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Notation

F non-archimedean local field

r.y.a,b elements of F

F* denotes the abelian group (F, +)

| - | normalized absolute value on F

F* group of units of F namely F \ {0}

O ring of integers of F namely {z € F : |z| < I}

U group of units of O namely {z € F : |z| =1}

¢ elements of U

P the unique prime ideal of O namely {zr € F : |r| < 1}

g :=|0/P|
G = GL.(F)
K = GL,(0)

M denotes arbitrary compact or open subsets of a topological space
val denotes the valuation homomorphism val : F* — Z

f will denote functions

p will denote right translation

g. h denote elements of G

c. = denote complex numbers

¥ non-trivial unitary character of F¥

{ denotes the conductor of ¥

F=.U*,...denotes the Pontryagin duals of F*. U, ..

X, Y. V are for complex vector spaces

V" is the space of linear functions on V

(7. V) denotes a representation of a group

u denotes vectors in .X

x character of F*

F(x)

& for functions in F(x)

[I(G) is the set of equivalence classes of irreducible admissible representations of G.
L(s.m) is the Euler factor of the representation = € I[I(G)
v(s. 7. ) is the gamma factor of w € II(G) with respect to v
€(s. m. ¥) is the epsilon factor of = € II(G) with respect to v
Z(s,x, ¥) is Tates zeta function of x with respect to v

Z(s, p, w) is the zeta function of an infinite dimensional class in [I(G) at p € K(m)
Z(n) the fractional ideal corresponding to & € II(G)

wr is the central character of = € II(G)

Yo denotes the restriction of the character y of F* to U.

(%, V) denotes the contragredient representation of (7. V')
(7w, K(7) denotes the Kirillov model of w with respect to v
X :==x1x5 " where x1, x2 € (GL(F))

m(x1,Xx2) denotes a principal series representation

o{x1, x2) denotes a special representation

(p. B(x1, x2))

u# and v denote unitary characters of U, i.e. elements of U*
Sx (T) denotes the Schwartz-Bruhat space of 7 and X

Sx abbreviates Sx (F*)

S(T) abbreviates S¢(7)

L denotes linear functionals

. 1 for functions from F* to a complex vector space

R denotes linear operators and intertwining operators

n,m, k denote integers



& denotes uniformizing parameters of F

Z=A{ a 0 €G : a € F* } is the center of G
0 a

3={(‘5 :) €G : a,be F*z € F} is the standard Borel subgroup
U={<é "1") € G : £ € F} is the unipotent radical of B

T={ (g 2) € G : a,be F*} is the torus subgroup of diagonal matrices in ¢
.{:{(8 ";)EG:aeF"J:EF}isthea.fﬁnesubgroupofG.

Ag is the Haar measure on G such that Ag(A) =1

At is the Haar measure on F¥ such that A*(0O) =1

Ay is the Haar measure self dual with respect to 1 # v € F~
A* is the Haar measure on F* such that AX(U) =1

d*r abbreviates dA*(z)

d* r abbreviates d\*(r)

d, r abbreviates dAy(x)

#=(4 o)
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Introduction

Let F be a non-archimedean local field. The theory of admissible representations of
the group GL»(F) was first introduced in the second and third paragraphs of [1]. In the
end they achieve what they need but polished routes to these goals is not a priority. The
result is a first and fundamental step towards the understanding of what type of results one
should expect from this new theory, but unfortunately due to the terse exposition the ideas
are clouded and difficult to get in to. The next step is 2 much easier one and it involves
cleaning the proofs up and finding more direct and natural arguments. This is the purpose
of this thesis. Our two main references are [1] and [2]. We take the best approaches from
both. combine them. and the proper definitions and formulations are discovered. Qur goal
was to give a relatively detailed and friendly exposition of this theory. something which
did not exist before. In search of this goal we obtained three minor improvements over the
previous theory.

Firstly the dependence of the non-trivial unitary character v on the theory is hidden
in the background in [1]. This causes some confusion. We ammend this problem by clearly
stating the role v plays in the results. In [2] the character v is fixed "once and for all”. We
disagree with this approach feeling that results in the theory should be phrased for arbitrary
v. It is important to understand how objects defined with respect to v will change when v
changes.

Secondly theorem 1 in chapter 7 is a little more general than in [1] or [2] since it is
stated for arbitrary X. A close examination of the methods of [1] and [2] shows that these
techniques can be carried over to prove this seemingly more general result.

Finally our development and exposition of the functional equation considerably im-
proves upon [1] and [2]. In [1] the proof of the functional equation is only completed in
the third paragraph and involves the Weil representation. This complication is completely
unnecesssary as the approach of [2] shows. Unfortunately [2] uses the strange choice of
2s — | in the definition of the zeta function of = where s — L should really be used. This
has the consequence of a loss of elegance in certain formulas in the theory. Moreover they
both use a group element g of G and a character x of F* as parameters in thier definition
of the zeta function of w. This again is not necessary and we give the proper definitions.
The naturality of the results attest to the correctness of the definitions found here.

I would like to sincerely thank Henri Darmon and McGill University for providing me
with the opportunity and financial support to spend a year in spectacular Montreal. My
gratitude is also warmly extended to my supervisor Alfred Weiss for his continuing financial
and mathematical support.

Terry Jackson
August 1998



Chapter 1 Background from the General Theory

Some Remarks on Topological Groups

For background in the theory of topological groups the reader is may consult [5]. Any
finite group can be considered as a compact group by providing it with the discrete topology.
We recall the simple fact that if G is a topological group and H is an open subgroup of GG
then H is necessarily closed. Indeed every coset of H in G is open and so the set defined
by U{gH : g€ G g ¢ H} isopen in G. It is clear that the complement of this set is H. and
hence H is closed. An open subgroup of a compact group is necessarily of finite index as
the cosets form a mutually disjoint open cover of the group.

Proposition 1 Let G be a compact group and H a closed subgroup of G. Then H is
open iff H has finite index in G.

Proof We have just remarked that H open implies that the index of H in G is finite.
Conversely let S be a complete set of representatives of the left (or right) cosets of H in
G and suppose that S is finite. We may suppose 1 € S. If H = G of course H is open so
we may suppose H # G. The finite union U{gH : g € S. g # 1} is closed. and hence its
complement in G. which is clearly H. is open.

a
Characters of Topological Groups

Let G be a topological group. We define a character of G to be a continuous homomor-
phism from G to C* and a unitary character of G to be a continuous homomorphism from
G to T. the group of complex numbers of absolute value 1. A character is said to be positive
if it takes values in the subgroup of positive real numbers (0, oc) of T* . Observe that if \ is
a homomorphism from G to T* then to show that x is continuous it suffices to show that
x is continuous at the identity of G. If x and w are characters of G we define their product.
which will be denoted by yw, to be the character (xw)(g) := x{(9)w(g) where ¢ € G. With
this law of composition the set of all characters of G becomes an abelian group. and the set
of unitary characters of G is a subgroup. The unitary character : G — T g +—— 1 is called
the trivial character of G, and it is the identity element of the group of characters of G. If
is a character of G we denote by y~! the inverse of x in the group of all characters. namely
x~Y(g) := x(g)~" where ¢ € G. Hence for every g € G we have x"1(g) = v(9)~! = x(g7}).
If x is unitary we could add the complex conjugate of x(g) to this string of equalities.

Proposition 2 If G is a topological group which is the union of its compact subgroups
then any character of G is necessarily a unitary character. In particular this holds for
compact groups.

Proof Let x : G — C* be a character of G. Let M be a compact subgroup of G. Then
as x is continuous the image of M in C* is a compact subgroup of C*. If ¢ € T* and
le| # 1 then {¢* : n € Z} is an unbounded subset of C* and hence c cannot be contained in
a compact subgroup. This shows that the restriction of x to M is a unitary character of M.
Since G is the union of its compact subgroups we see that x is in fact a unitary character
of G.

a
Haar Groups

The theory we review in this section is developed in detail in [5]. We define a Haar
group to be a locally compact Hausdorff topological group. It is a fundamental result that
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there exists a left invariant measure on the Borel o-algebra of any Haar group. Here by a
left invariant measure we mean a positive measure A on the group such that for any Borel
measurable set E and element g of the group we have A(gE) = A(E). Any such measure
is called a left Haar measure. Similarly we say a positive measure is right invarant if
A(Eg) = AME) for all g and E, and it is proven that there exists a right invariant measure
on any Haar group. We call any such measure a right Haar measure. A Haar measure
always assigns to any compact set a finite measure. and assigns to any open set a positive,
possibly infinite, measure. In general there does not exist a measure on a Haar group which
is both a left and a right Haar measure. A Haar group is said to be unimodular if there
is a measure that is both a left and a right Haar measure. There are important classes of
Haar groups which are unimodular. For example any abelian Haar group. or any compact
Haar group is unimodular. When dealing with unimodular groups we consequently need
not make a distinction between left and right Haar measure. Any two left Haar measures
(or right Haar measures) are a positive multiple of one another. Consequently when we
have a compact Haar group it has a unique Haar measure which assigns the group a total
mass of 1. We call this the normalized Haar measure. Similarly if we are given some Haar
group with a compact open subgroup then there is a unique Haar measure which assigns
this subgroup a measure of 1.

Let G be any Haar group, and let a be a left Haar measure on G. Denote the complex
vector space of continuous compactly supported functions on G by C.(G). We have a
positive linear functional

[:=/ - da:C(G)—C
G

corresponding to the measure a. We denote the image of f € C.(G) under this map as

/Gfda or ‘/Gf(.r)da(z:).

Since the measure o is left invariant this functional has the property that [(f) =
I(f(a-)) for all f € Cc(G) and a € G. This is equivalently expressed as

/ flaz)da(z) = / f(z)da(z).
G G
Similar remarks apply for right Haar measures.

When G is an abelian Haar group we denote the group of unitary characters of G by
G*. and we call G* the Pontryagin dual of G. We can provide G* with the structure of an
abelian Haar group. A basis of open neighborhoods at the identity in G* is given by the

sets
N(R.¢)={veG :|v(z)-1]<e forall zeK}

where A is any compact subset of G and € > 0. This is the topology of uniform convergence
on compact sets.

The Pontryagin duality theorem asserts that G and G** := (G*)" are isomorphic topo-
logical groups under the canonical map

:G— G g—r g

where we define g** (i) := p(g) for p € G*. One proves that G is compact iff G* is discrete.
Hence by Pontryagin duality G is discrete iff G* is compact.

Let M be a compact Haar group and A the normalized left, or right, Haar measure of
M. Since M is compact any character of M is necessarily unitary. For a unitary character

2



x of M define 6(x) =0 if x # 1 and define §(x) = 1 when x = 1. The invariance of A easily
implies that for any unitary character x of M we have

/ x(9) dA(g) = 6(x).
M

Fourier Analysis on Abelian Haar Groups

For the material covered in this section we refer the reader to [6] and [9]. Let G be an
abelian Haar group, which will be written additively, and let a be a Haar measure on G.
For any function f € L}(G) we can define its Fourier transform with respect to a by

fa:G'—C  falp) = /G f(a)(a) da(a).

When it is clear which Haar measure a is being used we will write f instead of f,. One
can prove that if f is continuous then f is continuous. The Fourier inversion formula states
that there exists a unique Haar measure a® on G*. called the dual measure of a, such that

whenever f € L1(G"), so that f := (f)a- is defined, then for all a € G.

f(~a) = f(a™).

Or equivalently for every a € G,
flma) = [ Fwuta) da”(u).
This is of course the same as

fla)= [ fnt-a)da™w) = [ flun! @) da" ().

We will not have to be concerned with any L!-convergence properties of Fourier trans-
forms in these notes. The application of this theory to our needs will not require the
generality it is available in. For example we will mainly use it on functions which have
compact support.

For the proof of the following refer to the sources quoted at the beginning of this section.

Proposition3 Let G be a compact abelian Haar group. and let a be the normalized Haar
measure on G. Then the dual measure " of a on the discrete abelian Haar group G* is the
counting measure. By Pontryagin duality we have the converse statement as well.

Basic Notions in the Theory of Group Representations

In this section we review some elementary aspects of the theory of group representa-
tions. The subject matter of these notes in fact does not require much background from
representation theory beyond the basic definitions given below. The reader may consult [5]
for results on the representation theory of compact and locally compact groups.

Let G be an arbitrary group. A representation of G is a pair (7, V) where V' is a
non-zero complex vector space, of finite or infinite dimension, and # : G — GL(V) is a
homomorphism of groups. Here GL(V) denotes the group of invertible linear operators on
V. The vector space V is called the representation space. The dimension of a representation

3



is the dimension of its representation space. Note that if (7. V) is a representation of G.
and M is a subgroup of G, then by restricting = to .M we obtain a representation (7{yr. V")
of M on the same space V.

For any subgroup, or even for any subset, M of G we define the subspace of 1.

VM ={veV :a(glv=rv forall ge M}

Suppose moreover V' is a topological vector space and G is a topological group. We
say that a representation (w, V') of G is contiruous if the map : G x V — V' (g.v) —>
7(g)v is continuous. Note that characters of G are the same as continuous one dimensional
representations of G.

Let (w.V) be a representation of G. We say that a subspace W of V' is m-invariant
iff for every ¢ € G we have that W is an invariant subspace of the operator m(g). that
is m(g)W C W. The subspaces {0} and V of V' are always n-invariant. Let W be -
invariant. We claim that for any ¢ € G we have x(g) € GL(W). At this point we only
know that x(g) € End(W). Since w(g) is an injective map we only need to prove =(g) as
an operator in End(W) is surjective. Well let w € W and define v := x(g~')w. Then
v € W and 7(g)(v) = w. which proves the surjectivity assertion. Hence if W # 0 we obtain
a representation of G on W. We call this representation of G on W a subrepresentation of
(m. V).

We say that (m, V) is an irreducible representation of G if there are no non-trivial -
invariant subspaces of V. More precisely the only w-invariant subspaces of V" are {0} and
V.

Given v € V clearly the smallest 7-invariant subspace of V containing v is span{ =(g)v :

g€G}

Let (m, V1) and (2, Va) be two representations of G. and let R : V| — V5 be a
linear operator. We say R is an intertwining operator of the two representations if for every
g € G and v € V; we have R(m(g)(v)) = ma(g)(R(v)). If moreover R is an isomorphism
of the vector spaces V; and V> then we call R an intertwining isomorphism of the two
representations. We say that the representations (m,, V1) and (a2, V2) are equivalent if there
exists an intertwining isomorphism between them. We say that (m;, V}) occurs in (ma2. V) iff
(w1, V1) is equivalent to a subrepresentation of (w3, Va). Equivalence of representations is an
equivalence relation on the category of all representations of G. If (m, V1) and (m2. V) are
equivalent then of course their dimensions as representations are the same, as the existence
of an intertwining isomorphism shows that V; and V5 have the same dimension. Hence we
may speak about the dimension of an equivalence class of representations.

We adopt the convention that when we speak of (7, V) we refer to a representation as
defined above, but when we speak of w alone then we are referring to the equivalence class
that (7, V) belongs to. Hence we write w to denote both a homomorphism of G to GL(V)
and for the unique equivalence class that contains the representation (7, V). It will be clear
which interpretation is intended whenever it is used.

Proposition 4 Let G be a compact group and let (7, V) be a representation of G such
that ker(w) is closed in G. Then ker(r) is open in G iff im(r) is a finite subgroup of GL(V).

Proof By Proposition 1.1 we know ker(7) is open iff (G : ker(x)) < oc iff im(x) is finite.
o

Definition 5 Let (m, V) be a representation of a group G. Suppose X and Y are =-
invariant subspaces of V' such that Y C X. If we define n’ : G — GL(X/Y) by

(giz +Y) :=m(g)(z) +Y

4



then 7’ is a well defined group homomorphism. Hence (7’. X/Y') is a representation of G. We
call (. X/Y) a constituent or a subquotient of (w, V'). We will prefer the term constituent
even though subquotient is more descriptive. Observe that any subrepresentation .X of

(x.V) is a constituent of (x, V) by taking Y = {0}.



Chapter 2 Finite Dimensional Smooth Representations

Locally Profinite Topologies

Recall that a topological space is said to be connected iff the only subsets of it which
are both open and closed are the empty set and the whole space. A subset of a topological
space is said to be a connected subset of the space iff it is connected in the induced topology.

Let X be a topological space. For z € X we define
C: =U{E C X : E is connected and r € E}.

We call C, the connected component of r in X. C, is the largest connected subset of .X
having r as an element.

Definition 1 A topological space X is said to be totally disconnected iff for every r € X
we have C; = {z}.

Observe that a discrete topological space is totally disconnected.
Proposition 2 Let Y be any non-empty subset of a totally disconnected topological space

X. Then Y is totally disconnected in the induced topology from X.

Proof Let W be any non-empty subset of Y. It is simple to verify that the induced
topology on W from X coincides with the induced topology on W from Y. Hence W is a
connected subset of X iff W is a connected subset of Y. Now let y € Y and define C, to
be the connected component of y in Y. We wish to show that Cy, = {y}. Well by what we
have just said Cy being a connected subset of Y implies that Cy, is a connected subset of .X.
Since X is totally disconnected we must have y € Cy C {y}. Therefore Cy = {y} as desired.

a
The next result is simple and can be found in any introductory book on general topology.

Proposition 3 The product of totally disconnected topological spaces is totally discon-
nected.

Definition 4

(1) A totally disconnected, compact, Hausdorff space is said to be profinite.

(2) A topological space is said to be locally profinite iff every point of the space has a
neighborhood basis consisting of profinite sets.

(3) A topological group is said to be profinite (locally profinite) iff the underlying topo-
logical space is profinite (locally profinite).

Of course a profinite space or group is also locally profinite. The proof of the next
results can be found in Bourbaki or the book of Montgomery and Zippen titled " Topological
Transformation Groups”.

Proposition 5

(1) A topological space is locally profinite iff it is locally compact. Hausdorff, and totally
disconnected.

(2) Let G be a locally profinite group. Then the set of compact open subgroups of G form
a basis of topology at the identity of G.



(3) Let G be a profinite group. Then the set of open normal subgroups of G form a basis of
topology at the identity of G. Any such subgroup is necessarily closed and hence compact.

The Schwartz-Bruhat Space

Let 7 be a topological space. If X is a set and f : T — X is a function then we say
that f is locally constant iff for any point in 7 there is an open neighborhood in 7 about
that point on which f is constant. Obviously under any topology on X a locally constant
function f : T — X is necessarily continuous. Of course there are continuous functions
that are not locally constant. We will usually consider locally constant functions with values
in a complex vector space which will usuaily be T. Let .X be a complex vector space. If
f : T — X is any function we define the support of f to be the closure in 7 of the set
{z € T : f(z) # 0}. The support of f is denoted by supp(f). If supp(f) is a compact subset
of T we say that f is compactly supported. It is trivial that if 7 is a compact Hausdorff
space then any function f : 7 — X is compactly supported.

Now let f : T — X be a locally constant function. If f is compactly supported then
the image of f in X is finite, and supp(f) = {r € T : f(z) # 0}, namely there is no need to
take the closure in this case. We conclude that supp(f) is an open and closed subset of 7.
For similar reasons the preimage of any vector in X is an open and closed subset of 7. We
conclude that the only locally constant functions on a connected topological space are the
constant functions.

We can now give the following definition.

Definition 6 Let 7 be a locally profinite topological space and let X be a complex vector
space. We define the Schwartz-Bruhat space of T and X to be the complex vector space
consisting of all locally constant, compactly supported functions from 7 to X. It will be
denoted by Sx (7). Since the case X = C arises so often we abbreviate S¢(7T) by S{T).

By what we have said above any function in Sx(7) takes only finitely many values in
X . Therefore if furthermore T is a measure space such that any compact subset has finite
measure then we may integrate any function in Sx (7). the value of the integral being a
vector in X.

Finite Dimensional Smooth Representations

Definition 7 Let G be a locally profinite group, and let (m, V) be a representation of G.
We say that (7, V') is a smooth representation iff for every v € V the stabilizer of v. namely
{9 € G : m(g)v="r}, is an open subgroup of G.

Note that the stabilizer of v is trivially a group. The content of the condition is that
this stabilizer is open in the topology.

If V is a finite dimensional complex vector space we can give it the unique non-discrete
locally compact topology making it into a topological vector space. In this case V and O
are isomorphic topological vector spaces, where n = dim(V). If (x, V) is a finite dimensional
representation of G and we speak of (m, V) being continuous we always mean with respect
to this topology on V.

Let V be a non-zero finite dimensional complex vector space. Let | - | be any norm on
V. We define the usual operator norm || - || on End(V) by
— la(v)|
|leel] == supuzo o]



where a € End(V).

Lemma 8 If a € GL(V) is such that |[[a” — [|| < /3 for all n € Z then a = .

Proof We first prove that every eigenvalue of « is equal to 1. Let a € C be any eigenvalue
of a and let v € V, v # 0 be a corresponding eigenvector, so that a(v) = av. Since a is
injective we have that a # 0. For any n € Z we have

non= T e i< v

and therefore la|® < 1+ |a" — 1| < 1 + /3. Passing n & —oc shows we cannot have
0 < la|l < 1 and passing n — oc shows we cannot have |[aj > 1. Hence |a] = 1. Let
8 € (—4. 1] satisfy a = >™*?. Observe that forn € Z

la

Isin(nn|6l)| = {sin(7nb)| = %Ia -l< ‘/3

Hence |sin(7n|6])] < ¥2 for all n € Z. We show that this implies § = 0. To see this we
distinguish between three cases. First if £ < [6] < % then % 3 < mlf] < 5 and so |sin(x|6])] >

3/— which is not true. If < 0| < 3 3 then 3 < 21r|0| < 2% and so |sm(2r|0|)| > 2 which
again is not true. Finally if 0 < |6 < é then choose the least posmve integer n € N such
that n|6| > 1. Then n >3 and (n—1)|6] < 3. Thus  <nlfl < :2; < 33 =1 andso
% < mn|f| < 5. This implies %‘3 < |sin(#xn{6])| which is not so. Hence we must have 6 =0.
that is a = 1. This proves that every eigenvalue of a is 1. By the Cayley-Hamilton theorem

a — I is nilpotent. Define 3 := e« — I and let r € N be the smallest positive integer such
that 3" = 0. Suppose r > 2 so that 37~} #£ 0. For m > r — 1 we have

3

mor=@enm 123 (1) 8 -1 Z( )t

k=0 =1

This identity is easily seen to imply

8- < (,.Tl>_l (\/3+§::1 (':) 3;:)

where the summation here from 1 to r — 2 is defined to be 0 when r = 2. Passing m — x
implies ||~ !{| = 0 and so 8"~! =0, a contradiction. Thus r = 1 and so @ = I as desired.

a

Theorem 9 If (w, V) is a finite dimensional continuous representation of a profinite group
G then ker(x) is an open subgroup of G, and the image of = in GL(V) is finite.

Proof The second assertion follows from the first. Indeed if ker(r) was open then as it
is also closed Proposition 1.1 implies that ker(w) is of finite index in G and thus the image
of 7 is finite. Now to show that ker(r) is open it suffices to show that ker(m) contains an
open subgroup of G. Define

X :={a€GL(V) : |la-I|| < v3}.
Lemma 2.8 shows that the only subgroup of GL(V') contained in X is the trivial subgroup.
Therefore X being open in GL(V) implies that #~!}(X) is open in G. By Proposition 2.5
there is an open subgroup H of G such that H C n~'X, or rather 7(H) C X. So m(H) is

8



a subgroup of GL(V) contained in X which implies A C ker(w). Thus ker(x) contains the
open subgroup H and thus ker(w) is open as desired.

a

Corollary 10 If (7, V) is a finite dimensional continuous representation of a locally profi-
nite group G then ker(w) is an open subgroup of G.

Proof Toshow that ker(r) isopen in G it suffices to prove that ker(x) contains a subgroup
that is open in G. Let M be a compact open subgroup of G. Then .M is a profinite and the
representation m of G on V yeilds a representation wy of M on V" by restriction. By the
above theorem ker(mys) is open in M. Since M is open in G we conclude that ker(mys) is
a subgroup of ker(x) that is open in G.

a

Proposition 11 Let G be a locally profinite group and let (r, V) be a finite dimensional
representation of G. Then (=, V) is continuous iff (7, V') is smooth.

Proof Suppose that (w, V') is smooth. To prove that (x, V) is continuous we must show
that the map: GxV — V (g, v) — 7(g)v is continuous. To do this fix (go,v0) EGx V
and let U be an open neighborhood of #(go)vo in V. Let vy, ..., v, be a basis of V and for
j = 1,...,mdefine M; to be the stabilizer of v; in G. Then M; is open for each j and hence
if we define M := N7, M; then M is an open subgroup of G that is a subgroup of ker(x).
Define U’ := m(go)~1U. Since m(go) is continuous we know U’ is open in V. Then goM x [/
is an open neighborhood of (go, vo) in G x V whose image under the map (g,v) — =(g)v
is contained in U. Thus (=, V) is continuous.

Suppose now that (m, V) is continuous. By Corollary 2.10 we know ker(x) is open in
G. Thus the stabilizer of any vector in V contains the open subgroup ker(w) and hence
itself is open. Thus (. V) is smooth.

a

Corollary 12 [f G is a locally profinite group and (7. V') is a finite dimensional smooth
representation of G then ker() is an open subgroup of G.

Proof By Proposition 2.11 (7, V) is necessarily continuous and hence ker(rw) is open by
Corollary 2.10.

a

Corollary 13 A character of a locally profinite group has an open kernel and hence is
necessarily locally constant.

Proof Let G be a locally profinite group and let x be a character of G, that is x : G — T~
is a continuous homomorphism. Then x can be considered as a continuous one-dimensional
representation of G under the identification of T* with GL;(C). Hence by Corollary 2.12
if M := ker(x) then M is an open subgroup of G. For any g € G we see that y is constant
on the open neighborhood gM of g¢.

a



Chapter 3 Admissible Representations of Locally Profinite Groups
The Definition of an Admissible Representation

Definition 1 Let G be a locally profinite group. We say that a smooth representation
(r. V) of G is an admissible representation of G iff for every open subgroup M of G the
subspace

V¥ ={veV :r(glv=v forall g€ M}

of V is finite dimensional.

Observe that the definition of admissibility does not assume that V" has a topology. and
no conditions of continuity are present. The condition of admissibility is triviaily equivalent
to demanding that VM is finite dimensional only for open subgroups M of A" where A is a
fixed compact open subgroup of G.

If (w, V) is a finite dimensional representation of G then by Proposition 2.1 it is trivial
that (r. V) is continuous iff (7. V) is smooth iff (7, V') is admissible.

Of course if two representations are equivalent, that is there exists an intertwining
isomorphism between them, then one is smooth or admissible iff the other is as well. Con-
sequently we may consider the set of equivalence classes of irreducible admissible represen-
tations of G, and it is denoted by II(G). We call II(G) the admissible dual of G.

Isotypic Subspaces and Admissible Representations
The material in this section is from [4].

Definition 2 Suppose G is a group, M is a subgroup of G, and (m, V') is a representation
of G. Let (my, V) denote the representation of M obtained by restricting = to M. Let o
be an equivalence class of representations of M. We define the o-isotypic subspace of the
representation (, V), which is denoted by V(c), to be the sum of all mys-invariant subspaces
of V that are in the equivalence class o. If there are no such subspaces we define V(o) to
be the zero subspace of V.

We will use this definition for G being a locally profinite group and .M a compact open
subgroup of G. In the case when G is a finite group and M = G it is a standard result that
for any representation (w, V) of G we have

v= & V(o)

s€ll(G)
where this is a finite direct sum as I[I{G) is a finite set.

Lemma 3 Suppose (m,V;) and (w2, V2) are equivalent representations of a group G.
Then ker(m,) = ker(mz).

Proof Let R :V; — V, be an intertwining isomorphism of (m1, V}) and (w2, V2). Thus
for g € G we have g € ker(m) iff my(g) = Iv, iff R = ma(g)R iff m2(g) = Iv, iff g € ker(ma).

g
Hence given any equivalence class m of representations of G we may define a subgroup
of G. denoted ker(w), and called the kernel of =, to be ker(mo) = {g € G : mo(g) = Iv}

where (7o, V) is any representation of G that is in the equivalence class m. The particular
choice of representation (rg, V) does not matter due to the above lemma.

10



Now let G be a locally profinite group and let K be a compact open subgroup of G.
Suppose K is an open normal subgroup of K. Since the index of R in A is necessarily
finite the group K/Kj is finite. The quotient map from K to K/Rj induces an injective
map of II(K/Kj) into II(K). The image of this map is {¢ € [I(K) : Ko C ker(c)}. We
will identify elements of [I( K/ Kg) with their image in II(K).

Lemma 4 Let G be a locally profinite group, let K be a compact open subgroup of G,
and let Ky be an open normal subgroup of K. Suppose (7. V) is a representation of G and
let (g, V) denote the representation of A obtained by restricting = to A".

(1) The space VXo is Tg-invariant. Therefore the representation (wg. V") of A gives rise
to the representation (Tg/k,, VKo) of K/ K.

(2) For any o € II{(K/Ry) we have V'K°(a') = V(o). Here V&o(g) is the o-isotypic
subspace of the representation (7x/k,, V&) and V(o) is the o-isotypic subspace of (mg. V).
Proof

(1) Let v € VKo and let ¢ € K. We must show that g (g)v € VEe. Well if g0 € Ao
then as g~lgog € Ko we know mx (9 1gog)v = v and hence mx(go)(7x(g)v) = nx(g)v as
desired. Thus the representation (rx, V) of K gives rise to the representation (7g /&, Y Koa)
of K/Ko

(2) Note that any mg,k,-invariant subspace of V' Ko that is in o is also a wg-invariant
subspace of V that is in . Thus V¥°(¢) C V(o). Therefore to prove V&o(g) = V(o) we
need only show that any mg-invariant subspace of V that is in ¢ is in fact a subspace of
VKo Well if Y is any such subspace let (ry,Y) denote the associated representation of A’
on Y. Since (ry,Y) is in o we know that if y € Y and g € K¢ C ker(c) = ker(my) then
7y (g)y = y. Hence Y C VX and this establishes our claim.

a
We now come to the main result of this section.

Theorem 5 Let G be a locally profinite group and let A be a compact open subgroup of
G. Suppose (7, V') is a smooth representation of G. Then

v= @ V(o).

c€ll(K)

Moreover the representation (, V) is admissible iff for each o € [I(K) the space V(o) is
finite dimensional.

Proof Let v € V. Since the w-stabilizer of v in G is open there is an open normal subgroup
Ko of K that is contained in this stabilizer. As in Lemma 3.4 we have the representation
(Tr/Kqr V&Ko) of the finite group K/Ky. By what we have shown above

vevhe= @ vE@)= P Vo).

o€ll(K/Ko) o€l(K/Ko)

This proves V = 3" cny(xy V(o).

Now we prove that this sum of subspaces is direct. Let S be a finite non-empty subset
of [I(K). Suppose for each o € S we are given v, € V(o) such that

Zva=0.

11



Define Ko = N{ker(c) : o € S}. Ko is an open normal subgroup of KA. Since o € S implies
Ko C ker(c) we may consider S as a subset of [I[( K/R). Again using the identity

vhke= P Vv = G Vi

o€ll(K/Ka) o€Il(K/Ko)
we see that we must have v, = 0 for every 0 € S. Hence V = @aeﬂ(h’) Vie).

[t remains to prove the second assertion. Suppose first that the representation (x. V')
is admissible. Let o € II(A) and suppose W is a mg-invariant subspace of V such that
the resulting representation of K on W is in 0. Let us denote this representation of A’
by (mw.W). By definition ker(c}) = ker(rmw). Thus if ¢ € ker(c) and v € W then
7(g)v = mw(g)v = Iw(v) = v, and hence W C V*7(®) Since W was arbitrary this
proves that V(¢) C V*¢7(?). Theorem 2.9 lmphes that ker{c) is open in A. Since (x.1")
is admissible we must have that the space V*°"(?) is finite dimensional. Thus V (o) is finite
dimensional as well.

Conversely suppose that (7, V) is a smooth representation that is not admissible. There
is an open subgroup Ky of K such that V¥e is infinite dimensional. By Proposition 2.5.3
we may assume that Ky is normal in K. As above we know

vke= @ V(o).

o€ll(K/Ka)

Since TI(K/K,) is a finite set this is a finite direct sum. Therefore as V&o is infinite
dimensional there must be a o € [I(K/Ky) C I[I(K) such that V() is infinite dimensional.

O
The Schur Lemma for Irreducible Admissible Representations

Again fix a locally profinite group G. The following result is Schur’s lemma for irre-
ducible admissible representations of G.

Theorem 6 Suppose (7, V) is an irreducible admissible representation of G and R €
End(V) is an intertwining isomorphism of (r, V) with itself. Then necessarily R is a scalar
operator, namely there is a ¢ € C such that R = ¢l where Iy is the identity operator on
V.

Proof We first show that there exists a compact open subgroup A of G such that VX
is non-zero. Indeed we can fix any non-zero vector in V' and define A" to be any compact
open subgroup of G which is contained in the open w-stabilizer of this vector in G. Fix
such a subgroup K. Observe that V* is an invariant subspace of R. Indeed if v € VX
then for g € K we have w(g)(R(v)) = R(n(g)(v)) = R(v) and hence R(v) € V K Thus the
restriction of R to VK yields an element of End(VX). Since (7, V) is adm1551ble VK isa
finite dimensional space. Thus R restricted to VX has an eigenvalue. Let ¢ € C be such
an eigenvalue and 0 # v € VK a corresponding eigenvector so that R(v) = cv. Consider
the subspace W := ker(R — c¢I). Note that W is a w-invariant subspace of V. Indeed if
w € W then (R — cl)(m(g)w) = Rr(g)w — em(9)w = 7(9)((R — cI)(w)) = =(g)(0) = 0 and
hence m(g)w € W. By the irreducibility of (r, V) we must have W = 0 or W = V. Since
0 # v € W we conclude W =V and thus R = ¢/ as claimed.

a
Corollary 7 Let G be an abelian locally profinite group. Then any irreducible admissible
representation of G is necessarily one dimensional. Hence II(G) is the group of characters
of G.
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The Contragredient Representation

This section is based on [2] and [4] where proofs of the results quoted can be found.
Throughout let G be a locally profinite group. We will use V' to denote complex vector
spaces. The vector space of linear functionals on V is denoted by V*. This is not to be
confused with the Pontryagin dual of an abelian Haar group which also uses a star as a
superscript. Since V has no topology we know V* can not denote the Pontryagin dual so
there is no chance of confusion.

Let (m, V) be a representation of G. We can associate to (7. V) a representation (7. 1™")
of G on V= by defining
(7(g)v")(v) = v*(m(g™")v)

where ge G. v eV ", veV.

Definition 8 Let (7, V) be a representation of G and let v* € V" be a linear functional on
V. We say that v* is a smooth functional with respect to = iff there exists an open subgroup
M of G such that v*(w(g)v) = v*(v) for all g € M and v € V. The set of functionals that
are smooth with respect to 7 form a subspace of V* which we denote by V.

Definition 9 Let (7, V) be a smooth representation tof G. Then V is a #-invariant
subspace of V*, and hence we obtain a representation (#,V) of G. The representation
(%, V) is called the contragredient representation of (m, V). It 1s easily checked that (7. V)
is smooth.

See [4] for more on the next lemma.
Lemma 10 If (7, V) is an irreducible admissible representation of G then v* € V" is
smooth iff v° is zero on the subspace V(o) for almost every o € [I(K).

See [2] and [4] regarding the next proposition.

Proposition 11 Let (7, V') be an admissible representation of G so that

v= @ V(o)
)

gell(K

and each V(o) is finite dimensional. Then we have V ~ ®aen( k) V(o). Moreover for any
o the spaces V(o) and V(&) are isomorphic. Consequently (#, V) is admissible.

Define the non-degenerate bilinear form < -, - >: V x V* — C by < v.v* >:=v*(v).
Then by definition we have
< w(g)v,7®(g)0 >=< v, v >

forallge G,veV,and ¥ € V. Irreducibility and the existence of such a non-degenerate
bilinear form characterizes the form as the next result shows. Its proof is an easy consequence
of Theorem 3.6. The details are in [1].

Lemma 12 Let (7, V) and (w2, V2) be irreducible admissible representations of G. Sup-
pose A, B : V; x Vo — C are two maps which are linear in the first variable and either both
linear or both conjugate linear in the second variable. Suppose moreover that A and B are
non-degenerate and for all g € G, v € Vi, vy € Vo we have

A(my(g)vr, ma(g)v2) = A(vy, va)
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and
B(mi(g)v1, m2(g)va) = B(v1.v2).

Then there is a ¢ € C* such that B = cA.

Definition 13 Let (7, V) be an admissible representation of G. If W is a subspace of V
we define

Wt={teV: #(w)=0 forall weW}.

The following is easy to prove.

Proposition 14 Let (7. V) be an admissible representation of G. If I} is a =-invariant
subspace of V' then W+ is a #-invariant subspace of V. We obtain a bijection between the
subrepresentations of (w, V) and the subrepresentations of (7, V). In particular if {(r. V') is
irreducible then (#, V) is also irreducible.

If (w1, V1) and (w2, V2) are equivalent smooth representations then (7, Vl) and (7, f&)
are equivalent smooth representations. Hence to any equivalence class m of smooth repre-
sentations there is an associated equivalence class & which we call the contragredient class.
In particular 7 is defined for every = € II(G) and moreover & € [I(G). Hence we obtain a

map
:[I(G) — II(G) T — .

The next result follows from Proposition 3.11.

Proposition 15 If r € [I(G) then 7 =

14



Chapter 4 Background in the Theory of Local Fields

Some Structure Theory of Local Fields

It is not our intention to develop the theory of local fields. Rather we wish only to
mention the parts of the theory that will play a role in what we wish to do. Proofs of the
resuits stated in this section can be found in [3] and [9].

Any absolute value on a field provides a metric on the field, and so we may speak of
Cauchy sequences and completeness. The topology given by the metric makes the field into
a topological field. We say that two absolute values on a field are equivalent iff they generate
the same topology.

Recall that an absolute value | - | on a field F is said to satisfy the ultrametric in-
equality iff for all z,y € F we have |z + y| < min{|z|,|y|}. An absolute value is said to
be non-archimedean or archimedean according to whether it satisfies or does not satisfy the
ultrametric inequality.

Definition 1 A local field F is a field with an absolute value | - | that gives F a non-
discrete, complete, locally compact topology. We say that a local field is archimedean
or non-archimedean according to whether the absolute value | - | is archimedean or non-
archimedean.

In these notes we shall deal only with non-archimedean local fields. The theory we
develop later on can also be developed for archimedean local fields.

Let (F,| - |) be a non-archimedean local field. We will often write F* when we wish
to emphasize that we are only considering the abelian group structure of the field F. The
topology on F is totally disconnected. So F* and F* are totally disconnected abelian Haar
groups. or equivalently they are abelian locally profinite groups. We define

O ={z€eF :|z|<1}
Pr={z€eF :lzrj<1}
Up ={z € F : |z{=1}.

If there is no chance of confusion we suppress the subscript F' and just write 0. P, U.
The sets O, P, and U only depend on the equivalence class of the absolute value | - |. O
is the maximal compact subring of F and O is open in F. O is an integral domain and
has F for its field of fractions. P is the unique non-zero prime ideal of O, and so @ is a
discrete valuation ring. P is open and compact in F. The group of units of the ring O is
U, that is O™ =U. U is an open compact subgroup of F*. The relative topologies on each
of these subgroups are totally disconnected. O and I are abelian profinite groups. and so
in particular are compact abelian Haar groups. Every ideal of the ring O is of the from P"
for some n > 0.

A fractional ideal I of O is a non-zero @-submodule of F such that for some £ € F*
we have £/ C 0. When we say ideals of F we mean fractional ideals of Q. The ideals of F
are precisely the O-submodules P™ for n € Z. The ideals of F that are contained in O are
precisely the non-zero ideals of O. Since F = U,ezP™ we see that F* is the union of its
compact subgroups. If a subgroup of F* is not contained in &/ then it is unbounded in F*
and hence not compact. Thus F* is not the union of its compact subgroups.

Since O is a discrete valuation ring we must have that P is a maximal ideal of @ and
hence O/P is a field. Since the | - |-topology on F is locally compact it follows that O/P is
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a finite field. We call O/P the residue field of F and its cardinality will always be denoted
by gq.

Any element of O which generates the prime ideal P of O is called a uniformizing
parameter of F. Such elements will always be denoted by &. Hence we have the identity
P = (&) = @O, where the second equality is by definition. If we fix a uniformizing parameter
& then any element a of F* is uniquely expressible in the form eZ* for some ¢ € & and
keZ.

The only archimedean local fields up to valued field isometry are = and T. Hence
archimedean local fields are necessarily of characteristic 0. To classify non-archimedean
fields we need to distinguish between the cases of characteristic 0 and positive characteristic.
We have that F is a non-archimedean local field of characteristic 0 iff F is isomorphic to a
finite extension of (Y, for some prime p # o0 of Q. Moreover in this case O is the integral
closure of Z, in F. In the other case we havs that F is a non-archimedean local field of
characteristic p iff F is isomorphic to the field of fractions F,4((T)) of the integral domain
O = F,[[T]] of formal power series in the indeterminate T with coefficients in the finite field
F, of q elements, where ¢ is a power of p.

The locally constant complex valued functions on a non-archimedean local field are the
proper analogue in the non-archimedean setting of the notion of C™ functions on X or C in
the case of the archimedean fields. Consequently the analysis in the non-archimedean case
is considerably simpler than in the archimedean case.

For a complex vector space X we will find it convenient to abbreviate Sx(F*) by Sx.
So in our notation S¢ = S(F*) and we shall usually prefer the latter.

Let & be a unifomizing parameter of F. Define the surjective homomorphism of groups
val : F* — Z by val(e5*) = k where k € Z and € € Y. This homomorphism is independent
of the choice of & used to define it, and is called the valuation of F. Note that val(0) has
not been defined and we will keep it that way. We have the short exact sequence

l U — F* —Z—0,

where the map from F* to Z is the valuation homomorphism val.

Given a local field F there is a whole equivalence class of absolute values on F which
all realize the topology of the local field. Amongst these absolute values there is a canonical
choice. This absolute value, which we will always use, is the unique one defined by the
condition that AMaE) = |a|A(E) where X is any Haar measure of F+, E is any Borel subset
of F. and a € F*. This is the same as to say that for any f € S(F) we have

f £(z) dA(z) = la] / f(az) dA(z).
E a—'E

We call this the normalized or canonical absolute value of F, and it will be denoted by | - |r.
When there is no chance of confusion we abbreviate | - |[r to | - |. The absolute value | - |z
is the usual absolute value on R, and | - ¢ is the square of the usual absolute value on .
When F is non-archimedean this canonical absolute value is given by the formula

—val(-)

[-1=4¢

A proof of this result can be found in [9].
Throughout the rest of these notes F will denote a non-archimedean local field and | - |
will denote the normalized absolute value of F. We now state some basic properties of F,

the proofs being found in [3] or [9].
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(1) F*~ZxU

(2) For k € N we have (1 + P*)/(1 + P*+!) ~ P*/P*+1  The isomorphism is induced
from the surjective homomorphism : 1 + Pk — PR PR+l | 2 £ 4+ PRHL

(3) For k € N we have U/(1 + P*) ~ (O/P*)*. The isomorphism is induced by the
surjective homomorphism : U — (O/P*)* e— e+ P*.

(4) For any k € Z we have O/P =~ P¥/P**!. The isomorphism is induced by the
surjective homomorphism : @ — P¥ [Pk+l ¢y Gk 4 PR+

(5) Foranyr,kelN

[P¥/P+T| = ¢" = |(L+P*)/(1 + P**")|.
(6) U:1+P™)={O/P™)*|=|0/P™|~|P/P"|=q™ —q¢™" ' =¢""}g—1).
(7) For every n € N the quotient group F* /(F*)" is finite.

The Haar measure on Ft that assigns O measure 1 is called the normalized Haar
measure of F, and it will be denoted by A*. The Haar measure on F* that assigns U
measure 1 is called the normalized Haar measure of F'*, and it will be denoted by A*. Thus
At (0) =1 and A*(U) = 1. When integrating functions with respect to these measures we

abbreviate dAt to d* and dA* to d*. Some identities which may be useful are

(1) AQ+PY)=U:1+P*) P =(¢F(g-1))"" for keN

(2) AX(val~'(k)) =A*U)=1 for keZ

(3) AH(P*)=q* for keZ

(4) At(val~'(k)) = AT(PF) —AT(PFH ) =g7F — Bt =K1 —¢7!) for keZ
(5) A1 +P*)=At(P*)=¢% for keN

For example we can prove A\t (i) =1 —¢~! by noting

1 1
-=——= [ 14t =/1d+ —/1d+ =1-tW).
¢ " (0P /,, N R Pk @)

Proposition 2 For any Haar measure o of F* we have the identity
d*z = a(U)"z|"'da(z).

This means for all f € S(F*) we have
[ f@dz=a [ f)lel data).
Fx Fx
Proof Define a linear functional I : S(F*) — C by
1) = [ felel™ daz)
Then for any a € F* and f € S(F*) we have

M) = [ flas)lel™ date) = fal™" [ f(a)la™ el da(z) = 1),
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Thus |z|~'da(z) provides a Haar measure on F*. Hence there is a ¢ € (0. ) such that
d*r = c|r|~'da(r). We can explicitly determine ¢ by the calculation

1:L1d“z=cL1da(z)=ca(U).

Thus ¢ = a(i)~! and the proof is complete.

Character Theory of F+ and F*

By Corollary 2.13 we know that a character of any of the groups /. F* or of F* has
an open kernel and hence is locally constant. Since I/ is a compact group any character of
U is necessarily unitary. Since F* is the union of its compact subgroups P” for n € Z, we
know any character of F* is also necessarily unitary. In spite of this fact we will still be
explicit and say "unitary character of F*” even though the "unitary” is redundant. On the
contrary there certainly exist non-unitary characters of F*. Indeed the restriction of the
absolute value | - | of F to F* provides an example of such a character. If x is a character
of F* then clearly x and x~! take the same value at —1 € F*.

For every n € N the group ¥* contains an isomorphic copy of (¥ /(1 + P"))*. Hence
U* is an infinite group. Also since U/ is compact we know by Pontryagin duality that U* is
discrete.

Definition 3

(1) Let v € F* and v # 1. Since ker(¢) is open in F there exists an integer { such that
P! C ker(v). Since ¥ # 1 there is a smallest iteger ! with this property. and it is called
the conductor of v. We interchangeably refer to the conductor as both the integer { and the
ideal P*. We do not define the conductor of the trivial character of F*.

(2) Let u € U and p # 1. Since ker{p) is open in U there exists a n € I such that
1+ P" C ker(u). The smallest n € N with this property is called the conductor of u. When
u = 1 we define the conductor of  to be 0. When n > 0 we will think of the conductor
both as the integer n and as the subgroup 1 + P".

(3) If x is a character of F* then the restriction of x to &/ will be denoted by yo, so that
Yo € U™. We define the conductor of x to be the conductor of xo.

We will denote the conductor of u, x or ¥ by cond(u), cond(x). or cond(w) respectively.
When we use the notation cond(-) we are thinking of the conductor as an integer. Even
though | = cond(¥) is the smallest integer with the property that P! C ker(v), it is not true
in general that P' = ker(¢). A similar remark applies to characters of i/, and hence also to
characters of F*. Note that if x # 1, ¥ # 1 and we define [ := cond(v) and n := cond(x)
then v is constant on the cosets of P! in F and x is constant on the cosets of 1 +P™ in F*.
When u is a character of i the same reason shows p is constant on the cosets of 1 +P™ in
U. where n := cond(u), and hence u descends to a (unitary) character of the finite group
U/1+P". Observe that for b € F* and 1 # v € F* we have the identity

cond(y(b -)) = cond(y) — val(b).
Definition 4 A non-trivial unitary character ¥ of F is said to be unramified iff the
conductor of ¥ is @ = P%. Otherwise we say ¢ is ramified. A character y of F* is said

to be unramified iff it is trivial on U, and otherwise we say x is ramified. Hence y or Y is
unramified ifff its conductor is 0.
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The absolute value | - | of F when restricted to F* gives an example of an unramified
non-unitary character of F*. Observe that if y is an unramified character of F* then
x(z) = x(y) whenever val(z) = val(y). In particular the value x(&) does not depend on the
choice of uniformizing parameter &. We will denote the value of an unramified character x
on the subset val~!(1) by x(P), namely the value of x at any uniformizing parameter.

Note that if x is an unramified character of F* and & is a uniformizing parameter of F
then for all £ € F* we have x(&)?%(*) = x(z). Hence in particular an unramified character
of F* is determined by its value on a uniformizing parameter.

See [3] for details on the next result.
Proposition 5 For any fixed v € F*. v # 1 the map
:F— F* b—u(b-)
is an isomorphism of topological groups.

The groups GL(F) and F* are isomorphic locally profinite groups. Therefore both of
[I(GLi(F)) and [I(F*) are defined and they are equal. Since F* is abelian I[I(F*) is the
group of characters of F* and has (F*)" as a subgroup.

Definition 6 Let x be a character of F*. We first define the positive character |x| of F*
by
Ixf: F* — (0,0¢)  Ixl(a) := |x(a)lo

where | - |op denotes the usual absolute value on C. Secondly define the unitary character
xu of F* by xu =15 = x|x|~!. Finally define

_ loglx(@)lo
0= "pogial

where & is any uniformizing parameter of F, the particular choice not influencing the value
of a(x).

Proposition 7 If x is a character of F* then x = x| - |*(¥). x is unitary iff a(x) = 0.
x is unramified iff x, is unramified.

Proof We are required to prove that |[x| = | - [*(X). Let & be a uniformizing parameter of
F+. The definition of a(x) is equivalent to |x(&)]o = |@|*(X). Hence if a € F* and we write
a = e5* for some € € U, k € Z then |x|(a) = |x(a)lo = |x(€)x(5)*lo = |S[F2x) = [a]*¥).
The assertions in the last two sentences are obvious.

0
The next result is trivial.

Proposition 8

(1) The map : [I(F*) — (F*)" x R* defined by x — (xu,a(x)) is an isomorphism of
groups.

(2) For any uniformizing parameter @ of F the map : [[(F*) — U™ x T* defined by
x = (xo., x(&)) is an isomorphism of groups.

Proposition 9
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(1) Every unramified character of F* is of the form | - |* for some s € C. Hence any
unramified unitary character of F* is of the form | - |** for some ¢t € R.

(2) Every unramified character of F* is of the form ezp(sval(-)) for some s € T.

Proof Let & be a uniformizing parameter of F. Choose s € C such that (o) = |<f*.
Then for any r = e5* in F* we have x(z) = y(e0*) = [&|** = |z|*. Enough said about
(1). To prove (2) choose s € C such that x(&) = exp(s). Then if r = eZ* € F* we have
x(z) = \(2)* = ezp(ks) = ezp(s val(z)).

a
Fourier Analysis in Non-Archimedean Local Fields

For this section the reader may consult [9] for more details. Let a be a Haar measure
on F*. Then for f € S(F) the Fourier transform of f with respect to a is the function

fa:F* —C  fa(v)= /F f(z)¥(z) da(z).

The Fourier inversion formula states that if a is any Haar measure of F*, and a° is
the Haar measure on F* that is dual to a then for z € F

f-5) = [ Falw)tz) do(w).

By Proposition 4.5 if 1 # v € F* then the map : F — F* b ~—— w(b-) is an
isomorphism of topological groups. This map transforms any Haar measure of F* to a
Haar measure on F". It allows us to replace the integral over F* in the Fourier inversion
formula with an integral over F. This is done as follows. To each 1 # v € F* we can
associate a unique Haar measure Ay on F*, which is transformed under b — w(b-) to
the dual measure (Ay)" of F*. We will abbreviate dA,(z) to dy,x. The Fourier inversion
formula now says that if for f € S(F) we define

fo:F—C  fulo) = [ fe1u(en) duta)
then for z € F we have
fios) = [ fulwizn dotw)
The next result is not difficult to prove.

Proposition 10 For any | # v € F* the map : S(F) — S(F) f+— f, isin
GL(S(F))-

See [4] regarding the next result.
Proposition 11 Let ¥ be a non-trivial unitary character of F*. Then A, is the Haar
measure of F* determined by the property that it assigns @ measure ¢'/> where | :=

cond(v). Thus Ay, = ¢'/2A%.

Suppose X is a non-zero complex vector space. We need to define the Fourier transform
of functions in Sx(F). Let ¢ be a non-trivial unitary character of F*. For f € Sx(F) the
Fourier transform of f with respect to ¢ is denoted by fy, and is defined analogously by

fo : F—X a v-—)/ f(z)v(az)dyz.
F
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If f € Sx(F) then fw € Sx(F), and the map f — fo is in GL(Sx (F)).
Gaussian Sums In Non-Archimedean Local Fields

Fora€ F. p € U”, and v € F* define the Gaussian sum by

¥(a, p, ) =/l;p(e)w(ae)d"e.

Since ¢ —+ p(€)w(ae) is a locally constant map on the compact space ¥ this integral
is really a finite sum. Observe that vy(a,u,v) = ¥(1l.u.w(a-)). and that for ¢ € U we
have y(ea,pu.w) = p~'(€e)v(a, p, v). The purpose of this section is to explicitly determine
y(a, p. ), or at least determine its absolute value. We are going to need some prepatory
lemmas.

Let [ € Z be arbitrary. If a € F/P" and o # P' then there exists a unique m € Z with
m < [ such that a C val~!(m). Therefore if « € F/P' and a # P' then we may define
val(a) to be this unique integer.

Suppose v is a non-trivial unitary character of F*. Define [ := cond(¥). Since v is
constant on the cosets of P! in F we have that v descends to a non-trivial unitary character
of F/P* or of P™ /P! for any m <l. We will use ¢ again to denote any of these characters.
So for any a € F/P" we write ¥(a) to denote the constant value that v takes on the subset
aof F.

Having made these remarks we may now state the first lemma.

Lemma 12 Let v € F*, ¢ # 1 and define | := cond(v) € Z.
(1) For any m € Z with m <! we have

Y w(@)=0 if m<i-1

=—1 if m=I1-1

where the summation is over all a € F/P! with val(a) = m.

(2) Suppose n € Nsatisfies n > [. Let S be a set of representatives for the cosets of 1 +P"
inU. Forse€ S, s¢ 1+ P" we have

S w((s—1)t)=¢""Yg—1) if I-1<val(s—1)<n
teS

=—q¢""! if vals—-1)=1-1
=0 if 0<val(s—-1)<i—1

Proof (1) First note that

Yovl@= D v@)- Y )

agPm™ [P aEPm+1 [Pl

If m < {—1 then ¢ is a non-trivial character of both P™ /P! and of ’P"‘“/'P‘. Hence in this
case both the sums on the right side of the above equality are equal to zero. This proves
the assertion when m < [ — 1. Suppose now that m = [ — 1. In this case ¥ is non-trivial
on P™/P' = P!~ /P! but of course ¥ is trivial on P™+! /P! = P!/P!. Hence in this case
S, ¥(a) =0—1= -1, as desired.
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(2) Fixs€S,s¢ 1+ P". For brevity define k := val(s — 1). Note that 0 < k£ < n. First
suppose that [ — 1 < k < n. In this case for any ¢t € S we have (s — 1}t € Pk C P! and so
w((s — 1)t) = 1. Hence

Su((s-1)=ISI=W:1+P")=g""" (g 1).
tes

Having dealt with this case we suppose now that ¥ <[ —1. Since 1 <[ —k < n we see that
1 + P" is a subgroup of 1 + P'~%. Define r := (1 +P!~% : 1 + P") = ¢"~ (=%} We may
partition S intc r disjoint subsets Sy, ..., S, such that for each j = 1.....r we have that 5;
is a set of representatives of the cosets of 1 + P'~* in &. Observe that for any j = 1.....r
we have

{a€ F/P' :val(a) =k} ={(s—-1)t+ P :teS;}.

Hence by part (1) of the lemma for any j = i, ..., r we have

S w((s-1)1)=0 if k<i-1

t€s,
=—1 f k=1(-1
Therefore
.
Y w(s—1) =) wl(s-1)=0 if k<i-1
tes Jj=1t€S,
=—r if k=1(-1.
The lemma now follows after noting that when k¥ = [ —1 we have —r = —¢"~ (=%} = —_¢gn -1
a

Lemma 13 Let u € U*, u # 1 and define n := cond{u) € N. Let S be a set of represen-
tatives for the cosets of 1 +P" in U. For 0 < k < n we have

Z u(s)=0 if k<n-1
s€Sval(s—-1)=k

=-1 lf k=n—1

Proof First suppose n = 1. Then necessarily ¥ = 0. We have

0= us)=1+ Y ws)=1+ D uls)

SES SESsEL4+P sESval(s—1)=0

This proves the lemma in the case n = 1 50 we may assume that n > 1. Suppose first
that 0 < k < n. Observe that for any s € F we have val(s = 1) = k iff s € 1 + P* and
s @1+ Pkt Hence

Yo we= Y us)- X sl

s€Sval(s—1)=k SESsEL+Pk SES sEl4PrtL
== X A
SES SEL4PE+L
=0 if k<n-1

=-1 if k=n-1
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Now we deal with the case £ = 0. Well by what we have just shown we find

n—1
0= ue)=1+3 >  uls)

SES k=0s€Sval(s—1)=k

=1+ Y ps)-1

s€Sval(s—-1)=0

= Z n(s)

sESval(s—1)=0

The following is the main result of this section.

Theorem 14 Letac F,ve F*,ucl".

(1) Ifa=0or v=1then y(a, g, v) = d§(u) where d(x) is defined to be 1 when u =1 and
to be 0 otherwise.

(2) fa#0.v#1and u=1then

y(a,l,¥)=1 if vel(la)>1-1
=(1—gq)"' if valla)=1-1
=0 if val(a) <{-1

where [ = cond(¥).
(3) Ifa#0,¥v# 1. and u#1 then

Iv(@,m,v)|=(1-¢7")"'q"% if val(a)={—n
=0 if val(a)#l-n

where | = cond(vw) and n = cond(u).

Proof (1) Ifa=0or v =1 then w(ae) =1 for all ¢ € U. Hence
e w) = [ ule)d*e= 6.

(2) Suppose now that a #0, v # 1 and g = 1. Define k := val(a) € Z. Then

re1v)= [ vieare= [ winay
Uu ald
== [ vl dty
ald

==l [ wwdty
el

=(1-q¢H ¢ (/ w(y)d*’y—/ w(y)d*’y)
Ph P+l

The first case is k > [ — 1. We then have P*+! ¢ P*¥ C P! and so

va,1,¢) = (1 —q7 1) gk (g% — g~y = 1.
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The next case is k = — 1. Now we have P' = P*+! ¢ P* and so
v(a,1,v)=(1—-¢ ) g0 - g * ) = (1~ g)7".
The final case is k <[ — 1. This time P* C P**+! C P* and so

y(a.Lw)=(1-¢"")'¢*(0-0) =0.

(3) Suppose now that a # 0, w # 1, and u # 1. Since cond(w(a-)}) = cond(v) — val(a)
and v(a,u,v) = ¥(1,u.¥(a-)) we may suppose a = 1. So we need to prove that { # n
implies (1. 4, v) = 0 and [ = n implies |y(l.g.v)| = (1 — ¢~ ')~ '¢~%. Let S be a set of
representatives for the cosets of 1 +P" in /. We may. and do. assume that 1 € §. Consider
the calculation,

WL w) = [ wew@de=Y /  es)ules) e

SES
== S (ute) [ etenay)
== 3 () [ wtstu+ 01t
€
=10 T (werete) [ vion) )
3
== ([ vary) Tuteuee).

SES

If [ > n then v is non-trivial on P" and so
/ w(y)d*y =0.
‘pl\

Thus [ > n implies v(1, u, v) = 0. So we may assume [ < n. With this assumption in place
¢ will then be trivial on P", and consequently

YL w)y=(1—g7") g™ D u(s)u(s).
SES

Also if ] < 0 then w(e) = 1 for all e € U and so

AL v) = [ ple)d*e = o) =0.

Therefore we may assume 1 <! < n. Now consider the calculation.

1> us)ws)? = (Z y(s)w(s)) (Zu(t“)w(—t))

s€S SES teSs
=3 mst (s —t)
tES SES
=D nls)u(st —1).
teS s€S
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We must justify the last equality. First observe that if ¢ € & and s. s’ € U satisfy s(1+P") =
s'(1+P") then p(st~1)v(s —t) = u(s't™1)w(s’ — t). This shows that if S’ is any other set
of representatives of the cosets of 1 +P" in U then for any t € U.

Youlst (s —t)= Y als't™Hu(s ~ 1)

SES s'eS’

It is trivial to see that if £ € U then S’ := {st : s € S} is a set of representatives of the
cosets of 1 + P™ in U. Hence for any t € S,

Yo n(st™u(s —t) =Y _ uls)u(st — ).

SES I€S

This justifies the equality. Now we continue the above calculation,

15" us)w(s)? =D wls)u((s — 1))

SES SES LES
=S a@u(( -1+ D Y alshel(s - 1Y)
tES SES sEILES
=¢""'g-D+ Y uls (Z v((s — l)t)) :
SES s#l teS

Here the last equality is seen by noting

doaw0) =) 1=IS|=@:1+P")=¢"""g-1).

tes tes

By the lemma proven at the beginning we know
n—-1
1S u(s)us)? =¢" Mg -1+ Y S ns) (Z w((s — 1):)) :
SES k={-1 \s€Sval(s-1)=k tes

First suppose | = n. We then have

1Y w6 =" -+ D us) (=" ") = ¢ Hg-1)—¢" " (-1) =¢".

SES s€Sval(s—1)=l-1

Hence [v(1, p. v)] = (1 —¢~1)"1¢g~"g% = (1 — ¢~!)~!¢~ 7 as claimed in the theorem. Now
suppose that { < n. We finally conclude that the expression on the left equals

n—1
i RS VS W O 1C Lt B2 WD W O C At CEeR )

s€Sval(s—-1)=l-1 k=l seSval(s—1)=k
=¢""Yg—-1)=¢""H0) +¢" Mg — 1)(~1)
=0
as desired.
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Chapter 5 The Theory for GL3(F)

The Group GL2(F)

If A is a commutative ring with identity we write M2(A) for the ring of 2 x 2 matrices
with coefficients in A. We define GL2(A) := (Ma(A4))* to be the group of units of the ring
Ma(A). More explicitly,

GL:(A)={g= (Z Z) € M+(F) : det(g) = ad —bc #0}.

Consider M+(F) where F is a non-archimedean local field. Given g.h € M>(F) and
n € Z we write ¢ = h(mod P™) to mean that the matrix g — A has its coefficients in P".
We now define a topology on Ma(F). Given g € M(F) a basis of the topology at g will
consist of the sets {h € M2(F) : g = h(modP")} forn € N. Under this topology M2(F)isa
topological ring. This topology is such that if we consider M (F) only as an additive group
then it is isomorphic, as a topological group, to the additive group F* under the product
topology. Hence Ma(F) is a locally profinite group. Any locally closed subset of Ma(F) will
be locally profinite in the relative topology.

Throughout the rest of these notes G will denote the group GL»(F) and K will denote
the subgroup GL2(O) of G. Regarding G and K as subsets of the topological space Ma(F)
they inherit the relative topology and become topological groups. In fact since they are
locally closed subsets of Ma(F) they are locally profinite. Since O is open in F we have
that K is open in G.

For more on the next result see [4].

Proposition 1 K is a compact open subgroup of G. In fact A is a maximal compact
subgroup of G, namely if M is any compact subgroup of G such that K C M then necessairly
M = K. Moreover the set of maximal compact subgroups of G are precisely the conjugates
of K in G, namely the subgroups of the form ¢~ 1Kg where ¢ € G. Thus every maximal
compact subgroup of G is necessarily open.

Note that the determinant map det : G — F* is continuous but not locally constant.
The subset of G defined by

{(‘; 3) €G: c#0}

is called the big cell. It is a dense subset of G. Hence any locally constant function on G is
determined by its restriction to the big cell.

(6 9) = (40)

of G will be denoted by e and w respectively. Hence w™! = —w. Some identities in G that
will arise in the theory and proofs are

(1) Forallae F*,
wl(® 9 =(¢ 0\ /a! 0 w
0 1) \0 a 0 1 )

(2) Ifg= (Z Z) and ¢ # 0, namely if g is in the big cell, then

_ (c-ldoet(g) :) - ((1’ c‘lld) _ (c“d(;at(g) —ca) " ((1) _c;w) ‘
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(3) Fora,d€ F* and b € F we have

(5 a)=(G 0 )

(4) Foranyczre F*,

(5) Forany r€ F>.

Some Subgroups of G
For n = 0. 1. ... define

K(n) :={g € K : g = e(modP™)}.
Note that K(0) = K. Observe that

K(n) = {(‘; 3) € My(F):a,d€ 1 +P" bceP}.

Indeed suppose g = (Z 3) € M,(F) is such that a.d € 1 + P" and b,c € P". It is
clear that g € M2(0). We have ad € {1+ P")? C 1+ P" and bc € P> C P". Therefore
det(g) = ad—bc € 1+P™ and so in particular g € K. By supposition g = (é (1)) (mod P™)
and so we conclude g € K(n).

Lemma 2 For any n € N we have that K(n) is an open normal subgroup of A" and
K/K(n) ~ GL2(O/P"). Moreover if g € K(n) then det(g) € 1 +P".

Proof We just proved the last assertion in the preceeding paragraph. Since P" is open in
O it follows that K(n) is open in K and hence in G also. Now define the homomorphism

of groups
n b +P* b+ P"
: K — GL2(O/P") (‘: d),_+<‘:+¢,n d+’P")'

The kernel of this homomorphism is K(n) and hence A’(n) is a normal subgroup of K.
In order to prove K/K(n) ~ GL2(O/P") we need only prove that this homomorphism is

ea+P"* b+P" n
c+P" d+7—"") € GL2(O/P") where of course

a,b,c.d € O. We know that (ad —bc) +P" € (O/P™)*. This easily implies that necessarily

surjective. Well choose an arbitrary g = (

ad — bc € U. Hence the matrix Z 3 is in K and its image under the homomorphism is
g- Thus the homomorphism is surjective.

a
Proposition 3 Each K(n) is a compact open normal subgroup of K’ and hence a compact
open subgroup of G. Moreover the collection of all the subgroups K (n) form a neighborhood
basis of the identity in K, and hence also in G.
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Proof By Lemma 5.2 we know each K(n) is an open normal subgroup of K. Thus A'(n) is
closed in K and hence compact. All that remains to prove is that the collection of subgroups
K(n) form a neighborhood basis of the identity of K. Let M be any neighborhood of the
identity in K. Since the family of open sets P" for n = 1,2. ... is a fundamental system of
neighborhoods of 0 in F there is a m € N such that whenever a,d € 1 +P™ and b.c € P™

then we have (‘: 3) € M. Hence K(m) C M.

a

If (w. V) is a representation of G then for (‘; 3) € G we write (Z 3) instead of

. a b
the pedantic = ((c d))

For the rest of these notes we fix our notation for certain subgroups of G which will
arise often. The center of G will be denoted by Z,

Z={(8 2)€G:a€F"}.

The standard Borel subgroup of G, namely the upper triangular matrices in G. will be
denoted by B,
0 b

Note that the big cell defined above is the complement of B in G. The unipotent radical of
B will be denoted by U,

B={(“ ")eG:a,beF* T€F}.

U={((1) JI:)GG:J:GF}.

We do not require the notion of unipotent radical in these notes. The mention of it here is
merely to motivate the choice of notation. We may just take the above to be the definition
of U. The torus subgroup of G will be denoted by T.

T:{(g 2)eG:a.beF"}.

Finally we denote the affine subgroup of G by A,

.4:{(8 f)eczaepx reF}.

All of these subgroups inherit the relative topology from G and they then become locally
profinite groups. Observe that as topological groups we have the obvious isomorphisms

(1)) €EG:re F*}of Gis
isomorphic to F*. Hence the structure of the groups F* and F* and their subgroups is
contained within the structure of G and its subgroups. We clearly have B = AZ = Z4 =
UT=TU.

U is a normal subgroup of B and B/U is isomorphic to T by the map
T—Bw (¢ %) (® No=((2 %):zeF)
’ 0 b 0 b 0 b/)° ’

Proposition 4 Any open subgroup of G which contains Z and SL2(F) is necessarily of
finite index in G.

U ~ F* and Z ~ F*. Also observe that the subgroup {(g
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Proof The map
:G/ZSLA(F) — F*/(F*)® g(mod ZSL2(F)) — det(g){mod (F*)?)

is a well defined injective homomorphism into the finite group F>* /(F* 2. The result follows.

a

The identity G = BK of the next result is called the [wasawa decomposition of G.
Proposition 5 We have the identity G = BK..

3) € G be arbitrary. If |cj < |d| holds then d # 0. cd~! € O
1 0
—cd™! 1
h= (—cl-ld (1)) Then regardless of which case holds we have that h € K and gh € B.
Therefore g € Bh~! C BK.

Proof Let g = (‘:

and we define h = ( ) If |d| < lc| holds then ¢ # 0, c~!'d € O and we define

d

Corollary 6 The space B\ G of right cosets of B in G is a compact topological space
under the quotient topology.

Proof Ifi: K — G is the inclusion map and ¢ : G — B\ G is the quotient map then
both i and ¢ are continuous. Therefore ¢ o i is a continuous map from K to B \ G and it is
surjective by the Iwasawa decomposition of G. Hence as K is compact so is B\ G.

n

Proposition 7 The group G is generated by the subgroup B and the matrix w. More
precisely we have the identity BwlU U B = G where this is a disjoint union.

Proof Since U is a subgroup of B it is clear that the second assertion implies the first.
Note that

Bw:{(z 8>EG:¢1€F b.ce F*}.

i (‘:‘ (I;) € Bw and ((1) J{) € U then their product equals the matrix al'c:'b '

Hence if this product was in B then necessarily ¢ = 0 which is impossible. Thus Bwl’ N B
equals the empty set. Finally observe that if g = (‘; z) is in G but not in B. so that

¢ # 0, then we have

[ —c"ldet(g) -a 1 c¢id .
g-( 0 —c/%\o 1 € Bwl.

This proves the result.

a

Note that the big cell equals BwU = Bw™!U since we have the partition G = Buwl'UB
proven above.

Lemma 8
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(1) The matrices in SL2(F) of the form w = (_01 é) ((1) ':) and (g y?l) .

where £ € F, y € F*, generate SLa2(F).

(2) The matrices in SLa(F) of the form ( (1) : ) and ( ; ?) where z.y € F. generate
SLA(F).
Proof Clearly all of the matrices listed are in SL2(F).

(1) Let (c: Z) € SLa(F). If c = 0 then ad = 1 and we have the identity.

a b\ _(a O 1 —a-lp\"
0 d/ ~\0 a7l 0 1 ’
If ¢ # 0 we have the identity,
a b\ _(1 —cla e 0 1 —ctd\ ™!
c d) T \0 1 Yo —ct 0 1 ’

(2) We use part (1). For £ € F* we have the identity,

G 2= DG DL DG )
= (A D)6 D))

Proposition 9 Let H be an open subgroup of G.
(1) If H contains U then H contains SLa(F’).

(2) If H is normal in G then H contains SL2(F).
Proof

and also

0

1) € H. Since H is

(1) By Lemma 5.8 we need only show that for every y € F, (;

open it contains a matrix of the form (‘; 3) with ¢ # 0 (we could even assumea=d =1

and b = 0). Hence

(2 8)=6 ") E 96 )

where & = b — ac~'d. Let r € F be given and define y = b’zc™!. We have

1 0)_[0 &\ /1 y)(0 &\
(: 1)_(c 0)(0 1)(c 0) €H.
(2) Since H is open there is 2 n € N such that if y € P" then

1 y 10
(0 I)GH and (y I)GH.
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Let r € F be arbitrary. Choose a € F* only so that ar € P™. Then as H is normal.
-1
1 = a 0 1 azx a 0
(0 1)‘(0 1) (o 1)(0 1)€H
-1
10 1 0 1 0 1 0
(1.' 1)—(0 a) (a: 1) (0 a)eH’

Now use the Lemma 5.8.

and

The Central Character

Proposition 10 Suppose (x. V) is an irreducible admissible representation of G. Then
there exists a unique character w of F* such that for alla € F*,

n(g 2) = w(a)lv.

Proof Uniqueness is obvious. For any fixed a € F* the operator = 8
with 7. Therefore the irreducibility of m implies by Theorem 3.6 that there exists a function
w : F* — C* such that for all a € F*,

T (8 2) = w(a)lv.

It is easily seen that w is a homomorphism. It remains to prove the continuity of w, and to
do this it suffices to prove continuity at 1 € F*. We will even prove that w is constant in
a neighborhood of 1. Fix v € V, v # 0 and define H = {g € G : n(g)v = v}. Since H is
open there is a neighborhood of 1 in F* such that for any element a of this neighborhood

0
g | commutes

we have (8 2) € H. Hence w(a) = 1 for any element a of this neighborhood.
a

Definition 11  If (=, V) is an irreducible admissible representation of G the unique char-
acter of F* associated to w, which we will denote by w., that satisfies

- (3 2) = we(a)lv,

for all a € F* will be called the central character of (w, V).
Lemma 12 Suppose (71, V;) and (w2, V) are equivalent irreducible admissible represen-
tations of G. Then wy, = wr,.

Proof Let R:V; — Va2 be an intertwining isomorphism of the equivalent representations
(r1, V1) and (w2, V2). Fix a non-zero v € Vj. Let a € F* be arbitrary. Then wx, (a)R(v) =
R(wnx, (a)v) = wx,(a)R(v) and thus as R(v) # 0 this implies wy, (@) = wr,(a).

a

Due to the above lemma for any n € [I(G) we have an associated character w, of F*,
which we call the central character of the class «.
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Proposition 13 If = € [I(G) then wz = w;'.

Proof Let (r.V) be a representation in the equivalence class . Foranvae F*. v € V.
and v € V we have

(i’ (8 2) 5) (v) = (7: (“;l 091) v) = (wol(a)d)(v).

— -1
Hence wz = wy".

The proof of the next theorem can be found in [2] or (4].

Theorem 14 Suppose (7, V) is an irreducible admissible representation of G. Then the
representations (wy! ® x.V) and (7, V) of G are equivalent.

Classification of the Finite Dimensional Classes in II(G)

Lemma 15 Suppose A,B,C are groups,anda : A— B, 3:A— Care homomorphims
with a being surjective. Then ker(a) C ker(B) iff there exists a homomorphismy : 8 — C
such that 3 = ya.

Proof This is trivial. First suppose such a v is given. Then for g € ker(a) we have
3(g) = (ve)(g) = (1) = 1lc, and so g € ker(8). Conversely suppose ker(a) C ker(3). If
g1.92 € A are such that a(g1) = a(g2) then 8(g1) = 3(g») holds. Therefore we may define
~ : B — C by v(h) = 3(g) where g € A is any element such that a(g) = h. (such a g exists
since a is surjective). Then by definition v is a homomorphism such that 3 ="a.

a

Corollary 16 If r : G — C* is a homomorphism then SL2(F) C ker 7 iff there exists
a homomorphism x : F* — C* such that x(g) = x(detg) forall g € G.

Proof This follows from the above lemma after noting that the homomorphism det :
G — F* is surjective and has kernel SL»(F).

a

Theorem 17 There is a bij:ction between the set of characters of F* and the set of
finite dimensional classes in II(G). This bijection associates a character x of F* to the
equivalence class which contains the representation (my, C) of G defined by

m G —GLi(Q)  my(g) = x(detg).

In particular any finite dimensional class in II(G) is necessarily one dimensional.

Proof We first need to prove that m, is admissible, which will show that the above map,
which is claimed to be a bijection, is at least well defined. To show that =, is a smooth
representation we must establish that for every v € V the subgroup {g € G : x(det gv = v}
is open in G. This is obvious for v = 0 so we suppose that v # 0. In this case the above
subgroup is det~!(ker(x)) which, as a continuous preimage of an open set, is open. Thus
7y is smooth. Since C is one dimensional it is trivial that m, is admissible.

Let us first show injectivity of the map. Let x; and x2 be characters of F* such
that m,, and my, are equivalent representations. It follows that for all ¢ € G we have
x1(det g) = x2(det g). Since det : G —» F* is surjective this implies x; = xa.

32



Now we show surjectivity. Let (. ") be any finite dimensional irreducible admissible
representation of G. By Corollary 2.12 we know that ker(w) is open. Hence ker(x) is an
open normal subgroup of G and thus by Proposition 5.9.2 it contains SL,(F). Hence for
any g1,92 € G we have g1g.g7'g7" € ker(w) and so 7(g1)m(g2) = m(g2)m(g1). Thus for
every g € G, w(g) is a nonzero scalar multiple of I,. This proves that n =1, and so « is
necessarily one dimensional. Since ker(det) = SLy(F) C ker(r) by Lemma 5.15 there is a
homomorphism x : F* — C* such that =(g) = x(det g) for all g € G. Since fora € F*.

x(a) = x(det (8 (1))) = (8 ?) we see Y is continuous and hence a character. Thus

=Ty

a

Hence the classes in [I{G) are either one dimensional or infinite dimensional. Having
completely understood the one dimensional representations our focus turns to the structure
of the infinite dimensional representations. We conclude this chapter with some results that
will be needed later.

Proposition 18 Let © € II(G) be one dimensional. If x is the character of F* that
corresponds to = then wy, = x>

Proof As above the one dimensional representation (m,, C) defined by

m(9)z := x(det(g))=
is in . Hence for @ € F* we have

we(@ =m (2 ) (1) = x(a®) = x*(a).
0 a

a

If x is a character of F* and (. V) is a representation of G then we define the represen-
tation (x @ 7, V) of G by (x ® w)(g)v := x(det(g))n(g)v. If (x, V) is smooth. admissible. or
irreducible then (x ® m, V) also has this property. If (. C) is the one dimensional represen-
tation of G corresponding to x then x ® = is just the tensor product of the representations
my and 7. Note that V & C = V. In the obvious way if = € [I(G) we consider y & 7 as a
class in [I(G).

The following is easy to prove.

Proposition 19 If # € [I(G) and x is a character of F* then the contragredient class of

rexis T x" .

33



Chapter 6 Technical Preparation

Fourier Theory on U

Since U is a (compact) abelian Haar group we may consider its theory of Fourier
analysis. For any locally constant function f : #{ — C. or in other words any element
of S(U), we define its Fourier transform with respect to the normalized Haar measure of I/
in the usual way,

fur—C  fu) = /u u(e)fle) d*e.

Proposition 1 Let f € S(U).

(1) For almost every u € U* we have f(u) = 0. So the function f:U* — T has finite
support.

(2) For every € € U we have the identity,
fley=Y_ ple)f(x™)

ueu-

where this is a finite summation.
Proof

(1) Since f is locally constant there is a n € N such that f is constant on the cosets of
14+P" in . Let S be a set of representatives for the cosets of 1+P" in Y. Then for p € U*.

=3 [ weaferae=ue)fe) [ udne

SES SES L+Pn
Hence 1 +P" € ker(u) implies f(u) = 0. Since the groups {u € U= : 1 +P" C ker(u)} and

(U/1+P")" are isomorphic we conclude that there are only finitely many u € &4* such that
1 4+ P™ C ker(u). This proves the first part.

(2) Just for now let a denote the normalized Haar measure on /. so that for u € U*

flu) = /u u(e) Fe) da(e).

Let a* denote the Haar measure on I{" that is the dual measure to a. The Fourier inversion
theorem implies that for ¢ € U,

£ = [ ute™)fiw) da”(u).

Since a* is the counting measure on /™ the above can be written as

foy =" sleHfw) =Y nef(s™).

uel- weu-

By part (1) of the proposition we know this is a finite summation as f(u~!) = 0 for almost
every u €U".

a
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We will need to generalize this result to functions which take values in vector spaces.
Let X be a non-zero complex vector space and let f : 4 — X be locally constant. or
in other words let f € Sx(i/). We define the Fourier transform of f with respect to the
normalized Haar measure of i by

Fiur—X )= /u ule) fle) d¥e.

As f assumes only finitely many values on U this integral is well defined. being a linear
combination of the finite number of vectors in the image of f. We can easily generalize the
above result.

Proposition 2 Let f € Sx(U).

(1) For almost every u € U™ we have f(p) =0 € X. So the function f : ¥*~ —> X has
finite support.

(2) For every € € U we have the identity,
fley=>_ me)f(u™)
peu-
where this a finite summation.

Proof The proof of the first part of the proposition is completely identical to the first
part of the proof of this result in the case X = C. Since we have just provided the proof
of this case in the previous proposition we shall move on to the proof of the second part of
the proposition. Let up,..., um be linearly independent vectors in X whose span contains
the image of f. Define the functions v1,...,Ym : U — C by the requirement that for every
ceuU

£l&) = wle)ue.
k=1

Since f is locally constant each v is also locally constant. By the Fourier inversion formula
for each k£ = 1, .... m we have the identity,

Y=y wielp™)

uelle

where the summation is finite. Hence

f=3 (Z #‘Ik(u")) we=)_ 4 Z‘/k(#’l)uk) :
=1

k=1 \ueuU- neu*

Observe that

fw™hy = "()(m (€) )d"=
u /u” € ,;7k€uk €

Hence f = 3~ . pf(u=1). This is really a finite sum since f(u~') = 0 € X for almost
every pu €U".

m

> ( /u () (o) d*e) e = gﬁkuf‘)uk.

k=1

|
The Space Sx
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In what follows X will denote a non-zero complex vector space. and Sx will be an
abbreviation for Sx(F*). Therefore in our notation S(F*) = Sc, and we shall use them
interchangeably, although we shall prefer S(F*). For ug € U" define p* in S(F*) by
u*(y) = ply) if y €U and p*(y) =0 € C when y € F*, y ¢ U. If x is a character of F*
we denote the restriction of x to &/ by xo. Note that x and x5 agree only on U.

If f € S(F*) and u € X it is clear that the function : F* — X y+~— f(y)u isin
Sx. This function will be denoted by f ® u. As Sx = Sc @ X this notation is motivated.
Since S(F*) is translation invariant, for any a € F* the function f(a-) = u is also in
Sx. Note that u*(e-) @ u = p(e)(u* ® u) for ¢ € U. and we have for any a € F* that
p*(a-) B u=(p* du)(a-).

We introduce some notation. Let J be a uniformizing parameter of F. For any locally
constant function ¢ : F* — X we define for each n € Z the function

on U — X pa(e) = p(ed™).

Observe that the definition of the functions ¢, depends on the choice of & although this is
not reflected in the notation.

We first wish to generalize the results we developed in the previous section on the Fourier
expansions of functions in Sx (i) to an appropriate analogue for functions in Sx (£*). This
is accomplished in the following result.

Proposition 3 Let J be a uniformizing parameter of F and let > : F* — X be a locally
constant function.
(1) For any a € F* we have the identity

pla) =3 D (G a)en(n™")

n€Z ucl*

where for any given a € F* the sums over Z and U/~ are both finite summations.
(2) If moreover p € Sx then we have the identity
P= 2 HETT )8 AT
neZ peu*

where the sums over Z and I/° are both finite summations. Each of the terms in this
summation are in Sx.

Proof Since p, € Sx{U) by Proposition 6.2.2 we can write
n = Z [J&,&n([l_l)
HEU*

where this is a finite sum. Thus for e € U,

™) = o) = 3 m(e)on(u™).

HEU®

For n € Z define x, : F* — {0, 1} to be the characteristic function of val~!(n). Namely
if y € F* then x,(y) = 1 when val(y) = n and x.(y) = 0 otherwise. Let xpp: F* — X
denote the function in Sx given by y — xn(¥)¥(y). The above identity implies.

Xnp = Z p@")® ‘ﬁn(l‘-l)~
ueu:
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Observe that ;o = 3, cz Xn in the sense that for any a € F* we have p(a) = Do nez Xno(a).
Hence
pla) =Y xnlap(a) =D > w* (G a)nl(n™").
neZ neZ pcld*

When p € Sx the identity o = Znez xny makes sense as an identity in Sx. Indeed in
this case it is only a finite summation over Z since y is compactly supported on F*. Thus
in this case we have the identity of functions

P=D xnp =3 Y AX(ET) D alTh).

nez neZ peld*

a

The following corollary is a trivial consequence of the previous proposition. We therefore
do not provide anything more than its statement.
Corollary 4 Let & be a uniformizing parameter of F.

(1) The vector space Sx is spanned by the functions of the form p*(3*-) 2 u where
pEU. ke€Z,and v € X.

(2) The vector space S(F*) is spanned by the functions of the form u* (o -) where p € U™
and k € Z.

For p € U” we define Sx(u) to be the set of all ¢ € Sx such that p(ea) = p(e)p(a)
whenever ¢ € U and a € F*. Sx(u) is a translation invariant subspace of Sx. Also for
@ € U™ define the linear operator PX : Sx — Sx by

(PXo)a) = [ 5 (etea)de
174

Of course this integral is defined as the map u~! ® (- a) is in Sx (U). We shall write P, to
abbreviate Pf .

Proposition 5

(1) Pf is a projection operator of Sx onto Sx(u).

(2) Foreach uelU*, k€Z,ue X the function u*(S* -)® u is in Sx ().

(3) Sx =@ueu- Sx(u).

Proof

(1) Let ¢ € Sx, € € U, and a € F*. An easy computation shows (Pf,:)(fa) =
y(e)(Pfcp)(a), and therefore the range of Pf is contained in Sx (). We also have,

(PFo)a) = [ wi@etca)dre= [ u(utepta) d*c = ola)

which shows that Pf is the identity on Sx(u) and hence the first assertion is proved.
(2) Since pu* € Sc(p) it is trivially seen that u*(J* -) ® u is in Sx (u).

(3) Since the functions of the form u*(&* -) ® u span Sx(u) we conclude from part (2)
that Sx is the sum of the subspaces Sx (). We need only to show that this sum is direct.
Well let 4, » € U* and suppose ¢ € Sx(u) NSx(v). Then for all a € F* and € € ¥ we have
2(a)(u(e) — v(€)) = 0. Hence p # v implies p = 0.
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The Representation £X of A

Again X denotes a non-zero complex vector space. Given ¥ € F* we define a represen-
tation f,f of A on the space of all functions from F* to X by

X (9)¢) (v) = v(by)s(ay)

where g = (8 [1,) € A, ye F*. and ¢ : F* — X is any function. We shall write §,, to

abbreviate 65.

It is not hard to show that supp(ff(b)c,a) C a~'supp(p) and hence the space of all
compactly supported functions from F* to X is é,f -invariant. Also as w(b-) is locally
constant we see that the space of all locally constant functions from F* to X is 5;:‘ -invariant.
Combining these two facts we find that Sx is Ef -invariant.

Lemma 6 Suppose ¥ € F* and p,v € U” satisfy v # 1 and p # v. Define [ € Z and

n € N by { = cond(v) and n = cond(u~'v). Then for any ¢ € Sx(v) and r € F with
val(z) = [ — n we have

pr (& (§ 1) e) =t w2 o)

1

n(a) =L#“(€) (E.f ((1) f) ,a) (ea) d*e

= /u = (€)w(eaz)plea) d* €

Proof Define n= Pf (E,f (é 't) ga) € Sx(u). For a € F* we have

= ([ vawieas) #*e) ola)

1

=v(az. p~ v, v)p(a).

Ifa € F, a ¢ U then val(za) # [ — n and so y(zra.u~'v.,v) = 0. Hence if a ¢ U then
as p*(a) = 0 we find n(a) = 0 = v(z,p~ v, w)(p* 2 »(1))(a). Now if a € U then as
¢ € Sx(u) we see n(a) = p(a)n(l) = y(z.p~tv. ¥)p* (a)p()v(z. p~ v v) (B T 2(1))(a).
Hence n = v(z, p~ v, v)(u™ ® »(1)) as desired.

o

Proposition7 Y isa E,f -invariant subspace of Sx then Y is an invariant subspace for
all of the operators PX where yp € U”.

Proof Let p €Y andlet u € U”. The function
. -1 e 0
frU—Y  e—pT ()| 1)
is in Sy (/). Hence 1 := [, f(€) d* ¢ is a well defined function in Y. Now

(PEo)@ = [ 510 (65 (§ 9) ) @ are=n(a).
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Thus Pfg: =neY.

Proposition 8 The representation (§y,S(F %)) of A is irreducible.

Proof Let Y be a non-zero &,-invariant subspace of S(F*). Observe that Y is translation
invariant since if a € F* and p € Y then

Pla-) =& (8 ?)¢€Y.

Thus by Corollary 6.4.2 to prove the proposition it suffices to show that u* € Y for all
pEU.

We claim that if for some v € U™ we have Y N Sc(v) being non-zero then p* € Y for
all g # v. Let us first show how this claim implies the proposition. Take any non-zero
f € Y. By Proposition 6.5 there is a v € U” such that P, f # 0. Since Y is £, -invariant by
Proposition 6.7 it is also invariant for P, and hence P, f is a non-zero element of Y NSc(v).
Now if our claim held then p* € Y for all g # v. Since U" is an infinite group there certainly
exists a u € U* with p # v. If we fix such a p then u* is a non-zero element of Y U Sc(p)
and hence by using the claim we conclude in particular that v* € Y. Hence the above claim
implies the proposition.

We now prove the claim. Suppose f is a non-zero element of Y NS¢ (v). Since Y NSz (v)

is translation invariant we may assume f(1) # 0. Let u € U~ satisfy p # v. Define l € Z
and n € N so that P! is the conductor of ¥ and 1+P" is the conductor of u~tv # 1. Choose

any element r € F with val(z) ={—n. Then P, (Ew ((1) J;) f) is an element of Y and

by Lemma 6.6 it is a non-zero scalar multiple of u*. Hence p* € Y which proves the claim.
and therefore also the proposition.

a

Lemma 9 For a compact open subset Q of F* we define pn € S(F %) to be the charac-
teristic function of Q in F*. Let p € S(F*) and ¥ € F*. v # 1 be given. Choose k €
so that supp(p) U supp(3) C P*, where ¢ is the Fourier transform of ;- with respect to v.
Then there exist by,....bn € F and ¢, ...,¢n € C such that for any compact open set Qin
F* with supp(p) C Q C P* we have the identity

- 1 b;
¢=Zq£w<0 f)*’“'
j=1

Moreover we may choose the ¢; so that Z;=1 cj =0.

Proof We regard ¢ as an element of S(F) by defining x(0) = 0. Let m € Z be sufficiently
large so that ¥ is constant on P™ and Pm—* C Pk Observe that for any a € P* the function
: F — C z — ¥(az)p(—z) is constant on the cosets of P™=% in F since each of the
functions £ — ¥(az) and £ — $(—z) have this property. Let S be a set of representatives
for the cosets of P™=* in P*. For b € S define ¢, = Ay (P™ *)3(—b) € T. Then for any
a € P* we have,

ola) = [ vlaz)pl—2)du(a)
=3 [ vlale + 03~z + ) delz)

beS

= A (P™F)p(ab)p(—b).

bes
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This identity shows two things. Firstly it immediately implies
1 &
P = cse (0 1) Pa
beS

whenever Q is a compact open set in F* with supp(y) C Q C P*. Secondly by putting
a=0wefind ) ,c5co =0.

]

Corollary 10 Let v be a non-trivial unitary character of F +. Then the collection of

functions of the form
£ 1 =\ .
v 0 1 ¥ b d

where z € F and ¢ € S(F*) form a spanning set for the space S(F ™).

Proof Let o € S(F*), and define Q to be the compact open set supp(y). Let pa €S (F*)
denote the characteristic function of Q in F*. By the Lemma 6.9 there are b;.....b, € F
and cy,....cn € C such that 3°7_, ¢; =0 and

- 1 b;
¢=ch€w 0 1 /¥
Jj=1
Thus,
- 1 b
¢=ch(5w(0 f)sm—%m)
j=1

and we are done.

The next result is a trivail consequence of Corollary 6.10.

Corllary 11 Suppose L : S(F*) — Cis a linear mapand v € F~. v # 1. If for all
< € S(F*) and r € F we have

L (o 3) o=t
then L =0.

Lemma 12 Let v be a non-trivial unitary character of F*. Then the subspace of linear
functionals L in S(F>)* which satisfy

e (5 7)¢) =vt@i)

for all p € S(F*) and a € F is one dimensional. This one dimensional space has as a basis
the linear functional : S(F*) — C ¢ — p(1).

Proof Clearly the property of the lemma is satisfied for the non-zero functional ¢ —
2(1). So all we have to show is if L is any functional satisfying the property of the lemma
then there is a ¢ € C such that L(p) = cp(1) for all » € S(F*). First note that it suffices
to show that if ¢ € S(F*) and (1) = 0 then L(p) = 0. Indeed if @1, 2 € S(F*) satisfy
@1(1) # 0 and p2(1) # O then as (p1(1)"tw1 — @2(1)"!w2)(1) = 0 the claim would imply
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21(1)7'L(21) = p2(1)"1L(2) and the result would follow by defining ¢ to be this common

value.

Well suppose v € S(F*) and ¢(1) = 0. Let Q be a compact open set in F* which
contains 1 € F* and supp(¢). Let pq € S(F™) denote the characteristic function of Q in

F*. By the Lemma 6.9 there are b,,....b, € F and ¢, ..., ¢, € C such that
n
1 b;
j=1
Since ¢(1) = 0 and pa(l) = 1 we have 37, cju(b;) = 0. Thus
b;

L) =Y esttien (5 %) oe) = wlbs)Liza)).
Jj=1

b

By hypothesis for any j we know L(&, (é i ) va) = v(bj)L(va) and so L(y) =0.
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Chapter 7 The Kirillov Model

The Key Theorem

We remind the reader that G = GL2(F) and what we do in the rest of the notes has
this assumption in place. For this section our goal is to prove the following theorem.

Theorem 1 Let v € F*, ¥ # 1 and let X be a non-zero complex vector space. Suppose
{z.K) is an infinite dimensional. irreducible, admissible representation of G such that

(1) K is a space of functions from F* to X. )

(2) For every g € A and ¢ € K we have 7(g)p = £X (g)¢.

(3) span ({p(F*): p €K}) = X.

Then it is necessary that the dimension of X is one. every function in K is locally constant

and vanishes outside a compact subset of F, Sx is a subspace of K of finite codimension.
K = Sx + m(w)Sx, and for any g € U and p € K we have o — n(g)¢ € Sx.

For the rest of this section we fix a representation (w,K) of G which satisfies the
hypothesis of the theorem. Our goal for this section is to prove Theorem 7.1.
Since Z acts on K as w. and since we know how A acts on K we therefore know how

B = AZ acts on K. Namely if (g 3) € B and ¢ € K then

-1 —1
r(5 )e=r(§ D) (o M) e meeenet ot

Let us quickly make some obvious remarks. Suppose ¢ is a function with domain Fx*
and whose range is some vector space. We will say that o vanishes outside a compact subset
of F if there is a compact set M in F such that if x € F* and £ ¢ M then p(r) = 0. Of
course this is equivalent to requiring that there is a n € Z such that if r € F* and r ¢ P"
then {z) = 0. Observe that if for example ¢ is non-zero on O\ {0} and zero elsewhere then
> does not vanish outside of a compact set of F*, but it does vanish outside a compact set

of F.

Proposition 2 Every function in K is locally constant and vanishes off of a compact
subset of F.

Proof Let » € K. Choose a n € N so that if g € G, g = e(modP") then w(g)y = ».
Then for a € 1 + P™ and y € F* we have

oo = (= (¥ )2
=(=(4 D=(s Do)

= p(y).

This proves that ¢ is locally constant.

Now let P! be the conductor of ¥. We claim that if z € F and val(z) < { — n then
¢(z) = 0. Having proven this claim we will know that y vanishes outside of the compact
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set P~ of F and we will be done. Well let z € F satisfy val(z) < { — n. First observe
that zP" € P'. Indeed if y € P" satisfies val(y) = n then val(zy) < ({—n)+n=1L
and so ry € P'. Therefore we must have P' C zP™. Hence there is a y € P" such that
ry ¢ ker(v). Note that

o(a) = (= (5 %) ¢) (@) = v(zu)ola),

or rather {1 — v(zy))¢(z) = 0. Since W(zy) # 1 this implies p(r) = 0 as desired.

Proposition 3 For any a € F and ¢ € K the function
0 1 a
7 0 1)°¥

Proof For the sake of brevity definen = p—nm (é ‘:
a = 0 so we suppose a # 0. By Proposition 7.2 we know 7 is locally constant and vanishes
off of a compact subset of F. Observe that for any y € F* we have

isin Sx.

p. The proposition is trivial when

1w = o) - (&5 (5 7)) 00 =0-vlemets)

Let P be the conductor of ¥. Then for y € a~'P!, y # 0 we see n(y) = 0. This proves
¥ € Sx-

O

Lemma 4 For every u € X there is a ¢ € K N Sx such that p(1) = u.

Proof Let us first show that for any u € X there is a p € K such that p(1) = u. Our
assurmption that
span (Upexv(F*)) = X

implies the existence of p1,....om € K. ay,....am € F* and ¢y.....c;, € T such that
u=3r_ ckpk(ar). For k=1,...mdefine n ==« (“; ?) 2k = o(ak ). Then gk € K
and k(1) = vk (ak). Thus if p == Y e, ek € K then (1) = u as desired.

Now let u € X be given and choose ¢ € K, £ € F such that p(1) = u and w(r) # L. If
Jl") » then n € KNSx and n(1) = (1 — w(z))p(l) = (1 — v(r))u.
Hence ¢ := (1 — ¢(z))"!'nis in KN Sx and has value u at 1 € F*.

we define n := ;,:—1r((]i

a

Observe how the above lemma is an apparently stronger form of our third hypothesis
in the definition of a Kirillov representation. Also note that it is certainly necessary for us
to have this hypothesis in order for the next proposition to hold.

Proposition 5 Sx is a subspace of K.

Proof It will suffice to prove that for every f € S(F*) and u € X the element fQu of Sx
isin K. By Lemma 7.4 if u € X is given then there is a ¢ € LNSx such that (1) = u. Then
u=p(l)= Zueu.(Pfcp)(l) and so for f € S(F*) wesee fQu=73_ . f® (PX)(1)).
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Hence to prove the proposition we must show for every f € S(F*), v € U" and ¢ € KNSx (v)
that f@ (1) isin K.

Well let v € U and ¢ € K N Sx(v) be given. Put u = (1) and define Y to be the
space of all f € S(F*) such that f ® u € K. Our goal is to show Y = S(F*). Observe that
Y is £,-invariant since if f €Y and g € B then

(@) Nu=EX(g)(f@u)=m(g)(fDu)EK.

By Proposition 6.8 the representation (§,,S(F*)) of A is irreducible. Thus to show Y =

S(F*) it now suffices to prove Y # 0. Let 4 € U" be so that u # v. Definel € Zandn € [M'to

be the conductors of ¥ and p~'v # 1 respectively. Take r € F only to satisfy val(z) =[—n
1 =

and define = Pf ({,f (0 1 ) .;:). Then n € KNSx and n = y(z. g~ tv.v)p* = u by
Lemma 6.6. Therefore 0 # v(z,p~'v. ¥)v* € Y and we are done.

O

Proposition 6 The subspace Sx of K is invariant under B.

Proof Let (g 3) € B and € Sx be arbitrary. Then d # 0 and so

-1 -1
2(2 E)o=un@eX (%0 %) o= urldiulbd ! o(ad ).
0 d 0 1

Since v(bd~!-) € S(F*) and p(ad~!-) € Sx it is evident that = (g Z) 2 isin Sx.

a

Proposition 7 K is the sum of the subspaces Sx and 7(w)Sx.

Proof Fix a nonzero ¢ € Sx. Since (#.K) is irreducible, K is spanned by the set
{n(g)¢ : 9 € G}. If g € B then as Sx is invariant under B we know w(g)» € Sx.

-1
Now let ¢ = a 3) be in G, but not in B, so that ¢ # (. Define h = ((1) acl ) and
n=nmw (—()c b—;:c“) @, so that n € Sx. Since h € U we know that n(h)r(w)p—n(w)n €

S(F*). Thus we have

m(g)p = m(h)m(w)n = (v(h)x(w)y — m(w)n) + m(w)n € Sx + =(w)Sx.

a

We have already explicitly described how B acts on K. Since G = Bul U B to
understand the action x of G on K it suffices to understand how w acts on K. Moreover
as K = Sx + m(w)Sx it suffices to understand how w acts on Sx. We now consider this
problem.

For a € F* and p € U* we define the linear operator
J(a,p): X — X J(a,p)u = (r(w)(p*(@ ") @ u))(1).
So if L : K — X is the canonical linear map defined by L(y) := ¢(1) then
J(a, w)u = Lix(w)(p (@) 8 u)).
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Proposition 8 Foranya € F*. e €U, and p € U” we have J(ea.p) = p-te)J(a. p).
Proof For u € X we find

J(ea, p)u = (n(w)(p* (e'a™!-) @ u))(1)
= p~He)m(w)(p*(a™"-) @ u)(1)
=p"(e)J (a. p)u.

Proposition 9 Fora€ F*. p €U* and u € X we have
J(a, p)u = (m(w)(p* (@' ) @ u))(1) = wr'(a) (7 (w)(n™  u))(a)-
Hence for any fixed 4 € 4" and u € X the map
F* — X a— J(a.p)u

is locally constant and vanishes off of a compact subset of F.

Proof

sl )20 = (xwir (5 )) wrsm) @)
= (= (% 27 (5 ) mwers W)
= w7 @) 2 w)(a).

The second assertion is an immediate consequence of the first assertion and Proposition 7.2.

a
Proposition 10 Fora.r € F*. p €U*, and u € X we have

(w(w)(p*(a! ) @ w))(z) = we (@) (w(w)(p™((az)™" ) @ u))(1) = wr(z)J(az. p)u.

Proof The following calculation will prove the result.

xr

)y s = (r (5 ) s @9 u) )

=(n(g 2)n(w)w(’;l ?)(u"(a-l»)zu))m

= we(z)w(w)(p* ((az) ™" -) @ u)(1)
= we(z)J(az, pu)u.

Proposition 11 If ¢ € Sx and b € F* then

(m(w)e)(8) = we(d) 3 /F J(ab.wela) d*a.

peEU®
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Proof We first prove the formula when & = 1. By Proposition 6.3.2 we have the formuia
p=3_ Y @)@ )
neZ ucld*
where the summations over Z and U* are finite. By Proposition 7.8 we have

(rw)p)(D) = > Y (r(w)(r* @™ ) (™)) (1)

neZ peld*

=3 ) J@ gl

neZ ucld*

=3 T s ([ s astar axe)

neZ pclU*

=Z Z /L‘J(ea",yme@")d*e

n€Z ucU*

= /F J(a, p)p(a) d*a.

uel*

Therefore for b € F* we have
=we0) = (r (5 1) wtwle)
GG (s
= we(B)(x(w)p (6™ (1)
=u®) T [ Jameta)

neu-

=wal(d) Y /F . J(ab. p)p(a) d*a.

peU*

The proof of the following is lemma 5 in the first section of [2].

Lemma 12 The family of operators {J(a.u) : a € F* u € U*} is a commutative family.

Proposition 13 If R € End(X) commutes with each of the operators J(a.u) where
a€ F*, u €U then R=clx for somec € C.

Proof Define Y to be the space of all functions from F* to X. Note that K is a subspace
of Y. Define the linear operator

T:Y —Y (T'¢)(z) := R(p(x))-
Clearly Sx is an invariant subspace of T’. Thus if ¢ € Sx and z € F* then we have

(r@)ToN)(e) =wnle) 3 [ Tev. w) Rlolo) &y

peU*

=R (L«Jr(z) > /Fx J(zy, p)p(y) d™ y)

ueu-
= R((v(w)p)(z))
= (T'(z(w)ep))(2)-
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Hence m(w)T’'p = T'n(w)y for ¢ € Sx. This immediately implies that K is an invariant
subspace of T’. Indeed if ¢ € K we can write p = @1 + m(w)p2 where ;.22 € Sx and
hence

T'p=T'¢ + T'm(w)p2 = T'p1 + n(w)T'p2 € Sx + m(w)Sx =K.

Let T denote the restriction of 7 to K so that T € End(K). We have proven that n(w)Ty¢ =
Tr(w)p for ¢ € Sx. We can easily show that this holds for all » € K be writing o =
£1 + m(w)p2 where ;. p2 € Sx and then noting
m(w)Tp = n(w)(Tp1 + m(w)T2)
= Tr(w)gr +wel—1)Ty
= T(m(w)or +wr(—1)p2)
=Tn(w)y

Thus the operators T and m(w) commute. Next we show that T and m(g) commute for any

g € B. Indeed if g = (“ b

0 d) € B and ¢ € K then we have noted that

7(g)p = wx(d)¥(bd™" - Jpp(ad™" -).
Hence for £ € F*,

(T(r(g)9))(z) = T(wr(d)e(bd™ z)p(ad ™ 1))
= we(d)¥(bd~ 2)T(p(ad™'z))
= we(d)¥(bd~z)(Tp)(ad "' z)
= (n(9)(T¥))(=),
and thus Tn(g) = n(g)T. So m(g) and T commute for g € B and g = w. By Proposition

5.7 G is generated by B and w thus we conclude that T commutes with =. Thus for some
¢ € T we have T = clx and this obviously implies that R = c/x.

a

Corollary 14 The dimension of X is 1.

Proof Since the family of operators {J(a,n) : @ € F*pu € U"} is commutative. the
above proposition implies that each J(a, p) is a scalar operator. Hence any R € End(X)
commutes with every J(a, u). Thus again by the above proposition we conclude that every
R € End(X) is a scalar operator. This forces X to be one-dimensional.

a

The lemma tells us that even though initially X was an arbitrary complex vector space
we lose nothing in assuming that X = C. The following result is lemma 7 and 8 of [2].

Lemma 15
(1) For every u € U* the space m(w)Sx N Sx(p) has finite codimension in Sx (x).
(2) For almost every u € U the space m(w)Sx contains Sx (u).

With this lemma the next result follows easily.

Proposition 16 The space Sx has finite codimension in K.
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Proof Since r{w) € GL(K) we have that Sx and r(w)Sx are isomorphic vector spaces.
Hence

K/Sx = K/m(w)Sx = (Sx + m(w)Sx)/m(w)Sx = Sx/(Sx N m(w)Sx).

Thus we need only prove that the space Sx /(Sx Nw(w)Sx) is finite dimensional. The direct
sum Sx = @, ¢y Sx(u) implies that

K/Sx = Sx/(Sx N w(w)Sx) = €D Sx(w)/(n(w)Sx N Sx(w))-

neu*

By Lemma 7.15 each summand in this direct sum is finite dimensional and moreover only
finitely many of them are non-zero. The proposition is proven.

o
Uniqueness of Kirillov Models

Definition 17 Let v be a non-trivial unitary character of F. A representation (7.K) of
G is called a Kirillov model with respect to ¢ iff (x, K) is an infinite dimensional. irreducible,
admissible representation of G which satisfies the following two properties:

(1) K is a vector space of complex valued functions on F*.
(2) Forallg € A and ¢ € K we have that 7(g)y = &u(g)¥-

When we have a need to be explicit in the notation about the character v then we will
denote the representation by (my, K).

By Theorem 7.1 we obtain the following corollary.
Corollary 18 Suppose (7, K) is a Kirillov model with respect to v. Then every function
in K is locally constant and vanishes outside a compact subset of F. S(F*) is a subspace of

K of finite codimension, K = S(F*) + n(w)S(F*), and for any g € " and ;- € K we have
v —m(g)p € S(FX).

Proposition 19 Let (x, K) be a Kirillov model with respect to v. Then the space of
linear functionals L in K* which satisfy

(x5 1)e) =)

for all @ € F and ¢ € K is one dimensional. Moreover this one dimensional subspace of K*
is spanned by the functional : K — C ¢ — p(1).

Proof Let L € K* be any functional satisfying the property of the proposition. By
restricting L to the subspace S(F*) of K Lemma 6.12 implies that there is a ¢ € T such
that L(g) = cp(1) for all ¢ € S(F*). Let = € K be arbitrary. Choose any r € F so that

v(z) # 1. Thenasgs—w(é f)gaeS(F") we have

L =Lio-x(g 3)o+ier(f T)e=ctolt) - s(alo(t) + vz Lie).

This implies (1 — ¥(z))L(p) = (1 — ¥(x))w(1). Thus L(p) = cp(1) for all p € K.
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Theorem 20 If (x.K) and (#’,K’) are Kirillov models with respect to v which are
equivalent representations then (r,K) = (#/,K’). Namely K = K’ as sets and # = 7’ as
functions.

Proof Let R:K — K’ be an intertwining isomorphism of the equivalent representations
(x,K) and (#/,K'). Soif g € G and ¢ € K we have R(w(g)p) = n'(9)R(p). Define the
linear functional L : X — C by L(y) = R(p)(1). Observe that for r € F and ¢ € K we
have

e (g §) o= (g o= (g 1) RN = e,

Hence by Propsition 7.19 there is a ¢ € C such that L(y) = cp(1) for all o € K. Thus for
ac F*and p €K

ro@ = (§ 3)renw = (§ 1) =dr(§ 7)o =eota)

Thus R(¢) = cp and as R is injective we see ¢ # 0. It now follows immediately that
(m, K) = (=, K).

a
Existence of Kirillov Models

In this section we prove that every infinite dimensional class of [I(G) has a Kirillov
model, which is necessarily unique by Theorem 7.20.

Lemma 21 Suppose (7, V) is a smooth representation of G. Fix a v € V and define the

function f: F — V by
f(x):n’(é ‘l’)u

The following hold.

(1) If for some m € Z we have that f is constant on P™ then f is constant on the cosets
of P™ in F.

(2) f is locally constant.
(3) Suppose m€Z,a € F and v € F~ satisfy

[ wla)f(x)duz=0.
’pm
Then for any k& < m this integral also vanishes when evaluated over P*.

Proof Suppose f is constant on P™. Let £,y € F be in the same coset of P™ in F so
that r — y € P™. Then as f is constant on P™ we find

rr((])' 11’)-11r((1) J{)v:n((l) rIy>v=f(1:—y)=f(0)=v.

We therefore have that



This proves (1). To prove (2) let H be the open subgroup of G that stabilizes v. There is a
1y
01
for every ¢ € F we know that f is constant on the open neighborhood z +P™ of z. Now
we prove (3). First note that by (2) the integral is well defined. Observe that as v{a-) is
in F* we could assume that a = 1. Since the proof is the same as when a # 1 we will not
bother making this assumption. Suppose k < m and S is a set of representatives for the
cosets of P™ in P*. Thus

m € N so that y € P™ implies ) € H. Thus f is constant on P™. Now by part (1)

[ venserds =3 [ oats+ 20 fis+2)do

s€ES

=Zw(as)/pmw(at)7r(é f)n(é f)vdw:

SES

=3 (as)r ((1) f) (/,,,. w(az)f(z)dwx)

SE€ES
=0.

a

Lemma 22 Let ¢ be a non-trivial unitary character of F* and define [ := cond(v) € Z.
Suppose Y is a complex vector space, m € Z,and f € Sy (P™). For any n > m the following
are equivalent

(1) f is constant on the cosets of P* in P™.

(2) Foralla€e F,a¢ P~" we have

/ w(az)f(z) doz = 0.
'pm

Proof First suppose (1) holds. Let S be a set of representatives for the cosets of P" in
P™. Then for a € F, a ¢ P'~" we have

dyr = dyr = 1 d, s).
L. vtearmider =3 [ viats +anste-+2)des ,EZS'”(“’(/,, vlaz)duz ) £l5)

Hence it suffices to show that ¥(a-) is non-trivial on P*. Well there is a y € F with
val(y) = — 1 such that ¥(y) # 1. We need only show that a~!y € P*. This is clear since
val(a~'y) = val(y) —val(a) > ({—1)—({—n) = n—1. We have now proved that (1) implies
(2).

Suppose now that (2) holds. Consider f as an element of Sy (F) by defining f to be
equal to 0 € Y at elements of F not in P™. Then (2) implies that the Fourier transform of
f with respect to ¥, which as usual is defined for y € F by

f@) =folw) = [ f@wendz= [ fewiendor.
has its support in P'~". Therefore by the Fourier inversion formula if z € F,

fo)= [ el-enf doto)
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Let a € P™ and b € P™ be given. Note that for any y € P'~" we have —by € P’ and so
v(—by) = 1. Hence,

fla+t)= [ wi—(a+8fe)den) = [ vi-enfls)dols) = fla)

Thus f is constant on the coset a + P" of P™.
a

Lemma 23 If (m, V) is an infinite dimensional irreducible admissible representation of &
then the only v € V for which
T (1 I) v=1v
01

Proof Of course this holds for v = 0. Suppose that the condition is satisfied for some
v €V. Define H = {g € G : n(g)v = v} and H = {g € G : n(g)(Cv) = Zr}. Clearly

forallz€e Fisv=0.

H' C H. Note that as H' is open and contains the matrices (1) "1: for all r € F we
must have by Lemma 5.9.1 that SL»(F) is contained in H' and hence also in H. Also

0

for any a € F*, since « v = we(a)v we see H contains the center of G. Thus

a
0
by Proposition 5.4 the index of H in G is finite. Let gi,...,9m € G be a complete set of
representatives of the left cosets of H in G. For j = 1,....m define w; = m(g;)v and then
define W = span{w;,...,wm}. Let g € G and j € {1,....m} be given. Take h € H and
i € {1,..., m} so that gg; = gih. Then m(g9)w; = w(g;)m(h)v € n(g:)(Cv) € Cw;. Hence W
is w-invariant and thus W = 0 or W = V. Since V is infinite dimensional and W is finite
dimensional we conclude that W = 0. This implies v = 0.

a
We are now ready to construct the Kirillov model of an arbitrary infinite dimensional
7 € [I(G). For what follows we fix an infinite dimensional, irreducible, admissible represen-

tation (m, V) of G. and a non-trivial unitary character y of F. We always use { to denote
the conductor of vw. Define V; to be the set of all v € V such that for some m € Z

A Y(—z)m ((1) T) vdyr =0.

By Lemma 7.21 if v € Vg and m € Z is such that

,/... y(—z)w (é J{) vdyr =0

then for any k& € Z with k¥ < m we again have that the integral vanishes

1 = _
/;. w(—z)rr(o l)vdwr—O.

It follows that V4 is a subspace of V.
Define X = V/V, and let L : V — X be the quotient map. For v € V define the

function @, : F* — X by
_ a O
cp.,(a)—L(n'(o l)v).
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Let K denote the set of all the functions ¢, for v € V. It is easy to verify that for vi,va € V
and ¢ € C we have Ycy, +v; = CPu, + Puv,. Thus K is a complex vector space and the map
:V — K v+~ g, is linear. By the definition of K this map is also surjective.

Proposition 24 The map:V — K v+~ . is an isomorphism of vector spaces.
Proof We need only to show that the map is injective. Well let v € V' be so that ., = 0.

We wish to show that v = 0. Define f : F — V by f(z) == (é J{) v. The idea of
the proof is to show that f is constant. For if this held then v would be fixed by all of the
(1) J{) for £ € F. and by Lemma 7.23 this implies v = 0.

Let £ € N be so that if ¢ € G and ¢ = e (modP*) then n(g)v = v. Note that f is
constant on Pt. We proceed by induction. Suppose for some n € Z we have proven that f
is constant on P". We will show that this implies that f is also constant on P"~! which
will finish the proof. Let us first observe that for any a € F'* there is a n(a) € Z such that

operators

/ v(—az) f(z) duz = 0.
Pprnla)

a

0

1 = a 0
- dyz =0.
/;kw( r)w(o 1)"(0 1)!1 wt =10
We have the relation

GG D-GDGE )

Using this and performing the transformation £ — az we find

la] (g (1’) (/ﬂ_m v(—az)f(z) m) =0.

Therefore our observation holds by choosing n(a) € Z to satisfy P*(%} = g~ 1Pk,

Indeed. since ¢, = 0 we know 7 ( ?) v € V4. Thus there is a £ € Z such that

Now choose ay, ..., ar € F such that val(a;j) = — n for each j and so that ifa € F is
any element with val(a) =[—n then thereisa jand e € 1 +P* sothat a = ea;. Fixme =
with the only requirement being m < min{n,n(a,),....n(a;)}. By Lemma 7.21.3 we have
for any j,

/ v(—ajz)f(z)dtr =0.
‘pm

Let a € F be any element with val(a) =! — n. Find a j and € € 1 + P* such that a = ea;.
We have the relation

(7 96 DE D=6 )

Transforming r — €~ !z, using the above relation, and noting = (8 ?) v = v we find

/... y(—az)f(z)dyz = /pm w(—ajz)f(e'lz) dyzx

= (% 3) ([ sanreraue)

=0.
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Since f is constant on P™ by Lemma 7.21.1 it is also constant on the cosets of P" in F.
In particular f is constant on the cosets of P* in P™. Thus by Lemma 7.22 and by the
calculation above we know for any a € F with a ¢ P'-(»—1),

/ w(az) f(z) dyz = 0.
‘Pm

The other direction of Lemma 7.22 implies that f is constant on the cosets of P*~! in P™.
In particular f is constant on P™~! and this completes the proof.

a

Having established the above proposition we may now define the map rx : G — GLIK)
by

Tc(g)ey = Fr(g)v

where ¢ € G and ¢ € K. It is easy to see that (mx.K) is a representation of G.

Theorem 25 The map: V — K v — ¢, is an intertwining isomorphism of the
representations (m, V') and (mx,K) of G. Thus (mx,K) is a Kirillov with respect to v that
is equivalent to (7, V)

Proof That the isomorphism v — p, intertwines the two representations follows directly
from the definition of (7x, K). We have remarked that if there is an intertwining isomorphism
between two representations and if one of the representations has any of the properties of
being irreducible, infinite dimensional, or admissible then the respective property must
hold as well for the other representation. Hence we need only verify that (mc,K) is a
Kirillov model, and this requires us to prove that mx and &, are equal on 4. Well let

g= (a b) € A,veV, and y € F*. We have

01
(@)@ = peand =L (7 (5 §)= (5 1))

ay 0)
: 1))

Therefore we must show m (g 0) T (a b) v — ¢(by)m (ay (1)) v € ker(L) = V5. Ob-

and
(€0 (9)9)(¥) = G(by)gu (ay) = v(by)L (n

1 01
0 b 0
n(g 1)1:(8 l)v—w(by)n' (aoy l)v
1 b 0 0
ﬂ'(o f)n(aé/ l)u—w(by)w(aoy 1)v

are equal. Therefore all we have to prove is that if b € F and v € V' then

serve that

and

1 b
1r(0 1)0-!(1(6)06%.

To show this choose n € Z so that b € P*. Then

[ v(=am ((1) ’i') (n((l) '{) v—d:(b)v) d*r
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=/'w(—1:)1r((1] b'*l'z)ud+r—/uw(—r+b)1r((1) f)vd“‘r:O.

We have proven the following theorem.

Theorem 26 Let an infinite dimensional class in II(G) be given. Then for each v € F*".
v # 1 there exists a unique Kirillov model (7. K) with respect to v which is in the class =.

So any result we prove about Kirillov models is really a result on the infinite dimensional
classes in II(G).

Proposition 27 Suppose 7 € II(G) is infinite dimensional. Let v and v’ be non-trivial
unitary characters of F*, and let b € F* be the unique element of F* which satisfies
v = w(b-). Let (my, Vy) and (mys, Vi) be the Kirillov representations with respect to v
and ¢’ that are in 7. Then (m,, V) and (7y, V4) are equivalent representations. Moreover
Vo = Vy and for g € G, ¢ € Vi, we have

mor(9)p = (Tu(g)e(d™! -))(b-).

Proof Define o:G — GL(V,) by

a(g)p = (my(g)e(b™" -))(b-).

We easily check that (o, V) is a well defined representation of G. The map : Vi, —
Vo, y — 2(b~!-) is an intertwining isomorphism of the representations (o.V, ) and

(ry,Vy). Observe that if g = (‘t y) € A and p € V,, we have

01

a(9)p = (Eu(g)p(b™" - ))(b-) = w(by - )p(z ) = ¥'(y- )p(r ) =&ur(g)p-

Thus (o, V) is a Kirillov representation with respect to v’ that is in 7. By uniqueness we
have (o, V) = (wy+. Vi) as desired.

a

The above result implies that to any infinite dimensional class in II{G) there is associ-
ated a unique space of functions on F*, which does not depend on w. We formaly introduce
a notation for this space.

Definition 28 Let 7 be an infinite dimensional class in [I(G). We will denote by K () the
unique space of complex valued functions on F* which is the space of the Kirillov models
that are in r. We call K(x) the Kirillov space of =. Given a non-trivial unitary character v
of F* we denote by (my,K (7)) the unique Kirillov representation with respect to v that is
in 7. We will call (my, K (7)) the Kirillov model of © with respect to v.

When v is understood we will abbreviate (my, K(w)) to (7, K(x)). This notation is
abusive as now m denotes both an equivalence class of representations and a specific action
of G on K(r), this action depending on . This will not cause any confusion.

Some Results on Kirillov Models



Corollary 29 Let (7, V) be an infinite dimensional irreducible admissible representation
of G. Fix v € F*, v # 1. Then the space of linear functionals L € V* such that for all

ac FandveV
L (n’(é ‘;) v) = w(a)L(v)

Proof Since this result was already proven for Kirillov models in Proposition 7.19 the
result follows from Theorem 7.26.

is one dimensional.

a

Proposition 30 Let 7 and 7’ be infinite dimensional classes in [I(G) and let v be a non-
trivial unitary character of F*. If wy = wxr and my (w)(p*) = m, (w)(p™) for all p € U”
then = n’'.

Proof Here when we write my(w)(p*) = nl, (w)(s>) we mean equality as functions from
F* to C. We will prove that (my, K(m)) = (7, K(7’)) which will certainly show that = = .
First note if u € 4" and b € F* then

rolw)* ) = mo(wlés (§ ] )w"

=wrte (% 0) motwin®

-1
= wnr (B0 ("0 ‘{) ()
= () (u* (5-))

Since the set of functions {u*(b-) : p € U=.b € F*} span S(F*) this shows that the
operators my (w) and w, (w) agree on S(F*) C K(m) N K(r'). Hence

K(7) = S(F¥) + mo (w)S(FX) = S(F*) + 7, (w)S(F*) = K(=).

It remains to show that r, = #,. Since wy = wy we know my(g) = m,(g) whenever g€ Z.
Also we have of course my(g) = Eu(g) = 7y (g) for g € A. Hence my(g) = m,(g) for all
g € B = AZ. By Proposition 5.7 it will now suffice to prove that =, (w) = T, (w). Let

p € K(r) = K(7) and write ¢ = 1 + Ty (w)p2 where 1, p2 € S(F*). Then by above
Te(w)p = Ty (w)pr +we(—1)p2 = Ty (W)p1 + wr(—1)p2
= m, (w)(pr + Ty (w)2)

= my, (W) (1 + T (w)p2)
= my(w)e.

a

Proposition 31 Let = € [I(G) be infinite dimensional and let x be a character of F*.
Then the map
K(r) = K(r®x) ¢—rxp

is an isomorphism of vector spaces, where xy is the function on F* defined by pointwise
multiplicaltion. We have the formula

(r ® x)u(9)(xp) = x(det(g))xmy(g)p-
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Proof Define the space V := {xp : v € K(m)}. Define a representation (.V") of G by

a(9)(xv) = x(det(g))xmy (9)p-

It is simple to check that the map ¢ — x¢ is an intertwining isomorphism of the repre-
sentations {7y @ x,K(x)) and (0. V). Hence o is in the equivalence class # @ x. One easily
checks that (o, V) is a Kirillov model with respect to v and hence V = K(r © ).

a
Given ¢ € K(r) we define 3 : F* — C by $(a) := w;(a)p(a).

Corollary 32 Let = € [I(G) be infinite dimensional. For every ¢ € K(7w) we have 2 €
K (7). The linear operator

K(r) — K(F) p—>
is an isomorphism of vector spaces. It is an intertwining isomorphism iff wr, = 1. Hence

wx = 1 implies # = #. Moreover the action ® of G on K(7) in terms of the action 7 of G
on K(r) is given by the formula

Tu(9)P = wy'(det g )wymy(g)p.

Proof This follows from the above proposition and the theorem that * = w;! & 7.

a
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Chapter 8 Classification of the Infinite Dimensional Classes in I[1(G)

Cuspidal Representations

Lemma 1 Let (7, V) be a smooth representation of G. Suppose v € V and n € Z satisfy

f..”((l) T)vd+1=0.

Then for any m € Z with m < n the integral also vanishes when evaluated over P™.

fmw<(l) J{)vd"’r:O.

Proof Note that since the representation is smooth the integrand is a locally constant
function. Hence the integral is well defined as it is taken over a compact set. Let S be a set
of representatives of the cosets of P" in P™. We have

Lor(s 5)vare=X [ o5 °17)vare

sES

=y 3) fon(o §)vers

SES
=0

o

Definition 2 Let (7, V) be an irreducible admissible representation of G. Then we say
that (. V) is a cuspidal representation of G iff for every v € V' we have for some n € Z that

/nn'((l) ‘I)vd*’::O.

By the above lemma we know that if (r, V) is a cuspidal representation then for any
v € V we have for sufficiently small n € Z that

/nn'((l) T)vd“zzo.

Proposition 3 If (r, V) is a cuspidal representation then it is necessary that (7, V') be
infinite dimensional.

Proof Let x be a character of F* and define the representation (m,,C) of G by 7 (g)z :=
x(det(g))z. We must show that (x,,C) is not cuspidal. This is clear since for n € Z, z € T

we have
/nﬁx ((]i f)z#r:/nx(l)zd'l’r:zl\i'('pn)¢0.

Hence every non-zero element z of C fails the condition of cuspidality.
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Proposition 4 Let 7 be an infinite dimensional class in II(G) and let v be a non-trivial
unitary character of F*. If (x,K(x)) is the Kirillov model of = with respect to v then
(w. K(r)) is cuspidal iff () = S(F*).

Proof Define [ := cond(v). For n € Z and ¢ € K(r) define

1 ¢
Pn = «p..ﬂ.(O l)yd"’r.

Since the integrand is a locally constant function, and since P" is compact we see that o,
is a finite linear combination of functions in K(7). Therefore p, € K(r) for every n € _.
For y € F* we have

oult) = [ wlemetidtz=200) [ wlzpdts.

Observe that [, v(zy)d+tz # 0 iff v(-y) is trivial on P" iff yP" C P iff ye P

Suppose (m, K (7)) is cuspidal. Given ¢ € K(7) choose a n € Zso that 5, = 0. Thus for
y € P'~", y # 0 we have p(y) = 0 and hence p € S(F*). Hence K(w) = S(F*). Conversely
suppose that S(F*) = K(rx), and let ¢ € K(7) be given. For sufficiently small n € Z we
have P!~ N supp(p) = 0 and for such n we see @, = 0. Thus (7, K(r)) is cuspidal.

a
The Representation (p, B(x1, x2))

Let x1 and x2 be two characters of F*. Define B(x;. x2) to be the space of all locally
constant functions f : G — C which satisfy

(5 3)9) = weremnsi o

foralla,be F*, z € F,g€qG.

Clearly any function in B(x, x2) is invariant under left translations by elements of [
Also by putting g = e in the above we see how functions in B(x;, x2) behave on B. Since
G = BK any two functions in B(x1, x2) which agree on K must be identical.

For any g € G and any function f : G — C we define p(g)f = f(-g) to be the right
translate of f by g. Clearly if ¢ € G and f € B(x1, x2) then p(g)f € B(x1.x2). Thus we
obtain a representation (p, B(x1, x2)) of G.

Proposition 5 Let f: K — C be a locally constant function which satisfies

(5 3)9) = a@xoro

for all a,b € U, ¢ € O, g € K. Then there exists a unique extension of f to a locally
constant function on G such that the extension is an element of B(x1, x2). Conversely the
restriction of any element of B(x:, x2) to K satisfies this condition.

Proof This is simple but we write the details down anyway. The converse statement is
trivial so the main point will be to prove the first assertion. Let f be satisfy the condition
of the proposition. Since elements of B(x;, x2) are determined by their values on A we see
that there is at most one extension of f to G such that the extension is in B(x1, x2). Hence
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the main thing to prove is the existence of such an extension. For this let g € G be given

a.ndwriteg:(g :)hwhere (8 :)eBandheK. We then define

i
£g) = xa(@)x2(®)I51" F(A).

We must verify that this provides a well defined extension of f to G. Suppose that

_f{a =n _ (G X2
o= (5 W)m=(% B)e

are two decompositions of g arising from the Iwasawa decomposition G = BRK. Definet € F
1

by the relation
al“la-_; t _far -1 > I
0 b7/ \0 b 0 b /)"
aj a» t

Thus 10 < b=1b ) = hlh.'_,'1 € K. Hence t € O and al"‘ag and bl-lb'_) are in U . or what
1 2

is the same |a;| = |az| and |b;| = |b2|- Now by our assumption on f we know

sy = (5% 8 ) he) = (et an)a(67 b2) f(h)

1) = 0 61—162 2 )] = X11@; az2)xz2(9; 02 2)-

Hence x1(a1)x2(81)f(h1) = x1(az2)x2(b2) f(h2). Combining this with our observation above
that |a;| = |a2| and [by] = [b2] yields

ay ax
xa(an)xa(bi)l g1 f(A1) = xa(az)xa(ba)l 21" Flha).
Thus our definition extends f to a well defined function on G which we also denote by f.

0 ';) € B be arbitrary. Write

g= (a1 :1) h where h € K. Then by the definition of f we have

G Do i)

aa; 3

= xl(aal)xz(bbl)lmff(h)

We now have to prove f € B(x1,x2). Well let g € G and (

- (xl(a)n(b)ﬁl*) (xl(alm(bl)l‘b’—:ﬁf(h))

= xa(@xa G Flg):

Now f is easily seen to be locally constant using the formula just proven and the fact that
the restriction of f to K is locally constant. Thus f € B(x1,X2) as desired.

a
See [4] regarding the next result.
Proposition 6 The representation (p, B(x1, x2)) of G is admissible.

Theorem 7 If n € II(G) is infinite dimensional and not cuspidal then = is equivalent to
a constituent of (p, B(x1, x2)) for some characters x; and x» of F*.
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Proof Fix 1# ¥ € F*. Define the finite dimensional space V := K(r)/S(F*). Since 7 is
not cuspidal V is non-zero. For o € K(x) denote ¢ := o + S(F*) € V. If we restrict the
representation (7y, K()) to B then S(F*) is B-invariant. Hence we obtain a representation
of Bon V. Since g € U and ¢ € K(7) imply that 7y (g9) — ¢ € S(F*) we see that the
subgroup U of B acts trivially on V. Thus we get a representation B/U" > T on V". More
explicitly we have the well defined representation (7. V) of T defined by

T(g)(p + S(F™)) := mu(g)p + S(FX)
where ¢ € T and » € K(x). Since T is abelian V' decomposes into the direct sum of one
dimensional r-invariant subspaces. Hence there is a 79 € K(7) and a subspace ¥ of V" such

that V = U3¢ @ W and both of the subspaces Cjq and W are r-invariant. There exist
characters y; and y» of F* such that

T (8 2) Po = x1(a)x2(b)po

for all a.b € F*. Define the linear functional
L:V—C Liapo+n) =a
where a« € C and n € W. Extend L to K(r) by defining
L:K(r) —C L(yp) = L(p).

Let » € K(x) and (8 ‘Z) € B. We are going to prove that

L (frw (8 Z) sﬁ) = x1(a)x2(b) L(p)-
Let a € C and n € W satisfy 3 = agg + 1. Thus

0 p - !
r (3 b) 5 = axu(a)xz(b)go + 1

where n’ € W. By Corollary 7.18 we see that

NI AU R AT b=ty ~ (% 0,_, (a0
vlo 6)? ™o )7 ™ o 1 J™N\0o /7" ™0 b)7
is in S(F*). Therefore
= 0\ .
e (5 8))=2(-(5 2)%)

= axi(a)xa(b)
= x1(a)x2(b) L(¥)

as desired.
Define the characters xj and x5 of F* by x} = xu| - [=% and x5 := X2 - |*¥. Hence
for any (g g) € B and ¢ € K(r) we have

L(m (5 4) %) =xi@uOIF1E L)
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For ¢ € K(w) define f, : G — C by

folg) == L(my(g)y).

Since the map: G — Vg — my(g)p is locally constant we see that f,, is locally constant.

Also by what we have just proven we know that for any ¢ YY) eBand g € G we have
0 b

a ) s @
£ ((§ 1)9) =x@xoisisa.
Hence f, € B(x}.x%). Define the linear operator
R:K(7) — B(x1.x2) »— fo-

We first note that R is injective. Indeed suppose ¢ € K(x) is such that R(p) = f, = 0.
Hence for every g € G we have L(my(g)p) = 0. If ¢ # 0 then span{r,(g)y : g € G} = K(x).
Since L # 0 we conclude ¢ = 0. Thus R is injective as desired.

To finish the proof it suffices to show that R intertwines the actions m, and p. Let
g € G and ¢ € K(r). We must show that R(my(g)p) = p(9)R(¢). This is clear as
R(7y(9)¢) = fry(are = fo(-9) = p(9)fe = p9) R(p)-

a
The Space F(x) and F(x)

Definition 8 Let x be a character of F*. Define F(x) to be the space of all locally
constant functions & : F — T such that &(z)x(z)|z| is constant for |r| sufficiently large.

Clearly S(F) is a subspace of F(x). Note that F(x) is translation invariant by elements
of F*. Also note that the space F(| - |~!) consists of all locally constant functions on F
which are constant on the complement of a compact subset of F.

Given a character x of F* define ®, : F — T by ®y(r) := " '(z)|z|~! when
val(z) < 0 and ®,(z) := 0 when r =0 or val(z) > 0. It is clear that &, € F(x).

Proposition 9 We have the direct sum decomposition F(x) = $(F)& C®, . In particular
S(F) is a subspace of F(x) of codimension 1.

Proof Let & € F(x). Thereisan € Z, n < 0 and ¢ € C such that if z € F, val(z) <n
then ®(z)x(z)|z| = c. or equivalently ®(z) = c®,(z). Define f € S(F) by f(r) = 0 when
val(z) < n and f(z) = ®(z) — c®y(z) when £ = 0 or val(z) > n. Then ® = f + c®, and
so F(x) = S(F) + C®, . It remains to show that the sum of these subspaces is direct. Well
suppose for some ¢ € C we have c®, € S(F). Then for r € F* with val(z) sufficiently small
we have 0 = (c®,)(z) = cx~!(z)|z|~!. This implies that ¢ = 0 and hence S(F)NC®, = {0}.

|

What we wish to do now is to examine the Fourier transform &, of the function ®, €
F(x) defined above. We need a lemma.

Lemma 10 Let x be a character of F* and let v be a non-trivial unitary character of
F*. For brevity define ®, = (®x)y. For z € F we have the identity

be(o) = [ @cllu(an) doy = X)X x(6) 105 x5 0)

k=0
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where one side of this equality converges iff the other side converges. Here & is any uniformiz-

ing parameter of F, the choice being unimportant as the expression (@) (zo=*, x5t v)
does not depend on .
Proof For z € F we have
be(e) = [ v doy= [ @l vy doy
F F\P
=20 [ e dy
F\P
x
= A (Yd) Z/ Y Hea*)uw(ea 5 r)d*e
k=0 YU
= U) Y (@) r(za™ x5 " v)-
k=0
a

Proposition 11 Let x be a character of F*, and let v be a non-trivial unitary character
of F. Define | := cond(y) and for brevity denote ®, = (®\)v-

(1) Suppose x = 1. Then ®,(0) = oc and for £ € F* we have
d,(z)=0 if val(z)<l-—1
=aval(z)+b if val(r)>1-1
where a ;= Ay () #0and b C.
(2) Suppose x is unramified and x # 1. Then éx(O) = oc when |[x(P)| > 1 and . (0) =
Ao (U)(1 = x(P))~! when [x(P)| < 1. Also for £ € F* we have

&, (z) =0 if val(z)<i-1
=AU -q)"" if wval(z)=1-1
=ax(z)+b6 if val(z)>1-1
where @ := Ay (U)x(P)  (X(P) = @) (x(P) — 1)~} (1 —q)~" and b := A (U)(L - X(P))™". We
moreover have that a # 0 iff x #] - |71
(3) Suppose x is ramified and n := cond(x). Then ‘5,((0) =0 and for £ € F* we have

® (z)=0 if wal(z)<l—n
=ax(z) if val(z)>1—n

where a := Ay (U)x (@)~ 4(@&' ", x5 "', ¥) # 0. Here & is any uniformizing parameter of F.
the choice being unimportant as the expression x (&)™ ~*v(&*~", xg !, w) does not depend on

a.
Hence in all cases ti>x converges on F*, and vanishes off of a compact subset of F.

Proof The basic formula we will use to prove the proposition is from the previous lemma

By (z) = A () D x(@)*v(za7*, x5 "\ v)
k=0
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(1) When y = 1 the formula becomes

$1(z) = A U) ) _ v(x&7*. L. w).

k=0

When £ = 0 we see -y(.m.'z"‘, 1,¥) =v(0,1,¥) = 1, and so &, does not converge at 0 € F.
Suppose now that z € F*. Then by Theorem 4.14 we know that

vza~*.1.w)=1 if k<uwval(z)-({-1)
=(1-¢q)7 ! if k=val(z)-({-1)
=0 if k>val(z)-(-1)
Thus val(z) < { — 1 implies y(z&~*.1,v) = 0 for all kK > 0. Hence if val(r) <l -1 we
have ®;(z) = 0. When val(z) = [ =1 we get ®1(z) = A, (U)(1 - q)~!. Now suppose
val(z) > {—1. Then ®(z) = Ay (U)(val(z) - (I = 1) +(1 —¢)~!) and the desired conclusion
follows.

(2) Now the formula becomes

& (z) = A @) Y x(PYy(za7*. 1, v).

k=0

When r = 0 we have ®,{0) = Ay () Tpeso x(P)k. This series converges iff [x(P)| < L. and
when this is the case the sum is Ay (U)(1 — x(P))~". Suppose now that r € F*. As above
we know

y(za=* L,u)=1 if k<wal(z)—-(-1)
=(1-¢ )t if k=val(z)-(-1)
=0 if k>val(z)-(I-1)

The same reasons as in the first part show that when val(z) <[ —1 we have (.D,((r) =0 and
when val(z) =1 — 1 we have &, (z) = A, ({)(1 — q)~*. Suppose that val(r) >{—1. Since
x(P) # 1 we find

val(z)—{
éx(z)=xw(u)( 3 x(P)"+x(7’)"““”““(1—q)'1)

k=0

x(P)eeit=) =i+t — 1) -1 val(z)—i+1

=AU - p)rattm)=i+l,

vl )( P =1 7~ x(P)

Since Y is unramified we know that x(P)*#(*) = x(z). Hence our calculation becomes

d}t(:) = ax(z) + b where a and b are defined as in the statement of the proposition. Now
a # 0 iff x(P) # ¢. Since x is unramified by Proposition 4.9.1 there is a s € T such that
x=|-|*. Then x(P) =qiff ¢~* =qiff s= ~1. Hencea=0iff x =| - |7".

(3) In this case
@, (0) = A () D x(@) (0, x5, ¥) = A (M) D x(&)*6(x0) = 0.
k=0 k=0

Suppose now that r € F*. We know that y(zo~*, x5t ¥) # 0 iff val(zo~F) =1 —n iff
k = val(z) — (I — n). Hence val(z) <! —n implies ®,(z}) = 0. When val(z) >~ n then

By (2) = A U)x(@) ==y (2 =M =8 ya ).
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Write £ = ec™ where ¢ € U and m € Z. We then have (zS(!—n)-vel(=) (=1 ) =
x(e)‘y(&""‘,x{l, v). Thus &, (z) = ax(z) where a is defined as in the statement of the
proposition.

a

If M is a neighborhood of 0 in F then we call the subset M \ {0} of F* a punctured
netghborhood of 0.

Corollary 12 Let x be a character of F*, and let v be a non-trivial unitary character of
F*. If & € F(x) then & := & is convergent on F*. Considering ¢ as a function on F* it
is locally constant. vanishes off a compact subset of F. and in a punctured neighborhood of
0 € F is given by

&(z) =ax(z)+b if Y#L|-|™
=zaval(z)+b6 if x=1
=b if x=|-|""

where a, b € C depend on .

Proof This follows from the above result, the decomposition F(x) = S(F) = T®, . and
the fact that & € S(F) implies ® € S(F).

a
Let x be a character of F* and let 1 # v € F*. We have shown that if ® € F(x) then
the Fourier transform ®, of ® converges on F*, but not necessarily at 0 € F. We wish
to introduce the convention, which only applies to this situation, that we use ®, to denote

the restiction to F*. So from now on when ® € F(x) and we speak of ®, we mean the
function : F* — T  ar— Py (a).

Lemma 13 Let v and v’ be two non-trivial unitary characters of F*. Then for any
character y of F* we have

{dy : ® € F(x)} = {®u : ® € F(X)}.

Proof Let b € F* be such that ¢’ = ¥(b-). For ® € F(x) we easily prove the identity
&, = [b[(®(b-))y’- The lemma now follows by recalling that the space F(x) is invariant
under translations by elements of F*.

a

Definition 14 Let x be a character of F*. Choose a non-trivial unitary character v of
F+. Define the complex vector space

F(x) = {®v : ® € F()}.
By the lemma above this space does not depend on the particular choice of v.
So F(x) is a space of functions on F and F(x) is a space of functions on F*.

Corollary 15 Let x be a character of F*. Then F(x) is the space of functions  : F*X —>
C of the form

n(z) = x(@)file) + fa(z) if x#L|-|™
=val(z)fi(z) + fa(z) if x=1
=filz) if x=|-|""
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where fi, fo € S(F) are arbitrary. Hence S(F*) is a subspace of F(x) with codimension 2
when Yy #| - |~!. and with codimension 1 when y =] - |~}

Proof We have already seen in Corallary 8.12 that any function in F(x) is of the claimed
form. Conversely it is easily seen that any function satisfying these conditions is in Fix).
This is done by using Proposmon 8.11 where we explicitly computed Q‘( and by recalling

that : S(F) — S(F) fr~— f is an isomorphism. The last assertion is easy to prove.
a

Theorem 16 Let x be a character of F* and let v be a non-trivial unitary character of
F*. The surjective linear operator

- Flx) — Flx) & — &,

is an isomorphism of vector spaces iff x # | - |~!. If x = | - |~! then the kernel of this
operator is the subspace of F(] - |~!) consisting of the constant functions on F. Moreover
if x#|-|"! and ® € F(x) is such that & € S(F*) then & € S(F).

Proof For any ® € F(x) we make the abbreviation ¢ := &,. The map & — ® is easily
seen to be linear and by the definition of F(x) it is also surjective. We need to determine
the kernel of this operator.

First consider the case y # |- |~!. Let ® € f(x) be in the kernel and write ® = f+c®,
where f € S(F) and c€ C. Then 0 = ¢ = f+c<I>x where here we are considering f € S(F)
as a function on F*. Hence c®,, which is a function on F*, can be defined at 0 € F such
that the resulting function on F is in S(F). Since x # | - |"1 Proposition 8.11 implies that
¢ =0. Hence f = 0 and so f = 0. We conclude that & = 0 and thus when y # | - {~! the
map is an isomorphism.

Suppose now that x = | - |”!. Recall that the space of constant functions on Fis a
subspace of F(x). Let us first observe that if ® : F — C is a constant function then ® is
in the kernel. This is trivial since for any £ € F* we have

d(z) = /F ®(y)v(zy) dyy = ©(0) /F w(zy) doy

= ®(O)imm—re /P w(zy) dyy

= 0(2(0))
=0.

Define | := cond(). Recall that &, (z) equals 0 when val(z) <[ — 1 and equals Ay, (U)(1 —
q)~! when val(z) > ! — 1. Since : S(F) — S(F) n+~— nis an isomorphism and since
&, € S(F) we know that there is a unique n € S(F) such that 7 = ®, . It is easy to check
that n(z) equals —1 when val(z) > 0 and equals 0 when val(z) < 0. Now let ® € F(x)
be a function in the kernel. Write ® = f + c¢®, where f € S(F) and ¢ € C. Hence
0=Ff+c®y = f+cn. Now ¢ = 0 implies f = 0, and so f = 0, and thus & = 0.
When ¢ # 0 we have —c~!f = 1} and hence —c~!f = n. Since &, — n = 1 this implies
® = f+c®, = —cn+c®y =c(®y —n) =c. Thus ¢ is constant. Hence @ is in the kernel
iff @ is constant.

It remains to prove the final assertion. Suppose that ® € F(x) is such that & e S(F*).
Write ® = f + ¢®, where f € S(F) and ¢ € C. We conclude that c®, is in S(F*). Since
x #| - |7! the same reason as above implies that ¢ = 0. Thus ® = f € S(F) as desired.

a
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Whenever x; and x» are characters of F* we define x := Xix3 '

Definition 17 Let x; and x2 be characters of F*. For f € B(xi1,x2) we define the

function 8 FC ) ;_-:f(w((l) -lr))zf(_()l i)

Recall that if g = (‘Z b) is in the big cell. namely if ¢ # 0, then we have the identity

d

_ (cidet(g) —a) (1 —c7'd
9"( 0 cJ%\o 1 )

Therefore for f € B(x1.X2) and g in the big cell we see

-1
£(9) = xa(e det(g) xa(e)l e 1, (%),

Simplifying this gives the identity
F(g) = x1(det(g))ldet(g)| Fle| "' x ™! (€)@ (c™"d).
Proposition 18 Let x; and x2 be characters of F* and define x := xixa'- If fe
B(x1,x2) then ®; is locally constant and for large |z| we have
®(z) = x"H(2)z| 7 f(e).

Hence ®; € F(x).

Proof Since f is locally constant on G it is obvious that ®; is locally constant on F. For
r € F* we have the identity

o(5 7)=(% D) (- 1)
o =1(w(y 7)) =@ (- 1)

For |z} sufficiently large we have f (_;_1 (1)

It follows that

) = f(e). The proposition now follows.
O
Proposition 19 Let x; and x2 be characters of F* and define x := ,‘(1)({1- The map
:B(x1,x2) = F(x)  f— %

is an isomorphism of vector spaces.
Proof The map is well defined by Proposition 8.18 and it is clearly linear. To show it is
a

injective suppose that f € B(x1, x2) is such that &, =0. If g = (c

3) is in the big cell.

namely if ¢ # 0, then
£(9) = x1(det(g))ldet(g)|}[c|~*x "} () @s(c™"d) = 0.
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So f is zero on the big cell. Since f is locally constant on G and since the big cell is dense
in G this implies that f = 0. Hence the map is injective.

Now we show that the map is surjective. Let ® € F(x) be arbitrary. There isa z € T
such that ®&(z) = zx~!(z)|z|{~! when |z]| is sufficiently large. Define f : G — C by

£9) = = (@i,

-1 _ 1
forg:(g 3)€B.andwheng=(‘: (’;)z(c det(o) ca)w(é - d) -

the big cell define p
£(g) = xa(det(g))x ™" (c)le| ™" |det(g) | F@(2).

Then f € B(x1,x2) and ¢&; = .
O
Definition 20 Let v be a non-trivial unitary character of F¥. For f € B(x;.x2) define

Pl FX —=C oY i=xal - H(&)e.

When there is no need to emphasize the dependence on v we make the abbreviation oy =
X2| - |#®;. We also define the complex vector space

K:(xlz XZ) = {‘P}o : f € B(lexz)}‘
This space does not depend on v, since F (x) does not depend on v. The map
L F(x) — K. x2) n—xal - |79

is an isomorphism of vector spaces. Clearly n € S(F*) iff xa| - |39 € S(F*). Therefore as
S(F*) is a subspace of F(x) we conclude that S(F*) is also a subspace of K(x1, x2). Hence
for f € B(x1,X2) we have 50? € S(F*) iff (®f)y € S(FX). Also by the previous theorem

we know that § € S(F*) implies that &; € S(F).

Corollary 21 Let x; and x2 be characters of F*. Then K(x1, x2) is the space of functions
@ : F* — C which are of the form
2(2) = 2|70 (@) filz) + x2(2) f2(2)) 0 x#L|-17!

= [zl xa(2)(val(2) fi(2) + fa(2) if x=1

=z xa(@)fole) i x =17
where fi, f» € S(F) are arbitrary. Hence S(F*) is a subspace of K(x1. xa) of codimension
2 when Yy # | - |~! and when x = - | it is of codimension 1.
Proof This follows immediately from Corollary 8.15.

a

Proposition 22 Let v be a non-trivial unitary character of F*, let x; and xa be characters
of F*, and define x := x;x5 . Consider the surjective linear operator

:Blx1,x2) — K(x1,x2)  f— 4.
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If x#| - |~! then this operator is an isomorphism of vector spaces. If x =| - |~! then the
kernel of this operator is a one dimensional p-invariant subspace of B(x1, x2) spanned by
the function

fo:G—C  g—> xu(det(g))det(g)] %

Consequently we obtain an isomorphism of vector spaces

: B(x1, x2)/Cfo — K(x1. x2)-

Proof A function f € B(x1.x2) is in the kernel iff ,a}’ =0iff (éf)w = 0. In Theorem 8.16
we determined the kernel of the map

CF(x) — Flx) 6 — by

Recall that the kernel of this map is trivial when x # | - |~'. and when x = | - [7! it
consists precisely of the constant functions in F(| - |[~!). Therefore if f is in the kernel then
x = | - |~! implies that &, is constant, and x # | - |~! implies that &; = 0 and hence
f =0. This proves that when x # | - |~! the map f —> ‘pf’ is an isomorphism. and when
x =| - |”! the kernel of f —> <pf is the set of f € B(x1, x2) such that ®; is constant. The
first assertion of the proposition is now proven. To prove the second suppose Y = | - |-t
Define Y to be the kernel of f — oY,

Y ={f€B(x1.x2): ',a? =0} = {f € B(x1, x2) : ®; is constant}.

We are now going to prove that there exists a unique function fo € B(x1. x2) such that
®;, = 1 and moreover we have the formula

folg) = x1(det(g))idet(g)] ¥

To prove this first recall that if g = (: 3) is in the big cell then for any f € B(x1. x»)

we have f(g) = xl(det(g))|det(g)|*¢!(%). Therefore if fo € B(x1, x2) satisfies 7, = | then

folg) = h(det(g))ldet(g)l* for g in the big cell. Since the big cell is dense in G and fo is
locally constant this forces the formula to hold for all g € G. Uniqueness is now established.
It remains to check that if we define f; as above then fo € B(x1, x2) and ®;, = 0. This is
easily done.

Having established this we conclude that Y = Cfy. [t remains to show that Y is
p-invariant. This is obvious since for g € G we have p(g) fo = fo(9)fo € Tfo =Y.

a

Recall that if ¢ : FX — C is any function and g is any element of A then £.(g)v is
defined.

Proposition 23 Let x; and x2 be characters of F* and let 1 # v € F*. If f € B(x1.Y2)

andg:(S 117) € A then

Soz(g)! =§v (9)‘P;‘ .
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Proof For r € F* we have

(®p(e)f ) (®) =/ Q91 (YU (zY) duy

- :f(w(g *TY) vlen dey

= Ff(w(g ‘ly))w(zy+bz)dwy

= w(b:)IaI/Ff (w (8 —fy)) v(azy)d.y.
o(5 )=(0 9)=(s 7)

(w(§ 1)) = c@iaiew.

Thus (®,g) v (z) = ¥(bz)x2(a)la|3 (®f)y (az) and so

The identity

implies that

‘p:’(g)!(z) = X2(£)|I|'°L(<i>,,(g)f)w(.r)
= w(bz)xz(az)|az|¥(®f)y (az) = w(bz)p} (az)
= (§u(9)ef)(2)-

Since the kernel of the surjective linear operator

Ry : B(x1,x2) — K(x1.x2) fr— 9}

is p-invariant the representation of G on B(x1, x2)/ker(Ry) gives rise to a representation
of G on K(x1,x2). If 7 denotes this action of G on K(x1, x2) then the above result shows
that m(g)¢ =€, (g)y for all g € A and ¢ € K(x1, Xx2)-

The next result is Theorem 6 in the first section of [2].

Theorem 24 Let x; and x» be two characters of F*.
(1) The representation (p, B(x1,x2)) of G is irreducible except when x =|-|ory = |- |-t

(2) If x =] - | then B(x1,Xxz) contains an irreducible invariant subspace of codimension
one. This subspace consists of all functions f € B(x1, x2) which satisfy the condition

/ &(z)d+z =0.
F

(3) Ifx=1|-|"! then B(x1, x2) contains a one-dimensional invariant subspace. spanned
by the function g — x1(det(g))|det (9)]¥. The representation of G obtained on the quotient

of B(x1.Y2) by this one-dimensional subspace is irreducible.

Definition 25 Let x; and x2 be characters of F* and define x := xlx-_Tl.
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(1) Suppose x does not equal | - { or | - |~!. The class in [I(G) which is the class of
the irreducible representation (p, B(x1,x2)) is denoted by m(x1, x2) and is called a principal
series representation.

(2) Suppose x = |- |- The class in [1(G) which is the class of the irreducible representation
of G obtained by restricting to the irreducible invariant subspace of codimension one is
denoted by o(x1.x2), and is called a special representation. The class in I1(G) which is the
class of the one dimensional representation of G on the quotient space of B(x. x2) with the
invariant hyperplane is denoted by m(x1, x2)-

(3) Suppose x =| - |~!. The class in II(G) which is the class of the irreducible represen-
tation of G on the the quotient space of B(x;, x2) with the one dimensional space spanned
by the function g — x;(det(g))ldet(g)ﬁ is also called a special representation. and is again
denoted by o(x1,x2)- The class in I[I(G) which is the class of the one dimensional repre-
sentation of G on the invariant space spanned by the function g —~ xl(det(g))ldet(g)[‘é' is
denoted by m(x1, x2)-

Thus whenever (p, B(x1,Xx2)) is irreducible its class in II{G) is denoted by m(x1.x2),
and is said to be a principal series representation. Also note that for any two characters
and ya of F* that m(x, x2) is defined, but only when  is distinct from both | - | and | - |
is it true that (X1, x2) is infinite dimensional. We have o(x1, x2) being defined only when
x1x3 ' equals| - |or |- |~! and it is always infinite dimensional. Observe that if o(x1. x2) is
a special representation then cond(x1) = cond(x2), and so the characters y;, > are either
both ramified or both unramified.

See pages 34 and 35 of [2] for a proof of the next result.

Proposition 26 Let 7 € [I(G) be an infinite dimensional class that is not cuspidal. and
let 1£¢ € F~.

(1) Suppose ® = w(x1, x2) is a principal series representation. Then the map
:B(x1, x2) — K(7)  fr— oy

is an intertwining isomorphism of (p, B(x1, x2}) and (my . K(7)).

(2) Suppose ™ = o(x1, x2) is a special representation with x = | - |. Define Y to be the
irreducible p-invariant subspace of B(xi, x2) of codimension 1, so that (p.Y) is in o(x1. Y2)-
Then the map

1Y — K(7) fr— 'p}’

is an intertwining isomorphism of (p,Y) and (my, K(r)).

(3) Suppose ® = o(x1.Xx2) is a special representation with x = | - |~'. The function
:G — C g+~ x1{det(g))|det(g)|} is in B(x1, Xx2). Define Y to be the one dimensional p-
invariant subspace of B(x1, x2) that is spanned by this function. The resulting representation

(p, B(x1, x2) is in o(x1, Xx2). If f € B(x1.x2) and f' €Y then }_ ,, = 7. The map
:B(x1,x2)/Y — K(7)  f+Y —> o
is well defined and is an intertwining isomorphism of (p, B(x1,x2)/Y) and (=, K(7)).
The following result completely describes the functions in the Kirillov space K (7).

Theorem 27 Let 7 € II(G) be infinite dimensional.
(1) If = is cuspidal then K(7) = S(F*).
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(2) If r = m(x1,Xx2) is a principal series representation with y; # y» then the functions
in (=) are those of the form

z— 2} 0 (@) fi(2) + x2(2) fa(2))
where r € F* and fy, f € S(F) are arbitrary.
(3) If # = m(x1,x2) is a principal series representation with w := y; = Y2 then the
functions in K(x) are precisely those of the form

2 [zl¥u(2)(fi() + val(z) fo(2))

where r € F* and fi, fo € S(F) are arbitrary.

(4) If = o(x1,x2) is a special representation with y = | - | then the functions in K(r)
are precisely those of the form X

z— |z|ix1(z) f(z)
where £ € F* and f € S(F) are arbitrary.

(5) If # = o(x1, xa) is a special representation with xy = | - |~! then the functions in K(7)
are precisely those of the form .
z — |z|2 x2(z) f(2)
where z € F* and f € S(F) are arbitrary.
Proof This follows directly from Corollary 8.21 and Proposition 8.26.

The next resuit follows easily from Theorem 8.27.

Corollary 28 Let 7 be an infinite dimensional class in [I(G). Then the codimension of
S(F*) in K(r) equals 0 if = is cuspidal, equals 1 if 7 is a special representation. and equals
2 if 7 is a principal series representation.

Corollary 29 II(G) can be partitioned into four disjoint subsets consisting of the one
dimensional classes, the principal series representations. the special representations. and the
cuspidal representations.

Proof Theorem 3.17, Theorem 8.7, and Theorem 8.24.

O
The following result is theorem 7 in the first section of [2].
Theorem 30 Let x;, x2,w1,wa be characters of F*.
(1) m(x1,x2) and mw(w;y,ws) are equivalent representations iff (x;.y2) = (wi.w2) or

(x1,x2) = (w2,w1).

(2) If o(x1,Xx2) and o(w;,wa) are defined then they are equivalent representations iff
(x1,x2) = (w1, w2) or (x1, x2) = (w2, w1).

Proposition 31 If r € [I(G) is equal to a principal series representation m(xi,X2) or a

special representation o(x1, x2) then wr = x1x2-

Proof First suppose that m = 7(x1, x2). In this case the representation (p, B(x1.x2) is in
w. Ifa€e F*, f € B(x1,x2), and g € G then
a 0 a 1
(+(5 2)1) @ =x@x@iZi o) = Gax@7(s)
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This proves we(y,;,x3) = X1X2- NOW suppose that = = &(x1, x2) is a special representation.
Since o(x1, x2) = o(x2,Xx1) we may assume that x := X1X2_l = | - |. Let ¥ denote the
p-invariant hyperplane of B(x1, x2) so that the representation (p,Y) is in 7. Then the same

calculation as above shows that for any @ € F* and f € Y we have p (8 2) f=xi1x2f-
This shows wa(y,.x2) = X1X2-
a

The following is not difficult to prove.

Proposition 32

(1) The contragredient of m(x1,x2) is (xrt.ah)-
(2) The contragredient of o(x1, x2) is o(x7t, =l
(3) If m is cuspidal then so is 7.

(4) If = is a one-dimensional class corresponding to the character Y of F*. then 7 is the

one-dimensional class corresponding to the character x~!.

Unramified Representations

If # € [I(G) then as  is admissible we know that V/(d) is finite dimensional for any
o € II(K) and hence o will occur in = at most finitely many times. It is a more delicate
question to ask exactly how many times it occurs. In particular we may consider this
question for the trivial irreducible representation of K.

Definition 33 Let 7 € [I(G). We say that = is unramified iff the restriction of 7 to A
contains the identity representation of K.

Other authors use the terms class [ or spherical for the type of representations we are
calling unramified. We can easily characterize the finite dimensional classes in [I(G) that
are unramified.

Proposition 34 Let 7 € [I(G) be a one dimensional class and let x be the character of
F* which corresponds to . Then = is unramified iff x is unramified.

Proof The representation (m,,C) of G defined by my(g) = x(det(g)) is in . Thus = is
unramified iff m, (g) = 1 for all g € K iff x(det(g)) =1 forallge K iff x is trivial on U iff
x is unramified.

a
The following result is Theorem 11 in the first section of [2].

Theorem 35 Let # € II(G) be infinite dimensional. Then = is unramified iff 7 is a
principal series representation m(x1,x2) where x1 and x2 are unramified characters of F*.
Moreover in this case the identity representation of K is contained exactly once in the
restriction of  to K.

Hence if (7, V) is an irreducible admissible unramified representation of arbitrary di-
mension then there is a unique one dimensional subspace of V' on which the restriction of
7 to K acts as the identity. That is there is a non-zero vector v € V' such that =(g)v = v
for all g € K, and any other vector in V with this property is a multiple of v by a complex
scalar.
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Chapter 9 The Functional Equation

Fractional Ideals of Meromorphic Functions

Let R denote an integral domain. that is a commutative ring with identity that has no
zero divisors. The field of fractions of R will be denoted by L. Consider L as an R-module.

Definition 1 An R-submodule I of L is called a fractional ideal of R iff I is non-zero and
there exists a non-zero element a € L such that af C R.

Clearly if [ is a fractional ideal of R then there exists a non-zero element a € R such
that af C R.

Definition 2 A fractional ideal [ of R is said to be principal iff there is an element a €
such that I = Ra. Hence a fractional ideal of R is principal iff the fractional ideal is principal
as a module.

Obviously if R is a principal ideal domain then every fractional ideal of R is principal.

We recall some standard terminology. A subset D of C is said to be discrete iff for every
z € D there is a neighborhood of z in C such that the only point of D in this neighborhood
is z. Any discrete subset of C is countable but the converse is certainly not true as the
subset Q of C illustrates. Clearly if D is discrete then T\ D is open and path connected
in C. Suppose now that U is a non-empty open subset of C and f : I” — C is an analytic
function. We say that f is meromorphic iff there is a discrete subset D of T such that
U = C\ D. We say that f is entire iff U = C. Since the empty set is discrete we see that
any entire function is meromorphic. The set of entire functions forms an integral domain
which has a subfield canonically isomorphic to T. We make the identification. The set of all
meromorphic functions forms a field. Moreover the field of fractions of the integral domain
of entire functions is the field of meromorphic functions.

As always ¢ denotes the cardinality of the residue field O/P. For any k € Z the function
:C—C s — q~*

is entire. It is standard to denote such a function by just writing ¢**. Consider the subring
T[g°] of the ring of entire functions. As a ring it is isomorphic to the polynomial ring T[T]
where T is an indeterminate. Hence C{g*] is a principal ideal domain. The field of fractions
of C[¢*] is C(q*) = C(¢g~*). The field C(¢*) is a subfield of the field of all meromorphic
functions. The localization of C[g*] at the multiplicative subset {¢** : k € Z k > 0} is the
ring Tlg*,¢~°]. Since C[g*] is a principal ideal domain the same holds for the localized ring
Cl¢*.q~*]. Hence every fractional ideal of Cl¢*,¢™*] is principal. Observe that

(g’ a7 ={cg™ :c€C* neZ}.

The field of fractions of Clg*, ¢~ *] is again the field C(¢°). We will be interested in certain
fractional ideals of the ring (Jg*,¢7*].

Euler Factors

Definition 3 An Euler factor of F is a meromorphic function of the form s — P(g~*)~!
where q is the cardinality of the residue field of F, and P(T) € ([T] is a polynomial satisfying
P(0) = 1. So in particular an Euler factor is a function in C(¢°). The degree of the Euler
factor is defined to be the degree of P(T). Euler factors of F will often be denoted by L(s).
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In these notes only Euler factors of degree less than or equal to two will appear. This
is due to the fact that we are only dealing with the GL(1) and GL(2) theory.

Obviously the only degree 0 Euler factor arises when P(T) = 1. In this case the Euler
factor P(¢—*)~! is simply the function : C — T s+ 1. which is even entire. An Euler
factor of degree greater than zero always has poles.

Let us make a simple observation about an Euler factor L(s) := P(q=*)~! where P(T) #
1. Define n := deg(P(T)) > 1. Since P(0) = 1 the n roots ci, ....c, of P(T) in C are non-
zero. It is easy to see that P(T) = (1— c{’IT)...(I —¢;7!T). So the Euler factor L(s) can be
written as a product

L(s) =(1—c1™'g™*) ol —en"lg™) 70

Lemma 4 Suppose Pi(¢g~*)~! and P»(g~*)~! are two Euler factors of F such that their
quotient is an entire function with no zero. Then P(T) = P»(T).

Proof The image of the map : C — C s —— ¢~° is C*. From this and the fact that
P,(0) = P»(0) = 1 it follows that the function : C —C s +— ﬁ—;g% is an entire function
with no zeros. Clearly if one of P(T) or P»(T) equals 1 then this implies that the other
also equals 1. So we may suppose that neither of them equal 1. Define n = deg(P,(T)) € M
and m = deg(P2(T)) € N. We have just seen that there are a1, ...,an, 31..... 3Im € T* such
that

P(T)=(1—-a1T)...(1 —anT) and Pa(T)=(1-3T)...(1 - 3.T).

Hence
Pi(s) _ (1 —a1s)...(1 — ans)

Pay(s) ~ (1= B318)...(1 = 3ms)

Now ;—;g% having no zero implies by setting s = a; ! that every ajx equals some 3; and

hence m > n. Similarly %% being entire implies by setting s = 31-'1 that every J; equals
some ay, and so m < n. Thus m = n and aj, ..., an is a permutation of 31.....3m. This
proves Py (T) = Pa(T).

a

Since every fractional ideal of C[g*, ¢~*] is principal we may consider the generators of a
given fractional ideal. If L(s) is an Euler factor of F then obviously (L(s)) := Tlg*.¢™*]L(s)
is a fractional ideal of {[g*,¢~°]. What we show next is that the only generator of (L(s))
which is an Euler factor is L(s). Of course there exist fractional ideals of Tlg®. 7] which
are not generated by Euler factors. Indeed any non-zero proper ideal of the ring Clg*.¢7°]
is not generated by an Euler factor.

Proposition 5 A fractional ideal of C[g*,¢~*] has at most one generator that is an Euler
factor.

Proof Suppose we are given two Euler factors Ly(s) and La(s) of F such that {L,(s)) =
(L2(s)). It follows that the Euler factors L;(s) and La(s) have their quotient being an entire
function with no zeros, and hence they are equal by Lemma 9.4.

a
Zeta Functions for GL4(F)
Lemma 6 Let x be a character of F*. Fix f € S(F).
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(1) If x is ramified or if f(0) = 0 then for every s € C the integral

j f(@)x(a)lal* d*a
Fx

is convergent. Moreover as a function of the complex variable s it equals a function in
Clg*,q~*], and hence is an entire function on C.

(2) If y is unramified and f(0) # O then for every s € T with Re(s) > —a(x) the integral

/ f(a)x(a)lal* d*a
Fx

is convergent. Therefore in the particular case that y is unitary the integral converges for
Re(s) > 0. Moreover as a function of the complex variable s the integral equals a function
in (1 — x(P)g~*)~*Clg*.q~*] restricted to the right half plane Re(s) > —a(x). Hence as
a function of s this integral has an analytic continuation from an analytic function on the
region Re(s) > —a(x) to a meromorphic function in C(¢*) which has a pole at s € C only
if ¢* = x(P)-

Proof Choose n € N such that r € P" implies f(z) = f(0). Choose m € Z with m < n
such that z € F, val(z) < m implies f(r}) = 0. Let & be a uniformizing parameter of F.
For any r € N with r > n we have for any s € C that

[ faxallal d*a = / Fa)x(a)lal® d*a
F\Pr+t Ppm\prt

n-1 r
=3 [ @ttt e O Y [ vtetirare

k=m k=n
n—1 r

= 3" x(@) filxo)g ™ + F(0)d(x0) D_ (x(@)a™*)
k=m k=n

When y is ramified 8(xo) = 0. Hence if x is ramified or f(0) = 0 then by passing to the
limit in the above we conclude that for any s € C,

n-1

/F fla)x@)lal da = 3 x(@) fulxo)a™"

k=m
This is a function in Cg*,¢~*] and hence the first part of the lemma.

To prove the second part suppose now that x is unramified and f(0) # 0. Note that
s € T satisfies x(@)q~*| < 1 iff Re(s) > —a(x). Hence by passing to the limit agian in our
initial computation we find that for Re(s) > —a(x) we have

n—1

/F fla)x(allal” d*a = 37 x(@)* felxo)a™ + FOX(@)"™ (L= (@)

k=m

This proves the second part of the lemma.

The above lemma allows us to make the following definition.

Definition 7 Let x be a character of F*. For f € S(F) we denote Tate’s zeta function
of x at f by Z(s, f,x). and define it to be the analytic continuation to C of the analytic
function

s /F _x(@f(a)lal d*a
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defined on the region Re(s) > —a(x). Hence Z(s, f. x) € C(q°) for every f € S(F).

Corollary 8 Let x be a character of F*, and let f € S(F).

(1) If x is ramified or if f(0) = 0 then Z(s, f,x) € Clg*,¢*]. and hence in particular is
an entire function.

(2) Suppose x is unramified and f(0) # 0. Then Z(s. f,x) € (1 - x(P)g~*)"'g¢*.q7*]
Hence Z(s, f.x) has a pole at s € C only if ¢ = x(P). In particular all poles of Z(s. f. \)
are on the line Re(s) = —a(x).

Proof Lemma 9.6 and Definition 9.7.
a

Proposition 9 Let x be a character of F*. Then for every f € S(F) and b € F* we have
the identity
Z(S, f(b ) )l X) = x—l(b)lbl-’z(sa fv X)

Proof By the principle of analytic continuation it suffices to show the identity holds for
Re(s) sufficiently large. Well for Re(s) sufficiently large the integral defining Z(s. -. x)
converges, and thus we may make the computation

Z(s, f(b-)ox) = /F _x(@)f(ab)lal’ d*a

- / x(ab=!) f(a)lab™"|* d*a
Fx
= X" BB (s, £ x)-

Euler Factors for GL4(F)
Definition 10 Let x be a character of F*. Define

Z(x) ={2(s. f.x) : f € S(F)}.

Corollary 11 Let x be a character of F*. Then Z(x) is a fractional ideal of ([¢*.¢™]
that is generated by an Euler factor. More precisely Z(x) = (1) when y is ramified and
Z(x) = ((1 = x(P)g~*)~!) when x is unramified.

Proof This follows from the computation done in Lemma 9.6.

a

Definition 12 Given a character x of F* the unique Euler factor which generates Z(x).
will be denoted by L(s, x), and will be called the Euler factor of x. Hence we have the
identity Z(x) = (L(s,x)). Consequently L(s,x) = 1 when x is ramified, and L(s,x) =
(1 = x(P)g~*)"! when x is unramified.

The following result is now trivial.

Corollary 13 Let x be a character of F*. Then for every f € S(F) the quotient

Z(s, f.x)
L(s, x)
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is in T[¢*.¢~*] and hence is an entire function.
Gamma Factors for GL1(F)

First we will associate to each character of F* a natural function in S(F), and then
calculate its zeta-function, its Fourier transform. and the zeta-function of its Fourier trans-
form.

Lemma 14 Let y be a character of F*. Define f € S(F) by f(z) = x"Nz)ifr € U
and f(z) =0forr € F, z ¢ U. Let v be a non-trivial unitary character of F7* and define
| = cond(v).

(1) 2(s,f.)=1L
(2) For every a € F we have fola) = Au U)y(a. x5 ).
(3) Let & be a uniformizing parameter of F. If x is ramified and n = cond(xo) then

Z(s, fo, x71) = X (@)x (@) (S xo, w)g .

This formula does not depend on the choice of &.

(4) If x is unramified then

1—x(P)g°~!

Z(s, foux7") = @)1 = a7 TP T

The poles of Z(s, fy.x"") are at precisely those s € T such that ¢=* = x(P). Hence in
particular all poles are located on the line Re(s) = a.

Proof The first part of the lemma simply follows from the definitions and the fact that
the measure d*¢ on U/ has total mass equal to one. To prove the second part of the lemma
observe that for a € F we have

fola) = /F f(z)v(az) dyz
=/ x~Yz)v(az)dyz
u

= z\.,,(l()/ux"l(e)w(ac) d*e

= Ag U)¥(a. x5 ", v).

Suppose now that the hypothesis of the third part of the lemma hold. We will use the
identity
(3", xg ', ¥) = x((& " x5 ' v)

in the next computation. For any s € C we have

Z(s. forx") = / x~"(a)fu (a)lal* d*a

Fx
=2 [ xManaxit wlal da
= A @) / LG (@ xg vt d=e
Uu
= A (U)X (@)@ X L ).
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Since for any € € U we have

1((€2)", x5t v) = x(6) (& xg L v)

it is easily seen that the formula does not depend on the choice of &.

Finally suppose that the hypothesis of the fourth part of the lemma hold. It is simple
to show that s € C satisfies |[x~!(P)¢~*| < 1 iff Re(s) > a(x). By Corollary 9.8 when
Re(s) > a(x) the integral initially defining Z(s. fo.Xx"") is convergent. Using these to facts
we find for Re(s) > a(x) that Z(s, fi,, x~!) equals

/ ~1(a) f, (a)lal’ d*a

= Ay (ll)/ v(a, 1, v)|a]’ d*a
= Aw — a1 sdxa ’\ 1 a ,an
@ [ @O0 el e A Z/m-lm‘ (a)lal
= A (U1 - g x(P) g A @) Z(x-l(p)q-s)k
k=l
—I\— -l —ls 1—x(P s=1
=AW (1 -g7 ) x(P) g™ l—xx—('l(;g)Q-.‘

So s € C will be a pole only if g7* = x(P).
a

Lemma 15 Let x be a character of F* and let v be a non-trivial unitary character of
F*. Then for any fi, f- € S(F) we have the identity

Z( =5 fi.x Y 2(s f2.x) = E(L =5, fa, XY Z(s. fi X)

in (q°). Here the Fourier transforms of f; and of f» are taken with respect to v

Proof Define a := a(x). The result above shows that the integral defining Z(s. . x)
converges for Re(s) > —a and the integral defining Z(1—s, -, x™!) converges for Re(1—s) >
a. Hence when —a < Re(s) < 1 — a the integrals defining Z(s, -, x) and Z(1 — s. -x~h
both converge. The region in C defined by {s € C: —a < Re(s) <1 —a} is a vertical strip
of width 1. By analytic continuation to prove the identity of meromorphic functions claimed
in the proposition we need only establish it for s in this region. For —a < Re(s) < 1—a
we see that Z(1 —s. fi, x 1) Z(s, fa, x) equals

([ x@i@iar=ara) ([ xrieras)
= ([ x e ([, nstandoy) axa) ([ xorwer &)

- / / / A1) (b olay) " (a)x(B)lal*~*|bl* d* a dyy d%b
Fx JP+ JFX

= / / [ () f2(8)%(ay)x " (@)x(B)lal'~*|bl* d* @ dy y b
Fx Jpx Jpx

= / / / F) f2(8)e(a)x (v~ a)x(B) |y al = |bl* d¥ a dy y d*5.
Fx JFx Jpx
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Here the second last equality is due to the fact that {0} is a subset of F with measure zero.
The last equality is arrived at by performing the transformation a — y~—'a and using the
invariance of the Haar measure on F*.

By Proposition 4.2 we know that dty = Ay(U)|y|d* y holds. Using this to transform
from the additive Haar measure to the multiplicative Haar measure in the middle integral
above we obtain see that Z(1 — s, fi, x " 1) Z(s. f2. x) equals

" > (b -1y S|pll=s g% x xp
) [ [ [ ror@uE@xE bkl ¢ad e

Now this reasoning is symmetric in fi and f» and therefore the same argument shows that
Z(1 —s. f2.x" ) 2(s. f1,x) equals

s@) [ [ [ s ew@x bl lal  dad*yae,

Comparing these last two formulas and using Fubini’s theorem yields the identity of the
lemmma.

a
These lemmas will serve us first by allowing us to make the following definition.

Definition 16 For any character x of F* and non-trivial unitary character v of F + we
define the meromorphic function (s, x, ¥) € C(¢*) to be the quotient

Z(l —svf.wv X_l)
Z(s.f.x)

where f is an arbitrary function in S(F) such that Z(s, f,x) # 0. The Lemma 9.14 shows
that there certainly exists a f € S(F) for which Z(s, f,x) # 0. The Lemma 9.15 shows
that the quotient defining (s, x,v) is independent of the choice of f € S(F) satisfying
Z(s, f.x) # 0. The function ¥(s, x, ¥) is called the gamma factor of x with respect to v.

s, x, ¥) =

The following theorem is the local functional equation for GLi(F). It is a simple
consequence of our definitions and lemmas.

Theorem 17 Let v be a non-trivial unitary character of F¥. For any character y of F*
and f € S(F) we have the functional equation of meromorphic functions

Z(1—s fu. x~1) = 1. x, V) Z(s, f. x)-

Proof Fix f € S(F) and abbreviate fo to f. Define n € S(F) by n(z) = x~'(z) when
r € U and n(zr) = 0 when z € F and z ¢ U, or equivalently define n := (xg')*. Then
Z(s,n,x) =1 and so

Z(I =S, f!X-l) = Z(l -, fv X-l)z(svr’v X)
= z(l - S, ﬁt X-l)z(sv fv X)
= 7(8? X w)z(sv .f!X)

a
Proposition 18 Let x be a character of F*. Let 1 # ¢ € F* and define { := cond(v).
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(1) Suppose x is ramified. Define n := cond(x), and let & be a uniformizing parameter of
F. Then ¥(s.x, v) is an exponential function explicitly given by

(. % ©) = A U)x(3)" ' 2(& " vo. w)g" T

This formula does not depend on the choice of 4.

(2) Suppose x is unramified. Then ¥(s,x,v) has a pole at s € T iff ¢ = q(P). In
particular all poles of (s, x, v) are on the line Re(s) = 1 — a(x). The function ¥(s. x. v} is
explicitly given by

L{l —s.x"!
A(s.x, w) = A (U)(L — q-‘)“x(P)"q“"”ﬂm\)_)‘

Proof Define f € S(F) by f(z) = x~!(z) when £ € U and f(r) = 0 otherwise. We have
proven that Z(s, f,x) = 1 and hence

Z(l - s!f-wvx_l)

— — 3 -1
Z(s,f,X) —Z(l Svfwa )

v(s, x, v) =
All results now follow from the explicit computation of Z(s, fy, x~!) done in Lemma 9.14.
a
Proposition 19 If yx is a character of F* and | # v € F~ then

‘/(S, X w)‘Y(l -5, X-l? w) = Y(—l)

Proof Fix f € S(F) such that Z(s. f,x) # 0. Define n € S(F) by n := f. Two applica-
tions of the functional equation gives

Zs, i x) =1l =s,x L w)Z(1 =5, fx7 ) = (1= s.x7hw)r(s. . w) E(s. £

Now observe that since 7 = f(—-) we have for Re(s) sufficiently large that

2(s.i0 = [ xt@)f(-allaf d*a = (-1)Z(.fx)
Hence by analytic continuation we have the identity

x(-1)Z(s, f.x) = v(1 = s, x~ 1 v)v(s. x, w) E(s. f. x)

in C(q*). Since Z(s, f,x) # 0 the proposition follows.

Epsilon Factors for GL,(F)
Definition 20 Suppose x is a character of F* and 1 # v € F*. We define the epsilon
factor of x with respect to ¢ by

(s, x, ¥) := '7(L3(le,_w‘3,LX(j-l;() .

By definition €(s, x, ¥) isin C(g*). Note that if x is ramified then (s, x, ¥) = v(s, ¢, v).
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There is another version of the functional equation that uses the epsilon factors instead
of the gamma factors. Both versions play a role in the global theory.

Theorem 21 Let v be a non-trivial unitary character of F*. For any character x of F*
and f € S(F) we have the functional equation

Z(1 =5, fo.x7Y)
L(l - S, X"l)

Z(s, f. x)
L(s.x) ~

=€(s. x. v)

Proof Define f := fo. By Theorem 9.17 for any f € S(F) we have
Z(1=s. fox7 ) = (5., ©)Z(s. £ ).
Therefore we find

Z1-s, f.x7Y) _ (7(s.x,w)L(s,x)) (Z(s.f, X)
L(I—S, X_l) - L(I-S,X-l) L(st)

z

which proves the functional equation.

a

We say that an entire function is ezponential iff it is of the form s — ca® where
c € C* and a € (0, 00). Observe that an exponential function is entire and has no zeros. In
p

particular any function in C(q*) of the form cq** where ¢ € C* and k € Z is an exponential
function. These are the only exponential functions in C(g®). The next result is trivial.

Lemma 22 Let f(s) € T(¢°). Then f(s) is an exponential function iff f(s) is entire and
has no zeros iff f(s) has the from cg** for some ¢ € C* and k € Z iff f(s) is a unit of the

ring Clg* . ¢~°].
Proposition 23 Let x be a character of F'* and let v be a non-trivial unitary character
of F*. The function ¢(s, x, v) is an exponential function and satisfies the identity

1

e(s,x,¥)e(l —s,x~".v) = x(-1).

Proof Choose f € S(F) such that Z(s, f,x) = L(s,x). By the functional equation we

find i
Z(l-s,f.x)

e = e

Consequently €(s, x, ¥) € Clg*.¢~°], and hence in particular it is an entire function. Using
the identity (s, x, ¥)v(1 — s, x~}, ¢¥) = x(—1) we obtain

- -1 _ -
e(s,x, ¥)e(l —s,x~ 1, ¥) = (7(;(’5:_'&3551;0) (7(1 s, X L'(i.)f)u 5, X 1))

=v(s,x, )l —s,x" 1. ¥)
= x(-1).

Since €(s, x, ¥) and €(1 — s, x~!, ¢¥) are entire functions this identity proves that €(s.x, v)
has no zeros. Thus by the above lemma ¢(s, x, ¥) is exponential.

o
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Proposition 24 If x is an unramified character of F* and ¢ is a an unramified character
of F* then e(s. x,¥)=1.

Proof In Proposition 9.18.2 we have proven that when x is unramified we have

n L -s.x71)
L(s.x)

where | = cond(v'). Since we are assuming v is unramified we know [ = 0 and so A {U) =
1 — ¢~!. It immediately follows that (s, x, v) = 1.

v(s, %, ¥) = A @) (1 = g 1) "y (P) gt

a
Zeta Functions for GLz(F)

Lemma 25 Let x be a character of F* and fix f € S(F).
(1) If x is ramified or if f(0) = 0 then for every s € C the integral

[, x@stapaa)ial ¢a

is convergent. Moreover as a function of the complex variable s it equals a function in
Cle’.q7°)-

(2) If x is unramified and f(0) # 0 then for every s € C with Re(s) > —a(x) the integral

[, xt@ftapatia)iaf d=a

is convergent. As a function of the complex variable s the integral equals a function in the
fractional ideal of Clg*, ¢~°] generated by (1 — (P)g~*)~? restricted to the right half plane
Re(s) > —a(x). Hence as a function of s this integral has an analytic continuation from an
analytic function on the region Re(s) > —a(x) to a meromorphic function in C(¢*). which
has a pole at s € C only if ¢° = x(P).

Proof Choose n € N such that »r € P" implies f(zr) = f(0). Choose m € Zwithm < n
such that £ € F, val(z) < m implies f(z}) = 0. Let & be a uniformizing parameter of F.
For any r € N with r > n we have for s € C that

n-1 r
/F > x(a) f(a)val(a)lal* d¥a =D x(&)* fi(xa)lkg™** + F(0)d(x0) D_ k(x(&)g™*)*.
r+t k=m =n

When Y is ramified 6(xo) = 0. Hence if x is ramified or f(0) = 0 then by passing to
the limit in the above we conclude that for any s € C,

n—1

[ x@f@ual@llal d*a = 3 x(@)* felxolka™".

k=m
This is a function in C[g®,¢*] and hence the first part of the lemma.

To prove the second part suppose that x is unramified and f(0) # 0. It is a simple to
prove that for z € C with |z] < 1 we have for any n € N that §_,_ k=¥ = :"(n - (n -
1)z)(1 — z)~2. Hence in particular 3 po, kz* = z(1 — z)~2. Recall that |x(P)g~*| < 1 iff
Re(s) > —a(x). Hence by passing to the limit again in our initial computation we find that
for Re(s) > —a(x) the integral

[, x@tapaitaliaf d*a
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equals

n—1

Y x(PYfe(x0)a™* + FOX(PY*a™™(n = (n = Dx(P)g~")(1 - x(P)g ™) 7%

k=m
This proves the second part of the lemma.
a

Corollary 26 Let = € II(G) be infinite dimensional. There exists a real number sq.
depending on , such that if 7 € K(x) and Re(s) > so then the integral

[ elaarr=t a<a
Fx

is convergent. Moreover as a function of the complex variable s it equals a function in Z(g")
restricted to the right half plane Re(s) > so. Hence for any ¢ € K(m) the function of s
defined by this integral has an analytic continuation to a meromorphic function in C(g*).

Proof Theorem 8.27. Lemma 9.6. and Lemma 9.25.
]

Definition 27 Let 7 be a class in [I(G). We distinguish between the cases of 7 being one
dimensional or infinite dimensional.

(1) Sippose = is finite dimensional. There is a unique character x of F* such that the
representation : G —+ GLi(C) g — x(det(g)) is in m. The zeta function of = will be
denoted by Z(s, f, x) where s is a complex variable, f € S(F), and it will be defined to be
the zeta function Z(s, f, x) of x. Hence Z(s, f, 7) € C(g*).

(2) Suppose 7 is infinite dimensional. In this case the zeta function of = will be denoted by
Z(s, . ) where s is a complex variable, ¢ € K(7), and it is defined to be the meromorphic
function in C(g*) which is the analytic continuation of the function

s-——)/ o(a)la)*~ ¥ d*a.
Fx

Note that if 1* € S(F*) C K(x) is the characteristic function of &/ in F* then clearly
Z(s.1%,7) = 1.

Proposition 28 Let m € [I(G) be infinite dimensional. Then for any » € K(r) and
b € F* we have the identity

i
=
ok
|
L)
’(-\3
w
6
il

Z(s,p(b-). m)

Proof We need only show that this identity holds for Re(s) sufficiently large. Well for
Re(s) sufficiently large the integral defining zeta function Z(s, -, 7) converges. and thus

2(s,p(b-).7) = / p(ab)|al*~3 d*a = / p(a)b~tal*~ ¥ d*a = |b|3 ~* Z(s. ¢, 7).
Fx Fx

a

Euler Factors for GL3(F)
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Definition 29 Let 7 € II{G).
(1) If m is one dimensional, corresponding to the character x of F*, we define

Z(m) = Z(x) = {Z(s.f.x) : feS(F)}.

(2) If ris infinite dimensional define

Z(r)={2(s.¢.7) : p € K(m)}

Theorem 30 If r is an infinite dimensional class in II(G) then

Z(x) =(1) if = iscuspidal
=(L(s.x1)) f w=o(x1,x2) and x=]|-|
=(L(s,x2)) if m=o(x1,x2) and x=|-|7}
=(L(s,x1)L(s,x2)) if m=m(x1,x2)
Hence the fractional ideal Z(x) is generated by an Euler factor.

Proof First suppose = is cuspidal. Then K(x) = S(F*). Let » € K(x). Choose N € N
such that p(z) # 0 only if —N < val(z) < N. Thus,

N

Z(s.p.m) = /F p@lalFdra= Y ot ( / ‘_I(k)p(a)d*a) ¢ € g gl

k=—N

Hence Z(7) C C[¢°, ¢~°]. If we define o € S(F'*) = K(r) to be the characteristic function
of U in F* then clearly Z(s,,r) =1, and so 1 € Z(x). This proves Z(x) = {[¢*.q7°].

Now suppose that m = o(x1, x2) is a special representation. As usual we define y =
x1x3!. Therefore x =| - |or x =| - |'. We first consider the case x =| - |. Then K(r) is
the space of functions ¢(z) = [z}¥ x1(z) f(z) where f € S(F). Note that

2.om = [ o@laidma= [ e fla)al #%a = Z(s. foa)

Hence Z(w) = Z(x1) = (L(s,x1)). Now consider the case y = | - |~!. Then K(n) is the
space of functions p(z) = |z|% x2(z) f(z) where f € S(F). Similarly as above we prove that

Z(s,:p,r) = Z(s, fe X'.’)'

Hence Z(r) = Z(x2) = (L(s, x2))-

Suppose now that m = m(xi, x2) is a principal series representation with y # 1. or
equivalently x; # x2. Then K(r) is the space of functions

p(z) = |z* (X1 (2) fi(2) + x2() f2(2))
where f), fo» € S(F). We easily see that Z(s.p, ®) = Z(s, f1,x1) + Z(s, f2, x2) and so
Z(S,(P,W) - ( 1 ) (Z(svthl)) + ( 1 ) (z(svf'lvxz))
L(S, XI)L(sv X'-’) L(31 Xg) L(S, Xl) L(S, X'-’) L(S,Xz) )

The expressions enclosed in each of the four sets of parenthesis are in Clg*,q~*]. Hence
Z(x) is contained in the principal fractional ideal (L(s, x1)L(s, x2)). Now we must show
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that there is a ¢ € K(x) such that Z(s,p.7) = L(s, x1)L(s, x2). There are fi, f» € S(F)
such that Z(s, fi,x1) = L(s,x1) and Z(s, f2.x2) = L(s.x2). Hence it suffices to show
that there are ¢;,c» € C such that ¢;L(s, x1) + c2L(s,x2) = L(s.x1)L(s, xz). for then
p(z) = 2]} (x1(2)e1 fr(z) + x2(z)c2f2(x)) is in K(7) and satisfies our requirernent. If either
X1 OF X2 is ramified it is then obvious how to define c; and c» since then either L{s, x1) =1
or L(s,x2) = 1. So we may suppose that both x; and x2 are unramified. The requisite
equations are easily seen to be equivalent to ¢; + ¢2 = 1 and c1x2(P) + c2y1(P) = 0. Since
1 and xa agree on U but x; # x2 we must have x;(P) # x2(P). This fact ensures that the
above system of equations in ¢; and c» has a solution. Hence Z(x) = (L(s. x1)L(s. x2))-

The final case is when = = m(x1, x2) is a principal series representation and y = 1. so
that y, = y2. Define w := x; = x2. The functions in K(r) are those of the form

2(z) = 23w (z)(fi(z) + val(z) f2(z))

where f;, f» € S(F). Define
I(s) := /1;'* w(a) f2(a)val(a)|al* d*a.

We have shown that I(s) is convergent in a right half plane. Moreover I(s) has an
analytic continuation te a function in Clg*.q~°] if w is ramified and to a function in
L(s.w)2Cl¢* ¢™*] if w is unramified. We clearly have Z(s,p.7) = Z(s, fi.x1) + I(s).
Therefore Z(s,,r) € (L(s,w)?), and hence Z(x) C (L(s,w)?) = (L(s.x1)L(s.x2)). It
remains to prove that there is a ¢ € K(7) such that Z(s,p.7) = L(s,w)?. When w is
ramified we may define ¢ € S(F*) C K(r) to be the characteristic function of & to obtain
Z(s.p.7) = 1 = L(s,w)*. So we may suppose that w is unramified. Define f € S(F) to
be the characteristic function of O and define n € K(r) by n(z) = |z|?w(z)val(r)f(z).
It is a trivial fact in the theory of power series that for z € C with |z] < 1 we have

o kz* = z(1 — z)7%. Hence for Re(s) sufficiently large we have

Z(s.nm) =Y k(w(P)g~* ) =w(P)g~* L(s.w)*.

k=1
Since Z(s,p(@ -), 1) = ¢*~3Z2(s,n,7) = w(P)g~* L(s,w)? we see that if we define p €
K(m) by p :=w(P)"q¥n(&-) then Z(s,p.7) = L(s,w)? = L(s. x1)L(s. x2) as desired.
a

Definition 31 Let 7 € [I(G).

(1) If v is one dimensional corresponding to the character x of F* then we define the
Euler factor of w to be the Euler factor of x. It is denoted by L(s.7) := L(s. ) so that
Z(x) = Z(x) = (L(s,x)) = (L(s, 7))

(2) Ifris infinite dimensional we define the Euler factor of = to be the unique Euler factor
which generates Z(x), namely Z(x) = (L(s, 7)).

Corollary 32 Let 7w € II(G).

(1) If 7 is one dimensional and associated to the character x of F* then L(s.®) = L(s. X)-
(2) If r is cuspidal then L(s,wx) =1.

(3) If r = m(x1, x2) is a principal series then L(s, ®(x1,x2)) = L(s,x1)L(s. x2)

(4) Ifr=0(x1,xz2) and x = | - | then L(s,a(x, x2)) = L(s. x1)-

(5) I w=o0(x1,xz2) and x =] - |7 then L(s, o(x1, x2)) = L(s, x2)-
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Given an infinite dimensional class = € [I(G) we know Z(x) = (L(s. 7)) and so for

every o € K(r) we have
Z(s,p, )
L(s,x)

being in CJ¢g*,¢°] and hence in particular it is entire. Another obvious implication of the
identity Z(m) = (L(s, 7)) is that there exists a » € K(7) such that Z(s. 2. w) = L(s. 7).

Gamma Factors for GL2(F)
The following lemma can be found in [2] in the section on the functional equation.

Lemma 33 Let r € II(G) be infinite dimensional and let 1 # v € F~. Then there exists
a function ¢ € S{(F*) Ny (w)S(F*) such that Z(s. .7} # 0.

Let x € [I(G) be infinite dimensional. Recall that for ¢ € K(x) we define & := w7'y
and the map
K(r) = K(7) p— 9

is an isomorphism of vector spaces. For any 1 # v € F* we have the formula

7o (9)@ = wy (det(g))wy  mu(g)p-

The following result is the generalization to GL2(F) of the functional equation for
GL,(F).

Theorem 34 Let ¥ be a non-trivial unitary character of F*.

(1) For each infinite dimensional = € [I(G) there exists a unique function in Z(g*). which
we denote by y(s, m, ¥), such that for all ¢ € K(7) we have the functional equation,

Z(1 -5, Ty (w)p, ®) = y(s. . ¥) Z(s, 9. 7).

(2) Let & be a uniformizing parameter of F. Then we have the formula
Ys,mv) = Z(1— s,y ()%, F) = ) wal(@) 7"y (w)(17)(@")g" 073,
neZ

The second equality only holds for Re(s) sufficiently large. The formula does not depend
on & since the terms wy (&) "my, (w){(1*)(@") do not depend on w.

(3) We have the identity

¥(s, m, ¥)¥(1 — s, %, ¥) = wx(—1).

Proof Since Z(s,1*,n) =1 it is obviously necessary that
v(s, 7 ¥) = Z(1 — s, Ty (w)1*, 7),

for the asserted functional equation to hold. This of course implies the uniqueness of
v(s, 7, ¥). So given any m and ¢ we define y(s,m,v) = Z(1 — s, T(w)l*, %) € Z(q¢")
and we are required to prove that the above statements hold for this y(s, x, v).
For an infinite dimensional 7 € II(G) and ¢ € K(x) we say that the functional equation
holds for (o, x) iff
Z(1 = s, 7y (w)p, 7) = v(s, m, ¥) Z(s, p, 7)
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holds.

We first show that the functional equation holds for (u*, ) where ¢ € U* and 7 are
arbitrary. We easily find Z(s, u*, ) = §(u) and for Re(s) sufficiently large

2(s,7o(w)g, 7) = [ (Row)p)@laf = %o

:/l;x w;l(a)(ﬂ’w(w)gp)(a)‘als—% d*a

Z/ Wit (™) (my (w)p)(ed™) e "~ ¥ d¥ e

neZ u

= 3 6()wn (5) " (mo (w)u*) (G")gm 0 H).
neZ

By putting u = 1 we obtain the formula for v(s., ¥) claimed in part (2) of the theorem
and by definition of v(s. . ¥) the functional equation holds for (1*.m). When u # 1 we
have Z(1 — s. %y (w)@, 7) = 0 = Z(s,p, ¥) = (s, 7, v) Z(s, », v) and hence the functional
equation holds for (u* . w).

Now we show that if the functional equation holds for (;, 7) then for any b € F* it
also holds for (¢(b-). 7). To do this note that

(o306 )@ = w7*(@) (molodms (§ ) 2) (@) = w7 @b mu(w)o)ab™)
and hence
21— 5, 7y (w)p(6),7) = [ wrH (@b (mu(whe)ab™ ol da
Fx

= / ;,J;l(a)(‘rrw(w)‘p)(a)labl(l—s)—% d*a
Fx

= |63 Z(1 — 5. my (W), 7)

= |b|%"'7(s, T, v)Z(s. 2. 7).

Since Z(s.p(b-), w) = |6]2~* Z(s, ¢, ) the functional equation holds for (y(b-).=).

Clearly if the functional equation holds for (21, ) and (@2, w) then it also holds for
(c11 + capa, 7). Therefore since the functions {pu*(b-) : p € U™ b e F*} span S(F*) we
conclude that the functional equation holds for (. 7) for every = and ¢ € S(F*).

Before we can proceed further we need to prove the identity
v(s, 7, ¥)y(l — s, ®, ¥) = wa(-1).
In order to do this fix a ¢ € S(F*) N 7wy (w)S(F*) which satisfies Z(s, p, ) # 0. Note that
7o (W)p € To(W?)S(FX) = we(~1)S(FX) = S(F*). Define n := &y ()3 = wy'my(u)p €

S(F*) C K(#). By what we have shown above we know that the functional equation holds
for (. 7) and for (n, 7). Hence we find

Z(s, mo ()i, ®) = ¥(1 = 5, %, ¥)Z(1 — 5,0, ¢) = v(1 — 5,7, ¥)v(s, 7, V) Z(s. 5, 7).

Recall that # =  and note that

o (w)i = witwz t (det(w)) 7y (wn = wi ' Fy (W?)F = wi(—Nwi wite = we(-1)e.
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Hence w (—1)Z(s,o,7) = ¥(1 — s, &, ¥)y(s,m, v)Z(s,p. 7). Now we use the fact that
Z(s. p.m) # 0 and we immediately obtain the desired identity.

Using what we have proven above, and the fact that K(x) = S(F*) + 7, (w)S(F*). we
see that the functional equation holds for every (¢, 7) provided we show that the functional
equation holds for {7y (w)p, ) for every m and ¢ € S(F*). After establishing this the
proof of the theorem will be complete. Well let = and » € S(F*) be arbitrary. and define
n := 7. (w)e. We are required to show that

Z(1 — s. wp(w)), ®) = v(s. 7. 0) Z(s, 0, 7).
First note that
o (0)7 = wg lmy (W) = witmy (W')p = wr b
Since $ € S(F*) C K(#) we know the functional equation holds for (5. T), and so
Z(1 - s, Ty (W)@, T) = ¥(s, 7, ) Z(s, 3, 7).

Recall that # = 7 and note that

1

To(w)g = wi ' fy(w)p = witwy my(w)p = my(w)p = 1.

Hence by the identity proven above we have
Z(1 =5, (W), ) =we(—1)Z(1 — 5.3, 7)
U)g(—l)

T l-s70)
= 7(3) ™, lL‘)Z(I - &, Tl')

Z(1-s, 7y (w)3, 7)

as desired.

a

Let v be a non-trivial unitary character of F¥. Currently we have defined +(s. x. v)
for any infinite dimensional class in [I(G). In Tate's theory we defined +(s.x.v) for any
character x of F*. If # € I[I{(G) is one dimensional, corresponding to the character y of F*,
it is natural to define

v(s,m, ¥) == (s. x, v).
So now (s, w, ¥) € C(qg°) is defined for every class = in [I(G).

Theorem 35 Suppose that m € II(G) is either a principal series representation m =
m(x1, x2) or is a special representation m = o(x1,x2). Then for any 1 # v € F* we have

7(81 T, W) = “/(8, X1, W)'Y(Sy X2, W)~

Proof If # =o(x1,Xx2) then m = o(x2, x1). This shows that we may assume Y # | - |7%. If
7 is a principal series representation define Y := B(x1, x2). If 7 is a special representation,
so that y = | - |, then define Y to be the irreducible p-invariant subspace of B(x:.x2) of
codimension 1. Let ¢ be a non-trivial unitary character of F*. We have the intertwining
isomorphism

Y — K(r) fr— )

of (p,Y) and (my, K(m)).
Fix n € S(F*) N my(w)S(F*) such that Z(s,n, ) # 0. There is a unique f € Y such

that (,af = 7. Since the map above intertwines the representations it follows that '.;:f(w) ;=
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7y (w)n. Since n € S(F*) we have ®; € S(F). Also my(w)n € T (w?)S(F*) = S(F*) and
so for the same reason we get ®,(,);y € S(F). Using the identity n = ;p;" = xa| - |§<I>, we
find

z@emm) = [ ef@lar-taa
Fx

=/ x2(a)®; (a)lal* d%a
Fx

=Z(s,‘i’],X2)
=v(1=s.x3 ) Z(1 —s.®.x3 ")

We remark that Z(1 — s. @y, x.;l) is well defined since ®; € S(F).

Now we calculate Z(1 — s, #,(w)7, ¥). Since © = m(x1, X2) of ™ = o(x1. x2) we know
wr = X1X2- Therefore

2(1- s Aol ) = [ (Rolw)ialial'= "} a%a
= [ w7 @ m(wn(a)lalt~ ¢%a
= [ G ey (@lalt

= [ 1 @by (@al' = a%a

= Z(1 =5, ®pw)s X1 )
= 7(31 X1, w)z(sv (pﬂ(w)]v Xl)-

Similarly as above we remark that Z(s, ®,(w)s, X1) is defined since ®,)y € S(F). The
identity
wl—::_.1:"lwl.z:‘1
0o 1/)%T\o0 = 0 1
implies that

1 -z

s @)= (w(§ T ) w) =@l ()
Therefore

2(s,@prs 1) = [ x1(@) 0y (a)lal” a*a

= [ @ -a el d%a
Fx

= [t @e(-a)lal~ aa
Fx

=x2(~1)2(1 — 5, %7, x31).

So our previous computation becomes
Z(1 - s, "y (w)ii, ®) = x2(~1)7(s, x1, ) Z(1 — 5, ®f, x5 ).
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Since Z(s.n, w) # 0 we obtain

_ 2(1 = s, Ty (w)n, )
7(57 7r? W) - z(s7 ’7, ﬂ’)
_ xe(=D(s.x1, ¥)B(1— 5, 8. x5 )
(1 -sx3 . v)Z(1 —s.®;.x3")
_ xa(=1(s, 1, 0)
¥(1 —s, x-_?l. w)

Now the identity (s, x2, ¥)y(1 — s, x5 '. v) = x2(—1) yields the theorem.

Epsilon Factors for GL2(F)

Definition 36 If r € II(G) is infinite dimensional and v is a non-trivial unitary character
of F+ then we define the epsilon factor of = with respect to v by

¥(s, m, ¢)L(s, )
L(l1-s,7)

e(s,m¥) = € C(¢*).

The above definition is completely analogous to the definition of the epsilon factor in
the one dimensional case. Indeed the above definition includes as a special case the previous
epsilon factors provided we allow 7 to be one dimensional as well. Indeed if = € II(G) is
one dimensional, corresponding to the character x of F*, then  corresponds to x~!. Thus

(s.m. w)L(s,7) _ ¥(s,x,¥)L(s,x)

_Y
(s, v) = L(1-s,7) T L(l-s,x7Y)

= e(s, x, v)-

Theorem 37 Let 7 € [I(G) be infinite dimensional, and let 1 # w € F*. For any p € K(r)
we have the functional equation

Z(1 - s, 7(w)p, ®) _

Z(s,p,m)
i—s7) o™

L(s.m)

The function ¢(s, 7, ¥) is an exponential function and satisfies the identity

e(s,m, ¥)e(l — s, 7. ¥) = we(—1).

The above result is proven in exactly the same way as in the one dimensional case so
there is no use in repeating it. The only changes are that x becomes =, x~! becomes ¥. and
instead of using the identity

1(s, %, ¥)¥(1 = s, x~H ¥) = x(-1)

we use the identity
(s, 7, ¥)v(1 — 5, 7, ¥) = we(-1).

Proposition 38 Suppose that * € [I(G) is either the principal series representation
m(X1,X2) or the special representation o(x1.x2). Let ¢ be a non-trivial unitary charac-
ter of Ft+.
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(1) Suppose 7 is the principal series representation m(x;.x2) or 7 is the special represen-
tation o(x1, x2) with x; and x> being ramified. We have the identity

E(s, w, w) = 6(37 X1 lb)e(s° X2, w)'

(2) Suppose m = o(x1, X2) is a special representation with x; and xa being unramified.
When y = | - |~! we have

e(s. . ¥) = —x1(P)e(s. x1. V)e(s. 2, ¥)g~*

and when y = | - | we have
s

e(s. m.w) = —x2(P)e(s. x1. v)e(s, x2. w)g ™.

Proof Before beginning we recall that if o(x;, x2) is a special representation then x; and
X2 are either both ramified or both unramified. Hence the above cases encompass all possible
principal series and special representations.

Now by definition of ¢(s. w, ¥) and the result above that

7(31 v, 1b) = 7(31 X1, w)7(s7 X2, w)

we find
7(81 T, w)L(sv ﬂ') _ ‘7(39 X1, UJ)‘Y(S, X2, w)[‘(sx ﬂ')
L(l-s7%) L(1 —s,7) )

e(s,m, ) =

Suppose first that # = w(xy, x2). Then & = w(xl'l, X2 1) and so

_ (s x1, ¥)(s, x2, v)L(s, x1) L(s, x2)

e(s,m v) = L1 —s,x7 ) L(1 —s.x3Y)
- (7(8,X1,w)L(s,X1)) (7(s,xz,w)L(s. Xz))
L(t-sx7") L(1-sx3")
= E(S,Xl,'b)f(sv X2, w)
Now suppose that = = a(x1, x2) with x =] - |. Then # = o(x]!, x5 ') and we see

C(S, 7, w) - 7(51 X1, w)‘y(s, X2, w)L(s' xl)

L(1-s,x3})
_ (s x1, ) L(s, x1)\ (s x2. W) L(s,x2) (L1 =s.xi 1)
_( L(1-s,x7) )( L(1-s.x3") )( L(s.x2) )
— L(I—S»X-l)
- E(S, X1, w)C(S, X2, w)—m

In the case that x; and x» are ramified we have L(s, x2) = L(1 —s,x[ ') = 1 and hence
in this case ¢(s, 7, ¥) = €(s, x1, ¥)e(s, x2, ¥). Now consider the case where x; and xa are
unramified. Since x; x5 =| - | we find x7'(P) = gx7 ' (P). Therefore

Li—sxi’) _ (A=x'(P)" ")~ _ 1-xa(P)g*
L(s, x2) (I-x(P)g~*)"! ~ 1-x3'(P)¢

=-x2(P)g™".
Combining this with the previous calculation shows

(s, m, ¥) = —xa2(P)e(s, x1, ¥)e(s, x2, ¥)g~°.
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This deals with the case # = o(x1,x2) with x = | - |. The case of # = o(x1. v2) with
x =| - |~! is dealt with in exactly the same way. The proposition follows.

a

Corollary 39 If r € [I(G) is an unramified class and v is an unramified character of F*
then
e(s,mw)=1.

Proof We have already provzn this when = is one dimensional so we suppose that 7 is
infinite dimensional. By Theorem 8.35 we know that 7 = m(x;.x2) is a principal series
representation with x; and y» being unramified. The result now follows trivially from
Proposition 9.38.1 and Proposition 9.24.

a
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