
Improving Table Reasoning through Table Decomposition and
Normalization

by

Md Mahadi Hasan Nahid

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Department of Computing Science
University of Alberta

© Md Mahadi Hasan Nahid, 2024

Abstract

Table reasoning is a challenging task that requires understanding both natural lan-

guage questions and structured tabular data. While Large Language Models (LLMs)

have shown impressive capabilities in natural language understanding and generation,

they often struggle with large tables due to their limited input length. Additionally,

LLMs face challenges in tasks involving tabular data—especially those requiring sym-

bolic reasoning—due to the structural variance and inconsistency in table cell values

commonly found in web tables. In this thesis, we address these challenges with two

novel approaches. First, we propose TabSQLify, a method that leverages Text-to-

SQL generation to decompose tables into smaller, relevant sub-tables containing only

essential information. This approach significantly reduces the input context length,

making the task more scalable and efficient for large-scale table reasoning applications.

Our evaluation on challenging datasets, including WikiTableQuestion and TabFact,

demonstrates that TabSQLify achieves superior performance compared to prevailing

methods and shows notable accuracy improvements, surpassing LLM-based baseline

models.

In the second part of our study, we focus on enhancing the symbolic reasoning

performance of LLMs when dealing with tabular data, particularly web tables with

structural variance and inconsistency in cell values. We introduce NormTab, a frame-

work for normalizing web tables as a one-time preprocessing step. This normalization

improves consistency and structure, thereby supporting symbolic reasoning on tabu-

lar data. Our experimental evaluation on challenging datasets shows that NormTab

significantly enhances symbolic reasoning performance, highlighting the importance

ii

and effectiveness of table normalization in LLM-based reasoning tasks.

iii

Preface

The main structure of this thesis is based on papers that are either published or under

submission. Specifically, Chapter 3 is based on our paper published at NAACL 2024,

while Chapter 4 is derived from our paper submitted to the EMNLP 2024 conference.

• Md Mahadi Hasan Nahid and Davood Rafiei. 2024. TabSQLify: Enhancing

Reasoning Capabilities of LLMs Through Table Decomposition. In Proceedings

of the 2024 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (Volume 1: Long

Papers), pages 5725–5737, Mexico City, Mexico. Association for Computational

Linguistics. (published) [1]

• Md Mahadi Hasan Nahid and Davood Rafiei. 2024. NormTab: Improving

Symbolic Reasoning in LLMs Through Tabular Data Normalization. arXiv

preprint arXiv:2406.17961. (submittet) [2]

iv

To my parents, with heartfelt gratitude for their endless support.

v

Acknowledgements

I extend my heartfelt gratitude to my supervisor, Davood Rafiei, for his unwavering

guidance and exceptional support throughout my master’s thesis journey. His in-

sights, patience, and encouragement significantly shaped the direction of my research.

I am also profoundly thankful to Dr. Greg Kondrak and Dr. Mario Nascimento, es-

teemed members of my thesis committee, for their valuable feedback and comments

that enhanced the quality of my work.

I appreciate the esteemed members of the Database Research Group, whose knowl-

edge sharing sessions broadened my understanding and focused my research. These

interactions were crucial in guiding and strengthening my research pursuits.

I would like to extend my heartfelt gratitude to my parents, whose unwavering

support has been the cornerstone of my academic journey. Their love and guidance

have been instrumental in achieving this milestone. I am also deeply thankful to my

beloved wife, Nishat Rezoana, for her constant support, patience, and understanding

throughout the challenging process of completing this thesis. Her love, encourage-

ment, and steadfast belief in me have been crucial to my success in this research

journey.

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Objectives . 6
1.3 Thesis Outline . 7

2 Related Work 8
2.1 Semantic Parsing: Text to Data . 8
2.2 Table Reasoning: Data to Text . 9
2.3 Data wrangling and imputation . 12

3 Table Decomposition 13
3.1 Introduction . 13
3.2 Methods and Procedure . 16

3.2.1 Table Preprocessing . 16
3.2.2 Subtable Selection . 17
3.2.3 Reasoning and Answer Generation 19

3.3 Experimental Setup . 20
3.3.1 Dataset . 20
3.3.2 Implementation Details . 21
3.3.3 Baselines . 22
3.3.4 Evaluation metrics . 22

3.4 Results and Discussion . 23
3.4.1 Model accuracy . 23
3.4.2 Scalability and robustness . 28
3.4.3 Table size reduction . 30
3.4.4 Error Analysis . 31
3.4.5 Model Comparison . 33

3.5 Conclusions . 35

4 Tabular Data Normalization 36
4.1 Introduction . 37
4.2 Methods and Procedure . 39

4.2.1 Normalization Operations . 39
4.2.2 Normalization Approach: NormTab 42

4.3 Experimental Setup . 44
4.3.1 Dataset . 44
4.3.2 Baselines and Evaluation Metrics 44
4.3.3 Implementation . 45

4.4 Results and Discussion . 45
4.4.1 Results on Downstream Tasks 46
4.4.2 NormTab Evaluation . 47
4.4.3 Analysis . 48

4.5 Conclusions . 52

vii

5 Conclusions & Future Work 53
5.1 Conclusions . 53
5.2 Future Work . 54

Bibliography 56

Appendix A: NormTab Supplementary Contents 63
A.1 NormTab Output Example . 63
A.2 NormTab Prompt Templates . 67

viii

List of Tables

3.1 Our hyper-parameter setting of LLM for selecting required column/row 21
3.2 Our hyper-parameters setting of LLM for the answer generation . . . 21
3.3 Accuracy compared to the baselines on WikiTQ with the official eval-

uator. 24
3.4 Experimental results on TabFact. Here, “Human” indicates the human

performance [12] . 25
3.5 Experimental results on FeTaQA. 26
3.6 Human evaluation results on FeTaQA. 26
3.7 RAGAS evaluation results on FeTaQA. 27
3.8 Experimental results on WikiSQL. RCI is a fine tuning based model,

and its results may not be directly comparable due to the model’s high
reliance on the training set. 27

3.9 The distribution of samples across various classes as a function of the
percentage cut-off of table tokens. 29

3.10 Performance across different classes based on the percentage cut-off of
table tokens in the WikiTQ dataset. 29

3.11 Performance across different classes based on the percentage cut-off of
table tokens in the TabFact dataset 30

3.12 Performance across different classes based on the percentage cut-off of
table tokens in the FeTaQA dataset 31

3.13 Experimental results on Large (¿4000 tokens) tables from WikiTQ. As
the input tables grow larger, we observe a decline in performance for
strong baseline models. 32

3.14 Error types of 100 samples fromWikiTQ and TabFact of TabSQLifycol+row 32
3.15 Comparison with the other LLM based models. TabSQLify is much

simpler than the other approach. 34

4.1 The hyper-parameters we set in NormTab 45
4.2 Performance comparison of NormTab on WikiTQ dataset. The results

clearly demonstrate that NormTab significantly surpasses other models
in accuracy when employing symbolic reasoning. 47

4.3 Performance comparison of NormTab on TabFact dataset with other
models. 48

4.4 Accuracy of NormTab in various types of normalization. 49
4.5 Categories of tables on WikiTQ test dataset. 50
4.6 Result breakdown on WikiTQ dataset. 50
4.7 Efficiency of NormTab-Targeted. 51

ix

List of Figures

1.1 An example of table-based question answering. 4
1.2 An example of a Table QA task, with the original unnormalized web

table shown on the left and its normalized version on the right. Re-
trieve answers using a symbolic approach from the unnormalized table
poses difficulties due to inconsistent formatting of date, result and
attendance columns. Also, direct querying with LLMs often fails for
questions involving numerical operations. Normalization enables effec-
tive Text-to-SQL conversion, as shown by the normalized table on the
right. 5

3.1 Overview of TabSQLify, consisting of two steps: (1) generating SQL
queries from natural language questions or statements and executing
the SQL queries on the original tables to obtain sub-tables containing
only essential information, and (2) using LLMs with the sub-table and
the question or claim to generate the answer. 14

3.2 Prompt used for the subtable selection step of TabSQLifycol+row. . . . 18
3.3 Prompts used for the answer generation step. 19
3.4 Reduction in table size using our row-col filtering across four datasets,

showing a significant reduction of the table size. 33

4.1 Overview of NormTab. The methodology encompasses two distinct
strategies: (a) Entire Table Normalization (NormTabBasic): we
provide the LLM with the entire web table along with specific instruc-
tions for cleaning and normalizing. The LLM reads the table and
the instructions, then returns a cleaned and normalized version of the
table. (b) Targeted Normalization (NormTabTargeted): In this
approach the LLM identifies and targets only the portions of the web
table requiring normalization based on the table metadata and a few
sample rows. The original table is split into two subtables: one for
normalization and one already clean. The LLM processes the subtable
that requires normalization then returned a cleaned version. Finally,
the normalized subtable is merged with the clean portion, resulting in
a fully cleaned and normalized table. 40

A.1 Column Selection prompt. 67
A.2 Summarized last row detection and transpose detection prompt. . . . 68
A.3 NormTab Instruction prompt. 69
A.4 Text-to-SQL prompt template for the Table QA Task on the WikiTQ

dataset. 70
A.5 Text-to-SQL prompt template for the Table-based Fact Verification

Task on the TabFact dataset. 71

x

Chapter 1

Introduction

Tables are universally recognized as foundational structures for organizing and pre-

senting structured information across a wide array of domains. They play a pivotal

role in diverse fields such as databases, spreadsheets, open data repositories, web

pages, and document collections. In databases, tables serve as the fundamental units

for storing and managing structured data, enabling efficient querying, updating, and

retrieval of information. Spreadsheets utilize tables to organize data into rows and

columns, facilitating tasks ranging from financial analysis to project management.

Moreover, tables are integral components of web pages and document collections,

where they encapsulate information ranging from product specifications and pricing

details to scientific research findings and historical records. This structured presen-

tation enables users to quickly locate and extract pertinent information, enhancing

usability and knowledge dissemination across digital platforms.

Overall, tables are indispensable tools for structuring and presenting information

across various disciplines, ensuring data integrity, accessibility, and usability in both

digital and physical formats. Their ubiquity underscores their critical role in modern

information management and analysis.

1

1.1 Motivation

Table reasoning is the process of understanding and extracting meaningful informa-

tion from tabular data to answer questions or perform specific tasks. It involves

several key components, including data parsing, which focuses on extracting table

elements like headers, rows, and cells; schema mapping, which helps understand the

relationships between columns and rows; contextual understanding, where data is

interpreted within the context of a specific query; and inference and computation,

which involve making logical inferences and performing necessary calculations. The

importance of table reasoning lies in its ability to handle structured information,

commonly found in databases, spreadsheets, and web pages. This format is easy for

humans to interpret, making it a valuable tool for extracting important insights from

structured data. Moreover, table reasoning helps automate data processing and anal-

ysis, significantly reducing manual effort and saving time. Key downstream tasks that

benefit from table reasoning include TableQA, which focuses on table-based question

answering; Table-FV, which deals with table-based fact verification; and table sum-

marization, which involves condensing information from tables into a more digestible

format.

In table reasoning tasks, both textual reasoning and symbolic reasoning play crucial

roles in extracting and interpreting information. Textual reasoning involves under-

standing and processing the natural language content within a table, such as inter-

preting the meanings of words, phrases, and sentences to answer questions or perform

specific tasks. It leverages the linguistic context to make sense of the data presented

in a tabular format. On the other hand, symbolic reasoning focuses on the logical and

mathematical operations that can be performed on the data. This includes tasks like

mapping relationships between columns and rows, executing SQL queries, perform-

ing calculations, and making logical inferences based on the structured nature of the

data. Together, these reasoning approaches enable comprehensive table reasoning,

2

allowing models to handle both the semantic nuances of textual data and the formal,

rule-based operations required for accurate data analysis. Textual reasoning focuses

on understanding the semantic information in tables to directly generate answers, but

it becomes challenging when dealing with large tables. On the other hand, symbolic

reasoning, aided by programs like SQL or Python, excels in numerical operations and

is scalable for large tables. However, it can be prone to errors when real-world ta-

bles are not clean. While textual reasoning directly processes the table and question

to provide an answer, symbolic reasoning involves generating and executing code to

derive the final response.

Developing natural language interfaces for tabular data poses a significant chal-

lenge, primarily in terms of effectively interpreting the semantics of table cells and

understanding the relationships between cell values in response to a user query. This

challenge is accentuated when tables are enveloped in text, such as titles, captions,

and contextual text within a document. In these instances, the scope of reasoning

expands beyond the confines of table cells to incorporate the surrounding natural

language text. This reasoning is essential for many downstream tasks such as table-

based fact verification and table-based question answering (TableQA). As depicted in

Figure 1.1, table-based reasoning is intricate, demanding sophisticated textual, nu-

merical, and logical reasoning across both unstructured text and (semi-)structured

tables.

Many tables within documents and web pages are designed for direct human

consumption and often lack the strict formatting that is expected in relational ta-

bles. This discrepancy poses significant challenges when querying them using lan-

guages such as Structured Query Language (SQL), integrating them with relational

databases, and processing them within applications.

Large Language Models (LLMs) [3] have emerged as powerful tools for semantic

parsing both textual and tabular data and performing complex tasks such as code

generation. Trained on vast amount of Internet data, including both text and tables,

3

Figure 1.1: An example of table-based question answering.

and employing techniques such as Chain of Thought (CoT) prompting [4] and self-

consistency [5], these models outperform many traditional models on various table

reasoning tasks [6–9].

One of the key challenges in tabular data understanding tasks is handling large ta-

bles. While LLMs excel at understanding textual information efficiently, they operate

within a limited token boundary. A significant challenge arises when utilizing LLMs

for table reasoning tasks: if the LLM’s token limit is exceeded, the model cannot

effectively reason over large tables and may truncate the input, leading to incorrect

results [10]. Conversely, if LLMs support a larger context window, there is a risk of

hallucination where the model generates incorrect reasoning and outputs inaccurate

results [10–12]. This underscores the delicate balance required in leveraging LLMs

for reasoning tasks involving large, complex datasets.

At the same time, their performance in tasks involving tabular data, particularly

those requiring symbolic reasoning (i.e. applying Structured Query Language (SQL)

or python program), is often hindered by the structural variability and inconsistencies

4

row
number

week date opponent result
type

result
score

attendance

0 1 1981-09-06 at los angeles rams w 27–20 63198

1 2 1981-09-13 at cleveland browns w 9–3 79483

--- --- --- --- --- --- ---

4 5 1981-10-04 cincinnati bengals w 17-10 44350

5 6 1981-10-11 seattle seahawks w 35-17 42671

6 7 1981-10-18 at new england patriots l 38-10 60474

7 8 1981-10-26 at pittsburgh steelers l 26-13 52732

--- --- --- --- --- --- ---

15 16 1981-12-20 pittsburgh steelers w 21–20 41056

Q: what is the total attendance for October?

SQL: select sum(attendance) from T where strftime('%m', date) = '10'

Answer: 200227

Q: how many times did the oilers have consecutive wins?

SQL: select count(*) from T where result_type = 'w' and row_number in (select row_number + 1 from T

where result_type = 'w')

Answer: 2

row
number

week date opponent result attendance

0 1 september 6, 1981 at los angeles rams w 27–20 63,198

1 2 september 13, 1981 at cleveland browns w 9–3 79,483

--- --- --- --- --- ---

4 5 october 4, 1981 cincinnati bengals w 17-10 44,350

5 6 october 11, 1981 seattle seahawks w 35-17 42,671

6 7 october 18, 1981 at new england patriots l 38-10 60,474

7 8 october 26, 1981 at pittsburgh steelers l 26-13 52,732

--- --- --- --- --- ---

15 16 december 20, 1981 pittsburgh steelers w 21–20 41,056

Q: what is the total attendance for october?
LLM Response: The total attendance for october is 147,497.

Q: how many times did the oilers have consecutive wins?
LLM Response: The oilers had consecutive wins twice during the 1981 season.

Q: what is the total attendance for october?

SQL: select sum(attendance) from T where date like '%october%’

Answer: 198

Q: how many times did the oilers have consecutive wins?

SQL: select count(*) from T where result = 'w' and row_number in (select row_number + 1 from T where result = 'w')

Answer: 0

Normalized Table
Title: 1981 Houston Oilers season

Original Unnormalized Table
Title: 1981 Houston Oilers season

Figure 1.2: An example of a Table QA task, with the original unnormalized web table
shown on the left and its normalized version on the right. Retrieve answers using a
symbolic approach from the unnormalized table poses difficulties due to inconsistent
formatting of date, result and attendance columns. Also, direct querying with
LLMs often fails for questions involving numerical operations. Normalization enables
effective Text-to-SQL conversion, as shown by the normalized table on the right.

commonly found in web tables. Symbolic reasoning over tables necessitates a clear

parsing of the table structure and values, and may involve constraining rows and

columns, which can be challenging when dealing with unstructured or noisy web

tables [13–16].

Consider the table QA task shown in Figure 1.2. Retrieving answers from the

table on the left using a symbolic approach such as SQL is challenging due to the

irregular structure of the data and the limitations of SQL. While an LLM may handle

simple look-up questions, it struggles with tasks requiring complex aggregation and

arithmetic operations. However, the normalized version of the same table, shown

on the right, can be easily analyzed, allowing Text-to-SQL approaches to effectively

obtain the answers to questions.

5

1.2 Thesis Objectives

Recent studies highlight the impressive capability of LLMs in reasoning over both

text and tabular data. However, these works typically utilize the full table as context

for reasoning [10–12, 15], limiting their ability to large tables. In particular, LLMs

operate under a maximum token limit, and when processing a large table, there is

a risk of potential truncation of the input or hallucination in the output [10, 11].

This limitation poses difficulties in handling large tables, making it impractical to

encompass the entire table within the maximum token boundary of a prompt. Chen

et al. (2023) [10] highlights that LLMs struggle to generalize when confronted with

“large” tables containing 30 or more rows, leading to a decline in accuracy as the

table size increases. While there have been works to decompose both questions and

tables using LLMs [12], this line of work still requires providing the full table to the

LLM and cannot scale to large tables. The question studied in the first part of this

thesis is if the size of a table can be reduced before passing it to the language model

without impacting its performance.

Existing models for table reasoning typically rely on a multi-step framework, where

an LLM performs a sequence of actions such as adding columns before additional

scripts are invoked to process data, retrieve cell values, or compute answers to ques-

tions [16–18]. These models are often dependent on question and table structure

and do not address the root cause of table irregularity, making them less scalable.

However, SQL is a powerful and proven tool for analyzing and querying large tables,

unaffected by table size. SQL can only be applied effectively when table data are

in a regular, normalized form (e.g., a relational database table). When attempting

to apply symbolic reasoning, such as SQL operations, to irregular and unnormalized

web tables, constructing appropriate conditions becomes challenging.

In the second part of the thesis, we investigate how we can leverage LLMs’ textual

understanding to effectively clean and normalize web tables. We explore how web

6

table normalization can enhance table reasoning tasks, particularly within the context

of LLM-based symbolic reasoning. Our study focuses on table normalization as a

stand-alone, one-time preprocessing step using LLMs to support symbolic reasoning

on tabular data.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 discusses the related

work. Chapter 3 details our method and experiments utilizing the Text-to-SQL ap-

proach to decompose tables and enhance table reasoning. Chapter 4 presents our

method and evaluation of the tabular data normalization approach that enhances

symbolic reasoning on tabular data. Chapter 5 concludes the thesis and proposes

future research directions.

7

Chapter 2

Related Work

Our work is closely related to the literature on semantic parsing of questions and table

schema (text-to-data), as well as reasoning applied to semi-structured tables (data-

to-text). Additionally, it intersects with research on data wrangling and imputation.

2.1 Semantic Parsing: Text to Data

Table-based reasoning conventionally involves semantic parsing of questions and sub-

sequent execution of the generated queries on tables. Traditional models in this

domain were often domain-specific, supporting controlled natural language [19, 20],

and posed challenges in adaptation to new domains or datasets. However, recent mod-

els leveraging machine learning techniques or large language models are trained on

extensive datasets and query repositories, supporting a shift towards greater domain-

independence. In particular, LLMs, when used with few-shot prompting, serve as

powerful code generators, and techniques such as controlled decoding further im-

proves the reliability of code generation [3, 14, 21–23].

Cross-domain benchmarks such as WikiSQL [24], Spider [25], CoSQL [26], SParC

[27], and BIRD [28] have played a pivotal role in advancing this field, offering diverse

examples of natural language queries paired with formal query language counterparts,

such as SQL. These benchmarks serve as critical resources for testing the robustness

and generalization capabilities of text-to-SQL models, driving improvements and in-

8

novation in this area of research.

Recent model LEVER [14] improved the code generation capabilities of LLMs

trained on code (CodeLMs) by incorporating a mechanism to verify and re-rank

CodeLM-generated programs based on their execution results. The combination of

LEVER and Codex (code-davinci-002) achieves impressive results across the domains

of table QA, math QA and basic Python programming. Glass et al. [29] explore

methods to capture both row and column semantics, improving the model’s query

comprehension. Inner Table Retrieval (ITR) [30] employs a similarity-based approach

for locating sub-tables. This model can select the required rows and colums for a given

question and a table. These approaches involve pre-training and fine-tuning, which

heavily rely on specific datasets. This reliance makes them inapplicable without access

to a corresponding training dataset, while the need for optimal hyperparameters

further limits their generalization.

In this line of work, the reasoning is generally done on questions and table schemata,

with the expectation that the data in a table strictly adheres to the table schema (e.g.,

all values in a column having the same data type).

2.2 Table Reasoning: Data to Text

The relevant models can be categorized into more traditional models and recent LLM-

based models. Many early models undergo pre-training on both tables and text

to acquire a joint representation, utilizing this representation for reasoning without

relying on symbolic execution. Notably, TaPas [8] retrieves masked information from

tables, TAPEX [31] employs the BART model to emulate an SQL executor, ReasTAP

[32] instills reasoning skills via pre-training, TABERT [33] encodes a subset of table

content most pertinent to the input, and PASTA [6] pre-trains language models to

be cognizant of common table-based operations. All these models have contributed

to the progress on table-based reasoning. Despite achieving commendable results

through pre-training on substantial datasets, these models still necessitate fine-tuning

9

on task-specific datasets [10].

LLMs have become competitive models in many domains and tasks including table

reasoning, with their reasoning capabilities covering math, common sense, and sym-

bolic reasoning. This is often done using few-shot prompts without fine-tuning [3].

We briefly review some of these LLM-based models that are relevant to our work.

Prompting Strategies The Table-CoT Model [10] generates the final answer to a

question by employing in-context learning and chain-of-thought prompting to table-

based tasks. The BINDER [34] model generates programs in a programming lan-

guage, extending its capabilities to solve commonsense problems. The DATER [12]

approach uses LLMs to decompose tables and questions for solving table-based QA

and fact verification tasks. These approaches often excel using few-shot prompts

without requiring fine-tuning. Their reasoning abilities can be further enhanced by

breaking complex tasks into steps, employing methods like chain-of-thought (CoT)

[4] prompting and Zero-CoT [35]. For instance, the Table-CoT [10] model utilizes

in-context learning and CoT prompting to generate answers for table-based tasks.

The reasoning capabilities can be further improved by carefully selecting examples in

the prompt [36]

Supervised Fine-Tuning Several studies have utilized instruction tuning and super-

vised fine-tuning to enhance the performance of LLMs on table reasoning tasks. No-

table examples include TableLLaMA [37] and TableGPT [38], which have shown sig-

nificant improvements in specific applications. The Row-Column Intersection (RCI)

model [29] utilizes training strategies to identify the relevant rows and columns of

a table based on a question, thereby narrowing down the table size. However, it

requires extensive training on a specific dataset, which fine-tunes the model to han-

dle particular table structures and queries. These diverse approaches underscore the

potential of LLMs in handling complex reasoning tasks involving tabular data.

Reasoning and Acting with LLM This line of work involves acting with an LLM

agent back and forth using multitple loop. For instance, ReAcTable [16] adopts the

10

ReAct paradigm [39], encompassing step-by-step reasoning, code execution through

external tools, intermediate table generation, and a majority voting mechanism. This

method leverages LLMs to decompose the problem into multiple steps, each consisting

of logical operations in the form of code to process tabular data as required. In a more

recent model, LEVER [14] presents a method to enhance language-to-code generation

by training to validate the generated programs based on their execution results.

Iterative Reading and Reasoning StructGPT [40] enhances the reasoning capa-

bilities of large language models (LLMs) for structured data through an Iterative

Reading-then-Reasoning approach. Despite its advantages, StructGPT’s complexity

and operational cost are increased by the necessity of passing entire tables to the

LLM during the reading phase. This approach is constrained by token limits, which

restricts the model’s scalability when handling large tables.

In contrast, Chain-of-Table [18] extends the Chain-of-Thought methodology to

the domain of tables, aiming to improve accuracy by transforming input tables and

providing guidance to the LLM through intermediate tables during the reasoning

process. However, this approach involves multiple intermediate steps and requires

several calls to the LLM, which may impact efficiency.

Table reasoning approaches generally assume that the tables being analyzed are

small enough to be directly input into the model. However, when dealing with large

tables, it becomes challenging to fit the entire table within the prompt. This specific

issue is one of the focuses of our investigation in this work, where we extract the

relevant parts of the table to answer a question and reduce the table size.

Transforming Tables Chain-of-Table [18] enhances reasoning on tabular data by

iteratively transforming and evolving table structures through a series of reasoning

steps, including row/column selection, cell splitting to refine table representations for

specific reasoning tasks. Their method employs in-context learning to direct LLMs

in iteratively generating operations and updating the table, thus forming a chain of

reasoning specific to tabular data. Liu et al. (2023) [17] explore the capabilities

11

of LLMs in interpreting and reasoning over tabular data, emphasizing robustness to

structural perturbations, comparing textual and symbolic reasoning, and examining

the potential of aggregating multiple reasoning pathways. Their findings indicate that

structural variations in tables presenting the same content can significantly degrade

performance, particularly in symbolic reasoning tasks. They propose a method for

table structure normalization through transposition to mitigate this issue and find

that while textual reasoning slightly outperforms symbolic reasoning, each approach

has distinct strengths depending on the task.

2.3 Data wrangling and imputation

Normalizing tables is a crucial aspect of the broader data wrangling process, which

involves processing, cleaning, and organizing data into a format suitable for further

analysis. Considerable research has focused on data wrangling, addressing challenges

such as error detection, data imputation, and standardization of data formats [41–

43]. Recent approaches have leveraged the capabilities of LLMs for these tasks. For

instance, [44] demonstrated the effectiveness of LLMs in identifying errors and im-

puting missing data, showcasing how these models can enhance the data wrangling

process. By integrating LLMs, the efficiency and accuracy of preparing data for anal-

ysis can be significantly improved, streamlining and automating many aspects of data

wrangling. Operations like normalizing numbers and dates can be incorporated into

data processing workflows to aid in subsequent analysis [1].

Several studies leverage symbolic reasoning through Text-to-SQL or Python code

for table-based reasoning tasks. However, for effectively utilizing a symbolic code

generation approach with LLMs for table reasoning tasks, it is crucial to ensure that

the table is in the proper format [1, 13–15, 21].

All these works highlight the importance of table normalization in improving LLMs’

performance on tabular data, paving the way for more effective and accurate table

reasoning models.

12

Chapter 3

Table Decomposition

This chapter explores our approach to enhancing table reasoning through table de-

composition. Our primary objective is to extract pertinent sections of a table tailored

to tasks such as TableQA or table-based fact verification. We investigate the utiliza-

tion of Text-to-SQL capabilities inherent in LLMs to effectively decompose tables and

retrieve essential components necessary for accurate task performance. By leveraging

these capabilities, we aim to streamline the process of extracting and utilizing key

information from tables, thereby improving the overall efficiency and effectiveness of

table reasoning tasks.

3.1 Introduction

Tables represent the predominant form of structured information across various do-

mains, encompassing databases, spreadsheets, open data repositories, web pages, and

document collections. Creating effective natural language interfaces for tabular data

presents a substantial challenge, particularly in accurately interpreting the seman-

tics of table cells and discerning relationships between cell values in response to user

queries.

Recent research underscores the impressive capabilities of LLMs in reasoning over

both textual and tabular data. However, existing approaches typically rely on using

the entire table as context for reasoning [10]. This reliance becomes problematic

13

Rank Nation Gold Silver Bronze Total

1 China 13 9 13 35

2 Japan 7 10 7 24

3 Uzbekistan 1 2 3 6

4 Kazakhstan 2 2 0 4

5 North
Korea

1 0 1 2

6 South
Korea

0 0 2 2

Total 24 23 26 73

Table: Figure skating at the Asian Winter Games

Q: who received more bronze medals: japan or south korea?
A: Japan

Table title: Figure skating at the Asian Winter Games

Columns: ['rank', 'nation', 'gold', 'silver', 'bronze', 'total']

Q: who received more bronze medals: japan or south korea?

Sub-table Selection
(LLM)

SQL: select nation, bronze from T
where nation = 'japan' or nation = 'south korea'

Sub-table

Nation Bronze

Japan 7

South
Korea

2

Table title: Figure skating at the Asian Winter Games

select nation, bronze from T
where nation = 'japan' or nation = 'south korea'

Answer Generation
(LLM)

Response: Based on the table, Japan received 7 bronze medals and
South Korea received 2 bronze medals. Therefore, Japan received
more bronze medals than South Korea.
Answer: Japan

Sub-table

Nation Bronze

Japan 7

South
Korea

2
Q: who received more bronze medals: japan or south korea?

Execute

(1) Subtable Selection (2) Reasoning and Answer Generation

Figure 3.1: Overview of TabSQLify, consisting of two steps: (1) generating SQL
queries from natural language questions or statements and executing the SQL queries
on the original tables to obtain sub-tables containing only essential information, and
(2) using LLMs with the sub-table and the question or claim to generate the answer.

when dealing with large tables, as LLMs are constrained by a maximum token limit.

Processing such tables risks input truncation or generating erroneous outputs due to

the complexity of handling extensive data within these constraints [10, 11]. This is

a significant limitation, posing challenges in effectively utilizing LLMs for large-scale

table reasoning tasks.

In this work, our aim is to leverage the symbolic representation capabilities of

LLMs to reduce table size and their robustness to natural language variations for

addressing formatting differences. Symbolic models, such as Text-to-SQL, are not

affected by table size and can reliably scale to large tables. However, for reliable

storage and querying in a relational database, tables are expected to adhere to a

more rigorous formatting. Tables in the wild, such as those found on the web, often

lack this formatting, necessitating substantial preprocessing and normalization efforts

to convert the content [34]. LLMs are well-suited for resolving potential differences in

the formating of rows and cell values. This work aims to strike a balance between table

reasoning and table decomposition. Our approach involves using symbolic methods

to narrow down the task to a targeted region in a table and then utilizes LLMs to

reason over the limited relevant information.

We propose TabSQLify, a novel approach that integrates symbolic methods with

the reasoning power of LLMs. TabSQLify leverages Text-to-SQL generation to de-

14

compose large tables into smaller and relevant sub-tables for table reasoning tasks.

The method involves two key steps: (1) generating SQL queries from natural language

questions or statements using LLMs under few-shot prompting, then executing the

SQL queries on the original tables to obtain sub-tables containing only essential infor-

mation for answering questions or verifying statements, and (2) using LLMs with the

sub-table and the question or claim to generate the answer. The core concept of the

approach is to utilize the natural language understanding and generation strengths of

LLMs while reducing their burden in table encoding and reasoning (see Figure 3.1).

Decomposing tables into sub-tables offers several advantages, including (1) reducing

input length for improved scalability and efficiency in reasoning tasks involving large

tables, (2) filtering out irrelevant and redundant information that do not contribute

to the reasoning process, hence making the reasoning more focused, and (3) provid-

ing an intermediate representation (in this case, SQL queries and sub-tables) that is

more interpretable and explainable for tracing and verification purposes.

We evaluate our method on four challenging table reasoning datasets: WikiTable-

Questions [45], FeTaQA [46], TabFact [47] and WikiSQL [24]. Our evaluation on

table-based question answering and fact verification tasks show that our method

outperforms other LLM-based baselines, with gpt-3.5-turbo (chatgpt) as the LLM.

Moreover, our method can significantly reduce the input length, making it more scal-

able and efficient for large-scale table reasoning applications than existing methods

that require the full table context as input.

The contributions of our work are as follows:

1. We present a novel approach that utilizes Text-to-SQL generation to decompose

tables into smaller, contextually relevant sub-tables, particularly designed for

table reasoning tasks. This method offers a substantial reduction in table size,

proving particularly advantageous for large tables that exceed the maximum

allowable context window of LLMs.

15

2. Our model outperforms some of the leading models that employ multiple re-

sponses and self-consistency. Clearly using those techniques can further boost

the performance of our method.

3. Our evaluation on challenging table reasoning datasets demonstrates the re-

markable performance of our method compared to existing methods that rely

on full tables as input. A comprehensive evaluation across various tasks is

conducted to elucidate both the advantages and constraints of our approach.

3.2 Methods and Procedure

Our approach capitalizes on the proficiency of LLMs in parsing natural language text

and generating SQL to enhance their capabilities in table reasoning. Large language

models face challenges in accommodating extensive contextual information, especially

when dealing with large tables that exceed their token limits. Increasing this size

for large tables is unrealistic due to the quadratic time and memory complexities

of self-attention mechanism in input length. Furthermore, LLMs are more likely to

produce errors when handling lengthy contexts [10, 11]. To overcome these challenges,

our work efficiently identifies and extracts relevant table parts, optimizing the input

prompt size without sacrificing performance.

3.2.1 Table Preprocessing

Although tabular data is typically stored in a relational database and queried using

SQL, many tables collected from web sources lack the rigorous structure and consis-

tency that is needed for SQL queries to retrieve correct answers. It is generally a

challenge to fully clean data from different sources or with no clean lineage records.

Our hypothesis is that applying some general table cleaning and relaxing the gran-

ularity of retrievals to relevant rows and columns that have the answers, instead of

the exact answers, makes the SQL engine more reliable. Of course, the exact answer

16

must be extracted at the end. This is done in our reasoning phase (§ 3.2.3) where an

LLM is used, and it is better equipped to handle formatting differences.

For our table cleaning, we normalized numerical values and date fields. In par-

ticular, numerical values frequently feature commas, necessitating preprocessing to

ensure consistency. To address this, we uniformly removed commas from all numerical

entries. Additionally, the diverse date formats within the tables posed a challenge in

generating accurate conditions for SQL queries. To address this, we standardized all

date formats to the YYYY-MM-DD format. As an example, we converted numbers

like “360,000” to “360000,” and different date formats such as “31 October 2008,”

“31 Oct 2008” and “October 31, 2008” to the standardized “2008-10-31”.

3.2.2 Subtable Selection

The subtable selection can be done by three strategies: (1) selecting essential columns,

(2) selecting essential rows, and (3) selecting both essential columns and rows.

In this step, instead of feeding the entire table to the LLM, we provide essential

table information such as the title, column names, and three example rows alongside

the question. We utilize few-shot learning for this step, where we provide the LLM

with a few examples. Subsequently, the LLM generates an SQL query to select the

subtable based on this provided information. Selecting essential rows may require

performing grouping and aggregation, and our generated SQL queries can include

GROUP BY clauses and aggregation functions.

By selecting the essential columns and rows, we are reducing the context size

while optimizing the relevance of information for subsequent reasoning tasks. When

employing strategies (2) or (3), sometimes essential rows may not be safely extracted,

for example returning an empty table due to noisy input. In those cases, we opt for

the column selection strategy. The format of the prompt used for selecting necessary

columns and row is described in Figure 3.2. In the subtable selection prompt, we

provide the LLM with table metadata, including the table title, column names, and

17

three example rows. The LLM then generates an SQL query to extract the relevant

subtable needed to answer the question. After receiving the SQL query, we execute

it offline, outside of the LLM, to retrieve the necessary subtable.

Generate SQL for selecting the required rows and columns, given the question and table to answer the
question correctly.

SQLite table properties:

Table: 2012–13 Exeter City F.C. season(row_number,name,league,fa_cup,league_cup,jp_trophy,total)

3 example rows:
select * from T limit 3;
row_number | name | league | fa_cup | league_cup | jp_trophy | total
0 | scot bennett | 5 | 0 | 0 | 0 | 5
1 | danny coles | 3 | 0 | 0 | 0 | 3
2 | liam sercombe | 1 | 0 | 0 | 0 | 1

Q: does pat or john have the highest total?
SQL: select name, total from T where name like '%pat%' or name like '%john%'
....
SQLite table properties:

Table: Figure skating at the Asian Winter Games (row_number, rank, nation, gold, silver, bronze, total)

3 example rows:
select * from T limit 3;
row_number | rank | nation | gold | silver | bronze | total
0 | 1 | china | 13 | 9 | 13 | 35
1 | 2 | japan | 7 | 10 | 7 | 24
2 | 3 | uzbekistan | 1 | 2 | 3 | 6

Q: who received more bronze medals: japan or south korea?
SQL:
----- ------ ------ ------
response: select nation, bronze from T where nation = 'japan' or nation = 'south korea'

Figure 3.2: Prompt used for the subtable selection step of TabSQLifycol+row.

It is still conceivable that the output of the subtable selection step remains large,

for example when finding the top-k most popular products for large values of k. We

consider this limitation as inherent to the nature of the task and not specific to our

approach since the sub-table containing all the items of the top-k is necessary to

answer this question.

18

3.2.3 Reasoning and Answer Generation

In this step, an LLM is employed, wherein we input the SQL derived from the previous

step, the subtable obtained by executing the SQL query and the question. Depending

on the domain, additional contextual information, such as the surrounding text, may

also be incorporated. This approach is adopted to help the model focus on the relevant

parts for understanding the context and answering the question.

Based on the table title and execution result of the sql query bellow, find the answer to the given question correctly.
....
Table_title: Playa de Oro International Airport
SQL: select City, Passengers from T;

City | Passengers
United States, Los Angeles | 14,749
United States, Houston | 5,465
Canada, Calgary | 3,761
Canada, Saskatoon | 2,282
Canada, Vancouver | 2,103
United States, Phoenix | 1,829
Canada, Toronto | 1,202
Canada, Edmonton | 110
United States, Oakland | 107

Question: how many more passengers flew to los angeles than to saskatoon from manzanillo airport in 2013?
A: To find the answer to this question, let’s think step by step. Based on the table, in 2013, the number of
passengers who flew to Los Angeles from Manzanillo Airport was 14,749, while the number of passengers who flew
to Saskatoon was 2,282. So, the difference in the number of passengers between Los Angeles and Saskatoon is
14,749 - 2,282 = 12,467. Therefore, the answer is 12,467.
Answer: 12,467
....
Table_title: Figure skating at the Asian Winter Games
SQL: select nation, bronze from T where nation = 'japan' or nation = 'south korea'

nation | bronze
japan | 7
south korea | 2

Question: who received more bronze medals: japan or south korea?
A: To find the answer to this question, let’s think step by step.
----- ------ ------- -------
response: Based on the table, Japan received 7 bronze medals and South Korea received 2 bronze
medals. Therefore, Japan received more bronze medals than South Korea.
Answer: Japan

Figure 3.3: Prompts used for the answer generation step.

We include the SQL query in the prompt to give the LLM additional context about

the subtable. By knowing that the subtable is derived from executing the provided

19

SQL query, the LLM can improve its reasoning accuracy when generating an answer

to the question. Moreover, we utilize few-shot learning techniques while adhering to

the Chain-of-Thought prompting style. The format of the answer generation prompt

is described in Figure 3.3.

3.3 Experimental Setup

3.3.1 Dataset

We assess our proposed approach across four datasets centered on reasoning with

tables. Given our constraints on using LLMs, in terms of the number of requests

and associated costs, our method is exclusively evaluated on the test sets of these

datasets, with no fine-tuning on the training sets.

WikiTQ WikiTableQuestions (WikiTQ) contains complex questions annotated by

crowd workers based on Wikipedia tables. These questions involve multiple complex

operations, such as comparison, aggregation, and arithmetic operations, which require

reasoning over multiple entries in a table. The standard test set contains 4,344 samples

[45].

FetaQA Free-form Table Question Answering (FeTaQA) contains free-form table

questions that require deep reasoning and understanding. These questions are usually

hard because it requires processing information from different parts of the table.

Unlike WikiTQ, this dataset annotates long free-form answers. Our approach is

evaluated on the test set that contains 2,003 samples [46].

TabFact Table-Fact-Checking (TabFact) is a benchmark for verifying facts based

on tables, which includes statements created by crowd workers using tables from

Wikipedia. For example, a statement must be judged as either “True” or “False”

based on the information in a given table. The accuracy is reported on the test-small

set, which contains 2,024 statements and 298 tables [47].

WikiSQL WikiSQL is a simpler TableQA dataset, necessitating the filtering and

20

aggregation of information from the table content. Each question in WikiSQL is

associated with a ground truth SQL query, from which we extract the gold answer

and compare it with our results. We present the accuracy achieved on the test set of

WikiSQL [24].

3.3.2 Implementation Details

In the experiments, we use gpt-3.5-turbo (chatgpt) as our language model. The

prompt format mainly follows [23] and [48], which inputs the table schema and the

first three table rows. We configured the in-context learning hyperparameters for

gpt-3.5-turbo according to the specifications outlined in Table 3.1 and Table 3.2.

Sub table selection

Parameter WikiTQ FeTaQA TabFact

temperature 0.3 0.3 0.3

top p 1 1 1

sample n 1 1 1

max tokens 100 100 100

num shots 10 6 8

Table 3.1: Our hyper-parameter setting of LLM for selecting required column/row

Answer Generation

Parameter WikiTQ FeTaQA TabFact

temperature 0.7 0.7 0.6

top p 1 1 1

sample n 1 1 1

max tokens 200 64 100

num shots 2 6 4

Table 3.2: Our hyper-parameters setting of LLM for the answer generation

We set a lower temperature during the subtable selection step to ensure that the

21

SQL query generated by the LLM is more precise and focused, enabling it to extract

the most relevant subtable for answering the question. Precision is crucial at this

stage to avoid any ambiguity in selecting the necessary data. Conversely, we set a

higher temperature during the answer generation step to encourage the LLM to ex-

plore a wider range of reasoning paths. This allows the model to consider diverse

approaches and perspectives, ultimately leading to a more accurate and comprehen-

sive final answer.

Our code and prompts are available at https://github.com/mahadi-nahid/TabSQLify.

3.3.3 Baselines

We compare our approach with several strong baseline methods. These methods can

be split into two groups.

Pre-training and fine-tuning based models Our evaluation involves compar-

ing our work with different models ranging from pre-training to fine-tuning. These

models, pretrained on a large table corpus, aim to encode a given table as a plain se-

quence into an encoder and subsequently employ a decoder to generate an answer. As

our baselines, we consider Table-BERT [47], LogicFactChecker [49], TaPas [8], SAT

[50], TAPEX [31], GraPPa [51], PASTA [6] as our baslines. For FeTaQA evaluation,

we compare our results against T5 [46, 52].

LLM based models For the LLM based methods with in-context learning, we

compare against TableCoT [10], BINDER [34], DATER [12], StructGPT [40], Re-

AcTable [16], ITR [30], LEVER [14] and Chain-of-Table [18] as our baselines.

3.3.4 Evaluation metrics

For the WikiTQ and WikiSQL dataset, exact match (EM) accuracy was used to check

if the predicted answers were the same as the correct ones. To account for different

formatting of date and number fields, we added a pre-mactching check [34], consistent

with preprocessing (§ 3.2.1). The accuracy of TabFact was determined using binary

22

https://github.com/mahadi-nahid/TabSQLify

classification accuracy. To evaluate FeTaQA, metrics such as ROUGE-1, ROUGE-2,

and ROUGE-L [53] were used. However, ROUGE score lacks the ability to gauge

the faithfulness and correctness of model-generated content. In line with Chen et al.

(2023) [10], a human evaluation was conducted across four aspects: fluency (assessing

linguistic errors), correctness (ensuring accurate answers to questions), faithfulness

(verifying grounding on the input table), and adequacy (evaluating the comprehen-

siveness of the generated sentence in covering all answers) [46].

3.4 Results and Discussion

3.4.1 Model accuracy

As shown on Table 3.3, TabSQLify achieves an accuracy of 62.0% and 63.7% on

the more challenging WikiTA dataset when reasoning is performed solely using the

extracted columns and extracted rows, respectively. By extracting both the neces-

sary columns and rows, we achieve an accuracy of 64.7%. Our model outperforms

all pretrained models and LLM-based baselines, with chatgpt used as the LLM, on

WikiTQ dataset 1. It surpasses BINDER-Codex and achieves accuracy very close to

the state-of-the-art model DATER. It is worth noting that, unlike our model, which

considers only one response, both BINDER and DATER utilize 20 responses for the

WikiTQ dataset to obtain the final answer.

For the TabFact dataset, as illustrated in Table 3.4, TabSQLify outperforms all

LLM-based state-of-the-art approaches, with ChatGPT as the LLM. We achieve an

accuracy of 79.5% when we extract the required sub-table by applying both column

and row filtering. It is important to highlight that BINDER and DATER employ

multiple responses and self-consistency to obtain the final answer. The reported

results on TabFact are based on 50 responses for BINDER, 20 responses for DATER,

and only one response for our model, hence it gives a lower bound of our model

1Codex was not available at the time of running our experiments, and the reported results are
from the respective papers of our baselines.

23

Models Accuracy

Agarwal et. al. 2019 [54] 44.1

Wang et. al. 2019 [9] 44.5

TaPas 48.8

GraPPa 52.7

LEVER 62.9

ITR 63.4

GPT-3 CoT 45.7

TableCoT-Codex 48.8

DATER-Codex 65.9

BINDER-Codex 61.9

ReAcTable-Codex 65.8

SQL-Codex 61.1

BINDER-chatgpt 55.4

DATER-chatgpt 52.8

ReAcTable-chatgpt 52.5

SQL-chatgpt 54.1

TableCoT-chatgpt 52.4

StructGPT 52.2

Chain-of-Table 59.9

TabSQLifycol 62.0

TabSQLifyrow 63.7

TabSQLifycol+row 64.7

Table 3.3: Accuracy compared to the baselines on WikiTQ with the official evaluator.

24

performance.

Model Accuracy

Table-BERT 68.1

LogicFactChecker 74.3

SAT 75.5

TaPas 83.9

TAPEX 85.9

SaMoE 86.7

PASTA 90.8

Human 92.1

TableCoT-Codex 72.6

DATER-Codex 85.6

BINDER-Codex 85.1

ReAcTable-Codex 83.1

ReAcTable-chatgpt 73.1

TableCoT-chatgpt 73.1

BINDER-chatgpt 79.1

DATER-chatgpt 78.0

Chain-of-Table 80.2

TabSQLifycol 77.0

TabSQLifyrow 78.5

TabSQLifycol+row 79.5

Table 3.4: Experimental results on TabFact. Here, “Human” indicates the human
performance [12]

For FeTaQA dataset, we achive a performance comparable to the baselines. As

ROUGE metrics do not reflect the actual correctness of the model’s responses, we

manually evaluated 100 randomly chosen sample and quantified their performance in

terms of fluency, correctness, adequacy and faithfulness. The performance is sum-

marized in Tables 3.5 and 3.6. TabSQLify outperforms models based on fine-tuning

25

and pre-training, such as T5-large. The evaluation suggests that the model’s output

closely aligns with average human performance in terms of fluency, adequacy, and

faithfulness. The correctness is notably impressive, although it falls behind human-

level performance. This indicates that, utilizing TabSQLify results in high accuracy

without the need for the entire table, showcasing the model’s high level of precision

in retrieving the relevant sub-table.

Model R-1 R-2 R-L

T5-small 0.55 0.33 0.47

T5-base 0.61 0.39 0.51

T5-large 0.63 0.41 0.53

TableCoT-Codex 0.62 0.40 0.52

DATER-Codex 0.66 0.45 0.56

ReAcTable 0.71 0.46 0.61

TableCoT-chatgpt 0.62 0.39 0.51

TabSQLifycol 0.57 0.34 0.47

TabSQLifyrow 0.60 0.37 0.49

TabSQLifycol+row 0.58 0.35 0.48

Table 3.5: Experimental results on FeTaQA.

Model Fluency Correct Adequate Faithful

T5-large 94.6 54.8 50.4 50.4

Human [10] 95 92.4 95.6 95.6

TableCoT-chatgpt 96 82 75 87

TabSQLifycol 98 83 79 85

TabSQLifyrow 96 80 77 89

TabSQLifycol+row 97 88 84 93

Table 3.6: Human evaluation results on FeTaQA.

Apart from human evaluation, we analyze 100 sample outputs from the FeTaQA

26

Model Precision Recall Relevancy Faithfulness

TableCoT-chatgpt 0.44 0.94 0.94 0.73

TabSQLifycol 0.42 0.92 0.93 0.67

TabSQLifyrow 0.45 0.97 0.94 0.73

TabSQLifycol+row 0.44 0.94 0.94 0.72

Table 3.7: RAGAS evaluation results on FeTaQA.

dataset using the RAGAS evaluator [55], a framework specifically designed for eval-

uating Retrieval Augmented Generation (RAG) pipelines. The RAGAS evaluation

results is listed in Table 3.7. RAGAS assesses several key aspects: (1) Faithfulness:

Evaluates the factual consistency of the answer concerning the context based on the

question, (2) Context Precision: Measures the relevance of the retrieved context to

the question, reflecting the quality of the retrieval pipeline, (3) Answer Relevancy:

Assesses the relevance of the answer to the question, and (4) Context Recall: Mea-

sures the retriever’s capability to retrieve all essential information required to answer

the question. The performance of TabSQLify is comparable to that of Table-CoT-

chatgpt, which utilized the full table context. Additionally, the RAGAS evaluation

shows a similar trend to our human evaluation.

Model Accuracy

SEQ2SQL 59.4%

StructGPT 65.6%

RCI [29] 89.8%

TabSQLifycol+row 76.7%

Table 3.8: Experimental results on WikiSQL. RCI is a fine tuning based model, and
its results may not be directly comparable due to the model’s high reliance on the
training set.

TabSQLify shows an outstanding performance on the WikiSQL dataset, as demon-

strated in Table 3.8. This dataset appears to be easier compared to the WikiTQ test

27

dataset, with our approach achieving 76.7% accuracy. Although the Row-Column

Intersection (RCI) model [29] achieves higher accuracy, it benefits from extensive

training on the WikiSQL dataset, which fine-tunes the model to handle specific ta-

ble structures and queries. In contrast, our model achieves competitive performance

without the need for any training on the dataset, demonstrating its versatility and

effectiveness across different table reasoning tasks without relying on pre-existing

training data. Morevever, In 70% of cases, our method can produce the answer in

the first step, eliminating the need to pass the sub-table and question for the second

step on WikiSQL dataset.

3.4.2 Scalability and robustness

We assessed the scalability and robustness of our model by imposing a token limit

on each table across three datasets: WikiTQ, FeTaQA and TabFact. To accom-

plish this, we established cutoff thresholds to discard tokens exceeding these limits.

Subsequently, we evaluated the model’s performance within these constrained token

boundaries. For the WikiTQ dataset, we set the cutoff threshold at 2000, while for

both the TabFact and FeTaQA datasets, it was set to 600. Table 3.9 summarizes the

distribution across different classes, illustrating the categories based on the percentage

of discarded table tokens.

The cutoff percentage denotes the percentage of tokens that are truncated when the

threshold is applied. For example, if a table has 4500 tokens and we set the threshold

at 2000, then 2500 tokens of the original table are truncated, and the percentage is

2500/4500 = 55.56%. We separated the number of samples in different cutoff ranges

and compared the results of those samples from different cutoff ranges in Tables 3.10,

3.11 and 3.12.

For the WikiTQ dataset, we set the threshold at 2000 tokens. In this case, out

of 4,344 samples, there are 128 samples where more than 50% of the tokens of the

original table are truncated if we want to pass the original table to the LLM with a

28

maximum token boundary of 2000. In our approach, TabSQLify selects the relevant

limited subtable from the original table for a given question. This allows us to fit

the subtable within the maximum token boundary when passing it to the LLM,

resulting in improved performance. The aim of this experiment is to demonstrate

that TabSQLify can be useful under limited token (context) boundary conditions.

Cut-off (%) WikiTQ FeTaQA TabFact

0 - 10% 76 81 91

10 - 25% 89 143 141

25 - 50% 116 202 260

50% + 128 69 81

Table 3.9: The distribution of samples across various classes as a function of the
percentage cut-off of table tokens.

Cut-off (%) TableCoT TabSQLifycol+row

0 - 10% 40.7 64.4

10 - 25% 49.4 60.6

25 - 50% 46.5 66.3

50% + 33.3 56.2

Table 3.10: Performance across different classes based on the percentage cut-off of
table tokens in the WikiTQ dataset.

The evaluation results for the WikiTQ dataset are presented in Table 3.10. Our

model consistently performs well within the specified token boundary. In contrast,

the performance of TableCoT is subpar. We have observed a similar trend in the

other two datasets (see Tables 3.11 and 3.12).

In the WikiTQ dataset, 128 tables contain more than 4000 tokens exceeding chat-

GPT’s maximum token limit (4096 tokens including table and question). Table 3.13

reports the performance on these instances. These results reveal that both BINDER

[34] and DATER [12] face challenges when dealing with large tables. Specifically,

29

Cut-off (%) TableCoT TabSQLifycol+row

0 - 10% 76.9 79.1

10 - 25% 67.3 80.8

25 - 50% 63.0 70.0

50% + 55.5 72.8

Table 3.11: Performance across different classes based on the percentage cut-off of
table tokens in the TabFact dataset

BINDER-Codex achieves only 29.6% accuracy, while DATER achieves an accuracy

of 34.6%. BINDER-chatgpt fails to produce any correct answers for these large tables.

On the other hand, Chain-of-Table [18] achieves an accuracy of 44.8%.

In contrast, our model outperforms these baselines significantly. It is crucial to

note that our Table-CoT achieves this accuracy because the answers for questions

about those large tables are typically in the upper part, fitting within the LLM’s

context boundary. If the answer is elsewhere, all models fail. On the other hand, our

model has no issue with the answer’s position in a table, making it scalable for large

tables.

3.4.3 Table size reduction

Figure 3.4 demonstrates the average reduction in the number of table cells before and

after employing TabSQLifycol+row across three datasets. This reduction, from 183 to

32 cells in WikiTQ, indicates a substantial decrease in sub-table size while maintaining

a strong performance. Likewise, similar trends can be observed in the TabFact,

FetaQA andWikiSQL datasets. When utilizing both column and row filters to extract

the required subtable, direct answers to questions may be found. Specifically, in the

WikiTQ dataset, TabSQLifycol+row successfully retrieves answers in 58% of cases by

executing the generated query, requiring the answer generation step only for the

remaining 42% of cases.

30

TableCoT

Cut-off (%) R-1 R-2 R-L

0 -10% 0.58 0.35 0.45

10-25% 0.60 0.37 0.50

25-50% 0.53 0.30 0.43

50% + 0.49 0.28 0.40

TabSQLifycol+row

Cut-off (%) R-1 R-2 R-L

0 -10% 0.62 0.39 0.50

10-25% 0.64 0.42 0.53

25-50% 0.55 0.32 0.44

50% + 0.51 0.31 0.41

Table 3.12: Performance across different classes based on the percentage cut-off of
table tokens in the FeTaQA dataset

3.4.4 Error Analysis

An important advantage of TabSQLify is its ability to provide the intermediate stages

of reasoning path, including SQL queries and sub-tables. To conduct our error anal-

ysis, we randomly selected 100 responses generated by TabSQLifyrow+col from the

WikiTQ and TabFact test sets. The identified errors are categorized into incorrect

columns, incorrect conditions, incorrect reasoning, and false negatives, as listed in

Table 3.14.

In this context, a “missing column” refers to instances where TabSQLify either se-

lects incorrect columns or omits necessary columns to answer the question. “missing

rows” denotes situations where the generated SQL query contains an erroneous con-

dition within the WHERE clause. Cases where the extracted sub-table is adequate to

answer the question, but the LLM fails to provide a correct response, are labeled as

“incorrect reasoning”. Additionally, within the dataset, there are instances where the

31

Model Acc (Large)

BINDER-Codex 29.6

BINDER-chatgpt 0.0

DATER-chatgpt 34.6

Table-CoT-chatgpt 35.1

Chain-of-Table [18] 44.8

TabSQLifycol 50.0

TabSQLifyrow 57.0

TabSQLifycol+row 52.3

Table 3.13: Experimental results on Large (¿4000 tokens) tables from WikiTQ. As
the input tables grow larger, we observe a decline in performance for strong baseline
models.

Error Type WikiTQ TabFact

Missing Columns 6% 10%

Missing Rows 56% 32%

Incorrect Reasoning 29% 50%

Incorrect Annotation 9% 8%

Table 3.14: Error types of 100 samples fromWikiTQ and TabFact of TabSQLifycol+row

gold answer is incorrect or misjudged by the evaluator, which we classify as “incorrect

annotation”.

From the table, we observe that out of 100 error cases fromWikiTQ, 6% involve the

generated SQL query missing columns, while 56% miss required rows. The irregular

format of the text in the table is identified as the primary cause. Additionally,

in 29% of cases, the reasoning is found to be incorrect, while 9% exhibit incorrect

annotation. In the TabFact dataset, 10% of the time, the subtable selection query

misses required columns, and in 32% of cases, it misses required rows. The main

source of errors is incorrect reasoning, accounting for 50% of cases, while 8% involve

incorrect annotations.

32

Figure 3.4: Reduction in table size using our row-col filtering across four datasets,
showing a significant reduction of the table size.

3.4.5 Model Comparison

In this section, we conduct a comparative analysis of our model against two strong

baselines, DATER [12] and BINDER [34]. DATER utilizes LLMs for decomposing

both questions and tables. On the other hand, BINDER stands out by offering

an Application Programming Interface (API) that extends language model (LM)

functionalities to programming languages such as SQL and Python. This extension

broadens its grammar coverage, enabling the model to address a more diverse range

of questions. However, a drawback is that both DATER and BINDER necessitates

sending the entire table to the LLM and face challenges when dealing with large

tables. Both DATER and BINDER leverage self-consistency [5] strategies to bolster

their performance, ensuring a higher level of consistency in their responses.

33

In our experiment we did not consider using self-consistence decoding strategy. Us-

ing self-consistency we can push the performance even higher. Our implementation

does not require any additional processing on the SQL code, unlike BINDER, which

necessitates a complex re-implementation of the SQL executor [14]. BINDER gener-

ates a total of 50 samples for a given table and question in the intermediate stages

(Generate Neural-SQL: 50); while DATER generates 100 samples in its intermediate

stages (table decomposition: 40; Generate Cloze: 20; Generate SQL: 20; reasoning:

20). In contrast, TabSQLify generates only two samples in total, making it simpler

and more cost-effective. We summarize the comparison with DATER and BINDER

in Table 3.15.

- DATER BINDER TabSQLify

stage 4 2 2

Max context size 8000 8000 4096

of generated samples 100 50 2

sampling n 20-50 20 1

Self Consistency yes yes no

Table required full full partial

Cost high high low

Table 3.15: Comparison with the other LLM based models. TabSQLify is much
simpler than the other approach.

Compared to the other LLM-based approach, our approach has several benefits:

(1) Unlike other models our approach do not need to provide the table data to LLM

to select the target portion of the table. Instead we utilize Text-to-SQL capability

of LLMs. (2) Our approach requires partial table, not full table. (3) Our model can

be applied in tight token boundary (4) Considering only one response our model can

achive comparable performance while other top performing model uses more than 20

responses (5) Our approach is less costly and it requires less LLM calls which can be

vital factor to reduce the cost.

34

3.5 Conclusions

Our proposed decomposition approach has shown promise across different table rea-

soning tasks, achieving remarkable performance compared to models that require the

use of a full table. Our method is novel in leveraging Text-to-SQL generation to de-

compose tables into smaller and relevant sub-tables tailored for table understanding

tasks. This approach provides a new perspective and direction for table reasoning

research, and we hope it will inspire more future work on combining natural language

understanding and structured data processing.

35

Chapter 4

Tabular Data Normalization

This chapter explores our approach to enhancing symbolic reasoning performance

through the normalization of irregular web tables into standardized formats. The

primary objective is to transform web tables with irregularities into normalized, struc-

tured tables. We leverage LLM to automate the normalization process, aiming to im-

prove the consistency and reliability of tabular data for effective symbolic reasoning

tasks.

By utilizing LLMs for web table normalization, we address challenges such as

structural inconsistencies and varying data formats commonly found in web-based

tables. This approach involves applying natural language understanding capabilities

of LLMs to interpret and standardize diverse table structures, ensuring that data

across different sources conform to a regular format suitable for robust symbolic

reasoning.

Through experimental evaluation and analysis, we demonstrate the effectiveness of

our normalization approach on enhancing LLM-based symbolic reasoning tasks. This

research advances techniques for handling tabular data with LLMs, emphasizing the

importance of data normalization for improving reasoning performance and efficiency

in diverse domains.

36

4.1 Introduction

Tables are a fundamental format for structured data representation and are widely

used across various sources, including relational databases, web pages, and financial

documents. However, many tables within documents and web pages are designed

for direct human consumption and often lack the strict formatting that is expected

in relational tables. This discrepancy poses significant challenges when querying

them using languages such as SQL, integrating them with relational databases, and

processing them within applications.

In recent years, LLMs [3] have demonstrated remarkable performance in under-

standing tabular data [1, 12, 15–18, 21], outperforming many traditional models

across various table reasoning tasks [6–9]. However, their performance in tasks involv-

ing tabular data, particularly those requiring symbolic reasoning, is often hindered

by the structural variability and inconsistencies commonly found in web tables. Sym-

bolic reasoning over tables necessitates a clear understanding of the table structure

and values, and may involve constraining rows and columns, which can be challenging

when dealing with unstructured or noisy web tables [13–16]. Our hypothesis is that

normalizing ill-formatted tables can address this challenge, enabling the execution of

symbolic programs (such as SQL or Python) on the tables and making reasoning tasks

involving comparison, aggregation, and mathematical calculations more manageable.

Moreover, normalization may enhance the explainability by allowing the tracking of

the intermediate steps in reasoning.

Existing models for table reasoning typically rely on a multi-step framework, where

an LLM performs a sequence of actions such as adding columns before additional

scripts are invoked to process data, retrieve cell values, or compute answers to ques-

tions [16–18]. These models are often dependent on question and table structure and

do not address the root cause of table irregularity, making them less scalable.

An alternative is normalizing tables, often part of a larger process known as data

37

wrangling, which involves processing, cleaning and organizing data into a format

that is suitable for further analysis. Significant progress has been made on data

wrangling [41–43], with recent approaches employing LLMs for tasks such as error

detection and data imputation [44]. Selected operations, such as normalizing numbers

and dates, may also be introduced into data processing pipelines to facilitate further

analysis [1]. To the best of our knowledge, our work is the first to study table

normalization as an stand-alone one-time preprocessing step using LLMs.

In this work, we introduce NormTab, a framework designed to normalize web ta-

bles to align them with the structured format of relational database tables. NormTab

addresses challenges such as structural variance, mixed data formats, and extraneous

information, thereby facilitating accurate and efficient symbolic reasoning and query

processing using LLMs. Our work explores two key research questions:

• RQ1: How can we leverage LLMs’ textual understanding to effectively clean

and normalize web tables?

• RQ2: How can web table normalization enhance table reasoning tasks, partic-

ularly in the context of LLM-based symbolic reasoning?

Our proposed solution leverages the advanced textual understanding capabilities

of LLMs to independently process and normalize web tables, without relying on spe-

cific questions. By normalizing tables in this manner, we enable a robust foundation

for any downstream task involving table reasoning. This approach allows for mul-

tiple questions to be asked from a single, normalized table, significantly enhancing

reasoning and query capabilities. Moreover, our normalization process only needs to

be performed once, unlike other models that require repeated adjustments based on

different questions, highlighting a key advantage of our approach.

Through a comprehensive experimental evaluation conducted on challenging web

table datasets such as WikiTableQuestions [45] and TabFact [7], we assess the ef-

fectiveness of NormTab in improving table reasoning performance. These datasets

38

provide diverse examples of table structures and content, allowing us to thoroughly

investigate the impact of web table normalization on LLM-based symbolic reasoning

tasks. By addressing RQ1 and RQ2, we aim to demonstrate the importance of web

table normalization and its potential to enhance the capabilities of LLMs in handling

tabular data for complex reasoning tasks.

Key Contributions of our work are:

• We introduce NormTab, a novel framework that enhances LLMs’ symbolic rea-

soning on tabular data by normalizing web tables. NormTab includes structure

normalization (e.g., transposing tables, flattening rows and columns) and value

normalization (e.g., removing extraneous strings, standardizing the formatting

of dates and numbers) to ensure consistency and accuracy in reasoning tasks.

• We demonstrate how LLMs’ textual understanding can be effectively utilized for

data cleaning and transformation tasks, addressing challenges such as structural

variance, mixed values, noise, and substring extraction in web tables

• We conduct extensive experimental evaluations using challenging web table

datasets, including WikiTableQuestion and TabFact, to assess the effective-

ness of NormTab in improving table reasoning performance, particularly in the

context of LLM-based symbolic reasoning tasks.

4.2 Methods and Procedure

Our methodology encompasses several essential parts designed to ready web tables

for proficient reasoning by LLMs.

4.2.1 Normalization Operations

The normalization operations inNormTab can be divided into two groups: (1) value

normalization and (2) structural normalization. The former involves splitting cells

39

Column Selection

----------------------- --

Value
Normalization

Structure
Normalization

(a) NormTab Basic

(b) NormTab Targeted

row
numbe

r

week date opponent result
type

result
score

attendance

0 1 1981-09-06 at los angeles rams w 27–20 63198

1 2 1981-09-13 at cleveland browns w 9–3 79483

--- --- --- --- --- --- ---

4 5 1981-10-04 cincinnati bengals w 17-10 44350

5 6 1981-10-11 seattle seahawks w 35-17 42671

--- --- --- --- --- --- ---

15 16 1981-12-20 pittsburgh steelers w 21–20 41056

Normalized Table

row
number

week date opponent result attendance

0 1 september 6, 1981 at los angeles rams w 27–20 63,198

1 2 september 13, 1981 at cleveland browns w 9–3 79,483

--- --- --- --- --- ---

4 5 october 4, 1981 cincinnati bengals w 17-10 44,350

5 6 october 11, 1981 seattle seahawks w 35-17 42,671

--- --- --- --- --- ---

15 16 december 20, 1981 pittsburgh steelers w 21–20 41,056

Original Table

row
numbe

r

week date opponent result
type

result
score

attendance

0 1 1981-09-06 at los angeles rams w 27–20 63198

1 2 1981-09-13 at cleveland browns w 9–3 79483

--- --- --- --- --- --- ---

4 5 1981-10-04 cincinnati bengals w 17-10 44350

5 6 1981-10-11 seattle seahawks w 35-17 42671

--- --- --- --- --- --- ---

15 16 1981-12-20 pittsburgh steelers w 21–20 41056

Merged Normalized Table

date result
type

result
score

attendance

1981-09-06 w 27–20 63198

1981-09-13 w 9–3 79483

--- --- --- ---

1981-10-04 w 17-10 44350

1981-10-11 w 35-17 42671

--- --- --- ---

1981-12-20 w 21–20 41056

Normalized subtable

date result attendance

september 6, 1981 w 27–20 63,198

september 13, 1981 w 9–3 79,483

--- --- ---

october 4, 1981 w 17-10 44,350

october 11, 1981 w 35-17 42,671

--- --- ---

december 20, 1981 w 21–20 41,056

Sub Table 2:
Not Normalized

row
number

week opponent

0 1 at los angeles rams

1 2 at cleveland browns

--- --- ---

4 5 cincinnati bengals

5 6 seattle seahawks

--- --- ---

15 16 pittsburgh steelers

Sub Table 1:
Already Normalized

Value
Normalization

Structure
Normalization

Figure 4.1: Overview of NormTab. The methodology encompasses two distinct
strategies: (a) Entire Table Normalization (NormTabBasic): we provide
the LLM with the entire web table along with specific instructions for cleaning
and normalizing. The LLM reads the table and the instructions, then returns
a cleaned and normalized version of the table. (b) Targeted Normalization
(NormTabTargeted): In this approach the LLM identifies and targets only the por-
tions of the web table requiring normalization based on the table metadata and a few
sample rows. The original table is split into two subtables: one for normalization and
one already clean. The LLM processes the subtable that requires normalization then
returned a cleaned version. Finally, the normalized subtable is merged with the clean
portion, resulting in a fully cleaned and normalized table.

40

to add new columns, handling empty cells and value ranges, removing extraneous

strings, and normalizing data formats such as dates and numerical values to ensure

consistency and accuracy in reasoning tasks. Structural normalization, on the other

hand, aims to detect structural variance by analyzing the first row and first column

of a web table and determining whether a transposition is needed. If transposition is

required, we address this issue by flipping the rows and columns.

Value Normalization: Our value normalization is based on the principle that

every cell in a table must contain an atomic value (e.g., string, date, number), meaning

that cell content cannot be composite or multi-valued. This principle, known as the

first normal form in database systems [56], ensures that cell values can be smoothly

queried and updated without introducing anomalies.

The process of value normalization involves several critical steps to ensure data

consistency and accuracy. First, we focus on value splitting and extraction, identi-

fying and splitting all composite columns. This may involve adding new columns as

necessary while ensuring that no existing columns are deleted. Next, we standard-

ize date and numerical values to a uniform format, paying special attention to any

additional strings such as currency symbols, units or comma that may accompany

numerical values. Additionally, we normalize all “N/A” and blank values to NULL

to maintain consistency throughout the dataset. In SQL, Null values signify an at-

tribute value that is not available or missing, and they are treated differently than any

other values. SQL engines recognize the semantics of null values and consider this

when processing queries. For columns containing value ranges, such as “2010/11”

or “2015-2018”, we split these into two separate columns to facilitate clearer data

interpretation and processing.

An example of value normalization is shown in Figure 1.2. The original table

presents date columns with dates in textual format, a result column combining match

outcomes with scores, and an attendance column where numbers are written with

commas. The value representation in the original table is more readable for humans;

41

however, this format poses challenges for symbolic programs to process. Our normal-

ization process converts the date to the “YYYY-MM-DD” format and attendance val-

ues to a pure numerical format by removing commas. Additionally, NormTab splits

the composite result column into two separate columns: “result type” and “result -

score”, thereby organizing the data more effectively for analysis. This standardization

is crucial for maintaining data integrity across the table.

Structural Normalization: Tables can be organized either row-oriented or column-

oriented. In a row-oriented table, each row typically represents an entity or a rela-

tionship between entities, while each column describes an attribute of the entity or

relationship. Column-oriented tables, on the other hand, are stored in a transposed

fashion. Most traditional databases store data in a row-oriented format, which is

well-supported across relational databases.

Our structure normalization primarily focuses on addressing structural differences

between tables to enhance their usability for reasoning tasks. Initially, we carefully

examine the table structure to determine if the first row resembles a header, indi-

cating the table is row-oriented and requires no structural changes. However, if the

first column appears to serve as the header, we transpose the table to normalize its

structure, ensuring that the layout aligns with our adopted tabular format. Addi-

tionally, web tables sometimes include aggregated rows or columns, which can pose

challenges if specific rows or columns need aggregation to answer a query. We handle

these aggregated rows by disregarding any information present in the last row that

pertains to aggregated data, such as “total”, “sum”, or “average”. This step prevents

redundant or misleading data from affecting subsequent analyses and ensures that

the table remains clean and focused on the relevant data points.

4.2.2 Normalization Approach: NormTab

As depicted in Figure 4.1, our methodology for normalizing web tables involves two

distinct approaches to leverage the capabilities of LLMs for enhancing symbolic rea-

42

soning and query capabilities.

Entire Table Normalization (NormTab-Basic): In the first approach, we

provide the LLM with the entire table along with specific instructions for cleaning

and normalizing. The LLM reads the table and the instructions, then returns a

cleaned and normalized version of the table. However, we observed that many web

tables contain portions already in a well-structured form, with only a few columns

requiring normalization. To optimize this process, we developed a modified approach.

Targeted Normalization (NormTab-Targeted): To improve efficiency, we

developed a modified approach that targets only the portions of the table requiring

normalization. Our analysis of web tables revealed that often only a few columns need

the normalization process. This realization led to a more optimized methodology. In

this more refined approach, we first ask the LLM to identify which columns require

normalization and cleaning, based on the table metadata (such as column headers

and titles) and a few sample rows. Once these columns are identified, we split the

original table into two subtables: one that requires normalization and cleaning, and

one that is already normalized and clean. We then send only the subtable that

needs normalization to the LLM along with the instructions. The LLM processes

this subtable and returns a cleaned and normalized version. After normalization,

we merge the normalized subtable with the already clean portion of the table. This

approach not only improves the efficiency of the normalization task by reducing the

amount of data sent to the LLM but also ensures that the resulting table is in a

consistent and accurate format suitable for subsequent reasoning and querying tasks.

Following this, we analyze the overall structure of the merged table. With the

assistance of the LLM, we determine whether the table needs to be transposed based

on its layout. If needed, table transposition is performed outside of the LLM. Addi-

tionally, we check if the last row contains summarized or aggregated values and if so,

NormTab ignore this row. This selective column normalization method reduces the

workload on the LLM, enhances efficiency, and ensures that only the necessary parts

43

of the table are processed, thereby preserving the integrity of already structured data.

4.3 Experimental Setup

4.3.1 Dataset

We conduct experimental evaluations using two challenging web table datasets: Wik-

iTableQuestion (WikiTQ)[45] and TabFact [7]. These datasets are specifically curated

to test the reasoning capabilities of models on complex tabular data. WikiTQ com-

prises tables extracted from Wikipedia along with corresponding natural language

questions, while TabFact consists of tables sourced from Wikipedia paired with tex-

tual facts. These datasets provide a diverse range of table structures and content,

allowing us to thoroughly evaluate the performance of NormTab in enhancing table

reasoning tasks.

The WikiTQ standard test set comprises 416 unique tables and 4,344 samples,

while the TabFact standard test set includes 298 unique tables with 2,003 samples.

By utilizing these datasets, we aim to demonstrate the effectiveness of web table

normalization in improving the symbolic reasoning performance of LLMs, thereby

highlighting the importance of addressing the challenges posed by web table irregu-

larities.

4.3.2 Baselines and Evaluation Metrics

We compare our approach with several robust baseline methods, including TableCoT

[10], BINDER [15], DATER [12], StructGPT [40], ReAcTable [16], Rethinking-Tab-

Data [17], TabSQLify [1], and Chain-of-Table [18].

For the WikiTQ dataset, exact match (EM) accuracy was used to check if the

predicted answers matched the correct ones. To address varying text formats, a pre-

matching check using LLMs was incorporated [15]. The accuracy for TabFact was

assessed using binary classification accuracy.

44

4.3.3 Implementation

We utilized gpt-3.5-turbo-0125 as the Language Model which supports 16k context

window. We were inspired by the prompting style from [1, 17] in our implementation

of NormTab. We configured the in-context learning hyperparameters for gpt-3.5-

turbo-0125 according to the specifications outlined in Table 4.1.

Parameter
Coll

Selection

Transpose

Detection
NormTab

temperature 0.3 0.3 0.7

top p 1 1 1

sample n 1 1 1

max tokens 100 100 4500

num shots 6 1 1

Table 4.1: The hyper-parameters we set in NormTab

To compare performance, we employ few-shot in-context learning. This involves

supplying the LLM with the table title, table header, question, and three example

rows of the table, along with the question, to generate an SQL query. The SQL query

is then executed on the table to obtain the answer. Details of the prompt and a

sample output of NormTab can be found in Appendix A. 1.

4.4 Results and Discussion

In this section, we analyzed the performance of NormTab. To evaluate its impact,

we conducted few-shot in-context learning experiments to generate SQL queries for

answering specific questions. First, we performed experiments on unnormalized tables

without any modifications. Then, we compared the performance on normalized tables.

Additionally, we reported the performance of different normalization processes.

1The source code for the implementation discussed in this paper will be made publicly available
upon acceptance of the paper.

45

4.4.1 Results on Downstream Tasks

Table 4.2 and Table 4.3 presents a comparison between the performance of NormTab

and the other baselines on WikiTQ and TabFact datasets.

In the WikiTQ dataset, the results showed that after applying the targeted ver-

sion of NormTab, we achieved 61.2% accuracy, surpassing the performance of other

baseline models. The targeted NormTab approach performs slightly better than the

basic version, where the entire table is passed to the LLMs. This suggests that LLMs

may be more effective at normalization tasks when dealing with targeted smaller

tables. Additionally, we gained about 10% improvement compared to the Text-to-

SQL [21] model and SQL (gpt-3.5-turbo) model. Notably, Rethinking-Tab-Data [17]

achieved an accuracy of 56.87% by addressing structural varience using LLMs and a

Python agent. Chain-of-Table [18] employed an iterative sequence of operations to

tailor complex tables to specific questions, achieving 59.94% accuracy. However, these

and other baseline models are question-dependent. In contrast, our model adopts a

straightforward and simple approach: it normalizes the table only once, irrespec-

tive of the question, enabling answers to be derived from the normalized table using

program-aided symbolic reasoning.

In Table 4.3, we can observe a similar performance enhancement compared to the

original table in table-based fact verification tasks. We achieved approximately a 6%

performance improvement compared to the results of Text-to-SQL on the original

table. It is worth noting that table-based fact verification differs from table-based

question answering tasks. Generating a SQL query to verify a fact is more complex

than simply retrieving an answer from the table. Although other models not em-

ploying program-aided symbolic reasoning perform better in this task, these models

utilize LLMs for the verification task providing the whole table to the model. Our

experimental results show promise for utilizing symbolic reasoning in such scenarios.

46

Model Acc (%)

TableCoT [10] 52.40

Binder 56.74

Dater 52.80

ReAcTable 52.40

Rethinking-Tab-Data 56.87

Chain-of-Table 59.94

Text-to-SQL [21] 52.90

Text-to-SQL (gpt-3.5-turbo) 51.30

NormTabBasic + SQL (ours) 60.80

NormTabTargeted + SQL (ours) 61.20

Table 4.2: Performance comparison of NormTab on WikiTQ dataset. The results
clearly demonstrate that NormTab significantly surpasses other models in accuracy
when employing symbolic reasoning.

4.4.2 NormTab Evaluation

To assess the accuracy of various normalization operations, we evaluated the perfor-

mance on 100 tables, with 50 tables from each dataset, WikiTQ and TabFact. Table

4.4 summarizes the accuracy of different normalization processes. NormTab demon-

strated strong performance in normalizing dates and numbers, detecting transposition

requirements, and handling aggregated summaries in the last row effectively. How-

ever, NormTab faced difficulties in extracting and cleaning values in certain critical

tables where value extraction from the original table was particularly challenging.

The column selection accuracy indicates that LLMs can be very effective in iden-

tifying columns where values are not in the proper format. However, the accuracy

of splitting columns was low. Additional errors included managing value cleaning

and handling ”n/a” values. Although these tasks are challenging, the performance in

these areas shows the potential for utilizing LLMs to address these tasks effectively.

NormTab has shown superior performance compared to several robust models,

47

Model Acc (%)

TableCoT-chatgpt 73.10

Binder 79.17

Dater 78.01

Chain-of-Table 80.20

ReAcTable 73.10

Text-to-SQL [21] 64.71

Text-to-SQL (gpt-3.5-turbo) 62.32

NormTabBasic + SQL (ours) 67.10

NormTabTargeted + SQL (ours) 68.90

Table 4.3: Performance comparison of NormTab on TabFact dataset with other mod-
els.

demonstrating its efficacy in table normalization. A key advantage of NormTab is its

use of program-aided symbolic reasoning, which streamlines code generation without

requiring the entire table to be passed to the LLM. This enhances efficiency and

eliminates dependencies on table size and answer position. With NormTab, only key

elements like the title, header, and a few example rows are needed to generate SQL

queries and obtain accurate answers. This approach reduces computational overhead

while maintaining high accuracy, highlighting its practical utility in various table-

based tasks.

4.4.3 Analysis

We conducted a detailed analysis of the impact of NormTab on the WikiTQ dataset.

Table 4.5 shows that in 67% of cases (Category A), performance improved after

applying NormTab. In 24% of cases (Category B), performance remained unchanged,

indicating no improvement. Additionally, in 9% of cases (Category C), performance

actually decreased. The detailed experimental findings are summarized in Table 4.6.

Table 4.6 demonstrates that NormTab can improve overall performance by 9.9%.

48

Type Description Accuracy

Columns Selection Selecting columns where values are not normalized 91.0%

Transpose Detection Identify where transposition is required 97.0%

Last Row Aggregation Ignoring aggregated last rows 100.0%

Split Column Extract string and added to the new colums 87.0%

Date and Number Standardize date and number format 100.0%

N/A value Handling the table cells that contains N/A values 93.0%

Value Cleaning Removing extraneous characters / strings 82.0%

Table 4.4: Accuracy of NormTab in various types of normalization.

Notably, in Category A, we observed a substantial enhancement of 16.27%. However,

Categories B and C saw a slight decline in performance due to highly complex table

values and structures.

The basic NormTab approach involves only one LLM call, but it requires passing

the entire table to the language model as a prompt. This means the LLMmust process

a larger number of tokens, which can impact the overall normalization performance.

Research indicates that more tokens can increase the likelihood of hallucination and

can be more costly [1-3].

In contrast, the targeted NormTab approach first filters out the parts of the table

that are already well-formatted, thereby reducing the number of tokens sent to the

LLM by focusing only on the columns that need normalization. For example, consider

a table with 15 rows and 8 columns, resulting in a total of 15 * 8 = 120 table cells.

In the basic NormTab approach, all 120 cells are sent to the language model along

with the instructions. However, if we identify that only 3 out of 8 columns require

normalization, we only need to send 15 * 3 = 45 table cells. This reduction translates

to 75 fewer table cells, which is a 62.5% reduction in table size. In Table 4.7 we

summarize the table cell reduction of targeted NormTab on both datasets. We can

see that we can reduce the table size by 72% in both datasets using targeted NormTab.

Although the targeted approach requires additional LLM calls for tasks such as

49

Categories Description % of Tables

A

Where performance

enhanced after

applying NormTab

67%

B

Where no change in

performance after

applying NormTab

24%

C

Where the performance

decreased after

applying NormTab

9%

Table 4.5: Categories of tables on WikiTQ test dataset.

- Tables (A) Tables (B,C) Overall (A,B,C)

Original 46.28% 59.62% 51.30%

NormTab 62.55% 56.76% 61.20%

Change +16.27 -2.86 +9.9

Table 4.6: Result breakdown on WikiTQ dataset.

column selection and transposition detection, the total number of tokens processed

is still lower than in the basic NormTab approach. While the basic approach may be

suitable for smaller tables, the reduction in table size is crucial for normalizing larger

tables effectively. The target strategy involves multiple queries, but it refines the

normalization process by concentrating on specific sub tasks, which may help reduce

hallucination and errors.

While the performance improvement appears marginal, the significant token size

reduction makes the targeted NormTab approach highly beneficial for larger tables.

One challenge of implementing targeted normalization is the difficulty in effectively

merging two subtables, particularly when the number of rows in the normalized sub-

table does not match the remaining subtable. This issue presents an opportunity for

50

Dataset NormTab-Basic NormTab-Targeted Reduction (%)

WikiTQ (avg. # table cells) 152.26 41.82 72.53%

TabFact (avg. # table cells) 106.19 29.11 72.58%

Table 4.7: Efficiency of NormTab-Targeted.

future work to develop more robust solutions.

51

4.5 Conclusions

In conclusion, our study introduces NormTab, a framework aimed at enhancing LLMs’

performance on tabular data by normalizing web tables. Through our investigation,

we have shown the significance of web table normalization in overcoming challenges

such as mixed values and structural variance. By leveraging LLMs’ textual under-

standing in data cleaning and normalization, NormTab improves table reasoning.

Our experiments on challenging datasets demonstrate its effectiveness. Our work

contributes to advancing techniques for LLMs in handling tabular data, emphasizing

the importance of addressing web table challenges for improved performance. Fur-

ther research can explore additional normalization strategies and extend NormTab’s

applicability across various domains. This would establish a robust foundation for a

wide range of downstream tasks involving table reasoning.

52

Chapter 5

Conclusions & Future Work

5.1 Conclusions

Our proposed decomposition approach, TabSQLify has shown promise across differ-

ent table reasoning tasks, achieving remarkable performance compared to models that

require the use of a full table. This method is novel in leveraging Text-to-SQL gen-

eration to decompose tables into smaller and relevant sub-tables tailored for table

reasoning tasks. This approach provides a new perspective and direction for table

reasoning research, and we hope it will inspire more future work on combining natural

language understanding and structured data processing.

In addition, our study presents NormTab, a framework designed to enhance the

performance of LLMs on tabular data through the normalization of web tables. Our

research highlights the importance of web table normalization in addressing issues

such as mixed values and structural inconsistencies. By utilizing LLMs’ capabilities

in text comprehension for data cleaning and normalization, NormTab significantly

improves table reasoning. The effectiveness of this approach is demonstrated through

experiments on challenging datasets.

Overall, our work contributes to advancing techniques for LLMs in handling tabular

data, emphasizing the importance of addressing challenges associated with web tables

to enhance performance.

53

5.2 Future Work

Future research in table reasoning tasks using LLMs should focus on overcoming sev-

eral challenges identified in our study. Key areas for exploration include enhancing

LLMs’ ability to handle larger and more complex tables by developing techniques

that mitigate token limitations without compromising context integrity. Improving

symbolic reasoning capabilities remains crucial, necessitating advancements in seman-

tic parsing and logical inference to optimize query generation accuracy. Exploring

multi-modal integration to combine textual, visual, and tabular data for compre-

hensive analysis represents an exciting frontier. Scaling and generalizing LLM-based

approaches across diverse domains and datasets require robust models adaptable to

varying data distributions and user needs. Investigating advanced data normalization

methods to automate structural inconsistency detection and optimize data represen-

tations is essential for enhancing reliability and interpretability in LLM-driven reason-

ing tasks. Additionally, establishing standardized evaluation metrics and benchmarks

tailored for LLM-based table reasoning will facilitate meaningful comparisons and ad-

vancements in the field. These avenues of research promise to extend the capabilities

of LLMs in complex data analysis and decision-making contexts.

Limitation

Our TabSQLify approach is not without limitations. While it shows promise in reduc-

ing table size and maintaining strong performance, it may not be applicable for large

tables where the size of the subtable can exceed the context window. Additionally,

after preprocessing, the tables are stored in a relational format, but less regular tables

may require additional preprocessing.

Despite the advancements brought by NormTab, there are several limitations.

First, while our framework significantly enhances the symbolic reasoning capabili-

ties of LLMs on tabular data, there remains room for improvement in the normal-

54

ization process, particularly with more complex table structures. Additionally, for

larger tables, LLMs may sometimes produce hallucinated results, leading to inaccu-

racies in the normalized output, indicating a need for better handling of extensive

datasets. Furthermore, when dealing with tables that contain extremely noisy data,

LLMs struggle to effectively clean and normalize the information. As we measure

the accuracy using the results obtained from LLM based Text-to-SQL model, it is

important to note that some questions in the dataset may not directly map to SQL

queries which may affect the performance.

Another limitation of this work is that we use LLMs from the GPT family. Fu-

ture research could explore how different LLM architectures perform in comparison,

offering opportunities for further investigation and enhancement.

55

Bibliography

[1] M. M. H. Nahid and D. Rafiei, “TabSQLify: Enhancing reasoning capabilities of
LLMs through table decomposition,” in 2024 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, 2024. [On-
line]. Available: https://aclanthology.org/2024.naacl-long.320.

[2] M. M. H. Nahid and D. Rafiei, “Normtab: Improving symbolic reasoning in llms
through tabular data normalization,” arXiv preprint arXiv:2406.17961, 2024.

[3] T. B. Brown et al., Language models are few-shot learners, 2020. arXiv: 2005.
14165 [cs.CL].

[4] J. Wei et al., “Chain of thought prompting elicits reasoning in large language
models,” in Advances in Neural Information Processing Systems, A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available: https:
//openreview.net/forum?id= VjQlMeSB J.

[5] X. Wang et al., Self-consistency improves chain of thought reasoning in language
models, 2023. arXiv: 2203.11171 [cs.CL].

[6] Z. Gu, J. Fan, N. Tang, P. Nakov, X. Zhao, and X. Du, “PASTA: Table-
operations aware fact verification via sentence-table cloze pre-training,” in Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds., Abu Dhabi, United
Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 4971–
4983. doi: 10 . 18653/v1/2022 . emnlp -main . 331. [Online]. Available: https :
//aclanthology.org/2022.emnlp-main.331.

[7] W. Chen et al., “Tabfact: A large-scale dataset for table-based fact verifica-
tion,” in International Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=rkeJRhNYDH.

[8] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. Eisenschlos, “TaPas:
Weakly supervised table parsing via pre-training,” in Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, D. Jurafsky,
J. Chai, N. Schluter, and J. Tetreault, Eds., Online: Association for Compu-
tational Linguistics, Jul. 2020, pp. 4320–4333. doi: 10 .18653/v1/2020 .acl -
main.398. [Online]. Available: https://aclanthology.org/2020.acl-main.398.

56

https://aclanthology.org/2024.naacl-long.320
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2203.11171
https://doi.org/10.18653/v1/2022.emnlp-main.331
https://aclanthology.org/2022.emnlp-main.331
https://aclanthology.org/2022.emnlp-main.331
https://openreview.net/forum?id=rkeJRhNYDH
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://aclanthology.org/2020.acl-main.398

[9] B. Wang, I. Titov, and M. Lapata, “Learning semantic parsers from denotations
with latent structured alignments and abstract programs,” in Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 3774–3785. doi: 10.
18653/v1/D19-1391. [Online]. Available: https://aclanthology.org/D19-1391.

[10] W. Chen, “Large language models are few(1)-shot table reasoners,” in Findings
of the Association for Computational Linguistics: EACL 2023, A. Vlachos and
I. Augenstein, Eds., Dubrovnik, Croatia: Association for Computational Lin-
guistics, May 2023, pp. 1120–1130. doi: 10.18653/v1/2023.findings- eacl.83.
[Online]. Available: https://aclanthology.org/2023.findings-eacl.83.

[11] Z. Ji et al., “Survey of hallucination in natural language generation,” ACM
Comput. Surv., vol. 55, no. 12, 2023, issn: 0360-0300. doi: 10.1145/3571730.
[Online]. Available: https://doi.org/10.1145/3571730.

[12] Y. Ye, B. Hui, M. Yang, B. Li, F. Huang, and Y. Li, “Large language mod-
els are versatile decomposers: Decomposing evidence and questions for table-
based reasoning,” in Proceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, ser. SIGIR ’23,
Taipei, Taiwan: Association for Computing Machinery, 2023, 174–184, isbn:
9781450394086. doi: 10 . 1145 / 3539618 . 3591708. [Online]. Available: https :
//doi.org/10.1145/3539618.3591708.

[13] M. Pourreza and D. Rafiei, “DIN-SQL: Decomposed in-context learning of text-
to-SQL with self-correction,” in Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023. [Online]. Available: https ://openreview.net/
forum?id=p53QDxSIc5.

[14] A. Ni et al., “Lever: Learning to verify language-to-code generation with execu-
tion,” in Proceedings of the 40th International Conference on Machine Learning
(ICML’23), 2023.

[15] Z. Cheng et al., “Binding language models in symbolic languages,” in The
Eleventh International Conference on Learning Representations, 2022.

[16] Y. Zhang, J. Henkel, A. Floratou, J. Cahoon, S. Deep, and J. M. Patel, Re-
actable: Enhancing react for table question answering, 2023. arXiv: 2310.00815
[cs.DB].

[17] T. Liu, F. Wang, and M. Chen, “Rethinking tabular data understanding with
large language models,” arXiv preprint arXiv:2312.16702, 2023.

[18] Z. Wang et al., “Chain-of-table: Evolving tables in the reasoning chain for table
understanding,” arXiv preprint arXiv:2401.04398, 2024.

[19] A.-M. Popescu, O. Etzioni, and H. Kautz, “Towards a theory of natural lan-
guage interfaces to databases,” in Proceedings of the 8th international conference
on Intelligent user interfaces, 2003, pp. 149–157.

57

https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.18653/v1/D19-1391
https://aclanthology.org/D19-1391
https://doi.org/10.18653/v1/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2310.00815

[20] Y. Li, H. Yang, and H. Jagadish, “Nalix: A generic natural language search
environment for xml data,” ACM Transactions on database systems (TODS),
vol. 32, no. 4, 30–es, 2007.

[21] N. Rajkumar, R. Li, and D. Bahdanau, Evaluating the text-to-sql capabilities of
large language models, 2022. arXiv: 2204.00498 [cs.CL].

[22] M. Pourreza and D. Rafiei, “Din-sql: Decomposed in-context learning of text-
to-sql with self-correction,” arXiv preprint arXiv:2304.11015, 2023.

[23] S. Chang and E. Fosler-Lussier, How to prompt llms for text-to-sql: A study in
zero-shot, single-domain, and cross-domain settings, 2023. arXiv: 2305.11853
[cs.CL].

[24] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured queries
from natural language using reinforcement learning,” CoRR, vol. abs/1709.00103,
2017.

[25] T. Yu et al., “Spider: A large-scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, E. Riloff, D.
Chiang, J. Hockenmaier, and J. Tsujii, Eds., Brussels, Belgium: Association for
Computational Linguistics, 2018, pp. 3911–3921. doi: 10.18653/v1/D18-1425.
[Online]. Available: https://aclanthology.org/D18-1425.

[26] T. Yu et al., “CoSQL: A conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases,” in Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 1962–1979. doi: 10.18653/v1/D19-
1204. [Online]. Available: https://aclanthology.org/D19-1204.

[27] T. Yu et al., “SParC: Cross-domain semantic parsing in context,” in Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics,
A. Korhonen, D. Traum, and L. Màrquez, Eds., Florence, Italy: Association for
Computational Linguistics, Jul. 2019, pp. 4511–4523. doi: 10.18653/v1/P19-
1443. [Online]. Available: https://aclanthology.org/P19-1443.

[28] J. Li et al., Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls, 2023. arXiv: 2305.03111 [cs.CL].

[29] M. Glass et al., “Capturing row and column semantics in transformer based
question answering over tables,” in Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, K. Toutanova et al., Eds., Online: Association for
Computational Linguistics, Jun. 2021, pp. 1212–1224. doi: 10.18653/v1/2021.
naacl - main . 96. [Online]. Available: https : / / aclanthology. org / 2021 . naacl -
main.96.

58

https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2305.11853
https://arxiv.org/abs/2305.11853
https://doi.org/10.18653/v1/D18-1425
https://aclanthology.org/D18-1425
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://aclanthology.org/D19-1204
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://aclanthology.org/P19-1443
https://arxiv.org/abs/2305.03111
https://doi.org/10.18653/v1/2021.naacl-main.96
https://doi.org/10.18653/v1/2021.naacl-main.96
https://aclanthology.org/2021.naacl-main.96
https://aclanthology.org/2021.naacl-main.96

[30] W. Lin, R. Blloshmi, B. Byrne, A. de Gispert, and G. Iglesias, “An inner table
retriever for robust table question answering,” in Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds., Toronto, Canada: Asso-
ciation for Computational Linguistics, Jul. 2023, pp. 9909–9926. doi: 10.18653/
v1/2023.acl-long.551. [Online]. Available: https://aclanthology.org/2023.acl-
long.551.

[31] Q. Liu et al., Tapex: Table pre-training via learning a neural sql executor, 2022.
arXiv: 2107.07653 [cs.CL].

[32] Y. Zhao, L. Nan, Z. Qi, R. Zhang, and D. Radev, “ReasTAP: Injecting ta-
ble reasoning skills during pre-training via synthetic reasoning examples,” in
Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds., Abu Dhabi, United
Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 9006–
9018. doi: 10 . 18653/v1/2022 . emnlp -main . 615. [Online]. Available: https :
//aclanthology.org/2022.emnlp-main.615.

[33] P. Yin, G. Neubig, W.-t. Yih, and S. Riedel, “TaBERT: Pretraining for joint
understanding of textual and tabular data,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, D. Jurafsky, J. Chai,
N. Schluter, and J. Tetreault, Eds., Online: Association for Computational Lin-
guistics, Jul. 2020, pp. 8413–8426. doi: 10 . 18653 / v1 / 2020 . acl - main . 745.
[Online]. Available: https://aclanthology.org/2020.acl-main.745.

[34] Z. Cheng et al., Binding language models in symbolic languages, 2023. arXiv:
2210.02875 [cs.CL].

[35] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, Large language
models are zero-shot reasoners, 2023. arXiv: 2205.11916 [cs.CL].

[36] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What makes good
in-context examples for GPT-3?” In Proceedings of Deep Learning Inside Out
(DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration
for Deep Learning Architectures, E. Agirre, M. Apidianaki, and I. Vulić, Eds.,
Dublin, Ireland and Online: Association for Computational Linguistics, May
2022, pp. 100–114. doi: 10 .18653/v1/2022.deelio- 1 .10. [Online]. Available:
https://aclanthology.org/2022.deelio-1.10.

[37] T. Zhang, X. Yue, Y. Li, and H. Sun, Tablellama: Towards open large generalist
models for tables, 2023. arXiv: 2311.09206 [cs.CL].

[38] L. Zha et al., “Tablegpt: Towards unifying tables, nature language and com-
mands into one gpt,” arXiv preprint arXiv:2307.08674, 2023.

[39] S. Yao et al., React: Synergizing reasoning and acting in language models, 2023.
arXiv: 2210.03629 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2210.
03629.

59

https://doi.org/10.18653/v1/2023.acl-long.551
https://doi.org/10.18653/v1/2023.acl-long.551
https://aclanthology.org/2023.acl-long.551
https://aclanthology.org/2023.acl-long.551
https://arxiv.org/abs/2107.07653
https://doi.org/10.18653/v1/2022.emnlp-main.615
https://aclanthology.org/2022.emnlp-main.615
https://aclanthology.org/2022.emnlp-main.615
https://doi.org/10.18653/v1/2020.acl-main.745
https://aclanthology.org/2020.acl-main.745
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/2205.11916
https://doi.org/10.18653/v1/2022.deelio-1.10
https://aclanthology.org/2022.deelio-1.10
https://arxiv.org/abs/2311.09206
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

[40] J. Jiang, K. Zhou, Z. Dong, K. Ye, X. Zhao, and J.-R. Wen, “StructGPT: A
general framework for large language model to reason over structured data,” in
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for
Computational Linguistics, Dec. 2023, pp. 9237–9251. doi: 10.18653/v1/2023.
emnlp-main.574. [Online]. Available: https://aclanthology.org/2023.emnlp-
main.574.

[41] T. Furche, G. Gottlob, L. Libkin, G. Orsi, and N. W. Paton, “Data wrangling
for big data: Challenges and opportunities,” in 19th International Conference
on Extending Database Technology, 2016, pp. 473–478.

[42] Z. Abedjan et al., “Detecting data errors: Where are we and what needs to
be done?” Proceedings of the VLDB Endowment, vol. 9, no. 12, pp. 993–1004,
2016.

[43] T. Rattenbury, J. M. Hellerstein, J. Heer, S. Kandel, and C. Carreras, Principles
of data wrangling: Practical techniques for data preparation. ” O’Reilly Media,
Inc.”, 2017.

[44] A. Narayan, I. Chami, L. Orr, and C. Ré, “Can foundation models wrangle your
data?” Proceedings of the VLDB Endowment, vol. 16, no. 4, pp. 738–746, 2022.

[45] P. Pasupat and P. Liang, “Compositional semantic parsing on semi-structured
tables,” in Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), C. Zong and M. Strube, Eds.,
Beijing, China: Association for Computational Linguistics, Jul. 2015, pp. 1470–
1480. doi: 10.3115/v1/P15-1142. [Online]. Available: https://aclanthology.org/
P15-1142.

[46] L. Nan et al., “FeTaQA: Free-form table question answering,” Transactions
of the Association for Computational Linguistics, vol. 10, B. Roark and A.
Nenkova, Eds., pp. 35–49, 2022. doi: 10.1162/tacl a 00446. [Online]. Available:
https://aclanthology.org/2022.tacl-1.3.

[47] W. Chen et al., Tabfact: A large-scale dataset for table-based fact verification,
2020. arXiv: 1909.02164 [cs.CL].

[48] C.-Y. Tai, Z. Chen, T. Zhang, X. Deng, and H. Sun, Exploring chain-of-thought
style prompting for text-to-sql, 2023. arXiv: 2305.14215 [cs.CL].

[49] W. Zhong et al., “LogicalFactChecker: Leveraging logical operations for fact
checking with graph module network,” in Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, D. Jurafsky, J. Chai, N.
Schluter, and J. Tetreault, Eds., Online: Association for Computational Linguis-
tics, Jul. 2020, pp. 6053–6065. doi: 10.18653/v1/2020.acl-main.539. [Online].
Available: https://aclanthology.org/2020.acl-main.539.

60

https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://doi.org/10.3115/v1/P15-1142
https://aclanthology.org/P15-1142
https://aclanthology.org/P15-1142
https://doi.org/10.1162/tacl_a_00446
https://aclanthology.org/2022.tacl-1.3
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/2305.14215
https://doi.org/10.18653/v1/2020.acl-main.539
https://aclanthology.org/2020.acl-main.539

[50] H. Zhang, Y. Wang, S. Wang, X. Cao, F. Zhang, and Z. Wang, “Table fact verifi-
cation with structure-aware transformer,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), B. Webber,
T. Cohn, Y. He, and Y. Liu, Eds., Online: Association for Computational Lin-
guistics, Nov. 2020, pp. 1624–1629. doi: 10.18653/v1/2020.emnlp-main.126.
[Online]. Available: https://aclanthology.org/2020.emnlp-main.126.

[51] T. Yu et al., “Grappa: Grammar-augmented pre-training for table semantic
parsing,” in International Conference on Learning Representations, 2020.

[52] C. Raffel et al., Exploring the limits of transfer learning with a unified text-to-
text transformer, 2020. arXiv: 1910.10683 [cs.LG].

[53] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text
Summarization Branches Out, Barcelona, Spain: Association for Computational
Linguistics, Jul. 2004, pp. 74–81. [Online]. Available: https://aclanthology.org/
W04-1013.

[54] R. Agarwal, C. Liang, D. Schuurmans, and M. Norouzi, “Learning to gener-
alize from sparse and underspecified rewards,” in International conference on
machine learning, PMLR, 2019, pp. 130–140.

[55] E. Gradients, Ragas: Evaluation framework for retrieval augmented generation,
https://github.com/explodinggradients/ragas, 2023.

[56] M. Kifer, A. Bernstein, and P. M. Lewis, “Database systems: An application-
oriented approach,”

[57] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation and Compiling.
Englewood Cliffs, NJ: Prentice-Hall, 1972, vol. 1.

[58] American Psychological Association, Publications Manual. Washington, DC:
American Psychological Association, 1983.

[59] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, “Alternation,” Journal of
the Association for Computing Machinery, vol. 28, no. 1, pp. 114–133, 1981.
doi: 10.1145/322234.322243.

[60] G. Andrew and J. Gao, “Scalable training of L1-regularized log-linear models,”
in Proceedings of the 24th International Conference on Machine Learning, 2007,
pp. 33–40.

[61] D. Gusfield, Algorithms on Strings, Trees and Sequences. Cambridge, UK: Cam-
bridge University Press, 1997.

[62] M. S. Rasooli and J. R. Tetreault, “Yara parser: A fast and accurate dependency
parser,” Computing Research Repository, vol. arXiv:1503.06733, 2015, version
2. [Online]. Available: http://arxiv.org/abs/1503.06733.

[63] R. K. Ando and T. Zhang, “A framework for learning predictive structures from
multiple tasks and unlabeled data,” Journal of Machine Learning Research,
vol. 6, pp. 1817–1853, Dec. 2005, issn: 1532-4435.

61

https://doi.org/10.18653/v1/2020.emnlp-main.126
https://aclanthology.org/2020.emnlp-main.126
https://arxiv.org/abs/1910.10683
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://github.com/explodinggradients/ragas
https://doi.org/10.1145/322234.322243
http://arxiv.org/abs/1503.06733

[64] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for au-
tomatic evaluation of machine translation,” in Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, Philadelphia, Penn-
sylvania, USA: Association for Computational Linguistics, Jul. 2002, pp. 311–
318. doi: 10.3115/1073083.1073135. [Online]. Available: https://aclanthology.
org/P02-1040.

[65] J. Wei et al., Chain-of-thought prompting elicits reasoning in large language
models, 2023. arXiv: 2201.11903 [cs.CL].

[66] K. Kong et al., “Opentab: Advancing large language models as open-domain
table reasoners,” in The Twelfth International Conference on Learning Rep-
resentations, 2024. [Online]. Available: https : //openreview .net/ forum? id=
Qa0ULgosc9.

[67] S. Patnaik, H. Changwal, M. Aggarwal, S. Bhatia, Y. Kumar, and B. Krishna-
murthy, “CABINET: Content relevance-based noise reduction for table ques-
tion answering,” in The Twelfth International Conference on Learning Rep-
resentations, 2024. [Online]. Available: https : //openreview .net/ forum? id=
SQrHpTllXa.

[68] W. Zhou, M. Mesgar, H. Adel, and A. Friedrich, “Freb-tqa: A fine-grained
robustness evaluation benchmark for table question answering,” arXiv preprint
arXiv:2404.18585, 2024.

[69] Y. Sui, M. Zhou, M. Zhou, S. Han, and D. Zhang, “Table meets llm: Can
large language models understand structured table data? a benchmark and
empirical study,” in Proceedings of the 17th ACM International Conference on
Web Search and Data Mining, ser. WSDM ’24, ¡conf-loc¿, ¡city¿Merida¡/city¿,
¡country¿Mexico¡/country¿, ¡/conf-loc¿: Association for Computing Machinery,
2024, 645–654, isbn: 9798400703713. doi: 10.1145/3616855.3635752. [Online].
Available: https://doi.org/10.1145/3616855.3635752.

[70] P. Venetis et al., “Recovering semantics of tables on the web,” Proc. VLDB
Endow., vol. 4, no. 9, 528–538, 2011, issn: 2150-8097. doi: 10.14778/2002938.
2002939. [Online]. Available: https://doi.org/10.14778/2002938.2002939.

[71] Q. Liu et al., “Tapex: Table pre-training via learning a neural sql executor,”
arXiv preprint arXiv:2107.07653, 2021.

[72] W. Zhong et al., Logicalfactchecker: Leveraging logical operations for fact check-
ing with graph module network, 2020. arXiv: 2004.13659.

62

https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2201.11903
https://openreview.net/forum?id=Qa0ULgosc9
https://openreview.net/forum?id=Qa0ULgosc9
https://openreview.net/forum?id=SQrHpTllXa
https://openreview.net/forum?id=SQrHpTllXa
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.14778/2002938.2002939
https://doi.org/10.14778/2002938.2002939
https://doi.org/10.14778/2002938.2002939
https://arxiv.org/abs/2004.13659

Appendix A: NormTab
Supplementary Contents

A.1 NormTab Output Example

Here is an example output of NormTab applied to a sample table from the WikiTQ

dataset.

63

Sample Output of NormTab-Targeted

WikiTQ id: nu-129 title: 1981 Houston Oilers season

Table Columns: week, date, opponent, result, attendance

Original Table Markdown:
week	date	opponent	result	attendance
1	september 6, 1981	at los angeles rams	w 27–20	63,198
2	september 13, 1981	at cleveland browns	w 9–3	79,483
3	september 20, 1981	miami dolphins	l 16–10	47,379
4	september 27, 1981	at new york jets	l 33–17	50,309
5	october 4, 1981	cincinnati bengals	w 17–10	44,350
6	october 11, 1981	seattle seahawks	w 35–17	42,671
7	october 18, 1981	at new england patriots	l 38–10	60,474
8	october 26, 1981	at pittsburgh steelers	l 26–13	52,732
9	november 1, 1981	at cincinnati bengals	l 34–21	54,736
10	november 8, 1981	oakland raiders	w 17–16	45,519
11	november 15, 1981	at kansas city chiefs	l 23–10	73,984
12	november 22, 1981	new orleans saints	l 27–24	49,581
13	november 29, 1981	atlanta falcons	l 31–27	40,201
14	december 3, 1981	cleveland browns	w 17–13	44,502
15	december 13, 1981	at san francisco 49ers	l 28–6	55,707
16	december 20, 1981	pittsburgh steelers	w 21–20	41,056

Column Selection using LLM (Step 1): ['date', 'result', 'attendance']

Extracted Table (Normalization required):
date	result	attendance
september 6, 1981	w 27–20	63,198
september 13, 1981	w 9–3	79,483
september 20, 1981	l 16–10	47,379
september 27, 1981	l 33–17	50,309
october 4, 1981	w 17–10	44,350
october 11, 1981	w 35–17	42,671
october 18, 1981	l 38–10	60,474
october 26, 1981	l 26–13	52,732
november 1, 1981	l 34–21	54,736
november 8, 1981	w 17–16	45,519
november 15, 1981	l 23–10	73,984
november 22, 1981	l 27–24	49,581
november 29, 1981	l 31–27	40,201
december 3, 1981	w 17–13	44,502
december 13, 1981	l 28–6	55,707
december 20, 1981	w 21–20	41,056

Remaining subtable (Already Normalized):
week	opponent
1	at los angeles rams
2	at cleveland browns
3	miami dolphins
4	at new york jets
5	cincinnati bengals
6	seattle seahawks
7	at new england patriots
8	at pittsburgh steelers

64

9	at cincinnati bengals
10	oakland raiders
11	at kansas city chiefs
12	new orleans saints
13	atlanta falcons
14	cleveland browns
15	at san francisco 49ers
16	pittsburgh steelers

Normalized Sub-table (NormTab) Step 2:
date	result	result_score	attendance
1981-09-06	w	27-20	63198
1981-09-13	w	9-3	79483
1981-09-20	l	16-10	47379
1981-09-27	l	33-17	50309
1981-10-04	w	17-10	44350
1981-10-11	w	35-17	42671
1981-10-18	l	38-10	60474
1981-10-26	l	26-13	52732
1981-11-01	l	34-21	54736
1981-11-08	w	17-16	45519
1981-11-15	l	23-10	73984
1981-11-22	l	27-24	49581
1981-11-29	l	31-27	40201
1981-12-03	w	17-13	44502
1981-12-13	l	28-6	55707
1981-12-20	w	21-20	41056

Merged Table (Normalized) Step 2:
week	opponent	date	result	result_score	attendance
1	at los angeles rams	1981-09-06	w	27-20	63198
2	at cleveland browns	1981-09-13	w	9-3	79483
3	miami dolphins	1981-09-20	l	16-10	47379
4	at new york jets	1981-09-27	l	33-17	50309
5	cincinnati bengals	1981-10-04	w	17-10	44350
6	seattle seahawks	1981-10-11	w	35-17	42671
7	at new england patriots	1981-10-18	l	38-10	60474
8	at pittsburgh steelers	1981-10-26	l	26-13	52732
9	at cincinnati bengals	1981-11-01	l	34-21	54736
10	oakland raiders	1981-11-08	w	17-16	45519
11	at kansas city chiefs	1981-11-15	l	23-10	73984
12	new orleans saints	1981-11-22	l	27-24	49581
13	atlanta falcons	1981-11-29	l	31-27	40201
14	cleveland browns	1981-12-03	w	17-13	44502
15	at san francisco 49ers	1981-12-13	l	28-6	55707
16	pittsburgh steelers	1981-12-20	w	21-20	41056

Last row:
You are an advanced AI capable of analyzing and understanding information within tables.
You are given the last row of a table. Your task is to detect if the last row has any
information like aggregated rows such as ‘total’, ‘sum’ or 'average’.
Last row: ['16', 'pittsburgh steelers', '1981-12-20', 'w', '21-20', 41056]
Directly give your choice. Ensure the format is only "YES or NO" form, no other form, without
any explanation.
response: NO

65

Transpose_promt:
You are an advanced AI capable of analyzing and understanding information within tables. Read
the first 3 rows of the table regarding "1981 Houston Oilers season"

Table:
week	opponent	date	result	result_score	attendance
1	at los angeles rams	1981-09-06	w	27-20	63198
2	at cleveland browns	1981-09-13	w	9-3	79483
3	miami dolphins	1981-09-20	l	16-10	47379

Headings of a table are labels or titles given to rows or columns to provide a brief
description of the data they contain. Based on the given table, the headings of the table are
more likely to be:
(A): (week, opponent, date, result, result_score, attendance)
(B): (week, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)

Directly give your choice. Ensure the format is only "(A) or (B)" form, no other form, without
any explanation.
response: (A)
Need transposition: False

norm tab col: ['date', 'result', 'attendance']

Final merged norm_tab:
[['week', 'opponent', 'date', 'result', 'result_score', 'attendance'], ['1', 'at los angeles
rams', '1981-09-06', 'w', '27-20', 63198], ['2', 'at cleveland browns', '1981-09-13', 'w',
'9-3', 79483], ['3', 'miami dolphins', '1981-09-20', 'l', '16-10', 47379], ['4', 'at new york
jets', '1981-09-27', 'l', '33-17', 50309], ['5', 'cincinnati bengals', '1981-10-04', 'w',
'17-10', 44350], ['6', 'seattle seahawks', '1981-10-11', 'w', '35-17', 42671], ['7', 'at new
england patriots', '1981-10-18', 'l', '38-10', 60474], ['8', 'at pittsburgh steelers',
'1981-10-26', 'l', '26-13', 52732], ['9', 'at cincinnati bengals', '1981-11-01', 'l', '34-21',
54736], ['10', 'oakland raiders', '1981-11-08', 'w', '17-16', 45519], ['11', 'at kansas city
chiefs', '1981-11-15', 'l', '23-10', 73984], ['12', 'new orleans saints', '1981-11-22', 'l',
'27-24', 49581], ['13', 'atlanta falcons', '1981-11-29', 'l', '31-27', 40201], ['14',
'cleveland browns', '1981-12-03', 'w', '17-13', 44502], ['15', 'at san francisco 49ers',
'1981-12-13', 'l', '28-6', 55707], ['16', 'pittsburgh steelers', '1981-12-20', 'w', '21-20',
41056]]

merged_norm_table_markdown:
week	opponent	date	result	result_score	attendance
1	at los angeles rams	1981-09-06	w	27-20	63198
2	at cleveland browns	1981-09-13	w	9-3	79483
3	miami dolphins	1981-09-20	l	16-10	47379
4	at new york jets	1981-09-27	l	33-17	50309
5	cincinnati bengals	1981-10-04	w	17-10	44350
6	seattle seahawks	1981-10-11	w	35-17	42671
7	at new england patriots	1981-10-18	l	38-10	60474
8	at pittsburgh steelers	1981-10-26	l	26-13	52732
9	at cincinnati bengals	1981-11-01	l	34-21	54736
10	oakland raiders	1981-11-08	w	17-16	45519
11	at kansas city chiefs	1981-11-15	l	23-10	73984
12	new orleans saints	1981-11-22	l	27-24	49581
13	atlanta falcons	1981-11-29	l	31-27	40201
14	cleveland browns	1981-12-03	w	17-13	44502
15	at san francisco 49ers	1981-12-13	l	28-6	55707
16	pittsburgh steelers	1981-12-20	w	21-20	41056

66

A.2 NormTab Prompt Templates

The prompt used in NormTab is described in the following Figures.

You are an advanced AI capable of analyzing and understanding information within tables.
Your task is to normalize a web table so that it can be converted as a relational database table.

Instructions: Identify the columns based on the following instructions

1. Identify the columns If some of the values of a column needed to be extracted then extract the string and add it in new
columns.
2. Identify the columns that has date type value and the numerical value.
3. Identify the columns that has numerical values containing extra string such as ‘$’ or units.
4. Identify the columns that has ‘N/A’, blank or null.
5. Identify the columns that contain ranges such as (20-2), 2010/11, 2015-2018 etc.

Task: Your task is to identify which columns needed to be normalized to convert this table as a regular normalized
relational database table so that we can run sqlite sql query over this table.

Table:
Read the table below regarding "2008 Clásica de San Sebastián"

rank | cyclist | team | time | uci_protour_points
1 | alejandro valverde (esp) | caisse d'epargne | 5h 29' 10" | 40
2 | alexandr kolobnev (rus) | team csc saxo bank | s.t. | 30
3 | davide rebellin (ita) | gerolsteiner | s.t. | 25

Table Coll: (rank, cyclist, team, time, uci_protour_points)

Response: normalize_coll = ['cyclist']

Table:
Read the table below regarding "Sky Track Cycling"

date | competition | location | country | event | placing | rider | nationality
31 october 2008 | 2008–09 world cup | manchester | united kingdom | sprint | 1 | victoria pendleton | gbr
31 october 2008 | 2008–09 world cup | manchester | united kingdom | keirin | 2 | jason kenny | gbr
1 november 2008 | 2008–09 world cup | manchester | united kingdom | sprint | 1 | jason kenny | gbr

Table Coll: (date, competition, location, country, event, placing, rider, nationality)

Response: normalize_coll = ['date', 'competition’]
--- --- --- --- ---
--- --- --- --- ---
Table:
Read the table below regarding "[TITLE]”

[3 ROWS OF THE TABLE]

Output: Let's think step by step, and generate the final output based on the instructions without any explanation. Ensure
the final output is only “normalize_coll = [col1, col2, col3,…]”form, no other form.
Response:

Column Selection Prompt

Figure A.1: Column Selection prompt.

67

You are an advanced AI capable of analyzing and understanding information within tables.

Task: You are given the last row of a table. Your task is to detect if the last row has any information like aggregated rows
such as ‘total’, ‘sum’ or 'average’.

Last row: [LAST ROW AS A LIST]

Directly give your choice. Ensure the format is only "YES or NO" form, no other form, without any explanation.

Response:

Summarized Last Row Detection Prompt

You are an advanced AI capable of analyzing and understanding information within tables.

Read the first 3 rows of the table regrading "[TITLE]"

Table:

[3 ROWS OF THE TABLE]

Headings of a table are labels or titles given to rows or columns to provide a brief description of the data they contain. Based
on the given table, the headings of the table are more likely to be:

(A): [FIRST ROW AS LIST]

(B): [FIRST COLUMN AS LIST]

Directly give your choice. Ensure the format is only "(A) or (B)" form, no other form, without any explanation.

Response:

Transpose Detection Prompt

Figure A.2: Summarized last row detection and transpose detection prompt.

68

You are an advanced AI capable of analyzing and understanding information within tables.
Your task is to normalize a web table and convert it into a relational database table, enabling the execution of SQL queries on
the data.

Read the table below regarding "[TITLE]”

Table:

[TABLE]

Task: Your task is to normalize the structure and the values of each cell to convert this table as a regular normalized
relational database table so that we can run sqlite sql query over this table.

Instructions:

1. If some of the values needed to be splitted or extracted then extract the string and add it in new columns. i.e. from
'alejandro valverde (esp)' country 'esp' can be extracted and added to the new column.
2. Make sure the date and the numerical value is normalized to a uniform format. The date format should be (YYYY-MM-DD).
3. Be cautious of numerical values that contain comma or any extra string such as '$', '%' or units.
4. Convert the ‘N/A’ or null values to blank.
5. Handle the columns that contain ranges such as 2010/11, 2015-2018 etc to two separate columns.
6. Never delete any columns or rows.
7. Carefully remove extraneous characters if needed.

Output: Let's think step by step and generate the final output table based on the instructions without any explanation.
Ensure the final output is only “normalized_table = [[col1, col2, col3,…], [row11, row 12, row13,.....],....]”form, no other
form.

Response:

NormTab Prompt

Figure A.3: NormTab Instruction prompt.

69

Generate SQL with no explanation given the question and table to answer the question correctly.

SQLite table properties:

Table: Marek Plawgo(row_number,year,competition,venue,position,event,notes)

3 example rows:
 select * from T limit 3;
row_number | year | competition | venue | position | event | notes
0 | 1999 | european junior championships | riga, latvia | 4th | 400 m hurdles | 52.17
1 | 2000 | world junior championships | santiago, chile | 1st | 400 m hurdles | 49.23
2 | 2001 | world championships | edmonton, canada | 18th | 400 m hurdles | 49.8

Q: when was his first 1st place record?
SQL: select year from T where position = '1st' order by year asc limit 1

---- ----- ------ ----- ----
---- ----- ------ ----- ----
---- ----- ------ ----- ----

SQLite table properties:

Table: Figure skating at the Asian Winter Games(row_number, rank, nation, gold, silver, bronze, total)

3 example rows:
 select * from T limit 3;
 row_number | rank | nation | gold | silver | bronze | total
0 | 1 | china | 13 | 9 | 13 | 35
1 | 2 | japan | 7 | 10 | 7 | 24
2 | 3 | uzbekistan | 1 | 2 | 3 | 6

Q: what is the average number of gold medals won by china, japan, and north korea?
SQL: select avg(gold) from T where nation in ('china', 'japan', 'north korea’)

SQLite table properties:

Table: [TITLE] ([COLUMN NAMES])

3 example rows:
 select * from T limit 3;

 [THREE EXAMPLE ROWS]

Q: [QUESTION]
SQL:

Text-to-SQL Prompt
template (WikiTQ)

Figure A.4: Text-to-SQL prompt template for the Table QA Task on the WikiTQ
dataset.

70

Generate SQL given the statement and table to verify the statement correctly.

SQLite table properties:

Table: 1947 kentucky wildcats football team(row_number, game, date, opponent, result, wildcats_points, opponents, record)

3 example rows:
 select * from T limit 3;
row_number | game | date | opponent | result | wildcats_points | opponents | record
0 | 1 | sept 20 | ole miss | loss | 7 | 14 | 0 - 1
1 | 2 | sept 27 | cincinnati | win | 20 | 0 | 1 - 1
2 | 3 | oct 4 | xavier | win | 20 | 7 | 2 - 1

Q: the wildcats kept the opposing team scoreless in four games
SQL: SELECT (SELECT COUNT(*) FROM T WHERE opponents = 0) = 4

---- ----- ------ ----- ----
---- ----- ------ ----- ----
---- ----- ------ ----- ----

SQLite table properties:

Table: katsuya inoue(row_number, res, record, opponent, method, event, round, time, location)

3 example rows:
 select * from T limit 3;
row_number | res | record | opponent | method | event | round | time | location
0 | loss | 19 - 9 - 4 | naoyuki kotani | submission (armbar) | pancrase - impressive tour 9 | 1 | 1:44 | tokyo , japan
1 | loss | 19 - 8 - 4 | kota okazawa | ko (punch) | pancrase - impressive tour 4 | 1 | 2:42 | tokyo , japan
2 | win | 19 - 7 - 4 | katsuhiko nagata | decision (unanimous) | gcm - cage force 17 | 3 | 5:0 | tokyo , japan

Q: in tokyo , japan , hikaru sato 's match ended before round 2
SQL: SELECT (SELECT COUNT(*) FROM T WHERE location = 'tokyo , japan' AND round < 2) > 0;

SQLite table properties:

Table: [TITLE] ([COLUMN NAMES])

3 example rows:
 select * from T limit 3;

 [THREE EXAMPLE ROWS]

Q: [STATEMENT]
SQL:

Text-to-SQL Prompt
template (TabFac)

Figure A.5: Text-to-SQL prompt template for the Table-based Fact Verification Task
on the TabFact dataset.

71

	Introduction
	Motivation
	Thesis Objectives
	Thesis Outline

	Related Work
	Semantic Parsing: Text to Data
	Table Reasoning: Data to Text
	Data wrangling and imputation

	Table Decomposition
	Introduction
	Methods and Procedure
	Table Preprocessing
	Subtable Selection
	Reasoning and Answer Generation

	Experimental Setup
	Dataset
	Implementation Details
	Baselines
	Evaluation metrics

	Results and Discussion
	Model accuracy
	Scalability and robustness
	Table size reduction
	Error Analysis
	Model Comparison

	Conclusions

	Tabular Data Normalization
	Introduction
	Methods and Procedure
	Normalization Operations
	Normalization Approach: NormTab

	Experimental Setup
	Dataset
	Baselines and Evaluation Metrics
	Implementation

	Results and Discussion
	Results on Downstream Tasks
	NormTab Evaluation
	Analysis

	Conclusions

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix A: NormTab Supplementary Contents
	NormTab Output Example
	NormTab Prompt Templates

