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Abstract

In this thesis, we investigate applying deep learning techniques to learn the win-

loss-draw results contained in the databases of the checkers-playing program CHI-

NOOK. Our initial objectives were to (1) compare a deep-learning-based compression

scheme versus the custom algorithm used in CHINOOK, and to (2) extract human-

understandable features from the data. We have implemented the data processing

pipeline, the neural network and its training loop, and an experimentation infras-

tructure. Our experiment results suggest that (1) training the neural network with a

small random subset of the target database can achieve a high accuracy; (2) using

the learned network with a naïve one-ply minimax search can further improve the

robustness of the predictor most of the time; (3) transfer learning from one database

to another one is feasible; (4) dynamically switching between the model and the

one-ply search can give a better result than using either exclusively. We conclude

that the neural network equipped with search does a decent job compressing the

endgame databases, but the custom algorithm is hard to beat. Extracting features

that are useful not only to the neural network but also to humans is a tricky task that

requires more sophisticated and creative techniques. Our work is the first effort in

this direction.
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1 Introduction

Checkers is a combinatorial game that has been popular among not only human play-

ers but also artificial intelligence (AI) research for decades, thanks to the simplicity

of its rules. Although checkers is not a game of chance, its number of possible

positions is roughly 5×1020 ± a daunting sum making it impossible for humans or

even modern computers to analyze exhaustively. Research on AI using checkers as a

benchmark date back to the 1950s[53, 54]. As a result of advancing research and

ever-developing computer hardware, checkers playing programs became stronger

and stronger, eventually reaching and defeating the best human players[57]. The

endgame databases built for the checkers playing system CHINOOK eventually be-

came the foundation for a long-running program that was able to solve checkers.

Perfect play by both sides leads to a draw[56]. Checkers is the most complex game

in terms of search space that has been solved to date.

An endgame database contains positions near the end of the game ± endgame

positions ± with their computed analysis ± usually the outcome of the game if both

players play optimally in the subsequent moves. Thus, game-playing programs

equipped with an endgame database only need to search until they reach a position

in the database to determine the game result (win, loss, draw), potentially speeding

up the program and enhancing accuracy of the search. Since the game of checkers

has an overwhelmingly large search space, endgame databases only capture a small

fraction of all possible states. Nevertheless, this small portion makes a big difference

in game playing and solving. The endgame databases for solving checkers contain

all positions with a total of up to 10 pieces on the board. There are roughly 40 trillion

(4×1013) entries in total in the databases, compressed into 256 GB of data on the

disk[55].

The checkers endgame databases contain a vast amount of knowledge about how

to play the endgames perfectly. The problem is that the databases are "data rich" and

"knowledge poor". To date, no one has been able to turn the 40 trillion positions in

the databases into a handful of human-understandable heuristics. This is a major

challenge of AI ± turning computational results into useful human knowledge.

Deep learning is a subfield of machine learning that focuses on studying and
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applying deep neural networks[33], a class of computational models inspired by

the human brain. Typical deep neural networks contain parameterized layers of

computational units called neurons where the outputs of one layer are the inputs

of the next. Generally speaking, training a deep neural network refers to tuning

the parameters of the layers with respect to a well-defined objective function using

techniques such as backpropagation. A trained network can capture the correlations

(if any) between the input data and the output result and can often generalize to

unseen data remarkably well. Deep neural networks have revolutionized the field of

AI thanks to their unprecedented scalability, applicability and generalizability. They

have triumphed in computer vision[19, 30], natural language processing[21, 22, 64],

data mining[46], and many other fields.

End-to-end learning is one of the main characteristics of deep learning[59]. It

refers to training a learning system represented by a single model such that the inputs

to the system are raw data with minimum human engineering and the outputs are

the ultimate targets of the model. The intermediate outcomes between the layers

are known as features or representations. A deep neural network can automatically

extract features useful for prediction given enough training data. It is widely ac-

knowledged in the deep learning community that automatic feature extraction is a

crucial property that distinguishes deep learning from previous learning methods. It

is also what makes end-to-end learning possible. One of the foundational examples

of applying deep neural networks in image classification is ALEXNET, where the

authors employed end-to-end learning to train the deep neural network and pushed

forward the state-of-the-art by a large margin[30].

In the checkers database context, we have 40 trillion input states (positions) and

three output states (winning, losing, or drawn position). What can we learn from a

neural network that reflects this large dataset?

1.1 Motivation and Goals of this Thesis

Given a giant endgame database, standard compression algorithms (such as gzip) do

not take advantage of domain-specific properties. Furthermore, the program using

the data may require thousands of accesses per second. Thus, finding a value in the
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database requires a fast decompression algorithm for single positions (gzip cannot

do this). Apart from that, the database is in the form of lookup tables, implying

that it does not know the value of the positions that have not been computed. These

observations incentivize us to leverage modern deep learning techniques to train a

deep neural network to compress and generalize the database. The neural network

should have a much smaller number of parameters than that of the positions it

captures. Therefore, the neural network has to share weights and extrapolate to

unseen data.

Although deep neural networks are good at approximation and generalization,

they can rarely achieve perfection ± they can make wrong predictions. Hence,

we propose to use a look-ahead search procedure using the neural network as an

oracle to compensate for this imperfection and improve the overall robustness of

the compression algorithm. One benefit of the search procedure is potentially better

performance without additional knowledge. Clearly, the search will induce extra

computational costs. How to tradeoff between the cost of computation and accuracy

requires empirical studies.

In our project, we chose the CHINOOK checkers endgame databases as our

research subject thanks to its accessibility and detailed documentation. We seek to

answer several research questions through experiments around the central theme

of compressing checkers’ endgame databases using deep neural networks. The

foremost one is if a neural network can discover patterns and learn the mapping from

positions to outcomes in the first place. If the network can improve on the training set,

is it merely memorizing (as is done in the current CHINOOK endgame compressed

databases representation), or does it understand some underlying patterns? Can the

trained model generalize to unseen positions? Confronted with the motivations, we

came up with a list of ideas worth exploring:

1. We train the neural network with a small subset of the whole database to make

it suitable for our limited computational resources and test its generalization

ability.

2. We would like to see if the neural network trained end-to-end can achieve even

better compression than the hand-designed one used in CHINOOK.
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3. If possible, we want to identify patterns important for compression and might

also be meaningful as human knowledge.

4. We are curious if a look-ahead search can improve the overall performance at

the cost of extra computation compared to directly querying the same neural

network.

1.2 Problem Setting

We formulate our project as a supervised learning problem. Nevertheless, there are

some distinctive properties that differentiate our problem from ordinary supervised

learning tasks:

1. Our dataset is noise-free because it is an endgame database with proven results

associated with each board position. Each position-outcome pair appears

only once in the dataset. In most "real-world" scenarios, the collected data is

usually noisy, and one should be careful not to capture the noise in a model.

2. We have all the data in the "population" because the positions in the databases

are exhaustive. In the real world, it’s virtually hopeless to collect all the data

on the population because the world is prohibitively vast and complex, and

new data may appear continually. As a result, the training data only represents

a small portion of the whole population for those tasks, and one must rely on

models to get the best out of training data to infer the unseen data as well as

possible.

3. Board positions as raw inputs are sensitive to local changes. When dealing

with images in computer vision problems, such as in image classification,

the label would likely remain the same even if a few pixels get altered. For

example, when training a classifier for dogs and cats, the labels will likely stay

the same if the pixels corresponding to the ears of the animals get corrupted.

However, that’s not the case for checkers’ board positions. Even a tiny shift in

one of the pieces may result in a completely different outcome. Two similar

boards differing only by one piece could be a win and a loss, respectively.
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1.3 Contributions

In this thesis project, we present a deep-learning pipeline for the CHINOOK endgame

databases and experimental results, including:

1. A program that reads and processes the database records and transforms them

into NumPy arrays[16] on the disk. NumPy arrays are efficiently convertible

to either PyTorch tensors[47] or JAX NumPy arrays[6].

2. Python implementations of the neural network in both PyTorch[47] and

JAX[6].

3. Python functions that generate figures to visualize the meta-information of the

datasets such as the class distributions.

4. A training procedure that trains the neural network with different choices of

learning rates, batch sizes, optimizers and loss functions.

5. A Python function that performs a small search using the neural network.

Adding search allows the system to reduce the error rate on unseen data.

6. A TensorBoard[1] integration that visualizes and monitors the training proce-

dure.

7. An evaluation program that evaluates the performance of the trained model

and search, generates informative tables and visualizes misclassified positions.

8. Experiments that demonstrate the competence of deep neural networks to

compress the databases, generalize to unseen positions, and how search can

help reduce errors.

The paper Deep Dive on Checkers Endgame Data[66], which contains many of the

results from this thesis, has been accepted to the IEEE Conference on Games 2023.
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2 Background

2.1 Computer Game Playing and Solving

In the field of artificial intelligence research, computer game playing has a long

and rich history. Games usually provide a more well-defined, controllable and

simple environment than most real-world problems. They are popular benchmarks

for AI algorithms. However, the knowledge and insights obtained from computer

game playing are by no means confined to the games themselves. They are highly

transferable to other domains and often have real-world implications[10, 27].

In computer game playing, the research objective often involves developing

more powerful, efficient, robust and general algorithms. Based on these goals, a

game-playing algorithm is typically evaluated on a set of criteria, for example, the

winning rate of the algorithm against existing players (computer or human), the

computational resource the algorithm consumes, exploitable weaknesses of the

algorithm, and the applicability of the algorithm to other games.

Computer game solving is relevant to game playing but is a different concept.

Solving a game means finding the minimax value of the game ± the game outcome

if all players play perfectly. There are three levels of game solving ± ultra-weakly

solved, weakly solved and strongly solved games. For ultra-weakly solved games,

the minimax result of the game is known but no optimal strategy. For weakly solved

games, the minimax outcome and optimal play starting from the beginning of the

game are known. Strongly solved games have the minimax value and an optimal

strategy for any valid position of the game. For example, Awari was strongly solved

by searching the entire state space and building a database[49, 50]. Hex was ultra-

weakly solved by combining mathematically proven arguments that the first player

cannot lose and drawing is impossible[17]. Afterwards, Hex was weakly solved for

10×10 and smaller boards[3]. Checkers, our subject of study, was weakly solved

using search and endgame databases[56].
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2.1.1 Evaluation

Evaluation is the process of determining the chance of winning the current game

state for each player. For most game-playing algorithms, the evaluation function

is a crucial part of the program because it quantifies the "goodness" of the current

and future board positions, directly influencing the player’s decision. The evaluation

can either return a game-theoretic value or a heuristic value. A game theoretic value

guarantees the minimax game result if all players play perfectly from the current

state to the end of the game. On the other hand, when the game-theoretic value of

a position is unknown (as is usually the case for most positions in most games),

some form of application-specific knowledge ± heuristics± is combined to form

an assessment. The knowledge could be based on human experience, statistics, or

computer-generated patterns. In addition, the game-theoretic values and heuristics

can be computed on-demand or cached in tables. The computation of the game-

theoretic value of a position is often unrealistic for early game positions due to the

astronomically large search space. Thus, heuristic evaluation is the only choice in

most cases. Nevertheless, one cannot obtain any guarantee of the game result from

using heuristic evaluation functions.

Figure 1: Example of One-Ply Search. The numerical values represent evaluation

scores from player 1’s perspective. The fourth child has the highest score of 0.8 and

thus should be selected by player 1.
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2.1.2 Search

Search is a class of algorithms widely used in game playing and solving. It is

analogous to how humans plan in a game scenario by looking ahead several steps.

A ply refers to one move taken by one player. A state refers to a unique and

unambiguous configuration of the game. The identical game state always has the

same board position, but the reverse is not necessarily true ± the same board position

may resolve to different outcomes depending on the game history (sequence of

states/actions leading to the current position). Most search algorithms in the context

of game playing and solving build a game tree ± a tree structure rooted in the current

state. One node of the tree represents one state of the game. Each node has branches

(corresponding to the legal moves in the position) that connect to the states one ply

away. The results are propagated back to the root node after evaluating the leaf nodes.

The program then analyzes the information gathered at the root to decide its next

move. Figure 1 illustrates a one-ply search. The naïve minimax search algorithm

recursively expands the search tree and evaluates the children at each node. The

program chooses the move that leads to the maximum value. Examples of more

advanced search algorithms are alpha-beta search[29] and proof number search[2].

The former algorithm prunes branches that can be proven to be irrelevant in deciding

on the best move. The latter uses properties of the search tree to decide which node

to expand in every iteration. These algorithms were crucial tools in solving the game

of checkers.

2.2 Checkers

2.2.1 Rules

Setup

• The checkerboard is an 8× 8 square board with vertically and horizontally

alternating dark and light squares. Only the dark squares are used.

• The game pieces used in checkers are disk-shaped in either black or white

colour.

8



• There are two types of pieces in checkers ± checker and king. Both players

begin with checker pieces only.

• At the beginning of the game, each player places 12 checker pieces on the dark

squares of the first three rows at the bottom from their perspective. Figure 2

shows a checkerboard at the beginning of the game.

• The two players (referred to as Black and White) alternate taking turns.

• Black opens the game.

Move

In the player’s turn, they can move one of their checker pieces diagonally forward

one square or one of their king pieces diagonally forward or backward one square,

provided they meet the following criteria:

• The destination square is empty. In other words, there are no other pieces

blocking the target piece.

• There are no capturing moves for the player.

Capture

• To capture an opponent piece, the player moves one of their pieces two squares

diagonally in the same direction, leaping over the captured piece, and landing

on an empty square. The captured opponent piece is removed from the board.

• If, after one capture, the piece lands on a position where it can immediately

capture another one, then it should continue capturing until it can no longer

do it.

• A checker, like its move rule, can only capture forward. A king can capture

forward and backward. This rule applies to both single and consecutive

captures.

• The player must capture if it is possible. This is called the forced capture rule.
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Figure 2: Checkerboard at the Beginning of the Game.

• If the player has multiple capture strategies in one turn, they can choose to

execute one of them freely. This does not violate the forced capture rule.

• Figure 3 illustrates a capture scenario for White.

Promotion

• A checker is promoted to king if it reaches the furthest row from the player’s

point of view.

• A king can then move and capture forward and backward diagonally.

• Once a checker is promoted, the turn terminates automatically for the player,

even if they can immediately capture a piece using the newly promoted king.

Game ending

• The game ends when one player cannot make any move in their turn or all

of their pieces have been captured. In these cases, the aforementioned player

loses the game, and their opponent wins.
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Figure 3: Checkers Capture. If we label the columns a-h and rows 1-8, then White

can capture in two ways ± move the piece on (b,4) to (d,6) or the piece on (d,4) to

(b,6). Either way, the black piece on (c,5) will be captured.
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• There are no standardized rules for ending a game with a drawn result. In

practice, the following two rules are often adopted: The same position repeats

three times; There are no captures for either side in 40 moves.

2.2.2 History of Checkers AI

Arthur Samuel’s Checkers Program

Arthur Samuel’s checkers-playing program [53, 54] is recognized as the first pro-

gram that applied heuristic search and machine learning principles to play checkers.

Its victory against a skilled amateur player was a monumental moment for artificial

intelligence and was widely publicized.

Samuel chose checkers over chess due to its simplicity of rules, which allowed

him to put more emphasis on learning techniques. The program applied what we call

the heuristic search technique today ± the computer looks ahead a few moves and

evaluates the resulting board positions to decide what action to take at the present

board. He used a linear function as the evaluation function by combining the values

of a list of carefully selected features. When performing the search, the program

builds a tree and carries out a minimax procedure. Samuel tried several strategies

to improve the strength of the program based on this framework. He explored rote

learning and learning by generalization in much greater detail in his early report.

Rote learning involves caching the more frequent positions with their respective

values to enable searching to greater depth effectively during the real game. Learning

by generalization involves a self-play procedure that modifies the parameters of

the linear function to improve its evaluation function. Samuel claimed that rote

learning is especially good at playing opening (the first moves of the game) and

end (last moves of the game) games, whereas learning by generalization is good

at playing middle games (moves that bridge the end of the opening to the start of

the endgame). Besides these two techniques, he also utilized what we consider

discounting today to give preference to the traces of play that win quicker in an

advantageous circumstance or lose slower otherwise. Samuel’s machine learning

work was a precursor of modern-day reinforcement learning[65].

In a later version of the work[54], Samuel made various improvements to the

program, including an alpha-beta pruning procedure[29], a book learning procedure
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analogous to what we know as supervised learning today, and a signature table to

replace the linear function. The improved version performed much better than the

previous version, though according to the author, there were still some defects to

address.

A Brief History of CHINOOK

The development of CHINOOK began in 1989 as a project to better understand

heuristic search algorithms[57]. The team soon realized they could make CHINOOK

strong enough to compete for the world championship. CHINOOK was allowed

to play in the 1990 U.S. championship and earned the right to play for the world

championship. In 1992, CHINOOK played a World Checkers Championship match

against the world champion Marion Tinsley and lost the match with two wins for

CHINOOK, four wins (one by default) for Tinsley and 33 draws[58]. After the match,

the two sides agreed on a rematch in 1994. The team then worked on improving

the four major components of CHINOOK ± search, evaluation function, endgame

databases and opening book. Specifically,

• an upgrade of hardware allowed a deeper search for CHINOOK.

• A tactic table helped handle specific error-prone situations.

• A much more comprehensive and precise opening book strengthened the

opening plays.

• They also computed more positions and fixed errors in the endgame databases.

In 1994, CHINOOK earned the world championship title by forfeit against Tinsley

after six draws. After the 1994 rematch, CHINOOK played against several human

champions and checkers AIs. By 1996, it was clear that CHINOOK was better than

any human or AI player at the time.

The next ambition of the CHINOOK team was to solve the game of checkers with

search and endgame databases. They kept growing the number of positions in the

databases using a network of workstations non-stop until the ten-piece database was

complete (all positions with ten or fewer pieces on the board)[31, 55]. In 2007, they
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finally solved the game of checkers with the conclusion that checkers is a drawn

game if both players play without making a mistake[56].

2.2.3 Endgame Databases

John Nunn’s Effort to Distill Knowledge from Chess Endgame Databases

Given the massive number of positions in endgame tablebases, extracting knowl-

edge from this data is a task suitable for computers. For example, there are 25 billion

chess positions with five pieces on the board (two of which are kings). Although

viewed as "simple" positions, many give rise to complex sequences of play to pre-

serve the game-theoretic result. A few brave humans have manually tried to turn this

data into human-understandable heuristics. In the 1990s, chess grandmaster John

Nunn devoted several years to analyzing these chess endgames. The result was a

trilogy of books, each 320 pages long, and each containing a compendium of rules,

generalizations, and exceptions designed to help humans understand these classes of

positions[42, 43, 44].

Here are some examples of Nunn’s data mining from his first book, Secrets of

Rook Endings[44]. This analysis covers the case of king, rook, and pawn versus king

and rook.

• White has a b-pawn on the 7th rank with White’s king in front of the pawn.

ªThe situation with the pawn on the 7th rank and the king in front of it is

extremely common... In the case of the b-pawn White always wins, except for

a few exceptional positions where he loses the pawn immediately." ([44], page

109)

• White has a c-pawn on the 5th rank, with Black’s king in front of the pawn.

ªIn general this is a draw, but White can sometimes win with a very favorable

initial position." ([44], page 208)

The books introduce hundreds of new heuristics for humans to learn and master.

While this dramatic reduction of data complexity has been acclaimed as an important

contribution to human knowledge, Nunn’s super-human patience and dedication to

the task at hand cannot be repeated for more complex endgames.
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Building CHINOOK’s Endgame Databases

Unlike John Nunn’s effort to compile human endgame knowledge in a book,

the CHINOOK endgame databases were computed exhaustively by a network of

computers over 15 years[31, 55]. The number of pieces on the board strictly

decreases in a game of checkers. Taking advantage of this nature, the CHINOOK team

applied retrograde analysis to compute the endgame databases more efficiently[31].

That is, starting from only one piece on the board, the program builds the two-piece

database relying on the one-piece database, and so on. When computing the database

for a specific piece number, the algorithm will resolve capture moves first because

they will guarantee to end in positions with fewer pieces already present in the

previous databases. After that, the algorithm will iteratively resolve non-capture

positions until complete. Using this methodology, the CHINOOK team computed the

endgame databases for all positions with 2-10 pieces on the board, summarized in

Table 1.

Number of Pieces Total Number of Positions

1 120

2 6,972

3 261,224

4 7,092,774

5 148,688,232

6 2,503,611,964

7 34,779,531,480

8 406,309,208,481

9 4,048,627,642,976

10 34,778,882,769,216

total 39,271,258,813,439

Table 1: A Summary of CHINOOK’s Endgame Databases by Number of Pieces on

the Board.

Uses of Endgame Databases in Other Games

Awari is a game strongly solved by building a database that stores the outcome

for every possible position of the game[49]. The state space of Awari has over 889
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billion positions (1012). The team that solved it designed and executed retrograde

analysis on a parallel computer with 144 processors as efficiently as possible ± a

significant engineering effort. After roughly 51 hours of computation, they built

the entire database and announced that Awari is a drawn game if both players play

perfectly.

Nine Men’s Morris is a game weakly solved with the help of an endgame

database[11]. The game consists of three phases ± opening, midgame and endgame;

Each has its own set of rules. The program that solved it has two parts ± an 18-ply

search for the opening phase and a database for the midgame and the endgame.

Taking advantage of game-specific knowledge such as symmetries, the team reduced

the total number of positions needed for storage roughly 16-fold. They built a

database of approximately 1010 positions using retrograde analysis. Afterwards, they

used alpha-beta pruning[29] to search for the value of the root position. Through

about three weeks of computation on a desktop computer, they solved Nine Men’s

Morris and concluded that the game is a draw at the initial position with optimal

play.

2.3 Deep Learning

Designing an endgame database that is storage and lookup efficient is never a trivial

task. It often requires designers to leverage application-specific knowledge and

invent special tricks to make it work. The rise of deep learning[33] provides us with

a promising tool ± deep artificial neural networks ± to discover an alternative way to

represent endgame knowledge in place of the complete position-value table. Since

each position only maps to one value, the database effectively defines a function.

We can theoretically approximate the endgame database to arbitrary precision using

deep neural networks because they are universal function approximators[23]. In

addition, deep neural networks are extraordinarily good at generalization, which

implies that parameters needed to represent the neural network may require much

less memory than the table format ± compressing the database. In terms of access

speed, modern deep-learning libraries and hardware are good at parallelizing the

neural network inference ± speeding up batched access significantly. Therefore, deep
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neural networks are competitive candidates to compress endgame databases while

achieving remarkable access speed.

Inspired by the mechanism of the human brain, the most fundamental unit of

processing in a neural network is called a neuron. A valid neuron is composed of an

input connection, an activation function, and an output connection. We often refer

to the array of neurons at the same depth as a layer. The input connection receives

and aggregates signal from the previous layer. An activation function is a nonlinear

function applied to the aggregation of the input signal. Nonlinearity is necessary

for neural networks, or the entire neural network is equivalent to a linear model.

Popular activation functions include sigmoid, tanh, rectified linear unit (ReLU), etc.

The output connection propagates the activation to the subsequent layer the neuron

connects to. In a feedforward neural network, the connections are loop-free, and the

processing happens sequentially. Therefore, except for the input layer that receives

the raw input, all input connections receive the activation from the previous layer.

Likewise, all output connections except for the output layer send the activations to

the next layer. Each connection has a real value called weight that gets multiplied by

the input activation during forward propagation. Besides the activation, the neuron

may also receive a real constant called bias to shift the input signal by some amount.

When we say training a neural network, most of the time we are implying changing

the values of the weights and biases with respect to some objective.

2.3.1 Multi-layer Perceptron

A multi-layer perceptron (MLP)[51] is arguably the most basic form of deep neural

network ± the entire model is composed of dense layers. A dense or fully-connected

layer has each neuron connected to the previous layer pairwise. In other words, we

can represent the weights of a dense layer as a real-valued matrix with one dimension

aligning with the number of neurons in the previous layer and the other dimension

equivalent to that of the current layer. If we denote the input to the i-th layer as x[i],

the weights and biases of the i-th layer as W [i],b[i], and the activation function as f [i],
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then the output o[i] of the i-th layer is

o[i] = f [i](W [i]x[i]+b[i])

2.3.2 Convolutional Neural Network

Convolutional neural networks (CNN)[32] trained via back propagation[34] have

revolutionized computer vision and game-playing. A particular structure in a CNN

is the convolutional layer. A convolutional layer has a number of parameterized

windows called filters (kernels). Each filter convolves with the input feature during

forward propagation by element-wise multiplying with the current region, summing

the products, and then shifting along an axis by some positions to the next area. Each

sum defines one entry of the output feature map corresponding to that filter. The

shifted amount is called a stride, a hyperparameter that controls the resolution of the

generated feature maps. Figure 4 illustrates a convolution.

The convolutional layers are the main reason behind the extraordinary perfor-

mance of CNNs on unstructured data such as images. The first advantage of the

convolutional layer is weight sharing ± the same filter is applied to the entire feature

map. The outcome is a network with much fewer parameters than its MLP coun-

terpart that assigns a weight to each pixel. Another strength of the convolutional

layer is detecting local features because the filters look at the input one region at a

time, capturing those within their scope. In contrast, the input to an MLP is linear,

where the spatial relations cannot be retained after linearization. To further reduce

the number of parameters to learn, one can apply pooling[12] after the activation

function of convolutional layers. This reduces the size of the intermediate feature

maps, saving computation in the convolutional layers and cutting down the size of

the vector fed to the classifier.

One can roughly divide a CNN into a feature extraction body and a classifier.

The feature extraction body consists of blocks of convolutional layers followed by

an activation function followed by perhaps pooling. The classifier can be viewed as

an MLP.
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Figure 4: Convolution on a 4× 4 Feature Map with a 3× 3 Filter. This example

shows the outcome of the convolution on the top left 3×3 region.

Figure 5: Pooling. This example demonstrates 2×2 maximum pooling on a 4×4

feature map.
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2.3.3 Residual Neural Network

Even though CNNs have achieved outstanding performance, they suffer from ac-

curacy saturation ± when we make the network deeper and deeper using more con-

volutional layers, the final accuracy increases to a certain point and then drops[18,

19]. This is intriguing because deeper CNNs could perform at least as well as

their shallow counterparts by learning identity mappings f (x) = x in the earlier

layers. He et al. [19] hypothesized that identity mappings are hard to learn with

nonlinear activation functions. Another difficulty when training a deep CNN is

the vanishing gradient problem[13] ± the gradients become smaller and smaller as

they backpropagate to the shallower layers and eventually become negligible. This

phenomenon makes training the first few layers unacceptably inefficient, hindering

further improvements.

Deep residual neural networks (ResNet)[19] considerably improved upon plain

CNN with residual connections that have negligible additional computational costs.

Rather than learning the mapping H (x) directly, the residual layer fits the mapping

F (x) = H (x)− x such that the original mapping can be recovered by H (x) =

F (x)+ x. Figure 6 illustrates an example of a residual connection with two weight

layers. There are two advantages of learning the residuals instead of the original

mappings. Firstly, residuals are easier to optimize ± the authors hypothesized that

driving the residual to zero is easier than learning the identity mappings. Secondly,

the residual connections help mitigate the vanishing gradient problem by allowing the

gradients to travel faster to the shallower layers. As a result, one can build a residual

neural network tens and hundreds of blocks deep without seeing a degradation in

performance.

2.4 Learn to Play Games from Humans and Self-Play

In this section, we discuss three popular types of learning in games:

• opening book learning

• supervised learning from human data

• learning via self-play
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Figure 6: A Residual Block with Two Weight Layers and ReLU Activation Functions.

In games, the "book" is usually a strategy for the opening phase of the game. It

is handled differently than the rest of the game because there are human sources for

the best sequences of moves. Thus, rather than having the computer decide on the

best moves (which will introduce errors), computer ªbooksº are usually built from

information contained in human books on the openings.

Book learning has been used for a long time in game AI because it quickly equips

the program with sophisticated knowledge distilled from top players. The famous

chess-playing engine DEEP BLUE[7] used an opening book of about 4,000 positions

hand-crafted by chess Grandmasters. These openings emphasize the positions that

DEEP BLUE played well. In addition, it also had an extended book built from a

700,000-position database. CHINOOK[57] also used an opening book to overcome

the weaknesses in its opening play present in an earlier version. The book is a

database of lines of openings acquired from the published literature.

Learning from self-play implies generating the training data by playing against a

copy of the program itself. The program improves over time, and so does the copy.

By learning from its own experiences, the program eventually masters the game. The

first published version of ALPHAGO defeated a human champion in an even game of
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Go[62]. The ALPHAGO team followed the path taken by past researchers and started

off by incorporating human knowledge into their system via supervised learning

from human games. However, the crucial part of the algorithm was learning from

self-play. The program improved by playing against itself after initializing its policy

network with expert plays (trained on expert game data). Later, ALPHAZERO[63]

mastered a number of games from scratch, purely via self-play. Removing the expert

knowledge and letting the program learn everything on its own turned out to be even

better. The final evolution of self-play systems was MUZERO, where the program

learned to play without even being given the rules[61].

2.5 Compress CHINOOK Endgame Databases

Because of the need for real-time decompression, the CHINOOK databases used a

custom-designed compression algorithm[31, 55]. The results are impressive ± 40

trillion positions (1013) are compressed into 256 billion (1011) bytes: a staggering

156 positions are encoded in each byte or roughly 20 positions per bit! Needless to

say, this level of compression will be hard to beat. In our work, we intend to achieve

compression by approximating the endgame databases of checkers using end-to-end

learning.
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3 Formal Concepts

In this section, we formalize concepts related to the endgame databases, neural

networks, one-ply search, and evaluation metrics needed for our task.

3.1 CHINOOK Endgame Databases

3.1.1 Content of the Databases

The databases store the perfect play outcomes of checkers positions with respect to

Black to move. The outcome is one of {draw, win, loss}, represented numerically.

Thus, we define a function o that maps the outcome for position x to an integer:

o(x) =



















0, if x is a draw

1, if x is a win

2, if x is a loss

(1)

For a position x, the program that returns o(x) also computes a property of

x called the flag that takes a value in {none, capture, threatened capture}. This

application-dependent property is used to improve database compression.

• Capture means that Black has at least one capturing move in position x. Due

to the checkers forced capture rule, if one or more capture moves are possible,

then one of them must be chosen.

• Threatened capture indicates that there are no Black capture moves in x, but if

it were White to move, White could make a capture move.

• The none flag implies the position has neither a capture nor a threatened

capture. These positions are said to be quiescent ± their evaluation is stable

and unlikely to change drastically after a move.

The flags are also represented numerically. We use function f to map each flag
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to an integer:

f (x) =



















0, if x is none

1, if x is capture

2, if x is threatened capture

(2)

To query a position for White, one needs to rotate the board 180 degrees and

switch the colour of the pieces on the board. In addition, since checkers is a zero-sum

game, a win for Black means a loss for White, and vice-versa. The same goes for

the flag ± capture for one means threatened capture for the other.

3.1.2 Organization of the Databases

The CHINOOK project computed the game result for trillions of positions. Given the

technology available when it started in 1989, it was infeasible to perform such an

enormous computation in one run. Hence, the positions were divided into smaller

subsets and the results combined to produce the complete database.

Figure 7 shows a sample position p that will be used in this section. The

CHINOOK endgame databases were organized in increasing granularity:

• by number of pieces

Each partition includes all positions that have the same number of pieces on

the board regardless of the colour or the type of the pieces. p is in the 5-piece

partition.

• by number of pieces for each side

This partition paradigm splits the previous one by considering the num-

ber of pieces for Black and White on the board, organized as [black piece

count][white piece count]. p is in the partition encoded by 23.

• by number of piece types

This partition paradigm further splits the previous one by distinguishing

the piece types for each side, organized as [black king count][white king
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count][black checker count][white checker count]. p is in the partition en-

coded by 1211.

• by leading checker rank

This partition paradigm is the finest of the CHINOOK endgame databases. It

splits the previous one by the rank of the most advanced checker (the checker

closest to becoming a king) for each side, organized as [black king count][white

king count][black checker count][white checker count].[leading black checker

rank][leading white checker rank]. The rank is defined as the row index of

the piece from its player’s point of view. The rank ranges from 0 to 6 for a

checker piece since it gets promoted automatically to a king when reaching

rank 7. p is in the partition encoded by 1211.23.

Figure 7: A Sample Position for Partition Demonstration. This position can be found

in the 5-piece partition by number of pieces, in the 23 partition by number of pieces

for each side, in the 1211 partition by number of piece types, or in the 1211.23

partition by leading checker rank.
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3.2 Neural Network

3.2.1 Definition

We can define our neural network mathematically as a function g parameterized by a

real vector θ that maps from the input space X to the output space Z :

gθ : X 7→Z (3)

For this specific problem, we let the output of the network be the logits such

that Z = R
3. Each dimension corresponds to one of the three possible outcomes

of the game. The logit, also named the log odds, is an unnormalized score used by

the softmax function[15] to generate a probability distribution for classification. The

softmax function σ is defined as:

σ(z)[i]
.
=

expz[i]

∑ j expz[ j]
(4)

Furthermore, define a function h that maps board positions in the databases to

the input space X of the neural network. Similarly, define a function q that maps

the numerical outcome to the output space Z . In our case, q is a one-hot encoding

function q : x ∈ {0,1,2} 7→ x̂ ∈Z , x̂[i] = I(x = i), where I is the indicator function.

Given a board position x, the probabilities of the game outcome predicted by the

neural network are

P(i|x) = σ(gθ (h(x)))[i],∀i ∈ {0,1,2} (5)

3.2.2 Training

We formulate our problem as supervised learning ± training our neural network on

data consisting of examples and their class labels.

Dataset

Our dataset is a collection of position-outcome pairs. A dataset with N samples

26



is D = {(x1,y1),(x2,y2), . . . ,(xN ,yN)}, where xi is a position and yi is the associated

outcome. We split the entire dataset into a training, a validation and a test set.

The learning algorithm only uses the training set to improve its performance. The

validation set serves as a benchmark for how well the model performs on unseen

data. After the training is complete, we report the final performance of the model on

the test set.

Loss Function

A loss function L is a mapping L : Z ×Z 7→R. Given a board position x and

its outcome y, we compute the loss l as

l = L (gθ (h(x)),q(o(y))) (6)

The loss function mainly measures how well our neural network models a single

data instance. It should also be differentiable with respect to the parameters θ of the

neural network.

Cost Function

The cost function C is the empirical mean of the loss on a collection of data, serv-

ing as an objective to optimize. Given a dataset D = {(x1,y1),(x2,y2), . . . ,(xN ,yN)},

the cost c is

c = C (D ,gθ ) =
1

N

N

∑
i=1

L (gθ (h(xi)),q(o(yi))) (7)

Note that C is also differentiable with respect to θ . In general, our objective is to

find θ ∗ such that

θ ∗ = argmin
θ

C (D ,gθ ) (8)

Optimizer
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An optimizer opt takes θ and the gradient of C with respect to θ and outputs the

updated θ ′:

θ ′ = opt(θ ,∇θC (D ,gθ )) (9)

with the goal that C (D ,gθ ′)< C (D ,gθ ).

Training Loop

An epoch in the context of deep learning is defined as one complete pass through

the training set. The most basic training loop is shown in Algorithm 1.

Algorithm 1 A Basic Training Loop

Require: numEpoch,θ ,g,D ,C ,opt

Ensure: numEpoch > 0

epoch← 1

while epoch≤ numEpoch do

grad← ∇θC (D ,gθ )
θ ← opt(θ ,grad)
epoch← epoch+1

end while

return θ

3.2.3 Inference

Given the parameters θ of the neural network and a board position x, the prediction

of the outcome in the numerical representation is

ŷ = argmax
i

gθ (h(x))[i], i ∈ {0,1,2} (10)

We don’t need to compute the probability distribution of the outcomes given the

logit vector z thanks to the fact that σ is monotonic such that argmaxi z[i] =

argmaxi σ(z)[i].
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3.3 Search

To employ a one-ply search using the neural network, assume that given a posi-

tion x, procedure getChildren returns the list of all possible subsequent positions

{x′1,x
′
2, . . . ,x

′
N} after making a move in x. These positions are children of x in the

search tree. Here we assume that they have already been converted to the standard

query form, corresponding to Black’s turn to move. If the returned list is empty

(N = 0), then Black cannot move from the current position ± White wins. Otherwise,

we infer the outcomes {ŷ1, ŷ2, . . . , ŷN} of each child using the neural network. If any

child is losing, then the prediction for the parent position x is a win. If no child is

losing but at least one of them is a draw, then the prediction for x is also a draw. We

predict x to be a loss for Black if all children are winning. Algorithm 2 provides the

pseudocode for this search procedure.

Figure 8 displays an example of how the one-ply search works: The neural

network infers that each child of the root position leads to a draw for Black if both

players make no mistakes; The one-ply search returns a draw for the root position

because there is no winning move and at least one drawing move for Black.

Algorithm 2 One-ply Search

Require: x,θ ,g,h,predict,getChildren ▷ draw = 0, win = 1, loss = 2

children← getChildren(x)
if children is empty then

return 2

else

logits← gθ (h(children))
outcomes← predict(logits)
if 2 is in outcomes then

return 1

else if 0 is in outcomes then

return 0

else

return 2

end if

end if
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Figure 8: Example of One-Ply Search. The neural network predicts each child of the

root position to be a draw for Black. Thus, the one-ply search predicts that the root

position is also a draw for Black. Note that internally, all positions are represented as

Black to move. In the diagram, the root position is shown from Black’s perspective.

After a move is made, it is White to move, but the position is converted to look like

it is Black to move (the four positions one ply from the root).
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3.4 Evaluation Metrics

In this section, we introduce and formalize the evaluation metrics that measure

the performance of the neural network and the search algorithm from multiple

perspectives.

3.4.1 Confusion Matrix

Given a collection of prediction-label pairs {(ŷ1,y1),(ŷ2,y2), . . . ,(ŷN ,yN)}, we can

build a matrix M ∈Z+κ×κ
, where κ is the cardinality of the set of possible outcomes

(κ = 3 in our case), such that Mi j is the number of instances of class i predicted to

be class j. The matrix M is called a confusion matrix[48]. It provides an informative

and intuitive summary of the behaviour of the prediction model on the dataset.

The main diagonal entries of M count the correctly classified instances, while the

off-diagonal entries summarize the incorrectly predicted ones.

Figure 9 is a mock confusion matrix for our problem. Summing up every cell,

there are 100 positions in the test set of this example. The diagonal shows there are

45, 21, and 23 correctly classified positions for Draw, Win and Loss, respectively.

There are a total of 11 misclassified positions in the off-diagonal entries. For example,

M1,2 indicates two drawing positions are predicted as wins.

3.4.2 Accuracy

The accuracy is defined as the number of correctly classified samples divided by the

total number of samples in the dataset. Given a collection of prediction-label pairs

{(ŷ1,y1),(ŷ2,y2), . . . ,(ŷN ,yN)},

accuracy =
∑

N
i=1 I(ŷi = yi)

N
(11)

We can also compute the accuracy based on the confusion matrix M:

accuracy =
∑

κ
i=1 Mi,i

∑
κ
i=1 ∑

κ
j=1 Mi, j

(12)
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Figure 9: Confusion Matrix for Predicting the Outcomes of the Checkers Positions.

The counts of the correctly predicted ones are in the main diagonal. The off-diagonal

entries count the misclassified ones.

The confusion matrix in Figure 9 indicates an accuracy of 89%: 89 positions in the

diagonal entries divided by a total of 100.

3.4.3 Precision

The precision for a class is defined as the number of correctly classified samples in

that class divided by the total number of samples predicted in that class. Given a

collection of prediction-label pairs {(ŷ1,y1),(ŷ2,y2), . . . ,(ŷN ,yN)},

precision[i] =
∑

N
j=1 I(y j = i∧ ŷ j = y j)

∑
N
j=1 I(ŷ j = i)

(13)

We can also compute the precision based on the confusion matrix M:

precision[i] =
Mi,i

∑
κ
j=1 M j,i

(14)

Taking the draw label in Figure 9 as an example, we can compute its precision by

dividing M1,1 by the sum of the first column, giving a result of 90%.
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3.4.4 Recall

The recall for a class is defined as the number of correctly classified samples in

that class divided by the total number of labels in that class. Given a collection of

prediction-label pairs {(ŷ1,y1),(ŷ2,y2), . . . ,(ŷN ,yN)},

recall[i] =
∑

N
j=1 I(y j = i∧ ŷ j = y j)

∑
N
j=1 I(y j = i)

(15)

We can also compute the recall based on the confusion matrix M:

recall[i] =
Mi,i

∑
κ
j=1 Mi, j

(16)

Taking the win label in Figure 9 as an example, we can compute its recall by dividing

M2,2 by the sum of the second row, giving a result of 84%.
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4 Deep Learning and Evaluation Methods

4.1 Board Representation

Inspired by the work on ALPHAZERO[63], we represent each board position as a

stack of binary planes where each plane represents a specific piece type. For each

plane, the dimension is 8×8 ± the same as the checkers board. The positions where

a piece of that type exists are encoded as 1, while the rest are 0. Since we have four

piece types in checkers, the representation for one board position is of dimension

(4,8,8), organized as (black king, white king, black man, white man). Figure 10

shows an example of a board position and its representation.

4.2 Neural Network Architecture

We apply a residual neural network[19] to learn the outcomes in the CHINOOK

endgame databases. In the following sections, we describe the building blocks and

the final structure of our neural network.

4.2.1 Batch Normalization

Batch normalization[25] is a technique to normalize the input data to the neural

network layers using mini-batch statistics in order to speed up and stabilize the train-

ing. We found it necessary in our tasks ± without batch normalization, training the

neural network takes a long time to converge and can even diverge in some scenarios.

Formally, given a d-dimensional input x = (x[1],x[2], . . . ,x[d]), we normalize each

dimension by

x̂[k] =
x[k]−E[x[k]]
√

σ2[x[k]]
(17)

where σ2 is the variance. In addition to the normalization, we also need a pair of

learnable parameters γ [k] and β [k] that scale and shift x̂[k]:

y[k] = γ [k]x̂[k]+β [k]
. (18)
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Figure 10: Board Representation Example. a. The original board position. b. The

values of each plane corresponding to the piece type. c The representation of the

original position as a stack of planes.
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Since samples arrive in mini-batches B = {x1,x2, . . . ,xm} during training, we use

each mini-batch to estimate its mean and variance:

µB =
1

m

m

∑
i=1

xi (19)

σ2
B =

1

m

m

∑
i=1

(xi−µB)2 (20)

However, queries do not usually come in mini-batches during validation and testing.

Even if they come in batches, we should still treat them individually. Therefore,

the estimation method for training does not work in these phases. To resolve this,

we prepare an estimation of the mean and the variance beforehand during training ±

that is ± we keep an exponential moving average of these two parameters. For each

mini-batch B = {x1,x2, . . . ,xm}:

µ̂t+1 = ηµ̂t +(1−η)µB (21)

σ̂2
t+1 = ησ̂2

t +(1−η)σ2
B (22)

where η is the decay rate. We initialize µ̂0 and σ̂2
0 to 0. This way, we can use the

final µ̂ and σ̂2, together with the learned γ and β , to normalize and transform the

input in validation and testing.

Through experiments, we found that it is best to apply batch normalization only

after the activations of the convolutional layers. Batch normalization on the classifier

hinders the final performance.

4.2.2 Activation

We use Mish [41] as the activation function of our neural network:

Mish(x) = x tanh(softplus(x)) = x tanh(ln(1+ ex)) (23)

We selected Mish after comparing it with several popular activation functions such

as ReLU[30], SELU[28], and tanh[33] on our 2-5 piece databases benchmark. Mish

is the most robust and best-performing one for our task in terms of convergence rate
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and peak accuracy.

4.2.3 Structure

We conducted extensive experiments on the 2-5 piece databases to pick our architec-

ture from a set of candidates with a different number of residual blocks, channels

of the convolution layers, and neurons in the fully connected layers. There was a

number of considerations when we chose the final configuration:

• the neural network has to learn the data reasonably well while having an

acceptable size;

• we cannot keep growing the size of the neural network to gain a slight perfor-

mance increase because we want to achieve good compression;

• the model cannot be too simple either else it may sacrifice the performance

too much.

Therefore, our final architecture achieves a balance between performance and size.

The final structure of our residual network consists of an input convolution layer,

five residual blocks (each having two convolution layers), and a classifier made of

two fully connected layers. Figure 11 illustrates the overall structure of the residual

neural network and one residual block. Table 2 summarizes the specifications of

each type of layer in the neural network and the total parameter count. There are a

total of 533,163 parameters that need to be trained in this network.

Layer Input Dim Output Dim Batch Norm Kernel Padding

input conv (N,4,8,8) (N,8,8,8) Yes (3,3) same

1st res conv (N,8,8,8) (N,8,8,8) Yes (3,3) same

2nd res conv +
(N,8,8,8) (N,8,8,8) Yes (3,3) same

res out

linear (N,512) (N,512) No N/A N/A

output (N,512) (N,3) No N/A N/A

Total Parameters: 533,163

Table 2: Specifications of Each Type of Layer of the Residual Neural Network.
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Figure 11: Residual Neural Network Structure. a. The overall structure. b. Structure

of one residual block.
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4.3 Loss Function

Our loss function is the weighted cross entropy loss[4]. Given a predicted probability

distribution [p1, p2, p3], a true distribution [y1,y2,y3], a weight vector [w1,w2,w3],

and a weight exponent α , the loss is:

Weighted CE Loss =−
3

∑
i=1

wα
i yi log(pi) (24)

The weight vector is important to remedy the effect of unbalanced datasets. Let

N1,N2,N3 denote the number of positions for each outcome class in the dataset,

respectively. We calculate the weight vector as follows:

wi =
N1 +N2 +N3

Ni
(25)

where we assume 0 < N1,N2,N3. Whenever Ni = 0, we let wi = 0. α controls the

degree of the weights ± larger exponents emphasize the weighting and vice-versa.

We also considered the focal loss[35] which has another weighting scheme:

Focal Loss =−
3

∑
i=1

wα
i yi(1− pi)

γ log(pi) (26)

where γ is another exponent controlling the term (1− pi). The focal loss gives less

weight to the samples that the neural network can predict well and more to the poorly

classified ones. In practice, we notice that focal loss results in unstable training

and is unable to deliver better overall performance on our benchmark for a range of

hyperparameters. Hence, we use the weighted cross entropy loss.

4.4 Optimizer

For the optimizer, we use rectified Adam (RAdam)[36], a variant of Adam[26] that

is more robust.

We tested RAdam against a set of candidates, including Adamax[26], Adagrad[9],

and Adamw[37] for our task. The experiments showed that the other optimizers had

comparable or inferior performance to RAdam in terms of convergence rate and final
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accuracy. Therefore, we chose RAdam as our default optimizer.

There are two hyperparameters of RAdam ± exponential decay rate of the first

and the second moment of past gradients ± β1 and β2. We found that the default

configuration β1 = 0.9, β2 = 0.999 is good for our experiments.

4.5 Hyperparameter Selection

The hyperparameters involved include the learning rate, the mini-batch size, the

decay rate for batch normalization, the weight exponent α for the loss function,

and the decay rates β1,β2 for the optimizer. The large number of combinations

prevents us from using an exhaustive grid search. As a result, we treated the

hyperparameters independently and optimized them separately; That is, we choose a

set of candidates for each hyperparameter and benchmark the performance for each

without changing other hyperparameters; We lock the best candidate and move on to

the next hyperparameter once the experiments finish. Table 3 summarizes the set of

hyperparameters used for experiments.

primary
learning rate = 0.0002

mini-batch size = 1,024

batch normalization decay rate = 0.99

loss function α = 0.5

optimizer
β1 = 0.9

β2 = 0.999

Table 3: Choice of Hyperparameters.

4.6 Evaluation of Neural Networks and Search

In this section, we introduce the evaluation metrics and figures we use to gauge the

performance of the neural network and the one-ply search in training and testing.

4.6.1 Training

During model training, we record the overall accuracy, per-outcome class accu-

racy and per-flag class accuracy every five epochs on both the training set and the
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validation set:

accuracyoverall =
# of correct predictions

# of positions
(27)

accuracyoutcome[i] =
# of correct predictions of outcome class i

# of positions of outcome class i
(28)

accuracy f lag[i] =
# of correct predictions of flag class i

# of positions of flag class i
(29)

This way, we can monitor the overall progress of training and the performance of

the model on each class of outcome and flag. The per-outcome class accuracy is

also called the recall. Figure 12 shows a typical example of the learning curves of

training a neural network with overall and per-flag class accuracies.

Figure 12: Example Learning Curves of the Neural Network with Overall and Per-

flag Class Accuracies. (t-capture denotes threatened capture.)

4.6.2 Testing

For testing, we present two more informative ways to evaluate and visualize the

performance of both the neural network and the one-ply search.

Using the normalized confusion matrix shown in Figure 13, we can analyze the
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distribution of the predictions across the label classes. The rows are the ground truth,

and the columns are predictions. Each cell holds the percentage of the positions over

the test set. We can compute accuracy, precision and recall based on this matrix.

Figure 13: Example of a Normalized Confusion Matrix.

The second type of measure is a correlation table that correlates the neural

network performance with that of the search. It partitions the set of evaluation

results into four disjoint categories ± the neural network and search are both correct,

only the neural network is correct, only the search is correct, and both are incorrect.

Table 4 gives an example. Each entry contains the count and percentage of one

category. Summing up the rows/columns gives the correct and incorrect numbers for

the search/neural network.

Model Correct Model Incorrect

Search Correct 25,661,576 (95.09%) 507,088 (1.88%) 96.97%

Search Incorrect 522,139 (1.93%) 294,825 (1.09%) 3.02%

97.02% 2.97%

Table 4: Example of a Correlation Table.
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5 Implementation

We provide some implementation details of the crucial components of this project in

this section.

5.1 Computing Environment

The computing environment where we implement, run and experiment with our

program includes:

• 10 Intel(R) Xeon(R) E5-2650 v4 @ 2.20GHz CPUs

• 78 GB system memory

• 2 TB network file system

• 1 Nvidia Titan RTX GPU with 2.4 GB memory

5.2 Data Preparation

The pipeline that reads positions from the databases and saves them in the neural-

network-ready format at the end has several steps:

1. A program called front prepared by J. Schaeffer can access the databases by

the piece type plus leading checker rank and outputs a binary "byte file." Each

byte file holds the board positions and their corresponding outcomes and flags.

The first 8 bytes of the file represent the total number of positions in this slice.

The remaining portion consists of consecutive chunks of 13 bytes, where each

chunk stores information about one board and its outcome and flag. Of the 13

bytes, the first 4 bytes represent the white pieces, the second 4 bytes represent

the black pieces, the third 4 bytes represent the kings, and the last byte holds

the outcome and the flag. Each bit of the 4 bytes (32 bits) maps to one of the

32 playable squares of a checkerboard ± a piece is present if the corresponding

bit is on and absent otherwise. In the last byte, bits 0 and 1 store the outcome,

while bits 4 and 5 store the flag.
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2. Utilities in data_utils.py read, parse and process the byte file to recreate the

board positions, outcomes and flags. Let W, B, and K denote the bit vector

for the white, black, and king pieces for one position. We need B AND K

to extract black kings and B AND (NOT K) to restore the black checkers.

The same logic applies to the white kings and checkers. For the outcome and

the flag, we use a mask and shift to extract them. Once we have obtained

the bit vectors, we store a board position as a (4,8,8)-dimensional NumPy

array which serves as input for the neural networks. Figure 14 illustrates this

process.

3. The last stage of the pipeline is in Python script process.py. It uses the above

utilities to generate all the required positions, outcomes and flags, aggregates

and transforms them into NumPy arrays, splits them into partitions of specified

length, and saves each in a .npz file on the disk. A .npz file is a zipped archive

of multiple NumPy arrays ± a format suitable for our use case. Each file

contains an array of positions, an array of outcomes, and an array of flags.

process.py also creates a Python dictionary that maps each file path to the

meta-data that keeps the count of each outcome-flag pair in the file.

5.3 Neural Network

We implement the neural network in both PyTorch[47] and JAX[6] + Haiku[20].

Both are popular deep learning frameworks yet differ in many ways. We compare

and contrast them in detail in the appendix. As an illustration, code snippets 1 and 2

demonstrate how to implement our residual block in JAX and PyTorch, respectively.
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Figure 14: Data Pipeline. The front program retrieves a slice of checkers data

from the databases and generates a byte file. The utilities in data_utils.py transform

the byte representations into neural network input representations for the board or

numerical values for the outcome and flag.
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import haiku as hk

import jax

class ResBlock(hk.Module):

def __init__(self , is_train: bool , name: str):

super().__init__(name)

self.is_train = is_train

’’’

This method initializes a convolutional layer.

output_channels: define the # of feature maps

output by this convolutional layer

kernel_shape: define the size of the filter;

the height and the width of the filter are equal

if the argument is a scalar

data_format: the order of the axis; ’NCHW’ stands

for (batch size , channel #, height , width)

’’’

self.conv1 = hk.Conv2D(output_channels=8,

kernel_shape=3,

data_format=’NCHW’)

# initialize the activation function

self.activation = Mish()

’’’

This method initializes a

batch normalization layer.

create_scale: whether to use a scale factor gamma

create_offset: whether to use an offset beta

decay_rate: exponential decay rate

data_format: same mechanism as introduced earlier

’’’

self.batch_norm = hk.BatchNorm(create_scale=True ,

create_offset=True ,

decay_rate=0.99,

data_format=’NCHW’)

self.conv2 = hk.Conv2D(output_channels=8,

kernel_shape=3,

data_format=’NCHW’)

# the method gets called during forward propagation

def __call__(self , x):

residual = self.activation(self.conv1(x))

residual = self.batch_norm(residual , is_training=

self.is_train)

residual = self.conv2(residual)

return x + residual

Code Listing 1: Illustrative Implementation of the Residual Block in JAX.
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from torch import nn

class ResBlock(nn.Module):

def __init__(self):

super().__init__ ()

’’’

This method initializes a convolutional layer.

in_channels: defines the # of input features

out_channels: defines the # of output features

kernel_size: defines the size of the filter;

the height and the width of the filter are equal

if the argument is a scalar

padding: defines the padding size around the input

stride: defines the # of positions to shift before

the next convolution operation.

’’’

self.conv1 = nn.Conv2d(in_channels=8,

out_channels=8,

kernel_size=3,

padding=1,

stride=1)

# initialize the activation function

self.activation = Mish()

’’’

This method initializes a

batch normalization layer.

num_features: defines the # of input features

momentum: defines the momentum (1-decay_rate)

’’’

self.batch_norm = nn.BatchNorm2d(num_features=8,

momentum=0.01)

self.conv2 = nn.Conv2d(in_channels=8,

out_channels=8,

kernel_size=3,

padding=1,

stride=1)

# the method gets called during forward propagation

def forward(self , x):

residual = self.activation(self.conv1(x))

residual = self.batch_norm(residual)

residual = self.conv2(residual)

return x + residual

Code Listing 2: Illustrative Implementation of the Residual Block in PyTorch.

For optimizers, we use the torch.optim package[47] for PyTorch and Optax[5]

for JAX. Both implementations use the PyTorch data loader for data loading.
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5.4 One-ply Search

We design our one-ply search program such that the inference on the children

nodes occurs in batches to reduce the data transfer overhead from CPU to GPU

and vice-versa. We implement a function generateNextMove that, given a posi-

tion, produces all the possible subsequent boards by making a legal move as Black

at the current position. Given a mini-batch of positions B = {x1,x2, . . . ,xN}, the

naïve way to implement the one-ply search is to find the children of the first po-

sition, call the neural network to predict the outcomes of its children, determine

the outcome of the first position, then move on to the next one in the mini-batch.

Nevertheless, this implementation usually induces significant data transfer between

the CPU and GPU and takes negligible advantage of the parallelization of neural

network inference on the GPU. Our solution is to find the children of every po-

sition in B first, then concatenate the children to form another batch Bchildren =

{generateNextMove(x1),generateNextMove(x2), . . . ,generateNextMove(xN)}. In

this way, we can send Bchildren in mini-batches to the neural network on the

GPU and save data transfers. We keep a list of (start index, end index) pairs

I = {(i1, j1),(i2, j2), . . . ,(iN , jN)} to retrieve the predictions of the children po-

sitions from the returned batch. Figure 15 illustrates this batched one-ply search

process and the devices where different computations occur.

In some cases, the program doesn’t need the neural network to know the outcome.

The first case is when generateNextMove returns an empty list, where the position is

a loss automatically. The second case is when one of the children has no black pieces,

where the position is a win. We incorporate these special cases in our algorithm.

5.5 Experimental Framework

We implement a base experiment that can do the following tasks:

• load the configuration files

• create a directory structure for experiment results and configure the output

paths

• initialize the loss function, optimizer and benchmark writer
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Figure 15: Batched One-Ply Search.
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• plot the meta-data using Matplotlib[24] on TensorBoard[1] for visualization

• train the neural network and plot the learning curve on TensorBoard for

monitoring

• evaluate the neural network and search, generate the confusion matrix, the

error distribution table, and the correlation table with Matplotlib, and save

misclassified positions in a text file

These tasks are universal to any experiment. We only need to modify some

components to create a new trial.

50



6 Experiments

We have conducted experiments to explore and investigate the applicability of

deep neural networks in learning the CHINOOK endgame database. We tested the

generalization of the ResNet and proposed a method to dynamically choose between

the model and the one-ply search for inference. We present the experiments in the

order of their development.

6.1 Sampling of the 2-7 Piece Databases

Exhaustively presenting all the positions in the databases to the neural network

quickly becomes infeasible with our hardware as we move beyond the 6-piece

database. As a concrete example, training our network with 70% of the 5-piece

database (≈ 97.6 million positions) for 30 epochs takes almost nine hours. We

argue that it is still impractical to exhaust all positions, even with better hardware,

when dealing with trillions of data points. Furthermore, our neural network is not a

particularly large one. Fortunately, deep neural networks are known to generalize

well to unseen data.

In this experiment, we investigate the performance of our ResNet when we train

it with a small random subset of the target databases. While training on more data

usually yields better performance with deep neural networks, we are curious to

find out how sensitive our model is to the size of the training set on this particular

problem.

6.1.1 Dataset of the Sampling Experiment

The dataset for the sampling experiment consists of 10% of the entire 2-6 piece

databases and 0.1% of the four pieces vs. three pieces partition of the 7-piece

database, sampled uniformly. In the remainder of the section, we refer to this

dataset as the 2-7 piece dataset. Beginning with a split of 70% for training, 10%

for validation and 20% for testing, we shrink the training set by a factor of ten for

each consecutive trial, down to 0.1% of its original size, while keeping the size of

the validation and test sets constant. Table 5 summarizes the number of positions
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for each trial. The plot in Figure 16 reveals the distribution of the outcomes of the

positions in the baseline 2-7 piece dataset. The downsampled datasets preserve the

relative distributions because of uniform sampling.

Baseline 10% 1% 0.1%

Training 202,238,136 20,223,804 2,022,368 202,229

Validation 28,891,154 - - -

Test 57,782,317 - - -

Table 5: Summary of the 2-7 Piece Dataset for the Sampling Experiment.

6.1.2 Results of the Sampling Experiment

We record accuracy and recall of our ResNet on the training and validation sets

during training, saving a checkpoint every 5 epochs. We run each trial until the

validation accuracy converges. After training, we pick the checkpoint achieving the

highest validation accuracy to run on the test set.

The confusion matrices in Figure 17 show the distribution of the mistakes across

different outcomes. Most misclassifications happen in drawing positions, with them

being classified as winning or losing and vice-versa. This statement holds for both

the neural network and the one-ply search, regardless of the sampling ratio. The

highest recall for Draw achieved by either the model or the search is approximately

93.52% compared to 98.53% for Win and 96.71% for Loss. We speculate that it is

more difficult for the neural network to do well in the Draw class because there are

fewer drawing positions in the dataset, and the decision boundaries for Draw are

trickier to learn than for the other two outcomes.

Table 6 displays the correlation table for each trial. Both the model and the

one-ply search achieve an accuracy of over 90% for every task in this experiment,

with search outperforming the raw neural network in three out of four cases. The

ResNet can attain an accuracy of above 95% when trained with a little more than

10% of the total number of positions in the baseline dataset.

The model correctly scores 95.46% with the full baseline dataset, but as the

amount of training data decreases, so does the performance. Yet with only 0.1% of

the baseline, the ResNet still learns enough to score an impressive 90.79% accuracy.
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Figure 16: Outcome Distribution of the Baseline 2-7 Piece Dataset.
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The search performance shows an interesting pattern ± the accuracy of the one-ply

search does not peak at the baseline dataset. Instead, it happens on the 10% baseline

task with an accuracy of 95.72%. The one-ply search with the best-performing

model only yields an accuracy of 93.30%. Even the least accurate model trained

on the 0.1% baseline training set results in a 93.40% accuracy when used with the

search. These results imply that the search accuracy may not solely rely on the

quality of the model. One possibility is that the one-ply search alters the distribution

of the positions input to the neural network for inference. The models trained with

more training data overfit on the original distribution, making them more accurate

when presented with the same distribution but less robust otherwise.

This experiment demonstrates that sampling is a feasible technique to train a deep

neural network to learn the mappings in the CHINOOK endgame databases without

enumerating every position. Our ResNet can achieve high accuracy (> 95%), even

trained with less than 1% of the entire population. In addition, the one-ply search

usually improves upon the neural network, suggesting its capability to increase the

robustness of the prediction when the model is imperfect.

Baseline Model Correct Model Incorrect

Search Correct 52,321,877 (90.55%) 1,591,546 (2.75%) 93.30%

Search Incorrect 2,839,778 (4.91%) 1,029,116 (1.78%) 6.69%

95.46% 4.53%

10% Model Correct Model Incorrect

Search Correct 53,309,487 (92.26%) 2,002,055 (3.46%) 95.72%

Search Incorrect 1,648,779 (2.85%) 821,996 (1.42%) 4.27%

95.11% 4.88%

1% Model Correct Model Incorrect

Search Correct 51,183,270 (88.58%) 2,745,657 (4.75%) 93.33%

Search Incorrect 2,708,708 (4.69%) 1,144,682 (1.98%) 6.67%

93.27% 6.73%

0.1% Model Correct Model Incorrect

Search Correct 50,455,079 (87.32%) 3,515,282 (6.08%) 93.40%

Search Incorrect 2,004,385 (3.47%) 1,807,571 (3.13%) 6.60%

90.79% 9.21%

Table 6: Correlation Tables for the Sampling Experiment.
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Figure 17: Normalized Confusion Matrices for the Sampling Experiment. Each cell

shows the percentage of positions over the test set. The rows are ground truths. The

columns are predictions. The entries on the main diagonal correspond to correct

predictions. Left Column: neural network. Right Column: one-ply search. a.

baseline b. 10% of baseline c. 1% of baseline d. 0.1% of baseline.
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6.2 Inter-database Generalization

We have learned from the sampling experiment that our deep neural network can

achieve a compelling accuracy on the test set when trained with a tiny bit of the

whole target database. An important question to ask is whether the generalization is

useful to the databases that do not appear in the neural network’s training set. For

example, is a model trained on the 4-piece database capable of inferring the outcomes

of the positions with six pieces on the board? If this is true, then it would be an

important result. It would demonstrate the ability of the neural network learning to

extrapolate to larger (and more complex) datasets.

In the inter-database generalization experiment, we design two tasks to try to

answer the above questions. The first task is training the neural network on the

4-piece database until convergence and testing it on the 6-piece database. The second

one is training on the 5-piece database and testing the resultant model on the four

pieces vs. three pieces partition of the 7-piece database. We will refer to the dataset

sampled from this partition simply as the 7-piece dataset for the remainder of this

section. Our choice to train the ResNet on an even/odd-piece database is based on

the concern of material advantage ± one of the players has a material advantage

for all the positions in odd-piece databases, leading to a different distribution of

outcomes from the even ones.

Note that the inter-database generalization experiment differs from the subse-

quent transfer learning one. Here, we apply our trained models directly on the target

databases without any modifications. In transfer learning, we add an adaptation

phase, retraining on the new data.

6.2.1 Dataset of the Inter-database Generalization Experiment

We use the entire 4-piece and 5-piece databases with a 7:1:2 train-validation-test

split ratio. The test sets are generated with 30% of the 6-piece database and 100%

of the sampled four pieces vs. three pieces partition of the 7-piece database, split

according to the 7:1:2 ratio. Table 7 records the number of positions in each split for

each dataset used.
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4 Piece 5 Piece 6 Piece 7 Piece

Training 4,346,521 97,615,565 N/A N/A

Validation 620,931 13,945,080 N/A N/A

Test N/A N/A 153,162,235 38,110,526

Table 7: Summary of the Datasets for the Inter-Database Generalization Experiment.

6.2.2 Results of the Inter-database Generalization Experiment

We train our models on the 4-piece and 5-piece datasets until convergence and test

their performance on the 6-piece and 7-piece datasets, respectively.

The confusion matrices shown in Figure 18 demonstrate that again, the mistakes

happen more frequently in the drawing positions. The model recall of the drawing

position is 74.24% in the 4-piece to 6-piece task. The model misclassifies 28.67%

of the losing positions as drawing. The one-ply search in the same task achieves

a recall of 83.38% in the drawing positions but misclassifies winning positions as

Draw this time, accounting for 21.69% of all Win. The recalls of Win are 98.33%

for the model and 77.03% for the search. For Loss, the recalls are 63.27% for the

model and 92.63% for the search. In the 5-piece to 7-piece task, the model recall for

Draw is 20.61%. The recall of Draw for the search is 7.98% ± much lower than the

model. The model has a recall of 98.44% for Win ± 3.3% higher than the search and

91.96% for Loss ± 5.22% lower than the search.

The correlation tables in Table 8 reveal that the neural network and the search

can still reach an accuracy above 80%, despite the lower performance on the drawing

positions. Furthermore, the one-ply search gets 0.6% higher accuracy than the model

in the 4-piece to 6-piece task, whereas the model’s accuracy is 2.13% higher in the

other experiment.

The results suggest that generalization does happen across different databases.

However, the performance of both the neural network and the one-ply search is

significantly less impressive than in the sampling experiment. This outcome is

within our expectations because the input data distribution in the training phase does

not align with the test phase, a "covariate shift."
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Figure 18: Normalized Confusion Matrices for the Inter-Database Generalization

Experiment. Each cell shows the percentage of positions over the test set. The rows

are ground truths. The columns are predictions. The entries on the main diagonal

correspond to correct predictions. Left Column: neural network. Right Column:

one-ply search. a. train on the 4-piece dataset and test on the 6-piece dataset b. train

on the 5-piece dataset and test on the 7-piece dataset.

4 Piece→ 6 Piece Model Correct Model Incorrect

Search Correct 107,115,684 (69.94%) 20,430,421 (13.34%) 83.28%

Search Incorrect 19,514,041 (12.74%) 6,102,089 (3.98%) 16.72%

82.68% 17.32%

5 Piece→ 7 Piece Model Correct Model Incorrect

Search Correct 29,301,935 (76.89%) 1,397,825 (3.67%) 80.56%

Search Incorrect 2,302,548 (6.04%) 5,108,218 (13.40%) 19.44%

82.93% 17.07%

Table 8: Correlation Tables for the Inter-Database Generalization Experiment.

58



6.3 Transfer Learning

The results for directly applying the neural network trained on one database to another

are reasonable but not impressive. Can we mitigate the performance degradation

caused by covariate shift and still adapt it to unseen databases to reuse its knowledge?

We use transfer learning[15, 45], by applying the knowledge gained in solving one

problem to another different but related task. Transfer learning often involves two

stages ± pre-training and fine-tuning. One pre-trains the neural network on some

precursor task and then fine-tunes (usually only the later layers) it on the target

problem. In our setting, if the features learned by the earlier layers of the deep neural

network are not database-specific, then it should be able to adapt to a new unseen

database by only reconfiguring its classifier. Based on this intuition, we design our

transfer learning experiment as follows:

1. We first pre-train two ResNet models, one on the 2-5 piece dataset and the

other on the 2-6 piece dataset.

2. Then we freeze (stop gradient) the residual blocks of the two models and only

fine-tune their classifiers on the 7-piece dataset for a few epochs.

3. We also prepare another model as a control by freezing its residual blocks

right after random initialization and training only its classifiers on the 7-piece

dataset for enough epochs. We refer to this model as the random feature model.

The purpose of the random feature model is to eliminate the possibility that

the neural network can learn well by arbitrarily mapping the input to a higher

dimensional space.

4. Lastly, we train a reference model directly on the target 7-piece dataset for a

sufficient number of iterations. The reference model will serve as the baseline

with no transfer learning.

6.3.1 Dataset of the Transfer Learning Experiment

Our 2-5 piece and 2-6 piece datasets contain 100% and 30% positions randomly

sampled from the target databases, respectively. We use only 30% of the 2-6 piece
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databases because using the entire database empirically gives us similar or even worse

results but triples the training time. Both datasets follow a 7:1:2 train-validation-

test split ratio. The 7-piece dataset is the same one used in the inter-database

generalization experiment. The detailed summary of the datasets is in Table 9.

2-5 Piece 2-6 Piece 7 Piece

Training 102,101,750 566,698,372 133,386,843

Validation 14,585,964 80,956,902 19,055,263

Test N/A N/A 38,110,526

Table 9: Summary of the Datasets for the Transfer Learning Experiment.

6.3.2 Results of the Transfer Learning Experiment

We train two models on the 2-5 piece and 2-6 piece datasets until convergence, re-

spectively. Table 10 contains their correlation tables before fine-tuning. Interestingly,

the model pre-trained on the 2-5 piece dataset reaches an accuracy of 80.22% while

the other model pre-trained on the 2-6 piece dataset has an accuracy of 75.36%, even

though the 2-6 piece dataset has more training data and positions with more pieces

on the board. This phenomenon is likely due to the outcome distribution of the 2-5

training set being closer to the 7-piece test set. The accuracies are comparable with

the previous inter-database generalization experiment. The one-ply search raises

the performance in both cases but not to a competitive level as in the sampling

experiments.

We then freeze the residual blocks of our pre-trained models and fine-tune their

classifiers on the 7-piece dataset for only five epochs. This fine-tuning results in

high accuracy for both pre-trained models. Figure 19 displays their learning curves.

The accuracy rises beyond 94% after merely one epoch of training and continues to

increase by another 0.5% in five epochs. The final accuracy centers around 95%. An

interesting observation is that the training and validation accuracies of the model

pre-trained on the 2-6 piece dataset are consistently higher than those of the one

pre-trained on the 2-5 piece dataset, even though the former model performs worse

before transfer learning begins. The final performance on the test set also reflects

this difference, as illustrated in Table 10. We hypothesize that adding the 6-piece
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positions improves the quality of the features learned by the neural network by

introducing richer signals and more complex piece interactions.

Figure 20 presents the learning curves of the random feature model. The fine-

tuned classifier is able to correctly classify approximately 90% of the random features

after 50-60 epochs ± considerably slower and worse than the pre-trained models.

The correlation table in Table 11 confirms that. Thus, we can conclude that training

the residual blocks to discover patterns is crucial for better performance and faster

convergence.

Finally, we train our reference model until convergence. Table 12 shows the

correlation table for the best checkpoint. We observe that the transfer learning

models achieve comparable performance with the directly trained one.

Our two main findings through this experiment are:

1. Reusing previously trained models on larger databases is viable through trans-

fer learning. One only needs to fine-tune their classifiers with samples from

the target database.

2. Some features extracted by the deep neural network are likely high-level

and database-independent. The impressive final performance of the transfer

learning models and the suboptimal performance of the random feature model

support this hypothesis.

6.4 Combining Neural Network and Search Inference

The previous experiments demonstrate that the neural network inference and the

one-ply search do not always agree. While in some tasks, the one-ply search can get

an overall better accuracy at the end, in other cases, using the model alone is better,

or the advantage is negligible. Therefore, using only one for inference implies a

considerable opportunity cost. Is there a way to dynamically switch between the

model and the search position-wise based on some criteria such that the ultimate

classifier is more accurate than either?

As a context for our next experiment, we first define the highest probability from

the distribution output by the neural network given a position as its confidence for

61



2-5 Piece Pre-train Model Correct Model Incorrect

Search Correct 29,313,893 (76.92%) 1,682,679 (4.42%) 81.34%

Search Incorrect 1,258,510 (3.30%) 5,855,444 (15.36%) 18.66%

80.22% 19.78%

2-6 Piece Pre-train Model Correct Model Incorrect

Search Correct 25,383,593 (66.61%) 5,454,699 (14.31%) 80.92%

Search Incorrect 3,334,511 (8.75%) 3,937,723 (10.33%) 19.08%

75.36% 24.64%

2-5 Piece→ 7 Piece Model Correct Model Incorrect

Search Correct 34,695,990 (91.04%) 1,019,743 (2.68%) 93.72%

Search Incorrect 1,463,083 (3.84%) 931,710 (2.44%) 6.28%

94.88% 5.12%

2-6 Piece→ 7 Piece Model Correct Model Incorrect

Search Correct 34,326,432 (90.07%) 969,666 (2.54%) 92.61%

Search Incorrect 1,971,422 (5.17%) 843,006 (2.21%) 7.38%

95.24% 4.75%

Table 10: Correlation Tables of the Pre-trained Models Before and After Fine-tuning

on the Target 7-Piece Dataset.

Random Feature Model Model Correct Model Incorrect

Search Correct 26,906,527 (70.60%) 1,926,654 (5.06%) 75.66%

Search Incorrect 7,515,449 (19.72%) 1,761,896 (4.62%) 24.34%

90.32% 9.68%

Table 11: Correlation Table of the Trained Random Feature Model.

Reference Model Model Correct Model Incorrect

Search Correct 30,257,729 (79.39%) 816,636 (2.14%) 81.53%

Search Incorrect 6,268,606 (16.45%) 767,555 (2.01%) 18.46%

95.84% 4.15%

Table 12: Correlation Table of the Trained Reference Model.
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Figure 19: Learning Curves of Fine-tuning Pre-trained Models to the Target

Database.
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Figure 20: Learning Curves of the Random Feature Model.
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that position. For instance, if the model outputs a distribution [0.80 (Draw), 0.15

(Win), 0.05 (Loss)] given an input board representation, its confidence for this board

position is 80%.

We discover a correlation between the neural network’s quality of prediction and

confidence ± the higher the confidence, the more likely the ResNet’s inference is

correct. We reuse the best baseline model from the sampling experiment, whose

correlation table is in Table 6. Using this neural network, we generate Table 13, a

summary of the mean confidences of the correctly and incorrectly classified positions

in the 2-7 piece validation set with respect to the outcome class. One can realize a

significant difference between the mean confidence between the correct and incorrect

predictions. The difference across the outcome classes is not as striking. We also plot

the distribution of the number of correct/incorrect positions over bins of confidence

levels in Figure 21. The higher the confidence, the higher the ratio of the number of

correct to incorrect inferences.

Exploiting this property of the neural network, we propose using a confidence

threshold to dynamically switch between the neural network and the one-ply search

for each position. If the confidence of the neural network for a position is higher

than the threshold, then we accept the model’s decision. Otherwise, we perform a

one-ply search and use the search result.

Outcome Mean Confidence Correct Mean Confidence Incorrect

Draw 94.26% 74.86%

Win 98.54% 77.31%

Loss 97.71% 73.88%

Table 13: Mean Confidence Table. The columns are average confidences of the

neural network for the correctly classified and misclassified positions, respectively.

The rows show the mean for both cases with respect to different outcome classes.

6.4.1 Results of the Threshold Approach

Among thresholds 70%, 80% and 90%, 80% gives the best performance. Thus, we

use 80% as the confidence threshold to test our algorithm on the 2-7 piece test set.

Table 14 displays the statistics of using the model only, the search only and the
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Figure 21: Distribution of Positions Across Confidence Levels.
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threshold algorithm that merges the two dynamically. Interestingly, the search-only

method performs worse than the model-only but complementing the model inference

with search according to the threshold results in 55,441,847 correct mappings out

of 57,782,317 positions in the test set ± 280,192 (0.5%) more than model-only and

1,528,424 (2.65%) more than search-only. This evidence supports the effectiveness

of our threshold algorithm.

In this experiment, we have proposed and empirically verified a simple algorithm

that dynamically merges the strengths of the neural network and the one-ply search

to create a predictor better than solely relying on either. Our algorithm exploits

the classification confidence property of the ResNet and does not use any domain-

specific checkers knowledge.

Method Correct Total Accuracy

Model-only 55,161,655 57,782,317 95.46%

Search-only 53,913,423 57,782,317 93.30%

Above threshold - Model used 52,782,198 53,899,336

Below threshold - Search used 2,659,649 3,882,981

Threshold 55,441,847 57,782,317 95.95%

Table 14: Statistics of the Neural Network, the One-ply Search, and the Confidence

Threshold Method.

6.5 Compression

We have demonstrated how good the neural network and the one-ply search are

in capturing the CHINOOK endgame databases and how to improve them via our

confidence threshold method. However, how effective are they quantitatively in

terms of compression? We run an experiment on the 2-5 piece databases to answer

this question. We use the entire 2-5 piece databases, split again according to a 7:1:2

ratio, then train our ResNet on the training set until convergence. The best accuracy

achieved using the confidence threshold approach is 99.377%. If its performance is

roughly the same on the complete 2-5 piece databases, it should get approximately

144,950,938 correct predictions out of 145,859,644 positions. That means it would

get 908,706 incorrect predictions, accounting for 4.33 MB, if we store them in a
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separate table with 5 bytes per position: We use 5 bits for the location, one for the

colour and one for the type (king/checker) for one piece of a position. Each position

has at most five pieces on the board. Thus, 5 bytes per position is sufficient. The

theoretical size of our ResNet is 2.13 MB. Therefore, the total size of the 2-5 piece

endgame databases compressed according to our scheme is about 6.46 MB. The

custom compression algorithm takes only 1,590,303 bytes (1.52 MB) to store the

2-5 piece databases. We thus conclude that the custom compression scheme is hard

to beat with our more general neural network-based compression, despite the high

accuracy achieved by the latter.

6.6 Summary

In this chapter, we have presented four experiments and their results to demonstrate

the strengths and weaknesses of the neural network and the one-ply search in fitting

the CHINOOK endgame databases and possible improvements. Our results show

that:

• Training from a subset as small as 1% of the entire dataset is sufficient for the

deep neural network to map above 90% of all the positions in the dataset to

correct outcomes.

• The neural network trained from one database can perform reasonably well

out-of-the-box on another database it has never seen. However, it can achieve

comparable performance to the ones trained directly on the target database by

reusing the learned convolutional features, and further training (fine-tuning)

only its classifier’s parameters for a few epochs on the target database.

• There is a positive correlation between the neural network’s chance to cor-

rectly predict a position’s outcome and its confidence, defined as the highest

probability from the distribution output by the model on that position. By

exploiting this correlation, we have developed a mechanism to dynamically

switch between the inference made by the neural network and the one-ply

search. The resultant algorithm is superior to exclusively applying the neural

network or the one-ply search.
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In addition, we also report through experimentation that our compression scheme can-

not beat the custom algorithm used to compress the CHINOOK endgame databases,

although the accuracy of this trained model is over 99%.
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7 Conclusion

This project investigates applying deep neural networks to endgame databases for

the game of checkers. Our objectives include compressing the endgame databases

of Chinook, a checkers playing program and extracting features from the neural

network. The implication of the first objective is a general algorithm that is more

memory-efficient than a highly customized lookup table. The second one would

potentially advance human players’ understanding of the game and may one day

help people discover novel insights and strategies. We also offer perspectives on how

our problem differentiates from "common" supervised learning tasks and self-play

algorithms.

In accomplishing our goals, we have developed a complete pipeline to interface

with the Chinook endgame databases and generate datasets compatible with our

deep learning frameworks. We have discovered and implemented the most suitable

residual neural network that balances the computational and memory overhead with

the performance through experimentation. We also provide the best optimizer and

loss function to our knowledge alongside the optimized hyperparameters through

empirical studies.

The four experiments we have conducted are ± sampling, inter-database gen-

eralization, transfer learning, and merging the model and search inference. They

demonstrate three primary discoveries:

1. Although the size of the endgame databases is prohibitively large for exhaus-

tive enumeration when training the neural network, we find that the model can

achieve impressive accuracy even with a tiny random subset. Furthermore, a

one-ply search can usually perform better when the model is imperfect.

2. Pre-training a neural network on one database and applying it to a distinct

one gives fair but less impressive results. However, by fine-tuning only the

classifier of the pre-trained model for a few epochs with the target database,

it quickly attains similar accuracy as the model trained directly on the target

database. We argue that it is evidence that the neural network can learn general

features of checkers that are universally applicable to any database of Chinook.
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3. We define the term confidence and have successfully observed that the neural

network is more accurate in the positions where it is confident. Considering

that the one-ply search can complement the model’s imperfection, we propose

to use a confidence threshold to dynamically switch between the model and

the one-ply search and succeed in getting an accuracy higher than either.

We conclude that the custom hand-tuned compression scheme is hard to beat

with neural networks, especially for smaller databases. Nevertheless, the gap is not

impossible to close. Our work supports that the neural network is likely to discover

general patterns of checkers, but we are unclear on how to acquire that knowledge

such that humans can interpret it. We leave this question to future work.

Other future work shall improve and extend our current work methodologically

and experimentally:

• Methodologically, one could propose a more advanced neural network ar-

chitecture that achieves a better generalization without increasing its size.

In addition, one can test or invent alternative loss functions and optimizers.

Another direction is work on the search algorithm because the current system

uses the most naive one-ply minimax search. Furthermore, we lack a way to

automatically and intelligently select a threshold for confidence. The current

version relies on trial and error. Last but not least, one could attempt to develop

knowledge acquisition techniques to understand the patterns learned by the

neural network.

• Experimentally, it would be interesting to scale to larger databases, given more

computational resources and efficient implementations. We also need novel

experiments to verify our hypothesis regarding the properties of the learned

features when we train the models on different databases. Do the positions

with more pieces on the board provide more signals resulting in better features?

Setting up experiments to investigate why Draw is more difficult to learn than

the other two outcomes is also an interesting direction.

Our work is the first attempt to compress and extract features from endgame

databases using deep learning techniques to our best knowledge. The lack of previous
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work poses challenges in this field. On the other hand, this research direction offers

numerous opportunities and potential. We hope our work provides motivation and

valuable insights to future projects.
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A Appendix

A.1 Deep Learning Frameworks

In this work, the definition, implementation and training of deep neural networks

are described for two deep learning frameworks, PyTorch and JAX. The former has

been one of the most popular choices by practitioners and researchers in recent years,

while the latter has been gaining popularity steadily among researchers since its

release. While the two are both useful for a common purpose ± training a deep neural

network ± they differ in various aspects examined in the following subsections.

A.1.1 Overview

PyTorch

PyTorch[47] is a full-fledged framework that includes modules for building neural

networks, popular loss functions and optimizers, all under a common namespace. It

was inspired and based on Torch, a scientific computing framework based on the Lua

programming language. PyTorch provides both Python and C++ interfaces, although

the former is the most polished and the dominant choice for its users. It has become

one of the top choices for deep learning thanks to its ease of use, speed, and robust

ecosystem.

JAX

JAX[6] is described as a high-performance machine-learning framework that

combines Autograd[39] and XLA[52].

Autograd is a Python package capable of differentiating native Python and

NumPy[16] code. It can take the gradients of functions written in Python and

NumPy without the analytical form of the gradient function. Furthermore, unlike

numerical differentiation techniques, which compute empirical gradients, Autograd

computes the gradient function precisely.

XLA stands for accelerated linear algebra, a specialized compiler. It analyzes

the computation graph, optimizes it and produces efficient machine code for devices

such as CPU and GPU and custom accelerators such as TPU (tensor processing

unit).
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One of the main features of JAX is its composable transformation capability,

where transformations like JIT(just-in-time compilation) and automatic differenti-

ation can be arbitrarily composed. For instance, one may have defined a custom

function in native Python. The gradient transformation can transform it into another

one that computes its gradients. By composing the gradient function using JIT, the

outcome is yet another function that retains the functionality but is optimized for

performance.

JAX itself is not a complete deep-learning framework but more like a library for

high-performance scientific computing. It lacks support for building and training

neural networks. Fortunately, reliable external libraries Haiku[20] and Optax[5] are

publicly available for this purpose. Furthermore, since JAX heavily emphasizes per-

formance, it is also gaining popularity among a wide variety of scientific computing

domains, such as differentiable physics[60].

A.1.2 Installation

When installing PyTorch on an Nvidia GPU-enabled machine, the distribution comes

with built-in CUDA[38], cuDNN[8], etc. As a result, one can usually use PyTorch

out of the box.

On the other hand, JAX only has the equivalent distributions for Linux machines.

Users often need to set up the environment manually after the installation and could

be frustrated by the technical challenges.

A.1.3 Programming Style

PyTorch follows the imperative programming paradigm, and Python users are typ-

ically comfortable with this style. Users abstract their deep neural networks into

objects and train their models by modifying their internal states. Under this paradigm,

most of the internal mechanisms get abstracted away. Users can quickly build, train

and test their models in a few lines of function calls, and the framework manages

everything in the background.

JAX employs the functional programming paradigm, where the users need

to write pure functions. In writing a neural network, the state of the network, the
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forward propagation function and the gradient computation function are all separated.

To do this requires more work on the user side, but it pays off later for a logically

cleaner code and the applicability of JAX’s composable transformations.

A.1.4 Tensor Representation

The fundamental data structure of PyTorch is a tensor (a multi-dimensional matrix

containing elements of a single data type). Tensors are mutable data structures. Most

tensor operations in PyTorch mimic the API of NumPy, and the conversion between

NumPy arrays and PyTorch tensors needs to be explicit.

JAX represents tensors as JAX NumPy arrays. These are immutable types to

retain the functional programming nature of JAX. JAX NumPy arrays employ duck-

typing[14] to NumPy arrays. Users can make function calls on JAX NumPy arrays

using the identical NumPy API most of the time to achieve the same effect. The

conversion between the two types can be done implicitly.

A.1.5 Automatic Differentiation

There are mainly two modes of automatic differentiation (AD) ± forward mode

and reverse mode. The latter is commonly referred to as backpropagation when

the target function outputs a real scalar. Since the loss functions in deep learning

usually map to scalars, backpropagation virtually replaces reverse mode AD when

discussing training a deep neural network. Forward mode AD calculates and keeps

the value and the gradient of intermediate activations in the forward computation

and repeats for each input variable. Reverse mode AD only keeps the intermediate

values in the forward pass. Then it calculates the gradients and applies the chain rule

in the backward step for each output variable. The selection between the two modes

usually depends on the dimension of the function’s input relative to its output[40].

PyTorch performs automatic differentiation (AD) by dynamically building a

computation graph and then calculating and aggregating the gradients. In the earlier

releases, it only supported reverse-mode AD. The latest releases include forward-

mode AD in Beta testing. Computing higher-order gradients is not trivial in PyTorch

and often requires writing loops.
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In JAX, there is technically no concept of an explicit computation graph. The gra-

dient transformation transforms the original function into another one that computes

the first-order gradient with respect to the first argument of the function call. JAX

has had support for both forward-mode and backward-mode AD since its release.

Furthermore, higher-order differentiation is as easy as composing transformations in

JAX.

A.1.6 Working with Accelerators

In PyTorch, the user needs to transfer data across different devices explicitly through

code, for example, CPU to GPU and vice-versa. To use TPU, users need the

PyTorch/XLA package that enables PyTorch models to run on XLA devices.

On the other hand, JAX is accelerator agnostic, meaning that the same code

can run on any device without any change unless explicitly specified. Furthermore,

optimized JAX code eventually compiles to XLA, so that it is compatible with CPU,

GPU and TPU.
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