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ABSTRACT 

 The effect of chamber length and Reynolds number on the stability and behavior 

of the flow field generated by a precessing jet nozzle was studied using stereoscopic 

particle image velocimetry (StereoPIV). An algorithm was developed to determine the 

mode of the flow based on the distribution of axial velocity. The optimal chamber length 

for precession to occur was found to be between 2 and 2.75 chamber-diameters. There is 

no precession at a chamber length of one diameter, and the occurrence of precession was 

found to be strongly related to Reynolds number. Conditionally averaged velocity 

distributions for the flow in precessing mode were calculated.  

 The effect of initial condition on downstream behavior of axisymmetric jets was 

examined. Variations in spread and decay rates were found for jets issuing from different 

nozzles. Self-similar solutions for axisymmetric jets are therefore not universal, and are 

instead dependent upon initial conditions at the source.   
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CHAPTER 1:  INTRODUCTION 

1.1 Introduction 

 Jets are devices used in engineering practices to mix and transport fluids (White, 

2003). The mixing field may be reacting, as in combustion processes, or non-reacting. In 

the former case, the type of mixing can affect the performance of combustion (Newbold, 

1997). Research has shown that the properties of the nozzle can be used to passively 

control the fluid mixing in the region where the reaction occurs, thereby allowing for the 

control of combustion. Precessing jets (Nathan, 1998) are a class of these devices, which 

have been shown to greatly increase mixing in their near field (Wong et al., 2003) and 

have found applications in industrial burners (Manias, 1994; Manias et al., 1996). Further 

research of the flow phenomenon generated by a precessing jet is needed to fully 

understand these flows and allow for their optimal design.  

1.2 The Precessing Jet 

 In its simplest form, a precessing jet refers to an axisymmetric jet flow issuing 

through a nozzle-chamber assembly, as shown in Figure 1.1. This is the basic 

configuration shown by Nathan et al. (1998). The flow exits through a nozzle of diameter 

d through a sudden expansion into a chamber of inner diameter D and length L. If these 

dimensions are appropriately chosen, the flow may destabilize, resulting in a precessing 

flow, where the axis of the issuing jet rotates about the chamber axis (Nathan et al., 

1998). The optimal dimensions to generate this instability have been found to be 
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75.2DL , with precession occurring over the range 5.32  DL  (Newbold, 1997), 

and an expansion ratio of 5dD  (Nathan et al., 1998). This flow is bistable, 

intermittently and chaotically switching between this precessing mode (PJ mode) and an 

axial mode (AJ mode), where the exiting jet closely resembles an axisymmetric jet. This 

flow differs from a swirl flow, where the jet is rotating about its own axis. Instead, the 

axis of the jet is rotating about the axis of the chamber in a gyroscopic-like motion. 

Similar configurations with non-circular nozzles have been shown to exhibit flapping 

behavior (Mi et al., 2001c), where the position of the jet moves around the chamber exit 

plane. The motion is however not rotational in nature and therefore not considered to be 

precessing. 

 

Figure 1.1 Sectioned view of a precessing jet nozzle in its simplest configuration (without a lip or center 

body), showing relevant dimensions and components.  

 

 The flow field of a precessing jet enhances mixing downstream from its nozzle, 

with the velocity decaying more rapidly than its axisymmetric counterpart (Wong et al., 

2003). This flow instability has found applications in industrial processes, such as 

 2   



industrial burners (Manias, 1994). Use of precessing nozzles has shown improvement in 

flame stability, increased burner efficiency, and decreased pollutant emissions (Newbold, 

1997). The use of such nozzles in lime kiln burners has shown increased flame 

luminosity resulting in increased radiant heat transfer, while reducing the flame 

temperature, which in turn reduces NOx production. Such installations have shown 5-

20% reductions in specific fuel consumption, 5-10% increases in kiln output, and 40-70% 

reductions in NOx emissions (Manias et al., 1996). 

 
Figure 1.2 Representation of the flow field occurring within and beyond the precession chamber when in 

precessing flow mode. Reproduced from Wong et al., (2004). 

 

 Nathan et al. (1998) give the first thorough description of the mechanics driving 

this flow phenomenon through their qualitative flow visualization technique, which is 

illustrated in Figure 1.2. After exiting the nozzle into the chamber, the inlet flow 

separates as it passes the sudden expansion, spreading as it entrains chamber fluid and 

then asymmetrically reattaches to the chamber wall. Fluid is drawn from outside of the 

chamber, inducing a rotating pressure field. This causes the reattaching flow to precess 
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along the inside wall of the chamber, also precessing as it exits the chamber. The 

transverse pressure gradient causes the jet to deflect, achieving an initial deflection of 

approximately 50° with the chamber axis, and decreasing to approximately 30° within 

4.0Dx  (Wong et al., 2003), where x is the axial distance from the chamber exit. The 

exiting jet has been shown to be kidney-bean in shape along a plane parallel to the 

chamber exit and be dominated by a pair of counter-rotating vortices. Beyond an axial 

distance of 5.0Dx , the shape characteristic of precessing mode disappears, and the jet 

closely resembles an axisymmetric jet flow (Wong et al., 2008). 

 The nozzle exit condition has an effect on the probability of PJ mode (Wong et 

al., 2004), with smooth contraction nozzles resulting in lower probability than for long 

pipe and orifice nozzles. This has been attributed to the symmetry of large scale 

structures being shed at the nozzle exit plane which directly influence the stability of the 

downstream flow field within the chamber. The presence of a lip on the chamber greatly 

increases the dominance of precession mode, while the addition of a centerbody results in 

a near-unity precession probability, provided that the Reynolds number is sufficiently 

high and it is mounted upstream of the lip (Wong et al., 2004). The inlet flow condition 

also has been shown to influence the precession frequency of the jet (Wong et al., 2006), 

with the orifice nozzle producing the highest precession frequency and the long pipe the 

lowest.  

 There have been many studies on the flow field and mechanics of this flow 

phenomenon. Guo et al. (1999) carried out numerical simulations using the k-  

turbulence model of the downstream flow field of an axisymmetric jet issuing through 

expansion ratios 695.3  dD , observing both precession and oscillatory flapping 
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motion. The relationship between precession frequency and chamber length and 

Reynolds number was studied by Mi and Nathan (2004) with pressure measurements 

along the nozzle axis using a mechanical analogue for the fluidic precessing nozzle. They 

found an almost linear increase of precessing frequency with chamber length and jet 

velocity, and the downstream mixing is strongly influenced by the Strouhal number of the 

flow. Wong et al. (2003) have performed laser Doppler anemometry (LDA) 

measurements within and beyond the precession chamber, and observed the asymmetric 

deflection of the jet and its reattachment to the wall of the chamber. Their methodology, 

however, was unable to accurately determine entrainment back into the chamber due to 

seeding losses in the reattachment region. England et al. (2010) used particle image 

velocimetry (PIV) and frequency measurements to determine the effect of the density 

ratio of fluid exiting the jet to surrounding fluid on the initial decay and spread of a 

precessing jet emanating from a triangular nozzle. They showed a strong relationship 

between the density ratio and the deflection angle of the jet, which directly influences the 

spread and decay rates, and that there is an inverse relationship between density ratio and 

precession frequency. Birzer et al. (2009) used planar nephelometry to determine the 

effect of flow mode (AJ or PJ) on the distribution of pulverized fuel particles used in 

rotary kilns. A recent study by Wong et al. (2008) took PIV measurements in transverse 

and longitudinal planes to examine the flow field within the chamber and immediately 

beyond it using a precession nozzle assembly with both a center body and lip, revealing 

the in-plane velocity distributions and the existence of pairs of vortical structures.   

 The mechanics of precessing flow are still, at best, poorly understood. There is no 

concrete definition of the optimal chamber length to generate precession, nor is there an 
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established relationship between Reynolds number and the probability of this mode 

occurring. There is no understanding of the effect of these two parameters on the 

entrainment of surrounding fluid back into the chamber, and how it varies between the 

two modes of flow, and there is there no data on the appropriate length scale for scaling 

the flow. To address this, a parametric study is performed on the three-component flow 

field just beyond the exit plane of the precession at a number of chamber lengths and 

Reynolds numbers. In addition to the probability of precession, the effect of the two 

aforementioned parameters on entrainment and the size of the issuing jet is examined.  

1.3 The Effect of Initial Conditions on an Axisymmetric, Turbulent Jet 

 It has been identified in Section 1.2 that the jet entering the precession chamber 

has an effect on the precession phenomenon and its stability. Therefore, a preliminary 

study of the effect of initial conditions of the downstream flow field for an axisymmetric 

jet is appropriate. Traditionally, turbulent free jets have been modeled as point-sources of 

momentum (Townsend, 1976), yielding self-similar solutions. In these models, it is 

assumed that sufficiently far downstream, initial conditions are ‘forgotten’, and the jet 

reaches an asymptotic state.   

 The flow field of an axisymmetric jet exists in three zones (Rajaratnam, 1976). 

Closest to its nozzle is the development region, where the jet’s centerline velocity is 

constant. Within this region is the cone-shaped potential core, in which the fluid velocity 

is equal to the fluid velocity at the nozzle. Beyond the development region, at the 

transition zone, the turbulence generated at the jet boundaries reaches the jet centerline, 

causing the centerline velocity to begin to decay. Downstream from this is the region of 
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fully-developed flow, in which the self-similar solutions are often used to model the flow 

and predict velocity decay and the spread of the jet. 

1.3.1 The Concept of Self-Similarity 

 To, illustrate the concept of self-similarity, consider an arbitrary function  yxF , , 

where x and y are independent variables (Pope, 2000). It is possible to define 

characteristic scales for both the function itself and one of the independent variables 

which are functions of only the other variable, for example  xF0  and  x . These scales 

are appropriate to the system, usually have a power-law dependency on x, and are used to 

scale  and  yxF ,  y , respectively. The scaled values are defined in equations (1.1) and 

(1.2). 

 x

y


   (1.1)

   
 xF

yxF
xF

0

,
,

~   (1.2)

 If  is no longer a function of  ,~
xF  x , and instead only a function of  , thereby 

satisfying equation (1.3), then  is self-similar.  ),( yxF

    FxF ˆ,
~   (1.3)

 A self-similar solution allows then for  yxF ,  to be expressed in terms of a 

function of a single, independent variable (either x  or  ), essentially eliminating a 

dimension from the problem. It is important to note that self-similar behavior may only 

exist in a finite region of x’s domain (George, 1989).  
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 There are different possible forms of self-similarity (George, 1989). The flow 

may be fully self-similar, where self-similar behavior exists at all scales of motion and in 

all orders of turbulence moments, partially self-similar, where self-similar solutions exists 

only for the mean momentum equation and/or certain orders of turbulence moments, or 

locally self-similar, where only local profiles appear to scale with local quantities.  

1.3.2 The Traditional Approach to Self-Similarity in an Axisymmetric Jet 

 The traditional approach to a self-similar solution for the axisymmetric jet begins 

with the simplified equations for a round, free jet, presented in equations (1.4) and (1.5). 

These equations are derived from the Reynolds-averaged Navier-Stokes (RANS) 

equations and continuity equation in a cylindrical coordinate system given in Appendix 

A-1. Here, x  and r  and axial and radial position coordinates, respectively, and U  and 

 are their mean velocity components. The corresponding fluctuating velocity 

components are  and . It is assumed that there is no swirl in the flow, and therefore 

there is no azimuthal component of velocity.  

V

u v

 vur
rrr

U
V

x

U
U 










 1

 (1.4)

0
1









r

rV

rx

U
 (1.5)

 For simplicity,  yx,   is defined in equation (1.6), and represents the 

momentum associated with the Reynolds stress in the axial-radial direction. 

  vurx   ,  (1.6)

 Multiplying equation (1.4) by r , where   is the fluid density, and integrating 

yields the momentum equation for the jet, shown in equation (1.7), which states that the 
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momentum flux must be constant in the axial direction. Integrating with respect to x 

yields equation (1.8), which is the momentum flux of the jet. Since this value is constant, 

the jet may be considered as originating from a point source of momentum, instead of a 

nozzle of finite dimension (Townsend, 1976). 

02
0

2 


drπρrU
dx

d
 (1.7)





0

2
0 2 drπρrUM  (1.8)

 Length scales  x  ,  xUU clcl  , and  are chosen for 2
clU r ,  rxU ,  and 

 rx,  , respectively, which yield self-similar solutions of the form of equations (1.16)-

(1.19).  is chosen as the centerline velocity of the jet, as it is only a function of axial 

distance, and 

clU

  is an arbitrary length scale, provided that it satisfies a self-similar 

solution. Functions  f  and  g  account for any variation of  rxU ,  and  rx,  in the 

radial direction.  

 x

r


   (1.9)

   f
xU

rxU

cl


)(

,
 (1.10)

 



g
U cl


2

 (1.11)

 Equations (1.16)-(1.19) are substituted into equations (1.4) and (1.5). Following 

the simplifications and substitutions outlined in Appendix A-2, the power-law 

dependencies of length scales  and clU   are determined. These are shown in equations 

(1.12) and (1.13). 
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  1~ xxUcl  (1.12)

  xx ~  (1.13)

 The length scales  and clU   are assumed to have functional dependencies on 

axial distance, x, momentum flux,  (shown in equation 0M (1.7) to be invariant), and 

fluid density,  . It is assumed that if the flow regime is turbulent, the viscosity of the 

fluid can be neglected (Rajaratnam, 1976). Therefore, solutions of the form of equations 

(1.14) and (1.15) are sought.  

 ,, 0MxfU cl
  (1.14)

  ,, 0Mxf   (1.15)

 Dimensional analysis is performed on equations (1.14) and (1.15), yielding 

equations (1.16) and (1.17). The full dimensional analysis is presented in Appendix A-3. 

These equations relate quantities  xUcl  and  x  to axial distance, x .  and  are 

constants of proportionality, representing the velocity decay rate at the jet centerline and 

the spread rate of the jet, respectively.  

1K 2K

  1
0

K
M

xUcl 



 (1.16)

  xKx 2  (1.17)

 One final assumption is made, which allows for the momentum flux, , to be 

expressed in terms of the centerline velocity at the nozzle exit, . Since the value of 

momentum flux is uniform at any axial position, and assuming a uniform velocity 

0M

0U
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distribution throughout the nozzle exit plane, i.e. ( ) 00=
=, UxrU

x
,  is related to  

by equation 

0M 0U

(1.18).  

  
2

0

2
0

22
0 4

,
d

UdrdrrxUM
  (1.18)

 It is important to note that the distance x is from a conceptualized point-source of 

momentum and not the true source of momentum, which normally is a nozzle of finite 

area. Therefore, it is necessary to offset it with the difference in position between the 

point and true sources of momentum, denoted by , which is the virtual origin position 

relative to the nozzle (

ox

oxxx  ). This axial distance is now scaled against the nozzle 

diameter, yielding dimensionless axial velocity  , which is defined in equation (1.19). 

d

xx o
  (1.19)

 The offset for virtual origin,  is applied to equations ox (1.16) and (1.17), and  

(1.18) is substituted into (1.16), providing equations (1.20) and (1.21). The constant 4  

in equation (1.18) is absorbed into  upon substitution. These are the self-similar 

solutions for the turbulent, axisymmetric jet. 

1K

    
 1

0 1

KU

U

cl

  (1.20)

  
2K

d

x
  (1.21)

1.3.3 The Effect of Initial Conditions on Self-Similar Behavior  

 In the self-similar solution derived in the previous section, there is no 

consideration or mention of the initial condition of the jet. Instead, every jet is modeled 
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as a conceptualized point-source of momentum, disregarding what has happened at the 

true source, i.e. the nozzle, and after a region of dynamic readjustment, it reaches an 

asymptotic state. If all jets become asymptotically independent of the initial conditions, 

then it is obvious that they must all decay at the same rate and exhibit the same shape 

once an adjustment has been made for the location of the true origin, and these must 

correspond to the equivalent point source momentum (George, 1989). 

 George (1989) presents an alternative derivation of the self-similarity, in which he 

assumes that the momentum flux, which is assumed to originate at a point source, is not 

the only length scale. Instead, he provides a dimensional analysis considering also the 

mass flux at the source, , showing that there are many source-dependant possibilities 

for  and , which would result in different growth rates for different jets issuing 

from different nozzles. The derivation presented in his 1989 paper is shown in  

0m

1K 2K

Appendix B. 

 The three most commonly encountered nozzles in engineering practices are the 

smooth contraction, long pipe, and orifice, each differing in the initial condition it 

provides to its flow field. The smooth contraction results in a ‘top-hat’ velocity profile, 

where axial velocity of the issuing jet is nearly uniform across the nozzle exit plane. 

There is a thin shear layer at the boundary of the nozzle (Mi et al., 2001b), shedding 

nearly symmetrical, large-scale, vortical structures (Tso and Hussain, 1989). The long 

pipe produces a ‘ ’-shaped exit velocity profile, which follows a seventh-order 

polynomial empirical fit, and a thicker shear layer than the smooth contraction. The 

orifice generates a parabolic exit velocity profile in between that of a smooth contraction 

and a long pipe, and has been shown by Mi et al. (2007) to exhibit an acceleration of fluid 


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just beyond the nozzle exit in the vena contracta region, as well as have complex and 

asymmetric vortical structures. These are large-scale, and have been shown to engulf 

ambient fluid and dominate the initial growth rate of the jet. 

 There have been a myriad of studies from the literature examining the flow-fields 

of axisymmetric jets. The most attention has been placed on the smooth contraction 

nozzle (Wygnanski and Fiedler, 1969; Dahm and Dimotakis, 1987; Cohen and 

Wygnanski, 1987; Peterson and Bayazitoglu, 1992; Hussein et al. 1994; Weisgraber and 

Liepman, 1998; Fellouah et al., 2009). There have also been studies using long pipe 

(Panchapakesan and Lumley, 1993; Papadopoulos and Pitts, 1998; Borg et al., 2001) and 

orifice type nozzles (Mi et al., 2007; Shinneeb et al, 2008). These investigations have 

reinforced the existence of local self-similarity in jets. There have been, however, 

variations reported in the values of the centerline velocity decay and spread coefficients. 

This may be attributed to errors resulting from different experimental methods and data 

processing techniques, or these may be due to incorrect scaling resulting from the 

assumption that jets behave universally, regardless of their initial conditions (George, 

1989).  

 There has been some experimental work comparing the flow fields of jets issuing 

from different nozzle geometries. Malmström et al. (1997) showed the effect of the 

diameter of a smooth contraction nozzle on centerline velocity decay in low-velocity 

axisymmetric jets. The effect of differently shaped nozzles has also been investigated by 

Mi et al. (2003), showing variation in spreading and mixing rates.  

 There have also been numerous studies comparing jets issuing from nozzles of the 

same exit geometry but with different initial condition. Antonia and Zhao (2001) 
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compared the flow fields produced by a smooth contraction and long pipe nozzle at 

 and found that these two jets reached self-similar behavior at approximately 

the same downstream distance from the nozzle. In a later paper, Xu and Antonia (2002) 

showed that the spreading rate of the smooth contraction jet is higher than that of a long 

pipe at . Mi et al. (2001b) compared the scalar fields of jets issuing from 

these two nozzles and found that the entire flow is influenced by initial conditions, 

resulting in a variety of self-similar states in the flow. They concluded that the turbulent 

scalar properties throughout the jet flow field do depend upon initial conditions and that 

the differences observed in the scalar field of the two jets can be related to differences in 

the underlying turbulent structure, even in the self-similar region. Mi et al. (2001a) also 

compared the mixing rates of jets issuing from long pipe, smooth contraction, and orifice 

nozzles, finding variation in mixing rates between them.  

000,16Re 

Re  000,86

 Recent numerical work also addresses the universality of jet self-similarity. Uddin 

and Pollard (2007) studied the position of the virtual origin in co-flowing jets using large 

eddy simulation (LES) and showed the ineffectiveness of traditional scaling approaches. 

Picano and Casciola (2007) used direct numerical simulation (DNS) to show that the 

accepted scaling methods, which assume universality between jets, conflict with the 

recovery of small-scale isotropy. These studies do support the influence of initial 

conditions on downstream flow behavior. 

1.4 Summary and Thesis Outline 

 A review of the literature raises two questions which are relevant to a precessing 

jet. The first asks whether the self-similar solutions used to model an axisymmetric jet are 
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universal and independent of the initial condition at the source, or whether the initial 

condition continues to affect the behavior of the jet far downstream from the nozzle. The 

second examines the effect of the chamber length and Reynolds number on the flow field 

produced by the precessing jet to determine the optimal chamber geometry to produce the 

highest occurrence of precession mode.  

 The following is an outline of this thesis: Chapter 2 describes the experimental 

method and apparatus used in this study, including an overview of the measurement 

technique which is used, as well as a thorough description of the flow facility and its 

relevant components. Chapter 3 examines the effect of initial conditions on the 

downstream flow field issuing from an axisymmetric jet to determine whether self-

similar solutions for this jet are indeed universal or dependant upon source conditions. 

Chapter 4 contains a parametric study of the effect of chamber length and Reynolds 

number on the probability of precession mode, as well as parameters including 

entrainment ratio and the size of the jet. Conditionally averaged mean and RMS velocity 

fields at the chamber exit plane are also calculated and studied. Conclusions are presented 

in Chapter 5, as well as a discussion of future work to be performed.  
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CHAPTER 2:  EXPERIMENTAL METHOD AND APPARATUS 

2.1 Introduction 

 The experimental methodology used to examine the flow fields of the 

axisymmetric and precessing jets is outlined. Stereoscopic particle image velocimetry 

(StereoPIV) is employed in two configurations to measure the three-components of 

velocity along a two dimensional region of interest. The StereoPIV method is introduced, 

and a brief background is provided. The flow facility and all of its components are 

discussed, as well as the methodology which is used to acquire and process the 

experimental data. 

2.2 Stereoscopic Particle Image Velocimetry 

 Stereoscopic particle image velocimetry (StereoPIV) is a well developed, non-

intrusive flow measurement technique (Adrian, 2005), allowing for resolution of three 

components of velocity in a two-dimensional region. All StereoPIV configurations 

require tracer particles, illumination, and a method of imaging the illuminated particles 

(Raffel et al, 1998). The tracer particles, which are chosen to follow the flow faithfully 

(Melling, 1997), are illuminated by a light source at two discrete instants in time. The 

intensity distributions of the illuminated particles are captured in two camera frames. 

Typically, pulsed lasers are chosen for this application as they deliver high power density 

in a short period of time, thereby freezing particle motion with each flash.  The laser 
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beam is focused into a thin sheet of given width, which also defines the region of interest, 

as only the particles illuminated by the laser will be recorded by the cameras. A 

correlation algorithm is used to track the displacement of groups of particles, and this 

provides a first-order approximation to their velocity, as the time between their positions 

in the two camera frames is known. 

 Unlike in other forms of intrusive flow measurement, such as a hot-wire 

anemometer or a pitot tube which much be situated within the flow, StereoPIV allows for 

the study an entire flow region, usually bounded by the illumination source of the flow, to 

be analyzed. Although the point velocities determined with this technique are not true 

velocities but instead spatially averaged ones, a near continuous velocity map can still be 

created. This would not be possible with anemometers or pitot tubes since simultaneous 

and instantaneous point velocity measurements at discrete points within the flow would 

not only be impractical, they would also disrupt the flow field to the point that any values 

obtained from measurement would be invalid.  

 StereoPIV is normally configured so that the highest velocity component occurs 

along the light sheet plane (Prasad, 2001). In situations where only in-plane velocities are 

of interest, StereoPIV has been shown to provide a better representation of the flow 

velocity field than a single-camera PIV configuration would (Prasad, 2001). Studies of 

the flow fields of axisymmetric jets where the axial velocity of the jet was in-plane 

include Mi et al. (2008), van Wissen et al. (2005), and Weisgraber and Liepmann (1998).  

 It is also possible for the highest component of velocity to be out-of-plane, 

provided that the light-sheet is sufficiently thick and that there is a sufficiently large angle 

between the two cameras (van Doorne et al, 2003). Matsuda and Sakakibara (2005) used 
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StereoPIV with the light sheet oriented normal to the flow direction to measure turbulent 

vortical structures in the self-similar region of an axisymmetric jet. In a similar 

configuration, van Doorne and Westerveel (2007) measured the three-component velocity 

field over the exit plane of an axisymmetric jet issuing from a long pipe nozzle as it 

transitioned from laminar to turbulent flow. Both of these studies used water prisms to 

minimize the distortion caused by viewing the region of interest from a large angle.  

2.3 Flow Facility 

 The flow facility comprises of a 240L acrylic tank (1.2 m length × 0.5 m height × 

0.4 m width), which serves as a quiescent fluid environment into which the jet under 

study issues. The working fluid, water, is driven by a progressive-cavity, pulseless pump 

(Model 33204, Moyno) and fluid velocity is set with a variable-speed controller (Model 

ID15H201-E, Baldor). A schematic of the plumbing of the experimental facility is shown 

in Figure 2.1. Water exits the tank though a valve in a corner of the tank base, passes 

through the pump, and encounters a three-way valve which allows for the flow to either 

pass onto the flow meter (F400, Blue-White Industries), or be drained out of the system. 

The to-drain connection is also used to fill the system with tap water. After passing 

through the flow meter, water passes through a plenum, described in the following 

paragraph, before finally exiting into the tank through one of the nozzle or nozzle-

chamber configurations that are studied in this thesis.  
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Figure 2.1 System plumbing diagram 

  

 The plenum1, shown in Figure 2.2, is used to minimize any swirl or fluctuation in 

the incoming flow. Figure 2.3 shows a sectioned view of the plenum and highlights its 

components. Flow into the plenum enters a settling chamber and passes though four flow 

conditioning grids. The fluid then passes through a honeycomb grid and a steel mesh 

before finally passing though a smooth contraction nozzle into a 508 mm (20”) supply 

pipe of internal diameter 19.05 mm (0.75”). At the end of the supply pipe, the appropriate 

nozzle is attached with a pressure fit.  

 

                                                 
1 The plenum was designed by Amanda Kotchon, a second-year undergraduate student at the University of 
Alberta, as an undergraduate project. 
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Figure 2.2 A photograph of the flow plenum just after construction. 

 

Figure 2.3 Sectioned view of plenum, supply pipe, and nozzle. 

 

 It was necessary to calibrate the pump, to relate its rotation speed to the volume 

flow rate passing through the system. With the volume flow rate known, it was possible 
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to determine the bulk inlet velocity out of the nozzle. The pump was calibrated using an 

analog flow meter, which was located upstream from the plenum and had an accuracy of 

±5% full-scale. Flow rates were observed over the full range of pump rotation speeds, 

resulting in the pump calibration curve shown in Figure 2.4. Performing a second-order 

polynomial least-squares fit, the relationship between pump rotation speed,  , and 

volume flow rate through the system, Q, was determined, and is shown in equation (2.1). 

[L/min]  0118.0102)( 26  Q  (2.1)

Q  = -2×10-62 + 0.0118
R2 = 0.9993
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Figure 2.4 Pump calibration curve comparing pump rotation speed to observed flow rate. 

 

 Bulk inlet velocity, e , can be calculated using equation (2.2), where  is the 

area of the nozzle exit and d is its diameter. Substituting equation 

nA

(2.1) into (2.2) results 
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in equation (2.3), which the approximation of bulk inlet velocity based on pump rotation 

speed. Here,  and  e  carry units of [RPM] and [m/s], respectively.  

  Q
dA

Q

n
e 2

4


   (2.2)

    0098.01067.1 26
e  (2.3)

 Traditionally, bulk inlet velocity is denoted as , which is the axial component 

of velocity subscripted with ‘e’. In this study, however, axial velocity carries the variable 

name u or w, depending on the orientation of the light sheet: In-plane velocities are 

always assigned variables u and v, and the out-of-plane component of velocity is w. 

Therefore, for consistency in the following sections of this thesis, bulk inlet velocity will 

be denoted as 

eU

e  instead of  or , as its value is always determined from equation eU eW

(2.3).  

2.4 Experimental Method 

 The flow was seeded with 18 μm hollow glass spheres (60P18, Potters Industries), 

which are assumed to follow the flow faithfully (Melling, 1997). Particle illumination 

was provided with a high-power, dual-cavity Nd:YAG laser (PIV-400, Spectra Physics), 

which nominally delivers 400mJ/pulse at an frequency-doubled output wavelength of 

532nm and an operating frequency of 10Hz. A more complete specification list for the 

laser can be found in Table 2-1. The output beam was passed through commercially 

available light sheet generating optics (FlowMaster 3S, LaVision), which allowed for the 

adjustment of light sheet width and thickness. The light sheet was reflected off of a 
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turning mirror positioned beneath the tank, and redirected upward through the bottom 

surface of the tank into the fluid as shown in Figure 2.5.  

 

Table 2-1 Specifications of laser used for particle illumination. 

Output Wavelength: 1064 nm, frequency doubled to 532 nm 

Pulsed Energy at 532 nm: 400 mJ 

Pulse Duration: 10 ns 

Repetition Rate: 10 Hz 

Beam Diameter: 9 mm 

Tunability: >30 GHz 

 

 

Figure 2.5 Formation of the light sheet, showing the relative positions of the components used. 

 

 Images of the illuminated particles were captured with two or four (depending on 

configuration) high-resolution, 16-bit, dual-frame cameras (LaVision, ImagerX Pro), with 

a charge coupled device (CCD) array size of 2048×2048 pixels (px). The cameras were 

mounted on a three-dimensional traverse (Isel), which allowed for translation in three 

 23   



normal directions. The number and location of cameras, as well as any other experiment-

specific details are discussed in their respective experimental chapters (Section 3.2.1 for 

the study of the axisymmetric jet, Section 4.3.1 for the study of the precessing jet).   

2.4.1 Calibration 

 The initial calibration was achieved by imaging a three-dimensional calibration 

target (LaVision, Type 11) with two cameras. The calibration target is shown in Figure 

2.6 as viewed by two cameras in a stereoscopic configuration. It comprises of an array of 

machined dots in columns (or rows, depending on the orientation of the plate), which 

alternate in depth, i.e. one column of dots exists in one plane, and the second in another 

plane, approximately 1mm behind the first. The square and triangle markings in the 

figure are used as reference points: The dot located in the center of the calibration target 

is below the square and to the left of the triangle. The target is positioned so that the 

plane corresponding to the region of interest, which will be referred to as the calibration 

plane, occurs between the two planes of dots.  

 Using commercial PIV software (Lavision, DaVis 7.4), the calibration target is 

imaged with two cameras. Three dots are chosen in an ‘L’ arrangement, which define the 

origin of the coordinate system of the image and processed vector field. All circles in 

both planes are found. Comparing the positions of the imaged circles to their known 

distances on the calibration target, a third-order polynomial mapping function is 

calculated, allowing for the image obtained by the camera to be dewarped onto the 

calibration plane. 
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(a) (b) 

Figure 2.6 Images of the calibration plate captured by two cameras viewing the same region. The nozzle is 

visible at the far right of the image. 

 

 Calibration is further refined by performing self-calibration (Wieneke, 2005), to 

ensure that the calibration and measurement planes are in the same position in space, 

thereby decreasing any errors introduced from the camera images not being properly 

overlapped. Images of particle distributions from the two cameras are cross-correlated 

with one another, resulting in a disparity vector map. This map shows the difference in 

position of the same particle in physical space when mapped from the image planes of 

two cameras using their respective calibration functions back onto the calibration plane. 

If the initial calibration is perfect, dewarped particle images from both cameras will 

overlap perfectly on the calibration plane. This is usually not the case, and the disparity 

vector map is used to adjust the initial calibration function so that the calibration plane 

corresponds to the position of the light sheet. An advantage of this calibration method is 

that the light sheet and calibration plane do not have to be coincident; instead, the self-

calibration adjusts for any offset between them.  
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2.4.2 Image Preprocessing 

 Before the two frames of each camera image are cross-correlated to produce a 

vector field, it is necessary to preprocess the images to remove any background image 

and noise, as well as enhance the shape and intensity of the individual particles. The 

preprocessing steps used are outlined below. Not all preprocessing steps were used in 

each study within this thesis. The study-specific image preprocessing algorithms are 

defined in their appropriate sections. In any equations presented,  and  are nI nI   

arrays containing intensity distributions on the camera CCD plane before and after an 

image preprocessing step, respectively, where n denotes the nth of N images.  and    

are the width and height of the camera CCD array, in pixels. Subscripts   and   are the 

positional coordinates in these arrays, in pixels. The variable a is the parameter of the 

preprocessing step, and denotes the size of the window/filter used in each step. 

2.4.2.1 Background Intensity Subtraction 

 This preprocessing step compares the intensity values of the same pixel in all N 

images recorded, and subtracts from each the lowest intensity value. This is useful, for 

example, when there is a constant intensity at a pixel in all images. When this 

preprocessing step is applied, the minimum value at a pixel with position   ,  over all 

images, which happens to be the constant value, is subtracted from position   ,  in all 

images. This is illustrated in equation (2.4).  

  ,,,,, min N21nn IIIII   (2.4)
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2.4.2.2. Subtraction of Sliding Minimum over Time 

 This preprocessing step helps to eliminate background noise occurring in a 

successive images. The intensity value of a pixel at position   ,  is reduced by the 

minimum intensity value of that pixel over a images, as shown in equation (2.5). Unlike 

the Background Intensity Subtraction, which reduces a pixel’s intensity value by the 

minimum over all images, such as a stationary, illumined particle within the flow field, 

this step eliminates any fluctuating noise or stationary intensity existing in only a few 

images.  

[ ]
 ,+,+,,,

min=′ an1nnnn IIIII 
 (2.5)

2.4.2.3 Subtraction of Sliding Minimum 

 Subtraction of sliding minimum is used to minimize background noise and large, 

high-intensity areas in the image. The parameter a, in this case, defines the size of the 

window over which the preprocessing step takes place. At every position   ,  in the 

image, the minimum intensity value within an aa  region centered about this point is 

subtracted from the intensity value at   , , as per equation (2.6). The parameter a is set 

so that it is larger than the size of an imaged particle, otherwise the inner-region of the 

particle would be removed.  
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2.4.2.4 Min-Max Filter for Intensity Normalization 

 This is a non-linear filter used to normalize the intensities of particles. Due to 

shadows, reflections, variation in the light sheet power along its width and depth, and 

differences in particle sizes, particle intensity may vary throughout the image. This 

preprocessing step normalizes the intensities in region of size aa , reducing background 

intensity and equalizing the intensity peaks. 

2.4.2.5 Linear Smoothing Filter 

 A linear smoothing filter is applied to smooth out the shapes of particles. This is 

of particular use for images with either non-circular particles, or for particles which are 

two pixels or smaller in diameter. Every pixel in the image is assigned the average 

intensity from an  region centered about that pixel, as illustrated in equation aa (2.7). 
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 The effectiveness of these preprocessing steps is shown in Figure 2.7. A region 

from an experimental image is magnified and shown as imaged by the camera before and 

after the five aforementioned preprocessing steps are sequentially applied to it. Note that 

in some instances, as in the figure, subtraction of sliding minimum of time series does not 

further improve the image after background count subtraction has already been applied. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2.7 Magnified region of camera image showing particles and edge of nozzle (at right) before and 

after each preprocessing step: (a) raw image from camera; (b) background count subtraction; (c) sliding 

minimum subtraction of time series, a = 3; (d) sliding minimum subtraction, a = 5; (e) min-max filter for 

intensity normalization, a = 10; (f) linear smoothing filter, a = 3. 
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2.4.3 Vector Field Correlation 

 The particle intensity distributions recorded in each frame by each camera are 

subdivided into interrogation windows. Corresponding interrogation windows from the 

two frames of one camera are cross-correlated with each other, resulting in a correlation 

peak which corresponds to a displacement vector, s


, for the group of particles within that 

interrogation window. As the particle positions in the first frame occurred at some time 

, and their positions in the second frame at a later time, 0t tt 0 , where  is a preset 

and known quantity, the spatially-averaged particle velocity within an interrogation 

window can be approximated to first-order by equation 

t

(2.8) (Raffel et al., 1998).  

t

s
u






 (2.8)

 Figure 2.8 outlines the correlation method used. Any out-of-plane velocity 

observed by a single camera is projected onto an equivalent in-plane velocity component. 

Using two cameras in a stereoscopic configuration, which form angle   with the normal 

to the light sheet plane, each camera sees a different projection of the same velocity, 

allowing for the resolution the out-of-plane component of velocity (Prasad, 2000).  

 

Figure 2.8 Correlation of particle displacements leading to a three-component velocity vector 

 30   



2.4.4 Vector Field Post-Processing 

 After correlation, each vector field is treated with a non-linear median filter, 

which replaces the value of a vector with the median value from surrounding vectors. For 

every vector at position  within the array containing velocity data, the velocity 

values from a 3×3 area centered about 

 ji, 

 ji,  are sorted by magnitude, and the value at 

 is replaced with the median value of the sorted list. This is especially useful in 

removing spurious vectors. Three component vector fields are finally smoothed with a 

3×3 linear filter. 

 ji, 

 Upon export from the PIV acquisition and processing software (where each vector 

field exists as a five column table with each row containing two entries representing 

position, and three entries representing the three velocity components), data is imported 

into commercial mathematics software (Matlab, Mathworks), where it is sorted into five 

arrays of dimensions I and J.  and   contain spatial coordinates x and y, and 

, , and  contain the three velocity components of u

JIX JIY

JIu JIv JIw


 over the studied plane. 

So, a point in the dataset with array coordinates  ji,  has real world position and velocity 

vectors given by equations (2.9) and (2.10), respectively.  
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 Average and RMS velocity data are stored in the same manner. The three arrays 

containing average velocity components are denoted U, V, and W, while RMS velocity 

components have array names u′, v′, and w′. 

2.5 Summary 

 StereoPIV is employed in two configurations to measure the three-component 

velocity fields in a two-dimensional region of interest. A background to the experimental 

technique has been provided. The experimental methodology has been explained, and a 

description of the flow facility and all of its components was given. 



CHAPTER 3:  THE EFFECT OF INITIAL CONDITION ON THE 

ASYMPTOTIC BEHAVIOR OF AN AXISYMMETRIC JET 

3.1 Introduction 

  The effect of initial conditions on far-field parameters was investigated by 

studying the flow field of a jet issuing from one of three inlets: a long pipe, a smooth 

contraction, and an orifice type nozzle. Each of these has the same exit diameter, d, and 

therefore produces the same mass flux and nearly the same momentum flux at a given 

Reynolds number. These three inlets differ only in the velocity profiles generated at their 

exits. Traditional scaling theory (Townsend, 1976) dictates that sufficiently far 

downstream from the nozzle in the self-preserving region of the jet, initial condition is 

‘forgotten’, and characteristic parameters of the flow asymptote to universally constant 

values. This is investigated using three different nozzles, each generating a different 

initial flow condition, and studying the effects on asymptotic behavior far downstream 

over a range of Reynolds numbers. The flow fields resulting from these nozzles are 

studied at Reynolds numbers of 5,800, 10,000, 21,800, 32,400, 50,700, and 61,900. RMS 

axial velocity profiles, centerline velocity decay and jet half-spread coefficients, and 

virtual origin positions are compared for the three inlet conditions to determine whether 

there is universality between these jets, or whether the effect of initial conditions do 

indeed remain present.  

 33   



3.2 Experimental Method 

 Three nozzles were used with identical outlet diameters, d = 5 mm, resulting in 

identical initial mass fluxes: Smooth contraction, orifice, and long pipe. Rendered 

cutaway drawings of these three inlets are shown in Figure 3.1, while their schematic 

drawings are shown in Appendix C. The smooth contraction has an area ratio of 1:14 and 

is formed with two circular arcs of equal radius, tangent at their meeting point. The 

orifice nozzle has a 45° reverse camber to the flow. The long pipe nozzle commences 

with a smooth contraction, formed in the same manner as the nozzle shown in Figure 

3.1(a), and leads into a development length of sd DL 10 , where  mm (0.75”) 

and is the inner diameter of the supply pipe to which the three nozzles are attached. 

08.19sD

 

  

(a) (b) 

 

(c) 

Figure 3.1 Sectioned solid model views of the three inlet conditions: (a) smooth contraction, (b) orifice, (c) 

long pipe. 
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3.2.1 StereoPIV Setup 

 StereoPIV was employed to study the velocity field of the jet with the three inlet 

conditions. Two pairs of cameras were used, to allow for the observation of a region of 

interest reaching up to 40d downstream from the nozzle exit. The experimental 

configuration showing the relative positions of the cameras to the flow facility and light 

sheet is shown in. The four cameras were positioned at the height of the jet axis, 

suspended on a three-axis traverse (Isel). Each camera formed a ±20° angle with a vector 

normal to the light sheet, at an approximate distance of 500 mm.  The light sheet was 

positioned so that it passed through the nozzle axis, with an approximate width and 

thickness of 250 mm and 0.5 mm, respectively. One side of the light sheet touched the 

nozzle exit plane.  

 

 
Figure 3.2 Solid model showing the relative positions of the four cameras, light sheet, plenum, and tank. 
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 One thousand dual-frame images were collected per nozzle at Reynolds numbers 

of 5,800, 10,000, 21,800, 32,400, 50,700, and 61,900 with each camera. The Reynolds 

number was based on the nozzle exit diameter, d, and bulk inlet velocity, e , i.e. 

deRe . Cameras ‘1’ and ‘2’ viewed the near field, while cameras ‘3’ and ‘4’ viewed 

the far-field. The numbering of cameras is shown in Figure 3.2. The fields of view from 

the two pairs of cameras were overlapped, as shown in Figure 3.3, to ensure that there is 

continuity between the vector fields obtained from both camera pairs. 

 Due to the deceleration of the jet with increased downstream distance from the 

nozzle, it would have been unreasonable to attempt to achieve the desired particle 

displacements required for robust processing in both near- and far-field regions 

simultaneously using a single value of t . Images for the near-field and far-field were 

collected separately using different time steps, and then merged after processing and 

averaging. Table 3-1 contains the time step values used for each Reynolds number 

studied for both camera pairs. 

  

Figure 3.3 The overlapped fields of view from the two camera pairs.  
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Table 3-1 Time steps used with different flow rates for all axisymmetric nozzles. 

Pump Speed, Ω [RPM] 120 210 480 750 1320 1800 

Reynolds number, Re 5,800 10,000 21,800 32,400 50,700 61,900 

Cameras 1+2 120 80 35 28 25 20 Time step, 

∆t [μs] Cameras 3+4 400 280 110 85 65 50 

 

3.2.2 StereoPIV Processing 

 Image data from both pairs of cameras were processed using the algorithm shown 

in Figure 3.4. The images from the raw cameras were first treated with background count 

subtraction and sliding background subtraction of time series over three images, to 

minimize the appearance of the nozzle, as well as any regions with background intensity 

which remains constant. Sliding minimum subtraction with a 5 px window was then 

applied to eliminate any background intensity in the images. Finally, a min-max filter (10 

px) and 3×3 linear smoothing were used to normalize particle intensities in the image and 

smooth out their shape. A more detailed description of the image preprocessing steps 

used is provided in Section 2.4.2. 

 Correlation was performed with a multi-pass approach with a decreasing 

interrogation window size. Initially, a 64×64 px interrogation window with 75% overlap 

was used, to determine an initial, coarse vector field. Correlation was then repeated twice 

using a 32×32 px interrogation window and 75% overlap, with the vector field from the 

previous step acting as an initial particle search field for the next. The final vector fields 

were treated with a median filter, to remove any spurious vectors, and smoothed with a 

3×3 linear filter. Average and RMS vector fields for each Reynolds number and inlet 

condition were finally calculated. 
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Figure 3.4 StereoPIV processing algorithm for axisymmetric jet data. 

 

3.2.3 Merging of Vector Fields 

 Upon exporting from the PIV acquisition software, averaged and RMS vector 

fields for each inlet condition and Reynolds number existed in two parts, one in the near-

field and the other in the far-field. In this section, subscripts ‘1’ and ‘2’ on variables will 

represent these two regions, respectively. It was therefore necessary to join these to 

obtain a vector field for the ROI. The vector fields were first manually cropped, to 

remove any spurious data which may exist on the boundary. All data from each inlet 

condition, including average and RMS vector fields, were cropped with the same range. 

The far-field data were interpolated so that their grid spacing matched that of the near- 

field data.  
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 The centerline velocities of the near-field and far-field vector fields were first 

determined using the method outlined in Section 0, and shown in Figure 3.5. The x-axis 

shows the i -coordinate within the arrays, which corresponds to the axial distance from 

the nozzle, in grid points, and the centerline velocity, Ucl, is scaled against bulk inlet 

velocity. The necessary shift in this direction is the distance between two identical Ucl 

values. The furthest downstream data point of the near-field set was chosen as a reference 

value, and the closest in value centerline position in the far field was found, with 

streamwise grid coordinate . These points in both arrays occupied the same point in 

physical space.  
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Figure 3.5 Centerline velocities obtained from both camera pairs, as well as the axial distance separating 

corresponding data points. 

 

 Once the offset in the axial direction was known, it was possible to determine the 

necessary shift in the spanwise direction. This was achieved by comparing two spanwise 
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velocity profiles from the near-field and far-field average axial velocity arrays of size 

 and , respectively. The first velocity profile was created at the furthest 

downstream axial position 

11 JI  22 JI 

11 Ii   in the near-field array, and the second was created at 

grid position  in the far-field array. These two velocity profiles should be the same, 

as they are at the same axial distance in physical space, but offset in the spanwise 

direction. The necessary shift, , was the difference in the j-indices between the 

positions of the velocity maxima of both profiles. This is illustrated in 

02 ii 

0i

0j

Figure 3.6. The 

blue and the red lines represent velocity profiles in the near field at  and in the far 

field at , respectively, while the length of broken line represents the value of . 

The x-axis shows the j-coordinate in the arrays, while the y-axis shows the 

nondimensionalized centerline velocity scaled against bulk inlet velocity.  
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Figure 3.6 Spanwise velocity profiles of the same axial distance from the nozzle obtained with both sets of 

cameras. 
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 New arrays were created of size JI  , which are defined in equations (3.1) and 

(3.2). The length of the new arrays is that of the near-field array and the distance between 

the common centerline velocity value and the endpoint of the far-field array, while the 

width is equal to that of the near-field array. 

)( 021 iIII   (3.1)

1JJ   (3.2)

 Positional coordinate arrays X and Y were constructed using equations (3.3) and 

(3.4). These were simply filled by incrementally increasing the position value by the 

known grid spacing as either axial or spanwise distance from the respective edge  

(  or ) increased, beginning with the value at that edge. 1i 1j

11,1, )1( xiji  1XX  (3.3)

11,1, )1( yjji  1YY  (3.4)

 The near- and far-field arrays were combined using equation (3.5) for all i and j 

values between one and I and J. Any points in the new arrays which were not defined in 

the existing ones were assigned a null value, and any points which were to be placed 

outside of the new array were ignored. V and W velocity component arrays, as well as 

RMS velocity component arrays, u′, v′, and w′ were constructed in the same manner, 

using the shift values  and  determined from the axial velocity vector fields.  0i 0j
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 Figure 3.7 shows a sample axial velocity field before and after merging. The 

quality of the merging can be assessed by observing the jet boundary along its length. 

There is no apparent discontinuity. 
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Figure 3.7 Contour plot of axial velocity of (a) near-field (b) and far-field before, and (c) after vector field 

merging. 

 

 42   



3.3 Effect of Initial Conditions on Jet Parameters 

3.3.1 Velocity Profiles at the Jet Exit Generated by Different Nozzles 

  The spanwise velocity profiles of the jet just beyond the nozzle exit at an 

approximate axial distance of 2dx  are shown in Figure 3.8 for the long pipe (a), 

orifice (b), and smooth contraction (c) inlet conditions. The average and RMS of axial 

velocity are shown for all studied Reynolds numbers, and are nondimensionalized against 

the initial centerline velocity at the nozzle exit,  (see Section 0U 0). No velocity profiles 

closer to the jet exit were possible, due to the reflections off of the nozzle from the light 

sheet, which resulted in erroneous vectors in that region. 

 The average and RMS axial velocity profiles obtained conform to the expected 

profiles for each of the inlets. In Figure 3.8, the broken lines represent the theoretical 

velocity profiles at the nozzle exit. The long pipe (a) follows a seventh-order relationship 

with spanwise distance from the jet centerline, y, shown in equation (3.6) (Ru and 

Antonia, 2002), while the smooth contraction (c) results in a top-hat velocity profile. The 

orifice nozzle results in a parabolic velocity profile in-between that of the smooth 

contraction and long pipe, approximated with equation (3.7). 
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(c) 

Figure 3.8 Average and RMS velocity profiles at the closest axial position to nozzle exit (z/D ≈ 1) for 

(a) long pipe, (b) orifice, and (c) smooth contraction inlet conditions. 
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 The RMS profiles for the three inlet conditions also agree with the expected 

results. The fluctuation in axial velocity peaks at the edges of the jet, and is a minimum at 

the centerline. The fluctuation is largest for the smooth contraction jet, due to the thin 

shear layer at the interface between the issuing jet and the surrounding fluid. The orifice 

and long pipe nozzles show similar RMS velocity distributions; however, the maxima of 

these are smaller than that of the smooth contraction. It is apparent from the figure that 

for the orifice and smooth contraction nozzles, the RMS profiles for all Reynolds 

numbers except 5,800 collapse onto one another.  

3.3.2 Average and RMS Velocity along the Jet Centerline 

 The average and RMS axial velocities along the jets centerlines were compared 

for the three initial conditions. The centerline velocity at a downstream distance ix X  

(at a grid position i) is calculated as the maximum axial velocity component value in a 

spanwise profile. This results in the 1×I array  containing all centerline velocity 

values in the ROI, defined in equation 

clU

(3.8). Figure 3.9 shows average axial velocity 

profiles, and the location of the jet centerline velocity relative to them (shown as the red 

line). Spatial coordinates are scaled against the nozzle diameter, while the centerline 

velocity is scaled against the initial centerline velocity value, , which is calculated as 

the mean of the first five measured centerline velocity values nearest to the nozzle, and is 

defined in equation 

0U

(3.9). 

    JjU jiiicl  1,max ,UUX cl  (3.8)





5

1
0 5

1

i
iU clU  (3.9)
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 The centerline RMS axial velocity profile, clu , is constructed from the array u , 

which contains axial RMS velocity data from the entire region of interest. For every axial 

distance , corresponding to the ith grid point in the data arrays, the RMS axial 

velocity component value is found which exists at the same spanwise grid position, j, as 

the centerline velocity value does in the average velocity array. This is illustrated in 

equation 

ix X

(3.10). 

  jiijiiiclu ,, UUuuX clcl   (3.10)
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Figure 3.9 Axial velocity profiles in the spanwise direction and the location of the jet centerline.  

 

3.3.3 The Effect of Initial Condition on Centerline Velocity Decay 

 Nondimensionalized centerline velocity profiles are presented in Figure 3.10 for 

the long pipe (a), orifice (b), and smooth contraction (c) nozzles, for all Reynolds 

numbers studied. Since the centerline velocity is inversely proportional to axial distance 

from the nozzle in the self-preserving region beyond the potential core and transition 

zone, i.e. xUcl 1~  (Rajaratnam, 1976), centerline velocity is nondimensionalized 

against initial centerline velocity, . 0U
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 Three characteristic regions of the jet are apparent in Figure 3.10. The 

development region occurs closest to the nozzle, and is characterized by a constant 

centerline velocity, i.e. 10 clUU . Beyond this is the transition zone, where the slope of 

the dimensionless centerline velocity increases as the jet begins entraining fluid 

(Wygnanski & Fiedler, 1969). In the self-similar region, clUU0  is linear, following the 

relationship in equation (3.11). Here,   is the nondimensional axial distance from the 

virtual origin of the jet and is defined in equation (3.12), and  describes the rate at 

which velocity along the centerline decreases. 

1K


1

0 1

KU

U

cl

  (3.11)

d

xx o 1,
  (3.12)

 The self-similar behavior is apparent for all three inlet conditions, as the 

centerline velocity decay profiles collapse well onto one another when 

nondimensionalized. For the long pipe nozzle, dimensionless centerline velocity values at 

Reynolds numbers above 10,000 collapse onto a single curve, while for the smooth 

contraction, this is true above .800,5Re    

 In the derivation of the self-similar equations, it is assumed that turbulent shear 

stresses dominate over viscous stresses (Rajaratnam, 1976), allowing for the neglect of all 

viscous terms. However, in a laminar or transitioning flow regime, this assumption does 

not hold the same validity. Dimensionless centerline velocity decay profiles for the long 

pipe at Reynolds number of 5,800 and 10,000, and for the smooth contraction at 

 do not collapse onto the same curves as do the higher Reynolds numbers. It 800,5Re 
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can therefore be deduced that for these lower Reynolds numbers for these two inlet 

conditions, flow is not fully turbulent. 

 The nondimensional velocity profiles for all nozzles at all Reynolds numbers are 

shown in Figure 3.11, where Reynolds numbers are grouped by symbol and inlet 

condition is grouped by color (red - long pipe, green - orifice, blue - smooth contraction). 

Centerline velocity is scaled with , and axial distance is shown as 0U  , so that the 

extrapolated best-fit lines in the self-similar region of all profiles pass through a common 

virtual origin. It is immediately apparent that the velocity profiles for all three inlet 

conditions do not collapse onto a single line as would be expected when considered from 

the point of view of traditional self-similarity theory. Excluding low Reynolds number 

cases where the flow may not be fully turbulent and therefore behave differently, the 

centerline velocity decay at a given Reynolds number should be the same, regardless of 

its initial condition. Instead, Figure 3.11 shows that the jet issuing from the orifice nozzle 

decays the fastest, and the smooth contraction the slowest. 
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(c) 

Figure 3.10 Nondimensionalized centerline velocity for long pipe (a), orifice (b), and smooth contraction 

(c) inlet conditions. Every 20th data point is plotted for clarity. 
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Figure 3.11 Collapsed nondimensionalized centerline velocity profiles for the three inlet conditions. Every 

20th data point is plotted.  

 

 The centerline velocity decay rate and position of virtual origin were compared 

for all initial conditions and Reynolds numbers. In the self-similar region of the jet, the 

scaled velocity, clUU0 , increases linearly with axial distance following equation (3.11), 

as apparent in Figure 3.12. Performing a linear least-squares fit of the data within this 

region ( dxdxdx 21  ) results in the centerline velocity decay coefficient, , 

which characterizes the rate at which the axial velocity of the jet along its centerline. The 

lower bound of the regression range, , was chosen as the first axial position 

1K

1x
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downstream of the nozzle at which 25.10 clUU . The higher bound, , occurs at 90% 

of the length of the ROI in the axial direction, which can be expressed in terms of 

discretized grid location as 

2x

Iix 9.02  X , where i and I are the grid position and array 

size in the axial direction, respectively. The intercept of this best-fit line with the x-axis 

defines the virtual origin,  of the jet (Pope, 2000), which represents the origin of 

momentum if the jet were modeled as a point source thereof. The individual centerline 

velocity decay profiles showing the lines of best fit used for determining  and the 

positions of the virtual origin for all nozzles at all Reynolds numbers are shown in 

1,ox

1K

Appendix D. 
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Figure 3.12 Nondimensionalized centerline velocity for smooth contraction at Re = 32,400, showing the 

best-fit line in the self-similar region and the location of the virtual origin. 

 

 The relationship between centerline velocity decay coefficient, , and Reynolds 

number for the three nozzles studied is shown in 

1K

Figure 3.13. There is an obvious 
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relationship between nozzle configuration and decay coefficient, as the three  vs. Re 

profiles differ in value. The smooth contraction nozzle shows the highest , and the 

orifice the lowest. If the tradition self-similar solutions for the jet were indeed universal, 

these profiles should be identical.  

1K

1K

 The Reynolds number at which each jet reaches local self-similarity can also be 

deduced from Figure 3.13. When the jets reach a self-similar state,  should reach an 

asymptotic value. It is apparent from the figure that above 

1K

800,21Re  , the -profiles 

appear to level off. There is some dependence of  on Reynolds number. Below 

,  increases for all nozzles. Mi et al. (2001b) have also observed  

dependence on Reynolds number for the smooth contraction nozzle, and almost no 

dependence for the long pipe. Above this Reynolds number, for the smooth contraction 

and long pipe nozzles,  gradually decreases. For the orifice nozzle,  remains almost 

constant, then finally decreases at 

1K

1K

400,32Re  1K 1K

1K 1K

900,61Re  . 

 The relationship between the virtual origin, determined from the 

nondimensionalized centerline velocity decay, , and Reynolds number is shown in 1,ox

800

Figure 3.14 for the three nozzles. Apart from a suspicious value for the long pipe at 

, which is discussed in Section 800,21Re  0, the locations of the virtual origin show an 

increasing trend with Reynolds number, with values being largest for the long pipe and 

smallest for the orifice nozzle.  The smooth contraction and orifice nozzles appear to 

reach their asymptotic values beyond ,21Re  , although  continues to increase 

over the range of Reynolds numbers studied. The long pipe appears to reach its 

asymptotic value beyond 

1,ox

.400,32Re   
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Figure 3.13 Reynolds number and initial condition effect on the centerline velocity decay coefficient, K1. 
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Figure 3.14 Reynolds number and initial condition effect on virtual origin, xo,1, determined from centerline 

velocity decay for three inlet conditions. 
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3.3.4 The Effect of Initial Condition on Centerline RMS Velocity Profiles 

 The fluctuations of axial velocity along the jet centerline were compared for the 

three nozzles at all Reynolds numbers studied, and are shown in Figure 3.15. The axial 

RMS velocity component is scaled against centerline velocity at the same axial distance, 

while the nondimensionalized axial distance from is defined as   dxx o 1, , where 

 is the virtual origin position determined from the centerline velocity decay. The 

RMS velocity profiles collapse well above a Reynolds number of 5,800 for the smooth 

contraction and orifice nozzles, and above 

1,ox

000,10Re   for the long pipe. For these lower 

Reynolds numbers, centerline velocity fluctuations are higher in value up to a distance of 

25  for the long pipe, 23  for the orifice, and 30  for the smooth contraction. 

Beyond these distances, clcl Uu  values for all Reynolds numbers reach asymptotic 

values, approximately 0.23 ± 0.2 for all three inlets, which are reasonably close to 0.25 

found by Xu and Antonia (2002) for the smooth contraction and long pipe nozzles, and 

0.2 found by Mi et al. (2007) for the orifice.  
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(c) 

Figure 3.15 RMS velocity profiles along the jet’s centerline for different Reynolds numbers for  (a) long 

pipe, (b) orifice, and (c) smooth contraction nozzles. 
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3.3.5 The Effect of Initial Condition on the Length of the Potential Core 

 The relationship between the length of the potential core, , and Reynolds 

number has also been examined for the three nozzles, and is shown in 

px

Figure 3.16. Here, 

potential core length is scaled with nozzle diameter. The potential core length is the 

furthest downstream axial location at which the centerline velocity is equal to the initial 

centerline velocity, or 10 clUU . This value is approximated as the axial position where 

the best-fit line for the nondimensionalized centerline velocity decay intersects the line 

10 clUU . For the smooth contraction and orifice nozzles, potential core length 

increases with Reynolds number up to 800,21Re  , where it reaches two unique 

asymptotic values. The long pipe appears to have an outlying data point at either 

 or , which is discussed in Section 800,21Re  800,32Re  0.  
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Figure 3.16 Reynolds number and initial condition effect on potential core length 
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3.3.6 The Effect of Initial Condition on Jet Half-Width 

 The jet half-width,  xy 21  is a length scale which characterizes the spreading rate 

of the jet (Pope, 2000), satisfying equation (3.13). The half-width of the jet is the 

spanwise distance from the centerline at which the local axial velocity is equal to one-half 

of the centerline velocity at the same axial distance. The location of the half-width in a 

sample spanwise velocity profile is shown in Figure 3.17. 

( ) ( )xUyxU cl2

1
=, 2/1  (3.13)
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Figure 3.17 Figure showing the location of the jet half width in a sample spanwise velocity profile 

 

 The self-similar solution to the axisymmetric jet (see Section 1.3.2) relates the 

dimensionless axial distance from the idealized point-source of momentum,  , to the 

half-width, as per equation (3.14).   is defined in equation (3.15), and is the distance 

axial distance adjusted for the location of the virtual origin, , scaled against the 2,ox
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nozzle diameter. Owing to the assumed universality between turbulent axisymmetric jets 

as stated by the traditional approach to self-similarity, the values of  should be the 

same, regardless of initial condition, provided that the flow is fully turbulent.   

2K

2
21 K

d

y
  (3.14)

d

xx o 2,
  (3.15)

 The half-width relationship to axial distance of a sample averaged vector field (in 

this case long pipe at ) is presented in 800,5Re  Figure 3.18. Positional coordinates are 

scaled against nozzle diameter, d. Three regions of the jet are apparent in the figure. The 

development region is characterized by a constant half-width. Beyond this is the 

transition zone, where the jet begins entraining fluid and the slope of 21y  begins to 

increase. Downstream of the transition zone, the jet achieves a self-similar state, where 

half-width increases linearly with axial distance, thereby satisfying equation (3.15). 

 It is possible to determine the half-spread coefficient, , and the virtual origin 

position,  by performing linear regression in the self-similar region,  

2K

2,ox

dx2dxdx1  . Here,  is chosen as the first axial position at which 1x 21y  exceeds 

the initial value of the half-width by a factor of 2, i.e.    0x 21121 xy 2 y , as to ensure 

that regression is performed sufficiently far beyond the transition zone, and  is chosen 

as 90% of axial size of the ROI. The slope of the best-fit line is the spread coefficient, 

, while its intercept with the line formed by 

2x

2K 0dy  is the virtual origin position, 

. 2,ox Figure 3.18 shows the best-fit lines obtained from regression, as well as location of 
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the virtual origin from a sample dataset. The best-fit lines and virtual origin locations for 

all nozzles at all Reynolds number are presented in Appendix D. 
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Figure 3.18 Half-width profile for a sample dataset, showing the lines of best fit and the location of the 

virtual origin, xo,2. 

 

 The half-widths for the jets issuing from the three studied nozzles at various 

Reynolds numbers are shown in Figure 3.19. The half-width is scaled against the nozzle 

diameter, and axial position is shown as  , defined in equation (3.15). This ensures that 

all half-width profiles all originate from the same conceptualized point source of 

momentum. For all three nozzles, half-width profiles collapse well for all Reynolds 

numbers studied, except for  for the orifice nozzle.  800,5=Re

 The effect of Reynolds number and initial condition on  is shown in 2K Figure 

3.20. The three curves for the three nozzles do show similar trends: The values of the 

spread coefficient asymptote in value at a Reynolds number beyond 10,000 for the orifice 
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(c) 

Figure 3.19 Nondimensionalized jet half-widths for long pipe (a), orifice (b), and smooth contraction (c) 

inlet conditions. Every 20th data point is plotted for clarity. 
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and smooth contraction, at which it can be argued that the jet is in a fully turbulent flow 

regime. It should be noted that the value of  for the long pipe at  appears 

to be an outlier. If this point was neglected, the spread coefficient for the long pipe would 

begin to asymptote at .  does not appear to have a significant Reynolds 

number dependence beyond above 

2K

,10

800,21Re 

400,32Re  2K

Re 000 , although there does appear to be 

dependence on the nozzle used: The smooth contraction has the smallest spread over the 

range of Reynolds number studied, while the orifice has the highest value of this 

coefficient. The variation in spread coefficient between these three nozzles is likely not 

due to experimental error, since the data was collected in an identical manner for all 

initial conditions. If the variation in  was of the same magnitude as experimental 

error, all spread coefficient values for the orifice would surely not be higher than those 

for the smooth contraction. 

2K
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Figure 3.20 Reynolds number and initial condition effect on spread rate, K2 

 61   



0 1 2 3 4 5 6 7

x 10
4

-5

-4

-3

-2

-1

0

1

2

3

Re

x o,
2/d

 

 

Long Pipe
Orifice
Smooth Contraction

Figure 3.21 Effect of Reynolds number on virtual origin, xo,2, determined from jet half-width for three inlet 

conditions 

 

3.3.7 Discussion of the Suspicious Data Points Occurring for the Long Pipe Nozzle at 

Reynolds Numbers of 21,800 and 32,400 

 It is apparent from the profiles of the virtual origin position determined from the 

centerline velocity decay (Figure 3.14), potential core lengths (Figure 3.15), and spread 

coefficient (Figure 3.20) that the data points in all of these figures corresponding to the 

long pipe at Reynolds numbers of 21,800 and 32,400 do not seem to match the trend of 

the other data. In the case of the location of the virtual origin  and the length of the 

potential core, , their respective values are lower than the surrounding points for the 

long pipe, while for the spread rate, , the value at this Reynolds number is higher than 

would be expected.  

1,ox

px

2K
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 The centerline velocity decay profiles and half-width profiles for the long pipe 

nozzle are shown Figure D.1 and Figure D.4, respectively, in Appendix D. These show 

the best fit lines used to calculate the centerline velocity decay and half-width 

coefficients as well as the determined virtual origin positions for individual Reynolds 

numbers. The centerline decay profiles for all Reynolds numbers greater than 10,000 

reveal that the transition from the development to the self-similar regions does not occur 

over a short axial distance. Instead, it appears that there is an extended transition region 

with length of approximately 5dx , where clUU 0  values are slightly higher than 

expected. Beyond this at 10dx  there is a readjustment, and the centerline velocity 

decay profile becomes linear and matches well with the line of best fit. It is most 

pronounced for Reynolds number of 21,800 and 34,200. This extended region is also 

evident for smooth contraction nozzle at higher Reynolds numbers, but not as 

significantly for the orifice, as shown in Figure D.3 and Figure D.2, respectively. Since 

the virtual origin and potential core length are determined from the intersections of the 

line of best fit with 00 clUU  and 10 clUU , respectively, the existence of this region 

surely affects where these intersection points lie. This especially true for the length of the 

potential core, since the intersection point used to determine it does not actually coincide 

with the true centerline velocity decay profile. Instead, it is offset by a small amount. 

 Similarly, observation of the half-width profiles for the long pipe, shown in 

Figure D.4, reveals the occurrence of a similar extended transition zone for certain 

Reynolds numbers. Ideally, the lines of best fit should match the half-width values 

immediately beyond the transition zone. Instead there is some difference between them in 

a short region beyond the transition zone, after which 21y  is linear and coincides with its 
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line of best fit. Since the half-spread coefficient, , is slope of the best-fit line, the 

presence of such a region would affect it. The deviation of the half-width from the line of 

best fit for  in this region appears to be the most pronounced, which 

coincides with the spurious data point. The transition regions are much smaller in the 

half-width profiles of the orifice and smooth contraction nozzles, shown in 

2K

800,21Re 

Figure D.5 

and Figure D.6, respectively, and therefore no such outlying point is evident in the data 

obtained for those nozzles. 

 The profiles of RMS axial velocity along the jet centerline, shown in Figure 

3.15(a), reveal a hump and a plateau occurring at Reynolds numbers of 10,000, 21,800 

and 32,400 in the region 104   . All other profiles show a steady increase to their 

asymptotic value of 23.0cl Uu . A similar hump was observed by Mi et al. (2001b) in 

the scalar RMS field for the smooth contraction nozzle, but not the long pipe. The 

existence of this hump and plateau could be the result of some fluctuating phenomenon 

occurring in the near field existing at only at those two Reynolds numbers, affecting the 

spread and decay observed downstream. 

3.4 Conclusions 

 The effect of initial condition of the self-similar behavior of an axisymmetric jet 

was studied by comparing the flow fields generated by a long pipe, orifice, and smooth 

contraction nozzle over a range of Reynolds numbers. The jets issuing from these nozzles 

had the same initial mass and momentum fluxes, and differed only in the velocity profiles 

and turbulence structure at their outlets. The velocity profiles conform to their theoretical 

distributions, with the long pipe producing a seventh-order polynomial profile, the 
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smooth contraction a ‘top-hat’ profile, and the orifice a parabolic profile in-between that 

of the other two nozzles. 

 Self-similar behavior was examined by comparing the centerline velocity decay 

and spread rates of the jets generated by the three nozzles, as well as the location of their 

virtual origins and the lengths of the potential cores. The jet issuing from the orifice was 

found to decay the fastest and the slowest from the smooth contraction. The centerline 

velocity decay coefficient, , reached an asymptotic value for the three jets at high 

Reynolds numbers ( ); however, the jet from each nozzle reached a different 

value. A similar conclusion was made for the spread rates of from the three nozzles: The 

orifice jet spread the fastest, while the smooth contraction spread the slowest. Values of 

the spread coefficient, , varied between the three jets, reaching different asymptotic 

values. The positions of the virtual origins also differed between the three jets, with those 

of the long pipe being consistently higher than those of the smooth contraction, which 

were in turn higher than those of the orifice. These values asymptote to unique values for 

each of the initial conditions at high Reynolds numbers. A similar conclusion was made 

for the potential core lengths of the three jets, which asymptote to unique values for each 

of the initial conditions at Reynolds numbers greater than 25,000.  

1K

800,21Re 

2K

 It is concluded that initial conditions do indeed have an effect on the downstream 

behavior of axisymmetric jets, and therefore the self-similar solutions used to model 

these flows are not universal for jets issuing from different source conditions. As dictated 

by the self-similarity theory, jets should decay and spread at the same rates. Jets with 

different initial conditions have been shown to reach different asymptotic states, which 

supports local-self similarity, but not universality  
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CHAPTER 4:  THE EFFECT OF CHAMBER LENGTH AND 

REYNOLDS NUMBER ON A FLUIDIC PRECESSING JET 

4.1 Introduction 

 The flow field occurring just beyond the exit plane of a precessing jet is studied to 

determine the effect of chamber length and Reynolds number on the probability of 

precession, as this relationship is still poorly understood. The effect of these two 

parameters on the entrainment back into the chamber and the size of the issuing jet is also 

examined. In order to determine the probability of precession at a given Reynolds number 

and chamber length, a processing algorithm was devised capable of discerning the two 

flow modes (precessing mode and axial mode) based on the distribution of axial velocity 

in the region of interest. This allows for the entrainment ratio to be compared for the two 

flow modes and provides conditionally averaged mean and RMS velocity distributions of 

precessing mode at different combinations of chamber length and Reynolds number.  

4.2 The Fluidic Precessing Nozzle 

 The nozzle and chamber assembly used to generate the precessing flow is shown 

in Figure 4.1. It is comprised of an axisymmetric jet exiting from a smooth contraction 

nozzle of exit diameter d = 5.08 mm (1/5”), which issues through a sudden expansion 

into a chamber with diameter 5dD . This expansion ratio has been shown by Nathan et 

al. (1998) to be the most favorable to generate precession. Seven chamber lengths are 
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studied, with lengths L/D = 1, 2, 2.5, 2.75, 3, 3.5, and 4.5. Newbold (1997) has shown the 

optimum chamber length for precession to be L/D = 2.75, with precession occurring over 

the range . The chamber lengths studied encompass this range, as well as 

chamber lengths below and above it.  

5.3/2  DL

 

 
Figure 4.1 Sectioned view of the fluidic precessing jet assembly, showing the nozzle and chamber. 

 

 Similar sorts of jet flows into abrupt expansions have been studied by Mi & 

Nathan (2004),  Nathan et al. (1998),  Wong et al. (2003), Wong et al. (2004), and Wong 

et al. (2006). The precessing nozzle and chamber configurations used for these, however, 

have involved a lip and centerbody, which have been shown to stabilize the flow and 

increase its probability of precession (Wong et al., 2008). The configuration used lacks a 

centerbody and lip, resulting in a more chaotic and unstable flow, which is appropriate 

for fundamental study of the effect of chamber geometry on the probability of occurrence 

of this flow phenomenon. 

 Flow into the nozzle first passes through the plenum, described in Section 2.3, 

which minimizes any swirl or disturbance in the flow. The seven chambers are 
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interchangeable and are held onto the nozzle section with a pressure fit. Schematic 

drawings of the smooth contraction nozzle and chambers can be found in Appendix C. 

4.3 Experimental Method 

4.3.1 StereoPIV Setup 

 Typical StereoPIV configurations orient the light sheet so that the largest 

component of velocity is in-plane, which is typically the axial velocity component of the 

jet (Prasad, 2001). Due to the rotational and chaotic nature of the precessing jet flow, 

neither the position of the jet within the chamber exit plane nor the angle formed between 

the jet and chamber axes can be anticipated. Therefore, it is impossible to orient the light 

sheet so that the axial component of velocity is parallel to the light sheet while ensuring 

that it remains in the region of interest. 

 For this work the light sheet is instead oriented just beyond the chamber so that 

the chamber axis is normal to it, and flow is normal to the light sheet. In this 

configuration, the entire exit plane of the chamber is visible in the field of view, and the 

projection of axial velocity onto the chamber axis corresponds to the out-of-plane 

velocity component, w. Since the highest velocity component is no longer an in-plane 

velocity component, a thicker light sheet is required (van Doorne et al., 2003).  

 Two cameras are used with 105 mm lenses (Sigma) and Scheimpflug adapters, 

and are positioned at a downstream distance from the nozzle of approximately 30 cm. 

They are at the same height as the nozzle, and both form an angle of 16° to the chamber 

axis. The relative positions of the precession chamber assembly, light sheet, and cameras 
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are shown in Figure 4.2. One thousand dual-frame images were collected for each 

chamber length and Reynolds number.   

 

 
Figure 4.2 Solid model showing StereoPIV setup with the light sheet normal to the flow direction. 

 

4.3.2 Light Sheet Thickness and Time Step 

 It has been shown that in StereoPIV configurations, it is desirable for robust 

processing that the following two criteria are met (Raffel et al., 1998): 

1. Particles travel approximately one-quarter of the size of an interrogation 

window between frames in order to capture in-plane velocity components u 

and v (in the x- and y-directions, receptively). 
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2. Particles travel approximately one-quarter of the light sheet thickness between 

frames in order to capture out-of-plane velocity component w (in the z-

direction). 

 These two criteria are aimed to ensure that the same group of particles remains 

within an interrogation window between laser flashes. If different groups of particles are 

imaged in the two frames and then cross-correlated, an erroneous velocity vector results. 

The out-of-plane velocity component is of most interest in this study, and therefore the 

light-sheet thickness and time step are optimized for capturing this component.  

 Any displacement in the z-direction in the real-world coordinate system is 

mapped into an in-plane displacement on the camera CCD plane. Due to the much 

stronger out-of-plane than in-plane velocity, any in-plane displacement resulting from 

particle motion in the x-direction, x , is assumed to be much smaller than in the 

z-direction. Since the cameras are at the same height as the chamber axis and form an 

angle α with the z-axis, any out-of-plane displacement, ∆z, is mapped only into a 

horizontal displacement, x , on a plane parallel to the CCD plane, given in equation 

(4.1). The magnification factor, M, between this plane and the CCD plane is defined in 

equation (4.2). Combining equations (4.1) and (4.2) yields equation (4.3), which relates 

the mapped pixelwise displacement of a particle onto the camera CCD plane to its real-

world axial displacement. The difference between the highest and lowest x-values, 

, is the width of the field of view. minmax xx 

 sincossin zxzx   (4.1)









xxx

M minmax  (4.2)
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M

z  sin
  (4.3)

 The out-of-plane velocity component, w, is determined from the correlated 

displacement of a group of particles in the two frames of an interrogation window, and 

the known time step between them. This follows the simple velocity equation (4.4), 

which relates the change of position to the change in time required for the motion.  

t

z
w




  (4.4)

 Equation (4.4) can be rearranged to give equation (4.5). Here, the second criterion 

can also be imposed, which requires that the displacement in the z-direction be exactly 

one-quarter the thickness of the light sheet, i.e. mTz  , where 4
1m  and T is the 

thickness of the light sheet. In this equation, both light sheet thickness and time step are 

coupled to the axial displacement of the particles.  

mTtwz   (4.5)

 Equation (4.3) is rearranged and the in-plane displacement on the CCD is set to 

the desired quarter-width of the interrogation window, 0   (in this study the 

interrogation window is 32×32 px, so the desired particle displacement is 80   px). 

This satisfies the first criterion mentioned earlier. In addition, the maximum out-of-plane 

velocity is assumed to be the bulk exit velocity out of the nozzle, ew  . Combining 

equation (4.3) with (4.5) gives equation (4.6), which now relates both time step and light 

sheet thickness to the desired pixelwise particle displacement within an interrogation 

window and the angle between cameras. 
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M

mTte

M

 sinsin
0


  (4.6)

 Uncoupling equation (4.6) gives equations (4.7) and (4.8), which now define the 

required time step and light sheet thickness for a ma um out-of-plane velocity xim ew  .  




sin
0

e

M
t


  (4.7)




sin
0

m

M
T


  (4.8)

 The calculated value of ∆t is merely an estimate, since the axial velocity will 

nowhere in the ROI exceed the bulk inlet velocity. The actual time step values used for 

error approach. Too large of a time-step allows for too large of a particle displacement 

within an interrogation window and through the light sheet, which in turn results in an 

invalid vector in an interrogation window. The ∆t at each Reynolds number and chamber 

this experiment were based on the result of equation (4.7), and adjusted using a trial-and-

length was chosen so that less than 1% of the interrogation windows in an instantaneous 

vector field contained a null vector2. Table 4-1 shows the time steps used for each of the 

chamber lengths, as well as the calculated values based on e . 

 It is apparent from equation (4.8) that the light sheet thickness is not dependent 

upon the out-of-plane velocity, provided that the ∆t is chosen so that the in-plane particle 

displacement,  , is 8 px. A light sheet thickness of approximately 2.75 mm was used. 

thickness between laser pulses, resulting in spurious vectors. Too thick of a light sheet 

                                                

Too thin of a light sheet could cause particles to move through the entire light sheet 

 
2 In the StereoPIV processing software used (DaVis 7.4, LaVision), any interrogation window in which 

velocity cannot be determined results in a null vector. 
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may result in different particle velocities at its near and far sides, which would result in 

 

Table 4-1 Compa  p a a  b v se used for each 

cham

Pump Spee 1320 1  

erroneous correlated vectors. 

rison of time ste  values c lculated b sed on the ulk inlet elocity to tho

ber length. 

d, Ω 210 480 750 990 800

Re 10,000 21,800 32,400 40,800 50,700 61,900 

Calculated ∆t 

[μs] 

Chamber 

Length, L/D 
343 158 106 85 68 55 

65 40 30 25 20 15 1.0 

275 170 120 75 60 45 2.0 

275 170 120 80 60 45 2.5 

275 165 115 70 65 45 2.75 

275 155 100 65 55 45 3.0 

275 165 105 75 60 45 3.5 

Actual ∆t used 

[μs] 

175 140 125 105 80 4.5 300 

 

4.3.3 StereoPIV Processing 

 StereoPIV processing was achieved using the algorithm illustrated in Figure 4.3. 

Raw images from the cameras were first preprocessed using background count 

subtraction and sliding background subtraction of time series (over 3 images), in order to 

remove any background intensities which may exist in sequential images, as well as 

remove any intensity which remained constant, such as the image of the chamber. 

Background noise was reduced using sliding background subtraction with a 5 px filter 

size. The intensity of particles is normalized using a min-max filter with a 10 px window, 

and the particle images were finally smoothed using a 3×3 linear filter. See Section 2.4.2 

for a more detailed description of the preprocessing steps used.  
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 Vector fields were generated using a multi-pass correlation scheme with a 

decreasing window size. Five passes were used to improve the quality of calculation of 

out-of-plane vectors, which were of the most interest in this study. Correlation was 

performed twice with a 64×64 px interrogation window, and then further processed with 

three passes of a 32×32 px interrogation window. The resulting vector field from each 

correlation step was used as an initial particle search field for the next. This resulted in 

n each instantaneous vector field. Vector fields were finally treated with a 

median filter, to remove any spurious vectors, as well as a 3×3 smoothing filter.  

  

67,804 vectors i

Figure 4.3 StereoPIV processing algorithm for precessing jet data. 

 74   



4.3.4 Location of Chamber Center 

 It was necessary to determine the chamber center and radius in terms of the 

coordinate system of the calculated vector field. It was not feasible to attempt to calibrate 

the StereoPIV system with the origin corresponding to the chamber axis, since, during the 

calibration process, the view of the chamber is obscured by the calibration target. Instead, 

was performed with the chamber center being reasonably close to the 

calibration target’s origin. From images of the chamber (with room illumination and low 

calibration 

(1 th

seeding density), its origin coordinates were determined, using a circle-fitting method, 

and in turn used to offset all data so that the chamber axis corresponded to 

   0,0, yx  mm. This procedure was carried out for each chamber length, since 

changing the chamber between experimental runs resulted in a small positional variation.  

 Circle fitting was accomplished by mapping images from both cameras onto one 

another to ensure proper calibration. The inner and outer diameters of the chambers from 

both images should overlap perfectly. One image was chosen, and an arbitrary number of 

points were marked on the chamber inner diameter. Using the method proposed by Pratt 

987), e pixelwise coordinates of the chamber center, 0  and 0 , were determined 

from these selected points, as well as the chamber radius, 0 , also in pixels. Conversion 

from camera CCD plane coordinates to re

equations (4.9) and (4.10), and the chamber radius was determ  equation (4.11). 

 and  are the image size in the horizontal and vertical directions in pixels, 

respectively. 

al world coordinates was achieved using 

ined from

 

)min(0 X








 xIxc 
 (4.9)
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)min(0 Y








 yJyc 
 (4.10)

xIR 









 0  (4.11)
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Figure 4.4 Location of chamber center (marked with ‘’) determined from points selected on chamber 

edge (marked with ‘X’). 

  

 Figure 4.4 shows the image of the L/D = 2.75 chamber as seen by one of the 

cameras. The inner edge of the chamber was marked with points (shown in the figure as 

explained in the paragraph above, the chamber center (shown as ) X). Using the method 

and radius were calculated. The chamber perimeter and the x- and y-axes are shown 

overlaid as broken lines. It is apparent from the figure that the calculated values of radius 

and center are reasonable.  
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4.3.5 Data Masking 

 It was necessary to mask all instantaneous vector fields to remove any data 

beyond the chamber radius. This was accomplished by creating a new axial velocity 

array, w


, to contain all data within just beyond the radius (a factor of 1.1 was chosen, 

since the region of interest is just beyond the chamber exit plane, and the issuing jet 

undergoes some expansion in this distance). This new array has the same size as w, 

which contain l axial velocity data over the entire field of view. The mas al sked array is 

filled with corresponding axial velocity values from w which are within a distance of 

1.1R from the chamber center at position  cc yx , . Any velocity values beyon  this 

tion of

d are set 

to null. The crea  w


 is defined in equation (4.12), where i and j are array indices, 

nd y position tes at grid point . al coordina  ji,and ji,X  and ji,Y  contain x a

     jiRyx cjicjiji ,,
otherwise

1.1
,0

, 2
,

2
,, 




 YXw

w


 

4.4 Two Modes of Flow 

 Instantaneous velocity profiles of the issuing jet reveal two dominant modes of 

flow: Precessing (PJ) mode and axial (AJ) mode. There is a third mode, which will be 

referred to as transitioning mode, in which the jet is neither obviously in precessing mode 

nor axial mode. Sample axial velocity contours and in-plane velocity vectors for the jet in 

precessing mode, axial mode, and transition mode are shown in 

ji,  (4.12)

s, all velocity components have been 

ooth

Figure 4.5, Figure 4.6, 

and Figure 4.7, respectively. In these figure

sm ed with a 10×10 linear filter to highlight the dominant shape and structure of the 

flow and minimize the presence of any turbulence or small scale structures. In addition, 
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to highlight the shape of the issuing jet, only positive axial velocity is shown; any 

negative axial velocity has been set to zero. 

 Precessing mode is illustrated in Figure 4.5, and is characterized by a high 

positive axial velocity region near to the chamber wall (see subfigures a-c), which 

resembles a kidney-bean in shape, resembling a jet in cross-flow (Rajaratnam, 1976). 

This region occupies approximately half of the perimeter of the chamber. There is no 

 Figure 4. tric jet 

hape is reasonably round. From the in-

outflow in the region around the chamber axis; instead, fluid is being entrained back into 

the chamber. In-plane velocity vectors (see subfigures d-f) show a pair of dominant 

counter-rotating vortices which exist in the region between the crescent-shaped 

outflowing jet and the chamber center. The shape and vortical structure of this flow mode 

agree with the observations of Mi et al. (2008). 

 Axial mode, as shown in 6, resembles an axisymme flow, where 

the jet axis is near to the chamber axis, and its s

plane velocity vectors (subfigures d-f), it is apparent that there are no dominant vortical 

structures. Instead, smaller vortices are apparent which correspond to the edges of the 

outflowing region, the size of which increases with chamber length. The maximum axial 

velocity in this mode can reach 9.0ew   for a chamber length of 1DL  (see Figure 

4.6 (a)), which is essentially an axisymmetric jet. 

 A third mode of flow is also possible, which is presumed to occur as the jet 

transitions between axial and precessing modes. Figure 4.7 shows examples of this mode. 

The outflowing jet is not necessarily crescent-shaped, as would be expected in precessing 

ode, having instead a round shape as would be expected in axial mode. The region of 

highest outflow, however, is not sufficiently close to the chamber axis (marked with ‘+’ 

in the figure), as would be characteristic of axial mode. The in-plane velocity vectors 

m
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show no dominant counter-rotating vortex pair which is characteristic of precessing 

mode.  
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Figure 4.5 Contour plots of axial velocity distribution (a-c) and vector plots of in-plane velocity (d-f) 

illustrating the outflowing region of the jet in precessing mode. 
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Figure 4.6 Contour plots of axial velocity distribution (a-c) and vector plots of in-plane velocity (d-f) 

illustrating the outflowing region of the jet in axial mode. 
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Figure 4.7 Contour plots of axial velocity distribution (a-c) and vector plots of in-plane velocity (d-f) 

illustrating the outflowing region of the jet in transitioning mode. 
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4.5 Mode-Finding Method 

 In order to determine precession probability, as well as conditionally average only 

those instantaneous vector fields which were in precessing mode, a technique was 

developed to determine the flow mode based on instantaneous axial velocity distribution. 

It is relatively easy to visually distinguish the two modes based on the axial velocity 

distribution, since the outflowing region is either kidney-bean shaped and along the 

chamber wall, or reasonably axisymmetric and in-line with the chamber axis. However, 

due to the large volume of data collected in this study (42,000 instantaneous vector fields 

for all chamber lengths and Reynolds numbers), a manual mode determination method 

relying on visual inspection of instantaneous velocity fields is not feasible.  

 The mode determination method characterizes the flow based on the 

instantaneous, positive axial velocity field. Due to the chaotic nature of the flow, and the 

possibility of the jet existing in a mode which is neither obviously axial nor precessing, as 

evident in Figure 4.7, three quantitative criteria are examined in the flow field, each 

deeming the flow as either precessing or axial. A best-two-of-three approach is used with 

these results. In this manner, if two mode-finding methods find the jet to be in precessing 

mode while the third disagrees, it is considered to be in precessing mode.  

 The probability of precession is defined as the ratio of the number of vector fields 

found to be in precessing mode (using the mode-finding method described in this section) 

to the total number of vector fields in a dataset at a given Reynolds number and chamber 

length. This is defined in equation (4.13). 
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N
P PJ

PJ   (4.13)

4.5.1 Peak Outflow Position Method 

 The first mode-finding method considers the position of the peak axial velocity of 

the issuing jet. The position of these velocity peaks differ between modes, as the issuing 

jet in axial mode resembles an axisymmetric jet, with its highest velocity region being 

near to the chamber center, while precessing mode has its velocity peak nearer to the 

chamber wall. Since the flow is highly turbulent, the axial velocity field is first heavily 

smoothed (25×25 linear filter) to highlight the dominant velocity distribution within it. 

Figure 4.8 shows a sample instantaneous positive axial velocity field before and after 

smoothing, as well as the position of the maximum velocity,  pp yx , . If this point is 

beyond a characteristic radius Rc, the jet is assumed to be in precessing mode. If  pp yx ,  

is within the circle of radius Rc, it is assumed to be in axial mode. 
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Figure 4.8 Location of maximum outflow velocity shown in (a) unsmoothed and (b) smoothed axial vector 

field. 
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4.5.2 Areas Method 

 In its two characteristic modes, the shape of the issuing jet (the region of positive 

axial velocity) can be relatively circular (in axial mode) and coaxial with the chamber 

axis, or kidney-bean shaped (precessing mode), where the majority of outflow is nearer to 

the chamber wall than its center. With this in mind, it is assumed that in axial mode, there 

is a higher volume flow rate out of the chamber in a circular region within a radius Rc 

than beyond it. Conversely, for precessing mode, the opposite should hold true: There 

should be more volume flux in the annulus bounded by Rc and the chamber radius. 

 For each masked instantaneous axial-component flow field, the volume flow rates 

q1 and q2 are approximated using equations (4.14) and (4.15). These are the sums of 

volume flux through finite rectangular areas of dimensions δx and δy at all data points 

either within Rc or in the annulus beyond it, respectively. Positional coordinate arrays X 

and Y are adjusted for the position of chamber center,  cc yx , . If , the jet is 

considered to be in axial mode, and if 

21 qq 

21 qq  , it is considered to be in precessing mode. 

    ccjicji
ji

ji Ryxyxq  2
,

2
,

,
,1 0, YXw 

 (4.14)

    RyxRyxq cjicjic
ji

ji  2
,

2
,

,
,2 , YXw 

 (4.15)

4.5.3 Centroid Method 

 The second method characterizes the flow mode based on the position of the 

fluidic centroid of the issuing jet relative to a third cutoff radius. This centroid is similar 

to a mass or area centroid; however, it is weighted with the value of axial velocity instead 

of mass or area. Its two components (in cylindrical coordinates) are given in equations 
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(4.16) and (4.17). If the position of this centroid is beyond Rc, the jet is considered to be 

in precessing mode, and if it is within Rc, it is considered to be in axial mode.  
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 It is unreasonable to calculate the centroid using a Cartesian coordinate system, 

due to the crescent shape of the jet (along the x-y plane) when in PJ mode. Instead, the 

vector field is mapped into a cylindrical coordinate system, and the radial distance of the 

centroid defines the mode. The mapping of coordinate systems resembles a radar, 

sweeping out a circular area starting at an initial angle of 0  with the y-axis, and 

completing a 2π-revolution about the center of the chamber. Figure 4.9 and Figure 4.10 

illustrate this method for the jet in axial mode and precessing mode, respectively.  

 The location of the highest outflow velocity,  pp yx , , is first found in a heavily 

smoothed (25×25) axial velocity field. The angle   is formed between vector , defined 

in equation 

s


(4.18), which joins the origin and  pypx , , and the y+-axis. Angle 0  is 

defined as the angle opposite to  , formed between the y+-axis and  ppx y, . This 

serves as the angle at which the sweep begins and ends. By mapping the coordinate 

system with this initial offset, it is guarantees that, if in precessing mode, the entire 

outflowing region occurs within the range  200  .  
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 Since the vector fields exist in arrays as discrete data points, it is necessary to 

create new positional coordinate grids, R and Θ, containing all Rr 0  and 

00 2    positional coordinates. The size of these arrays has been chosen to be 

the same as X and Y, which results in a grid spacing of IRr   and J 2 . R and 

Θ are filled according to equations (4.19) and (4.20), respectively, where s and t are their 

array indices in two dimensions.   

JtIsrsts  1,1;, R  (4.19)

  JtIstts  1,1;10, Θ  (4.20)

 Mapping from the masked axial velocity array in the Cartesian coordinate system, 

w


, to the new array in cylindrical coordinates, wcyl, is achieved using equation (4.21). 

For every grid point in array wcyl with position    tstsr ,, ,, ΘR , the corresponding 

point in Cartesian coordinates    jijiyx ,, ,, YX  is found using equations (4.22) and 

(4.23). Since the data are not continuous, any point  yx,  which does not fall on a grid 

point has its axial velocity value cubically interpolated from the surrounding grid points.  
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sinrxx c   (4.22)

cosryy c   (4.23)

 The radial component of the centroid is then calculated using equation (4.24). If 

cRr ~ , the jet is considered to be in precessing mode. Otherwise, the jet is considered to 

be in axial mode. Note that all values of wcyl beyond the chamber radius have a null 

value.  
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 Figure 4.9 and Figure 4.10 on the following pages illustrate this mode finding 

process for a sample vector field in both axial and precessing modes, respectively. 

Subfigure (a) shows the axial velocity contours after heavy smoothing. The position of 

the highest outflow velocity is marked with ‘’ while ‘☆’ shows the point opposite to it. 

The white broken line forms angle 0  with the y+-axis, and is the angular position from 

which the data is “swept-out”. Subfigure (b) shows the position of the determined 

centroid, marked with ‘◊’, while subfigure (c) shows the vector field in cylindrical 

coordinates. When calculating the centroid from (c), r and θ coordinates are treated as 

though they were Cartesian. 
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Figure 4.9 Application of the centroid method to a instantaneous vector field in axial mode: (a) heavily 

smoothed axial velocity field showing the position of maximum outflow and the location opposite to it 

from which the sweep begins, marked with ‘’ and ‘☆’, respectively; (b) unsmoothed axial velocity field 

showing the location of the centroid, marked with ‘◊’; (c) unsmoothed axial velocity field mapped into 

cylindrical coordinates showing the position of the centroid. 
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(c) 

Figure 4.10 Application of the centroid method to a instantaneous vector field in precessing mode: (a) 

heavily smoothed axial velocity field showing the position of maximum outflow and the location opposite 

to it from which the sweep begins, marked with ‘’ and ‘☆’, respectively; (b) unsmoothed axial velocity 

field showing the location of the centroid, marked with ‘◊’; (c) unsmoothed axial velocity field mapped into 

cylindrical coordinates showing the position of the centroid. 
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4.5.4 Calculation of Cutoff Radius 

 It was necessary to determine the cutoff radii for the three methods outlined in the 

previous sections in order to accurately determine the mode for each vector field.  Of the 

18 chamber length and Reynolds number combinations studied, six were arbitrarily 

chosen. For each of these, the mode probability of the first one-hundred vector fields was 

determined by visual inspection, based on the mode characterization outlined in section 

(4.4). The precession probability values found are reported in Table 4-2. The same one 

hundred images from each set were analyzed using the three mode-finding methods at 

different cutoff radii over the range RRc 0 , which resulted in a different precession 

probability for each method at each cutoff radius. The relationship between Rc and the 

mode probability determined by the three methods is shown in Figure 4.11. 

 For each of the six chamber length-Reynolds number combinations and for each 

of the mode-finding methods, the cutoff-radius value was found which resulted in the 

same precession probability as manually determined for that set. For example, for a 

chamber length of L/D = 2.75 at a Reynolds number of 61,900, the precession mode 

probability determined from visual inspection of the axial velocity fields was found to be 

84%. In Figure 4.11(d), it can be observed that the centroid method (section 4.5.3) 

requires a cutoff radius of 0.60R in order to produce a precession probability of 84%, 

while the area method (section 4.5.2) requires a cutoff radius of 0.71R. All cutoff radii for 

the three methods are in Table 4-2. 
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(e) (f) 

—— Centroid method ·········· Areas method ------ Peak outflow pos. method 

Figure 4.11 Cutoff radius finding results for the following chamber length and Reynolds number 

combinations:  (a) L/D = 2.0, Re = 32,400; (b) L/D = 2.5, Re = 32,400; (c) L/D = 2.75, Re = 61,900; (d) 

L/D = 2.75, Re = 21,800; (e) L/D = 3.0, Re = 32,400; (f) L/D = 3.5, Re = 21,800. 
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Table 4-2 Cutoff radii determined using the three mode finding methods 

Reynolds number, Re 10,000 66,100 32,400 32,400 32,400 32,400 

Chamber length, L/D 2.75 2.75 2 2.5 3 3.5 

PJ mode probability, PPJ 17% 84% 61% 37% 4% 24% cR  
cR  

Centroid 
Method 

0.59 0.60 0.61 0.59 0.61 0.60 0.60 0.01 

Areas Method 
0.72 0.73 0.72 0.71 0.73 0.73 0.72 0.01 

Cutoff 

Radius, 

Rc/R Peak Outflow 
Position Method 

0.77 0.77 0.67 0.73 0.82 0.73 0.74 0.04 

 

 For a given mode-finding method, the proper cutoff radius is assumed to be the 

average of the cutoff radii found for the different chamber length and Reynolds number 

combinations for that method. It is apparent from Table 4-2 that the cutoff radius for a 

given mode is not greatly dependant on neither Reynolds number nor chamber length. 

This is especially true for the areas and centroid methods, which have a standard 

deviation of only 0.01R between the six Reynolds number and chamber length 

combinations. Of the three methods, the peak outflow position method (Section 4.5.1) is 

the most volatile, with a standard deviation of 0.04R. Since a best-two-of-three approach 

is used in the mode-finding algorithm, however, the larger spread of cutoff radii with the 

outflow position method should not greatly affect the determined mode of an 

instantaneous vector field. 

4.6 Entrainment and Conditional Averaging of Axial Velocity 

4.6.1 Entrainment Ratio 

 The amount of fluid being drawn back into the precession chamber through the 

exit plane of the chamber (at an axial distance 0z ) is compared between the two flow 

modes for each chamber length and Reynolds number. The amount of fluid being 
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entrained back into the chamber is characterized with the entrainment ratio, E, which is 

defined in equation (4.25) as the ratio of mass flux into the chamber to the mass flux out 

of the chamber at the chamber exit plane.  

0


zout

in

m

m
E




 (4.25)

 The mass fluxes in and out of the chamber are approximated as the sum of mass 

flux through finite rectangular regions centered at each grid point within array w


 of size 

x  and y . Mass flux into the chamber, , sums all the mass flux through all of these 

regions where the local axial component is negative (into the chamber), while the mass 

flux out of the chamber, , includes all data points where axial velocity is positive 

(out of the chamber). The approximations for these two values are given in equations 

inm

outm

(4.26) and (4.27), respectively, where   is the fluid density.   
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 At each chamber length and Reynolds number there are  vector fields. 

Starting from the first, each has its entrainment ratio, E, calculated from equation 

000,1N

(4.25). 

Based on its mode (determined using the method outlined in Section 4.5), the value of E 

is appended to one of two arrays,  or , defined in equations PJE AJE (4.28) and (4.29), 

which contain all entrainment ratio values for the jet in precessing mode and axial mode, 

respectively. NPJ and NAJ are the number of vector fields in precessing and axial modes, 

respectively. 
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 The entrainment ratio for each chamber length and Reynolds number for both 

modes is finally determined by averaging all mass flux fractions, as per equations (4.30) 

and (4.31).  
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4.6.2 Axial Velocity Field Rotation and Averaging 

 Due to the rotational nature of the issuing jet, its position varies throughout the 

chamber exit plane with time and in successive images. In order to attempt to perform 

any averaging or statistical work on the velocity fields of the jet in precessing mode, it is 

necessary to include only those vector fields which are in precessing mode and transform 

them in such a way that the same regions of the jet are averaged together, regardless of 

the orientation of the jet in the ROI. The fluidic centroid of the jet (described in Section 

4.5.3) is chosen as the common point, and instantaneous vector fields which are in 

precessing mode are rotated so that the centroid always lies on the y+-axis. Average and 

RMS axial velocity distributions are then calculated. The procedure is explained in the 

following paragraphs. 

 94   



 The mode of each vector field is first determined using the method in Section 4.5. 

If in precessing mode, the axial velocity field is mapped to cylindrical coordinates using 

the method outlined in Section 4.5.3 and the position of the centroid is found. The 

azimuthal component of the position of the centroid is found with equation (4.32). 
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 The method for rotation is based on the change of basis from an old basis 

 to a new basis  yxB ˆ,ˆ   yxB ˆ,ˆ 

B

. Here, the new basis is rotated an angle θ from the 

old one (Anton & Rorres, 2000), and  and  are unit vectors in the x and y directions, 

respectively. This yields the transformation matrix P between the rotated and original 

coordinate system, , which is defined in equation 

x̂ ŷ

B  (4.33). 
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 The transformation matrix P maps rotated positional coordinates  yx ,  to their 

corresponding position in the original coordinate system  yx, , as illustrated in equation 

(4.34). This yields equations (4.35) and (4.36), which relate x and y positional 

coordinates, respectively, to positional coordinates x′ and y′.  
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 cossin yxy   (4.36)
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 Rotation is achieved by mapping each vector field so that the position of the 

centroid in the rotated axial velocity array, wrot, lies on the y+-axis. This array has the 

same size as its original counterpart, w


. The necessary angle for rotation is  ~
 , which 

is the azimuthal location of the fluidic centroid of the jet. If the data were continuous, the 

relationship between original and rotated vector fields, w


 and , would hold the form 

of equation 

rotw

(4.37). 

    ~
cos

~
sin,

~
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~
cos, yxyxwyxwrot  

 (4.37)

 Since, however, the data exist in discretized arrays, it is necessary to map the 

value of each data point in  from its corresponding position in rotw w


. This is achieved 

with equation (4.38), which assigns every position    jjiyx  i ,Y, ,, X  in the rotated 

velocity array the corresponding value of velocity from the original array at position 

   jijiyx ,, ,, YX . Any velocity value in w


 which does not lie on a grid point is 

cubically interpolated from the velocity values at the surrounding grid points. Figure 4.12 

shows a sample axial velocity field before and after rotation. The axial velocity 

distribution in this plot is heavily smoothed (10×10 linear filter) and shows only regions 

of positive axial velocity in order to more clearly illustrate the rotation. Vector fields 

undergoing this process were unsmoothed and included both positive and negative axial 

velocity data. 
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(a) (b) 

Figure 4.12 Figure showing the contour plot of positive axial velocity (a) before and (b) after rotation. The 

data have been smoothed (10×10 linear filter) to highlight the large-scale velocity distribution of the issuing 

jet. The ◊ shows the position of the fluidic centroid. 

 

 Mapping from    yxyx ,,   was chosen instead of the reverse, due to the 

discretized nature of the data. If discrete points from the original array were mapped to 

the rotated array, most of the points in the new array would not fall on discrete grid 

points. If this was the case, assigning values to grid points in the rotated array would 

require solving sets of equations for each point, since axial velocity values at grid points 

would have to be determined by reverse-interpolation from velocity values existing 

between them. By mapping from the rotated array to the original array, values at discrete 

grid points in the rotated array correspond to points which may or may not exactly lie on 

grid points in the original array. If they do not, their value is simply interpolated from 

surrounding points. 
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 The phase-averaged axial velocity field, W, is then calculated using equation 

(4.39), where   is the nth of NPJ rotated instantaneous vector fields in precessing 

mode. The RMS axial velocity field is determined with equation 

nrotw

(4.40). 
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4.6.3 Jet Area Ratio 

 The effect of Reynolds number and chamber length on the expansion of the jet 

while in precessing mode can be determined from the conditionally averaged axial 

velocity fields. The dimensionless area ratio, c , is defined in equation (4.41) as the ratio 

between the cross-sectional area of the jet, , and the area of the chamber exit, 

, and characterizes the fraction of chamber area which is occupied by the jet. 

jA

2RAc 

2R

A

A

A j

c

j
c 
   (4.41)

 The jet is defined in any position in the light sheet plane where the axial velocity 

is positive. The jet’s cross-sectional area may then be approximated using equation 

(4.42), which sums the areas of all finite rectangular regions of size yx    centered 

about grid points within the averaged axial velocity array W whose axial velocity is 

positive. In equation (4.42), f is a Boolean array identical in size to W, where every grid 

point within it is valued at unity if the corresponding grid point in W has a positive axial 

velocity, and zero otherwise.

 98   










  0≤,0

0,1
,≈

,,

,,

1 1
,∑∑

jiji

jiji
I

i

J

j
jij yxA

Wf

Wf
f   (4.42)

4.7 Results 

4.7.1 Chamber Length and Reynolds Number Effects on Precession Probability 

 The relationship between precession probability, PPJ, and the chamber length at 

various Reynolds numbers is shown in Figure 4.13. The highest precession probability 

appears to occur at 2DL , and the range of high probability is larger at higher 

Reynolds numbers. There is a sharp decrease in probability at a chamber length of 3D. It 

is apparent in this figure that the probability trend is similar for all Reynolds numbers 

except for Re = 10,000, where the flow is considered to be laminar. There is no 

precession at a chamber length of 1DL . 

 The probability of precession appears to increase beyond 3DL  up to 

5.4DL . At the latter chamber length, the jet is beyond the chamber length range given 

by Newbold (1997), and may not be ‘precessing’ in the sense desirable to industry, where 

there is significant backward entrainment, thereby improving mixing. However, the axial 

velocity field of the jet at this chamber length does exhibit characteristics of the 

precessing jet, such as the crescent shaped jet with high velocity near to the chamber 

wall. For this reason, the mode determination method outlined in Section 4.5 

characterizes the jet as PJ. 
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Figure 4.13 Effect of chamber length on the probability of precession at varying Reynolds numbers. 

 

 Figure 4.14 shows the relationship between precession probability and Reynolds 

number at different chamber lengths. There appear to be three distinct trends here: The 

first occurs for chamber lengths 3DL , at which precession probability almost linearly 

increases with Reynolds number, beginning with a non-zero PPJ at . At a 

chamber length of 

000,10Re 

75.2DL , precession probability is near-zero at the lowest Reynolds 

number, and increases almost linearly with Reynolds number, excluding the precession 

probability value at Re = 40,800, which is assumed to be an outlier. In the range 

5.22  DL , precession probability is zero at the lowest Reynolds number, and appears 

to increase following a second-order relationship with Reynolds number. There is no 

precession at a chamber length of 1DL . 
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Figure 4.14 Effect of Reynolds number on the probability of precession at varying chamber lengths. 

 

4.7.2 Chamber Length and Reynolds Number Effects on Entrainment Ratio 

 The relationship between entrainment ratio, E, defined in Section 4.6.1, and 

chamber length is shown in Figure 4.15 for both precessing an axial modes. Figure 4.16 

shows the relationship between E and Reynolds number for these two modes. It is 

apparent from Figure 4.15 that there is a strong relationship between chamber length and 

the entrainment ratio. Entrainment ratio is highest at 2DL , and decreases with 

increasing chamber length for both modes. Figure 4.16 shows a weak relationship 

between Reynolds number and entrainment ratio, except at Re = 10,000, where the flow 

is considered to be laminar. There is also negligible difference in entrainment back into 

the chamber between the two modes. 
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Figure 4.15 Effect of chamber length on the entrainment ratio at varying Reynolds numbers. 
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Figure 4.16 Effect of Reynolds number on the entrainment ratio at varying chamber lengths.. 
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4.7.3 Conditionally Averaged Axial Velocity Profiles 

 Averaged and RMS velocity profiles for all chamber length and Reynolds number 

combinations (except for 1DL , since there was no precession at this chamber length) 

are shown in Figure 4.17 through Figure 4.22. These figures are the result of the 

conditional averaging technique described in Section 4.6.2. Note that for certain 

Reynolds number and chamber length combinations at which there was low precession 

probability, average and RMS axial velocity flow fields appear blotchy and not as smooth 

as the others. This is due to the low data density for calculating the average and RMS. 

For example at 0.2DL  and 000,10Re  , only 1% of the observed instantaneous axial 

velocity fields were in precessing mode, resulting in an average and RMS field for this 

chamber length and Reynolds number combination being calculated from ten images. 

Those combinations with higher precession probability show much better average and 

RMS axial velocity fields.  

 All chamber lengths show a crescent-shaped region of positive axial velocity 

which hugs the chamber wall. The highest region of axial velocity is at a radial distance 

of approximately 8.0Rr . The largest fluctuations in velocity occur in the high-

velocity region of positive axial velocity, and decrease with increasing radial and 

azimuthal distance from this area. The smallest velocity fluctuations occur near to the 

chamber wall opposite to the outflow region, i.e.    Ryx  ,0, . The shape and size of 

the RMS velocity distribution does not appear to significantly change at different 

chamber lengths and Reynolds numbers, except at those at which there was a low 

precession probability, resulting in a low data density. Only the magnitude of ew   is 

affected by chamber length. At all chamber lengths except for 5.4DL , there is 

entrainment back into the cavity in the round region opposite (on the other side of the 

x-axis) to the region of outflow. This area decreases in size as Reynolds number 

increases, disappearing completely at chamber lengths above .  D5.3
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Figure 4.17 Average and RMS axial velocity contours for chamber length L/D = 2. 

 104   



-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x/R

y/
R

 

 

L/D = 2, Re = 40800

W
/ 

e

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x/R

y/
R

 

 

L/D = 2, Re = 40800

w
'/ 

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(g) (h) 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x/R

y/
R

 

 

L/D = 2, Re = 50700

W
/ 

e

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x/R

y/
R

 

 

L/D = 2, Re = 50700

w
'/ 

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(i) (j) 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x/R

y/
R

 

 

L/D = 2, Re = 61900

W
/ 

e

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x/R

y/
R

 

 

L/D = 2, Re = 61900

w
'/ 

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(k) (l) 

Figure 4.17 Average and RMS axial velocity contours for chamber length L/D = 2. 
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Figure 4.18 Average and RMS axial velocity contours for chamber length L/D = 2.5. 
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Figure 4.18 Average and RMS axial velocity contours for chamber length L/D = 2.5. 
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Figure 4.19 Average and RMS axial velocity contours for chamber length L/D = 2.75. 
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Figure 4.19 Average and RMS axial velocity contours for chamber length L/D = 2.75. 
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Figure 4.20 Average and RMS axial velocity contours for chamber length L/D = 3. 
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Figure 4.20 Average and RMS axial velocity contours for chamber length L/D = 3. 
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Figure 4.21 Average and RMS axial velocity contours for chamber length L/D = 3.5. 
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Figure 4.21 Average and RMS axial velocity contours for chamber length L/D = 3.5. 
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Figure 4.22 Average and RMS axial velocity contours for chamber length L/D = 4.5. 
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Figure 4.22 Average and RMS axial velocity contours for chamber length L/D = 4.5. 
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 Figure 4.23 shows average and RMS velocity profiles along the line 0Dx  for 

all chamber lengths at which precession mode occurred. The axial velocity data for each 

Reynolds number is scaled against bulk inlet velocity, e , and all Reynolds numbers are 

presented for each chamber length. Figure 4.24 shows all average (a) and RMS (b) 

velocity profiles from the different chamber lengths on one plot. All Reynolds numbers 

are shown except , which exhibits a different velocity profile than the others 

for all chamber lengths. 

000,10Re 

 The average and RMS axial velocity data collapse well for all Reynolds numbers 

except 10,000 (marked with ☆), which is assumed to be a laminar flow. All chamber 

lengths show a region of positive axial velocity between the chamber center and chamber 

wall, which reaches a maximum at approximately 8.0Rr . On the opposite side of the 

chamber center, the region of entrainment back into the chamber is apparent. As chamber 

length increases from 2DL , the maximum average positive axial velocity out of the 

chamber as well as the negative axial velocity decrease in magnitude. At chamber lengths 

5.3DL , there is no apparent entrainment back into the chamber, and at a chamber 

length of 5.4DL , the axial velocity profile begins to resemble that of a pipe flow. 

Following this trend, with a sufficiently large chamber length, the axial velocity profile of 

the exiting jet is assumed to be that of an axisymmetric jet issuing from a long pipe. The 

RMS profiles of axial velocity reveal high fluctuations in the region of highest positive 

axial flow, and low fluctuations in the region where fluid is being entrained back into the 

chamber. 

 116   



-1.0 -0.5 0 0.5 1.0
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/R

W
/ 

e, 
w

'/ 
e

 

L/D = 2

 
-1.0 -0.5 0 0.5 1.0

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/R

W
/ 

e, 
w

'/ 
e

 

L/D = 2.5

 
(a) (b) 

-1.0 -0.5 0 0.5 1.0
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/R

W
/ 

e, 
w

'/ 
e

 

L/D = 2.75

 
-1.0 -0.5 0 0.5 1.0

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/R

W
/ 

e, 
w

'/ 
e

 

L/D = 3

 
(c) (d) 

-1.0 -0.5 0 0.5 1.0
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/R

W
/ 

e, 
w

'/ 
e

 

L/D = 3.5

 
-1.0 -0.5 0 0.5 1.0

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r/R

W
/ 

e, 
w

'/ 
e

 

L/D = 4.5

 
(e) (f) 

Figure 4.23 Conditionally averaged axial velocity profiles along y-axis for different chamber lengths. 

Symbols represent the following Reynolds numbers: ☆ - 10,000,  - 21,800,  - 32,300,  - 40,700,  - 

50,700,  - 61,800. Blue points represent average velocity, red represent RMS values.  
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Figure 4.24 Profiles of (a) mean and (b) RMS axial velocity for all chamber lengths at all Reynolds 

numbers, except 10,000.  
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 The effect of Reynolds number on the maximum positive average axial velocity 

out of the chamber for different chamber lengths is shown in Figure 4.25. The maximum 

velocity, , is scaled against bulk inlet velocity, maxW e , and chamber length is scaled 

against chamber diameter. Two trends are apparent in this figure. The first occurs at 

, where maximum axial velocity appears to be inversely proportional to 

chamber length, i.e. 

000,10Re 

  1
max

 DLW e . At all higher Reynolds numbers, all points 

collapse well onto each other, and follow a trend resembling a Gaussian distribution, with 

scaled maximum outflow velocity decreasing with increasing chamber length. For 

chamber lengths 5.3DL , maximum velocity values for both trends begin to converge, 

and at 5L .4D , they are the same.  
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Figure 4.25 Maximum average jet velocity at different chamber lengths and Reynolds numbers 
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4.7.4 Chamber Length and Reynolds Number Effects on Jet Cross-Sectional Area 

 The influence of Reynolds number and chamber length on the area ratio, c , 

defined in Section 4.6.3, is presented in Figure 4.26. The area ratio characterizes the 

relative size of the issuing jet with respect to the chamber exit area: As c  increases, so 

does the cross-sectional area of the chamber occupied by the jet. At a value of 1c , the 

jet occupies the entire chamber exit area and there is no entrainment back into the 

chamber. The figure shows an increase in c  with chamber length, with the area ratios 

reaching unity for all Reynolds numbers when 5.4DL . Two trends are apparent. One 

occurs at , where 000,10Re  c  increases almost linearly over the range 32  DL , 

then reaches its asymptotic value of 1c  at a chamber length beyond 3.5. For all higher 

Reynolds numbers, the area ratios are similar in value, increasing in value more sharply 

in value as chamber length increases up to 5.3DL , after which they converge to unity.  
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Figure 4.26 The effect of chamber length on area ratio in precessing mode at various Reynolds numbers. 

4.8 Conclusions 

 The velocity field in the chamber exit plane of the precessing jet was studied over 

a range of Reynolds numbers and chamber lengths to determine the effect of these two 

parameters on the flow. Instantaneous velocity vector fields reveal the existence of three 

modes. Precessing mode is characterized by a kidney-bean shaped jet which hugs the 

chamber wall, with a pair of dominant, counter-rotating vortices. Axial mode is 

characterized by a round jet whose axis is near to the chamber axis, and no dominant 

vortical structure. A third mode, deemed ‘transitioning mode’, occurs as the jet switches 

between axial and precession mode. It possesses characteristics of these two modes, but 

is clearly neither one nor the other.  

 The probability of precession was found to be dependent on Reynolds number and 

chamber length, DL . The probability increases with Reynolds number for all chamber 

lengths except 1DL , at which there is no precession. The optimum chamber length to 

generate precession has been found to be 75.22  DL , which contradicts the optimal 

chamber length of Newbold (1997), who found it to be 75.2DL . The entrainment 

ratio, which compares the mass flux of fluid being entrained back into the chamber to the 

amount being discharged by the jet, was found to have a strong DL  dependence and a 

weak Reynolds number dependence. There is little variation in ratio between axial and 

precessing mode at a given Reynolds number and chamber length. The largest 

entrainment back into the chamber occurs at 2DL , which is most desirable for burner 

applications.  

 121   



 Conditionally averaged mean axial velocity distributions reveal a smooth, 

crescent shaped jet, whose maximum outflow velocity is near to the chamber wall. The 

RMS distributions of axial velocity show highest velocity fluctuations nearest to the 

region of greatest outflow, which diminish gradually moving away from it in the radial 

direction. At a short chamber length of 1DL , there is no precession at any Reynolds 

number, and the jet issuing from the precession chamber is always in axial mode. At 

intermediate chamber lengths, 32  DL , the size and maximum outflow velocity 

behave differently for low ( 000,10Re  ) and high ( ) Reynolds numbers, 

which implies two different flow regimes for these ranges. For high Reynolds numbers, 

the jet in precessing mode occupies between approximately 50% and 65% of the chamber 

area, increasing with chamber length and showing little Reynolds number dependence. 

This range is 43% to 95% at 

800,21Re 

000,10Re  . For long chamber lengths, 5.45.3  DL  the 

jet occupies almost the entire cross-sectional area of the chamber, resulting in no 

entrainment back into the chamber, and resembles a pipe flow with higher axial velocity 

at one azimuthal position and lower axial velocity opposite to it. 
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CHAPTER 5:  CONCLUSION 

 A parametric study was performed, which examined the effect of chamber length 

and Reynolds number on the stability and behavior of the flow field generated by a 

fluidic precessing jet nozzle. As this flow is driven by an axisymmetric jet upstream of 

the precession chamber, a preliminary study was performed on this fundamental flow. It 

addressed the universality of the self-similar solutions used to model these flows, and 

examined whether initial conditions continue to have an affect far downstream. 

5.1 The Effect of Initial Condition on Self-Similar Behavior in an 

Axisymmetric Jet 

 The preliminary experimental investigation of the effect of initial conditions on 

the downstream behavior of an axisymmetric jet concludes that initial conditions remain 

present far downstream from the source in the self-similar region of the jet. Traditional 

scaling theory dictates that all jets are universal, regardless of their initial condition, and 

therefore are expected to spread and decay at the same rate. This study shows that jets 

issuing from different round nozzles, each with the same mass and momentum fluxes at a 

given Reynolds number, but differing in their velocity profiles at their exits and the 

turbulent structures which they generate, exhibit different spread and decay rates. At 

Reynolds numbers greater than 25,000, the coefficients corresponding to the spread and 

decay rates reach asymptotic values, and therefore it is concluded that the jets are fully 

turbulent above this Reynolds number. However, these asymptotic values are unique to 
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the nozzle and not universal. The orifice nozzle has been shown to spread and decay the 

fastest, while the smooth contraction the slowest. 

5.2 The Effect of Chamber Length and Reynolds Number Jet Precession 

 Study of the three-component flow field beyond the exit plane of the precession 

nozzle confirms the existence of precessing and axial flow modes. The former is 

characterized by a kidney-bean shaped jet exiting the precession chamber and a pair of 

dominant counter-rotating vortices, while axial mode resembles closely an axisymmetric 

jet. A third, transitioning mode, was also observed, which exhibited characteristics of 

both precessing and axial modes. 

 The chamber lengths which produce the highest probability of precession have 

been found to be in the range 75.22  DL , with the probability increasing with 

Reynolds number. There was no precession at any Reynolds number at 1DL . The 

highest entrainment of fluid back into the chamber has been found to be at a chamber 

length of 2DL . Entrainment was found to be independent of Reynolds number above 

, and flow mode.  800,21Re 

 Conditionally averaged mean and RMS axial velocity distributions were obtained 

for each Reynolds number and chamber length combination studied. The size of the jet as 

well as the maximum velocity within it were found to have a strong dependence on 

chamber length and follow two trends at low ( )000,10Re   and high ( ) 

Reynolds numbers. It is therefore concluded that there exist two flow regimes, and the 

parameters examined in this thesis behave differently at high and low Reynolds numbers. 

800,21Re 
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 At long chamber lengths ( 5.3DL ), the issuing jet occupies more than 90% of 

the chamber exit area and has little or no entrainment of fluid back into the chamber. At 

this chamber length, the jet is precessing in the sense that is possesses a crescent-shaped 

region of high flow velocity which is close to the chamber wall; however, there is no 

entrainment back into the chamber.  

5.3 Future Work 

5.3.1 Axisymmetric Jet 

 In industrial applications, mixing and precession occur in the near-field of the 

nozzle, and therefore the flow phenomena occurring in this region should be further 

investigated. A more detailed study of the transition region for the long pipe, as well as 

the other nozzle configurations, is recommended, due to the presence of distinct flow 

instabilities that were found in this study.  

5.3.2 Precessing Jet 

The flow field measurements of the precessing jet were only along a two- 

dimensional plane at the chamber exit. This flow is highly three-dimensional, so a study 

of the three-component velocity field over a three-dimensional volume is recommended, 

using a measurement technique such as tomographic particle image velocimetry. This 

study would also reveal the transition from precessing to axial modes in the downstream 

region of the nozzle reported by Wong et al. (2008), and how the shape of the issuing jet 

changes in the near-field region.  
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The effect of chamber length on jet precession has been studied using a single 

configuration. As the type of nozzle (smooth contraction, orifice, etc.), as well as the 

presence of a lip and center body in the precession chamber, has been shown to affect the 

stability of precession (Wong et al., 2004), the effect of chamber length on different 

configurations should be examined.  
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APPENDIX A: DERIVATION OF THE SELF-SIMILAR 

SOLUTIONS FOR THE AXISYMMETRIC JET 

A-1 Simplified Equations of Motion 

 The derivation of the self-similar solutions for the round jet begins with the 

Reynolds-averaged Navier-Stokes equations in a cylindrical coordinate system, shown 

for the three components in equations (A.1)-(A.3). With the assumption of axisymmetry, 

and therefore no azimuthal variation in the velocity field, all azimuthal derivates are null 

( 0  ). Here, x, r, and   are positional coordinates in the axial, radial, and azimuthal 

directions, respectively, and , , and  are their respective averaged velocity 

components. The corresponding fluctuating velocity components are , , and 

xU rU U

xu ru u . 

The continuity equation in this coordinate system is given in equation (A.4). Pressure and 

viscosity are represented with p  and  , respectively. 
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 Rajaratnam (1976) simplifies the above equations of motion with the following 

assumptions: 

1. There is no swirl in the flow; therefore, 0U . 

2. Turbulent shear stresses are much larger than their corresponding viscous 

stresses, resulting in the removal of viscous terms. 

3. Axial velocity is much larger than radial velocity, resulting in larger 

velocity gradients in the radial direction than in the axial one. 

4. Turbulent normal stresses are approximately equal in the radial and 

azimuthal directions, 22
uur  . 

5. The pressure gradient in the axial direction is negligible, 0 xp . 

 These assumptions yield equations (A.5) and (A.6), which are the simplified 

equations for the round jet. Since the three-dimensional problem has been reduced to two 

dimensions, let U and V represent the axial and radial average velocity components, and 

 and v  their corresponding fluctuating components.  u 
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 Equation (A.6) becomes equation (A.7), which is the momentum equation for the 

flow, by multiplying by r  and integrating. Solving the terms of this equation yields 

equation (A.11), which dictates that there is no variation in momentum in the axial 

direction, and therefore momentum is conserved. 
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 Integrating equation (A.11) with respect to x results in equation (A.12), which 

defines the momentum flux of the jet, . This quantity is a constant, and represents the 

rate at which momentum is added. 

0M





0

2
0 2 drρrUπM  (A.12)

A-2 Self-Similarity Analysis 

  As  is a function of two independent variables, a self-similar solution 

is sought, as per Section 

 rxUU , 

1.3.1. Here, the velocity along the jet’s centerline,  is used  xUcl
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to scale U, while the radial position is scaled with  x  , resulting in the 

dimensionless parameter  , defined in equation (A.13). Length scale   is for now 

arbitrary, provided that it yields a self-similar solution. The axial velocity now holds the 

form of equation (A.14), where  ff   accounts for any radial variation in axial 

velocity. The power-law relationship of the scaling variables  and clU   to the 

independent variable, x, is shown in equations (A.15) and (A.16). Exponents p and q are 

to be determined. 

 x

r


 (A.13) 

   f
xU

rxU

cl


)(

,
 (A.14)

p
cl xU ~  (A.15)

qx~  (A.16)

 Substituting equations (A.13) and (A.14) into (A.11) results in: 

02
0

222 










dηfδρU
dx

d
π cl   (A.17)

 The value of the integral is constant, and therefore: 

022 ~ xUcl  (A.18)

0 qp  (A.19)

 One more equation is necessary to evaluate p and q. Consider equation (A.6) and 

define  rx,    with equation (A.20).   represents the Reynolds shear stress in the 

axial-radial direction, and is scaled in a similar manner to  yxU ,  in equation (A.14), 

resulting in equation (A.21). Similarly to  f ,  gg   accounts for any variation in   

 137   



in the radial direction.  is chosen as the scaling parameter for 2
clU   as it carries the 

same dimensions, ensuring that g is dimensionless. 

  vurx   ,  (A.20)
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
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g
Ucl
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 The terms of equation (A.5) are then replaced with their self-similar 

representations ( , fclUU  r ) and evaluated. Derivates of functions of only one 

variable are be expressed in prime notation, i.e. fddf  , clcl UdxdU  , etc. 
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 In order to determine rUV  , the value of V is determined from equation (A.6), 

and solved in equations (A.25) - (A.27). 
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 For simplicity, the integrals in equation (A.27) are replaced with  1F  and 

 2F , which are defined in equations (A.28) and (A.29). Equation (A.27) then becomes 

(A.30). 
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 The right hand term in equation (A.5) is determined in equation (A.32).  
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 Once again, to simplify the appearance of equations,  G  is defined in equation 

(A.33) and substituted into (A.29) to give equation (A.34). 
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 Substituting equations (A.23), (A.31), and (A.34) into (A.5) gives: 
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 Since  GG  , all terms on the right hand of side of equation must also be 

functions of  .  2F2 ff   and  1Ffff   are already only functions of  , and so 

equations (A.36) and (A.37) must hold true. 

0~ x
U

U

cl

cl
 (A.36)

0~ x   (A.37)

 Considering the exponents in equation (A.36) gives equation (A.38), which, when 

evaluated, results in . Substituting this value into equation 1q (A.19) gives 1p . 

  01  ppq  (A.38)

 Therefore, for an axisymmetric jet, centerline velocity  and length scale clU   

have the dependencies of x shown in equations (A.39) and (A.40). 

xUcl 1~  (A.39)

x~  (A.40)

A-3 Dimensional Analysis 

 The self-similar equations of the round jet can be derived by applying the 

Buckingham-Pi theorem (Panton, 2005) to the system. Here, the two length scales  

and 

clU

  are scaled with other known quantities of the system. These are the momentum 

flux of the jet, , which is constant and is defined in equation 0M (A.12), the density of the 

fluid,  , and the axial distance from the point source of momentum, x . For high 
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Reynolds numbers, greater than a few thousand, viscous effects may be neglected 

(Rajaratnam, 1976). 

 Solutions are sought for length scales  and clU   of the form of equations (A.41) 

and (A.42), respectively.  

 xMfUcl ,,01   (A.41)

 xMf ,,02    (A.42)

 The dimensional matrix of the system is shown in Table A-1. Here, M, L, and T 

are the primary dimensions of mass, length, and time, respectively. 

 

Table A-1 Dimensional matrix for an axisymmetric jet 

 M0 ρ x Ucl δ 

M 1 1 0 0 0 

L 1 -3 1 1 1 

T -2 0 0 -1 0 

 

 The dimensional analysis is performed below. See Panton (2005) for a detailed 

overview of this method.  
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 Solving the system of equations in (A.45) produces 2
1 , 2

1 , and 1 . 

Substituting these values into equation (A.44) gives the first  -group, as shown in 

equation (A.46).  is a constant which can be determined experimentally, and 

represents the decay rate of the jet. 

1K
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1 K
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

 (A.46)

 Assuming uniform axial velocity throughout the nozzle exit plane, momentum 

flux, can be expressed in terms of the centerline velocity at the jet nozzle, , as in 

equation 

0U

(A.47). Here, d is the diameter of the nozzle.  

2
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0 4
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 Substituting equation (A.47) into (A.46) and rearranging yields equation (A.48), 

which relates centerline velocity to downstream distance from a point source of 

momentum. Note that 4  is absorbed into . 1K

d

x

KU

U

cl 1

0 1
  (A.48)

 The length scale   is has its functional dependency determined in a similar 

manner. 
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 Solving the system of equations in (A.45) gives 0 , 0 , and 1 , 

yielding the second  -group, shown in equation (A.52).  is another constant, which 

is also determined experimentally, and represents the spreading rate of the jet. 

Rearranging produces equation 

2K

(A.53). 

x
K


 2  (A.52)

2K
x



 (A.53)

 As the distance from the idealized point source of momentum (i.e. virtual origin) 

to the nozzle is not necessarily zero, equations (A.54) and (A.55) may be expressed in 

terms of the axial distance from the nozzle. Let x  represent this distance. The nozzle and 

point source of momentum are separated by xxxo  , which is the location of the 

virtual origin of the jet relative to the nozzle. This value can be determined 

experimentally. The axial distance from the point source of momentum can then be 

expressed in terms of the distance from the nozzle and the virtual origin, , as shown in 

equation 

ox

(A.56). Substituting (A.56) into (A.48) and (A.53) yields equations (A.57) and 

(A.58). 

0xxx   (A.56)
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 A final simplification to the equations is made. The dimensionless axial distance, 

 , is defined in equation (A.59). Substituting it into equations (A.57) and (A.58) results 

in equations (A.60) and (A.61).  

d

xx o
  (A.59)


1

0 1

KU

U

cl
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d
  (A.61)
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APPENDIX B: DERIVATION OF THE SELF-SIMILAR 

EQUATIONS - THE APPROACH OF GEORGE (1989) 

 This appendix contains an alternate derivation of the self-similarity solution for an 

axisymmetric jet, as presented by George (1989). The modified derivation begins with 

the simplified equations of motion for the round jet, shown in equations (B.1) and (B.2) 

and derived in Appendix A-1. The momentum integral is shown in equation (B.3), and is 

identical to (A.12). 

 vur
rrr

U
V

x

U
U 


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

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 1

 (B.1)
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



0

2
0 2 rdrUM   (B.3)

 In the same manner as the traditional approach to a self-similar solution for the jet 

derived in Appendix A, self-similar solutions are sought for  rxU ,  and   vurx   , . 

Differing slightly from the traditional approach, let the length scales for  rxU ,  and 

 rx,   be  and , respectively, which for the time being remain arbitrary. The 

self-similar equations are then 

 xUs  xRs

(B.4) and (B.5). Length scale   is defined in equation 

(B.6).  
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   (B.6)

 In a similar manner to Appendix A-2, equations (B.2)-(B.6) are substituted into 

(B.1) and solved, yielding: 
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 Rearranging and multiplying by 2
clU  gives equation (B.8)  
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 The momentum integral is obtained similarly, by substituting equations (B.4) and 

(B.6) into (B.3). 

  



0

222
0 2  dfUM s
  (B.9)

 Equations (B.8) and (B.9) are the same as those derived in Appendix A-2; 

however, their functional dependencies have not yet been assumed and must still be 

determined. Owing to the momentum flux being constant, 1sU . Let then  be 

defined as in equation 

sU

(B.10). Here, B  is an arbitrary parameter.  


0MB

Us


  (B.10)

 Substituting equation (B.10) into (B.8) and (B.9) gives equations (B.11) and 

(B.12). 
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 Considering that the bracketed terms in equation (B.11) are functions of only  , 

then equation (B.13) must be satisfied for a self-similar solution. 

2
~

s

s

U

R   (B.13)

 If initial conditions do affect the self-similar solutions, then their influence must 

be through  , , and . George (1989) avoids a point-source of momentum solution, 

and instead considers a point-source of mass, , as well as a point-source of 

momentum, . Functional dependencies of 

sR

0M

sU

0m

 , , and  are sought which are 

functions of axial distance, x, fluid density, 

sR sU

 , as well as  and , as shown in 

equations 

0m 0M

(B.14)-(B.16). 

  00 ,,, MmxfU s
  (B.14)

 00 ,,, MmxfRs
  (B.15)

 00 ,,, Mmxf    (B.16)

 A new length scale can be defined, as per equation (B.17). No longer is x the only 

length scale.  

21
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0
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m
L
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
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 On dimensional grounds, solutions which reduce to the equivalent point-source of 

momentum solutions as the mass flux approaches zero can be written as equations 

(B.18)-(B.20).  LxFF 11  ,  LxFF 22  , and  LxFF 33   are arbitrary functions. 
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 Allowing the initial momentum flux to approach zero, i.e.  resulting in 00 m

Lx , as would be the case when considering equations (B.18)-(B.20) as a point-

source of momentum, they take the form of equations (B.21)-(B.23).  
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 George (1989) states that dxdA   must be a universal constant (which was 

previously chosen as unity), and if this is correct, then the substitution of equations 

(B.18)-(B.20) into the modified momentum equations (B.11) and (B.12) should yield 

differential forms of the x -dependent coefficients. The solutions to these must asymptote 

to equations (B.21)-(B.23), regardless of initial condition. 
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 Differentiating equation (B.20) and substituting it and equations (B.18) and 

(B.19) into (B.11) yields the condition for self-similarity, given in equation (B.24). This 

equation is not only satisfied by the limiting case of the point-source of momentum 

approach, but instead by all solutions satisfying equation (B.25). 
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 In equation (B.25), the constants of proportionality, as well as exponent , are 

arbitrary, resulting in a myriad of self-similar solutions. George (1989) concludes that for 

the case of 

k

0k , which corresponds to the x -dependence of the point-source of 

momentum solution of Appendix A, there are many source-dependant possibilities for the 

constants of proportionality, and therefore different jets can spread and decay at different 

rates.  
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APPENDIX C: SCHEMATIC DRAWINGS OF THE NOZZLES AND 

CHAMBERS USED 

 This appendix presents the schematic drawings of the supply pipe, nozzles and 

precession chamber used in this thesis.  
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Figure C.1 Schematic drawing of the supply pipe connecting the nozzle and plenum. 
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Figure C.2 Schematic drawing of long pipe nozzle. 
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Figure C.3 Schematic drawing of orifice nozzle. 
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Figure C.4 Schematic drawing of smooth contraction nozzle. 

 154   



 
Figure C.5 Schematic drawing of the precession chamber. 
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APPENDIX D: CENTERLINE VELOCITY DECAY AND HALF 

SPREAD PROFILES 

 Dimensionless centerline velocity decay profiles determined for the jets generated 

with the long pipe, orifice, and smooth contraction nozzles are presented in this appendix. 

Figure D.1, Figure D.2, and Figure D.3 show the centerline velocity decay profiles for the 

long pipe, orifice, and smooth contraction nozzles, respectively, at all Reynolds numbers 

studied. Figure D.4, Figure D.5, and Figure D.6 show the jet half-spread profiles for these 

nozzles in that same order.  
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(c) 

Figure D.1 Nondimensionalized centerline velocity decay profiles for the long pipe nozzle at Reynolds 

numbers of: (a) 5,800, (b) 10,000, (c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(f) 

Figure D.1 Nondimensionalized centerline velocity decay profiles for the long pipe nozzle at Reynolds 

numbers of: (a) 5,800, (b) 10,000, (c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(c) 

Figure D.2 Nondimensionalized centerline velocity decay profiles for the orifice nozzle at Reynolds 

numbers of: (a) 5,800, (b) 10,000, (c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(f) 

Figure D.2 Nondimensionalized centerline velocity decay profiles for the orifice nozzle at Reynolds 

numbers of: (a) 5,800, (b) 10,000, (c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(c) 

Figure D.3 Nondimensionalized centerline velocity decay profiles for the smooth contraction nozzle at 

Reynolds numbers of: (a) 5,800, (b) 10,000, (c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(f) 

Figure D.3 Nondimensionalized centerline velocity decay profiles for the smooth contraction nozzle at 

Reynolds numbers of: (a) 5,800, (b) 10,000, (c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(c) 

Figure D.4 Half-width profiles for the long pipe nozzle at Reynolds numbers of: (a) 5,800, (b) 10,000, 

(c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(f) 

Figure D.4 Half-width profiles for the long pipe nozzle at Reynolds numbers of: (a) 5,800, (b) 10,000, 

(c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(c) 

Figure D.5 Half-width profiles for the orifice nozzle at Reynolds numbers of: (a) 5,800, (b) 10,000, 

(c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(f) 

Figure D.5 Half-width profiles for the orifice nozzle at Reynolds numbers of: (a) 5,800, (b) 10,000, 

(c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(c) 

Figure D.6 Half-width profiles for the smooth contraction nozzle at Reynolds numbers of: (a) 5,800, 

(b) 10,000, (c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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(f) 

Figure D.6 Half-width profiles for the smooth contraction nozzle at Reynolds numbers of: (a) 5,800, 

(b) 10,000, (c) 21,800, (d) 32,400, (e) 50,700, (f) 61,900. 
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