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Abstract

Ventricular fibrillation (VF) is an extremely rapid, highly irregular heart arrhythmia originating 

in the ventricles. When the VF occurs, the heart loses its capability of pumping blood, and the 

patients die within minutes unless the VF is immediately stopped. The mechanisms of the VF 

are still not completely understood. Several hypotheses suggest that it is important to extract the 

pure expanding component and the pure rotational component from the cardiac electrical 

patterns.

In this thesis, we first implement the 2-D discrete Hodge-Helmholtz field decomposition 

(DHHFD) based on regular triangular grids such that it can be directly used for video analysis. 

We then analyze the optical flow of the cardiac electrical patterns using the 2-D DHHFD. The 

pure expanding and the pure rotational motion components of the cardiac electrical signals are 

extracted. Analyses of the decomposed motion components have shown that the VF might be 

caused by the strong rotational components of the dynamical cardiac electrical patterns. 

Techniques have also been developed to detect the dominant critical points such as sources, 

sinks, and rotational centers in the cardiac electrical patterns. The critical points provide 

important clues for describing and understanding the abnormal propagation of the cardiac 

electrical signals. The proposed framework also provides a general tool for analysis of the fluid 

dynamics.
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Chapter 1

Introduction

The ventricular fibrillation (VF) is an extremely rapid, highly irregular heart arrhythmia 

originating in the ventricles, the bottom chambers of the heart. For a healthy human heart, the 

heart rate at rest is generally in the range 60 to 100 beats per minute (bpm) [1]. However, in 

ventricular fibrillation, the heart rate can exceed 350 bpm [1], Such a high heart rate is 

extremely life-threatening. It has been reported that the VF is the main cause of sudden cardiac 

death in the industrialized world [2, 3]. When it occurs, the heart quivers dramatically and loses 

its capability of pumping blood, and the patients die within minutes due to hypoxia unless the 

VF is immediately stopped.

1.1 Existing therapies of ventricular fibrillation

In the past several decades, the only effective therapy for the VF has been the electrical 

defibrillation [4]. There are two types of electrical defibrillators: the external defibrillator and 

implantable defibrillator. The external defibrillator is a device that applies strong electrical 

shocks onto the patient’s chest to restore the normal cardiac rhythm. In practice, the energy of 

the shock usually ranges from 200 to 400 Joules. A lower shock threshold is desired. However, a 

low-energy shock often fails to halt the VF [5, 6]. Another limitation of this therapy is that the 

external defibrillator is too big to be carried by the patient. It has been studied that at most 15% 

of the patients suffering from the VF can reach hospital in time [7].

The implantable cardiac defibrillator (ICD), on the other hand, is a small electronic device 

installed inside the patient’s chest to prevent sudden cardiac death from the VF. Here, one or 

more leads are inserted in the heart. The device is in continuous monitoring mode. If the ICD 

detects a fast arrhythmia, it delivers an electrical shock (or multiple shocks with low magnitude) 

to the heart to terminate the abnormal rhythm and return the heart rhythm to normality. The

1
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disadvantage of ICD is that it needs open surgery for implantation. Some patients are not 

comfortable with ICDs. When the battery power is depleted, the implanted ICD needs to be 

changed.

Recent studies have shown that the administration of certain drugs, such as Ca2+-channel 

blockers, can also reduce the damage caused by the VF, and even terminate the VF [4, 8-10], 

Unfortunately, in many cases, these drugs have severe side effects. Moreover, it is a difficult to 

determine an appropriate dose for a particular patient. Although this drug-based therapy is still 

in its infancy, it looks promising.

The mechanisms of VF are not completely understood, and hence extensive future research 

is needed to develop more effective and safer therapy approaches.

1.2 The cardiac optical mapping method

To understand the mechanisms of VF, the electrical activity o f the heart must be critically 

studied. In modem cardiology research, the cardiac optical mapping method is often used to 

directly observe the cardiac electrical activity with high spatio-temporal resolution.

The optical mapping method uses a voltage-sensitive dye (such as di-4-ANEPPS, RH-421, 

RH-237, or WW781), which is injected to the studied heart, such that the electrical activity of 

the heart can be quickly and linearly converted into optical signals. A  simplified schematic of 

the optical mapping system is illustrated in Fig. 1-1. The system consists o f five parts: the heart 

under study, light sources, a long-wavelength passing filter, a high-speed video camera, and a 

computer sub-system. The light sources provide illumination with a special wavelength (e.g., 

500±40nm). The long-wavelength passing filter is used to filter out the reflected light 

components and the retention of the fluorescent components [16, 17]. The high-speed video 

camera captures the fluorescent signals caused by the cardiac electrical signals with high 

spatio-temporal resolution. The computer sub-system installed an A/D converter and a frame 

grabber board is used to digitize and store the sampled optical signals. A cardiac optical 

mapping system also includes some other auxiliary instruments, such as a xenon arc light source,

2
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a UV blocking filter, an IR blocking filter, the blood-perfusion equipment, and an 

ECG-recording apparatus [16, 18].

Light source #1 

500±40nm

Light source #2 

500±40nm

Long-wavelength passing 

filter, wavelength >590nm
\

Computer sub-system containing an 

A/D converter and a Same grabber 

board

I
S

High-speed camera, up 

to 2000 frames per second

Figure 1-1. The schematic diagram of a typical cardiac optical mapping system.

The optical mapping method has several advantages. First, it permits simultaneous 

recording of electrical signals of thousands of myocardial sites. An image with a spatial 

resolution of 80 X 80 pixels is analogous to 6400 electrodes sensing the heart electrical signals. 

Secondly, the temporal resolution of the cardiac optical mapping method can reach more than 

2000 frames per second. Third, the spatial resolution and the temporal resolution can be altered 

easily. Finally, this method is free from the random interference caused by the electrodes used in 

the multi-electrode mapping method. The major drawbacks of this approach mainly result from 

the complexity of the experimental preparations and the need for open surgery.

Using the cardiac optical mapping method, a large number of videos of cardiac electrical 

events have been acquired. Fig. 1-2 presents two typical cardiac electrical patterns. The bright 

and the dark pixels represent the depolarized cells and the resting cells, respectively. It can be 

easily observed that the cardiac electrical patterns are extremely noisy.

3
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Figure 1-2. Two typical cardiac electrical patterns.

1.3 Problem definition and the research contributions

Cardiologists generally analyze the cardiac electrical patterns using their eyes and make 

qualitative assessment. In recent years, the quantitative analysis of the acquired data has 

attracted great interests from the cardiologists. Witkowski et al. [17] showed that high spatial 

correlation exists in sequential images acquired from a ventricle-fibrillated pig heart. Morley et 

al. [38] used the local velocity vectors calculated from the image sequences to illustrate the 

conduction properties of the mouse heart tissue. However, they did not show the method for 

obtaining the local velocity field. Zaitsev et al. [36] attempted to analyze the characteristics of 

the sheep heart data in frequency domain. They observed that the frequencies of the electrical 

activity in sheep hearts during VF exhibit deterministic behavior. Gray et al. [39] also found that 

during fibrillation, the cardiac transmembrane signals at different sites exhibit a strong periodic 

component centered at 8 Hz.

It can be easily observed that the cardiac electrical patterns during VF are morphologically 

similar to turbulent hydro-dynamical systems. Hence the techniques for analyzing the “turbulent 

hydro-dynamical systems” can also be applied to analyze the cardiac dynamics. Bray et al. [40] 

and Valderrabano et al. [41] applied the phase portrait method, a classical tool in fluid dynamics, 

to analyze the phase singularity dynamics in the cardiac tissues.

It has been hypothesized that the VF might be introduced from a fast expanding electrical 

wave, or from multiple spirals (i.e. rotors), or from multiple random wavelets in the heart, or

4
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from all of the above. It is necessary to extract the pure expanding component and the pure 

rotational component from the cardiac electrical patterns such that their respective contribution 

to the VF can be clearly visualized and analyzed.

In this thesis, we present a new mathematical tool, the discrete Hodge-Helmholtz field 

decomposition (DHHFD) [48-50], to address this problem. The major contributions of this 

thesis are twofold:

1) A general framework for fluid motion analysis

This framework is composed of three stages: motion estimation, motion decomposition, 

and motion analysis. First, the velocity fields are calculated from an image sequence using a 

motion estimation algorithm. A pure expanding component and a pure rotational component are 

then extracted from an estimated velocity field using a motion decomposition technique. In the 

stage of motion analysis, the critical points in the fluids, such as the sources/sinks, rotational 

centers, and other high-order singularities, are detected. If necessary, other parameters can also 

be extracted from the fluid image sequence to describe the fluid motion. This framework 

provides a powerful tool for fluid video analysis.

2) A new way for quantitative analysis of the cardiac electrical patterns

For a long time, cardiologists have analyzed the acquired cardiac electrical data with their 

eyes, and hence, the analysis has been primarily qualitative in nature. Recently, some works 

have been done to perform quantitative analysis, however, the efficiency o f the analysis is not 

very high. The work reported in this thesis provides an effective tool to address this problem. 

The detected sources/sinks may indicate the pathological changes in the heart tissue, and the 

specified rotational centers can be used to directly capture the rotors (or spirals) in the heart. 

The trajectories of these critical points may present important information about the cardiac 

dynamics. Moreover, this research can lead to a novel mathematical model of the cardiac 

electrical activity, such that the fatal VF can be effectively controlled.

5
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1.4 Organization of the thesis

The remainder of this thesis is organized as follows. Selected background materials, such 

as cardiac electro-physiology, image smoothing algorithms, motion estimation algorithms, 

motion decomposition methods, and a few phase portrait methods for critical point detection are 

reviewed in Chapter 2. A simplified 2-D DHHFD algorithm based on the regular triangular 

grids is proposed in Chapter 3. The computational complexity of the proposed 2-D DHHFD 

algorithm is analyzed and compared to that of the implementation based on the irregular 

triangular grids. Chapter 4 focuses on the cardiac video analysis, including image smoothing 

using the anisotropic diffusion equation, motion estimation using the optical flow constraint 

equation (OFCE), motion decomposition based on the 2-D DHHFD, and detection of critical 

points. The conclusions and future research directions are presented in Chapter 5.

6
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Chapter 2

Review of Background Work

In this chapter, we present a brief review of background work. We first review the fundamentals 

of the cardiac electrophysiology in Section 2 .1. We then discuss the mechanisms of the VF in 

Section 2.2. The pathological meanings of some particular critical points in the heart tissues are 

presented in Section 2.3. The image smoothing algorithms and a few selected motion estimation 

algorithms are reviewed in Section 2.4 and Section 2.5, respectively. Three existing motion field 

decomposition algorithms are reviewed in Section 2.6. In Section 2.7, three traditional 

approaches for detecting the critical points in a vector field are shortly introduced.

2.1 Fundamentals of cardiac electrophysiology

This section mainly presents three basic concepts of cardiac electro-physiology [46]: the 

cardiac transmembrane action potential, the pathway of the electrical impulses in a healthy heart, 

and the abnormal excitation in a fibrillated heart. In addition, the two traditional research 

methods, the ECG recording and the multi-electrode mapping method, will be briefly presented.

2.1.1 The cardiac transmembrane action potential

In a cardiac cycle, the cardiac action potential (CAP), or the electrical activity of a cardiac 

cell, is generally divided into five phases, named as phase 0, 1, 2, 3, and 4, respectively. They 

correspond to different status of the cardiac cells (as shown in Fig. 2-1).

Because of the selective permeability of the cardiac cell membrane to certain ions, namely, 

sodium (Na+), potassium (K+), and calcium (Ca2+), there exist ion concentration gradients 

between the extracellular and intracellular electrolytes. The ion concentration gradients result in 

the negative resting transmembrane potential (about -90  mV) when a cardiac cell is not excited 

(i.e., at rest). This resting status of the cardiac cell corresponds to phase 4 (see Fig. 2-1).

7
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45mV

22.5mV

OmV

-22.5m

-45mV

-67.5m

-90mV

0 100 200 300 400 msec

Figure 2-1. Various phases of the cardiac action potential. The numbers in bold indicate the 

phases of the CAP, i.e., 0: the fast depolarization, 1: the early repolarization, 2: the plateau, 3: 

the phase-3 repolarization, 4: the resting status.

A cardiac cell has different ion channels that automatically adjust the cell membrane 

permeability to specific ions. Excitation of a myocyte usually first opens the Na+ channel, 

allowing an inrush of Na+ ions, causing a rapid increase in the transmembrane potential. Once 

the transmembrane potential reaches a critical threshold (about -6 0  mV), the Na+ channel opens 

wider. As a result, the membrane permeability to the Na+ ions increases dramatically, and the 

transmembrane potential rapidly becomes positive. This procedure is referred to as fast 

depolarization, depicted as the phase 0 in Fig. 2-1.

As the Na+ channel begins to close, Ca2+ channel opens (i.e. the membrane permeability to 

Ca2+ ions increases), causing an inrush of Ca2+ ions. After a very short time, K+ channel also 

opens (i.e. the membrane permeability to K+ ions increases), and K+ ions rush out of the cell. 

Due to the higher permeability of K+ channel, the outward flow of K+ ions is more than the 

inward flow of positive ions, and hence the membrane potential decreases and becomes 

negative with small absolute value again. This repolarization procedure is indicated as the phase 

1 in Fig. 2-1. The CAP then reaches a steady status around zero mV. This is known as plateau of 

the CAP, which makes up the phase 2 in Fig. 2-1. In this phase, the inward flow of Ca2+ ions is
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roughly equal to the outward flow of K+ ions. After a relatively long period, the permeability to 

Ca2+ ions declines, and the Ca2+ channel begins to close, while the K+ channel remains open and 

the permeability to K+ ions stays at a high level. This gives rise to the second repolarization as 

represented by the phase 3 in Fig. 2-1.

After the second repolarization, the membrane potential becomes marginally lower than 

the resting membrane potential for a short period of time (not shown in Fig. 2-1). In this period, 

the cardiac cell is hyperpolarized. The cells then return to their normal resting status 

corresponding to the phase 4. In phase 4, there exists an important time period, called the 

refractory period, in which a cell cannot be excited (absolute refractory period) or can only be 

excited by very strong stimuli (relative refractory period). After this refractory period, a cell can 

be excited by a stimulus that is stronger than the critical threshold.

An important property of the action potential (which is also observed for other cell types 

than cardiac cells) is known as the “all-or-nothing” principle. If the excitation of a cell does not 

reach the critical threshold, no action potential can be fired. On the contrary, as long as the 

excitation of a healthy cell reaches the threshold, an action potential of almost fixed shape will 

be generated.

2.1.2 The pathway of the electrical impulses in a healthy heart

A healthy heart can be considered as four pumps that are carefully controlled by an 

electrical system. This electrical system attempts to regulate the heart rate in a normal range, 

(e.g. 60-100 beats per minute for human heart in resting status). The initial electrical impulse is 

generated at the sino-atrial (SA) node, which is located near the top of the right atrium. When 

the impulse propagates downward to the atrio-ventricular (AV) node, the atria are excited and 

contract in a coordinated way. The electrical signal is then slightly slowed down and relayed to 

the bundle of His and the bundle branches in the ventricles. After passing through the left and 

right bundle branches, the impulse arrives at the Purkinje fibers, where it is transmitted to the 

muscle cells of the ventricles, causing the ventricles to concertedly contract. The normal
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pathway of a healthy heart and the cardiac electrical impulses corresponding to the different 

heart tissue are shown in Fig. 2-2. In a healthy heart, the SA node is the dominant pacemaker.

Figure 2-2. The normal pathway of a healthy heart. 1. The SA node; 2. the AV node; 3. the 

bundle of His; 4. the bundle branches; 5. the Purkinje fibers.

2.1.3 The abnormal excitation in a fibrillating heart

Fenton et al. [11] observed that between normal rhythm and VF, there may exist a short 

period of tachyarrhythmia known as ventricular tachycardia (VT). The VT has a fast heart rate 

(usually over 150-250 bpm) initialized in the ventricles [1], Some non-sustained VTs can 

automatically return to normal heart rate, and hence they are harmless. This kind of VT may be 

initialized from temporary disorder of either of the ventricles. On the contrary, a heart with 

sustained VT is not likely to restore to the normality automatically. When VT occurs, it is 

traditionally believed that there exists at least one additional excitation site in the ventricles, and 

the additional excitations take over the SA node to be the dominant pacemaker, resulting in a 

fast heart rhythm [1], In this case, the ventricles do not get filled with enough blood between 

consecutive beats to meet the body’s needs, causing dizziness. This kind of VT may progress to 

VF, and hence it is also life-threatening. If VF occurs, there may be multiple excitation sites in 

the ventricles [1]. The wavefronts of these abnormal excitations can interact with each other and 

with the cardiac tissue, and make the heart quivers chaotically. This chaotic quivering can pump 

little or no blood to the body, making the VF fatal. Fig. 2-3 illustrates the abnormal excitations 

of the ventricles in the case of VT and VF.

10
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a. Abnormal excitation of VT b. Abnormal excitation of VF

Figure 2-3. Abnormal excitations in the ventricles.

2.1.4 The ECG and the multi-electrode mapping

The ECG recording and the multi-electrode mapping methods are traditionally used to 

monitor electrical activity of the heart. The ordinary ECG signals are sampled from limited 

(usually 12) selected locations on the surface of the body. Because of its simplicity, the 

acquisition and analysis of ECG signals are very popular for clinical practice. However, since 

they reflect the “integrated”, rather than the “local”, electrical activity of the heart, the ECG 

signals cannot be used to describe detailed electrophysiological characteristics of the heart. 

Therefore, only using the ECG signals, it is very hard to accurately locate the pathological area 

where the cardiac tachyarrhythmia starts [12].

Multiple electrode mapping technique can be used to measure the local cardiac electrical 

activity. The electrodes are arranged in a 2-D or 3-D lattice structure, such that they can 

immediately contact a part of the endocardial or the epicardial surface. The cardiac 

transmembrane action potentials at the locations where the electrodes contact the heart can be 

directly measured. Based on these measured transmembrane action potential values, an 

isochronal map can be obtained using interpolation techniques [13, 14]. The isochronal map 

indirectly supplies clues of the activation of the heart tissue, such as the velocities and the 

orientations of the cardiac electrical signals. Hence any pathological areas can be located with 

satisfactory accuracy from the isochronal map. An isopotential map can also be used to 

visualize the cardiac electrical activity at a given time [15]. Limited by the number of the
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electrodes (generally less than 200), the spatial resolution of this technique is generally low.

2.2 Mechanisms of ventricular fibrillation

Although it is well known that the VF is a result of turbulent propagation of the cardiac 

electrical excitation wave, and it can be induced and terminated by an external electrical current 

(i.e., the shock signal), the real reasons for VF induction and VF termination are not completely 

clear. In the past 100 years, numerous theories have been reported to explain the mechanisms of 

the VF. Three dominant hypotheses: the multiple random wavelet hypothesis, the spiral breakup 

hypothesis, and the single high-frequency source hypothesis, are reviewed in the following.

2.2.1 The multiple random wavelet hypothesis

The M oe’s random multiple-wavelet hypothesis has been dominated the VF explanation for 

more than four decades. In 1959 Moe and Abildskov [19] experimentally showed that atrial 

fibrillation (AF) could be introduced by the multiple circuit reentry. In 1964, Moe et al. [20] 

formally put forward the “multiple wavelet hypothesis” of AF. They simulated the atrial 

behavior using a cellular automata model (i.e. a 2-D array of coupled excitable elements) with 

randomly distributed refractory periods. According to this hypothesis, the AF is caused by the 

heterogeneity of the refractory period of the cardiac tissue. The cardiac cells with refractory 

periods longer than the stimulant interval cannot recover in time and fail to respond to the 

stimuli. This causes the fragmentation of the cardiac electrical wave and formation of the 

wavelets. The wavelets randomly wander in the myocardium, forming non-sustaining reentrant 

loops with very short lifespan. The wavelets can brake up, fuse or collide with each other and 

even become extinct when they reach the boundary of the myocardium or encounter refractory 

tissue. Therefore, the number of wavelets present in a heart, which depends on the refractory 

period, conduction velocity and mass of the myocardium, varies with time. Furthermore, the 

number of wavelets may determine the persistence of the fibrillation [20]. Below a critical 

number, there is a considerable chance for the wavelets to die out. When the number of the
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independent wavelets exceeds the critical number, the tachyarrhythmia will be self-sustaining. 

M oe’s hypothesis got theoretical support from Krinsky’s work [21]. Allessie et al. [22] and 

Janse et al. [23] have revealed convincing evidence of a close correlation between the 

heterogeneity in the refractory periods and fibrillation.

M oe’s hypothesis has successfully explained the persistence of fibrillation after the 

elimination of the initial triggering. However, due to the huge complexity of measuring the 

refractory periods at a large number of locations, it is difficult to verify this hypothesis with 

experiments. We still do not know if the heterogeneity in the refractory periods is really a 

necessary condition for both induction and maintenance of the fibrillation. New evidences 

obtained from the optical mapping method have shown that at least in some cases, the cardiac 

electrical events in fibrillation (including AF and VF) appear to have periodicity. In other words, 

the wavelets are not always “random” or “independent” [24, 25]. Different from Moe’s 

hypothesis, only a small number of wavelets are found in the heart during the VF. In extreme 

cases, the VF can be introduced by only one wandering wavelet [26]. These inconsistencies give 

rise to new hypotheses.

2.2.2 The spiral breakup hypothesis

The spiral breakup hypothesis is the most widely accepted explanation about the 

mechanism of the VF. From the existence of a fixed pathway of the cardiac electrical impulses 

in a healthy heart (see Fig. 1-1), it can be inferred that the normal cardiac electrical wave on the 

endocardial ventricle surfaces should be parallel or quasi-parallel. Numerous experiments of 

multiple electrode mapping and optical mapping have proved this inference. In VT, a few big 

spiral waves (also referred to as mother rotors), rotating around their tips (also known as 

vortices), may exist in the ventricles. The tip of a spiral wave corresponds to the single 

abnormal excitation site mentioned before. For a self-sustained VT, the spiral waves will never 

restore back to the normal cardiac electrical wave, unless an external interference, such as an 

electrical shock, is applied. Instead, the spiral waves are likely to break up into multiple smaller
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spiral waves (or daughter rotors). The daughter rotors can further split, producing more complex 

fragmentations and complicating the activation patterns. Excited by the extremely complicated 

cardiac electrical patterns, the heart loses its normal contractile function and the VF is initiated. 

Numerous works, such as [27-29], have been reported to support this hypothesis. The history of 

this theory and more comments can be seen in [30]. According to this hypothesis, the evolution 

of the cardiac electrical activity during VF is totally chaotic. Hence, it cannot be correctly 

predicted.

Some researchers believe that this understanding of VF could provide vital clues of VF 

control. Using this hypothesis, the VF can be terminated by preventing the mother rotors from 

splitting. Sinha et al. [31] obtained an unexpected low-amplitude shock threshold (on the order 

of mV) that could terminate the VF in a very short duration (on the order of 100 ms) using a 

model based on the FitzHugh-Nagumo (FHN) equations. Panfilov et al. [32] studied the 

elimination of a spiral wave in cardiac tissue by the application of multiple shocks using 

external current. Their simulation results showed that multiple shocks applied to the boundary 

(or edge) of the cardiac tissue could efficiently terminate a mother rotor.

The activation patterns in the spiral breakup hypothesis are the same as the wavelets in the 

Moe’s theory except for one difference: the complex electrical patterns can be generated in both 

heterogeneous and homogeneous medium. However, the spiral breakup theory cannot explain 

the periodic activities in the real cardiac data obtained using optical mapping method.

2.2.3 The sing le  high-frequency source hypothesis

Jais et al. [33] demonstrated that the AF could be terminated by removing the pathological 

“source” using a discrete radiofrequecy (RF) ablation energy. This therapy suggests that only 

one dominant stable abnormal excitation (rather than multiple randomly-wandering excitations 

as predicted by Moe’s hypothesis) in the heart can induce fibrillation. Mandapati et al. [34] 

further confirmed that in some isolated sheep hearts, stable micro-reentrant sources could be the 

most likely underlying mechanism of the AF. According to their theory, the rapidly successive

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



wave fronts emanating from these high-frequency sources propagate through both atria and 

interact with heterogeneities of the medium, leading to fragmentation and wavelet formation. 

Similar results were obtained when analyzing the isolated rabbit hearts with ventricular 

fibrillation [35]. Zaitsev et al. [36] studied the excitation patterns on the epicardial and 

endocardial surfaces during VF in frequency domain, and found that striking simplicity and well 

organization existed in the typical frequency patterns. Their observation implies that the high 

frequency source results in multiple areas of intermittent block and complex propagating 

patterns with both deterministic and stochastic components because of the interaction between 

the waves from the source and the heterogeneities of the cardiac tissue. More comments on this 

hypothesis can be seen in [30, 37].

2.3 The critical points in the cardiac electrical patterns

Based on the three dominant hypotheses about the mechanisms of VF, cardiologists have 

realized that the critical points (also known as phase singularities) in the cardiac electrical 

patterns should be detected and analyzed. The most important critical points that cardiologists 

concern include the sources/sinks and the vortices. The detection of the critical points is helpful 

for understanding the cardiac dynamics.

Bray et al. [40] and Valderrabano et al. [41] primarily focused on the vortices (i.e., the tips 

of the spiral waves in the spiral breakup hypothesis) and they applied the phase portrait method 

(will be presented later) to detect the vortices in the cardiac electrical patterns.

Intuitively, a source is a small region from which the cardiac electrical signals propagate 

outwards to its surrounding tissues. In some literatures (such as in [33 - 37]), cardiologists also 

treated the tips of the spiral waves as “sources”. This confusion results from that a spiral wave 

does contain a pure expanding component. The sources in the cardiac electrical patterns are 

believed to reflect the pathological changes in the heart tissues. It has been reported that at least 

in some cases, the atrial fibrillation (AF) and VT can be terminated by removing the abnormal 

sources in the atria or in the ventricles with discrete radiofrequency (RF) ablation energy [43 -
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45]. Although it is not clear if the RF ablation energy can also be applied to control the VF, this 

method is a promising VF therapy. Success of this therapy greatly depends on the accuracy of 

source detection.

Compared to the source, the sink has not been paid much attention. In [47], the sink was 

considered as “the actual current required to excite cells downstream”. According to this 

perspective, a sink is a region that is being depolarized. However, due to the similarity between 

a sink and a source, a sink should have the same pathological meaning as a source, and hence 

the sinks should be paid more attention.

2.4 Algorithms for image smoothing

Medical images are usually extremely noisy. To obtain superior image analysis results, 

image smoothing techniques are applied to reduce the noise. W hen the noise statistics are not 

known, the noise is generally treated as Gaussian noise. For Gaussian noise, the frequently used 

image smoothing techniques are Gaussian lowpass filter, the isotropic diffusion equation [52, 

58], the anisotropic diffusion equation [53], and the wavelet thresholding and shrinkage 

technique [55, 56].

In Gaussian lowpass filtering, a 2-D Gaussian mask is convolved with the noisy image. The 

smoothed image I (x , y) can be expressed as:

I(x,  y)  =  I Q( x , y ) *  G(x,  y)  (2 -1)

where I 0 (x , y)  represents the noisy image, and G(x,  y)  represents the Gaussian mask. A

shortcoming of the Gaussian filter is that it cannot correctly smooth the image boundary. When 

a Gaussian filter is used, the salient features, such as edges, o f an input image are often blurred 

or shifted [50, 54]. A suitable Gaussian mask is related to the standard deviation of the noise. 

For an image with strong noise, the standard deviation of the noise is large, and the elements of 

a small Gaussian mask will be close to each other. Consequently, the performance of the 

Gaussian lowpass filter is similar to the averaging of neighboring pixels for an image with
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strong noise. In this case, several Gaussian filters are often used in cascade.

By convolving the original image I 0(x , y )  with a Gaussian kernel G ( x , y , s ) of

variance s , a family of images I  (x, y, s) can be derived by:

All smoothed images corresponding to different values of s form a scale space, and hence the 

variable s is also often referred to as the scale.

It can be shown that the family of filtered images, i.e. I (x ,  y,  s) in Eq. (2-2), is the 

solution of the isotropic diffusion equation given below:

with an initial condition I (x,  y,0) =  I 0 (x, y)  , where V I ( x , y , s )  represents the gradient map 

of the image I{x,  y, s),  V - is the divergence operator, c is the diffusion constant.

The discretization, and hence the solution of Eq. (2-3) are presented in detail in [52]. Like 

the Gaussian lowpass filter, the isotropic diffusion equation also smoothes the image equally in 

all directions. Therefore, when it smoothes a homogeneous region in an image, it also blurs the 

edges and is likely to shift the singularities.

To efficiently smooth the interior of each region in a noisy image while preserving the 

salient features, Perona et al. [53] modified the isotropic diffusion equation by replacing the

constant diffusion coefficient c , with a diffusion function c(x,  y , s ) , which is a monotonically 

decreasing function of the image gradient magnitude:

The new diffusion equation, known as anisotropic diffusion equation, can be expressed as:

I(x,  y, s) = I0 (x, y) * G(x,  y, s) (2-2)

V-[cV/(r,y,s)] (2-3)

c(x, y, s) =  / ( | |  VI(x ,  y,  s ) | |) (2-4)
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dl ( x , y , s )
ds

= V- {c ( x , y , s ) [VI ( x , y ,$)]}
iniso ^ '

I (x , y ,0)  = I 0(x, y)

Note that the edges are selectively smoothed or enhanced based on the evaluation of the 

diffusion function. Although any monotonically decreasing continuous function of V /(x , y, s)

can be used as a diffusion function, for simplicity of processing, the following two functions are 

often used:

Cl( x , y , s )  = i ^ mX’y’s t  (2-6a)

c2( x , y , s ) = -  1

l+ - k | |V / ( w )||* (2'6b)
A

where K  is a constant that controls the diffusion behavior. If K  is small compared to

|| V / | | , the diffusion function c(x, y, s) decreases quickly to zero. In this case, small intensity

gradients are able to block the diffusion process, and hence the edges can easily be preserved. In

contrast, if  K  is set to a large value compared to || V / | | , the salient features in the image are

likely to be smoothed. In practice, K  is chosen in the range [20 -  100] for the best 

performance. It should also be emphasized that Eq. (2-6a) favors the high contrast edges over 

the low contrast ones, and Eq. (2-6b) favors large regions over the small ones.

Using the finite difference method, Eq. (2-5) can be easily discretized as [53]:

I u  = K j +A[cn -AnI  + cs -AsI  + ce - A e I  + %  ■ A wl ]  ". (2-7)

where / " J 1 is the smoothed image after n  + 1 iterations, i and j  indicate the pixel 

location, A (essentially the scale step, i.e., A -  A s) is a constant in the range [0, 0.25] for 

stability, ANI tj ,  A sI Uj, A EI i j , and A wI t j are the brightness variations of the pixel
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I(i,  j )  in four directions (North, South, East, and West), and they are expressed as:

(2 -8 )

In Eq. (2-7), cnN , c nSi j , cnEi j , and represent four diffusion functions in the four

directions (i.e., North, South, East, and West) after n iterations, and they are expressed as:

Note that the Eq. (2-7) implies a recursive smoothing of the image. This recursive process 

usually takes longer computational time than the Gaussian filter. One side effect of the 

anisotropic diffusion equation is that it often introduces staircases around the pattern boundaries. 

Excellent comments and techniques to eliminate this drawback can be found in [59 - 61].

The wavelet-based image de-noising technique, proposed by Donoho and Johnstone [55], 

makes use of the excellent energy compaction capability of the wavelet transform. Here, the 

image is typically represented by one lowpass subband and several highpass subbands. The 

small coefficients in the highpass subbands mostly represent the noise and the large coefficients 

represent the signals. In these subbands, each coefficient is compared to a certain threshold. If 

the coefficient is less than the threshold, it is shrunk to zero; otherwise, it is kept or shrunk to 

another value depending on the thresholding rule. A de-noised image can be reconstructed by 

inversely transforming the thresholded wavelet coefficients back to image domain.

Although the original algorithm of the wavelet thresholding provides excellent de-noising 

performance for 1-D signal, it is likely to introduce artifacts when applied to multi-dimensional 

signals. For instance, a wavelet de-noised image often contains ripples near the edges or region
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boundaries. This might result from the fixed threshold used in an entire subband. It has been 

reported that the use of adaptive thresholds, which are driven by the datasets in the wavelet 

domain, can significantly improve the performance [57].

2.5 Motion estimation algorithms

Although a large number of motion estimation algorithms have been proposed, most of 

them can be classified into four categories: the techniques based on (i) the optical flow 

constraint equation (OFCE), (ii) the block matching algorithm (BMA), (iii) the statistical model 

of the motion vectors, and (iv) the phase correlation. The OFCE-based algorithm and the BMA 

are widely used, and hence they are presented in the following sub-sections in  more detail. The 

spatio-temporal auto-regression (STAR) model, one of the statistics based algorithm, and the 

phase correlation based algorithm will be briefly introduced.

2.5.1 The OFCE-based algorithm

The OFCE-based algorithm [51] is an efficient motion estimation algorithm. It assumes 

that the brightness of the pixel roughly remains unchanged after its movement. The formulation 

of this algorithm requires that the pixel move very slowly. If the pixel moves too fast, this 

algorithm will fail. This algorithm also assumes that a motion vector cannot deviate from its 

neighboring motion vectors too much.

Let the two consecutive frames from an image sequence be denoted as frame-1 and 

frame-2 , and let the brightness of a pixel located at (x, y) in frame- 1 be expressed as

I(x,  y , t ) , where t indicates time. At time t + d t ,  this pixel moves to a new location

(x + dx, y + d y ) , and its brightness can be expressed as 7(x +  dx, y  + dy, t + d t ) . Assume that

the brightness of the pixel remains identical after its movement. After simple manipulations, 

this assumption leads to the following Optical Flow Constraint Equation (OFCE):

I xu + I yv + / ,  «  0 (2 -10)
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where I  x , I  y and 11 represent the partial derivatives of image brightness with respect to x , 

y  and t , respectively; while u and v are the velocities in horizontal and vertical directions. 

Note that the brightness variation of a single pixel may greatly affect the values of the I  , Ix y

and 11. Hence, Eq. (2-10) is very sensitive to the brightness variation of the pixels

Since there are two variables u and v in Eq. (2-10), unique solution of u and v is 

not possible. Hence, rectangular mesh grids are used. This setting is based on the assumption 

that a block of pixels shares the same motion vector. To obtain a smooth velocity field, another 

constraint equation, known as smoothness constraint, is applied. This constraint assumes that 

the brightness of the target varies smoothly over a short time period. This assumption implies 

that the motion vector at a certain location is roughly equal to the average of those of its

neighbours. Let us define (u , v ) as the average of (u,v ) pairs of a 3 x 3  neighborhood as 

shown in Fig. 2-4. Hence, (u,v )  can be expressed as:

(;u, v )  =
C \ 8 1 8 V

~ 5 > "  | 5 > ,o i=1 o f=1
(2-11)

(u2>v 2)

(u3, v3)

(*i4 >V4)

(u , v )
(Zi7 sV7 )

(ug>Vg)
(us>v5)

Figure 2-4. Definition of the average motion vector.

The smoothness constraint on the whole image domain Q  can then be expressed as 

minimization of the following energy functional:
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P2 (u,v) = j ( u - u f  +  (v - v ) 2d Q  (2 -12)
a

Combining the two constraints, the following energy equation is obtained:

P(u,  v)  = J {( Ixu + I yv + I t )2 +A2[ ( u - u ) 2 + ( v -  v )2] } ^  (2. 13)
£2

where A & [0, is a trade-off factor between sensitivity and smoothness. In OFCE-based 

algorithm, the optima motion vector is obtained by minimizing P(u , v ) in Eq. (2-12) on Q .

In order to minimize the P(u,v)  , we use the two conditions dP/du  = 0 and 

dP/dv  =  0 . We obtain:

~  =  21 x( I xu + 1 v + 1, ) -  2/1 ( u - u )  = 0  (2-14a)
ow

and

f  =  2 / ,  (/,« + / ,  v + / , ) - 2 1 J( v - v )  = 0 (2.14b)

Solving Eqs. (2-13a) and (2-13b), the motion vector (« ,v) can be written as:

l u  +  I v  + 1.
u —u —  ------- -̂------- I r (2-15a)

K

and

l u  + P v  + 1,
v = v  —  -------  ̂ - J  (2-15b)

K  y

where

K  = I x + I 2 + A2 (2-16)

In practice, Eqs. (2-15a) and (2-15b) can be implemented using an iterative scheme:

l u n + I v n + I t
u = u n  i ? - I  (2-17a)

K

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and

i  XU H + i  yV " + Zj
/ (2-17b)

Note that the (u n , v n) in Eq. (2-17) can be solved using the following iterative expression:

where the (ui , v ,) pairs have been shown in Fig. 2-4.

The initial (u° ,v ° )  pair can be arbitrary numbers. After several (e.g., 100 - 1000) 

iterations, the (u ,v ) pair reaches to a stable solution. This iterative scheme can be considered

as a coarse-to-fine estimation.

Although it has been used by many researchers, the OFCE-based algorithm is very 

sensitive to variation of a single pixel and suitable only for slow image motion. For an image 

sequence with fast motion, this algorithm often fails, because Eq. (2-10) is not valid in this case.

2.5.2 The block matching algorithm

The block matching algorithm (BMA) [69] is one of the most frequently used motion 

estimation algorithms, especially in video coding applications. This algorithm assumes that a 

block of pixels has the same translation motion vector from one image frame to another, and the 

motion vectors are smaller than a pre-estimated threshold (i.e., the search region). The key idea 

of BMA is to search the mutual corresponding blocks in two image frames. In other words, the 

BMA finds the shortest distance between two brightness patterns in two local regions, one in 

each video frame. The following distance functional is generally minimized to estimate a

motion vector from the block I (x ,y , t )  to the block I (x  + u, y + v ,t + 1):

(2-18a)

and

(2-18b)
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D(u,v)  = / ( *  +  «, y + v;f + l) -  I(~x ’ I2 (2 -19)
X y

Using an exhaustive searching scheme, the optimal motion vector, which corresponds to 

the shortest distance, can be obtained. The BMA can handle fast motion by pre-setting a large 

search region. However, a large search region leads to dramatic increase of the computational 

complexity. Several sub-optimal searching schemes have been proposed to speed up the motion 

estimation (see [70, 71]). Derived from the block comparison rather than pixel correspondence, 

the BMA is not sensitive to brightness change of a single pixel.

2.5.3 The spatio-temporal auto-regression motion model

The spatio-temporal auto-regression (STAR) model based algorithm, recently proposed by 

Chang et al. [72], assumes that a pixel in an image frame can be treated as a linear combination 

of its neighboring pixels in the next frame. The motion vector at a source location at a given 

time can be considered as a random variable with a probability distribution function. The 

optimal motion vector is most likely to be the vector with highest probability. This algorithm 

further assumes that the probability distribution function is proportional to the correlation 

coefficient, and hence the motion vector can be determined by searching the highest correlation 

coefficient between two pixel blocks. As the STAR model based algorithm uses the same idea as 

that of the BMA, it is essentially a variation of the BMA.

2.5.4 The phase correlation based algorithm

Phase correlation based algorithm is a frequency domain motion estimation method that 

makes use of the shifting property of the Fourier Transform (FT). Note that a spatial shift in the

image domain is equivalent to a phase shift in the frequency domain [73]. If I x (x, y)  and 

I 2( x , y ) are two brightness patterns before and after a motion = (u,v)  , then 

/ 2(x, y)  = I x(x + u, y  + v ) . If the FT of I x and I 2 are denoted by F ( l x) and F ( I 2) ,
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respectively, the following relationship can be obtained:

(2-20)

The phase correlation is then defined as:

F{I2)F\h) ... _ ĵ(uais+va)y)
(2-21)

The indicates complex conjugate operator. Note that the Inverse Fourier Transform (EFT) of

the right-hand side of Eq. (2-21) is a single pulse at ( h , v ) . Therefore, the motion vector

The phase correlation based algorithm provides a new perspective to understand the motion 

activity in an image sequence, but it is not as widely accepted as the BMA and OFCE-based 

algorithms. According to Hill’s comments [74], phase correlation is not suitable for small 

images, because the number of samples used by FT determines the resolution in the frequency 

domain. Hence the use of small images limits the accuracy of this algorithm.

2.6 Motion field decomposition

A complex motion field generally contains rich information about the target. Sometimes, 

we only need to analyze selected motion information while ignoring others. Hence, it is 

necessary to separate the needed components from the complex motion field. In the following 

subsections, a few existing vector field decomposition techniques are discussed.

2.6.1 Local translation decomposition and singular value decomposition

Lawton and Gardner [76] presented a low-level local translational decomposition (LTD), 

which can separate the pure translation field from a given motion field. However, this work did 

not attract much attention from the research community. Black et al. [77] proposed a parametric

£  = (u, v) can be obtained from the EFT of the left-hand side of Eq. (2-21).
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motion model that decomposes a complex motion field using the singular value decomposition 

(SVD). The authors succeeded in applying this model to represent the motions of different facial 

expressions and gaits. This motion description method is simple to implement. In fluid motion 

analysis, important features, such as the singularities, are often needed to describe the fluidal 

structures. Unfortunately, the above two motion descriptions (LTD and SVD) cannot provide 

any information of the singularities about the fluid motion. Moreover, the motion parameters as 

well as the basis motions do not have any direct physical meanings in the SVD-based motion 

decomposition framework.

2.6.2 The discrete Hodge-Helmholtz field decomposition

The Hodge-Helmholtz decomposition [75] is a convenient method to decompose a 

continuous vector field into three components: a curl-free component, a divergence-free 

component, and a harmonic remainder. Polthier and Preu(3 [48] recently showed that this 

decomposition can also be extended to decompose a discrete vector field. They have also 

presented a numerical algorithm to implement the 2-D field decomposition using the finite 

element method (FEM) [49]. Later, Tong et al. [50] further extended the 2-D discrete 

Hodge-Helmholtz field decomposition (DHHFD) to analyze 3-D vector fields. All these works 

deal with the decomposition of general vector fields, and hence they all utilize the irregular 

grids. As a result, their implementations have high computational complexity.

The 2-D DHHFD is illustrated in Fig. 2-5.

I  N  t  S
I S  ^

V - x  ~  f } + > « " >

/  \ /  1 N.  *" ✓'  "

Given vector field Curl-free part Divergence-free part Harmonic remainder

Figure 2-5. Illustration of the 2-D DHHFD.
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Although there exists an analytical solution to the decomposition of a continuous vector 

field [75], it is not feasible to directly apply the continuous Hodge-Helmholtz field 

decomposition to decompose a discrete vector field. The numerical approximation of the 

decomposition of a discrete vector field is the only possible way.

In the DHHFD, an arbitrary flow field t, can be expressed as:

|  = (VE) + (V x W )  + R (2-22)

where V E  is the curl-free part (satisfying V x ( V E )  = 0 ) , VxW  is the divergence-free

part (satisfying V -(V x JF )  = 0 )  and R  is the harmonic remainder part (satisfying V ■ R  = 0

and Vx/? = 0 simultaneously). Note that V , V •, and V X refer to the gradient operator, 

the divergence operator, and the curl operator, respectively, is is a scalar potential function of 

V E , and IF is a vector potential function of V X W  . Because V x is a 3-D vector operator,

all variables in Eq. (2-22), i.e. g , V E , V X IF and R , are 3-D vectors. Therefore, when 

the 3-D DHHFD is directly applied to decompose a 2-D vector field, the input 2-D vector field 

E, has to be extended to 3-D form by setting its 3rd component to zero.

2.7 Critical point detection in a fluid image sequence

The critical points, such as sources, sinks, vortices, rotational centers, and saddles, are the 

basic structural features of a fluid motion field. Hence the detection of these critical points is 

very important for the analysis of fluid motion. Traditionally, this task can be accomplished by 

exploiting the phase portrait of the fluid vector field. The phase portrait draws the trajectories of 

the particles in the fluid, and hence it describes the streamlines of the fluid field [79]. Fig. 2-6 

shows the phase portraits of six fundamental fluid motions [78], Note that the nodes, centers, 

spirals, and saddles in the phase portrait respectively correspond to the sources/sinks, rotational 

centers, vortices, and saddles in the vector field.
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a. A  node b. A  star node c. A n im proper node

d. A center e. A spiral f. A saddle

Figure 2-6. The phase portraits o f six fundamental fluid motions.

There are several methods to detect the critical points in a fluid motion field. We discuss 

three phase portrait based methods in the following.

Method-1. Here, a set of isoclines is used to detect some particular critical points, such as 

sources, vortices, and saddles [79]. The isoclines are window-clipped straight lines emanating 

from the local origin as shown as Fig. 2-7. The window (shown as the bold dashed box) keeps 

shifting in the vector field. Let us use Ct and 6 to denote the inclination of an isocline and 

the orientation angle of the vector valued at the point where the isocline intersects a streamline,

respectively. If is always positive, the local origin is a source or a vortex; if ~ ~  is
d a  d a

always negative, the local origin is a saddle.

A  streamline

isoclines

Figure 2-7. Window-clipped isoclines.
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Method-2. Here, the index of the Jordan curve is used to detect the fluid structure [78, 81, 

82], A Jordan curve is a simple and closed plane curve, which is topologically equivalent to the 

unit circle. As shown in Fig. 2-8, the Jordan curve intersects a streamline at a point where the 

orientation angle of the streamline is denoted as 6 . Traveling one lap anticlockwise along the 

Jordan curve, if the local origin is a source or a vortex, the change of 6 (denoted as A6 ) 

should be 2n  ; if the local origin is a saddle, A 6 should be - 2 n .

The index of a Jordan curve is defined as:

A 6
Index(J )

2  n

Therefore, if the local origin is a source or a vortex, the index of the Jordan curve is 1; if the 

local origin is a saddle, the index of the Jordan curve is - 1 .

A-streamliner

The- Jordan 

curve

Figure 2-8. Index of a Jordan curve.

Method-3. Here, the motion field in a local window is expressed as an affine model [78]: 

= A X + b
u ( x , y ) 

v(x, y)

where X  = (x, y)  is a pixel location, u and v are the velocity components valued at X  , 

and A  is a 2 x 2  matrix. Note that A  is not a constant matrix, and all four elements of

matrix A  depend on the spatial location X  . The critical points can be detected according to 

the eigenvalues of the matrix A . The relationship between the phase portrait structure and the
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eigenvalues o f A  is presented in Table 2-1.

The phase portrait based methods have been widely used to analyze the fluid dynamics [79 

- 81]. However, the former two methods (Methods 1 and 2) cannot correctly distinguish the 

sources from  the vortices, and cannot correctly detect the rotational centers. These methods 

need to slide the window and calculate the features pixel-by-pixel, resulting in intensive 

computation [80, 83, 84].

Table 2-1. Eigenvalues of the matrix A  and the corresponding phase portraits.

Eigenvalues of A Jordan form Type Phase portrait

Node

A2 have same signA1 3* A2 , and both of

them are real number

Saddle

A2 have opposite sign

Star-node

Improper

node

Center

Aia -  a ± i f i

Spiral
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2.8 Summary

In this Chapter, the fundamentals of the cardiac electro-physiology have been reviewed 

first. The properties of the cardiac transmembrane action potential provide meaningful clues for 

choosing an appropriate motion estimation algorithm. The pathway of the cardiac electrical 

impulses in a healthy heart and the abnormal excitation in a fibrillated heart are helpful for 

understanding the abnormal cardiac electrical activity. The two traditional methods in 

cardiology research provide widely accepted results that can be compared to those obtained 

from the optical mapping method. The three widely accepted explanations about the 

mechanisms of VF indicate an important research direction: to capture the high-frequency 

sources/sinks and the vortices. Based on this indication, the pathological meanings of these 

critical points have also been introduced.

A few selected image processing techniques have also been reviewed. An image smoothing 

technique can be used to filter out the noise in the acquired cardiac electrical patterns. A motion 

estimation algorithm can recover a motion field from two consecutive image frames. A motion 

decomposition algorithm can extract the needed motion components while ignoring others. 

Finally, we have also presented three phase portrait based methods for detecting the critical 

points in a fluid vector field. Due to the need for a moving window and the reconstruction of the 

streamlines, all the three methods are highly computation-intensive.
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Chapter 3

Efficient Hodge-Helmholtz Decomposition of Motion Fields

In Chapter 2, a brief review of various video processing techniques was presented. It was 

observed that motion analysis is an important tool for video analysis. A motion field provides 

information about the motion of various objects in a video, and hence many important features, 

such as the contour of a target [85], can be extracted from a motion field. In fluid motion 

analysis, it is often required to extract a few components of interest from a given complex 

motion field [65, 77] such that the contributions of different components to the fluid behavior 

can be quantitatively evaluated.

In Section 2.6.2, we introduced the basic idea of the discrete Hodge-Helmholtz field 

decomposition (DHHFD). Two implementations (2-D and 3-D) were briefly discussed based on 

irregular grids. However, both these implementations are highly computation-intensive because 

of the use of irregular grids. Note that regular rectangular grids are generally used in most 

existing motion estimation algorithms. The use of regular grids greatly simplifies the problem 

while preserving enough accuracy. In order to apply the DHHFD to efficiently analyze the 

image motion fields, it is necessary to re-derive the DHHFD using regular grids.

In this chapter, we present an efficient implementation of the DHHFD based on regular 

triangular grids (RTG). Sections 3.1 and 3.2 introduce the theory of the DHHFD based on RTG 

(DHHFD-RTG). We then present the properties of DHHFD in Section 3.2. Exploiting these 

three properties, the implementation details of the DHHFD-RTG are presented in Section 3.3. 

The computational complexities of the DHHFD-RTG and the DHHFD based on irregular 

triangular grids (DHHFD-ITG) are analyzed and compared in Section 3.4. In Section 3.5, a 

synthetic complex vector field is decomposed using the proposed 2-D DHHFD-RTG algorithm, 

to demonstrate the performance of the 2-D DHHFD-RTG.
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3.1 The Proposed 2-D DHHFD-RTG

As mentioned in Section 2.6.2, an arbitrary (continuous or discrete) vector field can be 

uniquely decomposed into three components using DHHFD: a divergence-free part, a curl-free 

part, and a harmonic remainder.

The task is to derive the 2-D DHHFD-RTG algorithm, starting from Eq. (2-22) that is 

essentially the expression of 3-D DHHFD based on irregular tetrahedral grids. We also use the 

FEM, mimicking the works done by Polthier et al. [49] and Tong et al. [50], to re-derive the 2-D 

DHHFD. In order to efficiently apply the 2-D DHHFD to video analysis, our derivation makes 

use of the RTG

3.1.1 Setup of RTG and notations

Assume that the image domain Q is divided into triangular grids as shown in Fig. 3-1. 

This can be easily achieved by dividing each rectangular grid used in a conventional motion

estimation algorithm into two triangles. We assume that g is an estimated motion field with

M  x N  motion vectors, and each motion vector is valued at the grid nodes. It is easy to count

that there are M  * N  nodes and 2 * (M  - 1 )  * ( N  - 1 )  triangle grids on the image domain

Q . Table 3-1 explains some important mathematical symbols.

M+l
1

W \

M

\ /
✓

✓
✓ \

i \
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V  \

X
X

X
X
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A X
X
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(N-1)*M+1
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2M
M*N

Figure 3-1. Triangulation of the image domain £2 
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Table 3-1. The symbols and their meanings.

Symbols M eanings

L
The total number of the nodes on the image domain Q,  and 

L  = M * N

P An arbitrary location inside the image domain, p  =  (x, y)

Pi
The location of the i th node on the image domain Q , indicated 

by the italic letter “t” in Fig. 3-1.

Tk
The k !k triangle on the image domain Q , indicated by the 

circled letter “ k  ” in Fig. 3-1.

Et The potential E  in Eq. (2-22) valued at p t

Wt The potential W  in Eq. (2-22) valued at p t

Ik

The motion vector estimated at the geometrical center of the 

triangle Tk

The two continuous potential functions E and W are discretized as two M  x N  

matrices. These matrices can be expressed as:

and

E  =

1 M + l

M +2

E m E 2M

E,( N - i y w + i

'M*N

(3-la)

W  =

w, w,M +l

w wO'! IM + 2 w.(AT-l)»M+2

W W ... wr r  M  y r 2 M  M * N

(3-lb)
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By re-organizing these two matrices column-wise, E and W can be expressed as two 

L x l  vectors. Note that L = M  * N  . In other words, E  =  ( E 1 , E 2 , - - - , E L) T and

W  =  (W j, W 2, • • •, WL )T , respectively.

The velocity £k has been defined in Table 3-1 as the average of the three motion vectors

at the vertices of the triangle Tk. Hence, can be calculated as:

1 = ^ 1 .  k e [ l , 2 * ( M - l ) * ( N ~ l ) ]  (3.2)
feTi

We further assume that the potential functions, E  and W , are piece-wise linear, and 

hence, their first-order derivatives VE  and V x W  are piece-wise constant. Let a 

piecewise-linear basis function (p)  be defined as 1 at the i th node p i and 0  at all other 

nodes (as illustrated as Fig. 3-2).

U p )

(0 ,0 ,0)

Figure 3-2. Definition of the piecewise-linear basis function.

In the later context, we also use <pik (p ) to represent the (fii (p)  belonging to Tk. Note 

that the ith node is shared by several triangles. Assume that Tk is a neighboring triangle of
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the ith node, and in addition to the ith node, let the other two vertices of the triangle Tk be 

denoted as node a and node b . The sequence of nodes i , a ,  and b are strictly arranged in

anticlockwise order. p a , p b are the locations of nodes a and b on the image domain Q ,

respectively. According to the definition of <j)i (p)  , we have,

M P )  = 4i(Pi) = 1 ’ if P  =  A  ;

(P) = (Pa ) = 0 , if P = Pa', (3-3)

(P) =  QiiPb) = 0 , if P = Pb-

As shown in Fig. 3-2, we build a local coordinate system, such that the ith node is treated 

as the origin, and the coordinate of the auxiliary point c is (0,0,1). For the sake of generality, 

we assume that the coordinates of nodes a and b are (xa , y a ,0 ) and (xb, y b ,0 ) in this 

local coordinate system. Note that the plane abc  can be expressed as:

d xx  +  d yy + djfa + d 0 = 0  (3-4 )

where d x , d y , d ^ , and d 0 are constant coefficients. Substituting the coordinates of points 

a,  b , and c into Eq. (3-4), the following equation can be obtained:

$ i (, P )  = <Pi(x,y) =

where

/  'N /
y b ~ y a x + Xa ~ Xb

Z k
y + l  (3-5)

Z k = y a * b - Xayb (3-6)

On the image domain Q , it can easily be shown that Z k is always positive, and Z k = 2Ak , 

where Ak is the area of the triangle Tk . Eq. (3-5) shows that the gradient of <j>i(p) 

corresponding to the triangle Tk is:
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v 4  =
r y b - y a x a ~ x b '

(3-7)
2 4  2 4

Note that the gradient V 4  (p)  is the vector normal to the triangle abc in Fig. 3-2, and the 

direction o f this normal vector complies with the right-hand rule. Extending Eq. (3-7) to 3-D

form, we obtain:

r  y b ~ y  a Xa Xb ^  
2 4  ’ 2 4  ’

V * k J

(3-8a)

Similarly, the gradients of (f)a (p ) and (j)b (p)  can be obtain as:

2 4  ’  2 4  ’

V — V-  X -  —  XJ a J 1 1 a
2 4  2 4

,0

(3-8b)

(3-8c)

The two potential functions can be approximately represented as superposition of <jt (p ):

e (.p ) = J i M p )e ,
i=l

w (p ) = ' Z m p W i

(3-9a)

(3-9b)
(=1

where E t and Wt are potentials E  and W  valued at p t .

3.1.2 Computing the curl-free component

The curl-free component WE of the motion field t, is the projection of c, onto the

space of curl-free fields. The distance between t, and WE  can be expressed as:

(3-10)D(E)  = \ \ \ W E - % \ \  dQ
n

To find the optimal W E , the distance D(E)  in Eq. (3-10) needs to be minimized. Applying
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the necessary condition dD/dEt = 0 and using Eq. (3-9a), we obtain (see Appendix A):

V i , J v ^ - ( V £ - | ) d Q  = 0 (3_U)

or

V i ,J (S<t>i -V L) - I )  rfQ (3. 12)
q n

Eq. (3-12) can be approximately re-written at each node as a simple sum over the neighbouring 

triangles:

Vi, £ [ V f e - ( V £ ) , ] 4  = (3.13)
r t e V (i)  r t eAT(i)

where N(i)  is the set of all triangles immediately adjacent to the ith node. Note that the areas

of all triangles on Q  are identical in our case, and hence Eq. (3-13) can be further simplified 

as:

Vi, 2 [V A -(V £U =  S (V fc - J )  (3_14)
Tt e N ( i )  Tke N ( i )

Expanding both sides of Eq. (3-14), we get a linear equation (see Appendix B):

S tE  = B  (3-15)

where Sj is an L x  L sparse element matrix determined only by the gradients of the basis 

functions (i.e. V<j)i ), E  = ( £ j , E 2, --- ,EL)T is the L x l  vector to be computed, and B  is 

an L x l  vector determined by the given velocity field £  and the gradients of the basis 

functions V ^ (. . Because S i is independent of the input vector field, it can be constructed 

offline.

Once the L x l  vector E  is determined by Eq. (3-15), it can be inversely re-organized 

back into the form given as Eq. (3-la), such that E  can be treated as a discrete surface. The 

curl-free field V E , can then be easily calculated.
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3.1.3 Computing the divergence-free component

The divergence-free component V x W  of the given field is the projection onto the

space of divergence-free fields. The distance between V x W  and £, can be expressed as:

G ( W ) = j \ \ V x W - l f  d a  (3_16)
a

To find the optimal V x W , the distance G ( W ) in Eq. (3-16) needs to be minimized. 

Applying the necessary condition d G / 9W, =  0 ,  we obtain:

V/ f . (V x  W  - 1 )] dQ = 6  (3-17)
a  dw,

Using Eq. (3-9b) and basic vector calculus, we have (see Appendix C):

V/,J[V0i x (V x W - |) ]  dQ = 0 (3.18)
a

or,

Vi,J[V^.x(VxW')] dQ = J(V0; x<f) d £ l 3̂_19̂
a

Eq. (3-19) can be approximated at each node as a simple sum over the neighbouring triangles: 

Vi, £  W a x (V x f ) ,u ,=  j y v f e x f . H  (3.20)
TkEN( i )  Tke N O )

For regular triangular grids, the area of each triangle, Ak , is a constant. Dividing both sides of 

Eq. (3-20) by Ak , we obtain:

Vi, £[Vfex(VxW )t ] = (3_21)
r t 6W (i) Tke N ( i )

In our particular case, as indicated by Eq. (3-8), each V <j)ik (i.e., V</)i belonging to Tk)

is essentially a 2-D vector, because the third component is zero. Meanwhile, because the input
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is  a  2 -D  v e c to r  f ie ld , £ k , w h ich  h as  b e e n  d e f in e d  by  E q . (3 -2 ), is a c tu a lly  a  2 -D  v ec to r, an d

hence its third component is also zero. Thus, the right-hand side of Eq. (3-21) can be expressed

as:

w ,  X
7 ie « (0  r t eiV(0

f  j  k 

( V ^ ) ,  0

4  0

= c.jfe (3-22)

where c, is a constant and can be calculated as:

2
Tt e N ( i ) * 4Jfcc

(3-23)

Note that the right-hand side of Eq. (3-21) has the form of (0,0, c ,) . Using the right-hand 

rule of the V X operator, Wt , the i th element of the vector W  

(=  (W,,W2, - • ■ ,W(, - • ■ ,WL)r ) must have the form of (0,0, W,) , such that Eq. (3-21) can be

correctly equated. In other words, the vector potential function W  can be directly treated as a 

scalar function, denoted as W  = (Wj ,W2,---,Wi ,---,WL)T . We also note that each side of Eq.

(3-21) has two zero components. Therefore, although Eq. (3-21) is a vector equation, it can also 

be considered as a scalar equation.

Expanding both sides of Eq. (3-21), we obtain a new linear equation (see Appendix D):

S 2W  = C  (3-24)

where S 2 is an L x L  sparse element matrix, W  is the L x l  vector to be calculated,

C  = (-C j , - c 2, • • • , - c i ,••• , - c L )T is an L x l  vector, which can be computed using Eq. (3-23).

Once W = (WX,W2, -■ ■ ,Wt, -■ ■ ,Wn )t is obtained, V i ,V x W t can be easily calculated 

as follows:
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V i,V x W . =

i j  k

d / d x  d / d y  d / d z0 0 w,
= 0  w j d y f i  -  (d w j d x )]  = ( V ^ ) 1 (3-25)

where X is the orthogonal operator. Eq. (3-25) states that the divergence-free component of a

2-D input vector field t, is equal to the co-gradient field of a scalar potential function W ,

which is determined by Eq. (3-24).

Eq. (3-25) also shows that, although V x  is a 3-D operator, the third component of

V x W  is zero, and hence V x W  can be directly treated as a 2-D field. Based on this fact, in 

the later context, we use (V W ) 1 to replace V x W .

3.1.4 Computing the harmonic remainder

As discussed above, a simplified 2-D DHHFD can be expressed as:

I  = V E  + ( W ) 1 + R  (3-26)

Note that all fields are 2-dimensional. The harmonic remainder, R  , can be easily solved by the 

relationship R — ^  — V E  — (V W )1 .

3.2 Properties of the 2-D DHHFD

In Section 3.1, we have presented the theory of the 2-D DHHFD-RTG We now discuss 

three important properties of this algorithm in the following.

Property-1: The element matrices S t and S 2 are determined by the gradients of the basis 

functions, and are independent of the input vector field.

When irregular grids are used, S { and S 2 are obtained by expanding the left-hand sides 

of Eqs. (3-13) and (3-20), respectively, and they are explicitly determined by the gradients of 

the piece-wise linear basis functions (i.e., V ^ ) and the areas of the elements (i.e., Ak ). If
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regular grids are used, the matrices S x and S 2 can be obtained by expanding the left-hand 

sides of Eqs. (3-14) and (3-21), respectively, and they are determined only by the gradients of 

the piece-wise linear basis functions V $ iJc . As expressed in Eq. (3-8), each is

determined by an Ak and the coordinates of the corresponding triangle vertices. Note that

V 0 jk , Ak and the coordinates of the triangle vertices depend on the adopted grids.

Consequently, once the image domain Q  is triangulated, the two element matrices can be 

constructed independent of the input vector field.

Property-2: The two element matrices Sl and S 2 are identical, i.e., S l = S2-

It has been proved in Appendix D that in the case of using RTG, the two element matrices, 

S, and S 2 , are identical to each other. We now prove that this relationship is also valid in the 

case of using ITG

Mimicking the derivation of Eq. (D -l) presented in Appendix D, we can simplify the 

left-hand side of Eq. (3-20) as:

Vi, Z [ V 0 l ix ( V x W ) l JAt = - k  £ [ V ^ . ( W ) , K  (3 -2 7
Tt e N ( i )  Tke N ( i )

It can be easily observed that strong similarity exists between the left-hand side of Eq. 

(3-13) and the right-hand side of Eq. (3-27). Note that the left-hand side of Eq. (3-13) can be

expressed as S 1E ,  and hence the right-hand side of Eq. (3-27) can be also expressed as kS'2W , 

with S 2 =  —S l . Correspondingly, the right-hand side of Eq. (3-20) can be expressed as:

Tt e N ( i )  Tkz N ( i )

where

42

i j k

W J y 0

4 0

\  = kc i (3-28)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(3 -29)

Choosing S 2 = —S'2, and equating Eqs. (3-27) and (3-28), we arrive at S 2W  =  C again. 

This formulation is consistent with Eq. (3-24). However, the L x l  vector

also identical when ITG is used. Same results can also be obtained using other type of grids 

(e.g., regular rectangular grids and irregular rectangular grids). In other words, independent of

the type of the used grids, the two element matrices 5) and S 2 are always equal to each

other.

This property implies that we only need to construct one of the two element matrices, thus 

the computation speed can be improved.

Property-3: The rank of the two element matrices, S) and S 2 , is L - 1 ,  where L  is the 

total number of the vectors.

To prove this property, we first consider the simplest vector field with 3 vectors. The nodes 

and the only triangle are labelled as shown as Fig. 3-3.

C  =  [ -  q  —c 2, • • • ,—c i , ------c j  is determined by Eq. (3-29). Therefore, Sx and S 2 are

1. (xp y j

2 . (x2, y2) 3. (x3, y3)

Figure 3-3. The simplest vector field with only 3 vectors.

It can be easily shown that
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!
<1 v ^ n ■ ^021 V^n <1

1

~E i
Vi, X V f e ■(VE)kAk = A x

>

•V ^ ^021 • V ^ • y  <j)3 j e 2
TkeN(i)

1 <1 > ■Vft, <1 > ■V 2̂1 <1 • _ A .

4 A

1

S 12 __
1 1 1

•^21 S 22 *^23 e 2 =

I S 32 S 33_ £ 3 .
4 A

SXE

where

1̂1 =  (>3 “  y 2 ) ( > ,3 - y 2) +  (X2 “  X3 )(X2 ~  X 3 )
% = ( y 3 -  y2 ) (yi  - y 3) + ( x 2 - x 3 )0 3 - *i)
1̂3 = (y3 - y 2 )(y2 -yi) + ( * 2 - *3 )<X - *2)

^ 2 1  =  O l  -  J 3 X X  ~ > ' 2 )  +  ( ^ 3  -  *1  ) 0 2 -  X 3 )
2̂2 = (y 1 “ ̂sX̂l - y3) + (*3 ~Xl ) ( X 3 ~ X1)

*̂23 = (^1 ~ >3 )(y 2 “ Jl ) +  (*3 “ *1 X*1 “ *2 )
^31 = (y2-yi')(y3-y2)+(xi - ^ 2) 0 2 - * 3)

3̂2 = (y 2 — X^i - y 3) + (*i ~ x 2)(x3 - * i )

s 33 = ( y 2 - y i ) ( y 2 - y i ) + (x i - x 2) 0 i  - *2)

Note that,

^31 — _ (^11 "h ^ 2 1 )  > ^32 ~  ~ (^ 1 2  ^22 )  ’ ^33 — ~~(^13 3" ^23 )

or

s3 = - O i + s 2) (3-30)

where ^  = [sn , sn , ], s2 = [s21, s22, ^ 3  ] , and s3 =  [s31, sn , s33 ] are the three row vectors

of S x. As seen in Eq. (3-30), s3 can be expressed as a linear combination of 5̂  and s2. In 

other words, the rank of S x is 2 .
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This phenomenon can be explained using simple geometry. Let us investigate the 

degree-of-freedom (DOF) of the scalar potential function E  built on an irregular triangular 

mesh. As shown as Fig. 3-4, the triangles ElE 2E 3 and E[E2E3 define two piece-wise linear 

potential functions E  and E ’ , respectively, and E'  = E  + D  (where D  is an arbitrary 

constant). Because V E  = V (E  + D) = WE ' , there exist a family of piece-wise linear potential

functions E  minimizing the distance D(E)  in Eq. (3-10). Therefore, the potential function 

E  can shift along with the vertical axis. Therefore, the DOF of the potential function E  is 1.

1

2

Figure 3-4. The DOF of the potential function built on a triangle.

Let us further consider the case that there are two irregular triangles, and correspondingly, 

four vectors, on the image domain Q . In Fig. 3-5, the piece-wise linear potential function E  

is highlighted as E XE 2E 3E A. Based on above discussion, the DOF of the triangle EXE 2E 3, as

well as that of the triangle E lE 3E4, is also 1. Because the triangles E XE 2E 3 and E lE 3E A

are constrained by the same edge EtE 3, there is no relative movement between them. This

constraint reduces the total DOF of the potential function E  by 1. The total DOF of the 

potential function can be calculated by:

DOF(E)  =  D O F (E xE 2E s ) + D O F (E xE 3E A )  - 1 =  1 + 1 - 1 =  1

We can keep adding new triangular grids on the image domain Q , and corresponding new
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potential triangles, such that the above case can be extended to a vector field with arbitrary 

number of vectors. In this way, it can be easily shown that, no matter how many vectors are 

presented in the vector field, the DOF of the potential function E  is always 1, and the whole 

potential surface can shift along the vertical axis. This fact proves that the rank of the element 

matrix is L - l ,  where L  the total number of the vectors.

2

3

Figure 3-5. The DOF of the potential function built on two triangles.

The Property-1 commonly exists in all instances of FEM. It tells us that we can constmct offline

the element matrices, S l and S 2 , without any prior knowledge about the input vector field.

However, the Property-2 has not been reported by others. According to this property, we only

need to construct one of the two element matrices, i.e., S l or S 2 . The Property-3 has been

implicitly exploited by Polthier et al. [48, 49], and Tong et al. [50]. To obtain unique 

decomposition of a given vector field, these researchers forced the potential values at the nodes 

on the boundary of the given vector field to be zeros. However, their methods implies that the

rank of Sx is significantly smaller than L . This conflicts with our derivation. The potential

values of El and are set to zeros, respectively, in our implementation, such that unique 

solutions to Eqs. (3-10) and (3-16) can be obtained.
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3.3 Details of the proposed algorithm

In previous sections, we have presented the theory and three properties of the 2-D DHHFD. 

In this section, we present the details of the 2-D DHHFD-RTG algorithm. The flowchart of the 

algorithm is shown in Fig 3-6. The details corresponding to different sub-blocks are presented in 

the following subsections.

grid generation

Calculate V $

Calculate E  and W

Calculate R

Construct S 2, 3 ,  C

Calculate V E  and ( V f f i )

Figure 3-6. The flowchart o f the 2-D DHHFD-RTG

3.3.1 Automatic generation of RTG

The RTG can be easily generated from the regular rectangular grids, which are often used 

in motion estimation algorithms. Let us first investigate the relationship between the nodes and 

the holes of the regular rectangular grids.

Fig. 3-7 shows a regular rectangular grid scheme. Several nodes and several rectangular

holes are labelled by italic numbers and circled italic numbers, respectively. The i th node
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indicates the left-top comer of the rectangle r . It can be easily verified that the following 

relationship satisfies:

r  —1
i -

M  - 1
* M  + m o d (r - 1 , M  - 1 )  +1 (3-31)

where \ n \  is defined as the largest integer smaller than the real number n , and m od (m,n) 

is defined as m - n * [ to /n \ .

M+l

M

© ©
©

i 0
0

(N-1)*M+1

(N-l)*M+2

2M
M*N

Figure 3-7. The relationship between nodes and holes of the regular rectangular grids.

If the rectangle r is divided into two triangles, as shown as Fig. 3-8, the vertices of the 

two newly generated triangles must be:

( i ,  i  +  M  + 1 ,  i  +  M  ) and ( i , i + 1 ,  i  +  M  + 1 )

i+M

i+1 i+M+1

Figure 3-8. Two newly generated triangles and their vertices.
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N o te  th a t  th e  se q u e n c e  o f  th e  v e rtice s  o f  e a c h  tr ia n g le  m u s t c o m p ly  w ith  th e  an tic lo ck w ise

rule.

For a vector field with M x N  vectors, there must be (M  - 1 )  * ( N  - 1 )  rectangular

holes, and hence 2 * (M  - 1 )  * (N  - 1 )  triangular holes. The nodal numbers keep unchanged.

The vertices of all newly generated triangular grids are stored in a Grid Table, and the 

nodal coordinates of the grids are stored in a Node Table. In the Grid Table, each row indicates 

the three vertices of a triangle. In the Node Table, each row gives the coordinates of a node in 

the image coordinate system. For a simple vector field with 3 x 3  vectors (see Fig. 3-13), the

relationship between these two tables is shown in Fig. 3-9. The 9 nodes are denoted as (x t , y ,) , 

where i e  [1 ,9 ] .

The 1st triangle ------►

The 2nd triangle------►

The 3rd triangle------ ►

The 4th triangle ------►

The 5th triangle ------►

The 6th triangle ------►

The 7th triangle ------►

The 8* triangle------►

1 5 4

1 2 5

2 6 5

2 3 6

4 8 7

4 5 8

5 9 8

5 6 9

V s /

The Grid Table

* i y i

* 2 y 2

*3

X4

*5 ? 5

x 6 y&

X-i y i

x% y s

x 9 y 9

  The 1st node

■<------  The 2nd node

■<------  The 3rd node

  The 4th node

  The 5 node

m  The 6th node

  The 7th node

  The 8th node

  The 9th node

\ /

The Node Table

/

Figure 3-9. The relationship between the Grid Table and the Node Table.
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3.3.2 Calculation of V0,.

Based on the Grid Table and the Node Table, the gradients of the piece-wise linear basis 

functions can be easily calculated using Eq. (3-8). A Basis Gradient Table is also built to

store the calculated V <j)i . The Basis Gradient Table is a 3-D table with a dimension of 

TN  X 3 X 2 , where TN = 2*  (M - l ) * ( N - l )  is the total number of the triangular holes. Fig. 

3-10 shows the two-level structure of the Basis Gradient Table. Each level of the Basis Gradient 

Table corresponds to one component of the 2-D vector V^,. ( =  [ ( V ^ , (V 0 .) ]) . Tables 3-2a

and 3-2b show the detailed mapping of the Basis Gradient Table for a vector field with M x N  

vectors. Table 3-2a maps (V</)i )x , and Table 3-2b maps (V <j)i ) .

Level 1

Level 2

Figure 3-10. The two-level structure of the basis gradient table.

Each row of the Basis Gradient Table corresponds to a triangle. In the Basis Gradient Table, 

the subscripts i ,  a , and b in a row point to the three vertices of a corresponding triangle, 

and the same subscripts i , a ,  and b in different rows points to different vertices of different 

triangles. The Basis Gradient Table is the most important data source for the construction of the

element matrices, 5) and S 2 , and the two vectors, B  and C .
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Table 3-2a. The first level o f  the B asis G radient Table.

( V ^ 2) , y ^ ) x

(V *n ) ,

9 9 0 9 9 0

y  $b,™ )*

Table 3-2b. The second level of the Basis Gradient Table.

( V ^ ) y ( V ^ , ) y

(V0i2) y y  ̂b2\

Wi3), ( V ^ 3) , y

•  99 •  •  9 9 9 9

(V 0itTN ) y

3.3.3 Construction of the element matrices S 1 and S 2

It can be easily observed that the element matrix S x (or S 2) contains L  rows and L

columns, and each row can be constructed by expanding the left-hand side of Eq. (3-14) around 

a node. The non-zero columns in an expanded row correspond to all the nodes belonging to the 

triangles in the set N ( i ) .

To understand this better, let us scrutinize the neighborhood of the 5th node in the vector 

field with 3 x 3  vectors as shown in Fig. 3-11. The set N(5)  contains 6 triangles, i.e. Tx,

T2, T3, T6, r 7 , and T%, and hence there are 7 nodes belonging to these triangles, i.e. nodes 1,
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2, 4, 5, 6, 8, and 9. This implies that there must be 7 non-zero columns, i.e. columns 1, 2 ,4 , 5, 6, 

8, and 9, in  the 5th row of the element matrix S x. Therefore, the 5th row of the element matrix

corresponding to the vector field with 3 x 3  vectors must have the form of [ s51, s52, 0, s54, 

.s53, s56, 0, 55g, s59 ], where each s5j with j  e  [1,2,4,5,6,8,9] represents a non-zero 

number.

7

8

9

Figure 3-11. The neighborhood of the 5th node in a vector field with 3 x 3  vectors.

To automatically determine the non-zero numbers in the 5th row, let us look into Fig. 3-11 

again. Note that the 1st node simultaneously belongs to triangles 1 and 2. From Appendix B, we

know that s51 -  V 051 • V 0n + V ^52 -V<f>l2 = ^W (j )5k • V <plk . Similarly, the 2nd node is also
TteN( 1)

a neighboring node of node 5, and it simultaneously belongs to triangles 2 and 3. We have also 

known that s52 = V 052 • V (j)n  + V <p52 ■ V 023 =  ^  V 0 5jt • V (j)2k . Comparing the two
TkeN( 2)

expressions of s51 and s52, we guess a general expression for all non-zero numbers in the 

element matrix Sx as:

Sij “  ' ^ ^ j k  (3-32)
TteN(j) v

52

4
1

2

3
6
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where node i is the reference node, node j  is a neighboring node of the node i , N ( j )  is 

the set containing all triangles immediately adjacent to the node j .

The correctness of Eq. (3-32) can be easily verified by all non-zero numbers in the element 

matrix Sj corresponding to the vector field as shown in Fig. 3-11. Eq. (3-32) results in an

efficient algorithm for constructing the element matrix S j . This algorithm is presented in Table

3-3 using pseudo code.

Table 3-3. The algorithm for constructing the element matrix S j .

//  Algorithm for construction o f  the element matrix 5j 

N (i) <t= All triangles containing the node i ;

N N (i)  <= All nodes belonging to the triangles in iVYi); 

F oreachnode J  in N N (i)  loop

N (J ) <= All triangles containing the node J  ;

For each triangle £  in N (J )  loop

F etch V  and V  in the basis gradient table,

% <= Sv + V & k V &fr’

End loop;

End loop;

I! End ofthe algorithm

3.3.4 Construction of vectors B  and C

It has been discussed that the two vectors, B  and C , are determined not only by the

gradients of the piece-wise linear basis functions (i.e., V (j)ik), but also by the input vector field.
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Before these two vectors are constructed, it is necessary to build an Average Vector Table to 

store 4k , which is defined by Eq. (3-2). The Average Vector Table is a 2-D table with L  rows 

and 2 columns as shown in Fig. 3-12. The two columns store the two non-zero components of 

the 4k (=  ( 4 ^ , 4 ^ ) ) ,  respectively, and each row corresponds to a triangle on the image domain 

O . The algorithm for constructing the vector B  can be directly developed from the right-hand

side o f Eq. (3-14), i.e., Vi,  • 4k • Table 3-4 gives the algorithm written in pseudo
Tke N ( i )

code.

The triangle

The 2rd triangle

Figure 3-12. The mapping of the Average Vector Table.

The vector C  can be easily constructed using the formula:

V i , c , = -
Tke N ( i )

The algorithm for constructing the vector C  is shown in Table 3-5. Note that the algorithms 

for constructing the vectors B  and C can be easily combined into one algorithm.
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Table 3-4. The algorithm for constructing the vector B

//Algorithm for construction ofthe vector B

<= All triangles containing the node i ;

bt <= 0;

For each triangle k  in N (i)  loop

F etch V  /pa, from the basis gradient table; 

Fetch from the average vector table;

hi <i= b t +  V & - & ;

End loop;

//End of algorithm

Table 3-5. The algorithm for constructing the vector C .

//Algorithm for construction ofthe vector C  

N (i)  <= All triangles containing the node i ;

ct <= 0;

For each triangle k  in N (i)  loop

Fetch V  <pik from the basis gradient table;

Fetch from the average vector table;

<= c t - - ( V ^ ) , ^ ] ;

End loop;

//End-o f-algorithm*'
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3.3.5 Calculation of E ,  V is , IV, and (VIV)1

Because the rank of Sl is always equal to L  — 1, there are infinite potential functions,

which are able to minimize D(E)  in Eq. (3-10). To obtain unique solution, E x is set to 0.

Let S r , E r and B r be an ( L - l ) x ( L - l )  matrix, two ( L - l ) x l  column vectors, and 

they are respectively defined as:

[ e A  \b,~\
(3-33)

where X x represents a l x ( L - l )  row vector, and X 2 is an (L  — l )x l  column vector. It 

can be easily solved that E r — S r lBr . Thus, using E l — 0 , E  can be expressed as:

sn X x ~e ; bi
Si = , E  = , and B  =

x 2 s r _ A . B r

E  =
0

E,

Re-organize E  back into a M x N  matrix, such that

0  F  . . .  F

E% E m+2

E m E 1m "M * N

Note that L  = M  * N  . E  can be visualized as a discrete surface, which is called 

curl-free potential surface in this thesis. Vis can be calculated using a discrete gradient 

algorithm, e.g., the well known finite difference method.

In the same way, we also define a (L  — 1) x  1 column vector Cr such that

C =

and hence W  can be expressed as:

0

(3-34)
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with Wr =  S r 1C r .

Once W  has been calculated, it is also re-organized back into a 2-D matrix, i.e.,

'  0 w M +1
.. w

y r (N - l ' )* M + l

w 2 wVVM + 2
.. w

( N - l ) * M + 2

Wu w
2*M w M * N

Correspondingly, VW  = [(VWr) Jt.,(V W ) ] can be also easily calculated, and (V W )1 

can be expressed as [ ( V tf ) ; , - ( V F ) J .

As mentioned in Section 3.1, the harmonic remainder, R  , can be obtained with

R - ^  — (V is) -  (V IV )1 . However, due to the denominator (=  d e t(5 r ) ) in S ~x, there often

exists a scaling factor k  between (Vis) + (V IV )1 and £  . In this case, Eq. (3-26) is 

adjusted as:

|  =  k ( 7 E )  + ^ (V l? )1 + R  (3-35)

hence,

R = i - k ( V E ) - k ( W W ) 1 

with r being defined as:

I
k = (3-36)

(V £ ) + ( W ) X
I max

where - is the magnitude field of a vector field, and -I is the largest number in the
ii ii it Umax

magnitude field.

Theoretically, the field R should simultaneously satisfy V - R =  0 and V X R = 0 . 

However, due to the computational errors, in practice, there often exist a few divergence

components and a few rotational components in the field R  . To address this problem, we can

further decompose the “harmonic” remainder R  into three components such that more
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accurate results can be obtained.

3.4 Computational complexity of 2-D DHHFD

In this section, we calculate the computational complexity (CC) of the proposed algorithm 

(i.e., 2-D DHHFD-RTG), and compare it with the 2-D DHHFD-ITG Note that the CC of the

2-D DHHFD is mainly determined by the construction of the two element matrices, Sx and

S2 , the two vectors B  and C , and the computation of the vectors E  and W  (see the 

flowchart shown in Fig. 3-6). In fact, the CC for computing the vectors E  and W  is fixed, 

provided that S j (or S2), B  and C  are known. Therefore, we only need to investigate the

CC of the construction of Sl (or S2 ), B  and C  in the two implementations. In the later

text, we use CCSi+RTG, CCB+RTG , and CCc+RTG to denote the CC for constmcting Sx, B  ,

and C  based on RTQ respectively. We also use CCSi+ITG , C C g+/rG , and CCc+rrc to

denote the CC for constructing Sx, B , and C  based on ITQ respectively. The improvement

in the computational efficiency of the 2-D DHHFD-RTG over the 2-D DHHFD-ITG is then 

quantitatively evaluated.

3.4.1 Computational complexity of the 2-D DHHFD-RTG

In the case that RTG is used, the element matrix Sx is constructed from the coefficients of

the left-hand side of Eq. (3-14), the vector B  is constructed from the right-hand side of Eq. 

(3-14), and the vector C  is constructed from the right-hand side of Eq. (3-21). To easily

investigate the CC of the construction of the matrix Sl based on RTG let us start from the

simple case that a vector field with 3 x 3  vectors is decomposed. Fig. 3-13 shows the RTG in 

this case.
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8

9

Figure 3-13. Decomposition of a vector field with 3 x 3  vectors based on RTG

It can be easily observed (see Appendix B) that each element of the matrix S r has 

different number of terms (NOT), depending on the topology of the grids. The NOT of all 

elements of the matrix S 1 can be mapped as a diagonal-symmetrical Term-Mapping Matrix 

(TMM):

2 1 0 1 2 0 0 0 0

1 3 1 0 2 2 0 0 0

0 1 1 0 0 1 0 0 0

1 0 0 3 2 0 1 2 0

2 2 0 2 6 2 0 2 2

0 2 1 0 2 3 0 0 1

0 0 0 1 0 0 1 1 0

0 0 0 2 2 0 1 3 1

0 0 0 0 2 1 0 1 2

Either the 1st node or the 9th node belongs to 2 triangles, respectively, so they are grouped 

together, called class-2 nodes in this thesis. Each of the 3rd node and the 7th node belongs to 1 

triangle, and they are called class-1 nodes. A class-3 node, i.e. the 2nd, 4*, 6th, or the 8th node, 

belongs to 3 triangles, respectively. The 5th node belongs to 6 triangles, and hence it is called a 

class-6 node. In the above TMM, the rows corresponding to the nodes in the same class contain
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the same number of terms. For example, either row 1 or row 9 has 6 terms, either row 3 and row 

7 has 3 terms, each row among rows 2, 4, 6, 8 has 9 terms, and row 5 has 18 terms.

We also note that each term in Sy (an element of the matrix 5 ,)  only contains a “dot

production”, which is equal to 2 multiplications and 1 addition (see Eq. (B -l) in Appendix B),

and in each element of S t , there are totally 2 * NOT  multiplications and 2 * NOT  - 1

additions. Therefore, in the above TMM, either row 1 or row 9 has 6*2=12 multiplications and 

(2*2-1)+(2* 1-1 )+(2* 1-1 )+(2*2-l)=8 additions. Likewise, either row 3 or row 7 has 3*2=6 

multiplications and (2*1-1 )+(2* 1-1 )+(2* 1-1 )=3 additions, each row among rows 2, 4, 6, and 8 

has 9*2=18 multiplications and 13 additions. Row 5 has 18*2=36 multiplications and 29 

additions. This rule can be summarized in Table 3-6.

Table 3-6. CCSi+RTG for decomposing a vector field with 3 x 3  vectors.

Class o f nodes Number of rows Multiplications Additions

2 2 12*2=24 8*2=16

1 2 6*2=12 3*2=6

3 4 18*4=72 13*4=52

6 1 36*1=36 29*1=29

TOTAL 9 144 103

Similarly, it can be shown that the vector B  contains 2*2=4 multiplications and 3 

additions for a class-2 node, 2 multiplications and 1 addition for a class-1 node, 6 

multiplications and 2*3-l=5 additions for a class-3 node, and 2*6=12 multiplications and 

2*6-1=11 additions for a class-6 node, respectively. This rule is summarized in Table 3-7.

The vector C  contains 2*2=4 multiplications and 3 subtractions for a class-2 node, 2 

multiplications and 1 subtraction for a class-1 node, 6 multiplications and 2*3-1=5 subtractions 

for a class-3 node, and 2*6=12 multiplications and 2*6-1=11 subtractions for a class-6 node, 

respectively. According to the point of view of binary computation, the subtraction is equivalent
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to the addition. Hence, we can obtain a computational rule for constructing vector C identical 

to Table 3-7.

Table 3-7. CCB+RTG or CCc+RTG for decomposing a vector field with 3 x 3  vectors.

Class o f  nodes Number of rows Multiplications Additions

2 2 4*2=8 3*2=16

1 2 2*2=4 1*2=2

3 4 6*4=24 5*4=20

6 1 12*1=12 11*1=11

TOTAL 9 48 49

We now extend the above computational rules to the case that a vector field with M  X N  

vectors is decomposed. The first node and the last node on the image domain O  are class-2 

nodes, the other two comers are class-1 nodes, all nodes on the boundary except for the four 

comers are class-3 nodes, and all other nodes are class-6 nodes. Correspondingly, the CC for 

constructing the full matrix S v  i.e. CCSi+RTG, can be summarized as Table 3-8.

Table 3-8. CCS+R1G for decomposing a vector field with M x N  vectors.

Class of nodes Number of rows Multiplications Additions

2 2 12*2=24 8*2=16

1 2 6*2=12 3*2=6

3 2*(M+N-4) 36*(M+N-4) 26*(M+N-4)

6 (M-2)*(N-2) 36*(M-2)*(N-2) 29*(M-2)*(N-2)

TOTAL M *N 36*(M-1)*(N-1) 29*M*N-32*M-32*N+34

The construction of a full vector B  and the construction of a full vector C  have the 

same CC, and they are simultaneously summarized as table 3-9.
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Table 3-9 . C C B+RTG or C C c+RTG for decomposing a vector field with M  X N  vectors.

Class o f  nodes Number of rows Multiplications Additions

2 2 4*2=8 3*2=16

1 2 2*2=4 1*2=2

3 2*(M+N-4) 12*(M+N-4) 10*(M+N-4)

6 (M-2)*(N-2) 12*(M-2)*(N-2) ll*(M -2)*(N-2)

TOTAL M*N 12*(M-1)*(N-1) ll*M *N~12*M-12*N+22

Thus, to construct the element matrix S j and two vectors B  and C  , the total 

computational complexity is CCRTG = CCSj+RTG + CCB+RTG + CCc+RTG , which is summarized 

in Table 3-10.

Table 3-10. CCRTG for decomposing a vector field with M x N  vectors.

Number of multiplications 6 0 * ( M  - 1 ) * ( N  -1)

Number of additions 5 1 * M * N - 5 6 * M - 5 6 * N  +  78

3.4.2 Computational complexity of the 2-D DHHFD-ITG

Let us assume that a vector field with M x N  vectors is decomposed based on ITG To be 

convenient for comparison, we use the same topological structure as the RTG As an example, 

Fig. 3-14 shows the topological structure of the ITG used for decomposing a small vector field 

with 9 vectors. Note that the topological structure is exactly identical to that shown in Fig. 3-13. 

It can be easily shown that different topological structures may have different TMM, but the 

entire CC is fixed for decomposing a particular vector field based on ITG
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6

Figure 3-14. Decom position o f a small vector field with 9 vectors using ITG.

In this case, the linear equations, S XE  =  B  and S 2W  =  C , are derived from Eqs. (3-13) 

and (3-20), respectively. Each term in stj contains the area of the corresponding triangle, so 

there are 3 multiplications and 1 addition in each term of stj. Based on this recognition, when 

ITG is used, the CC for constructing Sx can be summarized as Table 3-11.

Table 3-11. CCŜ+!TG for decomposing a vector field with M x N  vectors.

Class of nodes Number of rows Multiplications Additions

2 2 18*2=24 8*2=16

1 2 9*2=12 3*2=6

3 2*(M+N-4) 54*(M+N-4) 26*(M+N-4)

6 (M-2)*(N-2) 54*(M-2)*(N-2) 29*(M-2)*(N-2)

TOTAL M*N 54*(M-1)*(N-1) 29*M*N-32*M-32*N+34

In this situation, the CC for constructing B  or C  can be summarized in Table 3-12.
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Table 3-12. C C B+!TG or CCc+ITM for decomposing a vector field with M x N  vectors.

Class o f  nodes Number of rows Multiplications Additions

2 2 6*2=12 3*2=16

1 2 3*2=6 1*2=2

3 2*(M+N-4) 18*(M+N-4) 10*(M+N-4)

6 (M-2)*(N-2) 18*(M-2)*(N-2) ll*(M -2)*(N-2)

TOTAL M*N 18*(M-1)*(N-1) ll*M*N-12*M-12*N+22

Because the areas of all triangles may be different, we need compute the areas of all 

triangles. According to Eq. (3-7), a triangular area can be computed by two multiplications and

1 addition. Note that in the level of binary computation, the subtraction is equivalent to the 

addition. Furthermore, because the division by 2 is equivalent to a right-shift-by-1 -bit machine 

instruction, which is usually extremely fast, the CC of the division by 2 is ignored. For

decomposing a vector field with M x N  vectors, 2*  (M  - 1 ) * (N  - 1 )  triangles are needed

to triangulate the image domain Q . Therefore, the CC for calculating the areas of all these

triangles, denoted as CCA , is 4 * (M  — 1) * (N  — 1) multiplications and

2 * (M  — 1) * (JV — 1) additions.

Without knowing the property-2 of the 2-D DHHFD (i.e., Sl = S 2), S2 will also have to 

be constructed. The CC for constructing S2 is identical to that for constructing S). In this 

case, the entire CC for constructing Sx, S2 , B  and C , denoted as CCn c , is equal to 

CCSi+!TG T CCŜ +1TG + CCB+ITG + CCc+1TG + CCA . Table 3-13 presents C C .

With knowing Sx = S 2, the construction of S 2 can be ignored. In this case, the total CC 

for constructing Sx , S2 , B  and C , denoted as CC'ITG , is equal to 

CCSi+ITG + CCB+1TG + CCc+JXG + CCA. Table 3-14 presents CC^-G .
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Table 3-13. CCITM for decom posing a vector field with M x N  vectors.

Number of multiplications 148 * (M  -1 )  * (TV -1 )

Number of additions 8 2 * M  * N - 9 0 * M  -  9 0 * N  + 112

Table 3-14. CC'^q for decomposing a vector field with M x N  vectors.

Number of multiplications 94 * (M  - 1) * (TV - 1 )

Number of additions 5 3 * M  * N  - 5 8 * M  - 5 8 * N  + 78

3.4.3 Comparison of CC of the Two Implementations

The CC of the 2-D DHHFD-RTG and the 2-D DHHFD-ITG is compared in Table 3-15.

Because the property-2 (i.e., S) = S 2) has not been reported, we only focus on the comparison 

between CCITG and CC RTG.

Table 3-15. Comparison of the CC of the two implementations.

Algorithms Number of multiplications Number of additions

2-D DHHFD-ITG 148 * (M - 1 ) *  (N  -1 ) 8 2 * M * N - 9 0 * M - 9 0 * N  + U 2

2-D DHHFD-RTG 6 0 * ( M - 1 ) * (N -1 ) 5 1 * M * N - 5 6 * M - 5 6 * N  + 78

The entire CC of each implementation should include the inversion of the matrix S r and

the multiplications of S~l by vectors B  and C , respectively. Our practices prove that these 

steps are so fast that they can be ignored in computational analysis. Therefore, the CC of each of 

the two algorithms can be roughly represented by the construction of S Y (or S 2), B  , and C . 

Numerous simulations have also proved that the proposed algorithm (i.e., 2-D DHHFD-RTG)
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can save nearly 60% computational time, compared to the 2-D DHHFD-ITG if without knowing

S l = S  2 .

Assume that the CC of the 2-D DHHFD is mainly determined by the multiplications, the 

improvement of computational efficiency of the 2-D DHHFD-RTG over the 2-D DHHFD-ITG 

can be theoretically calculated as:

ratio = 9 £ m - ^ c m  „ = J * i  =  0 .5 9 4 5  =  5 9 .4 6 %
CCITG 148*(M  148

where the “ratio” represents the improvement of computational efficiency.

It should be pointed out that we implement the 2-D DHHFD-RTG using Matlab 

programming language. If another professional programming language, such as C/C++, is used,

the construction o f 5 ,, B , and C  will be very fast. In this case, the computational time of

inversion of S r , and the multiplications of S r by B r and Cr may not be ignored. Thus,

the improvement of computational efficiency may be much less than the theoretical limit (i.e., 

60%).

3.5 Performance evaluation

To guarantee the correctness of the proposed algorithm, a synthetic vector field is 

decomposed. This experiment is presented here in details such that the overall flowchart of the 

algorithm (shown in Fig. 3-6) can be better understood.

_  2 _  2

We first create a potential function z  = xe x y , which is graphically shown in Fig. 3-15a. 

The gradient of z , i.e. V z , is a curl-free field shown as Fig. 15b. The co-gradient of z , 

(V z)1 , is a divergence-free field shown as Fig. 15c. A complex field , shown as Fig. 15d, is

generated by adding the two synthetic fields Vz and (V z)1 , i.e., E, =.Vz + (V z)1 . In this

experiment, there are 2 1 x 2 1  motion vectors in the motion field, so L  = 21 * 21 = 441.

The goal is to extract the curl-free component field V E  and the divergence-free field
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(V W )1 from  the synthetic complex field £  , and then compare them with the synthetic 

curl-free field, V z , and the synthetic divergence-free field (V z)1 , respectively.

^CMfs ' A \ \
J i * / ■■ / < \ W*> i x

X A/ ? i j t i j  > A A V C T W o o

X X

a. The synthetic potential function

f  * ?
J f  ?  *
S' f  <
t i  ■*.

•. * j w *■

V X w  < 
'  *

: v >
• » f  ** i* i

t l - ' i s
t  J 
* r-r *- f S

c. The synthetic divergence-free field

• S . % * > *
^ • v  V f *•

i- •*. *v
‘ «**  ̂ ' Vs -V

* S \  \

h. The synthetic curl-free field

? x
X 1X * 1
\ \  X\  \  ^
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-  ^
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t  i

/ r

d. The synthetic complex field

Figure 3-15. Generation of a synthetic complex field.

Step 1: Construct the 4 4 1 x 4 4 1  element matrix S 1, the 441x1  vectors B  , and C . Hence, 

by using Eqs. (3-33) and (3-34), the 4 4 0 x 4 4 0  matrix S r , and the 4 4 0 x 1  vectors B r 

and Cr can easily be generated. Thus, S~x can be calculated.

respectively.

Step 3: Form the two 441x1  vectors E  and W  using E  =

i ; ' b and Wr = s;lc

' o  ” '  o '

and W =
A . A .
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respectively. Re-organize them back to two 21x  21 matrices, i.e.,

'  0 ^ 2 2 •• F 421 ~ 0 ^ 2 2  ' • • w 421

E =
E2 E23 . .  JZ

422

and
^ 2 3  •

.. w
422

.-^ 2 1 Ea2 1 I ^ 4 2  " I
These two potential matrices are graphically presented in Figs. 3-16a and 3-16b.

Step 4: Calculate V E  and VW  . Convert V W  into (V W )1 using

(V W )1 = [ ( V W ) ,,- ( V W ) 1]. Compute = (VE) + (V W )1 . V E , ( V W ) 1 , and are

shown in Figs. 3-16c, 3-16d, and 3-16e, respectively.

Step 5: Compute the scaling factor k  using

k  =

In this experiment, k  =  5.3685.

Step 6: Obtain the harmonic remainder R  using R = £  -  k(VE )  -  fc(VW)1 =  -  k £ ' . The

obtained harmonic remainder is shown as Fig. 3-16f.

It can be observed that the recovered potential functions E  and W  (shown as Figs.

3-16a and 3-16b) have almost the same shapes as the given potential function z (shown as Fig.

3-15a). However, compared to the potential function z , the potential functions E  and W

have been automatically scaled by l / k  due to the denominator in the S~l . Fortunately, the

locations of extrema do not shift. This guarantees the specified critical points (i.e., sources, 

sinks, and rotational centers) in the component fields are consistent with the ground truth.

When magnified by the scaling factor k , the recovered curl-free field V E  ,

divergence-free field (V W )1 , and the complex field (shown as Figs. 3-16c, 3-16d, and

3-16e, respectively) are almost identical to the synthetic curl-free field V z , the synthetic

divergence-free field (V z)1 , and the synthetic complex field q (shown as Figs. 3-15b, 3-15c,
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and 3-15d, respectively). This proves the correctness of the proposed 2-D DHHFD-RTG 

algorithm.

v-

a. Re c overe d p otential function E b. Recovered potential function W

c. Recovered curl-free field V E d. Re c overe d divergenc e-fre e field (V W) X

e. Recovered complex field £ f. Harmonic remainder

Figure 3-16. Decomposition of a synthetic complex field.
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N o te  th a t  th e  sy n th e tic  co m p lex  f ie ld  t, d o es  n o t c o n ta in  an y  h a rm o n ic  te rm , an d  h en c e

the resulting R should be zero. However, because of computational errors, we obtained a 

nonzero R  with very small magnitude. Fig. 3-16f has been magnified by 30 times.

3.6 Summary

In this chapter, a simplified implementation of 2-D DHHFD is demonstrated in details. We 

first re-derive the 2-D DHHFD based on RTG, such that the proposed implementation can be 

directly applied to analyze the motion field extracted from two consecutive image frames. Next, 

three important properties of the 2-D DHHFD are presented. We then expose all details of the 

implementation, including several crucial data structures and algorithms. Afterwards, the 

computational complexity of two implementations of the 2-D DHHFD is analyzed, and the 

improvement of computational efficiency of the proposed algorithm over the implementation 

based on ITG is quantitatively evaluated. Finally, to verify the correctness of the proposed 

algorithm (i.e., the 2-D DHHFD-RTG), a synthetic complex motion field is decomposed. The 

results of this experiment show that the proposed algorithm can be efficiently applied for video 

analysis.
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Chapter 4

Cardiac Video Analysis

In Chapter 3, we have presented the theory and the implementation details of the 2-D 

DHHFD-RTG In this chapter, we apply this algorithm to analyze the cardiac electrical patterns. 

Section 4.1 presents the flowchart of the overall techniques used for cardiac video analysis. 

Section 4.2 presents the performance of the anisotropic diffusion equation. Section 4.3 presents 

the performance of the OFCE-based motion estimation algorithm. The performance of the 

motion decomposition technique is evaluated in Section 4.4. Experimental evaluations are 

presented in Section 4.5. Finally, the detection of critical points is presented in Section 4.6.

4.1 The f lo w c h a r t  of the overall framework

Using the optical mapping method, a large amount of cardiac video data has been acquired. 

Fig. 4-1 shows 4 cardiac videos that are briefly described in Table 4-1. The images a(»), b(®), c(») 

and d(«) belong to video-1, video-2, video-3, and video-4, respectively. These four videos will 

be analyzed and compared in order to understand the conduction properties of the heart tissue 

and the mechanisms of the ventricular tachyarrhythmias.

The cardiac electrical patterns are morphologically similar to cloud, water, or forest fire. 

Hence the evolution of the cardiac electrical activity is similar to the fluid motion activitly [62], 

Consequently, techniques for fluid motion analysis may be helpful for analyzing the turbulent 

propagation of the cardiac electrical signals.

In this chapter, we present a novel framework to analyze the cardiac electrical patterns 

using the proposed 2-D DHHFD-RTG Fig. 4-2 shows the flowchart of the overall framework. 

All sub-blocks are detailed in the following sections.
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a(i) a(ii)
Frame-19 of video-1 Frame-20 of video-1

b(i) b(ii)
Frame-54 of video-2 Frame-55 of video-2

c(i) c(ii) d(i) d(ii)
Frame-170 of video-3 Frame-171 of video-3 Frame-370 of video-4 Frame-371 of video-4

Figure 4-1. Image frames sampled from 4 cardiac videos.

Table 4-1. Brief description o f the four videos.

Video 1 Video 2 Video 3 Video 4

Subjects

Left ventricle 

of an isolated 

mouse heart

Left ventricle 

of an isolated 

rat heart

Left ventricle 

of an isolated 

pig heart

Left ventricle of 

an isolated pig 

heart

Signals Pacing Pacing VF
Shock failure of 

VF

Video length (frames) 999 2733 999 2303

Frame rate (fps) Unknown 1029 838 2667

Image size (pixels) 157x146 157x145 150x132 157x159

Targeted area (cm2) Unknown 0 .8 x 0 .7 8 5 x 5 5 x 5

Motion artifacts No Yes No No
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Noisy image sequence

Smoothed image sequence

Estimated motion fields

Curl-free and divergence-free potential surfaces, 
and decomposed motion components

Detected critical points

Motion decomposition

Critical point detection

Motion estimation

Image smoothing

Figure 4-2. Flowchart of the overall framework.

4.2 Image smoothing

It is observed in Fig. 4-1 that the cardiac videos are generally very noisy. Hence, these 

cardiac videos must be de-noised before further processing. In Section 2.4, several image 

smoothing techniques have been presented. In this thesis, we use the anisotropic diffusion 

equation (Eq. (2-7)) to smooth the noisy cardiac image sequences.

The anisotropic diffusion equation has been used to smooth the noisy cardiac videos 

presented in Fig. 4-1. Table 4-2 presents the parameters in our experiments. Note that we use

c2( x , y , s )  (Eq. (2-6b)) as the diffusion function. The cardiac electrical patterns, rather than

their boundaries, are our primary targets of interest. For the four test videos, the iteration 

numbers of the anisotropic diffusion equation are 65, 45, 50, and 65, respectively. Fig. 4-3 

shows the smoothed counterparts of the image frames shown in Fig. 4-1.
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Table 4-2. The parameters o f the discretized anisotropic diffusion equation.

K A Diffusion function

25 0.2 c2(x, y , s )  = l + ~  | |V / ( i , ) . , i ) f
K

-l

a(i) a(ii) b(i) b(ii)

c(i) c(ii) d(i) d(ii)

Figure 4-3. Smoothed image frames obtained using the anisotropic diffusion equation. The 

original noisy images are shown in Fig. 4-1.

To compare the performance of the anisotropic diffusion equation, we have also smoothed 

the four image sequences using three cascaded Gaussian lowpass filters. The standard 

deviations of the three Gaussian filters are 4, 5, and 7, respectively. Fig. 4-4 shows the results of 

the cascaded Gaussian lowpass filters.
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a(i) a(ii) b(i) b(ii)

a(i) a(ii) b(i) b(ii)

Figure 4-4. Smoothed image frames obtained using three cascaded Gaussian lowpass filters. 

The original noisy images are shown in Fig. 4-1.

Comparing Fig. 4-3 and Fig. 4-4, it can be inferred that the anisotropic diffusion equation 

provides a better performance. The ansiotropic diffusion equation not only filters out the strong 

noise and dilutes the heterogeneities in the images, but also enhances the boundaries of the 

pattern regions.

4.3 Motion estimation

According to the classification proposed by Kambhamettu et al. [62], there are eight 

categories of motion: rigid motion, articulated motion, quasi-rigid motion, isometric motion, 

homothetic motion, conformal motion, elastic motion, and fluid motion. This classification is 

very important for accurate motion estimation because each class of motion has its own 

particular physical constraints. For instance, the fluid dynamics constraints have been applied to
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cloud motion field recovery from image sequence [63 - 66]. Unfortunately, as the true 

mechanisms behind the cardiac tachyarrhythmias are not yet known completely, it is very 

difficult to develop a physical model for the motion estimation of the cardiac electrical events.

Although the cardiac electrical patterns are morphologically similar to cloud, the motion 

estimation techniques for cloud images cannot be directly applied to extract the conduction 

velocity field as the true mechanisms of the cardiac electrical signals are very different from 

cloud. Schunk [68] and Nagel [67] argued that for fluid motion, the motion field should be 

closely related to the density change of the targeted object. According to their perspectives, the 

brightness of the cloud image should exponentially change with the divergence of the cloud. 

Bereziat et al. [66] presented a physical interpretation of this property of the cloud image with 

the assumption of total brightness preservation. However, the density of the heart cells is 

believed not to change dramatically over time, and hence the brightness variation of the cardiac 

electrical patterns is independent of the density of the heart tissue. As mentioned in Section 2.1, 

the neighboring heart cells are excited almost in the same way. The transmembrane action 

potentials of all heart cells roughly comply with the “all-or-nothing” property. Consequently, the 

brightness variation of a pixel in the cardiac data is approximately the same as that of a 

neighboring pixel. This implies that the total brightness of the cardiac electrical patterns do not 

preserve since the number of the excited heart cells keeps changing.

The similarity between two consecutive image frames in the cardiac videos can be 

quantitatively evaluated using the cross-correlation coefficient (CCC) between two patterns. 

The peak cross-correlation coefficient between two patterns is defined as:

where a  is the cross-correlation coefficient, l x (x, y)  and I 2( x , y ) are the two images, 

(jc, y)  is a spatial location, and /q  and ju2 are the mean values of the two images.

a  = (4-1)
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The CCC corresponding to the four image pairs shown in Fig. 4-3 are presented in Table 

4-3. Note that the similarity between the consecutive image frames is very high.

Table 4-3. CCC between the four image pairs shown in Fig. 4-3.

Image pairs a(i) and a(ii) b(i) and b(ii) c(i) and c(ii) d(i) and d(ii)

CCC 0.9931 0.9930 0.9955 0.9939

In extreme cases, e.g. in some VF videos, the CCC between two consecutive images may 

be very small. This violation of the similarity is resulted from the strong motion discontinuities 

in the VF videos. Before a mature theory of VF mechanisms is completely verified, we have to 

make some approximation. In this thesis, we assume that the spatial smoothness constraint is 

roughly satisfied for all cardiac electrical patterns.

Two properties of the cardiac electrical patterns can be summarized as follows. First, the 

brightness variation of a single pixel is independent of the density of the heart tissue, and the 

total brightness of the cardiac electrical patterns does not preserve. Secondly, a high similarity 

exists between two consecutive image frames, and hence the image motion is relatively slow. As 

a result, in most pixel locations, the spatial smoothness of the motion vectors preserves, and the 

temporal smoothness is always satisfied.

Based on the two properties of the cardiac electrical patterns, we use the OFCE-based 

motion estimation algorithm to extract the motion fields of the cardiac electrical patterns. Note

that the trade-off factor X  in Eq. (2-12) can be any real number in the range [0,+°°). It is not

easy to choose an appropriate X . Hence we slightly modify Eq. (2-12) and Eq. (2-16) as 

follows:

P(u,v)  = J { X ( I xu + 1 yv + 1 , ) 2 +(  1 - X) [ (u  - u f  + (v — v)2]}dQ ( 4 _2 )

Q

where X  e [0,1], and
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K  =  I 2x + I 2y + { j - l )  (4 -3 )

In [51], the Eqs. (2-16a) and (2-16b) were implemented by locally embedding the temporal 

smoothness constraint into the computation of I x and / .  The overlapping of this processing

results in high computational complexity. In our implementation, we treat I x and I y only as

spatial gradients of pixel brightness without considering the local temporal smoothness 

constraint.

In this thesis, we introduce a global temporal smoothness constraint to speed up the 

computation without losing too much accuracy. The global smoothness constraint is achieved as 

follows. For a fixed location (x ,y )  in the image domain O ,  the motion vector (u.,v) at

(x, y)  varies with frame number (i.e., time), and hence, it is a function of time, i.e.,

( m, v )  = (u(t),  v ( f) ) . A typical u =  u(t) is plotted as the dotted curve in Fig. 4-5. Note that u

fluctuates significantly over time, and the temporal smoothness constraint is violated. We use a 

12th order polynomial (shown as the solid curve in Fig. 4-5) to fit the u component of the 

motion vector in the sense of least square. Similar processing is also applied to obtain a 

temporally smoothed v component.

“  A3 -4

—  Without tempers! smoothness
—  With temporal smoothness

360 370 380 3SQ 400
Frame number

Figure 4-5. The global smoothness constraint.
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By using the OFCE-based algorithm, the motion fields are estimated from the four 

smoothed image pairs (shown in Fig. 4-3) and shown in Fig. 4-6. As a comparison, the 

performance o f the BMA is presented in Fig. 4-7.

Comparison between Fig. 4-6 and Fig. 4-7 shows that the OFCE-based algorithm performs 

better than that of the BMA for the cardiac electrical events. Note that the motion vectors 

represent the conduction velocity of the cardiac electrical signals. The distribution of the 

estimated motion vectors in different directions matches well with the visual observation. We 

need further verifications to guarantee that the estimated motion vectors match the real 

conduction velocities of the cardiac electrical signals.

Fig. 4-8 shows a pacing signal in video-4. Due to the heterogeneity of the heart tissue, the 

cardiac signals propagate like an elliptic wave. The ratio of longitudinal speed vl (i.e. the

velocity in the long axis direction) to the transverse speed vt (i.e. the velocity in the short axis 

direction) is an important parameter to describe the conduction property of the heart tissue. 

When the video-4 was acquired using the optical mapping method, we also measured v, and

vt using the multi-electrode mapping method. The measured longitudinal speed v, and the

transverse speed vt are in the ranges 1 - 1.5 mm/ms and 0.5 - 0.8 mm/ms, repectively. The

ratio v j v t is in the range 1.3 - 3.

In Fig. 4-8, the longitudinal speed v , , the transverse speed vt , and their ratio are

approximately 1.2 mm/ms, 0.65 mm/ms, and 1.85, respectively. These results match well with 

those obtained from the multi-electrode mapping method.

We have also compared several other motion fields estimated from other episodes of the 

video-4 with the results obtained using the multi-electrode mapping method. This comparison 

has verified that the OFCE-based motion estimation algorithm can provide satisfactory 

performance for cardiac video analysis.
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a. M otion field for image pair in Fig. 4 -1(a) b. M otion field for im age pair in Fig. 4 -1(b)

c. Motion field for image pair in Fig. 4 -1(c) d. Motion field for image pair in Fig. 4-1(d)

Figure 4-6. Motion fields obtained using the OFCE-based algorithm.
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Figure 4-7. Motion fields obtained using the BMA for the four image pairs shown in Fig. 4-1.
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Figure 4-8. The local m otion field o f a pacing signal in Video-4.

The results of our experiments have also verified two important assumptions made in [42]: 

(i) the conduction velocities of the cardiac electrical signals vary across the heart surface; (ii) 

the conduction velocity of the cardiac electrical signal sampled at a fixed location may vary 

dramatically over time.

4.4 Motion decomposition

In this section, we use the proposed 2-D DHHFD-RTG algorithm to decompose the four 

estimated motion fields shown in Fig. 4-6. Our objective is to visualize the different motion 

components in the four videos such that the motion components can be easily observed.

The first experiment is to decompose the motion field shown in Fig. 4-6a, which belongs to 

video-1. This video describes a single pacing wave without motion artifacts. Fig. 4-9 shows the 

estimated motion field and its three components. Fig. 4-9b shows that the curl-free component 

captures most motion features of the input motion field. Although it is difficult to distinguish the 

pure rotational component (i.e., the divergence-free component) from the input motion field, the 

decomposed divergence-free component (Fig. 4-9c) clearly shows that the pure rotational 

component in the pacing signals cannot be ignored. Fig. 4-9 also demonstrates that three 

dominant rotational regions are extracted. The harmonic remainder (Fig. 4-9d) is relatively 

weak, compared to the curl-free component. Note that this component may also contain the
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residual curl-free component and divergence-free component because of the computational

errors.
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Figure 4-9. Decomposition of the motion field shown in Fig. 4-6a.

The second experiment is to decompose the motion field shown in Fig. 4-6b. This video 

(video-2) records a pacing wave that is propagating outwards from the pacing center. Note that 

this video contains strong motion artifacts. Fig. 4-10 shows the input motion field and its 

decomposed components. Similar to the previous experiment, the curl-free component (Fig. 

4 -10b) captures the most motion features of the input motion field. The divergence-free
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component (Fig. 4 -10c) shows that a few pure rotational region are successfully separated from 

the input motion field. Compared to Fig. 4-9d, Fig. 4-10d appears more chaotic. This may be 

resulted from  the strong motion artifacts in the video-2.

f f

t  t  /

s y s *S S / S S S / /  / / / / / s ' S t ' s ' - -\ I / s / s y / s / s / s  i j /
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a. The input motion field b. The curl-free component

c. The divergence-free component, 

magnified by 1.37 times

d. The harmonic remainder, 

magnified by 1.59 times

Figure 4-10. Decomposition of the motion field shown in Fig. 4-6b.

The previous two experiments deal with simple pacing waves. The third experiment 

investigates a complicated case - decomposition of the motion field shown in Fig. 4-6c. The 

input motion field and its decomposed components are shown in Fig. 4-11. The divergence-free 

component (Fig. 4 - llc )  shows that the cardiac electrical pattern is slowly rotating anticlockwise.
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This rotation can be easily perceived using human eyes.
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c. The divergence-free component d. The harmonic remainder

Figure 4-11. Decomposition of the motion field shown in Fig. 4-6c.

Let us investigate a more complicated situation. The fourth experiment decomposes the 

motion field shown in Fig. 4-6d, which describes the chaotic cardiac electrical activity during 

YF. The input motion field and its decomposed components are shown in Fig. 4-12. Several 

abnormal excitation spots are clearly captured in the curl-free component (Fig. 4-12a). The 

divergence-free component (Fig. 4 -12c) clearly shows that strong rotational components exist in 

this video.
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a. The input m otion field b. The curl-free com ponent

c. The divergence-free component d. The harmonic remainder

Figure 4-12. Decomposition of the motion field shown as Fig. 4-6d.

The four experiments qualitatively show that the behavior of the heart becomes chaotic if 

the pure rotational component of the cardiac electrical pattern is strong.

4.5 Motion analysis

In previous section, we have presented the decomposition of four estimated motion fields 

of the cardiac electrical patterns. In this section, we quantitatively investigate the relationship 

between the heart behavior and the decomposed motion components.
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To quantitatively analyze the different contributions of the different motion components to 

the heart behavior, especially the VF, we define the total kinetic energy of a motion field as:

E k = y) + v 2{x, y)]
(jr,y)sQ

(4-5)

Let us denote the kinetic energy of the curl-free component and the kinetic energy of the 

divergence-free component as E e and E f , respectively. We also define the strength ratio

rE as the ratio of E f  to E f , i.e.,

r
E ~ E cfr ,K

(4-6)

These three quantities corresponding to the four experiments presented in the previous 

section can be easily calculated, and they are summarized in Table 4-4.

Table 4-4. E% , E f , and rE corresponding to the four experiments.

Experiment 1 2 3 4

Description Pacing
Pacing with 

motion artifacts
VF

VF with strong 

chaotic motion

£ c/ 6440 10960 1351 1829

F dfc , K 1622 2408 910 1523

r E 0.2519 0.2197 0.6734 0.8336

For the hearts belonging to different animals, the kinetic energy of the same type of motion 

component may differ greatly due to the conduction properties of different heart tissues. Hence, 

it is difficult to describe the heart behavior only using the kinetic energy. Fortunately, the

strength ratio rE seems to be able to provide useful information for description of the heart 

behavior. When rE is small, the cardiac electrical signals propagate with less rotational
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component than the pure expanding component. In this case, the pure expanding component is

the dominant component, and hence the heart beats normally. However, when rE becomes

large, the cardiac electrical signals propagate with strong rotational component, which 

contributes to the fast heart rate.

According to above analyses, we believe that there exists a critical strength ratio, denoted

as rEC . If rE «  rEC, the heart can be considered as healthy. However, if  rE »  rEC is not

true, a tachyarrhythmia is likely to happen to the heart.

It is unreliable to draw any final conclusions based on only four experiments. The existence

of the critical strength ratio rEC and the above hypothesis need to be validated by a large 

number o f experiments.

4.6 Critical point detection

It is well known that the critical points, such as sources/sinks, vortices, rotational centers, 

and saddle points, are crucial features of fluid motion, and hence it is important to detect the 

critical points of fluid motion for better understanding the fluid behavior. Phase portrait methods 

are often used to detect the critical points in fluid analysis [78 - 84].

As reviewed in Chapter 2, due to the similarity between the cardiac electrical patterns and 

the cloud, water, and the forest fire, traditional research methods for fluid analysis have been 

adopted by cardiologists. For example, Bray et al. [40] and Valderrabano et al. [41] applied the 

phase portrait based methods to detect the critical points in the cardiac electrical patterns. 

Efimov et al. [6] used the critical points to explain the mechanism of shock failure. Note that 

two different terminologies, “source” and the “vortex”, are frequently used to indicate the tip of 

a spiral wave in cardiology [33 - 37].

Although it has been hypothesized that the tachyarrhythimas might be caused by the 

breakup of the spiral waves in the heart tissue, in practice, it is very difficult to detect a spiral 

wave in an acquired cardiac video. As a result, it is almost impossible to directly detect the
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vortices from the cardiac data. Note that a vortex can be synthesized by a source/sink and a 

rotational center. In other words, we do not need to directly detect the vortices, if the 

sources/sinks and the rotational centers have been specified. In this thesis, the sources/sinks and 

the rotational centers are our primary concerns. Actually, from the acquired videos, the 

rotational motion of the cardiac electrical patterns can be easily perceived with human eyes. The 

rotational centers can be used to capture the regions containing pure rotational propagation of 

the cardiac electrical signals, and the lifespan of a rotational center determines the lifespan of 

the corresponding rotor. Moreover, as discussed in Chapter 2, periodicity exists in at least a part 

of the fibrillated heart data [24, 25, 35]. The periodicity of the cardiac electrical patterns can be 

reflected in the trajectories of the critical points. If the cardiac electrical activity is periodic, the 

trajectories of the critical points must also be periodic. It should also be pointed out that the 

pathological meanings of the saddle points are still not clear. Therefore, the vortices and the 

saddle points are ignored in this thesis. To avoid any confusion, we define the source/sink and 

the rotational center, which are known as critical points (or phase singularities) in cardiology 

literature, as follows.

A source is a point or a small region in the heart tissue where electrical signals propagate 

outward to the surrounding heart tissue.

A sink is a point or a small region in the heart tissue where electrical signals propagate 

inward from the surrounding heart tissue.

A rotational center is a point or a small region in the heart tissue around which the 

electrical signals rotate.

These definitions are coherent to the cardiological experiments, and have strict 

mathematical meanings. A source, a sink and a rotational center are illustrated as Fig. 4-13. It is 

observed the velocity at a critical point is zero.
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Figure 4-13. Illustration of a source, a sink, and a rotational center.

4.6.1 Criteria for detection of critical points

As mentioned in Chapters 2 and 3, an arbitrary motion field t, can be uniquely 

decomposed into three components: the curl-free component V E  , the divergence-free 

component (V W )1 , and the harmonic remainder R . Note that E  and W  are the scalar

potential functions of V E  and (V W )1 , respectively, and they can be visualized as two 

surfaces.

Because the velocity is zero at a critical point, the sources/sinks can be directly detected in 

the curl-free field V E  using phase portrait based methods (see Section 2.7). However, the 

phase portrait based methods generally require a large computational time. Fortunately, the 

potential function E  provides us a convenient way to detect the sources/sinks in the curl-free 

field.

When the potential function E  reaches an extremum at the location p  , dE/dx  = 0 and

dE-f dE -1
dE/dy  = 0  must be satisfied. In other words, the vector V E  ( =  i H j  ) at location

dx dy

p  must be zero. Hence, an extremum on the potential surface corresponds to a source/sink in

the curl-free field. Taking advantage of this observation and further analyzing the geometric 

structure of the potential function E , the sources/sinks can be quickly detected using the 

following criteria:
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i) The location p  is a source, if E ( p ) is a minimum;

ii) The location p  is a sink, if E ( p ) is a maximum. 

These criteria are illustrated in Fig. 4-14.

a b

Figure 4-14. Illustration of the criteria for detection of the sources/sinks, (a) A minimum on 

E corresponds to a source in V E ; (b) A maximum on E corresponds to a sink in V E

Similarly, the rotational centers in the divergence-free field can be detected using the 

potential function W . The criteria are given as follows:

iii) The location p  is an anticlockwise rotational center, if W( p )  is a maximum;

iv) The location p  is a clockwise rotational center, if W( p )  is a minimum.

These criteria are illustrated in Fig. 4-15.
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ba

Figure 4-15. Illustration of the criteria for detection of rotational centers, (a) A 

maximum on W corresponds to an anticlockwise rotational center in (V W )1 ; (b) A

minimum on W corresponds to a clockwise rotational center in (V  W ) 1

4.6.2 Coarse detection of the critical points

We have presented four criteria to detect the critical points from the extrema of the 

potential surfaces. We now present a few criteria to detect the extrema on a potential surface as 

follows:

v) The potential surface E  reaches a minimum at the location p  , if E ( p )  < E(q)  for 

each q is a neighboring node of p  ;

vi) The potential surface E  reaches a maximum at the location p , if E ( p )  >  E(q)  for 

each q is a neighboring node of p  ;

vii) The potential surface W  reaches a minimum at the location p  , if W ( p ) <W(q)  

for each q is a neighboring node of p  ;

viii) The potential surface W  reaches a maximum at the location p  , if W  (p ) > W ( q ) 

for each q is a neighboring node of p  .
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To simplify the analysis, in the above criteria, regular rectangular grids are used. The 

central node p  and its eight neighboring nodes (labeled as q t , i £  [1,8]) are illustrated in Fig.

4-16.

q 5
0  8

Figure 4-16. A central node and its eight neighboring nodes.

Let us apply the above criteria to detect the critical points in the motion components of the 

motion field shown in Fig. 4~6a. Fig. 4-17 shows the results of this experiment. The curl-free 

and the divergence-free potential surfaces (i.e., E  and W ) are shown in Figs. 4-17a and

4-17b, respectively. A  source and three sinks are detected in the curl-free motion component 

V E  as shown in Fig. 4-17c. Two anticlockwise rotational centers and three clockwise

rotational centers are also detected in the divergence-free component (V W )1 as shown in Fig.

4-17d. To observe the detected critical points clearly, we magnify two regions respectively 

surrounding a source and an anticlockwise rotational center. The two magnified regions are 

shown in Figs. 4-17e and 4-17f.
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a. The curl-free potential surface E
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f. The magnified region in panel d.

Figure 4-17. Coarse detection of the critical points. A “*” denotes a source, a “o ” denotes a 

sink, a denotes an anticlockwise rotational center, a “ 0”  denotes a clockwise rotational 

center, and a denotes a critical center obtained from visual observation.
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There are  several limitations of the critical point detection algorithm. First, too many 

critical points are detected. In the clinical experiment, only one pacing wire is set to contact the 

heart surface, and hence, only one source and no sinks should be detected. However, three sinks 

have been detected by the proposed algorithm. Likewise, in this experiment, the number of the 

rotational centers should be much less than detected. Secondly, as shown as Figs. 4-17e and 

4-17f, the detected critical points are not consistent with the visual centers (indicated as “A” and 

“B”, respectively). Note that all detected critical points are located at the mesh grids, at which 

the component vectors do not vanish. This violates the definitions of the critical points. In other 

words, the accuracy of the results is not very high, when the above criteria are directly applied 

to detect the critical points.

4.6.3 Fine detection of the critical points

As shown in previous subsection, there exists a discrepancy between a detected critical 

point and the true visual center. This discrepancy mainly results from three factors: the size of 

the grid, computational errors and the limitation of the discrete gradient algorithm.

As discussed in [51], the grids downsample the image domain, and they result in the

quantization error. If the size of a regular rectangular grid is A x x A y , the largest quantization 

error is — Ax X — Ay . This means that a detected critical point may deviate from its

corresponding visual center by -^-AxX-^-Ay (see Figs. 4-17e and 4-17f).

It is expected that the two potential surfaces are absolutely smooth. However, 

computational errors result in a few trivial extrema in the potential surfaces. These trivial 

extrema, which correspond to the trivial critical points surrounded by small vectors (see Figs. 

4-17c and 4-17d), do not deviate too much from the potential values of their corresponding 

neighbors. From the point of view of fluid dynamics, the behavior of the fluid is mainly 

determined by those dominant critical points surrounded by large vectors, rather than the trivial 

critical points. Thus the trivial critical points, or more essentially, the trivial extrema on the
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potential surfaces, should be removed.

The discrepancy between the detected critical points and the visual centers also arises from 

the discrete gradient algorithm. Theoretically, on a continuous potential surface E  , an 

extremum exists where dE/dx  = 0 and dE/dy = 0 satisfy. However, on a discrete potential

surface E , an extremum does not always correspond to the location where dE/dx = 0 and

dE/dy = 0 .  Fig. 4-18 demonstrates a discrete potential surface and its corresponding gradient

field. It can be clearly observed that the minimum corresponds to the detected source marked as 

“A”, rather than the visual center that is marked as “B”.

A«

B

Figure 4-18. The discrepancy between a detected source and its corresponding visual center.

To effectively remove the trivial extrema on a discrete potential surface, the surfaces is 

smoothed using the anisotropic diffusion equation. As presented in Section 2.4, the anisotropic 

diffusion equation does not shift the locations where the extrema occur. Fig. 4-19 shows two 

smoothed potential surfaces corresponding to Figs. 4-17a and 4-17b. In later of this chapter, the 

gradient field of the curl-free potential surface and the the co-gradient field of the 

divergence-free potential surface are called the smoothed curl-free field and the smoothed 

divergence-free field, respectively.
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a b

Figure 4-19. Smoothed potential surfaces using the anisotropic diffusion equation, 

(a) Smoothed version of Fig. 4-17a; (b) Smoothed version of Fig. 4 -17b

To improve the accuracy, the size of the grid has to be reduced. However, reducing the size 

of all grids globally results in the decrease of the efficiency. To balance the accuracy and the 

efficiency, a local coarse-to-fine pyramid is built to hierarchically search the critical points.

The hierarchical searching scheme is illustrated in Fig. 4-20. First, we find the coarse 

extrema on a potential surface using the criteria presented in Subsection 4.6.2. The location of a 

critical point corresponding to a coarse extremum can be straightforwardly specified. Note that 

this coarse critical point is often different from the visual center. We then locally insert a new 

grid node between two neighboring nodes in the 5 x 5  symmetrical neighborhood of the 

coarse critical point such that a local 9 x 9  neighborhood around the coarse critical point is 

generated. Hence, the size of each local grid is reduced. Based on the newly generated 9 x 9  

grids, another small potential surface can be built by bicubical interpolation (shown as the 

middle-layer surface in Fig. 4-20a). Re-searching the extremum on the newly built surface, a 

finer critical point can be located. This coarse-to-fine hierarchical searching scheme can be 

iteratively used till the discrepancy between the detected critical point and the corresponding 

visual center is small. A fine critical point is indicated as the lower point in Fig. 4-20b.

If the location of a coarse critical point is very close (less than 3 grid nodes) to the 

boundary of the potential surface (or more essentially, close to the boundary of the image), the
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5 x 5  symmetrical neighborhood cannot be used. In this case, a 3 x 3  symmetrical 

neighborhood, or another asymmetrical neighborhood can be chosen as an alternative. Three 

typical neighborhood configurations are shown in Fig. 4-21. To guarantee the smoothness of the 

newly generated surface, the bicubical interpolation is preferred.

A coarse extremum A fine extremum

a. The coarse-to-fine potential surface pyramid

A coarse critical point A fine critical point

b. Coarse-to-fine detection of critical point

Figure 4-20. Illustration of the hierarchical searching scheme.

Note that he bicubical interpolation may introduce a few new local extrema, and hence 

additonal critical points are generated. We only keep the extremum that satisfies following two 

conditions. First, the type of the newly detected extremum is same as that of the original coarse
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extremum. In other words, if  the original coarse extremum is a minimum (or a maximum), the 

newly detected extremum is also a minimum (or a maximum). Secondly, the location of the 

finer extremum is closest to the location of the original coarse extremum among all same-type 

candidates.

The discrepancy can be reduced by iteratively using the coarse-to-fine searching scheme. 

However, the discrepancy caused by the discrete gradient algorithm cannot be removed. 

Fortunately, when the size of the grid is small, the accuracy of the hierarchical searching scheme 

generally provides very good results.

a b c

Figure 4-21. Three typical neighborhood configurations for bicubical interpolation, (a) A 

5 X 5  symmetrical neighborhood; (b) A 3 X 3  symmetrical neighborhood; (c) An 

asymmetric neighborhood

4.6.4 Performance of the fine detection

In the previous subsection, we presented the method used in this thesis for critical point 

detection with high accuracy. This method contains two key techniques: the smoothing of the 

potential surfaces and a hierarchical searching scheme. In this subsection, we evaluate the 

performance of this method with four experiments.

In Experiment-1, the critical points are detected for the motion field shown in Fig. 4-6a. 

Note that the pacing source, essentially the small region where the pacing wire contacts the 

heart surface, is known in advance. Moreover, no motion artifacts interfere with the 

experimental results. The results of this experiment are shown in Fig. 4-22. The source is
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detected in the smoothed curl-free component of the given motion field as shown in Fig. 4-22a. 

Two anticlockwise centers and a clockwise center are deteceted in the smoothed divergence-free 

field as shown in Fig. 4-22b. Fig. 4-22c shows all detected critical points superposed on the 

corresponding smoothed image. The rotational directions around the detected rotational centers 

are also indicated by the dashed arrows.

a. The detected source b. The detected rotational centers

c. All critical points superposed on the smoothed image

Figure 4-22. Detected critical points in Experiment-1. Figs. (a) and (b) are obtained by the 

smoothed potential surfaces shown in Figs. 4-19a and 4-1%.
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The detected source matches very well with the pacing setting. We have also detected the 

critical points in other image frames of this video, and the results show that the proposed 

method can provide satisfactory performance. The largest error between the detected source and 

the pacing setting is less than 3 pixels. Direct visual observation also verifies the correctness of 

the detected rotational centers.

In Experiment-2, the critical points are detected for the motion field shown in Fig. 4-6b. 

This video records a pacing wave with strong motion artifacts. Fig. 4-23 shows the results of 

this experiment. The rotational directions of the cardiac electrical signals have been indicated by 

the dashed arrows in Fig. 4-23e.

The detected source matches satisfactorily with the pacing setting. Further tests of this 

video show that the largest error between the detected source and the pacing setting is less than 

5 pixels. The detected rotational centers match well with direct visual observation.
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i. The smoothed curl-free potential surface E b. The smoothed divergence-free potential surface W
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c. The detected source d. The detected rotational centers

e. All critical points superposed on the smoothed image

Figure 4-23. Detected critical points in Experiment-2.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In clinical practice, the source is often referred to a region rather than only one pixel. For 

the video-1 and the video-2, the detected sources are mostly within the regions where the pacing 

wires contact with the heart surface. Therefore, the proposed algorithm can provide satisfactory 

results.

To observe the behavior of the cardiac electrical signals during VF, we further investigate 

the detection of the critical points for the two motion fields shown in Figs. 4-6c and 4-6d. The 

motion of the cardiac electrical patterns in video-3 can be easily perceived with human eyes. 

Therefore, we detect the critical points in the motion field shown in Fig. 4-6c first. The results 

of this experiment (denoted as Experiment-3) are presented in Fig. 4-24. The detected critical 

points in this experiment match very well with the visual observation.

In Experiment-4, we detect the critical points for the motion field shown in Fig. 4-6d. The 

results of this experiment are shown in Fig. 4-25. Because the patterns in video-4 are much 

more chaotic than those in video-3, the critical points in this video cannot be directly 

distinguished. Hence, the results of experiment-4 cannot be verified with human eyes.

Although some cardiologists believe that the pathological changes in the heart tissue can 

introduce abnormal sources in the cardiac electrical patterns, short animation of the detected 

sources shows that not all of the detected sources are caused by pathological changes in the 

heart tissue. Some sources are temporarily formed by the interaction between the dominant 

source and the heterogeneity of the heart tissue. Similarly, some sinks and some rotational 

centers can also be temporarily formed in the same way. As a result, the number o f the detected 

critical points keeps changing. It is highly possible that some old critical points disappear, some 

new critical points generate, and meanwhile, some other critical points keep wandering. It is 

very difficult to locate them using other techniques, including clinical experiments. In other 

words, it is difficult to validate the results obtained in Experiment-4.
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a. The smoothed curl-free potential surface E b. The smoothed divergence-free potential surface W

c. The detected sources and sinks d. The detected rotational centers

e. All critical points superposed on the smoothed image

Figure 4-24. Detected critical points in Experiment-3.
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a. The smoothed curl-free potential surface E b. The smoothed divergence-free potential surface W
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c. The detected sources and sinks c. The detected rotational centers

e. The critical points superposing on the smoothed iamge 

Figure 4-25. Detected critical points in Experiment-4.
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4.7 Summary

In this chapter, we have presented a novel framework for cardiac video analysis. This 

framework contains four stages: image smoothing, motion estimation, motion decomposition, 

and critical point detection. The anisotropic diffusion equation has been used to smooth the 

noisy cardiac electrical patterns. The motion fields of the cardiac electrical patterns have then 

been estimated using the OFCE-based motion estimation algorithm. Next, the estimated motion 

fields have been decomposed using the proposed 2-D DHHFD-RTG Finally, we have detected 

the critical points in the motion fields using a hierarchical searching scheme.

Four experiments have been carried out to quantitatively analyze the decomposed motion 

components and evaluate the performance of the proposed techniques. The results of these 

experiments suggest that the heart behavior can be determined by the strength ratio of the pure 

rotational component to the pure expanding component of a motion field. If the strength ratio is 

large, a tachyarrhythmia may be introduced. The simulation results also show that the proposed 

framework provides satisfactory performance in detecting the critical points in the estimated 

motion fields.
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Chapter 5

Conclusions and Future Work

The VF is the main cause of sudden cardiac death in the industrialized world. Cardiologists 

believe that the VF is related to the turbulent propagation of the cardiac electrical signals. It has 

been hypothesized that the VF are introduced from a high-frequency electrical source, or from 

the breakup of a large spiral wave, or from multiple random wavelets in the heart, or from all of 

the above. To visualize and analyze the cardiac electrical signals, a voltage-sensitive dye is 

injected into the heart to convert the cardiac electrical signals into observable optical patterns. 

The optical patterns are then captured by a high-speed video camera. Although a large number 

of cardiac electrical patterns have been acquired, the analysis of the dynamic patterns is not very 

efficient.

In this thesis, we have proposed a novel framework to quantitatively analyze the acquired 

cardiac electrical patterns. This framework contains four stages: image smoothing, motion 

estimation, motion decomposition, and critical point detection. In the image smoothing stage, 

the anisotropic diffusion equation is applied to smooth the cardiac electrical patterns such that 

strong noise present in the acquired cardiac videos can be removed while the salient features in 

the image sequence can be preserved. In the motion estimation stage, the motion fields of the 

cardiac electrical patterns are estimated using the OFCE-based algorithm. In the motion 

decomposition stage, the proposed 2-D DHHFD-RTG algorithm is used to decompose an 

estimated motion field into three components: a pure expanding part, a pure rotational part, and 

a harmonic remainder. Thus, the contributions of the pure expanding part and the pure rotational 

part to the heart behavior can be directly observed. In the stage of critical point detection, the 

critical points, which can describe the structure of an estimated motion field, are detected with 

high accuracy using two potential surfaces and a hierarchical searching scheme. Compared to 

the traditional phase portrait methods that are based on the local pattern matching, the proposed 

framework is simpler, faster, and more efficient. The detected critical points not only provide
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important clues for therapy of the tachyarrhythmias, but also are helpful for understanding the 

cardiac dynamics.

Several experiments have been carried out to evaluate the proposed framework. The results 

of the experiments give rise to a hypothesis that a tachyarrhythmia is likely to happen to the 

heart when the strength ratio of the pure rotational component to the pure expanding component 

in a motion field of the cardiac electrical signals is significant. Our experiments also show that 

the detected critical points match well with the visual observations if the cardiac electrical 

patterns contain less chaotic motion. Theoretically, the proposed framework can also be used to 

analyze an arbitrary fluid flow.

5.1 Future work

This work can be extended along the following four directions:

A) To build a multi-scale parametric motion model, which can be used for target 

recognition, target tracking, and video indexing.

It is necessary to study the 2-D DHHFD in-depth. Note that the 2-D DHHFD implicidy 

provides a parametric model for complex image motions, such as deformable motion and fluid 

motion. The parameters of this motion model can include the critical points, the strength of each 

critical point, the area of the region around a critical point, and other salient features. It is well 

known that most meaningful salient features can be directly detected using the two potential 

surfaces. Therefore, the parametric motion model can be easily built. Moreover, fine-to-coarse 

potential surfaces can be obtained using the anisotropic diffusion equation in different scale to 

smooth the two potential surfaces (i.e., the curl-free potential surface and the divergence-free 

potential surface). Hence, smoothed motion components in different scale can also be obtained. 

In this way, the single-scale parametric motion model can be further extended to a multi-scale 

parametric motion model. Like other motion models [77, 87], this parametric motion model can 

also be used for target recognition and target tracking. The multi-scale parametric motion model 

can also be applied to video indexing [88].
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B) To synthesize the dynamic texture using the 2-D DHHFD.

A complex motion field can be generated by arbitrarily creating the critical points and their 

corresponding parameters. If a source image is available, a target image can be synthesized 

from the source image and the generated complex motion field. Based on this simple idea, the 

2-D DHHFD can also be used to synthesize the dynamic texture [89].

C) To develop a robust motion estimation algorithm, which can deal with the motion 

discontinuities and fast image motion.

The correctness of the proposed video analysis framework is mostly determined by the 

quality of the estimated motion fields, which cannot be verified in most cases. If the quality of 

the estimated motion fields is not satisfactory, the results of the framework are generally 

unacceptable. For example, the OFCE-based motion estimation algorithm assumes that the 

image motion must be spatially smooth. As a result, it does not perform well when applied to 

estimate the motion fields of a VF video with strong chaotic motion. In this case, the motion 

discontinuities cannot be correctly captured. Another limitation of the OFCE-based motion 

estimation algorithm is that it requires slow image motion. Hence, the sampling rate of the 

high-speed video camera has to be high.

It can be easily inferred that a robust motion estimation algorithm is strongly needed. The 

desired motion estimation algorithm must satisfy two conditions: (i) it is able to deal with the 

motion discontinuities in a cardiac video with strong chaotic motion; (ii) it can correctly 

estimate the fast image motion. The layered motion model [86] might be a possible solution for 

addressing this issue.

D) To remove the motion artifacts in an original cardiac electrical video such that the 

proposed framework can be used to analyze the electrical signals of the heart in vito

The proposed framework may not be directly used to analyze the cardiac electrical patterns 

with strong motion artifacts. The motion artifacts give rise to abrupt emergence or 

disappearance of some patterns. Therefore, if the motion artifacts exist, the estimated motion 

fields are likely to have errors. Furthermore, if the temporal sampling rate of the camera is not
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very high, the motion artifacts result in violation of the temporal smoothness constraint in the 

motion estimation algorithm. This limitation also implies that the proposed framework may not 

achieve satisfactory results when directly applied to analyze the electrical propagation of a heart 

in vivo. This challenging problem has been attracting great research interests, however, no 

breakthrough has been reported.
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Appendix A:

Derivation from Eq. (3-10) to Eq. (3-11)

In Subsection 3.1.2, we skipped several derivation steps from Eq. (3-10) to Eq. (3-11) for 

the sake of simplicity. Here, we present the details between Eq. (3-10) and Eq. (3-11).

We re-write Eq. (3-10) as follows:

Z )(£) = J | |V £ - f d a (3-10)

Applying the necessary condition dD /dEi = 0 to the distance function D (E )  defined as 

Eq. (3-10), and using Eq. (3-9a), we have:

f a ( V £ - | )
v ;-j BE,

. rd (V E )
Vi,J

{VE-%)da = o 

( V E - i ) d a  = 0

Vi,J-
3 (V 2 > ,£ ,)

;=1 ■ (v e -|)*K 2 = o

V*’J —

a ( X ( V ^ . ) E ;)

( V E ~ i) d Q  = 0

■ v z , J v $  - ( V E - i ) d a = o (3-11)
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Appendix B:

Expansion of Eq. (3-14)

In Subsection 3.1.2, we have presented that expansion of Eq. (3-14) can lead to a linear 

equation, Eq. (3-15). Here, we present the details of the expansion of Eq. (3-14) using a simple 

example. Eq. (3-14) is re-written as follows:

v i .  X V ^ ' ( V £ )* =  £ v < v i ,
TteN(i) Tt e N ( i )

(3-14)

Not losing generality, we first consider a simple vector field with 3 x 3  vectors. The 

triangulation o f this vector field is shown as Fig. B -l. All nodes are labelled by italic numbers, 

and all triangular grids are labelled by circled italic numbers.

4

0 ?

Figure B -l. Triangulation of a simple vector field with 3 x 3  vectors.

The 1st node has two neighboring triangles, i.e. Tx and T2, and hence N (  1) = {TpT^}. The 

left-hand side of Eq. (3-14) can be expanded as:

-(V£), = V(#„ -(VS), + V fe  .(V£),
7ieN( 11

= V A , ( v £ + V A 2 ' ( V 2 > , £ ; ) 2
;'= i j= i
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= V0U • + V041B4 + V^51B5) + V012 • (V ^ B , + V(j)22E2 + V^52B5)

= (V^n • V^n + V012 - V ^ ^ + C V ^  -V^22)B2 
+ (V ^  • V^41)B4 + (V ^  • V^51 + V012 ■ V^52)B5

For the 2nd node, iV (2) = {B2, T3, T4}, and therefore 

£ v &* • (V £), = V^22 • (VB)2 + V^23 • (VB)3 + ■ (VB)4
Tt e N ( 2 )

= V022 • (V^12B1 + V<j22E2 + V</>S2E5) + V023 • (V023B2 + V^53B5 + V063B6)
+ V̂ 24 • W 24B2 + V^34B3 + V ^ B 6)

= (V^22 - V ^ ^ i  +(V^22 -V^22 +V^23 -V^23 +V^24-V</>24)E2 +(V<p24 • V034)B3 
+ W 22 -V ^ 52 + V ^ 23 -V<t>53)E5 +(V<p23 -V<pm +  V 0 M -V 0m)E6

For the 3rd node, A^(3) =  {jT4 }. Therefore 

X V f c - ( V £ ) t =V«>M.(V £)4
r*sAT( 3)

= V ^ 4 -(V^24B2 +V^34B3+ V ^ B 6)

= (V^34 • V^24)B2 + (V^34 • V^34)B3 + (V^34 ■ V ^ )B 6 

For the 4th node, A^(4) =  {TX,T5,T6}.

XV<#„ • (V£), = VA, • (VE), + V015 ■ (VE), + V fc  • (VE)6
rteAT(4)

= V041 + V$41B4 +V^5lB5) + V<Z)45 • (V045B4 +'V<j)lsE1 + V085B8)
+ V^46 -(V^46B4 +V^56B5 + V^86B8)

= + (V041 • V041 + V045 • V(045 + V046 • V^46)B4
+ (V^4l-V^5l+ V ^  -V^56)B5 +(V^45 -V^75)B7 +(V^45 -v ^ + v ^  -v 8̂6)b 8

For the 5 th node, iV(5) =  {Tl ,T2,T3,T6,T1 ,T%) .

J V fe - fV E ) ,
r*eiV(5)
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= V 051 ■ ( V E \  + V052 • (V E )2 + V 053 • (V E ), + V056 • (VE)« + V 057 • (V E ) 7 + V 058 • (V E)g

= V 051 - (V 0 n £ , + V 0 41£ 4 + V051£ 5)h -V 0 52 - ( V ^  + V 022£ 2 + V 0 52£ 5)

+ V 0 53 ■ (V <p23E 2 + V 053£ 5 + V 063£ 6) + V 056 • (V 046£ 4 + V 056£ 5 + V 0 86£ 8)

+ V 0 57-(V 057£ 5 + V087£ g + V 0 97£ g) + V 058 -(V 05g£ 5 + V 06g£ 6 + V 098£ 9)

= (V051 • V 0U + V052 • V012)£ , + (V052 -V022 + V 0 53 -V 023) £ 2 + (V 0 51 -V041 + V 056 -V046)E 4 

+ (V051 ' V 0 51 + V 0 52 • V052 +V053 • V0J3 + V05g 'V 0 56 + V057 • V057 + V05g 'V 0 5g).E5 

+ (V053 -V 0 63 + V 0 58 •V068) £ 6 + (V 0 56 -V086 + V 0 57 -V087) £ 8 + (V 0 57 -V097 + V 058 ■ V098) £ 9

For the 6th node, 7/(6) = {T3,T4,TS} .

-(V £ ) 3 +  V ^ ( V £ ) 4 + V f c (V E ) ,
TteW( 6)

= V 0 63 -(V 0 23£ 2 +  V 053£5  + V 063£ 6) + • (V (t>u E 2 + V 0 34£ 3 + V 0 64£ 6)

+ V 0 68 ‘ (V 058£5 + ^ 068-^6 ^098^9 )

= (V 0 63 • V 0 23 + V 0 M ■ V 024) £ 2 +CV0 ,* • V 034) £ 3 + (V 0 63 • V 053 +  V 0 68 • V 0 58) £ 5 

+ (V 063 • V 063 + V0,* •V 064 + V 0 68 •V 06g) £ 6 + (V 0 6g -V 098)E 9

For the 7th node, 7 /(7) =  {r5}.

- (V E ), = V f s (V E )5 =V «i75 '(V 0 45£ 4 h - V ^ E ,  + V ^ E , )
Tt e N P )

= (V 075 • V 0 45 )E 4 +  (V 075. V 075)E 7 +  (V 075 ■ V 085 )E g 

For the 8th node, 7/(8) =  {F5, T6, T7}.

X  V 08, • (Vis)* =  V 085 • (V E ) 5 +  V 0 86 • (V£ ) 6 +  V 087 • (V E ) 7
7ieW(8)

= V 085-(V 0 45£ 4 +  V 075£ 7 + V 0 85£ 8) + V 086 -(V 0 46£ 4 +  V 0 56£ 5 + V 0 86£ 8)

+ V 087 • (V057£■ 5 + V 087£ 8 + V 097£'9)

=  (V 085 • V 045 + V 0 g6 • V 046) £ 4 +  (V 0g6 • V 0 56 + V 087 •V 057) £ 5 +  (V 0 85 • V 0 75) £ 7 

+ (V 085 -V 085 +  V 086 • V 086 + V 0 87 • V 0g7 )E g + (V 087 •V 097)£ '9

For the 9th node, ZV(9) =  {7), Tg}.
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.(V £ ), = V<4,, -(VE), + Vfc,(VE),
TksN(9)

= V ^ 97 • (V ̂ 57-Ej + V ^ iS g  + V  ̂ f i g  ) +  V îgg • (V ̂ 58 £5  +V(fi6SE 6 + V ̂ ggEg )

=  ( V  *097 ' ^ 5 7  + ^ ^ 9 8  ■ ^  ̂ 58 )-^ 5  +  ( ^ 0 9 8  ' ^ 6 8  ) ^ 6

+ (V ^97 - V ^ 7)£ 8 + (V ^ 97 - V ^ + V ^ g g  -V^gg )Eg 

Therefore, the left-hand side of Eq. (3-14) can be expressed as:

Vi. 2 > (1 .<V£),
neW(i)

*11 *12 0 *14 *15 0 0 0 0  " ' K

*21 *22 *23 0 *25 *26 0 0 0 e 2

0 *32 *33 0 0 *36 0 0 0

*41 0 0 *44 *45 0 *47 *48 0 E*

*51 *52 0 *54 *55 *56 0 *58 *59 e 5

0 *62 *63 0 *65 *66 0 0 *69 e 6
0 0 0 *74 0 0 *77 *78 0 E~i

0 0 0 *84 *85 0 *87 *88 *89 E$
0 0 0 0 *95 *96 0 *98 * 9 9 . A .

where

5u = V ^ i - V ^ i + V ^ 12- V ^ 2 

5i2 =  V ^12 ' V ^ 2  

Sj4 =  V * ,  ' V041

1̂5 = v ^ xi - V^51 + V 

*21 = ^^22 ’ ^^12

S22=V<P22 ^0 2 2  + V ^23 '^ 2 3  + V K  ' V ^24 

s 23=V<pu  - V ^
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$ 25 — V ^ 2  ' ^ 0 5 2  ‘ ^ 0 5 3

*26 =  V ^ 23 - V ^ 6 3  + V ^ 24 - V 0 m

*32 =  V ^ 3 4  ' V 02 4  

3̂3 =  V ^ 34 • V ^34

*36 =  V 0 34 - V ^ 64

*41 =  V ^ 4 1  ' ^ 1 1

*44 =  V ^41 ‘ V ^41 + V ^ 45 - V ^ + V ^  - V ^

*45 = V ^ 1  ' V 051 + V ^ 46 - V 0 *

*47 =  ^ ^ 4 5  ’ ^ 0 7 5

*48 =  V ^ 4 5  ‘ V ^ 8 5  +  V ^ 4 6  ' V  ̂ 86

*51 = V ^ 5 1  - V ^  + V ^ 52 - V ^ j  

*52 =  ^ ^ 5 2  ' ^ ^ 2 2  +  ^ ^ 5 3  '  ^ 0 2 3

*54 =  V ^5 1  - V ^ 4 1  +  V 0 5 6  ' V ^ 4 6

*55 =  ^ 0 5 1  ’ ^ 0 5 1  " * " ^ ^ 5 2  ’ ^ 0 5 2  ~ ^ ~ ^ 0 5 3  ' ^ 0 5 3  +  ^ 0 5 6  ' ^ 0 5 6  "*“ ^ ^ 5 7  ' ^ ^ 5 7  "*" ^ 0 5 8  * ^ 0 5 8  

*56 = ^ ^ 5 2  ‘ ^ ^ 6 3  ^ " ^ 0 5 8  ’ ^ ^ 6 8  

*58 = ^ ^ 5 6  ' ^ 0 8 6  “*“ ^ ^ 5 7  ' ^ 0 8 7  

*59 ~  ^ $ 5 7  '  ^ 0 9 7  ^ 0 5 8  ' ^ ^ 9 8

*62 =  ^ ^ 6 3  ’ ^ 0 2 3  ^ 0 6 4  ‘ ^ 0 2 4

*63 = V ^ 6 4  ‘ V ^ 4

*65 = V ^ 3  - V ^ 5 3  + V ^ 68 - V 0 *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



S 66 ~  ^ 0 6 3  ' ^ 0 6 3  ^ 0 6 4  ’ ^  0 (A + ^ 0 6 8  ' ^ 0 6 8

S 69 =  ^  06S  * V  ^ 9 8  

•S'74 =  ^ 0 1 5  ’ ^ 0 4 5

S 11 ~  ^ 0 1 5  ‘ ^ 0 1 5  

s1% — V<P15 • V 0 85

•S'84 =  ^ 0 8 5  '^045  "*" ^ ^ 8 6  ’^046 

•S’85 =  ^ 0 8 6  ’ ^ 0 5 6  "*■ ^ ^ 8 7  ’ ^ 0 5 1  

S81 = ^085 '^015

5 88 ~  ^ 0 8 5  ' ^ 0 % 5  "*■ ^ ^ 8 6  ’ ^ ^ 8 6  ^ 0 8 1  ' ^ 0 8 1

589 = V 081 ’ V 091

5 95 =  ^ 0 9 1  ' ^ 0 5 1  ^ 0 9 8  ' ^ 0 5 $

596 = ^  098 ' ^068

■Sgg =  V^g7 ‘V 0 87

S99 — V 0 91 • ^ 099  +  V ^ 98 •

It can be easily observed that Sj is only determined by the gradients of the basis functions

(i.e., V (j)ik), and it is independent of the input motion field.

Likewise, right-hand side of Eq. (3-14) can be expanded as:

Vi, b2 h  K  b5 K  bi b8 b9J  = B (B-2)
Tt e N ( i )

where

by — ^ 0 1 1  ' "f V ft, • ^
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h  = v ^ 4 - | 4

&4 =  V ^ 41 • l i  + V ^45 • | 5 + v ^  • | 6

b5 =V^51- £  +V^52 • | 2 + V053 • | 3 + V^56 ■ | 6 + V^57 • f 7 + V^58 • f8 

K  = V 0 63-1 3 + V ^ 64 • | 4 + V & 8 • | 8 

i»7 = V^75 ‘

= V ^85 ' l 5 + V ^86 • Ifi +  V ^87 * l 7 

&9 = V^97 • ̂ 7 + V^98 •

Note that the vector 5  is determined by both the gradients of the basis functions V (f)ik

and the input motion field £k .

Equating Eq. (B -l) and Eq. (B-2), we obtain Eq. (3-15) as follows:

= B  (3-15)

Similarly, for a motion field with M  x N  motion vectors, expanding both sides of Eq. 

(3-14) will always lead to Eq. (3-15).
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Appendix C:

Derivation from Eq. (3-17) to Eq. (3-18)

In Subsection 3.1.3, we jumped directly from Eq. (3-17) to Eq. (3-18). Here, we present the 

details of the  middle steps.

Let us first rewrite Eq. (3-17) as below:

’a ( V x W )
Vi, J aw; ■(VxW-£) dQ = 0 (3-17)

Note that Eq. (3-17) contains three scalar equations, i.e.,

’a(VxW)
V i,}

Q

V i,J
a

V i.J

d w a

d (V x W )

a ( V x w )  

a IE,

• (V xW -£)

• (V x W - f )

■ (V x W -|)

dQ = 0

dQ = 0

dQ = 0

where Wu , Wiy, and Ŵ z 316 the three components of Wt . Now, let us focus on 

Using Eq. (3-9b), we have

V X #  =  V x(5 )<W ) =  £ [ ( V # . ) x W ;  +^(VxWi)]

= £ [  (V^oxw;.]

a ( v x w )

a#.

/=i

/=i

?=i

i j  £

( y & )x w , ) ,  w , . ) ;

w * ^  w .

u

= s
1= 1

y<t>i)y -t W , ) ,
+  &

% ' Wiz
~ j

w,, Wiy
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= X { [ ( V ^ ) ^ - ( V ^ - W  ^ K m ^ - c v ^ w ; , ]  1 +l(y(pi)xw iy- ( V 0 i)yw j  k}
i~l

where (V $,•)*> ( V , and (V <jii ) z are the three component of V (j>i . Hence,

3(VxW ) _
dWix

d ( V x W ) _

aw;,,
3(VxW )

aw.
Let r  =  ( r * , r  , r z) and <1> be two arbitrary 3-D vector, and 4> is defined as:

3(VxW) r  3(VxW) r  3(VxW) r
a w . aw„ aw,

Then,

<W = W i) I r , - ( v ^ ) , r l

= - ( v ^ ) zW + ( v ^ ) , r z

It can be easily observed that 

<3? = -(V  ̂  ) x r

(C-l)

(C-2)

By replacing F with ( V x W - f )  and using formulas (C -l) and (C-2), Eq. (3-17) can 

be simplified as:

V r ,J v $ x ( V x W -  i ) d Q  =  0 (3-18)
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Appendix D:

Expansion of Eq. (3-21)

In Subsection 3.1.3, we have presented that expanding Eq. (3-21) leads to a linear equation,

i.e. Eq. (3-24). However, we ignored some important steps for the sake of simplicity. Here, we 

present in detail the derivation from Eq. (3-21) to Eq. (3-24).

Eq. (3-21) is re-written as:

Vi, E V 4 x(Vx# ) , =  £ v4 . x ?«
Tt e N ( i )  Tke N ( i ) ' 4  Z 1 '

Using Eq. (3-9b), the left-hand side of Eq. (3-21) can be simplified as:

Vi. X V«**x <VxWO*
r ,e iV (i)

=  X  V ^ x C V x ^ . W , ) ,
rteV(<) 7=1

= X
Tke N ( i )  ;=1

= I V ( i , x W , > <» i + V ( l4 x l P , + V i x # l )
Tke N ( i )

/
i j  k r  ]  k i j  k

A

X  v <**x W A  ( V ^ ) ,  0 + ( V ^ ) ,  ( V ^ ) ,  0 + (y<t>bk)x w « ) ,  o
J i e i V ( i ) o o

oo

0  0 w b
J

= Z v ^ x f e b ^ ) / - W * ), j]+ wa [ ( V ^ y  -  ( V ^ ) z J]+ w6 [ w M )yr - ( V ^ ) ,  7l
TkeN(i)

/
i J £ i J £ i J k

\

X w; W A W * ) y 0 +wa W A W tt), 0 W A 0
r*eJV(i) W * ) , 0 ( V ^ ) , - ( W J , 0 - W m ) , 0

y

= -  j  X  [(V ^  ' v  ̂  W  + ( v ^<*' v **«* )W« +  ' v  A* )M,» 1
Tke N ( i )
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= - *  £  V f c . ( X V ^ ) ,
7ieW(i) 7=1

= - *  E
Tt e N ( i )

v (S W ).
m

TkeN(i) (D-l)

Similar to the expansion of the left-hand side of Eq. (3-14), the right-hand side of Eq. 

(D -l), or more essentially, the left-hand side of Eq. (3-21), can also be written as:

Vi, E V f e x ( V x W ) ,  = - *  2 V ( # * - ( W ) 4 = s ; w i
rteJV(i) TkeN(i)

Note that,

S'2 = - S ,

Choosing S 2 = — S'2 , and making use of Eq. (3-22), we obtain Eq. (3-24):

S 2W  = C (3-24)

where C  =  (~c1 , - c 2,••• , - c i ,• • • ,—cL)T , and c. can be computed using Eq. (3-23).

The Property-2 of the 2-D DHHFD presented in Section 3.2 can be obtained from above 

derivation, i.e.,

v  Sj =  —S'2 and iS2 = —S 2

^ > s 2 = s 1
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Appendix E:

Matlab programs of the 2-D DHHFD-RTG

1. Use of the  2-D DHHFD-RTG
%% test_dhhfd.m 

clear;

%% generate regular rectangular meshes 

box=2;

[mv_x,mv_y]=meshgrid(-box:0.1 *box:box);

%% construct a potential function 

zz=-exp(-mv_x. *mv_x-mv_y. *mv_y);

[uu, vv]=gradient(zz);

%% synthesize a complex motion field

mv_u=uu+vv;

mv_v=vv-uu;

%% display the synthetic motion field 

figure(l);

quiver(mv_x,mv_y,mv_u,mv_v);axis ij; axis([-box,box,-box,box]);

%% generate the curl-free and divergence-free potential functions 

[potE,potW]=potential_calculation(mv_x,mv_y,mv_u,mv_v);

%% display the curl-free potential function E 

figure(2);

mesh(mv_x,mv_y,potE, ’EdgeColor’, ’black’);

%% display the divergence-free potential function W 

figure(3);

mesh(mv_x,mv_y,potW, EdgeColor’, black);

%% generate the curl-free field 

[uu_E,w_E]=gradient(potE);

%% display the curl-free field 

figure(4);

quiver(mv_x,mv_y,uu_E,vv_E); axis ij; axis([-box,box,-box,box]);
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%% generate the divergence-free field 

[tmp_u,tmp_v]=gradient(potW); 

uu_W=tmp_v; 

vv_W=-tmp_u

%% display the divergence-free field 

figure(5);

quiver(mv_x,mv_y,uu_W,vv_W); axis ij; axis([-box,box,-box,box]);

%% calculate the magnitude field of the input motion field 

magO=sqrt(mv_u. A2+mv_v. A2);

%% find the largest magnitude of the input motion field 

max_magO=max(max(magO));

%% add the curl-free field and the divergence-free field 

Ul=uu_E+vv_W;

Vl=vv_E-uu_W;

%% calculate the magnitude field of the added motion field 

mag 1=sqrt(U 1. A2+V1. A2);

%% find the largest magnitude of the added motion field 

max_mag 1 =max(max(mag 1));

%% calculate the scaling factor, r in the thesis 

ratio=max_magO/max_magl;

%% solve for the harmonic remainder 

ru=mv_u-ratio*U 1; 

rv=mv_v-ratio*V 1;

%% display the harmonic remainder 

figure(6);

quiver(mv_x,mv_y,ru,rv); axis ij; axis([-box,box,-box,box]);
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2. Implementation of the 2-D DHHFD-RTG

2.1 Structure of the 2-D DHHFD-RTG

get_area2

phi_gradient

mesh_points triangle_UV

get_neighnor

constructs 1 construct_BC

potential_calcu!ation
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2.2 Programs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [potE,potW]=potential_calculation(mv_x,mv_y,mv_u,mv_v)

%% potE: the curl-free potential function W

%% potW: the divergence-free potential funciton W

%% mv_x: horizontal coordinates of the grids

%% mv_y: vertical coordinates of the grids

%% mvja: horizontal components of the input motion field

%% mv_v: vertical components of the input motion field

[M,N]=size(mv_x);

S1 =construct_S 1 (mv_x,mv_y);

[sa,sb]=size(Sl);

Sr=Sl(2:sa,2:sb);

ISr=inv(Sr); 

potE=zeros(M,N); 

potW=zeros(M,N);

) construct the element matrix S1

[B,C]=construct_BC(mv_x,mv_y,mv_u,mv_v);

Br=B(2:sa);

Cr=C(2:sa);

Er=ISr*Br;

Wr=ISr*Cr;

E_pot=[0;Er];

W_pot=[0;Wr]; 

potE=reshape(E_pot,M,N); 

potW=reshape(W_pot,M,N);

> construct the two vector B and C

> solve for the (L-l)xl vector Er 

b solve for the (L-l)xl vector Wr 

reconstruct the Lxl vector E 

% reconstruct the Lxl vector W 

re-organize the MxN potential surface E 

re-organize the MxN potential surface W

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function S1 =construct_S 1 (mv_x,mv_y)

%% mv_x: horizontal coordinates of the grids 

%% mv_y: vertical coordinates of the grids 

%% SI: the element matrix SI

%% generate the Node Table 

mesh=mesh_points(mv_x,mv_y);

%% generate the Grid Table 

triangle=triangle_defmition(mv_x,mv_y);
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%% generate the Basis Gradient Table 

gradphi=phi_gradient(triangle,mesh);

M=size(mesh,l);
Sl=zeros(M,M);

%% calculate the element matrix SI 

for i=l:M

%% search for the neighboring triangles and neighboring nodes of a reference node 

[neighbor_triangle neighbor_point]=get_neighbor(i,triangle);

L=length(neighbor_tri angle); 

for k=l:L

t=neighbor_triangle(k); 

tri=triangle(t,:); 

order_in_triangle=find(tri==i); 

del_phiO 1 =gradphi(t,order_in_triangle, 1); 

del_phi02=gradphi(t,order_in_triangle,2); 

for j=l:3

mm=tri(j);

del_phi 11 =gradphi(t,j, 1); 

del_phi 12=gradphi(t,j ,2);

S l(i,mm)=S l(i,mm)+del_phi01 *del_phil l+del_phi02*del_phil2;

end;

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [B,C]=construct_BC(mv_x,mv_y,mv_u,mv_v)

%% mv_x: horizontal coordinates of the grids 

%% mv_y: vertical coordinates of the grids 

%% mv_u: horizontal component of the input motion field 

%% mv_v: vertical component of the input motion field 

%% B: vector B 

%% C: vector C

%% generate the Node Table 

mesh=mesh_points(mv_x,mv_y);

%% generate the Grid Table 

triangle=triangle_defmition(mv_x,mv_y);
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%% generate the Average Vector Table 

delta_x=mv_x( 1,2)-mv_x( 1, 1); 

delta_y=mv_y (2,1 )-mv_y( 1,1);

UV=triangle_uv(triangle,mesh,mv_x(l,l ),mv_y( 1,1 ),delta_x,delta_y,mv_u,mv_v);

%% generate the Basis Gradient Table 

gradphi=phi_gradient(triangle,mesh);

M=size(mesh,l);

B=zeros(M,l);

C=zeros(M, 1);

%% calculate the vectors B and C 

fori=l:M

%% search for the neighboring triangles and neighboring nodes of a reference node i 

[neighbor_triangle neighbor_point]=get_neighbor(i, triangle);

L=length(neighbor_triangle);

fork=l:L

t=neighbor_triangle(k);

tri=triangle(t,:);

order_in_triangle=find(tri==i);

del_phi01=gradphi(t,order_in_triangle,l);

del_phi02=gradphi(t,order_in_triangle,2);

B(i)=B(i)+deLphi01*UV(t,l)+deLphi02*UV(t,2);

C(i)=C(i)-del_phiO 1 *UV (t,2)+del_phi02 *U V (t, 1);

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function xy=mesh_points(mv_x,mv_y)

%% generate the Node Table 

%% mv_x: horizontal coordinates of the grids 

%% mv_y: vertical coordinates of the grids 

%% xy: the coordinates of all nodes 

sz=size(mv_x);

MN=prod(sz); 

xx=reshape(mv_x,MN, 1); 

yy=reshape(mv_y,MN, 1); 

xy=zeros(MN,2);
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for i=l:MN

xy(i,l)=mv_y(i);

xy(i,2)=mv_x(i);

end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function triangles=triangle_definition(mv_x,mv_y)

%% generate the Grid Table, which defines the grid topology

%% mv_x: horizontal coordinates of the grids

%% mv_y: vertical coordinates of the grids

%% triangles: Nodes of all triangular meshes, i.e., the grid topology

[M,N]=size(xx);

period=(M-l);

total_tri=2*period*(N-1);

triangles=zeros(total_tri,3);

fori=l:N-l

for j=l:period

k=(i-l)*period+j;

start=floor((k-1 )/period)*M+mod(k-1 ,period)+1; 

triangles(2*k-l ,:)=[start,start+M+l ,start+M]; 

triangles(2*k, :)=[start,start+1 ,start+M+1 ];

end;

end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function UV=triangle_uv(triangle,mesh,start_x,start_y,delta_x,delta_y,uu,vv)

%% generate the Average Vector Table

%% triangle: the Grid Table

%% mesh: the Node Table

%% start_x: start coordinate in horizontal direction

%% start_y: start coordinate in vertical direction

%% delta_x: step in horizontal direction

%% delta_y: step in vertical direction

%% uu: horizontal component of the input motion field

%% w: vertical component of the input motion field

%% UV: The resulted Average Vector Table

M=size( triangle,1);

UV=zeros(M,2);
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for i=l:M

locl=mesh(triangle(i, 1),:); 

loc2=mesh(triangle(i,2) 

loc3=mesh(triangle(i,3),:); 
ind_y 1 =floor((loc 1 (1 )-start_y )/delta_y)+1; 

ind_x 1 =floor((loc 1 (2)-start_x)/delta_x)+1; 

ind_y2=floor((loc2( 1 )-s tart_y)/delta_y)+1; 

ind_x2=floor((loc2(2)-start_x)/delta_x)+1; 

ind_y3=floor((loc3(l)-start_y)/delta_y)+1; 

md_x3=floor((loc3(2)-start_x)/delta_x)+1;

UV(i,l)=(uu(ind_yl,ind_xl)+uu(ind_y2,ind_x2)+uu(ind_y3,ind_x3))/3;

UV(i,2)=(vv(ind_yl,ind_xl)+vv(md_y2,ind_x2)+vv(md_y3,md_x3))/3;

function gradphi=phi_gradient(triangle,mesh)

%% generate the Basis Gradient Table

%% triangle: the Grid Table

%% mesh: the Node Table

%% gradphi: the resulted Basis Gradient Table

M=size(triangle, 1);

gradphi=zeros (M, 3,2);

area2=get_area2(triangle(l,:),mesh); %% calculate the 2*triangle_area

AB=zeros(3,2);

for i=l:M

yO=mesh(triangle(i, 1), 1); 

xO=mesh(triangle(i, 1 ),2); 

y 1 =mesh(triangle(i,2), 1); 

x 1 =mesh(triangle(i,2),2); 

y2=mesh(triangle(i,3), 1); 
x2=mesh(triangle(i,3),2);

AB(l,l)=yl-y2;

AB(l,2)=x2-xl;

AB(2,l)=y2-yO;

AB(2,2)=xO-x2;

AB(3,l)=yO-yl;

AB(3,2)=xl-xO; 

for j=l:3

fork=l:2

gradphi(i,j ,k)=-AB(j,k);
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end;

end;

end;

gradphi=gradphi/area2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [neighbor_triangle,neighbor_point]=get_neighbor(node,triangle)

%% get the neighboring triangles and neighboring nodes of a node 

%% node: the reference node 

%% triangle: the Grid Table

%% neighbor_triangle: the neighbor triangles of the reference node 

%% neighbor_point: the neighbor points of the reference node 

M=size(triangle, 1); 

neighbor_triangle=[]; 

for i=l:M

temp=triangle(i,:); 

if find(temp==node)>0

neighbor_triangle=[neighbor_triangle i];

end;

end;

neighbor_point=0;
N=length(neighbor_triangle); 

for i=l:N

temp=triangle(neighbor_triangle(i),:); 

for j=l:3

if find(neighbor_point==tcrnp(j))>0 

continue;

else

neighbor_point=[neighbor_point temp(j)];

end;

end;

end;

neighbor_point=sort(neighbor_point);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function area2=get_area2(triangle,mesh)

%% calculate the 2*triangle_area of a triangle 

%% triangle: the Grid Table 

%% mesh: the Node Table

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



%% area2: the resulted 2*triangle_area 

xO=mesh(triangle( 1), 1); 

yO=mesh(triangle( 1 ),2); 

xl=mesh(triangle(2),l); 
y 1 =mesh(tri angle(2),2); 

x2=mesh(triangle(3), 1); 

y2=mesh(triangle(3),2); 

area2=abs((xl-x0)*(y2-y0)-(x2-x0)*(yl-y0)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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