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Abstract

This thesis studies the problem of effectively finding related pages on the Web,
where given the URL of a page, one wants to find other pages that are on the
same topic. This is a both simple and natural way of searching for resources
without being forced to formulate a search query using some keywords.

A number of problems that often arise on the Web and affect the precision
of algorithms that use the link structure of the Web to find related pages
are identified. To address these problems, several new notions of “focus”
of a collection of links are proposed and embedded within the Co-citation
algorithm. The goal is that, when searching for related pages, an algorithm
should give more focused collections of links a higher influence on the final
ranking than less focused collections. Our experiments show that the “focused”

versions of Co-citation outperform the unfocused version.



Acknowledgements

I would like to thank to my supervisors, Dr. Jorg Sander and Dr. Davood
Rafiei for their constant help and support.

I would also like to thank to the members of my committee, Dr. Eleni
Stroulia and Dr. Witold Pedrycz for their insightful feedback.



Contents

Introduction

1.1 Motivation . . . . . . . . . ..
1.2 Related Work . . . . . . . . . . . . ...
1.3 Our contribution . . . . . . . . . ... ..

Related Work

21 WWW and Web Mining . . . . ... ... .. ... ... ...
2.2 Web Structure Mining . . . . . . ... Lo
2.2.1 Studies of the Web structure . . . . . . ... ... ...
2.2.2 Relevance of Web pages . . . .. ... ... ... ...
2.2.3 Web communities . . . . . .. ...
2.3 “Related pages” algorithms . . . . . ... . ... ... ....
2.3.1 Companion algorithm . . . . . .. ... ... ... ...
2.3.2 Co-citation algorithm . . . . . .. ... ... ... ...
2.4 Work related to “pagelets” . . . . ... ...
2.5  Work related to “nepotistic” links . . . . . ... ... ... ..
2.6 Work related to“near-duplicate” Web pages . . . .. ... ..
2.7 Work related to evaluation strategies . . . . . ... ... ...

Problems with Co-citation

3.1 Original Co-citation. . . . . .. ... ... ... ...
3.2 Navigational Links . . . .. ... ... 000000
3.3 Near-duplicate pages . . . . . . . . . ...
3.4 “Unfocused” collection of links . . . . . ... ... ... ....
3.5 The need for “focus” . . . ... . ... L.
3.6 Preprocessing - Discussion . . . . . ... ... ... ...

Focused Co-citation

4.1 Ranking Function . . . . . . ... . o000
4.2 LinkFocus . . . . . . . .. .. o
4.3 Content Focus . . . . . . . ... ... oo
4.4 HybridFocus . . . . .. ..o

4.5 Summary ... ..o

S W =

10
12
13
19
20
21
24
27
29
30
30

32
33
34
40
44
47
48



5 Experimental Evaluation
5.1 Implementation . . . . . . ... ... ... L.
5.2 Evaluation Strategy . . . . . . . ... .. ...
5.3 Experimental Results . . . . . . ... ... ...
5.4 Statistical Significance . . . . .. ... L0000 oL
5.5 Discussion . . . . .. ..o L
5.6 Manual Evaluation . . . . ... ... ... 0 0.,

6 Conclusions and Future Work
6.1 Lessons Learned . . . . . . . . . . . . . . ... ..
6.2 Directions for Future Work . . . . . . . . . . . . .. ... ...

Bibliography

71
72
73
76
82
87
89

91
92
92

93



List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2

3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4
9.5
2.6
5.7
2.8
9.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

Companion algorithm . . . . . . ... ... o000
Companion: building the vicinity graph . . . . . . ... .. ..
Co-citation algorithm . . . . . . . .. ... .. ... ......
Co-citation: building the vicinity graph . . . . . . ... .. ..
Pagelet extraction algorithm . . . . . .. ... ... ... ...

Standard navigational panel . . . . . .. ... ...
Navigational links from a “more specific” to a “less specific”
domain. . . . . . . . ...
Homepages - navigational links . . . . . ... ... ... ...
Navigational links elimination . . . . . ... ... ... ...
Navigational links elimination and near-duplicates contraction.
Preprocessed Co-citation.. . . . . . . .. ... ... .. ....

LinkBased Focus . . . . . . . . . . . ... .. .. .......
ContentBased Focus . . . ... . .. . ... ... .. .....
HybridFocus: joined Link and Content Focus. . . . . . . ...
Focused Co-citation . . . . . . . . . . .. .. .. ... .....

Collapsed Open Directory . . . . .. ... ... ... .....
Preprocessed data: Precision at 10 . . . . . . ... ... ...
Preprocessed data: Average Precision . . . . . ... ... ...
Preprocessed data: Precisionat R . . . ... ... .. ....
Un-Preprocessed data: Precision at 10 . . . . ... ... ...
Un-Preprocessed data: Average Precision . . . . . ... . ...
Un-Preprocessed data: Precisionat R . . .. ... ... ...
Preprocessed Data - Reduced Set: Precision at 10 . . . . . . .
Preprocessed Data - Reduced Set: Average Precision . . . . .
Un-Preprocessed Data - Reduced Set: Precision at 10 . . . . .
Un-Preprocessed Data - Reduced Set: Average Precision

Selecting keywords: initialset . . . . . ... ... ...
Automatic selection of keywords: Precision at 10 . . . . . . .
Automatic selection of keywords: Average Precision . . . ..
Manual selection of keywords: Precision at 10 . . . . . . . ..
Manual selection of keywords: Average Precision . . . . . . . .



List of Tables

3.1 Original Co-citation - results . . . . . ... .. ... ... ... 33
3.2 Original Co-citation - Results after navigational links elimination 40
3.3 Original Co-citation - Results after navigational links elimina-

tion and near-duplicates contraction . . . . . . ... ... ... 45
3.4 Original Co-citation - Results after navigational links elimina-

tion and duplicates contraction and pagelet extraction. . . . . 47
3.5 Example: Original Co-citation . . . . . .. .. ... ... ... 49
3.6 Example: Preprocessed Co-citation . . . ... ... ... ... 49
4.1 LinkFocus . . . . . .. . . .. ... ... Y
4.2 Frequency of keywords . . . . . ... ..o 63
4.3 ContentFocus . . . ... ... ... ... ... ... .. ... 67
5.1 Evaluated Algorithms. . . . . . . .. ... .. ... .. ... 72
5.2 Preprocessed data: Overlap between methods . . . ... ... 80
5.3  Un-preprocessed data: Overlap between methods . . . .. .. 80
5.4 Preprocessed Data: Sign test and Wilcoxon sum of ranks test 83
5.5 Preprocessed Data: a=0.05. . . . . ... ... ... ..... 84
5.6 Preprocessed Data: a=0.01. . . .. ... .. ... ...... 85
5.7 Un-Preprocessed Data: Sign test and Wilcoxon sum of ranks test 85
5.8 Un-Preprocessed Data: aa=0.05. . . ... ... ... ..... 86
5.9 Un-Preprocessed Data: aa=0.01. . ... ... .. ....... 86
5.10 Selecting keywords: “computer” and “science” . . . . . . ... 88

5.11 Selecting keywords: “ubc” and “department” . . . . . . . ... 88



Chapter 1

Introduction

This thesis addresses the problem of effectively finding related pages on the
World Wide Web (WWW, Web), where given the URL of a page, we want to
find other pages that are related or similar to the given page in some context.
Given a Web page, by related Web pages, we understand those pages that
address the same topic (i.e., subject of interest) as the original page. For ex-
ample, given the homepage of a computer science department, www.cs.ubc. ca,

we deem as related homepages of other computing science departments.

1.1 Motivation

Traditional search engines take as input a query, composed of a set of keywords,
and output (ideally) a set of relevant pages. Using such search engines to locate
resources on the Web is useful in many cases. However, when expressing their
information need by a set of keywords, users often commit errors, which in
turn will determine the search engine to return a set of pages that are only
marginally relevant to the users’ interests. For example, let us consider the
case when a user is interested in locating information about Fuji, the famous
Japanese volcano. When typing the query “Fuji” on Google [20], the majority
of the high-ranked results are about photography and television, Fuji being
also a renowned company in these areas (the Mount Fuji’s homepage is ranked
30%™). There are also cases when the results returned by the search engines are
not relevant (or only tangentially relevant) to the users’ interests because of the

searching or ranking strategy of the search engines themselves. For instance,



when searching for “hub” pages, i.e. collection of links relevant to a specific
topic, Google has difficulties in returning relevant results in the first positions.
This is because the way Google ranks its results, i.e. using PageRank (see
chapter 2). For example, let us consider the case when a user wants to find
a list of scientists of the Renaissance period. When using diverse keywords

" or “renaissance scientists list”,

combination, such as “renaissance scientists ’
Google does not return any collection of such scientists, but rather pages
relevant to individual personalities of the time (or irrelevant pages).

Finding related Web pages is a both simple and natural way of searching for
resources without the need to formulate a search query using some keywords.
The input to the search process is not a set of keywords, but the URL of a
page of interest and the output is a set of related Web pages. Obviously, it
is assumed that the user has already found a page of interest. This could
be done by browsing some of the existing directories on the Web, such as
Open Directory [30], Yahoo! [42] that try to classify Web pages under a set of
categories, using a tree-like structure.

Searching for related pages has several interesting applications. One ap-
plication is the identification of topicality, i.e. identification of a set of pages
that are relevant to some degree, ranging from pages highly relevant to pages
marginally relevant, to a given topic. Starting with one page on a topic of
interest, the tool that retrieves related pages would allow the user to identify
pages that are highly relevant to the given topic. Applying the searching tool
repeatedly could further extend this collection of related pages: each of the
pages obtained in the current step could produce a set of related pages. Af-
ter several steps, the pages obtained will be only tangentially relevant to the
starting topic.

Another application is the clustering of Web pages. Assuming that a degree
of relatedness is defined, relatedness can be seen as a similarity measure, which
can be used in clustering algorithms to identify “natural” groups of pages.
Those groups may often correspond to or indicate interesting properties of

real world entities, such as user groups who share similar interests.



1.2 Related Work

Since the advent of the Web, a novel area came into shape, Web mining, which
could be generally described as the process of extracting patterns from Web
data through content mining, structure mining and usage mining. Recent
research in the Web mining field came to acknowledge that the hyperlink
structure of the Web could be a very valuable tool for locating information
([15], [34], [24], [31]). The basic assumption is that if there is a link from page
p to page ¢, then the author of page p recommends page ¢, and often links
connect related pages.

Web structure mining or link analysis has been used for different purposes:
1) to study the Web structure, 2) to compute the relevance of Web pages or
3) to identify communities on the Web.

Given the fact that link analysis is essentially about graph structure, several
models for the Web have been proposed ([33], [8], [25]). One of these models
for the Web is most often encountered. This model shapes the Web as a
directed graph, where the nodes of the graph are the Web pages and the edges
are the existing hyperlinks between Web pages: if page p is pointing to page
g (i.e. there is a hyperlink from p to ¢), then, in the graph model of the Web,
there is an edge connecting p and ¢, directed from p to q.

The structure of the Web is important for supporting the process of infor-
mation retrieval because structure is an embodiment of meaning and relation-
ship. Existing research has tried to characterize the Web structure, to better
understand the dynamics of the Web and to build models that capture these
dynamics [39].

Link analysis has been also used in the computation of relevance measures
for Web pages. 'Traditional information retrieval techniques that take into
account only term characteristics for determining document relevance are not
sufficient on the Web, due to the particularities of the Web. First, there is
what has been called in the literature the “abundance” problem: for a topic
of large breadth, there are a huge number of pages that could be returned as

relevant (i.e. all the pages that contain the query keywords). However, many of



these pages are only marginally relevant to the topic of interest or may contain
material of poor quality. Second, in many cases Web pages are not sufficiently
self-descriptive. For instance, the homepages of important search engines, such
as AltaVista [1] or Excite [16] do not contain the terms “search” and “engine”.
We can add to that the synonymy (a keyword might not appear in a document
that is relevant, but rather its synonyms) and the polysemy problems (the same
keyword might have different meanings in different contexts). All of the above
make the application of traditional information retrieval techniques insufficient
for the Web.

Analyzing the Web structure among Web pages helps address some of the
above identified problems. This is because hyperlinks encode latent human
judgment ([24], [31]), that is the creation of a hyperlink from page p to page
g means that the author of page p has conferred to some extend authority to
page ¢. Many important algorithms that are applied nowadays for information
retrieval on the Web are based on the above statement. The HITS algorithm
[24] categorizes Web pages in authorities (pages of high quality, authoritative
on the topic of interest) and hubs (pages that link to many related authorities)
and computes two measure of relevance for a Web page: an authority weight
and a hub weight. PageRank [31] used by Google to rank the results of a query
is another way of measuring the relevance of a Web page. Intuitively speaking,
the more “important” pages point to a Web page, the more “important” this
page becomes. PageRank uses the linkage structure of the Web to compute
an “importance” score for each page on the Web. The pages returned by
the search engine in response to a query are then ordered according to this
score, i.e., their PageRanks, and the final ordering is presented to the user.
Web structure has been also used to find out the “reputation” of Web pages
[34], i.e. what are the topics on which a given Web page is known for. The
algorithm explicitly incorporates document content of a given page and linked
pages as a factor in the computation ranking of the given page.

Another important application of linkage analysis is the identification of
communities on the Web. In [26], a method is proposed for inferring these

communities from the topology of the Web. This is important for studying
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the dynamics of the Web, from both social and historical perspectives.

In the “Related Work” chapter, we are going to discuss in more detail some
of the important algorithms that leverage the structure of the Web in order to
improve the retrieval of information on the Web.

Although a large body of work studies the use of linkage structure of the
Web in order to improve the search for information, few existing papers in
the literature address the problem of finding related pages on the Web ([15],
[38]). Several search engines provide a “related pages” service (e.g., [20]),
but the techniques used to retrieve related pages are typically not publicly
documented.

Most of the algorithms for retrieving related pages on the Web are based on
a technique descending from the field of bibliometrics, called Co-citation [37].
This technique counts the rate at which two documents are cited together
in the same citation list. This rate is used as a measure of relatedness of
two documents, i.e., the higher the rate, the more related they are. In the
context of the Web, links inside Web pages can be interpreted as citations,
and pages are the more related the more often their URLs appear together in
link collections of other pages.

In 1997, Spertus [38] noticed that Co-citation could be used in the context
of Web to find related Web pages. In [32], Co-citation is used as a similarity
measure for clustering Web pages. The most consistent work that addresses the
problem of finding related pages on the Web is the work of Dean and Henzinger
[15]. They proposed in 1999 two algorithms for finding related pages on the
World Wide Web. Both algorithms are using only the hyperlink structure of
Web. The first one, called Companion, is based on HITS algorithm. We will
review this algorithm in the “Related Work” chapter since is highly relevant
for our work. The second algorithm is called Co-citation, and, as the name
says, it is based on the co-citation technique. Co-citation algorithm will be
presented in detail in the “Related Work” chapter and analyzed in the chapter

3 ,“Problems with Co-citation”, since this algorithm is at the core of our work.



1.3 Ouwur contribution

In this thesis, we have analyzed Co-citation [15] and identified a number of
problems that frequently arise on the Web and may affect the precision of

algorithms that use the link structure of the Web to find related pages:

1. Navigational links
2. Near-duplicate pages

3. “Unfocused” pages, which are, intuitively speaking, pages that contain

a non-related collection of links.

Some proposals to deal with these problems have been described in the
literature. Techniques are proposed to eliminate navigational links [14] and
near-duplicate pages [4]. To deal with “unfocused” pages, a topic-independent
notion of a “pagelet” has been formalized in [2]. Our experimental evalua-
tion shows that, in the best case, only slight improvements in the results are
obtained when using these “preprocessing ” methods (it is possible that the
quality of the results of the original Co-citation decreases after applying these
techniques).

We propose a new notion of “focus” for a collection of links, which measures
the degree of agreement on a topic between the corresponding pages. The
goal is that in order to produce better results when looking for related pages
an algorithm has to give more focused collections of links a higher influence
on the final ranking than less focused collections. We formalize the notion of
“focus” in three ways: link-based, content-based, and hybrid. We embed these
notions into a “focused” version of the Co-citation algorithm and show in an
experimental evaluation that these focused versions of Co-citation outperform
the unfocused version with respect to the precision of the results, regardless
of the use of the preprocessing techniques.

Our content-based notion of focus is related to the notion proposed in [28],
which was successfully applied for finding the reputation of Web pages.

We propose a “customized” search for related pages. Because the notion

of “relatedness” is subjective, we have built an interactive application, where



we allow the user to specify his interests by choosing the keywords that he
believes relevant for the topic of the query URL.

The rest of the thesis is organized as follows. Chapter 2 gives an overview
of the work related to this thesis. Chapter 3 discusses problems with the
original Co-citation algorithm. One suggestive example is presented step by
step to illustrate our argument. Chapter 4 formalizes the notion of focus,
which is intended to overcome the identified problems. We propose several
definitions of focus, based on content and linkage structure. All approaches are
experimentally evaluated in Chapter 5 and the results show that our focused
version of Co-citation consistently outperforms the unfocused version. Finally,

we present our conclusions and we give directions for future work.



Chapter 2
Related Work

2.1 WWW and Web Mining

The World Wide Web (WWW, Web) is a huge collection of hypertext and
hypermedia documents on a diversity of topics and interests, hyperlinks and
access information.

The Web exhibits a number of idiosyncrasies that make knowledge extrac-

tion and resource discovery on the Web a very challenging task:

e The Web is a huge, widely distributed network, growing at a fast rate.
Researchers from the Online Computer Library Center have estimated
for the year 2002 that the number of unique web sites is 8,712,000 as
compared to 4,662,000 in 1999 [29].

e The Web is heterogeneous and lacks a unifying structure. The complex-
ity and diversity of Web pages if far greater than that of any traditional
document collection: Web pages could be either static (HTML pages)
or dynamic (generated from underlying databases through technologies
such as .NET);some Web pages are poor in textual content, consisting
mainly of images or may contain many idioms (navigational panels, tem-

plates, or advertisement banners etc.).

e The Web is highly dynamic. Information on the Web is constantly chang-
ing: pages are created or removed; Web services update regularly their
Web pages. Link information and access records are also updated fre-

quently.



Since the advent of the Web, a novel area came into shape, Web mining,
which could be generally described as the process of extracting patterns from
Web data through content mining, structure mining and usage mining. When

mining the Web, a number of general problems arise:

e The “abundance” problem. For a topic of large breadth, there is a huge
number of pages that could be returned as relevant. However, many of
these pages are only marginally relevant to the topic of interest or may
contain material of poor quality. The challenge is to be able to retrieve
exactly those high quality pages that are indeed relevant for a specific
topic.

e Limited coverage of the Web. Many important resources are actually
hidden in underlying databases and the access to information is achieved
by dynamically generated Web pages. Security and privacy issue have

to be taken into account when mining this kind of information.

e Limited query interface. Searching for resources on the Web is mainly
keyword-oriented. Although useful in many cases, this kind of searching
is not enough to satisfy users’ information need. Some users commit
mistakes when choosing the keywords, so that the results obtained will
be only marginally relevant to the users’ interests. The retrieval and
ranking strategies used by search engines cause sometimes difficulties
when trying to pick the “right” keywords for expressing a query. Some
alternative search interfaces exist already: “related pages” services in
function (Google [20], Teoma [40]) or resource directories (Yahoo! [42],

Open Directory [30]).

e Limited customization to individual users. The results of a given query
to a search engine are identical, independent of the user. In order to
improve the quality of the retrieved results, more information about the
context in which the query has been submitted or the personal interests

of the user has to be taken into account [27].



From a high-level perspective, the Web Mining field can be divided into

three sub-areas:

e Web Content Mining: the process of extracting knowledge from the ac-

tual content of the Web pages.

e Web Structure Mining: the process of extracting knowledge from the
hyperlink information existing on the Web. Often, Web content mining

and Web structure mining are blended together.

e Web Usage Mining: the process of extracting knowledge from Web log
records in order to gain deeper insights into the Web dynamics, which
in turn could be used for many useful applications: identify potential

customers for e-commerce, customization for individual users, etc.

Recent research in the Web mining field came to acknowledge that the
hyperlink structure of the Web could be a very valuable tool for locating
information ([15], [38], [32], [24], [10], [9], [13], [5], [12], [11], [31], [18]). The
focus of this thesis is on Web Structure mining, or linkage analysis, as it is
often referred in the literature. In the following section, we will review some

of the most important applications that leverage on linkage analysis.

2.2 Web Structure Mining

Web structure mining or linkage analysis has its roots in the field of biblio-
metrics, which can be defined as the study of written documents and their
citation structure. Bibliometrics is important to the Web studies because the
Web could be regarded as a huge publication network in which the “prestige”
of individual documents (Web pages) depends upon community recognition,
which is often certified by direct hyperlinking.

Citation indezxes, i.e. indexes that describe explicitly the linkage of cita-
tions between papers, have been used for searching and management of the
information for a very long time. The oldest major citation index is, ap-

parently, Shepard’s Citations [36], developed in 1873 for indexing law-related

10



material (other authors suggests that the earliest form of citation indexing
exists in the 14%-century Hebrew texts [41]). The 20" century brought an
explosion of scientific literature so that new tools were needed to manage all
this new information. E. Garfield developed Science Citation Index (SCI) [17]
as an automated tool for document searching. SCI has proved to be a simple,
but effective tool: it takes into account the authors’ citations instead of an
indexer’s subjective judgments, so that many of the problems associated with
the term and title-based analyses are avoided.

One of the problems addressed within the field of bibliometrics was to
measure the similarity between a pair of documents. Two basic similarity
functions on documents emerged: bibliographic coupling (Kessler [23]) and co-
citation (Small [37])). Given two documents p and g, bibliographic coupling
counts the number of documents cited by both p and ¢, where co-citation
counts the number of documents that cite both p and ¢q. Both these measures
have been applied on the Web in the context of diverse applications, e.g.,
clustering of Web pages or the retrieval of related pages.

Bibliographic coupling seems to be unsuitable for the Web, because is sus-
ceptible to spamming. For example, a person could cite (i.e., link to) in his or
her homepage all the Web pages cited also by Yahoo!’s homepage, so that bib-
liographic coupling will deem the person’s homepage and Yahoo!’s homepage
as similar, which will be obviously misleading. This kind of spamming is not
possible within collections of scientific papers: a scientific paper does not cite
other papers arbitrarily; it cites the papers that are to some degree relevant
to it.

Co-citation is based on the opinions of independent authors and it is less
susceptible to spam, so that it is more suitable for Web linkage analyses.
Theoretically, if one would want to mislead co-citation, i.e., to determine co-
citation to consider two pages p and ¢ similar, although they are not, one would
have to create a large enough number of Web pages that constantly cite p and
q together. These fake pages should not be identical and should not reside
on the same Web site, which is more difficult to achieve. The applicability of
co-citation on the Web will be detailed in the section 2.3.2 of this chapter.

11



Web structure mining or linkage analysis has been used for different pur-
poses: 1) to study the Web structure, 2) to compute the relevance of Web
pages or 3) to identify communities on the Web. We will review each of the
above application areas and survey some of the most important algorithms

and results.

2.2.1 Studies of the Web structure

The study of the Web graph reveals valuable information that could be used
not only to improve searching, crawling and community discovery on the Web,
but also to study the sociological phenomena that characterize its evolution.
Empirical observations have been drawn for a number of measurement exper-

iments on the Web:

e The in-degree and out-degree of nodes in the Web graph follow a power

law distribution [25].

e The Web exhibits a “small world” phenomenon. In a graph with a “small
world” topology, nodes are highly clustered, yet the minimum distance
between any two nodes in the graph is short. Studies of the Web ([8], [25])
have shown that the Web contains a giant strongly connected component
(SCQC), i.e., a set of Web pages such that for all pairs of pages (u,v) in
this set, there exists a directed path from v to v. The average connected
distance is defined as the average length of the path over all pairs for
which the length is finite. If we consider the Web undirected, the average

connected distance was measured to be 6.83 [25].

Other authors have imagined new theoretical models for the Web. Kleinberg
et al. [25] proposed a new random graph model that reflected the process
of content-creation on the Web by applying link-copying operations in the
construction process. Pirolli et al. [33] discussed other two graph structures
for the Web, one representing the similarity between the textual content of
pages and another representing the usage patterns of the users (“the clicks-
through”). Other perspectives try to build models that capture the complex
dynamics of the Web [39].

12



The most often encountered model of the Web is the one in which the Web
is seen as a directed graph, where nodes represent Web pages and an edge
directed from node p to node ¢ represents the hyperlink from page p to page
g. Other similar approaches model the Web at different levels of granularity.
For instance, the Web could be modelled as a directed graph, where the nodes
represent Web sites, instead of Web pages, and a directed edge is drawn from
site P to site @ if at least one of the Web pages existing within P links to at
least one of the Web pages existing within Q.

Our understanding of both structure and dynamics of the Web can and
should be used in solving the problem of information searching on the Web,
but not necessarily as a stand-alone tool, but combined with contextual infor-

mation, such as text or usage information.

2.2.2 Relevance of Web pages

Link analysis has been also used in the computation of relevance measures
for Web pages. Techniques that take into account only term characteristics
for determining document relevance are not suitable for the Web because of
specific problems that appear on the Web. On the Web, there might be a
large number of pages matching the query keywords, so that the challenge
is to distill those high-quality pages that are indeed relevant to the query
(the “abundance” problem). Some pages are poor in textual content: they
contain mostly images and/or navigational-related information. Other pages
contain “confusing” terms, such as misspelled words or words irrelevant for
the topic of the page. Many pages are not sufficiently self-descriptive. For
instance, the homepages of important newspapers, such as Washington Post
(http:/ /www.washingtonpost.com/) or Time (http://www.time.com/time/) do
not contain the term “newspaper”, but they rather have a varying content,
according to the news of the day. To that we can add standard problems
from the information retrieval field, such as the synonymy and the polysemy
problem.

Existing research has tried to address some of the above identified problems

by exploiting the linkage structure between Web pages. The majority of the
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algorithms used today for resource discovery and knowledge extraction on the
Web are based on the assumption that hyperlinks enclose meaningful relation-
ships between pages. Some of these algorithms take into consideration only
the existing linkage structure on the Web; however, there are several variants
that combine the linkage information with the textual content of Web pages

in order to improve the precision of the retrieved results.

HITS and its variants

Kleinberg developed the HITS algorithm (Hyperlinked-Induced Topic Search)
[24] in order to address the “abundance” problem on the Web: given a search
topic (in the form of a query), output high-quality pages that are highly rele-
vant to the topic query. Such pages are called authoritative.

The HITS algorithm exploits only the linkage structure of the Web. The
“importance” or how “authoritative” a Web page is with respect to the query
topic should be assessed based on the collective endorsement of that page
by diverse authors on the Web. The basic intuition is that the authority of
the page is proportional to the number of its in-links: the more in-links a
page has, the more “important” it is. However, the Web exhibits a number of
particularities that make the above intuition invalid. First, not every hyperlink
represents the endorsement that we seek. There are links created for other
purposes such as navigational or paid advertisements links. Such links are
called “nepotistic” (see section 2.5). Second, because of competitive interests,
authoritative pages on some topic will rarely point to each other. For example,
Pepsi might prefer not to endorse the competition’s page, Coca Cola. Third,
not even the textual content can help, because, as discussed above, many
authoritative pages are not self-descriptive.

These unique features of the Web linkage structure led to the consideration
of another important category of Web pages, the hubs. A hub is a Web page
that provides collection of links to authorities. Hubs might not be prominent
themselves or they might have few in-links. Examples of hubs are lists of rec-
ommended links on individual homepages or professionally assembled resource

lists on commercial sites.
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The input to the HITS algorithm is a search query (given as a set of
keywords), which is sent to a search engine (in the original paper, AltaVista
[1] was used). The top-most pages (in the paper 200 pages) returned by the
search engine form the root set. Because many of the pages from the root set
are presumably relevant to the search topic, some of them should contain links
to the authorities on the topic. The base set is obtained by expanding the root
set with all the pages linked by some page in the root-set and all of the pages
that link to a page in the root set, up to a designated size cut-off (in the range
1000 to 5000). Hyperlinks between pages on the same host (where the host is
assumed to be determined from the URL string) are not considered, because
they are assumed to be by the same author and hence not indicators of value.
The base set together with the existing hyperlinks between its pages is called
the neighborhood graph. Let the neighborhood graph be G = (V,E).

On the resulting neighborhood graph, a weight-propagation scheme is pro-
posed. The main idea is that hubs and authorities have a mutually reinforcing
relationship. A page that points to many other pages is a good hub, and a
page that many other pages point to is a good authority. It follows that a page
that points to many good authorities is even a better hub, and a page pointed
to by many good hubs is even a better authority. Every page (node) v € V
receives two scores: a hub score h(v) and an authority score a(v), initialized
to any positive number. The algorithm repeatedly updates hub and authority

scores, a and h, as follows:

a(v)= ) h(u) (2.1)

(uw)EE

(viu)eE

After each iteration, the score vectors a and h are normalized, i.e.

|h|y = Zh(v) =lal, = Za(v) =1.

v

If A is the adjacency matrix for the neighborhood graph G (V i, j € V,
Ali,j]=1,if (i, j) € E; A [i, j] = 0, otherwise), then the formulas (2.1)
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and (2.2) could be expressed as

a=A"h (2.3)
h = Aa (2.4)
where |h|; = |a]; = 1 and AT is the transpose matrix of A (the matrix

obtained by interchanging the rows and columns of A). Based on the power
iterations method [19], it is shown that the algorithm converges and a will
be the principal eigenvector of AT A, and h, the principal eigenvector of AAT.
Pages with high authority scores are expected to have relevant content and
pages with high hub scores are expected to contain links to relevant content
pages.

Finally, the HITS algorithm outputs the top-most authorities and the top-
most hubs.

The Clever system ([12], [11]) has been developed at IBM as an attempt
to use the HITS algorithm as a foundation for a search engine. However, a
number of problems have been shown to exist with the HITS algorithm.

Bharat and Henzinger [5] discovered what they called mutually reinforcing
relationship between hosts. In many trials with HITS, they found a pair of
distinct hosts so that a set of documents on one host pointed to a single docu-
ment on the second host, which increased the hub scores of the documents on
the first host and the authority score of the document on the second host, or,
the reverse case, when a single document on the first host pointed to a set of
documents on the second host, which caused a similar problem. Assuming that
the set of documents on each host is authored by a single person/organization,
mutually reinforcing relationship between hosts give excessive weight to the
opinion of a single person. They proposed an edge-weighting scheme in or-
der to make sure that each distinct host is worth one unit of voting power.
Specifically, if there are k£ edges from pages on a first host to a single page on
a second host, each edge will receive an authority weight of 1/k. This weight
will be used in the computation of the authority score of the document on the
second host. If there are [ edges from a single page on a first host to a set of

pages on a second host, each edge will receive a hub weight of 1/1, which will
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be used in the computation of the hub score of the document on the first host.
If an edge connects nodes on the same host, the weight of the edge will be 0.
By assigning fractional weights to the edges, the algorithm makes sure that
all the documents on a single host have the same influence on the document
they are connected to, as a single document would. This was one of the major
improvements to the original approach.

It has been also noticed that HITS does not perform too well when the
search topic is not sufficiently broad, so that not enough relevant pages will
exist in the neighborhood graph G. In this case, broader topics will be rep-
resented by a denser sub-graph of hubs and authorities in G and HITS will
return results relevant to the broader topic. This phenomenon is called topic
drift. Sometimes, the broader topic is a natural generalization of the query
topic. For instance, results for the query “movie awards” drifted to results
pertaining to the more general domain of “movie companies”. This is called
topic generalization.

Different approaches were devised to deal with these problems. Clever
system addressed these problems in two ways. First, if a fixed number of
query terms are found within the anchor text and the surrounding context
(“activation window”) of a link, the edge corresponding to the link in the
neighborhood graph is assigned a larger weight. The size of the “activation
window” was tuned by trial-and-error. Second, at the origin of the topic
drift problem is the presence of “mixed” hubs, which are pages that include a
collection of links of which only a small subset was relevant to the query. This
could cause authority scores to diffuse from relevant links to less relevant links.
The proposed solution was to break “too long” hubs at prominent boundaries
(such as <UL> or <HR>) into “pagelets”, defined as contiguous sets of links.

In order to address the same problems, Bharat and Henzinger [5] computed
a vector space representation of the documents in the base set and then pruned
off pages that were “too far” from the vector space centroid in terms of cosine
similarity measure. This technique is efficient for improving precision(i.e., the
percentage of retrieved documents that are in fact relevant to the query topic),

but it might reduce recall(i.e., the percentage of documents that are relevant
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to the query and were, in fact, retrieved) since several mixed hubs are pruned.
In the case of broad queries, losing a few hubs might not be a problem, but

for narrow queries this technique might distort the results.

Page Rank

PageRank [31] is the algorithm used by the popular search engine Google [20]
to rank its crawled Web pages. However, PageRank is not the only component
used by Google to improve the quality of the retrieved results. Google uses
several other features, such as the anchor text, or visual clues embedded within
the Web pages (e.g., smaller fonts versus larger fonts). More details on the
“anatomy” of Google are provided in [6].

Page et al. proposed a measure of the relative “prestige” of a Web page,
called PageRank. The PageRank for a particular page is recursively defined
as the weighted sum of the PageRanks of the pages that point to it. The
rank of each page is propagated evenly to its outgoing links. The “random
surfer” model captures this computation: a user “surfs” the Web by clicking
on successive links at random and, from time to time, it is possible to jump to
a random page with a given probability D (this probability corresponds to the
“dampening factor” used in the PageRank’s formula). The PageRank score of
a page is the probability that the surfer visits this page when traversing the
Web according to the above model.

PageRank scores are computed off-line for all the pages crawled by a Web
crawler, as opposed to the authority and hub scores, which are computed dy-
namically in response to a given query. Another important difference between
PageRank and HITS is that PageRank has no notion of hubs: pages only con-
fer authority to each other. PageRank would not give a high rank to a page
that points to many good authorities, but it is not pointed to by many pages.
These hub pages are usually good collection of links that users find useful as

overviews.
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Page Reputation

Rafiei and Mendelzon [28] proposed a method for discovering the reputation
of a given Web page in the context of some topic. The paper presents a search
process where the input is the URL of a page and the output is a ranked
set of topics on which the page has a reputation: e.g., if the input URL is
www. gamelan.com, then a possible output is “Java”.

The algorithm explicitly incorporates textual information with pure link
analysis. The paper proposes two measures that relate a page p and a topic t:
the penetration of page p on topic ¢, which is defined as the fraction of pages
on topic ¢t that point to page p and the focus of page p on topic ¢, defined
as the fraction of pages pointing to p that are on topic . For the purpose
of this algorithm, a page p is on topic t simply when it contains the term
of phrase ¢t. This notion of focus of a Web page p on the topic ¢ is similar
in intuition with our notion of “focus”, introduced in chapter 4, “Focused
Co-citation”. However, our notion of focus is designed in a different setting,
having a different purpose, and we propose several, more complex schemes for

its computation.

2.2.3 Web communities

Communities on the Web are simply defined as sub-graphs of Web pages that
have more links among themselves than to pages outside the graph and corre-
spond to groups of users that share a common interest [26]. Examples of Web
communities are newsgroups, webrings or resource collections in directories
such as Yahoo [42].

Several approaches have been proposed for finding such communities on
the Web. The method proposed by Kumar et al. [26] “trawls” the Web for
graph structures that are indicative signatures of the communities. They show
that usually a community contains a bipartite core (i.e., a complete bipartite
graph) and that co-citation is an early indication of emerging communities.
Gibson et al. proposes a method for identifying Web communities based on

identifying hubs and authorities on the Web [18].
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Identifying and distinguishing between Web communities could be used to
the benefit of search engines (i.e., focus their search on narrow but topically
related subsets of the Web) and portals (i.e., target the advertisement at a
very precise level), as well as to the studies concerned with the sociology of
the Web.

2.3 “Related pages” algorithms

Although a large number of schemes that exploit the structure of the Web
have been proposed, few existing papers address the problem of identifying
related pages on the World Wide Web.

The majority of the algorithms that aim to find related pages are based
on a technique descending from the field of bibliometrics, called co-citation.
Small [37] developed in 1973 co-citation analysis as a method for assessing the
common intellectual interest between a pair of documents. He noticed that
the frequency at which two documents are cited together in citation lists is an
indication of the topical relationship between the two documents: the higher
the frequency, the more related the documents are.

Spertus [38] emphasizes the need for exploring not just the text within the
Web pages, but also the linkage structure of the Web, in order to build effective
Web information retrieval tools. A system, called ParaSite, is presented in the
paper [38], that attempts to mine structural information on the Web by lever-
aging the many forms of links that exist on the Web (e.g., hyperlinks within a
site could be categorized as upward, downward or crosswise with respect to the
file hierarchy; hyperlinks to other sites are referred to as outward). The paper
discusses the variety of link information existing on the Web, the differences
between the Web and conventional hypertext and gives potential applications
of link based analyses. Such an application is the discovery of related Web
pages. Spertus notices that co-citation could be used in the context of the
Web to find related pages. That is, if page A points to both pages B and C,
then B and C' might be related.

Pitkow and Pirolli [32] uses co-citation as a similarity measure for cluster-
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ing Web pages in order to automatically categorize and aggregate hypertext
documents. They notice that the reasons that motivated the development of
citation and co-citation analysis are applicable also in the case of the World
Wide Web. Citations in scholarly papers link documents to related documents.
Similarly, on the Web, hyperlinks (when not used randomly) provide semantic
linkage between the Web pages. Using only co-citation analysis as a similarity
measure might reveal interesting topological patterns that in turn correspond
to the semantic structure of communities of knowledge.

A technique for finding related items (such as Web pages, or compact disks)
to a given item K is collaborative filtering [35]: the items related to K are
those items that have been liked /recommended by other users who also liked
K. Recommendations to a user are based on the preferences of other users that
have similar profiles. The assumption is that items that have been considered
likeable/similar by one user are going to be considered likeable/similar by
another user with a similar profile. In the case of the Web, if a person links
to pages P and (), we might expect that people who like P may also like @),
especially if the links to P and () are close to each other in the referencing
page ([38]).

The most consistent work that we are aware of is the paper of Dean and
Henzinger “Finding related pages on the World Wide Web” (1999) [15] that
proposes two algorithms for finding related pages: Companion and Co-citation.
Both algorithms use only the hyperlink structure of the Web to identify related
Web pages. They neither exploit the textual content of Web pages, nor do
they examine patterns of how users tend to navigate among pages. The only
information being used is the order in which the links appear within a web
page.

In the next two sections, we will present in detail the Companion and

Co-citation algorithm, since they are highly relevant for this thesis.

2.3.1 Companion algorithm

In this section, we present the Companion algorithm [15] that identifies related

Web pages to a given page by taking into account only the linkage structure
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existing amongst Web pages and the order of the links within a Web page.

In order to present the Companion algorithm, we need to introduce some
notation. The Web is modeled as a directed graph, G = (V, E), where the
set of nodes V' corresponds to Web pages and the edges E corresponds to the
existing links between pages: an edge in the graph G between node p and node
g corresponds to a link from page p to page ¢, in this direction. A page p is
called a parent of page ¢ if there is a link in page p pointing to page ¢. In this
case, we call g a child of page p.

The Companion algorithm is based on the HITS algorithm [24]. It takes
as input a query URL u and outputs a set of related pages. It consists of the

following steps:

Input: a Web page given by its URL u.
1. Build a vicinity graph for wu.
2. Contract duplicates and near-duplicates in this graph.
3. Compute edge weights based on host-to-host connections.

4. Compute a hub score and an authority score for each node in the
graph and return the top ranked authority nodes.

Qutput: return as related pages the pages with the 10 highest authority
scores.

Figure 2.1: Companion algorithm

These steps are described in more detail bellow.

Stepl: building the vicinity graph The wicinity graph consists of the
query URL wu, at most B (back) parents of u, at most F (forward) children
of u, and for each selected parent (child) of u, up to BF (FB) of its children
(parents) different from wu. Selecting BF (F'B) children (parents) for each
parent (child) of u exploits the order of links within a Web page. Specifically,
if a parent p of u has more than BF'+1 children, then the algorithm selects up
to BF/2 children pointed to by the BF'/2 links on p immediately preceding
the link to u and up to BF/2 children pointed to by the BF/2 links on p
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immediately succeeding the link to u (ignoring duplicate links). If a parent p of
u has less than BF children, the algorithm selects all its children. Analogously,
for every child page ¢ of the query URL u the algorithm selects up to F'B
parents ”surrounding® (i.e., preceding or succeeding the link to u, except u

itself. Figure 2.2 illustrates the construction of the vicinity graph:
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Figure 2.2: Companion: building the vicinity graph

A stop-list of 21 URLs (e.g., www.yahoo.com, www.microsoft.com/ie/
download.html) is used to exclude “popular” pages from the vicinity graph
only when the query URL is not a “popular” URL itself (if the query URL is
a “popular” page, then the “popular” pages are allowed in the vicinity graph
because they might be in fact related). “Popular” pages are pages that are un-
related to most queries and have very high in-degree (the in-degree of a given
Web page is defined as the number of pages that point to the given page).

When building the vicinity graph, edges between nodes on the same host
are omitted. The paper mentions briefly that the host can be determined from
the URL string, but the heuristic used is not explained.

The selection of BF (FB) children (parents) when building the vicinity
graph is based on the assumption that links to pages on a similar topic “tend
to be clustered together, while links that are farther apart on a page are less

likely to be on the same topic” [15].

Step2: contracting duplicates and near-duplicates After building the

vicinity graph, the duplicate and “near-duplicate” nodes are contracted. Two
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nodes are near-duplicates if (a) they each have at least 10 links and (b) at
least 95% of their links are in common. When two near-duplicate nodes are
found, they are merged into a single node, whose links are the disjoint union
of the links of the two near-duplicates.

The authors of the paper empirically noticed that allowing “near-duplicate”
nodes in the vicinity graph greatly distorts the precision of the Companion

algorithm’s results.

Step3: assigning edge weights The edge-weighting scheme assigns weights
to the existing edges in the vicinity graph, as described in the previous work on
topic distillation [5] to address the problem of mutually reinforcing relationship

between hosts (see 2.2.2).

Step4: computing hub and authority scores Hubs and authorities
scores are computed for each node in the vicinity graph using a modified
version of the HITS algorithm, which takes into consideration the previously
computed edge weights.

The documents with high authority scores are expected to have relevant
content, and the documents with high hub scores are expected to contain links
to pages with relevant content. The algorithm returns as related pages the top
10 highest authority scores.

Kleinberg suggested in [24] that HITS could be used for finding related
pages on the Web. However, Companion builds a slightly different neigh-
borhood graph and brings a number of improvements, such as exploiting the
order of links within a Web page, elimination of near-duplicate pages from the
neighborhood graph and the edge-weighting scheme (which did not exist in
the original HITS).

2.3.2 Co-citation algorithm

In this section, we present the Co-citation algorithm that is at the core of
our work. Similarly to the Companion algorithm, Co-citation exploits only

the linkage structure existing amongst Web pages and the order of the links
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within a Web page in order to identify related pages.

We need to introduce some notation in order to present the Co-citation
algorithm. A sibling of a page p is another page ¢, so that p and ¢ have at
least one parent in common. We will refer to two pages, p and ¢, as being
co-cited if and only if they have at least one common parent. The degree of
co-citation for a pair of pages is defined as the fraction of parents that the two
pages have in common out of the total number of parents.

The Co-citation algorithm as described in [15], takes as input a Web page,
given by its URL » and outputs a set of related web pages. As its name says,
this algorithm is based on the co-citation technique: the higher the frequency
two documents are cited together in the same citation list, the more likely they
are similar. In the case of the Web, the algorithm is examining the siblings
of the query URL u. The higher the degree of co-citation between a sibling
and the query URL, the more related is this sibling to the query URL. The

Co-citation algorithm consists of the following steps:

Input: a Web page given by its URL u.
1. Build a vicinity graph for u.

2. For each of the siblings of the query URL u, compute the degree
of co-citation with w.

Qutput: return as related pages the pages with the 10 highest degrees
of co-citation.

Figure 2.3: Co-citation algorithm

A detailed description of these steps follows:

Stepl: building the vicinity graph The vicinity graph consists of the
query URL u, at most B(back) parents of u, chosen at randomly from the
set of parents of u, and for each of the chosen parents, p, at most BF (back-
forward) outgoing links (children), so that these links surround the link to u.
The selection of the BF outgoing links for each of the considered parents is

identical to the selection of children explained in the Companion algorithm:
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for a parent p, the algorithm selects up to BF/2 links that appear on the
page p immediately before the link to v and up to BF/2 links that appear
immediately after the link to u. This is the part of the algorithm that exploits
the order of links within a Web page and it is based on the assumption that
links that appear close together in the same Web page are likely to be on the
same topic (related).

Figure 2.4 summarizes the construction of the vicinity graph:

5] P2 |
<"1 Parenss
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Figure 2.4: Co-citation: building the vicinity graph

Step2: computing degrees of co-citation The set of children selected for
each of the parents in the vicinity graph forms the set of siblings. For instance,
in figure 2.4, each of the Web pages BF'y, BFy, BF3, BF 4, BF'5, BF is a sibling
of the query URL, u. For each one of these siblings, the algorithm computes
the degree of co-citation with u. The degree of co-citation for a sibling and the
query URL wu is computed as the number of parents that they have in common

divided by the total number of parents in the vicinity graph:

no_common_par ents

Degree_Of-CO — citation(BFi; u) = ll t
no_att_parents

In the above picture, for the sibling BF5 and u, the computed degree of co-
citation is 2/3, because BFy has 2 parents in common with u (i.e., p; and
p2) and the total number of parents in the vicinity graph is 3 (p1, ps and p3).

Similarly,
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Degree_of co — citation(BFy,u) = 1/3
Degree_of co — citation(BF3,u) = 1/3
Degree_of co — citation(BFs,u) = 1/3
Degree_of co — citation(BFg,u) = 1/3
Degree_of co — citation(BFy,u) = 3/3

The siblings are ranked according to the computed degrees of co-citation.
The algorithm outputs the top 10 siblings with the highest degrees of co-
citation as related pages to the query URL . In the case of our example, BF,
is ranked first, BF'5 second, followed by the rest of the siblings that have the
same rank.

As the authors of the algorithm notice, when there is an insufficient level
of co-citation with u, i.e. when the link structure around the starting URL is
sparse, many unrelated siblings may be deemed as related. This is why, when
there are not at least 15 nodes, which are co-cited with u at least twice, the
last path element is removed from u and the algorithm is restarted with the

new URL u/(e.g, if v = a.com/X/Y/Z, then u' = a.com/X/Y).

2.4 Work related to “pagelets”

Related to our thesis is also the work that has been done regarding the notion
of a “pagelet”. The intuition is that links that are close to each other within
a Web page tend to point to pages on the same topic. This intuition has been
exploited by some of the existing work as follows.

Chakrabarti et al. [10] uses the links and their order within a Web page
for categorization of the Web pages. They show that the links that appear
near a given link in the page order often point to pages that are on the same
topic.

The name “pagelet” first appeared in [11] and a “pagelet” was defined as
a contiguous set of links. The majority of work developed around the HITS
algorithm explores to some extent the notion of a pagelet in an attempt to
break the hub pages into more topical-cohesive units. However, the “pagelet”
was never defined formally, its definition remained as vague as a “contiguous”

set of links.
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Chakrabarti [9] and Chakrabarti et al. [13] propose (2001) two algorithms
for partitioning “mixed” hubs into pagelets in the context of the HITS/Clever
algorithm. The first algorithm uses only the DOM (Document Object Model)
representation of a Web page to split the hubs into pagelets, while the second
algorithm takes into account also textual content in order to distinguish which
pagelets are more topically cohesive. These algorithms are embedded within
the HITS settings, are computationally expensive and partitioning of Web
pages into pagelets is dependent on the given query.

In 2002, Bar-Yossef and Rajagopalan [2] formalize the notion of a “pagelet”
and provide a semantic and syntactic definition, as well as an algorithm for
extracting the pagelets from a Web page. Semantically, a pagelet is defined as
a region of a Web page that

1. Has a single, well-defined topic or functionality; and

2. Is not nested within another region that has exactly the same topic or

functionality.

A Web page is composed of one or more pagelets, corresponding to the multiple
topics and functionalities encompassed within that page.

The paper provides also a syntactic definition that attempts to capture the
semantic of a pagelet. The heuristic proposed constructs the HTML tree for
a Web page and takes into consideration only certain elements of the HTML
tree, such as tables, paragraphs, headings, list, etc., in order to decompose
a Web page into pagelets. Such HTML elements might be useful clues when
trying to extract the pagelets from a Web page: often, the creators of Web
pages use such HTML mark-up tags to separate distinct regions. Syntactically,
a pagelet is defined as an HTML element in the parse tree of a page p, so that:

1. None of its children in the HTML tree contains more than £ hyperlinks;

and

2. None of its ancestor elements in the HT'ML tree is a pagelet.
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If an HTML element contains at least k£ hyperlinks, then it probably repre-
sents a distinct topic/functionality; otherwise, it is more likely to be topically
integrated in its parent. Figure 2.5 illustrates the algorithm proposed for the

extraction of pagelets:

Partition(p){
T, := HTML parse tree of p
Queue := root of T,
while (Queue is not empty){
v := top element in Queue
if (v has a child with at least & links)
push all the children of v to Queue
else
declare v as a pagelet

Figure 2.5: Pagelet extraction algorithm

In our preprocessing phase, we adopt this definition and use the above

algorithm to extract pagelets (see chapter 3).

2.5 Work related to “nepotistic” links

As many authors noticed ([24], [5], [31]), the creation of a link from page p to
page q represents the endorsement of page ¢ by the author of page p. However,
on the web today there are many links that violate this assumption. Algo-
rithms that exploit the linkage structure of the Web will be affected by the
presence of such links that are present for reasons other than merit. Davi-
son [14] calls these links “nepotistic”. The paper uses a C4.5 classification
algorithm on a large number of page attributes, trained on manually labeled
pages, in order to assess the potential for automatic recognition of nepotistic
links. Bar-Yossef and Rajagopalan discuss the same issue in [2] and provide
instances of nepotistic links such as navigational, download, advertisement,
agreement-exchange links, and even links introduced deliberately to mislead

search engines.
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Co-citation algorithm leverages on the linkage structure of the Web, so
that it may face the problem of certain nepotistic links. We employ simple,
but effective heuristics for deletion of the navigational links from our data set.

The details are provided in chapter 3.

2.6 Work related to“near-duplicate” Web pages

Several papers addressed the phenomenon of “mirroring” on the Web, i.e., the
systematic replication of content over pairs of hosts. Mirroring is understood
mainly at the host level ([4], [3]), although it can manifest itself at the page
level too ([15], [7]). Existing algorithms operate on the basis of URL strings,
linkage data and content analysis. A comparison of several algorithms for
identifying mirrored hosts on the Web is provided in [4].

Identification of mirrored hosts across the Web is important because of the
following reasons. First, there are many algorithms that exploit the explicit
linkage between Web pages. Mirrors hosts (documents) could greatly distort
the results of such algorithms because they perturb the graph model. Second,
search engines may benefit from identifying mirrored hosts: storing and re-
turning duplicate documents in large amounts can be avoided. Third, proxies
and other Web services may use mirror sites as an alternative to compensate
for various failures and thus achieve improvements in performance.

Co-citation algorithm may face the problem of “near-duplicate” pages in
the set of selected parents, as detailed in the next chapter. We employ the
same heuristic for determining such near-duplicates as the one proved to be

effective in the case of the Companion algorithm [15].

2.7 Work related to evaluation strategies

The different variations of Co-citation that we propose in this thesis produce,
given a query URL, a ranked listing of related URLs (pages). An important
step that needs to be performed after running the algorithms is the evaluation
of the retrieved results, i.e. we need to assess if the results are indeed related

to the query URL.
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Because relatedness or similarity is subjective and difficult to measure,
the results of “similarity-search” algorithms (such as Co-citation, Companion,
etc.) are usually evaluated by conducting user studies. Such a user study has
been performed for evaluating the results of Companion and Co-citation [15].
The users are requested to score each retrieved result. Some user studies have
used a binary scoring scheme (a result is scored 1 only if the user perceives
it as relevant to the query URL, otherwise 0 [15]), while others may allow a
finer-grained scale to measure degrees of relatedness.

However, these user studies might be expensive in both time and resources,
and they are not suitable for the cases where a large number of runs of an
algorithm need to be evaluated. It would be better to have an automatic,
reliable evaluation strategy that allows easily the evaluation of a large number
of experiments.

Several techniques for automatic evaluation of the results of similarity-
search algorithms have been proposed in the literature. Some authors have
tried to compute a “coarse”, domain-specific, similarity measure that, although
far from being definitive or exhaustive, does serve to illustrate important as-
pects of the proposed algorithms ([9], [13], [22]).

Another evaluation strategy is to use a form of “ground truth” for related-
ness and to evaluate the results with respect to it. Web hierarchies have the
potential to act as such “ground-truth” forms. Haveliwala et al. [21] introduce
a technique for automatically evaluating diverse strategies for similarity search
on the Web. They use Open Directory [30] as a form of “ground-truth”. They
report in the paper that the best similarity search on the Web is the one that
represents documents by considering anchor text and content (Jaccard coeffi-
cient was used as a distance function between documents). One of our notions
of focus is formalized in a consistent way with their findings. We propose an
evaluation methodology based on the Open Directory as a form of “ground
truth”. The details and a discussion on the use of Open Directory as a “ground

truth” for measuring relatedness is provided in chapter 5.
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Chapter 3

Problems with Co-citation

We have implemented the Co-citation algorithm as described in [15] and in
the “Related Work” chapter and we have identified a number of problems that
may affect the quality of the results of the algorithm.

We will present each problem and a potential solution using one suggestive
example to illustrate our discussion. The example is the URL for the home-
page of the computer science department at the University of British Columbia
(UBC): www.cs.ubc.ca. We expect as related pages other homepages of com-
puter science departments (preferably in Canada). We chose this query URL
out of many other possible examples because we have a good intuition of what
is related and what is not related to it, so that this example is easily under-
standable.

In the first section of this chapter we will present the results obtained by
the Co-citation algorithm on our running example. Then we will discuss each

of the possible reasons for the poor performance of Co-citation, that is:

1. Navigational links
2. Near-duplicate pages

3. Pages with links related to multiple topics

We will discuss what techniques we have applied to deal with these problems.
The sequence of these techniques represents what we call the “preprocessing

stage”. We will motivate the need for a new notion, the “focus” of a collection
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of links that holds the potential to significantly improve the results of the Co-
citation algorithm. In the end, we analyze the effect of the preprocessing stage

on our experiments.

3.1 Original Co-citation

For the rest of this thesis, we will refer to the Co-citation algorithm, as dis-
cussed in [15] and presented in the previous chapter, as the original Co-
citation. We will present only the top 10 results returned by original Co-
citation and its further improvements.

For our experiments, we have collected at most B = 1000 parents of the
query URL and for each of the selected parents, we have extracted at most
BF = 8 links surrounding the link to the query URL (see section 2.3.2). We
have run the original Co-citation algorithm for the query URL www.cs.ubc. ca.
The results are presented in Table 3.1. We can clearly see that the results
are not very convincing. All the results belong to the UBC domain. The first
result is the homepage of UBC and all the other results are pages belonging to
the computer science department of the same university. We deem the results

returned by the original Co-citation for this query URL unrelated.

Table 3.1: Original Co-citation - results

URL DESCRIPTION

www.ubc.ca UBC homepage

www.cs.ubc.ca/research /index.html UBC CS Research Areas

www.cs.ubc.ca/about /index.html UBC CS About the Department

www.cs.ubc.ca/prospective/index.html

UBC CS Prospective Students

www.cs.ubc.ca/grads/index.html

UBC CS Current Graduate Stu-
dents

www.cs.ubc.ca/ugrad/index.html

UBC CS Undergraduate Program

www.cs.ubc.ca/people/index.html

UBC CS People

www.cs.ubc.ca/labs/imager

UBC CS Imager Laboratory

www.cs.ubc.ca/labs/imager/th.html

Imager Computer Graphics Labo-
ratory Theses and Major Essays

www.cs.ubc.ca/events/index.html

UBC CS Events and Seminars

Some of the results presented in Table 3.1 (e.g.,
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grads/index.html, www.cs.ubc.ca/people/indexr.html) look like links that usu-
ally belong to a navigational panel included in all (or many) pages of a specific
domain, in this case, the UBC computer science department’s domain. After
a brief inspection of the parents of the query URL, we noticed that many of
these parents are in fact from the UBC computer science department’s domain
and that some of the above results are part of the same navigational menu (see

Figure 3.1), included in most of these parents.

(5 Home | Aout | Researth | rospective Stdants | Gra | Lndegrad | Peopl | Bents & Seminars | Emloyment | Locl Resoues | Stamap

Figure 3.1: Standard navigational panel

These observations made us consider the first phenomenon that may affect
the performance of the Co-citation algorithm: the presence of navigational
links within our link data set. We will detail this problem and our solution to

it in the next section.

3.2 Navigational Links

As discussed in the “Related Work” chapter, the existence of “nepotistic” links
on the Web ([14]), i.e., links between pages that are present for reasons other
than merit, is likely to affect the precision of algorithms that leverage on the
linkage structure of the Web. Instances of nepotistic links are navigational,
download, advertisement, agreement-exchange links, and even links introduced
deliberately to mislead search engines [2].

The Co-citation algorithm may face the problem of certain nepotistic links.
In order to rank the siblings of the query URL, the algorithm counts for each
sibling the number of parents that it has in common with the query URL. We
try to prevent the influence of siblings that are related to the query URL due
to other considerations than topical and also have a sufficiently large degree
of co-citation with the query URL. These might be siblings that appear due

to the presence of navigational links.
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In our implementation, we aimed to eliminate those navigational links

e Between any parent and the query URL, and

e Between any parent and its selected children.

In order to identify navigational links, we used several heuristics, based on
the URL strings and which differentiate between homepages and other pages.
Details and examples are provided as follows.

We will ignore the protocol part (“http://”,“https://”, etc.) when working
with the URL strings.

We identify homepages by the presence of the character ~ in the URL
string. Examples of homepages, according to our heuristic, are pages such
as www. cs.ualberta. ca/~gabi, www.math.ubc.ca/~jf/pubs/index.html, etc. We
identify the username of a homepage as the URL sub-string starting after the
first occurrence of the “~” character and ending before the first occurrence of
the character “/” (if “/” does not occur, we take as the username the URL
sub-string starting after the first occurrence of the “~” character and ending
at the end of the URL string). For the two sample URLs above, the usernames
are “gabi”, respectively “jf”

Given the URL of a page, we define the complete host name as the string
starting at the beginning of the URL string (ignoring “www.” at the begin-
ning if it is present) until the first occurrence of the character “/” (or the
end of the URL string). For instance, if the URL string is www.cs.ubc.ca/
research/indez.html, then the complete host name of this URL will be the
string “cs.ubc.ca”.

If we have two complete host names given by their strings, s; and s,, we
say that sy is more specific than so, if and only if s, is a suffix of s;. As an
example, consider the following two hostnames: s; is “ugrad.cs.ubc.ca” and
S9 18 “cs.ubc.ca”. Hostname s; is more specific than hostname s,, because sy
is a suffix of s;. A link from a more specific page s; to a more general page
so will be often a navigational link, for instance included in a standard menu

that appears on many of the pages of the more specific domain and points to

the larger domain.

35



5 33 5 o3

Links and Statistics about Women in IT

+ Undergraduzte Programs at TBC Computer Seience
http:ffweb. archive. orgfweb/ 2002062017392 3 ity wrwrw. co.ube. caluorad Program/Options/indes himl

» Howto Getmto UBC for Prospectwe Students
http:ffweb. archove. orgfweb/ 20020620 17352 3ty wrwrw ube. cafshudentsfprospective/indes hiral

s Foous on Women in Cormputer Science (FoWCS)
Ittp:ffweb. archove orgfweh /2002062017392 3 hitp: o coube.cal~banF o WCSF o WCE httul

s Links to Women's Organizations
http:ffweb. archive. orefweb/ 200206 20173923 ity Mz cs. ubc. cafswitt/ ks himHrwormen

» WOMEN IV HI-TECH FIELDS IN SCTENCE AND TECENOLOGY IN BRITISH COLUMBIA (final report)
click here to download the fle m pdf

+« WOMEN I HIGH TECH FIELDS I SCIENCE AND TECHNOLOGY Iy BRITISH COLUMBIA FACT SHEET AND
SUMMARY TULY 1999 (executve summary)
chick here to download the flle m pdf
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Figure 3.2: Navigational links from a “more specific” to a “less specific” do-
main
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For two URLs that are not homepages, we use the heuristic that a link
between URL s; and URL sy is navigational if the host names are identical
or if the hostname of s; is more specific than the hostname of s,. In the last
case, we say that s; is in relation “more specific — less specific” with ss.

For instance, the URL s; = www.cs.ubc.ca/ugrad/facilities /remote/news/
represents one of the parents of the query URL sy = www.cs.ubc.ca. The
complete host name of sy, “cs.ubc.ca”, is identical to the complete host name
of s, “cs.ubc.ca”, so we consider the link from s; to s navigational.

Figure 3.2 illustrates the parent URL s, = taz.cs.ubc.ca/itweek/links.html
of the query URL s; = www.cs.ubc.ca. The complete host name of s,
“taz.cs.ubc.ca”, is more specific than the complete host name of s,, “cs.ubc.ca”,
so that we consider the link from s; to sy navigational.

In figure 3.2, we can see that the link to the query URL belongs to a
navigational panel inside the parent page. For this parent page, the set of
siblings that Co-citation would consider are associated with the query URL
due to navigational, not-topical reasons.

The last example illustrates the reason for which we decided to ignore the
“www.” at the beginning of the URL string. The “www.” part of the URL
string is common for many URLs, so it does not add any significant informa-
tion. More, when we want to assess this type of navigational links, that we call
“more specific — less specific”, the “www.” part entangles the computation:
“www.cs.ubc.ca” is not a suffix of “taz.cs.ubc.ca”, but “cs.ubc.ca” is such a
suffix.

For homepages, we only do the same nepotistic link elimination only if
the username for both URLs is the same. More precisely, if the complete
host names of two URLs are identical or in relation “more specific — less
specific” and the usernames are identical, we consider the link between them
navigational.

As an example, consider the query URL sy = www. cs.ualberta.ca/~stroulia.
A parent page such as s;= www.cs.ualberta.ca/~stroulia/661/Fall2001 will
typically be a page belonging to the same person (the complete host names are

identical, the usernames are also identical) that contains various information,
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and, from navigational reasons, points also to the person’s homepage (see

Figure 3.3). We consider the link from s; to se navigational.

CMPUTG61 -- Software Architecture
Fall 2001
Department of Computing Science
University of Alberta

|time |newsgroup |instructor
Eleni Stroulia
The class forum: Dept. of Computing Science
ualberta.courses.cmput.661 105 Athabasca Hall
University of Alberta
TR Evolving Class Schedule Edmonton, AB, TEBG 2E8, Canada
11:00- 12:20
Class Projects Page Office: Athabasca 307
FPhone: 1 780492 3520
WWhat's MNews Fax: 1780492 1071
email strouliai@cs ualberta.ca

Figure 3.3: Homepages - navigational links

Let us consider another parent page: s1= www.cs.ualberta.ca/people/home-
faculty.php. Although the complete host names are identical, the usernames
are different (in fact, s; is not even a homepage according to our heuristic,
so the username for s; is the empty string); therefore we keep the link from
s1 to s9, because it is not navigational. Actually, this particular parent may
produce related siblings to the query URL, such as the homepages of other
professors from the same department. This also explains why our heuristic
differentiates between homepages and other pages: we need more information
to identify navigational links in the case of homepages.

One last example concerns the case where the complete host names of
s1 (parent URL) and sy (query URL) are different, but the usernames are
identical. In this case, we consider the link from s; to s not navigational,
because we could not know if there is the same person, having two homepages
on two different hosts, or there are two different persons, incidentally having
the same username.

We clean our link dataset by eliminating any parent that is linked to the
query URL through a navigational link. These parents will produce siblings,
which are related to the query URL typically because of navigational, not
topical considerations (usually, navigational links are grouped together in a

navigational menu). Often these siblings will be from the same site as the
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query URL and when computing their ranks, they may get a high rank, because
they may share a large number of parents with the query URL. Similarly, for
each parent, we select only those children that are not pointed to through a
navigational link. We call this operation “navigational links elimination”.

We have applied “navigational links elimination” operation to the original
Co-citation algorithm. The pseudo-code for the navigational links elimination
applied to the original Co-citation algorithm is presented in Figure 3.4. The
top 10 results are presented in Table 3.2.

Input: a Web page given by its URL u.
1. Collect up to B parents of u.

2. Eliminate parents that point through a navigational link to the
query URL u.

3. Eliminate siblings that are pointed to through a navigational link
by their parents.

4. Compute the degree of co-citation for the remaining siblings.

QOutput: return as related pages the pages with the 10 highest degrees
of co-citation.

Figure 3.4: Navigational links elimination

We notice some improvement in the results. Three of the results are home-
pages of other departments from UBC. The other results are to some extent
related to the computer science area: two companies that provide Internet
related services, two links within computer science related areas (Cognitive
Systems and Bioinformatics), and the homepages of two laboratories within
the UBC computer science department. However, there is no homepage of
other computer science department present in this list of results. The UBC
homepage appears in the first position.

The initial set of parents crawled from Yahoo! [42] was comprised of 770
parents (URLs). Out of these parents, 536 parents were eliminated because
they were linked through a navgigational link to the query URL. The large

number of “nepotistic” parents explains the results obtained by original Co-
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Table 3.2: Original Co-citation - Results after navigational links elimination

URL

DESCRIPTION

www.ubc.ca

UBC homepage

www.psych.ubc.ca

UBC Psychology Dept.

www.linguistics.ubc.ca

UBC Linguistics Dept.

www.philosophy.ubc.ca

UBC Philosophy Dept.

WWW.ec-0.com Internet - related Company

www.bsdi.com Internet Services

UBC CS Laboratory for Computa-

www.cs.ubc.ca/nest /lci tional Intelligence

www.ams.ubc.ca/clubs/cogsys UBC Cognitive Systems Society

www.cs.ubc.ca/nest /imager/

imager html UBC CS Imager Laboratory

Bioinformatics Group, Australian

life.anu.edu.au:80 National University

citation (Table 3.1), where all top 10 answers were internal pages of the com-
puter science (CS) domain.

Even after the navigational links elimination phase, the results are far from
what we deem as related to the query URL, i.e., homepages of other computer
science departments. We performed a second investigation on our data and
we have identified the second problem, which is discussed in the next section:

the presence of near-duplicate pages within our set of parents.

3.3 Near-duplicate pages

The problem of “near-duplicate” pages has been addressed in the paper that
originally proposed Companion and Co-citation [15], but only for the Com-
panion algorithm. In the context of the Companion algorithm, two pages are

“near-duplicates” if
1. They each have at least 10 children, and

2. At least 95% of their children are in common.

Companion merges two near-duplicate pages into a single page whose set

of links is the disjoint union of the links of the two pages. This step is called
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“near-duplicates contraction”. It is not clear from [15] whether the authors
performed any near-duplicates contraction for the Co-citation algorithm or
not.

Co-citation algorithm might be affected by the presence of near-duplicate
pages in the set of parents. We try to prevent the existence of siblings that
are not related to the query URL; yet they have a sufficiently large degree
of co-citation with the query URL so that they may be ranked high by Co-
citation. Let us imagine the case when a parent page is replicated (mirrored) at
several sites. Each of the siblings produced by this page will have an artificially
increased rank in the Co-citation scheme. Instead of counting this parent once
for each of its children, we count it several times. We want to make sure that
in our set of parents each distinct parent gives one vote to its children.

We use the same heuristic for detection of near-duplicate parent pages as
the one used by Companion, given by conditions (1) and (2) from above. This
heuristic is based on the set of outgoing links of a Web page. The intuition is
that pages with many links are likely to provide a better evidence of mirroring
relationship than those with a small number of links. This fact was noticed
by previous research [4]. Experiments performed in [4] showed that the min-
imum number of links that a page should have in order to be considered a
candidate for near-duplicates contraction is 10 (larger values did not improve
the performance too much). This explains the use of condition (1). Regarding
condition (2), we want our heuristic to be flexible enough to allow detection
of pages that are not necessarily identical, but they are still duplicated (this is
because the sets of outgoing links may vary slightly across different sites, due
to local customization). Since we want a high degree of agreement, we check
if 95% of the children of two pages are in common.

As we will explain in the next section, we will extract a “pagelet” out
of every parent page. The extracted pagelet is a collection of links (URLs),
including the query URL. After this extraction step, our set of parents will
consist of pagelets instead of whole pages.

In the case of the original Co-citation [15], for each parent page, we extract

a set of BF' links surrounding the link to the query URL (see section 2.3.2).
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The set of extracted links represents the “pagelet” used by the original Co-
citation. We differ in the way we extract the pagelet out of every parent page.

Given the fact that our set of parents will consist of pagelets, one obvious
question is why we detect and contract parent pages, instead of detecting and
contracting pagelets. The argument is that the fact that two pagelets are
near-duplicates does not necessarily imply a mirroring relationship, i.e., does
not necessarily mean that the pages from which the pagelets were extracted
are also near-duplicates. Ideally, a pagelet should contain those links from
the parent page that are related to the query URL. Let us imagine the case
when for a parent page we extract a pagelet that contains a small number of
related links to the query URL. Similarly, for another parent page, which is
not a near-duplicate of the first parent page, our pagelet extraction algorithm
produces the same (or very similar) set of related links to the query URL.
This is exactly what Co-citation algorithm is looking for: distinct parents
that express their vote on a set of children. Yet, the pagelets extracted would
be deemed as near-duplicates and merged. In this way, we lower the rank
that Co-citation would compute for the extracted set of related siblings. One
issue involved in the detection of near-duplicate pagelets is what condition
(1) should be. If we decide not to consider condition (1) at all, we will face
the problem just explained above: we may affect the results of Co-citation
by merging pagelets that do not represent any mirroring relationship. If we
consider condition (1), it is very difficult to compute (if it can be computed
at all) the minimum number of links that a pagelet should have in order
to be considered a candidate for near-duplicates contraction. The extracted
pagelet can vary in size (i.e., the number of its outgoing links) from very small
pagelets (two, three links) to large pagelets (the number of links is of the order
of hundreds). Intuitively, the number used in condition (1) should not be a
small number because of the same considerations: if we detect pagelets with a
large number of links that share a large fraction of those links, probably this
is a good indication of a mirroring relationship at the page level. Setting the
parameter for condition (a) requires a large number of systematic experiments

and further investigations.
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We formalize our near-duplicates contraction phase. We perform near-
duplicates detection for the parent pages. Let us assume that A is a parent
page. By |A| we denote the number of outgoing links existing within the
page A. By MIN_LINKS we understand the minimum number of links that
a parent page should have in order to be considered a candidate for near-
duplicates contraction. By THRESHOLD_NDC' we understand the number of
outgoing links that two parent pages should share in order to be considered in
the near-duplicates contraction scheme.

We consider that two parent pages A and B are near-duplicates if and only

if

|A| > MIN_LINKS,|B| > MIN_LINKS (3.1)
|AN B

>THRESHOLD_NDC 3.2

|AUB| — ’ (3.2)

where |[AU B| = |A| + |B|—|AN B|, i.e., the common links between A and B
are considered only once. Formula (3.1) and (3.2) represent the mathematical
encoding of the condition (1), respectively (2). For our experiments, we used
MIN_LINKS equals 10 and THRESHOLD_NDC' equals 95%.

When we encounter two near-duplicate parent pages according to formulas
(3.1) and (3.2), we will merge them into a single parent page, whose set of
links is the disjoint union of the links of the two near-duplicate pages. We call
this step “near-duplicates contraction”.

We have applied both “navigational links elimination” and “near-duplicates
contraction” operations (in this order) to the original Co-citation algorithm.
The pseudo-code for the original Co-citation algorithm is presented in Figure
3.5. The top 10 results are presented in Table 3.3.

Our running example is not affected by the presence of near-duplicate par-
ent pages. Out of 234 parents left after the navigational links elimination,
only 2 parents were detected as near-duplicates and merged. Due to the small
number of near-duplicate parent pages, the results in Table 3.3 are identical
to the results obtained after navigational links elimination only. However, we
had experiments where the number of near-duplicate parent pages was large

enough to affect the results of Co-citation.
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Input: a Web page given by its URL u.
1. Collect up to B parents of u.

2. Eliminate parents that point through a navigational link to the
query URL u.

3. Detect the candidates for the near-duplicates contraction at the
page level.

4. Merge the candidates’ pages.

5. Eliminate siblings that are pointed to through a navigational link
by their parents.

6. Compute the degree of co-citation for the remaining siblings.

QOutput: return as related pages the pages with the 10 highest degrees
of co-citation.

Figure 3.5: Navigational links elimination and near-duplicates contraction.

We investigated the reasons for which the algorithm is still returning sib-
lings that are only tangentially relevant to the query URL. We have discovered
that, for many parents, the collection of links that we select as siblings of the
query URL is not necessarily related to the query URL. This is the most im-

portant problem that we have identified and we discuss it in the next section.

3.4 “Unfocused” collection of links

Although it has been noticed that links that are close to each other on a page
tend to be on a similar topic, a page may contain links related to several topics
in several groups. By simply taking BF' links immediately surrounding the
query URL on a parent it is possible to collect links that span over more than
one topic. To improve the results we would like to restrict the surrounding
links to the group or topic that the query URL belongs to. Such groups have
been called “pagelets” [11], and we adopt for our application an algorithm that
is given in [2] and discussed in the “Related Work” chapter.

This algorithm considers HT'ML elements such as tables, paragraphs, head-
ings, and lists to identify pagelets. Such an HTML element in the parse tree
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Table 3.3: Original Co-citation - Results after navigational links elimination

and near-duplicates contraction

URL

DESCRIPTION

www.ubc.ca

UBC homepage

www.psych.ubc.ca

UBC Psychology Dept.

www.linguistics.ubc.ca

UBC Linguistics Dept.

www.philosophy.ubc.ca

UBC Philosophy Dept.

WWWwW.eC-0.com

Internet - related Company

www.bsdi.com

Internet Services

www.cs.ubc.ca/nest/lci

UBC CS Laboratory for Computa-
tional Intelligence

www.ams.ubc.ca/clubs/cogsys

UBC Cognitive Systems Society

www.cs.ubc.ca/nest /imager/
imager.html

UBC CS Imager Laboratory

Bioinformatics Group, Australian Na-

life.anu.edu.au:80 tional University

of a page p is defined as a pagelet if

1. None of its children contains more than k hyperlinks, and

2. None of its ancestor elements is a pagelet.

In our application, we break parent pages into pagelets using this algorithm
(we have used k equals 4), and then consider as a parent for Co-citation the
pagelet that contains the query URL (if there are several pagelets that contain
the query URL, we consider the first such pagelet). In this way, we may
increase the chance that the siblings will be on a similar topic as the query
URL, and hence more likely related.

Extracting pagelets out of the parent pages causes the modification of
the near-duplicate contraction operation. Because our final set of parents will
consist of pagelets, we determine the candidates for near-duplicates contraction
at the page level; however, we will perform the merging operation at the pagelet
level. When we encounter two parent pages satisfying formulas (3.1) and (3.2),
we will merge their corresponding pagelets into a single pagelet, whose set of

links is the disjoint union of the two pagelets.

45



We summarize the sequence of techniques that we perform on top of the
original Co-citation algorithm in order to deal with the above-identified and
discussed problems, i.e., (1) navigational links, (2) near-duplicate pages, and
(3) pages with links related to multiple topics. We call the series of these
operations “preprocessing”. In the next chapters, we will often use the term
Co-citation to refer to the preprocessed Co-citation algorithm. The prepro-
cessed Co-citation algorithm represents the baseline against which we compare
our focused versions of Co-citation. When we refer to Co-citation as proposed
in [15] and presented in chapter 2, we will use the term original Co-citation.
The pseudo-code for the preprocessed Co-citation algorithm is presented in

Figure 3.6.

Input: a Web page given by its URL u.
1. Collect up to B parents of wu.

2. Eliminate parents that point through a navigational link to the
query URL u.

3. Extract a pagelet out of each of the remaining parents.

4. Detect the candidates for the near-duplicates contraction at the
page level.

5. Merge the candidates’ corresponding pagelets.

6. Eliminate siblings that are pointed to through a navigational link
by their parents.

7. Compute the degree of co-citation for the remaining siblings.

QOutput: return as related pages the pages with the 10 highest degrees
of co-citation.

Figure 3.6: Preprocessed Co-citation.

We have run the preprocessed Co-citation algorithm on our initial example.
The results are presented in Table 3.4.

We notice some improvement in the results: we obtained two homepages
of other computer science departments at positions six, and ten, and another

university homepage, at position eight. Another department within the UBC
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Table 3.4: Original Co-citation - Results after navigational links elimination
and duplicates contraction and pagelet extraction

URL DESCRIPTION
www.ubc.ca UBC homepage
www.psych.ubc.ca UBC Psychology Dept.
www.philosophy.ubc.ca UBC Philosophy Dept.
www.tc.cornell.edu:80/ctc.html | Cornell Theory Center
www.bsdi.com Internet Services
WWW.csc.uvic.ca CS Dept., Univ. of Victoria

Bioinformatics Group, Australian

life.anu.edu.au:80 National University

www.acns.nwu.edu Northwestern Univ., USA
www.math.ubc.ca UBC Mathematics Dept.
www.cs.toronto.edu CS Dept., Univ. of Toronto

domain appears at position nine. One URL that did not occur in the previous
results appears in Table 3.4, ranked forth, but it is marginally related to the
query URL.

We consider that the results have not improved significantly overall.

3.5 The need for “focus”

Obviously, the extraction of pagelets based on the structure of the HTML
page does not guarantee that the constructed pagelet is in fact a collection of
topically related links. We claim that the notion of a pagelet is to weak to
support Co-citation, because there are many collections of neighboring links
that satisfy the pagelet definition, but are not on similar topics (e.g. unstruc-
tured bookmark lists). We call such pages and pagelets for which the majority
of outgoing links point to pages on different topics “unfocused”. When the
number of “unfocused” parents for a query URL is a large fraction of the total
number of parents, many siblings on different topics will have a large degree
of co-citation with the query URL and the results will be distorted.

We argue that in order to produce better results we have to give more
focused collections of links a higher influence on the final ranking than less

focused collections. Therefore, we need to measure how well a collection of
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links is focused on a topic. Three proposals to define “focus” will be presented
in the next chapter.

Although we have seen just one example that supports our claim, our
experiments in the last chapter show that the problem of unfocused parents is
not a rare event and applying our focused version of the Co-citation algorithm

will improve the results.

3.6 Preprocessing - Discussion

In this chapter we have reviewed a number of problems that may distort the
results of the original Co-citation algorithm. To address these problems, we
have applied a sequence of techniques, illustrated by a step-by-step example.
In the case of www.cs.ubc.ca, after applying all the preprocessing techniques,
we have obtained a slight improvement in the results of the original Co-citation.

We have analyzed the role that the preprocessing stage is playing on our set
of experiments. For some experiments, the results of preprocessed Co-citation
showed moderate improvement compared to the results of original Co-citation.
However, we have encountered experiments for which the preprocessing stage
slightly decreases the quality of the results obtained by the original Co-citation.
We give an example of a query URL for which this phenomenon occurs. The
query URL is www.freshwasabi.com. This URL is the Web page of the “Pacific
Farms” company, that produces and sells online wasabi and wasabi products
(wasabi is a condiment traditionally served with sushi and noodle dishes in
Japan). We expect as related pages other Web sites that sell mainly Asian
foods online.

The results obtained by Original Co-citation are presented in Table 3.5 and
the results obtained by Preprocessed Co-citation are shown in Table 3.6. The
last field indicates the relatedness of the result to the query URL (we use 1
for related, 0 for unrelated).

Original Co-citation and Preprocessed Co-citation share four results, out of
which, three are on the topic of the query URL. In the case of the Preprocessed

Co-citation only these three results are related, where Original Co-citation
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Table 3.5: Example: Original Co-citation

URL DESCRIPTION Relatedness
www.wasabi.co.nz Sells wasabi online 1
www.stickyrice.com Sells sushi products online 1
www.bento.com/ . o

tokyofood html Guide to eating in Tokyo 0
www.shoretodoor.com Sells seafood online 1

. Sells a variety of Asian foods

www.importfood.com 1

online

Sells oriental foods, exotic

www.orientalpantry.com . . 1
spices online
WWW.NOTpac.com Sells fruits and vegetables 0
online
www.fish2go.com Sells seafood online 1
www.unclebens.com Uncle Ben’s rice 0
www.digitalsushi.net Sushi related page 0
Table 3.6: Example: Preprocessed Co-citation
URL DESCRIPTION Relatedness
www.wasabi.co.nz Sells wasabi online 1
WWWw.uwajimaya.com Asian foods market 0
www.shoretodoor.com Sells seafood online 1
www.stickyrice.com Sells sushi products online 1
www.eat.com All kinds of recipes online 0
Www.japantimes.co.jp Newspaper: Japan Times 0
www.sake-world.com Sake related page 0
:‘cf)vllf}vri)?oe;l;.ohfgll?/ Guide to eating in Tokyo 0
www.garden-gifts.com Japanese garden gifts 0
www.japanesegifts.com | Japanese gifts 0
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produces three more related results. This experiment shows that are cases
when preprocessing may adversely affect the results of the original Co-citation.
Our preprocessing stage is comprised essentially of a set of heuristics that in
some cases have the expected effect and in other cases they have a different
effect. The most disputable heuristic is the one that extracts pagelets out of
parent pages. This heuristic produces the set of siblings that we consider in
our setting. The relatedness to the query URL and the frequency of these
siblings greatly influence the outcome of Co-citation. The authors of Web
pages write their HTML pages in a variety of ways, so that heuristics that
extract pagelets based on the HTML structure are prone to errors. On the
other hand, selecting BF' links surrounding the query URL may not also work
well in all cases.

Given the fact that the effect of preprocessing stage can not be predicted
accurately, we will embed our focus both within the original and the prepro-
cessed versions of Co-citation. The next chapter defines the notion of “focus”

and formalize it in several ways.
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Chapter 4

Focused Co-citation

In this chapter, we formalize the notion of “focus” of a collection of links and
exploit this notion in finding related pages.

Intuitively, the focus of a collection of links should capture the degree
of agreement, in terms of a topic, between the corresponding pages in the
collection. For example, a page containing a list of the Canadian computer
science departments will be more focused than a bookmark-list on a homepage
which points to pages on different topics including the UBC computer science
department.

We formalize the notion of “focus” of a collection of links in three ways: a
link-based, a content-based, and a hybrid approach. The link-based approach
is based only on the linkage data that we already collected for the Co-citation
algorithm, and therefore, is computationally inexpensive. The content-based
approach takes into account the textual content of the siblings and of the query
URL. The last method is a combination of the previous two, which attempts
to balance the potential drawbacks of each of the link-based focus and the
content-based focus.

This chapter is structured as follows. First, we discuss and define a ranking
function, which will be used to rank the siblings of the query URL. Then, we
formalize three types of focus: LinkFocus, ContentFocus, and HybridFocus.
For each type of focus, we discuss potential problems and provide meaningful

examples.
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4.1 Ranking Function

Let us assume that we have a method for computing the “focusedness” of a
collection of links. Let Focus (A) denote the computed focus for the collection
of links A. In our case, we compute the focus of each of the parents existing
in our data set, where a parent is actually a pagelet (which could be regarded
as a collection of links).

In the Co-citation ranking scheme, the relatedness of a page s is computed
according to the number of common parents with the query URL, as the
proportion

ICP]

Rank(s) = AP (4.1)

where CP is the set of common parents for the page s and the query URL,
and AP is the set of all parents. For a set M, the notation ||M|| denotes the
number of elements of the set.

The purpose of computing a “focus” score for each of the parents is to
recognize those parents that contain indeed siblings related to the query URL.
We can compute a weighted version of the Co-citation ranking. The idea is
to give focused parents a higher weight in the computation, so that in the
end, the siblings descending from focused parents will have a higher rank than
other siblings.

We propose a weighting scheme that will adjust the co-citation rank pro-
portional to the “focusedness” of the common parents of the sibling s, i.e., the
more focused parents a sibling has in common with the query URL, the higher

the sibling’s rank.
> Focus(P)
Rank(s) = 7€° 4.2
ank(s) > Focus(P) (4.2)

PecAP

The simple Co-citation ranking scheme is embedded in our ranking scheme:
in the case of Co-citation, we could consider that all the parents have the same
focus score, i.e., the focus is equal to 1. If we substitute Focus (P) with the

value 1 in formula (4.2), we obtain exactly the Co-citation’s ranking scheme:

> 1

_ pécp _ ||CP|]

Rank(s) = =73 = T[ap)
PeAP

52



We also notice that in formulas (4.1) and (4.2) the denominator is a con-
stant value: the number of all parents is a constant for a given data set, as
well as the sum of the focus scores of all the parents. We divide in formulas
(4.1) and (4.2) by a constant value as a normalization operation and because
the formulas look more intuitive when presented in this way. However, the
ranking of the siblings will not change even if we do not divide by the constant
factor.

In our experiments, we used formula (4.2) to rank the results of the Co-
citation algorithm and its variants. From this point on, when we talk about
ranking scheme, we understand the ranking scheme given by formula (4.2).

There is another issue involved in the computation of rankings that might
affect the quality of the results. It is possible to have an unrelated sibling
that has a large number of parents in common with the starting URL and all
of these parents have a low focus. However, because the number of common
parents is very high, this sibling might get a high rank in the computation —
maybe not as high as in the co-citation ranking, but still high.

A potential sibling of this type is a “popular” URL. By “popular”, we
understand those URLs that have a very large in-degree and that are unrelated
to most other pages. Popular siblings (URLs) will get high ranks, because they
are pointed to by a large fraction of parents out of the total number of parents
and even if these parents have low focus, when we sum up these focus scores,
we end up with a sufficiently high value, which translates into high ranks.

In order to avoid the problem of popular siblings, we have constructed
manually a list of popular URLs such as www.yahoo.com , www.adobe.com |,
etc. When the query URL is not a popular URL itself, we eliminate these
“popular” URLs from our set of siblings, because they are unrelated to the
query URL. If the query URL is a popular URL itself, then we keep the popular
siblings, because they might be in fact related.

In order to apply our new ranking function, we have to define a notion of
focus of a collection of links. We formalize and discuss three new notions of
focus: LinkFocus (section 4.2), ContentFocus (section 4.3) and HybridFocus
(section 4.4).
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4.2 LinkFocus

Let us assume that we have a web page or a pagelet, represented as a collection
of links. Each of these links points to a web page and we want to assess how
topical-cohesive this set of pages is. We will use a similar intuition as for
co-citation in defining the first type of focus, that we call LinkBased focus.
Let us consider the example presented in Figure 4.1. Assume that we have
a collection A composed of three links: L; that points to page p;, Lo that
points to page p» and L3 that points to page ps. We want to estimate to what

degree the pages p;, po and p3 agree on a topic.

A
Lj \\‘ (1) ]
L \\‘ pz
Lz \\\‘ Pz

Figure 4.1: LinkBased Focus

Each of the pages pi1, po, and p3 might have other parents except A. Let
P be the disjoint union of the parents of py, ps,and ps3. The elements of P are
not illustrated in the Figure 4.1, but arrows indicate their presence.

According to co-citation (which measures a certain notion of similarity of
pairs of pages) the more parents two pages have in common, the more likely
they are on the same topic. For example, the higher the number of common
parents for p; and po, the more similar p; and p, according to co-citation. For
our purposes, we want to extend this notion of similarity to a whole set of pages
that may contain more than two pages, i.e., we want to assess the similarity
of the set comprised of pi, po, and p3 as a whole, not just the similarity of the
pairs (p1, p2), (P2, ps3), and (ps3, p1) separately.

The intuition is that the more parents exist in P that agree on more of A’s

children (in this case p1, p» and p3), the more focused the collection of links A
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will be. The collection of links A will have maximum focus in the case when
all the parents in P agree on all of A’s children (i.e., all the parents in P share
the links to p1, po and p3). The collection of links A will have minimum focus
in the case when none of the other parents in P share more than one link with
A, i.e., any other parent in P will share either the link to p;, or the link to po,
or to p3, but it will never share a combination of two or three of them.

According to our intuition, any parent B from P that shares ¢ links with
A should contribute to the focus of A proportional to the number of shared
links. For example, if B and C are parents from P so that B shares with A
the links to pi, p2, p3, and C shares with A the link to p;, then B should
contribute more than C to the focus of A. The contribution of B to the focus
of A should be proportional to the number of shared links, i.e., the number ||
A N B ||, which in our example is 3. Similarly, the contribution of C' to the
focus of A should be proportional to || AN C || = 1.

However, we also have to take into consideration the number of links that
A and B have individually. The reason is that pages with a large number of
links have a higher chance of sharing one or more links with any other page. If,
for instance, B has a large number of links and shares with A one or two links,
then the contribution of B to the focus of A should be lower than if B had a
small number of links. Similarly for the case when A has a large number of
links. The contribution of a parent B to the focus of A should be proportional
to the number | A U B |, i.e., the number of links in the disjoint union of A
and B.

We formalize this intuition in the following definition of the focus of a
collection of links A:

|AN Bl

LinkFocus(A) = —— (4.3)
B,BZ;;A lAuU B
where ||.|| denotes the number of elements of a set and B is any other parent

from P.

In the case of the Co-citation algorithm, we have collected the parent pages
of the query URL (up to a fixed number). By the way we construct our data
set, each parent points to the query URL, so that any two parents in the Co-
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citation scheme will share at least one link, i.e., the link to the query URL
page. We compute 4.3 for each of the parents A existing within our set of
parents.

Formula (4.3) could be regarded as a “neighborhood” function, measuring

the “degree of clustering” between a parent pagelet A and all other pagelets

||ANB]|
|AUB|

B that are also parents of the query URL. The fraction is always less
than or equal to 1, for any A, B parents. However, LinkFocus(A) could be
greater than 1. We normalize LinkFocus(A) to be a value between 0 and 1, so
that the focus of a collection of links A is given by the following formula:

[ANB]|
, IIA0B]|

B,B#

LZTLkFOCUS(A) = W

(4.4)

where P is the set of all parents of the query URL, ||.|| denotes the number
of elements of a set and B is any other parent from P.

Computing the link-based focus, as defined in (4.4), for our data set is
computationally very cheap, because we already have stored the data set and
we have computed all the necessary values in the standard computation of
Co-citation.

We also notice the relationship between the near-duplicates contraction
performed in the preprocessing step and the computation of LinkFocus. As we
explained in the previous chapter, the near-duplicates detection is done at the
page level. For every parent page, we extract a pagelet, so that in our setting,
the parents are actually pagelets. For the pages that are deemed candidates for
near-duplicates contraction, the corresponding pagelets are merged. In formula

(4.4), A and B are the extracted pagelets. It is possible to have high values

|ANB||
|AuB|[]

for the fraction as high as 1 (for the case when the extracted pagelets
are identical). This fact does not imply that the focus of A is artificially high
because of mirroring across multiple sites. This fact rather implies that the
focus of A is high because many other parents agree on many of A’s children,
i.e., Ais a focused collection of links.

We applied the link-based focus to our running example, and the results

are shown in Table 4.1. The LinkFocus is computed on the preprocessed data,
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according to formula (4.4). The ranking of the siblings is obtained by applying
the ranking scheme described in section 4.1.

Even though link-based Co-citation is over all the experiments slightly
better than Co-citation, as shown in chapter 5, unfortunately, in this particular
example, the results for the link-based focus combined with Co-citation are

almost identical with the results of Co-citation shown in Table 3.4.

Table 4.1: LinkFocus

URL DESCRIPTION
www.ubc.ca UBC homepage
www.psych.ubc.ca UBC Psychology Dept.
www.philosophy.ubc.ca UBC Philosophy Dept.
www.tc.cornell.edu:80/ctc.html | Cornell Theory Center
www.bsdi.com Internet Services
www.math.ubc.ca UBC Mathematics Dept.
www.chem.ubc.ca UBC Chemistry Dept.
www.acns.nwu.edu Northwestern Univ., USA
. Bioinformatics Group, Australian
life.anu.edu.au:80 } o

National University
www.cs.toronto.edu CS Dept., Univ. of Toronto

This example shows us, however, that linkage information may not be
enough to compute effectively the focus of a collection of links in all cases.

There are two issues that need to be addressed at this point. The first
one is that the results of the LinkFocus are similar to the results obtained by
Co-citation, as we can see from Tables 3.4 and 4.1. This is not surprising,
given the fact that both methods are based solely on linkage information and
that the very idea of the LinkFocus has at its roots the co-citation technique.

The second issue that we discuss is why LinkFocus does not seem to perform
very well in the above example. We have analyzed our data set and we have
discovered what we call “parents in conspiracy”, i.e., a set of parents that
contain the same collection of links and these links are not necessarily related
to the query URL. If the number of parents in the “conspiracy” is sufficiently
large, then Co-citation will rank the siblings in the repetitive collection of

links high, because these siblings have a sufficiently large number of common
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parents with the query URL. At the same time, LinkFocus will rank this
set of siblings also high, because there are a large number of parents that
agree on a sufficiently large number of children. How strong this “conspiracy”
phenomenon is manifested in our data set depends on several factors, such as
the fraction of parents in the conspiracy out of the total number of parents,
the size of the repetitive collection of links and the actual number of links of
the parents in our data set.

The second issue from above assumes that the collection of links that is
shared by the parents in the conspiracy is not comprised of URLs related to
the query URL. If this repetitive collection contains URLs indeed related to
the query URL, then this “conspiracy” is what we are looking for, so that Co-
citation and, subsequently, LinkFocus will produce good results. The challenge
is to distinguish between the cases when this conspiracy is what we need and
the cases when it is not. This distinction cannot be achieved based on the
linkage information only, because the linkage pattern is the same in both cases.

We propose another notion of focus, ContentFocus, based on textual infor-
mation, that attempts to solve the problems associated with methods based

solely on the linkage structure of the Web.

4.3 Content Focus

As we stated before, the focus of a collection of links captures the degree of
agreement on a topic amongst the pages pointed to by the links within the
collection. This is a general formulation of the “focusedness” of a collection of
links that does not make any assumption about the topic with respect to which
we compute the focus. However, in the case of the Co-citation algorithm, we
are interested in finding pages that are on the query URL’s topic. It follows
that for the Co-citation algorithm we want to compute the focus of each of the
parents within our data set with respect to the topic of the query URL. This
fact is embedded already in the LinkFocus computation (see (4.4)), because,
by construction, each of the parents within our data set contains a link to the

query URL.
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Let us consider a parent A of the query URL within our data set (see 4.2).
We aim to collect textual content for each of the links within A as indicative
as possible for the topic of the page pointed to by the link. The goal is to
formalize a notion of focus based on the collected textual information that
measures the degree of agreement in terms of the query URL’s topic of the

pages pointed to by the links existing in A.

pep Ml

P2

3
¥

3
Y

P

Figure 4.2: ContentBased Focus

For each link in A, we collect textual content in the following manner: from
the page the link points to, we extract the title, and we concatenate it with the
union of the anchor texts of all the incoming links of the page. The incoming
links of page p; are depicted by arrows pointing to p;. The incoming links of
p2 and p3 are omitted for clarity. We restrict the set of incoming links to the
set of parents of the query URL collected by the Co-citation algorithm. In
order to collect the textual content of link L, for instance, we parse the page
pointed to by Ly, i.e., p;, and we extract from it the title. Then, for all the
parents in our data set that point to p;, we collect the anchor-text of the link
to p1. The union of these anchor-texts and the title of p; comprise the textual
information collected for L;.

We consider anchor text when collecting the textual information for a link
because anchor text has been successfully used as an indication of the topic
of the page pointed to by the link in other works ([21], [12], [20]). Some
existing work uses instead of anchor text a fixed window around the anchor

text, including the anchor text [21]. In our work, we have considered only the
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anchor text of a link and it proved to perform well for our purposes.

With respect to our data set, we consider the set of all the siblings of the
query URL and the query URL itself. Let this set be S. For each URL s in
S, we collect textual content by collecting the anchor text of all the incoming
links of s and the title of the page s points to. The title of s may be a good
indication of the topic of s. However, we have two other alternatives, in which
we collect increasingly more textual content from s, i.e., we consider “meta”
description and headings. To summarize, for all s € S, we collect textual

content in three different ways:

e Approach 1. Union of the anchor text of all the incoming links of s and,

from the page s points to, the title.

e Approach 2. Union of the anchor text of all the incoming links of s and,

from the page s points to, the title and the “meta” description.

e Approach 3. Union of the anchor text of all the incoming links of s and,
from the page s points to, the title and the “meta” description and the

headings.

We want to assess the topic of s, for all s € S, based on the collected text.
The experiments in chapter 5 will show which of these three approaches is the
most effective one. However, independent of the approach used for collecting
the text, we will manipulate the resulted textual information in the same
manner.

We eliminate stop words and we perform a light stemming (the plural
endings are eliminated, as well as the endings —ed, and —ing) on the text
collected for all s € S. We added to the list of stop words a few words that
are very frequent on the Web and do not carry any meaning with respect to
any topic. For example, given the fact that we collect anchor texts, we have
added “click”, “here” to the list of stop words, because these two words could
appear frequently within the anchor text of a link and do not convey anything
regarding the topic of the page pointed to by the link. Other examples of

“Web-specific” stop words are“link”, “online”, “website” etc.
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We will use the vector space model for representing the textual content of
the siblings and of the query URL. The vector space model assumes a collection
of documents and a universe of words so that each document is represented
as a vector of length the dimension of the universe of words. These vectors
consist of weights, i.e., values that represent the “importance” of the words
within the universe of words with respect to the textual content represented
by the vector.

In our case, a “document” is the text collected for any s in S. Given the
fact that we want to measure the “focusedness” of a parent with respect to
the query URL’s topic, the universe of words will be formed by the words (or
keywords) extracted when parsing the text collected for the query URL. Each
s € S will be represented as a vector in this universe of keywords.

One issue that needs to be addressed is what are the weights in the resulting
vectors. Each location within a vector corresponds to a distinct keyword. A
simple idea would be to define the weight as the frequency of the keyword
within the document represent by the vector. The intuition is that if a keyword
appears many times in a document, then probably the document is on the topic
suggested by that keyword. We have already eliminated stop words, such as
“and”, “on”, etc., because these words are frequent in any document and do
not convey anything about the topic of the document. This weight is called
“term frequency”, and noted with ¢ f.

Research in the classic Information Retrieval field has shown that the ¢ f
weighting scheme is not always the best one. Imagine that we have a col-
lection of documents from a conference on Web related issues. The keyword
“web” is probably frequent within each document and within the entire col-
lection; however this keyword is not very informative if we want to distinguish
between documents on different sub-areas or topics, since we already know
that all the documents are about the Web. Another weighting scheme, called
tf — idf scheme, has been proposed, which takes into account how frequent
a keyword is, not only within a given document, but also within the entire
collection. There are several variations of the ¢f — idf scheme. The following

formula is often used to compute the weight of each location within the vector
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representing a document in the ¢f — idf scheme:

weight = tf * logm(ilv_f) (4.5)

where:

e 1f is the term frequency.

e NN is the number of documents existing in the collection, i.e., in our case,

is the number of elements of S.

e df or the “ document frequency” is the number of times a given term

N
daf
referred usually as the “inverse document frequency” and noted by idf”.

appears across all the documents in the collection. The number =% is

From here the name of the scheme.

The tf —idf scheme decreases the weight of keywords with high document
frequency and amplifies the weight of keywords with low document frequency.
In the formula (4.5), if a keyword occurs in many documents within the collec-
tion (i.e., its document frequency, df, is close to N), then the idf value is close
to 1, so it follows that the weight given to the keyword is close to 0 (log191=0).

Increasing the weight of keywords with low document frequency might be in
fact useful for ad-hoc queries, where a rare keyword in the query should receive
the most importance. However, if we want to evaluate document similarities,
rare terms may not be useful at all, because they might be typos (especially
on the Web), rare names or non-topical terms that might hinder the similarity
measure. Other variations of the tf — idf scheme that attenuate both high
and low document-frequency terms may be used instead of weighting schemes
such as the one in (4.5) for judging document similarities ([21]).

In our case, each sibling is represented as a vector in the universe of key-
words extracted for the query URL. As we will explain below, for our Content-
Focus, we want to distinguish the “closest” siblings to the topic of the query
URL. Because this “closeness” will be computed based on the vector repre-

sentations of the sibling and the query URL, it is important to decide how
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to compute the weights that will populate the vectors and what similarity
function to use.

The way we collect the text for the query URL is aimed to obtain keywords
that are as informative as possible for the topic of the query URL. However,
in practice, not all the extracted keywords are meaningful for the topic of the
query URL. Some keywords are general enough so that they become related
to any topic (e.g., “item”). Other keywords are typos or words from other
language than English (e.g., “departamento”).

We tried to judge if the ¢ f —idf scheme would be suitable for our purposes,
i.e., if the meaningful keywords are likely to have high document-frequency or
not. We have examined the keywords with the highest document frequencies
for a number of experiments and we have noticed that these keywords are

meaningful for the topic of the query URL. Some examples are presented in

Table 4.2 (the keywords are ordered descending after document-frequencies).

Table 4.2: Frequency of keywords

High-Frequency

URL Keywords

TOPIC

university, science,

t i Dept.
Computer Science Dep computer, department

www.cs.ubc.ca

Festival held in | canada, waterloo, festi-

www.oktoberfest.ca

Kitchener-Waterloo

val, kitchener

www.synquest.com

Supply Chain Manage-

chain, supply, perfor-
mance, viewlocity

www.antiqueradio.com

ment
Buyers and Sellers of Old
Radios and Related Items

radio antique vintage
collector

www.planettribes.com/
tribes2

ame on “tribes”, part of
the GameSpy network

tribe planet gamespy
network

Table 4.2 suggests that meaningful keywords may have high document-
frequency within our data set. Besides such empirical observations, the way
we have collected and preprocessed the data (i.e., the extraction of pagelets
is aimed to produce siblings that are as close as possible to the query URL’s
topic) drives us to the conclusion that “important” keywords are likely to
have high document-frequency, so the tf — idf scheme is not suitable for our

purposes.
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Another reason for which we rejected the use of the ¢t f —idf scheme and even
the use of the ¢ f scheme descends from the way we compute our ContentFocus.
Intuitively, a “focused” parent will be a parent for which the majority of its
children (or siblings with respect to the query URL) are “close” to the query
URL in terms of the vector representations. We give an example to clarify our
decision. Let the frequency vector representing the query URL be 3,2/1, i.e.,
the first term appears 3 times, the second term, 2 times, and the last term,
1 time, within the text collected for the query URL. Suppose the sibling s;
is represented by 1,1,5, and the s, is represented by 1,1,7. In terms of cosine
similarity measure, the sibling s; is much closer than the sibling so to the
query URL. Let us assume that the keywords with frequencies 3 and 2 are the
informative ones for the topic of the query URL and the last keyword is the
bogus one. With regard to the query URL’s topic, the siblings s; and s, are
equivalent. However, it is possible that parents that point to s; will receive a
higher focus score than parents pointing to s, and yet, this higher focus value
does not reflect the true “focusedness” of the parent with respect to the query
URL’s topic. The final effect is that the results will not be on the query URL’s
topic, but rather they will “diffuse” to other, possible related, topics.

The assumption that the keywords with high frequency are the most rep-
resentative for the topic of the query URL is likely to be true in many cases.
The reason is that we considered anchor text when we collected the text for
the query URL: if the majority of many independent authors refer to the query
URL by using the keyword, for instance, “university”, than probably the topic
of the query URL is within the academic area. Determining automatically
which keywords are indeed meaningful for the query URL’s topic, in the gen-
eral case, is difficult, due to the particularities of the Web. One idea would be
to select as keywords only the keywords having the frequency above a certain
threshold. In some cases, only the highest frequency keywords could guarantee
that no diffusion phenomenon occurs; in other cases, we need to go as low as
frequency 1, because, for instance, the majority of the authors used as anchor
text the words “click here”. We will discuss more on the issue of selecting the

informative keywords in the next chapter.
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In order to circumvent the above explained problem, we use the binary
weighting scheme: if a keyword appears within a document, its weight is 1,
otherwise its weight is 0. In this way, the influence of bogus keywords is
equalized for all the siblings. For our purposes, the presence of a keyword
within the text collected for a sibling is enough to consider the sibling on the
topic given by the keyword.

We use the Jaccard matching coefficient as a similarity function. Given
two vectors of the same length, v; and vy, consisting of only 0 and 1 values,

we note with:

e p - the number of positive matches, i.e., the number of entries on which

both vectors have the value 1

e s - the number of entries on which the first vector has the value 1 and

the second vector has the value 0

e 7 - the number of entries on which the first vector has the value 0 and

the second vector has the value 1

e 1 - the number of negative matches, i.e., the number of entries on which

both vectors have the value 0

The Jaccard matching coefficient is given by the following formula:

p

— 4.6
p+r+s (4.6)

Jaccard(vy, ve) =

In our case, we only want to know if a keyword occurs within the text
collected for a sibling, so that the Jaccard matching coefficient is indeed suit-
able, because it considers the number of negative matches unimportant and
therefore, ignored.

We formalize ContentFocus in the following way. If A is a parent page,
comprised of the links Ly, Lo, ..., Ly 1, and Ly (the link to the query URL),
let vy, vo, ..., vpr—1 and vy be the vectors corresponding to these links. The
intuition for ContentFocus is that the more similar vy, vo, ..., v3_1 are to vy,

the higher the focus of A. We formalize this idea in the following formula for
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the ContentFocus of a parent page A:

M=1
> Jaccard(vi, vo)

ContentFocus(A) = “= M1 (4.7)

where M — 1 is the total number of links of A, except the link to the query
URL, and Jaccard(v;, vj) is computed according to formula (4.6), for all ¢ from
1to (M —1).
Formula (4.7) tries to capture the average similarity of a set of points with
respect to a given point.
We note that:
0 < Jaccard(vi,vy) < 1,Vi =1,...,(M-1)=
0< Mil Jaccard(vi,v9) < M — 1=
0< é':olntentF ocus(A) <1

Regardless of the approach used for collecting the textual information, the
computation of the ContentFocus is the same. The length of the vectors and
the weights change depending on how much text we consider. We vary the

amount of the text in our computations and experiment with:

e ContentFocusl: the ContentFocus when the textual content is gathered

according to Approach 1.

e ContentFocus?2: the ContentFocus when the textual content is gathered

according to Approach 2.

e ContentFocus3: the ContentFocus when the textual content is gathered

according to Approach 3.

We have applied the ContentFocus to our running example. The results
in Table 4.3 are obtained by computing the ContentFocus! on preprocessed
data.

We can notice a significant improvement in the results. We have obtained
five homepages of other computing science departments from Canada, the

homepage of the UBC together with four homepages of other departments
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Table 4.3: ContentFocus

URL DESCRIPTION
www.ubc.ca UBC homepage
www.psych.ubc.ca UBC Psychology Dept.
www.philosophy.ubc.ca | UBC Philosophy Dept.
WWW.cSc.uvic.ca CS Dept., Univ. of Victoria
www.cs.toronto.edu CS Dept., Univ. of Toronto
www.math.ubc.ca UBC Mathematics Dept.
www.csd.uwo.ca CS Dept., Univ. of Western Ontario
www.chem.ubc.ca UBC Chemistry Dept.
www.cs.umanitoba.ca | CS Dept., Univ. of Manitoba
WWW.cS.uregina.ca CS Dept., Univ. of Regina

from UBC. The first three results were obtained steadily by Co-citation and
LinkFocus, so that we infer that there are a large fraction of parents that
cite them. ContentFocus returns other departments from UBC, because of
keywords specific to the UBC domain, such as “british”, “columbia”, or “ubc”,
that are frequent within our collection of documents and drive the results of
the ContentFocus towards other departments from the UBC domain.
Regarding ContentFocus2 and ContentFocus3, the results for the running
example are the same as the one presented in Table 4.3. We will discuss the
effect of collecting increasingly more text in the “Experimental Evaluation”

chapter.

4.4 HybridFocus

As suggested by the example presented in Table 4.3 and as we show in our
experimental evaluation, the ContentFocus performs better than preprocessed
Co-citation or LinkFocus. However, if the textual information that we collect
is scarce or it can not be collected at all, then ContentFocus will face problems.

The HybridFocus is intended to balance the potential drawbacks of Link-
Focus by using ContentFocus, and the vice-versa, to compensate the potential
drawbacks of ContentFocus by using LinkFocus. This intuition could be for-

malized into the following general formula for the HybridFocus of a parent
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A:
HybridFocus(A) = f x ContentFocus(A) 4+ (1 — f) x LinkFocus(A) (4.8)

Function f takes values between 0 and 1. We can notice that:

f =14 HybridFocus(A) = ContentFocus(A)

f=0<% HybridFocus(A) = LinkFocus(A)
Any other value of f between 0 and 1 produces a combination of LinkFocus
and ContentFocus.

The construction of the function f exploits the idea that the more content
the A’s children have, the more ContentFocus should count (f ~ 1), and the
less content A’s children have, the more LinkFocus should count (f ~ 0). This
idea is based on the fact that ContentFocus performs better than LinkFocus,
when we are able to extract “enough” textual information.

Let us assume A is a parent that contains a set of links. Each link is rep-
resented as a vector in the vector space model, where the universe of words is
given by the keywords extracted for the query URL. Let ki, ko,...,k, be the
keywords extracted for the query URL, so that the dimension of the vector
space model is n. The simplest situation is when no keyword has been ex-
tracted for the query URL. In this case, computing the ContentFocus for A
is not possible, so that the only way of computing the focus of A is by using

LinkFocus. It follows that:
n=0= f=0<« HybridFocus(A) = LinkFocus(A)

If n # 0, then the larger n is, the closer to 1 f should be. After the point
where n equals a certain threshold, how large is n does not matter anymore.
For instance, for n equals 100 we will use ContentFocus only, as well as for
n equals 200 or more. The following graph illustrates how f should behave,
according to the number of extracted keywords, n.

We formalize the intuition that we have on f in the following formula:

f=min(logr(n+1),1) (4.9)
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0 (T-1) N

Figure 4.3: HybridFocus: joined Link and Content Focus

T (T > 2) is a constant value representing the threshold starting from
which we will consider only the ContentFocus in (4.8). We show that f respects

our intuition:

(n =0 < No_keywords_have_been_selected)
= logrl =0

= f=0

< HybridFocus(A) = LinkFocus(A)

n>(T-1)

= logr(n+1) >1

= f=1

& HybridFocus(A) = ContentFocus(A)

0<n<(T-1)

= 0 < logr(n+1)
= f=logr(n+1)
& HybridFocus(A) = f * ContentFocus(A) + (1 — f) x LinkFocus(A)

<1

In (4.9), (T-1) is actually the threshold, i.e., the minimum number of key-
words that we had selected for the query URL, so that the HybridFocus of a

parent is in fact its ContentFocus. In our experiments we have used

(T-1)=5T=6
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, i.e., if at least 5 keywords have been extracted, then HybridFocus is equivalent
to ContentFocus, because we noticed empirically that 5 keywords are enough
for the ContentFocus to perform well. However, this value is just a threshold
that could be varied.

With regard to our running example, 20 keywords have been extracted for
the query URL, so that the results obtained by HybridFocus are identical to
the results obtained by ContentFocus (see Table 4.3).

4.5 Summary

Figure 4.4 illustrates the pseudo-code of Focused Co-citation, which is the
same for link-based, content-based and hybrid focus and it is not depended on

the application of the preprocessing stage.

Input: a Web page given by its URL u.
1. Build a vicinity graph for u.
2. For each parent of u compute a focus score.
3. Rank each sibling of u according to formula (4.2).

Output: return as related pages the pages with the 10 highest rank
scores.

Figure 4.4: Focused Co-citation

In the next chapter, we will evaluate our methods, both on preprocessed
and on un-preprocessed data and we show that these focused version of Co-
citation constantly outperform the unfocused version with respect to the pre-

cision of the retrieved results.
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Chapter 5

Experimental Evaluation

In this chapter we evaluate our methods by comparing the performance of the
following six algorithms. The first algorithm is Co-citation, which acts as a
baseline against which we will compare its focused versions. Because we want
to show the performance of our methods regardless of the use of the prepro-
cessing stage, we will present two sets of results. In the first set of results,
the baseline algorithm is Preprocessed Co-citation (Figure 3.6). The Original
Co-citation, as described in the “Related Work”, chapter will be the baseline
for the second set of experiments. No matter the flavor of Co-citation that
we compare against, the next five algorithms illustrate the effect of our new
notion, the “focus” of a collection of links, on the results of the Co-citation al-
gorithm (Figure 4.4). The first algorithm, LinkFocus, shows the performance
of the link-based focus, as formalized in section 4.2. The next three algo-
rithms illustrate the content-based focus. When collecting textual content for
each of the siblings and for the query URL, we have three alternatives that
take increasingly more content into account (section 4.3), so we have three
variations of the content-based focus: ContentFocus! (anchor text and title),
ContentFocus?2 (anchor text, title and meta description) and ContentFocus3
(anchor text, title, meta description and headings). We want to measure what
is the improvement by taking increasingly more content into account. The
last algorithm that we evaluate is the HybridFocus, as formalized in section
4.4. In our experiments we have used ContentFocusl in the computation of

the HybridFocus (see formula 4.8). Table 5.1 summarizes the algorithms that
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we are evaluating.

Table 5.1: Evaluated Algorithms

ALGORITHM | DESCRIPTION

Co-citation Original or Preprocessed

LinkFocus Link-based Focus

ContentFocusl Content-based Focus (anchor text, title)

Content Focus? Si;):ll‘)cent-based Focus (anchor text, title, meta descrip-

Content-based Focus (anchor text, title, meta descrip-

ContentFocus3 tion, headings)

HybridFocus Hybrid Focus

5.1 Implementation

For our methods, we need to obtain the in-coming links of the query URL.
Several search engines provide this facility. We have examined several alter-
natives and we have decided to use Yahoo! [42] to obtain the in-coming links
of a query URL. Google [20] might have been an option, but unfortunately, it
does not allow automatic querying, unless authorized by a certain agreement.
We have noticed that Altavista [1] and other search engines perform some pre-
processing of the results of a query before presenting them to the user. Yahoo!
served well for our purposes, since it allows automatic querying, does not alter
the results of the link query and its results are presented in an easy-parsable
format.

We have implemented a multi-threaded Java application that sends a link
query to Yahoo!, parses the answers in order to obtain the URLSs of the parent
pages, and downloads the parent pages locally. For each parent page, the Java
application downloads the content of its children. In this way, after running
the Java application for a query URL, we have stored locally, in convenient
data structures, the vicinity graph around the query URL that we need for our
algorithms. The algorithms and other preprocessing steps are implemented in

the C programming language (only the extraction of pagelets out of every
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parent page is implemented in Java, due to the better facilities that Java has
for parsing HTML files).

Downloading the necessary information for a query URL in Java may be
time-consuming, depending on how dense the graph structure is around the
query URL. However, once we have this information locally, the running time
of the algorithms is low. We are interested in evaluating the effectiveness of

our methods, rather than execution times.

5.2 Evaluation Strategy

The notion of “relatedness” is subjective and difficult to measure. “Related-
ness” or “similarity” are usually measured by user studies. The users rate
the results according to a given scale (often, a binary scale is used: 1 for
related /similar, 0 otherwise) and then, based on the resulted scores, various
metrics are computed.

When the goal is to evaluate a large number of experiments under differ-
ent settings, user studies may not be suitable, given the fact that they are
expensive both in time and resources. Instead, an automatic evaluation ap-
proach is preferred. Such an automatic evaluation assumes that there exists
a “ground truth” for relatedness/similarity that could be used for evaluation.
Web directories, such as the Open Directory (ODP) [30], have the potential
of acting as a “ground truth” form for evaluating relatedness/similarity. Intu-
itively, the most related documents to a source document are the ones classified
under the source’s category, followed by documents classified under a sibling
category, and so on. For instance, if the source document is classified under
/Top/Arts/Movies/Awards, the most related URLs are those under the same
node of the directory tree, followed by documents in /Top/Arts/Movies/Film
Festivals.

Commercial directory sites usually have a small team of editors that eval-
uate the submissions and assign them to the right categories. However, given
the rapid growth of the WWW, the quality and comprehensiveness of direc-
tories build in this manner has decreased. Open Directory Project (ODP)
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proposes another approach where virtually anybody could volunteer as an ed-
itor, i.e., a person that maintains a certain category of interest (however, one
could not add freely categories to ODP, unless approved by the ODP staff).
Open Directory is the largest distributed database of Web content classified by
humans and it constitutes the core of other directory services, such as Google
[20]. ODP is an open source project, its data being available for download
online.

We have used Open Directory both for the evaluation of the results and
for the generation of the query URLs. To measure the effectiveness of our
algorithms, we want to assess the percentage of “relevant” URLs returned by

each algorithm. By “relevant”, we understand

e URLs that are on the same topic as the query URL

e URLs that are good quality pages

Based on the principles Open Directory has been developed, it is very likely
that the pages categorized inside are good quality pages, so condition (2) holds.
Pages categorized under the same node are on the same topic, so that if a URL
result is under the same node as the query URL, we will consider it “related”
and we will score it with 1.

However, considering as related only the pages that are classified under the
same node as the query URL is not suitable in practice due to the shortcom-
ings of the Open Directory itself. First, the Open Directory is incomplete, i.e,
pages that are relevant for a given category do not appear at all in the Open
Directory. For instance, the query URL www.cs.ubc.ca is categorized under
Top/Computers/Computer_Science/Academic_Departments/North_America/
Canada/. URIs that are related to the query URL, such as www.csc.uvic. ca, or
www.csd.uwo.ca, are listed neither under this category, nor in any other node
of the directory. Second, although in most of the cases pages are categorized
based on topical considerations, there also pages that are grouped together
due to geographical, rather than topical reasons (the branch Top/Regional).
Last, it is possible to have a page classified under several categories. For

example, www.cs.ubc.ca is categorized also under Top/Reference/Education/
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Colleges_and_Universities/North_America/Canada/British_Columbia/

University_of-British_Columbia/Departments_and_Programs/

Science, Faculty_of/, category which lists several other department from UBC.
Given these problems, we have used a “collapsed” version of the Open

Directory tree for our evaluation, i.e., we have collapsed the directory below a

fixed depth of three. Figure 5.1 illustrates the collapsed version of ODP.
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Figure 5.1: Collapsed Open Directory

The same approach has been used in [21], where the Open Directory was
used as a ground truth to evaluate diverse similarity search algorithms on the
Web. By collapsing the directory, we increase the chance of finding the results
of our algorithms in ODP. On the collapsed directory, we consider as related
pages, the pages that are in the same class as the query URL, and we score
them 1; all the other pages are unrelated and we score them 0.

For our purposes, a query URL needs to be categorized somewhere in the
Open Directory; otherwise we would not be able to evaluate if the results of
our algorithms are related or not to it using ODP. The potential query URLs
are chosen randomly from the Open Directory. A potential query URL is a
valid query URL if it has at least 50 parents, because we want to make sure
that there is enough linkage information around the query URL to obtain
meaningful results. We have generated in this manner 100 URLs that we

tested in our experiments.
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5.3 Experimental Results

To estimate the performance of our algorithms, we use two measures that have
also been used to evaluate the original Co-citation algorithm in [15]. The first
measure is the precision at R for a given algorithm, which is defined as the
total number of answers receiving a score of '1’ within the first R answers,
divided by R times the number of query URLs. The second one is the average
precision for a given algorithm, which is defined as the sum of all the average
precisions for all the query URLs, divided by the total number of query URLs.
The average precision of a given algorithm with respect to a given URL u
is the sum of the precisions at each rank where the answer of the algorithm
for u received the score 1, divided by the total number of the answers of the
algorithm for u receiving a "1’ score.

We have computed precision at R and average precision for our six algo-
rithms on both preprocessed and un-preprocessed data.

Figure 5.2 and Figure 5.3 present precision at 10 and average precision,
respectively, on preprocessed data. Figure 5.4 shows the precision at R for

each of the algorithms, where R could vary between 1 and 10.

Precision at 10
0.3

0.23 1

0.26 4

0.24 o

o.22

Preprocessed
Co-citation
LinkFocus
CaontentFocus!
ContentFocus?
ContentFocusd
HybridFaocus

Figure 5.2: Preprocessed data: Precision at 10

We can recognize that the content-based methods consistently outperform
Preprocessed Co-citation.

Precision at 10 expresses how many relevant results an algorithm has re-
trieved, in average, over all the experiments. Awerage precision takes into

account also the ranks of the relevant results. LinkFocus returns in average
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Figure 5.4: Preprocessed data: Precision at R
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more relevant results than Preprocessed Co-citation; however, LinkFocus ranks
the relevant results lower than Preprocessed Co-citation.

With respect to content, our set of experiments on preprocessed data show
that ContentFocus2 and ContentFocus3 perform better than ContentFocusl.
ContentFocus2 produces more relevant results than ContentFocus3, but ranks
them lower than ContentFocus3. Taking more content into account translates
into more keywords extracted for the query URL, as well as into a higher chance
of finding these keywords within the text collected for the siblings. This fact
does not necessarily imply an increase in the quality of the results. If the
number of informative keywords increases, then the precision of the results is
likely to become higher; on the other hand, if the number of bogus keywords
increases, the results might be affected. We notice that, on preprocessed data,
adding meta description text to title and anchor text is the most effective
strategy for content-based focus.

For a given experiment, if the number of keywords extracted for the query
URL is at least 5 (" = 5 is the empirical threshold from section 4.4), than
Hybrid Focus is equivalent with ContentFocusl. For the rest of the cases, the
available textual information may not be enough for ContentFocus1 to perform
well, so that, overall, HybridFocus is slightly better than ContentFocusl.

We compute the same metrics on the un-preprocessed data.

Precision at 10

0.3
0.25
0.z
015
0.1
0.05

Original Co-
citation
LinkFocus
ContentFacus!
ContentFacus?
ContentFacus3
HyhridFacus

Figure 5.5: Un-Preprocessed data: Precision at 10

We notice that our content-based methods also outperform Original Co-

citation, and that HybridFocus performs slightly better than ContentFocusl.
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Figure 5.7: Un-Preprocessed data: Precision at R
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However, on un-preprocessed data, taking the title and anchor text is the best
strategy for content-based focus. The performance of LinkFocus is weaker
than the one of Original Co-citation.

We also want to evaluate whether the results returned by our algorithms
are generally the same or whether the results are largely disjoint sets of URLs.
Table 5.2 illustrates the amount of overlap in the results returned by each pair
of algorithms on preprocessed data. Table 5.3 shows the same information,
but on un-preprocessed data. The numbers are percentages that indicate the

overlap divided by the total number of results returned by the algorithm in

that row.
Table 5.2: Preprocessed data: Overlap between methods
Preprocessed| Link | Content| Content] Content] Hybrid
Co-citation | Focus | Focusl | Focus2 | Focus3 | Focus
Preprocessed) 68.7 | 602 | 646 | 655 | 632
g,o—ﬁltatlon
- 68.7 100 | 56.6 61.5 61.7 | 62.8
Eocus
ontent 60.2 56.6 | 100 | 829 | 81.0 | 924
gocusl
ontent 64.6 615 | 82.9 | 100 | 935 | 832
EO(‘IISQ
ontent 65.5 61.7 | 81.0 | 935 | 100 | 81.2
ybu 63.2 62.8 | 924 83.2 81.2 100
Focus

Table 5.3: Un-preprocessed data: Overlap between methods

Original Link [ Content] Content] Content] Hybrid
Orioinal Co-citation | Focus | Focusl | Focus2 | Focus3 | Focus
rigihal 100 82.0 | 578 60.6 61.2 62.0
Co-citation
m 82.0 100 | 58.2 60.8 61.5 64.1
Eocus
Content 57.8 582 | 100 | 797 | 774 | 93.0
gocusl
ontent 60.6 60.8 | 79.7 100 90.3 78.7
80(’1182
ontent 61.2 615 | 774 | 903 | 100 | 76.6
ybri 62.0 64.1 | 93.0 78.7 76.6 100
Focus
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The results in Table 5.2 and 5.3 are similar. HybridFocus and ContentFo-
cusl have the highest overlap, due to the fact that for most of the experiments,
they are equivalent. Content-based methods have a large overlap amongst
themselves, indicating that taking increasingly more content into account did
not change the results drastically. The large overlap between Preprocessed
Co-citation and LinkFocus is not surprising due to the fact that both algo-
rithms exploit in a relatively similar fashion only the linkage structure around
the query URL.

According to Table 5.2, we can infer that for many experiments, the number
of results returned by both Preprocessed Co-citation and our focused methods
is large. We wanted to check how our focused methods perform when we “differ
enough” from Co-citation, i.e., when we take into consideration only those
experiments for which the intersection of results contains at most 5 elements
(we set the threshold 5, meaning that if half of the results are different, than
we “differ enough” from Preprocessed Co-citation).

We had 31 experiments that met the threshold. On this set of experiments,
we show precision at 10 (Figure 5.8) and average precision (Figure 5.9) on

preprocessed data.

Precision at 10
0.2a5

015 o

o.1
0.05 o

Pre-processed
Co-citation

LinkFocus

HybridFocus

ContentFocust
ContentFocus?
ContentFocus3

Figure 5.8: Preprocessed Data - Reduced Set: Precision at 10

We can clearly see that our content-based methods outperform Prepro-
cessed Co-citation. LinkFocus obtains more relevant results than Preprocessed
Co-citation, but ranks them lower than Preprocessed Co-citation. HybridFo-

cus is similar to ContentFocusl.
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Average Precision
a.15

0.12 4

0.09 4

0.06 +
0.03 1

Co-citation
LinkFocus
HyhridFocus

Pre-processed
contentFocus
ContentFocus?
contentFocus3d

Figure 5.9: Preprocessed Data - Reduced Set: Average Precision

On un-preprocessed data, we had 34 experiments that met the threshold.
The results on the reduced set are presented in Figure 5.10 and Figure 5.11.
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Figure 5.10: Un-Preprocessed Data - Reduced Set: Precision at 10

The same observations as for preprocessed data are valid for un-preprocessed

data too.

5.4 Statistical Significance

We also want to evaluate the statistical significance of our results. We have
computed the sign test and the Wilcoxon sum of ranks test for pairs of algo-
rithms on both preprocessed and un-preprocessed data.

We are interested to see whether the difference between our focused meth-
ods and Co-citation is statistically significant. Table 5.4 shows the results of

these statistical tests on preprocessed data.
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Figure 5.11: Un-Preprocessed Data - Reduced Set: Average Precision

Table 5.4: Preprocessed Data: Sign test and Wilcoxon sum of ranks test
Algorithms Reduced All
Sign  Rank Sum | Sign Rank Sum

0.14 0.2793 0.4701 0.4685

LinkFocus better than

Preprocessed Co-citation
ContentFocus] better than

Preprocessed Co-citation
ContentFocus2 better than

Preprocessed Co-citation
ContentFocus3 better than

Preprocessed Co-citation
HybridFocus better than

Preprocessed Co-citation

0.0006 0.0286 0.0862 0.2033

0.0002 0.0203 0.0024 0.057

0.0005 0.0286 0.0043 0.0719

0.0009 0.0338 0.0179 0.1103
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At the level of significance o = 0.05, on the reduced data set, the dif-
ference between any of ContentFocusl, ContentFocus2, ContentFocus3, and
HybridFocus, respectively, and Preprocessed Co-citation is statistically signif-
icant. With respect to the set of all experiments, at the level of significance
a = 0.05, only the Sign Test indicates a statistically significant difference be-
tween any of ContentFocus2, ContentFocus3, and HybridFocus, respectively,
and Preprocessed Co-citation. This can be explained by the fact that the re-
duced set represents one third of the set of all experiments, where the remain-
ing two thirds are those experiments for which our methods and Preprocessed
Co-citation have a large overlap, i.e., at least 6 results are shared.

At the level of significance o = 0.01, the Sign test indicates a statistically
significant difference between any of ContentFocusl, ContentFocus2, Content-
Focus3, and HybridFocus, respectively, and Preprocessed Co-citation on the
reduced data set, and between any of ContentFocus2, and ContentFocus3,
respectively, and Preprocessed Co-citation on the set of all experiments. At
this level of significance, Wilcoxon sum of ranks test does not indicate any
statistically significant difference.

There is no statistically significant difference between LinkFocus and Pre-
processed Co-citation.

We summarize these comments in the Table 5.5 and Table 5.6.

Table 5.5: Preprocessed Data: o = 0.05
Algorithms Reduced All
Sign Rank Sum | Sign Rank Sum

YES YES

ContentFocus1 better than

Preprocessed Co-citation
ContentFocus2 better than

Preprocessed Co-citation
ContentFocus3 better than

Preprocessed Co-citation
HybridFocus better than

Preprocessed Co-citation
LinkFocus better than

Preprocessed Co-citation

YES YES YES

YES YES YES

YES YES YES

We have performed the same computation on un-preprocessed data. Table
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Table 5.6: Preprocessed Data: o = 0.01

Algorithms Reduced All
Sign Rank Sum | Sign Rank Sum

ContentFocusl better than YES
Preprocessed Co-citation
ContentFocus2 better than
Preprocessed Co-citation YES YES
ContentFocus3 better than
Preprocessed Co-citation YES YES
HybridFocus better than YES

Preprocessed Co-citation
LinkFocus better than

Preprocessed Co-citation

5.7 shows the results of the sign test and Wilcoxon sum of ranks test. Table
5.6 and Table 5.7 show what methods differ statistically significant at the level

of significance o = 0.05 and o = 0.01, respectively.

Table 5.7: Un-Preprocessed Data: Sign test and Wilcoxon sum of ranks test
Algorithms Reduced All
Sign  Rank Sum | Sign Rank Sum

0.0136 0.1003 0.0387 0.1616

ContentFocus1 better than

Original Co-citation
ContentFocus2 better than

Original Co-citation
ContentFocus3 better than

Original Co-citation
HybridFocus better than

Original Co-citation
LinkFocus better than

Original Co-citation

0.0503 0.1562 0.1025 0.2385

0.0625 0.1729 0.0311 0.1521

0.0058 0.0692 0.0071 0.0895

0.7050 n.a. 0.9247 n.a

We conclude that Focused Co-citation consistently outperforms Co-citation.
We have also noticed that Co-citation and our focused methods are slightly
better on preprocessed data than on un-preprocessed data. Finally, for the
cases when we differ in at least 5 results from Co-citation, we are better than

Co-citation. In all other cases, we are at least as good as Co-citation.
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Table 5.8: Un-Preprocessed Data: o = 0.05

Algorithms Reduced All
Sign  Rank Sum | Sign Rank Sum

ContentFocusI better than

Original Co-citation YES YES
ContentFocus2 better than

Original Co-citation

ContentFocus3 better than YES

Original Co-citation

HybridFocus better than YVES YES

Original Co-citation

LinkFocus better than
Original Co-citation

Table 5.9: Un-Preprocessed Data: a = 0.01

Algorithms Reduced All
Sign  Rank Sum | Sign Rank Sum

ContentFocus]1 better than
Original Co-citation

ContentFocus2 better than
Original Co-citation

ContentFocus3 better than
Original Co-citation

HybridFocus better than

Original Co-citation YES YES

LinkFocus better than
Original Co-citation
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5.5 Discussion

The precision values reported above are quite low for all the algorithms. This
is, however, not really indicating a weakness of the methods, but is due to
the shortcomings of using the Open Directory as “ground truth”. Collapsing
the tree at level 3 alleviates to some extend these deficiencies. However, many
relevant pages found by our algorithms will get a score of 0 simply because
they do not appear in the Open Directory at all.

In order to increase the precision of the results, more information about the
personal interests of the user has to be taken into account. The precision of
our content-based methods depends on the selection of keywords, as we have
explained above. For the query URL www.cs.ubc.ca, we have assumed all the
time that the user is interested in locating other computer science departments
of universities from Canada. However, maybe the user is interested in locating
information about other departments from the University of British Columbia.
The solution is to present the user a list with the keywords that the algorithm
has extracted and let him choose the keywords that best fit his interests. The
list of keywords extracted by ContentFocusl for www.cs.ubc.ca is presented in

Figure 5.12.

additional, british, britishcolumbia, canada, columbia, comp, computa,
computer, computi, departamento, department, dept, faculty, informa-
tion, ncia, ofbritish, sci, science, student, talk, ubc, univ, university

Figure 5.12: Selecting keywords: initial set

Table 5.10 illustrates the effect on ContentFocusl when the user selects
as keywords “computer” and “science”, while Table 5.11 is obtained for the
keywords “ubc” and “department”.

Letting the user to select the keywords of interest has the potential to
significantly improve our results, as proved by the above example. We believe
that allowing the user to be an active part of the search process could be used

for the benefit of the search for information on the Web.
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Table 5.10: Selecting keywords: “computer” and “science”

URL

DESCRIPTION

www.ubc.ca

UBC homepage

WWW.CSc.uvic.ca

CS Dept., Univ. of Victoria

www.cs.toronto.edu

CS Dept., Univ. of Toronto

www.csd.uwo.ca

CS Dept., Univ. of Western Ontario

www.cs.umanitoba.ca

CS Dept., Univ. of Manitoba

WWW.cs.uregina.ca

CS Dept., Univ. of Regina

www.cpsc.ucalgary.ca

CS Dept., Univ. of Calgary

www.cs.usask.ca

CS Dept., Univ. of Saskatchewan

www.scs.carleton.ca

CS Dept., Univ. of Carleton

www.cs.utoronto.ca

CS Dept., Univ. of Toronto

Table 5.11: Selecting keywords: “ubc” and “department”

URL

DESCRIPTION

www.psych.ubc.ca

UBC Psychology Dept.

www.philosophy.ubc.ca

UBC Philosophy Dept.

www.ubc.ca

UBC homepage

www.math.ubc.ca

UBC Mathematics Dept.

www.chem.ubc.ca

UBC Chemistry Dept.

www.zoology.ubc.ca

UBC Zoology Dept.

www.eos.ubc.ca

UBC Earth and Ocean Sciences Dept.

www.stat.ubc.ca

UBC Statistics Dept.

www.microbiology.ubc.ca

UBC Microbiology Dept.

www.botany.ubc.ca

UBC Botany Dept.
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5.6 Manual Evaluation

As we discussed before, we need a more reliable strategy for evaluating our
results. One alternative would be to perform a systematic user study. We have
done a small experiment in which one user (myself) evaluates the results of
Preprocessed Co-citation and ContentFocus2 methods (we have picked Con-
tentFocus2 because it is the method with the best performance on preprocessed
data). Ten(10) query URLs were chosen at random. With respect to the se-

lection of keywords for ContentFocus2, we have evaluated two alternatives:
e Automatic selection of keywords, as explained in section 4.3

e Manual selection of keywords: the user selects the keywords of interest

from the set of automatically generated keywords.

We have evaluated the two algorithms with respect to the topic given by
the selected keywords. Figure 5.13 and Figure 5.14 present precision at 10
and average precision for Preprocessed Co-citation and ContentFocus2 when
the selection of keywords is done automatically. Figure 5.15 and Figure 5.16

present the same information for the case when the selection is done by the

user.
Precision at 10
0.6
0.4 4
0.2
o T
Pre-processzed Co-citation CortentFocus2

Figure 5.13: Automatic selection of keywords: Precision at 10

These results make us confident that a systematic user study, either with
automatic or manual selection of keywords, may be successful in proving the

effectiveness of our focused methods.
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Figure 5.14: Automatic selection of keywords: Average Precision
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Figure 5.15: Manual selection of keywords: Precision at 10
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Figure 5.16: Manual selection of keywords: Average Precision
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Chapter 6

Conclusions and Future Work

In this thesis we have addressed the problem of finding related pages on the
Web. The few papers in the literature that have addressed this problem exploit
the linkage structure of the Web and the order of links within Web pages.

We have implemented and analyzed the original Co-citation algorithm [15]
and we have identified a number of problems that may affect its results. We
have discussed and applied a number of heuristics (navigational links elimi-
nation, near-duplicate pages contraction, and pagelet extraction) in order to
improve the results of the original Co-citation. We call the succession of these
techniques “preprocessing”. We have noticed that the effect of preprocessing
can not be predicted accurately in all cases, i.e., there are cases when prepro-
cessing helps improving the results of original Co-citation, but there are also
cases when preprocessing adversely affects the quality of the results.

We have argued that the problems with Co-citation are mainly due to the
existence of “unfocused” pages on the Web. We have formalized a notion of
“focus” of a collection of links in several ways, based on content and linkage
information. We have embedded our notions of focus within Co-citation and
we have shown in the experimental evaluation that our focused versions of
Co-citation outperform the unfocused version, both on preprocessed and on
un-preprocessed data.

In addition, we propose an interactive search strategy, tailored to the user’s

personal interests.
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6.1 Lessons Learned

Based on the experience developed while working on the problem of find-
ing related pages on the Web, we summarize the following points as ”lessons

learned “:

e Content-based focus is our best performing method. Its precision can be

further increased by allowing the user to select the keywords of interest.

e Co-citation and our focused methods are slightly better on preprocessed

data than on un-preprocessed data. Shortly, preprocesing does help.
e We need more reliable evaluation strategies than the Open Directory.

e For the cases when Co-citation already works well, the improvement over

Co-citation obtained by our methods is not significantly larger.

6.2 Directions for Future Work

There are several possibilities for future research. The evaluation of our al-
gorithms in terms of precision is, as already mentioned above an important
issue. To be able to give a more reliable evaluation, we have to look into
alternative ways to evaluate such algorithms. An idea would be to compute
“coarse”, domain-specific, similarity measure that, although far from being
definitive or exhaustive, does serve to illustrate important aspects of the pro-
posed algorithms. The precision of our algorithms is low due mainly to the
fact that many relevant pages are not classified in the Open Directory at all.
We may be able to use an algorithm that, given a Web page, is able to predict
with high accuracy the category of the Open Directory where the page should
belong to (this project is currently developed at our university). Finally, we

do not exclude the possibility of organizing an extensive user study.
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