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Abstract

Latent Trait or Item Response Theory (IRT) relies heavily on a number of strong
assumptions (Lord, 1980; Lord & Novick, 1968). Unidimensionality is considered io be
the most essential of these assumptions (Hambleton, Swaminathan, Cook, Eignor and
Gifford 1978). Several procedures now exist which estimate the parameters contained in
the unidimensional IRT (UIRT) model. One which has received extensive use is the joint
maximum likelihood procedure employed in the parameter estimation program Logist
(Wingersky, Barton, & Lord, 1982).

The current study assessed the effects on the estimation of UIRT parameters when
data sets violate the assumption of unidimensionality by exhibiting varying degrees of
multidimensionality and correlations among the dimensions. The effects were assessed by

senecating data sets having two or three dimensions and correlations among the dimensions
of 0.0, 0.3, 0.6, 0.95, and 0.99. Thus, ten data sets were generated, each representing a
different combination of dimensionality and correiation among the dimensions.

Procedures for generating the data are described. The data were generated using
Fortran 77 and IMSL subroutines. The suitability of the compensatory (CMIRT) and
noncompensatory (NMIRT) multidimensional item response models used for generating the
data are also noted. The problems encountered in generating the data and the techniques
used to overcome those problems are described. Methods to ensure that the data sets did

indeed contain the intended characteristics were of special interest.

The computer program Logist was employed to estimate the person and item
parameters for the pseudo three parameter unidimensional IRT model (guessing parameter
held constant at 0.2). The estimated parameters for each data set were compared to the
parameters which were used in generating the data sets. The degree of congruity between
the estimated parameters produced by Logist and the parameters inherent in the data sets

was tested by examining the correlation between the IRT parameters, their means, and their
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sums. Mean square differences were also examined to determine the size of the congruence
when dimensionality and correlation were varied.

Increasing dimensionality had a negative impact on the congruence between the
estimated parameters and the gencrated parameters. Conversely, increases in the correlation
between the dimensions to some extent countered the negative effects of increased
dimensionality.

Replication of Ansley and Forsythe's 1985 study, with respect to a two dimensional

data structure, was completed and is presented as a part of the current study.
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CHAPTER 1
Introduction
Item R nse Th v lassical Test Th

An item response model specifies a relationship between the examinee's observable
test performance and the unobservable abilities (latent traits) assumed to undgerlie
performance on the test. An example of such a model is the item-response function, called
the item characteristic curve in the one-trait or unidimensiorial model, which relates the
probability of getting a test item correct to the latent trait underlying performance on the
items. Responses to a set of manifest variables (items), which are designed to assess
performance on an achievement test, are less than perfectly related to the assumed latent
ability. This suggests the presence of one or more underlying mental traits. In the case of
continuous manifest variables the problem of searching for latent traits leads directly to
factor analysis.

The relationship between IRT and factor analysis is well established (see Traub &
Wolfe, 1981), and the unidimensional latent trait in IRT presumes a one-factor structure. A
one-factor analytic model is sufficient for the two-parameter normal ogive IRT model (Lord
& Novick, 1968). Factor analytic procedures are useful for testing a priori structures and
for determining the appropriate IRT models (e.g., Hulin, Drasgow, & Parson, 1982). IRT
approaches the problem of derermining the relationship between a response and an ability
from a probabilities viewpoint rather than from a correlational one. That is, the function
that specifies the relationship between an item and the latent trait is stated in terms of
cumulative probabilities for given trait values.

Commonly, IRT models are associated with multiple-choice items used in an ability
or achievement test (Traub & Wolfe, 1981; Warm, 1978). Most multiple-choice test items
form dichotomous scales whose categories can be labeled "0" for incorrect responses and
"1" for correct responses . Many other item types, including some in which subjects

supply or construct the response, are also dichotomous; any itemn type where the subject’s
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response is marked correct or incorrect or that can be scaled as two points is dichotomous.
Items that can be scored in this way are quite common, and the IRT model therefore applies
rather broadly. Many of the recent textbooks on IRT deal almost exclusively with IRT

models basedd on dichotomous types of test items.

IRT models are not limited to multiple-choice items (or to dichotomous manifest
variables generally); work is being done with multidimensional item types as well
(Mislevy, 1987, p. 240). For example, researchers have applied IRT models to nominal
iterns with more than two categories and to items with ordered scales: <.g., Andrich
{1978), Bock (1972), Masters and Wright (1984), and Samejima (1972). Others have
extended the notion of IRT to multidimensional models ( Bock & Atkin, 1981; Doody-
Bogan & Yen, 1983; Hattie, 1981; Mulaik, 1972; Rasch, 1961; Reckase, 1985; Samejima,
1974; Sympson, 1978; Whitely, 1980).

IRT can provide to test producers and test users certain benefits which are not found
in Classical Test Theory. The statistical indices found in Classical Test Theory are
typically those deriving from norm-referenced techniques (see Baker, 1977, for a review of
norm-referenced item analysis statistics) and are defined below.

1). Item difficuity--usually indicated by the "p-value" which is the proportion of
examinees with a correct response to the item (proportion scoring “1").
2). Item discrimination--usually indicated by the point-biserial or biserial
correlation of the item with the total test.
3). Average and spread--usually mean and standard deviation, but sometimes also
median, semi-interquartile range, etc.
} 4). Distribution--usually skewness and kurtosis of the distribution, but goodness
of fit to the expected distribution can also be tested.
5). Reliability of the test scores--usually KR-20 or corrected split-half (which
under estimate reliability based on the classical test theory notion of strictly

parallel tests), or, often in ability testing, the test-retest correlation.
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6). Error associated wi'h a score--usually the standard error of measurement as
calculated from the standard deviation and the reliability estimate.

Hambleton & Swaminathan (1985) identify five major shortcomings of the classical
test theory approach to test development and test evaluation (see also Hambleton & van der
Linden, 1982). The first is related to the examinee sample on which the statistics are
calculated. The item p-value is directly affected by the ability level of examinees, and it is
not necessarily equal for the same item administered to two groups of the same average
ability. The test characteristics such as average, spread, and form are dependent on the
ability level of examinees as well. Item discrimination is related to subject matter
homogeneity, range of examinee ability scores, and the dispersion of p-values. The
discrimination of items affects the test reliability as measured by internal consistency indices
(e.g., KR-20) and hence the typically reported standard error of measurement.

The second shortcoming of using classical test theory is related to making
comparisons among groups, specifically that the same test or parallel tests must be used
(Hambleton & Swaminathan, 1985). The test cannot be adapted to the examinee, and for
high or low ability suusects the test is usually less precise. Further, test validity can be
increased by matching item difficulty to the ability of the examinee (Lord, 1980).
Comparison of scores from two or more different tests becomes very difficult under the
classical model, even for group averages relatively close to the middle of the score scale.
The problem of precision of scores being different at various points of the score scale is
masked in classical theory by the common practice of employing one estimate of the
standard error of measurement for all levels of the test scale. Hambleton and Swaminathan
(1985) posit that performance at the high end of the score scale is frequently more stable
than at the middle and lower ends.

The third shortcoming expressed by Hambleton and Swaminathan (1985) is that test

reliability is defined in terms of parallel forms. Parallel tests are most often difficult to
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achieve, and most reliability indices are either lower-bound estimates {e.g., KR-20) or with

unknown bias (e.g. test-retest).

A fourth shortcoming is that classiczl test theory cannot provide a basis for predicting

examinee performance on a given test item, that is the probability of responding correctly

cannot be estimated from item statistics. The ability to predict item performance is
necessary for tailored testing and is desirable in many testing situations.

Classical test theory has fallen short with respect to identifying biased items and in
equating test scores (Hambleton and Swaminathan , 1985, p. 3). This follows from the
criticisms specified above, but it indicates problem areas for which solutions are clearly
aided by IRT. Hulin, Drasgow, and Parsons (1982, p. 8) present the argument that the
total test score is unrepresentative of ability. Patterns of response are lost in this practice,
and differential weighting of items and/or individually selected items (adaptive testing) may
provide a more accurate score. Clearly, both differential item weighting and individual item
selection based on estimates of examinee ability and item parameters can produce more
accurate examinee scores, and this accuracy can be obtained more efficiently (by fewer
items). This fact is readily apparent from combining item information functiuns and
comparing test information at various points on the ability continuum. Certain
combinations of items produce much more information than do other combinations at
specific points on the scale (Warm, 1978, pp. 73-77, provides an example of this from
actual IRT item data).

Item and Person Parameter Invariance in IRT

IRT is a theory which relates the observed performances of examinees on items to a
latent trait, which in the unidimensional case, is said to explain the behaviour on the items.
The relationship is described as a probability function; this function depends on the latent

ability of a person, a single parameter in the unidimensional case, and on information about

the item, one, two or three parameters, depending on the model (Traub & Wolfe, 1981).

However, in contrast to Classical Test Theory in which total test score is used to estimate
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the latent ability, IRT uses all the parameter information from every item administered to the
examinee in determining the level of ability.

In contrast to the shortcomings mentioned in relation to Classical Test Theory, IRT is
claimed to provide item and test statistics which are independent of examinee characteristics
and of test characteristics (Warm, 1978, p. 17; Lord & Novick, 1968). As well, the {it of
the item models and test models can be evaluated empirically. The following features of
item response models are outlined by Hambleton and Swaminathan (1985, p. 11) and are
applicable when the IRT model fits the data. First, item parameter estimates are
independent of the group of examinees sampled from the population of examinees for
whom the test was designed. Second, examinee ability estimates are independent of the
particular choice of test items sampled from the population of items which were calibrated
(the calculated item parameters). Third, the precision of ability estimates is known.

It should be noted that some authors are not confident about the "robustness” of IRT
models, and emphasize the problems associated with the strong assumptions necessary for
their application, in particular unidimensionality and local independence (Goldstein, 1980;
Traub, 1983; Traub & Wolfe, 1981). Bock, Mislevy, and Woodson (1982) recommend
IRT functions based on logical leamning units rather than combining a variety of skills and
employing one dimension to define the model, for example, when a test of mathematics
contains items from a variety of objectives and is analyzed using one dimension.

Traub and Wolfe (1981) comment that if an IRT model is correct it provides
tremendous advantages, but in the practice of measuring educational achievement the
assumptions are rarely tenable. They also point out that present-day IRT models require
dichotomous items and assume a single underlying dimension across a range of skills or
even grade levels. They are particularly concerned that IRT models are not independent of
the context: "we view as potentially dangerous the practice of applying latent trait scaling
over time and over educational programs where instruction varies” (Traub & Wolfe, 1981,

p- 380). Traub (1983) provides data that demonstrate the unlikeliness of the
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unidimensionality assumption. Traub & Wolfe (1981) point to a further problem, which is
that the test of adequacy of fit of the model has statistical deficiencies, such as lack of
power, nonlinearity in the a«ta, and poor generalizability of item parameters.

Because of the difficulty and expense associated with using IRT in assessment, most
present aprlicanu.. iend to be in large-scale achievement and ability testing programs,
either government-based achievement testing programs such as the California Assessment
Program (Pandey & Carlson, 1983) or in published stancardized ability and achievement
tests such as the Comprehensive Tests of Basic Skills by McGraw-Hill (Yen, 1983).
Large-scale testing programs almost exclusively utilize multiple-choice test items. Thus,
applications of IRT have been made with this type of item. However, it is well known that
multiple-choice itemns cannot assess much of what is important in education (e.g., writing
competency), and therefore the application of IRT, as i\ has been developed, is very limited
and may even be limiting to good assessment practices.

Item R nse Model

A number of models have been proposed that specify the expected relationship of the
latent trait to the categories of the items (the manifest variables). The goodness of fit of
each can be esiablished and comparisons can be made (Hambleton & Swaminathan, 1985).
Traub and Wolfe (1981) express the concern, “the assessment of model fit is something
that, in practice, is usually done very badly" (p. 384), and the power of staiistical tests is
usually poor. The models are based on various assumptions about the data, and a
comparison of the fit of two models becomes a test of the particular assumptions that

distinguish the two models.
! Assumptions
There are three assumptions that apply generally to latent-trait models, and more

specifically to IRT and the item response function. The first is related to the dimersionality

of the latent space; it is assumed that only one ability or trait is necessary to explain an

examinee's test performance. The second is related to local independence, i. €., examinees
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' responses to different items in a test are statistically independent at a given value of the
latent trait. The third is related to the item characteristic curves; the curve connecting the
means of the conditional distributions is the regression of item score on ability ( referred to
as an item characteristic curve).

Unidimensignality. Item response models which assume a single underlying trait are
referred to as being unidimensional. In a strict sense this assumption is only met in theory
and is never realized in practice. In any testing situation a host of cognitive and motor skills
all come into play and influence the outcome of any one subject's performance on a test.
What is considered to be of importance in meeting the assumption of unidimensionality is
that a single "dominant" ability factor underlies performance on a test and that the test is
designed to measure the ability in question (Hambleton & Swaminathan, 1985). Warm
(1978), presents three rules of thumb for determining unidimensionality.

1. Tests that look unidimensional probably are unidimensional.

2. Items that test bits of knowledge that were learned together are probably
unidimensional.

3. Items that test bits of knowledge which are logically and sequentially related are
probably tnidimensional.

Warm cautions that such rules of thumb are meant to be nothing more than a guide
and are not presented as replacements for sound empirical evidence for unidimensionality.
Warm posits that such rules of thumb are justifiable given the difficulty in determining
unidimensionality empirically. The difficulty arises from the fact that most tests of
unidimensionality rely on factor analysis of inter-item tetrachoric correlations, which
requires that the ability levels be normally distributed. This assumption need not hold when
items allow some probability of a correct response through guessing (Warm, 1978).

A unidimensional insttument is often considered in terms of the outcome of a
procedure designed to establish its singularity. However, a unidimensional test is nct

defined in relation to a unit rank, deviations from a perfect scale, or one common factor.
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Unidimensional tests are not necessarily reliable, internally consistent, or homogeneous
(Hattie, 1985). The only defining character is that performance on a test be a function of a
single underlying ability.

Critics of unidimensional test construction have pointed to a number of serious flaws
in the attempt to develop homogeneous test (Humphreys, cited in Harrison, 1986; Traub,
1983). Harrison is concerned that tests which are constructed to be unidimensional may be
too limited in their capability to assess the subject in a given area. He further stresses a
paradoxical situation in which as a test becomes more homogeneous with respect to a given
underlying trait it also decreases in predictive validity.

Traub (1983) refers to the notion of a singular underlying trait as "the fragile
assumption of unidimensionality". He considers three circumstances which could affect the
dimensionality of the latent ability space. The first is the method of instruction. Differential
instruction can create a multidimensional ability space where before a unidimensional ability
space existed. The simple example presented by Traub is that of children who are
homogeneous with respect to the elementary operations of adding and subtracting integer
numbers. The children are then split into two groups; the first group receives exclusive
instruction in addition while the second receives exclusive instruction in subtraction. When
the two groups are later tested on both operations there is a negative correlation between
pairs of items relating to addition and subtraction. This would imply two abilities rather
than a single ability which existed prior to the differential training.

The second circumstance is that of a speeded test. As before there is a single group
of children with the same ability t> answer the questions on the test. Again they are split
into two groups, such that they receive differential instruction in test taking or such that
they are divided on some criterion which allows them to be grouped as fast or slow test
takers. As individual groups their inter-item correlations are zero but, when combined the

correlation is greater than zero. A non-zero correlation, for a subpopulation of examinees

R . . .
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all of equal ability on one latent trait, implies that a single trait is not sufficient to satisfy the
condition of local independence.

The scenario is virtually identical for the third circuiastance, which is guessing. If
individuals of equal ability can be divided into two groups, cne with a propensity to guess
and the other with the absence of guessing, then , as before, the inter-item correlations
within the groups will be zero. However, there will be an inter-item correlation for the
combined groups.The same conclusion can be drawn as for the case of a speeded test, that
is, more than one underlying trait is responsible for performance on the test.

Traub concludes that no unidimensional model can adequately represent achievement
data. He further states that it would be foolhardy to expect errors due to model misfit to
average to zero as random errors would. Therefore, he suggests that one should seek
other solutions to educational measurement problems.

Local Independence. There is a clear relationship between local inderendence and the
concept of unidimensionality (Bejar,1980; Hambleton & Swaminathan, 1985; Traub &
Wolfe, 1981). Local independence states that the joint probability of the scores on iwo
items for a given ability level is the product of the probabilities of the score on each item
given the ability level (Traub & Wolfe, 1981, p. 386):

Pr(Xj=x; and Xj=x;| g) = Pr(Xj=x; | ) x Pr(Xj=x{l ¢)
where Xj and X are scores on any two items and g is any given ability level. This rule can
be simply extended to the joint probability of a response pattern on any number of items.
The equation implies that any correspondence between pairs of items must have been
accounted for by the latent trait, but it may be that several traits are needed for this condition
to be satisfied. In this sense, then, a unidimensional test must have local independence of
item responses. However, the inverse is not true, that is local independence does not
imply unidimensionality. Conditions which may violate the assumption of local
independence are those of a speeded test (discussed above) and chained items.

Presumably, factor analysis of item responses can be used to test the reasonableness of this
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assumption, and Lumsden (1976) suggests the ratio of first- to second-factor variance as an
index. This procedure has its problems since it relies on item correlations (see Hambleton
& Swaminathan, 1985, pp. 21-22; Warm 1978, pp 99-101).

Item Characteristic Curves. The model is typically expressed in terms of the item
characteristic curve (ICC), or the item characteristic function in the multidimensional case,
which is the (nonlinear) regression of the item score on the latent trait or ability. Since the
probability of an examinee answering an item correctly is dependent only on the form of the
ICC, it is independent of the performance of other examinees, and therefore the curve is
invariant across samples (Bejar, 1980; Hambleton & Swaminathan, 1985). The ICC is the
curve relating the probability of item i being correctly answered by a randomly selected
individual with ability p. Alternative definitions are possible b1t may lead to problems; this
is the suggested definition of Hambleton & Swaminathan (1985, p. 27). The ability scale ¢
is not defined by the item scales, but is usually arbitrarily set to have mean = 0 and standard
deviation = 1, thereby making the practical range approximately from -3 to +3. Finally, the
distribution of ¢ does not need to be normal for the theory (Warm, 1978).

The Logistic Model

A wide variety of models is possible to define the item characteristic function Pi(g)
for typical achievement or ability tests but the model commonly in use today is the logistic
one, attributable to Birnbaum(1968). This model is preferred over the normal ogive
originally proposed by Lord, since it is more mathematically tractable, i.e., it does not
involve integration in the equation for Pi(¢). The two-parameter logistic model, with the
scaling factor D = 1.7 (see formula below), can be shown to produce an item characteristic
curve which deviates from that produced by the normal ogive by less than .01 for all values
of g (Hambleton & Swaminathan, 1985, p. 37). The logistic model ICC for item i

favoured by many writers today (e.g., Warm, 1978) involves the following three

parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

aj = the item discrimination value of the ICC: it is proportional to the slope of the
ICC at the point on the curve where g = bj; -0 <a 2 +oo

by = the item difficulty value or locaticn of the ICC: the point on the g axis where
the examinee has a (1+c¢j) / 2 chance of responding correctly to the item (also at
the inflection point of the curve); -0 <b2+4eo

cj = the pseudo-chance level of the ICC: the lower ~symptote value of Pj(g), or the
"guessing factor” in multiple-choice items. 0<c2>1

The three-parameter equation for Pj(g) can be expressed as follows:

(1-c) oDa[(0-b)
| + eD2[(0-b)

where D = 1.7 (the scaling factor), andi=1, 2, ... nitems. This may also be expressed

Pi(e) = C} +

as:
Pite) = €j +(1-Cj)[e'Daj(e'bj)]-1

A four-parameter model has also been posited, the fourth parameter being an upper
asymptote less than one for Pj(g) based on the notion that even high ability examinees miss
items through carelessness (see Hambleton & Swaminathan, 1985, pp. 48-49; also Traub
& Wolfe, 1981, p. 423). The three-parameter model is the one most commonly discussed,
and Lord provides some evidence that there is little practical gain from adding the fourth
parameter (Hambleton & Swaminathan, 1985, p. 49).

Based on this general IRT model there are two restricted models, namely that of one
parameter, bj and that of two parameters, aj and bj. There is considerable debate in the
literature regarding the appropriate model to use in actual applications. It seems obvious

that the three-parameter model should be most applicable to multiple-choice items since it
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includes the possibility of both varying discrimination of items (aj) and the guessing factor
(ci). However, there is considerable use of the one-parameter model; this is equivalent to
the Rasch model which assumes that the discrimination parameter is constant for all items
(see Wright, 1977). The Rasch model is easier to use since it involves estimation of only
one parameter for each test item, and numerous applications are reported in the literature
(see Wright & Stone, 1979).

In addition to its use with multiple choice items, the two-parameter model is also
appropriate for test items which are of a constructed-response format , scored right or
wrong, and where there s little or no opportunity for the examinee to respond correctly by
guessing . Some of the original work by Lord (e.g., 1953) was on the two-parameter
normal ogive model, and Birnbaum (e.g., 1968) proposed the two-parameter logistic model
as an alternative to the normal ogive.

A variety of IRT models have been developed, but the one, two, and three-parameter
logistic models are most commonly used. These models can be applied to the item
responses and the fit of each can be compared to that of the others. The scale of ¢ is
arbitrarily established and can be adjusted to a convenient metric, such as mean = 50 and sd
= 10 (T-scale), by using a linear transformaticn. One such transformation for the three-
parameter ICC is:

g*=gp +k, ci*=cj, bi*=gbi+k, andaj* =ajg.,
where the scale size is adjusted by g, a location shift of k is made, and the constant ¢i* is
arbitrarily set for the item. Hambleton and Swaminathan (1985) demonstrate that this form
of transformation leaves Pj(g) invariant, i. €., Pj(¢*; a*, b¥*, c*) = Pi(g; a, b, ¢). These
transforinations can be applied to the two-parameter model, and to the one-parameter model
if aj is taken to be the average iem discrimination, say a. If a computer program returns ¢
in terms of mean = 0 and sd = 1, as many programs can do (e.g., LOGIST; see

Wingersky, 1983), then to transform to a T-scale simply means g = 10 and k = 50.
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Three Parameter Logistic Model: A Closer Look
The three-parameter }ogistic model can be used to develop some interesting relations

and applications of IRT. The ICC for item i is:

Pitg) = ¢j +(1 -cj)[e' Daj(e-b))[ 1
From the equation it is readily apparent that the value of Pj(@) approaches cj as ¢
approaches -eo and 1 as g increases to +<~. For example, when g --> +e, the expression [-
Daj (8 - bj)] --> -o= and the limit of e raised to the power -e= becomes 0, so that 1 + exp[-
Daj (8 - bp)] =1 and cj + (1 - ¢i)/1 = 1. The probability of an examinee with infinite ability
responding correctly to the item is 1, as expected.
The relationship of Pj(g) to ¢ resembles a cumulative distribution function

(ogive) for examinees of all ability levels.

1.0 1+ ¢l

: > /
0.8 /

| X
0.6

Pl (e*)

0.4 slope=.425ai (1-ci)
0.2 | bi

s ci \
0.0

L] L3 l L 4 l
3 -1 3
ot
Abllity

Figure 1. Three Parameter Item Characteristic Curve
Figure 1 makes some of the significant features of an ICC apparent. The value for cj
gives the minimum or lower asymptote for Pi(#), whereas the upper limit is 1. The ICC
increases monotonically from Pj(-e<) = ¢j to Pj(eo) = 1, with the greatest rate of increase

occurring midway between these two extremes. Since the shape of the curve of the ICC is
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centro-symmetric about the point P(bj), bj is the value for ¢ at which the inflection point of
the curve occurs. This is the "midpoint” of the curve, and thus P(g=b{) = (1 +¢;) /2. This
point is also the point of maximum slope of the curve, and thus the maximum value of the
discrimination, aj, for item i. This implies that item i discriminates most among examinees
of differing abilities where these abilities lie close to ¢ = by, i. e., at 8 = +0.5 in Figure |
above (when ¢; =0.0).

The foregoing are two crucial aspects of IRT. First, the slope of the ICC for an item

is limited by the value for cj, with the maximum obtaining when ci = 0. As Warm (1978)
puts it, “the effect of the c-value is to squeeze the ogive into a smaller vertical range. . ..
equal to 1 - ¢" (p. 32). This can be visually represented by graphing an example where ¢j
approaches 1.0; the ICC would be quite flat and the slope --> 0. This implies tha. items
which are prone to considerable guessing, such as true-false items, would likely be less
discriminating than those where guessing is at a minimum, such as constructed-response
items. Second, an item's capability to distinguish between examinees at adjacent ability
levels is dependent on what point along the ability continuum s being considered, with the
greatest discrimination occurrirg at the point bj. Tuis implies that certain items would be
more discriminating at particular levels of ability than others. For example, given that the
parameters a and ¢ were equal for two items, the item with a value for b closest to the ability
levels for which discriminag... wus desired would be the most discriminating. The item
whose ICC is depicted in Figure 1 above is indicative of an item which has very little
discriminating power .

These features of IRT are in striking contrast to those of classical test theory, where
the effect of guessing has little impact on the itera discrimination, unless it becomes rather
large, and item discrimination is assumed to be constant irrespective of examinee ability.
The impact of the difference becomes even more significant when a test consisting of a
collection of items is considered. The application of IRT to tailored testing is obvious: it

allows selection of items based on their power to discriminate most at the estimated level of
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ability of the examinee. Since in many cases there is no estimate of examinee ability it can
simply be inferred from performance on previous items, and the testing can be started by
administering moderately difficult iterns.

A few comparisons of the parameters to classical theory statistics are given by Warm
(1978, pp. 51-53). Unfortunately, the relationships are complex, so will not be described
here. What can be given is some indication of commonly obtained values for the
parameters. Warm (1978) contends that items with a-values below .80 are not sufficiently
discriminating for most purposes. He also states that b-values below -2.5 are quite easy
and above +2.5 are very difficult. Finally, he argues that a reasonable estimate of ¢ for a
multiple-choice item is given by (1/A) - .05 where A is the number of options, and that
although c's typically range from 0.0 to 0.4 they should be 0.2 or less. A test characteristic
curve can also be determined simply by the averaging the P(g)'s for all items in the test (see
Hambleton & Swaminathan, 1985, pp. 61-69). This produces a curve that is similar to the
item ICC's. It is further defined as the relationship of test true score (or domain score) to
a.

Estimating Abili Item P

Ability (¢) and item parameters (a, b, and ¢) must be simultaneously estimated from
the response patterns of the examinees. If N examinees respond to n items, the number of
parameters to be estimated are N + 3n, and N + 2n and N + n parameters for the three, two
and one parameter models respectively. There are indeterminacies in the solutions so
restrictions must be applied. Usually for ¢ in the three and two parameter models the mean
and standard deviation are set to O and 1 respectively, which reduces the parameters to be
estimated by two.

The algorithm for the maximum likelihood solution for the IRT parameter estimation
problem is beyond this paper. It is described briefly in Warm (1978), and in somewhat
greater detail in Hambleton and Swaminathan (1985) and Lord (1980). The procedure

involves maximizing the likelihood function which is based on the conditional probability
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of the particular response vector u for examinees on the items, given the ability parameter

and item parameters, 1. €.,
L(ul!s,a,b,c)

where “"= terms are as defined in the next paragraph. The function is obtained by taking the

product of the joint prebabilities of the responses u and the parameters (this is possible
because of the local independence assumption). But since usually all of the parameters are
unknown (actually all but two), they must be estimated simultaneously by an iterative
procedure.

The natural logarithm of the likelihood function (Harnbleton & Swaminathan, 1985)
is obtained and since the function is a product of probabilities, the result becomes a
summagon:

lnL(uI¢,a,b,C)=ZE[uijlnPij+(1 -u55) In Q5]

where:

Summation is over N examinees (j=1, ... N) and n items (i=1, ... n)

u is an Nn vector of the N examinee observed responses to the n items (element u;;
is the score of examinee j on item 1)
o is the vector of N ability estimates

a, b, and ¢ are the three vectors € parameters for the n items

Pij = Pi(gj) is the ICC value for item i and ability level g;

Q =1-Py
The maximum likelihood equations are obtained from the partial derivatives of L with
respect to each parameter vector (a vector consists of one set of parameters g, a, b, and ¢).
Solutions are obtained for the equations by first treating the item parameters as known and
producing N equations in gj. An iterative procedure is employed until differences between

successive approximations to the item parameters becomes sufficiently small.

Solutions for tests with substantial numbers of itemns administered to large samples

are a difficult problem given the large number of nonlinear equations which are involved,
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particularly in the case of two 2nd three parameter models. Several additional problems
arise beyond the sheer difficulty of computing. The first is that the numerical procedures
do not guarantee an absolute maximum for nonlinear equations and local maxima may be
obtained (Hulin, Lissak, & Drasgow, 1983). Second, estimates of the parameters may take
on values outside the acceptable range, and researchers such as Wright (1977) argue that
this calls into question the maximum likelihood solution procedures for two and three
parameter models. Third, the estimate for the lower asymptote (c) is very difficult to
achieve using maximum likelihood methods (Lord, 1980).

The computer program LOGIST (Wingersky, 1983) employs this joint maximum
likelihood estimation procedure. Hambleton and Swaminathan (1985) and Mislevy (1987)
state that it is one of the computer programs commonly used for the two and three
parameter problem, but indicate that there is interest in alternate procedures such as those
based on marginal probability functions. A computer program using this approach is
BILOG. The authors also describe conditional maximum likelihood estimation, which with
the proper constraints leads to the Rasch procedure of Wright and Stone (1979) and to the
nrogram BICAL. Although a variety of other solution procedures are being considered,
one that appears quite promising is Bayesian estimation (Hambleton & Swaminathan,
1985). Apparently, this approach produces modest improvements on the point estimates
(Mislevy, 1987). Lord (1980) suggested samples of more than 1000 examinees and more
than S0 items for adequate parameter estimation. This seems to be good advice particularly
where ability estimates are to be used for decision-making: Mislevy (1987) states "that
treating ¢stimates as parameters provides fairly accurate end results in applications when
both n and N are large--say, n > 50 and N > 2000" (p. 253). He also states that serious
biases result from treating ¢ estimates as parameters or true scores when examinees take
few items: "less than, say, 15" (Mislevy 1987, p. 255) and few items is precisely what
tailored testing would hope to achieve! The problem of obtaining estimates of g given item

parameters is much simpler than that of simultaneously estimating examinee and item
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parameters. Hambleton and Swaminathan (19835) describe the procedure, and Warm
(1978) gives a simple example of how to obtain estimates of ¢ for three items.
nclusi

Consideration has been given to many of the shortcomings of classical test theory: a)
the variability of item statistics as a function of the sample group, whereas, in IRT item
parameters remain invariant across groups of examinees and the ability parameters are not
affected by the items administered, b) the difficulty in comparing groups tested on items of
different difficulty levels, and the problem of achieving parallel measures, ¢) the lack of
predictive power when trying to ascertain the probability of a subject’s response to a
particular item, d) the assumption of homogeneity of error variance among subjects who are
heterogeneous with respect to ability. In addition to these, classical test theory has been
unable to provide satisfactory information with respect to identifying biased items, equating

of test scores, and development of tests which discriminate maximally at a given ability

level.

Item Response Theory addresses many of the problems associated with Classical Test
Theory. The invariance of both item and person parameters makes it possible to equate
individual scores on tests of differing difficuliy levels. Either the ability scores or
transformed scores may be reported. Item response medels allow for the detection of item
bias through an inspection of the item response function for the groups in question and
wilization of significance tests. The construction of a highly discriminating test can be
accomplished through an inspection of the item parame:ers. For example if a test is needed
to distinguish between subjects at the high end of the ability range, then items with large

value of "b" and “a" would be selected.

Item Resyonse Theory is not without its criticism. The assumption of

unidimensionality in particular has been attacked on several levels. It would appear that a
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move to multidimensional models will be a natural transition in order to eliminate some of

the stronger arguments.

Purpose and Objective of the Study

The process of developing mathematical models to describe and understand empirical
phenomena is common in many areas of natural science. Einstein's mathematical mogel
relating energy and mass is just one of the many examples. Mathematical models have
been developed to study the flow of substances, from the blood through the human body to
the flow of traffic in our inner cities. Mathematical models have also been employed to
understand the nature of hurricanes and earthquakes, so that one may predict their
occurrences and better be able to minimize their negative consequences on the environment.
They have also been employed extensively in the study of population growth. For example
the Volterra Model is a nonlinear model of interacting populations. When the data fit the
model these mathematical functions become powerful tools which can predict the behaviour
of subatomic particles, as in the case of models related to physics, or save the lives of

people, as in models relaied to medicine.

Psychology has made e:xtensive use of mathematical models to describe the behavior
of organisms. Some of the earliest mathematical models were developed by Ernst Weber in
1834 and Gustav Fechner in 1860. Herstein (1961) developed a model to describe the
matching behavior of animals. Baum (1974) extended the Hemnstein model to encompass
deviations from the matching law . Rescorla and Wagner (1972) as well as Pearce and Hall
(1980 presented mathematical models to describe the process of learning. Iwasa, Higashi,
and Yamamura, (1981) presented a model to describe how animals exploit food distribution
in a patch. Tatsuoka (1968) gives a more complete discussion of the development and use

of mathematical models in psychology.
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Itemn response models employ a mathematical function to describe the relationship
between an observable response and an unobservable ability. Employing a mathematical
function to describe this relationship classifies IRT models as mathematical models
(Hambleton & Swaminathan, 1985; Tatsuoka, 1968). At some stage in the dzvelopment of
a mathematical model certain simplifying assumptions are made. These assumptions
usually increase the model's mathematical tractability. With respect to unidimensional item
response models, unidimensionality is one such simplifying assumption. A definition of
unidimensionality has been somewhat controversial (Hambleton & Rovinelli, 1986). A
more complete discussion will be given in the section on unidimensionality. It should be
noted that this same assumption is also an underlying tenant of classical test theory. The
importance of this assumption to current IRT models has stimulated a large number of
attempts to develop indices of unidimensionality. Hattie (1985) has summarized 87 such
indices. The most promising determinate of unidimensionality appears to come from
analysis of the absolute sums of squares of residuals and the number of residuals greater

than sume criterion value resulting from nonlinear factor analytical techniques.

Given the difficulty of developing adequate indices of unidimensionality, a logical
step would be to assess the robustness of unidimensional models when a data set has a
multidimensional structure. To date, several studies have assessed unidimensional models
under just such a condition. Some have approached it from a factor analytical point of view
(Drasgow & Parson, 1983; Harrison, 1986), while others have approach it from an IRT
framework (Ackerman, 1989; Ansley and Forsyth, 1985; Reckase, 1979; Way, Ansley, &
Forsyth, 1988).

The current study will extend the research aimed at assessing the issie of the
robustness of UIRT models to violations of the assumption of unidimensionality from

within an IRT framework. However, where the previous research focused on two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




21

dimensional data structures, the present study will attempt to ascertain whether the findings
of these former studiss can be generalized to data sets generated to have a three dimensional
ability space. These are data sets in which the probability of a correct response to any one
item for a given individual is a function of that individual's current level on three different
ability (@) scales. The importance of this is to ensure that the results obtained, by
employing a two dimensional data structure, are not an artifact of some unique relationship
which exists within a two dimensional system. Further, it is likely that human behaviour is
more complex than is suggested by a one or two dimensional model. Itis therefore
necessary to explore whether these results will hold when extended to more complex latent

spaces.
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CHAPTER 2
Review of the Related Literature

Item response models which assume a single underlying trait are referred to as being
unidimensional. In a strict sense this assumption is only met in theory and is not realized in
practice (Ackerman, 1989; Ansley & Forsyth, 1985; Birenbaum & Tatsuoka, 1982;
Drasgow & Parson, 1983; Harrison, 1986; Reckase, 1979; Way, Ansley, & Forsyth
1988). In any testing situation a host of cognitive and motor skills all come in to play and
influence the outcome of any one subject's performance on a test. What is considered to be
of importance in meeting the assumption of unidimensionality is that a single "dominant”
factor underlie performance on a test and that the test is designed to measure the ability in
question (Hambleton & Swarminathan, 1985).

Recently, a number of studies have been conducted to assess the robustiiess of IRT
models to the violation of the assumption of unidimensionality of the latent space. The
general approach has b a to simulate multidimensional data sets via a mathematical model.
For some a linear factor analytical approach has been utilized in order to produce a
response matrix (Drasgow & Parson, 1983; Harrison, 1986; Reckase, 179). Others have
employed multidimensional extensions of existing unidimensional IRT models (Ackerman,
1989; Ansley & Forsyth, 1985; Way, Ansley, & Forsyth 1988).

Factor Analytical Models

Drasgow and Parson (1983) simulated correlated common factors through a
hierarchical factor analysis model developed by Schmid and Leiman (1957). The authors
concluded that if the dominant latent trait is sufficiently strong then unidimensicnal IRT
models provide an adequate representation of multidimensional data. However, if a single
dominant latent trait is not sufficienily potent, then the use of a unidimensional model is

inappropriate. Specifically, their results indicated that the general latent trait could be
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successfully recovered if the correlation between common factors was greater than or equal
to 0.50.

Harrison (1986) Jollowed many of the the same procedures outlined in the Drasgow
and Parson (1983) study. However, Harrison (1986) conducted his study employing a
variety of patterns of factor loadings for the common factors, the test length, and the
correlation between the common factors. The results reported by the author were
compatible with those presented by Drasgow and Parson (1983). As the strengiii ot the
second order general factor increased the Logist parameter estimates improved relative to
the theoretical parameter values. This same positive effect on the parameter estimate was
seen as test length increased and for items uniformly distributed within the common factors
versus items displaying a skewed distribution. Harrison concluded that as a single group
factor controls variation in more items and in a larger number of items then the Logist
program takes this factor as part of the unidimensional trait. Further, Harrison posited that
the Logist estimation procedures were robust to violations of the assumption of
unidimensionality, even when common factors display only moderate intercorrelations and
that Logist is able to successfully recover parameters implied by second order general
factorc.

Reckase (1979) investigated the effect of multidimensional data on the one and three
parameter logist model. Five simulated and five real data sets were employed in the study.
When the data set cemiains more than one independent factor the 3 parameter model
discriminates among ability levels on one factor and ignores the rest. The 1 parameter
model estimates represent the sum of the factors. Whe i the data set contains one large
factor with a number of smaller factors both models measure the first factor, and the size of
the first factor affects the parameter estimation in a positive way. Reckase posited that the
one parameter and the three parameter models measure different abilities when independent

factors are inherent in the data, but both measure the first principal component when the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

first factor is large relative to the other factors present and this first factor should account
for at least 20 percent of the test variance in order for parameter estimates to be stable.
Summary

The results from the above mentioned studies tend to support the hypothesis that

unidimensional IRT models do not require that the latent ability space exhibit a singular
structure in order to provide valuable information about the nature of the itern and trait
parameters presented in the model. However, it is also clear that a single dominari factor
must underlie the test data. A number of problems present themselves when a factor
analytical approach is employed to represent the structure inherent in the response matrix.
The tacit assumption is that the responses have a linear relationship *. ~.¢ underlying trait.
This is contrary to the nature of IRT models (Hattie, 1985). A further assumption is that
multidimensionality is expressed across a set of items as opposed to within the items as an
IRT model might suggest. The following three studies address these concerns by
employing multidimensional IRT models to simulate the item responses.
Item Response Model

Ansley and Forsyth (1985) simulated multidimensional test data (two dimensions)
using a noncompensatory multidimensional item response model (NMIRT) The model was
first presented by Sympson (1978) as an extension to the three parameter unidimensional
logistic model (Birnbaum, 1968). Ansley and Forsyth reported that the Logist es imates for
the discrimination parameters a* and the ability parameters g* were best represented as the
average of the true a, , a, and 8,, 8, values respectively while the estimated difficulty

parameters b¥ were an over estimate of the b; value.

Way, Ansley, and Forsyth (1988) compared the results of Logist parameter estimates
when the data had been simulated using both a compensatory (Doody-Bogan & Yen, 1983)

and a noncompensatory (Sympson, 1978) model. The Doody-Bogan and Yen model is, as
is the Sympson model, an extension of the three parameter logistic model (Bimbaum,

1968). The res-ilt of using the noncompensatory model to simulate data was comparable to
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those reported by Ansley and Forsyth (1985). For the compensatory model the estimated

difficulty parameters b* and the ability parameters g* were best represented as the average

of the true by ,by and 8, g, values respectively while the discrimination parameters a*

was best represented as a sum of the true ayg , a values. In all cases as the correlation

between the dimensions increased the latent space became more unidimensional.

Ackerman (1989) in a simulation study, somewhat the same as that conducted by
Way et al. (1988), compared the results of Logist parameter estimation when the data had
been simulated using both a compensatory and noncompensatory models. Ackerman
considered the additional effect on parameters estimates when difficulty was confounded
with dimensionality. Ackerman reported that the confounding of difficulty and
dimensionality effect was minimal and equal for both modess. The relationships between
the Logist parameter estimates and the true parameter values were similar tc those reported
by Way et al. (1988). Unfortunately Ackerman did not consider the relationship of the
Logist item estimates and the means or sums of the true item parameter values as was

reported by Way et al. However, he did report that the estimated ability parameters g* were

best represented as the average of the true 81 and g, values and that the correlation of a*
with a; approached that of a* with a, as the correlation between the dimensions increased

and that b* was more highly correlated with by than with b, for all relationships between

the dimensions.

Summary

There is a large amount of support for the hypothesis that as the relationship between
dimensions, in the case of IRT models, or the relationship between factors, in the case of
factor analytical model, increases then so does the robustness of unidimensional IRT
models to violations of the assumption of a single underlying trait. However, there is still
one caveat, that is the appropriateness of the data generation methods. As has been already

discussed with factor analytical procedures, there is the assumption of a linear relationship
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between the trait being measured and the observed response. In the the case of MIRT

models there is a lack of both estimation and confirmation procedures to ensure the validity

of their use.
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CHAPTER 3
Research Design and Methodology

The current study assessed the effects on the estimation of UIRT parameters when
data sets violate the assumption of unidimensionality by exhibiting varying degrees of
multidimensionality and correlations among the dimensions. The effects were assessed by
generating data scts having two or three dimensions and correlations among the dimensions
of 0.0, 0.3, 0.6, 0.95, and 0.99. Thus, ten data sets were generated, each representing a
different combination of dimensionality and correlation among the dimensions.

The data were generated using a Fortran 77 computer program and IMSL
subroutines. The suitability of the compensatory (CMIRT) and noncompensatory
(NMIRT) multidimensional item response models used for generating the data were
considered. Methods to ensure that the data sets did indeed contain the intended
characteristics were employed.

The computer program Logist was employed to estimate the person and item
parameters for the pseudo three parameter unidimensional IRT model (guessing parameter
held constant at 0.2). The estimated parameters for each data set were compared to the
parameters which were used in generating the data sets. The degree of congruity between
the estimated parameters produced by Logist and the parameters inherent in the data sets
was tested by examining the correlation between the IRT parameters, their means, and their
sums. Mean square differences were also examined to determine the size of the congruence
when dimensionality and correlation were varied. The results for the two dimensional data
set are presented first and then the results for the three dmensional data set are presented.
The two dimensional data set was generated by removing the third dimension from the three

dimensional model.
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Model Selection

Concermns regarding violations of the unidimensional assumption has been
expressed for some time in the literature (Hatie, 1981, 1984, 1985; Harrison, 1986;
Tucker, Humphreys, & Roznowski, 1986; McKinley, & Reckase 1982; Lord & Novick,
1968; Lord, 1980; Traub, 1983; Traub & Wolfe, 1981; ). Hambleton et. al. (1978) assert
that the testing of the assumption of unidimensionality is of a higher priority than the test of
any of the remaining assumptions of unidimensional IRT models. They conclude that if the
assumption of unidimensionality does not hold then the results of other tests are
questionable (p. 487). There are two possible solutions. The first is to employ an index
of unidimensionality to assess when unidimensional models are appropriate. The second is
to develop multidimensional models which better reflect the underlying structure of the data
regardless of the dimensionality. Indices of unidimensionality are at best questionable,
with the possible exception of nonlinear factor analysis with respect to analysis of residuals
(for a review see Hattie, 1985). Thus, the remaining solution is to develop models that

relate the response of a subject to the number of dimensions involved in mediating the

response.

A number of multidimensional models have been recorded in the IRT literature
(Bock & Atkin, 1981; Docdy-Bogan & Yen, 1983; Hattie, 1981; Mulaik, 1972; Rasch,
1961; Reckase, 1985; Samejima, 1974; Sympson, 1978; Whitely, 1980). Several
categorizations for multidimensional models have been presented. One grouping
categorized the models as being conjunctive, disjunctive and compensatory (Coombs,
1964; Combs & Kao 1954, cited in Hattie, 1984, pp. 55-56). More recently ( Ackerman,
1989; Ansely & Forsyth, 1985; Way, Ansley, & Forsyth,1988; Sympson, 1978 ), the

terms compensatory and noncompensatory are presented as a classification system for the

varying multidimensional models. Sympson (1978) referred to these models as being fuily

compensatory and partially compensatory respectively. However, the terms compensatory
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and noncompensatory are widely used. Unfortunately the terms compensatory and
noncompensatory may be somewhat misleading as to the nature of the difference between
the two models. Compensatory models (Bock & Aitkin, 1981; Doody-Bogan & Yen,
1983; Hattie, 1981; Rasch, 1961) make the assumption that high ability on one dimension
can compensate for low ability on another dimension. The noncompensatory models
(Sympson, 1978; Whitely, 1980), assume that high ability on one dimension can only
partially compensate for low ability on another dimension. For a complete discussion of
the differences between these two classifications consult McKinley and Reckase (1982). A
rather straightforward explanation is presented by Sympson (1978). The current study will
focus on the compensatory (Doody-Bogan and Yen, 1983) and noncompensatory
(Sympson, 1978) models developed as extensions of the unidimensional three parameter

logistic model (Bimbaum, 1968).

Compensatory Item Response Models

The Compensatory Item Response (CIRM) model best demonstrates a factor
analytical structure. The number of factors are a function of the way in which items
differentially cluster. With respect to CIRM models, tests consisting of multiple
dimensions have 1tems clustering on each dimension. It is expected then that if the data fita

CIRM model then their factor structure which accurately reflect their dimensionality.

The three-parameter equation for Pyi (8ip) the probability of person i correctly

responding to item j, can be expressed as follows, where D = 1.7 (the scaling factor):

n -1
-D a:n(Bin-bi
Pij(e) = Cj +(1-cj) 1+e h§1 ;h( ih Jh)}
Where:

Pij = the probability of person i correctly answering item j
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g;p, = the ability parameter for person i for dimension h.

ajp = the multidimensional item discrimination parameter for item j for dimension
h.

bjp =the multidimensional item difficulty parameter for item j for dimension h.

cj = the guessing parameter for item j.

The defining character of the CIRM model is the denominator. The dcnominator is a
function of summing across the varying dimensions. Therefore, as mentionsd previously,
if an individual is deficient on one dimension then high ability on another dimension can

compensate for the deficiency.

Noncompen Item R nse Model

As with the CIRT model, the defining characteristic of the Noncompensatory item
Response (NIRT) model is the derominator of the function f(Pij). Here it can be seen that
the relationship between the ¢ifferent dimensions is a muitiplicative one. As previously
mentioned an NIRT model allows for pardal compensation by having high ability on one
dimension making up for relatively low ability on another dimension. However, if on any
one dimension, the ability needed to answer the question is zero, then no compensation is
possible. For example, if an individual had an infinite amount of ability on h-1 dimensions
and zero ability of the gth dimension then P(g) = 0.0 (where guessing is not a factor). This
contrasts sharply with the CIRT models where the relationship between the dimensions is a
summative one, thus, allowing zero ability on one dimension to be compensated by high
ability on other dimensions. The theoretical weakness of fully compensatory medels led

Sympson (1978) to argue against the practicality of their use with measures of abiltiy.

The three-parameter equation for P;i(g;) can be expressed as follows:
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d (A ey T
Piite) = ¢ +(1-c) TT 1+ Dain(Ein-bjn)

Where:
D = 1.7 the scaling factor

Pij = the probability of person i correctly answering item j

70}, indicates multiplication across the dimensions h=1,2,...,n
gih = the ability parameter for person i for dimension h.

ajp =the multidimensional item discrimination parameter for item j for dimension
h.
bjp, = the multidimensional item difficulty parameter for item j for dimension h.

¢j = the guessing parameter for item j.

In summary, multidimensional models in general fall into one of two classifications,
compensatory or noncompensatory. With respect to the compensatory models it is
reasonable to expect that if one had a large amount of ability on one dimension then this
would make up for a small amount of ability on another dimension. Suppose a paper and
pencil test consisting of simple addition and subtraction were given to an individual who
had demonstrated the ability to add and subtract, through concrete examples. Suppose
further that this individual could not read. Thus, one would expect that this individual
would score zero on the test or at least have a very low mark in the case where guessing is a
factor. The compensatory model does not adequately allow for such a condition.
However, the Sympson (1978) model does allow for these types of boundary conditions,
as well as allowing for compensation to occur when a large amount of ability exist on one
dimension and a small amount of ability exist on another dimension. It can be seen that the
categorization of these two models is somewhat unfortunate. More correctly they are both

compensatory models. The Doody-Bogan and Yen (1983) model, with its summative
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nature, is a more limited example and the Sympson (1978) model, with its multiplicative
nature, is a more encompassing example. On the basis of the above discussion Sympson's
(1978) model was selected to generate the multidimensional pseudo-responses.
Parameter Selection

Parameter selection operates at three levels. At the first level are the theoretical
consicerations, at the second level are the empirical considerations and at the third level are
the practical considerations. Theoreticailv, the i*>rn and trait parameters are bounded by
plus and minus infinity for the two parameter logistic model (Lord & Novick, 1968). For
the three parameter model the added item parameter ¢ is bounded by zero and one.

Empirically, the @ parameter is positive and ranges generally from 0.5 to 2.0 with a
mean value of approximately 1.0 and a standard deviation of approximately 0.4 (Lord,
1968,1980; Ree, 1979; Ross, 1966). The b parameter generally ranges from plus 2 to
minus 2.0 with a mean approximately 0.5 and a standard deviation of approximately 1.0
(Hattie, 1984; Lord, 1968). The ¢ pararieter ranges generally from plus 3.0 to minus 3.0
with a mean approximately 0.0 and a standard deviation of approximately 1.0 (Hulin,
Drasgow, and Parson, 1982; Lord, 1968). The ¢ parameter has been reported to range
from 0.04 to 0.20 with a mean 0.16 and standard deviation of 0.01 (Lord, 1968) and from
0.09 to 0.35 with a mean of 0.2 and standard deviation of 0.05 (Ree, 1979). In the current
study a pseudo three parameter model was used to both generate the data and to estimate the
parameters (¢ parameter held constant at 0.2). The ¢ parameter often does not converge
during estimation and this tends to destabalize the entire estimation procedure. Since the
usefulness of the ¢ parameter for the results of this study are negligible and the possibility
of negative impacts high, the ¢ parameter was held constant. Parameter selection becomes
a process of trial and error. For the current study item and trait parameters were generated

based on the procedures outlined in Ansley and Forsyth (1985).
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Data Generation

To produce the response matrix, a computer program (Non-Comp) written in Fortran
77 was developed. The program utilizes seven International Mathematical and Statistical
Libraries (IMSL) subroutines to generate random numbers and to control the relationships
between the dimensions in the model (International Mathematical and Statistical Libraries,
1987). The accuracy of the gene:.ited parameters was checked using statistical procedures
provided through the statistical program SPSS (Statistical Package for the Social Sciences,
1988). All data generation and statistical analysis were conducted using the AMDAHL
main frame computer at the University of Alberta.

Currently Non-Comp is capable of simulating response data for up to 100 items and
2000 subjects on 5 dimensions. The response matrix consist of 0's and 1's, where a 0"
indicates an incorrect response and a "1" indicates a correct response. Input to the program
varies depending on the particular design required. in general the first record contains the
title for the current simuladon. The second record contains the type of model
(compensatory or noncompensatory), the distribution for the difficulty parameter (uniform
or normal), the number of dimensions (1 to 5}, the number of items (1 to 100), the number
of subjects (1 to 2000) and the seed number for the random number generation. The third
through fifth records contain the variance-covariince matrices used to control the correlation
between the dimensions in the model. These variance-covariance matrices are related to the
ability, difficulty and discrimination parameters, respectively.

The ability parameters (A) are pseudo-random numbers generated from a multivariate
normal distribution.

NAL N@O,1)
Where:
N is the number of subjects (2000 subjects in the current study).

n is the number of dimensions (3 dimensions in the curent study).
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The N vectors of ability parameters, representing the n dimensions, are then
orthogonalized ((F,) and postmultiplied by an upper triangular factorization (Cholesky

(C,)) of the variance/covariance matrix (V).

nFp =N(0,1); Covariance =0

0¥n=1rCnnCh
= FnaCy

The distribution of parameters within each dimension were then rescaled 0 the desired
mean and standard deviation. For the current study the mean and standard deviation are
zero and one respectively.

The difficulty parameters may be generated from either a uniform or a multivariate
normal distribution. For the current study the difficulty parameters were generated from a
multiveriate normal distribution. The procedures for conirolling the correlations between
the dimensions were the same as those employed with the atiliiy narameters. Unlike the
ability parameters the distributional characteristics of the difficulty parameters were
differentially set across the three dimensions, For the first dimension the mean was set at -
0.33 and the standard deviation was set at 0.82, while for the second dimension the mean
was -1.03 and the standard deviation was 0.82 (Ansley & Forsyth, 1985). The rationale
for setting the second dimension such that its mean difficulty was lower than that for the
first dimension was an intuitive one. If one imagines a mathematics test cons:sting of word
problems then one might expect that the level of reading difficulty would be somewhat
lower than the level of mathematical difficulty. In the current study a third dimension was
adcCed and the same rationule was extended to this dimension. Consequently t'r; mean was
set to -1.55 and the standard deviation was 0.82.

The discrimination parameters were generated from a uniform distribution using the
same methods mendoned above. The means for the three dimensions were set at 1.23,
0.49 and 0.25 respectivel;. The standard deviations were set at 0.34,0.11 and 0.11. A

similar rationale as that mentioned for the difficulty parameters can be applied for selecting

|
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the values for the discrimination parameters. If the mathematics test had been designed to
distinguish between students primarily on their level of mathematics ability and not on their
reading ability, then it is reasonable to assume that items would be designed such that they
discriminate more highly on their primary dimensions.
Simulation Model
Once the item and trait parameters had been generated, the probability of person i
responding to item j correctly was calculated for each person and item in the simulation,

using the model developed by Sympson (1968).

n ) eyl d
Pije) = & +0-0) T [1+eD2jn(9ih-bjn)]

In the current study this required generating 2000 by 60 response probabilities (Pij) for

each of the 10 conditions. Subsequently, each probability was compared to a threshold
value ("ij ) generated from a uniform distribution U(0,1). If the probability of the response
was yreater than or equal to the generated threshold value the response (xij) was set to "1";
otherwise the response was set to "0", that is

xj5=1 if Pij 2 Tjj

Xjj = 0 if pjj <13,
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CHAPTER 4
Findings and Analysis
Two Dimensional Data Strycture
Data Confirmation

A consideration of prime importance was to ensure that the characteristics intended to
be incorporated into the generated data sets did indeed exist . To assess whether the data set
generated exhibited the intended chacteristics a number of statistics relevant to item analysis
were produced (see Table 1). The values shown are consistent with test statistics reported
in the literature (Ansley & Forsyth, 1985).

In Table 2 are the results of a principal axes factor anatysis with varimax and pror.iax
rotations. The initial estimates of the communalities were made equal to the squared
multiple correlations. The data were generated on the basis of a two dimensional model
with varying dcgrees of correlation between the dimensions. In all, five separate factor
analyses were performed. The second column gives the correlation between the factors for
a two factor solution. The general wend was that the correlation between the factors
increased as the correlation between the dimensions in the model increased. The third and
fourth columns give the percentage of common variance accounted for by the first and
second factors in both the varimax and promax rotations. As the correlation between the
factors increased the general trend was for more of the variance to be accounted for by the
first factor and less of the variance to be accounted for by the second factor. This trend
held for both forms of rotation. Despite this fact, the results tend to support the conclusiou
that a two dimensional structure did underlie the data as was intended. These results were
consistent with the findings of Aunsley and Forsythe (1985).

Table 3 provides further evidence for a two dimensional data structure. In columns 1
through 3 are the ratios of the first and second, second and third, and third and fourth

eigenvalues for the two dimensional data sets. The relative size of the first ratio to the
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Table 1

Descriptive Statistics for Two dimensional D 1ta

Cor My « Mean Range Range Mean Range Skew Kurt
81,89 p P Bis Score  Score

0.00 [07.96 {0.87 {0.50 |.24-72].24-55(30.14 }6-58 j0.23 |-0.62
0.30 {10.13 |0.80 0.51 |.27-73|.27-58|30.86 |7-57 [0.17 [-072
0.60 1176 [0.91 ]0.53 }.26-.73].31-.60]3148 |7-60 [0.16 |-.085
090 [12.61 (092 [0.53 ].30-74{.34-.6332.02 {660 {0.20 |-0.89
0.95 12,70 [0.92 [0.54 |.27-74].36-.63 |32.12 (660 |0.22 l—.0.95

Descriptive statistics, ratio of first and second eigenvalues (A,/A,), test reliability (@),

test difficulty (p), item-total biserial correlation (Bis), for two dimensional data with
number of subjects equal to 2000 and number of items equal to 60,

Table 2
Far: - Analysis of Two Dimensional Data

Cor:  Corr  Vaimax %fy  %T Promax %f, %T
g8 f.f  %f %y

0.00 30 |51 37 |83 54 35 89
0.3¢ [0.773 |58 38 96 62 35 97
0.60 [0.776 |57 35 92 62 30 92
0.90 [0.789 |38 36 9% 63 31 94
0.95 [0.780 |38 36 04 63 31 94

Pﬁncipal axes with varimax and promax rotation. Square multiple correlations
substituted in the main di. sonal. The correlation between ability dimension 1 and
2p {2y, @+). The correlation between the factors p(f; f5). The percentage of the

total variance accounted for by factor 1 %f and factor 2 %f, and the total variance
explained by £; and f, for both a varimax and promax rotation are presented.
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second and third would indicate a strong first factor. The same is true of the second ratio,
which would seem to indicate a moderate second factor. However, the third ratio is not
much different from a value of one, indicating roots of approximately the same size. It

should be noted that this trend held for the remaining eigenvalues.

A final method employed to verify the integrity of the data was that of
multidimensional scaling, in which an alternating least squares method (ALSCAL) is
employed (Takane, Forest, Young, & Leeuw, 1977). Table 4 provides the stress values
based on Kruskal's stress formula number 1 (Kruskal & Wish, 1978). Also provided are
the R-Squared values. Because of the large computational expense to run such a procedure
only the results for two dimensional data when the dimensions are orthogonal are
presented. The first row indicates the amount of stress to fit a five dimensional structure to
the data. Subsequent rows are the 4, 3, 2 and 1 dimensional solutions. As can be seen,
the maximum amount of stress is attained when the shift is made from a two dimensional to
a one dimensional solution. These results are in keeping with what would be expected for
data of this nature and is further confirming evidence that the data generation procedures are
successfully reproducing the type of structure intended. There is one word of caution,
however, some researchers, Hattie (1985) in particular, feel that linear factor analytical
techniques do not provide appropriate indices of dimensionality. Further, little is known
about the predictive power of multidimensional scaling as an index of dimensionality.

However, linear factor analysis has been widely used as guide to dimensionality and does

provide some useful insight into the nature of the data’s underlying structure.
Data Analysis

Estimation of the item and trait parameters was derived using the computer program
Logist (Wingersky, Barton, & Lord, 1982). For the current study a pseudo three

parameter model was selected ( guessing parameter set to 0.2) and the number of choices

per item was set io five. All other options were left at the default settings.
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Table 3
FEigenvalue Ratios for the Two Dimensional Data
P2y, 82) p(fy. fp) A1y Agflg; A3fhy
0.00 0.730 7.96 2.17 1.13
0.30 0.773 10.13 211 1.32
0.60 0.776 11.76 2.28 1.19
0.90 0.780 12.61 2.79 1.06
0.95 0.780 12.70 2.80 1.08

Ratio of first and seccnd eigenvalues 2.1 /A, second and third eigenvalues A,/A4, and
the third and fourth eigenvalues A3/A4 at each correlation between the dimensions p(g;,

¢2)-
Table 4
Multidimensional Scaling for Two Dimensional Data

Dim. Stress RSQ ds dRSQ
5 0.09 0.95
4 0.10 0.95 0.01 0.00
3 (.12 0.94 0.02 0.01
2 0.14 0.92 0.02 0.02
1 0.20 0.88 0.06 0.04

Stress and squared cormrelation (RSQ) in distances. RSQ values are the proportion of
variance of the scaled data (disparities) in the partition (row, matrix, or entire data) which
is accounted for by their corresponding distances. Stress values are Kruskal's stress

formula number 1. dS is the change in Stress and dRSQ is the change in RSQ.
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Once the estimated model parameters were ascertained, the analysis consisted of
correlating these estimates with the true parameter values and their means, which were
computed by summing across the dimensions and dividing by the numbxr of dimensions.
Further, average absolute differences (AAD) were computed to aid in ascertaining the

discrepancy between the estimated and true parameters. Thus, for the ability parameters the

AAD's were of the form;

AADR< 3 0in-6;
0n~= T
N
where :
B (h=1, 2) is the true ability parameter for person i for dimensions 1 and
2.
@;* is the estimated ability parameter for person i.
N 1is the number of examinees

where the summation is over the N individuals for a given dimension.

The form of the AAD for the item parameters is similar in nature

K ‘X'h-xﬁ-
In"y
AADy, = 3 =11
h ji=1 K

Where
Xjh (h= 1, 2) is the true difficulty or discrimination parameter for

dimensions 1 and 2.

xj* is the estimated difficulty or discrimination parameter for item j
K is the number of items

where the summation is over the K items for a given dimension.
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Results
Ability. The correlatons of g¢* with 81, 82, and the mean of g1 and ¢ (M;b ) at each

of the five values of p (81, go) are presented in Table 5. As p (81, ¢;) increased the
correlation of ¢* with 81, @9, and M, increased. "lowever, ¢* had a strong association
witk M at all levels of p (1, #). Of special interest was the relative change in the
correlation of g* with the remaining parameters as p (81, 8,) moves from 0.0 t0 0.95. For
[ (p*, ¢1) the range was 0.09 while for p (g%, M) the range was (.05, however, for p
(8%, 87) the range was 0.44. It should be noted that, although the relationship of ¢* with
the average of ¢ and ¢y was the overall the strongest, it was not substantially different

from that of p (8%, 81)-

In Table 5 are also given the average absolute differences between the estimated

ability parameters and the true ability parameters and their mean summed across the

dimensions. Again, there was a clearly a smaller discrepancy between ¢* and ¢4 than
there was between g* and g, however this difference, as before, becomes smaller as p

(81, Bp) increased. The smallest average absolute difference overall was associated with

M¢n

These results parallel those presented by Ansley and Forsyth (1985). Both studies
clearly indicate that the estimated ability parameter for low values of p (81, #,) are most
strongly associated with M, however, this association is not significantly different than
their association with g1. At high levels of p (81, 87), #* is equally associated with g1,
@7, and M.

Discrimination . The correlations of a* with aq, a5, and the mean of a; and ap (Ma)
and the average absolute differences at each of the five levels of p (91, ;) are presented in
Table 6. Columns 2 through 4 clearly indicate that the magnitude of p (8, ¢9) did not
substantially affect their relationships. However, a* associated more strongly with a, then
it did with a, for all levels of p (91, #5). Further, a* associated just as strongly with a; as
itdid with M,,.
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Co.relations and Absolute Mean Differences Between the Estimated and True Ability
Parameters for Two Dimensional Data

p(21.87) p(2*.8) P@*. 8)) pB* M,) AAD,  AAD,,  AADp,
0.00 __ Jo.74 0.38 0.79 0.56 0.93 0.48
0.30 0.78 0.55 0.82 0.51 0.80 0.44
0.60 081 0.64 0.84 0.44 0.63 0.38
0.90 0.83 0.81 0.84 0.39 0.45 0.36
0.95 0.83 0.82 0.84 0.37 0.41 0.36

Correlations of the estimated ability parameter (g*) with the true ability parameters (8,87 )
and their mean (M¢ ) for dimensions 1 and 2. The average absolute differences are AADM,
AAD¢2 ,and AADM¢

Table 6
Correlations and Absolute Mean Differences Between the Estimated and True
Discrimination Parameters for Two dimensional Data

p(81.987) p(a* a;) p@“ay) pa¥, M,) AAD, AAD» AADy .
0.00 0.93 -0.22 0.90 045 0.32 0.12
0.30 0.94 -0.22 0.91 0.37 0.40 0.10
0.60 0.94 023 0.91 0.28 0.47 0.13
0.90 0.95 .0.21 0.92 0.20 0.55 0.19
0.95 0.95 -0.20 0.93 0.18 0.57 0.20

Correlations of the estimated discrimination parameter (a*) with the true discrimination
parameters {a;,a5) and their mean (M,) for dimension 1 and 2. The average absolute
differences are AAD, ,, AADa2 ,and AADy 1,
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With respect to the AAD's it can be seen that tivere was an interaction between the

levels of the true discrimination parameters and the levels of p (81, 87). At low levels of p
(81, 95) the AADay was smaller than AADaL while at large values of p (81, #9) the
AADay was larger than AADay. This same relationship was seen between aj and M,
however, it was not as pronounced.

In summary, a* appeared to be most highly related to M,. This is in keeping with
results reported elsewhere in the literature (Ansley & Forsyth, 1985; Way, Ansley, &
Forsyth, 1988; but see Ackerman, 1989). However, these resuits may in part be an artifact
of the way in which the parameters were generated. Recall that the standard deviation of
ay, was set at (.34 while the standard deviation for a; was set at 0.11. Therefore, one
would expect this larger variance to contribute in part to the larger correlation. One striking
difference between the results in the current study and those found in the Ansley and
Forsyth (1985) study is the magnitude of the correlations between the estimated parameters

and the true parameters. Ansley and Forsyth (1985) reported correlations ranging from
0.47 to0 0.64 for p (a*, a7) and 0.02 to -0.05 for p (a*, a5) while p (a*, M) ranged from

0.50 t0 0.65. In the current study p (a*, aj, M,) were greater than 0.90 for all levels of
p(d1, ¥7), and p (a¥, a,) ranged from -0.22 to - 0.20 as p (p1, ¢) increased. It is not
clear at this time why that was the case.

Difficulty. The correlations of b* with by, by, and the mean of by and by (My, ), and
the average absolute differences at each of the five levels of p (81, ¢7) are presented in
Table 7. With respect to the correlations, it can be clearly seen that as p (81, @) increased
p (b*, by) increased and p (b*, by ) decreased, indicating a much stronger relationship
between estimated difficulty parameters and the first dimension than between estimated

difficulties and the second dimension. Further, as was the case with the ability parameters

and the discrimination parameters the strongest relationship was with the average of the two

dimensions, however, p (b*, My) is not substantially greater than p (b*, by) for all levels

of p {81, 82)-
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Table 7 also indicates that all AAD's decreased as p (g, #5) increased. Further, the
smallest AAD was between b* and by, indicating that b* was a better estimate of by. An
interesting observation was that b* consistently over estimated by, but b* approached by

as p (g1, #7) increased.

Three Dimensional Data Structure

Data Confirmation

As with the two dimensional data structure, it was once again necessary to ensure that
the intended characteristics had been incorporated into the generated data sets. The same
procedures used to generate the two dimensional data were repeated in generating the three
dimensional data. To assess the integrity of the data, in the three dimensional case, a
number of statistics relevant to classical item analysis were produced (see Table 8). Overall
it was apparent that the test difficulty had increased (0.42 <= Mean(p) <= 0.45) compared
with those results reported in Table 1 (0.50 <= Mean(p) <= 0.54). Further evidence of an
increased test difficulty was found in the reduction of the mean raw score for the three
dimensional data structure (25.17 <= Mean(X) <= 27.22), relative 1o the mean of the raw
score for the two dimensional data structure (30.14 <= Mean(x) <= 32.12). Of special
interest was the overall increase in the ratio of Klﬂ\fz with an increase in the dimensionality
from 2 dimensions (7.96 <= A/, <= 12.70) to three dimensions (9.42 <= A /A, <=
16.39).

In Table 9 are the results of a principal axes factor analysis with a varimax and a
promax rotation. The initial estimates of the communalities were made equal to the squared
multiple correlations. The data were generated on the basis of a three dimensional model
with varying degrees of correlation between the dimensions. Five separate factor analyses

were employed. The second through fourth columns give the correlations between the

O R T P T T A o (3 1 s ey et D e e o s PR

, factors for a three factor solution. The general trend was that the correlation between the
factors increased as the the correlation between the dimension in the model increased. The

fifth through twelfth columns give the percentage of common variance accounted for in the
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Table 7
Correlations and Absolute Mean Differences Between the Estimated and True Difficulty
Parameters for Two Dimensional Data

45

p(81.9p) pd*b) pd*by) p(®* My) AADy,  AADyy  AAD,,
0.00 0.900 0.700 0.96 0.80 1,50 1.15
0.30 0.910 0.690 0.96 0.69 1.39 1.04
0.60 0.917 0.680 0.96 0.63 1.33 0.98
0.90 0.921 0.668 0.96 0.56 1.26 0.91
0.95 0.922 0.664 0.96 0.549 1.25 0.89

Correlations of the estimated difficulty parameter (b*) with the true difficulty parameters

(by, by)and their mean (My) for dimensions 1 and 2. The average absolute differences are

AAD; |, AADy, , and AAD_y

Table 8

Descriptive Statistics for Three Dimensional Data
Corr Range  Mean Range
219283 ) 1™ o Meanp Rangep Bis Score Score Skew Kurt
0.00 9.42 0.77 0.42 24-64 |.18-52 | 25.17 649 0.123 -0.446
0.30 11.31 0.81 0.43 24-64 | .21-49 | 2573 4-49 0.197 -0.550
0.60 13.35 0.84 0.44 25-65 {.22-.53 | 2643 4-52 0.240 -0.615
0.50 15.93 0.87 0.45 25-.66 |.24-54 §27.07 4-55 0.249 -0.698
0.95 16.39 0.87 0.45 25-67 |.24-55 [21.22 4.55 0.222 -0.745

Descriptive statistics, ratio of first and seco.d eigenvalues (2,1/)»2), test reliability (o), test difficulty (p),
item-total biserial correlation (Bis), for three dimensional data with number of subjects equal to 2000 and

number of items equal to 60.
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three factor solution with respect to both the varimax and promax rotations. Unlike the
results found for the two dimensional case (see Table 2), where the largest portion of the
variance was contributed by the first factor, it was apparent that each of the three factors
extracted from the three dimension data set, were substantially contributing to the overall
variance observed in the data. However, the trend was that the first factor contributed the
largest portion while the second factor contn‘ﬁuted the next largest portion for all values of
p(¢y, 84, 83). Further, it is evident that, as p(¢, 8,, 83) increased the percent of the total
variance accounted for by the three factor solution increased accordingly. This suggests
that the data space was becoming more unidimensional in its nature as the relationship
between the dimensions increased.

Table 10 provides further evidence about dimensionality of the data structure. In
columns 4 through 6 are the ratios of the first and second, second and third, and third and
fourth eigenvalues for the three dimensional data sets. The relative size of the first ratio to
the second and third would indicate a strong first factor. However, subsequent ratios
appear to indicate that no further factors can be inferred from the output. It appears that the
effect of adding a third dimension to the data structure is that of causing the data to take on
a structure which is factor analytically unidimensional.

A final method employed to verify the integrity of the data is that of multidimensional
scaling. Table 11 provides the stress values based on Kruskal's stress formula number 1.
Also provided are the R-Squared values. Once again, because of the large expense to run
such a procedure, only the results for three dimensional data when the dimensions are
orthogonal are presented. The first row indicates the amount of stress to fit a five
dimensional structure to the data. Subsequent rows are the 4, 3, 2 and 1 dimensional
solutions. Unlike the two dimensional data set (see Table 4), no clear indication as to the
dimensionality of the data set was provided by the multidimensional scaling technique. It
would appear, at least in this instance, that mutidimensional scaling is of limited value as an

index of dimensionality.
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Table 9

Factor Analysis of Three Dimensional Data
Corr Corr Varimax Promax

¢1,¢2,¢3 fl‘ f2 f 1 f3 f2, f3 %fl %fz %f3 %T %f] %f2 %f3 %T

0.00 0.693 0.664 20.623 5 30 29 04 37 29 29 95

0.30 0.720 [0.616 p.603 PB6 35 26 07 39 36 22 97

0.60 0.731 0.702 [.653 KO 32 27 99 43 31 24 98

0.90 0.774 10.776 P.768 P37 32 29 98 38 31 P9 98

0.95 0.780 [0.750 [.770 6 35 9 100 7 35 27

Principal axes with varimax and promax rotation, and square multiple correlations substituted in the main
diagonal. The correlation between dimension 1, 2, and 3 p (¢, 8,, #3). The correlation between the

factors p(fy, f5, f3). The percentage of the total variance accounted for by factor 1 (%f;) and factor 2 (%f, )
and factor 3 (%f3 ) and the total variance explained (%T) by fy, fy and f3 for both a varimax and promax

rotation.
Table 10
Eigenvalue Ratios for the Three Dimensional Data
p(81.87.89) pE,f) o) plfh.fa)  Ai/A, Ar/Ag Asfhy
0.00 0.693 0.664 0.623 9.42 1.09 1.05
0.30 0.720 0.616 0.603 11.31 1.08 1.13
0.60 0.731 0.702 0.653 13.35 1.23 1.08
0.90 0.774 0.776 0.768 15.93 1.16 1.10
0.95 0.780 0.750 0.770 16.39 1.18 110
Ratio of first and second eigenvalues A, /A5, second and third eigenvalues Ay/A3,
and the third and fourth eigenvalues 13/1\4 at each correlation beiween the
dimensions p(g,, 89, ¢3).
Table 11
Multidimensional Scaling for Three Dimensional Data

Dim. Stress RSOQ. dS dRSQ

LS 0.13 0.88

d 0.15 0.86 0.02 0.02

3 0.18 0.83 0.03 0.03

D 0.22 0.80 0.04 0.03

1 0.30 0.75 0.08 0.05

Stress and squared correlation (RSQ) in distances. RSQ values are the proportion of
variance of the scaled data (disparities) in the partition (row, matrix, or entire data) which is
accounted for by their corresponding distances. Stress values are Kruskal's stress formula
number 1. dS change in Stress dRSQ change in RSQ.
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Data Analysi

As with the analysis of the two dimensional data structure, estimation of the item and
trait parameters were derived using the computer program Logist (Wingersky, Barton, &
Lord, 1982). Once again a pseuco three parameter model was selected ( guessing
parameter set to 0.2) and the number of choices per item was set to five. All other options
were left at the default settings.

Once the estimated model parameters were ascertained, analysis consisted of
correlating these estimates with the true parameter values and their means, which were
computed by summing across the dimensions and dividing by the number of dimensions.
Further, average absolute differences (AAD) were computed to aid in ascertaining the
relationship between the estimated and true parameers. Thus, for the ability parameters the
AAD's were of the form:

b ot
18i1-9i

AADg, =
8h i N

Mz

where :
i, (h =1, 2 and 3) is the true ability parameter for person i for dimensions
1to 3.
g* is the estimated ability parameter for person i.
N is the number of examinees
where the summation is over the N people for a given dimension.

The form of the AAD for the item parameters is similar in nature:

K lth-x‘:
AADy, = 3 ——1
o K
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Where
Xjh (h= 1, 2 and 3) is the true difficulty or discrimination parameter for
dimensions 1 to 3.
xj* is the estimated difficulty or discrimination parameter for item j
K is the number of items
where the summation is over the K items for a given dimension.
Results

Ability. The comrelations of ¢* with g1, g5, 83, and the mean of g1, 89, and g3
(M) at each of the five levels of p (#1, @7, #3) are presented in Table 12. As p(p1.67,93)
increased the correlation of ¢* with ¢, 85, and M¢ increased. Unlike the two dimensional
case, wiiere g* had its strongest association with M¢ at all levels of p (¢1, @), there
appeared 1o be no real difference in the relationship between g* and ¢4, or g* and M;. Of
special interest was the relative change in the correlation of g* with the remaining
parameters as p (91, 89, 93) moved from 0.0 to 0.95. For p (g%, ¢1) the range was 0.09
while for p (g%, M¢) the range was 0.13; however, for p (*, 85) this range was 0.46 and
for p (g*, ¢3) the range was 0.61.

In Table 12 are also given the average absolute differences between the estimated

ability parameters and the true ability parameters and their mean summed across the

dimensions. Again there was clearly a stronger relationship between g* and g, than was
found between g* and ¢ or g* and ®3, however this difference, as before, became small
as p (81, 97, ¢3) increased. The smallest average absolute difference overall was

associated with M¢.

These results parallel those presented by Ansley and Forsyth (1985) and those

presented for the two dimensional data in the current study. Both studies clearly indicate

that the estimated ability parameter for low values of p (41, 83, #3) are most strongly

associated with M, however, this association is not substantially different from their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 12

50

Correlations and Absolute Mean Difference: setween the Estimated and True Ability
Parameters for Three Dimensional Data

P81, 82 83) p (&% 01) pE% ) p(B*.83) p(o* My) AAD, AAD,; AAD,3 AAD;,
0.00 0.68 0.29 0.14 0.64 075 J1.09 J122 J0.75
0.30 0.68 0.46 0.37 0.69 071 096 [104 ]0.67
0.60 0.73 0.61 0.55 0.74 067 1082 |0.89 063
0.0 0.76 0.73 0.72 0.76 061 1067 069 ]0.60
0.95 0.77 0.75 0.75 0.77 059 J0.62 [063 [0.58

Correlations of the estimated ability parameter (g*) with the true ability parameters (8, 85, ¢3)
and their mean (Mﬁ) for dimensions 1,2 and 3 . The average absolute differences are AAD,,

Table 13

Correlations and Absolute Mean Differences Between the Estimated and True
Discrimination Parameters for Three Dimensional Data

p (#1:83.83) p(a*a;) pa*ay pla*az) p@*M,) AAD,, AAD, AAD AADHE
(.00 0.09 -0.06 0.32 0.19 062 j022 1037 }0.18
0.30 0.11 -u.07 0.25 0.19 0.55 1028 1043 10.22
0.60 0.08 -0.06 0.32 0.18 052 1031 1050 j0.23
0.90 0.03 -0.06 0.34 0.14 049 1036 10.56 ]0.27
0.95 0.03 -0.06 0.32 0.13 049 10.37 1057 ]0.28

Correlations of the estimated discrimination parameter (a*) with the true discrimination
parameters (a), 25, a3) and their mean (M) for dimension 1, 2, and 3. The average absolute

differences are AALy;, AAD 9, AAD,3, and AAD,
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association with g1. At high levels of p (¢1, 89, 83), #* is equally associated with @1,
89, 83 and Mg.

Discrimination. The correlations of a* with a{, ap, a3 and the mean of a, ag, and ag
(M, ) and the average absolute differences at each of the five levels of p (8, 85, 83) are
presented in Table 13. Columns 2 through 5 clearly indicate that the magnitude of p (g1,
@9, ¢3) did not significantly affect the relationship of a* with ay, a3, a3 and M,,.
However, a* associated more strongly with a3, than it did with aq, a; or M, for all levels
of p (81, 8y, #3). This high association between the estimated discrimination parameter
and the true discrimination parameter of the third dimension contrasts sharply with the
results reported for the two dimensional data structure, where a* was most clearly related to

the first dimension (see Table 6).

With respect to the AAD's, it can be seen that as p {81, ¢, 83) increased AADay
decreased, while all other AAD's increased in magnitude. However, overall AADy4, was
the smallest for all AAD values of p (81, 95, 83)-

In summary, a* appeared to be most highly related to a; however, the smallest AAD

was associated with M. These results prove to be inconclusive and do not lend themselves
to any straightforward interpretation of a*'s relationshig to the true parameters. One
possible explanation may lie in the nature of the compensatory model. Recall that its
distinguishing feature is the multiplicative relationship which appears in the denominator of
the equation that describes the model. Recall also that in the initial generation of the
discrimination parameters, the mean and standard deviation of the discrimination parameter
for the third dimension was set to be somewhat lower than for the remaining dimensions.
Therefore, because of the multiplicative nature of the model, the smallest value in fact

becomes an upper bound on the overall probability. Thus, it may be that the higher

correlation between a* and a3 was a result of the nature of the model.
Difficulty. The correlations of b* with by, b,, b3, and with the mean of by, by, and

b3, (M) and the average absolute differences at each of the five levels of
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Table 14
Correlations and Absolute Mean Differences Between the Estimated and True Difficulty
Parameters for Three Dimensional Data

P (@1.8083) POy pB*by) pd*by) p(b* M) AADy AADy, AADy; AADyq

0.00 0.76 0.67 0.62 0.89 147 }2.17 ]3.14 1226
0.30 0.71 0.67 0.66 0.89 130 1200 1297 1209
0.60 0.76 0.66 0.63 0.89 1.16 1186 283 1195
.90 0.77 0.66 0.62 0.89 105 J1.75 1272 1184
0.95 0.78 0.66 0.61 0.89 103 1173 1270 ]1.82

Correlations of the estimated discrimination parameter (b*) with the true discrimination
parameters (by, b, b3} and their mean (My,) for dimension 1, 2, and 3. The average absolute

differences are AADbl, AADbZ, AADb3, and AADMb
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p (81, 82,93) are presented in Table 14. With respect to the correlations it can be clearly
seen that as p (91, 85, #3) increased there were no appreciable changes in the relationship
of the estimated difficulty parameter (b*) and the true parameters (bg, by, bs). However, it
is clear that the strongest relationship was between b* and My, for all levels of p (81, #7,
¢3)

Table 14 also indicates that all AAD's decreasd as p (84, 99, 83) increased.
Further, the smallest AAD was between b* and by, indicating that b* is a better estimate of
b1. An interesting observation was that b* consistently overestimated by, but b*

approached by as p (81, #9, 83) increased.
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CHAPTER 5
Summary, Conclusions, and Recommendations

Within this study the robustness of UIRT models to the violation of the assumption
of unidimensionality was tested. It was clear that when a pseudo two parameter logistic
model was tested against a two and three dimensional data set, errors of estimation
increased as a function of increased disparity between the dimensions. In other words as
the correlation between the dimensions decreased the precision of the estimation procedure
was reduced. The results of the current study provide support for outcomes presented by
Ansley and Forsyth (1985).

In the two dimensional case, ¢* values can best be considered as an average of the

true ability values g, and g, and the strength of this relationship increased as p (9 , 8,)
increased. These results were also true for the three dimensional data structure. The same
relationship held for the discrimination parameter when the underlying structure was two
dimensional. However, in the three dimensional case the relationship between the
estimated discrimination parameters and the true discrimination parameters was found to be
far weaker. The estimated discrimination parameters were more highly correlated with the
true parameter from the third dimension while the smallest AAD was associated with the

average true discrimination parameters. With two dimensional data the difficulty parameter

b* was found to be best represented as an overestimation of the true b{; however, it did
approach b, as p (8, , 8,) increased. The same results were found to hold for estimates
derived from data generated to have a three dimensional structure. In general it was
observed that interpretation of the relationship between estimated parameter and true
parameter was far less conclusive for three dimensional data than it was for two
dimensional data. The correlations between estimated and true parameters in the three
dimensional case were found to be smaller than the correlations between the estimated and

true parameters in the two dimensional case. Conversely, the AAD's, on average, were
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larger in the dat2 generated to be three dimensional than the AAD's in the data generated to
be two dimensional.

UIRT estimation procedures appeared to be robust to violation of the unidimensional
assumption when the dimensions were highly related and the dimensionality of the
underlying structure was small; however, interpretation of the estimated item and trait
parameters is still tenuous. Conversely, as the relationship between the dimensions became
more divergent, the robustness of the UIRT model decreased significantly. Further, as the
number of dimensions increased interpretability of the estimated unidimensional parameters
became untenable.

As in any study, there are a number of limitations, some evident at onset and others
are discovered during the process of conducting the research. One such limitation is related
to the model employed to generate the multidimensional data sets. The utilization of a
noncompensatory multidimensional extension of a unidimensional pseudo two parameter
model, to represent response data, has little theoretical support to justify its use. However,
given the infancy of such simulations, it must serve as one of the few adequate
representation which are currently available. A second limitation, this one discovered in the
process, is related to the distribution of the item parameters. The distribution of the item
and trait parameters were adjusted to give item statistics similar to that of actual data but
perhaps different parameters may have led to other conclusions.

It would be interesting to see if these results would hold for higher dimensions and if
they could be replicated if a compensatory model were used for data generation. What is
needed are indices which allow for a clearer interpretation of the dimensionality of the data
set. Recommendations have been cited which suggest that a form of nonlinear factor
analysis could be used, in which one utilizes the absolute sum of squares of residuals and
the number of residuals greater than some criterion value set by the researcher. It was
hoped in the current study that multidimensional scaling techniques would have been able

to recover the underlying structure of the data. However, the results show, at least for the
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data generation employed in this study, that for data structures more complex than two
dimensions, multidimensional scaling techniques mx. ; have little real utility.

To the observer, such an endeavor as the current simulation has an appearance of
being a smooth process. One simply looks up in a table of standards the assumptions one
is to make regarding the type of model that is to be employed, the form of the distribution
for the parameters, and the type of randora number generators that will be run. After these
are in place one then selects the computer program which will best suit the needs of the
project and then generates the response matrix which will allow the researcher to conduct
the study. However, no such standards exits, and moreover, most computer programs to
generate data are written by the researcher or are at least comrnissioned by the researcher to
suit the purposes of the study. The difficulty of such a situation is that the added variability
not only makes conducting such research complex but also makes comparisons of the
results practically impossible. In order to reduce the amount of variability due to factors
outside the variables of interest, some form of standards for the generation of sirulation

data shovld be considered.
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