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Abstract

Growth and yield models for forest stand dynamics using data from permanent
sample plots with the real growth series are often composed of a system of compatible,
interdependent, and analytically related equations. Most conceptual frameworks for
understanding stand development processes recognize that there is a strong correlation and
feedback mechanism among variables that are used ¢o describe various growth and yield
relationships. This idea translates into the realization that forest stand dynamics should be
described by simultaneous au . :idependent systems of equations that involve current,
future, and past values of some of the tree and stand characteristics rather than separate
and isolated individual equations.

This study’ described methods for estimating systemis of nonlinear simultaneous
equations, each developed under the framework of an individual tree distance-independent
growth and yield model. The study first compared the relative performance of a variety of
potential height-diameter functions on a large, regional data set covering numerous species
in order to identify the most appropriate height-diameter functicns for major Alberta tree
species. A height-diameter function was then selected as the base function, and using the
parameter prediction method, individual tree height prediction models expressing tree height
as a function of diameter, basal area, stand densii;yg species composition, site productivity,
and average size of the trees in the stand were developed. A site productivity measure based
on the relationship between total tree height and diameter at breast height of the dominant
and codominant trees was presented as a convenient method of quantifying site productivity
for uneven-aged and/or mixed-species stands. Biologically based periodic diameter
increment and height increment models that relate diameter growth and height growth to
other tree and stand characteristics were also developed for selected tree species.

Because of the interdependent nature of the equations developed in this study,



alternative system estimation methods, such as seemingly unrelated regression, two- and
three-stage least squares commonly used in econometrics, were applied to estimate the
structural parameters simultaneously. Since time series and cross-sectional data were used
for fitting individual and systems of equations, paramcter estimation under the classical
regression structure, where the error terms for individual equations are independent and
identically distributed, or the generalized regression structure, where the error tezms are

heteroskedastic and/or autocorrelated, weare considered.
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Chapter 1

Introduction

Growth and yield models describing forest stand dynamics have been widely used
in forest management as the sine qua none for making appropriate management decisions
on forestry operations. Vuokila in 1965 (as referenced in Krumland 1982 p. 1) reported that
the first documented effort to relate volume yields to stand age dated back to 17th century
China. There are & great many mathematically oriented biological and ecological growth and
yield models now available. Most of the models range from those based on individual trees
to those for whele stands (Munro 1974, Clutter et al. 1983, Davis and Johnson 1986).

Conventional growth and yield models fitted on the data from permanent sample
plots with the real growth series often comprise a system of compatible, interdependent, and
analytically related equations (Clutter 1963, Sullivan and Clutter 1972, Burkhart 1986,
Daniels and Burkhart 1988). Within such a system of equations, a variable appearing on the
left hand side of an equation can also appear on the right hand side of ancther equation
in the system. Understanding the correlation and feedback mechanism among variables that
are used to describe various growth and yield relationships is essential in developing
rationalized individual equations that make up the growth and yield projection systems. It
has been realized that forest stand dynamics should be described by simultaneous and
interdependent systems of equations that involve current, future, and past values of some
of the tree and stand characteristics rather than separate and isolated individual equations.

The application of simultaneous fitting techniques commonly used in econometrics

for systems of growth and yield equations was first reported by Furnival and Wilson (1971).
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Many other researchers have also discussed and used two- and three-stage least squares, and
seemingly unrelated regression techniques for estimating the structural parameters in
systems of forestry equations (Murphy and Sternitzke 1979, Murphy and Beltz 1981,
Murphy 1983, Amateis et al. 1984, Burkhart 1986, Borders and Bailey 1986, Reed 1987,
Van Deusen 1988, Borders 1989, LeMay 1988, 1990). Previous system modelling techniques
in growth and yield studies, however, have mainly concentrated on the linear, stand level
volume and basal area equations.

The primary objectives of this study are 1) to develop equations that predict
individual tree height, periodic diameter increment, and periodic height increment under the
framework of an individual tree distance-independent growth and yield model for selected
major Alberta tree species grown in boreal mixed-species stands, 2) to evaluate the effects
of species composition, site productivity, and stand density on tree growth and yield
relatonships, 3) to examine the interdependent nature among the equations and to apply
the appropriate statistical procedures for estimating the structural parameters of the system
of equations simultaneously, and 4) to evaluate different system estimation methods for
nonlinear equations and to compare them with the traditional single-equation based
ordinary least squares techniques.

To meet the above mentioned objectves, the theoretical foundation for modelling
techniques, especially methods for estimating . stems of simultaneous equations were
reviewed. Comparison of the relative performance of a variety of poteatial height-diameter
functions on a large, regional data set covering numerous species was made in order to
identify the most appropriate height-diameter functions for major Alberta tree species. A site
productivity measure for uneven-aged and/or mixed-species stands based on the relationship
between total tree height and diameter at breast height of the dominant and codominant

trees was developed. Measures that reflect species composition and stand density in mixed-



3
species stands were defined. Using an appropriately selected height-diameter function, and
the method of parameter prediction (Clutter et al. 1983), age-independent individual tree
height prediction models expressing tree height as a function of diameter, basal area, stand
density, species composition, site productivity, and average size of the trees in the stand
were developed. A periodic diameter increment model was developed for white spruce, and
periodic height increment models were formulated for white spruce and aspen. Because of
the interdependent nature among tree height, diameter increment, and height increment
equations developed in this study, alternative system estimation methods such as seemingly
unrelated regression, and two- and three-stage least squares commonly used in econometrics
were applied to estimate the structural parameters of the simultaneous equations.

Since time series and cross-sectional data from permanent sample plots are used for
firting individual equatons and system of equations, parameter estimation methods under
the classical regression structure, where the error terms for individual equations are
independent and identically distributed, or the generalized regression structure, where the
error terms for individual equations are heteroskedastic and/or autocorrelated, are
considered.

While fundamentals of the nonlinear system modelling techniques were emphasized,
the practical implications of such approaches for systems of interdependent forestry
equations were also stressed. Methods for model diagnostics and testing, as well as system
specification were aiso discussed to ensure that the models are fitted appropriately.
Preliminary results of the simulation based on the fitted and existing equations are also
produced to determine whether the equations developed in this study provide appropriate
predictions under various conditions.

This thesis is written in a paper-format so each Chapter describes a separate but

integrated part of the research. Chapter 2 synthesizes the theoretical foundation for
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modelling techniques. Chapter 3 compares the relative performance of the potential height-

diameter functions. Chapter 4 develops a site productivity measure for uneven-aged and/or
mixed-species stands based on the relationship between iota) tree height and diameter at
breast height of the dominant and codominant trees. Chapter 5 first selects an appropriate
height-diameter function, and then using the parameter predicon method, develops age-
independent individual tree height prediction models. Chapter 6 shows the development of
a diameter increment model for white spruce. Chapter 7 presents the periodic height
increment models for white spruce and aspen. Chapter 8 describes the techniques for
simultaneously fitting a system of three related nonlinear equations for white spruce.

Chapter 9 provides the general discussion and conclusions.
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Chapter 2

Theoretical Foundation for Estimating Systems of Equations

2.1 Introduction

This chapter is concerned with the theoretical foundations for the use of the least
squares criterion for estimating systems of simultaneous nonlinear equations. Because the
theory relies on many analogies with the theory and methods of linear equations, general
descriptions of the least squares criterion for estimating a single linear equation and systems
of linear equations are given first. Methods for estimating a single nonlinear equation are
then provided as the primary step for estimating systems of nonlinear equations. For each
single equation and system of equations considered, parameter estimates and their
conventional sampling properties such as unbiasedness, efficiency, and consistency are
described when the error structure of the individual equation is homoskedastic and
uncorrelated, or when the error structure is heteroskedastic and/or autocorrelated. General
references that cover the theoretical foundation on statisticai models include Judge et al.
(1988), Kmenta (1986), and Rawlings (1988) for linear models, and Gallant (1987),

Ameimmiya (1985), Judge et al. (1985), and Seber and Wild (1989) for nonlinear models.

2.2 Generalized linear regression equation
Consider the following general linear regression equation with p unknown

parameters on n observatons

(2.1) Y=XB+¢e

where Y is an (nx1) vector of observations on the dependent variable, X is an (nxp)
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nonstochastic design matrix of known values with linearly independent column vectors of
the independent or exrclanatory variables, g is a (px1) vector of unknown pars.meters to be
estimated, and ¢ is an (nx1) vector of unobservable random errors. Assuming the random

errors ¢ in equation (2.1) follow

(2.2) Efe]l =0 V(e) =0T e~(0,0%1)
that is, the errors ¢ are statistically independent (uncorselated) and identically distributed
(i.i.d.) with an unknown distribution that has the mean vector E{e)=0 and the variance-
covariance matrix V(e)=E[ee’]1=02l, where o is the common variance of the random
errors, and I is the (nxn) idendty matrix. Using the ordinary least squares (OLS) criterion,
an estimator for the parameter vector g in (2.1) is obtained by minimizing the sum of

squared errors

(2.3) S=g/e= (Y-XB) /' (Y-XB)
Differentiating S with respect to g and setting the resultant matrix equation equal to zero,

and replacing 8 by its OLS estimator b provides the normal equation

(2.4) (X'X)b=X'Y

The solution to this normal equation gives the unique OLS estimator of g8

(2.5) b= (X'X) X'y

The variance-covariance matrix that expresses the sampling variation for b is obtained as

(2.6) V(b) =E[ (b-E[b]) (b-E[b])’] = (X'X) 10?2
According to the Gauss-Markov Theorem (Judge et al. 1985, p. 15), the OLS estimator of
B as determined by b in (2.5) is unbiased, consistent, and efficient with respect to the class

of linear unbiased estimators. It is the best linear unbsased estimator (BLUE) of B in the
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sense that it has the minimum variance among all linear unbiased estimators. The error
variance o2 in (2.6) is usually unknown and estimated by its unbiased estimator (Judge et

al. 1988, pp. 205-208):

(2.7) §2m (Y-Xb)/(Y-Xb) _ Y'Y-b'X'y
) n-p n-p

The above classical OLS estimation for the general linear regression model (2.1)
relies on the error i.i.d. assumption given in (2.2). It may not be approprate if the error
terms are heteroskedastic and/or autocorrelated. Consider the following more generalized

specification for the error terms ¢ in equation (2.1)

(2.8) Elel =0 V(e) =62V  &~(0,0%V)
where V is an (nxn) positive definite symmetric matrix whose diagonal elements are not
equal (heteroskedasticity) and the off-diagonal elements are not zero (autocorrelation).
Under these conditions, it can be shown (Judge et al. 1988, p. 341) that the OLS estimator
b of g is still unbiased and consistent bur inefficient. To find the esiimator that is also
efficient, equation (2.1) can be transformed to

(2.9) Y*=X*"B+e*

where Y =PY, X"=PX, ¢"=Pe, and P is an (nxn) nonsingular symmetric matrix that satisfies

(2.10) P/P=pPP=p?2ay-1

It is a relatively simple matter to show that the transformed error terms ¢ in (2.9) follow

(2.11) Ele*] =0 Vie*]l =E[e*e*1=02T ¢*~(0,02I)

Hence, OLS technique can be directly applied to equation (2.9) by minimizing

(2.12) S=e*e*=e/V-ig= (Y-XB)/ V-2 (Y-XB)



This gives the generalized least squares (GLS) or the Aitken estimator

(2.13) Bors= (X*'X*) 1x*'y*= (X'P/2x) 1 X' P/ PY~ (X'V"1X) "1X'V-1Y
The GLS estimator 8, g is BLUE for g8 in equation (2.1) if the error specification in (2.8) is
met and the matrix V is known. If V is unknown, which is usually the case in practice, V is
replaced by an estimated matrix V and the estimated generalized least squares estimator

{EGLS) of 8 is then given by

(2.14) Bo- (X'P'BX) 1x/'P'Py=- (X'V"1x) X'V 'y

~
where P is an (nxn) nonsingular symmetric matrix that satisfies

(2.15) P/BapPupay?
Judge et al. (1988, pp. 352-6) show that B as determined by (2.14) is an asymptotically
unbiased, consistent, and efficient estimator of 8. The variance-covariance matrix of Bg can

be obtained as

(2.16) V(B,) - (X'V1x) 102

A consistent estimator for o resulted from EGLS is given by

ag_ ( Y’Xﬁc) lf}-I (Y—XBG)
n-p

(2.17)

The estimation of the matrix V is different, depending on the error structure of the
equation under consideration. When the error terms in equation (2.1) have unequal

variances but are uncorrelated, the variance-covariance matrix of ¢ is defined by

(2.18) E[e] =0 V(e) ~E[ee’]l ~02V=-diag(oZ,02,...,03)
With this heteroskedastic error specification, each observation in equation (2.1) is multiplied

by the reciprocal of its standard deviation; in other words, both sides of equation (2.1) are
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multiplied by P

(2.19) PY=PXP+Pe

where P is an (nxn) nonsingular symmetric transformation matrix that equals

(2.20)  pP=-diag(o;*,o3',...,05")
An EGLS estimator S as in equation (2.14) for 8 can be obtained by applying OLS directly
to equation (2.19), with the matrix P replaced by its estimator i;, whose elements are
generally estimated using the residuals from the OLS fit on the original untransformed data
(with heteroskedasticity).

Depending on the form of heteroskedasticity, the variances of errors may be
modelled as 1) a linear, power, or an exponential function of some explanatory variables,
or 2) proportional to soms function of the predicted dependent variable. Respective
examples can be found in statistical and econometric literature (Carroll and Ruppert 1988,
Seber and Wild 1989, pp. 68-89, Amemiya 1985, pp. 198-207, Judge et al. 1985, pp. 431-
41). The occurrence of heteroskedasticity can be detected by examining the plot of OLS
residuals (or studentized residuals) against the predicted values of the dependent variable.

Various heteroskedasticity test statistics are also available (Judge et al. 1985, pp.
445-54). The Goldfeld-Quandt test (Judge et al. 1988, p. 371) selected to be used in this
study is an exact test that does not rely on asymptotic theory or an explicit known form of
heteroskedasticity. It tests the . vpothesis of homoskedasticity against the alternative
hypothesis of heteroskedasticity by 1) ordering the predicted values of the dependent
variable from OLS in an ascending sequence according to increasing error variance, 2)
dividing the ordered data into three groups and omitting r central observations, 3)
performing two separate OLS fits on the first (n-r)/2 observations and the remaining (n-r)/2

observations, and obtaining the mean squared errors MSE, and MSE, from the first and the
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second fittings respectively, 4) calculating the test statistic A = MSE,/MSE,. Under the null

hypothesis A has an F-distribution with [(n-r-2p)/2, (n-r-2p)/2] degrees of freedom. By
comparing the calculated value for A with the critical value from the F-distribution, the nuli
hypothesis of homoskedasticity is accepted or rejected accordingly.

When the error terms in equation (2.1) are homoskedastic but are serially correlated
in that the current equation error depends on the values of previous errors, estimation will
be different depending on the form and the degree from which the autocorrelation is
generated (Box and Jenkins 1976, Judge et al. 1985, pp. 283-318). The most commonly
used first-order autoregressive process — AR(1) assumes the ith element of the errors ¢ in
equation (2.1) is given by ¢; = pe;,+e;, and e=(e,, e,, ..., €,)’ satisfies E[e]=0 and

Eflee’]1=04 so that

[ 1 P p2 - pn‘l-

5 o) 1 p - p=2

(2.21)  Ele]l=0  V(e)=Elee’] =02V= 1‘_’p2 P2 p 1 .. pB3
pr-l pa2 pn-3 . 1

With this autoregressive error specification, both sides of equation (2.1) can be multiplied

by the transformation matrix

r

Vi-p? 0 0 - O 0-

..p 1 0o .. 0
(2.22) p-f O P00

Q

0 0 0~ 1 0
0O 0 0 - -p 1

where the coefficient of autocorrelation p can be estimated by

~ 4] P-S 2 2
(2.23) p-(?eiei_l)/(Zé}_l)
i=2 i=2
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where ::\, are the residuals obtained from the OLS fiting on the untransformed data.
Applying the OLS technique to the transformed equation with the matrix P replaced by its
estimator P gives the EGLS estimator Bg as determined by equation (2.14). The Durbin-
Watson statistic in finite samples is most commonly used to test the Presence of first-order
autocorrelation. Many other statistics can also be used to test the existence and types of
autocorrelation (Judge et al. 1985, pp. 319-30).

If, in additon to autocorrelation, the error terms in equation (2.1} also pose
heteroskedasticity, then Engle’s (1982) autoregressive conditional heteroskedasticity (ARCH)
model or Cragg’s (1982) method may be applied. A simple and straightforward two-step
transformation procedure is generally applicable in such cases by 1) transforming the
original data to correct the autocorrelation first, and then 2) transforming the transformed

data to correct the heteroskedasticity.

2.3 Generalized systems of linear regression equations
2.3.1 Seemingly unrelated regression (SUR) equations
Seemingly unrelated regression (SUR) equations are multivariate regression models.

Consider the ith equation in a system of M equations on n observations

(2-24) Yi-X1B1+el (i"l’z, .. :,M)
where Y; is an (nx1) vector of observations on the depencint variable, X; is an (nxp)
nonstochastic design matrix of known values with linearly independent column vectors of

P; cxplanatory variables, g; is a (p;x1) vector of unknown parameters to be estimated, and

€; is an (nx1) vector of unobservable random errors. Assuming the error terms g; follow

(2.25)  Ele;l-0  Eleejl=o,,0  (i,7-1,2,...,M

where 0;; is the covariance of the error terms of the ith and the jth equation. It represents
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the correlation between the ith and the jth equation. The specification of equation (2.25)
reflects that 1) for a given equation the error terms have a zero mean and a constant
variance, althcugh each equation may have a different variance, 2) the error terms are
uncorrelated both within and across equations in different time periods but are
contemporaneously correlated across the equations of the system corresponding to the same
time period.
LS applied to each equation in systems of SUR equations provides unbiased and
consistent, but inefficient parameter estimates because it discards the information about the
contemporaneous correlation of the error terms (Kmenta 1986, p. 637-9). Using the matrix

notation, the system of M equations in (2.24) can be expressed as

(2.26) Y=XB+¢
where Y is an (Mnx1) vector of dependent variables, X is an (Mnxp) matrix of explanatory
variables, with the total number of parameters in the system p=3"_,p,, 8 is a (px1) vector
of parameters to be estimated, and e is an (Mnx1) error vector. Given the assumption in

(2.25), the variance-covariance matrix of the joint error vector ¢ can be written as

G113l 02T = Oy T

G, L 0., - ©

2.1 2‘2 . Z.MI -E@I
0nI 6l ~ Oppl

where ® denotes the Kronecker product, £ is an (MxM) positive definite symmetric matrix

(2.27) El[el =0 w=-Efee’] -

with the typical elements ;> and I is an (nxn) identity matrix. It is apparent that the GLS

estimatcr of 8 in (2.26) can be obtained as

(2.28) Bors= (X'02X) X0 ly= X/ (XQ1) X] 1 X (X Q1) ¥

According to the Aitken Theorem (Theil 1971, pp. 238-9), B¢ is the BLUE estimator for
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B in (2.26). It has lower variance than the OLS estimator for 8 because it takes into account
the contemporaneous correlation between the error terms in different equations. Replacing

the usually unknown matrix ¥ in Bgis by an observable matrix S with its elements

consistently estimated by
(2.29)  &,-2¢¢
n
gives the EGLS estimator for g8 in (2.26) as

(2.30) Bem [X/ (SR X)X/ (SR ¥

which is an asymptotically unbiased, consistent, and efficient estimator or B- The asymptotic

variance-covariance matix of B; is given by

(2.31) V(Be) = (X'671X) 1= [X/(SQ1) X] 2

Breusch and Pagan (1980) suggested using the following Lagrange multiplier
statistic for testing the significance of the contemporaneous correlation
(2.32) A-nffrf‘j
i-2j-1

where rij2 is the squared correlation and

82.

~

11955
Under the null hypothesis of contemporaneous covariances are zero, A Las an asymptotic
x?-distribution with M(M-1)/2 degrees of freedom. By comparing the calculated value for
2 with the relevant critical value from the y*-distribution, the null hypothesis is accepted
or rejected accordingly. If the contemporaneous correlation is not significant, OLS applied

separately to each equation is fully efficient and there is no need to employ the SUR

estimator (Judge et al. 1988, p. 456).



15

The SUR procedure can also be applied when the numbers of observations for
different equations are not the same (Schmidt 1977). An example of this is shown in Judge
et al. (1988, pp. 462-5). In addition to the existence of contemporaneous correlation among
equations in the system, the error terms in individual equations may be serially correlated,
heteroskedastic, or both. Assuming the error terms in each equation follow a first-order

autoregressive process, for example, the assumption stated in equation (2.25) can be

replaced by
[ 1 p; pF - F7
P; 1 P; - p?_Z
(2.34) Ele;]-0 Elegjl=o;0 p2 p. 1 .. o7
pTt pT? P37 - 1

(1,7=1,2,....M

where p; is the coefficient of autocorrelation for the ith equation. With this autocorrelated
error specification, p; can be estimated separately for each equation using OLS residuals as
in equation (2.23). The original observations are then transformed so that the error terms
for each transformed equation are independent. The resulting estimates of the parameters
by applying GLS to the system of transformed equations have the same asymptotic
properties as the GLS estimates (Parks 1967, Kmenta 1986, p. 647). Kmenta and Gilbert
(1970), Guilkey and Schmidr (1973), Judge et al. (1985, pp. 483-497) also presented
additional autoregressive specifications for SUR equations. Because p;s can be readily
estimated from OLS residuals for individual equations, GLS estimates can be obtained from
the appropriately transformed SUR systems without great difficulties.

When the emror terms for individual equations in SUR systems are uncorrelated but

are heteroskedastic, each equation can be transformed using the procedures previously
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described for a single equation to correct the heter oskedasticity. Srivastava and Giles (1987)
covered this topic in a rather complete fashion, with the objective of transforming each
equation in the system to ha':~ an i.i.d. error structure and then applying the GLS estimator
directly to the transformed system of equations.

When the error terms in each equation are heteroskedastic and autocorrelated, the
two-step transformation procedure can be used by 1) transforming the original data to
remove autocorrelation first, and then 2) transforming the transformed data to correct the
heteroskedasticity. Applying GLS to the system of ransformed equations in which each

equation has iid. errors provides asymptotically unbiased, consistent, and efficient

estimates.

2.3.2 Systems of simultaneous linear equations

Comnsider the ith equation in a system of M simultaneous equations on n observations

(2.35) yi"Y_iai*-XiBi*'Si (i-l,Z,-..M)

where y; is an (nx1) vector of observations on the ith endogenous variable in the system,
Y;is an {nx(m;-1)] matrix of observations for (m;-1) endogenous variables appearing in the
right hand side (RHS) of ith equation, @; is an [(m;-1)x1] vector of structural parameters
associated with Y, X; is an (nxp;) matrix of observations for p; exogenous variables
appearing in the ith equation, 8;is a (p;x1) vector of structural parameters associated with
the X;, and ¢; is an (nx1) vector of unobservable random errors associated with y;,. Equation

(2.35) can be rewritten as

o ;

(2.36)  y;=(Y; Xi)(‘3~

where Z; = (Y; X;). Assuming the error terms e; in equation (2.36) follow ¢; ~ (0, o;°D),
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Judge et al. (1985, pp. 570-1) showed that the OLS estimator of §; is biased and

inconsistent because the structural equation contains the stochastic Y; that is correlated with
the error terms ¢; of the equation.
The two-stage least squares (2SLS) estimator (Judge et al. 1985, 597-8) can be

obtained by transforming equation (2.36) into

(2.37) X'y =X'Z.6;+X'e;
where X is an (nxp) matrix of observations on all the exogenous and predetermined
variables in the entire system. The basic idea of this transformation is to remove the
endogeneity from the RHS endogenocus variables and provide a new set of explanatory
variables X/Y; and X’ X; that when divided by the n, have in probability a nonstochastic limit
as the sample size increases (Judge et al. 1988, p. 640), so that X*Z; can be considered

asymptotically uncorrelated with the error terms X’ ;. Since

(2.38) ElX'e,]-0 v(X'e;)=ElX'ee’:X) =0 EIX'X) ~mo X'X
applying the GLS procedure to the transformed equation (2.37) gives the consistent

estimator

8o~ [(X'2;)(0,,%'X) " 1(X'2,) 17 2(X'2,) (0 ,X'X) X'y,
(2.39)
- [ZiX (X'X) 2 X'2,) *Z{X(X'X) X'y,
Let Z =( \’;, X;). where "Y\i is an [nx(p;-1)] matrix of estimated values of Y; obtained by

regressing Y; on X, §; can be rewritten as (Judge et al. 1988, pp. 644-5):

(2.40) azs[,s"‘ (2121) '122}’_.1

The variance-covariance matrix of the two-stage least squares estimatoré 2515 Is obtained as

(2.41)  V(3,q) =8, [2IX(X'X) -1x/2,] 2
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where

(2.42) aii-% (Yi‘ziazsz.s),(}’i_ziazsls)

The two-stage least squares procedure can be summarized as follows:

Stage 1. Each endogenous variable in the system is regressed on all exogenous variables of
the system by OLS to obtain the predicted values for each endogenous variable.

Stage 2. Replacing the endogenous variables on the RHS of each structural equation by the
predicted endogenous variables from Stage 1, then applying the OLS rule to each
equation separately to obtain the estimates of structure parameters of the equation.
Estimates for all structural parameters of the system are obtained by repeating this
process for each structural equation.

The 25LS estimator &, ¢ is often termed a single-equation estimator since it is obtained by

applying GLS to individual equations of the system. It is efficient with respect to single-

equation estimators but an asymptotically more efficient estimator may be obtained if all

the structural equations are jointly estimated by using the SUR procedure. Zellner and Theil

(1962) derived the three-stage least squares (3SLS) estimator by writing M simultaneous

equations each in the form of (2.37) into

X'y | X'z, 8, x'e,

/ / F.) /
(2.43) X'y, X'z, 2|, X'e,
X'y, X'z, Oy X'e,,

or in a more compact matrix form

(2.44) (IVX') y= (IQX') Z5+ (TRX' ¢

where Zis a [((MnxZ(m;-1+p;)] matrix, y is a (Mnx1) vector, & is a [2(m;-1+p;)x1] vector,
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and e is a (mNx1) vector of

(2.45) Z-diagl(Z,,2,, . . . .2y Ve (¥ e Vi)

8/=(8,,8,,....,8,) &= (€,,&,5, ..., 8y

Because

(2.46) E[(1®X)e] =0 E{(1RX) e/ (I0X) ] =ERE[X/X] ~Z®X'X

Applying the GLS procedure to (2.44) gives the consistent estimatoyx cf &

(2.47) 3.2/ [2x(x/Xx) *x') 212/ [2Q®Xx(X'X) X'l y

This can be written in terms of the 3SLS estimator

(2.48) 835512 [S X (X'x) 2x']1 2V 22/ [s QX (X'X) X']
where S is the consistent estimator of the unknown matrix 5 with its elements computed

by

(2.49) aij"'_lI; (yi‘ZiazsLs),(yj—ZjGZSLS)
The variance-covariance matrix of &, is consistently estimated by

(2.50) V(8,5.4) = (2 (5 QXx(X'X) X)) 2] 2

The three-stage least :juares procedure can be summarized as follows:

Stage 1 and Stage 2 are the same as 2SLS.

Stage 3. Use the 2SLS residuals to obtain an estimator S for the error variance-covariance
matrix £ with the elements of S computed by (2.49), then apply the GLS procedure
to the whole system of equations.

Judge et al. (1988, pp. 649-51) showed that the 3SLS estimator &, is consistent and

asymptotically more efficient than the 2SLS estimator. The relative inefficiency of the 2SLS

estimator arises because it igncres the information contained in the off-diagonal elements
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of Z. If the off-diagonal elements of £ are zeros, which means that the error terms are
uncorrelated across equations, or if each equation in the system of equations is just

identified, 3SLS reduces to 2SLS.

2.3.3 Systems of simultaneous linear equations with a generalized error structure

The preceding section on systems of simultaneous linear equations depends on the
assumption that the error terms for individual equations are homoskedastic and
uncorrelated. If the error terms for individual equations are heteroskedastic and/or
autocorrelated, modifications to the 2SLS and 3SLS estimators must be made in order to
obtain the most appropriate estimates. Kmenta (1986, pp. 704-11) considers a system o
simultaneous equations in which the error terms for individual equations are heteroskedastic

and/or autocorrelated. Assuming the ith structural equation

(2.51) Vi=Y;0,+X;B;+€;

Vi=Z;6;+e;

has a generalized error structure

(2.52)  E(e;)=0  E(e;eh) =0,,Q,
where ; is an (nxn) positive definite symmetric matrix whose diagonal elements are not
equal (heteroskedasticity) and the off-diagonal elements are not zero (autocorrelation), o;;
is just an alternative way of writing ¢;2. Under this erro: specification, the direct application
of the two-stage least squares method produces consistent estimates of the structural
parameters, but the asymptotic variances are larger than they would be if the autoregressive
or heteroskedastic nature of the error terms is taken into account (Kmenta 1986, p. 705).
In addition, the estimated variances of the coefficients are inconsistent, and the hypothesis

tests and confidence intervals are not valid.
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The weighted two-stage least squares (W2SLS) presented by Kmenta (1986, p. 705)

corrects for the problem of heteroskedasticity and/or autocorrelation for individual
equations in systems of simultaneous linear equations. The reduced form equation (see
Judge et al. 1988, pp. 603-6 and Kmenta 1986, 656-7) for Y; in equation (2.51) can be

written as

Applying GLS to equation (2.53) provides
(2.54) f,=(X'Q7X) 1X/Qy;

Defining

Replacing Y; by ¥; in the structural equation (2.51) gives

(2.56) vi=-¥.a;+XB;+(V,a,+e;)
The W2SLS estimator of §; is then obtained by applying the GLS procedure to equation

(2.56). This provides

(2.57) &,~(2lQi*z)12'aty,

The variz— ~~-covariance matrix of the W2SLS estimator can be consistently estimated by

(2.58) V(8. =0,;;(2iQ7*2)

where

(2.59) oﬁ-%(yl -2,8.)'Q7 (y,-2,8,)

The W2SLS estimator as expressed by (2.57) can also be obtained by applying OLS
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procedures directly to the transformed structural equation (Kmenta 1986, p. 706):

where P; is an (nxn) positive definite symmetric transformation matrix that satisfies P’ P;
= 0;!. Kmenta (1986, p. 706-7) also extended W2SLS to systems of equations. Defining ¢;"

= P;(V; ; + ¢;), the weighted three-stage least squares (W3SLS) estimator can be obtained

by writing the system of M simultaneous linear equations into

(2.61) Py,-P, 2.8, +e1

szz-P22262+e§

P MY s~ PrZyB it €3

This system of equations can be simultaneously estimated using the SUR (GLS) procedure,
with the variance-covariance matrix of the error terms estimated from the W2SLS residuals.

Because in practice the matrix Q, is usually unknown, Kmenta (1986, p. 707) also
shows methods for estimating Q.. When the error terms in individual equations are
heteroskedastic, Q; is diagonal. The transformation matrix P; is then also a diagonal matrix
with the diagonal elements equal to the reciprocal of the square root of the corresponding
error variance. When the error terms in individual equations are autocorrelated, Kmenta
(1986, p. 707-8) assumed a first-order autoregressive process and shows that the coefficient
of autocorrelation p; can be estimated by a three-step procedure: 1) apply ordinary two-
stage least squares method to each structural equation, 2) compute the residuals, and 3) use

the 2SLS residuals to estimate p; according to

n n
(2.62)  py=- [Ezeijeiu—n] / [ 28501

or
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n
e
(2.63) P 4-2

iv ,
P e] n
~2 a2
\l P Sij\l D 85 (5-1
=2 J=2

where ;\ij is the residuals obtained from the 2SLS fitting on the untransformed data (Kmenta

.ijgi (5-1)

1986, p. 619 and p. 708). Based on estimated p,, the transformation matrix P; can be

constructed as

— :
Ji-p2 0 0~ 0 o0

-p; 1 0 0 O

(2.64) p-| © -P;1 - 0 0
0O ©0 0. 1 0

0 0 0 - -p; 1

Individual equations in the system are then transformed to (2.60), and the W2SLS estimator
obtained. The system of transformed equations (2.61) can now be simultaneously estimated
by applying the GLS method to the entire system, using the W2SLS residuals to estimate the
variance-covariance matrix of the transformed error terms across equations (Kmenta 1986,
P- 708). The variances and covariances of the transformed error terms can be computed

according to

(2.65) cs,.j--zl2 (Biy;-B,2,8,) (B,y;~B,2,8,)  (i,5-1,2,...,M)

where a is the W2SLS estimator in (2.57).

Methods for estimating systems of simultaneous linear equations in which the error
terms of individual equations are heteroskedastic and/or autocorrelated were also developed
independently by LeMay (1988, 1990) in a forestry context and were termed the multistage

least squares (MSLS) technique. Several forestry related examples for fitting such systems
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of equations were demonstrated by LeMay (1988, 1990).

2.4 Generalized nonlinear regression model

Consider the following nonlinear regression model with p unknown parameters and
a known functional form f on n observations
(2.66) yi=f(x;,0)+¢; (i-1,2,...,n)

where y; is the ith observation on the dependent variablie, x; is a (kx1) vector of
observations on k explanatory variables, 8 is a (px1) vector of unknown parameters. In

matrix notation, equation (2.66) can be written as

(2.67) y~£(0) +¢e

Where Y=(y1, Yz, seey yn) ’) f(e)‘—'[f(x]) e)) f(x2’ e)s ooy f(xn: e)] ’) and 8=(8]’ 82; veey en) "
Assuming the error terms e in (2.67) are ii.d. as specified in (2.2) for the general linear
model, the nonlinear least squares (NLS) estimator 8 is obtained by minimizing the error

sum of squares

(2.68) S(9) =e’e=[y-£(0)]1/[y-£(0)]

The partial derivatives of S(8) with respect to @ provides the nonlinear normal equation

9s__,0f(8) , -
(2.69) ® "2z W-f@®1-0

that is

(2.70) F(0) [y-£(8)] =0

where
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[ 9f(x,,0) 9f(x,,0) O£ (x,,0)]

30, 30, 30,
0r(x,,6) 9f(x,,6) 9f(x,,0)

(2.71) @) -2£0) | T8, 3, 3,
Of (x,,8) 9f(x,.8)  3f(x,,0)

30, 0, 30,

Using the Gauss-Newton method with a first-order Taylor series expansion of f(8) arcund
the starting values 6, to obtain a linear approximation of the model

(2.72) £(0)~£(6,)+F(6,) (6-8,)
Substituting equation (2.72) into the nonlinear normal equation (2.70) with
F(8)=0f(8)/98’ evaluated at =6, gives

(2.73) F/(8,) [y-£(8,) -F(0,) (6-68,)1=0

Equation (2.73) can be rewritten as

(2.74) 0-0,+ [F/(6,) F(8,)] 1F/(0,) [y-£(0,)] ~6,+D

where

(2.75) D-[F/(8,) F(8,)]17*F/(8,) [y-£(8,) ]
The nonlinear iterative process begins by using the given starting values 6, to compute a

D and find a A between O and 1 such that

(2.76)  S(B8,+AD) <S(0,)

The estimated first-round parameters 8, = 8,+AD is then used as the new starting values
and a second-round D is calculated and A found. This process is continued until the desired
convergence criterion is achieved.

Although there are many different methodologies that are available (Gallant 1987,
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Seber and Wild 1989) for obtaining the nonlinear least squares estimates, in general, one
should be aware that the estimates of the parameters are not unbiased, normally distributed,
or minimum variance; rather, they achieve these Properties only asymptotically. Gallant
(1987, pp. 16-25) demonstrated that the NLS estimator O is asymptotically normally

distributed with mean 8 and a variance-covariance matrix that is consistently estimated by

(2.77) V(0) =82 [F(0)/F(0) ]

where the estimated error variance is given by

(2.78)  §2-.5(8)
n-p

If the error terms e for equation (2.67) are given as in (2.8) for general linear model,
equation (2.67) is transformed to
(2.79) Py=Pf(0) +Pe

where the matrix P satsfies P/ P=V'!, and V is a known positive definite matrix. Since E[Pe]
= 0 and V[Pe] = o7, the NLS procedures can be directly applied to the transformed

equation (2.79) by minimizing

(2.80) S(0) =[y-£(8)1'Vv-*[y-£(8)]

This gives the generalized nonlinear least squares estimator 6g, which is asymptotically
normally distributed with mean © and a variance-covariance matrix +hat is consistently

estimated by

(2.81) V(8;) =82 [F(6)/Vv-1F(6) ]2

- ~ 3 -
where the consistent estimate of the error variance g2 is given by

6’2- [y-f(ec) ]/V-l [y_f(ec) ]
n-p

(2.82)
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The estimated generalized nonlinear least squares estimator (EGNLS) can be
obtained if V is unknown and replaced by its estimator V. The estimation will of course
depend on the structure of V. The error terms in equation (2.67) may follow an
autocorrelated and/or a heteroskedastic structure. EGNLS provides asymptotically unbiased,
consistent, and efficiert estimator for @ in either case since the appropriate transformation
matrices as those shown in linear cases can be consistently estimated from ordinary NLS

residuals (Gallant 1987, pp. 123-39, Seber and Wild 1989).

2.5 Generalized systems of nonlinear regression models
2.5.1 Seeminglv unrelated nonlinear equations
Consider the ith equation in a system of M nonlinear regression equations on n

observations

(2.83) yi=f£;(0) +g; (i=1,2,...,M)
where Yi=(yi1’ Y2 ---» Yin)', fi(3)==[fi(xl, 9), fi(xz, 9), aeey fi(xn, 6)]', and 8i=(8i1, €in; ooy
€;n) /- In a more compact matrix form, the set of M equations can be written as

(2.84) y=r(0) +e
where y=(y,, ¥,, ... ym) * > f(8) =[f,(8,), £,(8,), ..., f,(B))1 7, and e =(e,, €, .., £),) . Similar
to (2.27), it is assumed that

(2.85) E[e] =0 w=E[ece/] =21

where Z is an (MxM) positive definite symmetric matrix whose elements are O+ Gallant
(1975) developed a four-step procedure for estimating the parameters in (2.84) by:

1). Treat each equation in the system separately, obtain the NLS estimator 6, by minimizing

(2.86) Si(ei)"[Yj—fi(ei)],[yi-fi(e.i)]



28
for each equation respectively.

2). Using the results from step 1, calculate the residual vectors equation by equation

(2-87) ai-yi’fi (ei) (i-l, 2, - s ,M)

3). Estimate the elements Oy of the variance-covariance matrix ¥ to obtain the estimated =,

denoted by S

(2.88)  8,;=2188, (i,7-1.2,...,M

4). An EGNLS estimator of 8 is then obtained by minimizing

(2.89) S(0)=[y-£(8)1/(5®1) [y-£(8)]

Under fairly general ¢cnditions, Gallant (1975) showed that this procedure results in an
estimator that is strongly consistent for 6 and asymptotically more efficient than the
equation-by-equation estimator, unless the variance-covariance matrix ¥ is diagor:al or the
equations have the same functional form and the explanatory variables are the same for all
the equations. Procedures for estimating seemingly unrelated nonlinear equations in which
the error terms in individual equations are heteroskedastic and/or autocorrelated are the

same as those for linear systems.

2.5.2 Systems of simultaneous nonlinear equations
Amemiya (1974, 1977) and Gallant (1977, 1987) developed estimation procedures

for nonlinear simultaneous regressior: equations by expressing the ith equation in a system

of M simultaneous nonlinear equations as

(2.90) £ (yerx.,0;) =2, (i=-1,2,...,M; t=1,2,...,N)

where y, is an M-vector of endogenous variables, x, is a k-vector of exogenous variables, and
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6; is a p;-vector of unknown parameters to be estimated, and the ¢;, represent unobservable
random errors that are assumed to be independently and identically distributed with zero

mean and constant variance, Equation (2.90) can be written more compactly as

£ (¥y0%,0;) 1 [&;

£;(y2,%,,0; £;
(2.91)  £,;(6,) - ‘(yz: 2002 |_ 12

-2, (i=1,2,...,M)
£ (Vnr Xp, 8 | £

The nonlinear least squares estimator of 6, in (2.91) is biased and inconsistent for
the same reason that the least squares estimator is biased and inconsistent in simultaneous
linear equations. The RHS endogenous variables in the equation are correlated with the
error terms of the equation. Using the instrumental variable estimation technique (Amemiya
1985, pp. 245-50, Gallant 1987, pp. 432-9), a set of instrumental variables — Z that are
highly correlated with the RHS endogenous variables of the equation but are independent
of the error terms was chosen. This set of instruments Z is some matrix of certain constants
with rank at least equal to p;. Amemiyz (1974) defined the nonlinear two-stage least

squares (N2SLS) estimator, denoted by 8y,¢ s, as the value of 6; in equation (2.91) that

minimizes

(2.92) £1(0;)Z(2/2)1Z'£,(6;)
Under the conditions specified by Amemiya (1985 pp. 246-7), it is shown that the N2SLS
estimator By, is a consistent estiraator of 6; and is asymptotically normally distributed.
Jorgenson and Laffont (1974) defined the nonlinear three-stage least squares
(N3SLS) estimator Oy;q ¢ by considering that the system of nonlinear equations each has

the form of (2.91) simultaneously. The system of equations can be written as
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£,(0,) ] e,
£,(6

(2.93)  £eey-2 1% %
£,(0) ] ley

where ¢ is an (Mnx1) vector of errors for the M equations stacked together. The nonlinear

three-stage least squares estimator 6, ¢ is the value of 8 that minimizes

(2.94) £'(0) [sRz(2/2)-12'] £(8)

where S is a (MxM) matrix that estimates the variance-covariance matrix S of the error

terms across equations. The variances and covariances are estimated using the residuals

from the N2SLS

(2-95) alj-%fé(emsz‘s)fj(emsm) (ilj-1121 ---7M)

Gallant (1987 p. 439) showed that the asymptotic variance-covariance matrix of 8y, 5 can

be written as

-1

/
(2.96) V(9y35r5) -[(% £(9) ) (s ®[z(z2'2)12'] )(Tg/f(e) )]

Amemiya (1985) and Judge et al. (1985) described alternative estimators for systems
of simultaneous nonlinear equations. Amemiya (1977, 1985) and Gallant (1987) considered
the optimal choice of instrumental variables and indicated that the best nonlinear three-
stage least squares estimator can be obtained by using the expected values of the parameter
derivatives as instruments. It is therefore best to find instruments that, in some linear
combination, approximate the expected values (over the errors) of each of the parameter
derivatives. In practice, Amemiya (1985 p. 250), Judge et al. (1985 p. 623), and Gallant

(1987 p. 439-40) suggested the use of the exogenous variables and their powers and cross
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products as instrumental variables, making no attempt to find the most efficient set of
instruments based on the results on efficiency.

Gallant (1987 p. 433) presented an estimator that affords some protection against
the problem of heteroskedasticity in individual equations of a system of simultaneous
nonlinear equations. The theory for correcting autocorrelation was also discussed within the
framework of dynamic systems of simultaneous nonlinear equations (Gallant 1987, pp. 442-
51). In practice, if the error terms in individual equations of the nonlinear system are
heteroskedastic and/or autocorrelated, methods for system of simultaneous linear equations

with & generalized error structure can be applied.
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Chapter 3

Individual Tree Height-Diameter Relationships!

3.1 Introduction

Predicting total tree height based on observed diameter at breast height outside bark
is routine'y required in practical management and silvicultural research work (Meyer, 1940).
The estimation of tree volume, as well as the description of stands and their development
over time rely heavily on accurate height-diameter functions (Curtis 1967). Many growth
and yield models also require height and diameter as two basic input variables, with all or
part of the tree heights predicted from measured diameters (Burkhart et al. 1972, Curtis et
al. 1981, Wykoff et al. 1982). In cuses where the actual measurements of height growth are
not available, height-diameter functions can also be used to indirectly predict height growth
(Larsen and Hann, 1987).

Curtis (1967) summarized a large number of available height-diameter functions and
used Fumnival’s index of fit to compare the performance of thirteen linear functions fitted
to second-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) data. Since then, many
new height-diameter functons have been developed. With the relative ease of fitting
aonlinear functions and the nonlinear nature of the height-diameter relationships, nonlinear
height-diameter functions have now been widely used in height predictions (Kozak and
Yang 1978, Schreuder et al. 1979, Curtis et al. 1981, Wykoff et al. 1982, Wang and Hann
1988, Farr et al. 1989, Arabatzis and Burkhart 1992).

'A version of this chapter has been accepted for publication. Huang, S., Titus, S. J., and
Wiens, D. P. 1992. Comparison of nonlinear height-diameter functions for major Alberta
tree species. Canadian Journal of Forest Research (in press).
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For sixteen Alberta tree species in nine groups, this study compared eleven published
nonlinear height-diameter functions as well as nine nonlinear functions that apparently have
not been applied to height-diameter relatdonships. The primary objectives of the study are
to evaluate the relative performance of a variety of potential height-diameter functions on
a large, regional data set covering numerous species, and to identify the most appropriate

height-diameter functions for major Alberta tree species.

3.2 The data

Alberta Forest Se:vice (AFS) provided felled-tree data for this analysis. Collected over
the last two decades, the 13,489 trees were randomly selected throughout the inventory
areas of the province to provide representative information for a variety of densities,
heights, species composition, stand structure, ages, and site conditions. The data set was
initially used for developing individual tree volume equations and includes many different
varizvies for individual trees and qualitative characteristics of their surrounding
environment. A detailec description of how the data were collected and recorded can be
found in Alberta Phase 3 Forest Inventory: Tree Sectioning Manual (AFS 1988). Two
variables availabl. from the records, diameter at breast height (DBH) outside bark and total
tree height (H) for each tree, were selected to be used 1n this analysis.

The 13,489 trees include 16 different species. To facilitate the analysis, species are
classified into different species groups according to their similarity, management objectives,
and number of observations (Table 3-1). Summary statistics including the mean (Mean),
minimum (Min), maximum (Max), and standard deviation (Std) for tctal tree height and
DBH by species group are shown in Table 3-2. The variation in number of sample trees by
species group is an indicaton of relative importance. Lack of consistent quantitative

variables for all data prevented using stand characteristics as independent variables.
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3.3 Functions selected for comparison

The selection of the height-diameter functions was based on the examination of the
height-diameter relationship as revealed by plotting total tree height against DBH for
various species groups. Two typical examples for white spruce (Picea glauca (Moench) Voss)
and aspen (Populus tremuloides Michx.) are shown in Figure 3-1 and Figure 3-2. It is clear
that the heighs-diameter relationship for white spruce (Figure 3-1) has a typical sigmoidal
shape, with an inflection point occurring in the lower portion of the data points. Cn the
other hand, the shape of the height-diameter relationship for aspen (Figure 3-2) may be
regarded as either concave or sigmoidal, with no apparent inflecton point. The
sigmoidal/concave shape reflects the strong correlation between DBH and age. Both the
typical concave functions and the sigmoidal functions were selected for evaluations.
Additional nonlinear functions that are common in biclogical studies were also selected by
considering the plots of height versus DBH compared to the typical graphs of the various
functions. Table 3-3 proviu.s a complete list of the selected functions. Notice some of the
functions (such as 1 and 6) often appear in transformed forms, and the dependent variable
may take the form of H-1.3 (Curds 1967). The quadratic height-diameter functions, first
presented by Trorey (1932) and advocated by Ker and Smith (1955) and previously used
in the Pacific Northwest (Stacbler 1954) and British Columbia (Watts 1983), were not

considered because extrapolation of the functions often leads to unrealistic height

predictions.

3.4 Methods
A fundamental nonlinear least squares assumption is that the error terms in all 20
height-diameter functions are independent and identicaily distributed with zero mean and

constant variance. However, in many forestry situations there is a common pattern of
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increasing variation as values of the dependent variable increase. This is clearly evident from
the scatter plots of height versus DBH in Figure 3-1 and Figure 3-2, where the values of the
error are more likely to be small for small DBH and large for large DBH. When the problem
of unequal error variances occurs, weighted nonlinear least squares (WLS) is applied with
the weights selected to be inversely proportional to the variance of the error terms.

The WLS estimates of the parameters uses an iterative process with a starting value
chosen and continually improved until the weighted error sum of squares is minimized. It
should be noted that the use of the WLS changes the estimates of the parameters and the
standard errors of the estimates relative to the values obtained in the absence of weighting
(Ratkowsky 1990). The interpretations of the weighted statistics are not as straightforward
as in cases of without weighting (Carroll and Ruppert 1988). However, comparison of the
fit statistics for various functions can be made if the same weight is consistently used in all
the function fittings and the same nonlinear least squares iteration procedure is used.

The use of the WLS requires a known weight. In many practical applications,
however, this weight may not be readily available so an estimate based on the results of an
unweighted least squares fit is often necessary. Although there are many different
procedures that are available fof approximating the weight or implementing the generalized
nonlinear least squares techniques (Gallant 1987, Judge et al. 1988), a simpler procedure
that is based on the analysis of the studentized residuals can be equally efficient.

Studentized residuals are the scaled version of residuals obtained by dividing each
residual by its standard error. They are designed to take into account that unstandardized
residuals have intrinsically unequal variances even though the theoretical error term is
assumed to have constant variance (Draper and Smith 1981, Rawlings 1988, Neter et al.
1990). For a correctly identified function, when the assumptions of the regression analysis

are met, the studentized residuals have zero mean and constant variance, and the plot of
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studentized residuals against the predicted values of the dependent variable will show a

homogeneous band.

Figure 3-3 shows an example of the plot of studentized residuals against the
predicted height for the modified logistic function (Number 19, Table 3-3) fitted to aspen
data with unweighted nonlinear least squares. The plot reveals an obvious unequal error
variance problem and suggests that a weighting factor in the form of w; = 1/ DBHik should
achieve the desired equality of error variance. This function was then fitted with WLS using
six alternative values for k (k=0.5, 1.0, 1.5, 2.0, 2.5, 3.0). Among these :lternative weights,
the most homogeneous band of studentized residuals occurred with k = 1.0 (Figure 3-4).
In similar comparisons, w; = 1/DBH; was also found to be most appropriate for all other
species. Accordingly this weighting factor was used in all remaining analysis. This weight
also agrees with the weight chosen by Larsen and Hann (1987), Wang and Hann (1988),
and Farr et al. (1989) based on different procedures.

The fitting of the height-diameter functions for various species groups was
accomplished using the PROC NLIN procedure on SAS software (SAS Institute Inc. 198S).
The Gauss-Newton method as described in Gallant (1987) was applied and multiple starting
values for parameters were provided to ensure the least squares solution was the global

rather than a local minimum.

3.5 Results and discussion

Three different criteria were selected for judging the performance of the height-
diameter functions: 1) the asymptotic t-statistics of the estimators, 2) the weighted mean
squared error (MSE) of the model, and 3) the plot of studentized residuals against the
predicted height. For any appropriate height-diameter function, the asymptotic t-statistic for

each coefficient should be significant, and the model MSE should be small. The studentized
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residual plot should show approximately homogeneous variance over the full range of
predicted values. Any other pattern may indicate bias, unequal variation, or other problems
such as outliers or poor model specification.

Tables 3-4, 3-5, and 3-6 show the least squares estimates of the parameters. The
associated asymptotic ¢-statistics for testing the null hypothesis that each parameter is zero
(or in some models, one) are calculated, and the insignificant parameters are marked. The
weighted MSE are summarized in Table 3-7. Although not reported here, coefficient of
determination (R?) values for the fitted functions on weighted observations ranged from
0.70 to 0.92, with an average of about 0.85.

Results in Table 3-4 show that for the two-parameter functions 1 to 9, with the
exception of the parameter « in function 7 for species group 6b, all the t-statistics for the
parameters of the functions are significant at @ = 0.05 level. The weighted MSE results of
the two parameter functions shown in Table 3-7 indicate that functions 3, 4, and 5 have
lower MSE values when compared the others, with function 4 generally giving the most
satisfactory results. Function 8 has very poor performance with large MSE values.
Examination of the plots of studentized residuals for function 8 showed biased height
estimates for al! species groups when DBH is small. The performance of the remaining two
parameter functions is roughly the same and can be regarded as intermediate.

Judged from the plots of studentized residuals and the weighted MSE values, the
three- parameter functions 10 to 19 generally perform better than the two-parameter
functions. Parameter g in function 16 shows several insignificant t-statistics (Table 3-5). The
parameter estimates for the remaining functions are generally satisfactory, with a few
exceptions of insignificant t-statistics in functions 10, 12, 15, and 19 for species group 4a
and function 15 parameter b for species group 6b. Insignificant t-statistics were generally

associated with small data sets. In terms of the weighted MSE values for three-parameter
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functions 10 to 19 (Table 2-7), functions 12, 13, 15, 18, and 19 generally give lower values.

Functions 10 and 14 give rather similar results and can also be regarded as satisfactory.
Function 17 has large MSE values and the plots of studentized residuals showed biased
estimates when DBH is small. Occasionally, function 11 fit the data well, but in general it
performed poorly.

Although the four-parameter function 20 fitted the data well when the sample size
is large (such as for species groups 1 and 3), the function failed to converge for species
groups 2b and 6b, and in fitting for species group 4a, has resulted in insignificant t-statistics
for parameters b, ¢, and d (Table 3-6). Several additional four-parameter functions
(including Bailey’s (1980) function) fitted, but not reported here, also suggested that they
might perform well for large samples, however, insignificant t-statistics occurred frequently,
and in many cases, failed to converge or converged at local rather than at global minimum
when the sample size was small. The gain from using the four parameter function may not
be substantial. Depending on the choice of the initial values of the parameters and the size
of the samples, the fitting of the four parameter functions may also be rather time
consuming.

In terms of the fit of the functions for each species group, several functions may give
similar results and perform nearly equally well. However, judging from the weighted MSE
values, the asymptotic t-statistics of the parameters, and the principle of parsimony, the
following functions are most appropriate for each species group taken independently of the
others:

1). The Chapman-Richards function 12 for species group 1;
2). The fractional function 16 for species groups 2a;
3). The Gompertz function 14 for species groups 2b and 6b;

4). The Weibull function 13 and the modified Schnute function 15 for species group 3;
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5). The two parameter Michaelis-Menten function 3 for species group 4a;
6). The Mitscherlich function 4 for species group 4b;
7). The modified exponential function 10 for species group 5;

8) The modified logistic-type function 19 for species group 6a.

3.6 Conclusions and recommendations

This comparison of nonlinear height-diameter functions shows that, depending on
the sample sizes and the species group, many functions perform well in describing the
height-diameter relationships for major Alberta tree species. The choice of a particular
function may depend on the relative ease of achieving convergence to a solution, the
function’s mathematical properties and its biological interpretation. Although any function
may be considered superior or inferior ir a particular situation, in general, the functions
discussed below are recommended for use since they often give relatively lower MSE values,
significant asymptotic t-statistics, and satisfactory plots of studentized residuals against the
predicted values of the dependent variable. Any one of these functions could be used when
the same model form is desirable for several species. The recommended functions also have
the flexibility to assume various shapes with different parameter values and produce
satisfactory curves under most circumstances. All the curves assume biologically reasonable
shapes that prevent unrealistic height predictions in the cases of extrapolating the functions
beyond the range of the original data.

1). Function 12: H=1.3+a(1-eP?). This three parameter Chapman-Richards
function has been used extensively in describing height-age relationships. The results shown
in this analysis indicate that the function is also well suited for modelling height-diameter
relationships. One limiting form of the function - equation 14 also gives satisfactory fits,

especially when the sample size is relatively small, such as the fits for species group 2b, 4a,
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and 6b. However, equation 14 may not fit as well as either the Weibull-type function or the

Chapman-Richards function when the sample size is large. A cautionary note for the
Chapman-Richards function is that it approaches the asymptote too quickly when the
dependent variable is only weakly related to the independent variable.

2). Functon 13: H=1.3+a(1-e*°"). This Weibull-type function is consistently among
the best height-diameter functions. It is interesting to see that in fitting species group 4a
data, the three or four parameter Chapman-Richards function fails to produce a significant
t-statistic for the parameter . However, the Weibuli function performs better and gives
significant t-statistics for all the parameters.

3). Function 19: H=1.3+a/(1+b'D™). Although termed the modified logistic-type
function, this function is quite different from the commonly used logistic function (such as
equaton 11). It accommodates many shapes that are commonly described by other
sigmoidal functions. The function fits the height-diameter relatonship well and is
consistently among the best height-diameter functions. As examples, the fits of the function
for white spruce and azpen are shown in Figure 3-1 and Figure 3-2. The plot of studentized
residuals against the predicted height for aspen is shown in Figure 3-4. It is clear that the
function appropriately fits the data.

4). Function 18: H=1.3+42-¢”®*9, This exponential-type function is particularly
well suited for deciduous species. However, it might slightly overestimate height for large
diameter trees.

5).Function15: H={y,>+(c®-y,®) [1-e*®Dd}/[1.¢2P: PP} 1/b Thismodified Schnute
function (with origin set at D = 0, H = 1.3) was shown to fit the height-diameter
relationships reasonably well. With the versatility of this function and its abilities to describe
various biological shapes, and the relatively easy parameter estimations and interpretations,

further application and evaluation of the function should prove useful
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It should be straightforward to extend the functions analysized in this study to model

other forestry relaticnships such as volume-age, height-age, and basal area-age functions.
The parameter estimates in Tables 3-4, 3-5, and 3-6, if appropriately scaled, might be useful

as the initial values in new applications.

3.7 Summary

Twenty nonlinear height-diameter functions were fitted and evaluated for major
Alberta species based on a data set consisting of 13,489 felled trees for 16 different species.
All functions were fitted using weighted nonlinear least squares regression (w; = 1/DBH,)
because of the problem of unequal error variance. The examination and comparison of the
weighted mean squared errors, the asymptotic t-statistics for the parameters, and the plots
of studentized residuals against the predicted height show that many concave and sigmoidal
functions can be used to describe height-diameter relationships. The sigmoidal functions
such as the Weibull-type function, the modified logistic function, the Chapman-Richards

function, and the Schnute function generally gave the most satisfactory results.



Table 3-1 Species and species groups

Species group Species Scientific name
1 White spruce Picea glauca (Moench) Voss
2a Lodgepole pine Pinus contorta var. latifolia Engelm.
Whitebark pine Pinus albicaulis Engelm.
Limber pine Pinus flexilis James
2b Jack pine Pinus banksiana Lamb.
3 Aspen Populus tremuloides Michx.
4a White birch Betula papyrifera Marsh.
4b Balsam poplar Populus balsamifera L.
5 Black spruce Picea marigna (Mill.) B.S.P.
Engelmann spruce Picea engelmannii Parry
6a Balsam fir Abies balsamea (L.) Mill.
6b Douglas fir Pseudotsuga menziesii (Mirb.) Franco.
Alpine fir Abies lasiocarpa (Hook.) Nutt.
Alpine larch Larix lyallii Parl.
Tamarack Larix laricina (Du Roi) K. Koch

Western larch

Larix occidentalis Nutt.




Table 3-2 Species group based tree summary statistics’

Species Number DBH (cm) Total tree height (m)
group of sample

trees Mean Min Max Std Mean Min Max  Sud

1 3101 26.41 1.20 89.00 12.19 20.09 1.70 38.40 6.98
2a 3199 22.10 1.10 66.60 8.59 18.11 1.72 37.60 5.18
2b 659 18.01 1.60 45.00 9.81 14.74 2.58 28.20 6.38
3 3647 21.36 1.10 64.40 10.12 18.77 2.23 31.94 5.46
4a 102 12.11 1.60 32.00 5.87 11.88 3.18 21.50 4.13
4b 510 22.75 1.160 5290 9.79 17.76 2.90 31.95 4.88
5 1628 14.10 1.10 55.30 6.08 12.20 1.76 30.63 4.26
6a 508 21.15 1.30 53.00 9.19 16.11 1.78 31.40 5.50
6b 135 20.60 3.30 48.70 9.72 13.26 3.35 22.33 4.98

Isee Table 3-1 for species groups, DBH=diameter at breast height.



Table 3-3 Nonlinear height-diameter functions selected for comparison

Number and form!

References

4
5
6
7.
8
9.

10

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

.H=1.3+aDP

. H=1.3+ea+b/(D+1)

. H=1.3+aD/(b+D)
.H=1.3+a(1-ePD)
.H=1.3+D?%/(a+bD)2

.H=1.3+a-e%P

H=1.3+10°Db

.H=1.34+aD/(D+1)+bD

H=1.3+a[D/(1+D)1®
. H=1.3+¢?+bD°
H=1.3+a/(1+b-e<D)
H=1.3+a(1-e®P)c
Fi=1.3+a(1-ePP%)

<D
H=1.3+a-e®

H=1.3+D?%/(a+bD+cD?)
H=1.3+aDPP”"
H=1.3+a-e/®+9)
H=1.3+a/(1+b’ D)
H=1.3+a(1-b-e<D)d

Stoffels and Van Soest 1953, Stage 1975, Schreuder et al. 1979
Wykoff et al. 1982

Bates and Watrs 1980, Ratkowsky 1990

Meyer 1940, Farr et al. 1989, Moffat et al. 1991

Loetsch et al. 1973

Ek 1973, Burkhart and Stub 1974, Burk and Burkhart 1984, Buford 1986
Larson 1986

Watts 1983

Curtis 1967, Pordan 1968

Curtis et al. 1981, Larsen and Hann 1987. Wang and Hann 1988
Pearl and Reed 1920

Richards 1959

Kozak and Yang 1978, Yang et al. 1978

Winsor 1932

H={y,P+(cby,")[1-e*(P-Do)) /[1.¢2(D2-Dp)}}1/b Schnute 1981

Curtis 1967, Pordan 1968
Sibbesen 1981

Ratkowsky 1996
Ratkowsky and Rzedy 1986
Richards 1959

1y =total tree height (m}, D=DBH in (cm), a, b, ¢, d=parameters to be estimated, e=base of the natural logarithm

(=2.71828), 1.3 is a constant used to account that DBH is measured at 1.3 metres above the ground. For equation 15:

i

=1.3, Dy=0.0, D,=100.0.
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Table 3-4 Parameter estimations for two-parameter height-diameter functions

Estimates for various species groups>

Furxtion! Parameter

1 2a 2b 3 4a 4b S 6a 6b
1 a 1.7313 2.0196 1.3150 2.8211 1.9024 2.6947 12137 1.2469 1.1000
b 0.7353 0.6899 0.8126 0.6056 0.6986 0.5871 0.8344 0.8163 0.7954
2 a 3.6042 3.4766 3.3789 3.3910 3.0097 3.3238 3.2087 3.4184 3.2256
b -16.1901 -13.8574 -12.6489 -10.1272 -7.5330 -10.9470 -11.3747 -14.3731 -14.1907
3 a 62.9784 51.4152 65.6462 39.9983 33.4618 37.0257 59.4777 58.3695 51.2611
b 58.0915 43.2873 65.5679 24.7274 24.2608 26.0386 60.7484 59.0756 64.0364
4 a 38.8548 32.4692 37.9810 27.1294 21.3657 25.3302 34.1127 34.1281 29.9225
b 0.0270 0.0349 0.0260 0.0549 0.0614 0.0512 0.0283 0.0285 0.0263
S a 1.8737 1.6413 1.6840 1.1800 1.0601 1.3209 1.5986 1.8069 2.0261
b 0.1519 0.1639 0.1666 0.1753 0.2089 0.1813 0.1814 0.1663 0.1805
6 a 35.2854 30.8991 27.5419 28.2674 18.3182 26.6049 22.7872 29.3762 23.8673
b -14.4531 -12.1948 -10.7183 -8.5907 -5.6927 -9.4854 -9.3829 -12.8412 -12.3567
7 a 02388 0.3048 0.1189 0.4509 0.2793 0.4305 0.0838 0.0953 0.0413*
b 0.7350 0.6903 0.8126 0.6053 0.6986 0.5871 0.8347 0.8167 0.7955
8 a 3.8180 4.9317 2.0679 6.4194 3.2636 6.5487 1.5058 1.3123 1.8794
b 0.5738 0.5487 0.6401 0.5349 0.6306 0.4507 0.6746 0.6418 0.4951
9 a 35.9867 31.6026 28.3882 28.9552 19.2299 27.1752 23.6995 29.9060 24.4681
b 15.2897 13.0009 11.6357 ©.3290 6.5500 10.1979 10.3221 13.5674 13.2207

!see Table 3-3 for the form of the function, 2see Table 3-1 for species groups, * - the asymptotic t-statistic for the parameter is not
significant at @ = 0.05 level.



Table 3-5 Parameter estimations for three-pararaeter height-diameter functions

Function! Pararneter

Estimates for various species groups?

1 2a 2b 3 4a 4b S 6a 6b
10 a 4.3207 4.2512 6.1440 3.8984 6.1541 4.3133 4.6202 4.0034 4.4488
-6.5426 -5.7514 -6.6024 -4.7580 -5.8482 -4.5425 -5.6452 -6.4430 -6.0225
c -0.4872 -0.4588 -0.2204 -0.5182 -0.1778* -0.3614 -0.3577 -0.5375 -0.3793
11 a 26.0850 23.7434 21.8863 22.5297 16.9311 21.52941 17.0593 192315  17.3308
b 8.5482 5.9593 8.5656 5.9461 5.7035 5.0012 8.5954 15.9742 9.7975
c 0.1339 0.1311 0.1612 0.1704 0.1996 0.1404 0.2063 0.2204 0.1703
12 a 32,0363 29.4214 31.7252 25.7461 25.3245 26.0462 25.0216 23.68904 22.3239
b 0.0456 0.0457 0.0376 0.0669 0.0409* 0.0464 0.0518 0.0724 0.0522
c 1.2974 1.1381 1.1150 1.1308 0.8779 0.9465 1.2004 1.6232 1.3270
13 a 31.0481 29.0401 29.8908 254088 26.2522 26.1321 24.5127 22.4771 20.8982
b 0.0209 0.0318 0.0269 0.0486 0.0579 0.0535 0.0308 0.0179 0.0219
c 1.1973 1.0902 1.1061 1.0892 0.9017 0.9659 1.1361 1.3905 1.2490
14 a 27.8725 252831 24.1320 23.5467 18.4726 22.6368 18.8367 20.9530 19.0959
b 2.8490 2.4343 2.7151 2.3800 2.2367 2.1570 2.8446 3.6061 2.9034
c 0.0848 G.0873 G.0943 0.1152 0.1235 0.0951 0.1247 0.1259 0.0988
15 a 0.0494 0.0466 0.0450 0.0696 0.0332* 0.0464 0.0536 0.0929 0.0685
b 0.6387 0.8289 0.7717 0.8151 1.2179 1.0716 0.7411 0.2072 0.4335*
c 32.4840 30.3314 305534 26.8357 26.5976 27.0745  26.1924 23.8101 21.9696
16 a 2.6944 1.4431 0.3504* 0.8408 -0.2324* 0.0038* 1.2706 4.4024 2.4627*
b 0.6514 0.6806 0.9442 0.4951 0.7813 0.7027 0.8044 0.4670 0.9370
c 0.0214 0.0233 0.0168 0.0284 0.0273 0.0270 0.0246 0.0311 0.0273
17 a 36.8921 28.4645  39.5300 26.1702 22.7752 22.9433 20.8584 27.8154 35.2386
b -13.0405 -16.5206 -8.3474 -13.1935 -7.4274 -20.9985 -14.1796 -15.7403 -8.1497
c 1.3051 1.5168 1.1040 1.5795 1.3156 1.7680 1.5780 1.4637 1.0545
18 a 43.4552 38,6721 43.7438 33.6553 31.0846 33.2971 31.7946  34.2258 33.0533
b -24.1871 -21.4197 -28.1548 -14.5592 -18.4473 -18.4014 -18.5302 -18.7186 -25.2112
¢ 5.0167 5.0827 7.3227 3.5766 5.8302 5.5088 4.0490 3.1265 5.8787
19 a 39.3710  37.5445 46.1750 31.3194 41.9635* 34.4682 32.8728 27.6307 28.445 1
b 0.0130 0.0203 0.0174 0.0328 0.0365 0.0369 0.0204 0.0109 0.0146
c 1.3408 1.2169 1.1253 1.2487 0.9155 1.0589 1.2307 1.5829 1.3299

lsee Table 3-3 for the form of the function, 2see Table 3-1 for species groups, * - the asymptotic t-statistic for the parameter is not

significant at @ = O.

05 level.
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Table 3-6 Parameter estimations for the four-parameter height-diameter function

Estimates for various species groups2

Function’ Parameter

1 2a 2b 3 4a 4b 5 6a 6b
20 a 32.5525  30.8722 24.4874** 254676 20.7813 252716 31.3035 23.3678 17.8206**
b 1.0200 1.0413 02528** 0.9687 0.8247* 0.9574 1.0334 0.9716 0.0314**
c 0.0428 0.0383 0.0878** 0.0709 0.0767* 0.0530 0.0298 0.0766 0.1069**
d 1.2034 0.9570 9.4899** 1.2419 1.5810* 1.1025 0.8964 1.7781  90.9244**

lsee Table 3-3 for the form of the function, %see Table 3-1 for species groups, * - the asymptotic t-statistic for the parameter is not

significant at a = 0.95 level, ** - convergence is not obtained.



Table 3-7 Weighted mean squared errors of the height-diameter functions

50

Weighted MSE for various species groups®

Function’
1 2a 2b 3 4a 4b 5 6a 6b

1 0.5082 0.3886 0.2938 0.3863 0.3326 0.3677 0.2685 0.3366 0.3359

2 0.4675 0.3800 0.3564 0.3370 0.3781 0.3687 0.2702 02577 0.3373

3 0.4596 0.3702 02770 0.3265 0.3257(1)  0.3465 0.2571 0.2865 0.3171

4 0.4539 0.3686 0.2743 0.3189 03261 03454 02366 0.2813 0.3147

5 0.4443 0.3685 0.2976 0.3218 0.3557 0.3542 0.2547 0.2466 0.3124

6 0.4832 0.3891 0.4049 0.3599 0.4268 0.3828 0.2876 0.2701 0.3584

7 0.5082 0.3886 0.2938 0.3863 0.3326 0.3677 0.2685 0.3366 0.3359*
8 0.5841 0.4210 0.3170 0.4778 0.3539 0.4112 0.2843 0.3894 0.3588

9 0.4751 0.3842 0.3801 0.3477 0.4009 0.3756 0.2784 0.2642 0.3474
10 0.4459 0.3668(2)  0.2804 0.3234 0.3295*  0.3500 02502 0.2516 0.3158
11 0.4935 0.3877 0.27014¥)  0.3400 0.3314 0.3598 0.2915 0.2865 0.3035(2)
12 0.4424®  0.3674@ 02729 031662 0.3268* 034582 02534 0244920 03089
13 0.4426'® 036753  02723¢) 031650 032719 03459 02539 0.2458)  0.3080®
14 0.4597 0.3761 0.2648(1)  0.3236 0.32673)  0.3504 0.2694 0.2533 0.3024(1)
15 0.4430%)  0.3676 02717 03165 0.3272¢ 03450 02544 0.2463 0.3069*
16 0.4435 0.3667(1) 02767+  0.3200 0.3275*  0.3472* 02510 02460 0.3131*
17 0.4658 0.4033 0.2857 0.3795 0.3596 0.4192 0.3014 0.2568 0.20894
18 0.4433 0.3677 0270813 0.3181@® 0327305 03463 02540 0.24554@  0.3090(5)
19 0.4427@® 03671 02747 0.31803) 03279«  0.3469 02525 02445 03100
20 04423 0.3668@ o02662* 03165 03288+ 03462@ 02507 02453 0.3100*

Isee Table 3-3 for the form of the function, # - the smallest five MSE values for each species group with ranks 1 (smallest) to 5 in

parentheses, * - the MSE values are not compared because of insignificant t-statistic(s) or the failure of convergence.
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Chapter 4

An Index of Site Productivity for Mixed Species Stands!

4.1 Introduction

Site index, defined as the average height of the dominant (or dominant and
codominant) trees in the stand at a specified reference age, is probably the most widely used
site productivity measure in North America (Carmean 1975, Alemdag 1991). Metheds for
constructing site index curves have become increasingly complex and diverse (Devan and
Burkhart 1982, Borders et al. 1984, Monserud 1984, Amateis and Burkhart 1985, Biging
1985, Newnham 1988, Lappi and Bailey 1988, Walters et al. 1991). The foundation of site
index equations, the height versus age relationship, however, remains unchanged.

The proliferation of site index as a site productivity measure has also been criticized
(Madar 1963, Samumi 1965, Jones 1969, Hagglund 1981, Monserud 1988, Verbyla and
Fisher 1989). Site index curves came at about the same time as the "normal” yield tables,
but were independent of the nommality concept. Although the site index method is
reasonably stable under thinning and many of the constraints on site trees have been
relaxed (such as Monserud 1984), generally, only the dominant trees grown in older, even-
aged, well-stocked, free-growing, undisturbed, pure-species stands can be used as suitable
site trees for constructing site index curves (Carmean and Lenthall 1989). Because of these
restrictions, many researchers have developed alternative site productivity measures that are

based on vegetative or habitat types, environmental factors such as soil, climatic conditions,

1A version of this chapter has been accepted for publication. Huang, S., and Titus, S. J.
1992. An index of site productivity for uneven-aged and mixed species stands. Canadian
Journal of Forest Research (in press).
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and topographic characteristics, and biophysical factors or physiological processes that

control productivity. Recent examples of such approaches have been widespread (Wykoff
et al. 1982, McLeod and Running 1988, Schmidt and Carmean 1988, Verbyla and Fisher
1989, Klinka and Carter 1990, Wykoff 1990).

Most of the boreal forests in Alberta have a mixed-species composition with irregular
age structure. Height-age relationships in such stands are very weak, and Monserud (1988)
and Wykoff (1990) suggested that both site index and age are often meaningless concepts
in this situation. Alternative approaches based on vegetative or environmental factors
provide a long term possibility for developing reasonable and realistic site productivity
measures for uneven-aged and mixed-species stands. However, because of the vast
complexity involved in mixed-species stands, the cost to deveiop such approaches can be
substantal. Lack of consistent quanttative and qualitative variables for all the data may
limit the practical applications of these approaches.

A site productivity measure termed Site Productivity Index (SPI) based on the height-
diameter relationship of dominant and codominant trees was formulated in this analysis for
boreal mixed-species stands in Alberta. While top height has been suggested as preferable
to dominant and codominant height (Arney 1985), most inventory methods still select
dominant and codominant trees for height measurement. For that reason this analysis uses
the latter. Separate site productivity indices are estimated for each of four tree species —
white spruce (Picea glauca (Moench) Voss), lodgepole pine (Pinus contorta Dougl.}. aspen
(Populus tremuloides Michx.), and black spruce (Picea mariana (Mill.) B.S.P.). Use of the
height-diameter relationship as a site productivity measure dates back to Trorey (1932).
Meyer (1940) and Husch et al. (1982) also suggested that height-diameter relationships can
be a good measure of site productivity for uneven-aged and mixed-species stands. McLintock

and Bickford (1957) examined several alternatives for evaluating site productivity in
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uneven-aged stands of red spruce (Picea rubens Sarg.) in the northeastern United States, and
found that the height-diameter relationship of dominant trees as expressed by the
monomolecular function suggested by Meyer (1940) was the most sensitive and reliable
measure of site productivity. Stout and Shumway (1982) also found that the height-
diameter relationship provided an appropriate site productivity measure for six hardwood
species and presented several additional raticnales for the use of such a measure from
ecological and silvicuitural viewpoints. Other examples of height-diameter based site
productivity measures have been shown by Reinhardt (1983) for old-growth western larch
stands, Lamson (1987) for central Appalachian hardwood stands, and Nicholas and Zedaker

(1992) for southern Appalachian red spruce.

42 The data

Data from 164 permanent sample plots (PSP) used in this analysis were provided by
the Alberta Forest Service. The data were collected over the last three decades and the PSPs
were randomly located throughout the inventory areas of the province to provide
representative information for a variety of species composition, stand structures, densities,
heights, ages, and site conditions. A detailed description of how the data are collected and
recorded can be found in the Permanent Sample Plots: Field Procedures Manual (Alberta
Forest Service 1990).

Data from dominant and codominant trees for the four most important commercial
tree species in Alberta were extracted from the PSP data base. Only live trees with both
diameter and height recorded were retained for this analysis. The selected trees have up to
five remeasurements, with the time between remeasurements ranging from 3 to 18 years.
Each non-overlapping growth period from remeasurements defines a growth interval, that

is, the growth intervals are obtained from measurements between first and second, second
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and third, but not first and third. Summary statistics including the mean, minimum,

maximum, and standard deviation for tree diameter at breast height (DBH) and tree height

by species at the baginning of the growth interval are shown in Table 4-1.

4.3 Methods
The three-parameter modified Weibull function proposed by Yang et al. (1977)
describes the height-diameter relationship well for major Alberta tree species (Huang et al.

1992) and was selected as the base height-diameter function:

(4.1) H=1.3+a[1-exp (-bDBH) ]
where H is total tree height in metres (m), DBH is tree diameter at breast height in
centimetres (cm), 1.3 is a constant used to account for measurement of DBH at 1.3 metres
above the ground, exp raises e (~2.71828) to a specified power, and a, b, ¢ are paiameters
to be estimated. Using the difference equation method on the repeatedly measured PSP data
with real growth series (Clutter et al. 1983, Borders et al. 1984), each site tree is assumed
to follow its unique height-diameter curve. For any two succeeding diameters DBH, and

DBH, (DBH, <DBH,), there are two corresponding tree heights H, and H, (H,<H,) on the

curve as defined by
(a.2) Hy=1.3+all1-exp (-bDBH,)]

(4.3) H,-1.3+all-exp (-bDBHS) ]
Three alternative difference equations can be obtained by isolating each of the three

different parameters in equations (4.2) and (4.3). Isolating parameter a in both equations,

setting them equal, and then solving for H, gives
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[1-exp (-bDBHS) ]

(4.4)  Hy=1.3+(H,-1.3)
(1-exp (-bDBH) ]

Isolating parameter b in equations (4.2) and (4.3), setting them equal, and then soiving for

H, gives

(4.5) H2-1.3+a{1—[1 =

DBH, \ ¢
_ (Hy-1.3) ]('b'é?i) }
Isolating parameter ¢ in equations (4.2) and (4.3), setting them equal, and then solving for

H, gives

/ H-1.3 |10
(4.6) Hy=1.3+a 1-exp(—bxl7151n(1—;é—'——))lw"”‘

Site productivity index (SPI) is defined as the tree height (SPI=H,) at a chosen reference-
diameter (DBH,). A 20 cm reference-diameter was selected for this analysis (DBH,=20), so
SPI actually indicates the tree height at 20 cm reference-diameter. The 20 c¢m reference-
diameter corresponds roughly to the 50 year reference-age in traditional Alberta height/age
site curves. For two trees with the same diameter (DBH,), the taller tree (H,) has a lazger
SPI value, and therefore better site productivity.

As with the difference equation curve fitting methods commonly used for site index,
any of the three equations (4.4), (4.5), and (4.6) can be used to construct SPI curves. The
SPI curves produced from these equations pass through appropriate heights at reference-
diameter, and are reference-diameter invariant (Bailey and Clutter 1974). It can also be
shown that equation (4.4) produces an anamorphic set of height-diameter curves with
varying asymptotes while equations (4.5) and (4.6) produces polymorphic curves with a

common asymptote. There seems no common greund for the choice of a particular equation
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to be the most apprcpriate. Site index methods described by Burkhart and Tennent (1977),

Borders et al. (1984), and Newnham (19588) constrainad different parameters and produced
different curve forms. It would be most desirabie if a single site-specific parameter could be
identified. However, because of the different height growth patterms, all three parameters
can be diffezent cn different sites, so the "most” appropriate equation can only be obtained
by comparing ti:z reladve fits cn the available data. For each species it is necessary to
examine all three potential difference equation forms.

The fitung of equadons (4.4), (4.5), and (4.6) for each of the four species was
accomplished using the PROC MODEL procedure on SAS/CTS software (SAS Institute Inc.
1988). The Gauss-Newton method using the Taylor series expansion as described in Gallant
(1987) was zppiied and multiple starting values for parameters were provided to ensure the
least squares solution was the global rather than a local minimum. Candidate equations
were judged on the basis of mean squared error (MSE) and coefficient of derermination
(R3) of the equations, as well as the plots of studentized residuals against the predicted

height. All the R? values are caleculated according to

(4.7)  R2®=1-B0(H;~H;)2/B2(H,-H)?2
where H; is the observed and I,-\Ii is the predicted height for the ith tree (i=1, 2, ..., n), and

His the observed average treec heigh.

4.4 Results and discussion

For all four species, equations (4.5) and (4.6) have larger R* and smaller MSE values
than those of equation (4.4) (Table 4-2). The difference between equations (4.5) and (4.6)
is not substantial. Fit statistics including the nonlinear least squares estimates of rhe

parameters, the asymptotic standard errors and z-statistics of the parameters, and the MSE
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and R? for equation (4.5) by species are listed in Table 4-3. It is clear from Tables 4-2 and

4-3 that equation (4.5) fitted the data well. It is also evident that SPI curves similar to
tradit. .~- ] site index curves can be constructed based on the «stumated parameters, and the
resulting SPI curves have properties similar to those of the traditional site index curves
obtained from the same difference equation method, namely they are polymorphic in form,
reference-diameter invariant, and pass through the appropriate heights at reference-
diameter. Graphs illustrating the relationship between dominant height and dominant DBH
for a range of SPI values for each species have been shown in Figures 4-1 to 4-4. The
equation that is derived from equation (4.5) for computing dominant height from specified

dominant DBH and SPI is

- DEH\E
(4.8) H—1.3+a{1—[1- (3’1;1-3) ]( 30 )}

The dominant height-diameter relationship based SPI provides a simple and quick
method of quantifying site productivity for uneven-aged and mixed-species stands in Alberta.
It is species-specific but the average site productivity for a mixed-species stand can also be
obtained by averaging the species-specific SPI values for a sample of dominant and
codominant trees in the stand, although the "right” method for this process involving such
questions as the range and pattern of SPI curves of species B found on sites where species
A has a given SPl. Estimating SPl requires no time consuming and difficult age
measurements, but only tree height and diameter measurements that are readily obtainable
irom ordinary inventories and are compatible with the existing data-collection process in
Alberta.

The validity of the SPI approach requires two important assumptions: 1) decreasing
tree taper (DBH divided by tree height) is associated with increasing site productivity, and

2) stand density does not affect the height-diameter relationship of the dominant and
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codominant trees in uneven-aged or mixed-species stands. Larson’s (1963) extensive studies
on stem form indicated that the first assumption generally held because increasing site
productivity produced increasing tree height for a given diameter. Stout and Shumway
(1982) discussed the second assumption in detail and concluded that the influence of stand
density on potential site productivity assessment using the height-diameter relationship was
minimal. Increasing stand density has been found to reduce both diameter growth and
height growth for mixed conifers of the northermn Rocky Mountains (Wykoff et al. 1982),
also implying that the stand density impact on the height-diameter relationship will
probably be minimized, especially if this relationship is only considered for the dominant
and codominant trees in the stands. Possibilities for further analysis involving the
relationships between dominant height and dominant DBH relsdve to density (such as
Alexander et al. 1967} do exist. An analysis that shows the relationship between SPI and
traditional height-age based site index for an appropriate range of stand conditions will also
be useful. However, the data used for this study did not include sufficient reliable data for
ages and heights of dominant trees of all species.

While the use of SPI as determined by the dominant and codominant height-
diameter relationship is by no means the final solution, it provides a simple anc - --~~nable
index of site productivity for uneven-aged and mixed-species stands comm © din
Alberta. SPI uses the two most important components related to volume production — height
and diameter, and therefore should also be highly correlated with volume production,

another measure of site productivity.

4.5 Summary
A site productivity measure based on the relationship between total tree height and

diameter at breast height of dominant and codominant trees is presented for four major tree
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species — white spruce (Picea glauca (Moench) Voss), lodgepole pine (Pinus contorta
Dougl.), aspen (Populus tremuloides Michx.), and black spruce (Picea mariana (Mill.) B.S.P.)
grown in boreal mixed-species stands in Alberta. The measure is based on a three-parameter
modified Weibull function fitted to growth data from permanent sample plots using the
difference equation method; R? values range from 0.90 to 0.97. The measure has many
logical properties similar to those of the site index approach and produces curves that are
polymorphic and reference-diameter invariant. It can be used as a simple and quick method

of quantifying site productivity for uneven-aged and/or mixed-species stands.



Table 4-1. Tree summary statistics by species!

Number DBH (cm) Total oee height (m)

Species of
observations Mean Min Max Std Mean Min Max

Std
White spruce 1181 30.91 11.20 63.30 8.80 24.17 9.00 37.903
Lodgepole pine 1623 1851 9.10 4760 728 1608 7.30 31.4@
Aspen 1051 23.37 9.10 5640 11.17 19.39 7.40 32.90®
Black spruce 217 1477 5.60 3940 6.09 13.14 5.50 29%.30a

'Note: surmmary statistics obtained at the begin of the growth interval, number of

observations refers to the number of growth intervals, DBH is tree diameter at breast

height.
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Table 4-2. Mean squared error and R? for equation (4.4), (4.5), and (4.6) by species

Species Equation Mean squared error R?
White spruce (4.4) 2.00179 0.8389
(4.5) 1.86023 0.8968
(4.6) 1.94872 0.8919
Lodgepole pine 4.49) 0.89962 0.9615
(4.5) 0.88033 0.9623
(4.6) 0.89633 0.9616
Aspen 4.4 1.84199 0.9357
(4.5) 1.36359 0.9524
(4.6) 1.49250 0.9479
Black spruce 4.9 0.61300 0.9682
4.5) 0.57553 0.9702
(4.6) 0.55034 0.9715




Table 4-3. Fit sradstics for equation (4.5) by species

Species Parameters Estimate Std. error t-statistic
White spruce a 37.25707 1.5510 24.04
c 1.63062 0.0743 21.95
Lodgepole pine a 41.74221 4.4530 9.37
c 1.04074 0.0493 21.11
Aspen a 31.60000 1.2174 25.96
c 1.50198 0.0627 23.96
Black spruce a 35.79457 7.8621 4.55

c 1.32654 0.1387 9.56




'pasT. sem

HEQ dUdIJE. dId (7 ¥ *991uds auym 10§ SIAINS (fdS) Xapu] AMALINpOI] MG *T-p N3



40+

A}

TOTAL TREE k)
o

w

O

¢ 5 10 15 20 25 30 3A5 <0 4.5 50 S5 6'3 6'5
DIAMETER AT BREAST HEIGHT (CM)

r3aIY o Asisatun




‘pasn sem

He( 9duIapar wd 7 v -autd 3jodadpo] 10§ ssam) (ds) Xapuj Aanonpold NS "g-y N3y



1

v

TOTAL TREE HEIGHT (M)
N
O

Q

G]]

12 75 20 25 30 35 40 45 5C
DIAMETER AT BREAST HEIGHT (CM)

55

&

~
[



"Pasn seM Hg( UIISJAI W (7 Y "Uadse 10J SIAIND (IdS) Xopu] ANAnONpo1d IS ‘€ am3r]



TOTAL TREE HEIGIT (M)

o
v

W
O

N
W

)
o

wn

2

O 5 10 15 20 25 3C 25 40 45 50 55 60
DIAMETER AT BREAST HEIGHT (CM)

wIsqIVv IO A11539A100



pasn sem

HEQ 27UaIajaI u (g V -doruds yoe[q 10§ SIAIMD ([dS) X3pu] AIAnINpoId IS - a3ty



TOTAL TREE HEIGHT (M)

N N
o U

o)

5

‘0 15 20 25 30 35 40
DIAMETER AT BREAST HEIGHT (CM)

/i

[458

S

5

[
L=



75
4.6 References

Alberta Forest Service. 1990. Permanent sample plots: field procedures manual. Timber
Management Branch, Alberta Forest Service, Edmonton, Alberta. FMOPC 83-03.

Alemdag, 1. S. 1991. National site-index and height-growth curves for white spruce growing
in natural stands in Canada. Can. J. For. Res. 21: 1466-1474.

Alexander, R. R., Tackle, D., and Dahms, W. G. 1967. Site indexes for lodgepole pine, with

corrections for stand density: methodology. USDA For. Serv. Res. Pap. RM-29.
Amateis, R. L., and Burkhart, H. E. 1985. Site index curves for loblolly pine plantations on
cutover-site prepared lands. South J. Appl. For. 9: 166-169.

Amey, J. D. 1985. A modelling strategy for the growth projecﬁon of managed stands. Can.
J. For. Res. 15: 511-518.

Bailey, R. L., and Clutter, J. L. 1974. Base-age invariant polymorphic site curves. For. Sci.
20: 155-159.

Biging, G. S. 1985. Improved estimates of site index curves using a varying-parameter model.
For. Sci. 31: 248-259.

Borders, B. E., Bailey, R. L., and Ware, K. D. 1984. Slash pine site index from a polymorphic
model by joining (splining) nonpolynomial segments with an algebraic difference
method. For. Sci. 30: 411-423.

Burkhart, H. E., and Tennent, R. B. 1977. Site index equations for radiata pine in New

Zealand. N. Z. J. For. Sci. 7: 408-416.
Carmean, W. H. 1975. Forest site quality evaluation in the United States. Adv. Agron. 27:
209-267.

Carmean, W. H., and Lenthall, D. J. 1989. Height-growth and site-index curves for jack pine

in north central Ontario. Can. J. For. Res. 19: 215-224.

Clutter, J. L., Fortson, J. C., Pienaar, L. V., Brister, G. H., and Bailey, R. L. 1983. Timber



76

management - a quantitative approach. Jechn Wiley & Sons, New York.

Devan, J. S., and Burkhart, H. E. 1982. Polymorphic site index equations for loblolly pine
based on a segmented polynomial differential model. For Sci. 28: 544-555.

Gallant, A.R. 1987. Nonlinear Stati::ical Models. John Wiley & Sons, New York.

Hagglund, B. 1981. Evaluation of forest site productivity. Comm. For. Bureau, For. Abstr.
42(11): 5315-527.

Huang, S., Titus, S. J., and Wiens, D. G. 1992. Comparison of nonlinear height-diameter
functions for major Alberta tree species. Can. J. For. Res. (in press).

Husch, B., Miller, C. I., and Beers, T. W. 1982. Forest mensuration. 3rd ed. John Wiley &
Sons, New York.

Jones, J. R. 1969. Review and compariscon of site evaluation methods. USDA For. Serv. Res.
Pap. RM-51.

Klinka, K., and Carter, R. E. 1990. Relationships between site index and synoptir
environmental factors in immature coastal Douglas-fir stands. For. Sci. 36: 815-830.

Lamson, N. I. 1987. Estimating northern red oak site-index class from total height and
diameter of dominant and codominant trees in central Appalachian hardwood stands.
USDA For. Serv. NE-RP-605.

Lappi, J., and Bailey, R. L. 1988. A height prediction model with random stand and tree
parameters: an alternative to traditional site index methods. For. Sci. 34: 907-927.

Larson, P. R. 1963. Stem form development of forest trees. For. Sci. Monogr. No. 5.

Madar, D. L. 1963. Volume growth measurement: an analysis of function and characteristics
in site evaluation. J. For. 61: 193-198.

McLeod, S. D., and Running, S. W. 1988. Comparing site quality indices and productivity
in ponderosa pine stands of western Montana. Can. J. For. Res. 18: 346-352.

McLintock, T. F., and Bickford, C. A. 1957. A proposed site index for red spruce in the



77
northeast. USDA For. Serv. Northeast For. Exp. Stn. Pap. 93.

Meyer, H.A. 1940. A mathematical expression for height curves. J. For. 38: 415-420.

Monserud, R. A. 1984. Height growth and site index curves for inland Douglas-fir based on
stem analysis and forest habitat type. For. Sci. 30: 943-965.

Monserud, R. A. 1988. Variations on a theme of site index. P. 419-427 in forest growth
modelling and prediction. A.R. Ek, S.R. Shifley, and T.E. Burk (eds.). USDA For. Serv.
Gen. Tech. Rep. NC-120.

Newnham, R. M. 1988. A modification of the Ek-Payandeh nonlinear regression model for
site index curves. Can. J. For. Res. 18: 115-120.

Nicholas, N. S., and Zedaker, S. M. 1992. Expected stand behavior: site quality estimation
for southern Appalachian red spruce. Forest Ecology and Management 47: 39-50.
Reinhardt, E. 1983. Using height/diameter curves to estimate Sl in old-growth western larch
stands. Res. Note 20. Montana Forest and Conservation Experiment Station, School of

Forestry, University of Montana, Missoula, MT. 4 p.

SAS Institute Inc. 1988. SAS/ETS user’s guide. Version 6, first ed., Cary, NC.

Sammi, J. C. 1965. An appeal for a better index of site. J. For. 67: 174-176.

Schmidt, M. G., and Carmean, W. H. 1988. Jack pine site quality in relation to soil and
topography in north central Ontario. Can. J. For. Res. 18: 297-305.

Stout, B.B., and Shumway, D.L. 1982. Site quality estimation using height and diameter.
For. Sci. 28: 639-645.

Trorey, L.G. 1932. A mathematical method for the construction of diameter height curves
based on site. For. Chron. 8: 121-132.

Verbyla, D. L., and Fisher, R. F. An alternative approach to conventional soil-site regression
modelling. Can. J. For. Res. 19: 179-184.

Walters, D. K., Burkhart, H. E., Reynolds, M. R., Jr., and Gregoire, T. G. 1991. A Kalman



78
filter approach to localizing height-age equaticns. For. Sci. 37: 1526-1537.

Wrykoff, W. R. 1990. A basal area increment model for individual conifers in the northern
Rocky Mountains. For. Sci. 36: 1077-1104.

Wykoff, W.R., Crookston, N.L., and Stage, A.R. 1982. User’s guide to the stand prognosis
model. USDA For. Serv. Gen. Tech. Rep. INT-133.

Yang, R.C,, Kozak, A., and Smith, J.H.G. 1978. The potenrial of Weijbull-type functions as

a flexible growth curves. Can. J. For. Res. 8: 424-431.



79
Chapter 5

Individual Tree Height Prediction Models'

5.1 Introduction

Individual tree height prediction models are routinely required in practical
management and silvicultural research work (Meyer 1940, Arabatzis and Burkhart 1992).
The estimation of tree volume and site index, the description of stands and their
development over time, as well as the estimation of growth by stand projection methods rely
heavily on accurate height prediction models (Curtis 1967). Larsen and Hann (1987) also
suggested that height prediction models may be used to indirectly predict height growth if
the actual measurements of height growth are not available.

The most widely used height prediction models are the so-called "height-diameter”
equations, which predict tree height as a functor: of tree diameter at breast height (DBH)
(Curtds 1967, Ek 1973, Kozak and Yang 1978, Larsen and Hann 1987, Arabatzis and
Burkhart 1992). Many growth and yield projection systems use such equations to predict
tree heights (Burkhart et al. 1972, Curtis et al. 1981, Wykoff et al. 1982, Burk and Burkhart
1984, Arney 1985). The predictive capability of the height-diameter equation may be
improved if additional tree and stand variables are added into the equation, such as the
inclusion of tree age (Curtis 1967), site index (Wang and Hann 1988), and stand basai azea
and site index (Larsen and Hann 1987). iii; et al. (1984), and Van Deusen and Biging

(1985) also incorporated additional stand variables into height-diameter equations to

1A version of this chapter has been submitted for publication in Forest Science. Huang, S
and Titus, S. J. 1992. An age-independent individual tree height prediction model for
boreal spruce-aspen stands in Alberta.
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provide better height predictions.

This study developed an individual tree height predicion model for white spruce

(Picea glauca (Moench) Voss) and trembling aspen (Populus tremuloides Michx.) grown in
boreal mixed-species stands in Alberta. The approach was to first select an appropriate
height-diameter model as the base function, and then incorporate other tree and stand level
variabies such as tree basal area, stand density, species composition, and site productivity
using the parameter prediction method (Clutter et al. 1983). The mo<el is age-independent
in that age is not explicitly involved in height prediction. Age is not included in height
prediction because:

1). The boreal forests in Alberta commonly have a mixed-species composition with irregular
age structures. Tree and stand ages in such mixtures have very limited meaning and
studies on growth and yield for mixed-species stands rarely involve the explicit use of
age as an input variable (Adams and Ek 1974, Lynch and Moser 1986, Wykoff et al.
1982).

2). On average, DBH generally accounts for 70-80% of the height variation from the height-
diameter prediction equations for major Alberta tree species (Huang et al. 1992). Using
the same data, tree age generally accounts for less than 20% of the height variation
from the height-age equation. The strong correlation between heiy. 1nd diameter has
been noted in many other studies (Curtis 1967, Larsen and Hann 1987, Wang and Hann
1988, Kozak and Yang 1978, Arabatzis and Burkhart 1992).

3). Age is the most expensive, time consuming, and difficult variable to measure. Because
of this, many forest inventories only record tree ages for a very small subsample,
resulting in less representation and large variation in age measurements. Approximately

2-3% of the trees from permanent sample plots in Alberia have age recorded.
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The height prediction model was fitted using nonlinear least squares ragression. If
unequal error variance was evident from analysis of residuals, weighted regression was
applied to achieve uniform error variance. The model was also tested on an independent
data set representing the population on which the model was to be used. Results and
discussion of the model's performance and iis biological implications are presented here,

along with suggestions and recommendations for the most appropriate use of the model.

5.2 Model development
The base function

Richards (1959) derived the following sigmoidal function based on Von Bertalanffy's

quantitative laws in organisms:

(5.1) y=a(l-e bt <
where y is the total living biomass, t is the tiine, a is the asymptote, b is the rate parameter,
and c is the shape parameter. The total living biomass 7 can refer to size or weight in
animal growth, or to basal area, volume, diameter, and height in tree growth.

Equation (5.1) is most comzmnonly known as the Chapman-Richards function in
forestry. It has been shown on numerous occasions to be very flexible and has been used
extensively in growth and yield studies for describing height-age, diameter-age, basal area-
age, and volume-age relationships (Pienaar and Turnbull 1973, Burkhart and Tennent 1977,
Clutter et al. 1983, Somers and Farrar 1991). The function was derived from basic biological
considerations and the parameters of the function have meaningful biological significance.

Because of its flexibility, the Chapman-Richards function has been extended beyond
its original application and used to describe other empirical growth phenomena of forest

trees and stands in which tree and stand ages were not explicitly involved, such as the basal
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area-height and height-diameter relationships (Harrison and Daniels 1988, Huang et al.
1992). Arney (1985) also adopted the basic Chapman-Richards form for modelling coastal
Douglas-fir diameter increment. In these cases the biclogical interpretation of the Chapman-
Richards function may have limited significance, but the mathematical properties and the
physically meaningful parameters of the function remain.

The Chapman-Richards based height-diameter model takes the form

(5.2) H=1.3+a(1-e bPBH)~<
where H is the total tree height () to be predicted, DBH is the diameter (cm) of the tree
at breast height, 1.2 is a constant used to account for the use of DBH (measured at 1.3
metres above the ground), and a, b, ¢ are parameters to be estimated. Equadon (5.2) has
been shown to be one of the most accurate height prediction models for major Alberta tree
species (Huang et al. 1992), and was selected as the base function for height prediction in
this analysis.

Individual tree height can be most appropriately estimated from equation (5.2) for
forest areas that have similar stand conditions. If the variation in stand density and site
productivity has significant effects on tree height, they may be incorporated into the
equation to provide better height prediction. Generally, a tree of a given DBH is expected
to be taller on better sites since height growth should be greater on better sites. It is also
accepted that, for a large number of tree species grown in even-aged pure species stands,
the average height of the dominant and codominant trees is relatively unaffected by a wide
range of stand density. However, the average height of all trees in the stand may be affected
by stand density, particularly for stands with mixed-species composition and uneven-aged
structure commonly found in boreal forest regions of Alberta. It has been observed in boreal

mixed-species stands that higher stand density tends to result in taller trees and lower stand
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density tends to result in shorter trees. The height growth of a tree may also be affected by

species composition in boreal mixed-species stands. Definitions and descriptions for stand

variables that are used in the height prediction model are described in the following

sections.

Stand density

Stand density is a quantitative measure of the degree of crowding within a forested
area. It is often expressed either in terms cf absolute values such as the number of trees per
hectare, basal area per hectare, volume per hectare, percent crown cover, or in relative
values such as relative density, stand density index, tree-area ratio, crown competition
factor, and spacing index. Detailed descriptions for these measures can be found in Spurr
(1952), Clutter et al. (1983), and Davis and Johnson (1986). Most of these density
measures are derived and used for even-aged pure species stands. Bredenkamp and Burkhart
(1990) provided a comparison for most of the stand density measures.

The mixed-species stand density measure used in this study is the total basal area
per hectare (ha) for all species combined. The use of basal area per hectare as a simple and
objective measure of stand density has been widely accepted (Clutter et al. 1983), and for
reasons described by Spurr (1952), basal area per ha of all species in the stand should be

particularly suitable for mixed-species stands with irregular age structures.

Species composition

It is typical that in the early development stage of a mixed white spruce-aspen stand,
the shade intolerant aspen has the competitive advantage over white spruce and exhibits
faster early height growth and as a result, tends to rapidly establish dominance on the site

by occupying she sizpinr layer of the canopy. Shade tolerant white spruce is often established
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a short but distinct time after the overstorey aspen and exhibits slow juvenile height growth.

As time progresses, the competitiveness of aspen is reduced relative to that of white spruce
as individual aspen trees start to die at 60 to 80 years of age, giving dominance gradually
to the more shade tolerant and long lived white spruce. This dynamic process produces
changes both in terms of whole stand density and proportions of the species composing the
stand. An appropriate species composition measure is defined to reflect these changes:

BASUM,_,
BASUM

(5.3) SC,-
where SC;, is the species composition of the target species, BASUM, is basal area per
hectare (m?/ha) for the target species, and BASUM is the total basal area per hectare for
all species combined in the stand. The species composition as defined in (5.3) is a number
between zero and one, with zero indicating absence of the target species and one indicating
a pure species stand of the target species.

At the current state of knowledge concerning the vast complexity of mixed-species
stands, the species composition measure as expressed by (5.3) is at best a crude
approximation to the "true ratios" as Assmann (1970) termed the species composition in
mixed-species stands. Growth and yield models for mixed-species stands concentrate on the
species component rather than the whole stand, so explicit species compusition measures
are rarely seen (Lynch and Moser 1986, Kelty 1989). Assmann (1970) suggested that the
true ratio of the species in a mixed stand may depend on the species’ relative efficiencies
for utilizing the available resources and the so-called natural growth rhythms of the species.
Kelty (1989) used the ratio of the number of target species trees over the total number of
trees in the stand to compare the differences in species composition for New England

hemlock/hardwood stands. The use of a basal area ratio should generally be more

advantageous over a tree number ratio because basal area combines number and size of
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trees.

Site productivity

Site index and age are not used in this study because stands in Alberta commonly
have a mixed species composition with an irregular age structure. Both site index and age
are often meaningless concepts in this situation (Wykoff 1990). The site productivity index
(SPI) based on the height-diameter relationship of dominant and codominant trees (Huang

1992, Huang and Titus 1992) was used as the measure of site productivity for uneven-aged

and mixed-species stands in Alberta.

In addition to the three variables representing stand density, species composition,
and site productivity, average size of all trees in the stand and the basal area of the tree
were also found to significantly affeci the height growth of a tree. Using the parameter
prediction method (Clutter et al. 1983) and equation (5.2), the final height prediction
model expressing tree height as a function of tree DBH, tree basal area, stand density,

species composition, site productivity, and average DBH was found to be

(5.4) H=1.3+a(l-e-BDBH)c

a=-a, (1-e"%2845, +a,SC+a,SPI+a,BA+a,AVED
b=a,

C=ag+3a,DBH/AVED+a, ,SPI
where: H is the tree height to be predicted (m),

BASUM is the basal area per ha for all species in the stand (m?),

BA is the basal area of the tree (cm?),

SC,, is the species composition as defined in (5.3),
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SPI is the site productivity index of the species in mixed-species stands (m),

AVED is the average diameter for all species in the stand (cm),

DBH is the tree diameter at breast height (cm).

Model (5.4) was identified by first plotting mee height versus each explanatory
variable and examining the possible linear or nonlinear relationship tetween them, and then
arranging different variable combinations in different parameter prediction equations until

the most reasonable residual plot from preliminary nonlinear regressions has been obtained.

5.3 The data

Data from permanent sample plots (PSP) used in this analysis were provided by the
Alberta Forest Sexvice. The data were collected over the last three decades and the PSPs
were randomly located throughout the inventory areas of the province to provide
representative information for a variety of densities, heights, species composition, stand
structures, ages, and site conditions. A detailed description of how the data were collected
and recorded can be found in the Permanent Sample Plots: Field Procedures Manual (AFS
1990).

For this study, the original PSP data were summarized to provide additional variables
such as the number of trees per hectare (ha), basal area per ha, average height, and average
diameter, both for all species combined and by individual species in the stand. Summarized
data from 164 PSPs were used in this analysis. To remove the possible serial correlation
among repeated measurements of the same plot, only the initial measurements were actually
retained. Live white spruce and aspen trees with measurements for both DBH and height
were used in fitting of the height prediction model, giving a total number of 1612 white
spruce and 1138 aspen trees selected from the 164 PSPs. Variables from the selected trees

were matched with the whole stand and species summary statistics, so that the height
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prediction model could be directly fitted on the matched data sets. Descriptive statistics

including the mean, minimum, maximum, and standard deviation for tree DBH and tree
height by species; total number of trees per ha, average diameter, basal area per ha, and
average height, both for the whole stand and by species, are attached in Tables 5-1 and 5-2.
Summary statistics for species composition are also given in Tables 5-1 and 5-2.
Approximately 80% of trees for each species (1304 for white spruce and 898 for aspen)
were randomly selected for model fitting and the remaining 20% (308 for white spruce and

240 for aspen) for model testing.

5.4 Analysis

Preliminary nonlinear least squares fits of the height prediction model (5.4) for
white spruce and aspen were accomplished using the PROC MODEL procedure on SAS/ETS
software (SAS Institute Inc. 1988). The Gauss-Newton iterative method using the Taylor
series expansion as described in Gallant (1987) was applied in model fitting. To ensure the
solution was global rather than local least squares estimates, multiple starting values of the

parameters were provided for the fits.

Error structure of the model

Residual analyses based on the preliminary nonlinear least iquares fits were
performed to detect possible model inadequacies and examine the validity of regression
assumptions. Because the residuals r; (calculated as the difference between the observed
height and the predicted height) are intrinsically not independent an¢ do not have common
variar:e (Rawlings 1988 p. 249), studentized residuals are used instead to account for the
unequal variance problem. The dependency effect among the residuals r;, according to Neter

et al. (1990 p. 116), is relatively unimportant and can be ignored because the sample sizes
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are large in comparison to the number of parameters appeared in the height prediction
model.
Studentized residuals are the scaled version of residuals that are obtained by dividing

each residual by its standard error

- I;
(5.3) rj= -
JVHESE(1-hy;)

2

where r;” is the studentized residual, 7; is the residual, MSE is the mean squared error
computed by dividing the error sum of squares by error degrees-of-freedom, and h; is the
ith diagonal element of the nonlinear "hat matrix" F(F’ F) !¢ as described in Gallant (1987)
and Rawlings (1988). For a correctly identified model, when the assumptions of the
regression analysis are met, the studentized residuals have zero mean and constant variance,
and the plot of studentized residuals against the predicted values of the dependent variable
will show a homogeneous band. For that reason, the use of studentized residuals has been
recommended by Draper and Smith (1981), Montgomery and Peck (1982), and Rawlings
(1988).

Figures 5-1 and 5-2 show the plots of studentized residuals against the predicted
height for white spruce and aspen respectively. It is clear that the plot for aspen (Figure 5-
2) displays an homogeneous band and the zero studentized residuals across the centre of
the band, indicating that the height prediction model for aspen is appropriately identified
and fitted. On the other hand, the plot for white spruce (Figure 5-1) shows zero studentized
residuals across the centre of the band but the band itself displays a clear trend of
increasing error variance, indicating that the height prediction model for white spruce is
appropriately identified but may not be appropriately fitted because of unequal error
variance. The significance of the heteroskedasticity can be tested using the Goldfeld-Quandt

test as described in Judge et al. (1988) through a four step procedure:
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1). Order the predicted spruce height values from the unweighted nonlinear least squares

fit in an ascending sequence according to increasing error variance;

2). Omit r=104 central observations;

3). Perform two separate nonlinear least squares fits on the first 600 observations and the
remaining 600 observations. This gives the mean squared errors MSE, =3.27667 and
MSL ,=4.11489 for the first and the second regressions respectively;

4). Calculate the test statistic A = MSE,/MSE,=1.2558.

Under the null hypothesis of homoskedasticity, A has an F-distribution with [(1304-
104-2x10)/2, (1304-104-2x10)/2] degrees of freedom. At a 5% significance level the critical
value for A from the F-distribution is Ao;, = 1.00, and so, using the Goldfeld-Quandt test,
the null hypothesis is rejected and we conclude that heteroskedasticity exists for the error
terms of the white spruce height prediction model.

Several alternative assumptions about the nature of the heteroskedasticity were then
proposed and exarnined for spruce data:

(1). The variance of error is a linear function of the f=icted height.

(5.6) 83-ei-a,+a,H;
where giz is the estmated variance of error, and ¢;2 is the estimated squared residual for
the ith tree (i=1, 2, ..., n) from the height prediction model fitted by unweighted nonlinear
least squares, ﬁ; is the predicted height for the ith tree based on the unweighted model.
The estimated coefficients are @;=1.14335 and a,=0.118145, with the MSE=36.88942 and
R?=0.0108.

(2). The variance of the error is an exponential function of the predicted height.

(5.7) 82~ei-, 0%

The estimated coefficients are @;=1.7461 and a,=0.03391, with the MSE=36.8804 and
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R?=0.0111.

(3). The variance of the error is a power function of the predicted height.

(5.8) 3%=e%-a, A"
The estimated coefficients are a;=0.4931 and @,=0.6582, with the MSE=36.8867 and
R?=0.0109.
(4). The variance cf the error is some function of the explanatory variables.

Scatter plots of the predicted height versus each explanatory variable in the height
prediction model were first examined to see any possible correlation between the error
variances and the variables. Several alternative linear and nonlinear equations expressing
the variance of the error as some function of the explanatory variables were then fitted. The

multiple linear regression equation was chosen among others

DBH

1

(5.9) ﬁﬁ-ef‘i-al+u2DBHi+a3—Xv—EB
where DBH; is the diameter at breast height of the ith tree and AVED is the average
diameter of all trees in the stand. The estimated coefficients are «;=1.4511, 2,=0.03270,
and @;=0.9499, with the MSE=36.4573 and R*=0.0230.

(5). The variance of error is directly proportional to DBH.

(5.10) 8%-¢e%=-DBH;
This particular situation assumes the error variances increase with increasing DBH of the
trees.
Weighted nonlinear least squares techniques, with the weights chosen inversely
proportional to the five alternative error variances, were then applied to the white spruce
data. The plots of studentized residuals against the predicted height were examined in each

case for any possible trend showing heteroskedasticity. The first three assumptions of the
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error variances resulted in studentized residual plots that were still indicating a trend of
increasing error variances. However, the last two error variance assumptions gave
satisfactory studentized residual plots, with the efror specification in (5) showing the most
desirable result. The plot of studentized residuals against the predicted height based on this
error specification is shown in Figure 5-3. It is clear that the plot displays an approximately
homogenous band of the error variance. Accordingly the weighting factor w; = 1/DBH; was

chosen to be used in fitting of the weighted white spruce height prediction model.

Final fits based on the model’s error structure

Results of the final fits of the height prediction model (5-4) for white spruce and
aspen are presented in Table 5-3, showing the unweighted nonlinear least squares estimates
of the parameters for aspen and the weighted nonlinear least squares estimates
(w;=1/DBH;) for white spruce. Asymptotic standard errors (Std. err.), t-statistics, and p-
values of the parameters, as well as the model’s root mean squares error (RMSE) and R? are

displayed in Table 5-3. Both R? values are calculated according to

(5.11) R2=1 —
2112 (Hi—H) 2

where H; is the observed and ﬁi is the predicted height for the ith tree (i=1, 2, ..., n), and
H is the observed average tree height. The large number of observations in this study allows

us to interpret the statistics recorded in Table 5-3 as they are in linear regression analysis.

Model validation

The independent test data sets were used for additional evaluation of model

performance. Since the spruce model was fitted using weighted regression and aspen was
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unweighted, different evaluation procedures were required for aspen and spruce:

For aspen, the actual height values from the testing data were compared to these
values predicted by model (5-4) using the estimated.coefficients in Table 5-3. The bias of
the prediction was obtained by subtracting the predicted height from the actual height. The
mean and the standard deviation of the prediction bias (§) are obtained as 0.031647 and
1.51921 respectively, and the standard error of the estimated mean bias is computed as
0.098065. A t-test of the null hypothesis that the mean prediction bias was zero was
conducted according to the method described by Rawlings (1988). The calculated ¢ =
0.3227, which, with 239 degrees of freedom, is not significant at a = 0.05, and we infer
that the mean prediction bias is not significantly different from zero. The mean squared

error of prediction (MSEP) for aspen can be obtained as

(n-1) sf

(5.12) MSEP= +0%2=2.29937

where the squared prediction bias term 52 contributes 0.04% of MSEP. The square root of
MSEP gives 1.51637, and this is approximately 7.83% of the average observed height.
For white spruce, the weighted actual height values from the testing data were
compared to the weighted predicted height values by model (5-4) with the estimated
coefficients in Table 5-3. The bias of the prediction was obtained by subtracting the
weighted predicted height from the weighted actual height. The mean and the standard
deviation of the prediction bias are obtained as 0.039472 and 0.38905 respectively, and the
standard error of the estimated mean bias is 0.022168. A r-test of the hypothesis that the
mean prediction bias was zero gives ¢t = 1.7806, which, with 307 degrees of freedom, is not
significant at @ = 0.05, and we infer that the mean prediction bias is not significantly
different from zero. Similarly, the MSEP for white spruce can be obtained as 0.15243, with

the squared prediction bias term §2 contributing 1.02% of MSEP. The square root of MSEP
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gives 0.39042. This value divided by the weighted average observed height (4.19) from the

testing data yields 0.093179, indicating an approximately 9.32% average error in white

spruce height predictions.

5.5 Discussion

The height prediction model as expressed by (5-4) provides individual tree height
predictions for two important tree species in Alberta. it is apparent from the statistics in
Table 5-3 that the model is well fitted for both spruce and aspen data. This is also clearly
evident from the studentized residual plots shown in Figures 5-2 and 5-3. Except for
parameter a,, for white spruce, asymptotic r-statistics for the parameters of the model are
all significant at a=0.05 level. The percent of the height variation explained by the model
are high (91.92% for white spruce and 90.87% for aspen). The model was developed on a
sigmoid base function that can assume various shapes with different parameter values and
produce satisfactory curves under most circumstances. Because of the mathematical
properties of the base function and the use of the parameter prediction method, all curves
produced by the model assume biologically reasonable shapes that not only closely mirnic
the biological growth process by making accurate height predictions within the range of the
observed data, but also provide reascnable and realistic height predictions in cases where
the model is extrapolated beyond the range of the original data.

The height prediction model reflects some commonly held beliefs and interesting
facts about height growth in mixed spruce-aspen stands. The positive coefficients (a;, a)
for the stand density component indicate that increasing stand density has a positive effect
on both white spruce and aspen height growth. Given that other factors are approximately
the same, the model shows that tree height steadily rises to a limiting value as stand density

increases; that is, dense stands have taller trees. This suggests that both whire spruce and
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aspen respond to density stress by growing taller to capture enough light to survive and
grow. Apart from the fact that competidon in natural stands of mixed white spruce and
aspen is largely due to the different natural growth rhythms of the species, this may further
indicate that competition in mixed-species stands is also mainiy due to the competition for
light, as suggested by Weiner and Thomas (1986) for plant monocultures.

For white spruce, the species composition coefficient (a,) is positive and for aspen
it is negative. The positive species composition coefficient for spruce indicates that 1) for
two mixed spruce-aspen stands growing under similar conditions, the one with more spruce
will also have taller spruce trees. This could be a result of relatively stronger competitiveness
for spruce if they occupy more growing space in the stard; 2) over time spruce height
increases as the basal area proportion of spruce increases. This can be directly explained by
the natural growth rhythms of spruce in mixed spruce-aspen stands, as the juvenile height
growth of spruce is slow and the species composition for spruce is generally lower than that
of aspen. As time progresses, the competitiveness of spruce is increased relative that of
aspen, so that the basal area proportion for spruce increases and the trees grow taller. The
spruce height prediction model reflects this process.

For aspen growing in mixed spruce-aspen stands, the negative species composition
effect indicates that 1) for two stands growing under similar conditions, the one with more
aspen has shorter aspen trees. The reason for this is unclear, but a possible explanation may
be that under many circumstances aspen height growth is directly related to the interspecific
competition with spruce, and the increasing presence of spruce not only compete with but
also stimulate and change the aspen height growth pattern. An example for this explanation
is the frequently observed phenomena in which the mixed-species stand may be largely
dominated by spruce, but the few remaining aspen trees are healthy, strong, and tall; 2)

Over time aspen height increases as the basal area proportion for aspen in the stand
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decreases. This is also directly compatible with the biological growth process of the white

spruce-aspen stands, as the competitiveness of aspen is reduced relative to that of white
spruce by reducing its basal area portion in the stands while growing taller over time.

Measuring site productivity and incorporating it into a model is a rather complicated
problem, especially for mixz2d-species stands with uneven-aged structure. This problem is
precisely the one that led researchers like McLintock and Bickford (1957), Stout and
Shumway (1982), Verbyla and Fisher (1989), and Wykoff (1990) to develop alternatives
to traditional site index in attempting to provide accurate and realistic site productivity
measures. Based on the estimated coefficient values for a, (a, > 0) and a,, (a,, < 0 means
a positive effect on H because ag, ag > 0, 0 < (1-e27PBH) < 1, and ¢ > 0), which reflect
the effect of site productivity on height predictions, it is clear that better sites support taller
trees. This is true both for white spruce and for aspen.

Because the height prediction model is based on a function that relates tree height
to other tree and stand variables, but does not involve individual tree or stand age explicitly,
the model can be applied in any stand. Input variables of the model are simple tree and
stand variables that are readily obtainable from ordinary inventories, and are compatible
with the data-collection process in Alberta. Potential users of the model with limited
information or alternative measures for some of the variables appearing in the model may
consider re-fitting other forms of the model by replacing the variables that are not available,
or by dropping the variables if the measurement cost is too high relative to the amount of
additicnal variation explained by adding such variables to the model. In either case, model

development is facilitated by using a base function and the parameter prediction method.

5.6 Summary

This study presents an individual tree height prediction model for white spruce
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{(Picea glauca (Moench) Voss) and trembling aspen (Populus tremuloides Michx.) grown in

boreal mixed-species stands in Alberta. The model is based on a three-para.meter Chapman
Richards functon fitted to data from 164 permanent sample plots using the parameter
prediction method. It is age-independent and expresses tree height as a function of tree
diameter, tree basal area, stand density, species composition, site productivity, and stand
average diameter. This height prediction model was fitted by weighted nonlinear regression
for spruce and unweighted nonlinear regression for aspen. Results show that 1) almost all
estimates of parameters are significant at a=0.05, 2) plots of studentized residuals against
predicted heights show no consistent underestimare or overestimate for tree heights, and
3) model R? values are high (0.9192 for white spruce and 0.9087 for aspen). The model
was also tested on an independent data set representing the population on which the model
is to be used. Results show that the average prediction biases are not significant at @=0.05
for both species, indicating that the model appropriately describes the data and performs

well when predictions are made.



Table 5-1. Tree and stand summary statistics — white spruce
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Mean Minimum Maximum Sed. dev.
Tree DBH (cm) 27.06 2.90 63.30 10.29
Tree height () 21.75 3.20 37.90 5.94
Number of trees/ha — all species 1244 148 5580 754
Average DBH (cm) — all species 19.72 5.30 39.70 5.60
Basal area (m%/ha) — all species 39.09 11.55 83.87 9.39
Average height (m) — all species 21.22 7.90 31.70 3.88
Species number of trees/ha 753 5 4914 673
Species average diameter (cm) 20.60 5.70 54.90 6.47
Species basal area (m%/ha) 24.63 0.20 56.65 11.98
Species average height (m) 21.57 3.60 31.70 4.25
Site productivity index (m) 16.14 8.22 21.28 2.39
Species composition 0.62 0.0062 1.00 0.26




Table 5-2. Tree and stand summary statistics — aspen

|
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Mean Minimum Maximum Std. dev.
Tree DBH (cm) 22.49 5.30 56.40 11.06
Tree height (m) 18.99 5.80 32.90 5.33
Number of trees/ha — all species 1522 222 5000 766
Average DBH (cm) — all species 16.76 4.60 39.70 6.55
Basal area (m?/ha) — all species 3143 11.97 87.91 11.18
Average height (m) — all species 17.96 7.30 28.80 4.65
Species number of trees/ha 991 10 3515 816
Species average diameter (cm) 19.56 2.80 46.10 9.06
Species basal area (m%/ha) 19.40 0.47 53.33 9.06
Species average height (m) 18.75 6.30 30.60 5.13
Site productivity index (m) 18.73 8.46 24.52 3.40
Species composition 0.65 0.016 0.99 0.27




Table 5-3. Fit statistics for white spruce and aspen height prediction models

—
Parameter Estimate Std. err. t-statistic  p-value RMSE R2
White spruce  a,  10.683305 1.25170 854  0.0001 038348 0.9192
a,  0.067329  0.0073446 917  0.0001
a, 1.221232 0.28764 425  0.0051
a, 0774104 0.04864 1592  0.0001
as  0.00350118  0.0004710 743 0.0001
ag  0.061654 0.01833 336  0.0008
a, 0090025  0.0078286  11.50  0.0001
ag  2.107447 0.21471 9.82  0.0001
ag  0.27/ 18 0.09439 294  0.0033
ay,  -0.020195 0.01129 179 00739
Aspen a,  15.121533 1.58516 954 00001 1.60907 0.9087
a, 0102744 00087079  11.80  0.0001
a;  -1.018396 0.26305 -3.87  0.0001
a,  0.450380 0.04173 10.80  0.0001
as 0.00162940  0.0005345 3.05  0.0024
ag  0.085430 0.01892 452  0.0001
a,  0.101073 0.01157 873  0.0001
ag 2246 0.27676 812  0.0001
ag  0.8434un 0.19368 435  0.0001
a,,  -0.066804 0.01282 521  0.0001

Note: white spruce statistics are obtained from weighted nonlinear least squares (w;=1/DBH)),

aspen statistics are obtained from unweighted nonlinear least squares. The model fitted is

equation (5-4).
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Chapter 6

Individual Tree Diameter Increment Model for White Spruce!

6.1 Introduction

Individual tree diameter increment models predict periodic diameter growth of each
individual tree in the stand. They are one of most basic components for individual tree
based growth and yield models such as PTAEDA (Daniels and Burkhart 1975), SPS (Arney
1985), ORGANON (Hester et al. 1989), FOREST (Ek and Monserud 1974), STEMS (Belcher
et al. 1982), and PROGNOSIS (Stage 1973, Wykoff et al. 1982, Wykoff 1990). Two different
modelling approaches for diameter increment have been commonly used. The growth-
potential independent approach develops a regression model that directly relates diameter
increment to tree and stand characteristics, including the competitiveness of the tree in the
stand (Lemon and Schumacher 1962, Beck 1974, Wykoff et al. 1982, Martin and Ek 1984);
The growth-potential dependent approach first selects a function that defines the potential
diameter growth of competition-free trees, then a competitive adjustment factor (the
modifier) is used to reduce this potential (Daniels and Burkhart 1975, Ek and Monserud
1974). This second approach often involves selecting a base potential diameter increment
functicc nd emphasises how the modifier is modelled and how it affects the potential
diameter increment. Hahn and Leary (1979), Belcher et al. (1982), Shifley and Brand
(1984), and Arney (1985) all implemented this approach. However, Wykoff (1990) regarded

the differences in approaches are mostly "semantic” because either approach can produce

!Similar types of diameter increment models for other tree species (aspen, lodgepole pine,
black spruce) were also developed but were not reported here in order to facilitate the
description of this Chapter.
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acceptable predictions. Choice between approaches may simply be a matter of preference

or convenience.

Both diameter increment and basal area increment can be used as dependent
variables in diameter/basal area increment models. While most researchers choose to use
diameter increment, Opie (1968) and Moore et al. (1973) used basal area increment.
Krumland (1982) also used basal area increment because basal area was found to be more
directly related to volume increment. However, West (1980) reported that the precision of
estimates of future diameter is virtually the same, whether diameter or basal area increment
equations are used. In a more recent study, Wykoff (1990) alsc suggested that
diameter/basal area increment may be used interchangeably because either variable can be
readily transformed into the other.

Diameter increment models can also be derived by taking the first derivative of the
cumulative diameter prediction function. For example, Daniels and Burkhart (1975)
developed a linear equation expressing the maximum diameter attainable as D,=a+bH+cA,
where D,=open-grown tree diameter at breast height (DBH) (inches), H=total tree height
(feet), A=age from seed (years), and a, b, ¢ are coefficients. The first difference of this
equation with respect to age gives the maximum annual potential diameter increment
PDIN=DbHIN+c, where PDIN=potential diameter increment (inches}, and HIN=observed
height increment (feet). Through this process, potential diameter increment is expressed as
a function of height increment. The use of this method may simplify the diameter increment
model if the height increment is readily available and if the cumulative diameter equation
is not overly complicated.

This study developed an individual tree diameter increment model for white spruce
(Picea glauca (Moench) Voss) grown in boreal mixed-species stands in Alberta. Periodic

diameter increment was modelled as a function of tree diameter, tree height, competition,
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site productivity, and species composition.

6.2 Model development
The base function
Richards (1959) derived a flexible sigmoidal function based on Von Bertalanffy's

(1957) quantitative laws in metabolism and growth for organisms:
(€.1) %-ny‘”—xy

where the growth rate dy/dx of an organism with the total living biomass y is expressed as
the difference between the metabolic forces of anabolic rate (constructive metabolism) and
catabolic rate (destructive metabolism), x is time, 1 and x are constants of anabslism and
catabolism respectively, and m is the allometric parameter. The total living biomass y can
refer to size or weight in animal growth, or to basal area, volume, diameter, and height in
tree growth.

According to Von Bertalanffy (1957), the catabolic component A (defined as A=-xy)
in equation (6.1) is the continuous loss of building material as the living organism grows
over time. Applying this concept to the growth of a tree, this loss may be caused by many
physiological processes occurring during growth in which the building material is consumed
for the physical enlargement of the tree, such as diameter and height increment, root and
crown expansion. Concentrating on the diameter increment only, if the rate at which the
catabolic component consumed for diameter increment is assumed to be proportional to the
amount of the catabolism available for diameter increment, and the differential equation

that governs this process, with respect to the present DBH, D, can be written as:

(6.2) dAD)

~ =1 ~-8,A(D)
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where 0, is the unknown proportional parameter, and A(D) is the amount of the catabolism

available for diameter increment. The minus sign cn the right-hand side of (6.2) is used to
represent the catabolism lost for diameter increment.

Looking from a different prospective, this component, 8,A(D), becomes the
constructive metabolic force for diameter increment of the tree. Naturally, the rate and
amount of this component consumed will depend on the destructive metabolism used for
the diameter increment. Assuming the growth rate of diameter increment (D)) with respect
to the current diameter, dD,/dD, can be expressed as the difference between the available
constructive metabolism for diameter increment and the destructive metabolism which is
taken to be proportional to the current diameter increment, the governing differential

equation for the growth rate of diameter increment can be written as

(6.3) C;DDI-BIA (D) -0,D,

where D is the diameter increment, D is the current diameter, 6, and @, are unknown
parameters to be estimated. Note that in equations (6.2) and (6.3), D is serving as a time
(such as tree age) surrogate. Equation (6.3) actually expresses the rate of diameter growth
with respect to current diameter as the difference between the maximum possible growth
potential and the current dizmeter increment. It is clear from (6.3) that if the current
diameter increment is large, 6,D; is also large so the amount of the potential resource,
6,A(D), consumed for diameter increment will be large, and this in turns reduces the rate
of diameter increment.

Mathematically, equations (6.2) and (6.3) constitute a first-order, linear, non-
homogeneous ordinary differential equation problem. It can be solved if suitable initial and end

conditions are specified (see Appendix 1). One solution turns out to be the Box-Lucas

function (Box and Lucas 1959):
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(6.4) Dy 8 (o020 ~0.2)

8,-6, €

Equadon (6.4) with D, and D replaced by y and x respectively was originally used
to describe an irreversible chemical reaction in which one substance changes into another,
and to develop optimal design methodologies in nonlinear situations (Box and Lucas 1959,
Hill and Hunter 1974, Hamilton and Watts 1985). It was termed as the two-term
exponential function by Rawlings (1988) and classified as an intrinsically nonlinear
compartmental model by Seber and Wild (1989).

The biological formulation of equadon (6.4) based on (6.2) and (6.3) is readily
interpretable but this should not be used to emphasize that equations (6.2) and (6.3) are
the fundamentals that underlie the true biological process of diameter growth, rather, they
provided a foundation for constructing equation (6.4) in a biologically interpretable way.
Several typical graphs of equation (6.4) produced by varying the proportional parameters
6, and 6, are shown in Figure 6-1. The curves clearly demonstrate the fact that diameter
increment begins at a value of zero, increases steadily to reach the maximum, and then
decreases smoothly and asymptotically towards zero. These curves are also similar to the
cumulative form of the Chapman-Richards model and follow the commonly observed
sigmoidal S-shaped yield curves in biology, where the yield starts at the origin, reaching a
maximum growth at an inflection point, and then approaches an asymptote as determined
by the genetic nature of the living organism and the carrying capacity of the environment.
The maximum diameter increment rate of the tree occurs at

21n(8,/6,)

(6.5) D= 5,-6,

which is obtained by taking the second derivatives of equation (6.4) and setting the

resultant equation equal to zero, and solving for D.
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Yearly individual tree diameter increment can be predicted from equation (6.4) if
other factors that affect diameter increment are ignored. If the variation in stand density and
site productivity are considered to have significant effects on dizmeter increment, they may
be incorporated into the equation to provide better diameter increment predictions.
Naturally, given all other factors are approximately the same, a tree at a given diameter is
expected to have larger diameter increment if stand density is lower because the tree has
more growing space available. The tree at a given diameter 1nay also be expected to have
larger diameter increment on better sites, although this may not be as clear as that of the
stand density effect on diameter increment because site productivity is generally considered
highly correlated with the height increment but only weakly correlated with or independent
of diameter increment. Diameter increment of a tree may also be affected by the species
compatibility and their respective proportions in mixed-species stands, such as the dynamic
process occurring in typical boreal white spruce-aspen stands. The diameter increment model
developed in this analysis attempts to incorporat. ~ther tree and stand variables that have

significant effects on diameter increment. A description of these variables follows.

Stand density and competition

Both the total number of trees and total basal area per hectare for all species in the
stand are used as the mixed-species stand density measures. The use of these two stand level
attributes as simple and objective measures of stand density has been widespread (Clutter
et al., 1983), and for reasons described by Spurr (1952), they should be particularly suitable
for mixed-species stands with irregular age structures. The crown-based measure of
competition, crown competition factor, although commonly used as a measure of stand
density in growth and yield estimation (Stage 1973, Arney 1985, Wykoff 1990), and is

probably more closely related to tree competition in the stand because of its high correlation
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with the light intensity received by the crown of an individuai tree (Hix and Lorimer 1990),
is not compatible with the available data since the measurements of crown areas from open-
grown trees are not available.

In addition to the use of total number of trees and total basal area per hectare to
reflect the degree of overall crowdedness of trees within a mixed-species stand, a diameter-
based, distance and age independent individual tree competition index (CI) expressed as the
ratio of the target tree diameter (D) to the average diameter of all trees in the stand
(AVED), Cl=D/AVED, was also used to reflect the competitiveness of an individual tree
relative to neighbouring trees. Like the use of crown-related variables such as crown length,
crown width, and live crowr: ratio, competition measures based on relative diameter or basal
area are also considered directly related to tree vigour (Lorimer 1983, Martin and Ek 1984,
Davis and Johnson 1986). Trees with larger ClI values are considered to be stronger

competitors and will probably have larger diameter increment.

Species composition and site productivity

It is typical that the boreal mixed-species stands mainly consist of white spruce and
aspen. In the early development stage of such a mixed white spruce-aspen stand, the shade
intolerant aspen has the competitive advantage over white spruce and exhibits faster early
height growth and as a result, tends to rapidly establish dominance on the site by occupying
the upper layer of the canopy. Shade tolerant white spruce is often established a short but
distinct time after the overstorey aspen and exhibits slow juvenile height growth. As time
progresses, the competitiveness of aspen is reduced relative to that of white spruce as
individual aspen trees start to die at 60 to 80 years of age, giving dominance gradually to
the more shade tolerant and long lived white spruce. This dynamic process results in

changes both in the whole stand density and the proportions of the species participated in



114

the stand. An appropriate white spruce species compositioni measure is defined to reflect

these changes:

BASUM_,

6.6 SC=
¢ ) c BASUM

where SC is the species composition of white spruce, BASUM,, is basal area per hectare
(m?%/ha) for white spruce, and BASUM is the total basal area per hectare for all species
combined in the stand. The species composition as defined in (6.6) has a range of zero to
one, with zero indicating there is no white spruce species in the stand and one indicating
a pure species stand of white spruce.

The white spruce site productivity in boreal mixed-species stands is measured by the
site productivity index (SPI) as determined by the dominant and codominant white spruce

height-diameter relationship. Details about SPI have been described in Chagter 4.

The growth interval length

Many diameter increment models use a fixed time interval to define projection steps
(Daniels and Burkhart 1975, Wykoff 1982). Arney (1985) suggested the use of variablz time
periods defined as the number of years required to produce 4.5 metres of height growth as
projection steps. A variable representing the growth interval (GI) length simiiar to that
proposed by Martin and Ek (1984) is used in this analysis so that diameter increment can
be projected by any time interval rather than at some fixed yearly, 5-year, or 10-year
interval. The length of the Gl is calculated as: Gl=Year,-Year, +(Adj,-Adj,), where Year, and
Year, are consecutive measurement years, Adj, and Adj, are the consecutive month
adjustments. The month adjustments are used because initial and subsequent
remeasurements may not be taken in the same month. They are defined based on the

biological growth pericd for white spruce in boreal mixed-species stands: 1) if month<4, the
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adjustment is 0.0, 2) if month=>5, the adjustment is 0.2, 3) if month=6, the adjustment is
0.5, 4) if month=7, the adjustment is 0.9, S) if month>8, the adjustment is 1.0. For
example, if the initial measurement was taken in May (Adj,;=0.2), 1965 and the consecutive
measurement was taken in August (Adj,=1.0), 1975, the length of GI will be: GI=1975-
1965+ (1.0-0.2)=10.8 (years).

In addition to the variables representing stand density and competition, species
composition, site productvity, and growth interval length, tree height were also found to
significantly affect diameter increment. These variables were incorporated into equations
that predict the parameters of equation (6.4). This procedure is similar to the method of
parametef prediction commonly used for a Chapman-Richards or Weibull-type function in
which the parameters of the function were related to other tree and stand characteristics but
the form of the original function remains the same (Clutter et al. 1983). The appropriate

final diameter increment model was found to take the form of

(6.7) D=GI 0, (o0 o0

with
(6.8) 0,-a,+a,BASUM+a,SC+a,H+a D/ AVED+a SPI

(6.9) 0,~a,+a,/TRHAAL
where D is the periodic diameter increment (¢cm), BASUM is the basal area per ha for all
species in the stand (m?), H is tree height (m), SC is the species composition as defined in
(6.6), SPI is the white spruce site productivity index (m), AVED is the average diameter
(cm) for all the trees in the stand, TRHAAL is the total number of trees per ha, D is tree
diameter (cm) at breast height, GI is the growth interval length (years), and a,;-ag are

parameters to be estimated. A r. ~sitive coefficient in (6.8) indicates a positive effect on
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diameter increment, and a positive coefficient in (6.9) indicates a negative effect on

diameter increment.

6.3 The data

Data from permanent sample plots (FSP) used in this analysis were provided by the
Alberta Forest Service. The data were collected over the last three decades and the PSPs
were randomly located throughout the inventory areas of the province to provide
representative information for a variety of densities, heights, species composition, stand
structures, ages, and site conditions. A detailed description of how the data are collected
and recorded can be found in the Permanent Sample Plots: Field Procedures Manual (AFS
1990).

The original PSP data were summarized to provide additional variables such as the
rumber of trees per hectare, basal area per ha, average height, and average diameter, both
for all species combined and by individual species in the stand. A total number of 164 PSPs
were selected to be used in this analysis. These selected plots have up to five
remeasurements. Each non-overlapping growth period from the remeasurements defines a
growth interval, that is, the growth intervals are obtained from measurements between first
and second, second and third, but not first and third. A total number of 1473 growth
periods was obtained from 164 PSPs. Periodic diameter increments were obtained as the
differences between diameters at the end and beginning of the growth interval.

Descriptive statistics including the mean, minimum, maximum, and standard
deviation (Std dev.) of the tree and stand characteristics at the beginning of the growth
period are displayed in Table 6-1. Summary statistics for periodic diameter increment and
growth interval length are also given in Table 6-1. Approximately 80% of the observations

(1194) were randomly selected for model fitting and the remaining 20% (279) were used
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for model testing.

6.4 Analysis

Preliminary nonlinear least squares (NLS) fits of the diameter increment model (6.7)
were accomplished using the PROC MODEL procedure on SAS/ETS software (SAS Institute
Inc. 1988). The Gauss-Newtoa iterative method using the Taylor series expansion as
described in Gallant (1987) was applied in model fitting. To ensure the solution is global
rather than local least squares estimates, different initial values of the parameters were
chosen for the fits.

Asymptotic fit statistics, including the NLS estimates of the parameters, the
asymptotic t-statistics, standard errors, p-values of the parameters, the model root mean
squared error (RMSE), adjusted coefficient of determination (Adj. R%, and the Durbin-
Watson statistic for testing the first-order autocorrelation of the error terms, from the PROC
MODEL procedure, are listed in Table 6-2. The interpretations of the fit statistics in Table
6-2 are similar to those in linear cases because of the relatively large number of

observations used in this analysis.

Error structure of the model

First, the Durbin-Watson statistic is used to examine the possible error correlation.
Although the Durbin-Watson test procedure is not exactly applicable for nonlinear
regression models, the test is approximately valid, especially for large samples (Amemiya
1983 p. 355, Seber and Wild 1988 pp. 318-319). Because the sample size used for this
analysis is larger than the maximum sample size (200) shown in the extended Drurbin-
Watson Table (Judge et al. 1988 pp. 991-994), critical values selected are those recorded

for the maximum sample size. The Durbin-Watson statistic of 1.532 is smaller than the
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lower bound (1.697) of the critical values for the eight parameter diameter increment

model, indicating a significant first-order autocorrelation for the error terms of the model.
The ith observation of the diameter increment model (6.7) with first-order autoregressive

errors AR(1) can be written as

(6.10) Dp;=f(x;,0)+e; &,;~pe;  +e;
where the diameter increment Dy;, i=1, 2, ..., n, is expressed as a nonlinear function f(x;, 6)
of the explanatory variables, ¢; are random errors that follow an AR(1) process, p is the
autoregressive parameter, and e; are indeyssndent and identically distributed random errors

with mean 0 and constant variance oez. From equation (6.10), the (i-1)th observation of the

diameter increment model can e written as

(6.11) Dz(j-l)-f(xi—l'e) €3

Multiplying p on both sides of (6.11), then subtracting (6.10) by (6.11) provides a

nonlinear equation with uncorrelated errors

(6-12) Dzi"pDI(i_l)'l'f(Xi,e)-pf(Xi_]_'e) +e_i

A five step procedure can be used to find the NLS estimates of parameters 6 in (6.12):

1). Fit equation (6.10) by ordinary NLS without considering its error structure, find the
estimates of the parameters Oy;.

2). Calculate the residuals &;=Dj;-f(x;, 8y.5), and estimate p by fitting ¢,=pe, ,+e;.

3). Find the estimates of 8 by applying ordinary NLS to the model

(6 .13) ‘DIi—pDI(i—l)-f(xi’ 6) "pf(Xi_l, e) "'ei

4). Replace 8y s in step 2) by 6 from 3), then re-estimate p in 2).
5). Replace p in step 3) by p from 4), then re-estimate 8 using NLS.

This process is iterated until 8 is converged. The resulting fit statistics using the
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SAS/ETS software for the diameter increment model with the AR(1) error structure are also
shown in Table 6-2. The Durbin-Watson statistic (DW=2.062) is greater than the upper
bound (1.841) of the critical value, indicating that autocorrelation for the adjusted error
terms is not significant and the AR(1) specification is appropriate for the error terms of the
white spruce diameter increment model.

Residual analysis from the preliminary NLS fit (without accounting for the AR(1)
error terms) was also performed to detect possible model inadequacies. Because the
residuals r; (calculated as the difference between the observed height and the predicted
height) are intrinsically not independent and do not have common variance (Rawlings 1988,
p- 249), studentized residuals are used instead to account for the unequal variance problem.
The dependency effect among the residuals r;, according to Neter et al. (1990, p. 116), is
relatively unimportant and can be ignored because the sample size is large in comparison
to the number of parameters in the diameter increment model. Fer a correctly identified
functon, the plot of studentized residuals against the predicted values of the dependent
variable will show a homogeneous band of the data points, with the zero studentzed
residuals across the centre of these points.

Figure 6-2 shows the plots of studentized residuals against the predicted diameter
increment. It is clear that the zero studentized residuals across the centre of the data points
but the points display a trend of increasing error variances, indicating that the diameter
increment model is appropriately identified but the error terms of the model are possibly
associated with the heteroskedasticity problem. Similar residual analysis from the NLS fit
which accounts for the AR(1) error terms also indicated a increasing error variance pattern.

The significance of the heteroskedasticity can be tested using the Goldfeld-Quandt
test as described in Judge et al. (1988). Because autocorrelation reduces the power of

Goldfeld-Quandt test, results from NLS fit with the AR(1) error terms included were used.
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A four step procedure was implemented to test error heteroskedasticity:

1). Order the predicted diameter increment values from the NLS fit in an ascending
sequence according to increasing error variance;

2). Omit r=194 central observations;

3). Perform two separate NLS AR(1) fits on the first 500 observations and the remaining
500 observations. This gives the mean squared errors MSE; = 0.01515 and MSE, =
0.12228 for the first and the second regressions respectively;

4). Calculate the test statistic A = MSE,/MSE;=8.0713.

Under the nuil hypothesis of homoskedasticity A has an F-distribution with [(1154-
194-2x10)/2, (1194-194-2x10)/2] degrees of freedom. At a 5% significance level the critical
value for A from the F-distribution is A_;, = 1.00, and so, using the Goldfeld-Quandt test,

“the null hypothesis is rejected and we conclude that heteroskedasticity exists for the error
terms of the diameter increment model. Several alternative assumptions about the nature
of the heteroskedasticity were then proposed and examined:

(1). The variance of error is a linear funcdon of the predicted diameter increment.

(6.14)  oi=¢i-a,+a D,
where o;? is the estimated variance of error and e;? is the estimated squared residuals for
the ith tree of the cﬁameter increment model based on the NLS AR(1) results, 65 is
predicted diameter increment for the ith tree based on the fitted model.

(2). The variance of the error is a exponential function of the predicted diameter increment.

(6.15) ol~gl-q,0%fu

(3). The variance of the error is a power function of the predicted diameter increment.

(6.16) oi~ei=a Dr?
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(4). The variance of the error is some function of the explanatory variables.

Scatter plots of the predicted diameter increment versus each explanatory variable
in the diameter increment model were first examined to see any possible correlaticn
between the error variances and the variables. Several aiternative linear and nonlinear
equations expressing the variance of the error as some function of the explanatory variables

were then fitted. The multiple linear regression equation was chosen among others

(6.17) o3=ei-a,+a,D;+a,H,+0 TRHAAL+asD;/AVED
where D; is the breast height diameter, H; is the total tree height of the ith tree, and AVED
is the average diameter of all trees in the stand.

(5). The variance of error is directly proportional to squared diameter.

(6.18) 03=g2=D2
This particular situation assumes the error variances increase with increasing diameter of
the trees.

Weighted NLS techniques with the weights chosen inversely proportional to the five
alternative error variances were applied to white spruce diameter increment data. The plots
of studentized residuals against the predicted diameter increment were >xamined in each
case for any possible trend showing heteroskedasticity. Models based on the first three
assumptions of the error variances resulted in studentized residual plots that were still
indicating a trend of increasing error variances. However, models based on the last two
error variance assumptions gave satisfactory studentized residual plots. The estimated
coefficients for (4) are @,=3.08006, a,=0.043277, a;=-0.135819, a,=-0.000406, and
as=0.264314, with the MSE=6.96071 and R*=0.0326. The plot of studentized residuals
against the predicted diameter increment shown in Figure 6-3 based on the error

specification in (5) is more satisfactory. This studentized residual plot, although not
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perfectly homogenous, shows much improvement over Figure 6-2, and displays data points

that are approximately equally scattered around the zero studentized residuals. Accordingly

the weighting factor w;=1/D;2 was chosen to be used in the final fitting for the diameter

increment model.

Final fit based on the model’s error structure

The error terms of the white spruce diameter increment model are diagnosed as
autocorrelated and heteroskedastic. This may be typical for the data from PSPs where the
plots are located over a wide range of forest regions and each plot is repeatedly measured
over regular time intervals. An appropriate fit for such a model can be achieved by removing
error heteroskedasticity and autocorrelation at the same time. The PROC MODEL procedure
on SAS/ETS software is well suited for this purpose. The necessary SAS code for fitting the
diameter increment model is presented in Appendix 2. Resulting fit statistics from the
weighted NLS with the weights w;=1/D;? and an AR(1) error specification for model (6.7)
are also attached in Table 6-2. . .ote that the interpretations of the weighted statistics in

Table 6-2 may not be as straightforward as those previously obtained without weighting

(Carroll and Ruppert 1988).

Diagnostics for multicollinearity

The tree and stand variables appearing in the diameter increment model may
somehow be inter-correlated. Multicollinearity could exist in such model because of inter-
correlated variables. Collinearity diagnostics using the keyword COLLIN with PROC MODEL
procedure were performad to detect the presence, severity, and form of multicollinearity.
The eigenvalues of the correlation matrix of the set of explanatory variables were arranged

from the largest (6.29841) to smallest (0.02154), and the square root of the ratio of the
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largest to smallest eigenvalue, the condition index, is obtained as 17.1006, which is less

than 30 — the proposed critical valué for moderate multicollinearity (Belsley et al. 1980),
indicating that muldcollinearity is not a serious problem for the white spruce diameter
increment model.

While the use of diagnostic methods is recommended for detecting the presence,
severity, and form of multicollinearity, use of the biased estimators as remedial measures
to correct it may not absolutely be necessary unless extreme multicollinearity is found.

Discussion on multicollinearity has been presented in Chapter 5.

Model testing

The independent testing data set was used for testing the model’s fit. Because a
weighted NLS technique was applied, the weighted actual diameter increment values from
the testing data were compared to the weighted predicted diameter increment values using
model (6.7) with the estimates of parameters from weighted NLS with AR(1) errors in Table
6-2. The bias of the prediction was obtained by subtracting the weighted predicted diameter
increment from the weighted actual diameter increment. The mean (§) and the standard
deviation [s(6)] of the prediction bias is 0.0027760 and 0.0447787 respectively, so the
standard error of the estimated mean bias is 0.0447787/(279)/% = 0.0026808. A t-test of
the hypothesis that the mean prediction bias was zero gives r=1.0355, which, with 278
degrees of freedom, is not significant at @=0.05 level, indicating that the mean prediction
bias is not significantly different from zero. The mean squared error of prediction (MSEP)

can be obtained according to

(6.19)  MSEP=- (n‘l)nsz(b) +82=0.002006

where the squared prediction bias term §2 contributes 0.38% of MSEP. The square root of



124
MSEP gives 0.04478, which is approximately 56.07% of the weighted observed average

diameter increment (0.07987) from the testing data.

The model testing procedure demonstrated above on weighted data is appropriate
because the model is fitted on weighted data. In practice, however, unweighted diameter
increment may also be directly predicted using the estimated coefficients from weighted NLS
with AR(1) errors in Table 6-2, and compared to the unweighted observed diameter
increment. Using this procedure, the bias of the prediction was cbtained by subtracting the
unweighted predicted diameter increment from the unweighted actual Jiameter increment.
The mean and the standard deviation of the prediction bias are obtained as 0.056613 and
1.08855 respectively, so the standard error of the estimated mean bias is 1.08855/ 279)V/2
= 0.06517. A r-test of the hypothesis that the mean prediction bias was zero gives
t=0.8687, which, with 278 degrees of freedom, is not significant at =0.05 level, indicating
that the mean prediction bias is not significantly different from zero. Similarly, the MSEP
for unweighted data is 1.1839, with the squared prediction bias term &2 contributing 0.27%
of MSEP. The square root of MSEP gives 1.08807, which is approximately 58.13% of the

observed average diameter increment (1.87175) from the testing data.

6.5 Discussion

The diameter increment model as expressed by (6.7) provides individual tree
diameter increment predictions for white spruce grown in boreal mixed-species stands in
Alberta. Asymptotic fit statistics in Table 6-2 show that the model agrees well with the white
spruce diameter increment data. The #-statistics of the estimated coefficients of the model
are all significant at 2=0.05 level. Approximately 64.49% percent of the weighted diameter
increment variation is explaitied by the fitted model. The model was developed on an

appropriately chosen base function and has the flexibility to assume various shapes with
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different parameter values and produce satisfactory curves under most circumstances. All
curves produced by the model assume biologically reasonable shapes that closely mimic the
biological process of diameter growth, and provide realistic diameter increment predictions
in the cases where the model is extrapolated beyond the range of the original data.

The diameter increment model affirms some commonly held beliefs and interesting
facts about the diameter increment of white spruce in the boreal mixed-species stands in
Alberta. The significant negative coefficient a,<0 for total basal area per hectare in (6.8),
together with the positive coefficient ag>0 in (6.9) for total number of trees in the stand
indicates that the stand density components in the white spruce diameter increment model
have a significant negative effect on white spruce diameter growth. Given the other
conditions held approximately the same, the model reflects the fact that diameter increment
is reduced as stand density increases, and dense stands have smaller diameter trees.

Species composition, as represented by parameter a, in model (6.8), has a negative
(a;<0) effect on white spruce diameter increment, which indicates that for two mixed-
species stands grown in the similar conditions, the one with more white spruce will have
small diameter increment. The reason for this is unclear, but a possible explanation may be
that under miany circumstances the diameter increment of white spruce is directly related
to the species compatibility and interspecific competition with other competition tree
species, such as the commonly found aspen in mixed spruce-aspen stands. The increasing
presence of the aspen not only compete but also stimulate and change the white spruce
diameter growth patterns. An example for this explanation is the frequently observed
phenomena in which the mixed white spruce-aspen stand may be largely dominated by
aspen, but the few white spruce trees in the stand are healthy, strong, and have large
diameters.

The negative effects of species composition on white spruce diameter increment also
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indicate that for the same stand white spruce diameter increment will slow down as the tree
grows over an extended time period. It is typical that in the very early stage of development,
the diameter growth of white spruce is slow relative to other competing species. As time
progresses, the relative competitiveness of white spruce is increased and white spruce
diameter growth approaches maximum when the trees reach 10 to 20 cm in diameters. As
time progresses further, white spruce becomes pre-dominant in matured and over-matured
mixed-species stands in which the diameter growth of white spruce is slowed down.
However, the basal area proportion for white spruce may still increase becaase of its
relatively long lived nature and low mortality, 1esulting in on average a negative species
composition effect on diameter increment.

The significant positive coefficient a;>0 of the competition measure on diameter
increment reflects the fact that given the other factors constant, stronger competitors as
measured by their relatively larger diameter ratios will have larger diameter increment. This
may also demonstrate that the commonly observed asymmetric or one-side competition in
plant monocultures (Weiner and Thomas 1986) is equally applicable for white spruce grown
in uneven-aged and mixed-species stands.

A probably contradictory result was obtained according to the fitted model: site
productivity has a negative effect (a;<0) on white spruce diameter increment. Given other
conditions approximately the same, increased diameter growth on better sites may be
expected for species grown in the even-aged pure species stands. Diameter increment in
uneven-aged and mixed-species stands are more complicated but in general might also be
expected to have increased diameter growth on better sites. Possible "abnormality” of the
site effect on white spruce diameter increment may be explained by:

1). The diameter increment does slow on better sites because the metabolic forces for tree

growth on such sites are mainly concentrated on the height growth rather than diameter
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growth. Trees grown on good sites are relative thinner but taller, and on poor sites are
shorter but the diameter tends to be larger. The taper of the trees (diameter divided by
total tree height) are dfferent for trees grown on poor sites from those grown on better
sites. This has been reported by Larson (1963), who suggested that a decreasing taper
was associated with increasing site productivity.

2). The boreal mixed-species regions in Alberta, although covering a wide range of areas,
have relative similar site conditions. Using the so-called ecological site classification
system or habitat type, these stands could probably be classified into the same
biogeoclimatic unit that has similar vegetative, geographic, and climatic conditions.
Site variations in such a unit might not be very large, and for this particular sample, a
negative site effect resulted. It was ciear from Table 6-2 that the t-statistic for site
productivity index is the least significant compared to the other factors, although it is
statistically significant at 5% level

3). The problems associated with the use of height-diameter relationships as the site
indicator for uneven-aged and mixed-species stands. Measuring site productivity, and
consequently incorporating it into a model is certainly a rather complicated problem.
This problem is precisely the one that led researchers like McLintock and Bickford
(1957), Stout and Shumway (1982), and Wykoff et al. (1982) to develop altematives
to the traditional site index in attempting to provide accurate and realistic site
productivity measures. Further research regarding the methodologies for evaluating site
productivity in uneven-aged and mixed-species stands may help improve the
understanding of the real site effect on diameter growth, although consistent conclusions

may be hard to reach.
While the diameter increment model reveals the effects of the stand variables on

white spruce diameter increment, and this may provide some useful information about the
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ecology and silviculture of white spruce grown in boreal mixed stands in Alberta, the model

is mainly developed for individual tree diameter increment predictions. Since the model is
based on a function that relates diameter increment to tree and stand variables, but does
not involve individual tree or stand age explicitly, the model can be applied to any stand.
Input variables of the model are simple tree and stand variables that are readily obtainable
from ordinary inventories, and are compatible with the data-collection process in Alberta.
Potential users of the model with limited information or alternative measures for some of
the variables appearing in the model may consider re-fitting other forms of the model by
replacing the variables that are not available, or by dropping the variables if the cost to
obtain the variables is too high relative to the amount of additional variation explained by
adding such variables to the model. In either case, the flexible base diameter increment-
diameter model — the Box-Lucas function based on biological principles should be retained,

and the method of parameter prediction used in this study is recommended.

6.6 Summary

Based on a data set from 164 permanent sample plots, an age-independent
individual tree diameter increment model for white spruce (Picea glauca (Moench) Voss)
grown in the boreal mixed-species stands in Alberta is presented. The model is age-
independent in that it does not explicitly require tree/stand age as input variables. Periodic
diameter increment is modelled as a functdon of tree DBH, tree height, relative
competitiveness of the tree in the stand, stand density, species composition, and site
productivity. Because data from permanent sample plots are considered time series and
cross-sectional, diagnostic techniques were applied to identify the model’s error structure.
Appropriate fit based on the identified error structure was accomplished using weighted

nonlinear least squares with a first-order autoregressive process. Results show that 1) all
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model parameters are significant at ¢=0.05, 2) the plot of studentized residuals against

predicted diameter increment shows no consistent underestimate or overestimate for
diameter increment. The model is also tested on an independent data set representing the
population on which it is to be used. Results show that the average prediction biases are
not significant at ¢=0.05, indicating that the model appropriately describes the data and

performs well when predictons are made.
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Table 6-1. Summary statistics for white spruce tree and stand characteristics

e
Mean Minimum Maximum Sud. dev.
Tree DBH {cm) 27.06 2.90 63.30 10.29
Tree height () 21.75 3.20 37.90 5.94
Periodic diameter increment (cm) 1.94 0.00 10.50 1.59
Growth interval length (year) 8.94 2.30 18.90 8.94
Number of trees/ha-all species 1244.29 148 5580 754.24
Average DBH (cm)-all species 19.72 5.30 39.70 5.60
Basal area (m?/ha)-all species 39.09 11.55 83.87 9.39
Average height (m)-all species 21.22 7.90 31.70 3.88
Species number of rees/ha 753.07 5.00 4914.00 673.15
Species average diameter (cm) 20.60 5.70 54.90 6.47
Species basal area (m%/ha) 24.63 0.20 56.65 11.98
Species average height (m) 21.57 3.60 31.70 4.25
Site productivity index (m) 16.14 8.22 21.28 2.39
Species composition 0.62 0.0062 1.00 0.26
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Table 6-2. Fit statistics for white spruce diameter increment model®

Parameter Estimate

Std. err. t-statisic p-value RMSE Adj. R? D-W

NLS with
AR(1) errors

Weighted NLS
with AR(1)

errors

[

0.048739
-0.00019032
-0.012572
-0.00047177
0.00409558
-0.00057299
0.015121
0.00077831
0.047076
-0.00:022079
-0.012745
-0.00027974
0.00306837
-0.00055843
0.017453
0.00069438
0.246675
0.060596
-0.00045932
-0.023597
-0.00038001
0.013987
-0.00069998
0.017087
0.00114770
0.285297

0.0039218
0.00004288
0.0018750
0.00009876
0.0014325
0.0002204
0.0039933
0.0001466
0.0042036
0.00004957
0.0022129
0.0001082
0.0015105
0.0002558
0.0044620
0.0001675
0.02566
0.0048120
0.00006198
0.0026078
0.0001403
0.0023243
0.0003149
0.0056630
0.0001864
0.02341

12.43
-4.44
-6.70
4.78
2.86
-2.60
3.79
5.31
11.20
-4.45
-5.76
-2.59
2.03
-2.18
3.91
4.15
9.61
12.59
-7.41
-9.05
2.71
6.02
2.22
3.02
6.16

12.19

0.0001
0.0001
0.0001
0.0001
0.0043
0.0094
0.0002
0.0001
0.0001
0.0001
0.0001
0.0098
0.0424
0.0292
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0068
0.0001
0.0264
0.0026
0.0001
0.0001

1.07669 0.5566 1.532

1.04574 0.5817 2.062

0.04631 0.6449 2.026

INote: NLS represents nonlinear least squares, AR(1) is the first-order autoregressive process as
defined in (6.10), p is the AR(1) parameter, the weights chosen are w;=1/D;%, D-W is the Durbin-
Watson statistic.
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Chapter 7

Individual Tree Height Increment Model

7.1 Introduction

Individual tree height increment models predict height growth of each individual tree
in the stand. Such models have been used as the "driving force"™ or main variable for
individual tree based growth and yield models such as PTAEDA (Daniels and Burkhart
1975), TASS (Mitchell 1975), and SPS (Arney 1985). Many other individual tree based
models such as FOREST (Ek and Monserud 1974), ORGANON (Hes:er et al. 1989), and
PROGNOSIS (Stage 1973, Wykoff er al. 1982, Wykoff 1986) also treated the height
increment mcdel as one of the main components. Two different modelling approaches for
height increment have br .. commonly used. The growth-potential independent approach
develops a regression model that directly relates height increment to tree and stand
characteristics, including the competitiveness of the tree in the stand (Lemmon and
Schumacher 1962, Beck 1974, Wykoff et al. 1982); The growth-potential dependent
approach first selects a function that defines the potential height growth of competition-free
trees, then uses a competitive adjustment factor (the modifier) to reduce this potential (Ek
and Monserud 1974, Daniels and Burkhart 1975). This second approach often involves
selecting a "biologically meaningful” base potential height increment function and
emphasizing how the modifier is modelled and how it affects potential height increment.
It is common that the modifier is expressed as a function of the individual tree’s attributes
such as crown ratio, crown length, tree diameter, tree height, and the competition with

other trees in the stand as reflected by a competition index, total number of trees per
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hectare, or basal area per hectare. Mitchell (1975), Krumland (1982), Amey (1985), and

Ritchie and Hann (1986) all used this approach. However, Wykoff (1990) regarded the
differences in approaches are mostly "semantic” because either approach can produce
acceptable predictions. Choice between the approaches may simply be a matter of preference
or convenience.

While most researchers choose to use height increment as the dependent variable
and relate it directly to other tree and stand characteristics, height increment models can
also be derived by taking the first derivative of the cumulative height function (Hegyi 1974,
Daniels and Burkhart 1975). The procedure demonstrated by Daniels and Burkhart (1975)
first expressed the average height of dominant stand (HD) as a function of site index (SI)
and age (A): HD=SIx1058501/A1/25  they the maximum annual height increment is
obtained by taking the first derivative of this equation with respect to age, and a modifier
expressed as a function of crown ratio and competition index is used to adjust this
maximum height increment. This indirect derivative method has some advantages if the
cumulative height equation includes age as an independent variable or if the form of the
equation is not overly complicated.

This study developed individual tree height increment models for white spruce (Picea
glauca (Moen-h) Voss) and wembling aspen (Popuwlus tremuloides Michx.) grown in boreal
mixed-species stands in Alberta. Average annual height increment was directly expressed as
" .4 rion of tree diameter, tree height, diameter increment, stand density and competition,
++ - site productivity. A species composition measure was also incorporated into the model
to represent the effects of species proportions on height increment. While the descriptions
of the tree and stand variables that affect height increment in mixed-species stands were
stressed, the biological implications of the effects of these variables on height increment

were also emphasized. Methods for model diagnostics and testing were also applied to
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ensure that the model was fitted appropriately and is applicable for making predictions.

7.2 Model development

The two parameter Box-Lucas function (Box and Lucas 1959) was selected as the

base height increment function:

91 -8,H -8,H
(7.1) HT 8,.-6, (e e )

where HI is the average annual height increment (m), H is tree height (m), 8, and 8, are
parameters to be estimated, and e equals 2.71828. Initally, tree diameter (D) at breast
height was used in place of H but preliminary analysis indicated that equation (7.1) was
more appropriate. This base function of height increment-height is also compatible with the
diameter increment-diameter function used in modelling individual tree diameter growth
(Wykoff et al. 1982, Wykoff 1990). Several typical graphs of equation (7.1) produced i/
varying ©, and 0, are shown in Figure 7-1. The curves clearly demonstrate that height
increment begins at a value of zero, increases rapidly to reach a maximum, and then
decreases smoothly and asymptotically towards zero. These curves are also directly
compatible with the commonly observed sigmoidal S-shaped yield curves in biology where
the yield starts at the origin, reaching a maximum growth at an inflection point, and then
approaches an asymptote as determined by the genetic nature of the living organism and

the cartying capacity of the environment. The maximum annual height increment rate of the

tree occurs at

(7.2) H-[21n(0,/6,)1/(0,-6,)

which is obtained by taking the second derivatives of equation (7.1) and setting the

resultant equation equals to zero, and solving for H.
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Individual tree height increment can most appropriately be predicted from equation
(7.1) if other factors that affect height increment are ignored. If the variations in site
productivity and competition are considered to have significant effects on height increment,
they may be incorporated into the equadoen to provide better height increment predictions.
It is fairly well established that, given all other factors are approximately the same, a tree
at a given height is expected to have larger heiglit increment on better sites. The presence
of competition on height growth is also evident and measures that reflect competition have
been commonly incorporated into height increment models (Daniels and Burkhart 1975,
Wykoff et al. 1982, Arney 1985, Ritchie and Hann 1986). A tree at a given height may be
expected to have larger height increment if the tree is more competitive as reflected by its
crown dimensions and competition indices. The diameter or basal area of a tree can affect
height growth as well since larger diameter trees should be in a more competitive position
which should lead to larger height increment. The height ‘niciermnent of a tree may also be
affected by the species compatibility and their respective groportions in mixed-species
stands. The height increment models developed in this analysis attempt t» incozrporate other
tree and stand variables that have significant effects on height increment. Descriptions of

these variables follows.

Competition

Total basal area per hectare for all species combined in the stand is used as the
cverall mixed-species stand density measure. The use of this stand level attribute as a simple
and objective measure of stand density has been widespread (Clutter et al., 1983), and for
reasons described by Spurr (1952), is particularly suitable for mixed-species stands with
irregular age structures. Other derived stand density measures, such as volume per hectare,

spacing index, relative density, tree-area ratio, and stand density index have mainly been
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used for even-aged pure species stands (Clutter et al. 1983). The crown-based measure of
stand density, Crown Competition Factor (CCF), aithough commonly used as a measure of
overall stand density in growth and yield estimation (Stage 1973, Arney 1985, Wykoff
1990), is not compatible with the available data since the measurements of crown
dimensions were not available.

In addition to the use of total basal area per hectare to reflect the degree of the
overall competitiveness of trees within mixed-species stand, an individual tree competition
index (CI) expressed as the ratio of the target tree diameter (D) to the average diameter
(AVED) of all trees in the stand (CI=D/AVED), was also used to reflect the competitiveness
of an individual tree relative to neighbouring trees. Like the use of crown-related variables
such as crown length, crown width, and live crown rato, competition measures based on
relative diameter or basal area are also considered directly related to tree vigour (Lorimer
1983, Davis and Johnson 1986). As the CI gets numerically larger, the tree is in a better

competitive position which should result in larger height increment.

Species composition and site productivity

It is typical that the boreal mixed-species stands mainly consist of white spruce and
aspen. In the early development stage of such a mixed white spruce-aspen stand, the shade
intolerant aspen has the competitive advantage over white spruce and exhibits faster early
height growth and as a result, tends to rapidly establish dominance on the site by occupying
the upper layer of the canopy. Shade tolerant white spruce is often established a short but
distinct time after the overstorey aspen and exhibits slow juvenile height growth. As time
progresses, the competitiveness of aspen is reduced relative to that of white spruce as
individual aspen trees start to die at 60 to 80 years of age, giving dominance gradually to

the more shade tolerant and longer lived white spruce. This dynamic process results in
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changes to both stand density and the proportions of the species present in the stand. A
species composition measure is defined to reflect these changes:

BASUM,,
BASUM

(7.3) SC=
where SC is the species composition of the target species, BASUM, is basal area per hectare
(m?/ha) for the target species, and BASUM is the total basal area per hectare for all species
combined in the stand. Species composition as defined in (7.3) has a range of zero to one,
with zero indicating there is no target species in the stand ind one indicatiug a pure species
stand of the target species.

Because the most commonly used site proeductivity measure, site index, only applies
to even-aged pure species stands, a site productivity index (SPI) as determined by the
dominant and codominant trees’ height-diameter relationships was used as the site
productivity measure for boreal mixed-species stands. Details about the development of SPI
have been described in Chapter 4.

In addition to the variables representing stand density and competition, species
composition, and site productivity, tree diameter was also found to significantly affect the
height increment of trees. These variables were incorporated into equations to predict the
parameters of equaton (7.1). This procedure is similar to the method of parameter
prediction commonly used for a Chapman-Richards or Weibull-type function in which the
parameters of the function were related to tree and stand characteristics but the form of the
original function remains unchanged (Clutter et al. 1983). The appropriate final height
increment model for white spruce was found to take the form

(7.4) HIg=—S1_ (@ %aHs_g oMy

a,-a,

with
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(7.5) «,-a,+a,BASUM+a,CT

1
7.6 a,=a,+a;DI+a,SC+a,D+ag———
(7.6) 2T s % 5PT

and for aspen, the appropriate height increment model was found to be

(7.7) HI,= B ‘?_lﬁ (e Pfa_ g Puti)
17 P2

with
(7.8)  B,=b,D+b,BASUM+b,SPI

(7.9)  PB,=b,+b,DI+b,SC

In equations (7.4) to (7.9), the subscripts S and A indicate white spruce and aspen
respectively, HI is the annual height increment (m), H is tree height (m), CI is the tree
competition index, DI is the annual diameter increment (cm), BASUM is the basal area per
hectare for all species in the stand {m?), SC is the species composition as defined in (7.3),
SPI is the white spruce site productivity index (m), D is tree diameter {cm) at breast height,
a,-ag and b;-bg are parameters to be estimated. A positive coefficient in (7.5) or (7.8)
indicates a positive effect on height increment, and a positive coefficient in (7.6) or (7.9)

indicates a negative effect on height increment.

7.3 The data

Data from permanent sample plots (PSP) used in this analyvsis were provided by the
Alberta Forest Service. The data were collected over the last three decades and the PSPs

were randomly located throughout the inventory azreas of the province to provide
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representative information for a variety of densities, heights, species composition, stand
structures, ages, and site conditions. A detailed description of how the data are collected
and recorded can be found in the Permanent Sample Plots: Field Procedures Manual (AFS,
1990).

The original PSP data were summarized to provide additional variables such as the
number of trees per hectare, basal area per ha, average height, and average diameter, both
for all species combined and by species in the stand. Summarized data from one of the PSPs
establisi zd in a group of four were actually retained, giving a total number of 164 PSPs
selected to be used in this analysis. These selected plots have up to five remeasurements.
Each non-overlapping growth period from the remeasurements defines a growth interval,
that is, the growth intervals are obtained from measurements between first and second,
second and third, but not first and third. A total number of 1725 growth periods was
obtained from 164 PSPs for white spruce, and 1383 for aspen. Periodic height and diameter
increments were obtained as the differences between the values at the end and beginning
of the growth intervals.

Descriptive statistics including the mean, minimum, maximum, and standard
deviation of the tree and stand characteristics at thé beginning of the growth period are
shown in Table 7-1. Summary statistics for annual height and diameter increment are also
given in Table 7-1. For each species, approximately 80% of the observations (1368 for white
spruce and 1122 for aspen) were randomly selected for model fitting and the remaining

20% (357 for white spruce and 261 for aspen) were used for model testing.

7.4 Analysis
Model fitting

Preliminary nonlinear least squares (NLS) fits of the height increment models were
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accomplished using the PROC MODEL procedure on SAS/ETS software (SAS Institute inc.

1988). The Gauss-Newton iterative method using the Taylor series expansion as described
in Gallant (1987) was applied in model fittings. To ensure the solution is global rather than
local least squares estimates, different initial values of the parameters were chosen for the
fits.

Asymptotic fit statistics including the NLS estimates of the parameters, the
asymptotic Z-statistics, standard errors, p-values of the parameters, the model root mean
squared error (RMSE), adjusted coefficient of determination (Adj. R?), and the Durbin-
Watson statistic (D-W) for testing the first-order autocorrelation of the error terms are
shown in Tables 7-2 and 7-3 for white spruce and aspen respectively. With the large number
of observations, direct interpretations of the fit statistics similar to those in linear cases are
applicable.

The Durbin-Watson statistic is used to test for possible model error correlations.
Although the Durbin-Watson test procedure is not strictly applicable for nonlinear regression
models, the test is approximately valid, especially for large samples (Amemiya 1983 p. 355;
Seber and Wild 1988 pp. 318-319). Because the sample size used for this analysis is larger
than the maximum sample size (200) appearing in the extended Durbin-Watson Table
(Judge et al. 1988 pp. 991-994), critical values are those recorded for the maximum sample
size.

The Durbin-Watson statistic of 1.641 for white spruce is smailer than t.a lower
bound (1.697) of the critical values for the eight parameter height increment model,
indicating a significant first-order autocorrelation for the error terms of the white spruce
height increment model. The Durbin-Watson statistic of 1.529 for aspen is also smaller than
the lower bound (1.718) of the critical values for the six parameter height increment model,

indicating a significant first-order autocorrelation for the error terms of the aspen height
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increment model.

The autocorrelated error terms for both height increment models are typical of data
from PSPs where the plots are repeatedly measured over regular time intervals. The
parameter estimation for nonlinear models with first-order autoregressive errors AR(1) can

be obtained by writing the ith observation of the height increment model as

(7.10) HI=-f(x;,0)+¢; €;=PC; 1+ B,
where the height increment HI,, i=1, 2, ..., n, are expressed as a nonlinear function f(x;, 6)
of the explanatory variables, ¢; are random errors following an AR(1) process, p is the
autoregressive parameter, and u; are independent and identically distributed random errors
with mean 0 and constant variance 0“2. From equation (7.10), the (i-1)th observation of the

height increment mocdel can be written as

(7.11) HI ; ,=f(x;,.,0)+e;,

Multiplying p on both sides of (7.11), then subtracting (7.10) by (7.11) provides a

nonlinear equation with uncorrelated errors

(7.12) HI=pHI ; ,,+f(x;,0)-pFf(x; ,,0)+p;
A five step procedure can be used to find the NLS estimates of parameters 0 in (7.12):
1). Fit equation (7.10) by ordinary NLS without considering its error structure, find the
estimates of the parameters 8, .
2). Calculate the residuals ¢;=HI;-f(x;, 8y,5), and estimate p by fitting e;=pe; , +u;.

3). Find the estimates of 8 by applying ordinary NLS to the model

(7.13) HI;-pHI; ,,=-f(x;,0)-pf(x;_,,0)+e;

4). Replace Oy in step 2) by 8 from 3), then re-estimate p in 2).

5). Replace p in step 3) by p from 4), then re-estimate 6 using NLS.
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This process is iterated until @ is converged. Resulting fit statistics using the

SAS/ETS software for the height increment models with the AR(1) error structure for white
spruce and aspen are also listed in Tables 7-2 and 7-3. The Durbin-Watson statistics (2.018
and 2.040) for both models are greater than their respective upper bounds (1.841 and
1.820) for the critical value, indicating that autocorrelation for the adjusted models is not
significant and the AR(1) specification is appropriate for the error terms of the height
increment models.

The height increment models were also diagnosed for possible unequal error
variances. The plots of studentized residuals against the predicted height increment from the
preliminary NLS fits (without accounting for the AR(1) error terms) and the NLS fits
accounting for AR(1) error terms showed no consistent underestimate or overestimate for
height increments. The error terms of the models were therefore considered to be identically

distributed and weigh.cc. regressions were deemed unnecessary.

Diagnostics for multicollinearity

The tree and stand variables appearing in the height increment models may
somehow be inter-correlated. Multicollinearity could exist in such models because of inter-
correlated variables. Collinearity diagnostics using the keyword COLLIN with PROC MODEL
procedure were performed to detect the presence, severity, and form of multicollinearity.

For white spruce, the eigenvalues of the correlation matrix for the set of explanatory
variables were arranged from the largest (5.00443) to smallest (0.03535), and the square
root of the ratio of the largest to smalles. eigenvalue, the condition index, was found to be
11.8984, which is less than 30 - the proposed critical value for moderate multicollinearity
(Belsley et al. 1980). This indicates that multicollinearity is not a serious problem for the

white spruce height increment model.
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For aspen, the eigenvalues of the correlation matrix of the set of explanatory
variables were also arranged from the largest (3.85428) to smallest (0.08156), and the
condition index was found to be 6.8746, which also indicates that multicollinearity is not

a serious problem for aspen height increment model.

Model testing

The independent testing data sets were used for testing the height increment models’
fit. For white spruce, the actual height increment values from the testing data were
compared to the predicted height increment values using model (7.4) with the estimated
parameters from NLS with AR(1) emocrs in Table 7-2. The bias of the prediction was
obtained by subtracting the actual height increment from the predicted height increment by
the fitted model. The mean and the standard deviation of the prediction bias were
0.0151977 and 0.175266 respectively, so the standard error of the estimated mean bias is
0.175266/(357)1/2=0.009276. A t-test of the hypothesis that the mean prediction bias was
zero gives {=1.6384, which, with 356 degrees of freedom, is not significant at an ¢=0.05
level, indicating that the mean prediction bias is not significantly different from zero.

Similarly, using the independent testing data and fitted results from Table 7-3 for
aspen, the mean and the standard deviation cf the prediction bias was 0.0042523 and
0.2449232 respectively, so the standard error of the estimated mean bias was
0.2449232/(261)'/2 = 0.01516. A r-test of the hypothesis that the mean prediction bias was
zero gives t=0.2805, which, with 260 degrees of freedom, is not significant at an @=0.05
level, indicating that the mean predicdon bias for aspen is also not significantly different

from zero.

7.5 Discussion
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The height increment inodels as expressed by (7.4) and (7.7) provide individual tree

height increment predictions for white spruce and aspen grown in boreal mixed-species
stands in Alberta. Most of the asymptotic r-stztistics (Tables 7-2 and 7-3) for the coefficients
of the inodels are significant at an @=0.05 level. However, approximately 12.21% of the
height increment variation for white spruce and 21.85% for aspen were explained by the
fitted mocels. his may not be surprising because of the extremely large height increment
variation {ound in the boreal mixed-species stands. Scatter plots of annual height increment
versus explznatory variables included in the models showed very weak height increment
trends. Because ixee height was measured by non-destructive methods over an extended time
period, cozsiderable measurement errors might also contribute to why low height increment
variation explzined by the fitted models. The limited availability of height measurements
aggravated this problem because only a very small subset of trees on each PSP were
repeatedly measured for height.

In spite of these problems, the height increment models developed in this analysis
were based on a biologically appropriate base function so on average ve-i'stic height
increment predictions arve achieved. The models as portrayed by Figure 7-i have the
flexibility to assume various shapes with different parameter values and produce satisfactory
curves under most circumstances. All curves produced by the models assume biologically
reasonable shapes that closely mimic the biological process of height growth, and provide
reasonable height increment estimates in cases where the models are extrapolated beyond
the range of the original data.

The fitted height increment models reflected some commonly held beliefs and
interesting facts about the height increment of white spruce and aspen in the boreal mixed-
species stands. The significant negative coefficients for total basal area per hectare in (7.5)

and (7.8) indicate that stand density has a significant negative effect on white spruce and
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aspen height increment. If other stand conditions remain approximately the same, height
increment is reduced as stand density increases, and dense stands result in smaller height
increment. This agrees with results found by Wykoff et al. {1982) for mixed conifers of the
northern Rocky Mountains and Amey (1985) for coastal Douglas-fir, although a different
stand density measure was used in their studies. The reason for reduced height increment
with increased stand density may relate to the fact that trees in dense stands have reduced
crown development because the available growing space is limited. This in turns restricts
the tree’s ability to utilize the photosynthetic potential for height increment.

The effects of species composition as represented by parameters ag and by in
equations (7.6) and (7.9) :ive positive for both white spruce and aspen height increment,
indicating that for two mixed-species stands grown in similar conditions, the one with more
white spruce will have larger white spruce height increment, and the one with more aspen
will have larger aspen height increment. A possible explanation for this is that under many
circumnstances the height increment of both species is directly related to the relative
abundance of the species in the stands. The ability of a particular tree species to compete
with other tree species in the stand is stronger if the relative proportion of this particular
species is larger. The incrzasing presence of white spruce reduces the relative
competitiveness of aspen in the stands and the increasing presence of aspen reduces the
relative competitiveness of white spruce.

The significant negative coefficients a5 and bg in equations (7.6) and (7.9) indicate
that large diameter increment leads ic large height increment. This is rathrr straightforward
as increased diametcr growth is commonly expected with increased height growth. Because
the height increment models are expressed as a function of diameter increment, many
variables that directly affect diameter increment can also indirectly affect height increment.

The coefficients a; and a, in (7.5) and (7.6), and b, in (7.8) reflect a positive
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competition index and diameter effect on height increment. As the diamete:, and related CI,

get numerically larger, the white spruce trees are in a better competitive position, resulting
in larger height increment. The result of increased height increment with increased tree
diameter is probably directly related to the increased competitiveness for larger diameter
trees. This may also imply that the commonly observed asymmetric or one-side competition
in plant monocultures (Weiner and Thomas 1986) is equally applicable for white spruce and
aspen grown in uneven-aged mixed-species stands.

Incorporating site productivity into a growth model is a complicated problem,
especially for mixed-species stands with an uneven-aged structure. This problem is precisely
the one that led researchers like McLintock and Bickford (1957), Stout and Shumway
(1982), and Wykoff et al. (1982) to develop altermatives to traditional site index in
attempting to provide accurate and realistic site productivity measures. The use of a site
productivity index (SPI) as determined by the dominant and codominant height-diameter
relationship is by no means an ultimate solution. However, the positive coefficient values

forag and b, reflect the effect of site productivity on height increment and show that better

sites support faster height increment. This is true both for white + and for aspen,
although the SPI effect for white spruce is not significant ¢ =0.05 level (p-
value=0.1323).

Since the height increment models are based on functions which relate height
increment to tree and stand variables, but do not involve individual tree or stand age
explicitly, the models can be applied in any stands. Input variables for the models are simple
tree and stand variables that are readily obtainable from most inventories, and are
compatible with the data-collection process in Alberta. Potential users of the model with
limited information or altermative measures for some of the variables appearing in the

models may consider re-fitting other forms of the model by replacing the variables that are
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not available, or by dropping the variables if the cost to obtain the variables is too high

relative to the amount of additional variation explained by adding such variables to the
model. In either case, the flexible base height increment-height equation — the Box-Lucas
function that closely mimics the biological process of height growth, and the method of
parameter prediction for incorporating the effects of other tree and stand variables on

height increment, should be retained.

7.6 Summary

Based on a data set from 164 permanent sample plots, age-independent individual
tree height increment models for white spruce (Picea glauca (Moench) Voss) and trembling
aspen (Populus tremuloides Michx.) grown in the boreal mix~d-species stands in Alberta are
presented. The models are age-independent in that they do not explicitly require tree/ stand
age as an input variable. Height increment is modelled as a function of tree diameter, tree
height, diameter increment, relative compeﬁtiveﬁess of the tree in the stand, stand density,
species composition, and site productivity. Because data from permanent sample plots are
considered time series and cross-sectional, diagnostic techniques were applied to identify the
model’s error structure. Appropriate fits based on the identified error structure were
accomplished using the nonlinear least squares technique with a first-order autoregressive
error process. The models were also validated on independent data sets representing the
population on which the models are to be used. The average prediction biases were not
significant at a@=0.05, indicating that the models appropriately describe >« data and

perform well when predictions are made.
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Table 7-1. Summary statistics for white spruce and aspen tree and stand characteristics

White spruce Aspen

Variable

Mean Min. Max. Std.dev. Mean Min. Max. Std. dev.
Tree DBH (cm) 27.75 290 63.30 1052 23.67 5.30 64.50 11.21
Tree height (m) 22.38 320 37.90 6.11 19.78 5.80 32.90 5.39
Annual diameter increment (cm) 0.21 0.00 0.99 0.13 0.22 0.0 0.72 0.12
Annual height increment (m) 0.16 -0.82 1.15 0.20 0.17 -0.96 1.18 0.26
Number of wees/ha-all species 1251.49 148 5580 744.58 146195 222 6864 79188
Average DBH (cm)-all species 19.78 5.30 39.708 5.60 17.32 4.60 39.70 6.55
Basal area (m?2/ha)-all species 39.81 1155 83.87 8.92 32.18 11.97 87.91 11.01
Average height (m)-all species 21.57 7.90 31.70 3.90 18.46 7.3 28.80 4.60
Species number of trees/ha 753.87 5.00 4914.00 670.86 919.60 10 3515 785.87
Species average diameter (cm) 2080 570 54.90 6.60 20.38 2.8 46.10 9.02
Species basal area (mz/ha) 25.10 020 56.65 12.11 19.89 0.47 53.33 9.26
Species average height (m) 2197 360 31.70 4.26 19.37 6.30 30.60 5.08
Site productivity index (m) 16.17 822 21.28 2.43 18.51 8.46 24.50 3.35
Species composition 0.62 0.0062 1.00 0.25 0.65 0016 0.99 0.26




Table 7-2. Fit statistics for white spruce height increment model’
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Parameter Estimate Std. err. t-statistic p-value RMSE Adj.R? D-W
NLS a 0.089485 0.0193¢ 4.61 0.0001 0©.19219 0.0932 1641
a, -0.00172570 0.0003895 -4.43 0.0001
aj 0.048962 0.01343 3.65 0.0003
a, 0.221253 0.01971 11.23 C.0001
ag -0.161879 0.02178 -7.43 0.0001
ag -0.034426 0.01266 -2.72 0.00566
a; -0.00196558 0.0003109 -6.32 0.0001
ag 0.454981 0.24568 1.85 0.0642
NLS with o 0.079333 0.01900 4.18 £2.00C1  0.18911 0.1221 2018
AR(1) errors a, -0.00170770 £.0003888 -4.39 0.0001
a, 0.055419 0.01321 4.20 0.0001
a, 0.219686 0.02167 10.14 0.0001
ag -0.152172 0.02169 -7.01 0.0001
ag -0.035352 0.01408 -2.51 0.0121
a, -0.00193545 0.0003083 -6.28 0.0001
ag 0.400101 0.26573 1.51 0.1323
P 0.181556 0.02406 7.55 0.0001

INLS represents nonlinear least squares, D-W is the Durbin-Watson statistic, p is the first-order

autoregressive AR(1) parameter.
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Table 7-3. Fit statistics for aspen height increment model!

Parameter Estimate Std. err.  t-stadstic p-value RMSE Adj.R? D-W
NLS by 0.00292227 0.0012095 2.42 0.0158 0.23549 0.1739 1.529
b, -0.00230944 0.0005943 -3.89 0.0001
b3 0.00847480 0.0017647 4.80 0.c001
b, 0.206881 0.01625 12.73 0.0001
bg -0.189355 0.02308 -8.20 0.0001
be -0.027525 0.01583 -1.74 0.0822
NLS with b, 0.00242251 0.0013389 1.81 0.0706 0.22906 0.2185 2.040
AR(1) errors b, -0.00248709 0.0007048 -3.53 0.0004
by 0.00987930 0.0023087 4.28 0.0001
b, 0.206976 0.01883 10.99 0.0001
bg -0.181396 0.02348 -7.72 0.0001
be -0.033944 0.01874 -1.81 0.0703
o) 0.235825 0.02658 8.87 0.0001

INLS represents nonlinear least squares, D-W is the Durbin-Vv .ison statistic, p is the first-order

autoregressive AR (1) parameter.
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Chapter 8

Nonlinear Simultaneous Diameter and Height Growth Models

8.1 Introduction

Growth and yield models for forest stand dynamics using data from permanent
sample plots with real growth series are often composed of a system of compatible, inter-
dependent, and analytically related equations (Clutter 1963, Sullivan and Clutter 1972,
Burkhart 1986, Daniels and Burkhart 1988). Most conceptual frameworks for understanding
stand development processes recognize that there is a strong correlation and feedback
mechanism among variables that are used to describe growth and yield relationships
(Turnbull 1978, Munro 1984, Krumland 1982, Walters et al. 1991). This idea translates into
the realization that forest stand dynamics should be described by a simultaneous and
interdependent system of equations that involve current, future, and past values of some of
the tree and stand characteristics rather than separate and isolated individual equations.

One method of estimating parameters in systems of equations is to develop a
composite model by algebraic substitution (Sullivan and Clutter 1972). However, Burkhart
and Sprinz (1984) pointed out that the estimates obtained using this method are not
statistically efficienc. Reed (1982), Burkhart and Sprinz {1984), Reed and Green {(1984),
Reed et al. (19865), Byrmme and Reed (1986), and Knoebel et al. (1986) simultaneously
estimated the structural parameters by minimizing squared error loss functions. Borders and
Bailey (1986), and LeMay (1988, 1990) indicated that estimates obtained by minimizing
squared error loss functions may still not be consistent or the most efficient if the equations

are simultaneous. Van Deusen (1988) showed that estimation based on minimizing squared
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error loss functions is very similar to the seemingly unrelated regression (SUR) technique
popularized in econometrics (Zeliner 1962), and suggested that if the system of equations
falls into the SUR framework, estimates of the structural parameters will be consistent and
asymptotically efficient.

Application of simultaneous fitting techniques commonly used in econometrics for
systems of growth and yield equations dates back to Furnival and Wilson (1971). Many
other researchers have also discussed and used two- and three-stage least squares (2SLS and
3SLS), and SUR techniques for estimating the structural parameters in systems of forestry
equations (Murphy and Sternitzke 1979, Murphy and Belz 1981, Murphy 1983, Amateis
et al. 1984, Burkhart 1986, Borders and Bailey 1986, Reed 1987, Van Deusen 1988).
Borders (1989) presented a detailed discussion on three types of equation systems: 1)
seemingly unrelated regression equations, 2) recursive equations, 3) simultaneous equations,
and described associated fitting methodologies, as well as an alternative parameter
estimation procedure iliat can be used for any number of sequentially related linear or
nonlinear equations. LeMay (1988, 1990) demonstrated applications ¢f a modification of
three-stage least squares for several forestry systems of simultaneous linear equations in
which the error terms of individual equations may be serially correlated and/or have
unequal variances.

This study presents a nonlinear system of three interdependent equations for
predicting individual tree height, pe..odic diameter increment, and periodic height increment
for white spruce (Picea glauca (Moench) Voss) grown in boreal mixed-species stands in
Alberta. The high correlation and simultaneous nature among tree height, diameter
increment, and height increment have been reflected in many individual tree based growth
and yield models in which diameter increment was expressed as a function of height

increment (Hegyi 1974, Daniels and Burkhart 1975), or height increment was expressed as



164
a function of diameter increment and total tree height (Stage 1975, Wykoff et al. 1982).

Previous parameter estimation methods, however, were single-equation based. No
cognizance is taken of the fact that the error terms from related equations are almost certain
to be correlated, and the available information concerning the cross-equation
interdependence is not utilized.

The primary objective of this analysis is to treat the nonlinear equations for
predicting individual tree height, periodic diameter increment, and periodic height increment
for white spruce in mixed-species stands as an integrated system and apply alternative
statistical procedures to estimate the structural parameters of the system simultaneously. A
second objective is to evaluate different system estimation methods for nonlinear equations
and to compare them with the traditional single-equation based ordinary least squares
technique. While fundamentals of the nonlinear system modelling methods are emphasized,
the practical implications of such approaches for systems of interdependent forestry

equations are also stressed.

8.2 The data

Data from 164 permanent sample plots (PSP) used in this analysis ‘~ere provided by
the Alberta Forest Service. The data were collected over the last three decades ax‘ld the PSPs
were randomly located throughout the inventory areas of the province to provide
representative information for a variety of densities, heights, species composition, stand
structures, ages, and site conditicns. " detailed description of how the data are collected
and recorded can be found in t¥ - : - ‘~anent Sample Plots: Field Procedures Manual (AFS
1990).

The original PSP datx v:=re summarized to provide additional variables such as the

number of trees per hectar«, "::sal area per hectare, average height, and average diameter,
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both for all species combined and by individual species in the stand. Only live white spruce

trees with both diameter and height recorded were retained for this analysis. The selected
trees have up to five remeasurements, with the time between the remeasurements ranging
from 3 to 18 years. Each non-overlapping growth period from the remeasurements defines
a growth interval, that is. the growth intervals are obtained from measurements between
first and second, second and third, but not first and third. A total number of 1470 growth
intervals was obtained from 164 PSPs for white spruce. Periodic diameter increments and
height increments were obtained as the differences between the vaiues at the end and
beginning of the growth intervals. Descriptive statistics including the mean, minimum,
maximum, and standard deviation of the tree and stand characteristics at the beginning of

the growth intervals are displayed in Table 8-1.

8.3 System of equations and its estimations
A system of three related nonlinear equations described in Chapters 5, 6, and 7 for

white spruce grown in boreal mixed-species stands were selected for this analysis:

(8.1) H=1.3+x (1-e PFP)8+e
a=a, (1-e %" +a.5C+a,S5PI+a,BA+a,AVED
B-a,
é-a,+a,D/AVED+a, ,SPI
61 -6,D -6,D
(8.2) DI=GI (e -e™7) +¢,
6,-6,

6,-b, +b, BASUM+b,SC+b H+byD/ AVED+b SPI

8,-b,+b,/TRHAAL
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(8.3) HI-GI-—Ei— (e‘BzH—e-p‘H) +&,
51-62
B1-01+CZBASCM+ C3D/AVE'D

B,~c,+cDI/GI+c,SC+c,D+cy/SPI

where

H = tree height in metres (),

D = tree diameter at breast height (cm),

BA = basal area of the tree (cm?3),

BASUM = basal area per ha for all species combined in the stand (mn?),

SC = white spruce species composition,

SPI = site productivity index for white spruce in mixed-species stands,

AVED = average diameter for all species in the stand (cm),

DI = periodic diameter increment (cm),

TRHAAL = total number of trees per hectare,

Gl = growth interval length (years),

HI = periodic height increment (m),

e = 2.71828,

£,, €5, and g; = error terms for equations (8.1), (8.2), and (8.3) respectively,

a,-a,4, by-bg, and c;-c; = parameters to be estimated.
White spruce species composition was defined as the ratio of white spruce basal area per
hectare over the total basal area per hectare for all species combined in the stand. The site
productivity index (SPI) based on the relationship between total tree height and diameter
at breast height of the dominant and codominant trees developed for white spruce in
uneven-aged and/or mixed-species stands (Chapter 4) was used as the measure of site

productivity.,
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The system of nonlinear equations (8.1)—(8.3) takes into account the simultaneous

and interdependent nature of individual tree height, periodic diameter increment, and
periodic height increment predictions. It is clear that within this system, variables H and DI
appear on the left-hand side (LHS) of the equations as well as on the right-hand side (RHS)
of the equations in the system. Together with HI, they are the system outputs and are
referred to as endogenous variables that are jointly determined through the joint interaction
with other variables within the system. Variables that only appear on the RHS side of the
equations in the system are referred to as exogenous or predetermined variables that are
determined outside the system.

The presence of endogenous variables in the system violates the independence
assumption between the RHS variables and the error terms of the equations (Pindyck and
Rubenfeld 1981, Judge et al. 1985). Because DI depends on H, for example, and the
observed value of H depends on the error terms ¢,, DI is also dependent on €,- The
implication of this violation is that the classical ordinary least squares rule will produce
parameter estimates that are biased and inconsistent — a phenomenon commonly referred
to as simultaneous equation bias.

To eliminate simultaneous equation bias in large samples, the instrumental variable
method has been commonly used (Theil 1971, Johnston 1984, Spanos 1986, SAS Institute
Inc. 1988). This method is implemented by first selecting a set of instrumental variables
(instruments) that are highly correlated with the endogenous variables but are uncorrelated
with the error terms of the equations, and then projecting the endogenous variables into
the vector space spanned by the chosen instruments and performing regressions on the
projections. The instrumental variable method has also been described as the two-stage least
squares (2SLS) in systems of simultaneous linear equations, with a first-stage regression of

the RHS endogenous variables on the instruments and a second-stage regression on the
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structural equations with the RHS endogenous variables replaced by the predicted values

from the first-stage regression. Amemiya (1974) extended the 2SLS principle tc systems of
simultaneous nonlinear equations, and derived the nonlinear two-stage least squares
{N2SLS) estimator for nonlinear systems.

The estimates of the parameters for each nonlinear equation resulting from N2SLS
may still be biased in small samples but are consistent and asymptotically efficient with
1espect to other singl<-equation estimators (Amemiya 1985, Judge et al. 1985). A consistent
and asymptotically more efficient estimator may be obtained if the system of equations is
jointly estimated within the framework of the SUR procedure (Zellner 1962) and its
extension for nonlinear systems (Gallant 1975). The nonlinear three-stage least squares
(N3SLS) technique described by Jorgenson and Laffont (1974), Gallant (1977), and £2lant
and Jorgenson (1979) employed generalized nonlinear least squares procedures to systems
of simultaneous nonlinear equations by utilizing the variance-covariance matrix of the
structural errors estimated from the residuals cbtained with i\IZSLS. The N3SLS estimator
takes into account the correlations of error terms across equations, and makes use of the
information that may be available concerning the variance-covariance matrix of the error
terms across different structural equations. Resulting estimates of the parameters for the
entire system from N3SLS are consistent and asymptotically more efficient than those
obtained from the N2SLS if the cross-equation correlations are significaat. If the cross-
equation covariances are all zero, there is no gain in efficiency for N3SLS over N2SLS.

Two frequently cncountered problems in two- and three-stage least squares are
identification and the choice of instruments. In order to apply two- and three-stage least
squares, each equation in the system of simultaneous equations must be just- or over-
identified (Judge et al. 1988). Identification requires that certain rank and order conditions

be satisfied, or the structural parameters can not be consistently estimated. For systems of
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simultaneous linear equations, identification is relatively simple and straightforward (Fisher

1966, Dhrymes 1974, Brown 1991). Amateis et al. (1984) and Borders and Bailey (1986)
discussed this problem in forestry situations.

For a system of nonlinear equations such as (8.1)--(8.3), identification can be more
complicated (Fisher 1966, Brown 1983, Judge et al. 1985). However, the problem is not
rigorous enough, and Gallant (1987) completely ignored identification in systems of
simultaneous nonlinear equations. Amemiya (1985) was also critical on the identification
problem in nonlinear systems and pointed out that ronlinearity generally helps rather than
hampers identificaticn, so that, for example, in a nonlinear simultaneous system the number
of excluded exogenous variables in a given equation need not be greater than or equal to
the number of included endogenous variables minus one of the same equation. Each
equation in the system of nonlinear equations (8. 1)—(8.3) is over-identified according to the
criteria set by Amemiya (1985).

The problem of finding instrumental variables for simultaneous linear equations is
once again relatively simple and straightforward. Asymptotic efficiency of the 2SLS estimator
is maximized if all the predetermined variables including the exogenous variables, the
lagged exogenous variables, and the lagged endogenous variables for the entire system are
chosen as instruments (Schmidt 1976, Judge et al. 1985). Finding an appropriate set of
instrument variables in systems of nonlinear simultaneous equations is a very difficuit
problem, and the theory for doing so is not complete (Amemiya 1985, Judge et al. 1985,
Gallant 1987). The implication of this problem in terms of system fitting is also discussed
in the SAS/ETS manual (SAS Institute Inc. 1988). The most disturbing aspect of the N2SLS
and N3SLS estimators is that they are not invariant with respect to the choice of
instruments. Different sets of instruments can lead to quite different parameter estimates

even though the model specification and data remain the same {Gallant 1987).
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The proper choice of instruments is crucial for obtaining efficient N2SLS and N3SLS
estimators. It is necessary that the number of selected instruments at least equals the
maximum number of parameters in any equation of the system, or some of the parameters
can not be estimated. Using fewer instruments reduces the efficiency of N2SLS and N3SLS
estimators, and adding more instruments may improve the efficiency of the estimators,
however, after some point this may also reduce the efficiency and increase simultaneous
equation bias. Gallant (1987) showed that if too many instruments are used, nonlinear two-
and three-stage least squares reduce to ordinary nonlinear least squares.

It is essential that an appropriate set of instrumental variables is chosen in order to
maximize the efficiency of instrumental variables and reduce the simultaneous equation
bias. Judge et al. (1985) described alternative choices of instruments. Amemiya (1977)
suggested that the optimal choice of instrumental variables could be obtained by using the
expected values of the partial derivatives of the residuals with respect to the parameters —
the parameter derivatives as instruments. Accordingly, it is best to find instruments that
approximate the expected values over the errors of each of the parameter derivatives.
However, Gallant (1987) noted that this could lead to a large instrumental variable matrix
that adds to the small sample bias of the estimator and reduces the small sample variance,
and consequently leads to very misleading confidence intervals. One nractical choice of
instruments suggested by Amemiya (1985) and Gallant (1987) is to use che exogenous
variables and their low order monomials such as the squared exogenous variables and the
cross products of the exogenous variables as instruments, making no attempt to find the
"optimal” set using the results on efficiency.

The system of equations (8.1)—(8.3) and some other examples presented in forestry
literature (Amateis et al. 1984, Borders and Bailey 1986, Borders 1989, LeMay 1988, 1990)

possess a clear resemblance to a special case of simultaneous equations — the recursive
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system of equations (Klein 1974, Pindyck and Rubinfeld 1981). Notice that the endogenous

variable H in equation (8.1) is not a function of other endogenous variables, but the
endogenous variable DI in equation (8.2) is a function of H in equation (8.1), and the
endogenous variable HI in equation (8.3) is a function of H in (8.1) and DI in (8.2).
Application of the ordinary least squares method to each of the structural equations leads
to unbiased, consistent, and asyinptotically efficient parameter estimates if the variance-
covariance matrix of the structural errors for the recursive system is diagonal (Klein 1974,
Kmenta 1986).

If significant cross-equaticn correlations are present, the RHS endogenous variables
will be correlated with the error terms of the equations, and the system is triangular rather
than recursive (Kleir 1974, Lahiri and Schmidt 1978, Kmenta 1986). The ordinary least
squares rule applied to a triangular system will produce simultaneous equation bias. Kiein
(1974 p. 199) suggested that consistent estimates for triangular systems can be obtained by

a modification to the two-stage least squares by regressing, for example,

(8.4) Y1 O X,%5 oo o Xy
Y. on 9,,X,X%,, .. <1 Xy

Vi on 9,9, X,%, ... e K, etc.

where X’s and y’s are the exogenous and endogenous variables, the §,, 9,, ... are the
predicted endogenous variables obtained from ordinary least squares fits of the previous
equations. Klein's (1974) procedure could be combined with the SUR procedure (termed
triangular-SUR, or T-SUR) for systems of linear or nonlinear triangular equations (Hausman
1975). Zellner (1971) showed from a Bayesian point of view that the posterior probability
density function of the triangular systems was the same as that of the SUR equations, also

indicating that SUR procedure could be used for triangular systems. Parameter estimates for
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triangular systems obtained by the T-SUR method will be consistent and asymptotically

efficient (Kmenta 1986). Borders (1989) demonstrated the T-SUR approach for triangular
linear and nonlinear equations in forest stand modelling.

For systems of linear equations, the T-SUR approach is asymptotically less efficient
than the 3SLS approach. This is because 3SLS uses all exogenous variables in the entire
system for the first-stage regression, rather than only those appearing in each equation. As
previously described, asymptotic efficiency is maximized if all the exogenous variables in the
entire system are chosen as instruments (Schmidt 1976, Judge et al. 1985). For systems of
nonlinear equations, however, either the T-SUR or the N3SLS approach can be
asymptotically more efficient. Naturally, this will depend on the choice of instruments. Lack
of an "optimal” set of instruments for nonlinear systems and ignoring the appropriately
identified equation forms in the first-stage of N3SLS can serious undermine the efficiency
for using the N3SLS. Borders (1989) suggested that the T-SUR approach has some

advantages over N3SLS in practice.

8.4 Methods

Table 8-2 lists all nine exogerous variables appearing in the system of nonlinear
equations (8.1)—(8.3). A total number of 54 variables consisting of the exogenous variables
and their cross products shown in Table 8-2 were selected as the instrumental variables.
Each of the three equations in the system was first fitted by the single-equation method —
nonlinear ordinary least squares (NOLS) and N2SLS, and then by the system method —
N3SLS and nonlinear T-SUR. All fits were accomplished using the PROC MODEL procedure
on SAS/ETS software (SAS Institute Inc., 1988). The Gauss-Newton iterative method using
the Taylor series expansion as described in Gallant (1987) was applied for ali the fits. The

root mean squared error (RMSE) for each equation is calculated according to
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(8.5) RMSE-\J

1
n_pJ

z (Y_i"yi)z

where n is the number of observations, p; is the number of parameters in the Jjth equation
(=1, 2, 3), y; and §; are observed and predicted values of the dependent variable (i=1, 2,

.-, 1). The coefficient of determination (R2) for each equation is calculated by

(8-6) Rz-l—E (yi_yi)2/2 (Yj_")—’)z
where 7y is the observed average value of the dependent variable. The mean difference

(MD) for each equation is calculated according to

(8.7)  MD=2Z(y;-y,)

Residuals from N2SLS were used to test the significance of the cross-equation
correlation. The Lagrange multiplier statistic proposed by Breusch and Pagan (1980) and
described in Judge et al. (1988) was used as the appropriate test statistic for testing whether
the cross-equation covariances are zero. For the system of three equations in this analysis,
the null and alternative hypothesis for this test can be written as

Hy: 01,=0,3=02,=0

H;: at least one covariance is nonzero
where g,,, 0,3 and 0,3 are the covariances between equations 72.1) and (8.2), (8.1) and
(8.3), (8.2) and (8.3). The Breusch and Pagan (1980) test statisdc for the three-equation

system is given by

(8.8)  A=n(ri+ri+rd)
where rijz is the squared correlation between errors in equations i and j and
2
2 8i5

CHLTES
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The notation ¢;; is an alternative way of writing ihe error variance ¢;? for the ith equation.
Under the null hypothesis Hy, A has an asymptotic x2-distribution with 3 degrees of
freedom. The null hypothesis is rejected if A is greater than the critical value from a x2(3)-
distribution at a prespecified significance level. Covariance of residuals and correlation of
residuals (covariance of the residuals matrix converted to correlational form) are readily

available from the PROC MODEL procedure.

8.5 Results and discussion

The upper half estimates of the symmetric asymptotic variance-covariance and
correlation matrices of the cross-equation errors resulting from N2SLS are listed in Table
8-3. Fit stauistics including the estimates of the parameters, their asymptotic standard errors,
the ratio of the estimates to the standard errors (t-ratio), and the significance probability
(p-value) of the t-ratio given that the t-ratio has a Student’s t-distribution, from NOLS and
N2SLS, N3SLS and nonlinear T-SUR are attached in Tables 84 and 8-5 respectively. The
root mean squared error (RMSE), coefficient of determination (R2), and mean difference
(MD) values calculated according to (8.5), (8.6), and (8.7) for each of the three equations
in the system are attached in Table 8-6.

Using the results from Table 8-3 and equation (8.8), the Breusch and Pagan (1980)
test statistic is calculated as: A = 1470[0.0331%+(-0.1012)%+(-0.0871)3] = 27.8175. The
critical value from a y2-distribution with 3 degrees of freedom at @ = 0.05 significance level
is 7.81. Hence the null hypothesis of zero covariances is rejected, and the cross-equation
correlation is significant.

The significant cross-equation correlation indicates that 1) the system estimation
methods (Table 8-5) are asymptotically more efficient than the single-equation methods

(Table 8-4), 2) ordinary nonlinear least squares applied to separate equations produces
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inconsistent or inefficient parameter 2stimates. Nevertheless the results from NOLS are
shown and compared to others because NOLS is commonly used ir applied work.

Fit statistics in Tables 8-4 and 8-5 indicate that the estimated coefficients using
alternative methods are very similar. The p-values of the coefficients are all significant at
a = 0.05 level. The standard errors of the coefficients from NOLS are generally smaller than
those from N2SLS and N3SLS. However, the NOLS estimates are inconsistent so that the
confidence intervals can be very misleading and hypothesis tests can not be appropriately
performed (Gallant 1987). The standard errors of the coefficients from N3SLS are generally
smaller than those from N2SLS. This is apparent since N3SLS accounts for the significant
cross-equation correlation.

The standard errors of the coefficients from nenlinear T-SUR are generally smaller
than those from N3SLS (Table 8-5) and NOLS (Table 8-4). Two possible explanations may
apply in this case: 1) estimates obtained from N3SLS ignore the original nonlinear equation
forms in first-stage regressions, thus allowing for possible large model specification bias at
this first stage (Borders 1989), and consequently affect second- and third-stage regressions;
2) lack of an "optimal"” set of instruments for N3SLS reduces its ability to achieve the most
efficient estimates.

The nonlinear T-SUR procedure used in this analysis can be regarded as a special
instrumental method applied to systems of nonlinear equations (Borders 1989). The method
emphasizes maintaining the original nonlinear forms of the equations rather than selecting
the "optimal” instruments. It is possible that the efficiency of T-SUR may be lost because of
ignoring the most efficient choice of instruments. However, lack of "optimal” instruments
for nonlinear systems diminishes the importance of choosing instruments and enhances the
significance of keeping the appropriately identified equation forms. For this particular

example, the nonlinear T-SUR procedure provided more acceptable parameter estimates
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because of their smaller standard errors than those obtained using N3SLS, or NOLS.

Comparison of the fitting techniques in terms of equation R?2 and RMSE values
commonly reported in regression analysis was also made. Table 8-6 shows that for equation
(8.1), different methods give almost the same R? and RMSE values. For equations (8.2) and
(8.3), NOLS gives the largest R? values and the smallest RMSE values. The differences,
however, are minimal. This is expected because NOLS minimizes the error sum of squares,
and the R? and RMSE that based on error sum of squares will generally give the most
favourable results for NOLS. In many other reported comparisons between system methods
and ordinary least squares technique (Murphy 1983, Amaties et al. 1984, Borders and Bailey
1986, LeMay 1988), the R? and RMSE values also favoured the ordinary least squares.
Gallant (1987) indicated that the system methods are mainly used to inflate the
underestimated errors of ordinary least squares. Strictly speaking, the R? and RMSE values
from NOLS are not directly comparable to those from system methods because estimates
obtained from NOLS are inconsistent, and the ordinary east squares tends to give smaller
but inappropriate error variances.

Table 8-6 also provides information on the prediction performance of each equation
fitted by different methods. The predicted endogenous variables from aiternative fits were
compared to the observed values. The mean difference calculated according to (8.7)
indicates tree height [equation (8.1)] and periodic tree diameter increment [equation (8.2)]
are slightly overpredicted by all four methods, while the periodic tree height increment
[equation (8.3)] is slightly underpredicted by N2SLS and N3SLS but overpredicted by NOLS
and T-SUR. The differences among the methods are somewhat mixed and very small. There
is no obvious superiority shown by any particular method for all the equatons in terms of
predictions. Previous applications of the system methods also indicate very similar results

from system methods and ordinary least squares (Murphy 1983, Amateis et al. 1984, Borders
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and Bailey 1986, LeMay 1988). Nonetheless, the application of system methods is more

appealing (Amateis 1984) and intuitively reasonable (Borders 1989) because of their well-
grounded theoretical soundness. The small standard errors of the coefficients from the
nonlinear T-SUR procedure indicates that this system estimation method is most appropriate.

In practical terms, it should be pointed out that estimators such as N2SLS, N3SLS,
and T-SUR rely heavily on asymptotic theory. The small sample properties of these
estimators are extremely difficult to derive and in many cases, simply do not exist. Thus, in
applying the consistent and asymptotically more efficient estimators, it is worthwhile to note
that these estimators may not be superior in a particular case, especially if the sample size
is not large enough. However, numerous Monte Carlo experiments have demonstrated that
asymptotic theory provides a good approximation to the finite sample estimator performance
(Cragg 1967, Judge et al. 1985), and the use of consistent and asymptotically efficient
estimators for simultaneous equation problems should provide more reasonable and realistic
parameter estimates.

The use of alternative single-equation and system estimators demonstrated in this
analysis requires that the error terms for each equation in the system be independent and
identically distributed. Many growth and yield related simultaneous equations often involve
the use of observations that are made over time, or cross-sectional. In these cases the error
terms in each structural equation are likely to be autocorrelated, or the assumption of
homoskedasticity is frequently not met. Kmenta (1986, pp. 704-711) described procedures
for estimating simultaneous linear equation systems in which the error t¢ ems in individual
equations are heteroskedastic and/or autocorrelated. LeMay (1988, 1990) also described
similar techniques and showed several applications for systems of simultaneous linear
equations in forestry growth and yield studies. Gallant (1987 pp. 433-451) described

estimators that can be used for nonlinear systems where heteroskedasticity or serial
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correlation occurs. Although there is a substantial difference in theory between the static
and dynamic nonlinear systems of simultaneous equations, there is little difference in terms
of practical applications (Gallant 1987). If the correction for the error terms of the
equations is deemed necessary, the heteroskedasticity or serial correlation may be modelied
along the lines demonstrated in Gallant (1987) for nonlinear systems and in Kmenta (1986)
and LeMay (1990) for linear systems. The two-step transformation procedure as described
in Chapter 2 is used in this analysis. The necessary SAS code for fitting the system of three
simultaneous nonlinear equations using the T-SUR method is attached in Appendix 3. The
error terms of the equations are heteroskedastic for the tree height prediction equation
(8.1), heteroskedastic and serially correlated for the diameter increment equation (8.2), and
serially correlated for the height increment equation (8.3). Table 8-7 shows the resulting

fit statistics.

8.6 Summary

A system of three related nonlir.ear equations for predicting individual tree height,
periodic diameter growth, and periodic height growth is presented for white spruce (Picea
glauca (Moench) Voss) grown in boreal mixed-species stands in Alberta. Because of the
interdependent nature of the equations in the system and the significant cross-equation
correlation, alternative system estimation methods such as seemingly unrelated regression,
two- and three-stage least squares commonly used in econometrics were applied to estimate
the structural parameters simultaneously. Resulting fit statistics from system methods were
also compared to those obtained from ordinary least squares. While the appropriate system
methods are recommended for estimating parameters in interdependent systems of forestry

equations, they should not be used without some caution.
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Table 8-1. Summary statistics for white spruce tree and stand characteristics

e

Mean Minimum  Maximum Sud. dev.
Tree DBH (cm) 27.06 2.90 63.30 10.29
Tree height (i) 21.75 3.20 37.90 S5.94
Periodic diameter increment (cm) 1.94 0.00 10.50 1.59
Periodic height increment (m) 1.68 -0.82 8.6 1.38
Growth interval length (year) 8.94 2.30 18.90 8.94
Number of trees/ha-all species 1244.29 148 5580 754.24
Average DBH (cm)-all species 19.72 5.30 39.70 5.60
Basal area (m?/ha)-all species 39.09 11.55 83.87 9.39
Average height (m)-all species 21.22 7.90 31.70 3.88
Spruce number of trees/ha 753.07 5.00 4914.00 673.15
Spruce average diameter (cm) 20.60 5.70 54.90 6.47
Spruce basal area (m3/ha) 24.63 0.20 56.65 11.98
Spruce average height (m) 21.57 3.6U R170 4.25
Site productivity index (m) 16.14 8.22 51.28 2.39
Species composition 0.62 0.0062 1.00 0.26
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Table 8-2. The selection of the instrumental variables

Exogenous variable! V, v, V, V, Vo V, v, Vg Vy

V; Vivy

v, Vv, V,V,

Vs VaVy ViV, ViV,

V, VeV VLV, Vv Vv,

A VeV, VeV, ViV3 ViV, ViVg

Ve VeVi VeVa VgV VeV, VeVg ViV

A VoV, VoV, VoV, VoV, VoV, VoV, VoV,

A VeVi VeV, VgVy VeV, VgVo VVe ViV, ViV,

A VoVy VoV, VgV VeV, VoVe ViV VoV, VoV ViV,

'V,=D—tree diameter at breast height (cm), V,=BASUM-basal area per hectare (in?),
V3=SC—species composition, V,,=SPI—site productivity index, V. =BA—tree basal area (cm?),
Ve=AVED—average diameter for all species (cm), V,=D/AVED, Vz=Gl—growth interval

length (years), V,=TRHAAL—total number of trees per hectare.
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Table 8-3. Variance-covariance and correlation matrices of the errors from N2SLS!

Variance-covariance Correlation
H DI HI H DI HI
H 3.7898 0.0694 -0.2283 1.0000 0.0331 -0.1012
DI 1.1640 -0.1088 1.0000 -0.0871
HI 1.3424 1.0000

IN2SLS = nonlinear two-stage least squares with the instruments selected according to

Table 8-2.



Table 8-4. Parameter estimation for system of equations using NOLS and N2SLS
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Equation Parameter

Nonlirear ordinary least squares

Nonlinear two-stage least squares

Estimate Std. err. t-ratio p-value Estimate Std. err.  t-ratio  p-value

(8.1) a, 11.218036 1.55812 7.20 0.0001 11.482219 1.66568 6.89 0.0001
a, 0.089138 0.01041 8.56 0.0001 0.089565 0.01045 8.57 0.0001

ag 1.025947 0.30941 3.32 0.0009 1.626607 0.31208 3.29 0.0010

a4 0.8C7880 0.05063 15.96 0.0001 0.808372 0.05202 15.54 0.0001

ag  0.00293770 0.0004829 6.08 0.0001 0.00285163 0.0005078 5.62 0.0001

ag 0.056449 0.01753 3.22 0.0013 0.055628 0.01791 3.11 0.0019

a, 0.083916 0.0090415 9.28 0.0001 0.082115 0.0093184 8.81 0.0001

ag 2.262892 0.26566 8.52 0.0001 2.233268 0.26334 8.48 0.0001

aq 0.295026 0.10229 2.88 0.0040 0.286391 0.10004 2.86 0.0043

a0 -0.034489 0.01292 -2.67  0.0077 -0.034389 0.01271 -2.71 0.0069

(8.2) b, 0.048690 0.0039207 12.42 0.0001 0.048043 0.0039934 12.03 0.0001
b, -0.00018982 0.00004289 -4.43 0.0001 <0.00016105 0.00004554 -3.54 0.0004

b, -0.012564 0.0018746 -6.70 0.0001 -0.013129 0.0018931 -6.94 0.0001

b, -0.00047230 0.00009875 -4.78 0.0001 -0.00068193 0.0001124 -6.07 0.0001

bg  0.00409923 0.0014328 2.86 0.0043 0.00581368 0.0015516 3.75 0.0002

bg -0.00057139  0.0002204 -2.59  0.0096 -0.00044935 0.0002234 -2.01 0.0445

b, 0.015078 0.0039950 3.77 0.0002 0.00998818 0.0043096 2.32 0.0206

bg  0.00077937 0.0001467 5.31 0.0001 0.00092618 0.0001477 6.27 0.0001

(8.3) N 0.066664 0.0097843 6.81 0.0001 0.069450 0.01001 6.94 0.0001
¢, -0.00133895 0.0001965 -6.82 0.0001 -0.00138436 0.0002158 -6.42 0.0001

Cy 0.050542 0.0081085 6.23 0.0001 0.046988 0.0093336 5.03 0.0001

€4 0.186661 0.01032 18.08 0.0001 0.193588 0.01164 16.63 0.0001

g -0.128393 0.01296 -9.91 0.0001 -0.198155 0.03080 -6.43 0.0001

s -0.030134 0.0070864 -4.25 0.0001 -0.037298 0.0079266 -4.71 0.0001

¢, -0.00185662 0.0002187 -8.49 0.0001 -0.00190920 0.0002550 -7.49 0.0001

cg 0.587724 0.13541 4.34 0.0001 0.863626 0.17793 4.85 0.0001




Table 8-5. Parameter estimation for system of equations using N3SLS and T-SUR
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Sh——
Nonlinear three-stage least squares Nonlinear triangular-SUR
Equation Parameter

Estimate Std. err.  t-ratio  p-value Estimate Std. err.  t-ratio  p-value

(8.1) ay 11.172518 1.60629 6.96 0.0001 10.957086 1.51578 7.23 0.0001
a, 0.088737 0.01046 8.48 0.0001 0.088256 0.01040 8.48 0.0001

as 1.044479 0.30990 3.37 0.0008 1.046218 0.30780 3.40 0.0007

a, 0.816346 0.05125 15.93 0.0001 0.816017 0.05005 16.30 0.00¢"

ag  0.00296158 0.0004943 5.99 0.0001 0.00303570 0.0004728 6.42 0.000.

ag 0.054278 0.01761 3.08 0.0021 0.055087 0.01730 3.18 0.0015

a, 0.083506 0.0092649 9.01 0.0001 0.085021 0.0089932 9.45 0.0001

ag 2.212667 0.26328 8.40 0.0001 2.243809 0.26533 8.46 0.0001
a, 0.301613 0.10300 2.93 0.0035 0.310303 0.10500 2.96 0.0032
a;o -0.032374 0.01291 -2.51 0.0122 -0.632710 0.01308 -2.50 0.0125

(8.2) b, 0.048021 0.0039825 12.06 0.0001 0.047812 0.0038425 1244 0.0001
b, -0.00016160 0.00004542 -3.56 0.0004 -0.00018658 0.00004204 -4.44 0.0001

b,y -0.013137 0.0018866 -6.96 0.0001 -0.012258 0.0018327 -6.69 0.9001

b, -0.00068478 0.0001121 -6.11 0.0001 -0.00051681 0.00009618 -5.37 0.0001
bg  0.00583859 0.0015481 3.77 0.0002 0.00415442 0.0014085 2.95 0.0032

bg -0.00044465 0.0002227 -2.00 0.0461 -0.00050179 0.0002139 -2.35 0.0191
b,  0.00996592 0.0042986 2.32 0.0206 0.014100 0.0040028 3.52 0.0004
bgs  0.00092625 0.0001472 6.29 0.0001 0.00077972 0.0001464 5.33 0.0001
(8.3) <y 0.067373 0.0098981 6.81 0.0001 0.065396 0.0094511 6.92 0.0001
¢, -0.00130449 0.0002132 -6.12 0.0001 -0.00120439 0.0001902 -6.33 0.0001
C3 0.044512 0.0089701 4.96 0.0001 0.042037 0.0075224 5.59 0.0001
C4 0.192634 0.01178 16.36 0.0001 0.186384 0.01100 16.94 0.0001
Cs -0.197615 0.03107 -6.36 0.0001 -0.164002 0.01330 -12.33 0.0001
Cg -0.036827 0.0079810 4.61 0.0001 -0.033151 0.0073896 -4.49 0.0001
¢, -0.00184118 0.0002664 -6.91  0.0001 -0.00152457 0.0002581 -5.91 0.0001
Cg 0.847525 0.17933 4.73 0.0001 0.624462 0.14121 4.42 0.0001
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Table 8-6. Comparison of the fitting techniques for system of equations’

Equation Method R? RMSE MO MP MD
(8.1)
NOLS 0.8878 1.94671 21.75 22.04059  -0.0009486
N2SLS 0.8878 1.94674 21.75 22.04030  -0.0007576
N3SLS 0.8878 1.94687 21.75 22.05812  -0.0057314
T-SUR 0.8878 1.94688 21.75 22.05519  -0.0006030
(8.2)
NOLS 0.5587 1.07669 1.94 2.00599  -0.0313315
N2SLS 0.5569 1.07888 1.94 2.00527  -0.0292220
N3SLS 0.5568 1.07894 1.94 2.00564  -0.0293372
T-SUR 0.5586 1.07684 1.94 2.0072C¢  -0.0316797
(8.3)
NOLS 0.3325 1.14128 1.68 1.61499  -0.0248991
N2SLS 0.3121 1.15862 1.68 1.60327 0.0020513
N3SLS 0.3143 1.15670 1.68 1.59876 0.0112269
T-SUR 0.3289 1.14434 1.68 1.60700  -0.0031995

'Note: R%, RMSE, and MD are calculated according to equations (8.4), (8.5), and (8.6), MO

and MP are the observed and predicted mean values of the endogenous varizbles.
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Table 8-7. Parameter estimation for system of equations with generalized error structures

e
Nonlinear T-SUR estimation
Equation Parameter
Estimate Std. err. t-ratio p-value

(8.1) a; 10.104977 1.26368 8.00 0.0001
a, 0.070135 0.008262 8.49 0.0001

a3 1.734336 0.29229 5.93 0.0001

a, 0.796076 0.04629 17.20 0.0001

ag 0.00369014 0.0004478 8.24 0.0001

ag 0.056546 0.01735 3.26 0.0011

a, 0.091151 0.0076022 11.99 0.0001

ag 2.135057 0.20827 10.25 0.0001

aq 0.343421 0.09945 3.45 0.0006

ajo -0.024003 0.01108 -2.17 0.0304

8.2) b, 0.066885 0.0049340 13.56 0.0001
b, -0.00042963 0.00005349 -8.03 0.0001

by -0.022495 0.0021920 -10.26 0.0001

by -0.00072404 0.0001311 -5.52 0.0001

bg 0.017464 0.0022928 7.62 0.0001

b -0.00093153 0.0002623 -3.55 0.0004

b, 0.013584 0.0045312 3.00 0.0028

bg 0.0012556 0.0001513 8.30 0.0001

P 0.052055 0.03304 1.58 0.1154

(8.3) <3 0.048029 0.0098842 4.86 0.0001
Cy -0.00106107 0.00020%54 -5.07 0.0001

c3 0.045080 0.0077092 5.85 0.0001

€4 0.187962 0.01639 11.47 0.0001

cs -0.131929 0.01858 -7.10 0.0001
Ce -0.020676 0.01132 -1.83 0.0679

(& -0.00074692 0.0004239 -1.76 0.0783

Cg 0.185977 0.20701 0.90 0.3691

P 0.150496 0.02346 6.42 0.0001
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Chapter 9

General Discussion and Conclusions

In developing individual equations under the framework of an individual tree
distance-independent growth and yield model, this study emphasized 1) selection of the
appropriate base functions, 2) methods for incorporating other tree and stand characteristics
into the base functions, and 3) appropriate procedures for estimating parameters of the
equations. Simultaneous nonlinear fitting methodologies applied to a system of three related
nonlinear equations for predicting individual tree height, periodic diameter increment, and
period height increment represented an important step towards a more rational and realistic
approach for modelling interdependent systems of simultaneous equations frequently
encountered in growth and yield studies. The theoretical advantages for using simultaneous
methods are obvious, although in practical terms the gains for using such methods may not
be readily evident.

Growth and yield models for stand dynamics using data from permanent sample
plots with real growth series often consist of systems of compatible, interdependent, and
analytically related equations. Strong correlation and feedback mechanism among variables
that are used to describe growth and yield relationships have been recognized in many
growth and yield studies as the essential components for understanding stand development
processes. Application of simultaneous estimation captures important information about the
interdependent nature of the growth and yield relationships, and emphasizes the
simultaneously and jointly determined characteristics of stand development patterns.

The four objectives stated in Chapter 1 were accomplished in this study. Equations
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fer predicting individual tree height, periodic diameter increment, and periodic height
increment under the framework of an individual tree distance-independent growth and yield
model were deveioped. The effects of species composition, stand density, and site
productivity on tree growth and yield relationships have been evaluated. The interdependent
nature amcng the equations has been described and alternative statistical procedures were
applied for estimating the structural parameters of the system of equations simultaneously.
Comparison of the different estimation methods for nonlinear equations showed that the
triangular-seemingly unrelated regression procedure was the most appropriate for the system
of three nonlinear equations considered in this study. Comparison of the system methods
with the traditional single-equation based ordinary least squares techniques indicated
noticeable advantages for the system methods.

The methodological contributions of this study may be interpreted on several
different aspects:

1). Comparison of the nonlinear height-diameter functions under the heteroskedastic error
structure. Certain items must be noted if a nonlinear regression equation is to be
compared to the others. A simple method of finding appropriate weights using the
studentized residuals was shown to produce satisfactory results. This comparison also
provided guidance for the selection of the base function in developing the age-
independent individual tree height prediction model.

2). Developmens of a site productivity index for uneven-aged and mixed-species stands.
Methods for measuring site productivity have always been surrounded by controversy.
Traditional site index has been widely used in North America, yet it is often ignored that
site index only applies to even-aged and pure species stands. While the use of site
productivity index as determined by the dominant and codominant height-diameter

relationship is by no means the ultimate solution, it provides a simple and convenient
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index of site productivity for uneven-aged and mixed-species stands commonly found
in the boreal forest regions of Alberta.

3). Using an appropriately selected base function, and the method of parameter prediction,
a height prediction model that relates individual tree height to many other tree and
stand characteristics was formulated. This height prediction model is unique in that it
incorporates additional tree and stand level variables (including site, density, and species

compasition) to an extent that most of the previous models have not.

4). Development of periodic diameter increment and height increment models for selected
major tree species found in boreal mixed-species stands in Alberta. The use of the Box-
Lucas equation has apparently never been reported in any studies of growth and yield,
yet it poses many desirable properties that are typical of biclogical growth processes.

5). Use of simultaneous estitnation methods for fitting of three related nonlinear equations.
Resulting equations have been incorporated into the framework of an individual tree
distance-independent growth and yield model.

6). Since time series and cross-sectional data from permanent sample plots are used for
fitting individual equations or system of equations, parameter estimation methods under
the classical regression structure, where the error terms for individual equations are
independent and identically distributed, or the generalized regression structure, where
the error terms in individual equations are heteroskedastic and/or autocorrelated are
considered. Previous considerations of the error structure have concentrated on linear
equations. There has apparently been no reported study on the nonlinear system of
equations in which the error terms for individual equations may be heteroskedastic
and/or serially correlated.

The selection of an appropriate base function and the method of parameter

prediction were consistently used for developing individual equations in this analysis. The
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abundance of potential variables in growth and yield studies presents an often diverse and
confusing array of choices as to the appropriate equation forms. Because models developed
in this study are to be used for prediction purposes, additional efforts were put on the
mathematical properties and biological realism of the base functions. Attempts were made
to ensure that each equation developed in this study was "biologically” appropriate. Use of
the method of parameter prediction for developing height prediction models, periodic
diameter increment models, and periodic height increment models may not be statistically
most favourable. However, such a modelling procedure generally produces equations that
are biologically more defensible, while providing the flexibility for additional extensions and
some protection against purely statistical modelling of the data. Currently, with the
availability of various computer packages, fitting the statistically most favourable regression
lines to the existing data poses very few problems, yet they may be biologically less
meaningful.

The fitted coefficients from this study were combined with existing mortality and
volume functions for the simulation of growth and yield for boreal mixed-species stands.
Since the simulation processes involves fairly elaborate procedures in terms of simulation
strategies, computer programming, and the output lay-outs, and are beyond the scope of this
study, only one example of the resulting simulation for an un-thinned mixed spruce-aspen
stand is attached. Figure 9-1 shows the tabulated and the graphical forms for the growth
and yield of each species in the stand and the stand as a whole. Additional results
consistently showed that the height prediction function, the diameter increment model, and
the height increment model behaved well under various simulated stand conditions.
However, in a few cases the mortality functions substantially underestimated the mortality
rate of aspen trees, causing a noticeable overestimation for aspen volume in mixed-species

stands.
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It is recommended that another mortality study be conducted for aspen before

implementation of the models developed here are used for as an individual tree distance-
independent growth and yield projection system. Additional efforts on the evaluation of the
models may also be conducted using different data sets in order to detect any possible
abnormalities of the models under different conditions. There are numerous possibilities for
extensions and improvements to the present study. Nevertheless, the objectives of this study
were met and the methodological concems for developing and fitting systems of
simultaneous nonlinear equations in tree growth and yield studies were addressed. These
systems of models should be beneficial to the understanding of integrated stand

development processes and lead to better management of the forest resources.



*(489£/ 1K) JUSWIOU [ENULE UBSW SWINJOA — TR SUINJOA

(W) BY/oUM[OA — SUM[OA

"(;u) eYy/eaIe [eseq — eAIE [esed

() W31y 9an [e303 — WSRH

*(wo) $321) Y3 Jo Iajourerp a3eIsAe — IalSWeI(]

"BY]/S901) JO JBqUMU — AISU(

's1eaf ut a3e [e10) — I3y

‘uadse — pal ‘9onIds a)Iym — UIBIN

-9onuds a)ym Ioj ey/surals

000€ pue uadse o eyf/surals 00001 Jo Asudp puess fenruj *(0Z=14S) s poos e

uo puejs uadse-aonids paxTu B 10 soTureudp puels paje[nurts ay3 jo s[durexs uy ‘1-6 amary



] | Density | Diameter |  Height | BasalArea |  Volume | Volume Mai
. Age DenAw' DenSw' DiaAw' DiaSw' HtAw' HiSw: BaAw'  BaSw' VolAw:  VelSw VmaiAw' VmaiSw
_ 20 10000, 3000 6.6 15 70. 2.1 35.4. 05 125 1 6.2 00
40 4452, 2286 87 26 128 42 218, 12, 165, 3 41 0.1
60 2574 1802 113 43 173 74 2711 26 206 1 34 02
80 1652. 1418 142 66 205 109 214 49 240 28 30 03
. 100 1107, 101 174 96, 231, 144 213 19 260 56 26 0.6
1200 752 841 207 129  25% 176 261 111 264 91 22 08
__ 1400 509 632 243 167, 266 206 241 138 254 128 18 09
160 338 467 2719 207 _219- 235 212. 157 230 159 1.4 10
__180: 219, 338 318 243 288 261 178, 165, 198, 180, L1 10
| 2000 137, 240 361 294 206 286 143 163 151 189 08 09
| Numberha Dbh Height
T 10000 § 40.0 30.0 1
SWJCE 300 209
5000 A 20.0 ‘
10.0 10.0
— 04 0.0 e ——y 0.0
o 0 50 100 150 200 [ 50 100 150 200 [ 50 160 1so 200
e Agg Age Ag®
j Basal Area Volume Volume MAI
[ 7771 40.01 300 8.0
p——-———% 30.0 200 6.0
20.0 ) "O.L'—i\—_—_
b 0.0 s] —r————t 0.0
e [ 50 100 150 200 0 50 100 150 200 [ 50 100 150 200
Age Age Age
T Height Taper -- covm Volume / tree
T 1 30.04 2.6 13
o 20.0 "5t 1.0 LI
S— 1.0 z‘
10.0 0.5 0.3
0.0 0.0 ~ 00 —————
0.0 10.0 200 30.0 40.0 Q.9 10.0 20.0 300 400 0.6 16.0 200 300 40.0
e Dbh Dbh Dot




197
Appendices

Appendix 1. Solutions for equations {6.2) and {6.3;

Starting from the differential equations that govern the diameter increment

dA (D)
(6.2) 3D

--0,A (D)

(6.3)  -g,a(m)-0,0,

For simplicity, A(D) is written as A. Solving equation (6.2) first by multiplying dD/A on

both sides of the equation
(6.4a) R._9.ap
A
The integration of equation (6.4a) gives
A 4da D
(5.5&) fA(O)T elfo dpD
that is
A
Assuming A(0)=1, equation (6.6a) can be rewritten to

(6.7a) A=g %P

Substituting equation (6.7a) into (6.3) to get

(6.8a) ‘f‘%-ele‘“’—ezo_,

Rearrange equation (6.8a) into
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(6.9a) 2%‘+92Dl-ele‘°1°

Mathematically, equation (6.9a) is a first-order, linear, non-homogeneous ordinary differential

equation problem with the general form of

(6.10a) %H’(x)y-Q(x)
If the initial condition of the equation is specified by

(6.11a) Yy (x3) =y,

Using the method of "variation of coefficients” in ordinary differential equations, the

solution formula for (6.10a) is

fxp(s)ds

- x “plu) du
(6.12a) y(x)=-e ' [fx,,Q(S) ef"°p

ds+y,]

Applying this formula to equation (6.9a) gives

D,-e Sy esas [ f QDOI N A P T 0]
- 820 [elfope -olseezsdsl
-6,e -0:D foD e (88541

61 e ~-8,0

9,26,

6,
02 '91

- (6,-8,)D_

[e 1]

- -6
[e BLD_e ZD]

which is equal to
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8,

(e -9,D_ e -e,n)
1 ‘92

D=

as shown in (6.4).

Following above procedure, if 6, =0, in (6.3), the diameter increment equation can

be c¢btained as

D;=0,De %"
If in (6.6a) A(0) is assumed as A(0)=k, where k is any constant, the solution for the

differential equations provides a diameter increment equation expressed by

el 7 ‘°2D -OID
D, kel_a2 (e e )

which can be considered as a more generalized form of equation (6.4).
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Appendix 2. SAS code for fitting diameter increment model 6.7)

*Reqmest the PROC MODEL procedure on the input diameter increment data DINC using
the Gauss-Newton method;
PROC MODEL DATA=DINC METHOD=GAUSS;

*Set the initial values, A1-A10 are parameters to be estimated,AR1 is the autoregressive

parameter;
PARMS A1-A10 AR1;

*Calculate A and B as defined in (6.8) and (6.9);
A=A1+A2*BASUM+A3*SC+A4*H+AS5*D/AVED +A6*SPI;
B=A7+A8*TRHAAL**(1/2);

*Compute the predicted diameter increment DI without accounting the error structure and

assign it to DIHAT, GI is the growth interval length;
DIHAT=GI*(A/(A-B))*EXP(-B*D)-EXP(-A*D);
*Assign to DI the predicted value DIHAT plus the autoregressive parameter times the lagged
error process, calculated as the 1st lag of DI minus DIHAT;
DI=DIHAT+AR1*ZLAG1(DI-DIHAT);
*Fit the DI equation with the assigned weights and output among other statistics, the
Durbin-Watson statistic, and diagnostics for multicollinearity;
FIT DI / DW COLLIN;
_WEIGHT_=1/D**2;

RUN;



201
Appendix 3. SAS code for fiting system of equations with generalized errors

*Request the PROC MODEL on input data SIMDADA using the Gauss-Newton method;
PROC MODEL DATA=SIMDATA METHOD=GAUSS;

*Set the initial values, A1-A10, B1-B8 are parameters to be estimated, RHO1 and RHO2 are

the autoregressive parameters; .

PARMS A1-A10 B1-B8 RHO1 C1-C8 RHOZ2;

*Calculate the parameters as defined in (8.1), (8.2), and (8.3) 3
F1=A1*(1-EXP(-A2*BASUM)) +A3*SC+A4*SPI+AS5*BA+A6*AVED;
F2=A7;
F3=A8+A9*D/AVED+A10*SPI;
A=A1+A2*BASUM+A3*SC+A4*H+A5*D/AVED +A6*SPI;
B=A7+A8*TRHAAL**(1/2);
C=C1+C2*BASUM +C3*D/AVED;
D=C4+C5*DI/GI+C6*SC+C7*D+C8/SPI;

*Assign the weights to observations and computer the dependent variables according to the

appropriately identified error structures;

HTW=HT/(DBH**(1/2));
DBHINCW =DBHINC/DBH;
HTW=(1.3+F1*(1-EXP(-F2*DBH))**F3) *(1/DBH**(1/2));
DIHAT=GI*(A/(A-B))*EXP(-B*D)-EXP(-A*D);
DBHINCW=(DIHAT+RHO1*ZLAG1(DBHINCW-DIHAT))*(1/DBH);
HIHAT=GI*(C/(C-D))*(EXP(-D*HT)-EXP(-C*HT));
HTINC=HIHAT+RHO2*ZLAG1(HTINC-HIHAT);

*Fit the height prediction model, the periodic diameter increment model, and the periodic
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height increment model simultaneously using the T-SUR procedure, output among other

statistics, the Durbin-Watson statistic, and diagnostics for multicollinearity;
FIT HTW DBHINCW HTINC /

OUT=RESULT OUTRESID OUTACTUAL OUTPREDICT SUR DW COLLIN;
RUN;



