various types of QAM may be used in VBD connections and these
sub-types must also be identified. However, it is instructive to examine the methods used
for radio communication signal classification since valuable insights can be gained. First
of all, it was shown that the amount of noise present in a signal can be an important factor
to consider. Second, it is difficult to separate constant envelope signals using the given dis-
criminant variables used so far. Finally, optimal methods for performing classification,
such as linear and quadratic discriminant functions, can be used with good success even if

the conditions for optimality are not strictly met.

2.1.2.2 J.E. Hipp

J.E. Hipp presented a paper in which signals using different modulation methods
are classified based on statistical moments of the demodulated signal and the signal spec-
trum [27]. The method could be applied to any general system in which a received signal
is band-limited and the center frequency is within 10% of the center of the band. Six dis-
criminant variables were used including the: (1) standard deviation of the demodulated
amplitude distribution, (2) asymmetry of amplitude distribution, (3) spread in signal phase
relative to a fixed estimated carrier, (4) standard deviation with a threshold of 3 dB above
the noise floor of the spectrum, (5) standard deviation with a threshold at 3 dB below the

peak of the spectrum, and (6) standard deviation with a threshold at 3 dB below the peak



of the squared signal spectrum. Obviously, the computational power required to obtain

these discriminant variables is considerable. Indeed this is the major drawback ot the pro-

posed system.

Hipp indicated that many more discriminant variables were considered; only the
most useful discriminants were retained in the final system. SPSS was identified as one

useful tool for ranking the discriminant variables.

Classification was also peiformed by SPSS. Consequently we can say that the qua-
dratic method was not strictly used; however, the results can be considered to be very
close to what would have been obtained an optimal quadratic discriminant function. The
classification classes include noise, single sinusoidal tone, AM, DSB, ICW (Intermittent
Continuous Wave), FM, BPSK, FSK, and SSB. Again we note that the most common
VBD signals were not included in the study. However, the classification method presented

should work well for any signals that vary in their power spectra.

Results were obtained by performing cross-validation in all cases. (Cross-valida-
tion is a method of predicting future classifier performance based on a limited set of train-
ing cases. The training cases are divided into a learning group and a test group.
Discriminant functions are formed using the learning group and then tested on both
classes independently.) Only simulated signals were considered, with some noise parame-
ters added. Standard channel distortions, with the exception of additive Gaussian noise
and frequency offsets, were not considered. The results will not be included here; how-

ever, it is of interest to note that the overall correct classification rate was 95.347%.
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We can conclude that while Hipp's algorithm is very powerful and could likely be
applied to the signals we are cnnsiderin'g, the computational complexity of the discrimi-
nant variables is too high. In order to compute the variables the signal must first be
demodulated with an estimated carrier and the power spectra must be either computed or

estimated. Then the statistics for these two signal reprcsentations must be computed.

Hipp’s paper does outline an excellent analysis structure. The system is separated
into preprocessing, discriminant extraction, and classification stages. The discriminant
variables that are considered are analyzed for their statistical significance, and a “best”
subset of variables is extracted. The classification is performed using cross-validation to
ensure accurate results and some channel distortions are included in the simulations. This

type of systematic analysis of the problem was also adopted in this thesis.

2.1.2.3 R.J. Mammone et al.

Mammone et al. [S3] wrote a paper on the estimation of carrier frequency, modula-
tion type, and bit rate of an unknown modulated signal. The sigral types of interest to the
authors are CW, BPSK, and QPSK. The discriminants are extracted from the phase deriv-
ative of the analytic signal. The analytic signal is a complex valued representation of the
real valued received signal, with a single sided Power Spectral Density (PSD). The equa-
tion for the analytic signal is given by equation (2) where z(k) is the analytic signal, x (k)
is the real valued band-pass received signal, and X (k) is the Hilbert transform of x (k) .
This signal representation may be computed by first computing the FFT of the received
signal, operating on the frequency domain signal, and then computing the inverse FFT.

The resulting analytic signal can be used to indicate the envelope of the received signal
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without regard to the carrier frequency. Discriminant variables are chosen from the ana-
lytic signal to indicate the carrier frequency, modulation type, and bit rate of the signal.

The envelope of the analytic signal is also computed to detect amplitude modulation and

power fluctuations.

(k) = x (k) +j3 (k) (EQ2)

Two problems with applying this method to VBD signals appear immediately.
First, the signal types do not represent typical VBD signals well. Thus the method used for
estimating the bit rate will be of no use. Second, the computational complexity of the algo-
rithm is very high. This problem is common to most published work on signal classifica-
tion. Computing the power spectrum is often seen as the best way to classify signals.
While this may be an effective approach for some classification problems, it is also
requires a large amount of computing power. This limits the usefulness of these types of
methods for real-time, multi-channel applications. Also, it has not been shown that the
power spectrum must be directly computed from the time series signal. As we will sec

later, it is possible to determine much of the relevant power spectrum information by using

simple measures of the time series.

2.1.2.4 S.S. Soliman and Shue-Zen Hsue

Soliman and Hsue [70] presented a paper in which they restrict their attention to
M-ary PSK signals. The intent was to be able to use the nth moment of the phase of the
signal, where n is even, to identify the number of points in the PSK constellation. In prior
work, Soliman and Hsue presented methods based on zero-crossing observations for dis-

criminating between PSK and FSK signals. Interestingly the authors note that very little



work has been done on the problem of modulation type classification, especially work that

is not ad hoc in nature.

The authors {70] show a figure comparing the mean values for the higher order
moments of CW, BPSK, QPSK, 8PSK, 16PSK, and 32PSK signals. The values of n con-
sidered are {2, 4, 6, 8, 10}. The authors clearly show that by using these moments as dis-
criminant variables, only CW, BPSK, and QPSK are effectively discriminated since the
mean values of their moments are unique. All higher M-ary PSK signals fall into the same
category as QPSK. That is, they have the same moment mean value for all classes. Thus
we can quickly see that this method has limited usefulness, especially under realistic noise

conditions which cause the variance of the moments to increase beyond their mean differ-

ences.

2.1.2.5 Summary

We conclude this section by observing that, prior to this thesis, there was a need
for further work to be done on systematically determining a low-complexity, accurate, and
high-resolution algorithm for classifying VBD signals. Surprisingly little work has been
done (and published in the open literature) on the specific signals that are seen in the
PSTN. In the next section we present the work of researchers who have considered this

very problem and shown promising results.

2.1.3 Nevio Benvenuto’s Work
Nevio Benvenuto et al. has published papers on the topics of speech vs. non-
speech discrimination [6] as well as VBD signal discrimination [8, 6, 7]. We consider his

work to be important enough to deserve its own section in this review. Benvenuto’s work
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served as the basis for the most powerful and elegant discriminant variables presented in

this thesis.
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FIGURE 8. Generalized block diagram of a Benvenuto classifier.

Using two discriminants, Benvenuto reports that speech and VBD signals can be

distinguished from one another in as little as 32 ms [6]. The normalized second lag of the
autocorrelation sequence (ACS) ky (2) , and the normalized central seccond-order moment

of the amplitude components 1, of the complex baseband signal are computed as the dis-

criminants. Benvenuto notes that the second lag of the ACS is positive for voice and nega-
tive for non-voice signals. Benvenuto goes on to explain that the central second-order
moment is an approximate indicator of the non-voice signal complexity and is thus also
useful in a voice vs. non-voice discrimination algorithm. Note that Benvenuto always

assumes that 8000 sample per second discrete time signals are being classified.

Prior to the computation of the discriminant values, the incoming signal under test
is sampled and divided into N sample segments. Each segment must be checked to ensure
that there is sufficient signal activity throughout its duration. Benvenuto describes his two

discriminants in [6] and [7]. The discrete time baseband signal is denoted by y(n), where n
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is the discrete time index. It is obtained by complex demodulation of the passband signal
segment followed by low-pass filtering. A carrier of 2000 Hz is chosen, which is approxi-

mately the channel centre. The ACS at lag k is given by equation equation (3):

N
Ry = 5 S vG+BY (D), Q)

i=1

where v* (i) is the complex conjugate of ¥ (i) . The values R,(k) are then usually normal-

ized with respect to R\(0) and denoted by 1}7 (k) . Since for cyclostationary processes the
average power is given by R\(0), the baseband signal is thereby effectively normalized by

its average power. The normalized central second-order moment of y(n)l is given by equa-

tion equation (4):

n, = —-1 (EQ 4)

where m; and m, are defined in equations equation (5) and equation (6) as:

N
1 :
my = 52 @l (EQ 5)
im ]
1 ad 2
my = 5 2. v ()] EQ6)

i=1
Benvenuto’s FORTRAN pseudo-code for computing these discriminant variables

is shown below as it appeared in [6]. Preceding the code is a description of the variables.

n discrete time signal index
NSMPL length of input signal
Y(n) complex valued sequence following Weaver demodulation

Py, = 'YT,,Z noise rejection threshold
RO zero'th autocorrelation lag value
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R2 second autocorrelation lag value

ET intermediate value

A intermediate value

B intermediate value

P estimated average power over interval L
N segment length

L subsegment length

i DO loop index

START: n=0
BEGIN: n=n+1
IF (n > NSMPL.) STOP

IF (I(n)| < v7;,) GO TO BEGIN
INITIALIZE: RO=0,R2=0,ET=0,q=0
COMPUTE: P=0,A=0,B=0
FOR (i=0)TO(L-1)DO
P=P+Iynmi?/L
A = A + u(n+2)u(n) + v(n+2)v(n)
B =B + ly(n)l
n=n+1
END DO
n=n-1
IF (P < Pr;) GO TO BEGIN
UPDATE: RO = RO + (LY P)
R2=R2+A
ET=ET+ B
g=q+1
IF (g <= N/ L) THEN
n=n+1
GO TO COMPUTE
ELSE

OUTPUT: n, R, (2) =-R2/R0, iy =RO/ ((1/N) ET?) - |
GO TO BEGIN

END IF
END:

Note that the algorithm breaks a signal segment N samples long, into subsegments
of length L. Each subsegment must have a minimum average power to be eligible for
inclusion in the discriminant variable computation. If a subsegment does not contain
enough power then the entire segment is rejected. An improvement to this algorithm is to

throw out subsegments without enough average power, but to retain the previous subseg-
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ments for « limited time. This allows brief silent periods between speech activity to be tol-

erated by the algorithm, resulting in more effective use of speech signals.

Benvenuto found experimentally that the normalized second lag, 1—37 (2), is suffi-

cient for separating voice from VBD when used as a discriminant along with the central
second-moment. These functions yield two discriminants capable of classifying voice and
non-voice signals using segments as brief as 32 ms. The presence of signal activity can be
verified by estimating the average power of the segment. Benvenuto shows that using
these two discriminants, with 32 ms signal segments, speech is misclassified as VBD
about 1% of the time. Conversely, VBD is rarely misclassified as speech if the decision
boundaries, i.e. the discriminant thresholds, are well chosen. The scatter plot in Fig. 9
shows how weli Benvenuto’s method can separate speech from one type of VBD signal.
The VBD signal used to generate the plot was a V.32bis modem. The ‘x’ marks indicate
VBD discriminant function computations, and the ‘0’ marks indicate speech discriminant
function computations. A simple classification procedure would be to allocate any obser-
vations that fall in the lower left quadrant to the VBD class, and all other observations

would be allocated to the speech class.
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FIGURE 9. Scatter plot of Benvenuto’s discriminant variables.

Benvenuto also considered several other VBD signal types including FSK, PSK,
and QAM. (The specific standards were AT&T 103], 2028, 212A, 201C, 208B, 20906A,
IBM 3864-1, and CCITT V.29.) Benvenuto notes that the central second-order moment is
an approximate indicator of the constellation complexity. We verified this claim for vastly
different signals such as FSK and QAM. For QAM this discriminant varies greatly; how-
ever, this discriminant is not useful for subclassifying VBD signzais with similar constella-
tion types, such as 16-QAM and 8-PSK. This discriminant appears mainly useful for
identifying FSK signals, which are rarely used by modern modems and facsimile

machines (except for signalling).
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The three papers written by Benvenuto that have been referenced here [8, 6, 7]
provide a good starting point for a class-iﬁcation system. However, the discriminant vari-
ables are not carefully evaluated for their relative statistical significance, nor are various
discriminant functions examined for their optimality properties. For these reasons, we
decided to reconsider Benvenuto’s original discriminant variables and possibly derive new
ones. Applying the resulting variables to a set of modern signals, including recently devel-
oped 28.8 kbps modems, was also considered a worthwhile extension of Benvenuto’s

investigation.

Another question that remains is why Benvenuto used a complex demodulation
stage in his experiments. Benvenuto argues that it is more convenient to operate on the
approximately demodulated baseband signal [7]. If this stage could be avoided, however,

the computational complexity of Benvenuto’s algorithm could be dramatically reduced.

2.2 Available Products

2.2.1 CTel NETMONITOR System 2432

Currently there are at least three products on the market that address the problem
of signal classification in telephone networks: CTel (Compression Telecommunications
Corporation, Germantown, Md, USA) sells the NET-MONITOR System 2432 that has the
ability to monitor the network, recording call type (voice, FAX, data), duration, disposi-
tion, and channel occupancy among other statistics [16)]. Also, certain quality factors are
monitored such as echo path loss, echo path delay, signal level, noise, and PCM coding
errors. Several signaling environments are supported including E&M, R2D, CCITT #5,

and CCITT #7 on TI/E1 trunks. The system is supported by a text or windowing-based
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software package that can report on the performance of several trunks over independent
time intervals. Several trunks are monitored by multiplexing them into the monitoring sys-
tem, hence simultaneous monitoring of more than one trunk is not possible. DSPs within

the monitoring systems perform traffic classification, tone detection, demodulation, and

spectral analysis.

2.2.2 Tellabs Digital Channel Occupancy Analyser

Tellabs Limited (Lisle, IL, USA) also sells a machine that performs similar func-
tions to that of the CTel system. It is called the Tellabs Digital Channel Occupancy Ana-
lyser (DCOA). The system may monitor up to 120 digital channels (5§ PCM trunks),
distinguishing voice from data traffic [72). The system runs on a personal computer (PC)
and provides software for generating reports. The analysis of 10 signal channels requires

1.1 seconds. TS16 line signaling is supported, but Tellabs claims that with slight alter-

ations other trunk types may also be monitored.

2.2.3 AT&T Voice/Data Call Classifier

The third product, called a Voice/Data Call Classifier, is made by AT&T. The sy:-
tem is designed for DS1 trunks, where it can monitor all 24 channels simultanc: -+ 2]
Calls are classified as being either voice or voiceband data. Data calls are fu:the: - fussified
by their speed as being high (>7199 bps), medium (4800 bps), low (2400 bp~: very low
(<1201 bps), or unknown. (The criteria for this determination is not known. Some modu-
lation standards such as V.32bis allow for several different fall-back modes, each having a
unique bit rate. This makes it difficult to determine the precise bit rate of a signal without

sophisticated demodulation techniques. If such techniques are not used, then the classified
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bit-rate may only be the upper limit of a particular signal.) Two facsimile rates are also
identified. The systemn requires continu%il access to the DS1 trunk in order to establish call
boundaries. Included with the system are two 600 MByte hard disk drives, the Unix oper-
ating system, and two POTS (Plain Old Telephone System) lines for remote access via

modems. The entire system requires S00 Watts of power.

2.2.4 MPR Teltech Service Discrimination Unit

MPR Teltech (Burnaby, BC) developed a device called the “Service Discrimina-
tion Unit” (SDU). In addition R.A. Law, et al., published a paper in 1991 on the capabili-
ties of the SDU [50]. The SDU is designed to operate at the T1 level. Inside the SDU on
each processing card are up to 4 Motorola DSP56001 digital signal processors, all con-
trolled by two Motorola 68HC11 processors. Up to 10 processing cards can be included in

a single SDU, with each card populated by a full complement of processors that are able to

monitor a single T1 line.

The SDU is intended to be used for monitoring specialized FAX networks. These
networks offer discounted FAX transmission rates and thus must be monitored to ensure
that the channels are not used for speeci calls. All types of FAX traffic are discriminated
as well as certain VBD signal types including Bell 103, Bell 212, CCITT V.22, and
V.22bis. (It is not clear which FAX modulation standards are identifiable.) The system is
capable of not only monitoring the individual DSO0’s, but it can also interrupt service. Even
though the system uses four DSPs running at 24 MHz and two controller processors for
each T1 line, it cannot perform full-time monitoring of all DSO channels if all 24 are in

use. Under optimal conditions, 16 DSOs may be monitored full-time from a single DS1

stream.
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The signal discriminator uses a conditional pre-filter to remove DC components
and to compensate for noisy lines, a bar;d-energy estimator, and a tone detector. Thus sig-
nals are generally classified according to their spectral properties by using a bank of inti-
nite impulse response (IIR) band-pass filters. Signal segments containing 128 samples are
used to compute the discriminant variables. Short-time energy variances are also used to
identify speech segments. The authors report that typical response times are 2 to 3 sec-
onds. We can conclude that this device uses a computationally intensive discrimination
algorithm, yet has very poor response times and is not capable of discriminating modern
VBD signals. We also suspect that FAX traffic is simply identified by observing the initial

handshaking tones, probably accounting for the inclusion of a tone detector in the classi-

fier.

2.3 Summary

Although judging from the volume of published work it would seem that the clas-
sification problem has already been solved, this is not true at all. The Tellabs DCOA sys-
tem has been tested on-site by a telco sponsor of TRLabs and has been reported to be 72%
accurate in its call classification in one evaluation study. As of yet, the accuracy of the
other two systems has not been tested, nor is it published by the manufacturers. In fact, the
manufactures have refused to release models of their products for evaluation, making one
even more doubtful of performance claims. In addition, no theoretical basis or treatment

of methods used by these systems has been disclosed or published in the open literature.

Another drawback that these systems share is their reliance on knowledge of call

boundaries. A desirable feature would be to examine a call at any point in time, and suc-
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cessfully classify it. By knowing the call boundaries, the classification problem is greatly
simplified since the setup signal protocol for FAX and data calls is well known, and easily
identifiable. A classification system that is accurate without requiring knowledge of the

call boundaries will be even more accurate if that knowledge is also provided.

An additional drawback is the sheer magnitude of the existing machines. They are
physically large, consume a great deal of power, and cost a great deal of money. This is
especially true of the AT&T system. Often multiple DSPs operate concurrently to perform
classification. It would be very attractive to have a machine (ultimately a single chip, per-
haps) that is far simpler in design. The goal of this thesis work is to develop algorithms for
performing classification for a wider variety of signal types, that requires far less comput-
ing power, and achieves a higher degree of accuracy than the systems considered. The
resulting algorithms should also not rely on call boundary information, and should be able

to operate in an environment where full-time monitoring of all channels is not necessarily

possible.
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Chapter 3

3.0 Background Material

Chapters two, three, and four contain the background material that is required for
complete understanding of the algorithms presented in Chapter 5. Combined, these chap-
ters represent about half of the content of this thesis. This extensive treatment of the
groundwork leading up to Chapter 5 is necessary for the reader to be able to refer back to
vital information. For example, all of the modem standards classified need to be discussed
in order to make the reader aware of their relative differences. If the reader is already
familiar with the background material, they can begin reading Chapter 5 immediately and

only refer to the background sections when necessary.

3.1 Characteristics of Analogue Telephone Channels

Essential to understanding the problem at hand is having a clear picture of the total
telephone network, from the handset or data device at your site through the vast global
digital telephone network, terminating at a destination device. The total network behaves
as a virtual single machine, the single largest machine in the world. The network intercon-
nects widely different communication mediums including wire underground, above
ground, and in the ocean; fiber optics spanning between major cities; radio towers on hill-
tops; and satellite communications in the heavens. For the vast majority of the network
infrastructure in North America, digital communication is used exclusively. Only the vast
investment in the millions of copper subscriber loops has so far prevented the entire net-

work from being digital right up to the customer’s premises.
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This thesis work is concerned with monitoring the network from within, at any
point in the network where the signal U;lfﬁc is digital. Even an analogue line could be
monitored with the appropriate digitizing equipment. However, to limit the scope of this
project, only a subset of the variety of communications mediums will be considered even
though the theoretical aspects of the solution could be applied to any digital voice-band
signal. The medium being considered are the 24 channel, 1.544 Mbps DS1/T1 signals that
are sent and received at the COs (Central Offices). COs are the locations where analogue
telephone loops that lead to and from our wall jacks are terminated and digitized into bi-
directional Pulse Coded Modulation (PCM) streams of digital data. Exiting the COs may
be DS1 (or larger) trunks which lead to the next level in the hierarchy of the network,
where switching of calls can take place. Each DS1 signal contains 24 tributary signals
called DSOs as well as a few synchronization bits known as framing bits. Each DSO con-
tains one direction of a customer’s call. Each DSO carries 8000 samples per second, where
each sample is an 8-bit A-law or p-law codeword. Companding using either the A-law or

p-law standard ensures a roughly equal signal-to-noise ratio at all signal amplitudes.

The following s a discussion of some of the technical limitations that the tele-
phone network imposes upon the traffic it carries. These limits and impairments become
important later on when we attempt to simulate VBD signals as they are transmitted

through the PSTN.

3.1.1 Model of a Point-to-Point Connection

The telephone network as seen by subscribers can be modeled as shown in Fig. 10.
The entire point-to-point connection (from one end to the other) consists of a handset at
each end (FAX machine, modem, or telephone), a pair of two-wire subscriber loops, two
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hybrids, and fully digital network interconnection stages. (It is possible for the intercon-
nection stages to also require hybrids in some cases.) The four-wire portion of the network
is where the two directions of a call are transmitted using two separate channels. Each

direction is said to utilize a pair of wires (implementations may not require a pair of wires,

however).
digital
network
2 to 4 wire stages
hybrid ‘/‘/ l \‘\‘
A/D X e r X X D/A

/
!
n | /AN
‘ !
analogue DA x N * A/D
telephone
subscriber \
four-wire switching

loop (2 wire)
connection point

FIGURE 10. Model of point-to-point connection.

Currently, most homes and businesses only have analogue service to the wall out-
let. Connected through the wall outlet to the two-wire subscriber loop may be a telephone,
FAX machine, data modem, or some other device (such as a communication device for the
hearing irapaired). All three of these devices must have standard analogue telephone inter-
faces and thus must conform to pre-determined standards regarding their transmitted sig-
nal power and bandwidth. ITU Recommendation V.2 [30] specifies the power levels that

should be used by VBD devices that are connected to the PSTN.

The subscriber loops are connected to the digital system via hybrids at the first CO
stage. A hybrid is an interface between a two-wire signal and a four-wire signal. Either
within the hybrid or close to it are CODECs (coder/decoder) for converting analogue sig-

nals to and from companded PCM streams. Wherever possible, analogue transmission
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lines are implemented as differential signals for noise rejection. The two-wire loop that

reaches the subscribers is a current loop signal.

The center of Fig. 10 shows two lines with several “x” marks on them. Each “x”
represents a switching point in the network, and the spans between “x’’ marks represent
the digital trunk connections. (Only rarely in North America are these trunks not digital.)
There is a limit to the number of links that a connection may pass through due to standards
protecting the GOS (Grade of Service) or line quality. One advantage that digital signals
have over analogue signals is that there is no power loss caused by switching or transmis-
sion. Losses may be intentionally introduced at digital switching stages to meet network
design goals. Also, unless a digital bit error occurs, the received digital signal is identical
to the transmitted signal. Timing delays are still present however. The losses and delays
for each stage are selected when designing the network to conform with appropriate per-

formance standards related to echo propagation and stability.

3.1.2 Voice Network Complications and Design Considerations

In the following sections we will discuss some of the complications, limits, and
impairments affecting PSTN VB channels. An excellent reference describing the various
conditions that can be expected on a North American call is the Bell Labs 1982/83 End-

Office Connection Study (EOCS) [12]. This study will be referenced several times when

discussing network impairments.

3.1.2.1 Echo Delay
Audible echoes resulting from electrical signal reflections are produced wherever

there is an impedance mismatch in an electrical connection. Major sources of echo in the
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telephone network include the connection between the handset and the two-wire loop,
bridged taps on the two-wire loop, and the hybrids. The hybrids also cause echoes because
they do not perfectly separate the transmit and receive channels from the two-wire loops.

In other words, there is signal leakage from the receive channel to the transmit channel.

Two types of echoes are generally considered: talker echo and listener echo. Talker
echo occurs when the talker hears their own voice after some delay, similar to the effect of
yelling across a valley. Listener echo occurs when the listener in a conversation hears the
talker once, and then again after a delay. This is similar to being on the opposite side of a

valley from a screaming fool. You hear the fool scream once, then again after a delay, and

possibly even several more times.

These echoes are always present to some degree within the telephone network,
however they are usually after such short delays that we do not notice them. Echoes
imperceptible to the human ear, however, may still disturb the performance of high-speed
electronic hardware. Modems must take the echo delay problem very seriously, and usu-
ally incorporate echo cancellation technology. This usually consists of a circuit that sub-
tracts a delayed and attenuated version of the transmitter signal from the received signal.
The exact delay value to be used can be determined by using cepstrum analysis, corrcla-

tion, or some other method at call setup [11].

Echoes can cause significant effects with respect to the classification problem.
Since some telephone networks already provide echo cancellation, the echo problem may
be non-existent or minimized. However, significant echoes may be present in poorer con-

nections, in which case the classification algorithm will need to consider their presence.
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The first step in understanding the effects of echo delay as it relates to this project is to
incorporate echoes in any simulations p.erformed and to observe the changes that take
place. Since the ITU (international Telecommunication Union) has specified maximum
acceptable limits of echo delay and power, that information was used to generate simu-
lated echo situations. (The ITU-T was formerly called the CCITT, which is an acronym
for International Telegraph and Telephone Consultative Committee. The ITU encom-
passes the ITU-T, and in the past the CCITT.) Data from real telephone connections may
not reflect the worst case echo delays since telephone systems in North America are rela-
tively well designed for the most part, and the echo delay performance measures are a sta-

tistical process where the worst case echoes rarely occur.

Since the power of echoes is usually attenuated to a level much lower than that of
the original signal, their effects on the classification performance were not found to be
very significant in most cases. However, when classifying split-band modems it is impor-
tant to consider the presence of echoes since the echo power may be in a separate fre-
quency band from the main signal power. Thus any complete classification method based

upon the spectrai properties of a signal must consider echoes.

3.i.2.2 Stability (Ringing and Singing)

This phenomenon is an important design consideration for network designers;
however, it doesn’t apply to the proposed problern. The phenomenon is this: The signal
gain at each stage of the network must be carefully planned to protect the end-to-end sig-
nal from os<illating (or ringing). If a line signal is about to start oscillating, it will exhibit
what is called singing, where the talker’s voice has an eerie ringing (or often described as
a “rainbarrel” sound) effect added to it. By properly providing sufficient losses in the
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handsets and interconnection stages of the network, ringing can be avoided. A classitier
might have difficulty identifying a call type in the presence of ringing, but this would be a

fault of the network equipment and would be beyond the control of the proposed system.

3.1.2.3 Volume (Loss)

When designing handsets or any of the analogue equipment connected to the sub-
scriber loop, the volume of the microphone and speaker combination must be considered.
The ITU has set specifications for the acceptable volume level. In the case of modems, the
standard response is to use an automatic gain control device to adjust the line level to con-
form to ITUJ standards. This will be a consideration for the proposed system because it
determines the expected signal power levels for data and FAX signals. Since telephones
don’t continually set their transmitted power level, voice signal power fluctuates widely as
a consequence of the variable volumes in normal human speech patterns. This is certeinly
one feature to consider when trying to differentiate between voice and voice-band data.
Voice-band data calls will show constant average power levels since that is specified by
the ITU in the newer V.34 standards. The power level is maintained in these systems ¢ven
during constant zero or one data transmissions because of the use of a randomizing scram-

bler at the transmitter, and the transmitted signals are carrier based.

Related to the volume issue is the flat attenuation or loss for a connection. This is
usually measured by transmitting a 1004 Hz test-tone over an end-to-end connection. The
received power is compared to the transmitted power level to indicate the end-to-end loss.
According to the 82/83 EOCS [12], the mean customer premises-to-customer premises

1004 Hz loss was measured to be about 16.5 dB.



3.1.2.4 PCM Coding anu Compression

When an analogue telephone sig.nal is digitized, normally p-law or A-law PCM
(Pulse Code Modulation) is used. p-law and A-law refer to specific standard transfer
functions that are used to perform non-linear amplitude compression, usually known as
companding. With these methods, greater digital precision is given to small signal values
than large signal values so as to obtain roughly the same signal-to-noise ratio in the pres-

ence of quantization noise (defined later) at all volumes.

PCM is a method of converting an analogue signal intc a digital stream by period-
ically quantizing the incoming signal and then encoding the quantized values as digital
words. Each digital word is then transmitted through the telephone network serially. A
standard CO in North America uses p-law PCM, with 8 bits per word. This leaves 235
quantization levels in total to be used for both the positive and negative signal values.
(There are 256 possible word values, however only 255 of them encode distinct values

because 10000000, and 00000000, both represent zero.) Table 2 gives the p-law encod-

ing/decoding table, while Table 3 is for A-law [3]. The most significant codeword bit is a

sign bit (O for positive, 1 for negative).

TABLE 2. Encoding/decoding table for mu-law PCM.

Input
Amplitude Segment Code | Quantization | Decimal Code Decoder
Range Step Size S Code Q Value Amplitude
0-1 1 000 0000 0 0
1-3 2 000 0001 1 2
3.5 2 000 0010 2 4
29-31 2 000 1111 15 30
31-35 4 001 0000 16 33
91-95 4 001 1111 31 93
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TABLE 2. Encoding/decoding table for mu-law PCM.

Input -

Amplitude Segment Code | Quantization | Decimal Code Decoder
Range Step Size S Code Q Value Amplitude
95-103 8 010 0000 32 99

215-223 8 010 1111 47 219

223-239 16 011 0000 48 231

463-479 16 011 1111 63 471

479-511 32 100 0000 64 495

959-991 32 100 111] 79 975
991-1055 64 101 0000 80 1023
1951-2015 64 101 1111 95 1983
2015-2143 128 110 0000 96 2079
3935-4063 128 110 1111 111 3999
4063-4319 256 111 0000 112 4191
7903-8159 256 111 1111 127 8031
TABLE 3. Segmented A-law encoding/decoding table.

Input

Amplitude Segment Code | Quantization | Decimal Code Decoder

Range Step Size S Code Q Value Amplitude
0-2 2 0Go 0000 0 1
2-4 2 000 0001 1 3

30-32 2 000 1111 15 31
32-34 2 001 0000 16 33
62-64 2 001 1111 31 63
64-68 4 010 0000 32 66

124-128 4 010 1111 47 126

128-136 8 011 0000 48 132

248-256 8 011 1811 63 252

256-272 16 100 0000 64 264




TABLE 3. Segmented A-law encoding/decoding table.

Input -
Amplitude Segment Code | Quantization | Decimal Code Decoder
Range Step Size S Code Q Value Amplitude
496-512 16 100 1111 79 504
512-544 32 101 0000 80 528
9921024 32 101 1111 95 1008
1024-1088 64 110 0000 926 1056
LA 64 110 1111 111 2016
vog.) 128 111 0000 112 2112
B 3968-4096 128 111 1111 127 4032

A fundamental problem in PCM is quantization noise. When a signal is sampled
and the sample is converted into a digital value, the set of possible values is limited. In the
case of T1 lines, there are only 255 possible quantization levels. The closest quantization
level to the actual sampled signal value is chosen for transmission. The difference between
the resulting digital value and the sampled signal value is called the quantization error.
Quantization noise is the effect of all quantization errors in the signal. When the digital

signal is converted back to an analogue signal, the resulting signal will contain small ran-

dom inaccuracies due to this source of noise.

Companding is a means of reducing the effects of quantization noise. Companding
allocates more quantization levels, with smaller intervals between them, at small signal

levels. The trade-off is that high signal values are allocated fewer intervals, and are thus

subject to larger absolute quantization errors.

Another limitation of PCM systems is the sampling frequency. Nyquist’s theorem

states that to capture all of the information in an input signal up to a certain frequer.cy fp,

49



thén we must bandlimit the signal to f and sample it at a rate of at least 2*f,. Any fre-
quency information above half the saml;ling rate will be aliased, that is. be mixed up irre-
versibly with lower frequency information. To prevent aliasing, filters are normally placed
before quantizing. To get acceptable telephone signals we want a bandwidth of about 3500
Hz. Thus we sample at 8000 samples per second. Eight bits per sample yields an adequate
SNR, and implies a bit rate of 64 kbps per channel. This bandwidth is reserved for cach

direction of a telephone connection through the rest of the telephone system.

With respect to the classification problem, the companding of the incoming data
must either be removed or at least considered when the signal is being studied. Also, the

bandwidth limitations imposed by the quantization frequency must be considered.

3.1.2.5 Attenuation Distortion

Attenuation Distortion (AD) is also known as the frequency response of a channel,
and is measured in terms of frequency-dependent loss relative to the 1004 Hz power level.
The EOCS [12] gives a plot of the measured AD for short, medium, and long connections.
Note that these results are only for tests performed from end-office to end-office. The
results of a previous loop only study are also shown in the EOCS, and combined with the
end-office results to form a customer-premise-to-customer-premise result. The AD plots
for all three connection types are nearly identical, suggesting that the largest factor affect-
ing AD is the frequency response of the codec filters. This is an important fact to consider
whes; designing a classifier that is based upon the spectral properties of a signal. We can
expect nearly all connections through a modern digital network to have the same basic

channel frequency response.
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3.1.2.6 Envelope Delay Distortion

Envelope Delay Distortion (EDD) is frequency-dependent and defined as the dif-
ference between the envelope delay at the present frequency with respect to the envelope
delay of a given reference frequency. The envelope delay is defined as the negative of the
derivative of the phase of the received signal with respect to the reference frequency [12].
The EOCS also contains measurements of EDD over short, medium, and long distance
connections. Again, the EDD is not strongly dependent upon the length of a connection.
EDD is mainly affected by the length of the 2-wire loop that connects the customer pre-
mises to the CO. This is also important to consider when designing a classifier, since most

channels will have roughly the same EDD characteristics within a typical range.

3.1.2.7 Frequency Offset

Frequency offset is a simple phenomenon that has been virtually eliminated from
modern data modem and FAX connections because of the widespread use of highly accu-
rate and stable crystal-stabilized clock generators in these devices. Another source of fre-
quency offset is the networks itself, especially where frequency division multiplexed
(FDM) trunks are used. Since FDM is rarely used for analog network signals, frequency

offsets have been virtually eliminated from the PSTN.

Frequency offset is a linear shift in frequency of a transmitted signal. For example,
if the frequency offset of a channel is +1 Hz, a transmitted 1000 Hz tone would appear to
be a 1001 Hz tone at the receiver. Frequeircy offsets rarely exceed 1 Hz, even though most
modem equipment can tolerate a plus or minus 7 Hz frequency offset. Frequency offsets
of this magnitude are not audible to most people. (Some individuals have the ability to
precisely determine the pitch of a sound. These people are said to have “perfect pitch”.)
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3.1.2.8 Additive Noise

The additive noise in PSTN channels is colored rather than whire. That is, the noise
is non-Gaussian, band limited, and the power spectrum of the noise is shaped. Several fac-
tors contribute to additive noise including crosstalk, power line coupling, companding,
digitization, and so on. Additive noisc is normally measured using a weighting tilter to
model the subjective effects of noise on human hearing. These measurements will be dis-

cussed further in a later section.

3.1.2.9 Other Analogue Impairments

A good reference on the subject of analogue impairments is W.D. Reeve’s book
[63] “Subscriber Loop Signaling and Transmission Handbook.” Other impairments dis-
cussed in this book include crosstalk, second-order intermodulation distortion, third-order
intermodulation distortion, phase jitter, amplitude jitter, phase hits, gain hits, and general
line dropouts. Another good reference on the effects impairments have on data signals is
Bingham’s book [11] “The Theory and Practice of Modem Design.” We do not emphasize
these impairments here since they have a lesser effect upon the ability of our classification

algorithms to perform their function, and these impairments are less common in digital

transmission networks.

3.2 Common Data Modulation Methods for Telephone Channels

Of the muititude of possible dats modulation methods to choose from, only a few
are used to a significant extent on voice-band telephone channels. Older communication
standards utilized simple modulation methods such as AM (Amplitude Modulation), FM

(Frequency Modulation), and FSK (Frequency Shift Keying). However, mainstream data
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and FAX communications no longer use these standards for high-speed connections due to
their limited abilities to utilize the full a{vailable channel bandwidth. Consequently, these
obsolete methods will not be considered in this thesis. (In fact, FSK is still considered in
this thesis as it pertains to the signaling method used by FAX machines.) Today the bulk of
digital communications is performed at speeds of 2400 bps and greater using sophisticated
phase and amplitude modulation methods. The current maximum data rate is 28.8 kbps,
which is very near the theoretical limit of roughly 30 kbps for the capaeity for a telephone
channel [51]. This limit can be determined using Shannon'’s theorem for channel capacity,
an estimate of the signal-to-noise ratio, and the channel bandwidth. Refer to equation (7)
for a sample calculation where the bandwidth W is 3000 Hz, the signai-te-noise ratio P/
NgVW is 30 dB, and the resulting units are bits-per-second. The main ITU-approved meth-
ods are variations of passband PAM (Pulse Amplitude Modulation). PAM is a modulation
method that transforms an input bitstream into a sequence of amplitude- and phase-
encoded complex symbols (according to Lee and Messerchmidtt [S1]). The symbols are
subsequently frequency shifted into the passband by multiplying by a sinusoidal carrier.
C = Wlog(l + 1%W = (3000)log (1 + 103%/10) — 29, 901 (EQT)

A general passband PAM transmitter is shown in Fig. 11. The input to the transmit-
ter is a serial stream of bits which are converted to two-coordinate symbols in the coder.
The set of possible symbols is referred to as an alphabet. Alphabet symbols may contain
both real and imaginary components. A plot of the alphabet on a graph with real and imag-
inary axes is referred to as a constellation map. The next stage in the transmitter passes the

symbol stream, which is still a discrete signal, through a transmit filter. The transmit filter
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is also commonly called a pulse shaper. Its purpose is to generate a continuous analogue

(or high sample rate discreie) signal from the incident stream of discrete symbols.

—_—

Coder
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Bitstream

Symbols

——™ Filter
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2
Complex Transmit
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FIGURE 11. General passband PAM transmitter

The pulse shaping task is normally performed by a raised-cosine filter. The shape

of the filter is defined by the ITU specifications so that the power spectrum of the transmit-

ted signal is appropriate for voice-band transmission. Pulse shaping filters the time series

of symbols to strive for minimum intersymbol interference within the available bandwidth

of the transmission channel. Equation (8) defines the generalized time domain representa-

tion of a raised-cosine filter. The ‘a’ term varies inversely with the roll-off (steepness) of

the filter. The raised-cosine essentially looks like a modified ‘sinc’ filter in the time

domain, however it doesn’t resemble a sinc function in its frequency response. The equa-

tion and diagrams of Fig. 12 illustrate the shape of an ideal raised-cosine pulse shaping fil-

ter in the time (a) and frequency (b) domains. Note that implementations of raised cosine

filters cannot provide the noncausal impulse response of the ideal filter. There is in fact

some variation in how real filters are implemented.
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g,(1) = P T2 (EQ 8)
1—(2a )

2T

(a) (b)
FIGURE 12. Raised-cosine filter (a) impulse and (b) frequency response.

The output from the transmit filter is a complex baseband signal that is ready to be
frequency shifted and transmitted as shown in Fig. 11. This is performed using the multi-

plier and sinusoid (or a pair of orthogonal sinusoids) at the carrier frequency. Finally, the

signal is transmitted through the subscriber loop.

3.2.1 FSK

Frequency Shift Keying (FSK) is an important modulation method that is used for
signaling in FAX communications. FSK is a popular signaling method since the corre-
sponding modulator and demodulator are easy to implement. Also, FSK signals may be

either coherently or incoherently detected (explained later), allowing for even more fiexi-

bility in the design of receivers.

Normally binary frequency-shift keying is used. In this method there are two fre-

quencies that can be transmitted, say f; and f5 = f; + Af. The modulator simply encodes a
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logic zero as a tone at frequency f;, and a logic 1 as a tone at frequency f>. Fig. 13 shows

an example of an FSK modulator [65].

1 0

+ +

cos(2nft) cos(2ref,t)

FIGURE 13. Example of an FSK modulation method using switches.

Another interesting, and popular, method for modulating an FSK signal is shown
in Fig. 14. Here a voltage controlled oscillator (VCO) is used to alter the frequency of the
output signal. The input to the VCO is a bipolar non-return-to-zero (NRZ) signal. In a
bipolar signal logical zeros are encoded as a particular voltage leve!, while logical ones
are encoded as the negative of the voltage level of logical zeros. NRZ signals remain at the
respective voltage level for the duration of a symbol, rather than returning to zero prior to
transmitting the next symbol. This method has gained its popularity since it is easy to

implement in hardware or on a DSP platform.

Bipolar
NII{)Z ——» VCO | ——» FSK
Input Signal

FIGURE 14, Example of an FSK modulation method using a VCO.

When demodulating an FSK signal, either coherent or incoherent methods may be
used. A standard matched filter coherent detector (where the symbol timing is known and
can be exploited) may be used; however, this is not the simplest method. Roden also

points out other technical drawbacks to this method [65]. This leads us to the incoherent
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methods. A simple and practical incoherent detector is shown in Fig. 15. Here the output
of two narrow bandpass filters tuned to}', and f, are sent to envelope detectors and com-
pared. If there is power at frequency f; (f2), then z; (z3) will be the envelope of the f; (f3)

sinusoid. The output of the system is a bipolar NRZ signal, just like the signal that was

input to the second modulator model.

BPF | Envelope Z)

@ f; Detector
Received y Bipolar
Signal ipo

igna —
+ T
BPF Envelope
@ f, Detector z

FIGURE 15. Example of an FSK incoherent detector using tuned BPFs.

3.2.2 DPSK

Differential Phase Shift Keying (DPSK) is primarily used for low to medium speed
(4800 bps and less) data and FAX transmissions. DPSK is a specific variation of passband
PAM that was popular prior to the adoption of QAM protocols such as V.22bis. A pessible
constellation for DPSK is shown in Fig. 16. The constellation plot of Fig. 16 shows four
constellation points, equally distributed around a circle and separated by /2 phase differ-
ences. The amplitudes of each constellation point vector are identical, hence there is no
amplitude modulation being performed. The only difference between points is the phase

angle of the signal relative to an implied carrier.

DPSK modulation is based on the constellation points being separated by a phase
difference, where coding is performed on the premise that the phase difference from one

symbol to the next indicates the information being carried. With a four-point constellation
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2 bits of data are carried per symbol. The data transfer rate is thus twice the symbol rate.
Data transfer is measured in units of bit; per second (bps). The symbotl rate is also known
as the baud rate. The differential characteristic of DPSK is an attractive feature since the
demodulator does not need to know the absolute phase position of the transmitted signal,
only the relative phase changes. Also, the magnitude of the signal is not relevant to the
information being carried. Of course magnitude is an important design consideration for
optimal performance without distortion since a signal that is transmitted with too much

power will overload the telephone: loop receiver.

The constellation of a DPSK signal may have more or fewer than the four points
shown in Fig. 16. One can verify that the maximum bit rate of a DPSK signal is equal tc

LlogN IF_, where F is the symbol rate of an N-point constellation and the logarithm has

a base of two.

Im

FIGURE 16. Possible four-point DPSK constellation.
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3.2.3 QAM

An extension of DPSK is Quad;-ature Amplitude Modulation (QAM). QAM is the
most popular modulation method in use for standard FAX and data communications.
Rather than only modulating the phase angle of the signal, as in DPSK, this method also
allows the signal amplitude to be modulated at the same time. The resulting constellations
can be much more complex, containing up to thousands of points. A simple case of QAM
is the four-point constellation, which is actually the same constellation as DPSK; however,
the symbol mapping is arbitrary for QAM, whereas for DPSK the next state symbols are

based upon the current symbol plus or minus some phase offset.

To perform QAM modulation, two data signals are modulated using orthogonal
carriers (sine and cosine signals). Then, the two modulated signals are added together and
shifted into the passband. Since the two component signals are 90 degrees out of phase,
the resulting composite signal can be thought of as being two-dimensional. In a constella-
tion plot illustrating this characteristic, the real axis corresponds to the modulated cosine
component, and the imaginary axis corresponds to the modulated sine wave component.
The imaginary signal component is often called the “quadrature’ component. Fig. 17

illustrates a general QAM transmission system.
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FIGURE 17. General QAM transmitter.

The main variations between the different QAM modulation methods lie in the
structure of their signal constellations. To improve the speed of transmission in a QAM
system, there are two options: The first is to increase the symbol rate. By increasing the
symbol rate, the throughput (bit rate) of the modulator is increased in direct proportion.
However, there are hard limits to the symbol rate that cannot be exceeded duce to the band-
limited characteristics of the telephone channel. So another method must be used for
achieving greater speeds. By increasing the number of points in the constellation, the
amount of information encoded by each symbol is increased. This also increases the bit
rate without increasing the symbol rate. However, there are practical limits to the size of
the constellation due to the noise inherent in a telephone line and the growing cost of the
required transmitters and receivers. If too many symbols are used, the channel distortions
will cause intersymbol interference that renders the signal undetectable. In fact, the con-
stellations sizes that are used in many current modems have a probability of symbol error
that is near one. This may seem hard to believe since it seems impossible to detect the

transmitted symbols without error. It is only with the addition of coding techniques and
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sophisticated line equalization methods that the probability of symbol error can be
reduced to a tolerable level. To illustrate this point we refer to a figure and equations in
[62] on page 656. The equation for the tight upper bound of the probability of symbol
error for an optimally detected QAM signal is given by equation (9), where M is the num-
ber of constellation points, E, /N, is the SNR/bit, and Q is known as the Q function. (The
Q function is equal to one minus the cumulative distribution function of a Gaussian ran-
dom variable. Since a primary noise source in communications is thermal noise, which has
a Gaussian distribution, noise is often modelled as Gaussian.) Consider a case where
M=128, and the SNR is 30 dB. This would correspond to a typical V.32bis modem signal.

For this example, we compute P, and find it to be 0.91. With this high of a probability of

symbol error, the signal is not useful unless other methods are utilized to reduce this prob-

{ 3E_, 2
PMSI—[I—ZQ( ——-————(M__‘I“)N ]] (EQ9)

Constellaticn design is a major concern when dealing with QAM systems. An

ability.

optimal design makes use of the full bandwidth available and is not overly prone to errors.

In fact, there are ways of implementing QAM that have built-in error detection and possi-

bly error correction.

3.2.4 Trellis-Coded QAM

Trellis coding is a coding method that has been widely applied to QAM. Following
standard terminology, a trellis-coded QAM system will be referred to as TC-QAM. In TC-
QAM the coder is implemented as a finite ;tate machine (FSM) [11, 51, 75, 74}. The mod-
ified coder implements signai-space coding. This means that symbol decoding does u:nt
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just depend upon where the particular symbol lies in the constellation space, but it is now
dependent upon the prior sequence of S);mbols- This dependence is what allows the coding
gain in the system. Coding gain is an improvement in effective SNR (Signal to Nois
Ratio) over the original signal; in this case the gain comes in the form of increased erros
immunity, or forward-acting error minimization [11]. The coding gain for a simple four-

state TCM could be 3 dB. More complex TCM schemes can achieve 6 dB of coding gain,

or more [74].

The advantage of trellis coding comes at a cost. To implement the coding, extra
points must be added to the constellation that do not directly increase the bit-rate. This
results in either a smaller minimum distance between constellation points, or increased
transmitted power. These two disadvantages, however, are usually outweighed by the
increased reliability of a multidimensional constellation space. Ungerboeck showed that
implementing trellis coding can increase the SNR without compromising signal band-

width at all [74]. The cost comes in the form of increased complexity of the transmitter

encoder and tae receiver detector.

Trellis coding utilizes the past and present values of M inputs to generate M,
present outputs, where M;>M. The outputs are then mapped into a signal space containing
2M! gistinct points. It has been shown [74] that with M;=M+1, a 6 dB coding gain can be

achieved. This is the type of trellis coding that is used in several modem standards such as
V.32bis and V.32. The receiver of a trellis-coded signal must implement a soft-decision
(decisions are based on past, present, and future information), maximum-likelihood

sequence decoder for decoding the noisy received signal.
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Consider the diagrams shown in Fig. 18. The codes shown here were the first trel-
lis codes discovered by Ungerboeck in 1975 [74]. Figures 18 (a) and (b) are for a 4-PSK
constellation with no coding. The trellis in this case has only one state, and is shown in
Fig. 18 (b). Every connected path that can be taken through the diagram represents an
allowed signal sequence. For the uncoded case, all sequences are allowed. Figures 18 (¢)
and (d) show an 8-PSK constellation and its corresponding four-state trellis. Note that in
both systems, four transitions are permitted from every state, allowing for 2 bits to be
encoded per symbol. The subsets (0,4), (1,5), (2,6), and (3,7) have maximum distarices
between them. Consider the top-left trellis state. From this state there are four possible
paths to take, each corresponding to one of the possible two bit patterns that is to be sent.

Transitions are performed for nairs of two parallel transitions. The first transition is per-
formed for the first biz \x’n) of “he twn bit sequence to be encoded, and the second transi-

tion corresponds to the second bit of the sequence. If the trellis was formed such that all
possible trellis states were valid from every current state, pairs of transitions would not be
needed. The trellis shown in Fig. 18 (d) was found heuristically, and performs bette: than

its “non-parallel” counterpart {74].
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(c) Redundant 8-PSK Consteilation

(d) Four-state trellis for 8-PSK

FIGURE 18. Trellis codes for non-redundant 4-PSK and redundant §-PSK.
Consider a sequence of bits to transmit as an example: x! - xz,, =(0,1), (1,0), (0,0).
The original state is s/ no 5 n = (0,0) which is in the top left corner of the wrellis diagram.
The order of the symbols would be (0, 4, 6, 1). The method for traversing the trellis is to
use x! , to choose the pair of next-state transitions, and x° n to select the particular transition
from the pair. The net effect of the trellis code is to limit the possible next-state transitions

that are allowed to be transmitted. Since the receiver is aware of the code, it can use this

information to improve its detection performance.

An important point regarding trellis coding is that the shapc of the signal spectrum

may be altered. This should be considered when studying trellis-coded signals, especially
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when simulating them. However in conventional modems, the constraints itnposed on the
standard trellis cause the spectrum of the signal that is input into the pulse shaping filters

to be flat. In other words, the trellis coder is desigrad so that it does not alter the frequency
spectrum of the signal it codes. Thus in standard modems the shape of the modulated sig-

nal is dictated by the shape of the filters, and is not affected by the trellis coding.

Trellis coding does not affect the modulator of a transmitter, only the encoder and
decoder portions of a modem. Partly for this reason, the use of trellis coding does not
affect the signal classification problem provided that the discriminant variables are based
only on spectral characteristics of the signal under test. Trellis coding does imply that con-

stellation sizes are large for high bit-rates, which is of some importance.

3.3 Data Communication Standards and Recommeandations

The ITU has successfully standardized virtually all data communications via
voice-band telephone chanirels. A few older de facto standards still are in use, such as the
Hayes AT command set and the older Bell 103 and Bell 212A modems. Table 4 summa-
rizes the voice-band daia communications standards that we judged to be relevant to this
thesis [31, 32, 33, 36, 37, 39]. Relevance is based on the extent of use on standard tele-
phone lines as well as leased lines by data modems. (The standards used by modern
modems were determined by looking at the manufacturers’ specifications for several dif-

ferent brands of commercial modems, and Rockwell modem chip documentation.) Infor-
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mation for the ITU standards and recommendations is taken from the actual [T

specification documents (58, 31, 32, 33, 36, 37. 39].

TABLE 4. Data modem standards and recommendations.

Max Max Carrier Max
Duplex Bit Rate | Baud Rate | Frequency | Modulation  Constellation
Standard | (full, half) (bps) (Hz) (Hz) Method Size
Bell 103 full 300 300 1270/1070 FSK N/A
2225/2025
Bell 212A full 1200 600 1200/2400 DPSK 3 N
V.21 full 300 300 1200/2400 FSK T N/A
V.22 full 1200/600 600 120072400 DPSK 4
V.22bis full 2400 600 1200/2400 QAM 16
V.32 full 9600 2400 1800 TC-QAM 12
V.32bis full 14,400 2400 1800 TC-QAM 128
V.34 full 28,800 3429 1600-1959 | TC-QAM 960

3.3.1 Bell 103

Bell 103 is a 300 bps de facto standard that is used in Canada and the U.S. The

modulation method is FSK (Frequency Shift Keying) with one bit being transmitted per

baud. Two frequencies are used for each transmit direction, one frequency for logical high
and the other for logical low. Thus four different frequencies are involved aliogether. Bell
103 and Bell 202 were the earliest com:nercially important modems available, and were
released by AT&T in the late 1950s [58]. The Bell 103 protocol is now obsolete, but is still
supported by modern 1ixdems for compatibility with older equipment. This standard is

not used outside North America.

3.3.2 Bell 212A
Bell 212A is a 1200 bps de facto standard that is used in Canada and the U.S. Dur-
ing the 1960s modems were developed that used four-phase modulation, including the

Bell 212A that was part of a family of DPSK (Differential Phase Shift Keying) modems
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[58]. Transmission is at a baud rate of 600 Hz, with split-band full-duplex transmission. A
split-band modem is one that uses sepax:ate carrier frequencies (shown in table 4) for the
caller and call answerer to achieve full-duplex operation. The bands are separated hv a
spectral null (a guard band with no signal energy). The DPSK constellation contains 4
points; allowing 2 bits to be transmitted per baud. This protocol is rarely used anymore

since the lowest grade modems that can now be purchased are 2400 bps.

3.33 v.21

V.21 is an international standard that was adcpted by the CCITT in 1964, with the
last amendment being made in 1984 [31). The CCITT developed several international
modem standards before changing its name to ITU-T in 1993. The V.21 standard is similar
to Bell 103 jasofar aw it - 2s a 300 bps data rate and FSK modulation. However, since the
signaling *ivevencies «sed are slightly different, the standards are incompatibie. This stan-

dard is not w3 k3 North America and is now essentially obsolete.

3.34 V.22

The ITU’s response to Bell 212A was the V.22 standard, but again the two stan-
dards are incompatible. It was not ratified until 1980, and was last amended in 1984 [32].
The standard uses a 1200 bps data rate and 4 point DPSK modulation. V.22 is used outside

of Morth America, but is now largely obsolete.

3.3.5 V.22bis
V.22bis is the revised version of the V.22 standard. (The “bis” suffix in V.22bis
refers to the Latin word bis that means “twice” or *“again”. In French the term bis is com-

monly used to indicate a second appearance or revision.) V.22bis supports 2400 bps com-
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munications and was the first modem standard to use true QAM. The standard was ratitied
by the I'TU in 1984 [33]. The baud rate is 600 Hz. with four bits being transmitted per
baud. In order to reach this data rate, a 16-point QAM constellation is used. All of the
standards mentioned so far are split-band full-duplex, implying that they have a separate
channel for each direction of communication. The remaining standards discussed below
use a single channel for both send and receive, with echo cancellation used to obtain full
duplex operation. Fig. 19 shows the primary 16-point V.22bis constellation.

Im

FIGURE 19. V.22bis constellation

3.3.6 V.32

V.32 is a widely used full-duplex, TC-QAM standard that supports 9600 bps com-
munication. This recommendation was not officially approved until mid-1993 [{36]; how-
ever, it was already in use hefore becoming fully ratified. The baud rate is 2400 symbols
per second (i.e., greater than the carrier frequency), with 4 data bits are transmitted per
baud. However, since trellis coding is used, an extra bit is transmitted for each baud.
Hence, the constellation has 32 points. Fig. 20(a) shows the primary 32-point V.32 con-
stellation. An additional 16-point constellation, shown in Fi g. 20(b), is aisu avanable for a

non-redundant coding mode. This constellation is provided for modems that dn not sup-

port trellis coding.
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Since V.32 requires full-duplex operation to use the same carrier frequency for
both signal directions, echo cancellatiox; must be performed at each end of the call to elim-
inate (as much as possible) the sender’s own signal from the demodulation portion of the
modem. This is costly, but the benefit is full-duplex operation, meaning that both direc-
tions of the connection can be active at the same time, without the bandwidth overhead of
splitband operation. Also, unlike the predecessors to this standard, it more fully uses avail-
able channel bandwidth. Note that some references indicate that the constellation for V.32
is a diamond shape. This is a different representation of the same constellation, with a 45

degree phase rotation. This difference can also be noted for other constellations.
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(a) 32-point constellation (b) 16-point constellation
for use with Trellis coding for non-redundant coding

FIGURE 20. V.32 signal constellations, 9600 bps.

The reason for the 45-degree phase rotation is explained by Bingham [11]. Since
most modems are required to transmit several different constellations as a result of sup-
porting multiple modulation standards, it is desirable that the M points of the constella-
tions all lic on the same integer grid. Also, it is desirable that each constellation have

approximately the same average signal energy. The solution to this requirement is to rotate
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constellations with M odd by 45 degrees. An M odd constellation is one where the total
number of constellation points is an odci power of two. Depending upon your point of
view, the 45 degree constellation rotation may or may not be important. Since both con-
stellation representations are geometrically identical, with their inter-symbol distances
being of identical proportions, the spectral content of signals using cither constellation
representation will be identical. However, if demodulation is to be performed, the rotation

becomes an important consideration for correct signal detection.

Fall-back options within the V.32 standard define 48G:Y bps and 2400 bps commu-
nications standards. These require smaller constellations which arc subsets of the original
32-point constellation. A 16-point QAM constellation identical to that of V.22bis with no
trellis coding is used for 9600 bps communications. For 4800 bps a standard 4-point con-
stellation is used. The fall-back options are selected by two communicating modems if a

satisfactory 9600 bps connection cannot be maintained.

3.3.7 V.32bis

V.32bis is the mainstream modem protocol in use today, although it is being rap-
idly replaced by V.34. The bit rate in V.32bis is 14,400 bps, using trellis-coded QAM,
2400 baud symbol} rate, and 6 data bits per 1,:wud [{37]. Full-duplex operation is defined
using the same 1800 Hz carrier in both directions. Since trellis coding is used, an extra bit
is transmitted per baud, requiring the constellation to have 128 points. The primary
V.32bis constellation is shown in Fig. 21. V.32bis uses either a reduced constellation or the
V.32 standard as a fall-back mode if the line quality is poor. This standard is very popular
due to availability of inexpensive VLSI implementations, relati-ely fast bit rate, error
resistance, and reliability.
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FIGURE 21. V.32bis constellation, 14,400 bps

V.32bis was approved as a recommendation by the ITU in 1991. Included as
options and extensions are the following synchronous signaling rates: 12,000 bps :rellis-
coded QAM; 9600 bps trellis-coded QAM; 7200 bps trellis-coded QAM; 4800 bps unen-
coded QAM. The 12,000 bps constellation is shown in Fig. 22. The 9600 bps constellation
is identical to that of the V.32 32-point constellation. The 7200 bps constellation is the
same as that of V.22bis. Finally, the 4300 bps constellation is a simple 4-point QAM con-

stellation that may be considered to be DPSK modulation since the symbol vector ampli-

tudes are constant.
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FIGURE 22. V.32bis constellation, 12,000 bps

3.3.8 V.34

The V.34 recommendation has recently been approved by the ITU [39] and is now
gaining widespread popularity. This standard allows data communications at rates of up to
28.8 kbps, providing the line conditions are favorable. This standard will likely mark the
end of analogue modem development for the telephone network since the theoretical
information capacity limits have been reached. (An extension for V.34 is being developed
that will allow 2s of up to 33.6 kbps which requires at least 3400 Hz of bandwidth
and an SNR of at least 30 dB. However, it is extremely rare to ever find a public telephone
line that will allow this data rate. Some North American users of 33.6 kbps modems have
reported successful 33.6 kbps connections in two of every 100 connections. This data is
taken from a USENET newsgroup called “comp.sys.modems™.) The next step beyond
V.34 is likely to be extending purely digital data communications all the way to the sub-
scriber set. Technologies such as N-ISDN will dictate the future means of data communi-

cations over purely digital networks from handset (station) to handset (station).
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A de facto 28.8 kbps protocol dubbed V.fast is also in use, however it is being
phased out due to the ratification of 'v'.3:4. V.fast is not compatible with V.34, however it is
in widespread use due 1o its early arrival to market. Several features are shared by V.fast
and V.34. V.fast provides for a maximum bit-rate of 28,800 bps, has a variable symbol rate

up to a maximum of 3429 Hz, and uses a 1024-point QAM constellation with trellis cod-

ing.

V.34 is an extremely complex standard and we will only give a short description
here. We will emphasize aspects of V.34 that will affect the way we classify these types of

signals. The following lists the essential characteristics of V.34 [39]:

« full-duplex or half-duplex modes
- echo cancellation techniques required for channel separation

« synchronous QAM with mandatory selectable symbol rates of 24CC, 3000, 3200
symbols/s and optional rates of 2743, 2800, and 3429 symbols/s

« selectable carrier frequency ranging from 1600 to 1959 Hz

» data rates ranging from 2400 bps to 28.8 kbps, in increments of 2400 bps
- trellis coding at all data rates

- optional auxiliary 200 bps signalling channel

« adaptive techniques to allow full use of available bandwidth including pre-
emphasis, precoding, line probing, and ccasiellaiion shaping *

« the V.32bis standard is a supported subset oi V.34

« circular superconstellations with up to 960 points also supported

* Pre-emphasis a linear equalization method where the transmitted signal spectrum
is shaped to compensate for channel amplitude distortion. Precoding is a non-linear equal-
ization method performed at the transmitter by modifying the coding function in order to
compensate amplitude distortion in the channel. Line probing is a method for transmitting
periodic signals through a channel te determine the channel characteristics. Constellation
shaping is a method for improving noise immunity in a QAM signal by introducing a non-
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uniform two-dimensional probability distribution to the transmitter constellation points.

Refer to [39] for more detail on these methods.

The features that are of the most importance to the classification problem are the

ones that shape the frequency response of the signal being transmitted. In most modes of

operation, the V.34 signal will occupy virtually all of the available channel bandwidth. In

addition, the spectrum of the transmitted signal v-ill be predistorted if the channel

response is not flat at all frequencies in the ne: wa! chunnel bandwidth.

3.4 FAX Communicaticn Standar:i~ «»nd Recommendations

Table 5 shows the standards that :ue used by Grouvx 3 facsimile systems. These

standards are specified by the ITU-T 1.4 recommendation {40] for Group 3 facsimile

apparatus. Another important ITU-T recommendation is T.30 [41], which specifics the

procedures for document transmission. The list of standards will likely include a 28,800

bps standard similar to V.34 in the near future. Note that all of the facsimile transmission

protocols are half-duplex only. FAX machines by nature are one-way transmission devices

and hence to not require full-duplex operation for the main portion of a connection.

TABLE 5. FAX transmission standards and recommendations

Carrier
Duplex Bit Rate Baud Rate | Frequency Modulation | Constellation
Standard | (full, half) |(bps) (Hz) (Hz) Method Size
V.17 half 14,400 2400 1800 TC-QAM 128
V.27ter half 4800/2400 |1600/1200 | 1800 DPSK 16/4
V.29 half 9600/7200 | 2400 1700 QAM 16/8 )
V.2 half 28,800 ? ? ? ?

It is important to note that these are only the data modulation standards for facsim-

ile transmission. Separate standards are used to define signalling. In standard T.30 [4] ] the
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signaling is specitied to be V.21 channel 2. 1n other words, the stgnaling is to be binary-
coded FSK at 300 bps. This signaling standard is used 1o transmit critical information

regarding the type of document transfer tirat is to take place.

3.4.1 V.17

The V.17 recommendation was adopted by the I'TU in 1991 [38] at the same time
as V.32bis. This standard is effectively a half-duplex version of V.32bis. The same constel
lations, carrier frequency, and symbol rate as thosc of V.32bis are used. This muakes it very
difficult to distinguish between a V.17 signal and either 1 V.32 6r V.32bis signal. The only
way these two types of signals can be separated is by observing the handshaking
sequences that precede and follow the data transfer portion of a call, or by identitying
whether a call is full or half-duplex. At present it does not appear that V.17 is in wide-

spread use although this situation: should change in the coming years.

3.4.2 V.27ter

In 1976 the CCITT approved recommendation V.27ter [34]; the most recent
amendment was made in 1984. The modulation method used for V.27ter is DPSK with 16-
or 4-point constellations. The constellations are simply 4 or 16 points distributed on a cir-
cle, where the smaller 4-point constellation is used for a fall-back mode on lossy or noisy
lines. This transmission protocol was the first widely used Group 3 facsimile transm < sion
protocol and, consequently, there is a large number of FAX machines that use it. The 16-

point constellation is needed for transmitting 4 bits per baud to produce in the 4800 bps

data rate.



343 V.29

In 1976 recommendation V.29 [35] was also approved; the most recent amendment
to V.29 was made in 1984. The V.29 protocol calls for 9600 bps communication using the
16-point QAM constellation is shown in Fig. 23. However, as can be seen in Fig. 23, the
constellation is not conventional orthogonal-coordinate QAM. It may be more accurately
called PSK with AM. A fall-back mode of 7200 bps is provided, using the 8-point constel-
lation shown in Fig. 24. A final fall-back mode of 4800 bps uses a 4-point constellation

(not shown).

Another interesting point with this standard is the use of a 1700 Hz carrier fre-
quency. This carrier is unusual, and can be exploited to distinguish V.29 transmissions

from transmission using the usual 1800 Hz carrier found in most other high-speed modu-

lation protocols.

T Im{}
[ ] [ [
[ [ J
——o— M@Re{}
[ ] [ J
@ [ ]

FIGURE 23. V.29 constellation, 16 points, 9600 bps.
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FIGURE 24. V.29 constellation, 8 points, 7200 bps

3.5 Discriminant Analysis

3.5.1 What is Discriminant Analysis?

Lachenbruch writes that discriminant analysis is ““the basic problem... [of assign.
ing] an observation x of unknown origin to one of two (or more) distinct groups on the
basis of the value of the observation” [48]. The observation x can also be called a feature
or discriminant variable. For example, if we are observing a time-varying voltage signal
v(t), then the observation of v(t’ ) at a fixed time ¢’ is a feature. If the signal was binary and
v(t) could assume one of two possible levels {+5 V, -5 V } corresponding to logical one or
zero, then we would have one feature variable v and two groups {logical one, logical
zero }. These groups may also be called classes. In this example, simple voltage measure-

ment and comparison of the feature variable with a mid-point threshold could determine

the class membership of the observation.

In the example above it is easy to see how observations of a signal could be easily

classified on the basis of a single discriminant variable in the best case. Very often, how-
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ever, we cannot utilize such a simple rule for classification or allocation of an observation
to a class. For example, class members};ip may not be reliably given by the value of any
single available variable. Thus a set of feature variables could form distributions that can
either be expressible analytically or only available as empirical data. An additional com-
plication arises when the available feature variables are not sufficient for co:vect classifi-
cation. Consider the scatter plcts in Fig. 25. Figure 25 (a) represents a case where two
feature variables are required for accurate classification of two classes (denoted by ‘+’ and

‘0’), whereas in Fig. 25 (b) only one feature variable is needed for classification.
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FIGURE 25. Scatter plots of a two discriminant variables.
For a brief overview of discriminant analysis, refer to P.A. Lachenbruch’s book
[48] by the same title. For an in-depth and modern treatment of the subject, refer to G.J.

McLachlan’s book [54] “Discriminant Analysis and Statistical Pattern Recognition.”

3.5.2 Discriminant Variables and Selection
When performing discriminant analysis, there are often many features that could

be used as discriminant variabies; however, including all possible features is usually
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impractical or infeasible. The task of sclecting a best subset of feature variables and esti-
mating their "‘potency” as discriminams. is the subject of M. Ben-Bassat's paper [4]. Other
discussions of the topic can be found in many discriminant analysis reference books
including [48] and [54]. The «opic of feature selection and analysis is relatively mature,
hence there are many software tools for rapidly implementing the most popular algo-

rithms. For this reason we only give a brief discussion of the ficld here.

The most basic method of feature sel=ction is to grade the effectiveness of each
feature according to its expected probability of misclassification or probability of error. It
the cost of misclassification is equal and nonzero for all classes, while the cost of correct
classification is zero, then the risk for each feature is equivalent to its probability of error.
So, if we only want to minimize the overall error rate of a classificr, then it makes sense te
use the probability of error as our criteria for feature selection. Why then has so much
research been done on finding alternative methods for feature selection? Well, Ben-Bassat

[4] gives four reasons for not using the probability of error (P,) rule:

1. Features that are very close in performance may not be differentiated effectively
by the P, rule.

2. The P, rule allows selection of individual features based in their individual
expected performances, however this does not guarantee good subset sclection.
3. When performing sequential classification, where each feature is consulted on

its own, the P, rule is not sufficient. This is because the criterion for feature

selection is often to achieve a certain probability of error with a minimal num-
ber of features. What Ben-Bassat calls “myopic” procedures are usually used
which do not lend themselves well to the P, rule.

4. The computational complexity of computing P, is too large in many cases
where there is a large number of classes, variables, and cases.
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Unfortunately, there is no optimal or ideal alternative to the P, rule [4]. The rule

that is chosen is based typically on criteria that the classification system designer deems to

be important.

We now mention a few methods for evaluating features. There are three general
types of measures: information measures, distance measures, and dependence measures.
Interestingly, most of the measures studied by [4] were shown to yield very similar feature
variable rankings other than in exceptional circumstances. Thus one can reasonably con-
clude that the computational complexity of the evaluation rule should be a major factor in

sclecting feature evaluation methods {as well as the availability of software to perform the

analysis).

3.5.2.1 Information Measures for Feature Evaluation

By measuring the amount of information gained by using a given feature, we have
an indicator of how valuable that feature is to a classifier. For example, Shannon’s entropy
could be used to determine how much information is contained in a feature variable. Note
that this is not the same as the entropy of the signa! Leing monitored. Uncertainty is
another name for information. In other words, the more information a feature yields, the
higher its uncertainty. This type of measure leads to a rule that states that feature X is to be
preferred over feature Y if the uncertainty function concerning the true class of X is less
than that of Y. Information measures include Shannon, Quadratic, Daroczy, f-entropy, f
strictly concave, and Renyi [4]. Renyi’s measure is actually a generalization of all entropy

measures, and can be tuned to the particular application.
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3.5.2.2 Distance Measures for Feature Evaluation

Distance measures are used to determine how well the class distributions are sepa-

rated by a given feature. These measures lead to rules that state that feature X is preferred

over feature Y if the class probability distributions are “farther apart” for feawre X than Y.

A simple example is to use the differences in mean values of the distributions as a measure

of group separation. This is an oversimplification, but it illustrates the idea behind distance

measures. Distance measures include Bhattacharyya, Matusita, Kullback-L.iebler, Kol-

mogorov, and Lissack-Fu [4].

Five distance measures are used by SPSS for feature evaluation |7 ). These

include Wilk’s lambda (A), unexplained variance (R), Mahalanobis distance (1)2,,;,). small-

est F ratio (F,;), and Rao’s V (V). The equations forming the basis of cach of these meth-

ods are given by (EQ 10, 11, 12, 13, 14). Note that the following notations uare used:

-1
°q

ijk

number of groups
number of feature vari~bles used for analysis

the value of feature variable i, casc k, in group j
the mean value of feature variable i in group j

the mean value vector for all variables in group j
the sum of case weights in group j (case weights are all equal)
the total sum of weights

within-groups sums of squares (an element of the inverse within-
groups covariance matrix

crossproduct matiix of the within-groups sums of squares
total sums of squares
crossproduct matrix of the total sums of squares

pooled within-groups covariance matrix
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L_

(EQ 10)
Tnl
D,, = -(n-g) 2 Z Wiy (Rig—=Xip) (Rja—Xpp) (EQ 11)
(i=1)(=1)
= (Xa_xl)) C“l(xa—xb)
(n—-g—g+1)nn, ,
= EQ 12
“ " g (n=q) (n,-ny) Q1
s—l
R = (EQ 13)
(a-l)(b-a+l)(4+D )
Vet Y S wal- Q14

(i=1) (I=1)
3.5.2.3 Dcpendence Measures for Feature Evaluation
Dependence measures yield feature evaluation rules that are based on the depen-
dence between the random variable representing the true class, and the feature variable.
Thus, if the dependence is high, the feature is deemed to be more valuable. An example of
a dependence measure is the correlation coefficient of two random variables. The more

highly correlated are the variables, the higher is their dependence [4].

3.5.3 Discrimiinant Functions
R.H. Shumway's paper [69] “Discriminant Analysis for Time Series” is considered
by many to be the benchmark study of linear and quadratic discriminant functions. It was

used as the primary reference to this section.

Suppose we have a discrete time observation vector {x(t), t = 0, 1,..., 7-1}, that

consists of T observations and represents either a time series discriminant variable, or an
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array of discriminant variables. Now suppose that there are ¢ possible classes that an
observation may belong to, denoted by E;. E5..... £, In other words, a 7-dimensional
space is partitioned into q disjoint regions E;. E;..... E,. The mathematical rule used to
assign or allocate an observation x to population i is called the discriminant funcrion, and

it is formed by one or more discriminant variables.

The true prior probability that x belongs to class i will be denoted by m. If x has
probability density function p;(x) when x belongs to class i, then the probability (j 1 §) of
misclassifying an observation from class { into class j is given by equation (15), where ¢
does not equal j. Consider an cxample where we wish to determine the probability of mis-
classifying an observatior irOm class 1 into class 2 as shown in i’ig. 26, where v is one-
dimensional. This mizciasxification probability will "= e area occupied by the tail of

p1(x) inregion E,, as indicated by equation (16).

P (jli) = J.Pi(x)dx (EQ 15)
EI
P(2{1) = J._nn. (x)dx = IP, (x)dx (1Q 16)
3, :

V]

The overall probability of error, P,, considering the prior probabilitics for membership in

each class i, is given by equation (17).

q
P, = w3 Pl (EQ 17)

i=1 J#i
If our cost function for misclassification is equal to the probability of error, then the opti-

mal method for minimizing the cost is Bayes’ Rule. In this rule, x is allocated to class [ if
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equation (18) holds for all j not equal to /. If this relation is not true, the resulting classifi-

cation is not optimal.

p(x) ™
> —_—
P; (x) =,

(EQ 18)

Bayes’ Rule follows from Bayes’ Theorem, which gives the equation for the a pos-
terior probability of an observation x being from class i given the a priori probabilities of
group membership, and the probability distribution of x for the various classes. If the a
priori probabilities are not known, they can be assumed to be equal for each group at the
expense of losing the optimality properties of the rule. The a priori probabilities can also
be used to weight a cost function for misclassification of each class. Bayes’ Rule is an

implementation of a linear discriminant function, which will be discussed in the next sec-

tion.

The sketch in Fig. 26 represents the probability density functions of one discrimi-
nant variable that is used to separate two groups. Since the groups have overlapping prob-
ability densities, no classifier based on mean differences will be able to perfectly classify
all observations into their correct class. By using Bayes’ Theorem we can determine the
probability that an observation belongs to either of the two classes. The highest group
membership probability is thus used to allocate the observation into a class. In Fig. 26 two

sample observation values for x are shown, and indicated by x; and x,. If the correct group
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membership of these two observations are group one and group two respectively, by using

Bayes' Rule we will correctly classify .x;, but not v,

1‘ group 1 (p;(x)) group 2 (1))
/
/
[
p(x) s
e \
p .
L~ . \
N
_,-Z—’ - \__%___m__w%_»_‘_..,_.\.__,ah..
SUUE NS ’ “-
Xxp = possible dectsion boundary
minus >< e PIUS
infinity E, K, mfinity

FIGURE 26. Probability densities for two groups and one discriminant variable.

3.5.3.1 Linear Discriminant Functions

To use a linear discriminant function optimally, we must assume (1) that x has
unequal mean vectors for each class, (2) that the covariance matrices are equal, and (3)
that x is normally distributed. A linear discriminant function is simply a lincar combina-
tion of the independent discriminant variables. Critical to finding a good linear discrimi-
nant function is choosing the best possible coefficients of the linear equation. The mecan
vector of x is defined by equation (20), and the T x T covariance matrix R; is given by
equation (21), where x is the multivariate normal vector in equation (19). The covariance
matrix R; contains elements rj(t-u) which each correspond to the covariance between x(f)
and x(u) for class j. In this thesis all discriminant variables are single valued, so x(¢) is one

variable, and x(u) is another. In equation (22) we show the covariance equation for rj(t-u),

where E is the expectation operator. Note that the prime mark in equation (20) indicates
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the transpose operation. If 7'is equal to one, then x is a single value, p; is the mean of x for

class j, and R; is the variance of x for class J.

X = (x(0),x(1),...,x(T-1)) (EQ 19)
o= (i (0), mi (1), oy (T 1)) (EQ 20)
Rj = {rj(l——u),t,u=0,1,...,T—1} (EQ 21)

ritt—u) = Cov(x(),x(u)) = EL(x (1) ~p; (7)) (x () = 1; ()] (EQ22)
Note that in this discussion we allow x to be a vector. This convention permits x to
represent a single time series variable, or a series of separate discriminant variables. To

consider a set of time-series discriminant variables we require additional mathematics.

From these equations, the linear discriminant function for the two-class case (g =
2) is defined in equation (23). Note that the covariance matrix R is not subscripted since

we assume that R;=R,. Here the rule is to accept the hypothesis 1 (i.e. the observation

belongs to class 1) if equation (23) exceeds a threshold value K. The threshold value X is

selected to yield the desired type I and type II errors, which are P(112) and P(2I1) respec-

tively.

d (%) = (u,—py) R 'x- %;LIR“ W+ %u'zR“pz (EQ23)
The linear discriminant function shown in equation (23) appears to be very com-
plex to compute. However, the function can simply be interpreted as a sum of discriminant
variables multiplied by coefficients, added to a constant value. Since x is a vector, it may
be used to represent a set of discriminant variables. The only complex part of the function

is the initial computation of the coefficients and constant value. Once these values are



determined, computing d; (x) for a particular observation vector is straightforward. n
order to calculate the coefficients the discriminant variable mean values and covariance

matrices must be known for each class.

To evaluate the value of a lincar discriminant function given an observation vector
of discriminant variables, a multiplication is performed for each variable, and an addition
is performed for all variables plus a constant, Therefore, the number of operations (where
an addition or a multiplication is considered one operation) is equal to (T+(1-/)+1) = 27.
To calculate a linear discriminant function, twice as many operations are required as there

are discriminant variables.

When we have more than 2 classes, Shumway gives an intermediate form equiation
(24) and combines it with Bayes’ Rule equation (18) to obtain an overall classification rule

equation (25). Note that we will have one intermediate form equation for every class.

- 1 -1 .
g;(x) = ujR x—-iujR b (HO 24)
qu(x) = (g, (x) ~8; (x))> (In (nj) = In(m))) (12Q 25)

This rule states that if the linear discriminant function equation (25) holds true for

j=1,2,...,q and j# [, then we should allocate observation x into cless /. For the
assumptions made at the start of this section, this rule can be proven optima] with respect
to misclassification error rates. Shumway continues to give an analysis of the multivariate
time series discriminant variable with multiple classes linear discriminant functions. We

wiil not repeat that discussion here since those types of discriminant variables were not

used in this thesis.
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Another method for handling the multiple-class problem is based on Fisher’s orig-
inal method of constructing linear discriminant functions [48]. This is also the method of
choice for SPSS, and will be discussed following the definition of Fisher’s linear discrim-

inant functions.

The formulae given above are somewhat complicated. We can give an equation for
a linear discriminant function that has the simple form of equation (26). Here the com-
plexity of the equation is i:idden by the coefficients (B}, B;,..., B,) and the constant By,
The discriminant variables are represented by (X, X,..., X,). The formulae for computing

the coefficients (shown in equation equation (23)) are designed to maximize the difference

in the value of the discriminant function for different groups of observations.

D, = BO+BIX1+32X2+...+Bqu (EQ 26)
An alternative form of the optimal linear discriminant functions are Fisher’s linear
discriminant functions [48]. These functions are designed to maximize the ratio of the dif-
ference of the means of the linear combination in the groups to the variance. One function
is defined as a linear combinstion of all discriminant variables for each class. Thus there
are as many functions as there are classes. An observation is simply allocated into the
class which las the largest Fisher function value. This method results in the same classifi-
cation sceuracy as the optimal linear discriminant functions combined with Bayes’ theo-
rem, however the posterior probability of group membership is assumed to be unknown.
Equations (27), (28), and (29) give the equations for Fisher’s functions, the coefficients,

and the constant terms, respectively. Note that the W and X terms were defined earlier in

this chapter as the inverse of the covariance matrix and the mean values, respectively. In
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this case the number of variables i ranges from 1 to ¢, and the number of classes j ranges

from 1 to g. As the equations indicate, these functions contain ¢ .. #2178 that are easy o

evaluate and straightforward to implement even where multiple groups i - wasidered.

D} = bU,Xl +szx2+ +bqf¥q+aj (EQ2M
q
= (n-g) Y w;X, (EQ 28)
1=1
= logp —3 2 bU ij (EQ 29

i=1

We now turn our attention to the canonical vector approach to dealing the with the
multiple-class problum based on Fisher's original method. This discussion follows that
given in [71] and [48]. The method is based on canonical variates developed from the
betwcen-group and within-group covariance matrices which are the combined covariance
matrix for all groups. B, and the covariance matrix within each group, W, respectively.
The formulae used for estimating these matrices from discriminant variable data are given
in equatiens (30) and (31). In these equations x is the vector of discriminant variables, g is
the number of classes or groups, and n; is the number of discriminant variable cases for

each class.

Z (%,- %) (x;- %) (EQ 30)

1-1

2"‘ z Z (X,-%) (%;- %) (EQ 31)

(l-l)(J-l)

The average value vector for the discriminant variables over all classes is given by equa-

tion (32).
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g 7
- 1
== x;j (EQ 32)
2T G

Fisher suggested that to find a set of discriminant functions, we determine the
compound A that maximizes 7y as shown in equation (33). Note that all of the variables in
this equation denote matrices.

A'BA
Y= Ywa EQ3%
By differentiating equation equation (33) with respect .0 A and solving for the

roots we can determine the properties required by A to satisfy Fisher’s suggestion. As it

turns out, the solutions are the eigenvalues of W !B. Also, there can be no more than

min(g-1, g) nonzero solutions. This is an important point to consider when there are fewer
discriminant variables than classes. The resulting eigenvectors are used as the coefficients
for the linear discriminant functions. The classification rule is now defined as: Aiiscate an
observation to class IT; if equation (34) is true, where y and v are defined by equations (35)
and (36). This rule is only optimal if all eigenvectors are used for forming the discriminant

functions, and there are more variables than classes.

1Y . 1Y
(y— iv‘.) v, = max[;, (y— ivf) vj] (EQ34)
y=Ax (EQ 35)
v = A'X,; (EQ 36)

The coefficients of the linear discriminant functions for the multiple-class problem
can be calculated using the equations listed above. Once the coefficients are determined,

the functions can be applied to the discriminant variable data to form the probability den-



sity functions of the discriminant functions so that Bayes’ theorem can be used for classi-

fication. This canonical vector i..cthod is used by SPSS for classification.

3.5.3.2 Bayes’ Theorem

We have mentioned Bayes’ Theorem a few times already, and so it deserves a brief
description. S. Geisser [21] considered Bayes’ theorem and its applications to Discrimina-
tion Theory. We will use this paper as a main reference on Bayes” theorem, however most
statistics reference books will include a discussion of the theorem. Another useful discus-

sion of Bayes’ theorem is given by M. Ben-Bnssat [4].

The central idea of Bayes’ theorem is that if we know the prior probabilities of
each class and the distributions of the discriminant variables for each class, then we can

determine the a posteriori probability that an observation x belongs to class i.

Let the number of classes be given by g. The prior probability vector for all classes
can berepresentedby Il = (m,®,, ..., W q). If we consider the multivariate case, then the
discriminant variable (feature) is a multidimensional vector x. A particular case of a fea-
ture is denoted by xj. Let X i denote the feature vector j. Also, let P,-(xj) denote the condi-
tional probability density function for feature j being from class i at the value x;. From

these definitions, we give Bayes’ theorem in equation (37), which is the equation for the a

posteriori probability of case x; being from class i.

P, (x,)
ﬁ:i (xj) _;_L_-’__. (EQ 37)
> mP(x)

k=1
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From this equation, we can compute the a posteriori probabilities that a particular
observation belongs to each of the class;es. Then we allocate the observation to the class
with the highest a posteriori probability of membership. This yields a simple and effective
method for performing classification. Optionally, the prior probabilities can be weighted
to place more emphasis on correctly classifying certain groups of observations. For a com-

plete discussion on how SPSS utilizes Bayes’ theorem, please refer to [71].

3.5.3.3 Quadratic Discriminant Functions

If we assume that the mean values of the PDFs of the discriminant variables are
equal but the within-groups covariance matrices are not, then we cannot use the linear dis-
criminant function as given before (or we must realize that it will not be optimal since the
assumptions are violated). If the covariance matrices are different from class to class, the
discriminant variables have different covariances for each class. In this case Shumway
[69] suggests the use of an approximated quadratic discriminant function. In the course of
this thesis work, however, true quadratic discriminants were not implemented. Instead a
variation of the quadratic discriminant function was used in this thesis. We name this vari-
ation to be “pseudo-quadratic”. This function is the result of a simplification of the opti-
mal quadratic discriminant function that is defined by Shumway [{69], and is used
extensively by the SPSS software [55]. We will give the basic formulation of the optimal

quadratic discriminant function, and explain in detail the pseudo-quadratic form used in

SPSS.

Consider the two-group case where both the mean values and the covariance
matrices of the discriminant variables differ. Shumway defines the resulting discriminant
function as the sum of a linear and a quadratic function as shown in equation (38), and
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whose elements are the same as for the linear discriminant function discussed earlier.
Evaluation of this discriminant function wouid require [(27‘2-7’)+('1‘+('I‘- IN+H(T+(T-
1))]=(2T2+3T-2) operations. Compare this complexity with that of a linear discriminant
function requiring only 27 operations. The quadratic discriminant function is said to be

order 72 and the linear discriminant function is said to be order T, where 7 is the number

of discriminant variables in the system.

1 -1 -1 -1 -1

’ ’ ’ ’ - o

dQ(x) = ix(R2 -R,| )x+(p1Rl - W,R, )x (EQ 38)
A special case occurs when the mean values are all equal to zero, or in other

words, the signal being monitored is zero-mean stationary stochastic. The discriminant

function may now be expressed in a purely quadratic form equation (39). The multi-group

and multivariate forms will not be discussed here.

dgp(x) = x'(R;l - R:_l Jx (EQ 39)
Now we consider the approximation of the optimal quadratic discriminant function
that is used by SPSS [71], called a pseudo-quadratic approximation. The difference
between the pseudo-quadratic discriminant function and the optimal quadratic discrimi-
nant function is that classification is based on the discriminant functions, not on the origi-
nal variables. The covariance matrices used in the pseudo-quadratic function are formed
from the canonical discriminant functions for each group, not the original variables. Con-
sider equation (39): Here the quadratic discriminant function is formed from the feature
variable x, and the covariance matrices R of the two groups. In the pseudo-quadratic form,
the R matrices are replaced by the covariance matrices of the canonical linear discriminant

function(s). The standard canonical discriminant function coefficient matrix is formed by
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solving a general eigenvalue problem from the unscaled discriminant function coefficient

matrix [71].

All of this results in a classifier that has quadratic properties, but is not purely qua-
dratic. What is cffectively achieved is a warping of the feature space to account for the
correlations between the linear discriminant functions. A purely quadratic form would uti-
lize the correlations between feature variables to achieve an optimal discriminator. Refer

to the SPSS Statistical Algorithms manual for a detailed mathematical explanation of the

process [71].

When results are obtained using the pseudo-quadratic discriminant function, we
can safely conclude that the results would either be identical or improved by using the
optimal quadratic discriminant function. Therefore, the results that we will present later
can be considered to represent a lower bound on the classification performance achievable

if quadratic discriminant functions are used.

3.5.4 Discrimination Example

We will now describe an example to illustrate how the concepts discussed earlier
are applied to areal discrimination problem. The data we will use for this example is from
16,3688 cases involving both actual recorded signals and some sirnulated signals. Two
discriminant variables are included, denoted by VI and V2, that are to be used to separate
the signals into two classes. Actual ciass membership is knéwn a priori for all cases. The
functions used to compute the discriminant variables is not important here, nor do we need

to know what the classes represent. In this example we will show hew ic evaluate the dis-
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criminant variables using the Mahalanobis distance measure, generate a dincar discrimi-

nant function, and perform classification.

Fig. 27 shows the contour map of the three-dimensional histogram representing the
probability densities of the two discriminant variables. One axis on the horizontal plance is
for V1 and the other axis is for V2, however the axes show a modified scale. The height of
the histogram represents the probability density of the two variables. The lower left cluster
corresponds to one class, and the upper right cluster corresponds to the other class. From
the contour map we can see that there is clearly a mean difference between the distribu-
tions of the two classes for each discriminant variable. The map even reveals that there are

several other classes of signals that could be discriminated.

FIGURE 27. Contour map of three dimensional probability density of VI and V2.
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3.5.4.1 Discriminant Variable Evaluation Using Mahalanobis Distance

To determine the relative worth of each discriminant variable we will compute the
Mahalanobis distance for both variables, between the only two groups. Recall that the

equation for the Mahalanobis distance is as given by equation (40) for groups a and b.

q q
D:b =—(n-g) 3 > wyRiz-Xip) (Rpa—Rpp) (EQ 40)
(i=1)({U=1)

- (X,-X,) C"(X,~X})
In this case, the number of groups g is two, the number of variables ¢ is two, and the total
sum of weights n is one. Four mean values must be computed as well as the within-groups
sums of squares (or covariance matrix). Since there are over 16,000 cases, we will not
show the computations for the mean values nor the within groups sums of squares (or
covariance matrix). The mean values is given in Table 6 and the pooled within-groups
covariance matrix is given in Table 7. Since the within-groups sums of squares are ele-
ments of the inverse of the pooled within-groups covariance matrix, the covariance matrix
is included here. Note that we must assume that the covariance matrices for each variable
are the same, or use the pooled within-groups covariance matrix as we have done in this
example. The Mahalanobis distance for each variable is now computed in equations (41)
and (42), and shown in Table 8.

1

2 == — ——————
D2, = (0.4281 0.8849)(0_006389

) (0.4281 - 0.8849) = 32.66 (EQ 41)
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D%, = (- 0.4511-0.4599)(

1

—— | (~0.4511 - 0.4599) = 19.1:
0.0434)( 0.4511 - 0.4599) = 19.12

TABLE 6. Mean values for 2ach variable and group.

Mean Value \Z} V2
Group 1 0.4281 -0.4511
Group 2 0.8840 0.4599

TABLE 7. Within-groups covariance matrix.

Covariance Vi (I=1) V2 (1=2)
VI (i=1) 6.389E-03 -
V2 (i=2) 3.426E-03 0.0434

TABLE 8. Mahalanobis distances.

D Squared
Vi 32.66
V2 19.12

(EQ 42)

From the resulting Mahalanobis distance computations we can conclude that V/
separates the two group’s mean values better than V2. If we could only select one discrim-

inant variable to be used by the classifier, we should choose V/ if the Mahalanobis dis-

tance is used as the evaluation measure.

3.5.4.2 Generation of a Linear Discriminant Function

Now we can compute the coefficients of a linear discriminant function. Since there
are only two groups and two variables we only require one discriminant function. Recall
the equation of a linear discriminant functien as given by equation (23). This representa-
tion is difficult to manage, so we will revert to the simplified version shown in equation

(26). The function coefficients for the simple form are given in Table 9. The computations
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are not shown for brevity. Finally, the linear discriminant function is shown in equation
(43).

TABLE 9. Unstandardized canonical linear discriminant function coefficients.

Coefficients
VI 9.56

v2 2.43

(Constant) -3.32

D, = -3.32+9.56(V1) +2.43(V2) (EQ 43)

3.5.4.3 Classification

Once the discriminant function has been determined, we can proceed to test it on
our data by computing the function value for each observation case and performing a clas-
sification. To perform the classification, Bayes’ Rule will be used. Bayes’ Rule requires
the a priori prohabiiities of each group to be known. We will assume that each group has
an equal a priori probability. The probability density function of the variable D; needs to
be known for each group. This is easily computed but we don’t show the calculations here
since a computer is required to perform the computations. Instead, we will show the PDFs
for each variable and class graphically in figures 28, 29, 30, and 31 as histograms which
represent the probability mass functions. The result of Bayes’ Rule is the a posteriori
probability that an observation belongs to a particular group. In Table 10 we.show the
results for a few test observations. By substituting the values for VI and V2 into equation
(43) one can verify the discriminant function values shown. Note that the last line of the
table lists a case where the class 2 observation was misclassified as class 1. This was the

only observation out of 16,368 observations that was erroneously classified. The resulting
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classification system accuracy is over 99.99%. Equation (44) gives a sample calculation

for the a posteriori probability that an observation belongs to class one.
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FIGURE 29. Histogram of variable 1, class 2.
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TABLE 10. Sample discriminant function computations.

Discriminant | A Posteriori | A Posteriori
Function Probability | Probability Classified
True Class Vi V2 Value for Class 1 for Class 2 Class
1 3423 0041 -.03821 1.00000 oo000|
1 3473 -.0066 -01649 1.00000 200000 T
1 3257 0192 .25431 1.00000 o] T
1 3339 -0114 -.15639 1.00000 oo 0
1 3124 -0154 -37227 1.00000 o000 1
2 1.0000 4668 7.37287 00000 rooooo| 2
2 9286 .4800 6.72202 00000 Looovo| 2
2 6247 6137 4.14284 00043 99957 2
2 6015 6543 4.02017 00096 99904 2
2 .5950 6301 3.89902 00214 99786 2
2 6645 .1047 2.77373 77922 22078 0

!
i

3.5.5 Statistical Software (SPSS)

In the course of this research, several methods were implemented as MATLAB
code for performing group allocation and discriminant analysis. However, it was found
that many of the algorithms for performing discriminant analysis were readily available in
existing software packages. In addition, the canned algorithms had been optimized for
computational efficiency on certain computer platforms. For this reason, it was decided
that we should divert our efforts to using an existing professional statistical analysis soft-
ware package. It was determined that SPSS (Statistical Package for Social Scientists) was

a suitable tool. In addition to the SPSS Base package, the SPSS Professional package [55]
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was also needed in order to perform cluster and discriminant analysis. In this section we
discuss some of the features of the SPSS Graduate Student Pack for Windows, Version

6.1.

The documentation for the SPSS Professional package [55] [71] gives explana-
tions for all of the discriminant analysis tools that are available to the software user.

Important to this research was the section regarding discriminant analysis.

SPSS allows the user to compute various statistics on the data that have been
entered, including means, univariate ANOVAs, box-M’s, Fisher’s Coefficients, unstand-
ardized coefficients, within-groups correlation, within-groups covariance, separate-groups
covariance, and total covariance. These statistics are useful for understanding the nature of

the data, but do not aid the classification or feature evaluation strategies.

Feature evaluation and selection may be performed in a stepwise fashion, using a
number of different evaluation criteria. The available feature evaluation methods are
Wilk's lambda, unexplained variance, Mahalanobis distance, Smallest F ratio, and Rao’s

V. These methods were briefly mentioned earlier.

The SPSS classification procedure is base-1 upon Bayes’ theorem, where the prior
probabilities may be adjusted to suit the situation. In general, only linear discriminant
functions may be ':sed for classification. However, it is stated in [55] that for the two-class
case, logistic regression may be used in place of quadratic discrimination. SPSS also has
the ability to implement pseudo-quadratic discriminant functions. Optimal quadratic dis-
criminant functions are not aecessarily implementable since the classification stage of

SPSS is based on using the linear discriminant functions even for the case of quadratic dis-
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crimination. Specifically, the between groups covariance matrices of the lincar discrimi-
nant functions are used for pseudo-quadratic discrimination rather than the between

groups covariance matrices of the individual discriminant variables.

Another useful feature of SPSS is its ability to give the coefficients of Fisher's lin-
ear discriminant functions [55]. Fisher’s functions are a combination of optimal linear dis-
criminant functions with Bayes’ classification rule incorporated within them. The
resulting functions yield classification accuracies identical to optimal linear discriminant
functions, however the posterior probability of class membership is not available since
Bayes’ theorem is not used separately for classification. Fisher’s discriminant functions
can be directly applied to the discrimina:i variables and the function results are directly
used for performing classification. A function is calculated for each class, and the class
with the highest function value is then the class to which an observation is allocated. In
contrast, optimal linear discriminant function results must be input into Bayes’ theorem 1o
calculate the posterior probabilities of class membership. Due to this fundamental differ-
ence, Fisher’s functions are simpler to implement in a classifier that is external to SPSS.

For a complete account of Fisher’s discriminant functions consult [48] and [54].

The SPSS version used for this thesis was designed for the DOS/Windows 3.1
platform. Most of the commands available in the software were executable from pull-
down menus and forms in a graphical format. However, the user may also write script files
so that the particular steps of a statistical analysis may be easily reproduced. We will now
discuss the general sequence of events required to perform discriminant analysis and clas-

sification using SPSS. The <FILE> notation is used to represent the execution of a com-

mand in the “File” pull-down menu.
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. Discriminant variable data must be loaded before any analysis can be per-

formed. The discriminant variables can be calculated using any method the user
wishes, as long as the data is formatted in a way that SPSS can read. For exam-
ple, the discriminant variables for this thesis were calculated using MATLAB,
and then stored in a tab-delimited ASCII format which is readable by SPSS
using the <File><Read ASCIHI Data> command. The known class membership
of each discriminant variable case must also be entered into SPSS.

. The next step is select the <Statistics><Classify><Discriminant> command.

When that command is executed a form is displayed which must be filled out.
First the variable that defines the known class membership must be identified.
Next, the discriminant variables intended for inclusion in the analysis must also
be identified. The following five steps outline the sub-forms that must also be
completed before analysis can proceed.

. The <Select> form: This form allows the user to select cases from the discrimi-

nant variable data that will be used for construction of the discriminant func-
tions, or training. The remaining data cases will not be used for training, but the
classifier will attempt to perform classification using all available data. This
allows the user to perform cross-validation of the classification accuracy results.

. The <Statistics> form: This form has three sub-regions allowing the user to

instruct SPSS to output various statistical information. Various descriptive sta-
tistics of the discrinsinant variables can be output including means, univariate
ANOVAs, Box's M, within-groups correlation, within-groups covariance, sepa-
rate-groups covariance, and the total covariance. By default SPSS will output
the standardized canonical discriminant functions, however these functions can
only be applied to normalized discriminant variables. Therefore, in this form
the user can instruct SPSS to output the unstandardized canonical discriminant
functions which can be directly applied to the discriminant variables even if
every variable is measured in different units and has different ranges. Finally,
the Fisher’s linear discriminant function coefficients can also be output.

The <Method> form: This form is only valid if a <Use stepwise method> is
selected from the main discriminant analysis form. If a stepwise method for
selection of discrim.nant variables is used, then the method(s) fcr cvaluating the
relative worth of each variable must be specified. The methods available are

Wilks® lambda, unexplained variance, Mahalanobis distance, smallest F ratio,
and Rao’s V.

. The <Classify> form: This form has four regions. Region one allows the user to

specify the a priori probabilities for each class. Region two is used to specify if
linear or pseudo-quadratic discrimination is to be used. If the within-groups
covariance matrix is specified, linear classification is performed using the
pooled within-groups covariance matrix. If the separate-groups covariance
matrix is specified, pseudo-quadratic classification is performed using linear
discriminant functions, however the classification is implemented using the sep-
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arate within-groups covariance matrices for cach class. The rest of the form

allows the user to select the type of plots and results data that they wish to have
SPSS output.

7. The <Save:- form: This final form is used to specify which classification infor-
mation is to be saved with the discriminant variable data. For each case SPSS
can save the predicted group membership, the discriminant function scores, and
the posterior probabilities of group membership.

8. Now that the optiors in all forms have been selected, the class variable is
defined, and the discriminant variables have been specified, the discriminant
analysis run can be executed. SPSS will display results in a log file, graphical
charts, and in the form of added variables to the data.

There are many other features that are useful in SPSS for studying the discriminant

variables. Histograms can be plotted, statistics computed, scatter diagrams can be con-

structed, and so on. For a complete discussion of the capabilities of SPSS consult the user

manuals. To find a discussion on the SPSS discriminant analysis capabilities consult [55].
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Chapter 4

4.0 Research Infrastructure

In the following sections we describe the equipment and software that was used to
gather and generate signal data. A comprehensive table of all recorded and simulated sig-
nal samples used in this research is included as Appendix . The recorded and simulated

signals used in this study total approximately 65 million 8-bit p-law PCM samples, or

about 2.25 real-time hours.

4.1 NeXT Workstation

The NeXT workstation was a natural choice for use as a data gathering tool due to
its inclusion of a Motorola M56001 DSP on the motherboard, and serial channels for the
control of devices such as FAX/modems. Although NeXT no longer manufactures the
“black box” NeXT workstations, the operating system bundle is still supported, and vari-
ous distributors still have stocks of NeXT peripherals. As mentioned above, an excellent
feature of the NeXT machine is the built-in DSP. The DSP is a Motorola 56000 series

fixed-point processor that has the necessary power to perform signal processing tasks on

voice-band signals.

In our configuration, a NeXT workstation is connected to an analogue telephone
line via the built-in DSP and a Hayes iISDN Extender, as shown in Fig. 32. This channel
facilitates call recording with either 8-bit p-law or 16-bit linear accuracy. It is convenient
that the 8-bit p-law coded recording of the telephone line is the same as the coding done in
most COs. In this way some of the signal distortion introduced by quantizing at the COs is
modeled by the Extender. A high-speed FAX/modem is also connected to one of the
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NeXT workstation serial ports allowing simultaneous operation of the Hayes Extender
and FAX/modem. With the aid of a soft(:vare package (written as part of the thesis project)
the FAX/modem can be put into operation and the phone line monitored via the Extender.
Also, an analogue telephone is connected to the same telephone line allowing normal
voice calls to be recorded and/or controlled. The Extender is capable of supporting up to

three analogue telephone devices such as a normal phone, FAX machine, and a modem.

Public

Telephone Two-wire Analogue Loop R 7§
Network .
ISDN

Extender FAX Modem
DSP Serial <

Port Port Signal
NeXT | Database

‘Workstation

FIGURE 32. Sketch of research system.

An inherent problem with this data gathering system is that the monitoring point is
a 2-wire connection rather than the 4-wire connection that would otherwise be monitored
within the PSTN. The effects of this problem -vere studied and compensated for. This
problem affects different signal types in different ways. First consider speech signals. Nor-
mal conversations tend to be half-duplex, when only one party speaks at a time. Thus,
monitoring at the 2-wire point is very similar to monitoring at the 4-wire point, except the
flat attenuation for each signal direction and the echo strengths will be somewhat different.
The same argument can be made for FAX calls since they are strictly half-duplex in

nature. The same cannot be said for VBD communications, which are usually full-duplex.
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In this case, monitoring at the 2-wire point is similar to monitoring the nearest end-user
modem. The far-end modem signal will be attenuated by about 16.5 dB at the near-end 2-

wire loop, hence the near-end signal is far stronger and will dominate any recorded signal.

Due to the on-board IDSP in the NeXT workstation, it is possible to perform real-
time signal processing on incoming voice-band sigrnials. However, this capability was not
used to perform signal classification since the target system is to function at the T1 level.
For this reason, another test-bed system in under development and is described later in this

chapter.

Many of the recorded signals that appear in Appendix are speech signals. All
speech signals were recorded in a standard way. Both male and female talkers would
phone the analog telephone connected to the NeXT computer. The age of the talkers
ranged from 18 years to approximately 60 years. The computer was programmed to
answer incoming calls and transmit a prerecorded message. The prerecorded message was
“Hello, please leave your message now.” The callers were instructed to read out-loud two
sentences. The sentences were “Nine rows of soldiers stood in a line.” and “The beach is
dry and shallow at low tide.”. The callers were instructed to speak a normal conversational
volume and pace. These sentences were selected by O’Neal and Stroh for their 1972 study

on the affects of PCM on speech [56].

Four other voice recordings were made. Two recordings were made of a person
attempting to mimic the sound of a modem. One recording was made of a person whis-

tling, and another of simple silence. The signals were used to explore the robustness of the

developed classification methods.
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To offset the complications introduced by the 2-wire monitoring point problem we

also performed extensive signal simulations, which are discussed next in this chapter.

4.2 MATLAB Simulations

MATLAB is a software system that is very useful as an off-line signal processing
tool because it is optimized to process vectors and matrices efficiently. Also included in
MATLAB are extensive graphical user interface programming capabilities. These and

other features made MATL AB a natural choice for the coding and testing of off-line simu-

lation and classification algorithms.

MATLAB is a matrix-oriented mathematical software package available in
TRLabs on the workstation computers. Included in the software is what is called the Sig-
nal Processing Toolbox. This toolbox is a collection of signal processing functions that are
very useful for examining discrete time signals such as voice-band communications.
Included in the toolbox are modulation/demodulation functions, Fourier transforms, spec-
tral analysis, filtering, and a host of other helpful tools. Also, the programming language
of MATLAB allows C-like code to be written to pezf~rm other necessary tasks, and build
efficient user interfaces. User interfaces for MATLAB may be textually based or graphi-

cal. Programming interfaces of either type is quick and efficient.

Since MATLAB is matrix-oriented, it is ideally suited for processing arrays such
as discrete time signals. Thus, MATLAB is an excellent tool for simulating the various
types of voice-band communication that exist. Work was done on simulating QAM and
DPSK signals corresponding to the various ITU standards and recommendations men-

tioned earlier. The simulation models include several realistic features of telephone com-



munication channels such as Gaussian noise, 8-bit p-law PCM, talker and listener echoes,
flat attenuation, attenuation distortion, envelope delay distortion, and frequency offsets.
MATLAB provides for the incorporation of external data, which is a useful feature for

processing the recorded data from actual recorded signals.

Extensive simulations were performed using MATLAB on DEC 5000 Alpha
workstations. Simulations focussed on creating accurate models for the different transmis-
sion methods of the FAX and data modulation standards. All simulations involved the
study of QAM signals that correspond to each of the relevant ITU standards and recom-
mendations. Through these simulations, a greater understanding of QAM was obtained
and insights to possible classification tools were made. The block diagram in Fig. 33
shows a system model that was developed for simulations. The program that corresponds
to this model is named GENERATOR. Various parameters were changed from one simu-
lation run to the next, such as the 1.;0odulation method network impairment parameters.

The graphical user interface developed for this simulation system is shown in Fig. 34.

! GENERATOR Software I
| |
' Simulated Simulated '
! Modem gﬁﬁg{; Modem |
i or Recorded or Recorded |
I Signal Signal {
| |
b o e e e ot et e e e e e e e e e — e — e — —— — J
Discriminant Discriminant
Variable Analysis
Generation

TIGURE 33. General simulation model.
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FIGURE 34, Graphical interface of GENERATOR program.

Within GENERATOR, the user can accurately simulate an end-to-end modem or
FAX call, not including the setup or training sequences. Only the high-speed data portions
of the calls are simulated since these are what takes up a bulk of the time during a VBD

call or FAX call. Fig. 35 shows the conceptual overview of the simulation structure over-

laying a simple network model.
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* = monitoring point
X = network link point
kO’ kl’ k2 = losses

FIGURE 35. Network simulation block diagram.
Fig. 35 shows the general structure of the network transmission model, while Fig.
36 shows the impairment Mock that the simulated or imported signals are first sent
through. The source signals, A and B, can either be simulated or imported from a previous
recording. The library of possible simulated signal types includes all of the major ITU

type modem and FAX signals with the exception of V.34. The V.34 standard was found to

be prohibitively complex to simulate effectively.

. Envelope
s Frequency Attenuation |
A I b Offset Distortion Dilg tcol:t}i{on I > A

FIGURE 36. Impairment block.
As Fig. 35 illustrates, there are 4 possible monitoring points in the simulated net-
work including the caller and answer 2-wire loops, as well as the caller transmit and
receive directions of the 4-wire connection. Signal sources A and B can be predistorted

within the impairment block shown in Fig. 36. The dashed lines of Fig. 35 represent the
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paths of the A and B signals as they are sent and echoed in the simulated network. The out-
put arrows from the dashed lines are su;llmed to obtain the received signals at the cus-
tomer premises. A general loop loss is defined by &, for each subscriber loop. The hybrids
have two losses associated with them, denoted by &; and k,. The interconnection stages
are assumed to be lossless digital links. Before the monitored signal is saved from the
monitoring points, white noise can be added and the signals can be impaired by several

methods. The code used to simulate the signal impairments is given in Appendix B.

4.2.1 Simulated Signals

The simulated signal types include all of the VBD and FAX signal types with the
exception of V.34. Nine signal types can be simulated, including V.22, V.22bis, V.27ter,
V.27ter (fall-back mode), V.29, V.29 (fall-back mode), V.32, V.32bis, V.17. In the casc of
V.27ter and V.29, the first fallback mode of each standard was also simulated. Notc that
V.27 fall-back mode has a different PSD from the normal mode. The V.29 fall-back mode
was implemented since it is frequently used, and this signal was also used for exploring
the performance of some proposed constellation discrimination algorithms. Refer to

Appendices C, D, E, and F for sample code that was used in the generation of simulated

QAM signals.

The signals can be monitored from one of four points within the simulated net-
work. Both of the four-wire monitoring points, « and B, were used as actual recording
points for the simulated signals. These two points are known as “alpha” and “beta” in the

GENERATOR software. Most signal simulations were approximately 25 seconds in dura-

tion.
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4.2.2 Impairment Models

Complex impairment models wc;re required to simulate the various possible ana-
logue impairments that can be expected in the PSTN. Not all impairments are possible or
practical to simulate. Thus only a reasonable subset of the possible impairments was
selected, the choice of impairments being based upon the affect that impairments have on
VBD communications since these are the only types of signals simulated. The impair-
ments modeled include additive noise, frequency offsets, attenuation distortion (AD), and
envelope delay distortion (EDD). The impairments are in addition to the flat attenuation
and echoes found in the network transmission model discussed earlier. This subset of
impairments selected can be justified by results given in [12], [11], and [63]. Another
major problem that VBD modems face is impulse noise, which often results in a line drop;
however, this type of impairment is not modeled since we are concerned with monitoring

successful communications and not predicting line drops.

In total, five different impairment models were selected for use within the simula-
tor. Although the design of the simulator permits great flexibility in the selection of
impairments, only five combinations of impairments levels were used. These five models
were chosen to correspond very closely to those used by Jablon [42] in his work on blind

equalization of voice-band modem signals. The five models represent a range of impair-
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ment levels from light, to moderate, to severe. Table 11 shows the impairment levels: indi-

vidual impairments are discussed in the following sections.

TABLE 11. Five impairment models implemented by the GENERATOR,

Envelope Delay Attenuation Distortion }

Distortion Slope Echo
Model | C-Notched | (@600 Hz, @3000 Hz) | (@604 Hz, @3004 11z) AR Delay B,

No. SNR (dB) in (us) rel. to 1700 Hz in (dB) rel. to 1004 Hz | (H2) (ms) am

1 35 A (1000, 950) A (0.0, 0.0) 0 R RTE
2 33 B (1170, 1350) B (0.6.1.2) 0 s n

3 32 C (1850, 1350) B (0.6, 1.2) 0 s [T
4 30 D (2300, 1850) C (1.1, 8.0) 1 T
5 30 D (2300, 1850) C(1.1,8.0) 0 s | u i

In Table 11 the B, term refers to the transhybrid loss factor. This factor is used for

determining the amount of signal that is passed from the receive side of the hybrid back to

the transmit side. This is a major source of echoes.

4.2.2.1 Additive Noise

Conventionally, additive noise is measured over the PSTN with a weighting filter.
This filter is often a C-Message filter or a C-Message filter plus a C-Notch filter. These fil-
ters are weighted according to the subjective effects of noise at different frequencies. In
order to add the correct amount of noise power to the simulated signals, it is necessary to
measure the noise in the same way as the EOCS [12] study that performed the original
measurements. Thus we designed the C-Message and C-Notched filters from their specifi-
cations in IEEE Standard 743-1984 [29]. This standard gives the poles and zeros for an
analog C-Message and C-Notch filter as well as the ideal filter responses. However, the

simulation system requires a discrete time implementation of the filters.



Two main methods for transforming analogue filters into digital filters are dis-
cussed in [57]. These methods are the t;ilineax transform and the impulse invariant trans-
form. The bilinear transform has the advantage of having equi-ripple pass and stop-bands,
and can be used for any type of filter (high-pass, low-pass, etc.) transformation. In con-
trast, the impulse invariant method can only be used on low-pass and band-pass filters, and
the stop-band ripple is not controllable. The serious problem of aliasing high-frequency

portions of the signal is a limitation of the impulse invariant method.

Both methods were used to try to convert the pole/zero filter descriptions from [29]
into the digital domain. It was found that while the bilinear transform method performed
worse that the impulse invariant method for the C-Message filter, the opposite is true for
the C-Notch filter. This result can be explained by the characteristics of each type of trans-

form, and their intended application.

The C-Notch design used a bilinear transform, and prewarping around the 1000 Hz
frequency point. The analog filter pole locations in rad/sec are {-197 +/- j5640, -1310 +/-
j6209, -249 +/- j7132} and the zero locations are {+/- j6202, +/- j6346, +/- j6494}. The
subsequent frequency response of the discrete filter is given in Fig. 37. This design fits

within the specifications set out in [29].
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FIGURE 37. Frequency response of digital C-Notch filter.

The C-Message filter designed by the impulse invariant transform method is
shown in Fig. 38 along with the ideal response (in X marks). As the plot shows, the
designed filter matches the ideal filter shape well within the IEEE allowable tolerances,
except at high frequencies. However, when the digital filter design deviates from the ideal
response, the loss is already quite high, and these frequencies will be filtered away by any
band-pass filter in the transmission network. The analog pole locations for the C-Message
filter are {-1502 +/- j1267, -2439 +/- j5336, -4690 +/- j15267, -4017 +/- j21575} and the
zeros are at {0, 0, 0, 0, infinity, infinity, infinity, infinity } (measured in rad/sec). Code for
generating the C-Notched and C-Message filters is given in Appendices G and H, respec-

tively.
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FIGURE 38. Frequency response of C-Message digital filter design.
4.2.2.2 Frequency Offsets
Frequency offsets were set to a specified constant level, usually about 1 Hz, and

were implemented by simply modifying the transmitter carrier frequency by the appropri-

ate amount.

4.2.2.3 Attenuation Distortion

Attenuation distortion was difficult to model since it required a linear phase filter
with a generalized magnitude response specification. The Parks-McClellan algorithm [57]
was used to transfer the general magnitude response specification to an FIR (Finite
Impulse Response) filter design. MATLAB was used as the tool to perform the transfor-
mation. Three different AD models were selected. The first has no distortion. The second

model is equivalent to the mean values of a medium length connection in the ECOS [i2].
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The third model is equivalent to the 90% values of a medium length connection in the

ECOS. These three models represent the ideal case, average case, and a worst case,

respectively. Code for generating the AD filters is given in Appendix 1.

Forty tap designs were used for the AD filters. Note that there are only two actual
filters since the first model has no distortion. The frequency response of the second design
is given in Fig. 39, and the frequency response of the third design is given in Fig. 40. The
x marks indicate the ideal frequency response for the model, which was obtained from the
ECOS. Note that there are X marks above the normalized frequency point of 0.9, and
below the normalized frequency point C.05. These marks were set in the design, and are

not specified in the ECOS document.
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FIGURE 39. Frequency response of AD model 2 FIR filter.
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FIGURE 40. Frequency response of AD model 3 FIR filter.
4.2.2.4 Envelope Delay Distortion
The EDD filters were the most difficult to design since the filter specifications are

given as a specified group delay. The ECOS gives plots for the group delays of various
channels, however the group delays can be approximated by a parabolic function that
matches 3 different points. The points are specified in the ECOS. Selection of the EDD
models to use = pased upon a study of blind equalization of modems done by Jablon
{42]. In the study Jablon used 4 different EDD models. Those same EDD models were

generated for this work.

The four ideal EDD models used are shown in Fig. 42. From these descriptions, a
system of equations can be solved to obtain the parabolic equation for each model. For

each filter this equation is then integrated to determine the desired phase response of the

120



filter. The final filter design must have an all-pass magnitude response, while maintaining

the desired phase response.

In order to perform the filter design, software written by Mcikus Lang (Rice Uni-
versity) was employed. The software algorithms correspond to an all-pass filter design
methodology set out in [49], which is based upon a generalized Remez algorithm [57]. A
unique optimum convergence is guaranteed, and the algorithm reaches convergence
quickly. The final designs yield IIR filters of order 10 for this application. The magnitude
responses for the filters are so flat that they only have at most 2e-13 dB of ripple. In Fig.
41 the group delays of the designed filters are laid over the ideal group delays, plus a con-
stant offset. (It is not possible to implement a real filter with a negative group delay.) As

the figure shows, the designed filters match the ideal models very well. A summary of the

ideal models is shown in Fig. 42. The code used to generate the EDD models is given in

Appendix J.
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FIGURE 41. Group delay plots for EDD ideal and designed models.
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4.3 T1 and DSP Testbed

In order to test the algorithms in real time at the T1 rate, a Personal Computer (PC)

based test-bed is being developed by another graduate student, Baolian Xu. The system

incorporates a T1 bidirectional interface, a floating point DSP, and an ISA bus based Intel

80486 type host computer system with its own memory, hard disk storage, video, and key-

board interface. This system is under development at the time of this writing. In the future,

real-time studies of the algorithms developed in this work wili be tested on this test-bed.

Fig. 43 shows the general architecture of the test-bed. The dotted line at the top of the fig-

ure represents a hardware loop-back mode. In this configuration, the host computer can be

used to load sample signal data from hard disk to the T1 card, then the T1 card can trans-

mit a T1 signal, receive the T1 signal, and forward the received signal samples to the DSP

board. This allows for completely self-contained testing.

T1 line with traffic
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CPU

T1 Card
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Disk
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FIGURE 43. Baolian Xu’s PC testbed.
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Chapter S

5.0 Primary Methods and Results

5.1 Statistical Signal Characterization

5.1.1 Statistical Pattern Recognition

Conventional signal characterization methods such as FFT (Fast Fourier Trans-
forms), DFT (Discrete FT), cross-correlation and autocorrelation have proven to be effec-
tive in earlier studies, yet they often require a great deal of computational power to
perform. For this reason, it would be desirable to utilize an equally effective yet more
computationally efficient classification method. Such alternatives do exist, and have been

applied to other problems with success, providing certain assumptions can be met.

Statistical pattern recognition is a well-established field of engineering [20]. Itis a
classification technique that has been applied to a broad range of problems including opti-
cal character recognition, machine vision, meteorology, psychology, waveform analysis,
and many others. The general principle is that a single or multivariate process may be
described by discriminant variables (also known as features) that are representative of the
different classes in the process. The discriminant variables taken together form a discrimi-
nant variable vector that can be used to classify the current sample under test using some
decision algorithm. Pattern recognition is then the problem of estimating probability den-

sity functions for different classes in a specific application. Mathematical statistics is the

basis for this subject.
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5.1.2 Discriminant Functions Utilized

Hirsch describes a specific meth.od for applying statistical pattern recognition [28].
The method presented, called statistical signal characterization (SSC), is a way of apply-
ing statistical pattern recognition to a time-varying received signal. SSC statistically char-
acterizes a signal by exploiting discriminants that are measured in samples of the signal.
Hirsch proposes that four basic signal properties be calculated and used to decide upon the
class of the signal under test. Before describing the discriminant variables, or parameters

as Hirsch calls them, some terminology should be discussed.

Consider a general time varying signal as shown in Fig. 44. Each of the numbered
boxes is called a segment. A segment is defined as the portion of the signal that lies
between adjacent local maxima and local minima. The entire signal under test is divided
up into N segments. The absolute signal amplitude difference (measured in units of volts,
amperes, et cetera) in a segment is termed the segment amplitude, A;. The segment period,

T;, is the time elapsed during a segment. These two discriminant variables of a signal are

used to perform classification. For brevity we will refer to the segment amplitude and seg-

ment period as just the amplitude and period, respectively.

126



itude —

\
\ » lime

Aq

FIGURE 44. SSC discriminant variable description.

lirsch’s four discriminants are the amplitude mean, period mean, amplitude mean
1, and the period mean deviation. According to Hirsch, these second order statisti-
'minants are all that is required to successfully distinguish many apparently simi-

Is from one another. The discriminant calculation equations are given below.

N
M, = 1-1;, Z A,, amplitude mean (EQ 45)
i=1
LY
M, = N Z T,, period mean (EQ 46)
im1
LY
D, = % Y |A;— M|, amplitude mean deviation (EQ 47)
=1
Ly
D, = N z |T;,-M | - period mean deviation (EQ 48)

i=1
T'he remainder of the SSC method involves determining the window size N and
> decision rules for classifying signals with the calculatzd discriminants. Gener-
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ally, if the application is not accurately modelled mathematically, extensive empirical data
must be gathered to infer decision tablés for accurately classifying the signals. The funda-
mental contribution 5§ Hirsch’s work appears to lie in discriminant variable selection, not
in classification methodology. Using these discriminant variables, any appropriate classifi-

cation method could be used.

5.1.3 MATLAB Implementation of Algorithm

To evaluate the SSC method, we integrated it into the existing MATLAB simula-
tion structure. The method has been taken to the point of calculating the required discrim-
inants, tabulating the results, and displaying the results on plots. Code was not written to
attempt to perform classification automatically, although the method has proven itself to
be reasonably effective for the simulated modem signals. To see the effectiveness of this
method refer to the following results section. The reason the SSC discriminant variables
were not studied further is that they were found to be incapable of differentiating many of
the signal subclasses we wish to classify. For example, V.22bis channel 2, V.29, V.32, and
V.32bis signals are all poorly distinguished from one another using this method. However,
the SSC discriminant variables do have some merit in that they are extremely simple to

implement and understand.

5.1.4 Results

Through the course of performing many simulation studies and reading other ref-
erences on statistical pattern recognition, it became evident that the four discriminants
described by Hirsch would not be sufficient for this research problem. First of all, since

the telephone channel contains several sources of attenuation, comparison f segment
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amplitude means between two signals would not likely be successtul. Difterent talkers or
modems typically transmit different avc.rage signal power levels, and network losses will
not be the same for all monitored signals, thus the segment amplitude means cannot eftec-
tively be compared. A potential solution to this problem could be to use a relative discrim-
inant such as relative deviation or relative variance or to normalize power levels. In this
way the amplitude deviation or variance could be divided by the amplitude mean and the

resulting normalized discriminant would not depend upon the absolute signal amplitude.

The plots shown in Fig. 45 illustrate the classification capabilitics of the SSC dis-
criminants. Each plot refers to a different discriminant. The discriminants are C,, M, D,
V. S, and C,, referring to the relative amplitude deviation (C,=M /D), period mean,
period mean deviation, period variance, period standard deviation, and relative period
deviation, respectively. Each column of each plot represents the discriminant variable
“margins” a different class of signal. The term “margins” is used here to represent the
mean value, standard deviation, and extremum of a random variable. There are eight
classes, with one column for each class of signal monitored at the a point in the network.
The second group of eight columns represent the same classes, but monitored at the 3
point in the network. This is useful for recognizing the two directions in a splitband
modem call. The ‘o’ marks represent the mean value for the discriminant as applied to that
particular class of signals. The ‘+’ marks represent the standard deviation, and the ‘x’
marks represent extremum. Ten simulated 0.5 second long signals from each class were
used to generate the statistics. Each signal was generated using a C-Notched SNR of 33
dB, 5 ms end-to-end echo delay, and a trans-hybrid loss of 11 dB. Other impairments were

not included in the simulation. Finally, the horizontal lines represent the resulting discrim-
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inant values ob:i.ined from a test signal. In this case, the test signal was a simulated

V.32bis modem. Table 12 shows the class definitions used for this experiment.

TABLE 12. SSC simulation classes.

Class Number

Signals Included

1

v.22

V.22bis

V.27ter

V.27ter Fall Back Mode (2400 bps)

V.29

V.29 Fall Back Mode (7200 bps)

wlw{aniwlb|lwin

V.32

V.32bis, V.17

The simulation results indicate that classes 5, 6, 7, and 8 are indistinguishable

using these discriminant variables. All of these classes contain QAM signals that have

similar operating parameters. The SSC parameters were also applied to the baseband rep-

resentations of the same signals. Since the baseband QAM signal is complex-valued, the

SSC parameters were applied to both the magnitude and phase components independently.

This modification was not found to improve the discrimination power of the SSC method.
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FIGURE 45. Results from SSC analysis of a V.32bis signal.

A weakness of the SSC method is that it does not exploit all of the characteristics

of QAM signals if strictly applied to the passband signal representation. Transferring a

passband signal to the baseband is undesirable since a carrier frequency must be assumed,

and the algorithm complexity is significantly higher. Since QAM is by far the dominant

modulation method for data and facsimile transmissions, it would be desirable to base a

statistical characterization method upon as many features of QAM as possible. Such fea-

tures would include the carrier frequency, symboi rate, constellation size, and bandwidth.

Another source of features that should be included is the phase information of the base-

band QAM signal. Since QAM is both amplitude and phase-modulated, half of the signal
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content is included in the phase changes of the signal, and this information should be

exploited to a greater extent than is possible by the SSC method.

5.2 Sniffer for FAX Detection

“Sniffer” is the name we gave to a small program that can be used to detect the
presence of FSK signaling in FAX communications, and recover important handshaking
information. This DSP program hias the ability to incoherently detect FSK signals, decode
their content, and search for control message bit sequences that indicate the type of call in
progress. This method is very powerful and simple enough to be run on a single DSP for
monitoring several channels because of the low complexity of the algorithm. A complete
V.21 modem can be implemented by an 18 MHz fixed-point DSP using public domain
programs available from the manufacturer, Texas Instruments. The drawback to the
method proposed here is that the signaling portion of a facsimile call must be observed,

implying that full-time monitoring of a channel must be performed.

5.2.1 FSK Demodulation

Several methods of demodulating FSK signals are possible. The code for the FSK
demodulation stage used in this thesis was developed from sample cr:de distributed free-
of-charge by Texas Instruments (TI). The TI code was intended to be used as a V.21

modem implemented on the TMS320C17 TI fixed-point DSP. We only implemented the
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portion used for demodulating channel two (F. = 1750 Hz) since that is all that is uscd by

Group III FAX machines. Fig. 46 shows the block diagram of the FSK demodulator.

Delay k& FIR
Samples delay

Received
Signal——»| BPF | LPE

Detector l

FIGURE 46. FSK demodulator (based on TI sample files).

The initial BPF stage removes the portion of the received signal outside the indi-
vidual FSK communication channels. In the case of FAX FSK signals, only one channel
of the V.21 standard is in use, therefore the BPF stage can be neglected. Then, the filtered
signal is multiplied by a time-delayed version of itself. The time delay is implemented in
two stages. First the signal is delayed by an integer number k of sample periods. This can
be simply implemented by a k& stage clocked buffer. Next, a partial sample period delay is
implemented by a single pole FIR filter given by the TI software. Finally, the multiplied
signal is low-pass filtered to remove unused high-frequency product components. The
resulting low-frequency signal is then incoherently demodulated, and is ready for detec-

tion. Note that the sample rate of the LPF output is identical to the sample rate of the s,

Now we explain the mathematical theory behind this FSK demodulat:on 1ac? od.

Let R(7), as shown in equation (49), denote the low-pass filtered signal. Let w, be the car-

rier frequency in radians and Aw be the relative frequency offset of the modulator. The fre-

quency of the received signal is either w.-Aw, indicating a logical zero, or, W +A0)

indicating a logical one. Angle G is simply an unknown phase offset.
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R(t) = cos((w.*Aw)tr+0) (EQ 49)

Now multiply a delayed version of the received signal, by the original signal to obtain

R (1) , as shown in equation (53).

R(t—n) = cos ((w,tAw) (t—n) + O) (EQ 50)
R(5)R(t—n) = R(1) (EQS51)
R (1) = cos ((w,*Aw)1+0) X cos ((w +A®) (r—n) +O) (EQ 52)

R(t) = %cos 2 (0 FAw)r- (0, XAw)n +20) + %cos ( ((ociAco)n) (EQ 53)

Ifwesetw, = 2—11” , low-pass filter R (1) to remove the double frequency compo-

nent, and ignore the 1/2 amplitude component, then we obtain the result:

cos(%t + Awn) = —sin (+Awn) = Fsin (Awn) (EQ 54

The final equation equation (54) indicates that the sign of the output of the demodulator
after low-pass filtering recovers the originally transmitted symbols. This signal can be

detected if the demodulated signal is sampled (sliced) within symbol periods, and not at

intersymbol boundaries.

5.2.2 Detection

The output from the demodulator is a 8000 sample per second signal that is posi-
tive or negative depending upon the symbol being sent. The next stage is to perform detec-
tion where the 8000 sample/second signal is converted into a 300 symbol/second stream.
This can be easily done in an incoherent way with a simple sign detector and an incoherent

slicer. (Slicing is similar to decimation. The 8000 sample/second signal is effectively sam-
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pled at 300 samples/second.) The output of the sign detector is sliced at a constant rate of
300 Hz, which is the nominal symbol rz;te. In order to ensure that slicing is not inadvert-
ently performed at symbol boundaries (where the symbol is changing) we can count the
number of consecutive positive and negative demodulator outputs that are received. If the
original input stream is 8000 samples/second, then 26.667 samples correspond to one
baud. If the input stream was interpolated to form a 9600 sample/second signal, then 32
samples would form a single baud interval. The middie of a baud should be used as the

slicing point. For short duration signals, it is not necessary to reconstruct the precise tim-

ing clock.

5.2.3 HDLC Decoder

ITU Recommendation T.30 {41] specifies the signaling format used in all standard
Group 3 FAX transmissions. The 300 bps FSK signals contain HDLC coded bitstreams.
An eight-bit HDLC [10] flag sequence, {0111 1110}, is used to denote both the beginning

and end of a frame. This flag provides a method for gaining bit and frame synchronization

at the receiving end.

The flag sequence is transmitted for at least one second before address and data
fields are sent. In the general switched telephone network, the address field is always
{1111 1111 ). The control field format is {1100 X000}, where X is a control bit that is set to
0 for all non-final frames and 1 for a fixaal frame. In all cases, the useful information indi-

cating the type of facsimile transmission is in the last frame of a series, where X = 1.

Digital Identification Signal (DIS) or Digital Confirmation Signal (DCS) identifi-

ers appear in the information portion of a frame. The DIS identifier sequence is {0000
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0001 } and the DCS identifier is {1100 0001 }. Following the DIS or DCS code is a 72-bit

sequence containing all of the information about the type of FAX transmission being

established. The DIS information indicates the caller’s capabilities, and the DCS informa-

tion indicates the called station’s confirmation of what capabilities it is compatible with.

Thus, by decoding this stream of bits, we obtain all of the information necessary for iden-

tifying a FAX transmission. The most important bits within the 72-bit sequence, are num-

bers 11, 12, 13, and 14, which indicate the modulation standard and signalling rate.

Table 13 lists the possible signalling rates defined in ITU Recommendation T.30 [41].

‘TABLE 13. DCS and DIS signalling rate identifiers.

Bit 11 | Bit 12 | Bit 13 | Bit 14 | DIS signalling rate DCS signalling rate
0 0 0 0 V.27ter fall back mode 2400 bps, V.27ter
0 1 0 0 V.27ter 4800 bps, V.27ter
1 0 0 0 V.29 9600 bps, V.29
1 1 0 0 V.27ter and V.29 7200 bps, V.29
0 0 1 0 Not used 14400 bps, V.33
0 1 1 0 Reserved 12000 bps, V.33
1 0 1 0 Not used Reserved
1 1 1 0 V.27ter, V.29, and V.33 Reserved
0 0 0 1 Not used 14400 bps, V.17
0 1 0 1 Reserved 12000 bps, V.17
1 0 0 1 Not used 9600 bps, V.17
1 1 0 1 V.27ter, V.29, V.33 and V.17 7200 bps, V.17
0 0 1 1 Not used Reserved
0 1 1 1 Reserved Reserved
1 0 1 1 Not used Reserved
1 1 1 1 Reserved Reserved

It is reasonable to expect an update to the T.30 recommendation which will contain

DIS and DCS codes to allow signalling rates of up to 28.8 kbps using a derivative of the

V.34 standard. Also note that V.33 communications are allowed by the T.30 standard. V.33
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is a 4-wire leased line modem standard that was replaced by V.17 for FAX use. V.17 is

dedicated to FAX use.

5.2.4 MATLAB Implementation of Algorithm

Two MATLAB functions were created to implement the “sniffer™ facsimile detec-
tor. One function named “fskdemodTI”, implements the FSK demodulation. The other
function, named **sniffer”’, implements the detection, HDLC decoding, and keyword

searching. The MATLAB code for both of these functions is given in Appendix K.

5.2.5 Results

To test the facsimile detector, all of the recorded FAX calls were used as input to
the functions. As expected, the sniffer worked well and completely recovered the DIS and
DCS information for every call. The FSK demodulator used very few computational
cycles. However, the HDL.C decoding algoritli .1 seems to be somewhat inefficient since it

took many more cycles to execute than demodulation and detection. The HDLC algorithm

should be streamlined in future work.

Finally we note that the DCS information is typically transmitted more than once
per call because it is sent between each page. The reason for this is that the receiving fac-
simile station may indicate that a received page was in error, and the sending facsimile sta-
tion can thereby use a lower speed modulation protocol for the next transmission. This

will mean that the sniffer will usually have more than one chance at detecting the DCS

sequence per call.
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5.3 Autocorrelation Lag Analysis

We now describe modiﬁcations‘to Benvenuto’s algorithm and propose a larger,
more effective set of discriminant variables. Generally the modifications are to: (a) per-
form full-wave rectification rather than complex demodulation; (b) use an unbiased esti-
mate of the ACS; (c) determine an optimal subset of the ACS lags to compute; and (d)
estimate the information capacity of the signal under test using the ACS. In addition, we
fully analyze the discriminant variables and then develop near-optimal methods for per-

forming classification using these variables.

5.3.1 Discriminant Variables

5.3.1.1 Full-wave rectification and the normalized central second-order moment

As mentioned earlier, complex demodulation requires a complex multiplication
stage followed by a low-pass filter. This can be configured as a Weaver demodulator [19].
(A Weaver demodulator has a complex multiplication stage followed by two low-pass fil-
ters as shown in Fig. 47.) The main benefits of performing this operation are that the
resulting signal is conveniently in the baseband, and the amplitude of the complex enve-
lope of an FSK or DPSK signal is constant. However, since these signals are rarely used
by modern modems, and when using a modern DSP it is just as easy to operate on the
passband signal as the baseband signal, we chose to find an alternative to complex demod-
ulation. If the normalized central second-order moment discriminant is applied to the full-
wave rectified signal, the mean value is non-zero and the useful information of the dis-
criminant is retained. Also note that since the numerical mean value of the signal under

test is zero (unless a DC bias is present), this cannot be used directly for normalizing the

central second-order moment. The normalized central second-order moment ﬁ2 for FSK
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signals becomes a nearly constant non-zero value from one segment to the next. Also, the

modified discriminant has the same structure for QAM and PSK signals as before.

Real Portion
e-j?.nF ct

LPF
Received ______,<%>___
Signal

LPF

Imaginary Portion

FIGURE 47. Weaver demodulator.

Full-wave rectification is performed on a sampled signal using a DSP by cither

computing the absolute value of the signal or by stripping off the sign bit of the PCM sam-

ples. The equation for 1, remains the same, but m,; and m; are now redefined as given in

equation (55) and equation (56).
. N
m, = ITIE d (i) (EQ 55)

N
‘Z d (i) (EQ 56)

Here d (i) is the real valued, full wave rectified, passband signal segment under test, and

N is the segment length.

5.3.1.2 Autocorrelation sequence

The underlying justification for this set of discriminant variables is the differing
power spectral densities (PSDs) of the respective signal types. This is illustrated by the
plot in Fig. 48. The plot shows the PSDs of speech, V.34, and V.22bis signals versus fre-

quency, normalized to 4 kHz. Clearly these PSDs are quite different. Speech is the signal

139



that can vary the most in its PSD properties. The PSD of speech changes from word to
word, speaker to speaker, and mood to mood. However, it is normally centered around 900
Hz and tapers off in the upper frequencies. In fact, the variability of speech power spectra

can be used as an aid to classification.
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FIGURE 48. Power spectral densities of 3 signals vs. normalized frequency.

The autocorrelation sequence of a signal can be obtained as a linear transformation
of the PSD. The opposite is also true. It is even possible to use a subset of lags in an auto-
correlation sequence for estimating the PSD. The first 20 lags of the autocorrelation
sequences corresponding to the PSDs of Fig. 48 are dispiaycd in Fig. 49. (Recall that the
sampling rate is always assumed to by 8000 samples per second, so the lags are 125 psec
apart.) The plot shows that the first 20 lags, out of a possible 2000 in this case, contain

much of the information that is present in the PSD. This statement is supported by the fact
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that the autocorrelation sequences die out very quickly compared to the total length of the
sequence. Thus, we can conclude that by using a subset of the initial autocorrelation

sequence lags as discriminant variables, we should be able to effectively classify signals

that have different PSDs.
1 T L 1 T T T T T T
N
\ A Y
. AY —
osllt . V.34 |
RN -~ - V.22bis
\ \
o6-\ v T\ - - Speech i

o 2 4 6 8 10 12 14 16 18 20

FIGURE 49. Autocorrelations of three signals; (a) Speech; (b) V.22bis; (c) V.34.
Benvenuto [6] proposed that the autocorrelation sequence (ACS) be computed fol-
lowing complex demodulation of the source signal. Since we do not perform complex
demodulation, the equation for the ACS estimate must be rewritten as shown in equation
equation (57). We also now choose to use an unbiased estimator for the ACS [57]. The dif-
ference between this unbiased representation and that given by Benvenuto is that the sum-
mation only includes N-lkl points, and is averaged over N-lkl. This change can be

significant as k approaches V.
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N -k
R (k) = 1'\/_-1—|E| > d(i+k)d(i) (EQ 57)

i=1

Here d(i) is the real valued passband signal segment under test, N is the segment length,
and k is the lag number. By computing a real ACS estimate rather than a complex-valued
one, we reduce the number of required multiplications by a factor of 2, as well as one

addition per sample.

We now discuss the properties of the ACS, its | "nitations in VB discrimination,
and appropriate methods for selecting the most helpful lags to compute. A simple method
for selecting the lags is to accumulate statistics from estimates of the ACS of actual test
signals. Lags that yield maximal group separation should be chosen. While this method of
lag selection is easy to automate, it is not useful if test signals are not readily available.

Most VBD signals use some form of QAM, so we will concentrate on that case first.

The general equation for a QAM signal is given by equation (58), where T is the

baud period, F is the carrier frequency, 4,, is the symbol amplitude, and 6,, is the symbol

phase. The contribution of the pulse shape filter is represented by g(?).

u, (1) = A, gr(t)cos: 78" 1+0,) (EQ 58)
The baseband signal can be represented by in infinite sum of symbols multiplied

by the pulse shape, as in equation (59).

o ‘9
v() = 3 A€ "gp(1—nT) (EQ 59)

nw= —o
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Both the ACS and the power spectral density of v(r) can be derived from equation

(59). Some lags of interest are given in equation (60) and equation (61). The o

term is
the variance of the symbol set.
R, (1=0) = o (EQ 60)
R (t=nT) =0,n=12,3,... (EQ 61

Here we assume that the bauds are uncorrelated. These equations show that the ACS has
periodic zeros with period T for the baseband signal. At the other lags, the ACS is based

upon the pulse shaping filter, and any other spectral discriminant variables of the channel.

The passband signal is frequency shifted by F. from the baseband. Since the ACS
can be obtained from the inverse Fourier transform of the power spectral density [62], a
frequency shift in the power spectrum translates into a multiplication by a cosine in the

ACS. Now, the ACS will have zero crossings with period T as well as //F .. The full equa-

tion for the time average ACS (over one baud interval) of passband QAM is:

1
R, (1) = ﬁogRg (1) cos (2nF 1) (EQ 62)
where Rg(t ) is the ACS of the pulse g4{1). The corresponding PSD equation (63) can be

obtained by determining the Fourier transform of the ACS, averaged over a baud interval.

10 ]
S, = 37 (G U=FIP+|Gr(-/=-FI*) (EQ 63)
Consider two passband QAM signals that are identical in constellation, baud rate,

and spectral shaping, but differ in carrier frequencies. The optimal ACS lags to use as dis-

criminants will be where there is maximal difference between the lags of the two signals,
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and where the variance of those lags is minimized. (The variance of the estimated lags
increases with the lag value, so it is desirable to use low-order lags for discriminant func-
tions.) Precise determination of the optimal lags for discriminaring between signals

depends upon the baud rate and carrier frequencies of those signals.

Limitations for using ACS lags as discriminants can be seen from the above equa-
tions. All of the information present in the PSD also exists in the ACS, just in a different
form. Thus, any signals that have different spectra could conceivably be discriminated by
the ACSs. However, all information about the QAM constellation is lost when the ACS is
computed and normalized. (Note that the time series signal cannot be recovered from the
ACS.) Thus we will never be able to use this method to classify signals that have identical

pulse shaping filters, carriers, and baud rates, but only differ in their constellation types.

5.3.1.3 Estimated Information Capacity

Shannon showed that the more information carried by a signal, the more statisti-
cally random it appears to an observer. Thus, the more information a signal contains, the
closer its ACS gets to being simply a spike at the zero-th lag, with all other lags being
small and uncorrelated. If the magnitudes of the estimated lags are summed, the result is a
discriminant that is an approximate indicator of the reciprocal of the information capacity

of the signal under test. This discriminant equation is given by:

K
I= 3 Rk, (EQ 64)
k=1

where X is the number of computed lags, and R (k) is the ACS of the passband segment.

The value of K gives the number of lags to compute. If only 3 lags are computed, then it
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only makes sense to use those lags for this estimation. Experimentally, K=3 was found to

perform well. Signals with less information content generally yield higher / values.

5.3.2 Identifiable Signal Classes

It is critical to identify a representative set of signal classes that we can discrimi-
nate using the available discriminant variables. For our application, a critical requirement
is to separate speech from non-speech signals. Thus initially we have two main classes,
speech and non-speech. Further classification is necessary to separate FAX from VBD sig-

nals. Finally, it would be desirable to resolve the different modulation methods used by

non-speech signals.

For further subclassification of VBD and FAX signals, seven subclasses were iden-
tified after studying the PSDs of different signals. The classes are shown in Table 14.
Classes were determined by first plotting representative PSDs of every non-speech signal
type that was available, the PSDs of several different speech signals, and the PSD of a ran-
dom PCM sample stream. By visually comparing each PSD plot we were able to deter-
mine which signals had distinctive PSDs. The PSDs of non-speech signals can also be
predicted by the ITU recommendations and standards. The resulting classes all have

unique power spectra.

TABLE 14. VBD, FAX, and speech subclassification classes.

Group No. Signals included
1 V.22 and V.22bis forward channels

2 V.22 and V.22bis reverse channels

3 V.34 at speeds greater than 14.4 kbps

4 V.29 all speeds

5 V.32, V.32bis, and V.17 at speeds greater than 2,400 bps
6 V.27¢er at 4,300 bps

7

V.27ter at 2,400 bps
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TABLE 14. VBD, FAX, and speech subclassification classes.

Group No. Signals included
8 speech
9 random PCM samples

These classes combined with a speech class and a random PCM class form a total
of nine identifiable classes using only PSD differences as the criteria. Random PCM sam-
ples are included as a class ‘0 simulate channels that are not being used for voice-band

comr ey . tions, but are carrying direct binary data.

From Table 14 it is clear that a problem exists in class five, since several signal
types are lumped together. We cannot discriminate V.17 signals from V.32 and V.32bis
solely on the basis of their power spectra. V.17 is used for 14.4 kbps FAX communica-
tions, while V.32 and V.32bis are both data standards. Thus, using this class structure, in
some cases we cannot distinguish between FAX and VBD signals. This is an expected
limitation however, since V.17 and V.32bis are virtually identical standards, except one is
half-duplex and the other is full-duplex, respectively. By monitoring both directions of a
4-wire connection it is possible to determine if a call is half or full-duplex by comparing
the relative power levels of the two channel directions. This is a method that could be used

to discriminate between V.17 and V.32/V.32bis signals.

Now that the recorded and simu.lated signals have been discussed, the discriminant
variables have been defined, and the class structure has been given, we can calculate the
probability mass functions for each variable and class. This information was compiled and
is shown in Appendix L. Each plot in the appendix shows the probability mass function
(or histogram in this case) of a single discriminant variable calculated from signals

belonging to a particular class. The histograms indicate the shape of the probability distri-
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t:ui;ons as well as the mean values and standard deviations. By examining this graphical
representation we can get an idea of which variables have larger mean differences between

classes, and will therefore be useful in a linear discriminant function.

2

2.2 Analytic Method for Selecting the Best Lags

As alluded to in the previous section, a method has been developed for determin-
ing the “best” lags to use as discriminant variables for separating two specitic QAM sig-
nals. The method is from the form of the equations for the ACS of QAM signals. There is
no reason that the method could not be extended to any signal type, provided it is possible

to represent the signal by a compact analytical equation. We will first develop a com-

pletely analytical method.

The equation for a transmitted baseband QAM signal is given by equation (65),

where the signal v(2) is represented as an infinite sum of symbols multiplied by shaped

jo
pulses. The symbols have both amplitude and phase components, A, and e . respec-

- - . 3 jell - -
tively. Since the information sequence {A n€ } is random, v(t) can be interpreted as a

sample function of a random process V(t).

oD .e
v() = ¥ A€ "g (1—nT) (EQ 65)

n = —wo

The passband representation of QAM signal waveforms has the general form
shows: &a equation (66). The subscript m may take on the values {1, 2,..., M, }, and the sub-
script #n may take on the values {1, 2,..., M3}. M; and M, are the number of levels in the

real and quadrature components, respectively, of the signal.
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u, (1) = A, 8r(1)cos (27tFCt+9n) (EQ 6b)

The pulse shaping filter usually ims a square-root raised cosine type of impulse
response [11]. The equation for the raised cosine is given in equation (67), where a is the
roll-off factor that ranges from zero to one. Pulse shaping filters have a frequency response
that is the square root of the frequency response of equation (67). When an identical filter

is used at the receiver end, inter-symbol interference (ISI) is minimized.

sin(n—t-) cos(ani)
T T

t )2

T 1 '(2°‘T)

Next we can develop an analytical representation for the autocorrelation function

gr(t) = (EQ 67)

of a QAM signal. We will operate on the baseband representation of the signal, v,,,(1), and
then shift the resulting function to the passband. First we find the mean value function
E[V(9] of the random process V(t) for which v(z) is a sample function. That is, v(z) is a sin-
gle possible outcome from the random process V(). Note that the particular mean value
function that we have in mind is a function of time, and is the average of all symbols com-
bined with the pulse shaping filter. (i.e. The “mean pulse” is intended, not the simple mean
of the signal.) The first line of equation (68) states that the expected value function of V(t)
is the weighted ensemble average of all possible outcome functions v(1). The second line
of equation (68) uses the probability mass function P[] to represent the probability that a

given symbol will equal symbol i.
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E[v(nl = 3 v(nPv(n)] (EQ 6%

M o .
-3 3 pla"=ilet-n1)

(i=1) (n; —e0)

= 2 E[Aneje"]gT(t—nT)

n = —oco

Next we use the equation for the expected value to form the general equation of the auto-
correlation Ry(t) of the random process V(f). The autocorrelation of continuous time

domain signal at a given point in time ¢ is a function of T, where 7 is the distance from the

middle of the autocorrelation.

Ry(t+71,1) = EIvv(+1)] (EQ 69)

= Y Y ElA A€ g (r-nT) g (1+T-1T)
(n = —w) (I =—o)
We note here that a simplification can be performed by recognizing that the autocorrela-

tion of the information sequence is given by =quation (70) and can be substituted into

equation (69) to obtain equation (71).

.em janvm
R, (n) = E[Ame A, m€ ] (EQ 70)
Ry(z+1,1) = Y S R, (U-n)gr(t-nT)gp(1+1-IT) (EQT1)

(i1 = —0) (I = —o0)

By rearranging the summation indices, we wan further simplify as shown in equation (72).

on

R,(t+7,0) = Y R, (m) 2 gr(t-nT)g (1 +1—nT—mT) (EQ 72)

(m = —=) (n = —x)
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At this point we have determined the autocorrelation sequence of the random pro-
cess V(t). Note that the second summation in equation (72) is periodic with period T. This

means that the overall equation for R, (¢ + 1, t) is also periodic. Recall the equation for

the mean value of V(1) from equation (68). The mean value is also periodic with period 7.
A random process that has a periodic mean value and periodic autocorrelation is said to be
a cyclostationary process [62]. To determine the power spectral density (PSD) of a

cyclostationary process, we compute the Fourier transform of the autocsrrelation function
over the period T. The time average autocorrelation function of V(1) is shiows in equation

(73) and equation (74).

T
2
Ry(t) = %,IRV(I+1:, t)dr (EQ 73)
T
2
1 o
Ry(t) = T z Ra(m)Rg(‘t—mT) (EQ74)
m == —oo

It can be shown that by taking the Fourier transform of equation (74) we obtain the PSD

given by equation (75) and equation (76).

P -j2 1 2
Sy = [Ry(me’™a = 25,106, ) EQ75)
S,N = 3 R, (m)ye 2T EQ 76)
m s —oo

Everything derived so far has been for a baseband QAM signal. We can easily

derive the results for a passband signal by simply multiplying in the time domain by a
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sinusoid, or shifting by the carrier frequency in th= frequency domain. Equation (77) gives

the time average autocorrelztion function for the passband QAM signal.

Ru(T) =

b..”p-a

Y R, (m)R,(1—mT)cos (2xf,.r) EQ N

m -0

An important special case exists for QAM. If the information sequence contains
symbols that are uncorrelated and have zero mean, the autocorrelation in equation (77)

simplifies to the form shown in equation (79).

2
R,(n=0) =0,R,(n#0) =0 (EQ 78)

Ry(z) = %ogRg (T) cos (2nF 1) (EQ 79)

These results indicate some very important discriminant variables of the autocorre-
lation sequence. First, the autocorrelation is only a linear transform of the PSD. Therefore
we can conclude that only signals that differ in their PSD can be classified using their
autocorrelations, and visa versa. Second, for the special case of zero mean uncorrelated
information sequences, the autocorrelation reduces to a scaled and modulaied version of
the pulse shape autocorrelation. Therefore we can also conclude that only signals that dif-
fer in their carrier frequencies and/or their pulse shapers can be discriminated using only
their autocorrelations. Finally, we note that since the received signals must be normalized

to unity power, no information from the transmitted symbol sequence is present in the

autocorrelation sequence.

Now we move on to determining which lags of the discrete autocorrcelation
sequence are the “best” to use in a discriminator. Recall that discrimination using a lincar

discriminant function requires that the mean values of the discriminant variables to be dif-
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ferent. If the discriminant variables are based on the autocorrelation sequences, we must
therefore maximize the absolute difference between the respective variables of the form

shown in equation (80). Two different QAM signals are represented by U/ and UZ2.

Dp (1) = lRUl (1) Ry, (T)I (EQ 80)
To locate the local maxima in the equation given by equation (80) we can compute
the first derivative and solve for the roots. This was attempted, however the actual equa-
tions that result from the derivative operation were too large to manage manually, and the
roots could not be solved for using the available mathematical software. Thus we con-

cluded that the most efficient method of finding a solution is to perform the computations

numerically.

Consider the following example. Two types of signals that are particularly difficult
to discriminate are V.29 and V.32bis. These are both QAM signals with the same baud rate
F =2400 Hz. The only spectral difference between the signals is that their carriers differ
by 100 Hz. The carriers are 1700 Hz and 1800 Hz for V.29 and V.32bis, respectively. This
difference is difficult to resolve effectively with a linear discriminator since the mean val-
ues of the autocorrelation functions will be nearly identical for both signal types. There-
fore, we would like to identify the autocorrelation lags that are most valuable for
discriminating these two signal types. We can use the equations given above for the auto-

correlations, and numerically solve for the lags that lead to the largest mean value differ-

ence.

Before proceeding we note that noise is not considered in these calculations. If we

consider the noise to be additive Gaussian then the only effect this will have on the results
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is to increase the variance of the lag values. The mean values of the lags will remain unaf-
fected. However, if the noise is not Gaussian, it will affect the mean values of the lags, and
hence the best lags to use as discriminant variables may change. The autocorrelation at
lower lag values tends to have lower variances, hence we should try to choose the lowest
lag values possible. We cannot directly show the variance in the autocorrelation function

since noise was not included in this analysis.

First we plot the autocorrelation sequence for a V.29 signal in Fig. 50. The autocor-
relation is represented by R,;(t), with F=1700 Hz, F=2400 Hz, and a typical roll-off

value of a=0.15.
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FIGURE 50. Plot of R ,; versus .
Next we plot the autocorrelation of a V.32bis signal in Fig. 51. All parameters are
identical here with the exception of F ., which is now 1800 Hz. Note how similar the shape

of this plot is compared to that of Fig. 50.
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FIGURE 51. Plot of R,;> versus T.
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In Fig. 52 we plot the difference between the two autocorrelations. This plot repre-

sents thhe mean distance between each autocorrelation value for the two signals. Note that

up to this point we are still dealing with continuous time representations of the signals.

The local maxima and minima identify the largest mean differences between the autocor-

relations.
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FIGURE 52. Plot of the difference between R,y and R; vs. T.
To locate all of the local maxima and minima we compute the first derivative of the

autocorrelation difference and solve for the roots. Figure 53 shows a plot of the derivative.
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FIGURE 53, Plot of the derivative of the difference between R,,; and R, versus 1.
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Finally we can convert the results to the discrete time domain and determine which
'ags are the most useful for discriminat{ng V.29 from V.32bis. The sampling rate is taken
to be 8000 samples per second. This also sets the period between autocorrelation lags. Fig.
55 shows the absolute value of the differences between the discrete time autocorrelation
sequences of the two signals. Where the difference value is high, we can conclude that the
autocorrelation lag has a relatively large mean value difference for the two signal types.
From the plot we can conclude that lags k=1 and k=8 are the most valuable for discrimi-
nating V.29 signals from V.32bis signais given that the channels have only additive Gaus-

sian noise, the roll-offs of the pulse-shapers are equal with 0.=0.15, and a linear

discriminator is used.
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FIGURE 54. Plot of the autocorrelation differences versus lag k for 0,;=0,,=0.15.
As an experiment, we repeated the same analysis using a slightly different roll-off
factor. For this experiment a;=0.2. Fig. 55 is a plot showing the results. From the figure

we can state that the best two lags are still k=1 and k=8. It is also evident that the roll-off
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factors do play a significant role in the choice of best lag. Lags four, five, and six may be
very valuable since they do have a substantial mean value ditference, and the variance for

smaller lags is also larger.
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FIGURE 55. Autocorrelation differences vs. lag k (a;=0.2 and a,=0.15).
From the complicated analysis presented in this section we concluded that com-
pletely analytical techniques for lag selection are not practical. At some point numerical
estimates must be used since the required equations are too complex for manual or auto-
mated solution. The method for selecting the best lags that was presented here is highly
dependant upon the signal parameters input into the equations. Actual channels do not
have simple additive Gaussian noise, therefore we have not inciuded a noise model in this
analysis. It should be noted that any impairment which distorts the channel frequency
response also affects best lag selection. However, we have shown a systematic methad for
determining the relative importance of autocorrelation lags as discriminant variables that

can be applied to arbitrary QAM signals. In the following sections we will empirically



determine the best lags to use as linear discriminant functions and then compare the results

of the iwo methods.

5.3.4 Discriminant Variable Selection using Empirical Methods

Another method for se]ec:ing discriminant variables is to use empirical observa-
tions of the values of each of the variables for a representative population. This method is
only useful if it is possible to obtain a sufficiently large population for classification, and if
the sample population is representative of the aciual population that is to be classified.
This method of variable selection will be used later in this chapter and compared to the

results obtained from the analytic method.

5.3.5 Discriminant Functions and Classification Methods
Two forms of discriminant functions, linear and quadratic, are discussed next.

Some other heuristic classification methods are also examined.

5.3.5.1 Simple Deci::on Foundaries

The simplest method of performing classification is to study a scatter plot and then
draw simple decision boundaries as appropriate. If an observed instance of a discriminant
variable falls in a particular zone, ciassify it accordingly. This is the method used by Ben-
venuto for the case of two variables and two classes. The method works well when the dis-
criminant variables have substantially different mean values for each group, and the
standard deviations are small compared to the distance between means. This method is

illustrated weil in Fig. 56. Here it is easy to see where to draw decision boundaries.
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This method is only appropriate for simple cases however. Consider the problem

of simply observing a multivariate system with 10 or more discriminant variables and 9 or

so classes. Most people are not capable of conceptualizing a 10-dimensional space. Th:
fore, it is desirable to develop automated methods for developing decision boundaries.
Such methods have been well researched, and are readily available in off-the-shelf soft-

ware such as SPSS.
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FIGURE 56. Scatter plot for one VBD signal and one speech signal.

5.3.5.2 Linear Discriminant Function

Linear discriminant functions were discussed earlier. The method is based upon

forming a linear combination of the discriminant variables and using the resultant values

for classificatior. The classif zatiun could be perfiormed using a technique such as Bayes’

Theorem.

159



Linear discriminant functions can be proven optimal if the assumptions of unequal
mean values and equal covariance matrices can be met [69]. To test these assumptions,
actual discriminant variable measurements were input into SPSS for analysis. The results

are discussed later.

5.3.5.3 Quadratic Discriminant Function

Quadratic discriminant functions are optimal if the mean values of the discrimi-
nant variables are equal and the covariance matrices are different [69]. If the mean values
are also different, a combined linear and quadratic form should be used. To test these

assumptions, actual discriminant variable measurements were again input into SPSS for

analysis.

5.3.6 MATLAB Algorithm I=ng!cmentation

MATLAB code was developed to extract discriminant variable rmeasurements. The
code computes the first ten lags of the ACS, as well as the central second-order moment.
Adjustable parameters include the signal segment length (N), sub-segment length (L), and
silence threshold (P,;). The results from the computations were stored in a format that is

readable by both SPSS and MATLAB. Refer to Appendix C for the code that was used to

generate the discriminant viciables.

In addition to basic discriminzat variable computation, MATLAB code was devel-
oped for performing classification using Bayes’ Theorem, automatically learning the dis-
criminant variable distributions, and performing cross-validation. Results from these tools
indicated thal the variables being considered were very powerful, and correct classifica-

tion rates were going to be near 100% for most classes. However, due to the fact that the
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code may contain inaccuracies, we choose to present results obtained from SPSS in per-
forming discriminant analysis. Results from the SPSS analysis and the developed classifi-
cation code were similar, but more statistical information is available output from the

SPSS implementation.

5.3.6.1 Results from Benvenuto’s Algorithm

Benvenuto’s algorithm in [6] was implemented with slight corrections to the loop
counters and logical relations due to errors discovered in the pscudo-code. This allowed
for confirmation of Benvenuto’s findings, as well as providing a comparison point for

other algorithms. The parameters used were identical to those in [6], namely N=256,
L=16, gr;=33, P1;,=1089, with thresholds for n, and 1~€.,.(2) at 0.3 and 0, respectively.

Fig. 56 shows typical scatter plots for a V.32bis signal and a specch signal, indicated by

‘x” and ‘o’ marks, respectively.

The plot shows the classification boundaries as solid lines. All points that exist in
the lower left quadrant are classified as VBD, and the points in the other three quadrants
are said to be speech. The misclassified points for the specch signal can be casily scen in

the lower left quadrant. There were also some circles that lay outside the range of the plot.

Benvenuto’s algorithm was executed on all of the available signal recordings. It
was found that the algorithm yielded a 0.12% misclassification rate for VBD signals and a
2.32% misclassification rate for speech signals. These 1¢sults were obtained using the
same parameters mentioned above. Misclassification performance can be improved by
using a more sophisticated classification technique, such as Bayesian allocation {21}, as

opposed to the simple decision boundaries in Fig. 56.
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We found that using the thresholds given, on average 70% of the speech signal
samples and 0% of the VBD signal samples were rejected as silence. Adjusting the thresh-
olds can reduce the silence rate for speech signals at ithe expense of increasing the misclas-

sification rate since the classifier may attempt to operate on noisy segments.

While this algorithm performs well, it is more computationally intensive than
desired and it also is unable to effectively resolve many data signal types. We proceeded
from this starting point hoping that algorithm enhancements would yield lower misclassi-
fication rates, simpler computational complexity, and further subclassification of VBD

signals.

5.3.6.2 Results from modified Benvenuto Algorithm

The modified algorithm, with no demodulation stage, was implemented and tested
on all of the available signal recordings [67]. In the implementation it is possible to con-
trol the number of ACS lags to compute and use for classification. As expected, with more
lags included, greater classifier accuracy could be obtained. Eventually, however, adding
more lags to the classifier did not improve performance since therc is too much variance

introduced to provide for improved group separation.
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For comparison, scatter plots are shown in Fig. 57 that correspond to those of Fig.

56, except now the modified algorithm results are shown. All parameters and signals are

identical.
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FIGURE 57. Scatter plot for one VBD signal and onc speech signal.

Using only the two discriminant functions shown, VBD versus speech classifica-

tion can still be performex} with misclassificaticn rates of 0.04% and 2.61%, respectively,

with the decision boundaries were set at 1}, =0.65 and R4 (2) =0. The advantage of the

modified algorithm is that fewer computations need be performed since a Weaver demaod-

ulator is replaced by full-wave rectification. The degree of uns advantage depends upon

the type of filtering stage that is used. However, it is clear that complex demodulation

requires at least (a) one complex multiply per sample; (b) two multiplies and an addition
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per sample to compute each ACS lag; and (c) the vector magnitude at each sample is
needed to compute the central second-o.rder moment. The modified algorithm reduces this
to one multiply per sample to compute each ACS lag; eliminates the need to find the vec-
tor magnitudes at each sample to compute the central second-order moment; and elimi-
nates complex demodulation and filtering. In our implementation this translated into a 10-
fold reduction in floating point operations (using a 9th order low-pass Butterworth filter in

Benvenuto’s original algorithm).

Bayesian allocation was also performed on the discriminant results. Using this
technique, rather than simple hard decision boundaries, reduced the misclassification rates
for VBD and speech to 0.10% and 2.13% respectively. Again, the same parameters were
used. To furthet rednce i lassification, however, more discriminants and/or larger val-

ues of N s B used.

The main ailvantage of the modified algorithm lies in its improved ability to sub-
classify VBD signals. The number and selection of lags is variable depending upon the
classification accuracy and class resolution desired. By studying the probability mass
functions of each lag as it is applied to all of the signals, we were able to determine which
lags contribute the most to the classification accuracy. This can be done using standard
discriminant analysis techniques [4, 54]. As each lag is added to u.c classifier, its effect
can be evaluated, or the joint contributions of combinations of discriminants can be also

evaluated.
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FIGURE 58. Scatter piots for Benvenuto’s algorithm and the modified algorithm.

Fig. 59(a) and Fig. 59(b) illustrate the advantage of adding just one lag to the clas-

sifier. Tig. 59(a) shows the scatter plot of two VBD signals which are V.34 and V.22bis,

which are denoted by °x’ and ‘o’ marks, respectively. From the plot it is obvious that there

i$ o way to reliably separate the two signal types using only the discriminants shown,

even though the signal. .»'¢ vastly different. Fig. 59(b) shows the scatter plot of the same

two VBD signals, with I~€d (1) used instead of 1, . This plot clearly shows that the two

classes can now be easily resolved.
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FIGURE 59. Scatter plots for two VBD signals with different variables.
A new algorithm was developed using ﬁ2 . I}d (1), kd (2),and I}d (3) asdis-

criminants and using the same algorithm parameters as above. Bayesian allocation was
used to assign signal segments to particular classes. The misclassification rates were 0%,
0.16%, 2.89%, 19.33%, 45.21%. 1.29%, and 1.07% for classes one through seven, respec-
tively, 0.07% for VBD segments, and 0.44% for speech segments. Incidentally, speech

was misclassified as class three (V.34) in all cases.

In these experiments all classes were accurately classified except for classes 4
(V.29) and 5 (V.32, V.32bis, V.17). These classes are very similar and vary mainly in their
carrier frequencies, so the classifier could not separate the two signal types in a short span

of time with the given discriminants. To resolve these two classes, it was necessary tc
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study the equations for the ACS of each signal and determine the optimal lags to monitor,
These were found to be lags k=1 and k;S. Lag eight was therefore added for tfurther
experiments. Using this lag in conjunction with lags at k=1, 2, and 3, we found that all
seven VBD classes could be effectively classified. The misclassification rates (for 32 ms,
segments) for this experiment were 0%, 0.16%, 3.12%, 17.10%, 31.75%, 0.96%, and
0.75% for classes one through seven, respectively, 0.03% for VBD segments, and 0.25%

for speech segments. Thus, lag eight helped resolve the classes, but not adequately.

To further reduce the misclassification rates, longer signiil segments and more lags
must be used. For example, using N=1024, the misclassification rates are 0%, 0%, 0.19%,
2.97%, 13.9%, 0%, and 0% for classes 1 through 7,.respcctively, 0% for VBD, and 0% for
speech signals. Using N=2048 yields near 0% misclassification for all classes except four
and five, which were 1.2% and 2.49% respectively. Incrcasing the segment length beyond
2048 samples does not improve classifier performance. A good trade-o!i between segment
length and classification performance is at N=1024. Using the first ten lags and N=1024,
all classes have 0% misclassification rates except classes frur and five which are 2.65%
and 7.79%, respectively. In the following sections we present a more systematic approach

to determining the design parameters of the classification system.

5.3.7 SPSS Discriminant Analysis

In the following discussion, the discriminant variables used for study are based on
computations using N=2048, and L=16. All of the recorded and simulated signals were
considered in the analysis. Other values for N are considered later in order to study the
trade-off between rapid response times (N is small), and high clascification accuracy (N is
large). The discriminant variatles that were calculated for the experiments include the first
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10 normalized ACS lags and the normalized central second-order moment. We attempted

to distinguish all nine classes of signals discussed earlier. The prior group allocations of

each case are known and the prior probabilities are all assumed to be equal.

TABLE 15. Number of cases considered (N=2048).

Class No. Cases
1 2393
2 1424
3 2348
4 1879
5 4387
6 1183
7 970
8 810
9 974

Total 16368

5.3.7.1 Assumption Validation

First we examine the mean values and covariance matrices of the test data, in a

group-wise fashion. These results will indicate whether the assumptions necessary for

optimal performance of linear and quadratic discriminant functions can be met. Tab}:: 16

shows the group means while ‘1'able 17 shows the group standard deviations. Note that the

standard deviations progressively increase as the lag value increases. It is easy to see that

the most important lags for use as discriminant variables will have low values of &. (Note

that for convenience we will refer to the normalized autocorrelation sequence values as

{Rd1, Rd2,..., Rd10} and the normalized central second-order moment as N2.)

TABLE 16. Group means (N=2048).

Class | Rdl | Ra2 | Rd3 | Rd4 | Rd5 | Rd6é | Rd7 | Rd8 | Rd9 | Rd10 | N2
1 54933| -31064| -79678| -63442| 02861 50224] s0sa6| .11604| -18926| -21037| 41251
2 27444 77153 67221 .28368| -72214| 14483 4225 -30202] -.16131 22613 38800
3 -03209] -25964( .10475] -20775| .02000( -081s0| -03982| -.00094| -.05461 02490 51096
4 A8536( -.46831 -07317| -06384| -16020| .02203| -02310| -02245| .05586| -.00182| .46856
s 13524 .48510| -05795| -.10568| -.13253| .0s328| -02881] .03377| 07176 -00141| 46361




TABLE 16. Group means (N=2048).

Class | Rd1l Rd2 | Rd3 | Rd4 | RdS | Rd6 | Rd7 Rd8 | RdY | Rdl0 N2
6 17936  -.66603 26222(  .13334 | 03a41]  04993] 08362 01200 -03800[ o020 ] a0
7 AT1S3]  -78400| -34622| 34166  22199| -02875|  00406| -03714] 10404 00403l a1ess
8 71393 | 45993 31726  08430| -02763] 12302 -22230] 27917 -27wa| -2ssw0]  wsaed]
9 -00026| -00174( 00095 -00037| -00021| 00026| -00078| 000251  OORD 001021 a3
Total 16780 -.40602)| -.09063| -.09949| -.10379] 08693 | 00414 o1088] 04619 o2l ason
14-51 os012| .o1679| 01522 041g4| 02767] 03125 00571 on32| 01590 0041 | 00408

Consider classes four an«l five from Table 16. These classes correspond to the V.29

and V.32bis signals that were examined in the section on analytic lag selection. From the

table we can rank the lags according to their mean value differences with respect to these

two signal types. The ranking would be {Rd1, Rd4, Rd6, Rd5, Rd2, Rd9, Rd3, Rdg, Rd7,

Rd10}. Now compare these rankings with those obtained in the analytical analysis sec-

tion. The first four empirically ranked discriminant variables agree well with thosc of the

analytical section, with the exception of Rd8. We can conclude that an accurate analysis

must be sensitivc to the channel distortions actually seen in the PSTN. We cannot simply

assume that only additive Gaussian noise will be encountered.

TABLE 17. Group standard deviations (N=2048).

Class | Rdl Rd2 | Rd3 | Rd4 | Rd5 | Rd6 | Rd7 Rd8 | Rd9 | Rd10 N2
1 01703} .M315| .03493| .02424( .03622| .02997| .03175] .0445] .04561 050271 .05768
2 .02¢" ‘ ’ .03558| .05456| .01834| .07566) .05730] .05936| .08333 04944 | .06160
3 0423 04327 .04897| .03402| .03586| .02835| .02854| .02864 02642 .02531
4 .08717. 03281 .12391| .02851{ .04106| .05068| .03735] .03219! .03741 .03354| .01977
5 08121 02206 .11628| .03523| .03138] .04452| .94424| .02936) .03062 .03749| .03037
6 .02514) 01613 .04708% .02936! .04023| .03743| .04245| .03155| .03679 .032451 .01703
7 01421 010591 033691 .02837] .039931 .03717| .03917| .03793] .03801 03638 | .00787
8 224921 24366 .26376| .28685| .27369| .23232} .19859| .1922%| .19340 21261 16281
9 02116 .02111 02127 02221} .02210} .02217| .02278| .02323| .02119 02262 .01100
Total .25761 28720 | .39205| .28192] .22419) .19596] .23408} .13001| .12443 13218 12730

The group means are unequal for all classes in at least one discriminant variable

column. When the mean values are compared with the standard deviations, we can see that

the classes can be separated quite well purely on the basis of their mean differences. How-
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cver, consider classes 4 and 5. These have very similar mean values for most variables,
and the mean differences are not signiﬁ‘cam compared to the standard deviations. (Later,
when we allow the segment size N to be smaller, the standard deviations rise substantially,
making the problem of group overiap even wc.se.) Thus we can predict that a linear dis-
criminant function will not perform well for separating these two classes. A linear dis-
criminator would in fact perform better if these problem classes were lumped together

since their mean values are so similar. This is true for all classes in the system.

We can compare the results of Table 16 to the analytical estimates obtained for
“best’ lag selection. If our criteria is mean distance between classes, then from Table 16
we can see that classes 4 and 5 are separated well by Rd8, as compared to the standard
deviations for that variable. Rd1 has a comparable mean difference to Rd8, however ihe
standard deviation in Rd1 is larger than the mean difference making the variable useless in
a linear discriminant function for these two classes. The analytical method also predicted
that Rd8 would be a good choice for a discriminant variable. This theoretical result is ver-
ified by experimental observation. It remains to be seen which variable is optimai, héw-

ever.

Incidentally, the only major differences between these two types of signals is that
class 4 is half-duplex QAM with a 1700 Hz carrier, and class 5 is full-duplex QAM with
an 1800 Hz carrier. The only significant difference is the 100 Hz carrier frequency separa-
tion. This is the reason the signals are so difficult to separate with discriminants based
upon second order statistics and the PSDs. After we examine the covariance matrices we
will be able to determine if these classes are appropriate for classi. ..tion by a quadratic

discriminant function. Table 18 contains the values of the pooled within classes covari-



ance matrix which is generated by averaging all of the within classes covariance matrices

together.

TABLE 18. Pooled within classes covariance matrix (N=2048).

...... S U

Var. Rd1l Rd2 Rd3 | Rd4 RdS Rd6 Rd7 | Rd8 RdY | RAWO N2

-

Rd1 5.562402 T
4E.03
Rd2 2.297169 | 3.759036
8E-03 OE-03

Rd3 -1 1.607008 | 9.639778 o o [ R
3680887 |  BE-03 3E-03
1E-03

Rdd4 | 1449200 | 1.666215| 2.877454| 5323239 I
8E.03| 1E-03| BE-03| 9EO3

Rds | 1065434 | 2.022076]| 1.56261i | 3.423924 | a78940: } T
8E.03 1E-03 5E-03 7E.03 4KE-03 l

! T
Rd6 | 7.004148] 3.555200] 1781098 | 2627608 . -+
1.053030 4E-04 5E-03 2E.03 .03 RAY

OE-03
Rd7 | 9.482655| 4.296675 | vsoeo77| vasti.. o wea20| 3435606 T T T

SE04| SEO04] 6546217] 2B03| 7Eun i 03| oroa

OE-04 |

Rd8 2801073

.y
- -1 3.090163 | 594687 ] 2958449 ] 1.8467 "9 1 3.080986
OE.04 | 8.413651| 5.467311 OE-04 9104 OE-04 4E.03 IE-03
6E-05 5E-04

Rd9 - . ; | T 8243287 s7a9211| 1416205 | 3407700
8700386 | 6.967631| 1.380963{ 1240603 | 5.315700]  op-0a|  oros|  owod| 603
2E04| 2604| 8E0a| OE03|  SEo4
Rd]O - - - - - -1 4.620770| 5.169516 [ 1.756262 ] 3.608513
2077343 | 1391356 | 2344806 | 1.525087 | 1.172683 | 8.414741| 00|  6E04]  so3|  mioa
75.04| OE03| 6E-03|  6E03| 3E03|  SE-04
N2

2.0551841 2.5431258

7.340424 | 6.367013 ] 2.829045| B.135866| 7.571278| 5.363743 | 4.961742 ] 3.300947 | 1.508200 004 4L 03

6E-04 7E-04 3E-04 9E-04 2E-04 8E-04 2E04 9E.04 B1:-05

TABLE 19. Within classes correlation matrix (N=2048).

Var. Rd1 Rd2 Rd3 Rd4 RdS Rd6 Rd7 Rds8 Rd9 | Rd10 N2
Rdl | 1.00000
Rd2 50237| 1.00000
Rd3 | -.50268| 26696 1.00000 I
Rd4 | .26632| .37248| .40169| 1.00000 1T
Rd5 20642] 47677] 22997| .67810| 1.00000 -
Rd6 | -.21058| .17038| .54006| .36409| .56628| 1.00000 o
Rd7 21692| .11956| -.11375| .35264| .35787| .31792] 1.00000
Rd8 06766] -02472| -.10032| .07630| .15506| .07949| .56765| 1.00000
Rd9 | -.19725] -.19216| -02378| -.28751| -.12988| 20788 .O1658] 43141 10c000| |
RA10 | -04637| -37778| -39757| -34797| -28208| -20892| .13123| .15504]| .49435| L00000|

2 | -.19517| -.20593| -05714] -22112| -21694| -15863 | -.16786] -.11793| -00506] 06754] 1.00000
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TABLE 20. Between classes covariance matrix for class 1 (N=2048).

Var. Rd1 Rd2 Rd3 Rds Rd5 Rdé6 Rd7 Rd8 Rd9 | R4A10 N2
Rdl 10003
Rd2 0002 0002
Rd3 .0005| -0002] 0012
Rd4 ~0003| -0003] .0005| 0006
RdS 2002[ -o0002| -o0000f o001 0013 T
Rd6 0001| -0001| -0007| -000i| .0008| .0009 B
Rd7 0002| .0002| -o0c03] -o0oos] -0003] 0003} 0010 1
Rds 0003 .0005| -0001] -o0008| -o011] -000s| .oooe| o020
Rd9 0000| .0004| .0007] -0002] -0013| -oo13| -ouc2| co13] o021 o
Rd10 ~000a| -0001] .0010] o0008| -0004| -oon| -ooral -o0o07] oozl 0o2s
N2 .0003| -0002|] .0007] .0004| -0003| -0004] -0003] -o0003| .0002] .0007] 0033
TABLE 1. Between classes covariance matrix for class 2 (N=2048).
Var. Rd1l Rd2 Rd3 Rd4 RdS Rdé6 Rd7 Rd8 RdY | Rd10 N2 )
Rdl .0004
RA2 .0003| 0003 B
Rd3 .0007| ©006| 0013
Rd4 o011| -0010| -0019] .0030 n
RdS o000| .oooo| -ovoz] .0000| 0003
Rd6 | -oo1s| .o12| .0026] -oos0] -0003] o0sa B
Rd7 0010] -0009| -0016] .ou22| -0004a| -003s| 0033
Rd8 oo10| -o0008] -o0019| .0026] .0006] -0040] .0018] .03S
Rd9 .0016| 0014] 0027] -o00ss| oo001| o0ss| -o0oas! -o0037] 0069
RA10 0000| -0001] .0003] .ooo1| -ooo9] ooos| oo12z| -o0016] -0006| 0024
N2 ©0000| .0000| .0000| -o0001] .0oo1] .0ooo] -o00z| ooo2] 0002] -000z] 0034
TABLE 22. Between classes covariance matrix for class 3 (N=2048).
Var. Rd1l Rd2 Rd3 Rd4 Rd5 Rd6 Rd7 Rd8 Rd9 | Rd10 N2
Rdi 0018
Rd2 .0016] 0032
Rd3 .0014] 0006] 0019
Rd4 0016| -002s! -0009| 0024
RdS -o010] o012 .0004] -0010| .00i2
Rd6 0006] -o001s| .0000] .ows| -0005] .0013
Rd? 0000| .0004] -0004] -0001| -0001]| -0003] 0008
Rd8 ~0002] -0003[ .0004| .0000| .0002] .0001] -0003| .o0008
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TABLE 22. Between classes covariance matrix for class 3 (N=2048).

Var. Rd1 Rd2 Rd3 Rd4 | Rd5 Rd6 Rd7 RdS8 Rd9 | Rd10 N2
Rd9 o004t -0001|  -.0005 000z | -.0003 0001 .0000 |  -.0002 .0008

RA10 -.0003 0004 o002} -.0003 0002| -.0003 0001} -0001] -0002| .0007

N2 -.0001 000s| -.0002| -3 0001 -.0003 0002 -.0002 .0001 0000| .0006
TABLE 23. Between classes covariance matrix for class 4 (N=2048).

Var. Rd1 Rd2 Rd3 Rd4 RdS Rdé6 RdA7 Rd8 Rd9 | Rd10 N2
Rd1 0076

Rd2 0023 0011

Rd3 -0107} -0029] .M154

Rd4 -0006| -.0006 .0006| .0008

RdS 0026 0005| -.0040| .0001 0017

Rd6 -0037| -.0011 0050 | -.0002{ -.0011 0026

Rd7 0020 0005| -.0029| -.0001 .0003| -.0008 0014

Rd8 0016 0005] -.0022| -.0001 0004| -0012 0006 0010

Rd9 -0020} -.0006 0029 .0000{ -.0007 0009{ -0009| -.0003 0014
RA10 0015 0004 -.0021 .0000] .co04| -.0008 0004] -0001] -.0003 0011

N2 0002 0000| -.0004| .0000| .0001| -.0001 .0001 0000| .0000] .0001 0004
TABLE 24. Between classes covariance matrix for class 5 (N=2048).
Var. Rd1 Rd2 | Rd3 Rd4 Rd5 Rd6 | Rd7 Rd8 Rd9 | Rd10 N2
Rdl 5066

Rd2 0008 0005

Rd3 -0093| -.0008 0135

Rd4 0006] -.0005] -.0011 0012

RdS 0010} -0002} -.0018 0004| .0010

Rd6 -0028| -.0002 0038 | -0008| -.0003 0020

Rd7 0027] 0001] -0037] .0004| .0000] -0010] .0020

Rd8 .0003 0001] -0004| -.0001| -.0001] -.0005 0001 0009

Rd9 -.0005 0001 0007 -.0003 -.0002 .0002 -.0007 0002 .0009
Rd10 .0018 0002| -.0025 .0003 .0001| -.0009 0007 -0004{ .0000| .0014

N2 -.0009] -.0001 0012( -0001| -.0001 0004| -.0004 0000f .0001| -.0003 0009
TABLE 25. Between classes covariance matrix for class 6 (N=2048).
Var. Rdl Rd2 Rd3 Rd4 | RdS Rd6 RdA7 Rd8 | Rd9 | Rd10 N2
Rdl 0006

Rd2 .0002 .0003
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TABLE 25. Between classes covariance matrix for class 6 (V=2048).

Var. Rd1 Rd2 Rd3 Rd4$ RdS Rd6 Rd7 RdS RAY Rdl()vl N2 1
Rd3 0011 -0002] 0022 TV

Rd4 ~0002] -o0003| .0003| 0009 o R D
RdS 0007| .0001| -0016] 0001 0016 T

Rd6 _0001| .0001| .0000| -0008] -0002] 0014 1

Rd7 0004| -0002] .0007] -0002| -0012( .0008| 0018 R

Rd8 o0001| .0000| -0001] 0003 o000 -o0009| -o002] o0i0 BRI

Rd9 0001 .0001] -0001| 0001 000a| -0000] -w012]  oo0a]  oois| |
Rd10 0000| .0000] 0000| 0000] .0001| 0002] -o003| -oo07| oc02|  oott]|

N2 0001] .0000{ -o0002| -o000t] o001] oooo] 0001|0000 :‘F’_‘EL i M;(’\‘(p_(; “&i}_fi
TABLE 26. Between classes covariance matrix for class 7 (VN=2048).

Var. Rd1l Rd2 Rd3 Rad4 Rd5 Rd6 Rd7 Rd8 1 RdY } RdA10 N2
Rd1 0002 B R .
RA2 0001] .0001 T o

Rd3 ~0005| -o0002] 0011 I D

Rd4 0003, -0003| 0005 .0008 T

RdS 0004 o0oco| -o012] -0002] 0016 A T
Rd6 0003| 0003 -0007| -0o10] .000a| 0014 I I R
Rd7 0003] ©0001] 0008] -0003| -0014] 001] o01S I

Rds oou2| -0002] 0006| 0007 -0006] -0012| o002| oota| R
Rd9 0001| -0001| -0003] 0004] 0007| -0006] -00i12] o004 o014 T
Rd10 o001| oooo| -o0o03| -o0v0z] ooos| oovs| -ooos| -oon Tooor | oona|
N2 | .0o00| .0co0] o001 -0001, -0001] o001 .o002] -w001] -o002] o0
TABLE 27. Between classes covariance matrix for class 8 (N=2048).

Var. Rd1 Rd2 Rd3 Rd4 RdS Rdé6 Rd7 Fds Rd9 | RdIO N2
Rdl L0506

Rd2 0415] 0594

Rd3 0102 o0a20| 069

Rd4 0226 o0487] 06ss| 0823

RdS 0109| 0376| .0s61] .0694] .0749

Rd6 o0024| o198 0381 0481 .0S64] 0540

Rd7 ~0014| 0069] .0167| .0263] .cio| 0377] 0394

Rd8 0019 -0027] -oms| 0037} .o14z| o22s| 0302 0370

Rd9 -0000| -0166| -0180] -0164] -o00su!l o086| 0187 .0309] 0374

Rd10 ~0158| -0308] -0328| -0336] -0237] -o0084| 0075 0206 0337 0452

N2 .0095| -0134]| -0128| -o0161] -0143| -ono| -0077] -00ss| -omis| 0039|0208
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TABLE 28. Between classes covariancé matrix for class 9 (N=2048).

Var. Rd1 Rd2 Rd3 Rd4 Rd5 Rd6 Rd7 Rd8 Rd9 | Rdi0 N2
Rdl 0004
Rd2 0000( .0004
Rd3 0000 .0000 .0005
[ Rda 0000] 0000] .0000] 0005
RdS 0000| 0000| .0000] .0000| .000S
KRd6 0000] 0000 .0000| .0000{ .0000| .000S
Rd7 .0000 .0000 .0000 .0000 0001 .0000 .0005
Rdy 0o0o| .0000| .0000| .0000| .0000 .0000|  .0000 .0005
Rd9 oo000! .o0o00f .0000| .0000| .000O| .0000| .0000| .0000| .0004
RdA10 ooo0| .oooo| .oocol 0000} .0o00| .0000| .0000}] .0000| .0OOO{ .060S
N2 .0000 0000 .0000 0000 0000 0000 0000 0000 0000 .0000 0001
TABLE 29. Covariance matrix with 16367 degrees of freedom (N=2048).
Var. Rd1 Rd2 | Rd3 Rd4 | RdS Rd6 | Rd7 Rd8 | Rd9 | Rdi0 | N2
Rdl 0664 ’
Rd2 0373] 0825
Rd3 -0684] -0010| .1537
Rd4 -0356) -0246] .0752] .0795
Rd5 0268 0225 -.0487 -.0130 0503
Rd6 0200 -.0056 -.0431 -.0324 -.0022 0384
Rd7 0064 -.019] -.0285 -.0222 -.0187 0378 .0548
Rd8 0105 -.0002 -.0373 -.0227 0161 .0089 .0027 0169
Rd9 -0116| -00991 0044} .0033 .0008] -0076| -.0138 .0061 0155
Rd10 -.0283 -.0220 .0300 0196 -.0163 -.0103 -.0011 -.0059 0067 0175
N2 0105 0230 0131 -.0033 .0001 -.0075 -.0120 -.0049 -.0029 -.0051 0162

The separate group covariance matrices show that the covariances of each group

are different. For example, the covariance between Rd1 and Rd2 is different for most

classes. (The covariance values are 0.0002, -0.0003, -0.0016, 0.0023, 0.C008, 0.0002,

0.0001, 0.0415, and 0.0000 for classes one through nine, respectively.) This leads us to

conclude that linear discriminant functions will not lead to optimal classification. An opti-

mal result is obtained by using a combined linear and quadratic discriminant function
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[69]. However, since the mean values for most classes diffey sabstantially in many of the
variables, a linear discriminant functior; will likely work very well for classitication. The
problem classes (4 and 5) will likely need to be classified using cither a combined lincar/
quadratic function, or a purely quadratic discriminant function. The optimal solution
would be to use all of the available discriminant information, which would require the use

of Shumway’s [69] combined linear and quadratic discriminant function.

5.3.7.2 Discriminant Variable Selection:
Next, we perform discriminant analysis on the 11 discriminant variables. This is
dune to evaluate the relative merits of each variable to an overall classification scheme.

The subject of discriminant analysis was discussed carlier, thus only results are presented

here.

The primary measure for discriminant variable selection in SPSS is Wilks’
Lambda [55]. Other measures include unexplained variance, Mahalanobis distance, small-

est F ratio, and Rao’s V. All measures can be used in stepwise, forward, or reverse selec-
tion algorithms.

TABLE 30. Discriminant variable rankings (all classes, N=2048).

Wilks® Mahalanobis Unexplained
Rank Lambda Distance F-ratio Rao's V Variance
1 Rd2 Rd4 Rd4 Rd2 Rd2
2 Rd3 Rd8 Rdl Rd4 Rdl
3 Rd7 Rd5 Rd5 RdS Rd4
4 Rd1 Rd7 Rd8 Rd7 Rd5
5 Rd4 Rd9 Rd7 Rdi Rd3
6 RdS Rd6 Rd9 Rd6 Rd6
7 Rd6 Rd10 Rd6 Rd3 Rd8
8 Rd8 Rdl Rd10 Rd9 Rd7
9 N2 N2 N2 Rd8 Rd9

176



TABLE 30. Discriminant variable rankings (all classes, N=2048).

Witks’ Mahalanobis Unexplained
Rank Lambida Distance F-ratio Rao’s V Variance
10 RdY Rd3 Rd3 N2 N2
11 Rd10 Rd2 Rd2 Rd10 Rd10

Another way of ranking the discriminant variables is to first define the set of
classes on which the analysis is performed, and then use the five available methods for
discriminant variable selection. For example, the primary task of the classifier is to differ-
entiate speech from non-speech signals. Therefore we have a two-class system. discrimi-
nant variable evaluation was performed on all of the signals, with all non-speech signals
lumped together. Table 31 clearly shows that the discriminant variables are ranked simi-
larly by all five methods. It is intevesting to note that N2 is the most valuable variable for
discriminating speech from non-speech, and the first lag of the ACS is the next best fea-
ture. Benvenuto also used the N2 variable, however he intended it to be used for separat-
ing various VBD modulation methods. Also, Benvenuto relic 1 upon the second lag of the
autocorrelation sequence as his primary discriminant for speech vs. non-speech discrimi-
nation when it may have been better to select the first lag. In fact, lags one, four, and nine
all are ranked higher than lag two, according to Table 31. This is true regardless of the dis-
criminant variable evaluation method used. (If Wilks’ lambda is smaller for one variable
than another, that does not necessarily imply that the misclassification rate will also be

lower for that variable used alone.)

TABLE 31. Discriminant variable rankings (speech vs. non-speech, N=2048).

Wilks® Mahalanobis Unexplained
Rank Lambda Distance Smallest F-ratio Rao’s V Variance
1 N2 N2 N2 N2 N2
2 Rd9 Rd9 Rd9 Rd9 Rd9
3 Rd4 Rd4 Rd4 Rd4 Rd4
4 Rdl Rd1 Rd1 Rdl Rd1
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TABLE 31. Discriminant variable rankings (spcech vs. non-speech, N=2048),

Wilks® Mahazalanobis T Unexplained

Rank Lambda Distance Smaliest F-ratio Ruo's V Variunce

s Rd2 Rd2 rd2 | Rrax | Rz

6 Rd8 Rd8 RdR RS T Ras

7 Rd3 Rd3 Rd3 Rd3 TR

8 Rd10 RE10 Rd10 RA10 RA0

9 Rd7 Rd7 Rd? Rd7 7 TRar

10 RdS Rd5 RdS RdS TTRes

11 Rd6 Rd6 Rd6 Rd6 T RA6

Another interesting case is to study the discriminant variable rankings it only non-

speech signais are considered. Table 32 shows the results where the speech class (cight) is

removed from the analysis.

TABLE 32. Discriminant variable rankings (all non-speech classes, N=2648).

Wilks’ Mahalanobis ; Unexpluined
Rank Lambda Distance F-ratio Rao's V Variance
1 Rd4 Rd4 Rd4 Rd4 TR
2 Rd2 Rd2 RdS Rd2 T Rd4
3 Rd5S Rd6 Rd2 Rd6 TTRAS
4 Rd6 Rd5 Rd6 Rd8 TR
5 Rd7 Rdl Rdl Rd3 RdI )
6 Rd3 Rd3 Rd3 Rd7 RdA3
7 Rd8 Rd10 Rd10 Rd10 Rd7
) Rdl Rd8 Rd8 RdS RA10
9 Rd10 Rd7 Rd7 Rdl TTRaS
10 N2 Rd9 Rd9 Rd9 RV
11 Rd9 N2 N2 N2 N2

Note that the N2 variable is almost the least effective variable for classification of

VBD signals, yet it is the most effective variable for separating speech from non-speech

signals. Also note that Rd4 is considered the most effective variable for non-speech signal

discrimination. A closer examination of the results from SPSS indicates that Rd4 has the

largest Mahalanobis distance between classes 4 and 5, which are the problem classes. This

explains the importance of Rd4.
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Now say that we are limited in the number of discriminart variables that we can
select. A possible ad hoc strategy for v:ilriable selection could be choose the best variable
from each of Table 31 and Table 32. This would result in using N2 and Rd4. Now allow
the sclection of one more variable, and say it has to be one of the top five for both tables.
This leaves us with Rd2. So, our total discriminant set could be {Rd2, Rd4, N2}. If we
compare this discriminant variable set with the variable rankings for all classes in
Table 30, we can see that Rd2 is a good choice with a rank of #1, and Rd4 is also good
since it is ranked #4. However, N2 is ranked very low in the table. This can be explained
by the method of discriminant variable selection used. All classes have equal prior proba-
bilities, and equal costs for misclassification. In fact, the separation of speech from non-
speech is very important and this should be reflected in the value of the various discrimi-
nant variables. Thus we should still include N2 in the computation of the discriminant
functions since it is critical for the separation of speech from non-speech as indicated in

Table 31. We will test this set later.

At this point, we have determined what type of discriminant function is necessary
to obtain both good and optimal classifier performance (linear and quadratic). We have
also determined the relative merits of each discriminant variable, and we have an ad hoc
method for sclecting a subset of variables for consideration. Next we study the classifier
performances using different discriminant functions, different discriminant variable
choices, different values of N, and finally we will give an estimated classification rate

study for an actual classifier.
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5.3.7.3 Discriminant Function Evaluation

We have a choice of discriminat;t functions to use. We can use linear, quadratic, or
comtined discriminant functiors. SPSS will always use linear discriminant functions,
however it can be forced to utilize the separate classes covariance matrices when perform-
ing classification using the linear discriminant functions. SPSS then *'warps™ the discrimi-
nant functions (to obtain their “‘canonical” form) to reflect the correlation between
variables [71]. This is not necessarily equivalent to using quadratic discriminant functions;
however, it can be equivalent if certain criteria are met. It is a close approximation to ¢ua-
dratic discrimination and is called “pseudo-quadratic™ in this thesis. We will use results
fiom this method in place of iiie optimal quadratic discriminant functions. For compari-
son, we will use vaabics cutained from N=256, 124712 cases are in the data set, and all
of the discriminant varighies will be included Wi ssadyais. We expect to see a marked
improvement in the classification of classes four and ive when the pseudo-quadratic
method is used. Table 33 shows the results for the linear classifier, and Table 34 shows the
results for the pseudo-quadratic classifier. The lincar case has an overall correct classifica-
tion rate (P,) of 91.14% if we assume that equal numbers of data samples are included in

each group. The pseudo-quadratic case has P, = 98.2%.

TABLE 33. Classification performance (linear, N=1024, all variables).

Predicted Group

Actual

Group 1 2 3 4 5 6 7 8 9
1 100.0% 0% 0% 0% 0% 0% 0% 0% 0% |
2 0% 100.0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0%| 100.0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0%| 945%| 5.5% 0% 0% 0% 0%
5 0% 0% 0%| 18.4%| 81.6% 0% 0% 0% 0%
6 0% 0% 0% 0% O%| 988%| 12% 0% 0%
7 0% 0% 0% 0% C%|  1.1%| 98.9% 0% 0%
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TABLE 33. Classification performance (linear, N=1024, all variables).
8 2% 3% 439% « 7% 2% 0% 1% 93.3% 9%
9 0% 0% 0% 0% 0% 0% 0% 0% | 100.0%

L~

TABLE 34. Classification performance (pseudo-quadratic, N=1024, all variables).

Predicted Group

Actual

Group 1 2 3 4 5 6 7 8 9
1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% | 100.0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% | 100.0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0%| 99.7% 3% 0% 0% 0% 0%
5 0% 0% 0% 1.3%| 98.7% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100.0% .0% 0% 0%
7 0% 0% 0% .0% 0% 0% | 100.0% 0% 0%
8 0% 0% 0% .0% 0% .0% 0% | 100.0% 0%
9 .0% 0% 0% 0% 0% 0% 0% 0% | 100.0%

As predicted, classes 4 and 5 are the most difficult to classify using the linear
method. When the pseudo-quadratic method is used, classes four and five are resolved
more reliably. The P, values for groups four and five improve from 94.5% and 81.6% in

the linear case, to 99.7% and 98.7% in the pseudo-quadratic case. This result agrees well

with the theoretical predictions.

It is also interesting to note that speech signals are better classified when the
pseudo-quadratic method is used. The marked difference between speech classification
performances for linear and quadratic methods is not seen when N = 2048. This can be
explained if we note where the misclassified speech segments (class eight) are allocated.
The misclassified segments are usually allocated to the 3rd group, which is V.34 VBD.
The PSD of group 3 is very similar to that of white noise being transmitted through the

network, and being filtered at the various codecs, etc. When N is reduced to 256 samples,
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the total segment length is only 32 milliscconds long. Thus, the unvoiced “noise™ parts ot
speech will easily be caught in this shm:t time. For example, consider the sound a person
makes when saying the word “sheesh”. When a perzon forms the “sh™ sound, the signal
characteristics are similar to those of a noisy VBD signal. So, it is casy to see why speech
can be misclassified as group 3 VBD. This effect is worse when N is short, since it is more
likely that the entire duration of a signal segment may be a noise-like sound. As N

increases, it is more likely that a mix of vowels and consonants will be sampled and thus

classification is easier.

There is another result that the above two tables lead us to. Most of the classes are
discriminated very well using the linear method. For example, using the pseudo-quadratic
method on classes 1, 2, and 3 gains practically no additional classification performance,
since the performance is already very high. Classification rates for classes 6, 7, and 8 are
improved when using the quadratic method, bt the performance gain is significantly
reduced when slightly larger values of N are used. The critical classes that require qua-
dratic discrimination then are classes 4 and 5. This leads us to the conclusion that a step-
wise classification method may be a good alternative. This method would retain the
simplicity of implementation of linear discriminant functions, while gaining the accuracy
of the quadratic discriminant functions. Recall that computing quadratic discriminant

functions for several variables and several classes can require considerable computation.

5.3.7.4 Classification Performances for Varying Combinations of Variables

In section 5.3.7.2 we determined a discriminant variable ranking structure. Now
we test these rankings by using only highly ranked variables for inclusion in the discrimi-
nant functions, and measure the resulting probabilities of correct classification. In each
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case we use long signal segments (N = 2048), all classes of signals, linear discriminant

functions, and the twp three variables ranked by the Wilks’ lambda method to give a fair

comparison.

TABLE 35. Best non-speech variable set {Rd2, Rd4, Rd5} (all signals).

Predicted Class
Actual
Class 1 2 3 4 5 6 7 8 9
1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 1 100.0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0%| 99.4% 0% 6% 0% 0% 0% 0%
4 0% 0% 0% 80.7% 19.3% 0% 0% 0% 0%
5 .0% 0% 0%| 143%) 85.7% 0% 0% 0% 0%
6 0% 0% 0% 0% 0%| 100.0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0%| 100.0% .0% 0%
8 2% 1% 1.0% 6% 0% .0% 0% 87.2%| 10.9%
9 0% 0% 0% .0% 0% 0% 02 0% | 100.0%
TABLE 36. Best non-speech variable set {Rd2, Rd4, Rd5} (non-speech signals).
‘ Predicted Class
Actual
Class 1 2 3 4 5 o 7 9
1 100.0% 0% 0% 0% 0% 0% 0% 0%
2 0%| 100.0% 0% 0% 0% 0% 0% 0%
3 0% 0% | 100.0% 0% 0% 0% 0% 0%
4 0% 0% 0% | 93.7% 6.3% 0% 0% 0%
5 0% 0% 0% 6.7%| 93.3% 0% 0% 0%
6 0% .0% 0% 0% 0% | 100.0% 0% 0%
7 .0% 0% 0% 0% 0% 0% | 100.0% 0%
9 0% 0% 0% 0% 0% 0% 0% | 100.0%
TABLE 37. Best speech vs. non-speech variable set {Rd4, Rd9, N2} (all signals).
Actual Predicted Class
Class 1 2 3 4 5 6 7 8 9
1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%
2 O%| 93.7% 0% 0% 0% 4.7% 1.6% 0% 0%
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TABLE 47. Best speech vs, non-spéech variable set {Rdd4, Rd9, N2} (all signals).

Actual ) Predicted (‘lussw_‘ S -

Class 1 2 3 4 5 6 7 8 9
3 0% 0%|  99.8% 2% 0 ool o el o
4 0% 0% 0% B0.6%| 19.4%| o] ou]| o 0%
5 0% 0% 0% 2559 74.54 ol o ol o
6 0% 0% 0% 0% 0%l 10000 ow] oo 0
7 0%| 14.2% 0% 0% 0% 0% s 0%
8 1.7% 1%|  2.1% A% % a0 se2w| g
9 0% 0% 0% 0% 0% ool ool ot oo

TABLE 38. Best specch vs. non-speech varinble set {Rdd, Rd9, N2} (all

signals).
Predicted Class
Actual Class 1 (non-speech) T 2 (speech)
1 (non-speech) 100.0% 0%
2 (speech) R.1% 91.6%

TABLE 39. Best variabie set for all signals {Rd2, Rd3, Rd7} (all signals).

Actual Predicted Class o

Class 1 2 3 4 5 6 7 8 9
1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% | 100.0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% | 100.0% 0% 0% 0% 0% ol o
4 0% 0% 0%| 50.3%| 49.7% 0% 0% 0% o
5 0% 0% 0%| 39.5%| 60.5% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 99.2% 8 0% 0%
7 0% 0% 0% 0% 0% 6%| 99.49.] 0% 0%
8 0% 0%|  22% 1% 2% 0% 0%| 86.9%| 105%
9 0% 0% 0% 0% 0% 0% 0% 0% | 100.0%
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TABLE 40. Best heuristically selected variable set {Rd2, Rd4, N2}.

Predicted Class
Actual
Class 1 2 3 4 s 6 7 8 9
1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0%| 70.2% 0% 0% 0% 4% | 29.4% 0% 0%
3 0% 0% 99.6% 3% 1% 0% 0% 0% 0%
4 0% 0% 0% | B80.8%| 192% 0% 0% 0% 0%
] 0% 0% 0%} 253%| 74.7% 0% 0% 0% 0%
6 0% 0% .0% 0% 0% | 100.0% 0% 0% 0%
7 0% 6% ] 0% 0% 0% D% 99.4% 0% 0%
8 0% 0% 2.5% 4% 0% 0% 0%| 97.2% 0%
9 0% 0% 0% 0% 0% 0% 0% 0%\ 100.0%

5.3.7.5 Classification Performances for Varying N

The segment size parameter N (samples) is critical to the performance of the over-
all classification system. Thus it is straightforward to see that by increasing N, we reduce
the amount of variance in the discriminant variables. In this section we present results
demonstrating the effect of varying the value of N. It was found that the usable range of N
is {32 <N <2048} , so the values of N tested are {32, 64, 128, 256, 512, 1024, 2048}.
Note that the values of N used for testing were all powers of two. This is partly since N
must be evenly divisible by the subsegment length L=16. It was decided thatif Nis a
power of two, then FFT computations would perform optimally on the signal segments

shouid the FFT be required.

Four cases were studied, with N varied for each case. Case 1 uses linear discrimi-~
nant functions and all of the available discriminant variables (N2, Rd1, Rd2,..., Rd10).
Case 2 uses pseudo-quadratic discrimination and all of the available discriminant vari-

ables. Case 3 uses linear discriminant functions and a small subset of the discriminant
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variables {N2, Rd2, Rd4}. Case 4 uses pseudo-quadratic discriminatio~ and s small subset
of the discriminant variables {N2, Rd2, Rd4}. The results from eacls  iw+or izre <™ nlayed in
Fig. 60 and Fig. 61 using bar charts. The bars in each chast represent the mean classifica-

tion probability over all classes.

' VARS: 3.00 {Rd2, Rd4, N2}
100 e
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FIGURE 60. P_ vs. N using three variables, linear and pseudo-quadratic functions.
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FIGURE 61. P, vs. N using all variables, for linear and pseudo-quadratic functions.

The bar charts clearly show the advantage of using pseudo-quadratic discriminant
functions over linear functions. The relationship between the size of N ar... the classifica-
tion rate is also illustrated. It is important to note that the mean classification rate is not
necessarily a good indicator of the overall classification performance. Often only a small
number of classes in the overal! classification group set are poorly classified; this results in
a low mean classification rate e¢ven though most of the classes are correctly classified
nearly 100% of the time. Refer to Appendix N for the standardized canonical discriminant

function weights and individual class performances corresponding to the results presented

in this section.

5.3.7.6 Estimated Actual Classification Performance
Here we try to estimate the performance of an actual implementation of our classi-

fier. One potential problem with projecting classification performance from test data is

187



that the classifier should not be develeped from the same data set as it is tested on. If this
were to be done then the model developed for classification fits the sample data better than
it would fit another set of sample data from the sarne population. This leads to an inflated

prediction of classification performance over that achievable -sing a true classitication

cystem [54].

A popular method for estimating actual classification rates is called cross-valida-
tion. The method simply requires independent data sets for training and evaluating the
classification algorithm. If only one data set is available, it can be divided into two equally
sizes subsets, or the subsets could be of different sizes. The best approach is based on the
nuimber of data samples available. We chose to separate a single large data set into two
equal subsets, using random sample file selection to determine which samples were placed
in each subset. This separation method was used since adjacent samples from a single sig-
nal file may be highly correlated and thus they should belong to the same subset. The

training and evaluation subsets should be as independent as possible.

The discriminant functions are formed while using one subset as the training set.
Using the other subset, the discriminant functions already generated are used to evaluate
classification. Shrinkage is the drop in apparent accuracy when comparing the classifica-
tion performances obtained by cross-validation to those obtained in the usual way. A good
classifier should have a small amount of shrinkage [S4]. Some cross-validation runs are
summarized in Table 41. The second row of the table shows a negative shrinkage value.
This value indicates that the test set signals were better classified than the training set sig-

nals. From the table we can conclude that there is no substantial shrinkage for the signals
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considered. This conclusion indicates that the discriminant variables and functions that we

selected are strong indicators of the signal characteristics that we wish to classify.

TABLE 41. Cross-validation shrinkages.

Discriminant | Discriminant | P, Training P Test Set
N (samples) Variables Function Set (%) (%) Shrinkage (%)
256 all linear 78.33 78.04 0.29
256 all pseudo-gquadratic 87.27 88.85 (-)0.58
2048 all linear 95.76 95.58 0.18
2048 all pseudo-quadratic 99.95 99.89 0.06

5.3.8 Summary of Results

In this section we present several plots which illustrate the discrimination perfor-

mance for each of the nine classes. The controlled factors are N, the discriminant variables

(either all eleven or a subset of three {N2, Rd2, Rd4}), and the type of discriminant func-

tion (either linear or pseudo-quadratic). Each plot shows the probability of correct classifi-

cation P_ on the y-axis. The x-axis represents the nine different signal classes. The

probability of correct classification given a particular N value is plotted for each class, and

connected by a line. By observing the plots we can determine which of the controlled fac-

tors affect each class the most. Note that the maximum value of P is 100%.
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The plots show that the most problematic classes are numbers three, four, tive, and
six. When all of the available discrimin:dnl variables are used and a pseudo-guadratic dis-
criminant function is used for classification, N must be at least 512 samiples to guarantee
98% classification accuracy for all groups. See Fig. 65 for an illustration of this point. If
we force the classifier to use only linear discriminant functions, N must be as large as pos-

sible for accurate classification over all classes.

Next we present plots that illustrate the characteristics of each discriminant vari-
able. The box charts below show the median, interquartile range, extreme values, and out-
liers (shown as open circles) for each discriminant variable versus each classification
group. (Each quartile contains 25% of the sample cases. The boxes in the charts contain
two quartiles and thus 50% of the total sample cases.) Box charts are useful for determin-
ing which variables separate the different classes best. Since the correlations between vari-
ables are not shown, these plots do not indicate the relative effectiveiress of the variables
for a quadratic discriminant function system. A purely quadratic discriminant function

does not utilize the mean values of the discriminant variables. In all cases N=2048.
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The box plots in Fig. 66 demonstrate N2’s ability to discriminate all nine classes of
signals. We already know from earlier analysis that N2 is not useful for discriminating
between various VBD signals. This is verified by the plots. For example, the boxes plotted
for classes one and two are nearly identical. The remaining VBD classes (3, 4, 5,6, 7, 9)
have boxes that overlap with those of classes one and two. These overlapping boxes indi-
cate that a linear discriminant function based on N2 will not separate VBD signals from
one another very well. On the other hand, the box plot for speech signals (class eight) is
clearly separated from the VBD signals, indicating that a linear discriminant function
using N2 as a discriminant variable will easily separate speech from VBD signals. The

remaining box plots are contained in Appendix O.
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5.3.8.1 Robustness Test

In a previous chapter it was meniioncd that four voice signal recordings were made
of people trying to **fool” the classifier. In this section we present the results of testing
those signals. The signal segment length used for these tests was N = 1024, Two different
classifier configurations were tested. The first contiguration used three discriminant vari-
ables {Rd2, Rd4, N2} with linear discriminant functions. The second configuration used
all available discriminant variables {Rd1, Rd2,...,Rd10, N2} and quadratic discriminant

functions. These two configurations are intended to represent the worst can best types of

classifiers.

In the tests we want modem “mimicry” to be caught. First of all, we know that a
person cannot make a particular sound for an indefinite amount of time. People must
breathe. Machines like modems and facsimile machines have very constant power outputs
during the bulk of their communications. People have a very difficult time holding sounds
for an extended period of time. However, it is interesting to see what the short-time classi-
fication performance of the two configurations is for these “bad” signals. Note that the

classifier *vas trained using “nice” speech signals.

The first classifier configuration was tested:.on the mimicked signals. The results
indicated that the signals were frequently misclassified. When a person imitated a modem,
they were often misclassified as class 1. This class corresponds to a low-speed modem sig-
nal. When the whistle recording was tested, it was frequently misclassified as class 3. We
give an explanation for this later. In all cases the results were not consistent. The signals
were classified as one particular class for a short number of intervals, and then the classifi-

cation result would change. It is reasonable to assume that different people will sound like
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different types of modems when they try to mimic the noise-like sound that modems

make.

In the second configuration, far better results were obtained. The signals in which a
person tried to mimic a modem were never misclassified. 100% of these signal segments
were correctly classified as speech. The signal in which the talker whistled was misclassi-
fied 5% of the time as class three. This can be explained as follows: When a person whis-
tles into a microphone in their telephone handset, they must blow quite hard. The rushing
of air over the microphone opening causes broad spectrum noise to be combined with the
talker’s whistle. Also. when a person begins to whistle, the beginnings of the whistle usu-
ally just come out as a rush of air with no tone. The whistler then corrects his/her mouth
shape to force a whistle ione. This noise is then filtered by the telephone network codecs,
and the resuit looks very much like the spectrum of a V.34 modem (class 3). A close
examination of the whistle recording revealed that there were several instances where the
talker had to stop for breath, or momentarily lost tone. These are the points in time that

correspond to misclassifications as class 3.

We conclude that while people may be able to mimic modem sounds for a short
duration, they cannot continue successful mimicking for very long periods of time. When
they stop for breath, or change the shape of their mouth in a small way, they will be
caught. The constant nature of modems and FAX signals is not duplicable by humans
without the aids of recording devices. We have also seen that if the classifier is given
enough discriminant variables and allowed to use quadratic discriminant functions, people

will have a very difficult time fooling the classifier into misclassifying human generated

signals as VBD signals.
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5.3.8.2 Real-time Computation

The discriminants described abo‘vc are appropriate for real-time computation due
to their simple summation structures. Other elements of a complete classifier include a
power threshold monitor and a voltage amplitude monitor. These are used to ensure that
the signal segment being tested is not silence, such as the periods of time between voiced
words in speech. See Benvenuto’s paper { 6}, ot section 2.1.3, for pseudo-FORTRAN code
for computing the discriminants. The front end of our algorithm contains a full-wave recti-
fier stage rather than a Weaver demodulator as in Benvenuto’s algorithm. In order for the
discriminants to be useful, a classification method must be selected. A block diagram of
the system is shown in Fig. 67. Note that not all of the discriminant variables shown in

Fig. 67 must be included in a particular system design.
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PCM
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Linear S 1gn Bit
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Decision
%  Output

Classifier

FIGURE 67. Block diagram of classification system.

5.4 Classification of Companded Signals
Up to now we have assumed that all monitored companded signals will be con-

verted to linear before the discriminant variables are evaluated. The process of converting
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from p-law to linear may be implemented using a table look-up. Since there are 256 possi-
ble codewords that are in the code, we r.equire 256 table entries for the conversion. Also,
8-bit p-law PCM codewords expand to 12-bit linear words. Therefore, we will need
approximately 512 bytes of table storage. Each codeword conversion requires a single ref-
erence to the conversion table. While this method is very fast, it requires a significant

amount of DSP on-chip memory.

We can use other methods to reduce the amount of memory required for the con-
version. These methods are based on the formation of linear segments from the compand-
ing table. For example, the p-law table has 16 segments, each of which contains 16 levels.
The quickest algorithm we were able to find required 9 TMS320 series DSP operations to
perform the conversion of one codeword to its linear form. This method was discovered in
a public software archive at Texas Instruments. We can conclude that without using a
look-up tabie, approximately 10 times more operations are required to convert from a
compandad to a linear signal. Since the discriminant variables themselves may each only
require about three or four operations per sample to calculate, we obviously need to per-

form the linearization task in as few cycles as possible.

We iested a novel approach to classifying companded signals without performing
linearization. In order to use the companded version of a signal for classification, the bit
ordering must be altered somewhat. Consider the pt-law code table that is abbreviated in
Fig. 68. The binary numbers represent the codewords as they would be received within a
network. If we simply plot the values of the companded PCM sample stream, the result
will not look like the original signal since the positive and negative portions have been

separated. If we could invert the bits marked in Fig. 68 then the resulting sample stream
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would have large values for maximum positive words, and small values for maximum
negative words. The most significant bit could then be used as the sign bit. It this signal
representation was plotted in time it would look very much like a “squashed™ version of

the original time-series signal. The peaks of the signal would be smaller due to the com-

panding operation.

positive 0| 1,111 1111 |
] 1
| ¥
L) I I
positive max | 1000 0000 ™ invert
negative 0| 0111 1111 these
bits

negative max | 0000 00900

FIGURE 68. Abbreviated p-law code table.

Flipping the bits in the top half of the codeword matrix can be performed using a
bit-wise inversion operation. One possible method is to XOR the observed codeword with
(0111 1111),. Note that this operation must only be performed on the codewords with a
most significant bit equalling one. An additional bit test operation may be required to

ensure this; however, some processors provide bit test and set operations in a single

instruction.

We implemented an algorithm for modifying companded samples as shown using
MATLAB to test the effects of classifying companded signals. The discriminant variables

{Rd1, Rd2,..., Rd10, N2} were calculated using N=2048, L=16, and P7,=1089. Four clas-

sifier configurations were used: (1) using linear discriminant functions and three variables
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{Rd2, Rd4, N2}, (2) using pseudo-quadratic discriminant functions and three variables
{Rd2, Rd4, N2}, (3) using linear discrir;xinant functions and all available variables, and
(4) using pseudo-quadratic discriminant functions and all available variables. The same
nine level class structure was used, as described earlier. Results are shown in Table 42 for
both linearized and companded signal classification performances. The results for the lin-

earized case are taken from section 5.3.7.5.

TABLE 42. Classification results for companded signals.

Oversall Probability of Correct Overall Probability of Corizct
Configuration Classification (Linearized) Classification (Companded)
1 91% 87.27%
2 97% 93.70%
3 98% 95.88%
4 100% 97.92%

We can see from the table that the results have degraded. A closer inspection of the
results reveals a general reduction in classification performance across all classes of sig-
nals. Speech signals appear to be affected slightly worse than other classes. We conclude
that if conserving memory space is critical in a particular classifier design, it is possible to
perform a single operation on each companded PCM to allow the companded signal to be
classified directly. Classification accuracy is reduced by approximately 4% for linear dis-
criminant function classifiers and about 2% for pseudo-quadratic classifiers. Otherwise, at
the expense of dedicating 512 bytes of memory to a look-up table, we can classify the lin-

earized signals using a conversion method that only requires one operation per PCM sam-

ple.
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Chapter 6

6.0 Carrier Detection, Timing Recovery, and Other Methods
The classification methods discussed so far can discriminate speech from VBD,

and subclassify VBD signals according to their PSD characteristics. We also studied the

problem of classifying VBD signals according to their QAM constellation maps. The

results from this study, and other less important methods, are presented in this chapter.

6.1 Carrier Detection and Timing Recovery

Discriminant variables based on the autocorrelation sequence of a signal can only
resolve signal types that have different power spectra. Therefore, we require other meth-
ods to discriminate QAM signals that differ only in their constellation patterns. The
advantage of knowing a signal’s constellation pattern is that then the precise bit rate of the

signal can be determined. If necessary, the encoded binary bit-stream signal could even be

recovered.

One possible approach to constellation discrimination is to demodulate the
received signal and recover the timing. The resulting signal would have a two-dimensional
scatter diagram. This diagram could be studied for patterns indicating the number of con-
stellation points in use, and their orientation. The carrier frequency used can be easily esti-

mated since there is a limited number of carriers present in VBD communications.

In the context of data transmissions, carrier detection is the process of generating
a clock at the receiver that corresponds to the transmitter carrier in both frequency and

phase. Timing recovery refers to generating a clock at the receiver that corresponds to the
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transmitter baud clock, i.e. the symbol rate clock. Both of these clocks must be generated
at precisely the correct frequency and pilase with their transmitter counterparts to success-
fully receive the transmitted binary bitstream. In order to conserve power, no pilot tone is
provided for this task. Since no spectral impulse is present at the carrier frequency, this
method is known as suppressed carrier as opposed to large carrier. Large carrier signals
incorporate a strong spectral component at the carrier frequency to permit easy carrier

recovery using a narrow band-pass filter.

The issues of recovering the carrier and baud clocks is the subject of entire refer-
ence books, and several chapters in most digital communications books. A modem system
designer need only consult a reference book and select an established method for carrier
detection rather than develop a new one (if that is possible). For this reason, we will give

only a short overview of the standard methods.

There are several different ways of performing this task. Normally, each clock is
generated using information recovered from the other. For example, information from the
symbol timing recovery circuitry is used to help lock the phase of the carrier. The ITU
specifies that for most protocc.. s detection must still be possible even if the carrier is off-
frequency plus or minus 7 hertz at the receiver. The modulation rate (baud rate) of the
transmitter must be within plus or minus 0.01% of the nominal value. By using this infor-
mation, most established detection methods are based on the fact that the carrier and baud

rate do not fluctuate very much. This way, Phase Locked Loops (PLLs) or Band Pass Fil-

ters (BPFs) can be used effectively.
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6.1.1 Forward-Acting Methods

This method of carrier detectiori is based on a simple strategy [11]. 1If a QPSK or 4-
QAM signal is to be considered, there are only 4 possible constellation points on a circle
separated by multiples of /2 radians. Thus, if the incoming signal is “frequency quadru-
pled”, the phase changes in that signal would only be in multiples of 2x, and the signal
would contain a discrete component at four times the carrier frequency. A suitable fre-
quency quadrupling operation is performed by a fourth power circuit. Alternatively, two
squaring circuits in series could be used if a fourth power circuit is too expensive to imple-
ment. A BPF centered at 4*F, could be used to filter out the component cosresponding to
the quadrupled carrier. Then the carrier could be recovered by frequency division, say
using a phase-locked loop circuit. This simplistic method actually works well for small
QAM constellations, and is not overly difficult to implement in hardware. However, cer-
tain signal patterns may not yield the 4*F component.

F, 2F, 2F, 4F, 4F,
x2 || BPF o] X2 |—»! BPF |—»

FIGURE 69. Forward-acting carrier recovery circuit,

This method can be expanded to larger constellations; however, the resulting com-

ponent at 4*F_ will not be the only strong component of the signal. Consequently phase

jitter would likely be a serious problem. For this method to work with 16-QAM, a precise

PLL must be used to recover the 4*F, component. The trade-off of this method is theoret-

ical simplicity versus the complexity of an extremely narrowband PLL.
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6.1.2 Feedback Methods

Feedback methods are based on. the generation (or synthesis) of a low-frequency
control signal input into a VCO (Voltage Controlled Oscillator) that produces an estimate
of the carrier. This low-frequency signal is generated from the phase error of the generated
estimated carrier signal with respect to the received modulated carrier. There are several

reasonable ways of performing this type of detection, so only one will be briefly discussed

here.

One method, called demodulation/remodulation, is performed by using the locally
generated carrier to first demodulate and then remodulate the limited baseband signal and
then compare the remodulated passband signal to the original passband signal. A phase
error is generated from this comparison and subsequently used to control a VCO to correct

the frequency of the generated carrier. This method is illustrated in Fig. 70.

Slicer
LPF : _:F X
Received j z
Signal ‘+ -90° + X
(Passband) # +
X | LPF : ‘]L— | X
@ Ny LPF
Carrier Clock

VvCO

FIGURE 70. Feedback carrier recovery circuit using demodulation/remodulation.
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6.1.3 Decision-Directed Methods

Decision-directed methods are z;n improvement over both forward-acting and
feedback methods. The disadvantage of feedback methods is that they are subject to inter-
symbol interference as well as signal distortion noise, hence the received signal may not
be able to provide enough information to successfully generate a carrier frequency clock.
This is a result of the use of non-rectangular pulse shaping filters at the transmitter and

quantization noise in the telephone network. This problem can be avoided by decision-

directed methods.

The main idea of decision-directed methods is that the symbol timing is extracted
before the carrier is recovered, as shown in Fig. 71. Here, the phase error is only estimated
at the symbol times, or where there is a maximal eye opening (referring to the eye diagram
of a signal). This way, since there should be minimal intersymbol interference, the phase
error estimate is only dependant upon the current symbol. Recall that in feedback meth-
ods, the phase error calculation is based on an unpredictable combination of past, present,

and future symbols. Thus the problem of carrier detection is now dependant upon first

solving the timing recovery problem.



Sample and Hold

Reccived
Signal
(Passband)

LP

LPF

,\/ LPI L
Carrier Clock

FIGURE 71. Basic decision-directed carrier recovery loop circuit.
6.1.4 Timing Recovery
The problem of recovering symbol timing can be solved in two general ways, with
either a BPF or a PLL {11]. Timing recovery is normally only performed on a demodu-
lated signal at the baseband. However, for conventional QAM, it may be performed on the
pass-band signal. This is an important feature of QAM, allowing the carrier detection to be
performed after timing recovery. Again, as with carrier detection, timing recovery can be

performed by forward-acting systems or feedback systems.

6.1.5 MATLAB Algorithm Implementation

Consider a sample application: V.29 signals use a form of modulation that can be
considered QAM. (The constellations of V.29 signals are not rectangular.) Either 16, 8 or 4
points are used, depending upon which mode the V.29 transmitter is using. In all three

modes the carrier frequency is 1700 Hz and the symbol rate is 2400 symbols/second. The
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transmitter carrier is allowed to deviate from the nominal value by plus or minus onc Hz,

and the network frequency offset is rareiy over one Hz. (A deviation greater than plus two
Hz or minus 1 Hz occurred in 0.43% of all network connections according to [12]. All sta-
ble frequency offsets observed were the result of a single frequency division multiplexing

CO). Therefore, we can say that the carrier frequency used at the receiver should not devi-

ate from the nominal value by more than 1 Hz.

If the carrier signal used at the receiver was slightly out of phase with the transmit-
ter carrier, the constellation pattern would have a fixed phase offset. If the receiver carrier
was not identical in frequency to the transmitter carrier, then the constellation at the
receiver would be rotating at a constant rate. The scatter plot in Fig. 72 illustrates what a
16-point V.29 constellation looks like if the receiver carrier frequency is 1 Hz higher than
it should be. Note that it is still possible to see rings in the constellation. If we now plot the
histogram of the symbol vector magnitudes, as shown in Fig. 73, a pattern is evident. The
peaks in the histogram correspond to the constellation symbol vector magnitudes. For the

V.29 16-point constellation there are three unique symbol magnitudes.
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The receiver baud clock must be precisely locked in frequency and phase with the
received signal timing, otherwise the si:gnal symbols will not be recovered. If there is a
constant difference between the frequency of the transmitter and receiver timing clocks,
the constellation will appear to move in and out of “focus™ at the receiver end. Any devia-

tion from the optimal slicing phase will result in a dispersion of the constellation points.

The proposed technique is as follows: (1) Demodulate the received signal using
the nominal 1700 Hz carrier frequency. (2) Use a forward-acting timing recovery method
to generate a symbol rate clock. (3) Slice the demodulated signal using the generated sym-
bol rate clock. (4) Generate vector amplitude histograms (where the amplitude is the vec-
tor length of the complex valued demodulated signal symbol) to be used for classification.

Next we discuss the MATLAB tests that were developed for classifying V.29 16- and 8-

point constellations.
e-j21tF ct
Received :
. LPF Normalize F(t

?ﬁ%::;rize o é() "l @ 2000 Hz Power (1)
Notch ) Classifier
Filter Slice Classify [ Output
@ F;

FIGURE 74. Generalized V.29 constellation classifier.
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6.1.5.1 Demodulation

As shown in Fig. 74, the demod.ulation stage involves shifting the passband signal
down to the baseband by multiplying by a nominal carrier. Then the shifted signal is fil-
tered using a low-pass filter (LPF) with a cutoff at 2000 Hz. The resulting signal is the

complex-valued baseband GAM signal.

6.1.5.2 Timing Recovery

The baseband QAM signal is normalized to unity power in order to for the classi-
fier to be immune to the relative losses of each channel monitored. Next a nonlinear oper-
ation F(t) is performed on the signal in order to generate a frequency component at the
symbol rate. The nonlinear operation can be either an absolute value, square, or fourth
power function. In the case of QAM signals, the absolute value operation yields the stron-
gest spectral line at the baud rate [11]. The spectral component is then filtered using a nar-
row band-pass filter. The resulting signal is a sinusoid locked in phase and frequency with
the QAM symbol rate clock. This is known as forward-acting timing recovery, as men-
tioned earlier. An implementation of forward-acting timing recovery for QAM signals is

given as MATLAB code in Appendix P.

6.1.5.3 Slicing

After compensating for delays within the timing recovery subsystem, the gener-
ated symbol rate clock is used to provide the timing for a slicer. The slicer operates by
sampling the baseband signal at each symbol interval. In order for sampling to occur
between regular sample intervals (at the 8000 Hz rate) the signal must be interpolated. The

output of the slicer can be plotted as a two-dimensional scatter diagram. If the system is
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performing properly, and the channel SNR is sufficiently high, the QAM constellation in

use is visible in the scatter diagram.

6.1.5.4 Classification
Finally, the output from the slicer can be classified. There are many possible meth-
ods of performing this stage. In the case being considered, simply monitoring the ampli-

tude histogram of the sliced baseband QAM signal is sufficient. Signal segments of N

samples are used as the basis for forming decisions.

The most accurate and general method that was tested was to compare the reccived

signal scatter diagram to that of the ideal 8- and 16-point constellations. The algorithm is

outlined in the following pseudo-code:

set the number of incremental phase rotations = I;
for all ideal templates do this
for phase_rotation = 1 to [
rotate the ideal template;
for all points on the ideal template do this
for all points in the observed scatter diagram do this

compute the distance between current ideal point and observed point;

end for

end for;

select only the minimum distance for each scatter diagram point;

end for;

end for;

compare the mean minimum distances for each ideal template considered;

the template with the smallest mean minimum distance is output;
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The pseudo-code rotates the ideal constellation a certain number of times. This
must be done since the carrier frequenc;' used by the receiver is not locked to that of the
transmitter, hence there will be some arbitrary phase offset between the observed scatter
diagram and the ideal constellation map. Since the absolute difference between the opti-
mal receiver carrier frequency and the nominal frequency used is likely to be small, there

will not be a significant amount of rotation in the observed scatter diagram providing the

value of N is kept small. An improvement would be to lock the carrier frequency as well

as the timing.

Other methods of performing classification were also studied. One such method
was to compute the same mean minimum distance as before, but to “fold-over” the ideal
and observed constellations. The constellations are symmetrical, so they can be folded
over into a single quadrant. This will reduce the number of points in the ideal constellation

map, and hence reduce to computational complexity of the classifier.

A third method is to ignore the constellation point phase values. Only the vector
magnitudes of each symbol point are monitored. Again the mean minimum distances
between the ideal constellation map and the observed scatter diagram is used as the crite-

ria for classification.

A fourth method is to not only monitor the vector magnitudes, but also their fre-
quency of occurrence. Each observed symbol point is allocated into one possible ideal
constellation point. By monitoring the statistics of how often each ideal point is allocated,
we can determine whether the observed signal is a good match to that constellation. Every

point in a standard QAM constellation is equiprobable. We can compute the frequency of
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occurrence of observed symbols being allocated into each ideal constellation point bin,
The closer the observed frequencies of occurrence correspond to the ideal case, the more
confident the classifier can be in its decision. One particular implementation of this algo-

rithm is expressed as MATLAB code in Appendix Q.

Several methods of performing classification are possible, and some have been
briefly discussed. As the results shown in the next section illustrate, it is not easy to
observe the constellation of a received signal as the SNR drops and the constellation com-
plexity increases. Thus we conclude that more emphasis should be placed on developing

methods for recovering observed signal constellations than on the method used for identi-

fying which constellation has been recovered.

6.1.5.5 Results

The algorithms discussed in the previous sections were tested on simulated V.29
signals, recorded V.29 signals, simulated V.32 signals, and recorded V.32 signals. Due to
the high probability of symbol error in the unequalized received V.32 signals, the constel-
lation pattern could not be extracted with any of the attempted methods. It was possible to
observe the constellation pattern of the V.29 signals, and classify them with 100% accu-
racy. The main factor limiting the accuracy of the V.29 constellation classifier was the
actual method used to form classification results. The forward-acting timing recovery
method was adequate for recovering the signal constellations, and can be verified visually
from figures 75 and 76. By using the computationally complex method of classification
that involved computing the mean minimum distance from all observed symbols to all

possible ideal constellations, 100% correct classification was achieved for all V.29 signals.
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The ideal constellations for V.29 signals are given in the ITU standard document. Refer 1o

Appendix R for MATLAB code that was used to supervise V.29 signal classification.
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FIGURE 75. Recovered scatter diagram of an 8 point V.29 constellation.
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FIGURE 76. Recovered scatter diagram of a 16 paint V.29 constellation.

The scatter plots from Fig. 75 and Fig. 76 illustrate the results that can be achieved
by using this method to recover a signal’s constellation pattern. The signals used for these
tests were moderately distorted. The plots show the results after monitoring 1024 samples
(1/8 second) from each signal being monitored. Each ‘o’ mark represents a symbol from
the received signal. From the diagrams it is clear that the signals have been sufficiently
demodulated and sliced to allow for identification of the constellation type. The equivalent

plot for V.32 signals has no visible pattern due to the high probability of symbol error in an

unequalized, noisy channel.

In conclusion we can state that by using a nominal carrier frequency for demodula-
tion, forward-acting spectral line timing recovery, and some type of classification method,

we can correctly identify the QAM constellation in use by V.29 signals in typical and
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worst case channel conditions. For signals with constellations that contain greater than 16
symbol points other methods of extracti;lg the constellation must be explored. Perhaps the
trellis-coding present in the transmitted signal could be exploited by the classifier detector
to overcome the low SNR. These methods must reduce the probability of symbol error in

the received signal.

6.2 Other Methods

We conclude this chapter by mentioning a few other methods that were evaluated
but omitted in our final classifier design. However, the methods may still be useful,
depending upon the needs of the classifier. These methods have been verified with the

MATLARB simulation model shown earlier.

6.2.1 Zero-Crossing Monitoring for Detecting Carriers

Zero-crossing detection is a very simple process to implement. Simply, every time
the signal crosses zero, it is recorded in a counter. Then, after a predetermined sample
period, the counter value is divided by the time elapsed giving a number in Hz. This num-
ber can be used as a crude estimate of the carrier frequency of a signal, providing one is
present. If this number is constant (within some degree of accuracy), or averages to a con-
stant over many blocks, from one time frame to another, then it can be safely assumed that
there is either a carrier or constant tone present in the signal. Simulations have shown that
for standard FAX and data modulation rates, the zero crossing method will indicate the
carrier frequency within 2% accuracy. This method may be useful for a quick evaluation

of whether or not a carrier is present, and at what frequency. Since standard modulation
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methods use only a small variety of carrier frequencies. it is not difficv. { to reliably guess

which is in use.

6.2.2 Delta Phase Histogramming

“Delta phase histogramming™ is a name we have given to a method that involves
recording the phase changes in a signal with a histogram. Since QAM signals vary in both
phase and amplitude, monitoring the phase changes exploits one source of information
regarding the signal. In the simulation, the estimated carrier frequency obtained via zero
crossing detection is used to frequency shift the incoming signal to the baseband. Then the
signal is filtered and further studied. Since the baseband signal is complex-valued, it is
split into its phase and magnitude components. Then, the phase change distances are mea-
sured (in radians) and recorded in a histogram. The expected result is to see that there are
higher frequencies of phase changes corresponding to the signal constellation points. Con-
sider a 4-point QAM signal. The minimum phase change from one constellation point to
another is 7/2. Thus, it is expected that there will be a peak in the delta phase histogram at
1/2 radians. Also, there should be peaks at 0, t, and 3*m/2. In fact, this has been verified
by simulations. Even though the estimated carrier frequency used to generate the baseband
signal was usually slightly inaccurate, for low-speed signals the deita phase histograms do

yield some information which can be viewed as a signature of the signal under study.

An important feature of the delta-phase histogram method is that it is not depen-
dant upon the magnitude of the signal being studied. Because of this, the histogram will
never need to be scaled to correspond to an expected structure. Also, it should be noted
that this method’s attractiveness breaks down at high data rates (32 constellation points or
greater) and with the introduction of significant noise. Noise within the system introduces

216



small phase changes which confuse the issue. However, the method still somewhat useful

for identifying low speed signal constellations such as V.22bis.

The next sequence of figures shows the resulting histograms from performing
delta-phase histogram analysis on four different signals. The four signals include 2400 bps
V.27ter, 4800 bps V.27ter, 7200 bps V.29, and 9600 bps V.29 which utilize 4-PSK, 8-PSK,
8-QAM, and 16-QAM modulation methods, respectively. Each signal contains one second
of real-time signal recording. The top histogram is generated by the angle of the approxi-
mately demodulated signal recording. The bottom histogram is generated by the delta-

phase changes observed in the approximately demodulated signal.
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FIGURE 77. Histograms of a 2400 bps V.27ter signal.
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FIGURE 78. Histograms of a 4800 bps V.27¢er signal.
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FIGURE 79. Histograms of a 7200 bps V.29 signal.
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FIGURE 80. Histograms of a 9600bps V.29 signal.

The figures show that the delta-phase method reveals some information about low
speed FSK, and even QAM signals. However, as the complexity of the signal constellation:
is increased, the effectiveness of the delta-phase method diminishes. This method is not

useful for classifying the constellation patterns of practical signals including V.32bis.
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Chapter 7

7.0 Design Recommendations and Summary

In this chapter we discuss classification system design considerations, and recom-
mend an approach for constructing a complete system. In particular, we recommend a sig-
nal class structure, a set of discriminant variables, a set of discriminant functions, a

classification method, and finally we propose a complete classification system architec-

ture.

7.1 Class Structure

Determining the class structure to be used is a critical first step. The class structure
will be based on the needs of a particular application as well as the capabilities of the best
discriminant variables available. We assumed earlier that the classification system was to
discriminate as many different classes as possible. Given that the best discriminant vari-
ables available were based on the normalized central second-order moment and the auto-
correlation sequence, we formed a class structure where every signal class has a unique

power spectral density pattern. The class structure that we recommend is shown in

Table 43.

TABLE 43. VBD, FAX, and speech subclassification classes.

Group No. Signals included
1 V.22 and V.22bis forward channels

2 V.22 and V.22bis reverse channels

3 V.34 at speeds greater than 14.4 kbps

4 V.29 all speeds

5 V.32, V.32bis, and V.17 at speeds greater than 2,400 bps
6 V.27ter at 4,800 bps

7

V.27ter at 2,400 bps
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TABLE 43. VBD, FAX, and speech subclassification classes.

Group No. Signals included
8 speech
9 random PCM samples

The classes shown in Table 43 may be easily extended or abbreviated to suit a par-
ticular application. For example, FSK signals such as V.21 may be added to the table. Any
signal type that has a unique power spectral density may be included as a separate class.
However, the nine classes shown are representative of the bulk of VBD communications

that one would expect to observe in the PSTN today.

By reducing the number of classes considered, the total complexity of the classifi-
cation system can be reduced. For example, fewer discriminant variables may be required,
simpler discriminant functions may be used, and less memory will be needed to store the

required classification statistical information (such as probability density functions for

each variable and class).

7.2 Discriminant Variables

Once the class structure is determined, we can select a good set of discriminant
variables. The results in Chapter 5 indicated that the choice of discriminant variables to
utilize in the classifier is highly dependant upon the classes to be discriminated. We
assumed in Chapter 5 that the classes shown in Table 43 were to be resolved. (Simpler
class structures require significantly fewer discriminant variables, can operate using
smaller values for N, and will have better accuracy.) To achieve a classification rate of at
least 97% for example, we have several options available. We can select a small subgzt of
discriminant variables {Rd2, Rd4, N2} and use long signal segments (N >= 2048 for

pseudo-quadratic discriminant functions or N > 2048 for linear discriminant functions), or
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we can use a larger set of discriminant variables {Rd1, Rd2,.... Rd10, N2} with a small
segment length (N >= 512 for pseudo—q‘uadratic discriminant functions or N >= 2048 for
linear discriminant functions). Of course there are other combinations that caa be used as
well. We determined that minimizing the computational requirements of the classification
system was a more important goal than the shortest possible response time. Therefore, we
recommend a small set of discriminant variables {Rd2, Rd4, N2}, and a comparatively
long segment length. Recall from Chapter 5 that this set of discriminant variables was
found heuristically to perform well at both classifying VBD subclasses, and to distinguish
vetween speech and VBD signals. Specific determination of the segment length required

can only be done once the discriminant functions have been chosen.

Other parameters pertaining to the calculation of the discriminant variables must
also be chosen, including the subsegment length L and the average power threshold Py,
The best values to use were experimentally determined to be L = 16 and Py, = 1089 (units
are the minimum Q size from the p-law table in order to correspond to the p-law decoder
output values). These values achieve a satisfactory trade-off between noise/silence rejec-

tion and good utilization of speech segments. The power threshold may be increased if

only VBD signals are to be classified.

7.3 Discriminant Functions

Either linear or quadratic discriminant functions may be used by the classificr. If
linear functions are used, the classifier complexity will be low, but long segment lengths
(e.g. 1024 samples) will be required to achieve a satisfactory classification accuracy (such

as 97%). Quadratic discriminant functions are more costly to compute since they are sec-
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ond order discriminant variables, but classification accuracy is improved in some classes

and shorter segment lengths (e.g. 256 samples) may give satisfactory accuracy.

We note from the results presented in Chapter 5 that classification performance is
substantially improved by using quadratic discriminant functions for only two classes out
of nine. Taking this into consideration, it does not seem worthwhile to increase the classi-
fier complexity dramatically by using quadratic discrimination functions. Therefore, we
propose a stepwise classification method using linear discriminant functions at a first stage
and quadratic discriminant functions at a second stage. The class structure presented in

section 7.1 must be modified as shown in Table 43 to merge classes four and five.

TABLE 44. VBD, FAX, and speech subclassification classes, stage one.

Group No. Signals included
1 V.22 and V.22bis forward channels
2 V.22 and V.22bis reverse channels
3 V.34 at speeds greater than 14.4 kbps
4,5 V.29 all speeds, V.32, V.32bis, and V.17 at speeds greater than 2,400 bps
6 V.27ter at 4,800 bps
7 V.27ter at 2,400 bps
8 speech
9 random PCM samples

Stage one of the classification system will use three discriminant variables {Rd2,
Rd4, N2} and linear discriminant functions. In Table 45 we present the classification per-
formances achievable using the new class structure and the three discriminant variables.
Referring to Table 45 we see that the segment length required to achieve a classification
performance of 96.13% is N >= 1024, If the classification result from stage one states that
the observed signal belongs to class four, then stage two is invoked. Stage two of the clas-

sifier uses the same discriminant variable set, but a quadratic discriminant function is now
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used to resolve classes 4 and 5. A quadratic system bascd on these variables and N = 1024
can achieve a classification performance of 84.70% for the two remaining classes. With
this two-stage method we retain the low complexity of linear discriminant functions, and

the benefits in classification accuracy of quadratic discriminant functions.

TABLE 45. Classification performances of a two-stage classifier {(Rd2, Rd4, N2}.

Classification

Accuracy P, N =256 N =512 N =1024 N = 2048
Stage 1 82.00% 94.23% 96.13% 97.18%
Stage 2 68.52% 81.14% 84.70% 87.74%

From Table 45 we can see that even with large values of N, the classification per-
formance of stage two is still poor (less than 90%) if only three discriminant variables are
used. We consider this to be an unsatisfactory performance level. In order to improve the
accuracy of stage two, we searched for another discriminant variable to add to the system.
Table 46 presents the discriminant variable ranking when only considering classes 4 and 5
of the original class structure. The criteria for discriminant evaluation was to maximize
the minimum Mahalanobis distance between the groups. From the table we see that Rd6 is

the top ranked variable. Now we can test stages one and two of the system with the new
discriminant variable added.

TABLE 46. Discriminant variable ranking for classes 4 and 5.

Ranked Discriminant Variables (using Mahalanobis
distance for variable evaluation)

Rd6
Rd10
Rd5
Rd2
Rd4
Rd9
Rdl
Rd7
Rd8
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TABLE 46. Discriminant variable ranking for classes 4 and 5.

Ranked Discrimindnt Variables (using Mahalanobis
distance for variable evaluation)

N2
Rd3 was not included

— v

The results from testing the two-stage classifier using the enlarged discriminant
variable set {Rd2, Rd4, Rd6, N2} are shown in Table 47, From the table we can see that
stage one of the classifier is not substantially improved with the addition of the Rd6 vari-
able. Stage two, however, sees a dramatic improvement in classification accuracy at all
segment lengths. Considering these results, we propose that a two-stage classifier use seg-
ment lengths N = 2048, subsegment lengths L = 16, power threshold Pz, = 1089, the class
structure shown in Table 43, and the discriminant variable set {Rd2, Rd4, Rd6, N2}.
Tables containing all of the standardized canonical discriminant function weights, Fisher’s
linear discriminant function coefficients, as well as a detailed listing of class-wise classifi-
cation performances are included in Appendix S. Note that the Fisher’s linear functions

are only applicable for the linear classification stage.

TABLE 47. Performance of two stage classifier {Rd2, Rd4, Rd6, N2}.

Classification

Accuracy P, N =256 N =512 N = 1024 N =2048
Stage 1 84.92% 96.19% 97.74% 98.27%
Stage 2 75.05% 94.89% 98.16% 99.54%

We also propose an alternative to the two stage classification scheme which is sim-
pler to implement. In this scheme only linear discriminant functions are used, along with
all of the available discriminant variables. The argument here is that the discriminant vari-
ables can be efficiently implemented in a DSP that has multiply-and-accumulate (MAC)
instruction that executes in a single processor cycle. These MAC operations form the core

of the autocorrelation lag calculations. By calculating a few more autocorrelation lags for
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discriminant variables we can achieve a high classification accuracy using only linear dis-
criminant functions. Thus an easily imélemented classifier can be constructed using sev-
eral autocorrelations lags and the normalized central second-order moment as
discriminant variables, and simple linear discriminant functions. A further simplitication
in this scheme is to use Fisher’s linear discriminant functions since they are casy to

directly apply to the available discriminant variables.

We presented the performances achievable using all eleven discriminant variables
{N2, Rdl, Rd2,..., Rd10} and linear discriminant functions in Chapter 5. As a starting
point for an easily implemented classifier, we also include the Fisher function coefticients
for the cases where N = {256, 512, 1024, 2048} and all nine classes are considered. The

function coefficients are included in Appendix T.

7.4 Classification Method
The classification method is the technique used to allocate an observation into one
of a set of classes. Bayes’ Rule is optimal for performing this function. The operations

required to implement Bayes’ Rule are:

1. Calculate the discriminant variables.
2. Calculate the linear or quadratic discriminant functions using the variables.

3. For each function calculate the posterior probability of class membership for
each class using Bayes’ theorem. Extra information required to use Bayes’ theo-
rem includes the a prior probabilities of class membership (which may be
assumed to be equal for all classes) and the probability density functions for
each function in each class.

4. The observation is then allocated to the class with the highest a posteriori prob-
ability of membership.

The a posteriori probabilities form an indication of confidence in the classifier out-

put. This information may be unnecessary in a particular application. If this information is
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not required, simple decision boundaries may be calculated from the discriminant function
statistics or Fisher’s linear functions can be used. We consider the a posteriori probabili-
ties to be valuable in the classification system, and so they are retained in the recom-

mended classifier architecture.

A requirement for using Bayes’ Rule is that the probability density functions
(PDF) for every variable be known for each class. This is why a database is included in the
system block diagram in Fig. 81. The database holds all of the PDFs for each variable and
class. Alternatively, the PDFs for each discriminant function may be stored. (In the case of
linear discriminant functions, it is equivalent to use the function PDFs or the variable
PDFs.) In the proposed system where there are four variables and nine classes, as many as
36 PDFs must be stored for stage one alone in order to use Bayes’ rule for classification.
The number of bins in the probability mass function (discrete version of the PDF) is vari-
able. If 256 bins were used, we would require a 9216 element matrix of values to store all
of the PDFs. (In the MATLAB implementation of Bayes’ Rule classification, there were
256 bins used to store each PDF. SPSS internally uses a chi-square distribution fit to the
actual PDFs.) In this thesis we have not included the specific PDFs that were obtained
from analyzing the training data. A prohibitive amount of paper space would be required
to record each PDF (or probability mass function since we are dealing with discrete sys-
tems) in a table. A critical phase of the development of a classification system is training.
The data used to train a classifier must be carefully selected to represent the test popula-
tion well. The process of training involves calculating the discriminant variables for a
large set of training signals, recording the PDFs and variable covariances. By referring to

the suggested system design proposed here, one can develop a classifier system and accu-
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mulate the necessary statistical information to utilize Bayes’ Rule for classification. If one
was to use the specific discriminant fun;:lion coefficients described here, and their corre-
sponding PDFs, in a specific classifier implementation they should not expect to discover
the same operating classification accuracy without performing training. Training must be
performed using a set of signals representative of the population to be classified. Even

though every attempt has been made in this thesis study to use accurate signal models for

classifier training, it is possible that there will be differences in the actual classifier envi-

ronment.

One alternative to using Bayes” rule is to simply use decision boundaries. These
boundaries may be formed by observing the PDFs of the discriminant functions. Decision
boundaries require less storage space than complete PDFs; however, the precision and

optimality of Bayes' Rule is lost in the classification. This is a trade-off that must be made

by the designer.

A final alternative to using Bayes® theorem for performing class allocation is to use
Fisher’s linear discriminant functions. Fisher’s functions are a combination of optimal lin-
ear discriminant functions and Bayes’ rule for classification. The resulting functions can
ke applied directly to the discriminant variables, where a function is defined as a lincar
combination of discriminant variables for every class. The class with the highest function
value for a particular observation is the class that the observation is &llocated into. This
method is simple to implement, however the posterior probability of group membership is
not available from Fisher’s functions. The ¢lassification accuracy is identical for Fisher's

functions and optimal linear functions classified using Bayes’ theorem.



7.5 Complete $:stem

A complete classification systerr; block diagram is shown in Fig. 81. The system
parameters we propose include a two stage classifier using segment lengths N = 2048, sub-
segment lengths L = 16, power threshold Py, = 1089, the class structure shown in
Table 43, Bayes’ Rule for class allocation, and the discriminant variable set {Rd2, Rd4,
Rd6, N2}. The second stage of *he classifier discriminates between V.29 signals and V.32/
V.32bis signals in class four of Table 43. The resulting average (over all classes) classifi-
cation performance is expected to be 98.27% and 99.54% for stages one and two, respec-
tively. Note that the stage two classification performance only refers to the separation of

classes 4 and 5.
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FIGURE 81. Recommended classification system.

In section 7.3 we also referred to an alternative classification scheme that could be

easily implemented using Fisher's linear discriminant functions. Figure 82 illustrates the
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architecture of that scheme, where the parameters are the same as for the two-stage
scheme previously mentioned. The adve;ntage of this scheme is that the classitication stage
is very simple to implement since Fisher’s linear discriminant functions are used. The
variable or function PDFs are no longer needed to perform classification. The disadvan-
tages are that more discriminant variables must be calculated to achieve a comparable
classification accuracy, and the classifier cannot provide the posterior probability of group
membership for each classification decision. The disadvantage of having to calculate a
few more autocorrelation lags for discriminant variables may turn out to be insignificant in
an actual implementation of the classifier. The reason for this is that each additional auto-
correlation lag only requires a single MAC instruction per sample to compute. This extra

computation may prove to be insignificant compared to the overhead processing required

to run the real-time classifier.
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FIGURE 82. Alternative recommended classification system.

7.6 DTMF Signals
An important type of non-speech signal that is used in the network are Dual-Tone
Multi-Frequency (DTMF) signals. These signals are transmitted through the network

when a touch-tone telephone button is depressed during a call. Each tone is actually a
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combination of two different sinusoidal tones. The PSD of each of the 12 DTMF signals is
unique, and hence they could be discrin-ﬁnated using the currently recommend classifica-
tion system. However, DTMF signals can be as short as 50 ms, corresponding to 400 PCM
samples. If we are to be able to detect the minimum allowable DTMF tones, the classifier
segment length N can be no greater than 400 samples. If we compare this segment length
to the results in Table 47 we can interpolate and estimate the classification performance to
be about 90% for each stage with the given discriminant variables. In order to improve
this performance we need to increase the number of discriminant variables. Referring to
Fig. 61 in section Fig. 5.3.7.5 we can see that to achieve a high classification accuracy for
N = 400, we will need to use at least 11 discriminant variables as well as quadratic dis-

criminant functions.

Recall that the complexity of calculating a quadratic discriminant function is order

T2, where T is the number of discriminant variables. Linear discriminant functions are
only order T. Therefore, we would like to avoid the use of quadratic discriminant functions
where several variables are involved, especially when the segment length is short. (The
shorter the segment length, the more often decisions must be made.} We conclude that the
benefits of using the existing classifier to guarantee classification of minimum length
DTMF signals are outweighed by the increased computational cost. We suggest that a sec-

ondary method may be the best choice for detecting DTMF tones.

A second alternative for DTMF tone detection exists. The proposed system uses a
fixed-length signal segment for the basis of discriminant variable calculation. If we allow
the length of a signal segment to vary up to a maximum length, N, then we can construct
an algorithm that would be able to “catch” minimal length DTMF tones. This algorithm
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would be more complex, but the final classification system would be able to retain its low
complexity discriminant variables and functions while also being able to classify all
DTMF signals. Design of this algorithm is left to future work. It is also possible that the

simplest solution is to use off-the-shelf DTMF detection circuits.

7.7 Real-Time Classification

We claimed earlier that the designed system would be suitable for real-time classi-
fication. Referring to the suggested classifier architecture shown in Fig. 81, we can esti-
mate the number of calculations that a required for full-time monitoring of a single
channel. The first block contairs a threshold monitor. In the worst case, the threshold
monitor will have to compare every new sample to a given threshold. This would require
one operation per sample. If traffic is present, an absolute level threshold does nat need to
be compared to for every sample. When signal segments are being accumulated, the
zeroth lag of the autocorrelation sequence is used as an estimate of the average power
level of a sub-segment. The computations needed for this estimator will be included ina
later part of the classifier. We need to now account for the comparison that is performed
between a power threshold and the estimated average power, once every sub-segment
interval (which is 16 samples in this design). Next we consider the p-law to linear conver-
sion stage. In the best case, a simple table look-up will be performed, requiring one opera-
tion per sample. If this stage is poorly d&signed it may require several more operations per

sample. Sign bit removal requires one operation per sample.

Computation of the discriminant variables is next. We can refer to the original

equations for these variables. Note that the zeroth lag must also be computed in order to
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normalize the autocorrelation lags. Referring to [67] we see that the normalized central
second-order variable requires two addi.tions and one multiplication operation per sample.
After each sub-segment is accumulated, a division and a subtraction are required. To cal-
culate the autocorrelation lags we require one multiplication and one addition per sample.
After a sub-segment has been accumulated another division is required. Since we require
three lags to be computed as well as the zeroth lag, we can multiply these operations by
four. Finally, one operation is required to normalize each autocorrelation lag at the end of
a sub-segment. We can now add up the required operations prior to the classification

stages. The total calculations required per sample up to this point is:
(1+1/16+1+1)+(B+1/16+1/16)+(1+1+1/16)4+3(1/16) = 14.625 operations/sample

Now we can consider the cost of performing classification. Stage one of the classi-
fier requires four variables, and can classify eight classes using linear discriminant func-
tions. Since there are four variables, there will be at most four functions. Each function
requires 27T operations, where T = 4 (the number of variables). Stage two of the classifier
requires only one quadratic function since there are only two classes. This function

requires 27%+3T-2 operations, where T is four again. In total, to compute the discriminant

functions we require:

2(4)+2(4)2+3(4)-2 = 50 operations/segment

Note that these 50 operations are only required after a complete segment has been accu-
mulated. In the suggested design the segment length is 2048 samples, and therefore the

number of operations per sample required to compute the discriminant functions is 0.024.
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Next, classification must be performed. This can either be done using Bayes' Rule,
or some other simpler method. Since these operations are again only required once per
segment, they will not heavily affect the overall system load. The most significant contri-

bution to the system load is the computation of the discriminant variables.

We now estimate that approximately 15 operations per sample are required to per-
form classification of a single voice-band signal. Since the sample rate is 8000 Hz, we
conclude that 120,000 operations per second must be performed if the suggested system is
used. Let us assume that this is an extreme lower bound. (In fact, if we use a modern DSP
such as the TMS320C30 from TI, additions and multiplications can often be performed in
a single processor cycle. This could actually reduce the estimated number of processor
cycles to less than 15.) Let us say that an actual implementation requires ten times more
processor cycles than the estimate, due to unforeseen processing overhead. We then
increase our estimate to 1.2 million operations per second. A TMS320C30 processor can
perform 40 million operations per second, and therefore classify 33 voice-band channels
full-time, in real-time, simultaneously. A standard E1 signal (European equivalent to T1)
carries 32 voice-band channels. We conclude that a single TMS320C30 processor imple-
menting the suggested classifier design could classify every channel carried by an E1 or
T1 trunk, in real-time. (The upper-bound on the number of channels that could be moni-

tored is 330 according to our estimates.)

Note that 208 processing cycles are available per received PCM sample from a T1
signal when a 40 MHz TMS32C30 DSP is used. We have estimated that 15 operations are
required per PCM sample using the recommended two-stage classification architecture,

which would leave 193 cycles per PCM sample for processing overhead (assuming each
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rcquired operation executes in a single cycle). If we increased the number of discriminant
variables to eleven, the required classiﬁ.er operations would increase to about 40 per sam-
ple, leaving about 168 operations per sample unused. This is a 13% reduction in the cycles
available for overhead processing. The point here is that it is quite probable that there will
be enough excess processing cycles in a T1-based classifier to compute several autocorre-

lation lags and use simple linear discriminant functions.

7.8 Field Testing

The next phase of the signal classification project is to implement a prototype sys-
tem that can be used for field testing. The prototype should be flexible enough to allow the
designer to casily alter the system parameters including N, Py, discriminant variable set,
and discriminant function selection. The prototype system must provide a method for
training the classifier. Training is performed by learning the statistics of known signal
classes. Therefore, a mechanism must be in place to allow the designer to specify the class
of observed traffic, and force the classifier to learn the statistical patterns of that traffic. As
a first step in designing a system, the discriminant function weights that have been
described in this thesis can be used. Since the signals used to generate these functions
were not obtained from actual network traffic, there may be some differences. Using rep-

resentative signals for training a classifier is critical to achieving good classification per-

formance.

The prototype system must also allow for data logging. Not only should the classi-
fication results be logged, but the system load must also be monitored. A precise determi-

nation of the amount of processor cycles required to implement the classification
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algorithms must be known. With this information we could then extrapolate to determine
the maximum number of channels that can be monitored in real-time on a full-time basis,

given a particular classifier design.

A complete classification system may also have the luxury of access to call bound-
ary information. This information could be extracted from an out-of-band signalling sys-
tem such as SS7. By overlaying classifier decisions with call boundary information, a
complete system could form conclusions about the type of calls that are being monitored.
For example, the system could report that an entire call was VBD, or that a call began as
speech and ended as VBD. This is a higher level of classification that would be useful for

determining traffic usage information such as call holding times for various types of traf-

fic.
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Chapter 8

8.0 Conclusions and Future Work

In this thesis we have presented methods for classifying voice-band signals. We
found that the most effective discriminant variables were those based on the autocorrela-
tion sequence of the signal being monitored. Through analytical means we showed, how-
ever, that discriminant variables of this type are fundamentally limited in their ability to
distinguish certain signals. In particular, only signals with different power spectra can be

separated.

In this thesis we have presented modifications to Benvenuto’s original work [6]
that reduce computational complexity, improve classification accuracy, and broaden the
range of VBD subclassification categories. The algorithm discussed has been shown to
perform with misclassification rates of 0% for many signal groups, and on the order of 1%
for two particular similar groups (V.29 and V.32/V32bis). Identifiable signal groups
include speech and VBD that vary in their power spectral densities. Depending upon the
application requirements, classification times range from 32 to 256 milliseconds for 93%
worst-case accuracy (using 11 discriminant variables, 32 ms signal segments, and pseudo-

quadratic discriminant functions).

In most cases linear discriminant functions were found to perform adequately.
However, to distinguish some types of signals from one anothey, it was necessary to use
quadratic discriminant functions. These functions can discrimirate signals whose discrim-
inant variables have identical mean values but differ in their covariance matrices. By using

quadratic discriminant functions, signal segment lengths can be reduced while retaining
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the same classification performance. For example, using linear discriminant functions on
eleven variables generated from 2048 sélmple long segments, we can achieve a classifica-
tion performance of 98% over nine classes. Alternatively, if a pseudo-quadratic discrimi-
rant function is used, the signal segment length can be reduced to 512 samples for a
classification performance of 100%. If the signal segment length remains constant, we can
reduce the number of discriminant variables from eleven to three by switching from linear

discriminant functions to pseudo-quadratic functions, and still attain the same classifica-

tion performance.

A complete classification system was proposed. The proposed system requires four
discriminant variables to be computed including {Rd2, Rd4, Rd6, and N2}. Classification
is performed in two stages, the first of which uses linear discriminant functions, and the
second stage uses quadratic discriminant functions. Stage one classifies the observed sig-
nal into one of eight different classes. If stage one allocates an observation into the fourth
class, stage two is invoked to refine the classification into one of two subclasses. This two-
stage configuration retains the high classification accuracy of quadratic discriminant func-
tions while still keeping the number of discriminant variables required and algorithm com-
plexity at a minimum. The resulting system has an overall classification performance of

98.27% for stage one and 99.54% for stage two, using segments 256 ms long.

Other classification techniques were developed. Notably, a “sniffer’” program was
described that detects and decodes the FSK signaling used by facsimile machines. Other
methods that we developed included timing and carrier recovery, amplitude and phase his-

togramming, and statistical signal characterization.
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The problem of classifying DTMF signals was briefly mentioned. Since DTMF
signals have clearly different PSDs we ‘can classify themn using autocorrelation sequence
based discriminant variables. However, the minimum length of a DTMF signal is only 50
ms. This length may be shorter than the fixed classifier segment length N. To allow the
proposed classification system to monitor minimum length DTMF signals, the algorithm
for collecting signal segments must be altered. The signal segment length must be made
adaptable. The effects that an adaptable segment length algorithm has on classification

have yet to be studied. The complexity of this new algorithm also needs to be examined.

The next phase of the classification project should include field testing. All of the
results and analysis presented here were obtained from simulated and recorded telephone
calls. In the future, real-time classification of actual PSTN traffic should be performed to
verify the algorithms. Also, a prototype system would allow a precise determination of the
processing requirements for various classifier designs. Once these requirements are
known, we can determine the number of voice-band channels that may be monitored

simultaneously by a single processor.

To subclassify VBD signals that differ only in their constellation patterns, alterna-
tive methods must be explored. By identifyiny »«= cunstellation pattern that is in use by a
QAM signal we could precisely determine the bit rate and operational parameters of the
transmitter. Due to the highly complex constellation patterns that are in use (up to 960
points for V.34), line equalization must be performed to reduce the probability of symbol
error in order to make the monitored signal constellation pattern resolvable. Line equaliza-
tion involves filtering a received signal to compensate for the transmission channel distor-

tions. In the open literature there are methods of equalization that both equalize the
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channel and lock the phase of the receiver without requiring a training sequence. These
methods, known as blind equalizers, are based on higher-order cumulants. N.K. Jablon
has shown that by using Godard-based blind equalizers it is possible to identify the con-
stellation in use by V.32bis signals [42]. References [9, 15, 17, 22, 23, 24, 25, 26, 43, 44,
45, 52, 59, 60, 66, 73, 76, 77, 78] all pertain to the many methods of blind equalization
that have been developed and analyzed. Benvenuto has also published a paper regarding
the use of Godard based blind equalizers in VBD signal classification [5]. Future work on
the classification problem should investigate applying modern blind equalization algo-

rithms to the problem of QAM constellation identification in voice-band channels.

The following list outlines several possible future projects:

1. Develop software for a prototype system. The hardware should be *‘off-the-
shelf” to allow for a short design cycle and the use of well developed design

tools. Software development can be partitioned into two sub-projects. These are
listed next.

2. Develop host processor supervisory and control software. This software will be
responsible for managing the flow of data through the prototype hardware. User

commands must be interpreted and useful classification results displayed as
well as logged to files.

3. Develop DSP software for calculation of the discriminant variables and per-
forming classification. The classification results are periodically transferred to
the host processor for logging and interpretation

4. Field trials must be performed with the prototype unit. Once all of the software
has been developed, the test system must be trained and tested using signals
obtained in real-time from actual networks.

5. Develop algorithms for performing the classification of V8D signal constella-
tions. This research will likely involve impiementing a blind equalization algo-
rithm and determining a method for matching observed constellation scatter
diagrams to a set of expected maps.

The original research proposal stated that even in the worst case, where no

improved solution to the problem were to be found, at least a better understanding of the

problem would be gained. The best case research result was t¢ develop a solution better
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than those previously published and then to implement it in a combination of hardware
and software. Another possible project conclusion was to enhance existing classification
hardware by improving its performance and accuracy. The actual outcome of the project is
a combination of the later two predictions. Published algorithms were modified and
improved, implemented in an off-line capacity, and evaluated through detailed simula-
tions. Finally, recommendations were developed for a prototype classifier to be developed

as a subsequent project.
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raised-cosine filter 54
Rao’s V 81

real-time computation 196
response time 9

singing 45

Roberge 13

roll-off 54

S

S. Casale 15

S.S. Soliman 28
sampling frequency 49
second-order moment 30
security 1

segment amplitude 126
segment period 126
short-time energy 16
Shue-Zen Hsu 28
Shumway 22

Signal Discrimination Theory 8
signal-space coding 61
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signal-to-noise ratio 47

simulation structure 111

sinc 54

smallest F ratio 81

Sniffer 132

speech activity 9

SPSS 101 .

SPSS Discriminant Analysis 167
Stability 45 .
Statistical pattern recognition 125
Statistical Signal Characterization 125
statistical signal characterization 126
Statistical Software 101

switching point 43

T

talk spurt 9

Talker echo 44
technical limitations 41
Tellabs 6

Tellabs Digital Channel Occupancy Analyser 36
Testbed 124

test-tone 46

Timing Recovery 205
Timing recovery 200
TMS320C20 16
Trellis coding 61

U
unexplained variance 81

v

V.1775

V2 42

V.21 67

V.22 67

V.27ter 75

V.29 76

V.32 68

V.32bis 70
V.3472

VCO s6
voice-band (VB) 1
voltage controlled oscillator 56
Volume 46

W

Wilk’s lambda 81
window length {3
Y

Y. Hashitsume 17
Y. Yatsuzuka 9

YA

zero-crossing 13
Zero-crossing detection 215
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Note that the 7’ marks in the “Time” column indicate that the length of the call

Appendix A

has not been recorded in the table.

TABLE 48. Description of recorded data files

FAX/ Time
File Name | Data/ | Standard | bps Org. Dest. s) Description
Voice
v32bis d V.32bis | 14,400 local 492-3214 | 20 | SupraFAXmodem; called UofA modem pool; negoti-
ation
v32bis.2 d V.32bis | 14,400 “ * 20 | SupraFAXmodem; called Uof A modem pool; no neg.
v32 d V.32 9,600 " “ 20 |including negotiation
v32.2 d V.32 9,600 “ “ 20 | no negotiation
datal d V.22bis | 2,400 * “ 25 | including negotiation
data2 d V.22bis | 2,400 " “ 25 | no negotiation
data3 d V.32bis | 12,000 “ " 25 | including negotiation
datad d * 9,600 * . 25 |including negotiation
datas d * 12,000 “ “ 25 | no negotiation
data6 d “ 9,600 * “ 25 | including negotiation
data7 d “ 9,600 * * 25 | no negotiation
datal0 d “ 14,400 “ 492-3214 | 45 | Called UofA; incl. negotiation; modem option N8
forces bps
datall d " 12,000 " * 60 |* “ N7
datal?2 d “ 9,600 * * 60 |*“ “iNG6
datal3 d * 9,600 * 492-0096 | 60 |*:*iN6
datald d “ 4,800 * * 60 | “i N4
dmals d V.32bis | 2,400 local 492.0096 | 60 |*“;*i N3
datal6 d - 2,400 " 492-0024 | 60 |*;*; N3; retrain?
datal? d * 1,200 * 492-0096 | 60 |*;*“iN2
dmal8 d “ 1,200 . 492-0024 | 60 |“;* N2
datal9 d * 300 * 492-0096 | 60 |*“;*“ N1
data20 d V.34 | 24,000/ * 4447685 | 90 | called WorldGate; incl. negotiation; speed not forced
26,400 {NO)
damzl d " 28'8m/ " [y . “; b‘; "
28,800
data22 d " 26,400/ * ° “ 1M NI3
26,400
dﬂmz] d . 24'000/ " . " u; u; N 12
24,000
d8w24 d “ 2] .600/ " “ " u; u; N‘ 1
21,600
damzs d " l 9'2m/ " " “" u: u; N l 0
19,200
data26 d “ 16,800/ . . . u; u; N9
16,800
druni d V.34 | 28,800/| TRLabs Uof A 30 |no setup; &NO
28,800 492-3214
drun2 " [ . “ “ "
drun3 d “ Y .. " " e
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TABLE 48. Description of

recorded data files

r YA "‘\ . . - ‘l
File Name | Duata/ | Standard |  bps Org. Dest. | Te D cription
Voice (s)

drund d m w m — T S—
druns d . “ " “ W —

drun6 d V.34 | 14,400/ . w w T &NR e

14,400

drun? d V.22bis | 2,400 . 492.0024 | * | E—
drun8 d . " s - O Y

drun9 d “ “ s " PR PR
drunlQ d w“ “ s M PO Y - S——
drunll d “ s . “ w = T
drunl2 d [ V.32bis | 14,400 . TRLabs |~ |*
drunl3 d . “ " -. S I
drunl4 d o o s “ PR
drunls d “ “ . W w 1w
drunl6 d “ o o w w [
drunl?7 d B 12,000 . « w |« &N7
drunl8 d “ o B “ “ |
druni9 d « 9,600 “ « « |* &N6
drun20 d “ “ o .. v e
drun2} d “ . o - m “ e -
drun22 d . o o “ w |- -
drun23 d “ . . 0 T )
drun24 d “ 7,200 “ 0 o [= &NS - -
drun25 d “ . “ o m M =
drun26 d “ 4,800 “ “ T &Na = e
drun27 d “ - « « « e
drun28 d “ “ “ “ e )

faxl f V17 | 14,400 | local | 441-3600| 2 | fax tomain office; setup included; two pages plus

cover

fax2 f V.17 12,000 * “ 9 |+

fax3 3 V17 | 9,600 " < 7 = e e

fax4 f V.17 7,200 “ « 7 |-

faxs f V2Tter | 4,800 “ “ 7 |+

fax6 f V.27ter | 2,400 “ “ 7 | *;*; no cover page; error aftes . ! partof p. 2

fax9 f v.29 | 7,200 local 492-1811 | 7 | fax out; setup included; two pages plus cover

fax10 f V2T7ter | 4,800 local “ 7 |-

fax11 f V2Tter | 2,400 local “ 7 | *, errored

fax12 f v29 | 9.600 local “ 7 |«

fax13 f V29 | 9,600 local “ 2 |“; errored

fax14 f V29 | 9.600 local « 7 |«

fax15 f v29 | 9.600 local “ 7 |

fax16 f V.29 | 9.600 local “ R T
fax17 f V.29 | 7.200 local “ 7 |
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TABLE 48. Description of recorded data files

FAX/ . Time
File Name | Data/ | Standard | bps Org. Dest. I Description
Voice )
fzx2] f V.29 7,200 local 604-721- o0
0852
fax22 f V.27wer | 4,800 local - A
fax23 f ? 2,400 local - ? | errored fax
fax24 f ? ? 441-3600 local ? | fax received; errored
fax26 f ? ? “ local ? | fax received; errored
voicel v - - 498.8397 local 70 | Male/Female conversation -
voice_1_6_ v - - remote local ? | Pre-secorded message (my voice); two sentences read
14_17 8 by others
voice_1_6__ v - - b - ? b
14_40 23
voice_1_6_ v - - " - ? | Pre-re~orded message; person mimicing modem
14_44_36
voice_1_6_ v . . “ o TR
14_45_13
voice_1_6_ v - - - “ ? | Pre-recorded message; person whistling
14_46_2
voice_1_6_ v - - - - ? | Pre-recorded message; person saying nothing
14_47_48
voice_{ _6_ v - . “ . 7 |~
14_49_27
voice_1_O_ v - - - - ? “
15_21_15
voice_1_6_ v s - “ “ ? i+
15_2_18 |
voice_1_6_ v . . - - 2 "
15_38_52
voice_i_6_ v - - - w ) -
15_44_14
voice_1_6_ v . - - « 7 1=
15_4_27
voice_1_6_ v - . - “ 2 -
15_54_39
voice_1_6_ v - - o - 7 -
15535
voice_1_6_ v - . - 7 |«
15.5_4
votce_) _6_ v - - s . 7 -
37_11_41
voice_1_6_ v . . - ‘. 7 1=
17_54_22
voice_1_6_ v - . - ‘. 7 |-
18_55_44
voice_1_7_ 1 v . . - - 2 |- —_—
10_33_11
voice _1_7_ v - - - - b -
13.17_%4
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TABLE 48. Descrption of recorded data files

FAX Tim "
File Name | Daw | Standard bps Org. Dest. . 4; Description
Voice (s
voice_1_7_ v - - - - 2 |~
14_49_38
voice_1_7_ v - . “ - I
14_57_46
voice_1_7_ v - - - - 7 =
18_6_59
voice_1_7_ v - - - - ? i~
20_32_3
voice_1_7_ v - R - - 2 ”
7.21_34
voice_1_7_ v - - - - ) -
7.57.37
voice_1_8_ v - - - “ 7
14_51 6
voice_1_8_ v - - o - 7 |-
16_58_8
voice_1_8_ v - - . 2 -
18_25_20
voice_1_8_ v - - . o ? -
8_17_1
voice_1_9_ v - - o 72 |~
14_26_10
siml d V.22 1200 - - 10 | simulated call; recorded an alpha point in 4-wire con-
nection
sim2 d v.22 1200 - - 30 |“ibeta
sim3 d V.22bis | 2400 - - 10 |*“;alpha
sim4 d V.22bis | 2400 - - 30 |*ibeta
sim5 f V.27ter | 4800 - - 10 {“;alpha
sim6 f V2Tter | 2400 - - 10 |*; alpna; fallback mode
sim7 f V.29 9600 - - 10 {*,;alpha
sim8 f V.29 7200 - - 10 |*;alpha; fallback mode
sim9 d V.32 9600 - - 10 {*;alpha
siml10 d V.32bis | 14,400 - - 10 |*;alpha
siml1 f V.17 14,400 - - 10 |*; alpha; identical simulation to V.32bis ; correct?
sim12 d v22 1200 - - 3¢ |“;beta
sim13 d V.22bis | 2400 - - 30 {“;beta
sim_1_a_l d v.2z 1200 - - 25 |impairment mode! 1, alpha moniloring point
sim_1_a 2| d | Vizbis | 2400 - - 25 | impairment model 1, alpha monitoring point ]
sim_1_a_3 f V.2Tter | 4800 - 25 | impairment model 1, alpha monitoring point
sim_l_a_4 f V.2Tter | 2400 - - 25 |impairment model 1, aipha monitoring point
sim_1_a_5 f V.29 9,600 - - 25 | impairment model 1, alpha monituring point
sim_1_a_6 1 V.29 7,200 - - 25 impa;rmcm model! 1, alpha monitoring point
sim_l_a_7 d viz 9,600 - 25 [impairment model 1, alpha monitoring point
sim_1_a8 ! d V.32bis | 14,400 - - 25 |impairment model 1, alpha monitoring point
sim1a9 | f V17 | 14,400 - - 25 | impairment model 1, alpha monitoring peint B
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TABLE 48. Description of recorded data files

FAX/ : Time -
File Name Dalul Standard bps Org. Dest. © Description
Voice
sim_1_b_10 d V.22 1200 - - 25 |impairment model 1, beta monitoring point
sim_1_b_11 d V.22bis | 2400 - - 25 | impairment model 1, beta monitoring point
sim_2_a_} d V.22 1200 - - 25 | impairment model 2, alpha monitoring point
sim_2_a_2 d V.22bis | 2400 - - 25 | impairment model 2, alpha monitoring point
sim_2_a_3 f V.27ter | 4800 - - 25 | impairment model 2, alpha monitoring point
sim_2_a_4 f V2T7ter | 2400 - - 25 |impairment modc: 2, alpha monitoring point
sim 225 | f V29 | 9.600 R - 25 | impairment model 2, alpha monitoring point
sim_2_a_6 f V.29 7,200 - - 25 | impairment model 2, alpha monitoring point
sim_2_a_7 d V.32 9,600 - - 25 | impairment model 2, alpha monitoring point
sim_2_a_8 d V.32bis | 14,400 - - 25 | impairment model 2, alpha monitoring point
sim_2_a_9 f V.17 14,400 - - 25 | impairment model 2, alpha monitoring point
sim_2_b_10 d v.22 1200 - - 25 | impairment model 2, beta monitoring point
sim_2_b_11 d V.22bis | 2400 - - 25 | impairment model 2, beta monitoring point
sim_3_a_] d V.22 1200 - - 25 | impairment model 3, alpha monitoring point
sim_3_a_2 d V.22bis { 2400 - - 25 | impairment model 3, alpha monitoring point
sim_3_a_3 f V.27ter | 4800 - - 25 | impairment model 3, 2lpha monitoring point
sim_3_a_4 f | V.27ter | 2400 J - - 25 | impairment model 3, aipha monitoring point
sim_3_a_$ f Y2y | 9.60C ! - - 25 |impairment mode! 3, alpha monitoring peint
sim_3_a_6 f V.29 7,207 - - 25 | impainment model 3, alpha monitoring point
sim_3_a_7 d V.32 9,600 - - 25 | impairment model 3, alpha monitoring point
sim_3_a_8 d V.32bis } 14,400 - - 25 | impairment model 3, alpit: monitoring point
sim_3_a_9 f V.17 14,400 - - 25 | impairment model 3, alpha monitoring point
sim_3_b_1¢] 4 v.22 1200 - - 25 | impairment model 3, beta monitoring point
sim_3_b_11 d V.22bis | 2400 - - 25 | impairment model 3, beta monitoring point
sim_4_a_1 d V.22 1200 - - 25 | impairment model 4, alpha monitoring point
sim_4_a_2 d V.22bis | 2400 - - 25 | impairment model 4, alpha moaitoring point
sim_4_a_3 f V.27ter | 4800 - - 25 | impairment model 4, alpha monitoring point
sim_4_a_4 f V.2Tter | 2400 - - 25 | impairment model 4, alpha monitoring point
sim_4_a_S 4 V.29 9,600 - - 25 { impairment model 4, alpha monitoring point
sim_4_a_6 £ V.29 7,200 - - 25 | impairment model 4, alpha monitoring point
sim_4_a_7 d v.A2 v,600 - - 25 | impairment model 4, alpha monitoring point
gim_4_8 % d V.32bis } 14,400 - - 25 | impairment model 4, alpha monitoring point
sim_4_a_9 f V.17 14,400 - - 25 | impairment model 4, alpha monitoring point
sim_4_b_10} d V.22 | 1200 - . 25 | impairment model 4, beta taonitoring point
sim_4_b_11 d V.22bis | 2400 - - 25 | impairment model 4, beta monitoring point
sim_S_a_1 d V.22 1200 - - 25 | impairment model 5, alpha monitoring point
sim_S_a_2 d V.22bis | 2400 - - 25 | impairme::t model 5, alpha monitoring point
sim_S_a_3 f V.2Tier | 4800 - - 25 | impairment model 5, alpha monitoring point
sim_5_a_4 f V.2Twer | 2400 - - 25 | impairment moriel 5, alpha monitoring point
sim_5_a_5 f v.29 9,600 - - 25 | impairment model 5, alpha monitoring point
stim_5_a_6 f V.29 7,200 - - 25 | impairment model 5, alpha monitoring point i
sim_5_a_7 d V.32 9,600 - - 25 | impairment model 5, alpha monitoring point
sim_S_a_8 d V.32bis | 14,400 - - 25 | impairment model 5, alpha r._.onitoring point
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TABLE 48. Description of recorded data files

FAXY ) Time .
File Name | Data/ | Standard bps Org. Dest. Description
Voice )

sim_5_a_9 f V.17 14,400 - - 25 | impairment madel 5, alpha monitoring point
sim_5_b_10 d V.22 1200 - - 25 | impdirment model 5, beta monitoring point
sim_S_b_11 d V.22bis | 2400 - - 25 | impairment model §, beta monitoring point

diibl - - - - - 6 | information signal from file v32bis; ie. no neg, no

retrain

dlib2 - - - - - 20 | information signal from file v32bis.2

dlib3 - - - - - 8 |information signal from file v32

dliba - - - - - 20 |information signal from file v32.2

dlibs - - - - - 13 |information signal from file datal

dlib6 - - - - - 25 | information signal from file Jaw?

dlib7 - - - - - 9 | information signal from file datal

dlib8 - - - - - 9 |information signal from file datad

dlib9 - - - - - 25 | information signal from file data$

dlib10 - - - - - 15 |information signal from file data6

dlibil - - - - - 25 |information signal from file data7

dlib14 - - - - - 24 | information signal from file dawal0

dlibls - - - - - 41 |information signal from file datall

dlibi6 - - - - - 44 | information signal from file datal2 ’

dlib17 - . - - - 42 | information signal from file data13

dlib1g - - - - - 38 |information signal from file data14

dlib19 - - - - - 46 | information signal from file datal s

dlib20 - - - - - S1 | information signal from file data16

dlib21 - - - - - 41 |information signal from file datl7

dlib22 - - - - - 46 | information signal from file datal8

dlib23 - - - - - 45 | information signal from file data19

dlib24 - - - - - 62 | information signal from file data20

dlib2s - - - - - 50 | information signal from file data21 7

dlib26 - - - - - 62 | information signal from file data22

dlib27 - - - - - 62 | information signal from file data23

dlib28 - - - - - 62 | information signal from file data24

dlib29 - - - - - 62 | information signal from file data25

dlib30 - - - - - 62 | information signal from file data26

dlib31 - - - - - 25 | information signal from file fax1

dlib32 - - - - - 25 | information signal from file fax2

diib33 - - - - - 38 | inf rmation signal from flc fax3

dlib34 - - - - - 50 | information signal from file fax4

dlib3s - - - - - 75 | information signal from file fax5

dlib36 - - - - - 75 | information signal from file fux6

dlib37 - - - - - 38 | information signa! from file fax9

dlib38 - - - - - 50 | information signal from file fax10

dlib39 . . N - . 25 | information signal from file fax] | R

dlib40o - - - - - 30

irformation signal from file fax12
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TABLE 48. Description of recorded data files

FAX/ . Time
File Name Da.w/ Standard | bps Org. Dest. (s) Descripiion

Voice
dlibal - - - - - 7 | information signal from file faxi3
dlib42 - - - - - 30 |information signal from file fax14
dlib43 - - - - - 30 |{information signal from fle fax15
dliha4 - - - - 30 |information signal from file fax16
diibas - - - - - 38 | information signal from file fax17
diiba6 - - - - - 36 |information signal from file fax21
dliba7 - - - - - 56 | information signal from file fax22
dlibay - - - - - 27 | information signal from file fax23
dlih49 - - - - - 14 | information signal from file fax24
dlib50 - - - - - 15 | information signal from file fax26
rand} rand. - - - - 125 random PCM sample stream
rand2 rand. - - - - 125 | random PCM sample stream
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Appendix B

Function code for distorting simulated network signals.

function ylin =
warp(a,b,t,samp,dup,be,snr,delay, fd,ad, edd, sim, mon, cmess)

¥lin = WARP(a,b,t,samp,dup,be,snr,delay, fd,ad.edd,sim, mon,cmess)
Function WARP requires a pair of modulated signals to transmit
and the sampling rate (samp) of the system. This function will

implement mu-law encoding, additive noise, transhybrid losses,

frequency offsets, attenuation distortion, and envelope delay
distortion.

echos,

9P 0P 00 9P P P o0 of

The companded signal ‘y’ is returned, and corresponds to the warped
(distorted) signal from the specified monitoring point.

9 9P P 0P 0P

The monitoring point could either be at the caller 2-W. answer 2-W,
or the alpha/beta monitoring points.

% Distort the signals before sending around the echos
% frejuency offset is implemented right at the modulation

% then add attenuation distortion
[bb,aa)l = adgen(ad,samp);
a = filter(bb,aa,a);
if (dup ==2)
b = filter(bb,aa,b);
end

% finally, incorporate the envelope delay distori.ion
{pb,aal = eddyen(edd,samp):
a = filter(bb,aa,a:;
if (dup ==2)
b = filter(bb,aa,bh);
end

$ Normalize the input waveforms to the average power
% level that would normally be seen on the cgutput of
% a modem.

dBmmodem = -9;

Psignal = sum(a.”2)/length(a):
Pmodem = le-3 * 10~ (dBmmodem/10);
k = sqrt(Pmodem/Psignal);
a=a .* k;

if (Qup == 2)

over the phone line (a,b), the time vector (t) corresponding to (a,b),
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1 4]
end;

% Now we can send the signals around the hybrids and
Recorded signals don’t go
They are simply attenuated.

% incorporate the echos.
% through this.

~ b .* k;

if (sim==1)

% Geuerate all echoed signals for the a path

tl =

0 -
k1 =
lossl
loss2
loss3

floor(samp * delay/(2*1000)):
1 = length(a);

5;

3.5;

107 (-(k0+k1)/20);
10~ (- (kO+3*kl+be)/20);
10~ (-(k0+S*k1+2*be)/20);

al = lossl .* a’;

lcss2 .* a’;

loss3 .* a’;

[al(1l-t1+1:1) al(l:1-tl)];
[a2(1-3*t1+1:1) a2(l:1-3*t1)];
[a3(1-5*t1+1:1) a3(l:1-5*tl)];
lossl . * ai.:

a2 =
aj =
al =
a2 =
ajl =
aqd =
as =
a6t =
aq =
asb =
a6 =

% Generate all echoed signals for the b path only if full duplex

loss.): .* &2

Lroedd L% a2

f.0.% Li+sn:ln ad(l:1-t1)]);
LRE S R S as(l:1-tl)];

i
i

vt

[

il oy ab(l:l-tl)};

if (dup == 1)

bl
b2
b3
b4
bs
b6
else
bl

b2 =

b3
bl
b2
b3
b4
b5
b6
b4
b5
bé
end

zeros(size(b’));

= bl;
= bl;
= bl;

bl;
bl;

lossl .* b';

loss?2 .* b';

loss3d .* b’';

[bl(l-tl+1:1) bl(1l:1-t1)]:
[b2¢1l-3*t1+1:1) b2(1:1-3%tl)]
[b3(1-5*t1+1:1) b3(1:1-5*tl)}:
lossl .* bi:

lossl .* b3;

lossl .* b2;

[b4(l-tl+1:1) b4(1:1-t1)];
[bS(1-tl1+1:1) b5(1:1-t1)]:
[b6(1-tl+1:1) b6(1:1-t1)];
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% analysis signal generation (depending upon spec’'d point)
1 (mon == 1) % alpha
yvlin = al + a3 + b2:
elseif (mon == 2) % beta
vlin = bl + b3 + a2;

elseif (mon == 3) % caller

ylin = a + a6 + b4 + DbS5;
elseif (mon == 4) % answer

ylin = b + a4 + a5 + bé6;
else

% error

return
end
else % (sim==0) and we have a recorded signal

k = 10°(-17/20); % 17 dB end-to-end loss

vlin = a .* k;
end % if (sim==1)
% add in white noise, according to C-Notch or C-Message wuighting
% parameters. Note that this additive noise is at a specified
% power level. The signal to noise ratio then is dependant upon
% the power level of the signal. We will assume that the signal
% power level follows the average which is about -27 diwm0, at the
% receiving end of the call.

= randn(size(ylin)):
rneasure the noise level
f (cwmess==1)
% cmessage noisz measurement

nlevel = cmess_measure(n,samp);

[ ]

elss
% cnotched noise measurement
nlevel = cnotch_measure(n,samp):;
end

% adjust the noise vector power level to the specs

¢ If we are at ainl: or beta, we are making things worse

% by using the sa. ' :‘oise power, but this is a

% pessimistic approa.

PtonedBm = -12;

end2endloss = 6.8; % end office to end office loss
Ptone = le-3 * 10~ ((PtonedBm-end2endloss)/10);

Pn = sum(n."2)./length(n); % measured noise power
Po = Ptone * 10”(-snxr/10); % desired noise power after weights
SNRo = 10 * 1loglO(lel?#Po); % desired noise pronr (dFEinl]

Pno = Pn * 10~ {(SNRo-nievel)/10); % desired noise power I .we..  .i«cd (W)

a = sqrt(Pno/Pn);
n = n.*a;

% add them up, and ylin had better be at a suitable power level
ylin = ylin + n;
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Appendix C

Function code for generating pulse shaping filters.

function [t,h] = shape(fs,samp,a,n)

C I

h

h

FUNCTION (¢,h] = shape(fs,samp,a,n)

This function creates the filter coefficients required for pulse
shaping with an alpha valued roll-off square root raised cosine
filter. The filter coefficients are returned in the h vector,

along with the corresponding time vector, t. The baud (symbol) rate
is given by fs, the sampling rate is from samp, alpha is from a,

and the namher of filter points is specified by n.

- 1/fs;

= [-(n/2)/samp:(l/samp)+(le-10):(n/2)/samp];

= 4 * a / (pi*sqrt(T)):

= h .* (cos((l+a)*pi*t/T) + T*sin((l-a)*pi*t/T) ./ (4*a*t));

= h ./ (1 - (4*a*t/T)."2);
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Appendix D

Function code for supervising the generation of a simulated QAM signal.

function [y,t] = gqammod(symb, fs, fc,time, samp,a)

% Function gammod(symb, fsmod, fcmod, time, samp,a)
%t gam modulation given the symbol set,
% time to simulate, and sampling rate.
% returned with its time vector.
% cosine alpha roll-off factor.
if symb == ‘a’

[vy.t] = gam4 (samp.time,fc,fs,a);
elseif symb == ‘b’

[y.t] = gamB(samp,time, fc,fs,a);
elseif symb == ‘¢’

[y.t] = gqam8b(samp,time, fc,fs,a);
elseif sy == ‘g’

[y.t)] = gamlé{samp, time, fc,fs,a);
elseif sy == ‘@’

{y.t]l = gamléb{samp,time,fc,fs,a):
elseif symb == ‘f’

[y.tl] = gam32(samp,time, fc, ™ ., aj;
else

{[y.t] = gaml28(samp,time, fc,fs,a);
end

is used to perform
symbol rate, carrier freq,
The modulated signal is

The a value is for the raised
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Appendix E

Function code for demodulating a QAM signal.

function [yl = gamdemod(x, fc,t, pass,samp)

G0 0P P IO R RPN W0 RN

[yl = QAMDEMOD(x,fc,t,pass,samp)

Function QAMDEMOD is used to demodulate QAM signals. The input signal
(x) is demodulated from the passband to the baseband, and a complex
valued baseband signal is returned. The carrier freq. to demodulate
at is specified by (fc) and the max baseband signal allowable is
specified by (pass). ({pass) is used for a lowpass baseband filter.
The time vector of (x) is given by (t). The sampling rate is given by
the (samp) variable.

Modifications: ©Use only FIR filters since they have linear
phase, and the group delay is easily computed. IIR’sS were
used before, but the group-delays are difficult to determine,
and the phase is non-linear.

demod = exp(-j*2*pi*(fc)*t)’;

if ((fc == 1200) | (fc == 2400))

b = fir1(30,[2*(fc-600)/samp 2*(fc+600)/samp]l);
b4 filter(b, 1, x);

X = X .* demod;

b fir1(30, (2*600/samp)):;

y=filter(b,1,x);

[

else

X = X .* demod;
b = firl(30, (2*pass/samp));
‘y—filter(b,l,x);

end
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Appendix F

Function code for generating a 16-QAM simulated signal.

function [y,tt] = gamlé(samp.,time,fc,fs,a)

Function gamlé (samp, time, fc,fs) requires the sampling rate (sawmp),
the total signal time (time), the carrier freq (fc), and the

symbol rate (fs) to perform modulation. The modulated signal is
returned.

The modulation method is 16-QAM, with sinc symbol filtering.

The input symbols are randomly generated. Also, the time vector
returned. The (a) value specifies the square root raised cosine
pulse shaping roll-off factor. (a)=0 invokes ideal nyquist rate
pulse shaping.

0P 00 P OF 0P 0P df dP 0P 0P

we = 2*pixfc;
tempsamp = 9600;

n = 48;

t = (0:(1/fs):time);

% generate random input symbols and do pulse shaping
r = ceil(lG6*rand(size(t)));
len = length(r):;

% detine the 16-QAM symbol set;
symb = {1+1i,1+31i,3+1i,3+3i
,1-1i,1-34i,3-1i,3-31
,-1+1i,-1+331i,-3+1i,-3+31
,-1-1i,-1-31,-3-11i,-3-31};
symb = symb/max(abs(symb));
for i = l:length(r)
rl(ijy=real(svmb(r(ij));
r2(ij)=ima - DL )
end

% do pulse shaping.

if (a ~-= 0)
[ttemp,h] = shape(fs, tempsamp,a,n):
rlp = resample(rl,tempsamp,{s,h);
r2p = resample(r2,tempsamp,fs,h);
tt = (0:(lenuth(r2p)-1))/tempsamp;

else
rlp = resample(rl, tempsamp, fs);
r2p resample(r2; tempsamp, fs);

tt = (0:(length(r2p)-1))/tempsamp;
end

% modulate input symbols using QAM
vyl = rlp’ .* sin(wc*tt)’;

ye r2p’ .* cos(wc*tt)’;

y3 vyl + y2;

is
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Ve resample(y3,samp, tempsamp) ;
t1 = (0:(¢length(y)-1))/samp;
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Appendix G

Function code for measuring C-Notch weighted noise.

function dBrn = cnotch_measure(n,samp)

% This code computes the C-notch filter coefficients,
% and then calculates the C-Notched noise power level
% of a signal.

%

% For the C-Notched measurement, a sinusoidal tone

% must be added to the signal, and then f{iltercd

% out by a notch filter.

% first develop the cnotch filter

Z = [+i*6202 +i*6346 +i*64941];

z = [z conj(z)];

P = [-197+i%*5640 -1310+i*6209 -2494%% "« ]
p = [p conj(p)l];

%

use a bilinear transform to chiangge to digitas filter,
% using prewarping to match 1000 '%:* point
[zd,pd,kd] = bilinear(z’,p’,1,sam;, L010);

% convert from zero-pole representation to transfer function
[bn,an] = zp2tf(zd,pd, kd);

% then develop the cmessage filter

z={0 0 O inf inf inf inf];

p=[-1502+i*1267 -2439+i*5336 -4690+1i*15267 -4017+1i*21575};
p = [p conj(p)]};

% use an impulse invariant transform to change to digital filter
[bs,as] = zp2tf(z’'.,p’,6.25el6);
[bm,am] = impinvar(bs,as,samp):;

now add a sinusoid to the signal
=1;

= [0:1/samp: (length(n)-1)/sampl;
A .* sin(2.*pi.*1010.*t);
=n + X;

1}

o9 Xt oe

o0

apply the cmessage filter
= real(filter(bm,am,n));

=

% apply the cnotched filter
n = real(filter(bn,an,ny)):

% measure the resulting power level
dBrn = 10 * loglO(lel2*sum(n.”2)/length(n));
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Appendix H
Function code for measuring C-Message weighted noise.

function dbrn = cmess_measure(n, samp)

% This routine computes the C-message digital tilter
$ coefficients, and then measures the noise power ot
% an input noise vector.

z={0 0 O inf inf inf inf];:

p=[-1502+1i*1267 -2439+1i*5336 -4690+1i*15267 -4017+i*21575];

p = [p conj(p)l:

% use an impulse invariant transform to change to digital tiltu:
{bs,as} = zp2tf(z',p’'.,6.25el16);

{b,a] = impinvar({bs,as,samp):;

y = real(filter(b,a,n));
dbrn = 10 * loglO0(lel2*sum(y.”2)/length(y));
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Appendix I

Function code for generating attenuation distortion filters.

function [b,a] = adgen(model,samp);

®

This function is used to generate an FIR filter
2 corresponding to a specific model of Attenuation
pistortion. There are 3 models (1,2,3).

L

F = [0 204 254 304 404 504 604 704 804 904 1004 1104
1204 1304 14064 1504 1604 1704 1804 1904 2004

2104 2204 2304 2404 2504 2604 2704 2804 2904 3004 3104 3204
3304 34904 3504 3704 40001}1;

M2 - -1 .* [30 5.1 3.31.81.1 .7 .4 .3 .2 .10 -.1-.1

.6 .875 1.15 1.425 1.7 ...

-2 -2 -.2-.1200 .1 .2 .2 .3 .4
2.0 2.3 3.1 4.1 5.3 7.4 16.5 60 60];
M3 = -1 .% [30 10 6.4 3.7 2.0 1.3 .9 .6 .4 .20 .10 .1 .
.1 .2 .2 .3 .4 .6 .9 1.0 1.4 1.9 2.3 3.175 4.05 4.925 5.8
6.8 7.3 8.8 11.5 13.8 14.4 21.2 60 60];
it (model -= 1)
b= 1;
a = 1;
return;
elseif (model == 2)
M = MZ;
elseif (model == 3)
M = M3;
else
b= 1;
a= 1;
return;
end
m= 10."~(-M/20);

m= 1./m;
f = F./(samp/2);
N = 40;

b = firls(N,f,m);
a=1;
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Appendix J

Function code for generating envelope delay distortion filters.

function [b,a] = eddgen(model, samp)

% FUNCTION [b,a)] = eddgen(model.sam; }

%

% This function is used to generate an EDD (Envelope
%

%

Delay Distortion) allpass filter. There are
possible models to choose from.

4
‘e

% first see if we already have an EDD file for this
¢ filter. If so, just load it and we are done.

if (exist([‘edd_filter_’ int2str(model) ‘.mat’'{) -- 2)
eval({‘load edd_filter_’ int2str(model)l):
return;

else

% do the work of building a filter

f0 = 16;

j = sgrt(-1);

f = [0:£0:4000];

m = model;

F = [600 1700 3000];

EDD = [ 1000 O 950;
1170 0 1350;
1850 0 1350;
2300 0 1850;] ./ 1le6 ./ (2.*pi):

for i=l:size(EDD, 1)
lhs = EDD(i,:):
rhs = [ F(1)"2 F(1l) 1;
F(2)~2 F(2) 1;
F{3)~2 F(3) 1:1;
abe(i,:) = lhs / rhs’;
end

% New method using Markus Lang’s software

N = 10; % allpass degree

w = £ *2 *pi;

om = w./samp; % frequency points in rads
w=1; $

tau0 = 0;

M = ones(l,length(f)):

H=M .* exp(~] .* (abc(m,1l).*(w.”3)./(12*pi"2) +
abc(m,2).*(w."2)./(4*pi) + abc(m,3).*w));

bw = -1 .* unwrap(angle(H)):

no weighting function tau0
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lp] =~ apdesz(bw, W, om, N, taulO, 0, ‘t’);

b = fliplr(p);
a = p;

eval ([ *save edd_filter_’ int2str(model) ' b a’}l):

end % if saved filter exists
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Appendix K
FSK Demodulator Code

function [y, tt,d] = fskdemodTI (x,samp,fc,fs,df)
FUNCTION [y,tt,d] = fskdemodTIl(x,samp,fc,{s,daf)

This function is used to demodulate FSK signals,
and try to determine the signal data. The met tod
used is very simple and elegant.. It was discoverad
in the TI dsp public archives,

Inputs are x, samp, fc, fs, and df which represent
the signal, sample rate, carrier freaquency, symbol rate,
and frequency offset, respec:iively.

%
%
L
%
%
£ 3
%
b3
%
%
3
% Outputs are y, tt, and d which represent the demodulated

% signal, the time vector, and the detected signal respectively.

wc = 2*pi*fc; N = length(x);

% determine time delay for democdulator
n = pi/(2*wc);

% i is the fractional delay part
n*samp - round(n*samp);
w = WC / samp;

'.l.
I

% convert n (s) to n (samples)
n = round(n*samp);

$ now solve for r=-bl
a = cos(w);

rl = (-l*(a-2*i%*a) + sqrt((a-2*i*a)”2 - 4*(i-1)*i)) / (2*(i-1));
r2 = (-l*(a-2*i%*a) - sgrt((a-2*i*a)”2 - 4*(i-1)*i)) / (2*(i-1));
bl = -1*min({rl r2}):

% multiply received signal by time delayed version of itself
Yy = X(2:N-n) + bhl*x(1:N-n-1);
Yy = X(2+4n:N) .* y;

$ setup a time vector
tt = (0:length(y)-1)/samp;

% lowpass filter the signal to remove the high freq stuff
N = 34;

Wn = (2*fs-df; / (samp/2);

b = firl(N,Wn);
a=1;

y = filter(b,a,y):
d = sign(y);
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Sniffer Program Code

function [DISrate,DCSrate] = sniffer(d,samp)

% FUNCTION [DISrate,DCSrate] = sniffer(d,samp)

%

% This function is called the sniffer. It will scan a

% signal, searching for special FSK modulated sequences that
% are used in FAX transmissions.

%

% Sniffer requires the signal stream, ‘d’, and the

% sampling rate of the stream, ‘samp’.

b

% Sniffer outputs all of the DIS and DCS codes it detects as
% the matrices ‘DISrate’ and ‘DCSrate’.

%

%

Program written by Jeremy Sewall.

% For a V.21 sniffer, set the following:

fc = 1750;

% carrier frequency
df = 100; % +/- change in fregquency
fs = 300; % symbol rate
L = -1; % logical low
H = 1; % logical high
Hflag = [L HHHHHRHL):; % header flag
Haddress = [H HH HHULHH H]; % header address
Hcontrol = [HHL L LHLUL L]; % header control
Header = [Hflag Haddress Hcontrol]: % complete header scanned for

Headerlength = length(Heuder);

DIS = [LLLLLLULH]: % code for DIS identifier
DCS = [HHLLLULULH]); % code for DCS identifier
typel = [L L L L]; % codes for different types of
type2 = [L HL L}; % data signals

type3d = [H L L L;

type4 = (HHUL L;;

type5S = [L L H L];

type6 = {L HH L];

type7 = [H H H L);

type8 = [L L L H]};

type9 = [L H L H];

typel0 = [H L L H];
typell = (B H L H];

[y.t,d] = fskdemodTi(d,samp, fc,fs,df); % perform FSK demodulation

% detect signal; create 300 bps digital representation
count = 0;

z = 1;
prev = d(l);
for i=1l:length(d)
if (prev == d(i))
count = count + 1;
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else

numbauds = round(count*f{s/samp);
if (numbauds>0) data(z:z+numbauds-1) = prev*ones ([l numbauds)y;
end;
count = 1;
Z = z + numbauds:
end
prev = d(i):

end

% now search for DIS and DCS

z = 1;

Nheaders = 0;

NDIS = O;

NDCS = 0O;

zmax = 1;

i = 0;

while (i < length(data))
i= i+ 1;

% First search for the header in the data
if data(i) == Header(z)
if z == Headerlength
Nheaders = Nheaders + 1:;

% Found a header, so look for DIS or DCS
if (data(i+l:i+length(DIS)) == DIS)

NDIS = NDIS + 1;

DISrate(NDIS,:) = data(i+19:i+22);
elseif (data(i+l:i+length(DCS)) == DCS)

NDCS = NDCS + 1;

DCSrate(NDCS,:) = data(i+19:1+22);

end
z =1;
else
z =z + 1;
end
else
if (z~-=1)
z = 1;
i=1i-1;
end
end

end
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Appendix L

This appendix contains the probability mass functions (or histograms in this case)
of cleven discriminant variables for each of ninec classes. (Note that the area occupied by
the histogram bars could be normalized to one to obtain the true probability mass func-
tions.) Each plot is accompanied by four values in the plot titles, C, V, M, and S which cor-
respond (o the class number, variable number, discriminant variable mean value, and
discriminant variable standard deviation, respectively. The discriminant variable numbers
{1, 2,..., 11} correspond to variables {N2, Rdl, Rd2,..., Rd10}. All of the discriminant
variables were applied to all available signal recordings and simulations. The parameters
used for calculating the variables are L=16 samples, P,,=1029 p-law decoder units, and
N=1024 samples. If the N parameter (segment length) is increased, the standard deviation

of each variable is decreased. The opposite is also true.
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Appendix M

Function code for computing discriminant variables.

function [ind.Rd,n2,ac] = bené6c(d, samp,N,L, threshold)
[ind,Rd.,n2,ac] = ben6c(d,samp,N,L, threshold)

This file is a modified implementation of the discriminants that
Benvenuto speaks of in a couple of his papers. The intoent

is to apply them to my own signals to confirm his results.

It will also be interesting to see how well they perform

on the modern popular data and fax signals.

The received signal is passed in through the ‘d’ veclor. ‘The
sampling rate ‘samp’, segment length ‘N’, subsegment length ‘l.°,
and the threshold level ‘threshold’ are also passed in as variables,

The results returned are the indices ‘ind’, autocorrelation lag

values ‘Rd’, central second-order moment ‘n2’, and the estimatoed
autocorrelation periodicity ‘ac’.

This file is only a function. It is assumed that somc

other program is loading the data files and compiling the
results.

Modifications: Discriminant functions are applied to

the hard rectified passband signal. The N-point sliding
window can now be formed by non-contiguous small L-point
segments. Also, the first 10 lags of the autocorrelation
are computed, and the normalized central second-order moment.
We attempt to estimate the carrier fregiiency of the signal
by examining the periodicity of the autocorrelation sequence.

unopoaaaopopononwwwwwwa&mwwwwwwwwepoﬂmmm

The Benvenuto bug (biased estimator) is fixed (Rd(k) equation)

% Setup the constants.

n = 0;

z = 0;

nsmpl = length(d);
Pth = L*threshold"~2;

true = 1;

false = 0;

compute = true;
init = true;
contiguous = false;

while (n < (nsmpl-N-3))
n=n+1;
if (init == true)
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RO = 0;
M1 = 0;
FC = 0;
clear y;
q = 0;
init = false;
end
if (abs(¢(n)) > threshold) | (contiguous == true)
ROtemp = sum(d(n:n+L-1).72);
Mltemp = sum(abs(d(n:n+L-1))):
ytemp = d(n:n+L-1);
n = ntL-1;
if (ROtemp >= Pth)
RO = RO + ROtemp;
Ml = M1 + Mltemp;
if exist('y’)
y = [y ytempl;

else

Yy = ytemp:
end
q=9q + 1;

if (9@ < N/L)
init = false;

else
z = 2z + 1;
ind(z) = n;

RO = RO./N;
RAO(z) = RO;
n2(z) = N*N*RO/(M1"~2) - 1;

Rd(1l,z) = (1/(N-1))*sum(y{2:N).*y(1l:N-1)) / RO;
RdA(2,z) = (1/(N-2))*sum(y(3:N).*y(1l:N-2)) / RO;
Rd(3,z) = (1/(N-3))*sum(y(4:N).*y(1:N-3)) / RO;
Rd(4.z) = (1/(N-4))*sum(y(5:N).*y(1:N-4)) / RO;
RA(5,2) = (1l/(N-5))*sum(y(6:N).*y(1:N-5)) / RO;
RA(6,2) = (1/(N-6))*sum(y(7:N).*y(1:N-6)) / RO;
Rd(7.,z) = (l/(N-7))*sum(y(8:N).*y(1:N-7)) / RO;
Rd(8,z) = (1/(N-8))*sum(y(9:N).*y(1:N-8)) / RO;

RA(9,2) = (1/(N-9))*sum(y(1l0:N).*y(1:N-9)) / RO;
RA(10,z) = (1/(N-10))*sum(y(1l1l:N).*y(1l:N-10)) / RO;

% autocorrelation periodicity estimate
Rxings = 0;
Rx0 = 0;
Rgap = 0O
yr = {1 Rd(:,2z)’']);
prevsign = sign(yr(i)):
for i=2:11
if sign(yr{i)) -~= prevsign
Rxings = Rxings + 1;
Rxl = i-0.5;
Rxl = (i*yr(i-1) - (i-1)*yr(i)) / (yr(i-1) - yr(i)):
Rgap = Rgap + Rx1-Rx0;
Rx0 = Rx1;
end



end
con
else
con
end
end
end

prevsign = sign(yr(i)):
end
if (Rxings ~-= 0)

ac(z) = Rxings./Rgap;
else

ac(z) = 1E-10;

end

init = true;
tiguous = true;
tiguous = false;
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Appendix N

These tables contain detailed results of several different classification tests. The
tests are refered to in section 5.3.7.5. Each table of coefficients represents the standardized
canonical discriminant function coefficients. Standardization involves normalizing the
discriminant variable mean to zero and standard deviation to one. Each table of classifica-
tion performance results has rows that correspond to actual classes, and columns for pre-
dicted class memberships. Each row should total to 100%. Columns do not need to total to
100%. When the table titles refer to {all variables}, the variables used were {Rdl,
Rd2,...,Rd10, N2}. Note that we will abbreviate “discriminant function” to DF, “linear

function™ to LF, and “pseudo-quadratic function” to QF here.
TABLE 49. Linear DF coefficients, N=2048, {all variables}

Variable | Func 1 Func2 | Func3 | Func4 | FuncS5 | Func6 | Func7 | Func8

RD1 -.24995 .83985| -1.07196| 2.47345 .05965 .05587] -.32484] .66124
RD2 -.19178| -91710| 1.74627| -1.59374 .41581 .01479 10151} -.12063
RD3 .50344 .87415| -.89361| 295928 -1.22105 17307 -27221 .85300
RD4 91712 -.46895 .68057| -1.85185] 1.39601] -.14051 496511 -.22860
RDS -.16190| -.36963] -1.33913| 1.42835| -1.24593| -.63160| -.49341 .14238
RD6 -.85085 .10603 .68882| -1.26715| 1.11361 .40562) 1.15551| -.04408
RD7 .16505¢ 1.11857| -.07845 .70584| -.85855| -.48633| -99640| -.06162
RDS -43157} -.63310 14679 -.49391 27957 602381 1.20296] .41831
RD9 .48812 .05¢ 9] -.40410 .36958 [05202 29045} -1.37891| -.23963
RD10 .21088| -.20322 .39309| -.13914| -.14359| -.01352 77213 .08665
N2 -07371] -.12736 .24839 .49480 25273  -.11207 .35508| -.61538
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TABLE 50. Classification results, N=2048, LFs, {all variables}

Class 1 2 3 4 s 6 7 8 9
1 100.0% .0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100.0% 0% 0% 0% 0% 0% 0% 0%
3 0% .0%| 100.0% .0% 0% 0% 0% 0% 0%
4 0% 0% 0% 97.9% 2.1% 0% 0% 0% 0%
5 0% 0% 0% 132%| 86.8% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 99.6% 4% 0% 0%
7 0% 0% 0% 0% 0% 1% 99.9% 0% 0%
8 0% 0% 2.2% 5% 1% 0% 0% 96.4% 7%
9 0% 0% 0% 0% 0% 0% 0% 0%1 100.0%

TABLE 51. Pseudo-quadratic DF coefficients, N=2048, {all variables}

Variable | Func1 Func2 | Func3 | Funcd4 | Func5 Func6 | Func7 Func 8
RD1 -.24995 .83985| -1.07196| 2.47345 .05965 05587 -.32484 66124
RD2 -19178( -91710} 1.74627| -1.59374 41581 .01479 .10151 -.12063
RD3 .50344 87415 -.89361| 2.95928| -1.22105 17307 -.27221 85300
RD4 91712 -.46895 .68057| -1.85185| 1.39601] -.14051 496511 -.22860
RDS -.16190| -36963| -1.33913| 1.42835] -1.24593 -.63160 -.49341 .14238
RD6 -.85085 .10603 .68882| -1.26715| 1.11361 .40562] 1.15551) -.04408
RD7 16505 1.11857| -.07845 .70584| -.85855] -.48633| -99640| -.06162
RDS -.43157} -.633 IOJ .14679| -.49391 27957 .602381 1.20296 41831
RD9 .48812 .05939| -.40410 .36958 .05202 .29045| -1.37891| -.23963

RD10 21088 -.20322 39309 -.13914} -.14359| -.01352 77213 08665
N2 -07371| -.12736 .24839 .49480 25273 -.11207 355081 -.61538
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TABLE 52. Classification results, N=2048, QFs, {all variables}

Class 1 2 3 4 5 6 7 T 8 9

1 100.0% 0% 0% 0% 0% 0% 0% 0% .0%

2 0% | 100.0% 0% 0% 0% 0% 0% 0% 0%

3 0% O%]| 99.9% 0% 0% 0% 0% 1% 0%
4 0% 0% 0% 99.6% 4% 0% 0% 0% 0%
5 0% 0% 0% 1.2%| 98.8% 0% .0% 0% 0%

6 0% 0% 0% 0% 0% | 100.0% 0% 0% 0%

7 0% .0% 0% 0% 0% 0% | 100.0% 0% 0%

8 0% 0% 0% 0% 0% 0% 0%| 100.0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% | 100.0%

TABLE 53. Linear DF coefficients, N=2048, {Rd2, Rd4, N2}
Variable Func1 Func 2 Func3

RD2 98768 25664 -.37653

RD4 -.69322 82435 -.17639

N2 .28781 62535 77297

TABLE 54. Classification results, N=2048, LFs, {Rd2, Rd4, N2}
Class 1 2 3 4 5 6 7 8 9

1 100.0% .0% 0% 0% 0% 0% 0% 0% .0%

2 0% 70.2% . 0% 0% 0% 4% 29.4% 0% 0%
3 0% 0%| 99.6% 3% 1% 0% 0% 0% 0%
4 0% 0% 0%| 80.8% 19.2% 0% 0% 0% 0%

5 0% 0% 0% | 253%| 74.7% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% | 100.0% 0% 0% 0%

7 0% 6% 0% 0% 0% 0% 99.4% 0% 0%
8 0% 0% 2.5% 4% 0% 0% 0% 97.2% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% | 100.0%
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TABLE 55. Pseudo-quadratic DF coefficients, N=2048, {Rd2, Rd4, N2}

Variable Func 1 Func 2 Func 3

RD2 98768 25664 -.37653

RD4 -.69322 .82435 -.1763Y

N2 28781 .62535 77297

TABLE 56. Classification results, N=2048, QFs, {Rd2, Rd2, N2}
Class 1 2 3 4 5 6 7 8 9

1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%

2 0%| 99.9% 0% 0% 0% 0% 1% 0% 0%

3 0% 0% 99.9% 0% 0% 0% 0% 1% 0%

4 0% 0% 4%) 86.5%| 13.0% 0% 0% 0% 0%
5 0% 0% 0%| 123%| 87.7% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% | 100.0% 0% 0% 0%

7 0% 0% 0% 0% 0% 0%| 100.0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0%| 100.0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0%} 100.0%

TABLE 57. Linear DF coefficients, N=512, {all variables}

Variable | Func1 Func2 Func3 Func4 Func § Func 6 Func 7 Func 8
RD1 -.36425| 1.34053{ 1.03093| 247237 .18353 .03495| -.36154 .67388
RD2 -.03837] -1.51311| -1.41704} -1.52113 .30044 .04890 09669 -.13417
RD3 36162 1.12645 .73837| 2.83531| -.80386 04034| -.22640 82268
RD4 86699 | -70537( -.52240| -1.92915} 1.05177| -.05183 47675 | -.25104
RDS -.32874 14538 | 1.22238| 1.48278| -.82359| -.67469| -.36665 21934
RD6 -53013] -.14269| -.69246| ..36328 75249 51443 | 1.01927 .0110!
RD7 01994 93809 -.20948 86356| -54130} -.60667{ -.82443| -.03249
RDS -.28553| -.54750 00757 -.62003 07417 .61445] 1.08208 .36419
RD9 25904 .17378 .32969 38129 .14078 25709 -1.17469| -.14479

RD10 25863 | -.26465] -.23884| -15826| -.18058 06064 .60799 11818
N2 -06053| -20435; -.16878 46653 28597 -.05138 .41314] -.61736
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TABLE 58. Classification results, N=512, .LFs, {all variables}

Class 1 2 3 4 5 6 7 8 9
1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% | 100.0% 0% 0% 0% 0% 0% 0% 0%
3 0% = 100.0% 0% 0% 0% 0% 0% 0%
4 .0% 0% 0%| 94.5% 5.5% 0% 0% 0% 0%
5 0% 0% 0% 18.4%| 81.6% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 98.8% 1.2% 0% 0%
7 0% 0% 0% 0% 0% 1.1%| 98.9% 0% 0%
8 2% 3% 4.3% 1% 2% .0% A% 93.3% 9%
9 0% 0% .0% 0% 0% 0% 0% 0% | 100.0%

TABLE 59. Pseudo-quadratic DF coefficients, N=512, {all variables}

Variable { Func1 Func2 | Func3 Func4 | FuncS | Func6é | Func7 | Func8
RD1 -.36425| 1.34053| 1.03093{ 2.47237 .18353 03495} -36154 67388
RD2 -03837] -1.51311| -1.41704{ -1.52113| .30044 04890 09669 | -.13417
RD3 36162 1.12645 .73837| 2.83531 -.80386 04034 -22640 .82268
RD4 86699 -70537| -52240] -1.92915| 1.05177} -.05183 47675| -.25104
RD5S -.32874 .14538| 1.22238) 1.48278| -.82359) -.67469| -.36665 21934
RD6 -.53013] -.14269} -.69246) -1.36328 75249 .51443) 1.01927 01101
RD7 01994 .93809| -.20948 .86356| -54130f -.60667| -.82443] -.03249
RDS -.28553| -.54750 .00757] -.62003 07417 .61445| 1.08208 36419
RD9 .25904 .17378 .32969 .38129 .14078 25709 | -1.17469| -.14479
RD10 .25863| -.26465| -.23884| -.15826| -.18058 06064 60799 11818

N2 -.06053| -.20435| -.16878 46653 28597 -.05138 413141 -.61736
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TABLE 60. Classification results, N=512, QF s, {all variables}

Class 1 2 3 4 s 6 7 8 9
1 100.0% 0% 0% 0% 0% 0% 0% 0% DG
2 0% | 100.0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100.0% 0% 0% 0% 0% O% 0%
4 0% 0% 0% 99.7% 3% 0% 0% O% 0%
5 0% .0% 0% 1.3% 98.7% 0% 0% O% 0%
6 0% 0% 0% 0% 0% 100.0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% | 100.0% 0% O%
8 0% 0% 0% 0% 0% 0% 0% | 100.0% 0%
9 0% .0% 0% 0% 0% 0% 0% 0% 100.0%
TABLE 61. Linear DF coefficients, N=512, {Rd2, Rd4, N2}
Variable Func1 Func 2 Func 3
RD2 94581 31939 -.34876
RD4 -.62518 .84004 -.13620
N2 30445 .56866 81364
TABLE 62. Classification results, N=512, LFs, {Rd2, Rd4, N2}
Class 1 2 3 4 5 6 7 8 9 W
1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0%| 66.1% 0% 0% 0% 2.1%| 31.8% 0% 0%
3 0% 0%} 97.6% 1.8% 6% 0% 0% 0% 0%
4 0% 0% 3%| 756%| 24.0% 0% 0% 0% 0%
5 0% 0% A% 273%) 72.5% 0% 0% O% 0%
6 0% 3% 0% 0% 0%| 99.4% 3% 0% 0%
7 0% 4.3% 0% 0% 0% 1%| 95.6% L5 0%
8 2% 1% 3.0% 7% 0% 0% 0%| 95.6% 4%
9 0% 0% 0% 0% 0% 0% 0% 0% 100.0%
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TABLE 63. Pseudo-quadratic DF coefﬁcignts, N=512, {Rd2, Rd4, N2}

Variable Funcl Func 2 Func 3
RD2 194581 31939 -.34876
RD4 -.62518 .84004 -.13620
N2 .30445 .56866 .81364
TABLE 64. Classification results, N=512, QFs, {Rd2, Rd4, N2}
Class 1 2 3 4 5 6 7 8 9
1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% | 99.7% 0% 0% 0% 0% 3% 0% 0%
3 0% O0%| 99.7% 3% 0% 0% 0% 0% 0%
4 0% 0% 9% | 80.1%| 19.0% 0% 0% 0% 0%
5 0% 0% 0%| 14.1%| 85.9% 0% 0% 0% 0%
6 0% .0% .0% .0% 0% | 100.0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% | 100.0% 0% 0%
8 0% 0% 1% 0% 1% 0% 0% 99.8% 0%
9 0% 0% 0% 0% 0% 0% 0% .0%| 100.0%
TABLE 65. Linear DF coeff 3ants, N=1024, {all variables}
Variable | Func 1 Func 2 ‘ Func3 | Func4 | FuncS | Func6é | Func7 | Func8
RD1 -.35435| -1.10414| -37773| 232395 .22843 01469 -.33560 .65070
RD2 -.01436{ 1.46422 .79196] -1.54786 26519 .10931 090981 -.15263
RD3 38727 -.71864| -.12245| 2.45770| -.65652] -.13206| -.15528 79573
RD4 73497 47378 08954 -1.75528 96644 11315 463321 -.29310
RDS -.34637| -.11988] -.80730| 1.44319] -.58799( -79466| -.26094 27205
RD6 -.41328 .04943 42774 -1.26659 53319 .66863 97925 .03791
RD7 00706| -.64834 45702 .79074| -.32387| -.78105| -.71818| -.02058
RDS -.29409 35624 -.19717| -.61194} -.09992 .65768| 1.02963 35090
RD9 .18302| -.18199| -.17148 .35253 .14358 18812} -1.04662| -.08217
RD10 .19693 .20751 .07401| -20268| -.23259 .11684 .50732 15162
N2 -.03282 28135 17979 43115 25659 01754 43456 -.64732
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1 2 3 4 5 6 7 8 9

30.0% 0% 0% 0% .0% 0% 0% 0% 0%

0% | 100.0% 0% 0% 0% 0% 0% 0% 0%
.0% 0% 99.6% 1% 3% 0% 0% 0% 0%
0% 0% 0% 90.5% 9.4% 1% 0% 0% 0%
0% 0% 0% 23.4% 76.4% 3% 0% 0% 0%
0% 0% 0% 0%| 0% 96.5%| 35%| 0% 0%
0% 0% 0% 0% 0% 22%| 97.8% 0% 0%
2% 4% 5.5% 1.1% 4% 0% 1% 91.4% 9%
0% 0% 0% 0% 0% 0% 0% 0% 100.0%

Pseudo-quadratic DF coefficients, N=1024, {all variables}

Func 1 Func 2 Func 3 Func4 | Func$s Func 6 Func 7 Func 8
-35435| -1.10414| -37773| 2.32395 22843 01469 -.33560 65070
-.01436| 1.46422 79196 -1.54786 26519 10931 09098 | -.15263
38727 -71864| -.12245| 2.45770| -.65652 -.13206 -.15528 79573
73497 47378 08954 -1.75528 96644 11315 46332 -.29310
-.34637) -.119881 -80730| 1.44319} -58799| -.79466] -.26094 .27205
-.41328 .04943 42774 -1.26659 .53319 66863 97925 03791
.00706| -.64834 .45702 .79074] -32387| -.78105) -.71818| -.02058
-.29409 356241 -.19717| -.61194| -.09992 65768 1.02963 .35090
.183021 -.18199} -.17148 .35253 .14358 18812 -1.04662; -.08217
.19693 20751 07401} -20268| -.23259 .11684 .50732 15162
-.03282 .28135 .17979 43115 25659 .01754 .43456| -.64732
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TABLE 68. Classification results, N==10242 QFs, {all variables}

Class 1 2 3 4 5 6 7 8 9

1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%

2 0% | 100.0% 0% 0% 0% 0% 0% 0% 0%

3 0% 0% 100.0% 0% 0% 0% 0% 0% 0%

4 0% 0% O0%| 98.9% 1.1% 0% 0% 0% 0%

5 0% 0% 0% 2.5%| 97.5% 0% 0% 0% 0%

6 0% 0% 0% 0% 0%| 100.0% 0% 0% 0%

” 0% 0% 0% 0% 0% 0% | 100.0% 0% 0%

8 0% 0% 0% 1% 0% 0% 0% | 99.9% 0%

9 0% 0% 0% 0% 0% 0% 0% 0%} 100.0%

TABLE 69. Linear DF coefficients, N=1024, {Rd2, Rd4, N2}
Variable Func 1 Func 2 Func 3

RD2 92283 35041 -31009

RD4 -.50952 .89489 -.09891

N2 .32375 .52005 .85098

TABLE 70. Classification results, N=1024, LFs, {Rd2, Rd4, N2}
Class 1 2 3 4 5 6 7 8 9

1 100.0% 0% 0% 0% 0% 0% .0% 0% 0%

2 0% | 62.5% 0% 0% 0% 47%| 32.9% 0% 0%

3 0% 0%| 94.7% 4.5% 8% 0% 0% 0% 0%

4 0% 0% 1.6%| 69.7%| 28.5% 1% 0% 0% 0%

5 0% 0% 1.0%| 30.6%| 68.0% 3% 0% 0% 0%

6 0% 1.3% 0% 0% 3% 96.3% 2.1% 0% 0%

v 0% 7.6% 0% 0% 0% 1.2%| 91.2% 0% 0%

8 4% 2% 5.6% 1.0% 0% 0% 0% | 91.7% 1.0%

9 0% 0% 0% 0% 0% 0% 0% 0%| 100.0%
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TABLE 71. Pseudo-quadratic DF coe(ﬁcignts, N=1024, {Rd2, Rd4, N2}

Variable Func 1 Func 2 Func 3

RD2 92283 35041 -.31009

RD4 -.50952 89489 -.09891

N2 .32375 .52005 85098

TABLE 72. Classification results, N=1024, QFs, {Rd2, Rd4, N2}
Class 1 2 3 4 5 6 7 8 9

1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%

2 0% 98.7% 0% 0% .0% 0% 1.3% 0% 0%

3 0% 0%! 98.6% 1.4% 0% 0% 0% A% 0%

4 0% 0% 2.3% 72.9% 24.8% 0% 0% 0% 0%

5 0% 0% 0%| 17.0%| 83.0% 0% 0% 0Y% 0%

6 0% 0% 0% 0% 0%| 99.9% 0% 0% 0%

7 .0% 1% 0% 0% .0% 1% 99.3% 0% 0%
8 0% 0% 5% 1% 1% 0% 0% | 99.4% 0%
9 0% 0% 0% 0% 0% 0% 0% 0%| 100.0%

TABLE 73. Linear DF coefficients, N=256, {all variables}

Variable | Func1 Func 2 Func 3 Func 4 Func S Func 6 Func? Func 8§
RD1 30499 1.45488| 2.09478 63224 .11874 .0B988| -.14655 .60308
RD2 .18099| -1.86126} -1.47462 .13386 02911 .16260| -.05174| -.23428
RD3 -.52422| 150313 2.00174 61923 -36055| -.29958 .31201 .84105
RD4 -.66398 ! -1.38505| -1.41490| -.29464 .66887 58682 .103241  -58106
RDS .42407 795801 1.52209| -.06952 .14862| -.86501 09025 54295
RD6 .21748| -.43935} -1.17588| -.15763 .00029 95445 187261 -.43358
RD7 05135 .78573 35215 73896 .23057] -.84673| -.56364 .43452
RDS .22641 -31711 -.45882| -.57484) -35988 58719 75103 -.31798
RD9 -.09611 .12239 .35803 .03961( -03775| -.02170| -.88392 61614
RD10 -.14411; -10655] -.21645) -.13823! -21230| -.00158 19433}  -.34404

N2 05902| -.14981 .36933 33446 .03003 05724 04131 -77163
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TABLE 74. Classification results, N=256, LFs, {all variables}

Class 1 2 3 4 5 6 7 8 9
1 100.0% 0% 0% 0% 0% D% 0% 0% 0%
2 0% | 100.0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0%| 70.2%| 28.9% 8% 1% 0% 0% .0%
4 0% 0% 0%| 70.8%| 28.8% 3% 0% 0% 0%
5 .0% 0% 0% 24.7% 62.0% 12.8% 5% 0% 0%
6 0% 0% 0% 1.2% 0% | 65.6%| 33.1% 0% 0%
7 0% 0% 0% 0% .0% 11.9% 88.1% 0% 0%
8 6% 8% 7.5% 4% 8% 0% 3%| 88.2% 1.4%
9 0% 0% 4% 0% 0% 0% 0% 0%| 99.6%

TABLE 75. Pseudo-quadratic DF coefficients, N=256, {all variables}

Variable | Funcl Func2 | Func3 Func 4 Func § Func 6 Func 7 Func 8
RD1 30499 | 1.45488{ 2.09478 63224 .11874 .08988| -.14655 .60308
RD2 .18099 | -1.86126| -1.47462 .13386 .02911 162601 -.05174] -.23428
RD3 -.52422| 1.50313| 2.00174 61923 -.36055{ -.29958 31201 .84105
RD4 -.66398] -1.38505] -1.41490; -.29464 66887 .58682 .10324( -.58106
RDS .42407 795801 1.52209| -.06952 .14862| -.86501 .09025 .54295
RD6 21748 | -.43935( -1.17588| -.15763 .00029 95445 .78726] -.43358
RD7 05135 78573 35215 73896 23057 -.84673| -.56364 .43452
RDS 22641 -31711] -.45882| -57484| -.35988 .58719 75103} -.31798
RD9 -.09611 .12239 .35803 03961 -.03775| -.02170| -.B8392 61614

RD10 -.14411} -.10655| -.21645( -13823} -.21230| -.00158 19433  -34404
N2 05902 -.14981 .36933 33446 03003 05724 04131 -77163
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TABLE 76. Classification results, N=256, QFs, {all variables}

Class 1 2 3 4 § 6 7 8 9

1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%

2 0% 100.0% 0% 0% 0% 0% 0% 0% 0%

3 0% 0% 80.8% 19.0% .0% 0% 0% 2% 0%

4 0% 0% 1.1% 84.6% 14.3% 0% 0% D% 0%

5 0% 0% 4% 17.3% 80.7% 1.6% 0% 0% O%

6 0% 0% 0% 0% 3% 90.7% 9.1% 0% 0%

7 0% 0% .0% 0% 0% 2% 99.8% 0% 0%
8 0% 0% 3% 1% 1% 0% 0% 99.4% 2%

9 0% 0% 0% 0% 0% 0% 0% 0% 100.0%

TABLE 77. Pseudo-quadratic DF coefficients, N=256, {Rd2, Rd4, N2}
Variable Func 1 Func 2 Func 3

RD2 98479 04836 -.28539

RD4 17543 1.06067 - 08609

N2 35179 35952 92781

TABLE 78. Classification results, N=256, QFs, {Rd2, Rd4, N2}
Class 1 2 3 4 5 6 7 8 9

1 100.0% 0% 0% 0% 0% 0% 0% 0% O%

2 O0%| 92.0% 0% 0% 0% 6% 7.4% 0% 0%
3 0% 0%| 83.7%| 15.3% 9% 0% 0% A% 0%
4 0% 0% 4.3% 72.3% 23.3% 0% 0% 0% 0%
5 0% 0% 1.1%| 37.8%| 51.3% 9.8% 0% 0% 0%

6 0% 4% 0% 0% 1.4% 66.4% 31.9% 0% 0%
” 0% 3.5% 0% 0% 0% 1.5%| 95.0% 0% 0%

8 0% 0% 1.3% 0% 8% 0% 0% 97.8% 1%

9 0% 0% 0% 0% 0% 0% 0% A% 99.9%
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TABLE 79. Linear DF coefficients, N=25q, {Rd2, Rd4, N2}

Variable Funcl Func 2 Func 3

RD2 98479 04836 -.28539

RD4 17543 1.06067 -.08609

N2 35179 35952 92781

TABLE 80. Clsssification results, N=256, LFs, {Rd2, Rd4, N2}
Class 1 2 k] 4 5 6 7 8 9

1 100.0% 0% 0% 0% 0% 0% 0% 0% 0%

2 O0%| 55.0% 0% 0% 0%| 208%| 242% 0% 0%

3 0% A% 753%| 22.3% 22% 1% 0% C% 0%

4 0% 4% 6.7%| 553%| 37.3% 3% 0% 0% 0%

5 1% 3% 6.6%| 45.1%{ 352%| 12.4% 3% 0% 0%

6 0% 2.6% 0% 0% 28%)| 63.4%| 31.1% 0% 0%

7 0% 5.5% 0% 0% 0% 119%| 82.6% 0% 0%

8 5% 6% 8.2% 7% 1% 0% 0%| 87.1% 2.8%

9 0% 0% 0% 0% 0% 0% 0% 0%| 100.0%
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FIGURE 101. Boxplots of Rd1 vs. class.
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FIGURE 102. Boxplots of Rd2 vs. class.
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FIGURE 103. Boxplots of Rd3 vs. class.
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FIGURE 104. Boxplots of Rd4 vs. class.
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FIGURE 105. Boxplots of RdS5 vs. class.
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FIGURE 106. Boxplots of Rd6 vs. class.

313



RD7

K

ek

[

K
&

'
<]

g A
[}
R Y.

Ne 2393
1.00

CLASS

1424 2348 1879 4387 1183 970 387 974
2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

ROD8

61

FIGURE 107. Boxplots of Rd7 vs. class.
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FIGURE 108. Boxplots of Rd8 vs. class.
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FIGURE 109. Boxplots of Rd9 vs. class.
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Appendix P
function [y.fclk] = gamtiming4(d, samp, fsnom,of fset)
% function (y,fclk) = gamtiming4(d,samp, fsnom,offset)
L S
% This function extracts the timing signal from
$ a baseband QAM signal, and performs slicing.
$ It is critical that a QAM signal be operated
$ on.
3
% d is the signal. samp is the sampling rate of d.
% fsnom is the nominal baud rate.
%
% y is the resulting sliced signal (still passband).
% fclk is the baud rate
% clock that was generated.
3
% This version allows for a selectable delay (offset).
2

first, normalize power
= d ./ mean(abs(d).”2).”.5;

Q w

% next, perform a non-linear operation.
aéd = abs(d):

% next, perform notch filtering at fsnom.
N = 4; $ Nth order filter

fda = 6; $ filter width = 2*xfd Hz.
Wl = (fsnom - fd) ./ (samp./2);

W2 = (fenom + fd) ./ (samp./2);

[b,al] = butter(N, {W1l W2]);

fclk = filter(b,a,dd);

% now, develop the baud clock and slice

fclker = interp(fclk,9): % no delay caused by this element
fclker = sign(fclker);

flen = length(fclker);

fclkslice = fclker(2:flen) - fclker(l:flen-1);
fclkslice(fclkslice > 0) = zeros(size(fclkslice(fclkslice > 0)));
fclkslice = [abs(fclkslice) zeros(1l,35)];

dd = interp(d,9):

fclkslice = fclkslice(offset+l:length(dd)+offset);

y = dd(fclkslice == 2);
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Appendix Q

Function code for computing minimum distances between constellations.

function [mindis,ABavg] = mindisqamé6(y,sym,symfreq)
FUNCTION [mindis,ABavg] = mindisqgamé(y,sym,symfreq)

This function is used to determine the minimum
distance between a list of constellation points

from a test signal (y), and a given constellation
pattern (sym).

ABavg is returned and contains the average of the

freq of occurance of each symbol point minus the

ideal freq of occurance. This is a measure of how

close the measured points are to the expected distribution.

The " nimum distances for each point are returned.

Also, the frequency of occurance of each constellation
point is utilized.

9O 0P OO 0P P 0P OP OP 0P P OP oF 0P 0P OP dP o of

There is lots of room for optimization here.

o0

Only the constellation vector mags
$ are considered.

ii = sqgrt(-1);
yvyabs = abs(y):

$ find all the distances

for sympoint = 1l:length(sym)

dis(sympoint,:) = abs(yabs(:)-sym(sympoint))’;
end

% select the minimum distances
[mindis, minverts] = min(dis);

for i = 1l:length(sym)
end

ABavg = sum(abs(AB)):

AB(i) = sum(minverts(minverts==i)./i)./length(minverts) - symfreq(i):
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Appendix R
Code for supervising the classification of V.29 signals into their fall-back modes.

This program is intended to perform subclassification
of v.29 fax signals. There are two speeds for the

V.29 standard, one with a 16 point constellation, and
the other with 8 points. This program will distinguish
the two (with luck). There is also a 4 point version,
but it is so rarely used that we ignore it.

Seventh version.

Oonly FIR filters are used throughout the program, so that
the phases remain linear, and group-delays are easily computed.

Constellation magnitudes are used for discrimination, since
the phases are not locked, and may rotate and/or jitter.

0P G0 P P P I P P PP W PP WP

clear;

samp = 8000;
fc = 1700;
fs 2400;
fsnom = 2400;
pass = 2000;
M = 1000;
offset = 12;

b

% form the constellation templates (mags only)
% and their relative freqs of occurance.

sym8 = [2.70.5, 3]:

sym8freq = [1, 1]./2;

syml6é = [2.70.5, 18.70.5, 3, 5]:

symlé6freq = {1, 1, 1, 1}./4;

sym8 = sym8 ./ (mean(abs(sym8).72)).".5;

syml6 = syml6é ./ (mean(abs(symlé6).”2)).".5;

% load in the files
fid = fopen(‘'v29files.txt’, ‘r’);
s = fscanf(fid, ’'$s’);
z = 0;
start = 1;
for i = l:length(s)-3
if s(i:i+3) == . mat’
z = z2+1;
fname(z,1:i+3-start+l) = s(start:i+3);
start = i+4;
end
end
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fclose(fid);

[nfiles,junk] = size(fname):
for file = l:nfiles
file

fname(file, :)
eval([‘load ‘,fname(file,:)]):
if exist(‘recording’)
r = mu2lin(recording);
else
return;
end

% loop through the signal from start to finish
nsegs = floor(length(r)./M);
for j = 1l:nsegs

d = r(3j*M-M+1:j*M);

% first demodulate the signal. Total delay at this

% point should be the number of FIR taps divided by 2.
% In this case, the gdelay is 15 sample intervals.

t = [0:1/samp: (length(d)-1)/samp];

d = gamdemod2(d, fc,t’,pass,samp);

% next, recover the signal constellation
{y,fclk] = gamtiming4(d, samp, fsnom,of fset);

% finally, identify which of the two possible
% constellations the signal under test is.
[d8,ab8(j)] = mindisqamé6(y,sym8,symB8freq);
(d16,abl6(j))] = mindisqam6(y,symlé,syml6freq);
]

d8sum = sum(df);

dlésum = sum(dlé);

dgsavg(j) = dB8sum,/length(d8);
dléavg(j) = dl6ésum./length(dlé6);

dstot(j) = dBavg(i) .* abB8(j):;
dlétot(j) = dleavg(j) .* ablé6(j):;
dstot (j)

diétot(j)

end % loop through signal segments

N8 = length(d8tot(d8tot<dlétot));
N16 = length(dlétot(dlétot<dBtot));
Ntot = length(d8tot);

p8 = 100 .* N8 ./ Ntot;

plé = 100 .* N1lé ./ Ntot;

clf;
subplot(2,2,1)
plot(y.,’o’)
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axis((-2 2 -2 2]1);
title([‘Constellation plot fo; ‘' num2str(fname(file,:))1):

subplot(2,2,2)

axis({0 1 0 11);

text(0.1,0.9,(['N = ' num2str(M)]);
text(0.1,0.7,[‘'‘Nsegs = ' num2str(nsegs)]):
text(0.1,0.5,['8-QAM = ' num2str(p8) * %’']):
text(0.1,0.3,['16-QAM = * num2str(pl6) * %']);

subplot(2,1,2)
plot(d8tot, ‘o’)

hold on

plot(dlétot, 'x’)

title(‘Mean min distance * ABavg vs. time’);
xlabel(‘time’);
ylabel(‘distance’):;
legend(‘'8-QAM’,’16-QAM’',~-1);
plot (d8tot)

plot(dlétot)

hold off

eval([‘print plot’ num2str(file) ‘.ps’]):
clear ab8 ablé d8tot dlétot dB8avg dléavg dB8sum dlésum

end % loop through signals
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Appendix S

These tables contain detailed results of several different classification tests. The

tests are referred to in section 7.3. Each table of coefficients represents either the standard-

ized canonical discriminant function coefficients, or the Fisher’s linear discriminant func-

tion coefficients. Standardization involves normalizing the discriminant variable mean to

zero and standard deviation to one. Fisher’s linear discriminant functions also require a

constant term which is indicated by “K’. Each Fisher function corresponds to a particular

class, where the class number matches the function number (Func). Each table of classifi-

cation performance results has rows that correspond to actual classes, and columns for

predicted class memberships. Each row should total to 100%. Columns do not need to

total to 100%. Four discriminant variables are used in all cases {Rd2, Rd4, Rd6, N2}.

Note that we abbreviate standardized canonical “linear discriminant function” to LDF and

“pseudo-quadratic discriminant function” to QDF here.

TABLE 81. LDF coefficients, N = 256.

Variable Func1 Func 2 Func 3 Func4

N2 .37589 15454 -.09385 98024

RD2 94070 -.25530 25065 -.19930

RD4 .36074 .81108 59863 .17954

RD6 -24348 -.41104 .80483 .38827

TABLE 82. Fisher’s linear coefficients, N = 256.

Var Func 1 Func 2 Func3 Func 4 Func 5 Func 6 Func 7 Func 8
N2 68.9408893 | 92.5273968 | 98.8631297| 92.1039105| 71.9853824] 77.0362075 | 162.4976303 | 74.9532904
RD2 | -41:5041534] -72.2110898 | -30.4878477 | -49.3729779 | -68.1814534| -72.8896109 | 59.0690823| 4.3349719
RD4 | 381766011 277235116 9706675 | 3.7444776| 18.6267597| 28.3422519| 49.5752588| 15.4056933
RDg | 436869443 | 245381971 23901780 | 13.1703926] 112718850 7.5155273| 5.3802994| 6.7737870
K | -470296219 | -53.7488137 | -31.3387053 | -35.4116082 -40.0959504 | -48.0008993 | -73.0128182 | -14.5715506
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TABLE 83. Classification performance using LDFs, N = 256.

Class 1 2 3 4 5 6 7 8
1 100.0% 0% .0% 0% 0% .0% 0% 0%
2 O% 80.6% .0% 0% 9% 18.5% 0% 0%
3 0% .0% 78.7% 21.2% 1% 0% 0% 0%
4 0% 0% 6.2% 85.8% 7.5% .5% 0% 0%
5 0% 3.1% 0% 3.0% 62.1% 31.8% 0% 0%
6 0% 10.0% 0% 0% 12.6% 77.4% 0% 0%
7 6% A% 7.7% 1.1% 0% 2% 87.0% 2.9%
8 0% .0% 0% 0% 0% 0% 0% | 100.0%
TABLE 84. LDF coefficients, N = 512.
Variable Func 1 Func 2 Func 3 Func4
N2 31206 .38807 27768 .88798
RD2 .89667 .39950 .14320 -.29686
RD4 -.55630 .69118 .53048 -.04099
RD6 .12553 -.56108 .82598 09628
TABLE 85. Fisher’s linear coefficients, N = 512.
Var Func 1 Func 2 Func3 Func 4 Func S Func 6 Func 7 Func 8
N2 98.8684419 | 96.3009518 [ 132,1051800 | 115.9214429| 71.2215833] 73.2573147 | 246.4018611 | 100.3102699
RD2 | 266660383 | -128.989680 -19.4524852| -64.0273201 | -108.846837 | -133.804106 | 112.9150626 | 14.7063583
RD4 | 666393461 | 68.6131589( -3.5571063 | 14.3498112) 43.3349205| 74.6856453| 34.2905873| 127411665
RD6G | 832226033 | 31.8952040| 3.5267741 20.0756413| 16.8995700| 5.8356922} 2.6437965| 8.7499022
K -68.6162354 | -82.9198122| -38.5813891 | -44.1584080 | -52.8452080 | -78.9177852 | -121.130481 | -18.7892564
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TABLE 86. Classification performance using LDFs, N = §12,

Class 1 2 3 4 5 6 7 8 B
1 100.0% 0% 0% 0% 0% 0% 0wl 0w
2 0% 83.7% 0% 0% .0% 16.3% 0% 0%
3 0% 0%| 96.5% 3.5% 0% 0% 0% 0% |
4 0% 0% 1.1% 98.6% 3% 0% 0% 0%
5 .0% 0% 0% 3% 94.8% 4.8% 0% 0%
6 0% 9.3% 0% 0% B% 89.9% 0% 0%
i 3% 2% 5.6% 1.1% 0% 1% 91.9% Y%
8 0% 0% 0% .0% 0% 0% 0% 100.0%
TABLE 87. LDF coefficients, N = 1024,
Variable Func 1 Func 2 Func 3 Func 4
N2 27784 41643 73927 -53910
RD2 88887 45409 -09413 34201
RD4 -71858 60322 38270 34385
RD6 .24283 -.63133 .68385 35529
TABLE 88. Fisher’s linear coefficients, N = 1024.
Var Func 1 Func 2 Func 3 Func 4 Func S Func 6 Func 7 Func 8
N2 | 1232569353 | 1131319312 158.0008225 | 138.8236206 | 849611686 | 85.8179829 | 309.4182095 | 1171221580
RD2 | 222941525 | -179.810882| -25.9900121 | -86.3626576 | -149.000230 | -187.091105 | 141.0266184 ) 15.4155629
RD4 | 990214389 | 100.0245438 | -4.5363261 | 22.2868936 | 67.4829930 | 113.5418477| 24.5405249 | 112339518
RD6 | 1264382237 325223787| 58365520 25.6547899| 16.4018352| -4.1136448| -27307604| 9.6204267
K | 941096225 | -110.464366 | -46.0553549 | -54.6101832 | -69.9756077 | -108.588365 | -162.127542 | -21.5913603

323




TABLE 89. Classification performance using LDFs, N = 1024.

Class i 2 3 4 s 6 7 8
1 100.0% 0% 0% 0% 0% 0% 0% 0%
T 2 0% 84.1% 0% 0% 0% 15.9% 0% 0%
3 0% 0% 98.6% 1.4% 0% 0% 0% 0%
4 0% 0% 2% 99.8% 0% 0% 0% 0%
5 0% 0% L% 0% 98.6% 1.4% 0% 0%
6 0% 4.6% 0% 0% 2% 95.3% 0% 0%
7 3% 1% 2.9% 5% 0% 1% 95.7% A%
8 0% 0% 0% 0% 0% 0% 0%| 100.0%
TABLE 90. LDF coefficients, N = 2048.
Variable Func1 Func 2 Func 3 Func4
N2 24412 43734 85548 -.30648
RD2 90334 48511 -.22422 29733
RD4 -.84565 .58913 .25275 .41962
RD6 232791 -.70151 .55662 41796
TABLE 91. Fisher’s linear coefficients, N = 2048.
Var Func 1 Func2 Func 3 Func4 Func S Func 6 Func7 Func 8
N2 | 151.0523890 141.5430710| 193.4337839 | 171.4426100 | 107.4566020 | 109.1980553 | 395.9726214 | 140.9630241
RD2 -23.8556946 | -252.484026 -37.7819814{ -120.509451] -206.758830 | -261.935671 | 180.6489616 } 15.5765093
RD4 | 142921084 1420703258 | -1.3749801 | 353535529 100.0839426 | 166.0545712| 20.2096102 | 12.4637840
RD6 183.7362644 | 32.9252593| 11.3313737] 34.5581576{ 16.8939263} -16.3335006 | -12.9843622 ] 10.1619505
K -128.416437| -150.230948 | -56.0835416| -69.9861778| -94.9355214| -150.807812| -220.485510 | -25.5648705
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TABLE 92. Classification performance using LDFs, N = 2048.

Class 1 2 3 4 5 6 7 8
1 100.0% 0% 0% 0% 0% 0% 0% 0%
2 0% 82.9% 0% 0% 0% 17.1% 0% 0%
3 0% 0% 99.8% 2% 0% 0% 0% 0%
4 0% 0% 0%| 100.0% 0% 0% 0% 0%
5 0% 0% 0% 0% | 100.0% 0% 0% 0%
6 0% 1.2% 0% 0% 0% 98.8% 0% 0%
7 0% 1% 2.3% 2% 0% 0% 97.3% 0%
8 0% 0% 0% 0% 0% 0% 0% | 100.0%
TABLE 93. QDF coefficients, N = 2048.
Variable Func 1 _l
-16861
RD2 3.39794
RD4 3.47858
RD6 2.51624
TABLE 94, Classification performance using :JDFs, N = 2048.
Class 1 2
1 100.0% 0%
2 1% 99.3%
TABLE 95. QDF coefficients, N = 1024.
Variable Funcl
14705
RD2 3.43859
RD4 3.70292
RD6 2.29396
TABLE 96. Classification performance using QDFs, N = 1024.
Class 1 2 “
1 99.2% B%
2 23% 97.7%
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TABLE 97. QDF coefficients, N = 512.

Variable Func1
N2 .11498
RD2 3.51222
RD4 3.90268
RD6 2.10615
TABLE 98. Classification performance using QDFs, N = 512,
Class 1
1 95.2% 4.8%
2 5.3% 94.7%
TABLE 99. QDF coefficients, N = 256.
Variable Func1
N2 -.04147|
RD2 4.69437
RD4 4.99780
RD6 1.54664
TABLE 100. Classification performance using QDFs, N = 256.
Class 1
1 65.9% 34.1%
2 18.7% 81.3%
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Appendix T

These tables contain detailed results of several different classification tests. The

tests are referred to in section 7.3. Each table of coefficients represents the Fisher's lincar

discriminant function coefficients. Fisher's linear discriminant functions also require a

constant term which is indicated by “K"". Each Fisher function corresponds to a particular

class, where the class number matches the function number (Func). Eleven discriminant

variables are used in all cases {N2, Rdl, Rd2, ..., Rd10}, and all nine classes are consid-

ered.

TABLE 101. Fisher’s linear coefficients, N = 2048.

Var Funcl | Func2 | Func3 | Funcd4 |{ Func5 { Func6 | Func7 | Func8 | Func9
N2 | 21211694] 16018760 | 218.92847] 212.83918] 209.95063 | 14595359 14553652 | 432.85801 | 145.79080
RD1 | 87594746 | 82555012 768.84103] 827.41129| 81914977 817.08100| 80218383 | 84492785 27.573014
2223448 | -103.9965| -99.5957| -158.0692| -145.1447| -183.9603| -178.7361| -60.9235| 2.1908949
RD10
-828.6326 | -973.1521] -823.7389| -891.1987| -888.1300| -998.7772| -1064.560| -565.2314} -2.6903125
RD2
RD3 | 35628487| 813.52456] 731.87374( 667.91932] 663.75840 | 647.98885| 632.07713 | 680.49783| 12.13639
-826.5912| -442.9203| -695.7858| -557.26847| -572.9140( -532.1079| -477.8168| -545.1935| 1.1046181
RD4
RDS | 45255856 | 24024371 658.41512( 491.96595 | 502.02530| 570.41042| 654.89255| 4123547| 7.0461214
-69.8583 | -458.0063| -517.7260] -388.3004| -366.1489| -427.2913] -480.8689| -348.76341 8.4251207
RD6
RD7 | 47117682 78165222 4117376 372.94330| 339.55805| 401.46195| 345.29842| 279.69814 1 « 1iuca7
RDS | 1808892 -563.61748| -251.62575 | -266.14260| -218.21501 | -305.68455 | -303.03306 [ -216.7i 76 : @ e 952
]
——
RD9 | 89547528 | 253.11320| 161.79371] 221.16412| 189.50310| 228.43158| 233.28887| 11 272wt | 2490360
K | -56201532 -626.51807 | -277.28090 | -292.09331 | -288.01705 | -324.59446 | -394.65172 -457.7'54"';',} 6,508363
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TABLE 102. Fisher’s linear coefficients, N = 1024,

Var | Funcl | Func2 | Func3 | Func4 | FuncS | Func6 | Func7 | Func8 | Func9
N2 157.52026 | 121.05004| 177.51978| 159.79890| 157.68626| 106.16280| 106.80934 | 322.97393| 119.59128
RD1 | 72098922| 666.68143| 64039881| 675.40431| 669.88571| 67451558 | 665.15746| 667.19401 | 14.666877
RD10 | "162:64909 | -70.175597 | -77.771786 | -110.97361 | -102.81106 | -124.95340 | -122.64276 | -72.432890| 0596696
RD2 | 7701:24595 | -780.52110 | -661.66197 | -720.53820 | -718.69495 | -793.96808 | -834.03406 | -489.75283 | 3.1112337
RD3 | 486:51297| 647.90606| 600.16278 | 553.85896 | 551.70750| 533.52400| 518.97571 582.22605 | 10.079708
RD4 | 652:50157 | -393.16139 | -566.03012 | -478.98140 | -487.49110 | -453.77149 | -413.60330 | -487.55772| .1420894
RDS | 423.05409| 25274795 | 518.08628| 416.29049 | 420.80670| 45691135 502.69134| 418.85744| 11.710841
RD6 | -161:99172| -349.48051 | -408.49255 | -323.52775 | -308.90354 | -336.28166 | -362.35038 | -355.07446 | 1.6220197
RD7 | 38243629| 509.19283| 325.21736| 300.43351| 280.84326| 312.70000 | 279.45625 | 285.12270| 9.9491346
RDg | -176-55454| -361.46145 | -206.1787 | -211.37616 | -181.96601 | -228.30148 | -225.37170 | -222.14961 | 3.5371786
RDO | 59-814639| 159.99056 | 121.70271 | 159.64511| 142.19340| 15538438 | 149.51837| 120.08091 | 3.0247345
K | "405.89428 | -437.06818 | -224.55890 | -232.52371 | -230.07654 | -254.92774 | -300.97085 | -339.74418 | -22.132205
TABLE 103. Fisher’s linear coefficients, N = 512,
Var | Funcl | Func2 | Func3 | Func4 | Func5 | Func6 | Func7 | Func8 | Func9
N2 122.54061 | 100.08542| 146.32854| 128.92659| 126.38220| 85.183005) 88.024106| 255.06397| 101.97651
RD1 | 45063477| 403.34246| 388.69582( 417.27319| 41425188 | 41834587 413.71283 | 407.03205| 8.1426426
RD10 | 86762209 | -41.569175 | -41.213856 ~60.027695 | -33.637975 | -67.635284 | -68.031190 | -50.925592 | -2.2901033
RD2 | 44098493 | -495.11678 | -401.42314 | -449.50696 | -449.97425 | -499.78251 | -525.29207 | -275.16950 | 6.5846289
RD3 | 28039483 395.09019| 366.90390| 33293375| 333.41530| 31596817 | 306.30287 | 359.56739| 6.5688956
RD4 | -388-87957| -220.35472 | -342.33286 | -283.77083 | -290.84507 | -265.29004 | -238.92789 | -281.98272 | 4.4150793
RDS | 25995747 142.56766| 313.94046| 24408433 | 247.70008 | 267.32930| 294.15046| 262.37755| 10.327426
RD6 | 92849861 | -194.89714 -240.29185 | -181.99083 | -172.36980 | -186.79400 | -201.39829 | -219.86978 | 1.4983175
RD7 | 223.26012| 283.87743| 188.98424} 171.01832| 159.19450| 181.55797 | 166.02805 | 172.19002| 9.1427099
RDSg | 52018048 -205.56323 | -117.51311| -118.32918 | -98.902389 | -126.70666 | -126.90154 | -144.42511 | -.404423)
RD9 | 39-508923| 90307140| 62.242925| 86.492515| 75.811429| 84.138386| 78.968557 68.257182| 2.2783011
K | -260.77242 -280.77494 | -147.22940 | -153.44373 | -152.12388 | -167.33047 | -198.08030 | -232.19155 | -19.188139
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TABLE 104. Fisher’s linear coefficients, N,= 256.

Var | Funcl | Func2 | Func3 | Func4 | FuncS5 | Func6é | Func7 | Func8 | Func9
N2 104.60118 | 88.060527 | 111.461706 | 104.56803| 101.05457| 86.625760| 91.876740| 177.18566] 78.410780
RD1 | 300-54292| 260.44255| 275.91353] 280.35038| 277.77726| 276.34326| 274.51542| 29420989 7.8429KK0
RD10 | ~42-884285 | -20.195304| -29.015259 | -29.936673 | -27.611802 | -32.386575 | -31.083152 | -42.788981 | -3.3384005
RD2 | -291-19417| -336.90810 | -291.48994 | -305.29581 | -309.51153 | -325.98768 | -331.04532 | -203.11726 | -.407308
RD3 | 20073788| 286.11467) 241.78955| 23838596 240.84467| 23401465 | 231.91237] 23552741 | 1.3063380
RD4 | 26874683 | -170.84959 | -219.32192 -209.39714H-209.45708 -201.01082 | -193.39020 1 -173.19145 | R.1212519
RDs | 20423512} 128.96740| 198.25914| 181.62025] 181.53638| 197.96925 | 204.991R3 | 183.56553| 9.2370252
RD¢ | “99-532179 -137.10018 | -150.37602 } -131.69555 | -125.44946 | -139.17863 | -142.52341 | -152.48215 | -.1162775
RD7 | 153:06955| 166.48529| 122.17120| 112.48479| 105.16578 | 120.79578 | 114.63930 | 12006448 | 10.728606
RDS | "64-172989 | -115.99222 | -78.593489 | -71.031853 | -62.677691 | -77.109970 | -75.654119 | -107 34144 | -4.6792982
RD9 | 27-286895| 42.347318| 42.247304| 44.292668| 391027337 41.643159| 37.035810| 46257314 3.6606442
K | 16571855 -180.98446 | -103.65630| -106.68331 | ~106.95710 | -112.61481 | -121 90664 - 15778074 | -15.260450
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