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Abstract

Latent Trait or Item Response Theory (IRT) relies heavily on a number of strong 

assumptions (Lord, 1980; Lord & Novick, 1968). Unidimensionality is considered to be 

the most essential of these assumptions (Hambleton, Swaminathan, Cook, Eignor and 

Gifford 1978). Several procedures now exist which estimate the parameters contained in 

the unidimensional IRT (UIRT) model. One which has received extensive use is the joint 

maximum likelihood procedure employed in the parameter estimation program Logist 

(Wingersky, Barton, & Lord, 1982).

The current study assessed the effects on the estimation of UIRT parameters when 

data sets violate the assumption of unidimensionality by exhibiting varying degrees of 

multidimensionality and correlations among the dimensions. The effects were assessed by 

generating data sets having two or three dimensions and correlations among the dimensions 

of 0.0,0.3,0.6, 0.95, and 0.99. Thus, ten data sets were generated, each representing a 

different combination of dimensionality and correlation among the dimensions.

Procedures for generating the data are described. The data were generated using 

Fortran 77 and IMSL subroutines. The suitability of the compensatory (CMIRT) and 

noncompensatory (NMIRT) multidimensional item response models used for generating the 

data are also noted. The problems encountered in generating the data and the techniques 

used to overcome those problems are described. Methods to ensure that the data sets did 

indeed contain the intended characteristics were of special interest.

The computer program Logist was employed to estimate the person and item 

parameters for the pseudo three parameter unidimensional IRT model (guessing parameter 

held constant at 0.2). The estimated parameters for each data set were compared to the 

parameters which were used in generating the data sets. The degree of congruity between 

the estimated parameters produced by Logist and the parameters inherent in the data sets 

was tested by examining the correlation between the IRT parameters, their means, and their
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sums. Mean square differences were also examined to determine the size o f  the congruence 

when dimensionality and correlation were varied.

Increasing dimensionality had a negative impact on the congruence between the 

estimated parameters and the generated parameters. Conversely, increases in the correlation 

between the dimensions to some extent countered the negative effects of increased 

dimensionality.

Replication of Ansley and Forsythe's 1985 study, with respect to a two dimensional 

data structure, was completed and is presented as a part of the current study.
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CHAPTER 1 

Introduction

Item Response Theory versus Classical Test Theory

An item response model specifies a relationship between the examinee's observable 

test performance and the unobservable abilities (latent traits) assumed to underlie 

performance on the test. An example of such a model is the item-response function, called 

the item characteristic curve in the one-trait or unidimensional model, which relates the 

probability of getting a test item correct to the latent trait underlying performance on the 

items. Responses to a set of manifest variables (items), which are designed to assess 

performance on an achievement test, are less than perfectly related to the assumed latent 

ability. This suggests the presence of one or more underlying mental traits. In the case of 

continuous manifest variables the problem of searching for latent traits leads directly to 

factor analysis.

The relationship between IRT and factor analysis is well established (see Traub & 

Wolfe, 1981), and the unidimensional latent trait in IRT presumes a one-factor structure. A 

one-factor analytic model is sufficient for the two-parameter normal ogive IRT model (Lord 

& Novlck, 1968). Factor analytic procedures are useful for testing a priori structures and 

for determining the appropriate IRT models (e.g., Hulin, Drasgow, & Parson, 1982). IRT 

approaches the problem of determining the relationship between a response and an ability 

from a probabilities viewpoint rather than from a correlational one. That is, the function 

that specifies the relationship between an item and the latent trait is stated in terms of 

cumulative probabilities for given trait values.

Commonly, IRT models arc associated with multiple-choice items used in an ability 

or achievement test (Traub & Wolfe, 1981; Warm, 1978). Most multiple-choice test items 

form dichotomous scales whose categories can be labeled "0" for incorrect responses and 

"1" for correct responses . Many other item types, including some in which subjects 

supply or construct the response, are also dichotomous; any item type where the subject's
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response is marked correct or incorrect or that can be scaled as two points is dichotomous. 

Items that can be scored in this way are quite common, and the IRT model therefore applies 

rather broadly. Many of the recent textbooks on IRT deal almost exclusively with IRT 

models based on dichotomous types of test items.

IRT models are not limited to multiple-choice items (or to dichotomous manifest 

variables generally); work is being done with multidimensional item types as well 

(Mislevy, 1987, p. 240). For example, researchers have applied IRT models to nominal 

items with more than two categories and to items with ordered scales: e.g., Andrich 

(1978), Bock (1972), Masters and Wright (1984), and Samejima (1972). Others have 

extended the notion of IRT to multidimensional models ( Bock & Atkin, 1981; Doody- 

Bogan & Yen, 1983; Hattie, 1981; Mulaik, 1972; Rasch, 1961; Reckase, 1985; Samejima, 

1974; Sympson, 1978; Whitely, 1980).

IRT can provide to test producers and test users certain benefits which are not found 

in Classical Test Theory. The statistical indices found in Classical Test Theory are 

typically those deriving from norm-referenced techniques (see Baker, 1977, for a review of 

norm-referenced item analysis statistics) and are defined below.

1). Item difficulty-usually indicated by the "p-value" which is the proportion of 

examinees with a correct response to the item (proportion scoring "1").

2). Item discrimination—usually indicated by the point-biserial or biserial 

correlation of the item with the total test.

3). Average and spread—usually mean and standard deviation, but sometimes also 

median, semi-interquartile range, etc.

4). Distribution-usually skewness and kurtosis of the distribution, but goodness 

of fit to the expected distribution can also be tested

5). Reliability of the test scores—usually KR-20 or corrected split-half (which 

under estimate reliability based on the classical test theory notion of strictly 

parallel tests), or, often in ability testing, the test-retest correlation.

with permission of the copyright owner. Further reproduction prohibited without permission.
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6). Error associated wi.h a score—usually the standard error of measurement as 

calculated from the standard deviation and the reliability estimate.

Hambleton & Swaminathan (1985) identify five major shortcomings of the classical 

test theory approach to test development and test evaluation (see also Hambleton & van der 

Linden, 1982). The first is related to the examinee sample on which the statistics are 

calculated. The item p-value is directly affected by the ability level of examinees, and it is 

not necessarily equal for the same item administered to two groups of the same average 

ability. The test characteristics such as average, spread, and form are dependent on the 

ability level of examinees as well. Item discrimination is related to subject matter 

homogeneity, range of examinee ability scores, and the dispersion of p-values. The 

discrimination of items affects the test reliability as measured by internal consistency indices 

(e.g., KR-20) and hence the typically reported standard error of measurement.

The second shortcoming of using classical test theory is related to making 

comparisons among groups, specifically that the same test or parallel tests must be used 

(Hambleton & Swaminathan, 1985). The test cannot be adapted to the examinee, and for 

high or low ability suelects the test is usually less precise. Further, test validity can be 

increased by matching item difficulty to the ability of the examinee (Lord, 1980). 

Comparison of scores from two or more different tests becomes very difficult under the 

classical model, even for group averages relatively close to the middle of the score scale. 

The problem of precision of scores being different at various points of the score scale is 

masked in classical theory by the common practice of employing one estimate of the 

standard error of measurement for all levels of the test scale. Hambleton and Swaminathan 

(1985) posit that performance at the high end of the score scale is frequently more stable 

than at the middle and lower ends.

The third shortcoming expressed by Hambleton and Swaminathan (1985) is that test 

reliability is defined in terms of parallel forms. Parallel tests are most often difficult to
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achieve, and most reliability indices are either lower-bound estimates (e.g., KR-20) or with 

unknown bias (e.g. test-retest).

A fourth shortcoming is that classical test theory cannot provide a basis for predicting 

examinee performance on a given test item, that is the probability of responding correctly 

cannot be estimated from item statistics. The ability to predict item peiformance is 

necessary for tailored testing and is desirable in many testing situations.

Classical test theory has fallen short with respect to identifying biased items and in 

equating test scores (Hambleton and Swaminathan, 1985, p. 3). This follows from the 

criticisms specified above, but it indicates problem areas for which solutions are clearly 

aided by IRT. Hulin, Drasgow, and Parsons (1982, p. 8) present the argument that the 

total test score is unrepresentative of ability. Patterns of response are lost in this practice, 

and differential weighting of items and/or individually selected items (adaptive testing) may 

provide a more accurate score. Clearly, both differential item weighting and individual item 

selection based on estimates of examinee ability and item parameters can produce more 

accurate examinee scores, and this accuracy can be obtained more efficiently (by fewer 

items). This fact is readily apparent from combining item information functions and 

comparing test information at various points on the ability continuum. Certain 

combinations of items produce much more information than do other combinations at 

specific points on the scale (Warm, 1978, pp. 73-77, provides an example of this from 

actual IRT item data).

Item and Person Parameter Invariance in IRT

IRT is a theory which relates the observed performances of examinees on items to a 

latent trait, which in the unidimensional case, is said to explain the behaviour on the items. 

The relationship is described as a probability function; this function depends on the latent 

ability of a person, a single parameter in the unidimensional case, and on information about 

the item, one, two or three parameters, depending on the model (Traub & Wolfe, 1981). 

However, in contrast to Classical Test Theory in which total test score is used to estimate
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the latent ability, IRT uses all the parameter information from every item administered to the 

examinee in determining the level of ability.

In contrast to the shortcomings mentioned in relation to Classical Test Theory, IRT is 

claimed to provide item and test statistics which are independent of examinee characteristics 

and of test characteristics (Warm, 1978, p. 17; Lord & Novick, 1968). As well, the fit of 

the item models and test models can be evaluated empirically. The following features of 

item response models are outlined by Hambleton and Swaminathan (1985, p. 11) and are 

applicable when the IRT model fits the data. First, item parameter estimates are 

independent of the group of examinees sampled from the population of examinees for 

whom the test was designed. Second, examinee ability estimates are independent of the 

particular choice of test items sampled from the population of items which were calibrated 

(the calculated item parameters). Third, the precision of ability estimates is known.

It should be noted that some authors are not confident about the "robustness” of IRT 

models, and emphasize the problems associated with the strong assumptions necessary for 

their application, in particular unidimensionality and local independence (Goldstein, 1980; 

Traub, 1983; Traub & Wolfe, 1981). Bock, Mislevy, and Woodson (1982) recommend 

IRT functions based on logical learning units rather than combining a variety of skills and 

employing one dimension to define the model, for example, when a test of mathematics 

contains items from a variety of objectives and is analyzed using one dimension.

Traub and Wolfe (1981) comment that if an IRT model is correct it provides 

tremendous advantages, but in the practice of measuring educational achievement the 

assumptions are rarely tenable. They also point out that present-day IRT models require 

dichotomous items and assume a single underlying dimension across a range of skills or 

even grade levels. They are particularly concerned that IRT models are not independent of 

the context: "we view as potentially dangerous the practice of applying latent trait scaling 

over time and over educational programs where instruction varies" (Traub & Wolfe, 1981, 

p. 380). Traub (1983) provides data that demonstrate the unlikeliness of the
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unidimensionality assumption. Traub & Wolfe (1981) point to a further problem, which is 

that the test of adequacy of fit of the model has statistical deficiencies, such as lack of 

power, nonlinearity in the auta, and poor generalizability of item parameters.

Because of the difficulty and expense associated with using IRT in assessment, most 

present applicant, tend to be in large-scale achievement and ability testing programs, 

either government-based achievement testing programs such as the California Assessment 

Program (Pandey & Carlson, 1983) or in published standardized ability and achievement 

tests such as the Comprehensive Tests of Basic Skills by McGraw-Hill (Yen, 1983). 

Large-scale testing programs almost exclusively utilize multiple-choice test items. Thus, 

applications of IRT have been made with this type of item. However, it is well known that 

multiple-choice items cannot assess much of what is important in education (e.g., writing 

competency), and therefore the application of IRT, as it has been developed, is very limited 

and may even be limiting to good assessment practices.

Item Response Models

A number of models have been proposed that specify the expected relationship of the 

latent trait to the categories of the items (the manifest variables). The goodness of fit of 

each can be established and comparisons can be made (Hambleton & Swaminathan, 1985). 

Traub and Wolfe (1981) express the concern, "the assessment of model fit is something 

that, in practice, is usually done very badly" (p. 384), and the power of statistical tests is 

usually poor. The models are based on various assumptions about the data, and a 

comparison of the fit of two models becomes a test of the particular assumptions that 

distinguish the two models.

Assumptions
There are three assumptions that apply generally to latent-trait models, and more 

specifically to IRT and the item response function. The first is related to the dimensionality 

of the latent space; it is assumed that only one ability or trait is necessary to explain an 

examinee’s test performance. The second is related to local independence, i. e., examinees
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’ responses to different items in a test are statistically independent at a given value of the 

latent trait The third is related to the item characteristic curves; the curve connecting the 

means of the conditional distributions is the regression of item score on ability ( referred to 

as an item characteristic curve).

Unidimensionalitv. Item response models which assume a single underlying trait are 

referred to as being unidimensional. In a strict sense this assumption is only met in theory 

and is never realized in practice. In any testing situation a host of cognitive and motor skills 

all come into play and influence the outcome of any one subject's performance on a test 

What is considered to be of importance in meeting the assumption of unidimensionality is 

that a single "dominant" ability factor underlies performance on a test and that the test is 

designed to measure the ability in question (Hambleton & Swaminathan, 1985). Warm 

(1978), presents three rules of thumb for determining unidimensionality.

1. Tests that look unidimensional probably are unidimensional.

2. Items that test bits of knowledge that were learned together are probably

unidimensional.

3. Items that test bits of knowledge which are logically and sequentially related are 

probably unidimensional.

Warm cautions that such rules of thumb are meant to be nothing more than a guide 

and are not presented as replacements for sound empirical evidence for unidimensionality. 

Warm posits that such rules of thumb are justifiable given the difficulty in determining 

unidimensionality empirically. The difficulty arises from the fact that most tests of 

unidimensionality rely on factor analysis of inter-item tetrachoric correlations, which 

requires that the ability levels be normally distributed. This assumption need not hold when 

items allow some probability of a correct response through guessing (Warm, 1978).

A unidimensional instrument is often considered in terms of the outcome of a 

procedure designed to establish its singularity. However, a unidimensional test is net 

defined in relation to a unit rank, deviations from a perfect scale, or one common factor.
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Unidimensional tests are not necessarily reliable, internally consistent, or homogeneous 

(Hattie, 1985). The only defining character is that performance on a test be a function of a 

single underlying ability.

Critics of unidimensional test construction have pointed to a number of serious flaws 

in the attempt to develop homogeneous test (Humphreys, cited in Harrison, 1986; Traub, 

1983). Harrison is concerned that tests which are constructed to be unidimensional may be 

too limited in their capability to assess the subject in a given area. He further stresses a 

paradoxical situation in which as a test becomes more homogeneous with respect to a given 

underlying trait it also decreases in predictive validity.

Traub (1983) refers to the notion of a singular underlying trait as "the fragile 

assumption of unidimensionality". He considers three circumstances which could affect the 

dimensionality of the latent ability space. The first is the method of instruction. Differential 

instruction can create a multidimensional ability space where before a unidimensional ability 

space existed. The simple example presented by Traub is that, of children who are 

homogeneous with respect to the elementary operations of adding and subtracting integer 

numbers. The children are then split into two groups; the first group receives exclusive 

instruction in addition while the second receives exclusive instruction in subtraction. When 

the two groups are later tested on both operations there is a negative correlation between 

pairs of items relating to addition and subtraction. This would imply two abilities rather 

than a single ability which existed prior to the differential training.

The second circumstance is that of a speeded test. As before there is a single group 

of children with the same ability to answer the questions on the test. Again they are split 

into two groups, such that they receive differential instruction in test taking or such that 

they are divided on some criterion which allows them to be grouped as fast or slow test 

takers. As individual groups their inter-item correlations are zero but, when combined the 

correlation is greater than zero. A non-zero correlation, for a subpopulation of examinees
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all of equal ability on one latent trait, implies that a single trait is not sufficient to satisfy the 

condition of local independence.

The scenario is virtually identical for the third circumstance, which is guessing. If 

individuals of equal ability can be divided into two groups, one with a propensity to guess 

and the other with the absence of guessing, then , as before, the inter-item correlations 

within the groups will be zero. However, there will be an inter-item correlation for the 

combined groups.The same conclusion can be drawn as for the case of a speeded test, that 

is, more than one underlying trait is responsible for performance on the test.

Traub concludes that no unidimensional model can adequately represent achievement 

data. He further states that it would be foolhardy to expect errors due to model misfit to 

average to zero as random errors would. Therefore, he suggests that one should seek 

other solutions to educational measurement problems.

Local Independence. There is a clear relationship between local independence and the 

concept of unidimensionality (Bejar,1980; Hambleton & Swaminathan, 1985; Traub & 

Wolfe, 1981). Local independence states that the joint probability of the scores on twc 

items for a given ability level is the product of the probabilities of the score on each item 

given the ability level (Traub & Wolfe, 1981, p. 386):

Pr(Xi=xi and Xj=xjl 0) = Pr(Xi=xi I 0) x Pr(Xj=Xjl 0) 

where X[ and Xj are scores on any two items and 0 is any given ability level. This rule can 

be simply extended to the joint probability of a response pattern on any number of items. 

The equation implies that any correspondence between pairs of items must have been 

accounted for by the latent trait, but it may be that several traits are needed for this condition 

to be satisfied. In this sense, then, a unidimensional test must have local independence of 

item responses. However, the inverse is not true, that is local independence does not 

imply unidimensionality. Conditions which may violate the assumption of local 

independence are those of a speeded test (discussed above) and chained items.

Presumably, factor analysis of item responses can be used to test the reasonableness of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

assumption, and Lumsden (1976) suggests the ratio of first- to second-factor variance as an 

index. This procedure has its problems since it relies on item correlations (see Hambleton 

& Swaminathan, 1985, pp. 21-22; Warm 1978, pp 99-101).

Item Characteristic Curves. The model is typically expressed in terms of the item 

characteristic curve (ICC), or the item characteristic function in the multidimensional case, 

which is the (nonlinear) regression of the item score on the latent trait or ability. Since the 

probability of an examinee answering an item correctly is dependent only on the form of the 

ICC, it is independent of the performance of other examinees, and therefore the curve is 

invariant across samples (Bejar, 1980; Hambleton & Swaminathan, 1985). The ICC is the 

curve relating the probability of item i being correctly answered by a randomly selected 

individual with ability 0. Alternative definitions are possible but may lead to problems; this 

is the suggested definition of Hambleton & Swaminathan (1985, p. 27). The ability scale 0 

is not defined by the item scales, but is usually arbitrarily set to have mean = 0 and standard 

deviation = 1, thereby making the practical range approximately from -3 to +3. Finally, the 

distribution of 0 does not need to be normal for the theory (Warm, 1978).

The Logistic Model

A wide variety of models is possible to define the item characteristic function P[(0) 

for typical achievement or ability tests but the model commonly in use today is the logistic 

one, attributable to Bimbaum(1968). This model is preferred over the normal ogive 

originally proposed by Lord, since it is more mathematically tractable, i.e., it does not 

involve integration in the equation for Pi(0). The two-parameter logistic model, with the 

scaling factor D = 1.7 (see formula below), can be shown to produce an item characteristic 

curve which deviates from that produced by the normal ogive by less than .01 for all values 

of 0 (Hambleton & Swaminathan, 1985, p. 37). The logistic model ICC for item i 

favoured by many writers today (e.g., Warm, 1978) involves the following three 

parameters:
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ai = the item discrimination value of the ICC: it is proportional to the slope of the 

ICC at the point on the curve where 0  = bi; -«* < a > -h» 

bi = the item difficulty value or location of the ICC: the point on the 0  axis where 

the examinee has a (l+ci) /  2 chance of responding correctly to the item (also at 

the inflection point of the curve); -<» < b > +°° 

ci = the pseudo-chance level of the ICC: the lower "symptote value of Pi(0), or the 

"guessing factor" in multiple-choice items. 0 < c > 1 

The three-parameter equation for Pi(0) can be expressed as follows:

(1-Oj) eDajte-bj)
Pj(e) = et + ----------------------------

( ’ ' 1 + e Dai<9 -bj)

where D = 1.7 (the scaling factor), and i = 1 , 2 , . . .  n items. This may also be expressed 

as:

  1
Pj(0)  ~ cj + 0 ' c j).

e -Dai(9-bj)

A four-parameter model has also been posited, the fourth parameter being an upper 

asymptote less than one for Pj(0) based on the notion that even high ability examinees miss 

items through carelessness (see Hambleton & Swaminathan, 1985, pp. 48-49; also Traub 

& Wolfe, 1981, p. 423). The three-parameter model is the one most commonly discussed, 

and Lord provides some evidence that there is little practical gain from adding the fourth 

parameter (Hambleton & Swaminathan, 1985, p. 49).

Based on this general IRT model there are two restricted models, namely that of one 

parameter, bij and that of two parameters, ai and bi. There is considerable debate in the 

literature regarding the appropriate model to use in actual applications. It seems obvious 

that the three-parameter model should be most applicable to multiple-choice items since it
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includes the possibility of both varying discrimination of items (aj) and the guessing factor 

(ci). However, there is considerable use of the one-parameter model; this is equivalent to 

the Rasch model which assumes that the discrimination parameter is constant for all items 

(see Wright, 1977). The Rasch model is easier to use since it involves estimation of only 

one parameter for each test item, and numerous applications are reported in the literature 

(see Wright & Stone, 1979).

In addition to its use with multiple choice items, the two-parameter model is also 

appropriate for test items which are of a constructed-response format, scored right or 

wrong, and where there ;s little or no opportunity for the examinee to respond correctly by 

guessing . Some of the original work by Lord (e.g., 1953) was on the two-parameter 

normal ogive model, and Bimbaum (e.g., 1968) proposed the two-parameter logistic model 

as an alternative to the normal ogive.

A variety of IRT models have been developed, but the one, two, and three-parameter 

logistic models are most commonly used. These models can be applied to the item 

responses and the fit of each can be compared to that of the others. The scale of 0 is 

arbitrarily established and can be adjusted to a convenient metric, such as mean = 50 and sd 

= 10 (T-scale), by using a linear transformation. One such transformation for the three- 

parameter ICC is;

0 * = g0 + k, ci* = ci, bi* = gbi + k, and ai* = ai/g., 

where the scale size is adjusted by g, a location shift of k is made, and the constant ci* is 

arbitrarily set for the item. Hambleton and Swaminathan (1985) demonstrate that this form 

of transformation leaves Pi(0) invariant, i. e., Pi(0*; a*, b*, c*) = Pi(0; a, b, c). These 

transformations can be applied to the two-parameter model, and to the one-parameter model 

if ai is taken to be the average item discrimination, say a  If a computer program returns 0 

in terms of mean = 0 and sd = 1, as many programs can do (e.g., LOGIST; see 

Wingersky, 1983), then to transform to a T-scale simply means g = 10 and k = 50.
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Three Parameter Logistic Model: A Closer Look 

The three-parameter logistic model can be used to develop some interesting relations 

and applications of IRT. The ICC for item i is:

P i(e) = Cj +(1-Cj)[e 'D a j(e "b p ] " 1

From the equation it is readily apparent that the value of Pi(0 ) approaches cj as 0 

approaches -<» and 1 as 0  increases to For example, when 0  — > +®«, the expression [- 

Daj (0 • bi)J —> -°° anti the limit of e raised to the power -«*> becomes 0, so that 1 + exp[- 

Dai (0 - bj)] = 1 and ci + (1 - q )/l = 1. The probability of an examinee with infinite ability 

responding correctly to the item is 1, as expected.

The relationship of Pi(0) to 0  resembles a cumulative distribution function 

(ogive) for examinees of all ability levels.

1.0

0 . 8

0.6

slope=.425ai (1 -ci)0.4

0.2

0.0

-3  - 1 1 3
o*

Abi l i t y
Figure 1. Three Parameter Item Characteristic Curve 

Figure 1 makes some of the significant features of an ICC apparent The value for ci 

gives the minimum or lower asymptote for Pi(0 ), whereas the upper limit is 1. The ICC 

increases monotonically from Pi(-«) = ci to Pi(°°) = 1, with the greatest rate of increase 

occurring midway between these two extremes. Since the shape of the curve of the ICC is
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centro-symmetric about the point P(bi), bi is the value for 0  at which the inflection point of 

the curve occurs. This is the "midpoint" of the curve, and thus P(0=bi) = (1 + cj) / 2. This 

point is also the point of maximum slope of the curve, and thus the maximum value of the 

discrimination, ai, for item i. This implies that item i discriminates most among examinees 

of differing abilities where these abilities lie close to 0  = bi, i. e., at 0  = +0.5 in Figure 1 

above (when Cj = 0 .0 ).

The foregoing are two crucial aspects of IRT. First, the slope of the ICC for an item 

is limited by the value for ci, with the maximum obtaining when ci = 0. As Warm (1978) 

puts it, "the effect of the c-value is to squeeze the ogive into a smaller vertical range.. . .  

equal to 1 - c“ (p. 32). This can be visually represented by graphing an example where ci 

approaches 1.0; the ICC would be quite flat and the slope —> 0. This implies tha. items 

which are prone to considerable guessing, such as true-false items, would likely be less 

discriminating than those where guessing is at a minimum, such as constructed-response 

items. Second, an item's capability to distinguish between examinees at adjacent ability 

levels is dependent on what point along the ability continuum is being considered, with the 

greatest discrimination occurring at the point bj. Tins implies that certain items would be 

more discriminating at particular levels of ability than others. For example, given that the 

parameters a and c were equal for two items, the item with a value for b closest to the ability 

levels for which discriminati..;. desired would be the most discriminating. The item 

whose ICC is depicted in Figure 1 above is indicative of an item which has very little 

discriminating power.

These features of IRT are in striking contrast to those of classical test theory, where 

the effect of guessing has little impact on the item discrimination, unless it becomes rather 

large, and item discrimination is assumed to be constant irrespective of examinee ability. 

The impact of the difference becomes even more significant when a test consisting of a 

collection of items is considered. The application of IRT to tailored testing is obvious: it 

allows selection of items based on their power to discriminate most at the estimated level of
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ability of the examinee. Since in many cases there is no estimate of examinee ability it can 

simply be inferred from performance on previous items, and the testing can be started by 

administering moderately difficult items.

A few comparisons of the parameters to classical theory statistics are given by Warm 

(1978, pp. 51-53). Unfortunately, the relationships are complex, so will not be described 

here. What can be given is some indication of commonly obtained values for the 

parameters. Warm (1978) contends that items with a-values below .80 are not sufficiently 

discriminating for most purposes. He also states that b-values below -2.5 are quite easy 

and above +2.5 are very difficult. Finally, he argues that a reasonable estimate of c for a 

multiple-choice item is given by (1/A) - .05 where A is the number of options, and that 

although c's typically range from 0.0 to 0.4 they should be 0.2 or less. A test characteristic 

curve can also be determined simply by the averaging the P(0)’s for all items in the test (see 

Hambleton & Swaminathan, 1985, pp. 61-69). This produces a curve that is similar to the 

item ICC's. It is further defined as the relationship of test true score (or domain score) to 

0 .

Estimating Ability and Item Parameters

Ability (0 ) and item parameters (a, b, and c) must be simultaneously estimated from 

the response patterns of the examinees. If N examinees respond to n items, the number of 

parameters to be estimated are N + 3n, and N + 2n and N + n parameters for the three, two 

and one parameter models respectively. There are indeterminacies in the solutions so 

restrictions must be applied. Usually for 0 in the three and two parameter models the mean 

and standard deviation are set to 0  and 1 respectively, which reduces the parameters to be 

estimated by two.

The algorithm for the maximum likelihood solution for the IRT parameter estimation 

problem is beyond this paper. It is described briefly in Warm (1978), and in somewhat 

greater detail in Hambleton and Swaminathan (1985) and Lord (1980). The procedure 

involves maximizing the likelihood function which is based on the conditional probability
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of the particular response vector u for examinees on the items, given the ability parameter 

and item parameters, i. e.,

L(u I 0 , a, b, c)

where 'ue terms are as defined in the next paragraph. The function is obtained by taking the 

product of the joint probabilities of the responses u and the parameters (this is possible 

because of the local independence assumption). But since usually all of the parameters are 

unknown (actually all but two), they must be estimated simultaneously by an iterative 

procedure.

The natural logarithm of the likelihood function (Hambleton & Swaminathan, 1985) 

is obtained and since the function is a product of probabilities, the result becomes a 

summation:

In L(u I 0, a, b, c) = Z  X [uy In Py + (1 - u y ) In Qy ]

where:

Summation is over N examinees (j=l, • • • N) and n items ( i= l , . . ,  n) 

u is an Nn vector of the N examinee observed responses to the n items (element

is the score of examinee j on item i)

0  is the vector of N ability estimates

a, b, and c are the three vectors parameters for the n items

Py = Pi(dj) is the ICC value for item i and ability level 0j

Qy = 1 - pu

The maximum likelihood equations are obtained from the partial derivatives of L with 

respect to each parameter vector (a vector consists of one set of parameters 0 , a, b, and c). 

Solutions are obtained for the equations by first treating the item parameters as known and 

producing N equations in 0j. An iterative procedure is employed until differences between 

successive approximations to the item parameters becomes sufficiently small.

Solutions for tests with substantial numbers of items administered to large samples 

are a difficult problem given the large number of nonlinear equations which are involved,
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particularly in the case of two and three parameter models. Several additional problems 

arise beyond the sheer difficulty of computing. The first is that the numerical procedures 

do not guarantee an absolute maximum for nonlinear equations and local maxima may be 

obtained (Hulin, Lissak, & Drasgow, 1983). Second, estimates of the parameters may take 

on values outside the acceptable range, and researchers such as Wright (1977) argue that 

this calls into question the maximum likelihood solution procedures for two and three 

parameter models. Third, the estimate for the lower asymptote (c) is very difficult to 

achieve using maximum likelihood methods (Lord, 1980).

The computer program LOGIST (Wingersky, 1983) employs this joint maximum 

likelihood estimation procedure. Hambleton and Swaminathan (1985) and Mislevy (1987) 

state that it is one of the computer programs commonly used for the two and three 

parameter problem, but indicate that there is interest in alternate procedures such as those 

based on marginal probability functions. A computer program using this approach is 

BILOG. The authors also describe conditional maximum likelihood estimation, which with 

the proper constraints leads to the Rasch procedure of Wright and Stone (1979) and to the 

nrogram BICAL. Although a variety of other solution procedures are being considered, 

one that appears quite promising is Bayesian estimation (Hambleton & Swaminathan, 

1985). Apparently, this approach produces modest improvements on the point estimates 

(Mislevy, 1987). Lord (1980) suggested samples of more than 1000 examinees and more 

than 50 items for adequate parameter estimation. This seems to be good advice particularly 

where ability estimates are to be used for decision-making: Mislevy (1987) states "that 

treating estimates as parameters provides fairly accurate end results in applications when 

both n and N are large—say, n > 50 and N > 2000" (p. 253). He also states that serious 

biases result from treating 0 estimates as parameters or true scores when examinees take 

few items: "less than, say, 15" (Mislevy 1987, p. 255) and few items is precisely what 

tailored testing would hope to achieve! The problem of obtaining estimates of 0  given item 

parameters is much simpler than that of simultaneously estimating examinee and item
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parameters. Hambleton and Swaminathan (1985) describe the procedure, and Warm 

(1978) gives a simple example of how to obtain estimates of 0  for three items.

Conclusion

Consideration has been given to many of the shortcomings of classical test theory: a) 

the variability of item statistics as a function of the sample group, whereas, in IRT item 

parameters remain invariant across groups of examinees and the ability parameters are not 

affected by the items administered, b) the difficulty in comparing groups tested on items of 

different difficulty levels, and the problem of achieving parallel measures, c) the lack of 

predictive power when trying to ascertain the probability of a subject's response to a 

particular item, d) the assumption of homogeneity of error variance among subjects who are 

heterogeneous with respect to ability. In addition to these, classical test theory has been 

unable to provide satisfactory information with respect to identifying biased items, equating 

of test scores, and development of tests which discriminate maximally at a given ability 

level.

Item Response Theory addresses many of the problems associated with Classical Test 

Theory. The invariance of both item and person parameters makes it possible to equate 

individual scores on tests of differing difficulty levels. Either the ability scores or 

transformed scores may be reported. Item response models allow for the detection of item 

bias through an inspection of the item response function for the groups in question and 

u'ilization of significance tests. The construction of a highly discriminating test can be 

accomplished through an inspection of the item parameters. For example if a test is needed 

to distinguish between subjects at the high end of the ability range, then items with large 

value of "b" and "a" would be selected.

Item Response Theoty is not without its criticism. The assumption of 

unidimensionality in particular has been attacked on several levels. It would appear that a
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move to multidimensional models will be a natural transition in order to eliminate some of 

the stronger arguments.

Purpose and Objective of the Study

The process of developing mathematical models to describe and understand empirical 

phenomena is common in many areas of natural science. Einstein's mathematical model 

relating energy and mass is just one of the many examples. Mathematical models have 

been developed to study the flow of substances, from the blood through the human body to 

the flow of traffic in our inner cities. Mathematical models have also been employed to 

understand the nature of hurricanes and earthquakes, so that one may predict their 

occurrences and better be able to minimize their negative consequences on the environment. 

They have also been employed extensively in the study of population growth. For example 

the Volterra Model is a nonlinear model of interacting populations. When the data fit the 

model these mathematical functions become powerful tools which can predict the behaviour 

of subatomic particles, as in the case of models related to physics, or save the lives of 

people, as in models related to medicine.

Psychology has made extensive use of mathematical models to describe the behavior 

of organisms. Some of the earliest mathematical models were developed by Ernst Weber in 

1834 and Gustav Fechner in 1860. Herstein (1961) developed a model to describe the 

matching behavior of animals. Baum (1974) extended the Hemstein model to encompass 

deviations from the matching law . Rescorla and Wagner (1972) as well as Pearce and Hall 

(1980) presented mathematical models to describe the process of learning. Iwasa, Higashi, 

and Yamamura, (1981) presented a model to describe how animals exploit food distribution 

in a patch. Tatsuoka (1968) gives a more complete discussion of the development and use 

of mathematical models in psychology.
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Item response models employ a mathematical function to describe the relationship 

between an observable response and an unobservable ability. Employing a mathematical 

function to describe this relationship classifies IRT models as mathematical models 

(Hambleton & Swaminathan, 1985; Tatsuoka, 1968). At some stage in the development of 

a mathematical model certain simplifying assumptions are made. These assumptions 

usually increase the model’s mathematical tractability. With respect to unidimensional item 

response models, unidimensionality is one such simplifying assumption. A definition of 

unidimensionality has been somewhat controversial (Hambleton & Rovinelli, 1986). A 

more complete discussion will be given in the section on unidimensionality. It should be 

noted that this same assumption is also an underlying tenant of classical test theory. The 

importance of this assumption to current IRT models has stimulated a large number of 

attempts to develop indices of unidimensionality. Hattie (1985) has summarized 87 such 

indices. The most promising determinate of unidimensionality appears to come from 

analysis of the absolute sums of squares of residuals and the number of residuals greater 

than some criterion value resulting from nonlinear factor analytical techniques.

Given the difficulty of developing adequate indices of unidimensionality, a logical 

step would be to assess the robustness of unidimensional models when a data set has a 

multidimensional structure. To date, several studies have assessed unidimensional models 

under just such a condition. Some have approached it from a factor analytical point of view 

(Drasgow & Parson, 1983; Harrison, 1986), while others have approach it from an IRT 

framework (Ackerman, 1989; Ansley and Forsyth, 1985; Reckase, 1979; Way, Ansley, & 

Forsyth, 1988).

The current study will extend the research aimed at assessing the issue of the 

robustness of UIRT models to violations of the assumption of unidimensionality from 

within an IRT framework. However, where the previous research focused on two
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dimensional data structures, the present study will attempt to ascertain whether the findings 

of these former studies can be generalized to data sets generated to have a three dimensional 

ability space. These are data sets in which the probability of a correct response to any one 

item for a given individual is a function of that individual's current level on three different 

ability (0) scales. The importance of this is to ensure that the results obtained, by 

employing a two dimensional data structure, are not an artifact of some unique relationship 

which exists within a two dimensional system. Further, it is likely that human behaviour is 

more complex than is suggested by a one or two dimensional model. It is therefore 

necessary to explore whether these results will hold when extended to more complex latent 

spaces.
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CHAPTER 2 

Review of the Related Literature

Item response models which assume a single underlying trait are referred to as being 

unidimensional. In a strict sense this assumption is only met in theory and is not realized in 

practice (Ackerman, 1989; Ansley & Forsyth, 1985; Birenbaum & Tatsuoka, 1982; 

Drasgow & Parson, 1983; Harrison, 1986; Reckase, 1979; Way, Ansley, & Forsyth 

1988). In any testing situation a host of cognitive and motor skills all come in to play and 

influence the outcome of any one subject's performance on a test What is considered to be 

of importance in meeting the assumption of unidimensionality is that a single "dominant" 

factor underlie performance on a test and that the test is designed to measure the ability in 

question (Hambleton & Swaminathan, 1985).

Recently, a number of studies have been conducted to assess the robustness of IRT 

models to the violation of the assumption of unidimensionality of the latent space. The 

general approach has b* n to simulate multidimensional data sets via a mathematical model. 

For some a linear factor analytical approach has been utilized in order to produce a 

response matrix (Drasgow & Parson, 1983; Harrison, 1986; Reckase, 1979). Others have 

employed multidimensional extensions of existing unidimensional IRT models (Ackerman, 

1989; Ansley & Forsyth, 1985; Way, Ansley, & Forsyth 1988).

Factor Analytical Models

Drasgow and Parson (1983) simulated correlated common factors through a 

hierarchical factor analysis model developed by Schmid and Leiman (1957). The authors 

concluded that if the dominant latent trait is sufficiently strong then unidimensional IRT 

models provide an adequate representation of multidimensional data. However, if a single 

dominant latent trait is not sufficiently potent, then the use of a unidimensional model is 

inappropriate. Specifically, their results indicated that the general latent trait could be
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successfully recovered if the correlation between common factors was greater than or equal 

to 0.50.

Harrison (1986) followed many of the the same procedures outlined in the Drasgow 

and Parson (1983) study. However, Harrison (1986) conducted his study employing a 

variety of patterns of factor loadings for the common factors, the test length, and the 

correlation between the common factors. The results reported by the author were 

compatible with those presented by Drasgow and Parson (1983). As the strength or the 

second order general factor increased the Logist parameter estimates improved relative to 

the theoretical parameter values. This same positive effect on the parameter estimate was 

seen as test length increased and for items uniformly distributed within the common factors 

versus items displaying a skewed distribution. Harrison concluded that as a single group 

factor controls variation in more items and in a larger number of items then the Logist 

program takes this factor as part of the unidimensional trait. Further, Harrison posited that 

the Logist estimation procedures were robust to violations of the assumption of 

unidimensionality, even when common factors display only moderate intercorrelations and 

that Logist is able to successfully recover parameters implied by second order general 

factorc

Reckase (1979) investigated the effect of multidimensional data on the one and three 

parameter logist model. Five simulated and five real data sets were employed in the study. 

When the data set contains more than one independent factor the 3 parameter model 

discriminates among ability levels on one factor and ignores the rest. The 1 parameter 

model estimates represent the sum of the factors. Whf i the data set contains one large 

factor with a number of smaller factors both models measure the first factor, and the size of 

the first factor affects the parameter estimation in a positive way. Reckase posited that the 

one parameter and the three parameter models measure different abilities when independent 

factors are inherent in the data, but both measure the first principal component when the
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first factor is large relative to the other factors present and this first factor should account 

for at least 20 percent of the test variance in order for parameter estimates to be stable. 

Summary
The results from the above mentioned studies tend to support the hypothesis that 

unidimensional IRT models do not require that the latent ability space exhibit a singular 

structure in order to provide valuable information about the nature of the item and trait 

parameters presented in the model. However, it is also clear that a single dominant factor 

must underlie the test data. A number of problems present themselves when a factor 

analytical approach is employed to represent the structure inherent in the response matrix. 

The tacit assumption is that the responses have a linear relationship'.  tie underlying trait. 

This is contrary to the nature of IRT models (Hattie, 1985). A further assumption is that 

multidimensionality is expressed across a set of items as opposed to within the items as an 

IRT model might suggest The following three studies address these concerns by 

employing multidimensional IRT models to simulate the item responses.

Item Response Models

Ansley and Forsyth (1985) simulated multidimensional test data (two dimensions) 

using a noncompensatory multidimensional item response model (NMIRT) The model was 

first presented by Sympson (1978) as an extension to the three parameter unidimensional 

logistic model (Bimbaum, 1968). Ansley and Forsyth reported that the Logist estimates for 

the discrimination parameters a* and the ability parameters 0* were best represented as the 

average of the true a t , ^  and f&p 02 values respectively while the estimated difficulty 

parameters b* were an over estimate of the bj value.

Way, Ansley, and Forsyth (1988) compared the results of Logist parameter estimates 

when the data had been simulated using both a compensatory (Doody-Bogan & Yen, 1983) 

and a noncompensatory (Sympson, 1978) model. The Doody-Bogan and Yen model is, as 

is the Sympson model, an extension of the three parameter logistic model (Bimbaum, 

1968). The result of using the noncompensatory model to simulate data was comparable to
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those reported by Ansley and Forsyth (1985). For the compensatory model the estimated

difficulty parameters b* and the ability parameters 0* were best represented as the average 

of the true b j ,b2  and 0\, 02  values respectively while the discrimination parameters a*

was best represented as a sum of the true a j , a2  values. In all cases as the correlation 

between the dimensions increased the latent space became more unidimensional.

Ackerman (1989) in a simulation study, somewhat the same as that conducted by 

Way et al. (1988), compared the results of Logist parameter estimation when the data had 

been simulated using both a compensatory and noncompensatory models. Ackerman 

considered the additional effect on parameters estimates when difficulty was confounded 

with dimensionality. Ackerman reported that the confounding of difficulty and 

dimensionality effect was minimal and equal for both modeis. The relationships between 

the Logist parameter estimates and the true parameter values were similar tc those reported 

by Way et al. (1988). Unfortunately Ackerman did not consider the relationship of the 

Logist item estimates and the means or sums of the true item parameter values as was 

reported by Way et al. However, he did report that the estimated ability parameters 0* were 

best represented as the average of the true 0j and 0 2  values and that the correlation of a*

with a  ̂approached that of a* with a2  as the correlation between the dimensions increased 

and that b* was more highly correlated with b^ than with b2  for all relationships between 

the dimensions.

Summary

There is a large amount of support for the hypothesis that as the relationship between 

dimensions, in the case of IRT models, or the relationship between factors, in the case of 

factor analytical model, increases then so does the robustness of unidimensional IRT 

models to violations of the assumption of a single underlying trait. However, there is still 

one caveat, that is the appropriateness of the data generation methods. As has been already 

discussed with factor analytical procedures, there is the assumption of a linear relationship
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between the trait being measured and the observed response. In the the case of MIRT 

models there is a lack of both estimation and confirmation procedures to ensure the validity 

of their use.
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CHAPTER 3 

Research Design and Methodology

The current study assessed the effects on the estimation of UIRT parameters when 

data sets violate the assumption of unidimensionality by exhibiting varying degrees of 

multidimensionality and correlations among the dimensions. The effects were assessed by 

generating data sets having two or three dimensions and correlations among the dimensions 

of 0.0,0.3,0.6,0.95, and 0.99. Thus, ten data sets were generated, each representing a 

different combination of dimensionality and correlation among the dimensions.

The data were generated using a Fortran 77 computer program and IMSL 

subroutines. The suitability of the compensatory (CMIRT) and noncompensatory 

(NMIRT) multidimensional item response models used for generating the data were 

considered. Methods to ensure that the data sets did indeed contain the intended 

characteristics were employed.

The computer program Logist was employed to estimate the person and item 

parameters for the pseudo three parameter unidimensional IRT model (guessing parameter 

held constant at 0.2). The estimated parameters for each data set were compared to the 

parameters which were used in generating the data sets. The degree of congruity between 

the estimated parameters produced by Logist and the parameters inherent in the data sets 

was tested by examining the correlation between the IRT parameters, their means, and their 

sums. Mean square differences were also examined to determine the size of the congruence 

when dimensionality and correlation were varied. The results for the two dimensional data 

set are presented first and then the results for the three dmensional data set are presented. 

The two dimensional data set was generated by removing the third dimension from the three 

dimensional model.
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Model Selection

Concerns regarding violations of the unidimensional assumption has been 

expressed for some time in the literature (Hattie, 1981, 1984,1985; Harrison, 1986;

Tucker, Humphreys, & Roznowski, 1986; McKinley, & Reckase 1982; Lord & Novick, 

1968; Lord, 1980; Traub, 1983; Traub & Wolfe, 1981; ). Hambleton e t  al. (1978) assert 

that the testing of the assumption of unidimensionality is of a higher priority than the test of 

any of the remaining assumptions of unidimensional IRT models. They conclude that if the 

assumption of unidimensionality does not hold then the results of other tests are 

questionable (p. 487). There are two possible solutions. The first is to employ an index 

of unidimensionality to assess when unidimensional models are appropriate. The second is 

to develop multidimensional models which better reflect the underlying structure of the data 

regardless of the dimensionality. Indices of unidimensionality are at best questionable, 

with the possible exception of nonlinear factor analysis with respect to analysis of residuals 

(for a review see Hattie, 1985). Thus, the remaining solution is to develop models that 

relate the response of a subject to the number of dimensions involved in mediating the 

response.

A number of multidimensional models have been recorded in the IRT literature 

(Bock & Atkin, 1981; Doody-Bogan & Yen, 1983; Hattie, 1981; Mulaik, 1972; Rasch, 

1961; Reckase, 1985; Samejima, 1974; Sympson, 1978; Whitely, 1980). Several 

categorizations for multidimensional models have been presented. One grouping 

categorized the models as being conjunctive, disjunctive and compensatory (Coombs,

1964; Combs & Kao 1954, cited in Hattie, 1984, pp. 55-56). More recently ( Ackerman, 

1989; Ansely & Forsyth, 1985; Way, Ansley, & Forsyth, 1988; Sympson, 1978 ), the 

terms compensatory and noncompensatory are presented as a classification system for the 

varying multidimensional models. Sympson (1978) referred to these models as being fully 

compensatory and partially compensatory respectively. However, the terms compensatory
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and noncompensatory are widely used. Unfortunately the terms compensatory and 

noncompensatory may be somewhat misleading as to the nature of the difference between 

the two models. Compensatory models (Bock & Aitkin, 1981; Doody-Bogan & Yen,

1983; Hattie, 1981; Rasch, 1961) make the assumption that high ability on one dimension 

can compensate for low ability on another dimension. The noncompensatory models 

(Sympson, 1978; Whitely, 1980), assume that high ability on one dimension can only 

partially compensate for low ability on another dimension. For a complete discussion of 

the differences between these two classifications consult McKinley and Reckase (1982). A 

rather straightforward explanation is presented by Sympson (1978). The current study will 

focus on the compensatory (Doody-Bogan and Yen, 1983) and noncompensatory 

(Sympson, 1978) models developed as extensions of the unidimensional three parameter 

logistic model (Bimbaum, 1968).

Compensatory Item Response Models

The Compensatory Item Response (CIRM) model best demonstrates a factor 

analytical structure. The number of factors are a function of the way in which items 

differentially cluster. With respect to CIRM models, tests consisting of multiple 

dimensions have items clustering on each dimension. It is expected then that if the data fit a 

CIRM model then their factor structure which accurately reflect their dimensionality.

The three-parameter equation for P,y (0$), the probability of person i correctly 

responding to item j, can be expressed as follows, where D = 1.7 (the scaling factor):

1
-D Y a

P ij{0) = cj + (1"cj).
1 . ' D i  a j h ( e ih-bjh)  

.1+e h=1

Where:

^ij = the probability o f person i correctly answering item j
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0 j7j = the ability parameter for person i for dimension h.

a//j = the multidimensional item discrimination parameter for item j for dimension 

h.

by/j = the multidimensional item difficulty parameter for item j for dimension h.

cj = the guessing parameter for item j.

The defining character of the CIRM model is the denominator. The denominator is a 

function of summing across the varying dimensions. Therefore, as mentioned previously, 

if an individual is deficient on one dimension then high ability on another dimension can 

compensate for the deficiency.

Noncompensatory Item Response Models

As with the CIRT model, the defining characteristic of the Noncompensatory Item 

Response (NIRT) model is the denominator of the function f(Pjj). Here it can be seen that

the relationship between the different dimensions is a multiplicative one. As previously 

mentioned an NIRT model allows for partial compensation by having high ability on one 

dimension making up for relatively low ability on another dimension. However, if on any 

one dimension, the ability needed to answer the question is zero, then no compensation is 

possible. For example, if an individual had an infinite amount of ability on h-l dimensions 

and zero ability of the gth dimension then P(0) = 0.0 (where guessing is not a factor). This 

contrasts sharply with the CIRT models where the relationship between the dimensions is a 

summative one, thus, allowing zero ability on one dimension to be compensated by high 

ability on other dimensions. The theoretical weakness of fully compensatory models led 

Sympson (1978) to argue against the practicality of their use with measures of abiltiy.

The three-parameter equation for can be expressed as follows:
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D = 1.7 the scaling factor

P(/ = the probability o f person i correctly answering item j

XC/i indicates multiplication across the dimensions h=l,2,...,n

0jh = the ability parameter for person i for dimension h.

ajh = the multidimensional item discrimination parameter for item j for dimension 

h.

bjfo = the multidimensional item difficulty parameter for item j for dimension h.

cj = the guessing parameter for itemj.

In summary, multidimensional models in general fall into one of two classifications, 

compensatory or noncompensatory. With respect to the compensatory models it is 

reasonable to expect that if one had a large amount of ability on one dimension then this 

would make up for a small amount of ability on another dimension. Suppose a paper and 

pencil test consisting of simple addition and subtraction were given to an individual who 

had demonstrated the ability to add and subtract, through concrete examples. Suppose 

further that this individual could not read. Thus, one would expect that this individual 

would score zero on the test or at least have a very low mark in the case where guessing is a 

factor. The compensatory model does not adequately allow for such a condition.

However, the Sympson (1978) model does allow for these types of boundary conditions, 

as well as allowing for compensation to occur when a large amount of ability exist on one 

dimension and a small amount of ability exist on another dimension. It can be seen that the 

categorization of these two models is somewhat unfortunate. More correctly they are both 

compensatory models. The Doody-Bogan and Yen (1983) model, with its summative
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nature, is a more limited example and the Sympson (1978) model, with its multiplicative 

nature, is a more encompassing example. On the basis of the above discussion Sympson's 

(1978) model was selected to generate the multidimensional pseudo-responses.

Parameter Selection

Parameter selection operates at three levels. At the first level are the theoretical 

considerations, at the second level are the empirical considerations and at the third level are 

the practical considerations. Theoretically, the i:?rn and trait parameters are bounded by 

plus and minus infinity for the two parameter logistic model (Lord & Novick, 1968). For 

the three parameter model the added item parameter c is bounded by zero and one.

Empirically, the a parameter is positive and ranges generally from 0.5 to 2.0 with a 

mean value of approximately 1.0 and a standard deviation of approximately 0.4 (Lord, 

1968,1980; Ree, 1979; Ross, 1966). The b parameter generally ranges from plus 2 to 

minus 2.0 with a mean approximately 0.5 and a standard deviation of approximately 1.0 

(Hattie, 1984; Lord, 1968). The 0 parameter ranges generally from plus 3.0 to minus 3.0 

with a mean approximately 0.0 and a standard deviation of approximately 1.0 (Hulin, 

Drasgow, and Parson, 1982; Lord, 1968). The c parameter has been reported to range 

from 0.04 to 0.20 with a mean 0.16 and standard deviation of 0.01 (Lord, 1968) and from 

0.09 to 0.35 with a mean of 0.2 and standard deviation of 0.05 (Ree, 1979). In the current 

study a pseudo three parameter model was used to both generate the data and to estimate the 

parameters (c parameter held constant at 0.2). The c parameter often does not converge 

during estimation and this tends to destabalize the entire estimation procedure. Since the 

usefulness of the c parameter for the results of this study are negligible and the possibility 

of negative impacts high, the c parameter was held constant. Parameter selection becomes 

a process of trial and error. For the current study item and trait parameters were generated 

based on the procedures outlined in Ansley and Forsyth (1985).
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Data Generation

To produce the response matrix, a computer program (Non-Comp) written in Fortran 

77 was developed. The program utilizes seven International Mathematical and Statistical 

Libraries (IMSL) subroutines to generate random numbers and to control the relationships 

between the dimensions in the model (International Mathematical and Statistical Libraries,

1987). The accuracy of the gene ited parameters was checked using statistical procedures 

provided through the statistical program SPSS (Statistical Package for the Social Sciences,

1988). All data generation and statistical analysis were conducted using the AMDAHL 

main frame computer at the University of Alberta.

Currently Non-Comp is capable of simulating response data for up to 100 items and 

2000 subjects on 5 dimensions. The response matrix consist of 0's and l ’s, where a "0" 

indicates an incorrect response and a "1" indicates a correct response. Input to the program 

varies depending on the particular design required. In general the first record contains the 

title for the current simulation. The second record contains the type of model 

(compensatory or noncompensatory), the distribution for the difficulty parameter (uniform 

or normal), the number of dimensions (1 to 5), the number of items (1 to 100), the number 

of subjects (1 to 2000) and the seed number for the random number generation. The third 

through fifth records contain the variance-covaruince matrices used to control the correlation 

between the dimensions in the model. These variance-covariance matrices are related to the 

ability, difficulty and discrimination parameters, respectively.

The ability parameters (A) are pseudo-random numbers generated from a multivariate 

normal distribution.

NAn N(0,l)

Where:

N is the number of subjects (2000 subjects in the current study), 

n is the number of dimensions (3 dimensions in the curent study).
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The N vectors of ability parameters, representing the n dimensions, are then 

orthogonalized (N-Fn) and postmultiplied by an upper triangular factorization (Cholesky 

(nCn)) of the variance/covariance matrix (nVn).

NFn = N(0,1); Covariance = 0

V = C C n n r. n n^n

A ' = F C N^n n n n^n

The distribution of parameters within each dimension were then rescaled to the desired 

mean and standard deviation. For the current study the mean and standard deviation are 

zero and one respectively.

The difficulty parameters may be generated from either a uniform or a multivariate 

normal distribution. For the current study the difficulty parameters were generated from a 

multivrriate normal distribution. The procedures for controlling the correlations between 

the dimensions were the same as those employed with the ability parameters. Unlike the 

ability parameters the distributional characteristics of the difficulty parameters were 

differentially set across the three dimensions. For the first dimension the mean was set at - 

0.33 and the standard deviation was set at 0.82, while for the second dimension the mean 

was -1.03 and the standard deviation was 0.82 (Ansley & Forsyth, 1985). The rationale 

for setting the second dimension such that its mean difficulty was lower than that for the 

first dimension was an intuitive one. If one imagines a mathematics test consisting of word 

problems then one might expect that the level of reading difficulty would be somewhat 

lower than the level of mathematical difficulty. In the current study a third dimension was 

added and the same rationale was extended to this dimension. Consequently t io mean was 

set to -1.55 and the standard deviation was 0.82.

The discrimination parameters were generated from a uniform distribution using the 

same methods mentioned above. The means for the three dimensions were set at 1.23, 

0.49 and 0.25 respectively. The standard deviations were set at 0.34,0.11 and 0.11. A 

similar rationale as that mentioned for the difficulty parameters can be applied for selecting
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the values for the discrimination parameters. If the mathematics test had been designed to 

distinguish between students primarily on their level of mathematics ability and not on their 

reading ability, then it is reasonable to assume that items would be designed such that they 

discriminate more highly on their primary dimensions.

Simulation Model

Once the item and trait parameters had been generated, the probability of person i 

responding to item j  correctly was calculated for each person and item in the simulation, 

using the model developed by Sympson (1968).

P j j (0 ) = ci +(1-Cj) f t  [ l + e - D 9 j h(9 i h- b j h) ]
h =1

- 1

In the current study this required generating 2000 by 60 response probabilities (py) for

each of the 10 conditions. Subsequently, each probability was compared to a threshold 

value (rjj) generated from a uniform distribution U(0,1). If the probability of the response 

was greater than or equal to the generated threshold value the response (xjj) was set to "1";

otherwise the response was set to "0 ", that is

Xij = 1 if Fij > ry 

xij = 0 i f  Pij < rij.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 6

CHAPTER 4 

Findings and Analysis 

Two Dimensional Data Structure

Data Confirmation

A consideration of prime importance was to ensure that the characteristics intended to 

be incorporated into the generated data sets did indeed exist. To assess whether the data set 

generated exhibited the intended chacteristics a number of statistics relevant to item analysis 

were produced (see Table 1). The values shown are consistent with test statistics reported 

in the literature (Ansley & Forsyth, 1985).

In Table 2 are the results of a principal axes factor analysis with varimax and pror.iax 

rotations. The initial estimates of the communalities were made equal to the squared 

multiple correlations. The data were generated on the basis of a two dimensional model 

with varying degrees of correlation between the dimensions. In all, five separate factor 

analyses were performed. The second column gives the correlation between the factors for 

a two factor solution. The general trend was that the correlation between the factors 

increased as the correlation between the dimensions in the model increased. The third and 

fourth columns give the percentage of common variance accounted for by the first and 

second factors in both the varimax and promax rotations. As the correlation between the 

factors increased the general trend was for more of the variance to be accounted for by the 

first factor and less of the variance to be accounted for by the second factor. This trend 

held for both forms of rotation. Despite this fact, the results tend to support the conclusion 

that a two dimensional structure did underlie the data as was intended. These results were 

consistent with the findings of Ansley and Forsythe (1985).

Table 3 provides further evidence for a two dimensional data structure. In columns 1 

through 3 are the ratios of the first and second, second and third, and third and fourth 

eigenvalues for the two dimensional data sets. The relative size of the first ratio to the
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Table 1
Descriptive Statistics for Two dimensional Dita  

Corr a  Mean Range Range Mean Range Skew Kurt
0, ,02 p p Bis Score Score

0.00 07.96 0.87 0.50 .24-.72 .24-.5S 30.14 6-58 0.23 -0.62

0.30 10.13 0.89 0.51 .27-J3 .27-.58 30.86 7-57 0.17 -.072

0.60 11.76 0.91 0.53 .26:73 .31-.60 31.48 7-60 0.16 -.085

0.90 12.61 0.92 0.53 .30-.74 .34-.63 32.02 6-60 0.20 -0.89

0.95 12.70 0.92 0.54 .27:74 .36-.63 32.12 6-60 0.22 -.0.95

Descriptive statistics, ratio of first and second eigenvalues (kfh f), test reliability (a), 
test difficulty (p), item-total biserial correlation (Bis), for two dimensional data with 
number of subjects equal to 2000 and number of items equal to 60.

Table 2

Far: Analysis o f Two Dimensional Data
Cor: Coit Vuiimax %f2 %T Promax %f2 %T
01> 02 fi j ^2 % fj

0.00 TT7T3 51 37 oo 00 54 35 &9

0.30 0."'73 58 38 96 62 35 97

0.60 0.776 57 35 92 62 30 92

0.90 0.780 58 36 94 63 31 94

0.95 0.780 58 36 94 " 6 T " 31 94

Principal axes with varimax and promax rotation. Square multiple correlations 
substituted in the main di> -jonal. The correlation between ability dimension 1 and 
2 p (0j , 02>. The correlation between the factors p f f^ ) .  The percentage of the 
total variance accounted for by factor 1 %f j and factor 2 %f2 and the total variance 
explained by f̂  and f2 for both a varimax and promax rotation are presented.
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second and third would indicate a strong first factor. The same is true of the second ratio, 

which would seem to indicate a moderate second factor. However, the third ratio is not 

much different from a value of one, indicating roots of approximately the same size. It 

should be noted that this trend held for the remaining eigenvalues.

A final method employed to verify the integrity of the data was that of 

multidimensional scaling, in which an alternating least squares method (ALSCAL) is 

employed (Takane, Forest, Young, & Leeuw, 1977). Table 4 provides the stress values 

based on Kruskal's stress formula number 1 (Kruskal & Wish, 1978). Also provided are 

the R-Squared values. Because of the large computational expense to run such a procedure 

only the results for two dimensional data when the dimensions are orthogonal are 

presented. The first row indicates the amount of stress to fit a five dimensional structure to 

the data. Subsequent rows are the 4, 3 ,2  and 1 dimensional solutions. As can be seen, 

the maximum amount of stress is attained when the shift is made from a two dimensional to 

a one dimensional solution. These results are in keeping with what would be expected for 

data of this nature and is further confirming evidence that the data generation procedures are 

successfully reproducing the type of structure intended. There is one word of caution, 

however, some researchers, Hattie (1985) in particular, feel that linear factor analytical 

techniques do not provide appropriate indices of dimensionality. Further, little is known 

about the predictive power of multidimensional scaling as an index of dimensionality. 

However, linear factor analysis has been widely used as guide to dimensionality and does 

provide some useful insight into the nature of the data’s underlying structure.

Data Analysis

Estimation of the item and trait parameters was derived using the computer program 

Logist (Wingersky, Barton, & Lord, 1982). For the current study a pseudo three 

parameter model was selected ( guessing parameter set to 0 .2 ) and the number of choices 

per item was set to five. All other options were left at the default settings.
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Table 3

Eigenvalue Ratios for the Two Dimensional Data 
p(0j. 02)_______p(f{. %)_______ ^-jA-2_________ ^2^3_________ A.3A 4
0.00 0.730 7.96 2.17 1.13
0.30 0.773 10.13 2.11 1.32
0.60 0.776 11.76 2.28 1.19
0.90 0.780 12.61 2.79 1.06
0.95 0.780 12.70 2.80 1.08
Ratio of first and second eigenvalues ?. jA^. second and third eigenvalues ^2A 3, and 
the third and fourth eigenvalues 33A4 at each correlation between the dimensions p(0j,
<&2>-

Table 4

Multidimensional Scaling for Two Dimensional Data
Dim. _______Stress  RSQ  dS  dRSQ
5 0.09 0.95
4 0.10 0.95 0.01 0.00
3 0.12 0.94 0.02 0.01
2 0.14 0.92 0.02 0.02
1 0.20 0.88 0.06 0.04

Stress and squared correlation (RSQ) in distances. RSQ values are the proportion of 
variance of the scaled data (disparities) in the partition (row, matrix, or entire data) which 
is accounted for by their corresponding distances. Stress values are Kruskal’s stress 
formula number 1. dS is the change in Stress and dRSQ is the change in RSQ.
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Once the estimated model parameters were ascertained, the analysis consisted of 

correlating these estimates with the true parameter values and their means, which were 

computed by summing across the dimensions and dividing by the number of dimensions. 

Further, average absolute differences (AAD) were computed to aid in ascertaining the 

discrepancy between the estimated and true parameters. Thus, for the ability parameters the 

AAD's were of the form:

^ih (h — 1, 2 ) is the true ability parameter for person i for dimensions 1 and 

2 .

0 ;* is the estimated ability parameter for person i.

N is the number of examinees

where the summation is over the N individuals for a given dimension.

where:

The form of the AAD for the item parameters is similar in nature

Where

Xjh (h= 1, 2 ) is the true difficulty or discrimination parameter for 

dimensions 1 and 2 .

xj* is the estimated difficulty or discrimination parameter for item j 

K is the number of items

where the summation is over the K items for a given dimension.
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Results
Ability. The correlations of 0 * with 0 j, snd the mean of 0 j and 02  (M0 ) at each 

of the five values of p (0 ,̂ 0 2 > are presented in Table 5. As p (0 ,̂ 0 2 > increased the 

correlation of 0* with 0 j, 0 2 * and ^ 0  increased. However, 0 * had a strong association 

with M0  at all levels of p (0 j, 0 2 ). Of special interest was the relative change in the 

correlation of 0* with the remaining parameters as p (0 j, 0 2 ) moves from 0.0 to 0.95. For 

p (0 *, 0 1) the range was 0.09 while for p (0 *, M0) the range was 0.05, however, for p 

(0 *, 0 2 ) *he range was 0.44. It should be noted that, although the relationship of 0* with 

the average of 0 j and 0 2  was the overall the strongest, it was not substantially different 

from that of p (0 *, 0  j).

In Table 5 are also given the average absolute differences between the estimated

ability parameters and the true ability parameters and their mean summed across the 

dimensions. Again, there was a clearly a smaller discrepancy between 0 * and 0  ̂  than 

there was between 0 * and 0 2  however this difference, as before, becomes smaller as p 

(0 j, 0 2 ) increased. The smallest average absolute difference overall was associated with

These results parallel those presented by Ansley and Forsyth (1985). Both studies 

clearly indicate that the estimated ability parameter for low values of p (0 j, 0 2 ) are most 

strongly associated with M0, however, this association is not significantly different than 

their association with 0 j. At high levels of p (0 j, 0 2 ), 0* is equally associated with 0 j, 

0 2 , and M0.

Discrimination . The correlations of a* with a^, a2 , and the mean of ai and a2  (Ma ) 

and the average absolute differences at each of the five levels of p (0 j, 0 2 ) are presented in 

Table 6 . Columns 2 through 4 clearly indicate that the magnitude of p (0 ,̂ 0 2 ) did not 

substantially affect their relationships. However, a* associated more strongly with a^, then 

it did with a2  for all levels of p (0 ,̂ 0 2 ). Further, a* associated just as strongly with a^ as 

it did with Ma.
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Table 5
Cc.relations and Absolute Mean Differences Between the Estimated and True Ability

Parameters for Two Dimensional Data

P ( 0j *  02 ) P (0*- flj) P (0*- 02> P (g*- )  A A D 0 l  A A D g2 A A D Mft
0.00 0.74 0.38 0.79 0.56 0.93 0.48
0.30 0.78 0.55 0.82 0.51 0.80 0.44
0.60 0.81 0.64 0.84 0.44 0.63 0.38
0.90 0.83 0.81 0.84 0.39 0.45 0.36
0.95 0.83 0.82 0.84 0.37 0.41 0.36
Correlations of the estimated ability parameter (0*) with the true ability parameters (0i>02 ) 
and their mean (M0 ) for dimensions 1 and 2. The average absolute differences are AAD0 l, 
AAB0 2 , and AADM0

Table 6
Correlations and Absolute Mean Differences Between the Estimated and True 

Discrimination Parameters for Two dimensional Data

p (01, 02) p ( a*, a^) p(a*,a2) p (a*, Ma ) AADal AAD^ AADMa
0.00 0.93 -0.22 0.90 0.45 0.32 0.12
0.30 0.94 -0.22 0.91 0.37 0.40 0.10
0.60 0.94 -0.23 0.91 0.28 0.47 0.13
0.90 0.95 -0.21 0.92 0.20 0.55 0.19
0.95 0.95 -0.20 0.93 0.18 0.57 0.20
Correlations of the estimated discrimination parameter (a*) with the true discrimination 
parameters (aj,a2) ^  their mean (Ma) for dimension 1 and 2. The average absolute
differences are A ADa ,̂ A A D ^»and AADj^
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With respect to the AAD's it can be seen that there was an interaction between the 

levels of the true discrimination parameters and the levels of p (0 ,̂ 0 2 ). At low levels of p

(0 1 » 0 2 ) ^  AADaj was smaller than AADa^ while at large values of p (0 j, 0 2 ) the

AADa2  was larger than AADaj. This same relationship was seen between aj and Ma

however, it was not as pronounced.

In summary, a* appeared to be most highly related to Ma. This is in keeping with

results reported elsewhere in the literature (Ansley & Forsyth, 1985; Way, Ansley, &

Forsyth, 1988; but see Ackerman, 1989). However, these results may in part be an artifact

of the way in which the parameters were generated. Recall that the standard deviation of 

a j , was set at 0.34 while the standard deviation for a2  was set at 0.11. Therefore, one

would expect this larger variance to contribute in part to the larger correlation. One striking 

difference between the results in the current study and those found in the Ansley and 

Forsyth (1985) study is the magnitude of the correlations between the estimated parameters

and the true parameters. Ansley and Forsyth (1985) reported correlations ranging from 

0.47 to 0.64 for p (a*, a^) and 0.02 to -0.05 for p (a*, a2 ) while p (a*, Ma) ranged from 

0.50 to 0.65. In the current study p (a*, a j, Ma) were greater than 0.90 for all levels of 

p(0 1, 0 2 ), and p (a*, a2 ) ranged from -0.22 to - 0.20 as p (0 ,̂ 0 2 ) increased. It is not

clear at this time why that was the case.

Difficulty. The correlations of b* with b^, b^, and the mean of b j and b2  (M ^), and 

the average absolute differences at each of the five levels of p (0 j, 0 2 ) are presented in 

Table 7. With respect to the correlations, it can be clearly seen that as p (0 j, 0 2 ) increased 

p (b*. b^) increased and p (b*, t>2 ) decreased, indicating a much stronger relationship

between estimated difficulty parameters and the first dimension than between estimated 

difficulties and the second dimension. Further, as was the case with the ability parameters 

and the discrimination parameters the strongest relationship was with the average of the two 

dimensions, however, p (b*, M^) is not substantially greater than p (b*, b j) for all levels

of p (0 ,̂ 0 2 >-
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Table 7 also indicates that all AAD's decreased as p (0 j, 0 2 ) increased. Further, the 

smallest AAD was between b* and bj, indicating that b* was a better estimate of bj. An 

interesting observation was that b* consistently overestimated b^, but b* approached bj 

as p (0 j, 0 2 ) increased.

Three Dimensional Data Structure

Data Confirmation

As with the two dimensional data structure, it was once again necessary to ensure that 

the intended characteristics had been incorporated into the generated data sets. The same 

procedures used to generate the two dimensional data were repeated in generating the three 

dimensional data. To assess the integrity of the data, in the three dimensional case, a 

number of statistics relevant to classical item analysis were produced (see Table 8). Overall 

it was apparent that the test difficulty had increased (0.42 <= Mean(p) <= 0.45) compared 

with those results reported in Table 1 (0.50 <= Mean(p) <= 0.54). Further evidence of an 

increased test difficulty was found in the reduction of the mean raw score for the three 

dimensional data structure (25.17 <= Mean(x) <= 27.22), relative to the mean of the raw 

score for the two dimensional data structure (30.14 <= Mean(x) < - 32.12). Of special 

interest was the overall increase in the ratio of with an increase in the dimensionality 

from 2 dimensions (7.96 <= A^/A^ <= 12.70) to three dimensions (9.42 <= A.L/A^ <= 

16.39).

In Table 9 are the results of a principal axes factor analysis with a varimax and a 

promax rotation. The initial estimates of the communalities were made equal to the squared 

multiple correlations. The data were generated on the basis of a three dimensional model 

with varying degrees of correlation between the dimensions. Five separate factor analyses 

were employed. The second through fourth columns give the correlations between the 

factors for a three factor solution. The general trend was that the correlation between the 

factors increased as the the correlation between the dimension in the model increased. The 

fifth through twelfth columns give the percentage of common variance accounted for in the
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Table 7
Correlations and Absolute Mean Differences Between the Estimated and True Difficulty

Parameters for Two Dimensional Data

P (0i» 02> P bi  > P (b*> b2 ) P fc** Mb ) AADbl AADb2 AADmb
0.00 0.900 0.700 0.96 0.80 1.50 1.15
0.30 0.910 0.690 0.96 0.69 1.39 1.04
0.60 0.917 0.680 0.96 0.63 1.33 0.98
0.90 0.921 0.668 0.96 0.56 1.26 0.91
0.95 0.922 0.664 0.96 0.549 1.25 0.89
Correlations of the estimated difficulty parameter (b*) with the true difficulty parameters 
(b i , b2)and their mean (M )̂ for dimensions 1 and 2. The average absolute differences are
A A D f j j ,  A A D j j j  • A A D j j j^ j

Table 8

Descriptive Statistics for Three Dimensional Data 
Corr Range Mean Range
0f02»03 \ \ f k 2 a  Meanp Range p Bis Score Score Skew Kurt

0.00 9.42 0.77 0.42 .24-.64 .18-.52 25.17 649 0.123 -0.446

0.30 11.31 0.81 0.43 .24-.64 .21-.49 25.73 449 0.197 -0.550

0.60 13.35 0.84 0.44 .25-.65 ,22-.53 26.43 4-52 0.240 -0.615

0.90 15.93 0.87 0.45 .2S-.66 ,24-.54 27.07 4-55 0.249 -0.698

0.95 16.39 0.87 0.45 .2S-.67 .24-.S5 27.22 4-55 0.222 -0.745

Descnptive statistics, ratio of first and second eigenvalues test reliability (a), test difficulty (p),
item-total biserial correlation (Bis), for three dimensional data with number of subjects equal to 2000 and 
number of items equal to 60.
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three factor solution with respect to both the varimax and promax rotations. Unlike the 

results found for the two dimensional case (see Table 2), where the largest portion of the 

variance was contributed by the first factor, it was apparent that each of the three factors 

extracted from the three dimension data set, were substantially contributing to the overall 

variance observed in the data. However, the trend was that the first factor contributed the 

largest portion while the second factor contributed the next largest portion for all values of 

p(0 j, 0 2 , 0 3). Further, it is evident that, as p(0 j, 02, 0 3) increased the percent of the total

variance accounted for by the three factor solution increased accordingly. This suggests 

that the data space was becoming more unidimensional in its nature as the relationship 

between the dimensions increased.

Table 10 provides further evidence about dimensionality of the data structure. In 

columns 4 through 6  are the ratios of the first and second, second and third, and third and 

fourth eigenvalues for the three dimensional data sets. The relative size of the first ratio to 

the second and third would indicate a strong first factor. However, subsequent ratios 

appear to indicate that no further factors can be inferred from the output. It appears that the 

effect of adding a third dimension to the data structure is that of causing the data to take on 

a structure which is factor analytically unidimensional.

A final method employed to verify the integrity of the data is that of multidimensional 

scaling. Table 11 provides the stress values based on Kruskal's stress formula number 1. 

Also provided are the R-Squared values. Once again, because of the large expense to run 

such a procedure, only the results for three dimensional data when the dimensions are 

orthogonal are presented. The first row indicates the amount of stress to fit a five 

dimensional structure to the data. Subsequent rows are the 4 ,3 ,2  and 1 dimensional 

solutions. Unlike the two dimensional data set (see Table 4), no clear indication as to the 

dimensionality of the data set was provided by the multidimensional scaling technique. It 

would appear, at least in this instance, that mutidimensional scaling is of limited value as an 

index of dimensionality.

i
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Table 9

Factor Analysis of Three Dimensional Data 
Con Corr Varimax Promax

0 ,̂02,03 fj, f2 f̂ » f̂  2̂’ 3̂  ̂ %̂ 2 ^ 3  %T %fj ^^2 %T

0.00 0.693 0.664 0.623 35 30 29 94 37 29 29 95

0.30 0.720 0.616 0.603 36 35 26 97 39 36 22 97

0.60 0.731 0.702 0.653 40 32 27 99 43 31 24 98

0.90 0.774 0.776 0.768 37 32 29 98 38 31 29 98

0.95 0.780 0.750 0.770 36 35 29 100 37 35 27 99

Principal axes with varimax and promax rotation, and square multiple correlations substituted in the main 
diagonal. The correlation between dimension 1,2, and 3 p (0 ,̂ 02, 03). The correlation between the 
factors p(fj, f2> 13). The percentage of the total variance accounted for by factor 1 (%fj) and factor 2 (%f2 ) 
and factor 3 (%fj) and the total variance explained (%T) by fj, f2 and f3 for both a varimax and promax 
rotation.

Table 10

Eigenvalue Ratios for the Three Dimensional Data
p(0] .02^ 3) p(f  ̂* 3̂) P^2’ 3̂) ^j/^2 ^2^-3 ^3^4
0.00 0.693 0.664 0.623 9.42 1.09 1.05
0.30 0.720 0.616 0.603 11.31 1.08 1.13
0.60 0.731 0.702 0.653 13.35 1.23 1.08
0.90 0.774 0.776 0.768 15.93 1.16 1.10
0.95 0.780 0.750 0.770 16.39 1.18 1.10
Ratio of fust and second eigenvalues second and third eigenvalues 3̂/2.3,
and the third and fourth eigenvalues X3A4 at each correlation bciween die 
dimensions p(0j, 02> 031-

Table 11

Multidimensional Scaling for Three Dimensional Data
Dim. Stress RSQ. dS dRSQ
5 0.13 0.88
4 0.15 0.86 0.02 0.02
3 0.18 0.83 0.03 0.03
2 0.22 0.80 0.04 0.03
1 0.30 0.75 0.08 0.05
Stress and squared correlation (RSQ) in distances. RSQ values are the proportion of 
variance of the scaled data (disparities) in the partition (row, matrix, or entire data) which is 
accounted for by their corresponding distances. Stress values are Kruskal's stress formula 
number 1. dS change in Stress dRSQ change in RSQ.
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Data Analysis

As with the analysis of the two dimensional data structure, estimation of the item and 

trait parameters were derived using the computer program Logist (Wingersky, Barton, & 

Lord, 1982). Once again a pseudo three parameter model was selected ( guessing 

parameter set to 0.2) and the number of choices per item was set to five. All other options 

were left at the default settings.

Once the estimated model parameters were ascertained, analysis consisted of 

correlating these estimates with the true parameter values and their means, which were 

computed by summing across the dimensions and dividing by the number of dimensions. 

Further, average absolute differences (AAD) were computed to aid in ascertaining the 

relationship between the estimated and true parameters. Thus, for the ability parameters the 

AAD's were of the form:

where:

0 ih (h = 1,2 and 3) is the true ability parameter for person i for dimensions

1 to 3.

0 * is the estimated ability parameter for person i.

N is the number of examinees

where the summation is over the N people for a given dimension.

The form of the AAD for the item parameters is similar in nature:
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Where

xjk (h= 1, 2 and 3) is the true difficulty or discrimination parameter for 

dimensions 1 to 3.

Xj* is the estimated difficulty or discrimination parameter for item j 

K is the number of items

where the summation is over the K items for a given dimension.

Results

Ability. The correlations of 0 * with 0 j, 0 2 , 0 3 , and the mean of 0 j, 0 2 , and 03 

(Mp) at each of the five levels of p (0 j, 0 2 , 0 3 ) are presented in Table 12. As p(0 j ,0 2 >0 3) 

increased the correlation of 0 * with 0j, 0 2 > and M0  increased. Unlike the two dimensional 

case, where 0 * had its strongest association with M0  at all levels of p (0 ,̂ 0 2 ), there 

appeared to be no real difference in the relationship between 0 * and 0 j, or 0 * and M^. Of

special interest was the relative change in the correlation of 0 * with the remaining 

parameters as p (0 ,̂ 0 2 > 0 3 ) moved from 0.0 to 0.95. For p (0 *, 0 j) the range was 0.09

while for p (0 *, M0 ) the range was 0.13; however, for p (0 *, 0 2 ) this range was 0.46 and 

for p (0 *, 0 3 ) the range was 0.61.

In Table 12 are also given the average absolute differences between the estimated

ability parameters and the true ability parameters and their mean summed across the 

dimensions. Again there was clearly a stronger relationship between 0 * and 0  j than was

found between 0 * and 0 2  or 0 * and 03  however this difference, as before, became small 

as p (0 ,̂ 0 2 , 0 3 ) increased. The smallest average absolute difference overall was 

associated with M0 .

These results parallel those presented by Ansley and Forsyth (1985) and those 

presented for the two dimensional data in the current study. Both studies clearly indicate 

that the estimated ability parameter for low values of p (0 j, 0 2 , 0 3 ) are most strongly 

associated with M0 , however, this association is not substantially different from their
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Table 12
Correlations and Absolute Mean Difference; between the Estimated and True Ability 

Parameters for Three Dimensional Data
p(0j, 02 03) P (fl*> 0j) P (0*» fy) P (0*- 03) P( 0*. ) AAD^i AAD02 AAD^ AADmi,
0.00 0.68 0.29 0.14 0.64 0.75 1.09 1.22 0.75
0.30 0.68 0.46 0.37 0.69 0.71 0.96 1.04 0.67
0.60 0.73 0.61 0.55 0.74 0.67 0.82 0.89 0.63
0.90 0.76 0.73 0.72 0.76 0.61 0.67 0.69 0.60
0.95 0.77 0.75 0.75 0.77 0.59 0.62 0.63 0.58
Correlations of the estimated ability parameter (0*) with the true ability parameters (0j, 02* 03) 
and their mean (M )̂ far dimensions 1,2 and 3 . The average absolute differences are AAD0 ,̂ 
AAD0 2 , AAD03, and AADm0

Table 13
Correlations and Absolute Mean Differences Between the Estimated and True 

Discrimination Parameters for Three Dimensional Data
p (0i,02,03) P (a*,aT) p (a*,83) p (a*,a3) p (a*Jda) AADa1 AAD^ AAD^ AAD^
0.00 0.09 -0.06 0.32 0.19 0.62 0.22 0.37 0.18
0.30 0.11 -U.07 0.25 0.19 0.55 0.28 0.45 0.22
0.60 0.08 -0.06 0.32 0.18 0.52 0.31 0.50 0.23
0.90 0.03 -0.06 0.34 0.14 0.49 0.36 0.56 0.27
0.95 0.03 -0.06 0.32 0.13 0.49 0.37 0.57 0.28
Correlations of the estimated discrimination parameter (a*) with the true discrimination 
parameters (aj, a2* a3) and their mean (Ma) for dimension 1,2, and 3. The average absolute
differences are AAI>aj, AAD^, AAD^, and AADm
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association with 0 j. At high levels of p (0 j, 0 2 , 0 3 ), 0 * is equally associated with 0 ,̂

0 2 , 03  and M0.

Discrimination. The correlations of a* with a^, a2> and the mean of aj a2> and 33 

(Ma ) and the average absolute differences at each of the five levels of p (0^, 02,03) are 

presented in Table 13. Columns 2 through 5 clearly indicate that the magnitude of p (0  j,

02,03) did not significantly affect the relationship of a* with a j, a2> and Ma.

However, a* associated more strongly with than it did with aj, a2 or Ma for all levels 

of p (01,02,03). This high association between the estimated discrimination parameter 

and the true discrimination parameter of the third dimension contrasts sharply with the 

results reported for the two dimensional data structure, where a* was most clearly related to 

the first dimension (see Table 6).

With respect to the AAD's, it can be seen that as p <0j_, 02,03) increased AADaj 

decreased, while all other AAD's increased in magnitude. However, overall AADj^a was 

the smallest for all AAD values of p (0j, 02,03).

In summary, a* appeared to be most highly related to a3 however, the smallest AAD 

was associated with Ma. These results prove to be inconclusive and do not lend themselves

to any straightforward interpretation of a*'s relationship to the true parameters. One

possible explanation may lie in the nature of the compensatory model. Recall that its

distinguishing feature is the multiplicative relationship which appears in the denominator of

the equation that describes the model. Recall also that in the initial generation of the

discrimination parameters, the mean and standard deviation of the discrimination parameter

for the third dimension was set to be somewhat lower than for the remaining dimensions.

Therefore, because of the multiplicative nature of the model, the smallest value in fact

becomes an upper bound on the overall probability. Thus, it may be that the higher 

correlation between a* and a3 was a result of the nature of the model.

Difficulty. The correlations of b* with bj, b2, b3* and with the mean of b j, b2, and 

1̂ 3, (M^) and the average absolute differences at each of the five levels of
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Table 14
Correlations and Absolute Mean Differences Between the Estimated and True Difficulty

Parameters for Three Dimensional Data
p (01,02.03) PfoM’O P(b*,b3) pfo’-.Mb) AADbi AADfr2 A A D ^ A A D ^
0.00 0.76 0.67 0.62 0.89 1.47 2.17 3.14 2.26
0.30 0.71 0.67 0.66 0.89 1.30 2.00 2.97 2.09
0.60 0.76 0.66 0.63 0.89 1.16 1.86 2.83 1.95
0.90 0.77 0.66 0.62 0.89 1.05 1.75 2.72 1.84
0.95 0.78 0.66 0.61 0.89 1.03 1.73 2.70 1.82
Correlations of the estimated discrimination parameter (b*) with the tnie discrimination 
parameters (b j, b2» 63) and their mean (M )̂ for dimension 1,2, and 3. The average absolute
differences are AAD^j, AAD^. AAD^ ,̂ and AADj^
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p (0 |,  0 2 ,0 3 ) arc presented in Table 14. With respect to the correlations it can be clearly 

seen that as p (0 j, 0 2 , 03 ) increased there were no appreciable changes in the relationship 

of the estimated difficulty parameter (b*) and the true parameters (bj, b2 > bg). However, it 

is clear that the strongest relationship was between b* and for all levels of p (0 j, 0 2 ,

0 3 )

Table 14 also indicates that all AAD's decreasd as p (0 j, 0 2 , 0 3 ) increased.

Further, the smallest AAD was between b* and bj, indicating that b* is a better estimate of 

bj. An interesting observation was that b* consistently overestimated bj, but b* 

approached bj as p (0 j, 0 2 , 0 3 ) increased.
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CHAPTER 5 

Summary, Conclusions, and Recommendations

Within this study the robustness of UIRT models to the violation of the assumption 

of unidimensionality was tested. It was clear that when a pseudo two parameter logistic 

model was tested against a two and three dimensional data set, errors of estimation 

increased as a function of increased disparity between the dimensions. In other words as 

the correlation between the dimensions decreased the precision of the estimation procedure 

was reduced. The results of the current study provide support for outcomes presented by 

Ansley and Forsyth (1985).

In the two dimensional case, 0 * values can best be considered as an average of the 

true ability values 0 j and 0 2 and the strength of this relationship increased as p (0 L, 02)

increased. These results were also true for the three dimensional data structure. The same 

relationship held for the discrimination parameter when the underlying structure was two 

dimensional. However, in the three dimensional case the relationship between the 

estimated discrimination parameters and the true discrimination parameters was found to be 

far weaker. The estimated discrimination parameters were more highly correlated with the 

true parameter from the third dimension while the smallest AAD was associated with the 

average true discrimination parameters. With two dimensional data the difficulty parameter 

b* was found to be best represented as an overestimation of the true b^; however, it did

approach bj as p (0 j , 02) increased. The same results were found to hold for estimates 

derived from data generated to have a three dimensional structure. In general it was 

observed that interpretation of the relationship between estimated parameter and true 

parameter was far less conclusive for three dimensional data than it was for two 

dimensional data. The correlations between estimated and true parameters in the three 

dimensional case were found to be smaller than the correlations between the estimated and 

true parameters in the two dimensional case. Conversely, the AAD's, on average, were
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larger in the data generated to be three dimensional than the AAD’s in the data generated to 

be two dimensional.

UIRT estimation procedures appeared to be robust to violation of the unidimensional 

assumption when the dimensions were highly related and the dimensionality of the 

underlying structure was small; however, interpretation of the estimated item and trait 

parameters is still tenuous. Conversely, as the relationship between the dimensions became 

more divergent, the robustness of the UIRT model decreased significantly. Further, as the 

number of dimensions increased interpretability of the estimated unidimensional parameters 

became untenable.

As in any study, there are a number of limitations, some evident at onset and others 

are discovered during the process of conducting the research. One such limitation is related 

to the model employed to generate the multidimensional data sets. The utilization of a 

noncompensatory multidimensional extension of a unidimensional pseudo two parameter 

model, to represent response data, has little theoretical support to justify its use. However, 

given the infancy of such simulations, it must serve as one of the few adequate 

representation which are currently available. A second limitation, this one discovered in the 

process, is related to the distribution of the item parameters. The distribution of the item 

and trait parameters were adjusted to give item statistics similar to that of actual data but 

perhaps different parameters may have led to other conclusions.

It would be interesting to see if these results would hold for higher dimensions and if 

they could be replicated if a compensatory model were used for data generation. What is 

needed are indices which allow for a clearer interpretation of the dimensionality of the data 

set Recommendations have been cited which suggest that a form of nonlinear factor 

analysis could be used, in which one utilizes the absolute sum of squares of residuals and 

the number of residuals greater than some criterion value set by the researcher. It was 

hoped in the current study that multidimensional scaling techniques would have been able 

to recover the underlying structure of the data. However, the results show, at least for the
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data generation employed in this study, that for data structures more complex than two 

dimensions, multidimensional scaling techniques maj  have little real utility.

To the observer, such an endeavor as the current simulation has an appearance of 

being a smooth process. One simply looks up in a table of standards the assumptions one 

is to make regarding the type of model that is to be employed, the form of the distribution 

for the parameters, and the type of random number generators that will be ran. After these 

are in place one then selects the computer program which will best suit the needs of the 

project and then generates the response matrix which will allow the researcher to conduct 

the study. However, no such standards exits, and moreover, most computer programs to 

generate data are written by the researcher or are at least commissioned by the researcher to 

suit the purposes of the study. The difficulty of such a situation is that the added variability 

not only makes conducting such research complex but also makes comparisons of the 

results practically impossible. In order to reduce the amount of variability due to factors 

outside the variables of interest, some form of standards for the generation of simulation 

data should be considered.
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