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Abstract 
 

The number of childhood cancer survivors has dramatically increased in the past few decades due 

to advances in cancer treatment, shifting the priority from clinical treatment to improving long-

term survivors’ quality of life. One late effect that greatly impacts female survivors is premature 

ovarian insufficiency (POI). It is estimated that about one in seven female survivors develops POI 

before age 40. POI dramatically shortens the reproductive age interval and causes infertility. To 

preserve the function, some fertility preservation procedures for childhood cancer survivors are 

now available. However, without knowing the risk of future POI, it is challenging to make fertility 

preservation decisions. This study aimed to build a reliable prognostic model to predict the risk of 

developing POI at prespecified ages in female cancer survivors to inform decision-making on 

fertility preservation.  

We included 7,891 female survivors who are participants in the Childhood Cancer Survivor Study. 

The multiple imputation method was employed to deal with the missing data and an inverse 

probability censoring weight was assigned to each individual to account for the censoring. Elastic-

Net panelized logistic regression, XGBoost, and an “Ensemble” method were used to predict the 

risk of experiencing POI at prespecified ages. The model performance was evaluated by nested 

cross-validation. 

The results showed that the “Ensemble” method performed the best with AUCs (areas under the 

receiver operating characteristic curves) around 0.8 and AP (average positive predictive value) 

ranging from 0.469 to 0.595 for prespecified ages ranging from 21 to 39. The calibration curves 

indicated good alignment between the estimated risks of developing POI and observed status for 

prespecified ages less than 28. The developed “Ensemble” algorithm can be further crafted into a 
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user-friendly clinical tool which can provide clinicians and patients quantitative information when 

discussing fertility preservation. 
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1 Introduction 

1.1 Background 

The decline of the ovarian follicle pool in humans is a natural process. It is associated with reduced 

fertility in the mid-thirties, irregular menstruation from the mid-forties, and finally, follicle 

exhaustion and menopause in the early fifties.1 The treatment of cancer can accelerate this process 

and can cause primary ovarian insufficiency (POI) which is defined as compromised gonadal 

function before age 402.  

It has been shown that female childhood cancer survivors (CCSs) are at a significantly increased 

risk of developing POI compared to the general population.3,4 While the prevalence of POI in the 

general population is about 1%5, it was estimated that 6.3% of female CCSs lose ovarian function 

within 5 years of cancer diagnosis (one subcategory of POI: acute ovarian failure, AOF)4 and 9.1% 

will go on experiencing nonsurgical menopause before age 40 (the other subcategory of POI: 

nonsurgical premature menopause, NSPM)3. 

As female CCSs face a high risk of POI which may cause many distressing chronic conditions 

such as infertility, osteoporosis, heart disease, and depression6, the American Society of Clinical 

Oncology (ASCO) has recommended health care providers inform pediatric patients and their 

parents or guardians about the risk of developing POI and provide information on fertility 

preservation7 such as oocyte and ovarian tissue cryopreservation8. However, discussing fertility 

preservation with pediatric patients and their families is challenging, especially when the absolute 

risk of developing POI in the future is unknown. Previous research has identified many cancer 

treatment-related risk factors of POI3–5,9, but there is a need to build prognostic models for 

predicting the absolute risk of POI for individual patients.  



  

2 

 

1.2 Objective 

The goal of this study was to estimate the risk of developing POI among female childhood cancer 

survivors before prespecified ages so that information can be provided for those survivors at high 

risk who might consider fertility preservation before developing POI. 

1.3 Organization 

The remainder of the thesis is structured as follows. In Chapter 2, I explore predictors, derived age 

at event, and conducted the univariate analysis. Chapter 3 addresses the analytical challenges 

including missing data and censoring. Chapter 4 focuses on model development and evaluation. 

Finally, the findings, study limitations, and future research directions are presented in Chapter 5. 
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2 Data 

The data used to develop prognostic models was derived from the Childhood Cancer Survivor 

Study (CCSS), a retrospective cohort focused on the late effects of cancer treatments among CCSs. 

In this chapter, I first introduced the data source (sections 2.1 and 2.2) and then prepared the data 

including assigning age at event/censoring for each participant (section 2.3) and applying 

exclusion criteria (section 2.4). Finally, I conducted exploratory data analysis (sections 2.5-2.7).  

 

2.1 Data source: The Childhood Cancer Survivor Study 

The Childhood Cancer Survivor Study (CCSS) is a multi-institutional collaborative project which 

assembled a large and diverse cohort of childhood cancer survivors in North America, enabling 

investigators to study the relationship between late effects after cancer therapy and treatments.  

Establishment and follow-up of the CCSS cohort 

Details about the establishment and follow-up of the cohort have been documented in LL. Robison 

et al. (2002, 2009)10,11 and WM. Leisenring et al. (2009)12. Briefly, patients were eligible for 

recruitment if they were 5-year survivors diagnosed before age 21 with one of the following cancer 

types: leukemia, central nervous system (CNS) cancers, Hodgkin lymphoma, non-Hodgkin 

lymphoma, neuroblastoma, soft-tissue sarcoma, kidney cancer, or bone tumors.10 Recruitment of 

the original cohort began in 1992.12,13 Investigators identified 20,720 eligible survivors diagnosed 

between January 1, 1970, and December 31, 1986.11 After extensive tracing and contacting efforts, 

69% (14,357) of the eligible study population completed the baseline questionnaire12. The 

demographic and cancer-related characteristics of participants, non-participants, and those who 

were lost to follow-up were compared in LL. Robison et al. (2002)10 and no statistically significant 
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differences were found. From 2008, CCSS started to expand the original cohort by recruiting 

eligible survivors diagnosed between January 1, 1987, and December 31, 199911. At last, the CCSS 

cohort was expanded to 38,036 eligible survivors with 25,665 participating14. 

To monitor the health conditions and late effects among the established cohort, five follow-up 

surveys had been sent out prior to the time we received the CCSS data. Among the two baseline 

questionnaires and five follow-up surveys15 (shown in Figure 2.1), four questionnaires contained 

questions related to menstrual history (MH). The relevant questions were appended in Appendix 

A. 

 
Figure 2.1 Timeline of CCSS baselines and follow-up surveys 

The surveys shaded in yellow indicates that questions related to MH were included  

To enable researchers to study the late effects of cancer treatments, data management staff were 

trained to abstract chemotherapy, radiation therapy, and surgery information from medical records 

by using a standardized medical records abstraction form.12 Potential outliers were returned to the 

data management staff to double-check the medical records and verify data.12  

Initial information about second malignant neoplasms (SMN) was obtained from self-reported 

baseline questionnaires. Then those reported positive responses were considered had possible 

SMNs and their information was forwarded to the CCSS Pathology Center for verification.16 

Treatment data about the SMN was not available in this study. 
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2.2 Relevant data elements 

To develop risk prediction models for POI in CCSs, we used information from 11,336 female 

survivors in CCSS, including MH information (such as age at menarche, age at last menstrual period, 

etc) abstracted from CCSS baseline and follow-up questionnaires that were completed between 

November 3, 1992, and November 25, 201617, and information abstracted from medical charts 

recorded between January 1, 1970, and December 31, 20049. The treatment exposure information 

was restricted to within 5 years of a primary cancer diagnosis. The maximum radiation doses to 

body regions were obtained by summing the prescribed dose from all overlapping fields in each 

of the respective regions. The average radiation doses to right and left ovaries were estimated 

separately, and the lower/higher dose was recorded as minimum/maximum ovarian radiation dose 

accordingly.9 For 22 chemotherapeutic agents, the quantitative dose as well as a yes/no evaluation 

of exposure was abstracted. Ten widely used alkylating agents were summed to be a cumulative 

alkylating drug dose according to the cyclophosphamide-equivalence dose equation recorded in 

Green et al. (2014)18. 

2.3 Outcome variables 

2.3.1 Definition of outcome 

The outcome was whether a childhood cancer survivor experienced POI before a prespecified age. 

It was determined by the cut-off age, menstrual status, and age at the event. For example, if age 25 

is the age of interest (i.e. the cut-off age), the outcome is “Yes” (or labeled as 1) when the 

individual experienced POI before age 25, and the outcome is “No” (or labeled as 0) if her 

menstrual function was normal at age 25 regardless of her menstrual status after this age. Censoring 

occurred when the menstrual status was normal but the age at last follow-up was below age 25, as 

menstrual status at age 25 was unknown. Surgical premature menopause (SPM) which refers to 
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premature menopause caused by surgical interventions such as bilateral oophorectomy was 

considered a competing risk of POI. Also, when a survivor with normal menstrual function was 

diagnosed with an SMN before age 25, she was deemed to be censored at age of SMN diagnosis 

because the treatment information of SMN was not available.  

2.3.2 Ovarian status 

Based on the MH information, ovarian status was assigned to CCSS participants by 

endocrinologists according to the established definition of ovarian status17. The four possible status 

were AOF, NSPM, SPM, and normal. AOF was assigned when a female survivor reported never 

experiencing menarche or permanently ceased having menses within 5 years of her cancer 

diagnosis4. NSPM was assigned when menopause, which is not related to surgical, occurred before 

age 40 years but after 5 years from diagnosis 3. SPM was assigned when premature menopause 

was induced by hysterectomy or bilateral oophorectomy. Normal means that before age 40 or at 

the time of the last survey containing questions related to MH, neither of the above health 

conditions happened to the survivor. 

In this analysis, AOF and NSPM were merged to POI which was the event of interest. SPM was 

the competing risk of POI. 

2.3.3 Deriving age at event 

Assigning age at event for individuals was not straight forward because different information, 

including age at menarche, age at last menstrual period, age at a most recent survey that contains 

MH information, age at surgical ovary removal, and age at SMN, need to be considered 

simultaneously. The details of deriving age at event were given in Appendix B. The algorithms for 

deriving it have been discussed with endocrinologists to ensure its rationality. Typically, for 

NSPM, age at event was from self-reported age at last menstrual period. For SPM, the age at 
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surgical time was used. For AOF, age at last menstrual period was used as age at event if it is 

available in the data set. When age at last menstrual period was missing age at menarche was used 

as age at event for AOF. If both ages were missing, the larger of age 16 and age at diagnosis plus 

5 was used. For normal status, age at last menstrual period was used when this age was greater 

than 40, otherwise, when this age was less than 40, the smaller of age 40 and age at last survey 

that contains MH information was used as age at event.  

It should be noted that 129 survivors had clear age intervals in which their ovarian function was 

normal, but their ovarian status became unclear after a certain age. Therefore, they were retained 

in the analysis until their ovarian status could not be ascertained based on the available information 

(the details are in Appendix B). 

2.4 Exclusion criteria 

To ensure the data used for analysis is accurate, survivors who did not participate in any 

questionnaire containing the menstrual history section (n = 1,774) and those who did not attain age 

18 at their latest follow-up or provided menstrual history information through a proxy (n = 766) 

were excluded from the analysis. Furthermore, the subject was excluded if her menstrual status 

could not be determined (n = 86), or if she received ≥ 30 Gy cranial and/or pituitary radiation or 

was suspected pituitary dysfunction (n = 765), diagnosed as Turner or Down’s Syndrome (n = 6), 

developed an SMN within 5 years of primary cancer (n = 21), or had conflicting age information 

(i.e. age at SPM, NSPM, or SMN < 9 years old and age at event occurred 3 years prior to age at 

diagnosis, see Appendix B) (n = 27), leaving 7,891 survivors of the original sample (70%) 

available for analysis (Figure 2.2). The final data set includes 7,891 observations with 61 variables. 

The data dictionary for the final data set was available in Appendix C. 
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Figure 2.2 Exclusion flowchart 

2.5 Exploring the elements 

In the final data set, 6.2% of the total information was missing and 19% of survivors had one or 

more missing values. Understanding the missingness and missing pattern between variables was 

the first step to deal with the problem of missing. In this section, missing patterns were investigated 

using several visualizing methods. 

Figure 2.3 showed the missing pattern of 61 variables for 7,891 observations (y-axis) in the final 

data set. Variables cohort (original or expansion), date of birth (“d_birth”), ovarian status 

(“status”), and cancer type (“diagnose”) were fully observed. Among variables with missing 

values, age at event (“a_event”) had the lowest missing percentage (0.48%). Variables related to 

cancer treatments that were extracted from medical records had higher missing percentages, 

ranging from 6.01% to 12.55%. 

Total female CCSS population  

(n = 11,336) 

No participation on a questionnaire containing 

the menstrual history section (n = 1,774)  

Menstrual history information provided by a 

proxy (n = 766) 

Menstrual history unclear so status cannot be 

determined (n = 86) 

CCSS participants with ovarian status 

information (n = 8,710) 

Cranial and pituitary radiation ≥ 30 Gy or 

pituitary dysfunction suspected (n = 765)  

Survivors with Turner or Down’s Syndrome  

(n = 6) 

Second malignancy within 5 years of primary 

cancer (n = 21) 

Conflicting age information (n = 27) 

Work data (n = 7,891) 
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Figure 2.3 Missing pattern of final data 

Figure 2.4 showed the missing percentages of variables categorized by ovarian status, the missing 

percentages in POI and SPM were slightly higher than that in the normal group, but the pattern 

among the three status was similar. 

Figure 2.5 showed how the missing variables were connected. Each row represented a missing 

combination, and each column indicates a variable. The numbers on the left indicated the 

frequencies of missing with the same combinations, while the numbers on the right referred to how 

many variables were missing in each respective row. Finally, the bottom numbers indicated the 

frequencies of missing values in each variable. For example, in the first row, there were 6,319 

subjects with no missing values, and in the second row, 420 subjects had missing values in 54 

common variables.  
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Figure 2.4 Missing percentages by ovarian status 

 
Figure 2.5 Missing patterns. (Grey boxes denote missing variables) 

A partial table containing missing combinations with frequencies ≥ 5.  
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2.6 Exploring outcome variables 

2.6.1 Distributions of age at event  

Figure 2.6 showed the distribution of age at event stratified by the three levels of ovarian function. 

The distribution of age at POI appears skewed right. Age at SPM had a higher median age 

(approximately 33) compared to age at POI (approximately 18). Due to rules for assigning age at 

event (detailed in Appendix B), there was one peak (age = 16) in age at POI and one peak (age = 

40) in age at event for survivors with normal ovarian status. 

 
Figure 2.6 Distribution of age at event stratified by ovarian status. A) Histogram B) Boxplot.  

Note: The 129 survivors with unclear status mentioned in section 2.3.3 were excluded. 

 

2.6.2 The censoring patterns 

To visualize the occurrence of censoring (the ovarian status was only partially observed before 

cut-off ages), Figure 2.7 showed the age at event in a different way: all the age intervals from age 

9 to age at event are plotted as horizontal lines colored with three different colors. The yellow solid 
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line indicated that the survivor’s ovarian status was normal. The blue dotted line indicated that the 

survivor developed POI while the red dashed line indicated that the survivor experienced SPM.  

As the age threshold increases, a larger proportion of survivors becomes censored (shown in Figure 

2.8). The proportions of ovarian status at different age thresholds and more details on percentages 

of censoring were summarized in Appendix D. 

 

Figure 2.7 Participants sorted by their age at event or censoring. 

Note: The 129 survivors with unclear status mentioned in section 2.3.3 were excluded. 

 
Figure 2.8 Ovarian status composition in CCSS participants at different age thresholds 

Note: The 129 survivors with unclear status mentioned in section 2.3.3 were excluded. 
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2.6.3 Cumulative Incidence Curves 

Figure 2.9 showed the cumulative incidence curve of POI and SPM respectively. A large 

proportion of AOF (one type of POI) experienced the event before age 20; therefore, the 

cumulative incidence of POI increased rapidly at the beginning, especially at age 16 where there 

was a big jump due to the rule of assigning age at event. After 25, the cumulative incidence of POI 

went up steadily and reached about 15% by age 40. This number was close to the sum of the 

prevalence of AOF (6.3%) and cumulative incidence of NSPM (8%) reported in the previous 

CCSS reports3,4,19. The cumulative incidence of SPM increased slowly at the beginning but 

accelerated more rapidly after surpassing 25 years old until reaching around 7% at age 40.  

 
Figure 2.9 Cumulative incidence of POI and SPM 

 

2.7 Predictors 

Risk factors for developing POI have been identified in the literature. They were irradiation to the 

abdomen or pelvis, total body irradiation, and alkylating chemotherapy agents.4,20–22 Other than 

cancer treatments, age at diagnosis (or age at the time of treatment) and BMT were also regarded 

as related to the risks of developing POI.23  
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In this section, I inspected all the available exposure variables in the final data set and explored 

their relationships with an age-specific ovarian status (age threshold = 25). Table 2.1 showed the 

distribution of the age-specific ovarian status.  

Table 2.1 Distribution of the ovarian status when age threshold = 25 

Cut-off 

age (years) 

Normal 

n (%) 

SPM 

n (%) 

POI 

n (%) 

Censoring 

n (%) 
Total 

25 5968 (75.8) 23 (0.3) 703 (8.9) 1140 (14.5) 7834a 

a: 19 of the 129 survivors (section 2.3.3) were excluded because their menstrual status was unclear 

before 25 years; 38 subjects whose age at event were missing were also excluded. 

 

2.7.1 Race 

The self-reported race was merged into 3 categories: white, black, and other. The percent of self-

reported white was 86.1%, while the percentages of black and other races were 6.1% and 6.6%, 

respectively. The missing proportion was 1.1%.  

Table 2.2 showed the distribution of race. 8.6% of white developed POI, while higher percentages 

of POI were seen in black (9.8%) and other (12.0%), which indicated that race might be a risk 

factor and black and other had a higher risk of developing POI comparing to white people. 

Table 2.2 Distribution of races by ovarian status at age 25 (%: row percent) 

Race 
Normal 

n (%) 

POI 

n (%) 

SPM 

n (%) 

Censored 

n (%) 
Overall 

White 5221 (77.3) 582 (8.6) 21 (0.3) 926 (13.7) 6750  

Black 335 (70.0) 47 (9.8) 1 (0.2) 95 (19.9) 478  

Other 356 (68.7) 62 (12.0) 1 (0.2) 99 (19.1) 518  

Missing 56 (63.6) 12 (13.6) 0 (0) 20 (22.7) 88  

Total 5968 (76.2) 703 (9.0) 23 (0.3) 1140 (14.6) 7834 
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2.7.2 Age at diagnosis 

Figure 2.10 showed the distribution of age at diagnosis stratified by ovarian status by age 25. 

Visually, there were two peaks at approximately 4 years old and 14 years old for Normal and POI. 

SPM had only 23 observations (Table 2.1), therefore was omitted in Figure 2.10A.  

The boxplots in Figure 2.10 showed that the median age at diagnosis was slightly younger in POI 

compared to Normal and SPM. However, this should not lead to the conclusion that patients 

diagnosed at a younger age tend to develop POI, because the boxplots did not take censoring 

information into account, and age at diagnosis was strongly associated with censoring (Figure 

2.10A) as patients diagnosed at a younger age had more potential to be younger than age 25 at the 

time of the last follow-up (for example, if a patient diagnosed at age 2 years old in 1999, she only 

attained 20 in 2018). 

 
Figure 2.10 Distribution of age at diagnosis 

A) Histogram and density curve; B) Boxplots 
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2.7.3 Radiotherapy 

Irradiation can cause ovarian damage, and the degree of the radiation-induced damage depends on 

the radiation dose, radiation field, fractionation schedule, and age at the time of treatment.24–26 

Research has shown that irradiation to the abdomen and pelvis appears to lead to the highest risk 

of developing POI.4,24,26,27 As for the irradiation doses, it has been reported that receiving pelvic 

or abdominal radiation doses ≥10 Gy for post-pubertal girls and ≥15 Gy for prepubertal girls 

substantially increased the risk of POI.28  

Table 2.3 showed that a similar proportion (around 44%) of patients in the study sample received 

irradiation to the abdomen, pelvis, pituitary, and both ovaries.  

Table 2.3 Radiotherapy Information (%: row percentages, age cut off 25) 

Irradiation 
Not received 

n (%) 

Received 

n (%) 

Missing 

n (%) 

Total 

n 

Abdomen 3707 (47.3) 3487 (44.5) 640 (8.2) 

7834 

Pelvis 3707 (47.3) 3488 (44.5) 639 (8.2) 

Pituitary 3721 (47.5) 3446 (44.0) 667 (8.5) 

Ovary (minimum)a 3708 (47.3) 3426 (43.7) 700 (8.9) 

Ovary (maximum)b 3708 (47.3) 3420 (43.7) 706 (9.0) 

a: the minimum of the estimated average dose between right and left ovaries. 

b: the maximum of the estimated average dose between right and left ovaries. 

 

Figure 2.11 showed the density curves of radiation doses (only doses > 0) to different body regions 

categorized by ovarian status at age 25 (density curves for SPM were not plotted as SPM has only 

23 observations). It should be noted that the patients who received more than 30Gy irradiation to 

pituitary have been excluded. Visually, irradiation dose to abdomen, pelvis, and both ovarian doses 

could well separate Normal and POI groups, indicating that they might be useful risk factors in 

predicting the risk of developing POI before 25 years old. 
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It should be noted that the concern of bias caused by the censored information, however, was not 

a big issue in analyzing the effect of treatment exposures as these treatments were unlikely to be 

associated with censoring. 

 
Figure 2.11 Distribution of radiation doses (> 0) categorized by ovarian status at 25.  

 

2.7.4 Chemotherapy 

Research has shown that gonadotoxic chemotherapy can bring ovaries damage ranging from low 

(can be recovered to normal ovarian function) to serious (ovarian atrophy and complete ovarian 

failure)20. The degree of chemotherapy-induced damage depends on agents’ type and dose27.  

Alkylating agents are widely used for the treatment of pediatric cancers – these agents inhibit 

cancer cell division by breaking DNA strands. Therefore, they are also toxic to normal cells, 

particularly those sensitive to DNA damage, which includes oocyte and follicular cells in ovaries.29 

The impact of alkylating agents on ovaries has been assessed by histological analysis.30 Alkylating 
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agents result in significantly lower counts of primordial follicles compared with those who have 

not received chemotherapy and even those who received non-alkylating agents.30 The identified 

high risk alkylating agents include Cyclophosphamide, Busulfan, Melphalan, Procarbazine, and 

Ifosfamide23. To estimate cumulative alkylating agent exposure’s effect, the Cyclophosphamide 

Equivalent Dose (CED) was developed to allow the comparison of different common alkylating 

agents.18 

Doxorubicin, an anthracycline (a type of anti-tumor antibiotics) was used to treat a wide range of 

cancers. Similar to alkylating agents, these agents can also cause DNA double-strand breaks 

leading to the death of primordial follicles.31 Recent studies have suggested doxorubicin is most 

closely linked to ovarian failure among the non-alkylating agents.20,32–34 

Cisplatin is a heavy metal-based compound and acts as a DNA cross-linking agent that interferes 

with DNA repair mechanisms, blocking cell division.35 Its mechanisms of ovarian toxicity has not 

been well studied because female patients treated with cisplatin have usually received it as part of 

a multiple-drug regimen.32 According to recent studies, it was considered as a moderate risk factor 

for ovarian failure35,36. 

VP-16 (etoposide), a topoisomerase inhibitor, unwinds during DNA replication and break DNA 

double-strand like cisplatin. Therefore, VP-16 is especially toxic to cells that are sensitive to DNA 

damage, such as granulosa cells and oocytes.37 

Table 2.4. summarized the risk of ovarian toxicity of chemotherapy agents (which were available 

in our data set) reported in previous research. 
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Table 2.5 showed the proportion of patients that received each type of chemotherapy. The three 

most used chemotherapy agents (shaded in yellow) were cyclophosphamide, methotrexate, and 

doxorubicin received by 2890 (36.7%), 2789 (35.4%), and 2647 (33.6%) patients, respectively. 

Other chemotherapy agents were much less used in this study sample. For example, eight 

chemotherapy agents (shaded in blue) were used by less than 100 patients in this study sample.  

Table 2.4 Risk of ovarian toxicity of chemotherapy agents in literature 

Type 
Chemotherapy agent 

name 
Risk Reference 

Alkylating agent38 

BCNU (Carmustine) High risk 39 

Busulfan High risk 4,22,23,40 

CCNU (Lomustine) High risk 4 

Chlorambucil High risk 4,22,40 

Cyclophosphamide High risk 4,22,23,40 

Ifosfamide High risk 23 

Melphalan High risk 22,23 

Nitrogen mustard High risk 4,22 

Procarbazine High risk 4,22,23,40 

Thiotepa High risk 39 

Platinum 

compounds41 

Carboplatin Intermediate risk 23 

Cisplatin Intermediate risk 22,23,40 

Antibiotics Bleomycin Low risk 22,23,42 

Anthracyclines, 

anthraquinone38 

Daunorubicin NA  

Doxorubicin Intermediate risk 40 

Epirubicin NA  

Idarubicin NA  

Mitoxantrone NA  

Antimetabolites38 Methotrexate Low risk 22,23,42 

Epipodophyllotoxins38 
VM-26 (Teniposide) NA  

VP-16 (Etoposide) Low risk 23 
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Table 2.5 Chemotherapy Information 

Type Chemotherapy agent 
Not Received 

n (%) 

Received 

n (%) 

Missing 

n (%) 

Overall 

n 

A
lk

y
la

ti
n
g
 a

g
en

t 

BCNU 7214 (92.1) 137 (1.7) 483 (6.2) 

7834 

Busulfan 7290 (93.1) 61 (0.8) 483 (6.2) 

Cyclophosphamide 7288 (93) 62 (0.8) 484 (6.2) 

Chlorambucil 7342 (93.7) 16 (0.2) 476 (6.1) 

CCNU 4149 (53) 2876 (36.7) 809 (10.3) 

Ifosfamide 7005 (89.4) 336 (4.3) 493 (6.3) 

Melphalan 7272 (92.8) 82 (1) 480 (6.1) 

Nitrogen Mustard 6990 (89.2) 324 (4.1) 520 (6.6) 

Procarbazine 6638 (84.7) 604 (7.7) 592 (7.6) 

Thiotepa 7328 (93.5) 27 (0.3) 479 (6.1) 

Pa 
Carboplatin 7213 (92.1) 128 (1.6) 493 (6.3) 

Cis_Platinum 6874 (87.7) 446 (5.7) 514 (6.6) 

Ab Bleomycin 6758 (86.3) 558 (7.1) 518 (6.6) 

A
n
th

ra
cy

cl
in

es
, 

an
th

ra
q
u
in

o
n
e 

Daunorubicin 6180 (78.9) 1119 (14.3) 535 (6.8) 

Doxorubicin 4508 (57.5) 2635 (33.6) 691 (8.8) 

Epirubicin 7364 (94) 0 (0) 470 (6) 

Idarubicin 7305 (93.2) 58 (0.7) 471 (6) 

Mitoxantrone 7328 (93.5) 29 (0.4) 477 (6.1) 

Ac Methotrexate 4306 (55) 2778 (35.5) 750 (9.6) 

Ed 
VM 26 7052 (90) 290 (3.7) 492 (6.3) 

VP 16 6319 (80.7) 957 (12.2) 558 (7.1) 

a) P: Platinum compounds 

b) A1: Antibiotics 

c) A2: Antimetabolites 

d) E: Epipodophyllotoxins  
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Figure 2.12 showed the density curves of chemotherapy agents’ doses (only doses > 0) categorized 

by ovarian status at age 25 (density curves for SPM were not plotted as SPM has only 23 

observations) for chemotherapy agents’ doses. The top two rows were ten alkylating agents, among 

which, busulfan, chlorambucil, melphalan, and thiotepa appeared to be good markers that can 

separate POI and normal. Other alkylating agents however had similar distribution between POI 

and normal. Among non-alkylating chemotherapy agents, the dose of mitoxantrone seemed to be 

a good marker for distinguishing POI and Normal. Doxorubicin, which was identified as closely 

linked to ovarian failure in the literature40, however, seemed to have similar distribution between 

POI and Normal. 

It should be noted that the density curves for chemotherapy agents that were not widely used cannot 

be reliably estimated, and the plots in Figure 2.12 were marginal analysis which did not consider 

the effect of confounders. 

 
Figure 2.12 Distribution of Chemotherapy dose (>0) categorized by ovarian status at age 25  
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2.7.5 BMT 

Table 2.6 showed the percentages of BMT categorized by ovarian status at age 25. A higher 

proportion (50.4%) of survivors who experienced BMT developed POI comparing to those who 

did not experience BMT (6.9%), suggesting BMT was an important risk factor for POI. 

Table 2.6 BMT categorized by ovarian status at age 25 (%: row percentages) 

BMT 
Normal 

n (%) 

POI 

n (%) 

SPM 

n (%) 

Censored 

n (%) 
Overall 

No 5371 (77.6) 475 (6.9) 22 (0.3) 1023 (14.8) 6891  

Yes 113 (33.5) 170 (50.4) 0 (0) 50 (14.8) 333  

Missing 484 (78.3) 58 (9.4) 1 (0.2) 67 (10.8) 610 

Total 5968 (76.2) 703 (9.0) 23 (0.3) 1140 (14.6) 7834 

 

Total body irradiation (TBI), one of the conditioning regimens given before bone marrow 

transplantation, was identified as an important risk factor for premature ovarian failure43.  

Table 2.7 showed the frequencies of patients who received TBI categorized by ovarian status at 

age 25. A higher proportion (59.4%) of survivors who received TBI developed POI compared to 

those who did not receive TBI (7.7%), suggesting BMT was an important risk factor of POI. 

Table 2.7 TBI categorized by ovarian status at age 25 (%: row percentages) 

TBI 
Normal 

n (%) 

POI 

n (%) 

SPM 

n (%) 

Censored 

n (%) 
Overall 

Not 

Received 
5427 (77.1) 541 (7.7) 22 (0.3) 1049 (14.9) 7039 

Received 48 (30.0) 95 (59.4) 0 (0.0) 17 (10.6) 160 

Missing 493 (77.6) 67 (10.6) 1 (0.2) 74 (11.7) 635 

Total 5968 (76.2) 703 (9.0) 23 (0.3) 1140 (14.6) 7834 
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Figure 2.13 showed the density curves for TBI doses (only doses > 0) categorized by ovarian status 

at age 25 (density curves for SPM were not plotted as SPM has only 23 observations). Visually, 

the three curves had similar distributions, although the peak in POI was at a slightly higher dose 

compared to the peak in Normal.   

 
Figure 2.13 Density curve of TBI dose (> 0) categorized by ovarian status at age 25 

 

2.7.6 Diagnosis 

Table 2.8 showed the distribution of eight cancer diagnosis categories by ovarian status at age 25. 

Compared to leukemia which had a similar POI proportion to the overall POI proportion, 

neuroblastoma, kidney tumors, Hodgkin lymphoma, and soft tissue sarcoma had a higher 

proportion of POI, while bone cancer, CNS, and non-Hodgkin lymphoma had a lower proportion 

of POI. 

Figure 2.14 showed the treatment patterns in different cancer diagnosis types. Cancer diagnoses 

contained information about treatment regimens, and therefore it may be useful to help improve 

the accuracy of predicting POI. 
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Table 2.8 Distribution of eight cancer diagnosis categories by ovarian status at age 25 (%: row percentages) 

Diagnose 
Normal 

n (%) 

POI 

n (%) 

SPM 

n (%) 

Censored 

n (%) 
Overall 

Leukemia 1964 (76.3) 234 (9.1) 4 (0.2) 370 (14.4) 2572 

Neuroblastoma 391 (61.1) 63 (9.8) 1 (0.2) 185 (28.9) 640 

Kidney tumors 593 (63.5) 91 (9.7) 3 (0.3) 247 (26.4) 934 

Hodgkin Lymphoma 1035 (87.9) 118 (10.0) 1 (0.1) 23 (2.0) 1177 

Soft tissue sarcoma 351 (78.2) 59 (13.6) 8 (1.8) 31 (6.9) 449 

Bone cancer 685 (88.2) 42 (5.4) 2 (0.3) 48 (6.2) 777 

CNS 530 (69.5) 61 (8.0) 2 (0.3) 170 (22.3) 763 

Non-Hodgkin lymphoma 419 (80.2) 35 (6.7) 2 (0.4) 66 (12.6) 522 

Total 5968 (76.2) 703 (9.0) 23 (0.3) 1140 (14.6) 7834 

 

 
Figure 2.14 Treatment combinations in different cancer diagnosis  
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3 Analytical challenges and approaches 

This chapter addressed challenges related to data issues including missing data and censoring. 

About 19% of observations had one or more missing values. Ignoring them or inappropriately 

dealing with them may lead to a biased inference. Section 3.1 introduced the method of multiple 

imputation (MI) and the procedure for conducting MI. Also, this section addressed the conflict 

between MI and validation methods to avoid over-optimism in the evaluation of model 

performance. For censoring, (i.e. some survivors with normal ovarian status did not reach the age 

threshold at the time they filled out the most recent survey containing MH information), section 

3.2 employed the idea of inverse probability weights and highlighted how this method derived 

unbiased inference and dealt with the competing risk SPM. 

3.1 Multiple Imputation  

3.1.1 Introduction 

Typically, missing data is dealt with by using the “complete-case analysis” (CCA) which ignores 

incomplete observations and runs analysis on the complete ones. Although this method is easy to 

implement and used widely in the public health field, it uses the data inefficiently because an 

observation will be excluded even if it has a missing value in only one variable. For example, in 

this project, only 6.3% of the total data was missing; however, by using CCA, almost one in five 

observations would be removed. Other than inefficiency, CCA may lead to biased inference when 

the missingness is associated with response variables.44,45 

To improve the inefficiency and reduce bias, MI was proposed by Rubin in 197846 and developed 

in the following decades 47–49. MI refers to the procedure of replacing each missing value with 
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multiple imputed values,44 which can be thought of as drawing multiple values from the 

distribution of the variables given the observed data.44 Therefore MI returns multiple complete 

data sets, thus ensuring all the observed data are used to develop models. It has been theoretically 

proved that MI can produce valid inference in terms of unbiased parameter estimates and unbiased 

variance estimates under the assumption “missing at random” (MAR). MAR means missingness 

only depends on the observed data.44  

In contrast to MAR, “missing not at random” (MNAR) means that the missingness of the variable 

is, however, associated with the unobserved value of this variable.  

Distinguishing the missingness mechanism is at the core of choosing an appropriate imputation 

method. However, it is impossible to differentiate MAR from MNAR based on observed data 

alone, because the assessment requires us to know the value of missing data. 

In practice, we must use our knowledge about the study to decide whether MAR is plausible. 

According to the analysis in Chapter 2, we know that the missing data almost always happened in 

treatment variables that were abstracted from medical records. Such missingness was likely to be 

random when the information was collected from different hospitals rather than depending on the 

value of these treatments. Therefore, we can assume MAR is plausible in this study.  

3.1.2 Implementation of MI 

When more than one variable has missing values, we need to conduct multivariate imputation 

which is more challenging compared to univariate imputation. There are two general approaches 

for multivariate imputation: joint modeling (JM)50 and fully conditional specification (FCS)51. 

While JM requires an assumption about a common prior multivariate distribution (often specified 
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as the multivariate normal distribution) for all the variables, FCS relaxes this assumption by 

specifying the imputation model for each variable.  

In this project, we employed the FCS approach in R package “mice”52,53. It conducts Multivariate 

Imputation by Chained Equations. In this algorithm, each variable with missing data is modeled 

in turn conditional upon the other variables in the data. Suppose there are 𝑝 variables that have 

missing values and 𝑀 is the number of iterations, the steps of MI can be summarized as: 

Step 1: Specify an imputation model for variable 𝑋𝑗 with 𝑗 =  1, … , 𝑝; 

Step 2: For each j, fill in initial imputations �̇�𝑗
0 by random draws from 𝑋𝑗

𝑜𝑏𝑠. 

Step 3: Repeat for 𝑡 =  1, … , 𝑀 

Step 4: Repeat for 𝑗 =  1, … , 𝑝 

Step 5: Define �̇�−𝑗
𝑡 = (�̇�1

𝑡, . . . , �̇�𝑗−1
𝑡 , �̇�𝑗+1

𝑡 , . . . , �̇�𝑝
𝑡) as the current complete data except 𝑋𝑗 

Step 6: Build models on data (𝑋𝑗
𝑜𝑏𝑠 | �̇�−𝑗

𝑡 )  

Step 7: Draw imputations from predicted 𝑋𝑗
𝑚𝑖𝑠𝑠𝑖𝑛𝑔

 from models built in step 6 

Step 8: End repeat j 

Step 9: End repeat t, 

where 𝑋𝑗
𝑜𝑏𝑠 means the observed values in 𝑋𝑗 and �̇�𝑗

𝑡 means imputed 𝑋𝑗 after 𝑡th imputation. 

 

The number of multiply imputed data sets: m 

Many researchers have investigated the influence of m on different aspects of results.54–58 

Basically, higher m brings benefits in terms of smaller standard errors and more replicable results. 

However, when the primary interest is only on point estimates, (for example, risk prediction) the 
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high m may not be worth the time the procedure takes. In this project, we set m to be 5 considering 

the computation time.  

3.1.3 Combining MI and nested CV 

Cross-Validation (CV) is an internal validation technique, which randomly divides data set into k 

folds (groups) and then develops models on k–1 folds leaving out one-fold for validation. This 

procedure was repeated k times to utilize every fold as a validation set once. Nested CV59 goes 

one step further by constructing an inner CV in k–1 folds and utilizing the remaining fold as a test 

set similar to an external test set (details available in Appendix E).  

An honest evaluation requires that the validation set be independent of the training set. However, 

the MI process uses all the observed data to predict the missing values, which “leaks” the 

information from the validation sets to training sets. To prevent this situation, we removed the 

observed values of outcome variables (menstrual status and age at event) of survivors with missing 

covariates in validation sets (including inner and outer validation sets in nested CV, see Appendix 

E) before imputation and put them back after the completion of imputation in validation sets. 

Figure 3.1 illustrated the procedure of combining CV and MI. 

It should be noted that every time the validation set switched, different outcome variables need to 

be removed accordingly, which required a new set of multiple imputations. Therefore, combining 

multiple imputation (𝑚) and nested CV (𝑘-fold outer CV and 𝑙-fold inner CV) will generate 

𝑚 × 𝑘 × 𝑙 complete data sets. In this study, 𝑚, 𝑘, 𝑎𝑛𝑑  𝑙 were all set to be 5, thus there were 125 

data sets generated after the MI process. They were all used for calculating IPCW and modeling 

the risk of POI at different ages. 
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Figure 3.1 Procedure for combining MI and CV.  

From A to B, the outcome variables of survivors with missing covariates in validation sets were 

removed; from B to C, multiple imputation was conducted for both missing covariates and removed 

outcome variables, from C to D, original outcome variables were put back to their positions. 

 

3.1.4 Imputation model 

In the “mice” package, various imputation methods have been built in to predict the missing values. 

For continuous variables, unconditional mean imputation, Bayesian linear regression, linear 

regression using bootstrap, etc. are available. For categorical variables, we can choose logistic 

regression, proportional odds models, or polytomous logistic regression. Also, predictive mean 

matching (PMM), classification and regression trees (CART), and random forest (RF) can be used 

for both continuous and categorical variables.  

Among these methods, PMM avoids implausible values (e.g. negative doses) and takes 

heteroscedastic data into account more appropriately due to its algorithm design. PMM identifies 

a small subset of observations (typically up to 10) that have similar values to the predicted value 

for the missing entry and then drawn randomly from these candidates.53 Besides, this procedure is 



  

30 

 

much faster than another robust non-parametric algorithm RF. In this study, PMM was employed 

to impute all the continuous and categorical variables. 

3.1.5 Convergence and the iteration number  

Since the imputation was implemented using MCMC, the iteration number M should be large 

enough to allow the imputations to attain convergence. Appendix F assessed the convergence of 

imputation process. It turns out that convergence was attained when iteration number ≥  10. 

Therefore, the iteration M in this study was set to be 10.  

3.1.6 Post-processing 

In this project, age at event was missing in 38 subjects. The missing age at event relates to two 

ovarian status’ levels: SPM and NSPM. Based on the definition, age at NSPM should fall in the 

interval between (age at diagnosis + 5) and 40 (not included), and age at SPM should be between 

age at diagnosis and 40. To ensure the imputed ages at the event are within reasonable ranges, 

“post-process” functions provided in the ‘mice’ package were employed. This method only 

affected the synthetic values and left the observed data untouched.  

The value of some variables implied the value of another variable. For example, if the dose of the 

irradiation to a certain body region (or a chemotherapy agent) is positive, the variable indicating 

patients received this irradiation (or the chemotherapy agent) should be “Yes”; otherwise, it should 

be “No”. For these situations, doses were imputed firstly, and the missing “Yes/No” indicators 

were assigned accordingly after dose imputation. 
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3.1.7 Results 

All the missing values were successfully imputed, i.e., 5 imputation values for each missing data 

were generated. Because there were 25 different validation sets, a total of 125 complete data sets 

were obtained.  

Figure 3.2 and Figure 3.3 showed the smoothed density estimation of original and imputed data 

for irradiation doses and chemotherapy agents’ doses, respectively. They only showed the positive 

doses and those with less than 20 positive doses were omitted. The imputed data and observed data 

had similar distributions.  

Table 3.1 summarized the numbers and percentages of missing and positive values for the 

irradiation doses and chemotherapy agents’ doses in the observed data set and the imputed data. 

The imputed data had similar percentages of positive value with the observed data. 

 

 
Figure 3.2 Kernel density estimates for the distributions of the radiation doses 
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Solid black line: observed data; dashed color lines: imputed data 

 
Figure 3.3 Kernel density estimates for the distributions of the chemotherapy agents’ doses 

Solid black line: observed data; dashed color lines: imputed data 
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Table 3.1 Summary of frequencies and proportions of missing value and non-zero value in continuous 

variables 

Variable 
Frequency 

of missing  

Missing 

proportion 

Frequency of 

non-zero 

values in 

observed data 

Proportion of 

positive value 

in observed 

data 

Frequency of 

positive 

values in 

imputed data 

Proportion of 

non-zero 

value in 

imputed data 

Age at event 38 0.5% 7853 100.0% 38 100.0% 

Pituitary RT dose 675 8.6% 3469 48.1% 319 49.9% 

Ovary RT dose 

(min) 
709 9.0% 3448 48.0% 363 53.9% 

Ovary RT dose 

(max) 
715 9.1% 3442 48.0% 333 47.0% 

TBI dose 644 8.2% 163 2.2% 22 3.7% 

Abdomen RT dose 649 8.2% 3509 48.5% 306 46.2% 

Pelvis RT dose 648 8.2% 3510 48.5% 306 48.1% 

BCNU 491 6.2% 137 1.9% 9 3.3% 

Busulfan 491 6.2% 61 0.8% 7 1.2% 

CCNU 492 6.2% 63 0.9% 4 1.0% 

Chlorambucil 484 6.1% 16 0.2% 1 0.2% 

Cyclophosphamide 820 10.4% 2899 41.0% 369 46.6% 

Ifosfamide 502 6.4% 338 4.6% 22 3.4% 

Melphalan 488 6.2% 82 1.1% 7 2.5% 

Nitrogen Mustard 530 6.7% 324 4.4% 32 6.6% 

Procarbazine 603 7.6% 605 8.3% 111 16.4% 

Thiotepa 487 6.2% 28 0.4% 8 2.1% 

Carboplatin 501 6.3% 131 1.8% 12 2.4% 

Cis-platinum 522 6.6% 452 6.1% 42 6.9% 

Bleomycin 526 6.7% 561 7.6% 42 9.9% 

Daunorubicin 543 6.9% 1128 15.4% 86 17.9% 

Doxorubicin 700 8.9% 2654 36.9% 288 42.6% 

Idarubicin 479 6.1% 58 0.8% 2 0.6% 

Methotrexate 761 9.6% 2796 39.2% 283 35.6% 

Mitoxantrone 485 6.1% 29 0.4% 3 0.4% 

VM 26 500 6.3% 292 4.0% 27 4.0% 

VP 16 568 7.2% 968 13.2% 82 15.5% 
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3.2 Inverse Probability Censoring Weights 

3.2.1 Introduction 

Censored observation is a key feature of the time to event data. The modeling of time to event data 

is often through accelerated failure time (AFT) models (such as Weibull, log-normal, log-logistic, 

etc), and semi-parametric models (Cox PH). The Cox PH model is the most popular method 

because it can incorporate multiple variables and does not depend on the distributional assumptions 

of the time variable required by the AFT models. However, Cox PH is typically used to establish 

the relationship between risk factors and time to event rather than to predict risk. In addition, it 

requires the proportional hazards assumption which may not hold in practice.60  

An alternative way to deal with the censoring problem is employing the idea of inverse probability 

of censoring weighting (IPCW) proposed by Robins et al in the 1990s.61 Using this method, we 

can take censoring into account by weighting observed outcomes. Then the age to event problem 

can be reframed to a problem with the binary outcome without losing the information of censored 

data, enabling the use of various classification algorithms, such as logistic regression and many 

popular machine learning algorithms.62 The principle of IPCW has been well established60. The 

process of deriving IPCW for this study was described in the following section. 

 

3.2.2 Derivation 

The goal of this study is to estimate the probability of POI for a female childhood cancer survivor 

before a cut-off age 𝑎0. For a female childhood cancer survivor with covariates 𝑧𝑖 (a realization of 

potential predictors  𝑍), let random variable 𝐴𝑖  be the POI age and random variable 𝐶𝑖  be the 

censoring age.  
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Define the observed age at event 𝑋𝑖 = 𝑚𝑖𝑛{𝐴𝑖 , 𝐶𝑖} , censoring indicator 𝛿𝑖 = 𝐼(𝐴𝑖 < 𝐶𝑖) , and 

censoring status 𝑠𝑎0,𝑖 at cut-off age 𝑎0: 

𝑠𝑎0,𝑖 = {
1, 𝑖𝑓 (𝑋𝑖  <  𝑎0 & 𝛿𝑖  = 1) 𝑜𝑟 (𝑋𝑖  ≥ 𝑎0)

0, 𝑖𝑓 (𝑋𝑖  <  𝑎0 & 𝛿𝑖  = 0)
. 

𝑠𝑎0,𝑖  =  1 represents the ovarian status is known at age 𝑎0, 𝑠𝑎0,𝑖  =  0 represents the ovarian status 

is censored at age 𝑎0. 

The probability of POI before 𝑎0 can be expressed as: 

𝑃(𝐴 < 𝑎0|𝑍) = 𝑓𝑎0
(𝑍, 𝜃), 

where 𝑓𝑎0
(𝑍, 𝜃) is the model for estimating the probability of POI before age 𝑎0 . 𝜃  are from 

parameters’ space 𝛩. For parametric models (e.g., generalized linear regression models) 𝜃 are 

parameters, for non-parametric models (e.g. tree-based methods), 𝜃 indicate how the 𝑍 space is 

segmented.  

Solving this problem equals to finding optimal 𝜃, and it can be obtained by solving the following 

minimization problem: 

min
𝜃∈𝛩

1

𝑁
∑ ℓ (𝑓𝑎0

(𝑧𝑖 , 𝜃), 𝑦𝑖)

𝑁

𝑖 = 1

  

wherein N is the number of observations, 𝑦𝑖 is the event outcome equals to I(𝐴𝑖 < 𝑎0) and ℓ(⋅) is 

an optimization function, for example for logistic regressions 

ℓ (𝑓𝑎0
(𝑧𝑖 , 𝜃), 𝑦𝑖)  = 𝑦𝑖𝑙𝑜𝑔 (𝑓𝑎0

(𝑧𝑖 , 𝜃)) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑓𝑎0
(𝑧𝑖, 𝜃)). 

Due to censoring, we cannot observe all the event outcomes, and if we ignore the unobserved data, 

the minimization problem will become: 

min
𝜃∈𝛩

1

𝑁
∑ 𝑠𝑎0,𝑖 ℓ  (𝑓𝑎0

(𝑧𝑖 , 𝜃), 𝑦𝑖)

𝑁

𝑖 = 1

 . 
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This optimization problem leads to a misspecified 𝜃 and a model that can not be generalized to 

new data. To solve this problem, we can modify the above equation using the idea of inverse 

probability weighting, i.e., adding the probability of remaining uncensored at 𝑎0  for each 

uncensored observation: 

min
𝜃∈𝛩

1

𝑁
∑

𝑠𝑎0,𝑖

𝑃(𝑠𝑎0,𝑖)
 ℓ  (𝑓𝑎0

(𝑧𝑖 , 𝜃), 𝑦𝑖)

𝑁

𝑖 = 1

 , 

According to the definition of 𝑠𝑎0,𝑖, 𝑃(𝑠𝑎0,𝑖) can be expressed as: 

𝑃(𝑠𝑎0,𝑖) = {
𝑃(𝐶𝑖 > 𝑋𝑖|𝑧𝑖 , 𝐴𝑖), 𝑖𝑓 𝑋𝑖  <  𝑎0,  𝛿𝑖  = 1

𝑃(𝐶𝑖 > 𝑎0|𝑧𝑖), 𝑖𝑓 𝑋𝑖  ≥ 𝑎0

 

This modified optimization problem can give us a consistent solution for 𝜃.  

Proof: 

𝐸 {
𝑠𝑎0,𝑖

𝑃(𝑠𝑎0,𝑖)
|𝑧𝑖 , 𝐴𝑖} = 𝐸 {[

𝐼(𝑋𝑖 ≥ 𝑎0)

𝑃(𝐶𝑖 > 𝑎0|𝑧𝑖)
 +

𝐼(𝑋𝑖 < 𝑎0)𝛿𝑖

𝑃(𝐶𝑖 > 𝑋𝑖|𝑧𝑖 , 𝐴𝑖)
] |𝑧𝑖 , 𝐴𝑖} =  1  

Here, we use the information from the entire sample to estimate 𝑃(𝐶𝑖 > 𝑎0|𝑧𝑖)  and 

𝑃(𝐶𝑖 > 𝑋𝑖|𝑧𝑖 , 𝐴𝑖). To estimate 𝑃(𝐶𝑖 > 𝑋𝑖|𝑧𝑖 , 𝐴𝑖) where 𝐴𝑖  is not fully observed, we rely on an 

important assumption that the censoring process 𝐂𝐢  and event process 𝐀𝐢  are independent 

conditional on covariates 𝐳𝐢. Under this assumption 𝑃(𝐶𝑖 > 𝑋𝑖|z𝑖 , A𝑖) is equal to 𝑃(𝐶𝑖 > 𝑋𝑖|z𝑖), 

enabling us to use observed covariates to build an estimator Ĝ(⋅) for 𝑃(𝑠𝑎0,𝑖). Then the estimated 

IPCW can be written as: 

�̂�𝑎0,𝑖   =  
𝑠𝑎0,𝑖

𝑃(𝑠𝑎0,𝑖)
=

𝐼 (𝑋𝑖 < 𝑎0)𝛿𝑖

�̂�(𝑋𝑖|𝑧𝑖)
+  

𝐼 (𝑋𝑖 ≥ 𝑎0)

�̂�(𝑎0|𝑧𝑖)
 

If the censoring process does not depend on any covariates, then Ĝ(⋅) can be estimated by the 

Kaplan-Meier method. On the other hand, if the censoring process depends on any covariates 𝑧𝑖, 
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then the Ĝ(⋅) can be estimated by a covariate-specific survival model including Cox PH models, 

AFT models, and random survival forest models.  

3.2.3 Competing risk 

Another challenge in this study is the presence of competing risks, i.e. SPM. Once a female 

experienced SPM, she was not at risk of POI. Therefore, we cannot treat them as censoring. To 

solve this problem, we modified the IPCW formula by adding a POI indicator 𝑝𝑖 in the first term 

and counting SPM as uncensoring when estimating Ĝ(⋅):  

 �̂�𝒂𝟎,𝒊 =
𝑰(𝑿𝒊 < 𝒂𝟎)𝑰(𝒑𝒊 = 𝟏)𝜹𝒊

�̂�(𝑿𝒊)
+  

𝑰(𝑿𝒊 ≥ 𝒂𝟎)

�̂�(𝒂𝟎)
  

Therefore, in the denominator, SPM was not treated as censoring, so they did not increase the 

weights to the remaining survivors. On the other hand, due to the existence of POI indicator 𝑝𝑖 in 

the first term, the weights for survivors with SPM ovarian status were assigned as zero, i.e., SPM 

did not count as an event like POI. In summary, the IPCW for different status and age at 

events/censoring were summarized in Table 3.2.  

Table 3.2 Assignment of IPCW 

Xi ovarian status 
δi 

censoring indicator 

𝑝𝑖 

POI indicator 
�̂�𝑎0,𝑖 

≤ 𝑎0 

Normal 0 0 0 

POI 1 1 1/Ĝ(Xi) 

SPM 1 0 0 

> 𝑎0 

Normal 0 0 1/Ĝ(𝑎0) 

POI 1 0 1/Ĝ(𝑎0) 

SPM 1 0 1/Ĝ(𝑎0) 
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3.2.4 Results 

Random survival forest models were fitted for estimating Ĝ(⋅). The variables and their importance 

in the survival model were presented in Figure 3.4. Age at diagnosis (“age_dx”) was the most 

important predictor for estimating Ĝ(⋅). 

Figure 3.5 showed the distribution of estimated IPCW when the age threshold increased from 21 

to 39. As the proportion of censoring increased with the age threshold, individuals were assigned 

higher IPCW and more patients were weighted to be 0 (i.e., censored). The highest IPCW was 

close to 30 at the largest age threshold of 39. 

 
Figure 3.4 Variable importance in the random survival forest model for censoring 
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Figure 3.5 Distribution of the weights at different age thresholds ranging from 21 to 39  
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4 Model development and evaluation 

This chapter focused on model development and evaluation. Section 4.1 specified the outcomes 

and candidate predictors for model development. Section 4.2 introduced the three algorithms for 

model development and section 4.3 highlighted the procedure of evaluating model performance. 

Sections 4.4 and 4.5 presented the results and discussions. 

. 

4.1 Outcomes and predictors 

To predict the risk of developing POI by age threshold ranging from 21 to 39, the outcomes were 

defined as whether a female CCS developed POI by age 21, 22, …, and 39, accordingly. The 

proportions of components of outcomes by the nineteen different age thresholds were listed in 

Table 4.1. As the age threshold increased from 21 to 39, the proportion of subjects with censored 

ovarian status increased significantly from 5.3% to 60.1%.  

The candidate predictors included race, cancer diagnosis type, age at diagnosis, radiation dose, 

chemotherapy agents, and BMT. Race and cancer diagnosis type were categorical variables. For 

the ten alkylating agents and their derived cumulative dose CED, the information would be 

redundant if included all of them in one model. Therefore, two sets of variables were prepared 

separately; each of them considered either ten individual alkylating agents or CED. A summary of 

the candidate predictors was listed in Table 4.2. 
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Table 4.1 Ovarian status distribution at different age thresholds 

Cut-off age 

years 

Outcomes n (%) 
Censored  

n (%) 
Sample size 

n 
Normal POI SPM 

21 6809 (86.4) 607 (7.7) 13 (0.2) 416 (5.3) 7883 

22 6605 (83.8) 639 (8.1) 16 (0.2) 582 (7.4) 7880 

23 6417 (81.5) 658 (8.4) 18 (0.2) 747 (9.5) 7878 

24 6208 (78.8) 680 (8.6) 19 (0.2) 931 (11.8) 7876 

25 5968 (75.8) 703 (8.9) 23 (0.3) 1140 (14.5) 7872 

26 5707 (72.6) 718 (9.1) 28 (0.4) 1374 (17.5) 7865 

27 5475 (69.7) 727 (9.3) 40 (0.5) 1575 (20.1) 7855 

28 5201 (66.3) 736 (9.4) 47 (0.6) 1824 (23.2) 7846 

29 4925 (62.8) 748 (9.5) 60 (0.8) 2072 (26.4) 7843 

30 4617 (58.9) 756 (9.7) 72 (0.9) 2350 (30) 7833 

31 4296 (54.9) 782 (10) 91 (1.2) 2619 (33.5) 7826 

32 3987 (51) 793 (10.1) 111 (1.4) 2891 (37) 7820 

33 3667 (46.9) 813 (10.4) 135 (1.7) 3162 (40.5) 7815 

34 3372 (43.2) 829 (10.6) 148 (1.9) 3422 (43.8) 7809 

35 3034 (38.9) 841 (10.8) 173 (2.2) 3716 (47.6) 7802 

36 2715 (34.9) 864 (11.1) 197 (2.5) 3975 (51) 7789 

37 2424 (31.1) 878 (11.3) 220 (2.8) 4223 (54.3) 7783 

38 2127 (27.4) 888 (11.4) 234 (3) 4488 (57.7) 7775 

39 1894 (24.4) 905 (11.7) 258 (3.3) 4668 (60.1) 7763 
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Table 4.2 Candidate predictors considered during model development 

Type of variables Candidate predictors setting 1 Candidate predictors setting 2 

Categorical 

Race (3 levels) 

white(reference), black, and other 

Race (3 levels) 

white(reference), black, and other 

diagnosis (8 levels) 

leukemia(reference),  

central nervous system cancers, 

neuroblastoma,  

non-Hodgkin lymphoma, 

Hodgkin lymphoma,  

kidney cancer,  

bone tumors,  

soft-tissue sarcoma 

diagnosis (8 levels) 

leukemia(reference),  

central nervous system cancers, 

neuroblastoma,  

non-Hodgkin lymphoma, 

Hodgkin lymphoma,  

kidney cancer,  

bone tumors,  

soft-tissue sarcoma 

BMT (Yes/No) BMT (Yes/No) 

Continuous: 

Irradiation dose 

(Gy) 

total body irradiation dose total body irradiation dose 

minimum ovary radiation dose minimum ovary radiation dose 

radiation dose to pituitary radiation dose to pituitary 

Continuous: 

Alkylating agents’ 

doses (g/m2) 

CED 

BCNU Busulfan 

CCNU Chlorambucil 

Cyclophosphamide Ifosfamide 

Melphalan Nitrogen Mustard 

Procarbazine Thiotepa 

Continuous: 

Other 

chemotherapy 

agents’ doses 

(g/m2) 

Carboplatin Carboplatin 

Cis_Platinum Cis_Platinum 

Bleomycin Bleomycin 

Daunorubicin Daunorubicin 

Doxorubicin Doxorubicin 

Epirubicin Epirubicin 

Idarubicin Idarubicin 

Methotrexate Methotrexate 

Mitoxantrone Mitoxantrone 

VM 26 VM 26 

VP 16 VP 16 
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4.2 Algorithms for model development 

Two machine learning algorithms: Elastic-Net panelized age-specific logistic regression63 (EN-

ALR) and XGBoost64 were used to mapping predictors to outcomes (details about the algorithms 

were available in Appendix G). The third algorithm “Ensemble” averaged the predicted risks from 

the previous two. 

The candidate predictors (Table G.1 in Appendix G) in EN-ALR and XGBoost were the same 

except for some rarely used chemotherapy agents (i.e. busulfan, CCNU, chlorambucil, melphalan, 

thiotepa, idarubicin, and mitoxantrone). These seven chemotherapy agents were coded as binary 

Yes/No in EN-ALR but were retained as continuous variables in XGBoost as the algorithm 

automatically choose the split-point to maximize the information gain.  

Both EN-ALR and XGBoost select predictors automatically through tuning hyperparameters. As 

a result, once the hyperparameters are selected, the model is fixed accordingly. Therefore, tuning 

hyperparameters is a key step that decides the performance of the final model. In this study, I 

employed the “random search”65 approach to tune hyperparameters in a prespecified 

hyperparameter space (Appendix G).  

 

4.3 Procedures for model evaluation 

Typically, model evaluation and hyperparameter tunning are conducted in the same CV process. 

However, this evaluation procedure may be overoptimistic about the model performance because 

the hyperparameters tuned in the training set were chosen based on the model performance in 

validation sets. To address this issue, I employed a nested CV to evaluate the performance of the 

modeling procedure. The rationality of nested CV was that it constructed two layers of CV: the 
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inner CV was used for tunning hyperparameters and the outer CV was served for evaluating model 

performance (Appendix E).  

In summary, I used a classical CV to obtain the optimal hyperparameters and a nested CV to 

evaluate the performance of the modeling procedure (rather than the final model). The whole 

modeling process was illustrated in a schematic diagram (Figure 4.1). 

 
Figure 4.1 Schematic diagram of the modeling procedure to generate predicted risks 

It should be noted that combining MI and nested CV generated 125 different data sets (see Chapter 

3.1.3); therefore, for each hyperparameter setting, there were 125 models developed to predict the 

risk of POI, and the average of the 125 predicted risks on one subject was used as her final 

predicted risk. 



  

45 

 

The performance matrices used in this research include areas under the receiver operating 

characteristic curves (AUC) and average positive predictive value (AP) for measuring the ability 

of discriminatory and prospective prediction. Scaled Brier Score (sBrS) was used to describe the 

overall model performance.  

In addition, calibration curves that compared cumulative weighted predicted risk and cumulative 

weighted events were used to visually inspect the calibration of models.  

4.4 Results 

The results from nested CV showed that the performance of models with ten individual alkylating 

agents was superior to the models with CED (Appendix H). Therefore, the models with ten 

individual alkylating agents will be used and presented in the remaining sections in this chapter. 

4.4.1 Predictors 

Figure 4.2 illustrated the predictors selected by EN-ALR and XGBoost when the age threshold 

was 24 and 29, respectively. The boxplots in the left panel showed the coefficients of each variable 

in the 125 EN-ALR models and the boxplots in the right panel showed the variable importance in 

the 125 XGBoost models. If a variable was not selected by any of the 125 models, the 

corresponding boxplot was absent. For example, rarely used chemotherapy agents such as 

busulfan, CCNU, chlorambucil, melphalan, thiotepa, idarubicin, and mitoxantrone were not 

selected by XGBoost. Therefore, no boxplots were available for these predictors in the right panel. 

The width of a boxplot reflected the variation in coefficients or variable importance of the 

corresponding predictor across the 125 data sets.  
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The frequencies of the predictors selected by the 125 models as well as their range of values were 

shown in Table 4.3 and Table 4.4 for ages 24 and 29, respectively. For better visualization of the 

coefficients of radiotherapy and chemotherapy, the unit of irradiation doses was set to be Gy, and 

the unit of chemotherapy agent doses was set to be g/m2. 

Based on results from the XGBoost algorithm (right panels in Figure 4.2), minimum ovarian 

radiation dose and BMT were the top two risk predictors in estimating the risk of POI by both ages 

24 and 29. These two predictors had positive coefficients in EN-ALN models, indicating patients 

treated with BMT and who received higher minimum ovarian radiation doses were at a greater risk 

of developing POI.  

The contributions of twenty chemotherapy agents including the ten alkylating agents were 

examined individually. Cyclophosphamide, procarbazine, methotrexate, and VP 16 were chosen 

by both algorithms, indicating they were important variables for predicting POI. Bleomycin was 

also identified in algorithms for predicting POI by age 24. However, it had a negative adjusted 

coefficient, indicating higher doses of bleomycin were associated with reduced POI risk after 

adjusting for other variables. 

In terms of race, “Black” and “Other” had positive coefficients comparing to “White”, indicating 

the two groups had a higher risk of developing POI than “White”.  

As for the cancer types, the results in EN-ALR showed that while patients with CNS cancer and 

kidney tumors had higher risks than patients with leukemia, patients diagnosed with non-Hodgkin 

lymphoma and bone cancer had lower risks than patients with leukemia.  
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Figure 4.2 Predictors in the two algorithms 

Left: coefficients in EN-ALR; Right: variable importance in XGBoost 
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Table 4.3 Coefficients in EN-ALR and Variable importance in XGBoost at Age 24. Proportion indicates 

the rates of each variable selected by algorithms in the 125 data sets. RT: radiotherapy; INT: interaction 

Age 24 EN-ALR coefficients XGBoost variable importance 

Variables 
Proportion 

(%) 
Median [min, max] 

Proportion 

(%) 
Median [min, max] 

Race 
Black 61.6 0.016 [0.001,0.077] 64.0 0.002 [<0.001,0.004] 

Other 100.0 0.063 [0.018,0.123] 100.0 0.004 [0.003,0.007] 

Age Age at diagnosis 100.0 -0.004 [-0.004,-0.002] 100.0 0.061 [0.047,0.079] 

C
an

ce
r 

d
ia

g
n

o
si

s 
ty

p
e CNS 99.2 0.046 [0.005,0.072] 100.0 0.009 [0.007,0.014] 

HD 0 NA 42.6 <0.001 [<0.001,0.003] 

HNL 100.0 -0.052 [-0.08,-0.028] 8.8 0.001 [0.001,0.001] 

Kidney (Wilms) 96.8 0.033 [0.004,0.068] 56.0 <0.001 [<0.001,0.003] 

Neuroblastoma 0 NA 84.8 0.001 [<0.001,0.003] 

Soft tissue sarcoma 0 NA 0 NA 

Bone cancer 100.0 -0.107 [-0.141,-0.087] 72.8 0.001 [<0.001,0.002] 

BMT 
BMT (yes) 100.0 0.806 [0.729,0.874] 100.0 0.133 [0.113,0.17] 

TBI dose 100.0 0.021 [0.008,0.033] 86.4 0.004 [0,0.031] 

RT 

(Gy) 

Pituitary dose 0.8 <0.001 [<0.001, <0.001] 100.0 0.033 [0.02,0.052] 

(min) ovarian dose 100.0 0.075 [0.069,0.079] 100.0 0.588 [0.561,0.618] 

C
h
em

o
th

er
ap

y
 d

o
se

s 
(g

/m
2
) 

BCNU 1.6 -0.078 [-0.118,-0.039] 0 NA 

Cyclophosphamide 99.2 0.003 [<0.001,0.008] 100.0 0.066 [0.052,0.087] 

Ifosfamide 2.4 <0.001 [<0.001, <0.001] 34.4 <0.001 [<0.001,0.001] 

Nitrogen Mustard 0 NA 0.8 <0.001 [<0.001, <0.001] 

Procarbazine 89.6 0.006 [<0.001,0.02] 100.0 0.009 [0.003,0.015] 

Carboplatin 94.4 0.024 [<0.001,0.064] 0 NA 

Cis_Platinum 1.6 0.027 [0.013,0.041] 11.2 <0.001 [<0.001,0.002] 

Bleomycin 94.4 -0.338 [-0.805,-0.002] 92.8 0.001 [0,0.005] 

Daunorubicin 0 NA 100.0 0.017 [0.011,0.023] 

Doxorubicin 0 NA 100.0 0.029 [0.02,0.04] 

Methotrexate 99.2 <0.001 [-0.001,<0.001] 100.0 0.022 [0.013,0.035] 

VM_26 5.6 -0.001 [-0.006,<0.001] 0 NA 

VP_16 5.6 0.001 [<0.001,0.006] 100.0 0.015 [0.007,0.024] 

Busulfan 100.0 1.097 [0.945,1.225] 0 NA 

CCNU 100.0 0.331 [0.117,0.484] 0 NA 

Chlorambucil 23.2 0.136 [0,0.242] 0 NA 

Melphalan 100.0 0.525 [0.422,0.707] 0 NA 

Thiotepa 100.0 0.949 [0.66,1.125] 0 NA 

Idarubicin 100.0 0.472 [0.238,0.696] 0 NA 

Mitoxantrone 26.4 0.034 [0.001,0.183] 0 NA 

INT 

BMT &  

Age at diagnosis 
100.0 0.055 [0.048,0.06] NA NA 

Minovary &  

Age at diagnosis 
100.0 0.002 [0.002,0.003] NA NA 
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Table 4.4 Coefficients in EN-ALR and Variable importance in XGBoost at Age 29. Proportion indicates 

the percentages of each variable was selected in the 125 data sets. RT: radiotherapy; INT: interaction 

Age 24 EN-ALR coefficients XGBoost variable importance 

Variables 
Proportion 

(%) 
Median [min, max] 

Proportion 

(%) 
Median [min, max] 

Race 
Black 100.00 0.072 [0.012,0.144] 100.0 0.003 [<0.001,0.006] 

Other 100.00 0.135 [0.082,0.188] 100.0 0.006 [0.004,0.009] 

Age Age at diagnosis 100.00 -0.009 [-0.01,-0.007] 100.0 0.086 [0.069,0.104] 

C
an

ce
r 

d
ia

g
n

o
si

s 
ty

p
e CNS 100.00 0.065 [0.012,0.098] 100.0 0.009 [0.006,0.012] 

HD 0 NA 95.2 0.001 [<0.001,0.004] 

HNL 100.00 -0.06 [-0.1,-0.033] 100.0 <0.001 [<0.001,0.002] 

Kidney (Wilms) 66.40 0.015 [0.001,0.049] 99.2 0.001 [<0.001,0.004] 

Neuroblastoma 84.80 0.016 [<0.001,0.056] 95.2 <0.001 [<0.001,0.002] 

Soft tissue sarcoma 0 NA 2.4 <0.001 [<0.001,<0.001] 

Bone cancer 100.00 -0.15 [-0.188,-0.125] 100.0 0.002 [<0.001,0.005] 

BMT 
BMT (yes) 100.00 0.939 [0.853,1.054] 100.0 0.121 [0.106,0.15] 

TBI dose 100.00 0.028 [0.015,0.04] 91.2 0.005 [<0.001,0.023] 

RT 

(Gy) 

Pituitary dose 18.40 <0.001 [<0.001,0.001] 100.0 0.05 [0.037,0.065] 

Minovary dose 100.00 0.073 [0.067,0.077] 100.0 0.534 [0.513,0.555] 

C
h
em

o
th

er
ap

y
 d

o
se

s 
(g

/m
2
) 

BCNU 5.60 -0.021 [-0.154,<0.001] 0 NA 

Cyclophosphamide 100.00 0.004 [0.001,0.009] 100.0 0.062 [0.045,0.077] 

Ifosfamide 12.80 <0.001 [<0.001,0.001] 68.0 <0.001 [<0.001,0.001] 

Nitrogen Mustard 0 NA 40.8 0.001 [<0.001,0.002] 

Procarbazine 97.60 0.011 [0.001,0.023] 100.0 0.011 [0.006,0.017] 

Carboplatin 99.20 0.052 [0.002,0.104] 0 NA 

Cis_Platinum 2.40 0.039 [0.017,0.074] 12.8 0.001 [<0.001,0.003] 

Bleomycin 41.60 -0.166 [-0.431,-0.009] 93.6 0.001 [<0.001,0.004] 

Daunorubicin 10.40 -0.031 [-0.071,<0.001] 100.0 0.023 [0.017,0.031] 

Doxorubicin 0 NA 100.0 0.029 [0.02,0.038] 

Methotrexate 100.00 -0.001 [-0.001,<0.001] 100.0 0.03 [0.02,0.041] 

VM_26 0 NA 55.2 0.001 [<0.001,0.002] 

VP_16 96.00 0.008 [<0.001,0.023] 100.0 0.021 [0.013,0.033] 

Busulfan 100.00 1.121 [0.904,1.275] 0 NA 

CCNU 100.00 0.257 [0.001,0.531] 0 NA 

Chlorambucil 98.40 0.433 [0.029,0.669] 0 NA 

Melphalan 100.00 0.498 [0.33,0.658] 0 NA 

Thiotepa 100.00 1.116 [0.645,1.3] 0 NA 

Idarubicin 100.00 0.69 [0.386,0.957] 0 NA 

Mitoxantrone 66.40 0.061 [0.001,0.273] 0 NA 

INT 

BMT &  

Age at diagnosis 
100.00 0.043 [0.037,0.05] NA NA 

Minovary &  

Age at diagnosis 
100.00 0.002 [0.002,0.003] NA NA 



  

50 

 

4.4.2 Model Performance 

The nested CV evaluated AUC, AP, and sBrS for the three algorithms were shown in Table 4.5. 

The point estimates of AUC ranged from 0.776 to 0.795 in the models for age 24 and from 0.771 

to 0.791 in the models for age 29. The AP ranged from 0.464 to 0.480 in the models for age 24 

and from 0.473 to 0.495 in the models for age 29. The sBrS ranged from 0.238 to 0.264 in the 

models for age 24 and from 0.230 to 0. 0.259 in the models for age 29. 

Table 4.5 Nested CV evaluated performance at age 24 and 29 

Performance 
Age: 24 Age: 29 

Point Estimate 95% CIa Point Estimate 95% CIa 

A
U

C
 

EN-ALR 0.776 (0.754, 0.798) 0.771 (0.750, 0.791) 

XGBoost 0.780 (0.770, 0.811) 0.787 (0.767, 0.807) 

Ensemble 0.795 (0.775, 0.817) 0.791 (0.771, 0.811) 

A
P

 

EN-ALR 0.464 (0.426, 0.507) 0.473 (0.433, 0.515) 

XGBoost 0.470 (0.428, 0.512) 0.482 (0.437, 0.522) 

Ensemble 0.480 (0.440, 0.522) 0.495 (0.454, 0.534) 

sB
rS

 

EN-ALR 0.238 (0.209, 0.266) 0.230 (0.200, 0.258) 

XGBoost 0.262 (0.226, 0.296) 0.255 (0.216, 0.288) 

Ensemble 0.264 (0.233, 0.294) 0.259 (0.226, 0.289) 

Event rate 0.089 (0.083, 0.096) 0.105 (0.099, 0.112) 

a: 95% CI was calculated by the “Bootstrap” method.  

 

XGBoost and Ensemble provided comparable values of AUC, AP, sBrS which were always higher 

than that of EN-ALR regardless of age. Between XGBoost and Ensemble, Ensemble presented 

slightly better performance. This pattern remained the same across different ages from 21 to 39 

(shown in Figure 4.3). Overall, the Ensemble algorithm achieved the best performance among the 
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three algorithms at different ages: its AUCs were around 0.8 (ranged from 0.785 at age 31 to 0.801 

at age 34), AP increased from 0.469 at age 21 to 0.595 at age 39 as event rates increased (from 

0.079 at age 21 to 0.173 at age 39), and sBrS ranged from 0.259 at age 29 to 0.292 at age 37. 

 
Figure 4.3 AUC, AP, sBrS at ages from 21 to 39 

 

Figure 4.4 showed the calibration curves for the three algorithms at the age threshold from age 21 

to 39. The calibration curves before age 28 followed the diagonal line well, indicating that the 

predicted risk had good alignment with the observed events. However, after age 28, the calibration 

curves started to deviate from the diagonal line. Serious deviations were presented after age 30, 

suggesting that the models were not well calibrated for ages over 30.  

 



  

52 

 

 
Figure 4.4 Calibration curves from EN-ALR, XGBoost, and Ensemble for different ages 
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4.4.3 Predicted risks 

As the Ensemble algorithm achieved the best-validated performance, it was used to predict the risk 

of age-specific POI in the whole data set. It should be noted that the final predicted risks for 

individuals were obtained by averaging the predicted risks from the 125 work data sets.  

Based on the suggestions from endocrinologists and pediatric oncologists, the predicted risks were 

stratified into four categories: <5%, 5% to <20%, 20% to <50%, and ≥50%, representing low, 

medium-low, medium, and high-risk groups, respectively. Table 4.6 (all the numbers were 

weighted with IPCW weights) illustrated how the Ensemble algorithm categorized survivors into 

four categories.  

Specifically, at age 24, 3495 (44.9%) of 7786 participants were estimated to be at low risk (52 

[1.5%] developed POI), whereas 290 (3.7%) individuals were estimated to be at high risk (231 

[79.7%] developed POI). At age 29, 1423 (18.9%) of 7533 participants were estimated to be at 

low risk (11 [0.8%] developed POI), whereas 341 (4.5%) individuals were estimated to be at high 

risk (280 [82.1%] developed POI). The results suggest that the Ensemble algorithm can 

successfully distinguish between survivors with low-risk and high risk. 

Table 4.6. POI categories and prevalence for each cohort as predicted by the Ensemble algorithm  

(%: row percentage) 

Predicted 

Risk 

Age 24 Age 29 

Survivors POI (%) Survivors POI (%) 

<5% 3495 51 (1.5%) 1423 11 (0.8%) 

5% to <20% 3770 277 (7.4%) 5474 370 (6.8%) 

20% to < 50% 330 150 (44.5%) 294 139 (47.3%) 

≥50% 290 231 (79.6%) 341 280 (82.1%) 

Total 7786 709 (9.1%) 7533 800 (10.6%) 
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4.5 Discussion 

In line with the established risk factors in the literature, the results from both EN-ALR and 

XGBoost showed that BMT, minimum ovarian radiation dose, cyclophosphamide dose, and 

procarbazine dose were associated with the risk of developing POI. EN-ALR also identified the 

age at diagnosis as an effect modifier of BMT which was consistent with the findings of Clark 

(2020)9. Besides, both algorithms identified race black and other might have a higher risk of 

developing POI than white, which has not been well recognized in previous research. Therefore, 

although the predictors were automatically selected, they may give some insight into investigating 

the risk factors of developing POI. However, it should be noted that these predictors were 

chosen because they can improve prediction accuracy, which, however, does not imply that 

they cause POI. To conclude a causal relationship, a different research path is needed. 

This research carefully designed the procedure of model evaluation to avoid the issue of overfitting 

and overoptimism. The nested CV results showed AUC could reach as high as 0.8, indicated that 

the models could well discriminate the subjects with POI from those without POI. The AP results 

were much higher than the population event rate, indicating a strong predictive power for detecting 

POI. The results of calibration curves showed a good alignment between predicted risks and 

observed events when the age threshold was less than 28, indicating that the models could well 

predict the probabilities of developing POI at a younger age.  

The calibration results showed that long-term risk prediction can be challenging. One possible 

reason is that a large proportion of censoring is presented at an older age. Another reason might 

be that when the age threshold was farther away from the age at diagnosis, the effects of the 
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environment or the survivors’ lifestyle may have come to play in the development of POI, which 

was not considered in this research.  

As for the application of the final models, female survivors can be stratified into four risk 

categories according to estimated risks, providing useful information for them and clinicians to 

discuss their need for fertility preservation. Furthermore, The developed algorithm can be crafted 

into a user-friendly clinical tool. Appendix I presented two examples of using the tool to predict 

the risks of developing POI at different ages for patients. 
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5 Conclusions 

This research aimed to develop accurate prognostic models for predicting absolute risks for an 

individual childhood cancer survivor developing POI by prespecified ages. The problem of 

missing data, censoring, and overfitting was carefully addressed. The validated model performance 

confirmed that the developed models can discriminate well between those survivors who 

developed POI and those survivors who did not, and the models can provide an accurate absolute 

estimated risk of developing POI before age 28.  

In this chapter, I summarized the contributions of this thesis (section 5.1), discussed the limitations 

(section 5.2), and made recommendations on future work (section 5.3).  

 

5.1 Summary  

In Chapter 2, the data from CCSS was cleaned and explored. A new variable, age at event, was 

derived based on ovarian status and other menstrual history information. To ensure the accuracy 

of the outcome variable, I discussed the algorithm for deriving it extensively with a pediatric 

endocrinologist.  

The problem of missing data was addressed in Chapter 3 by employing multiple imputation. The 

details of imputation including imputation model selection, iteration number determination, and 

post-processing were described. Furthermore, special consideration was given to how to 

implement multiple imputation and model performance evaluation properly together so that the 

information in validation sets did not ‘leak’ to the training sets.  

Chapter 3 also addressed the problem of censoring by assigning individuals with inverse 

probability censoring weights. This method took into account censored subjects by assigning 
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weights of greater than 1 to those with observed ovarian status at a prespecified age. Since the 

censoring process was associated with covariates, a random survival forest was used to calculate 

the probability of remaining uncensored. The competing risk was considered in the formula of 

weights.  

In Chapter 4, two modern machine learning algorithms: EN-ALR and XGBoost were employed 

and an “Ensemble” algorithm was used to take advantage of the two previous algorithms. The 

hyperparameter tuning strategy “random search” was used to find optimal hyperparameter settings. 

To avoid over-optimistic about the model performance, nested CV was employed to give an honest 

evaluation. An “Ensemble” method achieved the best performance. Its good discriminative power 

and calibration results (when the age threshold was less than 28) suggested that the final models 

could be used to predict POI in new data. 

 

5.2 Limitations 

Approximately 16% of the female CCSS participants (Figure 2.2) did not complete a questionnaire 

that contained the menstrual history section. In this research, we assumed those who failed to 

participate in the surveys had a similar pattern of POI to those who participated. However, a risk 

of bias would arise if the reason for not participating was associated with the menstrual status. 

As a retrospective cohort study, CCSS sent out surveys containing menstrual history sections 

almost every seven years. This means many participants had to recall their health condition many 

years ago, implying a risk of recall bias. Especially, when individuals recalled the age of stopping 
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menstruating which happened many years ago, an inaccurate age might be reported. This would 

influence the outcomes we used to build the models. 

The validity of using the multiple imputation and IPCW methods rely on the assumption of missing 

at random and the assumption of independence between the event process and censoring process 

given observed covariates. Although the two assumptions are reasonable in this research, it cannot 

be proved because the missing predictors and censored outcomes are unobserved. 

In terms of the final model performance, although AUC, AP showed good performance, calibration 

curves started deviating from the diagonal line when age was greater than 28, implying that the 

estimated risk of developing POI by ages over 28 needs to be improved. 

 

5.3 Future work 

Future work could be beneficial when more data is released from CCSS. This might alleviate the 

problem of censoring and thus improving the long-term risk prediction.  

The performance could be improved by tuning more hyperparameter settings. Especially for the 

XGBoost model, many more hyperparameters could be tuned. Furthermore, by using the 

“Ensemble” method, some other machine learning algorithms such as neural networks, support 

vector machines, and random forest could also contribute to improving ensemble performance. 

Finally, although the model performance was carefully evaluated in this research, it may not reflect 

its performance in other childhood cancer populations. An external validation study would be ideal 

in the future. 
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Appendices 

Appendix A Menstrual history survey questions  

 

Ovarian status classifications for female original cohort participants were derived using 

information from follow-up 1 (items 19-19d), follow-up 4 (items F13-F16, J33-J34), and the 

follow-up 5 questionnaire (items G13-G16, J35-J36). Ovarian status classifications for female 

expansion cohort participants were derived using information from the expansion baseline 

questionnaire (items E13-E16, I33-I34) and the follow-up 5 questionnaire. The surveys 

administered to the CCSS participants are available at the Childhood Cancer Survivor Study 

website (https://ccss.stjude.org/tools-and-documents/questionnaires/baseline-and-follow-up-

questionnaires.html). Specific questions about ovarian status classification are included below. 
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Figure A.1 Follow-up 1 survey (2000) Questions 19 and 19a-d 
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Figure A.2 Follow-up 4 survey (2007) Questions F13-16 
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Figure A.3 Follow-up 4 survey (2007) Questions J32-34 
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Figure A.4 Follow-up 5 survey (2014) Questions G13-15 
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Figure A.5 Follow-up 5 survey (2014) Questions J34-36 
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Figure A.6 Expansion cohort baseline survey (2008 – present) Questions E13-16 



  

72 

 

 

Figure A.7 Expansion cohort baseline survey (2008 – present) Questions I32-34 
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Appendix B Age at event/cesoring assignment  

Variables’ description 

Table B.1 Variables for assigning age at event/censoring 

Variables Description Source 

a_menslast_overall 

(some reported years 

and months) 

age at last natural menstrual 

period 

self-reported in expansion baseline, 

follow-up 1, 4 and 5 surveys 

menarcheage 

(only in years) 
menarche age 

self-reported in expansion baseline, 

follow-up 1, 4 and 5 surveys 

a_SurgicalPM 

(only in years) 
age at surgical time 

self-reported in “SURGICAL 

PROCEDURES” in expansion 

baseline, follow-up 4 and 5 surveys 

age_dx 

(exact age) 

age at primary cancer 

diagnosis 

calculated based on the date of cancer 

diagnosed 

age_smn1 

(exact age) 

age at second malignant 

neoplasm 

calculated based on the date of second 

cancer diagnose 

age_lastmhr  

(exact age) 

age at last survey that 

contained menstrual history 

calculated based on the date of the 

most recent questionnaire contained 

menstrual history 

statusgoli_overall 
status in original data set 

from CCSS 
 

a_event new generated age at event  
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Algorithms 

Table B.2 Algorithms for assignment of age at event / censoring 

Status Status definition 
age at event / 

censoring  
Notes / Modification 

NSPM 

ovarian function retained 

for at least 5 years 

following cancer 

diagnosis, but menopause 

before age 40 

age at last 

menstrual 

period 

If the age at last menstrual was too 

young (e.g. age < 9), the record is 

deemed incorrect. The subjects will be 

excluded from analysis. 

Surgical 

PM 

Surgery was the reason 

cited for the onset of 

menopause prior age 40 

1. age at 

surgical time 

 

Some “a_menslast_overall” were 

much earlier than “a_SurgicalPM”, 

they were reclassified as NSPM or 

AOF and age at event = 

“a_menslast_overall” 

2. age at last 

menstrual 

period 

“a_menslast_overall” might occur 

much earlier than “a_SurgicalPM”, in 

which case, they should be NSPM or 

AOF. To avoid misclassifying the 

outcome, they were excluded 

depending on the cut-off age for 

outcomes. 

AOF 

Patient’s menstrual period 

stopped permanently 

within 5 years of cancer 

diagnosis 

menarche age 

or age at last 

menstrual 

period or 16, 

or a_dx + 5 

If a_menslast_overall is missing, we 

use age at menarche as the age at 

event. If both are missing, we use the 

maximum of (16, age at diagnosis plus 

5).  

AOF  

non 

menarche 

Patients reported never 

going through menarche 

by age 18 

a_dx + 5 or 

16 

There is no menstrual history to assign 

age at event for this group. The 

maximum of (age at diagnose + 5, 16) 

is used. 

Normal 

No indications that periods 

ceased prior to age 40 due 

to any of the above causes 

1. age at last 

survey with 

menstrual 

history or 40 

Extensions of menstrual status beyond 

age 40 would require further review of 

the available data. 

2. age at last 

menstrual 

period 

When this age was greater than 40. 

3. age at 

SMN 

When SMN prior to age at last 

menstrual period, the age at event is 

the age of SMN with a normal ovarian 

status. 
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Changed status (N = 102) 

Table B.3 Summary of changed status 

Original status New status N = 102 Reasons 

Surgical PM Normal 27 SMN prior to surgical time. 

1 Age at surgical time and age at the last were greater 

than 40, therefore she had normal ovarian status 

before 40 and was assigned to normal group. 

AOF 7 Last menstrual period occurs much earlier than 

surgery and the time are within 5 years of cancer 

diagnosis. 

NSPM 37 Last menstrual period occurs much earlier than 

surgery at an age after 5 years of cancer diagnosis. 

NSPM Normal 29 NSPM occurs before surgical time. 

PM (possible) Normal 1 SMN happens prior to PM 
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Table B.4 Excluded subjects because of conflicting age information (N = 27 + 129) 

Original status Reasons Numbers 

Normal age at event < 9 years old 1 

NSPM age at event < 9 years old 1 

Surgical PM age at event < 9 years old 17 

Surgical PM age at event occurred 3 years prior to age at diagnosis 3 

AOF age at event occurred 3 years prior to age at diagnosis 5 

Surgical PM age at surgical time were missing 129 
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Appendix C Data dictionary of final work data set 

Table C.1 Dictionary of final data set (62 variables) 

 Variable name Data type Levels / Range (units) Description 

ID ccssid   CCSSI ID 

INFO 

(3 vars) 

cohort categorical 
2 levels:  

original, expansion 
which cohort the patient was recruited in 

d_birth date [1949-09-12, 1998-08-25] date of birth 

race_3 race 3 levels: white, black, other race of survivors 

Outcome 

(2 vars) 

status categorical 
3 levels: 

Normal, POI, SPM 
status of ovarian function 

a_event numerical [9.9, 57.0] (years) age at event 

diagnose 

(2 vars) 

 

diagnose categorical 

8 levels: 

Leukemia, CNS, HD, HNL, 

Kidney (Wilms), 

Neuroblastoma, Soft tissue 

sarcoma, Bone cancer 

Cancer diagnose type 

age_dx numerical [0-21) (years) age at diagnose 

BMT bmt_tbi categorical Yes/No Bone marrow transplant indicator 

R
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tbidose numerical [0, 1575] (cGy) total body irradiation dose 

abdmaxrtdose numerical [0, 6900] (cGy) cumulative radiation doses to abdomen 

pelvismaxrtdose numerical [0, 7800] (cGy) cumulative radiation doses to pelvis 

pitdose numerical [0, 2940] (cGy) cumulative radiation doses to pituitary 

minovary numerical [0, 5940] (cGy) minimum cumulative radiation dose to ovary 

maxovary numerical [0, 7800] (cGy) maximum cumulative radiation dose to ovary 

rt_yn categorical Yes/No whether the patient received radio therapy 

tbirt_yn categorical Yes/No whether the patient received total body irradiation 

abdomenrt_yn pelvisrt_yn categorical Yes/No whether the patient received irradiation to abdomen / pelvis 
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 Variable name Data type Levels / Range (units) Description 
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[0, 83301] (mg/m2) Cyclophosphamide Equivalent Dose0F

1 

bcnu [0, 1573] (mg/m2) cumulative dose of BCNU (Alkylating agent) 

busulfan [0, 650] (mg/m2) cumulative dose of busulfan (Alkylating agent) 

ccnu [0, 1333] (mg/m2) cumulative dose of CCNU (Alkylating agent) 

chlorambucil [0, 3349] (mg/m2) cumulative dose of chlorambucil (Alkylating agent) 

cyclophosphamide [0, 83301] (mg/m2) cumulative dose of cyclophosphamide (Alkylating agent) 

ifosfamide [0, 144230] (mg/m2) cumulative dose of ifosfamide (Alkylating agent) 

melphalan [0, 514] (mg/m2) cumulative dose of melphalan (Alkylating agent) 

nitrogen_mustard [0, 256] (mg/m2) cumulative dose of nitrogen_mustard (Alkylating agent) 

procarbazine [0, 17500] (mg/m2) cumulative dose of procarbazine (Alkylating agent) 

thiotepa [0, 933] (mg/m2) cumulative dose of thiotepa (Alkylating agent) 

carboplatin [0, 15711] (mg/m2) cumulative dose of carboplatin (Platinum compounds) 

cis_platinum [0, 7075] (mg/m2) cumulative dose of cis_platinum (Platinum compounds) 

bleomycin [0, 402] (mg/m2) cumulative dose of bleomycin (Antibiotics) 

daunorubicin [0, 838] (mg/m2) cumulative dose of daunorubicin (Anthracyclines) 

doxorubicin [0, 1070] (mg/m2) cumulative dose of doxorubicin (Anthracyclines) 

epirubicin [0, 0] (mg/m2) cumulative dose of epirubicin (Anthracyclines) 

idarubicin [0, 192] (mg/m2) cumulative dose of idarubicin (Anthracyclines) 

methotrexate [0, 502553] (mg/m2) cumulative dose of methotrexate (Anthracyclines) 

mitoxantrone [0, 97] (mg/m2) cumulative dose of mitoxantrone (Anthraquinone) 

vm_26 [0, 9300] (mg/m2) cumulative dose of vm_26 (Epipodophyllotoxins) 

vp_16 [0, 20594] (mg/m2) cumulative dose of vp_16 (Epipodophyllotoxins) 

bcnu_yn, and other 20 agents categorical Yes/No whether the patient received the chemotherapy agent 

 
1 Daniel M. Green et al., “The Cyclophosphamide Equivalent Dose as an Approach for Quantifying Alkylating Agent Exposure: A Report from the Childhood 

Cancer Survivor Study: Cyclophosphamide Equivalent Dose,” Pediatric Blood & Cancer 61, no. 1 (January 2014): 53–67, https://doi.org/10.1002/pbc.24679. 
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Appendix D Components by ovarian status at different cut-off ages 

Table D.1 Components by ovarian status at different cut-off ages 

Cut-off age 

years 
Normal  

n (%) 
SPM  

n (%) 
POI  

n (%) 
Censoring  

n (%) 
Total 

n 

21 6809 (86.4) 13 (0.2) 607 (7.7) 416 (5.3) 7883 

22 6605 (83.8) 16 (0.2) 639 (8.1) 582 (7.4) 7880 

23 6417 (81.5) 18 (0.2) 658 (8.4) 747 (9.5) 7878 

24 6208 (78.8) 19 (0.2) 680 (8.6) 931 (11.8) 7876 

25 5968 (75.8) 23 (0.3) 703 (8.9) 1140 (14.5) 7872 

26 5707 (72.6) 28 (0.4) 718 (9.1) 1374 (17.5) 7865 

27 5475 (69.7) 40 (0.5) 727 (9.3) 1575 (20.1) 7855 

28 5201 (66.3) 47 (0.6) 736 (9.4) 1824 (23.2) 7846 

29 4925 (62.8) 60 (0.8) 748 (9.5) 2072 (26.4) 7843 

30 4617 (58.9) 72 (0.9) 756 (9.7) 2350 (30) 7833 

31 4296 (54.9) 91 (1.2) 782 (10) 2619 (33.5) 7826 

32 3987 (51) 111 (1.4) 793 (10.1) 2891 (37) 7820 

33 3667 (46.9) 135 (1.7) 813 (10.4) 3162 (40.5) 7815 

34 3372 (43.2) 148 (1.9) 829 (10.6) 3422 (43.8) 7809 

35 3034 (38.9) 173 (2.2) 841 (10.8) 3716 (47.6) 7802 

36 2715 (34.9) 197 (2.5) 864 (11.1) 3975 (51) 7789 

37 2424 (31.1) 220 (2.8) 878 (11.3) 4223 (54.3) 7783 

38 2127 (27.4) 234 (3) 888 (11.4) 4488 (57.7) 7775 

39 1894 (24.4) 258 (3.3) 905 (11.7) 4668 (60.1) 7763 

40 1682 (21.7) 273 (3.5) 917 (11.8) 4852 (62.5) 7762 
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Appendix E Nested cross-validation 

The nested cross-validation includes two loops: the inner CV and outer CV. They serve different 

purposes: the inner CV is used to simulate traditional CV which is used for tuning model 

parameters, and the outer CV (the remaining untrained fold) is used for evaluating model 

performance. The aim of nested CV is to separate the parameter tuning process and model 

evaluation process. And different from traditional evaluation methods, the nested CV focuses on 

assessing the modeling procedure rather than the model itself. Therefore, in this step, we do not 

evaluate a model with specific hyper-parameters, instead, we obtained a validated performance for 

traditional CV. And in the modeling process, traditional CV was used to find optimal hyper-

parameters for fitting in the whole sample data to get final models, 

 
Figure E.1 Procedure of nested CV.  

(VAL: validation data sets) 

Figure E.1 illustrates the process of nested cross-validation. For better presenting the process in 

this figure, the outer folds were simplified to three folds instead of five folds in this study, and 

inner CV was simplified to four-folds.  
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The process is described below:  

Step 1: the data set is split into three folds, each fold will serve as an outer validation set once.  

Step 2: the two training folds are split into four folds to perform an inner CV for tuning hyper-

parameters.  

Step3: the optimal hyper-parameter setting is then used to fit the two white folds (training data set) 

and predict on the yellow outer fold (validation data set).  

Step4: Repeat this procedure three times for each yellow fold and then combine the predicted risk 

across the whole data to generate a validated performance.  
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Appendix F Assessment of convergence in MI 

 

The number of the iteration times was set to 30 to examine the convergence. Figure F.1， Figure 

F.2, and Figure F.3 visualized the convergence of imputed values for all the variables by plotting 

the means and standard deviation (SD). There is no convergence issue for any variables. And they 

attain convergency by 10 iterations.  
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Figure F.1 Convergence plots for variables: race, age at event, BMT indicator, irradiation dose to 

pituitary, minimum irradiation dose to ovaries, maximum irradiation dose to ovaries, total body 

irradiation dose, irradiation dose to abdomen, irradiation dose to pelvis, indicator for receiving 

radiotherapy 
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Figure F.2 Convergence plots for doses of 10 chemotherapy agents: bcnu, busulfan, ccnu, 

chlorambucil, cyclophosphamide, Ifosfamide, melphalan, nitrogen mustard, procarbazine, 

thiotepa 
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Figure F.3 Convergence plots for doses of 10 chemotherapy agents: carboplatin, cis platinum, 

bleomycin, daunorubicin, doxorubicin, idarubcin, methotrexate, mitoxantrone, vm_26, vp_16 
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Appendix G Modeling algorithms 

EN-ALR: 

Elastic Net is a regularizations method by combining the penalty from LASSO (ℓ1 penalty) and 

Ridge (ℓ2 penalty) regression, which aims to avoid overfitting at the cost of increased bias. It 

enables automatic variable selection (a feature of LASSO) and avoids the limitation of LASSO 

regression at the same time. 1F

2  

For logistic regression, the objective function for the penalized logistic regression uses the 

following log-likelihood:  

min
(𝛽0,𝛽)∈ℝ𝑝+1

− [
1

𝑁
∑ 𝑦𝑖 ∙ (𝛽0 + 𝑥𝑖

𝑇𝛽)𝑁
𝑖 = 1 − 𝑙𝑜𝑔 (1 + 𝑒(𝛽0+𝑥𝑖

𝑇𝛽))] + 𝜆[(1 − 𝛼)‖𝛽‖2
2/2 + 𝛼‖𝛽‖1], 

Wherein 𝛽0 and 𝛽 are coefficients in the generalized linear model, 𝑦𝑖 is the binary outcome for the 

𝑖 th individual, 𝑥𝑖  is the vector of covariates of the 𝑖 th individual, ‖𝛽‖1  is the ℓ1  penalty on 

coefficients of 𝑥𝑖 , i.e. 𝛽 , and ‖𝛽‖2
2  is the ℓ2  penalty on 𝛽 . The two hyperparameters: 𝛼  and 𝜆 

control the penalty function, wherein 𝛼 bridges the gap between LASSO (α=1) and Ridge (α=0) 

and 𝜆 controls the overall strength of the penalty.  

XGBoost: 

XGBoost refers to “Extreme Gradient Boosting”, which is a fast implementation of a gradient 

boosting algorithm that uses a gradient boosting framework 2F

3. It has been successfully used in many 

applications and becomes the winning solution for best predictive performance in numerous 

 
2 Hui Zou and Trevor Hastie, “Regularization and Variable Selection via the Elastic Net,” Journal of the Royal Statistical Society: Series B 

(Statistical Methodology) 67, no. 2 (April 2005): 301–20, https://doi.org/10.1111/j.1467-9868.2005.00503.x. 

3 Tianqi Chen and Carlos Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining - KDD ’16 (the 22nd ACM SIGKDD International Conference, San Francisco, California, 

USA: ACM Press, 2016), 785–94, https://doi.org/10.1145/2939672.2939785; Avinash Barnwal, Hyunsu Cho, and Toby Dylan Hocking, “Survival 

Regression with Accelerated Failure Time Model in XGBoost,” ArXiv:2006.04920 [Cs, Stat], June 11, 2020, http://arxiv.org/abs/2006.04920. 
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competitions. 3F4 Hyperparameter tuning is the key to achieving accurate prediction, however, the 

cost is computation time. Therefore, to balance accuracy and efficiency, three hyperparameters: 

max_depth, eta, and nrounds of top importance were finely tuned while default values were used 

for other hyperparameters. The parameter max_depth refers to the maximum depth of a tree, 

increasing this value will result in a more complex model and more likely to overfit. eta stands for 

the step size shrinkage used in the update to prevent overfitting and nrounds controls the maximum 

number of iterations. 

Ensemble:  

This method combines multiple algorithms to generate a predicted risk with better predictive 

performance. Typically, the predicted risks were incorporated using weights which can be tuned 

as well. In this project, the weights for both algorithms (EN-ALR and XGBoost) were set at 0.5.  

Hyperparameter tuning: 

50 hyperparameter settings for EN-ALR and XGBoost respectively were randomly selected from 

hyperparameter spaces (EN-ALR: 𝛼 ∈ [0.05, 0.3], and 𝜆 ∈ [0.05,0.3]; XGBoost: 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈

[5, 30], 𝑒𝑡𝑎 ∈ [0.1, 0.5], and 𝑛𝑟𝑜𝑢𝑛𝑑𝑠 ∈ [10, 150]) which were obtained from a manually coarse 

tuning. Then the optimal hyperparameter setting for each algorithm was determined from the 50 

settings based on a weighted sum of the AUC, AP, and sBrS.  

A weighted sum of AUC, AP, and sBrS: 

AUC, AP, and sBrS are the metrics used to evaluate models. To incorporate the three metrics, an 

equal-weighted sum of the three metrics was used to find the optimal hyperparameters. In addition, 

to avoid one metric dominate the rank of the weighted sum due to its magnitude in the 50 

hyperparameter settings, AUC, AP, and sBrS were scaled to [0, 1] before being weighted, i.e. 

 
4 Didrik Nielsen, “Tree Boosting With XGBoost,” n.d., 110. 
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𝐴𝑈𝐶𝑠𝑐𝑎𝑙𝑒𝑑 = [𝐴𝑈𝐶 − 𝑚𝑖𝑛(𝐴𝑈𝐶)]  ×  
1

max(AUC) − min(AUC)
 

𝐴𝑃𝑠𝑐𝑎𝑙𝑒𝑑 = [𝐴𝑃 − 𝑚𝑖𝑛(𝐴𝑃)]  ×  
1

𝑚𝑎𝑥(𝐴𝑃) − 𝑚𝑖𝑛(𝐴𝑃)
 

𝑠𝐵𝑟𝑆𝑠𝑐𝑎𝑙𝑒𝑑 = [𝑠𝐵𝑟𝑆 − 𝑚𝑖𝑛(𝑠𝐵𝑟𝑆)]  ×  
1

𝑚𝑎𝑥(𝑠𝐵𝑟𝑆) − 𝑚𝑖𝑛(𝑠𝐵𝑟𝑆)
 

Then the weighted sum of the three metrics can be expressed as: 

1

3
(𝐴𝑈𝐶𝑠𝑐𝑎𝑙𝑒𝑑 + 𝐴𝑃𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑠𝐵𝑟𝑆𝑠𝑐𝑎𝑙𝑒𝑑) 

Modification of predicted risks 

It should be noted that the predicted risks do not have a strictly monotone increasing relationship 

with ages, as the prediction models for different ages were developed separately. To avoid the 

occasional decrease in predicted risks, we force the predicted risks at age A to be equal to or 

greater than the maximum of predicted risks at ages ≤ A, i.e.  

𝑅𝑖𝑠𝑘𝐴
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

=max(riskA,riskA-) 

riskA = predicted risk by age A 

riskA-= predicted risk by ages younger than A 

Predictors 

Table 4A listed the predictors used in modeling. For EN-ALR, chemotherapy agents that were 

rarely used in the study sample, such as busulfan, CCNU, chlorambucil, melphalan, thiotepa, 

idarubicin, mitoxantrone, were coded as binary Yes/No. In contrast to regression methods, 

XGBoost, as a tree-based machine learning algorithm, “prefers” continuous variables than 

categorical variables because it can split it at any point that minimizes the loss function. Therefore, 

doses of chemotherapy agents were used in developing the XGBoost model. 
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Table G.1 Predictors used in developing EN-ALR and XGBoost algorithms 

Difference between predictors in two algorithms were shaded in blue and orange 

Variable Description EN-ALR XGBoost 

Race (3 levels) Categorical Categorical 

Age at Cancer Diagnosis Continuous Continuous 

BMT Indicator Binary Binary 

Cancer Diagnosis Type (8 levels) Categorical Categorical 

Minimum Ovarian Radiation Dose Continuous Continuous 

Radiation doses to pituitary Continuous Continuous 

Total body irradiation dose Continuous Continuous 

CED Continuous Continuous 

BCNU Continuous Continuous 

Busulfan Binary Continuous 

CCNU Binary Continuous 

Chlorambucil Binary Continuous 

Cyclophosphamide Continuous Continuous 

Ifosfamide Continuous Continuous 

Melphalan Binary Continuous 

Nitrogen Mustard Continuous Continuous 

Procarbazine Continuous Continuous 

Thiotepa Binary Continuous 

Carboplatin Continuous Continuous 

Cis_Platinum Continuous Continuous 

Bleomycin Continuous Continuous 

Daunorubicin Continuous Continuous 

Doxorubicin Continuous Continuous 

Idarubicin Binary Continuous 

Methotrexate Continuous Continuous 

Mitoxantrone Binary Continuous 

VM 26 Continuous Continuous 

VP 16 Continuous Continuous 

Interaction: Age at Cancer Diagnosis 

 and BMT 
Continuous NA 

Interaction: Age at Cancer Diagnosis 

 and Minimum Ovarian RT Dose 
Continuous NA 
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Appendix H Validated performance of models with CED and models with 10 individual 

alkylating agents 

 

The three figures in this appendix showed that models with ten individual alkylating agents (red) 

had superior performance comparing to models with CED (blue) at most of age thresholds.  

 

 
Figure H.1 Nested CV validated AUC between models with 10 individual alkylating agents and 

models with CED 
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Figure H.2 Nested CV validated AP between models with 10 individual alkylating agents and 

models with CED 

 

 
Figure H.3 Nested CV validated sBrS between models with 10 individual alkylating agents and 

models with CED 
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Appendix I Application of the prediction tool 

The relevant treatment information table is provided for input values. The predicted risks of POI 

from age 21 to 39 are plotted based on the information in the table. Two examples are presented 

below. 

 

Example 1 (Table B1 and Figure B1): 

Suppose one girl (race: white) was diagnosed with Leukemia at age 2. During the cancer treatment, 

she received radiotherapy including the irradiation to two ovaries and pituitary. The lower 

cumulative doses received between both side ovaries was 8.1 cGy and the pituitary received 1800 

cGy radiation doses. Her chemotherapy included a total cumulative cyclophosphamide dose 13007 

mg/m2, daunorubicin dose 520 mg/m2, doxorubicin dose 90 mg/m2, methotrexate dose 460 mg/m2, 

and VM 26 dose 6338 mg/m2. 

 

Example 2 (Table B2 and Figure B2): 

Suppose one girl (race: Asian or Pacific Islander) was diagnosed with Non-Hodgkin lymphoma at 

age 14. During the cancer treatment, she received radiotherapy including the irradiation to two 

ovaries and pituitary. The lower cumulative doses received between both side ovaries was 2.3 cGy 

and the pituitary received 47 cGy radiation doses. Her chemotherapy included a total cumulative 

BCNU 300 mg/m2, cyclophosphamide dose 15576 mg/m2, daunorubicin dose 118 mg/m2, 

doxorubicin dose 181 mg/m2, methotrexate dose 7934 mg/m2, and VP 16 dose 6184 mg/m2. 
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Table I.1 Information table for Example 1 

Variable Input Variable Input Variable Input 

Race White BCNU 0 Carboplatin 0 

Age at Cancer Diagnosis 2 Busulfan 0 Cis_Platinum 0 

BMT Indicator No CCNU 0 Bleomycin 0 

Cancer Diagnosis Type Leukemia Chlorambucil 0 Daunorubicin 49.3 (mg/m2) 

Minimum ovarian radiation dose 280 (cGy) Cyclophosphamide 0 Doxorubicin 0 

Radiation doses to pituitary 2410 (cGy) Ifosfamide 0 Idarubicin 0 

Total body irradiation dose 0 Melphalan 0 Methotrexate 9404 (mg/m2) 

  Nitrogen_Mustard 0 Mitoxantrone 0 

  Procarbazine 0 VM 26 1298 (mg/m2) 

  Thiotepa 0 VP 16 0 

 

 
Figure I.1 Predicted risks of POI from age 21 to 39 for Example 1 
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Table I.2 Information table for Example 2 

Variable Input Variable Input Variable Input 

Race 
Asian or Pacific 

Islander 
BCNU 300 (mg/m2) Carboplatin 0 

Age at Cancer Diagnosis 14 Busulfan 0 Cis_Platinum 0 

BMT Indicator Yes CCNU 0 Bleomycin 0 

Cancer Diagnosis Type NHLa Chlorambucil 0 Daunorubicin 118 (mg/m2) 

Minimum ovarian radiation dose 2.3 (cGy) Cyclophosphamide 15576 (mg/m2) Doxorubicin 181 (mg/m2) 

Radiation doses to pituitary 47 (cGy) Ifosfamide 0 Idarubicin 0 

Total body irradiation dose 0 Melphalan 0 Methotrexate 7934 (mg/m2) 

  Nitrogen_Mustard 0 Mitoxantrone 0 

  Procarbazine 0 VM 26 0 

  Thiotepa 0 VP 16 6184 (mg/m2) 

a: NHL: Non-Hodgkin lymphoma 

 
Figure I.2 Predicted risks of POI from age 21 to 39 for Example 2 


