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Prom a mathematical point of view, the art of good m odelling  relies on: (i) a sound 

understanding and appreciation of the biological problem; (ii) a realistic mathe

matical representation of the important biological phenomena; (iii) finding useful 

solutions, preferably quantitative; and what is crucially important (iv) a biological 

interpretation of the mathematical results in terms of insights and predictions. The 

mathematics is dictated by the biology and not vice-versa. Sometimes the mathe

matics can be very simple. Useful mathematical biology research is not judged by 

mathematical standards but by different and no less demanding ones.

J.D. Murray [77]
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ABSTRACT

The combination of fluorescence microscopy techniques and mathematical mod

elling facilitates the study of two important aspects of the dynamics of nuclear pro

teins in living cells: (i) the quantitative assessment of the mobility of the proteins, 

and (ii) their spatial organization in the cell nucleus. The first aspect is addressed 

by examining three models that can be used to interpret experimental FRAP (fluo

rescence recovery after photobleaching) data: a diffusion model, a reaction-diffusion 

model, and a compartmental model. The second aspect is addressed by developing 

a fourth-order aggregation-diffusion model, whose dynamics provide an explanation 

for the aggregation of nuclear proteins.

The diffusion model describes the dynam ics of diffusive nuclear proteins. B y  

analyzing FRAP data with this model, estimates of effective diffusion coefficients 

can be obtained. It is shown that these estimates can be affected by the presence of 

the nuclear membrane. The reaction-diffusion model and the compartmental model 

describe the dynamics of diffusive nuclear proteins undergoing binding events. The 

analysis of these models leads to an elegant explanation of two important lim itin g  

dynamical types of behaviour exhibited by FRAP data, namely a reduced diffusive 

behaviour, and a  biphasic behaviour. The results are used to  characterize FRAP 

data of two nuclear proteins: histone HI and actin, and to estimate kinetic parame

ters such as binding and unbinding rates.

The fourth-order aggregation-diffusion model provides a description of the ag

gregation process undergone by splicing factors (nuclear proteins which play an 

important role in RNA splicing). A linear stability analysis of the model reveals the 

emergence of spatial patterns, and a  bifurcation analysis is used to delimit regions 

of stability and instability.
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Chapter 1

Introduction

The study of the dynamics of nuclear proteins has received an enormous amount of 

attention during the last fifteen years. The reason for such a strong interest is related 

to the important roles that nuclear proteins play in the regulation of gene expression 

and in the development of new technologies that have allowed experimentalists to 

explore the microscopic world of the nucleus in eukaryotic cells.

One of the major consequences of the sequencing of entire genomes, and the re

sulting studies that examine whole genome changes in gene expression, is the need 

to address the complexity of the cellular environment [5, 23, 67, 81, 89, 93]. Fortu

nately, the cell nucleus has a  less complex topology than the cytoplasm. Rather than 

containing a multitude of membrane-bound structures, the cell nucleus contains only 

an outer membrane that restricts the flow of molecules greater than approximately 

50 KDa. Because there are no membrane barriers within the interior of the nucleus, 

the environment is relatively homogeneous and accessible by diffusion [67]. Besides 

diffusion, binding events between smaller molecules, such as proteins, and larger 

molecules, such as chromosomes, may be the principal determinant of how mole

cules move through and spatially distribute within the nucleoplasm [10]. Obtaining 

measurements of the molecular diffusivity, the binding events and how, for example, 

mutations in proteins change these binding events, is a  critical stepping stone to 

quantitative modelling of the functional dynamics of the genome [2 0 , 8 8 ].

The method that is most commonly used to obtain measurements of the move-

1
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Figure 1 .1 : Example of a FRAP experiment. The image was obtained at Dr. 

Hendzel’s lab at the Cross Cancer Institute, University of Alberta. The splicing 

factor ASF was tagged with a fluorescent protein (GFP), and a band of width 3 jum 

was photobleached across the nucleus of a living cell. As time elapses, the photo

bleached region recovers its fluorescence.

ment of proteins in cells is called FRAP (Fluorescence Recovery After Photobleach

ing). FRAP is an experimental technique used to measure the mobility of fluores- 

cently tagged molecules [1, 8 , 45, 57, 99, 111, 112]. The underlying principle in a 

FRAP experiment is that biomolecules are coupled to a fluorescent tag and can be 

visualized and monitored over space and time using fluorescence microscopy. Under 

typical experimental conditions, the concentration of fluorescent biomolecules is at 

steady state before photobleaching. To study the kinetic behaviour of this popula

tion of fluorescent molecules, a specific region within the sample is photobleached,

i.e., it is exposed to a  brief but sufficiently intense excitation pulse that irreversibly 

inactivates fluorescence emission. Thus, molecules outside of the photobleached re

gion remain fluorescent whereas the molecules within the photobleached region are 

nonfluorescent. If the underlying steady-state distribution reflects biomolecules that 

are in a constant flux, the fluorescent and nonfluorescent pools will mix over time 

until a new steady state of fluorescent biomolecules is achieved. The time required 

to reach this steady state is a reflection of the rate at which fluorescently tagged 

molecules normally move. To measure this mobility, the fluorescence intensity in 

the photobleached region is recorded over time by collecting images of the fluo

rescently labelled sample until equilibrium is reached (figure 1.1). The resulting

2
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Figure 1.2: Fluorescence intensity recovery of type HI histone after photobleaching 

a  band of width 1.5 /rm across the nucleus of a SK-N-SH human neuroblastoma cell. 

The FRAP data were obtained at Dr. Hendzel’s lab at the Cross Cancer Institute, 

University of Alberta.

fluorescence recovery data axe used to plot a normalized fluorescence recovery curve 

of the fluoresce intensity versus time (figure 1 .2 ).

FRAP was developed during the 1970s for studying molecular diffusion [1, 22, 

56, 90, 95], but its application to the study of proteins in living cells is more recent 

and driven largely by the identification and development of fluorescent proteins that 

can be used as cotranslational tags for proteins of interest [36, 43, 45, 57, 94, 106, 

109, 110], that is, a  protein under investigation can be targeted or tagged with a 

fluorescent tag by fusing the gene encoding the fluorescent tag protein with the 

gene encoding the endogenous protein. A successful tagging results in a fluorescent 

fusion protein whose function rem ain s the same as that of the host protein. In 

particular, the use of Green Fluorescent Protein (GFP) from the jellyfish Aequorea 

victoria as a cotranslational tag has been crucial for visualizing and monitoring the 

localization of proteins in living cells [11, 58, 64, 92, 102, 115], and has made the 

use of FRAP experiments a powerful tool to study the mobility of nuclear proteins 

[12, 24, 40, 46, 63, 82, 87, 96].

Phair and Misteli [87] were the first ones to use FRAP experiments to demon

strate the fact that the movement of nuclear proteins can occur by diffusion [63, 

83, 85]. They provide estimates of diffusion coefficients of nucleoplasmic GFP fu

sion proteins involved in the process of DNA transcription and RNA splicing (for

3
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example, GFP fused to HMG-17, pre-mRNA splicing factor SF2/ASF, and rRNA 

processing protein fibrillarin). They found that nuclear proteins migrate about 50 to 

1 0 0 -fold slower than predicted based on their molecular weight and on the diffusion 

of inert molecules (e.g., green fluorescent protein) in the nucleoplasm [46, 87]. This 

reduced mobility, together with the fact that the spatial distribution pattern of the 

fluorescently tagged proteins was not always homogeneous but rather heterogeneous 

(for example, the distribution of GFP-SF2/ASF) supported the idea that these nu

clear proteins were interacting with other nuclear components or structures, and 

that diffusion coefficients were a measure of the overall protein mobility.

In order to estimate the diffusion coefficients, Phair and Misteli [87] used the 

techniques developed by Axelrod et al. [1]; that is, to estimate an effective diffusion 

coefficient by fitting the solution of the diffusion equation on an infinite domain 

to the FRAP data. This point of intersection between nuclear protein dynamics 

and mathematics in the context of FRAP experiments is the point of origin for this 

research project, from which the following interesting questions arise:

1. How is the diffusion equation related to the analysis of FRAP data?

2. Does the approximation that diffusion occurs on an infinite domain lead to suf

ficiently accurate estimates of diffusion coefficients when in reality the nucleus 

is bounded by a membrane?

3. Are the fluorescently tagged proteins merely diffusing or are they undergoing 

molecular interactions?

4. How can we incorporate simple protein interactions in the analysis of FRAP 

data?

5. Is it possible to explain the heterogeneous spatial distribution of some nuclear 

proteins?

The main objective of this thesis is to address the aforementioned questions 

through mathematical modelling. These questions can be divided into two types 

according to the problem they address: (i) mobility, and (ii) pattern formation.

4
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The first four questions axe of mobility type, and the last question is of pattem- 

formation type. The thesis is divided into five main chapters, each one of which 

starts with a brief introduction and ends with a  discussion. Chapter 2 deals with 

mobility questions 1 and 2, chapters 3-5 deal with mobility questions 3 and 4, and 

chapter 6  deals with pattem-formation question 5 .

Chapter 2 offers a brief review of FRAP experiments and an exposition of how 

the diffusion equation is incorporated in the analysis of experimental FRAP data. 

We also address the issue of neglecting the nuclear membrane in the analysis, i.e., of 

estimating effective diffusion coefficients using the diffusion equation on an infinite 

domain. This method gives satisfactory results provided the photobleached area is 

small relative to the size of the domain and away from the nuclear membrane. We 

discuss the influence of the membrane and the location of the photobleaching on 

the estimation of diffusion coefficients for diffusing biomolecules in a bounded do

main, and show that overestimations or underestimations can result from ignoring 

the membrane. We provide a  simple methodology to estimate effective diffusion co

efficients of nuclear proteins when the nuclear membrane is taken into consideration, 

and apply it to estimate the overall mobility of two nuclear proteins, histone HI and 

nuclear actin.

However, fitting the diffusion equation to the experimental data might not be 

satisfactory. The reason for this is that most functional nuclear proteins undergo 

interactions with subcellular structures, affecting the recovery of fluorescence. In 

particular, FRAP experiments have shown that nuclear proteins can move about 

50 to 100-fold slower than predicted based on their molecular weight [46, 87]. This 

reduced mobility is a  direct consequence of binding interactions with macromole

cules or structures, such as chromatin or interchromatin domains within the nucle

oplasm, which are sufficiently large that they do not diffuse significant distances 

on the time-scale of the FRAP experiment [10, 36, 51, 69, 100]. During FRAP 

experiments, fluorescent biomolecules undergoing binding events redistribute into 

the photobleached region by first dissociating from their binding sites outside of the 

photobleached region and then, through a random walk, eventually encountering a

5
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binding site within the photobleached region. As a result, reversible association is 

the rate-limiting step in the recovery of fluorescence. Therefore, it would be mean

ingful and biologically informative to incorporate these binding interactions into 

mathematical models that can be used to fit the experimental data.

In chapter 3, we consider a  well-known linear reaction-diffusion equation to de

scribe the dynamics of diffusive fluorescent proteins in the cell nucleus undergoing 

a reversible binding-unbinding process with an approximate spatially homogeneous 

structure that is considered immobile on the time scale of molecular movement. 

For example, chromatin-associated proteins interact with interphase chromatin that 

approaches a homogeneous distribution in human cell lines and is immobile on the 

time scale of a typical FRAP experiment. The reaction-diffusion model can be used 

to analyze FRAP data and quantify these molecular interactions. On the basis 

of the solution of the model, we derive an explicit theoretical recovery curve that 

can be used to fit experimental FRAP data and estimate the kinetic parameters 

that describe reversible binding interactions, namely the binding (association) and 

unbinding (dissociation) rates. These parameters can be used to infer biologically 

meaningful information of the protein dynamics, such as the protein residence time 

in a bound state, the average time between binding events, the proportion of the 

protein population that is bound, and the proportion that is free to diffuse.

Of particular interest is the application of the reaction-diffusion model presented 

in chapter 3 to quantify the spatio-temporal dynamics of histone HI and nuclear 

actin. We describe the dynamics of these proteins and confirm that the model as

sumptions are met. By interpreting FRAP data of these proteins with the reaction- 

diffusion model, we conclude that the data can be explained satisfactorily when 

the protein interactions axe taken into consideration. Specifically, the interpretation 

of FRAP data for histone HI leads to the hypothesis that another subpopulation 

of the protein should be considered, namely a subpopulation weakly bound to the 

chromatin structure. This hypothesis is consistent with the experimental evidence 

of a  rapid exchange of histone HI on chromatin [51]. Further, the interpretation of 

FRAP data for nuclear actin supports recent evidence that actin is present in the

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nucleus in polymeric form [61].

We notice that the relevant biological information determined in chapter 3 (the 

protein residence time in a bound state, the wandering time between b in d in g  events, 

the proportion of the protein population that is bound, and the proportion that is 

free to diffuse) can be obtained from the time-dependent parameters representing 

the binding and unbinding rates, and does not make any use of spatial information. 

This, together with the fact that FRAP data are presented as a space-independent 

function, give rise to the following question: Can we simplify the task of parame

ter estimation by developing a new approach for analyzing FRAP data of nuclear 

proteins undergoing binding events in which time represents the only independent 

variable?

Motivated by this question, we introduce in chapter 4 a new approach for ana

lyzing experimental FRAP data of nuclear proteins undergoing a reversible binding 

interaction. Specifically, we propose a compartmental model that consists of a sys

tem of ordinary differential equations, where the only independent variable is time. 

The model is based on the fact that photobleaching the cell nucleus creates bleached 

and unbleached compartments, where the dynamics of the fluorescent proteins can 

be monitored. The kinetic parameters of the model are the binding and unbinding 

rates, and a new parameter, called the diffusional transfer coefficient, that describes 

the flux of fluorescent proteins in and out of the compartments. By solving the model 

explicitly, we derive a theoretical recovery curve that can be used to fit FRAP data 

and estimate binding and unbinding rates, which in turn allows us to extract the 

relevant biological information. The model allows for a  significant simplification 

in the task of parameter estimation. Specifically, the resulting theoretical recovery 

curve is given by a  simple sum of two exponential terms. We present a parameter 

estimation methodology, and apply it to estimate the proportions of the polymeric 

and monomeric pools of actin within the nucleus [61]. The results are consistent 

with the estimates obtained using the reaction-diffusion model in chapter 3.

The apparent tradeoff for the simplicity of the theoretical recovery curve obtained 

from the compartmental model is that it does not offer a straightforward estimate

7
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of a diffusion, coefficient, but instead it provides an estimate of a new parameter, the 

diffusional transfer coefficient. Therefore, the following new question arises: Is the 

diffusional transfer coefficient related to the diffusion coefficient? In other words, 

what is the relationship between the reaction-diffusion model presented in chapter 

3 and the compartmental model developed in chapter 4?

We address this question in chapter 5. Specifically, we relate the diffusional 

transfer coefficient to the diffusion coefficient by applying the concepts of residence 

time, transit time [31, 32], and mean time to capture [3]. The resulting relation 

provides a  simplified method for estimating the diffusion coefficient. The method 

is applied to estimate the diffusion coefficient of nuclear actin. The estimate is 

consistent with the one obtained in chapter 3 using the reaction-diffusion model.

The other main issue addressed in chapter 5 is related to the behaviour of FRAP 

data presented in both chapter 3 and chapter 4. In particular, we note that the 

behaviour of FRAP data for histone HI differs greatly for that of nuclear actin: the 

FRAP data for histone HI is characterized by a slow and gradual recovery, whereas 

the FRAP data for nuclear actin exhibits a  biphasic behaviour, with a  fast initial 

recovery followed by a slow final recovery. The natural questions that arise are the 

following: Can we explain the origin of these types of behaviour mathematically? 

Can we take advantage of these particular features to employ simpler theoretical 

recovery curves to fit the data?

Motivated by these questions, we offer in chapter 5 a  characterization of the 

fluorescence recovery curves for nuclear proteins whose dynamics can be described 

by the reaction-diffusion model presented in chapter 3 or the compartmental model 

developed in chapter 4. Specifically, we use perturbation analysis to provide a formal 

mathematical explanation of two lim iting rjyna.mir.al types of behaviour exhibited by 

FRAP data, namely (i) a reduced diffusive behaviour, in which the recovery curve 

looks like the one produced by a single slower diffusing population, and (ii) a biphasic 

recovery, distinguished by a fast phase and a slow phase. We identify successfully the 

FRAP data for histone HI as having a reduced diffusive behaviour, and the FRAP 

data for nuclear actin as having a biphasic behaviour. The perturbation analysis

8
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also provides a spectrum of simple theoretical recovery curves that simplifies the 

task of parameter estimation.

In chapter 6 , we focus our attention on the last problem in this research project: 

the one concerning the heterogeneity in the spatial distribution of nuclear proteins 

demonstrated by fluorescence microscopy images. In particular, we focus on the 

spatial heterogeneous distribution of splicing factors. Splicing factors are nuclear 

proteins that remove introns (noncoding sequences in the genes) from precursor 

mRNA molecules in order to form the mature mRNA. During interphase, splic

ing factors are concentrated in approximately 25 to 50 clusters. These aggregates 

of splicing factors, which are heterogeneously distributed in a “speckled” pattern 

in the nucleus are called Splicing Factor Compartments (SFC’s) or nuclear speck

les [46, 49, 87, 97, 98]. The natural question that arises is the following: What 

causes the compartmentalization of splicing factors? The objective of chapter 6  is 

to address this question using mathematical modelling. In the chapter, we review 

the most recent findings on the dynamical nature of splicing factors, and based 

on current biological hypotheses for their self-organization, we propose a fourth- 

order aggregation-diffusion model that describes a possible mechanism for the for

mation of splicing factor compartments. The model incorporates two hypotheses, 

namely (1 ) that self-organization of dephosphorylated splicing factors, modulated 

by a  phosphorylation-dephosphorylation cycle, is responsible for the formation and 

disappearance of speckles, and (2 ) that an underlying nuclear structure plays a ma

jor role in the organization of splicing factors. A linear stability analysis about 

homogeneous steady-state solutions of the model reveals how the self-interaction 

among dephosphorylated splicing factors can result in the onset of spatial patterns. 

A detailed bifurcation analysis of the model describes how phosphorylation and de

phosphorylation modulate the onset of the compartmentalization of splicing factors, 

and allows us to to delimit regions of stability and instability.

Finally, we summarize the main results of the thesis and discuss the direction of 

future work in chapter 7.

9
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Chapter 2

Analysis of FRAP Data with 

the Diffusion Equation

Fluorescence Recovery After Photobleaching (FRAP) is an experimental technique 

used to measure the mobility of proteins within the cell nucleus. After proteins 

of interest are fluorescently tagged for their visualization and monitoring, a small 

region of the nucleus is photobleached. The experimental FRAP data are obtained 

by recording the recovery of the fluorescence in this region over time. The curve 

obtained by plotting the data is referred to as the fluorescence recovery curve, or 

FRAP curve, or simply FRAP data. An example of a fluorescence recovery curve is 

shown in figure 1 .2 .

The fluorescence recovery data recorded, say at times tj, with 1 <  j  < n, can be 

presented in two forms: normalized with respect to the fluorescence intensity in the 

bleached region before photobleaching,

or normalized with respect to the expected final fluorescence intensity in the bleached 

region after recovery,

Assuming that the entire population of biomolecules is mobile, the difference be-

(2 .1)

(2 .2) F{tj) .

10
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tween these normalizations is that in the first case the proportion of the fluorescence 

intensity lost due to photobleaching is exhibited in the recovery, and therefore, the 

normalized data will not reach unity, i.e., F*(tn) <  1, whereas in the second case 

this loss is not exhibited in the recovery, and consequently, F(tn) «  1 . The impor

tance of this difference will become apparent later. The data shown in figure 1.2 are 

normalized in form (2 .2 ).

Depending on the purpose of the experiment, FRAP data can be analyzed differ

ently. A simple measurement such as the half-time of fluorescence recovery may be 

sufficient to describe the protein behaviour, but in general, mathematical modelling 

is required to describe the mobility of proteins and estimate kinetic parameters by 

fitting theoretical fluorescence recovery curves to the experimental FRAP curves. 

The most commonly used approach is based on the assumption that the spatio- 

temporal dynamics of the proteins is diffusive in nature. Under this assumption, the 

kinetic parameter that measures the rate of movement is the diffusion coefficient, 

which reflects the mean squared displacement of the proteins through a random 

walk over time. Because the diffusion equation does not take into consideration any 

kind of interaction that nuclear proteins might be undergoing, the measurement ob

tained has been more appropriately termed effective or apparent diffusion coefficient 

[58, 67, 95].

In this chapter, we will concentrate on the analysis of FRAP data for nuclear 

proteins using the diffusion equation. The diffusion equation was studied in the 

context of FRAP data by Axelrod et al. [1]. Their work assumes that biomolecules 

diffuse on a two-dimensional infinite domain, where the photobleached region is a 

circular area, and the results have been applied recently to estimate effective diffu

sion coefficients of nuclear proteins [87]. However, the cell nucleus is a finite region 

bounded by a  membrane, and therefore it is biologically reasonable to consider a 

bounded domain in the analysis. Thus, on the basis of the work in [1 ], section 2.1 

aims at presenting an exposition of how the diffusion equation, on both bounded 

and unbounded domains, is used in the analysis of FRAP data for nuclear pro

teins. The treatment of the diffusion equation using circular photobleached regions

11
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on infinite or circular domains requires a radially symmetric initial condition and 

a solution depending only on the radial variable. This does not allow us to study 

the influence of the location of the photobleaching on the fluorescence recovery. For 

this reason, we have chosen rectangular photobleached regions on infinite or rectan

gular domains for the analysis of FRAP data. This will allow us to compare the 

behaviour of fluorescence recovery curves on bounded and unbounded domains, to 

assess the influence of the nuclear membrane and the location of the photobleached 

region on the fluorescence recovery, and to reduce the problem to a one-dimensional 

spatial domain. By solving the diffusion equation explicitly, we will be able to derive 

theoretical recovery curves that can be used to interpret FRAP data and estimate 

effective diffusion coefficients. In section 2.2, we shall see how the incorporation of 

a nuclear membrane into the analysis provides an explanation for the experimental 

differences in the fluorescence recovery curves that are observed depending on the 

size and the location of the photobleached region. In section 2.3, we shall discuss how 

the oversight of a nuclear membrane can lead to erroneous estimations of effective 

diffusion coefficients. In this section, we will also provide a very simple methodol

ogy for estimating effective diffusion coefficients for nuclear proteins using FRAP 

experiments. The methodology will be applied to experimental FRAP data of two 

nuclear proteins, histone HI and nuclear actin, in order to quantify their overall 

mobility in the cell nucleus. The chapter concludes with a discussion in section 2.4.

2.1 Obtaining Theoretical Recovery Curves from The 

Diffusion Equation

When performing FRAP experiments to determine the overall mobility of nuclear 

proteins, the cell nuclei are considered to be flat domains, due to the typical ex

perimental set-up in which the cell is flattened. Thus, the spatial domain of the 

problem has two dimensions. The kinetic process responsible for the movement of 

fluorescent biomolecules after photobleaching is assumed to be diffusion, described

12
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by the diffusion equation,
Q

■57 u{x, y;t) = D Au(x,  y; t) , t >  0 ,
(2.3) 6t

u{x,y;0) =  f {x ,y)  ,

where u(x, y; t) represents the concentration of the fluorescent (unbleached) protein
a2 a2after photobleaching at position (x,y) at time t ,  A =  —?  +  •— r denotes the

ox1 oy2
Laplacian operator, D  is the effective diffusion coefficient, and the initial condition 

f ( x , y ) represents the distribution of fluorescent (unbleached) proteins right after 

photobleaching.

Thus, under the assumption that the tagged fluorescent proteins axe moving 

randomly according to the diffusion equation (2.3), the photobleached region will 

recover fluorescence at a rate dictated by the effective diffusion coefficient D. There

fore, the main task is to estimate this parameter, which will be a quantitative mea

surement of the overall mobility of the protein under investigation. To do so, it is 

necessary to solve the diffusion equation in order to obtain a theoretical fluorescence 

recovery curve that can be used to fit the FRAP data.

In this section, we will present an exposition of how the diffusion equation (2.3) 

is used in the analysis of FRAP data. The results are based on the work by Axelrod 

et al. [1], who assume that biomolecules diffuse on an infinite domain. Since our 

focus is on the dynamics of nuclear proteins that are confined to a bounded domain, 

namely the cell nucleus, we will extend the results by also considering bounded 

domains.

As a  first step to obtaining a theoretical fluorescence recovery curve, we deter

mine the initial condition f ( x , y ) in (2.3). For simplicity, we will assume not only 

that photobleaching is performed on a cell nucleus that has reached a steady-state 

distribution of fluorescent proteins, but also that the intensity of the laser beam used

to photobleach a region is set up with the following rectangular intensity profile
P

(2.4) I{x,y) = <

4 hi h2

0 , y ~ c 2 >\h2\,

0 , x - c i > | h i | ,

13
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Bleached
Area

Figure 2.1: Photobleached region in two dimensions.

where P  is the laser power, 2hi and 2h2 are the d im ensions of the area being 

photobleached, and c =  (ci, C2 ) is the center of the photobleaching (see figure 2 .1 ).

The great advantage of this profile is that it provides a simple initial condition for 

the partial differential equation (2.3). Assuming, as in [1 ], that the photobleaching 

is a simple irreversible linear reaction described by the ordinary differential equation

(2.5) du  _
S  = ~a I u '

where —a I  denotes the constant rate of the reaction, and that a short laser beam 

pulse lasts a time T, then the initial condition /  for the unbleached population of 

the protein is given by

(2 .6) u(x,yi  0) =  f{ x ,y)  =  u0exp { - a I { x , y ) T )

where uq is the initial uniform  steady state of the fusion protein before photobleach

ing. Due to the exponential term in (2.6), if the laser power P  is sufficiently large, 

the initial condition for (2.3) can be approximated as follows:

(2.7) u{x,y,0) = f (x ,y )  = <

0  , \x — c \ \ < h \ ,  \y -  c2| < h2 ,

u o , |y -  c2| >  h2 ,

uo , \ x -  ci | >  hi .

To solve the initial value problem (2.3), it still remains to introduce a spatial do

main. The approach that has been used to study diffusion processes in the cell 

nucleus monitored by photobleaching technique assumes an infinite domain [1, 87].

14
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We will review this approach in section 2.1.3. However, the cell nucleus is a finite 

region bounded by a membrane. We will treat this case of bounded domains in sec

tions 2.1.1 and 2.1.2. We summarize the resulting theoretical fluorescence recovery 

curves for both bounded and unbounded domains in section 2.1.4. The consequences 

of considering an unbounded versus a bounded domain when estimating effective 

diffusion coefficients will be discussed in the remainder of this chapter.

2.1.1 Explicit Solution on a Bounded Domain

Denoting the cell nucleus as D, approximating its shape with a  rectangle

to =  {(a;,y) G ffi.2 ; 0 < x  < a , 0 <  y < b} ,

and assuming that there is no flux of fluorescent biomolecules into or out of it on the 

time scale of a FRAP experiment, the diffusion equation (2.3) becomes an initial 

boundary-value problem subject to Neumann (no-flux) boundary conditions:

=  {(x,y) £ 1R2 ; x = 0 ,a ,  0 < y < 6 } ,

3 ^ 2  =  {(£>3/) € IR.2 ; y =  0, b, 0 < x < a } .

To solve (2.8) explicitly, we use the method of separation of variables. So, letting 

u(x, y;t) = X ( x ) Y (y)T(t) , and substituting this into (2.8), the following eigenvalue

7/Y-r ir t) = D Au(x,y;t)  , ( x ,y ) e f i ,  i > 0 ,

{x,y) e  dfti , t  > 0  ,
(2 .8 )

(x,y) e  dO.2 , t > 0  ,

u(x,y,0) = f ( x ,y )  ; f a y )  € to.

where

problem is obtained:

(2.9)

(2 .10) 

(2 .11)

X "  = - X X  , X'{Q) = X \ a )  =  0 , 

Y" = - y Y  , y '(0) =Y'{b)  = 0 ,  

T  = - ( A  + y ) D T .

15
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Prom (2.9), we obtain the eigenvalues An =  , n  =  0 ,1 ,2 ,...  , corresponding

to the normalized eigenvectors

*o =  - 7=,  Vo

( 7717T\ ^
—— J , ro =  0 , 1 , 2 , . . .  , corre

sponding to the normalized eigenvectors

r ° -  7 8 -

Ym =  y |  cos(^“ )  , m  =  l , 2 , . . .

Thus, using the principle of superposition, the solution of the initial boundary-value 

problem (2 .8 ) is given by

u(x, y, t) =  -£ =  4̂oo +  
Vab

£  E ^ e - < ^ c o s ( = )  +
71=1

(2 .12)
2 00

771=1

—  V  A e-*2( £ +2£ ) Dt cos ( —  ̂ cos ( ^ \2 ^  A™ e C0SV a )  V b )V n,777=1

where the Fourier coefficients are given by

Aoo =  - 7 =  f  f  f{x ,y )dydx  
Vab Jo Jo

=  - y = { a b  -  Ahihz) ,
Vab

16
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Aon =

=  2h2Uoa\— Sn (c i ,h i ,a ) ,  n > l ,  
ao

■A-mO — M l  I  /(*•»)

=  2 hiuo b\j —  Sm(c2, /12, 6 ) , rn >  1 ,

>lmn =  ^== J  j  f ( x , y )  cos cos dydx

2uoab
y/ab

^771 (C 2 5 ^ 2 ?  h )  ^71 ( C l 5 h i ,  &) , 7 7 7 ,7 1 ^  1  ,

and

(2.13) S * (c ,M  =
. (  hir(c — A) \  . /  fc7r(c +  h)

sin ------:   — sin '
I I

2.1.2 Reducing the Dimension Using a Band Photobleaching Pro
file

When studying the mobility of biomolecules in living cells using FRAP experiments, 

a very common photobleaching profile is a narrow band [10, 62,100,101,110]. In this 

case, it suffices to consider a one-dimensional problem, as follows. If we approximate 

the shape of the cell nucleus with a rectangle and assume that the profile of the 

photobleaching is a narrow band of width 2 h, centered on the x-axis at c (figure 

2 .2 ), the initial boundary-value problem (2 .8 ) is reduced to the one-dimensional

17
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Photobleached Region

■ 2h ■
■ I ■

Figure 2.2: The shape of the cell nucleus is approximated with a rectangle of length 

I, and the profile of the photobleaching is a narrow band of width 2 /i, centered on 

the x  axis at c.

problem

(2.14)

d d^
— u{x,t) = D - ^ u ( x , t )  , x e ( 0 , l ) , t > 0 ,

s - ° -ox x  = 0,1, t >  0  ,

tt(®, 0 ) =  f ( x ) , x<=(0,Z) ,

where the initial condition is given by

0 , \x — c \ < h ,
(2.15) f{x ) = <

uo, \x — c \>  h.

Note that we have denoted the length of the rectangular domain by I (see figure 2.2) 

instead of a as was done for initial boundary-value problem (2 .8 ).

To obtain an explicit solution of the initial boundary-value problem (2.14), 

we again apply the method of separation of variables. Expressing the solution 

as u(x ,t ) =  T ( t ) X ( x ) ,  and substituting it into (2.14), we obtain the eigenvalue 

problem

(2.16) T'  =  —XDT

(2.17) X "  = - X X  , X ;(0) =  X'{1) =  0 .

( T l  7T\ 2
From (2.16), we obtain the eigenvalues An =  \~ j~ j  > n =  0 ,1 ,2 ,. . . ,  corresponding

18
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to the normalized eigenvectors

J _
v /T

/ 2  f r m x \  , .
V7 m V T )  ■ n = 1.2- - -

Thus, the solution of (2.14) is given by

(2.18) «(*.*) = ^  + a08 ’

where the coefficients An axe determined by the cosine Fourier series of the initial 

condition, that is

A° = ~7i L  = ~  2h  ̂’

\/f I cos (̂ r) f i x ) d x

2.1.3 Explicit Solution on an Unbounded Domain

For an unbounded domain, the initial value problem for the diffusion equation (2.3) 

takes the form
Q

-z-u(x,t)  =  D  A n, IRn x (0 ,o o ) , at
(2.19)

« ( * . 0  ) =  / ( * ) ,  IRn ,

where f ( x )  is given by (2.15) for n =  1  or by (2.7) for n  =  2.

The explicit solutions for the Cauchy problem (2.19) for n =  1  and n  =  2 can 

be obtained via Fourier transforms. We denote the Fourier transform of u{x, t) as

“ A(A,f)= (2 ^ / 2  J-s c e~i x ' X u (x ^ d x  ̂ A eIR n ,

19
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where x  • A denotes the dot product, and the inverse Fourier transform as

uv ( x , t ) =  ,0~ \ n/2 [  ei x 'x u( X, t ) dX,  x e l R " .(2 TT)n/2 J]Rn

Taking the Fourier transform in the x - variable of (2.19), we obtain the following 

ordinary differential equation for uA :

u£(A,t) =  —D  |A|2 ua (A, t) ,

(2 .20)

uA(A,0) =  / A( A).

The solution of (2.20) is given by

(2.21) uA(X,t) =  f A( \ ) e~t D M2 = / A(A)((e"tZ?|A|2)v)A .

Now, denoting

F - ( e- t P IA|2w _  1 f  j x - \  - tD\M2d X -  1 c= g £
1 j ( 2 D t ) n/ 2

(2 .2 1 ) becomes

(2 .2 2 ) „A( A i t ) = m j 7 A =  ^ n ,

where * stands for the convolution product. Taking the inverse Fourier transform 

of (2 .2 2 ), we obtain the solution

( 2 -2 3 )

Let us see how this solution is simplified when the initial f ( x )  is given by (2.15) 

for n =  1 or by (2.7) for n = 2.

One-dimensional case

(2.24) u{x,t) = — ^ L =  f  e~ ^ T d A +  --  f  e~1̂ d X  . 
VkHTtJ-oo y /lV m J c+

Using the initial condition (2.15), (2.23) reduces to

\Z4tt D t Jc+h 

x  — X
By making the change of variable v =  — and splitting the integrals. (2.24)

y4  D t
becomes

(2.25) u{x, t) = ~ =  (  f  e~v'd u +  f  e~y2 d v \  .f t  V-'̂ sf •'-» J
20
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Using the definition of the error function and the error function complement,

(2.26) erf(x) =  -^= f  e ^ d u ,
V *  Jo

2 f°°
(2.27) erfc(x) =  1 — erf(x) =  —=. /  e v~dv ,

V** JX

(see [16], page 14), we thus obtain that the solution to the diffusion equation (2.19) 

in a one-dimensional space with initial condition (2.15) is given by

(2.28) erfc
h + x — c

V W t
+  erfc

Two-dim ensional case

Let A =  (s, T]) € IR2 . Substituting the initial condition (2.7) into (2.23) with n = 2 

we then obtain that

r°° (x-.)2+(V- )̂2
/ /  e drjds +

J c i + h i  J —oo

(2-29) m+Al fC_Aa (l_a)2+(v.^2
/ / e dr}ds +

Jci—h\ J—oo

fC i+ h i  ro c  (x_ a)2H y _ v)2 \
/ / e < vt drjds J

Jci—hi Jc2+tl2 J
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This last expression can be rewritten as

47rDt J —00

ci+hx

( x —s )2 \
e~ ds)  +

(2.30)
’C l + h l  ( X - , ) 2

47t D t j e 4 o t d s x
ci-hi

Therefore, using the definition of the error function (2.26) and the error function 

complement (2.27), the solution to the diffusion equation (2.19) in a  two-dimensional 

space with initial condition (2.7) is given by

2.1.4 Theoretical Fluorescence Recovery Curves

Having obtained the solution of the diffusion equation on both bounded and un

bounded domains, we are now in a position to obtain theoretical fluorescence recov

ery curves that can be used to interpret the experimental FRAP data. To do so, 

it is assumed that the fluorescence intensity recorded in time in the photobleached 

region is proportional to the fluorescent population size in the region. Thus, the ex

perimental FRAP curve is expected to be proportional to the following theoretical

(2.31) u(x,y, t) — ^ 9erc{z-, ti h\, Ci) +  hi, Ci) gerc{y,t, h2 ,C2 ) ,

where
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recovery curve

(2.34) R(t) =  / u(x,t )dx  ,
A

where A represents the photobleached region, and u(x ,t)  denotes the solution of 

the initial value problem (2.3). We normalize the recovery (2.34) with respect to 

the total population of fluorescent biomolecules in the photobleached region (before 

photobleaching), and obtain theoretical fluorescence recovery curves on bounded 

and unbounded domains that can be used to interpret and fit FRAP data.

Bounded Domains

When approximating the shape of the cell nucleus with a rectangle, and setting 

a photobleaching profile as in (2.4), we simply integrate the solution (2.12) of the 

initial boundary-value problem (2.8) over A =  [ci — h\,c\  +  h\] x [c2  — ^2 , 0 2  +  

ho], and divide this result by the total population of fluorescent biomolecules in 

the photobleached region (before photobleaching), 4 «ohi^2 , to obtain the following 

theoretical fluorescence recovery curve:

In a similar way, when the photobleaching profile is a band and the problem reduces 

to one dimension, the following theoretical fluorescence recovery curve is obtained:

(2.35)

(2.36)
n = l
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Unbounded D o m a in s

By going through the same integration and normalization procedure with solutions

(2.28) and (2.31) of the Cauchy problem (2.19) in one and two dimensions, respec

tively, one obtains the theoretical fluorescence recovery curve
rc+h

dx ,(2.37) m )  =  ±  £  [erfc +  erfc ( ^ £ + £ )

for the one-dimensional case, and the theoretical fluorescence recovery curve
2  rci+hi

FlJ2 (̂ ) ., I 9erc (®j hi  i ^ 1 ) dx -)-4hi JCl- hl
(2.38)

f C i+ / i i  rcz+ hz2 /‘C i+ fti rC2+h.2

T 7~ I  9 er{%i1'->h\‘)C \)d x  I 9erc(dJi ^2 i C2 )d y  . 
J c i -h i  J c i - h i16h\h2 j Cl—hi JC2—h.2

for the two-dimensional case.

There is an immediate, yet very important, distinction between the theoretical 

fluorescence recovery curve coming from the diffusion equation on an unbounded 

domain and that coming from the diffusion equation on a bounded domain. On 

an unbounded domain, the fluorescence intensity after photobleaching eventually 

returns to its initial level, due to the fact that the supply of fluorescent proteins 

from the unbleached region is unlimited; on a  bounded domain, there is a permanent 

loss of fluorescence due to photobleaching. For example, compare the fluorescence 

recoveries in one dimension given by (2.36) and (2.37). The asymptotic recovery 

level for a bounded domain is given by

(2-39) lim FB(t) = ,t-+ oo i

whereas the asymptotic recovery level for an unbounded domain is given by
rc+h r

t—yoo
(2.40)

and therefore

t  / \ 1  f  F i- f h  + x  — c \  ( h  — x + c \lim Fi/(t) =  —  lim /  erfc I — r = -  ] +  erfc — f=  )
:-+oo UK/ 4ht->ccJc_h _ V y/ADt J \  y / W t  J

dx

2 rc+h
= —  I 2 erfc(0 )cte =  1 , 

4h Jc-h

j  __  eyr

(2.41) lim Fs{t) =  — :—  <  lim Fu(t) =  1 .t-+(50 I t-+ oo
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In other words, the theoretical recovery on a bounded domain accounts for the loss 

of fluorescence and the one on an unbounded domain does not. For this reason, 

and since the experimental fluorescence recovery can be presented normalized with 

respect to the final fluorescence intensity in the bleached region ( ~F{tj), for 1  < 

j  <  n), we introduce the following normalized recovery curves for one- and two- 

dimensional bounded domains, respectively,

(2.42) F B2(t) = - FB2('t)
lim FB(t) ’ lim FB2(t)

t -¥  OO t —t  OO

where FB(t) is given by (2.36) and FB2(t) is given by (2.35). The significance of 

the distinction between the theoretical fluorescence recovery curves presented so far 

will become apparent in the next sections.

2.2 Influence of the Nuclear Membrane

In order to assess the influence of the nuclear membrane on fluorescence recovery 

curves, a qualitative analysis of FRAP data of diffusing CBP (Creb Binding Pro

tein) in Indian Muntjac cells and of simulated recovery curves is carried out. The 

reason for choosing CBP over other proteins is that it distributes homogeneously 

throughout the nucleus when it is overexpressed and, thus, the experimental setup 

corresponds well with the theoretical assumption that the fluorescent population has 

reached a homogeneous steady-state distribution. Details of the experimental pro

cedure can be found in [51]. The analysis illustrates the importance of considering 

the existence of the membrane in the interpretation of FRAP data and the possible 

shortcomings that can arise when this is overlooked. When considering the nuclear 

membrane, significant differences in the recovery curves will appear depending not 

only on the size of the photobleached area, as would be expected, but also on its 

location.

To illustrate qualitatively how the size of the photobleached area causes differ

ences in the fluorescence recovery, we analyze data from three single experiments, 

performed at the Cross Cancer Institute, University of Alberta, by D. McDonald 

(unpublished data). In these experiments, circular areas, located approximately in
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Figure 2.3: A: Recovery curves obtained from FRAP data of CBP, presented as 

in equation (2 .1 ), after photobleaching circular areas of diameters 2, 4 and 6 yizm 

in a nucleus of approximate dimensions 10 fim x 20 yum of an Indian Muntjac cell. 

B: Simulated fluorescence recovery curves, Fq2 (t) 5 obtained from equation (2 .35 ), 

for a population of proteins diffusing with a coefficient D =  0.5 fim2 /s, after photo

bleaching square areas with side of lengths 2, 4 and 6 ptm in a rectangular domain 

of dimensions 1 0  pm  x 2 0  yum.

the center of the cell nucleus, and of diameters 2, 4 and 6  yum, were photobleached. 

The fluorescence recovery curves are shown in figure 2.3A . It can be seen that the 

asymptotic recovery levels depend on the size of the photobleached area. In partic

ular, the larger the photobleached area, the smaller the asymptotic recovery level. 

The fluorescence recovery curves in figure 2 .3A  are qualitatively s im ilar to the fluo

rescence recovery curves in figure 2 .3B , F s z i f ) ,  obtained from equation (2.35) when 

simulating the photobleaching of square regions of different sizes in the center of a 

bounded rectangular domain. The use of square photobleached regions in the simu

lations aims simply at simplifying the computations and illustrating the qualitative 

similarity with the experimental fluorescence recovery.

In contrast, if an unbounded domain had been used in the simulations, this 

qualitative similarity with the experimental data would not have been exhibited, 

since the fluorescence recovery on an undounded domain approaches 1 as time goes 

to infinity.

To show how the location of the photobleaching affects the fluorescence recovery, 

two FRAP experiments were performed by D. McDonald at the Cross Cancer In-
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Figure 2.4: A: Recovery curves obtained from FRAP data of CBP, presented as 

in equation (2 .1 ), after photobleaching a circular area of diameter 2  pm near the 

center and near the membrane (less than 0.5pm far to the membrane) of a cell nu

cleus of approximate dimensions 10 pm x 20 pm. B: Simulated fluorescence recovery 

curves for a population of proteins diffusing with a coefficient D = 0.5 pm 2 /s, after 

photobleaching a square with side of length 2pm, in the center (ci,C2 ) =  (5,10) of 

a rectangular domain of dimensions 1 0  pm x 2 0  pm, and near its boundary (when 

photobleached region is centered at (C1 .C2 ) =  (8.5,10.5)).

stitute, University of Alberta: one in which photobleaching is done near the center 

of the nucleus and another one in which photobleaching is done close to the nuclear 

membrane. The fluorescence recovery curves are shown in figure 2.4A. We note that 

the rate of recovery is slower when photobleaching takes place close to the mem

brane. The same qualitative behaviour is exhibited in the corresponding theoretical 

simulations obtained from equation (2.35) when photobleaching a square region in 

the center of a  rectangular domain and close to its boundary (figure 2.4B).

In contrast, had an unbounded domain been considered, the fluorescence recov

ery would have been independent of the location of the photobleached area, i.e., 

the fluorescence recoveries close to the boundary and in the center of the domain 

would have been identical. To illustrate this, consider, for example, the fluorescence 

recovery (2.38) on an infinite domain after photobleaching a square region centered
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at c =  (ci, c2), which can be rewritten, using the expressions (2.32) and (2.33), as

F - ( i ) = H ^ w 1) +

(2.43)
I rci+hi

16hih2 L _ ,'ci-hi
erf

h \  - r  X  — Ci

7 w r

enc

+  erf

hi — x  4- ci
7 W T

dx +

/  hi -  x +  ci Y 
V V I D t  J .

dx x

Introducing the changes of variables w =  x  — c\ , and z  =  y  — C2 (2.43) becomes

r/ii

F m (t) = [erfc (tb!)+erfc (^w). dw 4-

(2.44) i  rhi
16hih2 J_hl

dw x

C l
dz .

This last expression corresponds to the recovery curve when photobleaching a square 

region centered at (ci,c2) =  (0 , 0 ), i.e.,

rh\

-hi

1  f hl
Fu2{t) = 7 7 -  /  gerc(w,t,hu 0)dw +

4hi J-hi
(2.45)

1  rhi rhi
~ r  9er(w,t,hi,0)dw gerc(z, t,h2,0)dz , 

J - h i  J - h i

rhi
, , ,  , I 9er(w,t,hi,0)dw I16hih2 J_hl J_h2

which imphes that the fluorescence recovery on an infinite domain is independent 

of the location of the photobleached region.

2.3 Estim ating Effective Diffusion Coefficients

Prom the considerations in the previous section, it is expected that if one assumes 

an infinite domain for estimating effective diffusion coefficients, erroneous estima

tions will arise. This issue is investigated in section 2.3.1, where the importance 

of considering a bounded domain to avoid underestimations or overestimations of
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Figure 2.5: A: Fluorescence recovery curves characterized by a diffusion coefficient 

D =  0.25 fim2/s, after photobleaching a square region of area 4 pm2  in the center 

of the domain. The curve C\ represents the fluorescence recovery Fu2 (t) (equation 

(2.38)) on an infinite domain, and the curves Ci and C3 represent the fluorescence 

recovery Fb2{1) (equation (2.35)) on square domains of areas 20 fj.ro2 and 10 fi m2, re

spectively. B: The fluorescence recovery curve Fu2 (t) on an infinite domain (smooth 

curve) is used to fit the simulated FRAP data (irregular curve) obtained from adding 

noise to the curve C2 ■ This fitting gives an underestimated diffusion coefficient 

Dest «  0.15 fjm2 /s.

diffusion coefficients is stressed. In section 2.3.2, we will apply the results from 

the present and previous sections to estimate effective diffusion coefficients of two 

nuclear proteins, namely histone HI and actin.

2.3.1 Erroneous Estimations

To understand how erroneous estimations are produced, consider, for example, a 

fluorescent population of biomolecules moving with a diffusion coefficient D  =  

0.25 /xm2/s  on an infinite domain and on square domains of sizes 20 n m2  and 10 pm2. 

If a  square region of area 4 pm 2  is photobleached in the center of the domain, the 

theoretical fluorescence recovery curves would be as shown in figure 2.5A. The dif

ference between the curves comes from the fact that the corresponding asymptotic 

recovery levels depend on the size of the domain. The larger the domain, the closer 

the fluorescence recovery level is to one. Thus, the recovery curve corresponding to 

an infinite domain lies above those corresponding to bounded domains (see figure
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2.5A). Consequently, if we were to estimate a diffusion coefficient of biomolecules 

diffusing on a bounded domain using a recovery curve corresponding to an infinite 

domain, the diffusion coefficient would be underestimated. We show this with a 

numerical example. The irregular curve, shown in figure 2.5B, represents simulated 

FRAP data on a bounded domain presented in the form (2.1), and obtained by 

adding noise to the recovery curve C2 in figure 2.5A. The simulated data are fit

ted with the theoretical fluorescence recovery Fu2 {t) on an infinite domain, given by 

equation (2.38), using the nonlinear least-squares method [4, 78], where the only un

known parameter is the diffusion coefficient. The function nlinfit in MATLAB is used 

for every nonlinear least-squares fitting in the thesis. Although the fit seems quite 

accurate, an underestimated diffusion coefficient, Dest ~  0.15 fxm2/s  is obtained, as 

expected from the explanation given above. Note that this underestimation can get 

worse if the photobleaching takes place close to the boundary, or if the size of the 

photobleached region is bigger.

Since the underestimation appears to be caused by the difference between the 

recovery levels for bounded and unbounded domains, a possible solution to this 

problem seems to be to normalize the recovery curves in such a way that they 

both approach the same recovery level; in other words, to consider the normalized 

recovery curve for a bounded domain given by equation (2.42). In fact, this is the 

procedure followed in [87]. By applying this normalization to the recovery curves in 

figure 2.5A, we obtain the normalized theoretical recovery curves, shown in figure 

2.6A. Notice that the normalization reverses the order of the recovery curves. Thus, 

the normalized recovery corresponding to an unbounded domain is now below all 

those corresponding to bounded domains. Consequently, when the FRAP data is 

presented in a normalized form (2 .2 ), and we were to estimate a diffusion coefficient 

of biomolecules diffusing on a bounded domain, using a recovery curve corresponding 

to an infinite domain, the diffusion coefficient would be overestimated, as shown 

in figure 2.6B. So, normalization transforms an underestimation problem into an 

overestimation problem. Of course, it is not the normalization that is the cause of 

erroneous estimations, rather the oversight of the nuclear membrane.
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Figure 2.6: A: Normalized fluorescence recovery curves characterized by a diffusion 

coefficient D  =  0.25/xm2/s, after photobleaching a square region of area 4/sm2 

in the center of the domain. The curve C\ represents the fluorescence recovery 

Fui (t) (equation (2.38)) on an infinite domain, and the curves Ci and C3 represent 

the fluoresce recovery F Bi(t) (equation (2.42)) on square domains of areas 20 /xm2 

and 10/xm2, respectively. B: The fluorescence recovery curve Fui{t) on an infinite 

domain (smooth curve) is used to fit the simulated FRAP data (irregular curve) 

obtained from adding noise to the curve Ci- This fitting gives an overestimated 

diffusion coefficient Dest ~  0.93 /zm2 /s.

2.3.2 Application to Nuclear Proteins

From the previous analysis, we conclude that it is necessary to consider theoretical 

recovery curves on a bounded domain if one wants to avoid erroneous estimations 

of effective diffusion coefficients of nuclear proteins. However, incorporating aspects 

such as the size and the geometry of the domain (the nucleus) or the size and location 

of the photobleaching in full detail can result in a lack of an explicit theoretical 

recovery curve for estimating effective diffusion coefficients. For this reason, a  simple 

methodology to estimate effective diffusion coefficients using FRAP experiments 

is to approximate the cell nucleus with a rectangle of length I, and set up the 

photobleaching profile as a narrow band of width 2 h situated in the center of the 

cell nucleus in order to reduce the dim ension of the problem from 2 to 1 . By doing 

so, the problem reduces to fitting the experimental FRAP data with the theoretical 

fluorescence recovery curve, FjB(t), given by equation (2.36), where the length I
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Figure 2.7: A: The GFP-histone HI FRAP data (diamonds) are fitted with the 

theoretical recovery curve Fsit ) ,  given by equation (2.42)(solid curve). From the 

fitting, an estimated effective diffusion coefficient, Z?e/ /  =  0.0516 fim2 /s, is obtained. 

B: The same data (diamonds) are fitted with the theoretical recovery curve on an 

infinite domain, F[/(t), given by equation (2.37) (solid curve). From the fitting, an 

overestimated effective diffusion coefficient, Def j  =  0.4951 fim2/s, is obtained.

has to be estimated in addition to the diffusion coefficient. However, it is easy to 

estimate I. In particular, by assuming that the fluorescence intensity in a nuclear 

region is proportional to its size, the length I can be estimated in terms of the 

fluorescence intensity on the nucleus before photobleaching, Fo, and immediately  

after photobleaching, Fa, as follows:

(2.46) i = 2h ^ j - .

To illustrate how this simple methodology works, FRAP data of two nuclear 

proteins, actin and histone HI, axe analyzed. These proteins are of particular interest 

to the present research project. However, since the immediate purpose is to illustrate 

how effective diffusion coefficients can be estimated accurately, details regarding the 

dynamics of these proteins will be presented later. The FRAP experiments on 

these two proteins were performed by E. Crawford at the Cross Cancer Institute, 

University of Alberta.

The FRAP data on histone HI are shown in figure 2.7, and obtained after tagging 

GFP to the protein in SK-N-SH human neuroblastoma cells, and photobleaching a 

narrow band of width 2h =  1.5 pm, in the cell nucleus. The data were normalized
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with respect to the expected final fluorescence intensity in the bleached region after 

recovery,

(2-47)

F
where 1  — -=r represents the proportion of fluorescence intensity in the bleached 

co
region. Using equation (2.46), an estimated length I =  5.6 \im for the cell nucleus 

is obtained. To estimate an effective diffusion coefficient, the theoretical recovery 

curve F b  {i) (equation (2.42)) is fitted to the data using the method of nonlinear least 

squares [4, 78]. By doing so, an effective diffusion coefficient Def f  = 0.0516 /un2/s 

for histone HI is obtained (figure 2.7A). Also, to demonstrate that significantly 

different estimates may arise when assuming an infinite domain, the experimental 

FRAP data on histone HI were fitted with the theoretical recovery curve Fu{t) 

(equation (2.37)). Prom the fitting, an approximately tenfold overestimate of the 

effective diffusion coefficient, Def j  =  0.4951 /im2 /s , is obtained (figure 2.7B).

The FRAP data for nuclear actin, shown in figure 2.8, were obtained after tagging 

GFP to the protein in HeLa cells, and photobleaching a  narrow band of width 2h = 

2 iim in the cell nucleus. The data were normalized with respect to the expected final 

fluorescence intensity in the bleached region after recovery (equation (2.47)). Using 

equation (2.46), the estimated length of the cell nucleus is I = 6.3 fxm . By fitting 

the theoretical recovery curve Fsi t )  (equation (2.42)) to the data, one obtains an 

estimated effective diffusion coefficient A>// =  0.2344 /un2/s  for nuclear actin (figure 

2.8A). The GFP-actin FRAP data is also fitted with the theoretical recovery curve 

on an infinite domain, Fu{t), given by equation (2.37) (figure 2.8B). As expected, 

the fitting leads to an overestimation of the effective diffusion coefficient. Note that 

the latter fitting appears to be more accurate than the one on a bounded domain. 

However, this must not be taken in favor of using the fluorescence recovery on a 

unbounded domain, but rather as a sign that other aspects of the dynamics of 

nuclear actin should be considered.

We have, therefore, obtained a quantitative measurement of the overall mobility 

of histone HI and actin in the cell nucleus. A more thorough analysis of the presented
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Figure 2.8: A: The GFP-actin FRAP data (diamonds) are fitted with the theoretical 

recovery curve F a(t), given by equation (2.42) (solid curve). From the fitting, an 

estimated effective diffusion coefficient, A>// =  0.2344 //m2 /s, is obtained. B: The 

same data (diamonds) are fitted with the theoretical recovery curve on an infinite 

domain, Fu{t), given by equation (2.37) (solid curve). From the fitting, an overesti

mated effective diffusion coefficient, Def f  =  1.024 )tm2 /s, is obtained.

FRAP data will be carried out in the next chapters.

2.4 Discussion

In this chapter, we have summarized how the diffusion equation is incorporated into 

the analysis of FRAP data. In particular, we have shown that the interpretation of 

FRAP data with theoretical recovery curves obtained from a diffusion process on an 

unbounded domain can easily lead to erroneous estimations. Therefore, to quantify 

the overall mobility of biomolecules wandering in a bounded domain, it is necessary 

to account for the boundary. In  the context of FRAP experiments on proteins in 

the cell nucleus, the nuclear membrane plays an important role in the observed rate 

of fluorescence recovery, and its consideration allows for a  more accurate estimation 

of effective diffusion coefficients.

When a bounded domain is taken into account, and the photobleached region is 

not too small compared to the size of the domain, differences in the rate of theoretical 

fluorescence recoveries due to the size and the location of the photobleached region 

become evident. These differences are qualitatively the same as the ones obtained
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experimentally, and may contribute to the variability observed in the measurements 

when performing several FRAP experiments. Note that these differences cannot be 

explained if the diffusion process is assumed to take place on an infinite domain.

It is troublesome to consider aspects such as the shape of the domain or the 

location of the photobleaching if an explicit theoretical recovery curve is wanted. 

For this reason, we have reduced the problem of finding an explicit theoretical 

recovery curve to one dimension by approximating the shape of the cell nucleus 

with a rectangle and setting the photobleaching profile of the FRAP experiment 

to be a narrow band across the center of the domain. In this way, the simple 

methodology for estimating effective diffusion coefficients of nuclear proteins using 

FRAP experiments is to fit the theoretical recovery curve F e W ,  given by equation

(2.42), to the experimental data (which is assumed to be normalized with respect 

to the expected final fluorescence intensity in the bleached region after recovery).

It is important to bear in mind that the effective diffusion coefficient represents 

only a quantification of the overall mobility of the nuclear protein under study. If 

one desires more specific information regarding protein interactions that may affect 

the rate of fluorescence recovery, then other mathematical models, describing the 

spatio-temporal dynamics of the fluorescent proteins, are needed to interpret the 

experimental FRAP data. Such models are the subject of chapters 3 and 4.
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Chapter 3

Quantifying Protein  

Interactions by Interpreting 

FRAP Data with a 

Reaction-Diffusion Model

When analyzing the overall mobility of nuclear proteins using FRAP experiments, 

it was seen in chapter 2  that one could simply fit the diffusion equation to estimate 

an effective diffusion coefficient. However, this analysis offers very little in terms 

of describing more specific spatio-temporal dynamics. Most functional nuclear pro

teins interact with structures (e.g., chromatin, and splicing factor compartments) 

that axe essentially immobile on the time scale of molecular movement. These inter

actions, that are described by binding and unbinding events, either may be involved 

in the performance of a catalytic or structural role in a biological process or may be 

a  result of a sequestration into compartments that function to regulate the nucle- 

oplasmic availability of specific nuclear proteins. Although diffusion is responsible 

for redistributing these biomolecules once they dissociate from their binding sites, 

the binding event itself might be the determining factor for the rate of a protein’s 

movement throughout the nucleus. For this reason, it would be biologically infor-
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mative to obtain measurements of binding and unbinding in addition to a diffusion 

coefficient.

In this chapter, we discuss the use of a reaction-diffusion model that is used to 

quantify FRAP data when molecular binding events are taking place. In particu

lar, we focus on nuclear proteins that undergo binding and unbinding events with 

an approximately spatially homogeneous structure that is considered immobile on 

the time scale of molecular movement. For example, chromatin-associated proteins 

interact with interphase chromatin, which approaches a homogeneous distribution 

in human cell lines and is immobile on the time scale of a typical FRAP experiment 

[10]. Therefore, the proposed reaction-diffusion model is characterized by a resting 

(bound) and a moving (unbound) phase. This type of coupled dynamical system 

falls into the more general category of parabolic models with resting phase that have 

been studied by Hillen in [38]. Other applications of resting-moving dynamics can 

be found in [30, 54], where the authors modelled biological invasions with mobile and 

stationary states for dispersal and reproduction, and studied the effect of switching 

states on the invasion speed.

The particular reaction-diffusion model to be studied in this chapter has been 

applied previously in the context of reversible chemical reactions [16], and was used 

by Tardy et al. [101] to study the dynamics of cytoplasmic actin dynamics during 

photoactivated fluorescence (PAF) experiments. PAF experiments can be thought 

to be the negative analog of FRAP experiments, because a region is photoactivated 

instead of photobleached, i.e., the resultant image of the experiment is a bright spot 

(the region photoactivated) on a dark background. In their work, Tardy et al. [101] 

solved the model explicitly to interpret PAF measurements of cytoplasmic actin and 

estimate dynamical parameters such as the actin monomer diffusion coefficient, the 

filament turnover rate, and the ratio of polymerized and unpolymerized actin.

This chapter aims at understanding the proposed reaction-diffusion model in the 

context of FRAP experiments. The results are desirable in order to better appreciate 

a new model that will be introduced in chapter 4 and a more thorough analysis that 

will be carried out in chapter 5.
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In section 3.1, the reaction-diffusion model is introduced in the context of FRAP 

experiments. On the basis of its solution, we obtain an explicit theoretical recovery 

curve that can be used to fit FRAP data in order to obtain a  quantification of the 

interaction in terms of binding and unbinding rates (section 3.2). Applications to 

the dynamics of HI histone and nuclear actin are presented in section 3.3. The 

chapter concludes with a brief discussion of the results (section 3.4).

3.1 The Reaction-Diffusion M odel

A reaction-diffusion model is used to describe the dynam ics of fluorescent diffusive 

proteins in the cell nucleus that undergo a reversible binding-unbinding process with 

a structure that is assumed to be immobile on the time scale of molecular move

ment and spatially homogeneously distributed (e.g., chromatin) [10]. The model is 

the well-known linear system of reaction-diffusion equations for reversible reactions 

subject to Neumann (no-flux) boundary conditions: 

d d“̂
—  u(x,t) = D - ^ u ( x , t )  - k bu(x,t) + kuv(x,t) , x e ( 0 , Z) ,  t >  0 ,

(3.1)

Q
—  v(x, t ) = kbu(x , t ) — kuv(x, t) , x  e  (0,1) , t  > 0  ,at
du dv

=  x - 0' 1 ’ t > 0 '

u(x, 0) =  f (x )  , v(x, 0) =  g(x) , x  e  (0, Z) ,

where u and v represent the population density of fluorescent biomolecules free 

to diffuse and bound to the immobile structure, respectively, D  is the diffusion 

coefficient, kf, and ku represent the binding and unbinding rates, respectively, t 

represents time, x  is the spatial coordinate of position, (0,Z) is the spatial domain, 

and f ( x )  and g(x) axe the initial conditions of fluorescent unbound and bound 

species immediately after photobleaching, respectively.

Note that the spatial domain in equation (3.1) is one-dimensional, which means 

that the shape of the domain (the cell nucleus) has been approximated with a 

rectangle of length Z, and that the photobleaching profile has been assumed to be 

a narrow band of width 2h, as discussed previously in section 2.1.2. Therefore,
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the length I can be estimated vising equation (2.46). Moreover, assuming that the 

photobleaching is centered at c, and performed in a cell nucleus that has reached a 

homogeneous steady-state solution (uo,uo) that satisfies uq + vq = 1 , we can express 

the initial conditions of equation (3.1) as

(3.2) f {x )  =

and

(3.3) g(x) =

| a: — c| <  h , 

\x — c \ > h ,

0 , \x — c\ <  h ,

Pb , \x — c \ > h ,

ku kb
where Pu =  - — and Pj =  -------— represent the proportions of unbound and

kb —r- fciL Kb “i- k%i
bound populations, respectively.

3.2 Explicit Solution and Theoretical Recovery Curve

Analogously to the previous chapter, we can obtain a theoretical recovery curve 

that can be used to fit FRAP data by integrating the solution of the reaction- 

diffusion equations (3.1)-(3.3) over the photobleached region. The following theorem 

summarizes the results of this procedure.

T heorem  1. Assume that the system of reaction-diffusion equations (3.1)-(3.3) 

is used to describe the dynamics of a fluorescent protein in a FRAP experiment 

where a narrow band of width 2h is photobleached. If the FRAP data is presented 

normalized with respect to the expected final fluorescence intensity in the bleached 

region after recovery, then the following theoretical recovery curve can be used to 

fit the data:
,2 oo

<3'4> F <‘> “  1 +  +  ,

where the length I can be estimated using equation (2.46),

(3.5) Sn = —
n-K

n7r(c — h ) \  . f mc ( c - r h)
sm I   -----  — sin '

I J \  I 
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(3-6) rjn =  - * > + j »  +  p m 2 +  (_ 1y +i % i j  =  l i 2 t

(3.7) Qn —
'7wr\2

(3.8)
Qn

(3.9) ( 717T\ ^
~i~) 5 '̂ =  ^ ’

Proof. To obtain an explicit solution for the system of reaction-diffusion equations 

(3.1)-(3.3), we apply the method of Laplace transforms (see [44] or [116]). We denote 

the Laplace transforms of u(x,t) and v(x,t)  as

roo roo
(3.10) C(u) =  u (x, s) =  /  u(x,t)e~std t , C{v) =  v (x, s) =  /  v(x,t)e~stdtt.

jo 7o

respectively. The Laplace transforms of the partial derivatives —  and —  are given
at at

by

£  =  SĴ iu) ~  u ix i 0 ) =  su (x, s ) — u(x, 0 ) ,

£  =  “  v (x’ ° )  =  sv ( ^ 5 )  “  ° )  •

(3.11)

Using (3.10) and (3.11), the system of reaction-diffusion equations (3.1)-(3.3) is 

reduced to

d^u
s u ( x , s ) ~  f{x) = D —  -  s v  {x,s) + g{x) , x € (0 , 1) ,

(3.12) s v (x, s ) — g(x) =  ki,u (x, s) — kuv (x, s) , 

du
dx

=  0 ,

x  e  (0 , 0 , 

x  =  0 , 1 .
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From the second equation of (3.12), we obtain 

(3.i3) e (z ,s) =  M M ± £ ( £ Z .
S -F ku

Replacing this last expression into the first equation of (3.12), the following second- 

order ordinary differential equation for u (x, s) with respect to x  is obtained:

(3.14)

where

d^u
d -q^  + g {s )u { x , s )+ p ( x , s )  = ° ,  x  € (0 , Z) , 

du
& = 0 ’ I = 0 ' ! -

(3-15) 9(s) = - s ( ^ : +1

(3.16) p  (* , s) = / ( * ) +  ^ 1 -  at1) •

The objective now is to solve the second-order equation (3.14) and then apply 

the inverse Laplace transform to the solution u (x, s) in order to obtain u(x,t). To

solve (3.14), we assume that its solution is given by the Fourier series
00

(3.17) « (ar,5 )= i40(«) +  53-<4B(s )c o s (^ j^ )  ,
n—1

and express equation (3.16) also as a Fourier series, namely
00

(3.18) p[x,a) = a o ( s ) + ^ a n( s ) c o s ( ^ ^ )  ,
71=1

where

«„M =  \ l ‘p(I ,s)<h: =  i  ^ ( 1  - 2 h) ,

“” (s )= f  / cos ( ^ r ) P ( I ' s) * = 2 { ^ T T ^ r )  - i £ r „ s» -

and Sn is given in equation (3.5). To find the Fourier coefficients -Aj(s), i =  

0 ,1 ,2 , . . . ,  of the solution u(x ,s ) ,  the Fourier series (3.17) and (3.18) are substi

tuted into the second-order equation (3.14). By doing so, the following equality is 

obtained

(3.20)
00 /  0 \  00

g{s)A0{s)+Y^  fff(s) -  D ^  4 n(s) cos ( ^ )  =  - o 0 ( s ) - a n (s) cos ( ^ )
71=1 '  '  71=1
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By equating the coefficients of the Fourier series in the left- and right-hand sides of 

(3.20), we obtain

<3-21> a.(»)

S W - B  f^ V
■An(«) = rrwr^ 2

Substitution of expression (3.15) for g(s) and expressions (3.19) for ao(s) and a„(s) 

into the Fourier coefficients (3.21) of u (x, s) yields
. . 1 ku I -  2 h

(3 .2 2 ) ° S s k b + ku I
a ( \   \ku]{kb +  fcu)] Sn +  1kuSn
n U “  (5 - r ln) ( s - r 2n)

where Sn is as in equation (3.5), and r\n and r2n are as given in equation (3.6). It 

is convenient to rewrite A n(s) as

A 0 (s) = - ,
(3.23) S

An{s) = ^ -  +
s T\n s r2n 

where
A  — ^  l — 2 h

(3.24) h  + k* 1

Ajn = 2  ^  ^  S nFjn , j  = 1 , 2 ,

and F jn is as given in equation (3.8).

With the Fourier coefficients (3.23) in hand, we now have the solution u (x, s ) 

for (3.14), namely equation (3.17). To obtain the solution u(x,t)  of (3.1), we take 

the inverse Laplace transform, denoted by £ _1, of u (x. s). In particular,
oo

(3.25) u(x,t) = £ ~ 1{u (x,s)) = £ ~ x(^o(s)) +  y ^ £ ~ x(ylra(s)) cos -
71=1

Using the fact that
'.AN k„ I — 2  h

h +  ku I

(3.26) C-^Anis))  =  C- 1 ( - 4 * 2 -  + - $ & - )  = A inerint + A2 ner
\ s - r i n s — r 2n /

=  2i r h r  (SnFlner^  + SnF2neT2' t) , 
fc& +  feu
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the solution u(x , t) can be written as

(3.27)

u{x ' l) -  + 2 k ^ r t  ( = P ) ,
71=1

where Sn, rjn , and Fjri, j  =  1 , 2 , are given by equations (3.5), (3.6), and (3.8), 

respectively.

To obtain v(x, t), we first isolate it from the first equation in (3.1),

(3.28) v(x,t) = - ^ - ^ ^ u ( x , t ) - D ^ u ( x , t )  + kbu (x , t )Sj  .

By substituting the solution (3.27) for u{x ,t) into equation (3.28), the following 

expression for the solution v{x,t) of (3.1) is obtained:

(3.29)

v{x,t) = h  + ku l + h  + k^  £  (BinSnFlner^  + B 2nSnF2neT2nt) cos ( — ) ,
n = l

where Sn, rjn, Fjn, and B jn, j  — 1,2, are given by equations (3.5), (3.6), (3.8), and

(3.9), respectively.

Having an explicit solution (u(x,t),v(x. t)) for the system of reaction-difusion 

equations (3.1)-(3.3), given by equations (3.27) and (3.29), we are now in a position 

to obtain a theoretical fluorescence recovery curve F(t) to fit the FRAP data. Inte

grating the total concentration of fluorescent biomolecules c(x, t ) =  u(x, t ) -I- v(x, t) 

over the photobleached region A =  [c — h, c +  h], and normalizing the result with 

respect to the recovery level of the total fluorescent population in the photobleached 

region, we obtain the following theoretical fluorescence recovery curve:

rc + h

/  c{x,t)dt +h

 C- j ^ R  =  2 h(l - 2 h) /  „
(3-30) ‘

-  1  -  W - l i M  + K j  £  ^ A e r " ‘ + S" '71=1

where Sn. rjn, Fjn, and Bjn, j  = 1 ,2 , are given by equations (3.5), (3.6), (3.8), and

(3.9), respectively. This concludes the proof. □

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 Application to th e Dynam ics o f Nuclear Proteins

In this section, we will discuss the application of the reaction-diffusion model (3.1) 

in combination with FRAP experiments to the dynamics of two nuclear proteins, 

namely (1) a  chromatin-associated protein, histone HI (section 3.3.1), and (2) nu

clear actin (section 3.3.2).

3.3.1 Histone H i

Complexes of eukaryotic DNA and other nuclear proteins are referred to as chro

matin. The majority of chromatin-associated proteins are the histones, which are 

abundant nuclear proteins that package the DNA in the cell nucleus. Specifically, 

the DNA is wrapped around histones in units called nucleosomes, and sealed by a 

particular type of histone called histone Hi.

Like many other nuclear proteins, histone H i moves passively by rapid diffusion 

through the nuclear space. In addition to this, histone HI binds (unbinds) to (from) 

the chromatin structure. The binding (unbinding) of histone proteins to (from) the 

chromatin regulates its organization, which in turn influences protein interactions 

and gene expression [51, 8 6 ]. In the case of histone H i, this turnover process occurs 

very rapidly [18, 27, 51, 69]. This rapid transient binding to the chromatin structure 

can affect considerably its overall mobility, and therefore the rate of fluorescence 

recovery in a FRAP experiment.

In order to quantify the mobility of histone HI and its transient binding to the 

chromatin structure, the reaction-diffusion model (3.1) is applied to the dynam

ics of histone HI during FRAP experiments. More specifically, photobleaching is 

performed with a  band profile on a cell nucleus during the interphase (the inter

val between periods of chromosomal and cell division) of the cell cycle, when the 

chromatin structure can be assumed to be homogeneously distributed throughout 

the cell nucleus [14]. Since the chromatin structure is relatively immobile on the 

time scale of molecular movement and during the typical lasting time of FRAP 

experiments, we are able to model the dynamics of histone HI with the system of
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reaction-diffusion equations (3.1)-(3.3), where u(x,t)  represents the population den

sity of histone HI that is free to diffuse and v(x,t)  represents the the population 

density of histone HI bound to the chromatin structure.

With the application of the reaction-diffusion model (3.1) to the dynamics of hi

stone H i during FRAP experiments, we can extract quantitative information about 

the biophysical properties of this chromatin-associated protein. In particular, we 

can determine the following biological information:

• Tr =  — : the average residence time of the protein bound to the chromatin 

structure;

•  Tw = y - :  the average time between binding events;
Kb

kf)
• Pb=  , '■ r  '• the proportion of the protein bound to the chromatin structure;

fob *
k

•  Pu =  , , : the proportion of the protein free to diffuse,
“r fc\L

where kb and ku are the binding and unbinding rates of histone HI to the chromatin 

structure, respectively. The estimation of these parameters is important if one wants 

to describe quantitatively the in vivo behaviour of a protein [1 0 ].

We revisit the FRAP data on histone HI that were presented earlier in section 

2.3.2. The data are presented again in figure 3.1 (diamonds). To estimate the 

diffusion coefficient D, and the binding and unbinding rates, fc& and fcu, we applied 

theorem 1. More specifically, the theoretical fluorescence recovery curve given by 

equation (3.4) is fitted to the FRAP data using the method of nonlinear least squares 

[4, 78]. By doing so, estimations for the diffusion coefficient, D  =  0.073 /im2 /s, 

the binding rate, kb =  0.0026 s-1 , and the unbinding rate, ku =  0.0193 s-1 , are 

obtained (figure 3.1). With these estimated parameters, we obtain a  proportion 

Pb = h / (kb  -I- ku) ~  0 . 1 2  of the population of histone HI that is bound to the 

chromatin structure and a proportion Pu =  ku/(kb + ku) w 0.88 that is free to 

diffuse.

Note that the estimated diffusion coefficient, D =  0.073 fim2 /s, is higher than 

the effective diffusion coefficient, Dej j  = 0.0516 ̂ m 2 /s, obtained by fitting the dif-
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Figure 3.1: GFP-histone HI FRAP data (diamonds) axe fitted with the theoretical 

recovery curve (3.4) (solid curve). From the fitting, estimations for the diffusion 

coefficient, D = 0.073 /im 2/s ,  the binding rate, kb = 0.0026 s-1 , and the unbinding 

rate, ku =  0.0193 s-1, are obtained.

fusion equation to the data (figure 2.7), but it is still smaller than expected for a 

diffusing biomolecule of the molecular weight of histone HI. Also, and most impor

tant, the proportion of bound population Pb is very low and smaller than biologically 

expected; one would expect a high proportion of histone HI to be bound to the chro

matin structure because of the role that histone HI plays in the packing of chromatin. 

To interpret this apparent discrepancy, we hypothesized that the 12% obtained for 

the bound population actually corresponds to a high-affinity (strongly) bound sub

population of histone HI, and the apparent high percentage of free biomolecules is 

comprised by the actual diffusing subpopulation and a low-affinity (weakly) bound 

subpopulation (figure 3.1). This means that the estimated diffusion coefficient is an 

effective diffusion coefficient that accounts for the actual diffusing population and 

for the weakly bound population. This hypothesis is consistent with the experi

mental evidence of a rapid exchange of histone HI on chromatin [51], and will be 

corroborated in chapter 5, where a more thoroughly analysis of both the data and 

the model is carried out.

3.3.2 Nuclear Actin

The second application is related to the dynamics of nuclear actin. Actin is an 

abundant cellular protein that is present in both monomeric and polymeric forms.
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These forms of actin are also referred to as globular (G-actin) and filamentous (F- 

actin) forms, respectively. The use of the term polymeric accounts for the assembly 

of monomers into filaments.

Actin is widely known for its functions in the cytoplasm: it plays a major role in 

the structural organization, movement and division of the cell. Nonetheless, actin 

is not a  protein exclusive to the cytoplasm. It is also known to be present in the 

nucleus. Nuclear actin has recently been identified as a functional component of 

chromatin remodelling complexes and is thought to be a structural element of a 

nuclear matrix as well [7, 91, 105]. Yet a long-standing question in cell biology is 

whether or not polymeric actin (F-actin) is common to cell nuclei. Recent work has 

provided evidence that nuclear actin is present in filamentous form [61]. In order 

to support this result and obtain quantitative estimates of the size of the globular 

and filamentous pools of actin in a cell nucleus, we will apply theorem 1  to nuclear 

actin FRAP data.

In particular, we revisit the FRAP data on nuclear actin that were presented 

earlier in section 2.3.2. The data are presented again in figure 3.2 (diamonds). We 

observe that the FRAP curve comprises a fast recovery phase and a slow recovery 

phase. Recall from section 2.3.2 that the fast phase is fitted well by the theoretical 

fluorescence recovery curve (2.42) coming from the diffusion equation (2.14), whereas 

the slow phase is not (figure 2.8A). In other words, a simple diffusion process does not 

account for these two phases of the recovery. A valid explanation for both the fast 

and slow phases can be given if the data are interpreted with the reaction-diffusion 

model (3.1).

The main biological assumptions that need to be made in order to interpret the 

FRAP data with the reaction-diffusion model (3.1) are the following:

• two populations of actin are considered, namely a globular population u(r, t) 

that is free to diffuse, and an immobile filamentous population v(x,t);

• there is no net growth of the globular or filamentous population pools on the 

time scale of the experiment;
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Figure 3.2: GFP-actin FRAP data (diamonds) are fitted with the theoretical recov

ery curve (3.4) (solid curve). From the fitting, estimations for the diffusion coeffi

cient, D = 0.4381 ptm2 /s, the association rate, =  0.0021 s-1 , and the dissociation

rate, ku =  0 . 0 1 1 2  s-1 , are obtained.

out the nucleus, and is described by an association rate kb of globular actin 

to the filamentous pool, and a dissociation rate ku of globular actin from the 

filaments.

Fitting of recovery curve (3.4) to the FRAP data yields estimates for the diffu

sion coefficient, D = 0.4381 (j,m2 /s, the association rate, kb =  0.0021s-1 , and the 

dissociation rate, ku =  0.0112 s-1 . The fitting is quite accurate for both the slow 

and fast phases of the recovery. The fast phase is attributed to the fast diffusion 

whereas the turnover of globular actin into an immobile population is responsible 

for the slow recovery phase (figure 3.2). Moreover, with these estimated parameters, 

we are now in a position to extract the following important quantitative information 

of GFP-actin in the nucleus:

•  t.  =  —  s: 89  s e c : th e  averaere residence tim e o f G F P -actin  in filam entous

• there is an exchange rate between the two populations that is uniform through-

476 sec: the average wandering time of GFP-actin between associ

ations to filaments;

0.16: the proportion of GFP-actin in filamentous form;
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• Pu — k =  0-S4: the proportion of GFP-actin in globular form.

3.4 Discussion

It has become clear in this section that the interpretation of FRAP experimental 

data for nuclear proteins depends on the available knowledge of the particular mole

cular behaviour of the protein under consideration and the mathematical model 

used to describe the dynamics of the biomolecules. The quantitative analysis of 

FRAP data for nuclear proteins undergoing a reversible binding process using the 

reaction-diffusion model (3.1) provides relevant biological information such as bind

ing affinities, residence time of the protein in bound state, proportion of the protein 

population dynamically bound, and proportion of the protein population moving 

freely by diffusion.

We applied the reaction-diffusion model first to the d yn am ics of histone HI, a 

chromatin-binding protein. Although the fitting of the data was quite accurate, 

the quantitative estimate obtained for the proportion of bound population to the 

chromatin structure was much lower than biologically expected. To interpret this 

apparent discrepancy we hypothesize that there are two types of binding interactions 

of histone HI with the chromatin structure, namely a low-affinity (weak binding) 

interaction, and a high-affinity (strong binding) interaction. This hypothesis is 

consistent with the experimental evidence of a rapid exchange of histone HI on 

chromatin [51], and will be the subject of further investigation in chapter 5.

The reaction-diffusion model (3.1) was also applied to the dynamics of nuclear 

actin. By assuming the existence of an “immobile” filamentous population in the cell 

nucleus, the FRAP data was interpreted with the reaction-diffusion model, and the 

theoretical recovery curve (3.4) obtained from it was fitted accurately to the FRAP 

data. The biphasic behaviour of the experimental data was explained satisfactorily 

by the model, and a  quantification of the proportions of the population in globular 

and filamentous forms was obtained.

The importance of studying the functional interactions of histone HI and actin
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in the nucleus directly by monitoring the molecular flux of molecules at steady-state 

using FRAP and the reaction-diffusion model (3.1) lies in the fact that quantita

tive differences in the binding affinity of proteins is believed to be the basis for 

developmental regulation of gene expression and the resultant differentiation of cells 

into different cell types and tissues. These results promise to be a useful tool for 

quantifying the effect of mutations in proteins, which is a critical stepping stone for 

understanding the functional dynamics of the genome.
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Chapter 4

Simplifying the Task of 

Parameter Estimation by 

Interpreting FRAP Data with a 

Compartmental Model

As mentioned in chapter 3, important biological information to be determined when 

analyzing FRAP experimental data for nuclear proteins undergoing a reversible 

binding process is the residence time of the protein in a bound state and the sizes 

of the bound and free pools. This quantitative information can be obtained from 

the time-dependent parameters representing the binding and unbinding rates, and 

does not make any use of spatial information. Motivated by this fact, and noticing 

that FRAP data axe presented as a time-dependent function, we will propose a sim

ple compartmental model (a linear system of ordinary differential equations) that 

describes the dynamics during FRAP experiments of nuclear proteins undergoing 

a reversible binding process with a homogeneously distributed and immobile struc

ture. In contrast to the reaction-diffusion system (3.1), space will not be considered 

explicitly. This will simplify the task of parameter estimation and will make the 

analysis more accessible and understandable to the experimentalists.
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After introducing the compartmental model (section 4.1), it will be solved ex

plicitly in order to obtain a theoretical recovery curve that can be used to fit FRAP 

data (section 4.2). In section 4.3, the parameter estimation methodology will be 

presented and applied to the dynamics of nuclear actin. The chapter will end with 

a discussion of the results (section 4.4).

4.1 T he Com partm ental M odel

Similar to the reaction-diffusion model (3.1), the proposed compartmental model 

assumes two interacting populations, namely a population of biomolecules that can 

move freely, and a bound population of biomolecules. When performing a  photo

bleaching of a narrow band in the center of the cell nucleus, both populations occupy 

three physical compartments within the cell nucleus, namely the photobleached re

gion Cq tha t spans the cell nucleus, the left unbleached region C\, and the right 

unbleached region C 2 (figure 4.1A). The schematic model illustrated in figure 4. IB 

describes the dynamics of fluorescent biomolecules. The model can be translated 

into the following system of ordinary differential equations,

iio =  —2DiUo +  D 2U1 +  D 2U2 -  h u o  +  kuV0 , 

u\ = D\uq — D 2U1 — kbu \  4- kuv\ ,

U2 — DiUq — D2 U2 — kbU2 +  kuv2 ,
(4.1)

uo =  kbUo — kuv0 , 

ui =  kbui  -  kyV 1 ,

v2  =  kbu 2 -  kuV2  ,

where the dot denotes the derivative with respect to time t , uq, u i, and uo represent 

the populations of diffusing fluorescent molecules in Co, C i, and C2, respectively, vq, 

Vi, and V2 represent the populations of fluorescent molecules bound to the immobile 

structure in Co, C i, and C2, respectively, kb is the binding rate of molecules to the

immobile structure, ku is the unbinding rate of molecules from the structure, D\  is

the fractional diffusional transfer coefficient from compartment Co to compartment
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Figure 4.1: A: Three compartments axe formed during FRAP experiments: the pho- 

tobleached region Cq, the left unbleached region Ci, and the right unbleached region 

C2 . B: Compartmental model describing the dynamics of fluorescent proteins un

dergoing binding and unbinding events, after photobleaching a narrow band across 

the cell nucleus, uo, u\, and U2 represent the populations of diffusing fluorescent 

molecules in Co, C\, and C2 , respectively, z?o, v\, and V2 represent the populations 

of fluorescent molecules bound to the immobile structure in Co, Ci, and C2 , re

spectively, kb and ku are the binding and unbinding rates, and D\  and D 2 are the 

fractional diffusional transfer coefficients.

Ci or C2 , and D 2 is the fractional diffusional transfer coefficient from compartments 

Ci and C2  to compartment Co- Also, it is assumed that there is no direct transfer 

from compartment Ci to C2 , and viceversa.

Under the symmetry assumption that photobleaching is performed on a uniform 

steady state of fluorescent biomolecules in the center of the nucleus, Ci and C2 

have the same size, «i =  U2 - and v\ =  V2 - Thus, system (4.1) can be reduced to 

four equations. Despite this fact, we continue the analysis with six equations. This 

maintains the clarity of the relation of the schematic model of the experimental 

setup (figure 4.1) with the system of ordinary differential equations (4.1), and does 

not add any significant difficulty to the analysis.

Note that if the compartmental model (4.1) were to be used to interpret FRAP 

data, four parameters would have to be estimated. However, the “fractional diffu

sional transfer” coefficients D\  and D2 can be expressed in terms of a  new parameter,
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Dt, called the “diffusional transfer coefficient”, and defined as 

(4.2) Dt  =  D\  +  D2 •

To understand how D\ and D2 can be expressed in terms of Dt , we denote the 

steady state describing the uniform distribution of fluorescent biomolecules by

(4.3) (u, v) = (fio, Ul5 U2, v0, vu v2) .

By setting all the equations in system (4.1) to zero we find that 

(— —\ f  ku D2 ku ku D2 , tj-

where K  is determined by the total amount of biomolecules in the cell nucleus. On 

the one hand, the second and third coordinates of the steady state (u, v) are given 

by

(4.5) U i= U 2 = ^ U q .
v  2

On the other hand, assuming that the fluorescence in each compartment is pro

portional to the amount of fluorescent biomolecules in it, and denoting the total 

fluorescence in the cell nucleus before photobleaching by Fq, and the fluorescence in 

the nucleus immediately after photobleaching by Fa, we also have that

F0 - F a Fa/2
(4.6) uq a  —   , ui =  U2 oc

Fo F0

and therefore,

t a n \  -  Fa/2(4.7) m  =  M2  =  _  u0 .

From equations (4.5) and (4.7), we conclude that the fractional diffusional transfer 

coefficients have to satisfy the following

(4.8) D i = J k Z L .
'  ' D 2  F o - F ,

Finally, from the definition of the diffusional transfer coefficient (4.2), and equation

(4.8), we conclude that the fractional diffusional transfer coefficients D\  and D2 can

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



be described in terms of the diffusional transfer coefficient Dt, as follows

n  _  Fa/^ t-s r  j-j
1 F0 - F a/2 1 2 - r  * ’

(4.9)
_  F p - F a _ _ 0  1 - r  ^

2  F o - F J 2  1 2 — r  ’

where

(4.10) r  =  ;F < 1 -
■ro

In light of relation (4.9), there are now three instead of four unknown parameters 

to be estimated, namely Dt, kb, and fcu.

4.2 Explicit Solution and Theoretical Recovery Curve

In order to solve system (4.1) and derive the theoretical recovery curve based on 

the compartmental model, an initial condition for system (4.1) is required. The 

following proposition provides this initial condition.

P ro p o sitio n  2. Assume that the compartmental model (4.1) describes the dynam

ics of fluorescent nuclear proteins in a FRAP experiment. If the photobleaching of 

a  narrow band is performed on an equilibrium state (u,v)  =  (uq,ui,U 2 ,vq ,v \,V 2 ) 

that satisfies i2o +  ui +  U2 +  uo +  «i +  =  1 5 then the initial condition that reflects

the FRAP experimental setting is given by

<- -   ̂ (* h r  ky. r  kb r kb(4.11) (u0, v0) = 0, - ,  0, ■
kb "b h  2 kb +  ku 2 kb +  ku 2 k b "F h  2 J

where r  is as in equation (4.10).

Proof. Before photobleaching is performed, the distribution of fluorescent biomole

cules is given by the steady state (it, v), expressed in equation (4.4). Photobleaching 

a region Cq will disrupt this equilibrium: there no longer are fluorescent biomole

cules in compartment Cq. Therefore, the initial condition for the compartmental 

model (4.1) that reflects the FRAP experimental setup is given by

(4.12) («o, «o) =  (o, 0,1,1 .
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The restriction uo +  u\ +  u2  + vq +  v\ +  v2 = 1 on the steady state (4.4) provides
kfo 7*

K  =  Thus, using this value for K,  it follows that the initial condition

(4.12) can be rewritten as equation (4.11). This completes the proof. □

W ith the initial condition (4.11) in hand, and using matrix notation, the system

(4.1) can be rewritten as the following initial-value problem:

(4.13)
w  = A w  , 

m(0) =  wo ,

where w  =  (uo, u i ,  w2, Vi, v2)T , the initial condition w o  =  (no, uo)r , with (uq, uo) 

given by (4.11), an<

(

(4.14) A =

A  is the following 6  x 6  matrix:

—2 D\  — kb d 2 d 2 k̂ i 0 0  >

Di —D 2  — kb 0 0 ku 0

Di 0 —D2 — kb 0 0 ku

h 0 0 k^ 0 0

0 kb 0 0 ku 0

0 0 kb 0 0 ku
\

with D i and Dz given by equation (4.9).

T heorem  3. Assume that the initial value problem (4.13) is used to describe the 

dynamics of fluorescent proteins in a FRAP experiment. If the FRAP data axe 

presented normalized with respect to the expected final fluorescence intensity in the 

bleached region after recovery, then the following theoretical recovery curve can be 

used to fit the data:

(4.15) 

where

(4.16)

F(t) =  1 — 7 e — (1 — 7 )e

ol =  —S\  +  S2 1 

P = -S i -  s2,
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and

7 = 1  ^b ^ 1 ^ 2 (  + S2 + ku
2 k)j +  ku S2 \  kb

c kb -{- ku Dt
(4.17) Sl = — 2 ~  + T ^ '

Sz =  \ j  | ' — ~  +  - 5 i - Y  _  2-i“ Dl
2  — r J  2  — r

Proof. To find a theoretical recovery curve based on the initiai-value problem (4.13), 

we first need the solution of (4.13). We start by proving that the eigenvalues of the 

matrix A  are distinct and real. The eigenvalues of A  are determined by the roots of 

its characteristic polynomial p(A) =  det(.A — XI). Calculating this determinant, we 

obtain that

(4 -!8 ) p(A) =  ^ _ ^ 2A (A +  kb +  ku)pi{X)p2 {X) ,

where

(4.19) pi (A) =  (r -  2)A2  +  [{kb + ku) (r -  2) -  2Dt] A -  2 kuDt ,

(4.20) p2 (A) =  (r -  2 )A2  +  [(kb + ku) (r -  2 ) +  2 (r -  1) A ] A +  2 (r — 1) A A  •

Thus, the eigenvalues of A  axe given by

Ai =  0 , A2 =  —Si + S2  , A3 =  —Si — S2 ,
(4.21)

A4  =  —{kb + ku) , A5  =  —R\  +  R 2 j A6 =  — R\ — R 2 ?

where A2 and A3 are the roots of pi(A), A5 and A6 axe the roots ofp 2 (A), Si and Si 

axe as given in (4.17), and

d _  + ku 1 — r
R 1 --------2 ~ + 2 X 7 D t ’

(4.22)___________________________________________________

* 2  =  , , | ' h + t + i _ x A )
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Note that S2 and R 2 can be rewritten as

(4.23)

(4.24)

Thus, keeping in mind that 0 <  r  <  1 (see equation (4.10)), we have S2 , R 2 > 0, 

and conclude that the eigenvalues (4.21) of the matrix A  are distinct and real. This 

implies that the solution of the initial-value problem is given by a sum of exponentials 

[26, 39]. Specifically,

6

(4.25) w{t) = 'Y^CiZi eXit,
£ = 1

where A j are the eigenvalues of A , given by equation (4.21), z* denote their corre

sponding eigenvectors, and the constants c* depend on the initial condition (4.11). 

To find the eigenvectors z^, we solve the equation

(4.26) (A -  Ai l) Zi = 0

for each of the eigenvalues A* of A. By doing so, we obtain

(4.27)

Z i  =

z 2  '■

Z 3 =

z 4  =

Z  5  =

z 6  =

t k^ k^

.Si — S 2 — ku — S\  +  S2 +  ku — S\ + S2 + ku
kf, h , - 2 , 1 , 1

+ S 2 — ku —Si  — S2 +  ku —Si — 52 + ku _ 2  1 1

kb h h

1 — r  1 — r-2  , - 1 ,  - 1 ,  2 , 1, 1 )  ,r  r

0 ,
R\ — i ?2 ~  ku —R\  +  i ? 2  “i~ ku

hfj , 0 , - 1 , 1 ,

0,  X i + X i - k u  ; - R i - R t  + kU'  0> _ 1? ! j  .
kb h
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To find the constants c*, we evaluate the solution w{t) at t  = 0, and obtain

6

(4.28) to (0) = ^ T c i z i = w 0  .
i = l

In other words, we can find c =  (ci, C2 , C3 , C4 , C5 , cq)t  by solving the equation

(4.29) Z c  = w 0  ,

where Z  is the 6 x 6  matrix whose columns axe the eigenvectors Zi of A,

(4-30) Z  = ( z i  | 2 2  | z 3 | z4 | z 5 | z6 ) ,

and wo is as in (4.13). Thus, solving (4.29) we obtain 

(4-31)
_ _  f  K  r 2  kb Si + S 2 (1 -  r)r kb - S i  +  S2 (1 -  r ) r  
C \ k b + ku 2 : kb + K  S 2 4 ' h  + K  S2  4

Substitution of At- (equation (4.21)), Zi (equation (4.27)), and q  (equation (4.31)), 

for i =  1 , . . . ,  6 , into (4.25) leads to the following solution for the initial-value prob

lem (4.13):

(4.32) w(t)  =  ci z \  +  C2  z 2  e x 2 4 +  C3 z$ eXs 1 .

Note that the solution (4.32) involves only two exponentials, which is a consequence 

of the zero eigenvalue in (4.21) and the specific initial conditions that lead to the 

three zeroes in (4.31).

To see how the solution w(t) of the initial-value problem allows us to find a the

oretical recovery curve, we note tha t the fluorescence recovery in the photobleached 

region is described by the dynamics in the compartment Co (figure 4.1), i.e., by

(4.33) R(t) = uq(t) +  vo(t).

Using the fact that uo(t) and vo (t) are the first and fourth components of w(t)  

(equation (4.32)), we can rewrite equation (4.33) as

(4.34) R(t) = ci — c2 eX2t — czeXst,
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where

ci =  r  ( 1  — r ) .

_  r ( l  — r) kb S\ + S2 (  —Si +  S2  +  ku
(4.35) c2  2  kb + ku S2 \  kb + 1

r ( l - r )  kb - S 1 + S 2  f - S i - S 2 + K  
3  2  kb +  ku S2 V h

By assumption, the experimental FRAP data is presented normalized with respect to 

the expected final fluorescence intensity in the bleached region after recovery. Thus, 

we normalize (4.34) by dividing it by r ( l  — r), and obtain the following appropriate 

theoretical fluorescence recovery:

(4.36) F(t) = l - 4 e X2 t - c $ e X3t,

where

(4.37)

* _  _ _ p 2 _  _ 1  h  Si  + S2 / - S i  + S2 + k u

°2 _  r ( l - r )  ~  2  kb + K  S2 V h  +

.  _  C3 _  1̂ kb —Si  +  S2 ( —Si — S2 +  K  .
9 3  r ( l - r )  2  h  + K  S2 V h  +  * '

Apparently, if we were to fit the theoretical recovery (4.36) to a set of FRAP data, 

four parameters instead of three should be estimated. However, notice that an 

expansion of the expression c!J +  yields the following:

C2 +  C3  =  (Si + S2 ) ( - S i +  S2 + K  +kb) +

(-S1 +  S2) ( - S i - S 2 + ku + kb)]
(4.38)

=

=  1 .

Therefore, denoting a  =  X2 , @ =  A3 , and 7  = c%, the theoretical fluorescence 

recovery (4.36) can be rewritten as expression (4.15), which only involves three 

parameters. This completes the proof. □
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Prom theorem 3, we conclude that the use of the compartmental model (4.1) to 

interpret FRAP data provides a simple exponential sum for the theoretical fluores

cence recovery curve (equation (4.15)). The simplicity of this curve offers experi

mentalists a straightforward approach to quantify FRAP data, and simplifies the 

task of parameter estimation.

4.3 Param eter Estim ation M ethodology and Applica

tion to  Nuclear Actin Dynamics

There are three dynamical parameters to be estimated when interpreting FRAP 

data using the compartmental model (4.1), namely the binding  rate, kb, the unbind

ing rate, ku, and the diffusional transfer coefficient, Dt ■ However, the theoretical 

recovery curve given by equation (4.15) is expressed in terms of three new para

meters, namely, a , /?, and 7 . These new parameters are, indeed, functions of the 

diffusional transfer coefficient, and the binding and unbinding rates (equations (4.16) 

and (4.17)). Thus, one could substitute these corresponding functions into (4.15), 

and obtain a theoretical recovery curve in terms of the original parameters that can 

be used to fit the data. Instead of doing that, we take advantage of the exponential 

sum in the recovery curve, and we propose the following procedure, requiring little 

computer capability to estimate the dynamical parameters:

1. Normalize the FRAP data with respect to the expected final fluorescence in

tensity in the bleached region after recovery, Fa (1 — Fa/Fo) (see equation 

(2.47)).

2. Using the method of nonlinear least squares, fit the theoretical recovery curve 

given by the exponential sum (4.15) to the FRAP data, and obtain estimates 

for a, 13, and 7 .

3. Obtain estimates for Si and S2  by solving the linear system (4.16), namely

c -  ~ a ~ ffSi  — 0  ’
<4-39> a - fs ,  = - j £ .
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4. Substitute the estimated values of Si and S2  into the equations given by (4.17) 

and, using any numerical scheme for solving systems of nonlinear equations, 

solve the nonlinear system (4.17) in order to obtain estimates of the dynamical 

parameters D t, kb, and k u .

For the purpose of illustrating this parameter estimation methodology, the com

partmental model (4.1) is applied to the dynamics of nuclear actin. Two populations 

of nuclear actin are considered, namely a  mobile population of globular actin free to 

diffuse, and an immobile filamentous population. The objective, as in section 3.3.2, 

is to find estimates for the sizes of the filamentous and globular nuclear actin pools.

Following the notation of the compartmental model (4.1), the two populations 

of nuclear actin occupy three physical compartments during a FRAP experiment in 

the cell nucleus, namely the photobleached region Co, the left unbleached region C\, 

and the right unbleached region C2  (figure 4.1A). Thus, uq, u\,  and U2 represent 

the populations of diffusing globular actin in Co, Ci, and C2 , respectively, vo, Vi, 

and V2 represent the immobile filamentous population of actin in Co, Ci, and C2 , 

respectively, kb is the association rate of globular actin to the filamentous pool, 

is the dissociation rate of globular actin from the filamentous pool, and Dt is the 

diffusional transfer coefficient of nuclear actin.

We employ the above parameter estimation methodology to interpret the FRAP 

data presented in chapter 2 (figure 2.8), and chapter 3 (figure 3.2). The data already 

is normalized with respect to the expected final fluorescence intensity in the bleached 

region after recovery. Thus, by fitting the theoretical recovery curve given by the 

exponential sum (4.15) to the FRAP data (figure 4.2), we obtain the following 

estimates:

(4.40) a  =  0.0131s-1 , 13 = 0.6568s-1 , 7  =  0.1802.

These estimates are substituted into the linear system (4.16), which is solved to 

obtain

(4.41) Si =  0.33495 s-1 , S2  =  0.32185 s-1 .
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Figure 4.2: GFP-actin FRAP data (diamonds) are fitted with the theoretical recov

ery curve (4.15) (solid curve). From the fitting, estimates for the diffusional transfer 

coefficient, Dt = 0.4312s-1 , the association rate, kb =  0.0028s-1 , and the dissocia

tion rate, ku =  0.0132 s-1 , are obtained. Notice from figure 3.2 that these estimates 

are of the same order of magnitude and very close to the ones obtained using the 

reaction-diflfusion system (3.1).

Finally, by substituting the values of Si and S2 given by equation (4.41) into the 

nonlinear system (4.17), and solving it, estimates for

(4.42) Dt =  0.4312 s- 1 , kb =  0.0028 s- 1 , ku =  0.0132 s- 1 ,-1

are obtained.

As shown in figure 4.2, the fitting describes quite accurately the fast and slow 

phases of the recovery, corresponding to the fast diffusion and the turnover of glob

ular actin into the immobile filamentous population. From the fitting, we obtain 

the following quantitative information of actin in the nucleus:

Pb =
kb

kb + ku
=  0.17: the proportion of nuclear actin in filamentous form,

•  Pu = kb + ku
=  0.83: the proportion of nuclear actin in globular form,

•  Tr =  —  «  76 sec: the average residence time of nuclear actin in filamentous
ku

form,

•  T,„ ='W - ,kb
associations to filaments

363sec: the average wandering time of nuclear actin between
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Notice from figure 3.2 that these estimates of the proportions of nuclear actin in 

globular and filamentous form, respectively, coincide, with a difference of less than 

1%, from the estimates obtained in section 3.3.2 using the reaction-diffusion system

(3.1).

Two aspects related to the estimated parameters are worth mentioning. First, 

there seems to be a close relationship between the estimated proportion of nuclear 

actin in filamentous form, Pj,, and the estimated value for 7 . Second, there seems 

to be a relationship between the dissociation rate ku and the estimated value for a. 

These relationships will become apparent in chapter 5.

4.4 Discussion

In this chapter, we have derived another theoretical recovery curve that can be used 

for the interpretation of FRAP data. This theoretical recovery curve, given by equa

tion (4.15), is derived from the compartmental model (4.1). We used it to analyze 

FRAP data of nuclear actin that also were analyzed with the theoretical recoveries 

derived from the diffusion equation (2.3) and the reaction-diffusion equation (3.1).

The variety of ways that we have employed so far to analyze the same set of 

data (for example, the nuclear actin FRAP data) leads to the conclusion that the 

specific theoretical recovery curve to be used for fitting depends on the criteria 

and needs of the particular experiment. In particular, if the main concern is the 

estimation of binding (association) and unbinding (dissociation) rates, then one can 

take advantage of the simplicity of equation (4.15) (a simple exponential sum) and 

use the compartmental model for the fitting. On the other hand, if one also is 

interested in the estimation of a diffusion coefficient, the theoretical recovery curve 

(3.4), coming from the reaction-diffusion model (3.1), may be more appropriate. 

However, the theoretical recovery curve (3.4) is not as simple as the theoretical 

recovery curve (4.15). The exponential sum that characterizes the latter simplifies 

the task of parameter estimation through the introduction of three new parameters 

(a, P and 7  in equation (4.15)), and provides the experimentalists with a very
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simple approach to analyze FRAP data. Nevertheless, the apparent tradeoff for 

the simplicity is that the compartmental model does not offer a straightforward 

estimation of a diffusion coefficient. In chapter 5, we will discuss how we can obtain 

an estimate of a diffusion coefficient from the compartmental model; in other words, 

we will discuss the relationship between the compartmental model (4.1) and the 

reaction-diffusion model (3.1).

Despite the simplicity of the exponential sum in the theoretical recovery curve

(4.15), it is difficult to assign a biological meaning to the parameters a , 13 and 7  just 

from their expressions in terms of the original parameters kb, ku, and Dt. However, 

from the application of the compartmental model to the dynamics of nuclear actin, 

one suspects that a  should coincide with the dissociation rate ku, and 7  should 

coincide with the immobile pool P5 , at least when the FRAP data exhibits a biphasic 

behaviour. This suspicion will be confirmed in chapter 5.

Explicit solutions for the compartmental model (4.1) and the reaction-diffusion 

equation (3.1) have resulted in theoretical recovery curves that can be used to 

fit experimental FRAP data for nuclear proteins undergoing a reversible binding- 

unbinding process. However, the relationship between the expressions of these theo

retical recovery curves and the different qualitative behaviours that can be exhibited 

by experimental fluorescence recoveries is not apparent. This issue is the main topic 

of chapter 5, where we will find simpler theoretical recovery curves that not only 

reflect the behaviour of FRAP data, but simplify the task of parameter estimation 

even further.
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Chapter 5

Characterizing FRAP Curves 

Using Perturbation Analysis

In both chapter 3 and chapter 4, we examine two models that incorporate the as

sumption that fluorescent proteins undergo binding and unbinding events with an 

approximate spatially homogeneous structure, namely the reaction-diffusion model

(3.1), and the compartmental model (4.1). Although explicit solutions for these 

two models were found, the theoretical recovery curves obtained from them offer 

very little in terms of characterizing the different types of behaviour of experimen

tal FRAP data. Thus, the present chapter will focus on providing a simple and 

comprehensive characterization of the fluorescence recovery curves for biomolecules 

whose dynamics are described by models (3.1) and (4.1).

When the dynamics of the fluorescent proteins are governed by both diffusion 

and binding-unbinding events, the fluorescence recovery data can exhibit distin

guished qualitative types of behaviour depending on the relative magnitude of the 

parameters kf, and ku in models (3.1) and (4.1) [9]. We will classify these types of 

behaviour into limiting cases, and analyze them using perturbation theory.

The first case (section 5.1) will cover the trivial behaviour, in which the bound 

population can be neglected, and the recovery curve is produced simply by a diffusive 

population. The second case (section 5.2) will explain the overall reduced mobility or
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reduced diffusive behaviour, in which the recovery, influenced by rapid association 

and dissociation events, looks like the one produced by a single slower diffusing 

population. And the third case (section 5.3) will describe how fluorescence recovery 

curves can present a biphasic behaviour, distinguished by a fast phase and a slow 

phase, and caused by binding events which are slow relative to the diffusion process.

For each of these cases, we carry out a perturbation analysis in which finite series 

expansions are considered, and find their corresponding leading-order terms.

The perturbation analysis will not only offer a characterization of the fluores

cence recovery curves for nuclear proteins undergoing binding-unbinding events, but 

will simplify, whenever possible, the task of parameter estimation by providing  sim

ple expressions for fitting the experimental data [9].

Furthermore, since both models (3.1) and (4.1) aim to describe the same dy

namics with slightly different approaches, we will show, in section 5.4, how they 

can be related in order to find a common ground between them. In section 5.5, the 

results are applied to quantify the dynamics or two nuclear proteins, namely actin 

and histone HI. We conclude with a discussion in section 5.6.

5.1 Trivial Behaviour

Assume that =  £ 7 5  fcu, where e < l .  This means that the proportion of bound

fluorescent population , where k can be neglected, and one would expect
•U

only diffusion to play a  role in the fluorescence recovery.

R eaction -d iffu sion  m odel

We rewrite the reaction-diffusion system (3.1) in terms of e: 

d- u { x , t ) = D - ^ u { x , t ) - £ ' y bu(x,t) + kuy { x , t ) ,  x e { 0 J ) ,  t  >  0 ,

— v(x,t)  =  £7 6 u(x,t) -  kuv(x , t) , 
(5.1) m

du dv

i 6 (0 ,I) , t > 0  ,

dx dx
x  = 0 , 1 , t > 0  ,

u(x, 0 ) =  f ( x ) , v(x, 0 ) =  g(x) , x  6  (0 , 1) ,
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where the initial conditions f (x)  and g{x), given respectively by (3.2) and (3.3), can 

be expressed in terms of £ as follows,

(5.2)

and

(5.3)

eib + h

g{x) = <
0 ,

£76

\x — c| <  h , 

— c| >  h ,

\ x - c \ < h ,  

\x — cl > h .£7b + ku

By considering the series expansion in £ up to order IV >  2 of the solution {u, v) 

of the problem (5.1)

N  N

(5.4) u(x , t) = £nun(x, t) , v(x,t) = ^ 2  £nvn{x, t) ,
n = 0  n = 0

the following leading-order problem is obtained: 

d d‘d*
-T^Uo{x,t) = D-Q-^Uoix.t) + kuv0 (x, t) , x  6 (0,1), t > 0 ,

(5.5)
■^v0 {x,t) = -kuVo(a:,t) ,

duo dvo
=  0

dx dx  

u0 (x , 0) =  /  Or) , u0 {x, 0) =  g{x) ,

where the initial conditions are given by

x  €  (0,1) , t >  0 , 

x = 0 , 1 , t > 0 ,

x e { 0 , l )  ,

(5.6) g(x) = 0 , f{x)  = <
0, \x — c| <  h,

1, |s  —c | > h .

Equations (5.5) and (5.6) imply that vq[x,t)  =  0 for all t > 0, and hence the 

dynamics of the total population c(x,t) = u(x.t) + v(x,t) in equation (3.1) can be 

approximated by the simple diffusion equation

d d^
—c{x,t) = D - ^ c ( x , t )  , 1 6 (0 , 1) , t >  0

(5.7) §-»
c(x,0) =  f{x) ,

x  = 0 , 1 , t > 0 ,

x e  (0 ,z ) ,
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where the initial condition f ( x )  is given by equation (5.6). By integrating the solu

tion of equation (5.7) over the photobleached region, subject to the initial condition

(5.6), the corresponding normalized recovery curve can be approximated by

(6'8)

where Sn is as in equation (3.5).

Compartmental model

Rewriting the compartmental model (4.1), subject to the initial condition (4.11), in 

terms of e, we obtain

u0 = -2D\uq  +  D 2U1 +  D2 U2 -  ejbUo +  kuVQ ,

ill =  Dwo -  D2U1 -  s'yb'Ui +  kuV 1 ,

U2 =  D \U q — D 2 U2  — £76^2 +  K .V 2  ,
(5.9)

Vq =  £ 7 6 ^ 0  -  k u v 0  ,

V i  =  S'TbUi -  k u v  1 ,

V2 =  £ 7 6 « 2  -  k u v 2  ,

subject to the initial condition

(5.10)
, N { n K  r ku r n E~{b r £^b r \
(U0 , U l , U 2 , V 0 , V i , V 2 ) M  ~  ( 0 ,  £ i b  +  K ~ ,  £ i b  +  K 2 A  +  £ l b  +  k u 2 )  ,

where r  is as in equation (4.10).

By considering the series expansion in e up to order N  > 2 of the solution 

(wo5wi,U2 ,uo,ui,r?2 ) of the problem (5.9)

(5.11)
N  N  N

«o(0 =  Y2 £71“0n(£) , « l(i) =  2̂ - U2̂  =  S  £Tlu2n(i) ,
n = 0 n = 0  n = 0

N  N  N

^ 2  £ T l v 0 n ) ’ Vl (*) =  Y2  (*)  7 V2 ( t )  =  ] T  f
7 1 = 0  7 1 = 0  71= 0

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the following leading-order problem is obtained:

uoo =  —2D iuqo +  D2U10 +  D2U20 + kuV00 , 

iiio =  Diuoo  — D2U10 +  kuv 10 ,

U20 = D 1U00 — D2 U20 +  kuV2o ,
(5.12)

voo =  —kuv00 , 

wio =  —̂ uVlO 1 

V20 =  —kuv20 , 

subject to the initial condition

(5-13) (mooj^io, W2o,uooi«ioi«2o)(o) =  (Oi 2 ’ '

The last three equations in (5.12) and the initial condition (5.13) imply that

(5.14) (u00, v w , V2a) =  (0,0,0),

and hence the dynamics of the total population c(t) = (co(i), ci(f), c2 (t)) = (uo(t) +

vq(t),ui{t) +  vi(t), v,2 (t) +  V2 (i)) in the compartmental model (4.1) are governed by

the simple diffusional compartmental model

co =  —2D\Cq +  D 2C1 +  D 2C2 ,

(5.15) ci =  D 1C0 — D 2C1 ,

6 2  = Dico ~  D 2 C2 ,

with an initial condition

(5.16) (co,ci,c2)(0) =  (0 ,r/2 ,r/2 ) .

By normalizing the solution co, one obtains the following approximation for the 

recovery curve

(5.17) F{t) ~  1 -  exp t j  ■

Note that the recovery curves (5.8) and (5.17) account only for the effect of the 

diffusion, since the bound population is being neglected, and they do so by means
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Figure 5.1: A: Simulated recovery curve obtained from equation (5.8) with D  =  

0.05/x2 s-1,1 =  6//, and h =  1 /j,. B: Simulated recovery curve obtained from equation 

(5.17) with Dt =  0.05s-1 , and r = 0.67.

of two different parameters, namely the diffusion coefficient, D,  and the diffusional 

transfer coefficient D t (figure 5.1). We will develop a relationship between these two 

parameters in Section 5.4.

5.2 Reduced Diffusive Behaviour

*yb 7«Assume in this case that kb = —, and ku = - p  where e «  1. This assum ption  

implies that both the average residence time of biomolecules in bound form, rr =  — ,
ku

and the average time between binding events, rw =  —, are small. In other words,
h

the turnover of bound biomolecules is fast. In the context of chemical kinetics, this 

type of reaction, in which an immobilized reactant forms very rapidly compared 

to the diffusion process, is called instantaneous reaction [16]. This type of rapid 

reaction also is studied by Hillen in [38] for a more general parabolic model with 

resting phase for which the reaction-diffusion model (3.1) is a special case.

Reaction-diffusion model

We will show that the fluorescence recovery curve obtained from the reaction- 

diffusion equation (3.1) can be approximated by the one produced by a single popu

lation moving randomly with an effective diffusion coefficient D ef f  =  ^  - , where
1 “I“ A/
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(5.18)

kb
k =  — . Adding th e  first and second equations in  (3.1), and using the assum ptions 

th a t kb — —  and ku =  th e  reaction-diffusion system  (3.1) can be rew ritten  as

d  ^ 2
— (u(x, t )  +  v (x , t ) )  =  D - ^ u ( x , t )  , x e ( 0 ,1) , t >  0 ,

Q
£Qiv (x ’*) =  76^fc, t) -  yuv(x, t) , x  E (0,1) , t >  0 , 

du dv
d x  =  d i ~  x  =  0' 1 ' t > 0 '

u(x, 0) =  f ( x)  , v(x,  0) =  g(x) , x  E (0,1) .

If we consider a  series expansion in e up to  order N  >  2 for u(x, t) and v(x, t) of the 

form

N  N

(5.19) u(x,  t)  =  5 3  £n“ B(*>*) > v (x > t ) =  Y l  ^ vn(x ’ *) ’
n=0 n=0

the  leading-order system  is

d d^
^ ( u o ( x , t )  + u 0(a:,t)) =  D - ^ u o ( x , t )  , x  E (0,1) , t >  0 ,

0 =  7&uo(s, *) “  1uVq(x , t) , x  E (0,1) , t > 0  ,
(5.20)

3uo dvQ . „ ,
* - 0 , 1 ,  t > 0 ,

u 0(a;,0) =  / ( s )  , u0(rr,0) =  g(x) , x  €  (0,1) .

Prom  th e  second equation in (5.20), we obtain  the  quasi-steady state  relation vo(x, t) = 

kuo(x, t) .  Substitu ting  th is into the first equation, we obtain

(5.21) _ ^ ( l , t )  =  _ t o ( l , 4) =  _ _ _ W)(l, t ) .

Therefore, the  leading-order approxim ation co(a;,t) =  uq(x , t) +  vo(x.t)  for the  dy

namics o f the  fluorescent population is governed by the diffusion equation

d  d^
— Co(x,t) =  Deff-£-£Co(x, t)  , x e ( 0 , l ) ,  t  >  0 ,

(5.22) « 5 > = o x  =  0, 1.  t > o ,
O X

Co(x,0) =  h(x) , x E ( 0 , l ) ,
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where the initial condition is given by

(5.23) Mz) =  { 0,
[ 1, \x — c \ > h ,

and the effective diffusion coefficient is given by

(5.24) Deff  = J L . < D .

Thus, the approximated recovery curve derived from system (3.1) when the turnover 

binding process is fast compared to the diffusion process is given by

;2 00 /  2 2 \

<5'2 5 )

where Sn is given by equation (3.5).

Comparing this last expression to the one in (5.8) explains why the recovery curve 

produced by a  fluorescent population moving randomly with a diffusion coefficient 

D,  and interacting with a homogeneous immobile structure at a rapid turnover rate, 

would be similar to the one produced by a single population moving randomly with 

an effective diffusion D ef f  that has been reduced by a factor equal to the proportion 

of unbound population (figure 5.2A).

Compartmental model

Analogously, we will show that the fluorescence recovery curve obtained from the 

compartmental model (4.1) can be approximated by the one produced by a sin

gle population whose movement is characterized by an effective diffusional transfer

coefficient (Dt)ef f  = T“ Ti where k  =
1 *4" n/ tCy

By adding the bound and free populations in each of the compartmentments,

and using the assumptions that kb =  — and ku — — , we can rewrite the compart-
£ £
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Figure 5.2: A: The solid curve is the simulated recovery curve of a fluorescent popu

lation moving randomly with a  diffusion coefficient D  =  0.05/im2/s  (equation (5.8) 

with I =  6 /i, and h =  1^), and the dashed curve is the simulated recovery curve of the 

same population that interacts at a rapid turnover rate with a  homogeneous immo

bile structure, and has steady-state proportion ——r  =  i  of diffusing biomolecules.
1 ”f* k  3

The dashed curve is equivalent to a  recovery curve obtained from a population just

moving randomly with an effective diffusion coefficient De/ /  =  ——-  =  ^ p ^ m 2/s
1 “1“ k 3

(equation (5.25)). B: The solid curve is the simulated recovery curve obtained when

modeling a diffusing population with the compartmental model (equation (5.15)

with Dt =  0.05s-1 and r  =  0.67), and the dashed curve is the same population that

interacts at a rapid turnover rate with a homogeneous immobile structure, and that
1 1

has a steady state proportion  -----   =  -  of diffusing biomolecules (equation (5.35)).
1 +  fc 3

mental model (4.1) as

110 + vo = —2 D\Uo ■+■ D 2U1 +  D2 U2 ,

111 +  vi = Diuo — D 2U1 ,

112 +  V2 =  Dmo — D 2U2 ,
(5.26)

£V0 =  7 &U0 -  Ju V q  , 

evi = 76«1 -  I v V i , 

ev2 =  76^2 -  7uU2 •

Considering a series expansion in £ up to order N  > 2 for the solution {u§,u\,U2 ,vq,v\,V2 )
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of the form

(5.27)
N  N  N

« 0 ( < )  =  5 3  £ n “ 0 n ( i )  ,  « l ( f )  =  2 3  enUin(t) ,  U2{t) =  ^ 2  £ " u 2 n(t) ,

7 1 = 0  7 1 = 0  71= 0

N  N  N

WO ( t )  =  5 3  £ ” V O n ( * )  > Wx ( t )  =  £ n w i n  ( t ) ,  u 2  (t) =  2 3  e "  W 2n ( t )  ,

7 1 = 0  7 1 = 0  71=0

the leading-order approxim ation yields the  quasi-steady sta te  relations

(5.28) uoo =  fcwoo , ^io =  kuio , v2o = ku20 ,

and

(1 +  k)iiQQ =  —2D iuqq +  D 2u \q +  D 2u2q ,

(5.29) (1 +  k)uio = D iUqo — D2uiq ,

(1 +  k)il2Q =  D i Uqo — D 2u2o ■

In  other words, the  leading-order system  is given by

• _  o  -^1 , -^2  , D2
“°° ~  T+t + m “10+i n ”20 -

D\ D2
“io=m “00 -  i t *”10 ’

£>i D 2
u20 =  r— ruoo ~  T T T U20 ’1 +  k 1 +  k

(5'30) . „ Di D2 D2
,,o° -  ' 2r + t ' ’0 0 + m ”1 0 + i n ”20 ’

D\ D 2
”10 = TTi'’00" T T k ”10 ’

£>1 D 2

S2° = TTa”00 “ T+T*20 ’
subject to  the in itial condition

(5.31) (u„o,Blo ,U2o,»oo,«o,«o)(o) =  •

Thus, we conclude the  dynamics of the  to ta l population c(t) =  (co(t), c i(t), 0 2 (f)) 

(uo(t) +  vo(t) ,ui(t )  +  v \ ( t) ,u2(t) +  v2(t)) in  the  com partm ental model (4.1) can
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approximated by the following diffusional compartmental model:

(5.32) D\ D2

subject to the initial condition

(5.33) (co,Ci,C2 )(q) =  (0 , r / 2 , r / 2 ) .

This means that when the turnover binding process is fast, the dynamics of system

(4.1) are determined by an effective diffusional transfer coefficient

and the approximated recovery curve is slowed down by a factor equal to the pro

portion of unbound population (figure 5.2B), i.e.,

(bound and unbound) in each of the compartments readily allowed us to distinguish

namics of the model when e goes to zero. The same technique is applied by Hadeler 

and Hillen in [29] in order to obtain a limiting system of diffusive coupled systems 

when the sum of the coupling constants is big.

5.3 B iphasic Behaviour

In contrast to the previous case, we now assume that kb = £ 7 6, and ku —  e~iu, 

where e C  1 , which implies that both the average residence time of biomolecules in 

bound form, rr — and the average time between binding events, t w  =  j - ,  are
A'U fob

large. This strength of binding will cause a slow turnover process compared with

the diffusion process.

(5.34)

(5.35) F(t) ~  1  -  exp ~ (2 - r ) 1 •

It is worthwhile to mention that the technique of adding the two subpopulations

the first three equations of (5.26) as the limiting system that determines the dy-
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Using boundary layer theory [2], we show that the resulting fluorescence recovery 

curve exhibits two phases in time. The initial phase or inner recovery, characterized 

by a fast time scale and determined solely by the diffusion process, is obtained 

by approximating the solutions of (3.1) and (4.1) for a fast time scale, i.e., by 

finding inner solutions in time, whereas the last phase of the recovery or outer 

recovery, characterized by a slow time scale and d eterm ined by the turnover process, 

is obtained by approximating the solutions of (3.1) and (4.1) for a slow time scale, 

i.e., by finding outer solutions in time. In what follows, we present the leading- 

order inner and outer solutions for the reaction-diffusion equation (3.1) and the 

compartmental model (4.1), and match them to find an approximate solution for 

the fluorescence recovery curve.

Inner so lu tio n  for th e  reaction-d iffusion  m o d el

Since the turnover process is slow with respect to the scale of time t, it suffices to 

rewrite the reaction-diffusion system (3.1) in terms of t  and e in order to obtain its 

inner problem:

where the initial conditions f (x )  and g(x) are given by by (3.2) and (3.3), respec

tively.

By considering the series expansion in e up to order N  > 2 of the solution 

(uin, Vin) of the inner problem (5.36)

u{x, t) = D u{x, t) -  £7 &u(x, t ) +  £-yuv(x, t) , x  6 (0,1) , t  >  0 ,

— v(x,t) = £jbu{x,t) -  £7 uu(x,i) ,
(5.36)

du _  dv 
dx dx

i £ ( 0 , I ) .  t  >  0 ,

x  = 0 , 1 , t > 0 ,

u{x, 0) = f{x) , v{x, 0) =  p(x) , x  e  (0, i) ,

N N

(5.37)
71= 0
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th e  following leading-order problem  of system  (5.36) is obtained 

d  d 2
■£Uo{x,t) =  D ^ u o i x ,  t ) , x  G ( 0 , i ) , t  >  0 ,

■z;Vo(x,t) = 0  , 1 6 ( 0 ,! ) ,  t  >  0 ,
(5.38)

duo dvo n ,
~  &r _  ® - 0 , Z ,  i  > 0 ,

u 0(x ,0 ) =  f ( x)  , »o(®,0) =  g(x) , x  €  (0,1) .

Thus, to  leading-order, the  inner solution of the  reaction-diffusion system  (3.1) is 

given by

(5.39)
t / j.-\ 1 (Z — 2/i) 2 ^  (  n2ir2D  ^  (n-KX\t W x . f ) —  — —  +  —  £ e x p ( ^ -----g - t  J  S„ c o s ( — )  ,

71=1 V '

Vin{x,t) ~  u0(x ,i)  =  #(x) ,

where 5n is as in equation  (3.5), and p(x) as in  (3.3). As expected, the  leading-order 

inner solution (5.39) satisfies the  initial condition for the  reaction-diffusion equation

(3.1), b u t does n o t satisfy its asym ptotic dynamics as t  -* oo. By in tegrating the 

inner solution (5.39) over the  photobleached region, we obtain  the inner recovery 

curve

1 r /2 /  *,2^2
(5.40) Fin(t)

1-1- k
1 -

h(l -  2h)

Comparing with equation (5.8), the recovery of the diffusion equation, we see that 

when the turnover process is slow; only the fraction — - of the population is
1 4“ ft

contributing to the initial fluorescence recovery (figure 5.3A).
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F(0
Z 0.8
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0.6

0.5 Fast Diffusion Phase
y  0.4

= 0.2
Outer RegionOuter Region

time timeInner Region Inner Region

Figure 5.3: A: Fin(t) denotes the inner recovery curve (5.40)(or (5.46)) obtained 

when solving the inner problem (5.36) (or (5.41)) in the boundary layer (inner 

region) in time; and F ^ i t )  denotes the outer recovery curve (5.55) obtained when 

solving the outer problem (5.49) in the outer region in time. B: F(t) denotes the 

approximated recovery curve (5.68) (or (5.73)) when the turnover process is slow 

compared to the diffusion process. F(t) is obtained from matching the inner and 

outer recovery curves shown in A.

Inner so lu tio n  for th e  com partm ental m od el

In a similar manner, we rewrite the compartmental model (4.1) in terms of t and e 

to obtain the following inner problem:

u o  =  —2 £ » iu o  4- D 2U1 +  D 2U2 — £7fi«o +  £7 1 ^ 0  , 

ui =  Pino -  D2U1 — sjbUi + ejuVi ,

U2  =  D 1 U0  -  D 2 U2 — £Jbu 2 +  £ 7 u ^ 2  ,
(5.41)

vq = ejbuo -  £7uuo , 

i l l  =  £ J b U i  ~  £ 7 u « i  , 

i>2 =  £76“ 2 -  £7v«2 ,
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subject to the initial condition

(5.42) =  (o ,Ti - E§ , r l 1E§ ,o ,T| I § , T| I § )  .

By considering the series expansion in e up to order N  > 2 of the solution 

(ul0n , , Vq1 , v™, vl2 ) of the inner problem (5.41)-(5-42)

(5.43)
N  JV N

< ( t )  = ' E e nU0n(t) ,  U?(t) = ' £ e nuln(t) ,  ' u*»(i) = ,
71=0

N

71=0

N

71= 0

N

=  E  > vin w = E  7 4 n w  = E ^  w ,
7 7 = 0  7 7 = 0  77= 0

the following leading-order problem of the initial value problem (5.41)-(5.42) is ob

tained:

woo = —2DiUoo + D2U10 +  D2U20 ,

UlO =  DiUqo — D2 U1Q ,

«20 =  £>1«00 — D2 U2Q , 

voo = 0 ,

vio = 0,
* 2 0  =  0 ,

(5.44)

subject to the initial condition (5.42). Thus, the leading-order approximation for 

the inner solution (11™, v™) of the population in the photobleached region Co, when 

h  =  £7 6 , ku = £7 U, and e 1, is given by

(5.45)
4 n (t) -r( l — r) 1 — exp

2 Dt 
2 — r1 +  Jfc 

^ n(t) ~  0 ,

which in turns provides the following approximation of the inner recovery curve for 

the compartmental model (4.1):

(5.46)
1 +  k

1 — exp 2 Dt
2 — r
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Notice that as with the inner recovery curve (5.40) for the reaction-diffusion model, 

only the fraction — -■ of the population is contributing to the initial fluorescence1 "f" K
recovery (figure 5.3A).

O uter so lu tion  for th e  reaction -d iffu sion  m od el

In order to capture the behaviour of the slow turnover process, we introduce the 

following slow variable (or outer variable in time),

(5.47) r  =  e t ,

that ‘shrinks’ the inner layer in time where diffusion governs the dynamics of the 

fluorescence recovery. By letting

(5.48) U { x , t ) = u(x,t) = u (x , t / s ) , and V(x, r)  =  v(x, t) =  v(x, r / e ) ,

the system (3.1) can be rewritten as the following outer problem:

(5.49)
d d^

£q ^ U(x -’t ) = D ’dx2 U(x ',T} ~ e'ybU(x,r) + £'yuV{x,T)  , i  £  (0,1) , r >  0 ,
Q

£dr V T  ̂ = £ J b U ^  ~  £/yuVT>i  ’ x 6 (0, Z) , r  >  0 ,

dU dV n
&  =  f e = 0  I  =  0' 1 ' T > 0 ’

U ( x , 0 ) = f { x ) ,  V{x ,Q)=g{x) ,  x  € {0,Z) .

Considering the series expansion in £ up to order N  > 2 of the solution 

(Uout, lout) of the outer problem (5.49)
N  N

(5.50) Uout(x, r) = J 2  £7lUn(x ■ T) > Voatix, £UVn{x : T) >
7 1 = 0  71= 0

the leading-order problem of equation (5.49) is given by

(5.51)

0 = D ^ U 0 ( x , r ) , x  £ (0,Z) , T > 0 ,

Q
— Vb(®,r) ='ybUo{x,T) -~ fuV0 {x,r)  , xG(0,Z) , T >  0 ,

dUQ==m =Q
dx dx x  = 0 ,1  , T > 0 ,

t/o(x,0) =  / ( * ) ,  V0 (x,0) = g(x) , x  € (0, Z) .
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Due to the no-flux boundary condition, the solution for U q is given by

(5.52) Uq[x , t ) = C ,

where C  is a constant to be determined- As expected for the outer solution, U q 

'wiii not satis^Them itial condition f ix ) ,  and the second equation in system (5.51) 

becomes

Note that the solution Vo does not depend explicitly on the spatial variable. How

ever, the constant C (and therefore Vo) will depend on whether the initial condition 

g(x) for Vo is considered in the bleached region or in the unbleached region. Since 

our interest focuses on the behaviour of the recovery curve in the bleached region, 

we will consider the solution for Vo in the bleached region as well. More specifically, 

equation (5.53) is subject to the initial condition Vo(r, 0) =  0. Thus, the solution 

of the outer problem (5.49) in the bleached region is given, up to leading order, by

where k = J b / ' Y u ,  and the recovery in the outer region is approximated by the 

following outer recovery curve (figure 5.3A):

(5.53)

Uoutfo r)  ~  U0 (x,r) =  C
(5.54)

Vcmt(x,r) ~  V0( i ,r )  =  f c C ( l - e  7uT) ,

(5.55)

where C* =  , - ■ C. We shall see shortly that C* =  —-—
I -  2 h 1 + k

O uter so lu tio n  for th e  com partm ental m od el

Considering the slow variable r  given by (5.47), and letting

w0 (t) = u0 ( t / e ) , w i (r) =  iq ( r / e ) , w2 (r) =  u2 (r/e)
(5.56)

zq (r) = v0 ( r /e ) , zi  (r) =  Vi ( r /e ) , z2 [ t ) = v 2 ( r /e ) ,

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the compartmental model (4.1) is rewritten as the following outer problem: 

e w o =  - 2 D i w q  +  D o w i  +  D 2U2 -  £76*00 +  £7 ^ 0  ,

£Wi =  D 1W 0 — D 2W 1 — £7&UJi +  £ ^ w Zi ,

£W2 =  D 1W0 — D 2W2 — £76102 +  e j w Z2 ,
(5.57)

£Zo =  £76100 -  £JwZ0 ,

£Zi =  £76^1 -  £ JwZi  ,

£Z2 =  £76*02 -  £1wz 2 ,

where the dot denotes the derivative with respect to r .

Considering the series expansion in £ up to  order JV >  2 of the solution 

(tojp^ to ^ io ^ S  32“*) of the outer problem (5.57)

(5.58)
N  N  N

Wqu t (t) =  ^  £n w 0n(t) , «;?“*(*) =  ^ 2 ,  w ^ \ t )  =  ^ 2 £n W2n(t) ,
n=0 n=0 7i=0

*?“ (*) =  E  ^ 0 » ( i )  , z f “ (*) =  E  =  E  ' “»»(*) '
71=0 71=0 71=0

we obtain the following leading-order problem of system (5.57):

0 =  — 2.Ditooo +  D 2W10 +  D 2W20 ,

0 =  £>1*000 -  D2W10 ,

0 =  D i Wqq — £>2*020 5
(5.59)

200 =  76*̂ 00 -  7uZ00 ,

210 =  76*̂ 10 -  7u2i0 ,

220 =  76*020 -  7u220 ,

W riting £>1 and £>2 in terms of D t  (see equation (4.9)), we solve the first three 

equations in (5.59) and obtain tha t

(5.60) (*ooo,*oio,*02o) =  ( b , 7 3 / 5 )  ’
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where r  is as in equation (4.10) and B  is a constant to be determined. Thus, the 

fourth equation, determining the dynamics of the bound population in the bleached 

region Co, becomes

(5-61) zoo = IbB -  7uZoo •

By solving equation (5.61) subject to the initial condition ioo(0) =  0, we obtain 

the following leading-order approximation for the solution {w™1, z ^ )  of the outer 

problem (5.57), that represents the population in the photobleached region Co-

w ^ i r )  ~ w 00 (t) = B
(5.62)

~  * 0 0 (t) = k B (  1 -  e_7uT) .

Thus, the recovery in the outer region is approximated by the following outer re

covery curve (figure 5.3A):

(5.63) Fnuit) ~  B* +  kBT ( l  -  e"*-*) ,

B  1
where B* =  — ----- -. We will show shortly that B* = ----- - . Assuming this, notice

r ( l - r )  J 1 +  Jfe 6
that (5.63) coincides with (5.55)

A sy m p to tic  m atch  and  final approxim ation  for th e  reaction -d iffusion  

m o d el

In order to find the values of C  and C* in equations (5.54) and (5.55), we match 

the inner and outer solutions in the overlapping region between the inner and outer 

regions. Note that the intermediate limits of the solutions in the bleached region of 

the outer problem (5.49) are given by

lim Uoutix, et) = C  ,
(5.64)

lim Vr01£t(x, et) =  lim k C (l — e_7u£t) =  0 ,£—►O £-*•()
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and  the  interm ediate lim its of the  solutions in  the bleached region of the  inner 

problem  (5.36) are given by

v r , \ f 1 (1 -  2h) 2km  Uin{x,T/e)  =  lim < --------    -\--------- xe-+o mv ’ 1 J e-»o\l + k  I 1 + fc

^  (  n2 7r2 D r \  (n i tx \  \

(5.65) n_1 J
1 ( I -  2 h)

1 +  fc I

lim  Vin{x,T/e) =  lim  g(x) = 0 .
£->0 £->0 

|x—c\<h

In  order for the  inner and outer solutions to  m atch asymptotically, the  interm ediate 

lim its given by equations (5.64)-(5.65) have to  coincide [2]. Therefore,

(5.66) C = - , - ~ ,2^  , C* =  1
1 +  k I ’ 1 +  k ’

and the leading-order approximation for the solution of the system (3.1) in the 

photobleached region when kb = £%, = £ju, and £ 1 is given by

u ( x , t )  ~ U i n ( x , t )  +  U o u t ( x , £ t )  -  lim U c x v . t { x , £ t )  ,

(5.67)
v(x,t)  ~  vin{x,t) +  Vout(x,£t) -  lim Voutix^t) .

£->■0

By integrating the leading-order approximation for the total population u(x, t) +  

v(x,t)  obtained in equation (5.67) over the bleached region, and normalizing the 

result, we have that the recovery curve corresponding to the reaction-diffusion equa

tion (3.1) can be approximated by

(5.68) F(t) ~  1
1 +  fc

1 12 V f f f f a ? 2 - e~kA
1 h{i _ 2 h ) ^ e bn + i + k V  e r

n = l

Diffusion Phase Turnover Phase

when the turnover process is slow. This recovery curve exhibits a biphasic behaviour, 

which is illustrated in figure 5.3B. The first term of expression (5.68), which corre

sponds to the inner solution of equation (3.1), is responsible for the fast recovery

phase in the inner region produced by the proportion -r— r  of the population that
1 “h K
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is diffusing rapidly, and the second term, which corresponds to the outer solution of 

equation (3.1), describes the slow recovery phase in the outer region produced by 

the turnover of the population that is bound.

A sy m p to tic  m atch  and final ap p roxim ation  for th e  com partm ental 

m od el

Similarly, we match the inner solution (5.45) and the outer solution (5.62) in the 

overlapping region between the inner and outer regions. The intermediate limits of 

the solutions in the bleached region Co of the outer problem (5.57) are given by

lim iuo^et) =  B ,

(5.69) £̂ °
lim zo^st) =  lim k B  ( l — e~lu£t) = 0 ,

and the intermediate limits of the solutions in the bleached region of the inner 

problem (5.41) axe given by

limiton(T/e) =  lim  ̂ r ( l  — r) 1 — exp ( —•̂ t 
e_* j 0 v '  > £->-0 1 +  A: _ y \ 2 - r

(5.70) =  —■■■ r ( l  — r) ,
1 + k  K ’

lim Vq1 (r/e) =  0 .£-*■0 u

Equating the intermediate limits given by equations (5.69)-(5.70), we obtain

( 5 .7 1 )  * = T T r ( i - r ) ,

and the leading-order approximation for the solution of the compartmental model

(4.1) in the photobleached region Co when && =  e j &, ku =  £7 U, and e 1, is given

by

uo(t) ~  Uq1 (t) +WQlt{et) -  lim w™ 1 (et) ,
(5.72)

M i )  ~  M ( i )  +  zout(£ t ) ~  -£—̂0

Adding the two equations in (5.72) provides an approximation for the dynamics of 

the fluorescent population of biomolecules uo(t) +uo(£) in the photobleached region
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Co, which is then normalized to obtain the following approximation for the recovery 

curve corresponding to the compartmental model (4.1):

(5.73) F(t) ~  ^  ( l  -  e— +  j i -  ( i  -  . - * • )  .

v  '  V- v  - *
Diffusion Phase Turnover Phase

The biphasic behavior of the fluorescence recovery curve (5.73) can be illustrated 

in a figure similar to figure 5.3B. Note that the second term in equation (5.73) is 

identical to the second term in equation (5.68), which provides evidence for the 

strong relationship between the turnover phase of the compartmental model (4.1) 

and that of the reaction-diffusion system (3.1). In the next section, we will show 

how the diffusion phases of the two models can also be related by expressing the 

diffusional transfer coefficient Dt in terms of the diffusion coefficient D.

5.4 Relationship Between the Compartmental M odel 

and the Reaction-DifTusion M odel

Prom the previous section, it is evident that when the diffusion and the turnover 

processes take plane on significantly different time scales (e.g., a fast diffusion phase 

and a slow turnover phase), both the reaction-diffusion system (3.1) and the com

partmental model (4.1) produce exactly the same quantitative effect on the turnover 

phase of the recovery. This is because in both models the binding-unbinding process 

is described in terms of the same parameters, namely, a binding rate kb and an un

binding rate ku. But this is not the case for the diffusion process, which is described 

in terms of different parameters, namely, a diffusion coefficient D for the reaction- 

diffusion model (3.1), and a diffusional transfer coefficient Dt for the compartmental 

model (4.1). Thus, the natural question of how the diffusional transfer coefficient 

Dt relates to the diffusion coefficient D arises. In other words, how is equation 

(2.3) related to equation (5.15). To answer this question, we apply the concepts of 

residence time, transit time [31, 32], and mean time to capture [3].

Consider a cell nucleus whose shape is approximated with a rectangle of length
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I, and whose photobleaching profile is given by a narrow band of width 2h, centered 

on the x  axis at c (see figure 2.2). According to the difiusional compartmental 

model (5.15), the average residence times in the bleached region and in each of the 

unbleached regions axe given, respectively, by

(5.74) t «  = - i - ,  and rr2 =  -i-.

Moreover, since the relation

F‘ l ~ 2h(5.75)   —

must be satisfied, the expressions for the fractional difiusional transfer coefficients, 

D\  and D 2 , in terms of the difiusional transfer coefficient, Dt, given in equation

(4.9), can be rewritten as

l — 2 h 2 h
<5'76> D ' = TT T h D' ’

.............................. ....... Di l - 2 h .
which m turn implies that —  =  . . , i.e.,

D2 2(2 h.)

r r2 _  2 D\   I — 2 h
{ > Trl ~  D 2 ~  2h ‘

This ratio between the average residence times was found based on the difiusional 

compartmental model (5.15). We aim to find the same ratio from the diffusion 

equation (2.3). If we portray the bleached region as a line segment of length 2h 

with open boundaries located at x  = 0 and x = 2h, and let rT 1 (x) denote the mean 

residency time of a fluorescent particle located at x  in the bleached region, then

(5.78) Tr l (x) =  wa(x) +  Wd(x) ,

where wa(x) is the mean time of arrival at x, i.e., the mean time that a particle 

takes to move from one of the open boundaries to the location x  in the bleached 

region, and Wd{x) is the mean time of departure of a particle located at x, i.e., the 

mean time that it takes to leave the photobleached region, (see figure 5.4A).

First, consider a particle located at x  in the photobleached region, and assume, 

without loss of generality, that it has come from the left boundary x  = 0. The mean
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x  =  2 h
wa{x)

l-2h

__ £—2/1X  =  0
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Figure 5.4: A: The mean residency time rTi(x) of a particle located at x  in the 

bleached region is given by rri(x) =  w a(x)  +  Wd(x),  where w a(x) is the mean time 

of arrival at x , and Wd(x) is the mean time of departure. B: The mean residency 

time rr2 (x) of a particle located at a: in the unbleached region is given by rT2 (2 ;) =  

va(x)  +  v<i(x), where va(x)  is the mean time of arrival at x, and Vd(x) is the mean 

time of departure.

arrival time is given by the transit time [31, 32], which is the time that it takes a 

diffusing particle to move a certain length, i.e.,

(5.79) wa(x) =  .

The particle located at x may leave the photobleached region at either the right or 

the left boundary (see figure 5.4A). Because of the assymetry, we cannot use the 

simple concept of transit time to find the mean time of departure. Instead, we use 

the concept of mean time to capture [3]. More specifically, if we consider the random 

walk of the particle located at x at time t  =  0, and allow it to move to the right or 

left a distance <5 every r  units of time, then at time t  =  r , the particle will be at 

x +  5 with probability 1/2, or at at x — S with probability 1/2. The mean times of 

departure from these new positions are Wd(x + S) and Wd(x — 5), respectively, and 

thus the expected value for tud(x) is

Wd(x)  = r  +  i  [wd{x +  8)  + Wd(x -  <5)] .
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If we subtract wd(x) from both sides, multiply by 2/<5, and let 8  —>■ 0, we obtain

dwd dwd 2r
_ w _ _ ( I - i ) + T = o .

2 r  1
Dividing by 5 and noticing that -=r =  —, we obtain the Poisson equation

oz D

(5,0, ^  + i = 0 .

In the bleached region, fluorescent particles could leave from either side, and hence 

appropriate boundary boundary conditions are Wd(0) =  wd(2h) =  0. Therefore, the 

solution of (5.80) is given by

(5.81) wd(x) = (2hx -  x2) .

rixThus, combining (5.79) and (5.81), we find that rr i(x) =  wa{x) 4- wd(x) =  — , and 

then the mean residency time in the bleached region is given by

r2h
/ Tri(x)dx  2

<5-82> Trl = 2ft = 15'

A similar procedure is followed to find the mean residency time r r 2 in either of the 

unbleached regions. Due to the symmetry of the right and left unbleached regions,

it suffices to consider the right one, that can be portrayed as a line segment of length
l - 2 h Z — 2/i
— -—  with an open boundary at x  = 0 and a closed boundary at x  — — -— (see z z
figure 5.4B). In this case, if rr2 (2;) denotes the mean residency time of a fluorescent 

particle located at x  in the unbleached region, then

(5.83) Tr2(x) =  va{x) +  vd{x) ,

where va(x) represents the mean time of arrival at r ,  and vd(x) represents the mean 

time of departure from x  (see figure 5.4B). The Poisson equation, (5.80), also applies 

to vd{x), but in this case is subject to a reflecting boundary condition, i.e., Wd(0) =  0 

and ~fe{l=TL) = 0- Therefore,

x2 1
Va^  = 2D ’ Vd^  = 2 D ^ l ~  2k^X '
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and the mean residency time in the right or left unbleached region is given by

~(l-2h)/2

I
(5.84) rr2 =  2 ;

r(l-2h)/2

Jo T^ x ) d x  d - 2 h f
I - 2 h  8 D

Using (5.82) and (5.84), the ratio between the average residency times, based on the 

diffusion equation (2.3), is given by

( 5 -8 5 )  l r = w '
Comparing (5.85) with the ratio obtained for the compartmental model, (5.77), we 

notice a difference due to the distinct approaches in modelling. In particular, the 

diffusion equation considers space explicitly and involves a unique parameter D. 

whereas the diffusional compartmental model does not consider space explicitly and 

involves two parameters D\  and D<i- However, this difference can be ‘reconciled’ in 

order to find an empirical relationship between the diffusional transfer coefficient 

Dt and the diffusion coefficient D.

Equating the residency times (5.74) obtained from the diffusional compartmen

tal model with the residency times (5.82) and (5.84) obtained from the diffusion 

equation, we obtain

1 h2  ,  1 (I — 2ft)2
(586) 2 A  =  P ’ “ d W2  = - W - -

Moreover, when the expressions for the fractional diffusional transfer coefficients, D\  

and jC>2 5 given by equation (5.76), are substituted in equation (5.86), we obtain two 

relations between the diffusion coefficient D  and the diffusional transfer coefficient

Dt,

tr. oy\ rr))  2(Z +  2 h) 2(1 +  2 h)
(5.87) {Dt)i (2h)2(Z — 2 h) ’ h(l -  2h) 2 ’

where (Dt)x and (Dt) 2 are the diffusional transfer coefficients obtained from substi

tuting the first and second expressions of equation (5.76) in equation (5.86), respec

tively.

Thus, the natural question that arises is which of the relations in equation (5.87) 

should be considered. Note first that when the region photobleached is precisely the

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2/i 1
middle third of the cell nucleus, i.e., —  =  —, the two ratios between the residency

I O
times given by Eqs. (5.77) and (5.85) are equivalent, as well as both relations in 

equation (5.87), which would provide the desired relationship between the diffusional 

transfer coefficient Dt and the diffusion coefficient D. However, the photobleached 

region does not necessarily correspond to one third of the nucleus size. So, to give 

an empirical solution to this problem, we take the average between {Dt)x and (Dt)2, 

and call it the diffusional transfer coefficient Dt,

(5.88) Dt =  +  _ (Z +  2h) (Z +  2h)
D .2 i ( 2 h)2(l — 2/i) h(l — 2/i)2

This last expression provides a fairly accurate empirical relation between the dif

fusional tranfer coefficient Dt and the diffusion coefficient D when the size of the 

photobleached region is close to one third of the cell nucleus. To illustrate the ef

ficacy of relation (5.88), we plot in figure 5.5A a set of simulated recovery data 

obtained from adding noise to the recovery curve coming from a diffusion process 

characterized with a fixed diffusion coefficient D  =  0.5 ixm2/s, and then plot the 

theoretical recovery curve (5.17) coming from the diffusional compartmental model

(5.15), with a diffusional transfer coefficient Dt =  0.62 s-1 obtained from relation

(5.88). To verify that this value for D t gives a good estimation, we also fit, in figure 

5.5B, the simulated data with the recovery curve (5.17) coming from the diffusional 

compartmental model (5.15) using the method of least squares. This procedure 

gives an estimate of Dt =  0.61s-1 for the diffusional transfer coefficient. Moreover, 

one could use this estimated value to recover the diffusion coefficient D , just by 

substituting it in the relation (5.88). On doing so, one obtains D =  0.494 ̂ m 2/s, a 

very accurate estimate for the diffusion coefficient, which illustrates the effectiveness 

of relation (5.88).

The important point to notice is that this last estimated value for the diffu

sion coefficient D  was obtained just by fitting a simple exponential curve (equation

(5.17)) to the data, and using the relation (5.88). Therefore, this relation also 

provides a simplified method for estimating the diffusion coefficient D.
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Figure 5.5: In both figures, the small diamonds represent the simulated recovery 

data obtained from adding noise to the recovery curve (5.8) with a fixed diffusion 

coefficient D  =  0.5 yum2/s. In (A) the data is fitted by just plotting the theoretical 

recovery curve (5.17) coming from the diffusinal compartmental model (5.15), with 

a diffusional transfer coefficient Dt =  0.62 s-1 obtained from relation (5.88), and in 

(B) the data is fitted with equation (5.17) using the method of least squares, from 

which a diffusional transfer coefficient Dt =  0.61 s-1 is obtained.

5.5 A pplication to  Nuclear Protein Dynam ics

In this section, we will employ the results from the perturbation analysis obtained 

in the previous sections. We show how the results can be used to interpret different 

FRAP data sets and estimate model parameters for nuclear proteins whose dynamics 

are described with the reaction-diffusion model (3.1) or the compartmental model

(4.1). In particular, we use data obtained from nuclear actin and histone HI.

5 .5 .1  N u clea r  A c tin

To illustrate a particular application of the results in the context of nuclear actin, we 

revisit the FRAP data on nuclear actin that were presented earlier in sections 2.3.2 

and 3.3.2. The data are presented again in figure 5.6 (diamonds). As mentioned 

previously, the FRAP curve comprises a fast recovery phase and a slow recovery 

phase. This behaviour can be explained by assuming that nuclear actin is present in 

both globular and filamentous forms. In the previous chapters, we used the explicit
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Figure 5.6: Nuclear GFP-actin FRAP data (diamonds), which exhibit a biphasic 

behaviour, axe fitted with equation (5.73) (solid curve), obtaining kf, =  0.0029 s -1 , 

ku =  0.0131 s-1 and Dt =  0.4331 s -1 , with a residual mean square s2 =  0.000174.

solutions of the reaction-diffusion model (3.1) and the compartmental model (4.1) 

to analyze the data (sections 2.3.2 and 3.3.2, respectively).

In this section, we will avoid using the explicit solutions of the models by taking 

advantage of the qualitative biphasic behaviour of the experimental data, which 

suggests that the turnover process occurs on a significantly slower time scale than 

the diffusion process (figure 5.6). Specifically, we use the compartmental model

(4.1), and fit the data with recovery curve (5.73). From the fitting, shown in figure 

5.6, we obtain the following estimated parameters, representing the binding and 

unbinding rates, and the diffusional transfer coefficient, respectively,

(5.89) kb = 0.0029 s - 1 , K  = 0.0131 s - 1 , Dt = 0.4331 s -1 .

From these estimates, we conclude that the proportions of nuclear actin in globular 

and filamentous form are given by Pu =  -— =  0.82 and Pf, =   ------— =  0.18,
ku +  kb ku +  kb

respectively. Note that the estimates are consistent with the ones obtained using

the explicit solution of the compartmental model (4.1) (figure 4.2).

Moreover, although the fitting does not provide an estimation of the diffusion

coefficient, we can estimate it using the results of section 5.4. Specifically, we use

the estimate of the diffusional transfer coefficient Dt and relation (5.88) to obtain an

estimate of D = 0.463 /xm2/s  for the diffusion coefficient. This estimate is consistent
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Figure 5.7: The GFP-histone HI FRAP data (diamonds) are fitted with the recov

ery curve (3.4) (solid curve). From the fitting, we obtain that approximately 12% 

of the population is strongly bound to the chromatin structure with kb =  0.0026 s -1 

and ku =  0.0193 s -1 as estimates for the binding and unbinding rates; and that 

approximately 88% of the population, which diffuses with an effective diffusion co

efficient D ef f  =  0.073 ̂ m2/s, is constituted by a weakly bound subpopulation and 

a freely diffusing subpopulation.

with the one obtained using the explicit solution of the reaction-diffusion model (3.1) 

(figure 3.2).

5 .5 .2  H is to n e  H I

The second application of the results is in the context of histone HI dynamics. To 

illustrate the application, we complement the analysis on the histone HI FRAP data 

presented earlier in section 3.3.1. The FRAP data axe shown again in figure 5.7. The 

procedure followed in 3.3.1 was to fit the recovery curve (3.4), obtained by solving the 

reaction-diffusion equation (3.1), to the experimental FRAP data. From the fitting, 

it was estimated that approximately 88% of the population is moving freely with a 

diffusion coefficient of value 0.073 p.m2/s, and the remaining 12% of the population is 

bound to the chromatin structure. The estimated diffusion coefficient for the histone 

HI appears to be smaller than expected for a diffusing biomolecule of its molecular 

weight, and the proportion of bound population is much smaller than biologically

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



expected. This discrepancy can be explained by attributing the 12% to a fraction of 

the population that is strongly bound to the chromatin structure, and interpreting 

the estimated diffusion coefficient for the other 88% of the population as an effective 

diffusion coefficient that accounts for a weakly bound subpopulation and an actual 

diffusing subpopulation (figure 5.7). That is, the initial 88% of the recovery exhibits 

a reduced diffusive behaviour (see section 5.2), resulting in a recovery curve that 

appears to be produced by a single population moving randomly with an effective 

diffusion coefficient

(5.90) D e/ f  =  =  0-073 fim2/s  ,

where D  is the actual diffusion coefficient of the biomolecules, and —-— is the
1 +  U)

steady-state proportion of the population exhibiting reduced diffusive behaviour, 

that is freely diffusing.

Based on the molecular weight of the fusion protein GFP-histone HI (~ 49 kDa), 

the average density of proteins (p =  1.38 x 103 Kg/m 3), the Einstein-Smoluchowski 

relation

K T
(5-91) P = S T " ’

where K  is the Boltzmann’s constant, T  is the absolute temperature, K T  =  4.1164 x 

10~21 J  at 25° C, /  is the frictional drag coefficient for the fusion protein (assuming 

it has a spherical shape) given by Stokes’ law [3, 17, 41]

(5.92) /  =  67T7?r,

7) ~  0.0023 P as is the the approximated nuclear viscosity, and r  is the radius of 

the fusion protein, we expect its diffusion coefficient D  in the nucleoplasm to be 

approximately D  =  40pm 2/s (see table 5.1).

By substituting this expected diffusion coefficient, which is three orders of mag

nitude greater than the effective diffusion coefficient, we conclude that the steady- 

state proportion of the histone HI population freely diffusing is less than 0.2%. This 

implies that almost all the histone HI population is bound to the chromatin struc

ture, as expected from its function in the compaction of chromatin. Moreover, this
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P ro p e rty Value C om m ent

Molecular weight ~  49 kDa 1 kDa =  100,000 Da

Mass ~  8134 x 1(T26 kg Mass of 1 Da =  1.66 x 10-24 g

Density 1.38 x 103kg/m3 Average density of proteins [41]

Volume ~  58.9 x 10-27 m3 Mass/density

Radius ~  2.4 x 10-9 m Assuming a spherical volume

Drag coefficient ~  10.4 x 10-11Kg/s From Stokes’ law (5.92)

Diffusion coefficient ~  40 p.m2/s From Einstein relation (5.91)

Table 5.1: Physical properties of GFP-histone HI.

interpretation of the effective diffusion coefficient is consistent with the current un

derstanding that there is a rapid exchange of histone HI on the chromatin structure 

[51]. Although the steady-state proportion of diffusing biomolecules is very small, 

it is crucial for the functional dynamics of histone. In particular, if HI histone 

proteins were permanently associated with chromatin it would be more difficult for 

chromatin remodelling factors to gain access to chromatin [21]. This small propor

tion allows histone molecules to move randomly from one binding site to another 

on the chromatin structure, and, evidently, it is the reason there is a fluorescence 

recovery after photobleaching. We are now in a better position to understand how 

mutations in these proteins change their binding events and functional dynamics 

[37].

5.6 D iscussion

By applying perturbation analysis to the reaction-diffusion model (3.1) and the 

compartmental model (4.1), we have provided a formal explanation of two limit

ing dynamical types of behaviour exhibited by experimental recovery data, namely 

a reduced diffusive behaviour and a biphasic behaviour. We showed how a rapid 

turnover, or rapid exchange of binding proteins in the immobile structure, leads 

to a fluorescence recovery curve that looks as though it was produced by a purely
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diffusing population, but one that is characterized by a reduced diffusion coefficient, 

called an effective diffusion coefficient. In contrast, slow exchange of proteins leads 

to a biphasic behaviour distinguished by a fast recovery phase due to the diffusion 

process and a slow recovery phase due to the turnover process. The analysis allowed 

for a  characterization of the behaviour of the fluorescence recovery curves, which in 

turn put us in a better position to understand and interpret the data, and s im plified  

the task of parameter estimation.

Also, we showed how the two models (3.1) and (4.1), describing the same type 

of dynamic using different approaches, relate and share a common ground. Their 

relation provides a simplified method for estimating the diffusion coefficient D.

We demonstrated that the theoretical characterization of the fluorescence recov

ery finds its application in the dynamics of nuclear proteins. More specifically, we 

illustrated the application of the results in the context of nuclear actin dynamics and 

histone HI dynamics. For nuclear actin, we interpreted the biphasic behaviour of 

the experimental fluorescence recovery and simplified the task of parameter estima

tion by fitting the data with a simple recovery curve (equation (5.73)) that reflects 

in its expression the fast and slow phases of the experimental fluorescence recovery. 

We arrived to the same conclusion as in chapters 3 and 4, namely that the FRAP 

data supports the hypothesis that actin is present in both globular and filamentous 

forms in the nucleus [61]. For histone HI, we interpreted the reduced diffusive be

haviour of its recovery after photobleaching, and concluded that the FRAP data is 

consistent with the current biological understanding that there is a  rapid exchange 

of histone HI on the chromatin structure [51], i.e., that there is a high population 

weakly bound to the chromatin structure.

From these applications, it is evident how the task of parameter estimation can be 

simplified for two types of recovery data. If the FRAP data exhibits obvious biphasic 

behaviour, where the turnover phase is slow compared to the diffusion phase, one can 

fit the data with either theoretical recovery curve (5.68) or (5.73). If the FRAP data 

does not exhibit biphasic behaviour but instead appears as if produced by a single 

diffusing population, and one knows a priori that the biomolecules under study are
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weakly bound to an immobile structure (i.e., the turnover process is very fast relative 

to the time of recovery), one could fit the data with the recovery curve (5.25), coming

from a simple diffusion model, and obtain an effective diffusion coefficient D ef f  that
khrelates to the real diffusion coefficient D  and the parameter k = —  as in Eq.
ku

(5.24). Thus, if one knew the actual diffusion coefficient D of the free biomolecules 

in the nucleoplasm then it would be possible to calculate the proportion of bound 

biomolecules that is causing the reduced overall mobility, and, conversely, if one 

knew the proportion of bound biomolecules, then it would be possible to estimate 

the diffusion coefficient D  of free biomolecules.

When falling in one of the two previous cases, the parameter estimation does not 

require the explicit solution for the reaction-diffusion equation (3.1) or the compart

mental model (4.1). The great advantage of this stems not only from the simplicity 

of the approximated theoretical recovery curves (5.25), (5.35), (5.68), or (5.73) used 

to fit the data, but also from the fact that these theoretical recovery curves allow 

one to appraise the contribution of the dynamical processes involved, namely the 

random walk movement and the turnover binding-unbinding process. In general, if 

the fluorescence recovery does not exhibit clearly any of the previous behaviours, 

then one can use the explicit solution of the reaction-diffusion model (3.1) or the 

compartmental model (4.1) to obtain a theoretical recovery curve to fit the data 

(chapters 3 and 4).

In conclusion, we have provided a mathematical analysis that enriches the inter

pretation of FRAP data and simplifies the task of obtaining measurements of the 

mobility of proteins and their binding interactions.
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Chapter 6

Modelling the 

Compartmentalization of 

Splicing Factors with an 

Aggregation-Reaction-Diffusion 

Model

The structure of eukaryotic cells is characterized by the presence of two intracellular 

compartments, namely the cytoplasm and the nucleus. While the structural and 

functional organization of the cytoplasm is well defined, the nucleus has been more 

enigmatic. This is principally due to the absence of membranes that define com

partments within the nucleoplasm. For example, cellular organelles in the cytoplasm 

such as the endoplasmic reticulum, the Golgi apparatus, and the mitochondria have 

been clearly identified, whereas the nature of structures and compartments within 

the nucleoplasm remains poorly understood. With recent advances in fluorescence 

microscopy techniques, and the visualization of specific proteins within the nucleus, 

the structural organization of the nucleus has started to unfold. In particular, 

fluorescence microscopy has allowed for the identification of subnuclear structures
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Figure 6.1: An indirect immunofluorescence image of the “speckled” distribution of 

the splicing factor SC-35 in an Indian Muntjac Fibroblast cell nucleus. The image 

was obtained at Dr. Hendzel’s lab at the Cross Cancer Institute, University of 

Alberta, by staining cells with an antibody against SC-35.

or compartments [21, 48, 60, 97, 98]. These compartments differ from most cy

toplasmic compartments in that they lack membrane boundaries. However, the 

identification of nuclear domains enriched in specific proteins has led to the conclu

sion that the nucleus itself is highly organized and dynamically compartmentalized 

[21, 36, 48, 52, 67, 87, 98].

The prototypical example of a  non-nucleolax compartment is found in the spatial 

organization of splicing factors. Splicing factors are nuclear proteins that remove 

introns (noncoding sequences in the genes) from precursor mRNA molecules in order 

to form the mature mRNA that will be transported to the cytoplasm. During the 

interphase of the cell cycle, splicing factors are concentrated in approximately 25 to 

50 clusters; during mitosis, these clusters disassemble. These membraneless clusters 

or aggregates of splicing factors, which are heterogeneously distributed in a “speck

led” pattern in the nucleus (see figure 6.1), are called Splicing Factor Compartments 

(SFC’s) or nuclear speckles [46, 49, 87, 97, 98].

One might infer that co-localized processes of splicing and transcription occur 

within the speckles, but this is not the case. In fact, splicing and transcription take 

place away from the speckles and predominantly at their periphery [35, 42, 65, 68].
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This suggests the existence of a mechanism independent of interactions established 

during RNA splicing that is responsible for reversibly recruiting splicing factors. In 

other words, the organization of splicing factors must be highly dynamic. Indeed, 

fluorescence microscopy experiments have shown that (1) splicing factors are in 

continuous flux between the speckles and the nucleoplasm [46, 67, 68, 87], and (2) 

splicing factors move randomly throughout the cell nucleus [83, 87].

These dynamical aspects have brought forth two current biological hypotheses 

for splicing factor compartmentalization, one relating to the role of phosphoryla

tion and dephosphorylation in the formation and disassembly of SFC’s, and the 

other relating to the existence of an underlying nuclear structure. First, recent ex

perimental evidence obtained from SR proteins suggests that the flux between the 

speckles and the nucleoplasm is modulated by phosphorylation and dephosphory

lation [6, 71, 72, 114]. SR proteins are a family of splicing factors containing a 

carboxy-terminal domain rich in argine-serine dipeptides (RS-domain) [25, 59], and 

the phosphorylation status (phosphorylated or unphosphorylated) of this domain 

plays a  major role in their localization. In particular, overexpression of kinases 

that phosphorylate the RS-domains results in the release of splicing factors from 

spleckles and the disassembly of SFC’s [13, 19, 28, 68, 71, 107]. In contrast, the re

association of splicing factors to SFC’s requires the presence of specific phosphatases 

responsible for the removal of a  phosphate group [70, 71]. Moreover, the unphos

phorylated state of splicing factors enhances their self-interaction (binding), whereas 

the phosphorylated state d im inishes it [114]. Understanding the role of phosphoryla

tion in the location of splicing factors and the existence of self-interacting domains 

(RS-domains) [6, 113, 114] has led to the following hypothesis for splicing factor 

compartmentalization: self-organization is responsible for the formation of speckles, 

and phosphorylation and dephosphorylation modulate this organization.

Second, measurements of the mobility of splicing factors show that they move 

at a rate that is two orders of magnitude lower than expected based on their mole

cular weight [87]. A possible explanation for this apparent slow mobility of splicing 

factors is rapid transient binding to a relatively immobile nuclear scaffold or nuclear
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Figure 6.2: Mechanism for the compartmentalization of splicing factors. The thin 

arrows describe the transient binding of splicing factors to a nuclear scaffold or ma

trix, and the thick arrows represent the phosphorylation and dephosphorylation that 

modulate the flux between the speckles and the nucleoplasm. The self-interaction 

among dephosphorylated splicing factors leads to their self-organization into speck

les, whereas phosphorylated splicing factors don’t self-interact. Adapted from figure 

3A in [65].

matrix [7, 33, 34, 46, 50, 79, 80, 108]. This idea has led to the following hypothe

sis for splicing factor compartmentalization: the existence of an underlying nuclear 

structure is a major determinant of the organization of splicing factors [34, 47, 80].

The dynamical aspects of splicing factors and their heterogeneous distribution 

in speckles provide strong evidence that there is more to the spatio-temporal dy

namics of splicing factors than just simple diffusion. To unravel the mechanism 

underlying the organization of splicing factors, we incorporate the two existing bi

ological hypotheses for splicing factor compartmentalization into a mathematical 

model. Unlike the current thinking tha t these two hypotheses are conflicting [49], 

we will see that they can, indeed, complement each other in a possible mechanism 

responsible for the compartmentalization of splicing factors (see figure 6.2). We use 

the model to suggest answers to a number of fundamental questions about SFC’s 

[49, 65, 66]. What is the detailed mechanism of splicing factor compartmentaliza

tion? What controls the concentration of splicing factors inside and outside the 

speckles? Is speckle formation initiated randomly? What determines the number
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and size of SFC’s?

The model we derive is a fourth-order aggregation-reaction-diffusion model that 

describes a possible mechanism underlying the organization of splicing factors in 

speckles (section 6.1). Using linear stability analysis, we show how the onset of 

splicing factor compartmentalization is captured by the model (section 6.2), and 

using bifurcation analysis, we explain how the compartmentalization of splicing 

factors is modulated by the dynamical parameters of the model (section 6.3). We 

conclude the chapter with a  discussion of the relevance of the results and possible 

directions of future work (section 6.4).

6.1 The M odel

In order to formulate a simple model that can capture the essence of splicing factor 

compartmentalization, we accommodate the biological hypotheses stated previously 

into the following general assumptions:

1. Splicing factors (SF’s) transiently bind to an immobile underlying nuclear scaf

fold that is assumed to be homogeneously distributed throughout the nucleus.

2. Transient binding is rapid, and results in reduced diffusive behaviour in the 

context of FRAP (Fluorescence Recovery After Photobleaching) experiments 

[9], or instantaneous reaction in the context of chemical kinetics [16]. This 

assumption allows us to characterize the motion of SF’s with an effective dif

fusion coefficient D  =  (1 — fc)Z?&, where k is the proportion of SF’s dynamically 

bound to the underlying structure, and Db is the actual diffusion coefficient 

of SF’s based on their molecular weight.

3. There is no net growth of splicing factors, i.e., there is conservation of mass 

during the formation of speckles.

4. SF’s density is divided into two classes, namely phosphorylated SF’s,

and unphosphorylated SF’s, u(x,t),  where x  denotes space and t  denotes time.
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5. There is an exchange rate between phosphorylated splicing factors and un

phosphorylated splicing factors given by a phosphorylation rate, p. and a de

phosphorylation rate, <5, caused by the activity of kinases or phosphatases, 

respectively.

6. Unphosphorylated splicing factors are capable of self-interaction (binding to 

each other).

On the basis of these general assumptions, and considering a one-dimensional 

space, the resulting system of equations for the dynamical organization of splicing 

factors takes the following form

SF’s needs to be fleshed out. To find an exact expression for this term, we follow a 

difiusion-approximation approach [103], which is based on a random walk analysis 

that accounts for both the motion and self-interaction effects. This type of approach

ecological systems [53, 103].

Let us assume that unphosphorylated splicing factor biomolecules move along a 

line that is discretized into small space intervals of length A. Let us also discretize 

time into short intervals of length r , and assume that every time step r  a biomolecule

probability L(x, t), to the right with probability R (x , t ), or remain in its current 

position with probability N(x,t) .  Thus, the probability of moving is given by

We farther assume that there is no bias in the movement, i.e., R{x , t ) =  L(x, t). 

Following the procedure in [104], we arrive at the following diffusion approximation 

model for the density of unphosphorylated SF’s

(motion and self-interaction term) +  5v — pu ,

dv
dt —Sv + p u ,

^   .

where the “motion and self-interaction term” for the density of unphosphorylated

has been proven to be an effective tool when describing congregative behaviour in

located at position x  at time t can move a distance of A either to the left with

(6 .2 ) R(x,  t) +  L(x, t) =  1 — N(x, t ) .

(6.3)
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where D  = (1 — k)Db =  lim ^ ^ o  — , and p,(x,t) = D ( l  — N(x,t) )  represents the
I t

motility.

As a final step, we need to develop an expression for N  (x, t). For this purpose, we 

assume that the probability N ( x , t) for an unphosphorylated biomolecule to remain 

in its current position is proportional to the average density of imphosphorylated 

SF’s bound to the underlying structure, and is given by

k r°°
(6.4) N(x , t )  = — H(s)u{x  +  s , t ) d s ,

u  J - 00

where u  represents a critical density of biomolecules dictated by space limitations, 

k  = k  a  is called the aggregative sensitivity, k  is the proportion of SF’s dynamically 

bound to the underlying structure, a  represents the binding affinity of SF’s (prob

ability of binding to each other), and the kernel function H(s) is assumed to have 

the following form

fo r  |s| <  a  ,

fo r  |s | >  o  ,

where o  denotes the range of influence of the self-interaction. Note that with equa

tion (6.4), the model (6.1) now becomes nonlinear. Also, note that N ( x , t ) < 1 

provided that

(6.6) u(x,t) < w,

i.e., u(x , t) does not exceed the critical density ui. We shall see that this condition 

is satisfied during the onset of the compartmentalization, but when aggregation is 

pronounced, the density may exceed w, and the model will no longer be valid. We 

will return to this issue in the discussion.

The diffusion approximation model (6.3) falls into the class of integro-differential 

equations. Such equations have been shown to have rich dynamics, including po

tential for pattern-formation [53, 73, 74, 75, 76, 77, 104]. We will take the approach 

used in [53, 77, 104] and expand the integral term in equation (6.3) for the stability

analysis. This approach is not essential. The same results can be obtained by taking
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an alternate approach such as the one used in [74, 75], where the integral term is 

not expanded and the consideration of normal mode solutions in the linear stability 

analysis leads to the appearance of the Fourier transform of the kernel H(s).

Using the expansion in Taylor series

«(* +  M ) = u (M ) +  - .  +  _ t  +  s ? 7  +  0(»‘) ,

and the expression of the kernel (6.5), the probability of staying (6.4) becomes

k u (x , t) kg2 d2u(6.7)
6 u  dx2

Assuming that the range of influence a is small and neglecting the fourth-order and 

higher-order terms with respect to g, the motility, p{x,t) = D{1 —N ( x . t ) ) , can be 

approximated by

(6 .8) p{x,t) = D — D Ku(x,t) Ka2 d2u
- D

OJ ( M )  •dx2

Substituting (6.8) into (6.3), the diffusion approximation for the density of un

phosphorylated SF’s can be written as the following fourth-order partial differential 

equation:

<«> £ - 5
„  u \  du

\ d - 2 D ku ) s
J L
dx2

D k g 2 u \  d2u
6 a) )  dx2

which represents the motion and self-interaction term in equation (6.1). We refer 

to equation (6.9) as the aggregation-diffusion equation. Thus, the system of partial 

differential equations describing the compartmentalization of SF’s becomes

dv d2v
m = D d x t ~ S v + , m '

(6 .10)
du
dt

d_
dx

V _ u \  du\ d2
\ d ~ 2Dkz )  ~diJ

’ (  D kg2 u \  d2u
6 w / dx2

+ 5v — pu .

We refer to equation (6.10) as the aggregation-reaction-diffusion system.

The cell nucleus is a domain bounded by a  membrane. For this reason, we 

assume a bounded domain, 0 <  x  < L, with no net flux of splicing factors across
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the boundaries. This is achieved by considering the following no-flux boundary 

conditions

(6.11)
d ^ u , (ftu ,

d x ”  d x ^ L^  _ 0 '

In order to facilitate the analysis and reduce the number of parameters, we 

introduce the following dimensionless variables:

(6.12)

=  ** =  7 2 * ’ v* =  2 k ~ ,  u * = 2 k - ,  a* =  y ,  =  p' =  ^ r p .
Lt 1j * U  U) Li U  U

After making these substitutions and dropping the asterisks, the aggregation- 

difiusion equation (6.9) becomes

(6.13) du _  d 
dt dx

pi du 
{1~ u ) T x dx2

d2u
12 “ J ~dx2

subject to the no-flux boundary condition

(6.14)

and the aggregation-reaction-diffusion system (6.10) can be rewritten in a dimen

sionless form as

dv d2v
m  = d * - S v + f m '

(6.15)
du _  d 
dt dx

pi \ du d2
dx2

d2u
1 2 u ) a ?

+  Sv — pu ,

subject to the no-flux boundary conditions

(6.16)
d3Ufn . & u n  .\

-  _ 0 -

Since self-organization appears to be driven by the dynamics of the unphospho

rylated SF’s, described by the aggregation-diffusion equation (6.9), our first interest
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will be to demonstrate the potential of this equation for the spontaneous formation 

of spatial patterns (section 6.2). These patterns, which axe a consequence of the 

nonhomogeneous distribution of biomolecules, can be interpreted as splicing factor 

compartments or speckles, where the density of biomolecules is high. In section 6.3, 

we focus on the aggregation-reaction-diffusion system (6.10), and study the mod

ulating effect of phosphorylation on the compartmentalization of SF’s. From the 

first equation in (6.10), we intuitively expect the modulation to be driven by the 

homogenizing effect of the spatial diffusion of phosphorylated SF’s.

6.2 T he Onset of the Compartmentalization of SF’s

The potential of equation (6.15) for spatial pattern formation is interpreted as the 

onset of splicing factor compartmentalization during early G l. We can assert in

tuitively that no patterns will arise if there are no imphosphorylated SF’s. For 

this reason, and to start the analysis as simple as possible, we will capture the 

essence of the onset of the compartmentalization by examining first the dynamics 

of just unphosphorylated SF’s in the absence of phosphorylated ones. By carrying 

out a linear stability analysis about the homogeneous steady-state solutions of the 

aggregation-diffusion equation (6.13) subject to the boundary conditions (6.14), we 

will examine the behaviour of perturbations, and determine whether there are wave 

numbers with the ability to grow.

6.2 .1  D isp ersio n  R elation  for th e  A ggregation-D iffusion  E q u ation

The uniform steady states of (6.13) axe given by any constant density ueq. Thus, 

using the assumption of conservation of mass, we can think of the uniform steady 

state ueq as a parameter that varies according to the amount of biomolecules in the 

system. Let us consider small perturbations of the biomolecule density u(x, t) away 

from the spatially uniform steady state ueq, of the form

(6.17) u{x, t) =  ueq +  eu(x, f) , where s -^.1.
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Instability

Stability

Figure 6.3: Dispersion relation A as a function of q2 (equation (6.20)). 

Substituting (6.17) into (6.13) yields

du  _  d 
£ dt dx

(1 - U eq- £ U )  £—
dx2

—  (ueq + £u)
d2u
dx2

Dividing this expression by £, dropping the bars, and noting that £ «  1, we obtain 

the following linearization for the aggregation-diffusion equation (6.13):

ji
(6.18) du d2u a2 d*u

d t ~ i l ~ Ueg)dx2 ~ i 2 Uegd ^ -

To investigate the behaviour of solutions for the linearized equation (6.18), we study 

the normal mode solutions of the form

(6.19) u(x , t) oc exp(Ai +  i qx) ,

where A is the growth rate corresponding to the wave number q. Thus, wavenumbers 

q with a  corresponding A >  0 will grow with wavelength ‘h :/q .

Substitution of (6.19) into the linearized equation (6.18) gives the following 

dispersion relation between A and q :
_2

(6 .20) X = (ueq- l ) q  — —  ueq q ,

which is shown as a function of q2 in figure 6.3. The potential for pattern forma

tion is determined simply by the fundamental condition A >  0. Note that for the 

limit case cr =  0, the kernel (6.5) corresponds to a  delta distribution centered at 

the current position of the biomolecule, and the dispersion relation increases or de

creases monotonically with respect to q, depending on whether ueq > 1 or ueq < 1.
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Figure 6.4: Evolution of the solution u(x,t)  of equation (6.13) for a — 0.04 after 

a  random perturbation of the steady state ueq (represented by the dots). In figure 

(A), the simulation describes the stable steady state ueq =  0.9 < 1, and the solid 

curve represents the solution u(x, t ) for t  = 3. In figure (B), the simulation describes 

the unstable steady state ueq = 1.1 >  1, and the solid line represents the solution 

u(x, t ) for t  = 0.25.

Therefore, the smaller the perturbation wavelengths the faster they will grow, which 

means that the problem is ill-posed in the sense of Hadamard [116]. For this reason, 

we account for the realistic biological assumption that biomolecules can be influ

enced by other nearby biomolecules and consider only the case a >  0, in which 

small wavelengths, characterized by high q, do not grow. The main requirement for 

A to correspond to growing wave numbers is that ueq > 1 (see figure 6.3) . In other 

words, the population of unphosphorylated SF’s has to be large enough for pattern 

formation to occur. Otherwise, ueq becomes a stable steady state.

In order to illustrate these stability scenarios, we have used MATLAB to imple

ment the numerical scheme for fourth-order non-linear partial differential equations 

developed in [15] to perform two numerical simulations, one in which ueq < 1, where 

stability is obtained (figure 6.4-A), and another for ueq >  1, where instability leads 

to a potential spatial pattern (figure 6.4-B). Note that as a dimensionless parameter, 

ueq has buried the dimensional parameter k. Thus, the larger « is, the more likely 

it is that pattern formation occurs; hence k is called the aggregative sensitivity. 

Recalling that k =  ka ,  the analysis suggests that the onset of the compartmen-
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0.2

1.3

1.2
u(x,t)

0.2

Figure 6.5: Evolution of the solution u(x,t) of equation (6.13) after a random per

turbation (represented by the dots) of the steady state ueq =  1.1. In figure (A), the 

solid curve represents the solution u(x,t) for a  =  0.02 at t  = 0.05. In figure (B), 

the solid line represents the solution u{x, t) for a  =  0.012 at £ =  0.01.

talization is enhanced by the affinity of the interaction, a , as well as by a large 

proportion k of biomolecules bound to the underlying nuclear structure.

6.2.2 The Onset of Spatial Patterns

In order to gain a better understanding of how the spatial patterns start to arise, we 

study the dispersion relation (6.20) in more depth and determine which is the fastest 

growing wavelength (or equivalently, the dominating wave number), and examine 

the effect of different values of the parameter a  on the onset of the aggregation.

First, note that the only possible perturbations that satisfy the no-flux boundary 

conditions (6.14) on the domain (0,1) are those whose wavenumbers take the discrete 

values

(6.21) qn = m r , where n =  0, 1 ,2 ,. . .  .

From figure 6.3, we know that when ueq >  1, A as a  function of q2 has two zeroes, 

namely

(6.22) d = 0 ,  and c zueq

Therefore, the modes with positive growth rate (modes of instability) are given
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Figure 6 .6 : Dispersion relation (6.20) for ueq =  1.1 and three values of a: a\ 

0.04, CT2  =  0.02, and <73 =  0.012.

by the wave numbers satisfying

(6.23)

Moreover, A as a function of q2 reaches a maximum at

(6.24) 2 _  6 (n eg 1)
Hmax (J U,eg

Thus, the dominating wave number qm, with m  6  IN, is a wave number of an 

unstable mode, such that

(6.25) IMflm) -  Htmax) I =  , “ P  , {!*(<£) ~  K qL xx) 1} ,

and the corresponding fastest growing wavelength of the spatial pattern that starts 

to evolve from the perturbation is

(6.26)
_  2tt _  2 
— —

qm m

Note from equations (6.24)-(6.26) that lm oc a ,  which means that initially after 

perturbation the longitude of the speckles or compartments is directly related to 

the scale of a . This is illustrated in the numerical simulations shown in figure 6.4B 

and figure 6.5. These figures show the evolution of a random perturbation about 

a homogeneous steady state for various values of a . The plot of the corresponding 

dispersion relations are shown in figure 6 .6 , and the numerical information gathered
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a
dominating 

wave number
dominating
wavelength

growth rate expected 
#  of peaks

0.04 6tr 2/6 «  0.33 A(q|) «  17 3

0.02 12tr 2/12 «  0.16 \{q\2) «  68 6

0.012 20tt 2/20 «  0.1 ■̂ (?2o) ^  189 10

Table 6.1: Dominating wave numbers and wavelengths for the perturbations shown 

in figure 6.4B and figure 6.5 for different values of a.

from them is arranged in table 6.1. Notice that as a  decreases, the dom inatin g  

wavelength lm decreases (or equivalently, the dominating wave number qm increases), 

and the growth rate increases. In other words, the larger a  is, the fewer the speckles 

or compartments.

6.3 M odulating the Com partm entalization

In this section, we incorporate the phosphorylated population into the analysis 

and study its modulating effect on the compartmentalization of SF’s. We carry 

out a linear stability analysis about the homogeneous steady state solutions of the 

aggregation-reaction-diffusion system (6.15) and perform a bifurcation analysis to 

understand how the phosphorylation and dephosphorylation rates modulate the for

mation of speckles.

6 .3 .1  D isp ersion  R ela tion  for th e  A ggregation -R eaction -D iffusion  

System

From equation (6.15), positive uniform steady states (veq, ueq) are given by points 

in the first quadrant of the u v-plane satisfying

r
(6.27) u = -  v .

P

Moreover, by introducing a new parameter

(6.28) C =  [  (ueg +  veq) dx =  ueq +  veq ,
Jo
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representing the fixed amount of biomolecules in the system, the uniform steady 

{veg, Ueq) of (6.15) is determined by the intersection in the v n-plane of the straight 

line given by (6.27) and the straight line

(6.29) 

Therefore,

(6.30)

u +  v = C .

(«.eqi
Ue,) ~  { ^ + 6

C.
p + 8 p + 5,

In order to assess the influence of the dynamical parameters of system (6.15) on 

the formation of speckles, we will consider small perturbations from the spatially 

homogeneous steady state (veq, ueq) of the form

(6.31)
V =  Veq + £v(x,t) ,

U =  Ueq +  £u{x, t) , 

where £<C 1. Substitution of these perturbations into (6.15) yields

(6.32) 
dv d2u

£ dt £ dx2 5ev  + P£ u i

du _  d 
6 dt dx

n  m(1 -U eq-£U )  £— d 2
dx2

_A  d2u
—  {ueq +  £U) £
12 ' dx2

+  §£V — p £ U .

Equating first-order terms with respect to e, neglecting higher-order terms, and 

dropping the bars, we obtain the following linearized system for (6.15):

dv d2v . _ = _ _ f o + p u ,

(6.33)
du cP’u di u

To find the dispersion relation between the growth rate A and the wave number 

q and draw conclusions about the stability of uniform steady states of (6.15), we 

study the following normal mode solutions of the linear system (6.33):

(6.34)
v(x, t) =  A  exp(At +  i qx) , 

u(x, t) =  B  exp(At -I- i qx) ,
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where A  and B  axe constants. Substitution of (6.34) into the linear system (6.33), 

cancellation of the factor exp (At 4 -  i qx), and proper rearrangement leads to 

(6.35)

A +  5 +  q2 —p A
= L

A 0

B B 0- S  A +  p — (ueq -  1 +  —  Uegq*

For nonzero solutions, it is required that A  and B  ^  0. Therefore, we require 

det(L) =  0 , giving the following quadratic equation for the growth ra te :

(6.36) 

where

(6.37)

^ 2 +  0 { q ) ^  +  7 (9) =  0 ,

P(q) =  Y2 Ue9?4 "  (Ue<* ~  2^ 2 +  p  +  6
2 /  2 \

7 (9) =  Y2 “ e? 9 6 +  \ SY2 Ue<l - U e q  + l j q 4 + { p -  Sueq +  S)q2 .

The two roots of (6.36) axe given by 

(6.38) Al,2 = - P ±  - 4 7

The necessaxy and sufficient condition for the growth rate A of the perturbations

(6.34) to have positive real paxt is that /? <  0 or 7  < 0. Note that if /3 < 0 then 

ueq >  2. In terms of the dimensional variables (see variables (6.12)), this implies 

that the density of unphosphorylated SF’s exceeds the critical density w, i.e., the 

restriction given by (6 .6 ) is violated. For this reason we assume 0 > 0. Therefore, 

one of the roots in (6.38) always has negative real paxt and the dispersion relation 

for possible growing modes is determined by the other root

(6.39) A = —0 + \J 0 2 — 47

which will have positive real part if and only if 7  < 0, where 7  is as in (6.37).

For the purpose of simplifying the analysis of the dispersion relation, we will 

consider all the parameters in system (6.15) fixed except for the dephosphorylation 

rate <5. An analogous analysis could be carried out if the free parameter were the
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Figure 6.7: Dispersion relation (6.39), with 8 = 1 and 5 = 1.1, when a = 0.05, p = 1, 

and veq 4- ueq = 2. For the case 8 = 1.1, the modes of instability axe determined by 

wave numbers q such that qL < q2 < q%, the dominating wave number is qz = 3ir 

with a growth rate A(q%) «  1.5, and the fastest growing wave length is Z3 =  2/3.

phosphorylation rate p. Note that varying 8 affects the slope of (6.27), and con

sequently the value of the steady state (veg.ueq). Thus, the natural question that 

arises is whether or not this variation affects the stability of the uniform steady state. 

In other words, we want to understand the influence of the dynamical parameter 8 

on the pattern forming potential of system (6.15).

The dispersion relation is visualized in figure 6.7 for two particular values of the 

dephosphorylation rate, namely 8 = 1.1, for which we obtain a dispersion relation 

defined by wave numbers with positive growth rates (modes of instabilities), and 

8 = 1, for which the dispersion relation is defined by negative growth rates for all 

wave numbers. In other words, the uniform steady state {veq, ueq) obtained with 

8 = 1.1 is unstable and the evolving dynamics of its perturbation is characterized 

by the onset of spatial patterns, whereas the uniform steady state (veq, ueq) obtained 

with 8 = 1 is stable and no spatial patterns will evolve. These stability results are 

corroborated by the numerical simulations shown in figures 6.8 and 6.9, respectively. 

The numerical scheme was implemented in MATLAB, where the “motion and self

interaction term” in (6.15) is treated with the scheme for fourth-order non-linear 

partial differential equations developed in [15], the diffusion term in the first equation
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Figure 6.8: Evolution of the solution (v(a:, t), u(x, t)) of system (6.15), with a  =  0.05, 

p = 1, and 5 — 1.1, from a random perturbation (represented by the dots) of 

the unstable steady state (veq,ueq) =  (0.95,1.05). The solid curves represent the 

solutions v(x,t) and u(x,t)  at t =  4.

of (6.15) is treated implicitly, and the reaction terms axe treated explicitly.

In the case of the aggregation-difiusion equation (6.13), we were able to use the 

dispersion relation (6.20) in order to find the d om ina tin g  wave number qm dictated 

by (6.24) and the fastest growing wavelength given by (6.26). But in the case 

of the aggregation-reaction-diffusion system (6.15), the complicated expression for 

the dispersion relation (6.39) has made the task of find ing the dominating wave 

number very difficult. In spite of this, Hadeler and Hillen [29] were able to estimate 

the dominating wave number for system (6.15). Under the assumption that the 

turnover rate of phosphorylated and unphosphorylated splicing factors is fast, the 

authors approximated system (6.15) with a limiting model that was linearized in 

order to obtain an estimate of the dominating wave number for system (6.15).

6 .3 .2  B ifu rcation  A n a ly sis . In sta b ility  and S tab ility  R egion s.

We investigate the modulating effect of the phosphorylation and dephosphorylation 

rates on the onset of the compartmentalization by addressing the question of how 

the transition from stability to instability takes place when the dephosphorylation 

rate is taken as the bifurcation parameter. We already know that this transition 

occurs when the real part of the dispersion relation A, given by (6.39), becomes
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Figure 6.9: Evolution of the solution (u(x,t),u(x,t)) of system (6.15), wither =  0.05, 

p =  1, and 5 =  1, from a random perturbation (represented by the dots) of the stable 

steady state (veq,ueg) =  (1,1). The solid curves represent the solutions v(x,t) and 

u{x , t) at t  =  4 .

positive. Equivalently, the transition occurs when 7 , given by (6.37), becomes neg

ative. Therefore, this transition is described by a real bifurcation [53]. To simplify 

the analysis of this bifurcation problem, we let both A and 7  be functions of z = q2. 

From (6.30) and (6.37), it then follows that the roots of A(2 ) are determined by the 

positive roots of

(6.40) 'y(z) = zp{z) =  z(az2 + bz + c) ,

and C is as in equation (6.28). Thus, one of the roots of 7 (2 ) is zero, and the other 

roots are given by the roots of p(z ) :

The following theorem provides details on the real bifurcation, plus an algorithm to 

determine the bifurcation value.

where

(6.41)
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T heorem  4. Consider system (6.15), with uniform steady state (veq,ueq) given by 

(6.30). Let the parameters C, p, a  >  0 be given, and

(6.43) f ( 8 ) = b 2(8)-Aa(8)c(8),

where a(8), b(8), and c(8) are as in (6.41). Let 5* denotes the largest root of f(8), 

and 8 =
C — 1

1. If 0 <  C <  1, then (veq,ueq) is stable.

2. If C > 1, and

3(C — l)2
(a) if p >  — ^ 2—  then (veq,ueq) is stable for 8 < 6}, and unstable for 

8 > 6b, where 8(, = 8;

(b) if p < , and

(i) if b{8*) <  0, then {veq,ueq) is stable for 8 < 8b and unstable for 

8 > 8b, where 8b = 8* ;

(ii) if b(8*) > 0 , then (veq,ueq) is stable for 8 < 8b and unstable for 

8 > 8b, where 8b — 8.

Proof. Since the roots of the dispersion relation A(rr) are determined by the positive 

roots of 'y(x) and the coefficient a(8) > 0, the transition from a stable to an unstable 

steady state can only occur when /(<5) =  0 or c(S) =  0. To distinguish these two 

cases, we note first that the coefficient b(8) =  0 if and only if p =  1(8), where

n J i
(6.44) m  = - ^ X s 2 + ( C - l ) l .

Note as well that c(8) =  0 if and only if p =  m±(8), where

(6.45) m ± (6)= ° - - ^ 8 .
V ' W (1 ±y/C)

1. For 0 <  C < 1, the values of both (6.44) and (6.45) are negative. On the one 

hand, 1(8) < 0 implies that b(8) > 0. The bifurcation cannot take place at any 

root of f(8). If it did, the only root of p(z) at the bifurcation point, given by (6.42), 

would be negative. On the other hand, the bifurcation cannot occur when c(<5) =  0, 

because p > 0 and rn±(8) < 0. Therefore, (veq,ueq) is stable for 0 < C < 1.
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p= 772(5)
m

P=/(5)

Figure 6.10: Graphs of the curves 1(5) and m(5) given by (6.44) and (6.46), respec

tively.

3 (C — l ) 22. For C > 1, the parabola 1(5) reaches a maximum value pm =  0  at
Co2C t f f 1   1 ̂

5m =  — — (see ^o1116 6.10) and c(<5) =  0 if p = m(5) , where

(6.46) m (£ )=  ° ~ i -  5.
(1 + VC)

Since the slope of m(5) is smaller than the slope of Z(<5) at 5 =  0  and m(5m) <  pm, 

the straight line m(5) is as shown in figure 6.10.
3(C — l ) 2

(a) With figure 6.10 in mind, we conclude that if p >  — — ^— , then b(5) >  0 for
Co

all 5, and the bifurcation cannot occur at any root of f(5).  Thus, the bifurcation

takes place when c(5) = 0, i.e., at 5* =  ^ - ^ — y^-p-
C — 1

3(C — l ) 2
(b) To study the case p < — ——5— , we observe that the roots of p(z), given by

Co
(6.42), are both negative when <5 <3C 1. As 5 increases, we note from figure 6.10 

that there is at least one value 5 such that b(5) =  0 and c(d) #  0 for 5 < 5. This 

means that at 5, the roots (6.42) of p(z) have distinct signs or axe conjugate complex 

numbers. Therefore, the only possible way for this transition in the roots of p(z) 

to happen as 5 increases is that there exists a  5 < 5 such that f (5 )  = 0, i.e., f(5)  

has at least one root. Moreover, it is not difficult to see that all the roots of f(5) 

are smaller than those of c(5) . Since we axe interested in the bifurcation from a 

stable to an unstable steady state, and f(5)  —> 0 0  as 5 -> 0 0 , we let 5* denote the 

largest root of f(5).  Thus, (i) if b(5*) < 0, then the bifurcation occurs at 5b =  5*, 

and (ii) if b(5*) > 0, then the root of p(z) is negative and the bifurcation occurs

1 2 1
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8<8b 
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100 150 200 250 0.5 1.5

Figure 6.11: A: Evolution of the dispersion relation (6.39), with a  =  0.05, p =  1, C = 

2, as 8 passes through the bifurcation value 5b «  1.06. B: Bifurcation diagram for 

the stability of the steady state (veg, ueq) as the dephosphorylation rate 5 varies. 

The dotted portion of the line v + u = 2 represents unstable u n ifo rm  steady states, 

the solid portion represents stable ones, and the filled circle represents the steady 

state at the bifurcation value 5b.

when c(5) =  0, i.e., at 5b =  5. This completes the proof. □

To describe the use of theorem 4, we first find the bifurcation value 5b for

the example illustrated in figures 6.7-6.9, in which the dispersion relation becomes

positive as the dephosphorylation rate 5 increases. For the particular choice of

the parameter values in the example (a =  0.05, p =  1, C =  2), we note that 
3 (C — l l 2

p =  1 < — ~Q(j2—  =  ^  r00t /(£)> defined in (6.43), is <5* «  1.06.

Since b(5*) «  —0.03 <  0, case 2(b)(i) of theorem 4 applies, and the bifurcation 

value is given by 5b = 5* zz 1.06. The evolution of the dispersion relation (6.39) as 

5 passes through 5b is shown in figure 6.11 A, which is consistent with the results in 

figures 6.7-6.9.

Figure 6.11B shows the bifurcation diagram for the steady state {veQ, ueq) ob-
g

tained from the intersection of line (6.27), u = — v , and (6.29), v+u = 2. When 5 is
P

small, the steady state is stable (denoted by the solid portion of the line v + u = 2). 

The slope of line (6.27) increases as 5 increases (or equivalently, decreases as p in

creases), and as it passes through the value 5b/p. the resulting steady state becomes
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Figure 6.12: Stability and instability regions for the resulting steady state (veq,ueq),
with a  =  0.05. In figure A, p =  1 and the curve that separates the stability regions

3 ( 2  — n 2
is given by equation (6.47). In figure B, p >  —— and the curve that separates

2 a1
the largest possible stability region to the instability region is given by equation 

(6.49).

unstable (denoted by the dotted portion of the line v +  u = 2). The outcome is 

consistent with the biological fact that dephosphorylation (increased 5, or decreased 

p) enhances the self-organization of splicing factors, and that phosphorylation (in

creased p, or decreased 5) enhances the disassembly of speckles.

With the bifurcation diagram from figure 6.1 IB in mind, we can apply theorem 

4 with any value of C . We consider values of 0 <  C  <  2 to avoid breaking the 

restriction on the density of splicing factors given by (6.6). For each value of C, we 

obtain a bifurcation value <$b(C), yielding the stability and instability regions for the 

steady state (veq: ueq) shown in figure 6.12A. The uniform  steady states that have 

the potential for pattern formation after perturbation lie in the instability region. 

The bifurcation curve

(6.47) (veq(C),ueq(C)) = v  p +  0b p +  0bj

that separates the regions of stability and instability in figure 6.12A lies slightly 

above the curve ueq = 1. Thus, for the onset of the compartmentalization to take 

place, it is necessary to have enough biomolecules in the system (C > 1), and to 

have enough unphosphorylated biomolecules, which is consistent with the results
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obtained in the analysis of the aggregation-diffusion equation (6.13), where it was

required that ueq >  1 for instability to occur. The natural question that arises

now is how the bifurcation curve changes as the phosphorylation rate increases. As

expected, the stability region will increase, but only up to a certain point. From case

2(a) of theorem 4, and considering that the bifurcation curve is given by equation
3(2 — l)2(6.47), we conclude that the curve that separates the regions when p >  — —■ — is

2a1
given by the intersection of the line veg + ueq = C  and the line ueq = r(C)veq, where 

(6-48) r{C) = l ± ^ £ ,

i.e., by the parameterized curve

' C ( C - l )  C (l +  v/C)'
c + Vc

3(2 — l)2
Therefore, the largest region of stability, reached when p >  — —r— , will be

2az
determined by (6.49) (see figure 6.12B). This implies that no matter how big the 

phosphorylation rate is, there will always be a region of instability, i.e., there exists 

a dephosphorylation rate that is high enough such that the resulting uniform steady 

state (veq, ueq) becomes unstable.

If one wants to obtain information on the modulating effect of both the phospho

rylation and dephosphorylation rates at the same time, one can portray the regions 

of stability in the p J-plane. This is done by keeping the rest of the parameters in 

the system fixed and applying theorem 4 to any p >  0 to obtain the bifurcation 

curve £fc(p), as follows:

(6.50) 6 = 6b(p) = <

1 + VC  3{C — l)2
C - l  P ; P> Ca2 ’

S* ; P <  —<̂ ,~21— and b(S*) < 0,

1 + y/C 3(C — l)2- p < — — z—  and b{6 ) > 0,C - r  ’ Ca2

where S* and b(5) are as in theorem 4. Figures 6.13A and 6.13B show this bifur

cation curve and the resulting stability regions in the p J-plane when a = 0.05, for 

C =  2 and C =  1.5, respectively. In figure 6.13B, note that decreasing the amount
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Figure 6.13: Stability and instability regions in the pJ-plane when a  =  0.05, C = 2 

(figure A), and C = 1.5 (figure B). The solid curve S =  h{p) that separates the 

stable region to the unstable region is obtained according to equation (6.50).

of biomolecules in the system, represented by C, has caused the region of instability 

to be reduced, i.e., there is a lower chance for the onset of compartmentalization of 

splicing factors.

In this section, we have demonstrated the existence of unstable uniform steady 

states of system (6.15), whose perturbation can result in the onset of the com

partmentalization of splicing factors. Through the bifurcation analysis, we have 

concluded that the potential for the formation of compartments can be eliminated 

by increasing the phosphorylation rate or decreasing the amount of splicing factors 

in the system.

6.4 Discussion

Understanding the dynamical organization of splicing factors is an important step 

towards understanding the architecture of eukaryotic cell nuclei and the changes 

that take place under different physiological conditions or stresses. In this chapter, 

we have approached understanding nuclear compartmentalization using a mathe

matical model. In particular, we have proposed a  model that describes a  possi

ble mechanism for the onset of splicing factors compartmentalization, i.e., for the 

formation of speckles. The model, namely the fourth-order aggregation-reaction-
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diffusion equation (6.10), is based on the current biological hypotheses that self- 

organization of splicing factors is modulated by phosphorylation and dephospho

rylation [6, 71, 72, 114], and that the existence of an underlying nuclear structure 

plays a major role in the formation of speckles [34, 47, 80]. Fourth-order partial 

differential equations have been shown to have rich dynamics, including potential 

for pattem-formation [15, 53, 103].

A linear stability analysis of the model and a  study of its dispersion relation 

has brought to light a  possible mechanism for the formation of speckles, in which 

slight perturbations of a uniform steady state of the system may lead to potential 

spatial patterns. This is possible as long as there axe sufficient biomolecules in the 

cell nucleus. This result mimics the onset of the compartmentalization of splicing 

factors during the early stage of the cell interphase, when the distribution of splicing 

factors undergoes a transition from spatially homogeneous to heterogeneous [49], and 

suggests that speckle formation can be initiated randomly. Moreover, the model 

illustrates how the ratio between the size of the domain (cell nucleus) and the 

size of the range of influence of the self-interaction, defined by the dimensionless 

paramenter cr, can determine the number and size of SFC’s. The larger a is, the 

fewer the speckles or compartments.

The bifurcation analysis illustrates that an appropriate ratio of phosphorylation- 

dephosphoration rates is needed for speckles to form. An increase in the dephos

phorylation rate leads to a larger region of instability, and therefore enhances the 

compartmentalization of splicing factors, whereas an increase in the phosphorylation 

rate leads to a small region of instability, and therefore has a homogenizing effect 

on the spatial distribution of splicing factors. This is consistent with naturally 

occurring processes that have been shown to lead to speckle disassembly, caused 

right before mitosis by am increase in kinase activity or induced experimentally by 

increasing the abundance of specific kinases [13, 19, 28, 68, 71, 107].

Although the model illustrates successfully a mechanism for the onset of the 

compartmentalization, the restriction given by (6.6) limits it from being able to 

describe the long-term behaviour for the aggregation of splicing factors. This has
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left us with an interesting modelling problem to be investigated.
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Chapter 7

Concluding Remarks

Advances in fluorescence microscopy techniques have become crucial to the study 

of the spatio-temporal dynamics of nuclear proteins. Thanks to this technology, the 

structural organization of the nucleus, and the functional biology and d y n am ics of 

nuclear proteins axe becoming known. For example, with the use of fluorescence mi

croscopy, the identification and study of nuclear compartments such as the splicing 

factor compartments have been possible [40, 46, 87]. Also, the fluorescence mi

croscopy technique called FRAP (fluorescence recovery after photobleaching) and 

its accompanying mathematical analysis have become useful tools for studying dy

namical properties of proteins within the nucleus of living cells. The combination 

of FRAP experiments and mathematical modelling allows experimentalists to es

timate kinetic parameters that describe the processes affecting the movement of 

nuclear proteins.

In this thesis, we examined three models that can be used to interpret FRAP data 

for nuclear proteins, and developed one model that provides a possible mechanism 

for the formation of nuclear compartments enriched in splicing factors.

The first model used to interpret FRAP data is the diffusion equation (2.3), 

which is used to determine the overall mobility of biomolecules by estimating an 

effective diffusion coefficient [8, 58, 67]. The standard technique to estimate diffusion 

coefficients of nuclear proteins using FRAP experiments assumes that biomolecules 

diffuse on an two-dimensional infinite domain, where the photobleached region is
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a circular area [1, 87]. However, the cell nucleus is a finite region bounded by a 

membrane. On the basis of the work by Axelrod et al. [1], we presented, in chapter 

2, an exposition of how the diffusion equation is used in the analysis of FRAP data 

on both bounded and unbounded domains. We simplified the analysis of FRAP 

data by choosing rectangular photobleached regions. This allowed us to compare 

the behaviour of fluorescence recovery curves on bounded and unbounded domains, 

and to reduce the problem to a  on e-d im ensional spatial domain. By solving the 

diffusion equation explicitly, we were able to derive the theoretical recovery curves 

on bounded and unbounded domains (equations (2.35)-(2.38)) that can be used to 

interpret FRAP data. The behaviour of these curves provided an explanation for 

the experimental differences in the fluorescence recovery curves that are observed 

depending on the size and the location of the photobleached region. We showed how 

disregarding the existence of a nuclear membrane can lead to erroneous estimations 

of effective diffusion coefficients, and concluded that the appropriate theoretical 

recovery curve to be used for estimating effective diffusion coefficients for nuclear 

proteins when photobleaching a band across the cell nucleus is the one obtained 

on a one-dimensional bounded domain, given by equation (2.42). This theoretical 

recovery curve was fit to FRAP data of two nuclear proteins, histone HI and nuclear 

actin, in order to quantify their overall mobility in the cell nucleus.

The second model used to interpret FRAP data is the system of reaction-diffusion 

equations (3.1), which incorporates protein interactions in the analysis of FRAP 

data. In chapter 3, the model was used to describe the dynamics of diffusive fluo

rescent proteins in the cell nucleus undergoing binding and unbinding events with 

an approximate spatially homogeneous structure that is considered immobile on the 

time scale of molecular movement. Particular nuclear proteins of interest under

going this type of interaction are histone HI, which binds to and unbinds from an 

approximately homogeneous chromatin structure, and actin, which is hypothesized 

to undergo an association-dissociation process between two pools, a globular pool of 

biomolecules free to diffuse and an approximately immobile and homogeneous poly

meric population. By solving the reaction-diffusion system explicitly, we derived
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the theoretical recovery curve (3.4) that can be used to fit experimental FRAP data 

and estimate the kinetic parameters that describe reversible binding interactions, 

namely the binding (association) and unbinding  (dissociation) rates.

The theoretical recovery curve (3.4) was used to fit FRAP data of histone HI 

and nuclear actin, and the estimated parameters were used to infer biologically 

meaningful information of the protein dynamics such as the protein residence time 

in a bound state, the wandering time between binding events, the proportion of the 

protein population that is bound, and the proportion that is free to diffuse.

For histone HI, the fitting was quite accurate, but the quantitative estimate 

obtained for the proportion of the population bound to the chromatin structure 

was much smaller than biologically expected, or equivalently, the proportion of the 

population free to diffuse was higher than expected. This apparent inconsistency 

suggested that the estimated high proportion of the population free to diffuse was 

actually a  proportion of the population that accounted for a  subpopulation weakly 

bound to the chromatin structure and a small proportion free to diffuse. Thus, we 

hypothesized that there are three subpopulations of histone HI, namely a subpop

ulation free to diffuse, a  subpopulation weakly bound to the chromatin structure, 

and a subpopulation strongly bound to the chromatin structure. In other words, 

there axe two types of binding interactions of histone H i with the chromatin struc

ture, namely a low-affinity (weak binding) interaction, and a high-affinity (strong 

binding) interaction, and that it is only the latter contributing to the low estimated 

proportion of bound population. The hypothesis is consistent with the experimental 

evidence of a  rapid exchange (weak interaction) of histone HI on chromatin [51].

In the case of nuclear actin, the FRAP data exhibited biphasic behaviour, with a 

fast initial recovery followed by a slow final recovery, which could not be explained by 

just the diffusion equation. Using the reaction-diffusion model (3.1), we obtained an 

accurate fitting of the FRAP data, whose fast and slow phases were attributed to the 

fast diffusion and to the slow turnover of globular actin into an immobile filamentous 

population, respectively. Using the estimated kinetic parameters from the fitting, 

we quantified the proportions of the population in monomeric and polymeric forms
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and concluded that nuclear actin, although mostly present in monomeric form, also 

contains a significant polymeric pool. Based on the accuracy of the fitting, we 

conclude that the interpretation of FRAP data for nuclear actin using the reaction- 

diffusion model (3.1) supports recent evidence that actin is present in the nucleus 

in filamentous form [61].

The third model used to interpret FRAP data is the compartmental model (4.1), 

consisting of a linear system of ordinary differential equations where the only inde

pendent variable is time. The model was motivated by the fact that FRAP data 

are only time dependent. It describes the same dynamics as the reaction-diffusion 

model (3.1), but its kinetic parameters are the binding and unbinding rates, and 

a new parameter, called the diffusional transfer coefficient, that can be thought of 

as playing the same role as the diffusion coefficient in the reaction-diffusion model 

(3.1).

In chapter 4, we solved the compartmental model explicitly, and on the basis of 

the solution we derived the theoretical recovery curve (4.15). Its expression, given by 

a simple sum of two exponential terms, allows for a significant simplification in the 

task of parameter estimation. The theoretical recovery curve was used to fit FRAP 

data of nuclear actin, and the estimated proportions of the filamentous and globular 

pools were consistent with the estimates obtained using the reaction-diffusion model 

in chapter 3.

The compartmental model provides a formal mathematical explanation of the 

empirical procedure of fitting sum of exponential terms to FRAP data of nuclear 

proteins undergoing binding events proposed recently by Phair et al. in [86], and 

has motivated the current research on FRAP data processing by Li et al. [55].

In chapter 5, we showed how the reaction-diffusion model (3.1) and the compart

mental model (4.1), describing the same type of dynamic using different approaches, 

relate and share a  common ground. Specifically, we related the diffusional transfer 

coefficient to the diffusion coefficient by applying the concepts of residence time, 

transit time [31, 32], and mean time to capture [3]. The resulting relation provides a 

simplified method for estimating diffusion coefficients. The method was applied to
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estimate the diffusion coefficient of nuclear actin, and the estimate was consistent 

with the one obtained in chapter 3 using the reaction-diffusion model.

In chapter 5, we also carried out a thorough analysis of the dynamics of both the 

reaction-diffusion model (3.1) and the compartmental model (4.1). Using pertur

bation analysis, we provided a formal explanation of two limiting dynamical types 

of behaviour exhibited by experimental recovery data, namely a reduced, diffusive 

behaviour and a biphasic behaviour. We showed how a rapid turnover, or rapid ex

change of binding proteins in the immobile structure, leads to a fluorescence recovery 

curve that looks as though it was produced by a purely diffusing population, but one 

that is characterized by a reduced diffusion coefficient. In contrast, slow exchange 

of proteins leads to a biphasic behaviour distinguished by a fast recovery phase due 

to the diffusion process and a slow recovery phase due to the turnover process. We 

identified successfully the FRAP data for histone HI as having a reduced diffusive 

behaviour, and the FRAP data for nuclear actin as having a biphasic behaviour. 

The perturbation analysis also provided a  spectrum of simple theoretical recovery 

curves that simplifies the task of parameter estimation.

From the analysis of the three models used to interpret FRAP data, namely the 

diffusion model (2.3), the reaction-diffusion model (3.1), and the compartmental 

model (4.1), we conclude that the specific theoretical recovery curve to be used for 

the fitting of FRAP data for nuclear proteins depends entirely on the knowledge of 

the specific protein dynamics, on the characteristics of the experimental recovery 

curve, and on the criteria and needs of the experimentalists. The results promise to 

be a  useful tool for quantifying the effect of mutations in proteins on their functional 

dynamics. For example, it would be interesting to complement the work by Hendzel 

et al. in [37] by quantifying the effect of mutations in histone HI on its affinity to 

the chromatin structure. Specifically, different sets of FRAP data for different types 

of mutations in histone HI would be fitted with theoretical recovery curves in order 

to obtain estimates of kinetic parameters such as the binding and unbinding rates, 

and the proportions of the population weakly and strongly bound to the chromatin 

structure.
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In order to facilitate the mathematical analysis of FRAP data by experimental

ists, we envision the creation of a simple, user-friendly computer interface that can 

be used in the lab to obtain numerical estimates of the kinetic parameters describing 

the dynamics of specific nuclear proteins, based on the theoretical recovery curves 

obtained from the diffusion model (2.3), the reaction-diffusion model (3.1), and the 

compartmental model (4.1).

The last model analyzed in this thesis (chapter 6) is not directly related to FRAP 

experiments. Instead, its purpose is to provide a description of the process of splic

ing factor compartmentalization. The model, given by the aggregation-reaction- 

diffusion system (6.10), describes a  possible mechanism for the onset of splicing fac

tors compartmentalization, i.e., for the formation of splicing factor compartments 

or speckles. The model incorporates two biological hypotheses, namely (1) that 

self-organization of splicing factors is modulated by phosphorylation and dephos

phorylation [6, 71, 72, 114], and (2) that an underlying nuclear structure plays a 

major role in organization of splicing factors [34, 47, 80]. A linear stability analysis 

of the model and a study of its dispersion relation revealed how slight perturbations 

of a  uniform steady state of the system may lead to potential spatial patterns. A 

detailed bifurcation analysis of the model illustrated how an increase in the dephos

phorylation rate enhances the compartmentalization of splicing factors, and how an 

increase in the phosphorylation rate has a homogenizing effect on the spatial dis

tribution of splicing factors. This result is consistent with processes that have been 

shown to lead to speckle disassembly, naturally occurring right before mitosis and 

initiated by an increase in kinase activity or induced experimentally by increasing 

the abundance of specific kinases [13, 19, 28, 68, 71, 107]. The bifurcation analysis 

also allowed us to delimit regions of stability and instability.

The aggregation-reaction-diffusion model illustrates successfully a mechanism for 

the onset of the compartmentalization. However, the restriction given by (6.6) limits 

the model from being able to describe the long-term behaviour for the aggregation 

of splicing factors. This has left us with an interesting modelling problem to be 

investigated in the future. The idea to solve this problem is to modify the interaction
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term among unphosphorylated splicing factors described by equation (6.4). As it is 

now, the term depends linearly on the average density of unphosphorylated splicing 

factors. By making this dependence nonlinear on the basis of reasonable biological 

assumptions, the restriction (6.6) can be withdrawn, and a new model that describes 

the long-term behaviour for the aggregation of splicing factors can be proposed. One 

also could go even further, and extend such a  new model to two spatial dimensions.

In chapter 6, we emphasized a qualitative mathematical description of the onset 

of the compartmentalization. For this purpose, we introduced new dynamical para

meters with biological significance, such as phosphorylation and dephosphorylation 

rates, that are of real interest for the experimentalists and for which experimental 

estimates are currently lacking. Thus, the design of new experiments for estimating 

parameters seems to have a promising future in this research field.

One of the basic assumptions of the aggregation-reaction-diffusion model is the 

existence of an underlying nuclear structure. Although this assumption has been 

proven to be true [34, 47, 79, 80], it still remains a topic of controversy among scien

tists [84]. For this reason, another future challenge is the development of alternative 

models for splicing factors compartmentalization in which no underlying nuclear 

structure is considered. In a  broader scientific context, the aggregation-reaction- 

diffusion model will lead not only to its own improvement but also to the design of 

experiments for validating or rejecting it.

Finally, we hope that the research carried out in this thesis motivates more 

interdisciplinary work in the field of nuclear protein dynamics.
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