
University of Alberta

An ontology-driven concept-based information retrieveal approach for
Web documents

by

Zhan Li

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Department of Electrical and Computer Engineering

©Zhan Li
Fall 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Marek Reformat, Electrical and Computer Engineering Department

Vladik Kreinovich, Department of Computer Science, University of Texas at El Paso

Jozef Szymanski, Civil and Environmental Engineering Department

Witold Pedrycz, Electrical and Computer Engineering Department

Petr Musilek, Electrical and Computer Engineering Department

Vicky H Zhao, Electrical and Computer Engineering Department

Abstract

Building computer agents that can utilize the meanings in the text of Web doc-

uments is a promising extension of current search technology. Concept-based

information retrieval applies “intelligent” agents to identify Web documents

that match user queries. A new concept-based information retrieval frame-

work, Hybrid Ontology-based Textual Information Retrieval (HOTIR), is in-

troduced in this thesis. HOTIR accepts conventional keyword-based queries,

translates them into concept-based queries, enriches definitions of concepts

with supplementary knowledge from a knowledge base, and ranks documents

by aggregating “equivalent” concepts identified in them. The concept-based

queries in HOTIR are organized in a hierarchy of concepts (HofC) and defini-

tions of concepts are added from a knowledge base to enhance their meanings.

The knowledge base is a modified ontology (ModOnt) that can enrich the

HofC with concept definitions in the form of related-concepts, terms, their

importance values, and their relations. The ModOnt relies on an adaptive

assignment of term importance (AATI) scheme that continuously updates the

importance of terms/concepts using Web documents. The identified concepts

in a Web document that match those in the HofC are evaluated using ordered

weighted averaging (OWA) operators, and documents are ranked according to

the degree to which they satisfy the HofC. The case studies and experiments

presented in the thesis are designed to validate the performance of HOTIR.

Contents

1 Introduction 1

1.1 Information on the Web . 1

1.2 Web-based information retrieval 2

1.3 Motivation . 4

1.4 Goals and approaches . 5

1.5 Thesis contributions . 6

1.6 Thesis structure . 10

2 Background and related work 12

2.1 Background . 12

2.1.1 Information retrieval 12

2.1.2 Semantic Web and ontology 18

2.1.3 Ordered weighted averaging (OWA) operators 20

2.1.4 Hierarchy of concepts (HofC) 24

2.1.5 Text categorization . 25

2.2 Related work . 29

2.2.1 Defining concepts with text categorization classifiers . . 29

2.2.2 Defining concepts in concept structures 31

3 Term importance retrieving scheme 39

3.1 Adaptive assignment of term importance (AATI) 40

3.1.1 Concept description . 40

3.1.2 AATI: relations between TW and PV 41

3.1.3 AATI: the solution and its properties 43

3.2 Validation of the AATI scheme 46

3.2.1 Evaluation metrics . 47

3.2.2 Datasets . 47

3.2.3 Basic experiments . 48

3.2.4 Classification experiments 50

3.2.5 AATI training phase 51

3.2.6 Comparison with SVM 52

3.2.7 Conclusion . 56

4 Hybrid ontology-based textual informaton retrieval (HOTIR):

Methodology 58

4.1 Overview of HOTIR . 58

4.2 Knowledge management (KMgmt) component 61

4.2.1 Ontology and modified ontology (ModOnt) 62

4.2.2 AATI scheme for term importance 65

4.2.3 Other computer agents in component KMgmt 66

4.3 The Query processing (QryProc) component 69

4.3.1 HofC as query representation 70

4.3.2 Building and expanding HofC 73

4.4 Evaluation (Eval) component 74

4.4.1 Satisfaction, importance and aggregation weights . . . 76

4.4.2 Linguistic quantifier 76

4.4.3 Aggregation of satisfactions of datatype attributes in a

single concept . 77

4.4.4 Aggregation of satisfactions of datatype attributes and

concepts . 78

4.4.5 Satisfaction of HofC 79

4.5 Summary . 79

5 HOTIR: Case study 83

5.1 Building and expanding HofC-based query 83

5.2 Importance of terms in KMgmt 87

5.3 Evaluation by component Eval 87

5.3.1 Case queryA(most) . 87

5.3.2 Case queryA(some) . 93

5.3.3 Case queryB(most) . 98

5.3.4 Case queryB(some) . 103

5.4 Conclusion . 107

6 HOTIR: Evaluation 109

6.1 Overview . 109

6.2 Required knowledge base . 110

6.3 MetricsExp setup . 110

6.3.1 Dataset . 110

6.3.2 Procedure . 111

6.3.3 Evaluation methodology 112

6.4 HumanExp setup . 113

6.4.1 Objective . 113

6.4.2 Procedure . 114

6.4.3 Evaluation methodology 115

6.5 Experiment results . 115

6.5.1 Query A . 115

6.5.2 Query B . 120

6.5.3 Query C . 124

6.5.4 Query D . 129

6.5.5 Query E . 134

6.5.6 Query F . 138

6.6 Conclusions . 141

7 Conclusion and futurework 145

7.1 Conclusion . 145

7.2 Future work . 148

Bibliography 150

List of Figures

1.1 Structured data and unstructured data 2

1.2 A simple structure of Search Engine (SE) 4

1.3 Components in the proposed model 7

1.4 The definition of concept Sports 9

2.1 An ontology example by Progete 21

2.2 A example of a simple HofC 25

3.1 Interactions between TW and PV 40

3.2 Changing of the two different TW s 49

3.3 TW change of term “Manchester United” 51

3.4 F-Measure for a training phase of AATI-based classifier 52

4.1 The basic procedures in HOTIR 59

4.2 Concepts and terms . 60

4.3 Component KMgmt component in HOTIR system 61

4.4 A simple ontology . 63

4.5 Modules in the crawler . 66

4.6 An example of annotation in a document 68

4.7 Component QryProc in HOTIR 69

4.8 Examples of Applying Root Concept(RC) 71

4.9 Component Eval in HOTIR system 75

4.10 Linguistic quantifiers . 77

4.11 An HofC-based query . 79

4.12 HOTIR overview . 80

5.1 Query A. 83

5.2 Query B. 84

5.3 Constructing Query A . 85

5.4 Constructing Query B . 86

5.5 Query A in case with queryA(some) and case with queryA(some) 88

5.6 Query B in case with queryB(most) and case with queryB(some) 99

6.1 Top 250 web documents with Query A 116

6.2 ROC curve based with Query A 117

6.3 Rankings in HumanExp with Query A 118

6.4 Top 250 web documents with Query B 122

6.5 ROC curve with Query B . 122

6.6 Rankings in HumanExp with Query B 123

6.7 Top 250 web documents with Query C 126

6.8 ROC curve with Query C . 127

6.9 Rankings in HumanExp with Query C 128

6.10 Top 250 web documents with Query D 131

6.11 ROC curve with Query D . 132

6.12 Rankings in HumanExp with Query D 133

6.13 Top 250 web documents with Query E 136

6.14 ROC curve with Query E . 136

6.15 Rankings in HumanExp with Query E 137

6.16 Top 500 documents with Query F 140

6.17 ROC curve with Query F . 141

List of Tables

2.1 Term weighting scheme . 16

3.1 Results for SVM and AATI models trained with BBCSetTR . 54

3.2 Results for SVM and AATI models trained with CNNSet . . 54

3.3 Results for SVM and AATI models trained with CBCSetTR . 54

3.4 Results for AATI model trained using CBCSetTR at first, and

“updated” with BBCSetTR 55

5.1 Term frequencies in documents 84

5.2 Case study design . 87

5.3 The results of cases . 107

6.1 Confusion matrix . 113

6.2 Summary of HumanExp with Query A 119

6.3 Top 10 documents by the three approaches with Query A . . 121

6.4 Summary of HumanExp with Query B 124

6.5 Top 10 documents by three approaches with Query B in Hu-

manExp . 125

6.6 Summary of HumanExp with Query C 129

6.7 Top 10 documents by three approaches with Query C in Hu-

manExp . 130

6.8 Summary of HumanExp with Query D 134

6.9 Top 10 documents by three approaches with Query D in Hu-

manExp . 135

6.10 Summary of HumanExp with Query E 138

6.11 Top 10 documents by the approaches with Query E in HumanExp139

Chapter 1

Introduction

1.1 Information on the Web

The World Wide Web (WWW) is currently the largest information repository

in the world. Based on Pierre’s study [1], almost 1.5 million documents are

added to the Web every day. The importance of the WWW as a domain of

collected information and knowledge grows constantly. However, discovering

useful information on the Web is challenging.

There are multiple reasons for that challenge. First, the primary markup

language used for representing documents on the Web, HTML (Hyper Text

Markup Language), is designed to present unstructured data in a structured

format; this complicates automatic processing activities. In HTML, structured

formats are built by using tags to define different document sections, such as

headings, titles, paragraphs, lists, and so on, which helps human beings to

read. However, there are few tags that provide meanings of the text. For

example, for the term “Math101” in Fig. 1.1b, there is no tag indicating that

this is a course name. Though humans can guess it is a course name, computer

agents can not. This is an example of unstructured data. A database is an

example of structured data; each piece of data in a database is stored in

a specific field. Handling unstructured data effectively and automatically is

an attractive research topic. In Fig. 1.1, the same amount of information

is presented in the database table (structured data) as in the HTML-based

Web document (unstructured data). Computer agents can utilize information

presented in a table (Fig. 1.1a) much more easily than information presented

in a Web document (Fig. 1.1b).

A second reason for the challenge to find useful information on the Web is

the variable quality of Web documents. Millions of people “post” documents

1

First Name

Smith

Grey

Last Name

Alice

John

ScottJerry

StudentID

10001

10002

10003

Class Name

Math101

Math101

Math101

(a) Structured data (b) Unstructured data

Figure 1.1: Structured data and unstructured data

on the WWW; some of them are experts, some are not. Some people use the

WWW to share ideas and knowledge; some are there just for fun. The cost of

putting a document on the WWW is so small that it is rarely a consideration.

The variable quality of Web documents makes it difficult for computer agents

to automatically retrieve useful information from the Web.

A third factor that impacts the organization of data on the Web is the large

number of Web documents that can be seen as relevant to a specific search cri-

terion. In most cases, the search criterion is a simple query, and the matched

Web documents are thousands in number. For example, if we use the key-

words “Semantic Web” to query the Web using the most popular search engine

Google, the number of relevant documents is 8,020,0001.

These are some of the elements that challenge the “discovery” of knowledge

on the Web. Therefore, the necessity of applying information retrieval (IR)

techniques to the massive amount of information on the Web is rapidly grow-

ing.

1.2 Web-based information retrieval

Information retrieval (IR) is a research topic dedicated to the extraction of

useful information from unstructured textual data. The need for efficient IR

methods is so overwhelming that the so called “information explosion” should

be replaced with the more accurate term “data explosion.”

The first step of an information retrieval-based system is to accept a query from

a user. This query is a statement describing the user’s need for information.

Because documents in the repository match the query with different degrees of

relevance, information retrieval tools rank documents based on how well they

match the query.

Web-based information retrieval applications are called search engines. Most

1The search is performed on April, 2010.

2

engines use either taxonomies built for preset categories – Yahoo, or keyword-

matching scheme – Google.

Taxonomy is a hierarchical structure built for classification purposes. In the

taxonomy-based approaches, Web documents are manually classified into tax-

onomies. Because the documents are categorized based on the knowledge

embedded in them, users are able to find documents relevant to topics of

interest. The major disadvantage of this approach is the extensive human ef-

fort required to perform categorization. The conflict between the constantly

increasing number of Web documents and the limits of human resources re-

quires substantial improvements in taxonomy-building approaches. Besides, a

user wanting to find an interesting document in a specific category has to look

among thousands of items in similar categories.

“Keyword matching” is the most popular approach used in current search

engines. Its basic structure is presented in Figure 1.2. A crawler, also called

a spider or a robot, is a program or automated script which “browses the

WWW in a methodical and automated manner” [2]. A crawler will grab

Web documents from remote sites and copy them into a local repository for

further processing, which includes parsing and indexing of the documents plus

transferring them from unstructured to structured formats (tables or entries

in a database). Parsing is the process of analyzing a text, and indexing is used

to optimize the performance of finding relevant documents based on a query.

The most widely used index in Web search engines is called inverted index [3].

After Web documents are collected and processed, users are able to retrieve

documents based on queries, which are normally lists of keywords. There are

two main advantages of this approach:

• A Web search engine does not require extensive human labor: collecting

documents and keeping them up to date requires minimum effort;

• A query can comprise one to several keywords; this is convenient from a

user’s perspective.

Though keyword-matching scheme is applied by most of the commercial infor-

mation retrieval models [4], there is a critical disadvantage to this approach:

many words used as keywords have different meanings in different contexts.

In addition, users tend to use very few keywords (three or less) in their search

queries [5, 6]; this makes it difficult for computers to understand the contexts

of the requests.

3

Figure 1.2: A simple structure of Search Engine (SE)

1.3 Motivation

Keyword-based information retrieval approaches provide results, but quite of-

ten the results are outside the context of user requirements. Information re-

trieval that considers the meanings of keywords is a promising modification.

Currently agents of keyword-based information retrieval tools read presented

texts from the Web but can not understand the underlying meanings of the

texts. Tim Berners-Lee originally expressed the vision of the Web in the next

generation as follows [7]:

I have a dream for the Web [in which computers] become capable of analyzing

all the data on the Web, the content, links, and transactions between people

and computers. ... the day-to-day mechanisms of trade, bureaucracy, and our

daily lives will be handled by machines talking to machines. The “intelligent

agents” people have touted for ages will finally materialize.

Building computer agents that can discover the meanings of texts in the Web

documents is an attractive area of investigation. The application of the “intel-

ligent agents” to Web information retrieval is called concept-based information

retrieval.

In concept-based information retrieval, terms (words or phrases) that can be

identified directly from texts are mapping into concepts, which are abstract

mental representations or meanings of the terms. Unlike the keyword-matching

scheme, where documents are regarded as lists of terms, the concept-matching

scheme takes documents as lists of concepts. The process to evaluate the

4

relevance of a document and a query is based on the identification of the

concepts in the document.

From a cognitive point of view, each term, i.e., a word or phrase, is related to a

concept. In real life, a person links the information in a document to a specific

topic by recognizing multiple terms that describe concepts associated with this

topic. The terms that appear in a document “activate” terms known to the

person that are related to the topic’s concepts. In such a way, a net of relevant

words is activated. The presence of those words in the document determines

what the document is about. The more words that are activated, the more

confidence the person has that the document contains a specific concept.

Concept-based information retrieval is a new vision. Documents are retrieved

through meanings instead of keywords. Concept-based IR models are more

“intelligent” than keyword-based models. In concept-based models, search

agents try to “understand” the meanings in query texts and attempt to retrieve

documents relevant to these meanings.

1.4 Goals and approaches

In this work we attempt to create a complete concept-based information re-

trieval framework. We first define concepts in a query, then identify these

concepts in Web documents.

Concepts are abstract and can not be recognized directly from texts. Concepts

must be translated into a set of concrete objects, that is, terms. Thus the

identification of an abstract concept becomes the identification of terms in a

Web document. The more complete and accurate the definitions of concepts

are in a query, the more likely they will be identified in Web documents. We

approached this problem as follows:

1. A knowledge base (KB) that contains definitions of concepts used to

enrich concepts in queries provided by users was built. In our framework,

the knowledge base was built based on an ontology (section 2.1.2), that

is, a specification of a conceptualization. An ontology contains sets of

concepts, terms and their relations to a domain. It provides an organized

way to present vocabulary in a specific domain. With a novel adaptive

assignment of term importance (AATI) scheme (section 3.1), each piece

of knowledge in the knowledge base was assigned values according to its

importance. The definitions of a concept includes: (1) terms that define

5

the concept and the importance of each term in defining the concept2;

and (2) related-concepts and their importance in defining the primary

concept 3.

2. The form of the query is crucial. In a concept-based system, a query must

be processed as an organization of concepts. Here the HofC (hierarchy of

concepts, section 2.1.4) is applied to represent queries. A HofC contains

not only a list of aimed concepts but also their relations. A hierarchical

structure presents concepts more meaningful than a flat structure of

conventional queries. Moreover, the HofC-based query can be expanded

smoothly with the knowledge stored in the knowledge base which is also

in a hierarchical structure.

3. The way to evaluate how well a document matches a query is not straight-

forward. Matched terms in the document provide pieces of information

to satisfy definitions of concepts in the query. The satisfaction of the

query is the aggregation of the satisfaction of concepts in the query. The

hierarchical structure makes queries more complicated, which in turn

makes the aggregation more complicated. Ordered weighted averaging

(OWA) operators (section 2.1.3) are applied to handle this difficulty. The

output of the evaluation is a float number that represents the score of

the document. Documents are ranked according to their scores.

1.5 Thesis contributions

We designed and evaluated a new concept-based information retrieval method-

ology, called Hybrid Ontology-based Textual Information Retrieval (HOTIR).

HOTIR is comprised of three components as shown in Fig 1.3: a knowl-

edge management (KMgmt) component that manages the knowledge base;

a query processing(QryProc) component that processes queries; and an evalu-

ation (Eval) component that evaluates (i.e., ranks) documents, respectively. In

HOTIR, when a query enters, QryProc first translates a keyword-based query

into a concept-based query. Then KMgmt provides supplementary knowledge

to enrich the query. Finally, Eval ranks Web documents according to the

expanded query.

To our knowledge, HOTIR is the only information retrieval model in which

both the definitions and the identifications of concepts are in hierarchical struc-

tures. That is, hierarchical information is utilized in all three components

2In the knowledge base of the proposed framework, it is possible that every concept has
concrete terms to define it. See section 4.2.1 for more details

3The related-concept is the concept that connects to the current concept.

6

QryProc

KMgmt

Eval

Query

Web documents

Figure 1.3: Components in the proposed model

(KMgmt, QryProc and Eval).

A hierarchy makes a knowledge base more efficient: the definitions of concepts

can be extracted easily to enrich queries. For example, Fig. 1.4 illustrates how

the concept Sports is defined with and without the help of hierarchies4.

• In Fig. 1.4a, the concept Sports is defined by two related-concepts: Ball

and Track and field. Concept Ball is defined by two related concepts:

Soccer and Basketball. Concept Track and field is defined by two related

concepts: Race and Jump.

• In Fig. 1.4b, the concept Sports is defined by six related-concepts:Ball,

Track and field, Soccer, Basketball, Race and Jump.

Although each example includes the same number of concepts, the knowledge

base shown in Fig. 1.4a, defines not only the concept Sports but also concepts

Ball and Track and field, while the knowledge base shown in Fig. 1.4b only

defines Sports. Therefore, if a query is provided to retrieve information about

the concept Ball, the knowledge about Ball in the knowledge base in Fig. 1.4a

can be directly utilized; while the knowledge about Ball in the knowledge base

in Fig. 1.4b cannot.

4In Fig. 1.4, we list only concepts and assume that the concrete values (terms) defining
them are embedded.

7

Second, the hierarchy makes query expansion smoother. Because the knowl-

edge base contains hierarchies, it is necessary that queries are in hierarchical

structures as well. This ensures that the concepts in queries can be naturally

expanded with supplementary knowledge from the knowledge base.

Finally, a hierarchy provides chances to create more flexible criteria to re-

trieve required information. For example, after a query that contains the

concept Sports is expanded with the two different knowledge bases presented

in Fig. 1.4, it is translated into two queries: q1, which takes information from

Fig. 1.4a; and q2, which takes information from Fig. 1.4b. Let us assume

the single concepts listed in the queries (Soccer, Basketball etc.) are already

identified in document d1. To evaluate how well a document matches a query,

we have to aggregate identifications of the single concepts in the document.

Because the hierarchical structures in the two queries are different, the process

of aggregation is different:

• q1 includes three aggregations:

1. an aggregation of the concepts Soccer and Basketball that con-

tributes to the identification of the concept Ball ;

2. an aggregation of the concepts Race and Jump that contributes to

the identification of the concept Track and field ;

3. an aggregation of the concepts Ball and Track and filed that con-

tributes to an identification of the concept Sports;

• q2 includes only one aggregation: an aggregation of all single concepts.

Compared with a “flat” query (like q2), the evaluation of a hierarchical query

(like q1) is more difficult. However, the hierarchy, integrated with linguistic

quantifiers, expands the possibilities of queries to express more complicated

requirements. Examples of linguistic quantifiers are some, most and all. In

OWA operators (section 2.1.3), which are applied to evaluate documents in

HOTIR, linguistic quantifiers are modelled. For instance, a query can be

defined as: all information about Soccer and Basketball in Ball ; some in-

formation about Race and Jump in Track and field ; and most information

about Ball and Track and field in Sports.

In summary, our first contribution is the design and construction of a new

concept-based information retrieval framework – HOTIR. HOTIR takes queries

from users, communicates with the knowledge base, expands HofC-based queries

(section 2.1.4), parses and analyzes Web documents (in HTML format) through

semantic annotation (section 4.2.3), and ranks documents by integrating OWA

operators (section 2.1.3). We have created a complete concept-based informa-

tion retrieval solution.

8

Track and field

Sports

Ball

JumpRaceBasketballSoccer

(a) With hierarchy

Track and field

Sports

Ball

JumpRaceBasketballSoccer

(b) Without hierarchy

Figure 1.4: The definition of concept Sports

Our second contribution is building the knowledge base for HOTIR, called

ModOnt(section 4.2.1), based on the ontology. The ModOnt provides sup-

plementary knowledge to queries, defining concept or class5 differently than

the classic ontology (discussed in section 4.2.1). The ontology alone was not

a sufficient knowledge base for HOTIR because concepts and terms did not

contain importance information. Therefore, a new AATI scheme was designed

and implemented to handle this problem. The ontology provides lists of con-

cepts, relations and terms that directly define concepts, and the importance of

terms as assigned by the AATI which in turn contributes to the importance of

concepts. Thus, the ModOnt is capable of presenting complete definitions of

concepts. The AATI continuously updates the importance of terms with “un-

known” Web documents, making it appropriate for Web applications. Because

changing knowledge causes problems for Web-based applications, important

terms often become obsolete; for instance, “DOS” in the area of IT. Unlike

other approaches, the Web documents the AATI uses for updating importance

values have no preset information of the documents; this saves human labor.

A third contribution is implementation of HofCs in query representation. A

HofC is capable of storing more information than a conventional query as it

includes hierarchies. A query-enrichment process is implemented to expand

the HofC with knowledge from the ModOnt. The hierarchy is important for

defining or identifying concepts, but it introduces troubles to all processes

5Concept or class is a major component in the ModOnt or ontology.

9

in information retrieval models, such as query construction, query expansion,

matching evaluation, and so on. We successfully utilized hierarchy information

in HOTIRS to retrieve relevant documents.

The fourth contribution we make to the field is utilizing OWA operators (sec-

tion 2.1.3) to rank Web documents according to HofC-based queries. OWA

operators aggregate pieces of information in documents to satisfy definitions

of concepts in queries, which supports different linguistic quantifiers as in-

structions and hierarchical structures. OWA increases the expressiveness of

queries.

1.6 Thesis structure

The thesis is organized as follows:

Chapter 2 contains two sections. The first section provides necessary back-

ground knowledge for the work; it includes information retrieval, ontology,

ordered weighted averaging (OWA) operators, hierarchy of concepts (HofC),

and text categorization. The second section discusses some existing concept-

based information retrieval tools.

Chapter 3 introduces a self-adaptive weighting scheme called AATI and presents

its validations.

Chapter 4 introduces the methodology of the work. There are three agents in

the framework. The KMgmt agent manages the knowledge base, integrating

the ontology with AATI. The QryProc agent translates input queries into

HofC-based queries and expands HofC-based queries with the knowledge base.

The Eval agent ranks documents according to how well they match a query.

Chapter 5 presents case studies that demonstrate how HOTIR ranks docu-

ments based on the identifications of concepts; two documents are scored by

HOTIR with two queries. The step-by-step calculations in the process expose

the details involved in evaluation.

Chapter 6 provides experiments to verify HOTIR. The experiments are in

two series. In the first series of the experiments, HOTIR-based approaches

and two additional methods rank Web documents in the local repository with

six queries. The performances are evaluated by calculating retrieved relevant

documents. In the second series of the experiments, five queries are used to

compare HOTIR-based approaches with Google. The performance of each

approach is evaluated by comparing the ranking of documents with rankings

generated by five human experts.

10

In chapter 7, conclusions derived from the work in this thesis are presented

and future projects are suggested.

11

Chapter 2

Background and related work

2.1 Background

The topics presented in this chapter provide an introduction to the thesis. In-

formation retrieval (IR) (section 2.1.1) is the main target of our investigation.

We aim to build a model for information retrieval that can deal with the data

explosion on the Web. The ontology (section 2.1.2) is the knowledge base from

which knowledge must be retrieved. It is comprised of sets of concepts and

their relations. Ordered weighted averaging operators (OWA) (section 2.1.3)

aggregate pieces of information under linguistic instructions. The hierarchy

of concepts (HofC) (section 2.1.4) presents queries in hierarchical structures

that can assist information retrieval. Text categorization, introduced in sec-

tion 2.1.5, is used to test the adaptive assignment of term importance (AATI)

scheme (chapter 3). Related work is described in section 2.2.

2.1.1 Information retrieval

Information retrieval (IR) extracts useful information out of unstructured data

which are mainly in the form of textual documents. Information retrieval

follows the acceptance of a query from a user; a query is a statement describing

information needs. Some documents in the information repository match the

query but with different degrees of relevance. Information retrieval models

score documents on how well they match the query, and rank them according

to the scores.

Information retrieval approaches can be categorized into three types: boolean,

vector space, and probabilistic.

12

The boolean approach to information retrieval

Queries are the key element of the Boolean approach. A query is a boolean

combination of terms. With popular operators like AND, OR, and NOT, the

query can be in the form of “t1 AND t2,” “t1 OR t2,”, “t1 NOT t2,” and so on.

For the query “t1 AND t2,” a document will be retrieved only when it contains

both the term “t1” and “t2”. For the query “t1 OR t2,” a document will be

retrieved only when it contains either term “t1” or “t2” or both terms. For

the query “t1 NOT t2,” a document will be retrieved only when it contains

the term “t1” and not the term “t2”. In the evaluation of the relationship

between query and document, there are only two possibilities (boolean values)

for each document, satisfied or not-satisfied, according to how the query has

been dealt with.

Although the classical boolean approach is straightforward, users may still

experience difficulties in constructing queries [8], and the strict “yes” or “no”

outcome of the retrieved documents cause issues in real world problems.

Salton proposed a system as an extension of the classical boolean approach,

which extended queries with the help of statistical results out of documents

themselves [9]. After the normal preprocessing, like stemming and removal of

the stopping words, Salton obtained a set of terms which were ORed together.

Then, Salton looked for pairs (and triples) of the terms that occurred in the

multiple documents. Since two or three terms might occur in a document by

chance, Salton used a formula for pair correlation to determine if the two or

three terms co-occurred more frequently than chance. If the two (a pair) or

three (a triple) of the terms had the computed correlation over a predefined

threshold, they were grouped with a boolean AND. For instance, if two terms

ti and tj were regarded as a pair, i.e, they had computed correlation over the

threshold, then the query became from (assuming n terms):

t1 OR t2 OR OR ti OR OR tj OR OR tn

to

t1 OR t2 OR OR ti OR OR tj OR OR tn OR (ti AND tj)

In a classical boolean model, the output is always “yes” or “no.” This is an

advantage but also a drawback. For example, in a query connecting terms

with the AND operator, the model treats the documents including some (not

all) of the terms as unfavorably as those including none of the terms. In a

query connecting terms with the OR operator, the model treats the documents

including all of the terms as favorably as those including one term.

13

In the extended Boolean model, the ability to rank documents based on queries

is developed. That is, documents can be ranked according to their ability to

match the query. The model is based on extended (soft) boolean operators.

The output of classical boolean operators is evaluated as either false or true,

assigning values of zero or one, respectively. However, the extended boolean

operators evaluate arguments as float numbers from zero to one. These num-

bers rank the association between the document and the query.

The most popular extended boolean model was the p-norm approach intro-

duced by Salton [10]. The kernel of the p-norm model is the construction of

functions for operators AND and OR. The output of this extended operator

(the function) is numerical, which guarantees the output of the matching de-

gree is also numerical. Given a query Q1 of n terms t1, ... ,tn with correspond-

ing weights wq1 ,..., wqn for each term and a document D1 with corresponding

weights wd1 ,..., wdn of the same terms, the extended boolean AND function

is:

SIMAND(D1, (t1, wq1)AND...AND(tn, wqn)) = 1−
(∑n

i=1 ((1 − wdi)
p · wqi

p)∑n
i=1 wqi

p

) 1
p

where p is a parameter to tune the model, and 0 ≤ p ≤ ∞.

The extended boolean OR function is:

SIMOR(D1, (t1, wq1)OR...OR(tn, wqn)) =

(∑n
i=1 wdi

p · wqi
p)∑n

i=1 wqi
p

) 1
p

where p is a parameter to tune the model, and 0 ≤ p ≤ ∞.

The range of p is from zero to ∞. When p = ∞, the model turns into a classical

boolean model. That is, the AND function will not be zero only when all of

the terms are presented; the OR function will be one when any one term is

presented. When p = 1, the AND and OR functions are identical. When p

is one of some normal numbers like 2, 3, or 4, the p-norm shows an ability

to overcome the mentioned drawbacks of the classical boolean model. In the

AND function, “the presence of all phrase components is worth more than

the presence of only some of the components; terms are not compulsory” [10].

At the same time, in the OR function, “the presence of several terms from a

class is worth more than the presence of only one term” [10]. Therefore, users

can define how strictly they want from an operator in their models through

defining a different p. Besides, the p-norm model permits users to define the

weights to both query and document terms, which provides a simple way of

representing a user’s knowledge/interest in information retrieval. For example,

in the query (t1,0.1) AND (t2,1), the user gives more weight to the term t2.

14

Though experiments show that extended boolean models perform much better

than classical boolean models, extended boolean models are too heavy in some

cases when the term weights, parameters, and computation are considered.

Vector space approach

classical vector space approach The vector space approach is based on

using a set of terms to represent a textual document/query. Normally, the

terms are words, phases, or even several letters, which are extracted from a

document/query after stemming and eliminating the stopping words. There-

fore, each document in the corpus can be represented in a vector. The corpus

is a space, in which each term is one dimension.

Each term in the set has a float number value as a term weight. The weight

represents how well this term can distinguish one document from another in the

corpus. A matrix M is constructed where each row represents one document,

while each column represents one term. The element αij of the matrix is the

weight of the jth term in the ith document. If the term does not occur in the

document, the value of αij is zero.

The user’s query is also presented by a set of terms. The terms are all from

the same set in the corpus so that the query and the document in the corpus

are comparable. That is, if new terms occur in the query they will be ignored.

The problem is how to assign weights to the terms. The most popular way to

assign weights is tf · idf , where tf represents the term frequency and idf rep-

resents the inverse document frequency. Term frequency (tf) is the frequency

that one term occurs in one document. Inverse document frequency(idf) is

the metric calculated by the frequency of one term in the whole corpus. As

presented in [11], the definitions of tf and idf are:

tfij =
nij∑
k nkj

idfi = log
nd

ni

where nij is the frequency of term i in document j; k is the number of different

terms; ni is the number of documents containing term i in the corpus; nd is

the total number of documents in the corpus.

From the definition of idf , the value of idfi will be zero when every document

in the corpus contains the term ti; and it will be a larger number when fewer

documents contains it. Thus ti has more power to identify a document when

it occurs in fewer documents of the corpus. Therefore, the definition of tf · idf

15

Table 2.1: Term weighting scheme

Name Description

tf · idf tf · idf
logtf · idf log (1 + tf) · idf
tf · idf − prob probability idf [14]

is:

(tf · idf)ij = tfij · idfi

In the tf · idf scheme, term ti in the document dj obtains heavier weight when

it has high frequency in the dj and low frequency in the rest of the documents

in the corpus.

In addition to tf · idf , there are other different schemes for evaluating term

weights. Lan and Tan [12] and Montanes et al. [13], tried methods to de-

termine word importance extensively, where TF-IDF, logTF-IDF, TD-IDF-

prob and TF-RF were compared. Table 2.1 presents several usual weighting

schemes.

The similarities between two vectors can be calculated after weights of the

terms are assigned. Distance is the most intuitive metric to evaluate the

difference between two vectors. Euclidean Distance [15] is a mathematical

way to present the distance between two vectors. Hence, in the space based

on the “term” dimension, it is easy to calculate the distance between the query

and the given document.

The inner product between a query vector and a given document vector is a

popular measure [10]. Given that wqti is the term weight of the term ti in the

query, and wdjti is the term weight of the term ti in the document dj , the inner

product of the query and the document dj is:

Ij = q · dj =
k∑

i=1

wqti · wdjti

where Ij is the value of the inner product of the query and document dj, and

k is the number of different terms, that is, the number of dimensions of the

corpus. The larger value of inner product represents that two vectors tend to

be more similar or relevance.

16

The n-gram approach to information retrieval Unlike the classical

vector-based approach, the n-gram approach is purely statistical [16]. The

primary difference between the n-gram approach and the other vector-based

approach is the definition of term. In the previous sections, the terms are

words or phases in the document or query. However, here a term is a string of

n consecutive characters.

Damashek built a sliding window approach with the n-gram idea [16, 17]. As

the name represents, the approach is like moving a n-character-length window

in a document to generate n-character-length terms. Therefore, the first term

is the first nth alphabet character in the document, and the second term is the

second to the (n+1)th alphabet character. Damashek used normalized n-gram

frequency, which is the original n-gram frequency divided by the total number

of n-gram terms in the document. Then, the inner product was applied to

compute the similarity between two documents.

The n-gram approach depends very much on statistics rather than the linguis-

tic knowledge in information retrieval; statistics have been shown to be quite

effective. Statistics are valuable in a situation where a system developed in

one language has to be extended to a multi-language system. However, this

virtue “limits its performance compared to methods that make effective use of

language-specific as well as statistical clues” [16].

The probabilistic approach to information retrieval

The probabilistic approach applies probability theory to information retrieval.

The probabilistic model translates the posterior probabilistic, i.e., the rele-

vance of the conditional probability of a document given the features of the

document, into the prior probability, i.e., the probability that a document in

the repository will be relevant. The transformation is based on the Bayes’

theorem and some assumptions are made to simplify the problem. The Bayes’

theorem is as follows,

P (A|B) =
P (A)P (B|A)

P (B)
(2.1)

Since the simplification usually assumes that each of two terms in the doc-

uments are independent, the approach is often called the naive Bayesian ap-

proach. In variants of the naive Bayesian approach, the binary independence

model(BIM) is the most widely used [18]. In the model, both documents and

queries are represented by a set of terms. Let us assume the set of terms has n

elements, document d1 is a vector
−→
d1 = [t1, t2, ..., tn], where ti = 0 when term

17

i does not occur in document d1 and ti = 1 when term i occurs in d1. The

representation of the query is similar. Another assumption in the BIM is the

occurrence of terms in the documents that are independent. This assumption

is significant, however, Manning et al. pointed out that “this assumption is

far from correct, but it nevertheless often gives satisfied results in practice”

[19].

2.1.2 Semantic Web and ontology

The Semantic Web [20], an extension of the World Wide Web (WWW), makes

Web contents more machine-processable. The Semantic Web is defined by the

World Wide Web Consortium (W3C). Tim Berners-Lee, who invented the

WWW in the late 1980s, introduced this special vision of the Web, in which

the meaning of the content in Web documents would play a much more crucial

role than it does today.

HTML (hypertext markup language) is the predominant language in the cur-

rent WWW. It satisfactorily fulfills its responsibility, which is presenting in-

formation to humans. The Semantic Web will need a more firmly structured

language for machine agents to process. XML (extensible markup language)

[21], though not sufficient to support the Semantic Web, is a crucial first step

for the adaptation of the language. RDF (resource description framework) [22]

becomes the current W3C standard for the Semantic Web.

XML is a structured markup language [23]. It allows people to define their own

tags to represent information in a structured way that will facilitate machines

to better process the information. The RDF is more a model than a language;

it is designed to present information about Web resources. RDF presents

statement in the form of triples, i.e., subject-predicate-object. RDF is applied

to build information-sharing models. In the triples, the subject denotes the

resources, the object denotes the properties of the subject, and the predicate

denotes the relations between the subject and the object. The RDF model

can be serialized in XML format.

The most popular definition of an ontology, in the context of the Semantic

Web, is “an explicit and formal specification of a conceptualization of a do-

main of interest” [24]. Ontologies are more than just a vocabulary, they are

sources of knowledge of a specific domain. Currently, most of ontologies are

implemented in OWL (Web ontology language) which is based on RDF and

designed by W3C. There are three types of OWL: OWL Lite, OWL DL and

OWL Full. OWL Lite provides a limited feature set, but is relatively efficient.

OWL DL, a superset of OWL Lite, is based on a form of first order logic (de-

18

scription logic). OWL Full, a superset of OWL DL, removes some restrictions

from OWL DL, which introduces problems with computational tractability.

The most important aspect of ontologies used for Semantic Web applications

is related to identifying two ontology layers: the ontology definition layer, and

the ontology instance layer.

The ontology definition layer represents a framework used for establishing

an ontology structure and for defining classes (concepts) existing in a given

domain. The structure of an ontology is primarily based on a relation is-a

between classes. This relation represents a subClassOf connection between a

superclass and a subclass. In such a way, a hierarchy of classes is built.

The ontology definition contains descriptions of all classes of the ontology.

The classes are defined using datatype properties and object properties. Both

property types provide an accurate and complete description of a class, as

described below:

• The datatype property focuses on describing features of a class; datatype

properties can be expressed as values of data types such as boolean, float,

integer, string, and many more (for example, byte, date, decimal, time);

• The object property defines other than is-a relations among classes (nodes);

these relations follow the notion of the RDF that is based on the triple

subject-predicate-object, where: subject identifies what object the triple

is describing; predicate defines the piece of data in the object a value is

given to; and object is the actual value of the property; for example, in

the triple John likes books, John is the subject, likes is the predicate and

books is the object.

Both types of property are important for defining ontologies. The possibility

of defining class properties and relations between classes creates a versatile

framework capable of expressing complex situations with sophisticated classes

and the multiple different kinds of relationships existing among them.

Once an ontology definition is constructed, its instances, called individuals, can

be built. The properties of classes are filled out: real data values are assigned

to datatype properties, and links to instances of other classes (individuals) are

assigned to object properties.

Ontologies are divided into top-level and domain types [25]. Top-level (upper)

ontologies are the model of most common concepts in a wide range of domains.

That is, they describe general concepts that exist in many different domains.

Top-level ontologies are normally connected directly or indirectly to many

other ontologies. A domain ontology is a model of a specific domain, such as

19

science, animals, sports, etc. Particular meanings of concepts/terms in the

represented domain are defined in the domain ontology.

An ontology example is presented in Fig. 2.1. The ontology was developed on

Protege, an open source ontology editor1.

The ontology contains three classes, which are Soccer, Soccer Club and Soc-

cer Class. Because in Protege every class is inherited from a public class

owl:Thing, there are four classes presented in Fig. 2.1a. The relations of these

four classes are: Soccer is the subClassOf owl:Thing ; and both Soccer Club

and Soccer Player are subClassOf Soccer. Class Soccer Club includes two in-

dividuals: Club Chelsea and Club FC Barcelona; Class Soccer Player includes

two individuals: Player Drogba and Player Terry.

Class Soccer Player is defined by three data properties and one object prop-

erty, as presented in Fig. 2.1b. The three data properties are First Name,

Last Name and Position. The one object property is InClub.

Class Soccer Club is also defined by three data properties and one object prop-

erty. The three data properties are Name, Stadium and Location. The one

object property is HasPlayer.

As shown in Fig. 2.1b, Player Drogba, an individual of class Soccer Player, is

described in the ontology by terms “Didier” (the value of the data property

First Name), “Drogba” (the value of data property Last Name), “Forward”

(the value of data property Position), and an instance Club Chelsea (the value

of object property InClub), which is an instance of class Soccer Club.

2.1.3 Ordered weighted averaging (OWA) operators

Basic principles of OWA

Aggregation of different pieces of information is a common aspect of any system

that has to infer a single outcome from multiple facts. An interesting class of

aggregation, ordered weighted averaging (OWA) [26] operators, is a weighted

sum over ordered pieces of information.

In a formal representation, the OWA operator, defined on the unit interval I

and having dimension n (n arguments), is a mapping Fw : In → I such that

Fw(a1, ..., an) =
n∑

j=1

(wj · bj) (2.2)

1More details can be found in the website:http://protege.stanford.edu/.

20

(a)

(b)

Figure 2.1: An ontology example by Progete

21

where bj is the jth largest of all arguments a1, a2, ..., an, and wj is a weight

such that wj is in [0,1] and
∑n

j=1 wj = 1.

If id(j) is the index of the jth largest of ai then aid(j) = bj and Fw(a1, ..., an) =∑n
j=1(wj · aid(j)). If W is an n-dimensional vector whose jth component

is wj, and B is an n-dimensional vector whose jth component is bj , then

Fw(a1, a2, ..., an) = W T B. In this formulation, W is referred to as the OWA

weighing vector and B is called the ordered argument vector.

The OWA operator is parameterized by the weighing vector W . A number

of interesting observations can be made when different W values are consid-

ered. For example, if W = W∗, where wn = 1 and wj = 0 for j �= n then

Fw(a1, a2, ..., an) = Minj [aj]; If W = W ∗, where w1 = 1 and wj = 0 for

j �= 1 then Fw(a1, a2, ..., an) = Maxj [aj]; If W = WN , where wn = 1
n
, then

Fw(a1, a2, ..., an) = 1
n

∑n
j=1 aj , which represents an arithmetic mean(average).

Various other forms of OWA operator can be described. Therefore, Min[aj] ≤
Fw(a1, a2, ..., an) ≤ Max[aj]. In general, it can be said that different values

of weights wj control the level of contribution of single pieces of information

toward the final outcome.

At the beginning of the 1980s, Zadeh [27] introduced the concept of linguistic

quantifiers. Those quantifiers describe a proportion of objects. According

to Zadeh, a person knows a vast array of terms that are used to express

information about proportions. Some examples are most, at least half, all and

about one third. The important issue is to formally represent those quantifiers.

In the mid-1990s, Yager [28] showed how we can use a linguistic quantifier

to obtain a weighing vector associated with an OWA aggregation. Yager in-

troduced parameterized families of regular increasing monotone(RIM) quanti-

fiers. These quantifiers are able to guide aggregation procedures by verbally

expressed concepts in a description independent dimension. A RIM quantifier

is a fuzzy subset Q over I = [0, 1] in which for any proportion r ∈ I, Q(r)

indicates the degree to which r satisfies the concept indicated by the quantifier

Q [28]. A fuzzy subset Q represents a RIM quantifier if:

1. Q(0) = 0

2. Q(1) = 1

3. if r1 > r2 then Q(r1) > Q(r2) (monotonic)

Assuming a RIM quantifier, we can associate with Q an OWA weighing vector

W such that for j = 1 to n,

22

wj = Q(
j

n
) − Q(

j − 1

n
) (2.3)

where n is a number of pieces of information to be aggregated. This expres-

sion indicates that the weighing vector W is a manifestation of the quantifier

underlying the aggregation process. Using this expression the values of the

weighing vector can be obtained directly from the expression representing the

quantifier.

For example, let us take a look at the parameterized family Q(r) = rp, where

p ∈ [0,∞). Here if p = 0, w1 = 1 and wj = 0 for j �= 1, therefore W = W ∗ and

we obtain the existential(max) quantifier, which makes the OWA operator

F closer to an or operator; when p− > ∞, wn = 1 and wj = 0 for j �= n,

therefore W = W∗ and we have the quantifier forall(min), which makes the

OWA operator F closer to an and operator; and when p = 1 we have Q(r) = r,

wj = 1
n

and we deal with the quantifier some.

In [26], an interesting measure for evaluating the degree of the orness of the

OWA operator was been introduced. Let us assume F is an OWA aggregation

operator with a weighing vector W = [w1, w2, ..., wn]. The degree of orness

associated with this operator is defined as:

orness(W) =
1

n − 1

n∑
i=1

(n − j) · wj (2.4)

The orness of the parameterized family Q(r) = rp, where p ∈ [0,∞) is ap-

proximated by 1/(p + 1). So, for the quantifiers forall (W∗), some(w = 1/n)

and existential(W ∗), orness is equal to 0, 1/2, and 1/3 respectively.

OWA with Argument Importance

In the previous section we showed how a quantifier Q indicating interaction

between pieces of information can be used to calculate an OWA weighing vector

W . However, not all pieces of information are of the same importance. A user

may desire to assign different weights (importance) to different arguments

(pieces of information).

Let mi ∈ [0, 1] be a value associated with an argument a1 indicating its

importance. In such a case, let M be a n-dimensional importance vector

[m1, m2, ...mn], and the weighing vector W has to be calculated based on both

Q and M .

The first step is to calculate the ordered argument vector B (Eq. 2.2), such

that bj is the jth largest of all arguments a1, a2, ..., an. Furthermore, we

23

assume µj denotes the importance weight associated with the attribute that

has the jth largest value. Thus if a3 is the largest value, then b1 = a3 and

µ1 = m3. The next step is to calculate the OWA weighing vector W using a

modified version of Eq.(2.3),

wj = Q(
Xj

T
) − Q(

Xj−1

T
) (2.5)

where Xj =
∑j

k=1 µk and T = Xn =
∑n

k=1 µk .

So, Xj is a sum of the importance of the jth most satisfied arguments, and T

is the sum of all importance. When all arguments have the same importance,

Eq. (2.5) simplifies to Eq. (2.3).

2.1.4 Hierarchy of concepts (HofC)

The idea of representing concepts as a hierarchy was introduced by Yager [29],

who represented concepts with atomic attributes, words or other concepts.

Using this method, a tree-like structure is established where each vertex is a

concept, and terminal vertices (leaves) are attributes. The edges of the hier-

archy of concepts (HofC) represent relationships that help to define concepts

with other concepts and/or attributes. These edges (connections) are of signif-

icant importance to the HofC. If we assume that concept C1 is defined by two

other concepts C2 and C3, then the hierarchy will have two edges connecting

C2 with C1, and C3 with C1. The concept C1 is called a superconcept, and C2

and C3 are subconcepts. This also means that activation of concepts C2 and

C3 leads to activation of C1.

The HofC introduces a very important element, the activation of a supercon-

cept by active sub-concepts is fully controlled by a user. There are two control-

ling components: importance vector M and linguistic quantifier Q. The vector

M indicates the significance of each subconcept in defining a superconcept. In

other words, M determines the weight of each participating subconcepts in

identifying an activation level of a superconcept. The linguistic quantifier Q

guides the aggregation of subconcept activations. Both M and Q determine

how activation levels of subconcepts should be combined using the OWA op-

erator.

A simple example of HofC is shown in the Fig. 2.2. According to the hierarchy,

conceptA is defined as:

conceptA = (conceptB, conceptC, MA, QA)

This means that conceptA is defined by conceptB and conceptC. MA deter-

mines the importance of both of conceptB and conceptC in defining conceptA.

24

M_E

conceptE

Q_EM_D

conceptD�

M_B

conceptB�

Q_B

Q_D

M_C

conceptC�

Q_C

M_A

conceptA�

Q_A

A6

A1

A2

A3

A4

A1

A5

Figure 2.2: A example of a simple HofC

In this case, it is a two-value vector MA = [MA−B, MA−C] that implies the

importance of activations of both subconcepts during calculation of the ac-

tivation level of the conceptA. The quantifier QA can be of any type, for

example, most or some, and identifies a mechanism of combining activation

levels of subconcepts. The rest of the concepts are defined in the following

way,

conceptB = (conceptD, conceptE, MB, QB)

conceptD = (A1, A2, A6, MD, QD)

conceptE = (A3, A4, ME , QE)

conceptC = (A1, A5, MC , QC)

As we can see, conceptD, conceptE, and conceptC are defined by attributes

only. Activation levels of these concepts are calculated by aggregating acti-

vations of attributes. Activation of an attribute means that the attribute is

present, for example, in a Web page. The aggregation process for each concept

is controlled via the M and Q associated with that concept. For conceptD,

aggregation of activations of attributes A1, A2, and A6 is performed by the

OWA operators with a weighing vector determined by MD and QD.

2.1.5 Text categorization

Text categorization is the process of assigning text documents into preset cat-

egories. It is similar to information retrieval in that normal text categorization

problems can be called information retrieval in some situations; for instance,

when a query itself is regarded as a description of the topic to be searched.

25

However, text categorization and information retrieval have different goals.

The goal of information retrieval is to retrieve documents relevant to a query,

while the goal of text categorization is to retrieve documents relevant to a

topic or a concept. Unlike information retrieval, where there are key words in

a query, there are no direct identifiers in text categorization. The knowledge of

the category is obtained through training the machine learning (ML) models

on the documents in the category. Information retrieval is directed by specific

keywords in a query. Text categorization focuses on the semantics of each

category. That is, in the traditional point of view, text categorization deals with

concepts, while information retrieval deals with terms. Therefore, compared

with information retrieval, text categorization has more chances and more

motivation to apply computational intelligence techniques as the problems are

more abstract.

Until the 1980s, the most widely used approach in text categorization was

creating rules for embedding human experts’ knowledge of a category. This

approach depends on human knowledge in the specific category for which rules

were being embedded. The same system did not always perform consistently

when applied to a different category. In the 1990s, automatic text categoriza-

tion (ATC), based on machine learning techniques, began to get the attention

of researchers in the field. ATC soon became the dominant approach in text

categorization because of its obvious advantages. We will not use the ATC

acronym in the rest of the paper; we will use the spelled out form “text cate-

gorization” because currently almost all of the text categorization research is

based on ATC.

We focus on the text categorization approaches based on the ML techniques

that have proved to be effective and practical. Approaches unrelated to ML

techniques are beyond the scope of this paper.

The conventional process in text categorization is to first build an ML model

based on some precategorized documents called a training set. The model

obtains characteristics from the training set. Those characteristics are knowl-

edge of the categories, which is stored in the model. The knowledge is either

readable by humans (like rules in the rule-based system) or not readable by

humans (like the structures of a neutral network). When the machine en-

counters a new document, the model decides if the document belongs to the

category or not through the knowledge it has obtained from the training set.

This ML process is called supervised learning.

The training process is the kernel of the text categorization approach. The

training on the precategorized documents provides the category identifier. The

features of the model bear the category identifier. For example, if the features

26

are terms, the knowledge of categories normally includes term weights.

For each model, the category status value (CSV) is the output of one given

document for one given category. The CSV is the metric that evaluates the

matching degree between a document and a category. Normally, the CSV is

a float number in the range of [0, 1]. Zero means the model decides that the

document does not belong to the category, one means the model decides the

document belongs to the category. Sometimes, to make it simple, CSV is an

integer, zero or one, a binary situation.

Probabilistic approach

The methodologies of probabilistic approaches in text categorization are quite

similar to those in information retrieval. The main difference is the rank of the

relevance between a document and a topic must be found in text categorization

and the rank of the relevance between a document and a query must be found

in information retrieval. In text categorization, The lack of query keywords

available in information retrieval necessitates a training set of precategorized

documents for text categorization.

In the text categorization literature regarding probabilistic approaches [30, 31,

32, 33, 34], people mostly tried to develop probabilistic models that change

independence assumptions. Some researchers tried to produce better classi-

fiers by relaxing the independence assumptions [35, 36]. However, these new

approaches require too much computation to be practical. Others tried to ex-

plain why the independence assumption is not needed. Cooper [37] argues that

the independence assumptions can be replaced by a weaker link dependence

assumption. In the new assumption, these features are not independent but

hold the same degree of dependence in the given category. However, the prob-

abilistic model is not good at handling the problem of the high dimensional

features, which are a big obstacle for text categorization. The complexity and

the efficiency of the model changes a lot with an increase in the number of the

features, and the model can hardly be interpreted by humans.

Symbolic model

Symbolic models refer to models based on non-numeric algorithms. The most

widely used symbolic models are rule-based and decision-tree models.

Rule-based model The rule-based models is represented by a set of logic

rules that are disjunctions of conjunctive clauses. Normally a rule is in an IF...

27

THEN ... format like:

IF rule r1 is true THEN document d1 in category c1

As an simple example, one rule for a category soccer could be:

IF term “Ronaldo” occurs AND term “Score” occurs THEN the document is

in the category soccer

Each rule in a rule-based model is a criterion to divide the whole document set

into two parts, that is, those documents making this criterion True or those

making it False. The combination of rules will help the model decide which

category a document belongs to. In the machine learning approach, the kernel

is to find the best combination of the rules from the training set, best meaning

accurate and not excessively complex [38]. Some variant rule-based models

are SWAP-1[39], CHARADE[40], DL-ESC[41], and RIPPER [42].

Decision tree Model Decision tree models have two advantages. The first

advantage is the global complex decision region is “approximated by the union

of simpler local decision regions at various levels of the tree” [43]. The second

advantage is that the decision tree is very efficient, especially in a multicategory

situation, because in the normal models every sample is tested against all

categories while in decision tree models samples are test only against a subset

of categories. Each node in a decision tree model is focused on a certain subset

of categories. The most widely used decision tree models include ID3[44], C4.5

[45] and C5 [46].

Rule-based models and decision tree models are transferable, that is, the rule-

based models can be transferred into decision-tree models and vice versa.

There are differences in the ways these models are created: decision-tree mod-

els are “typically built by a top-down, divide-and-conquer strategy”, while

rule-based models are often built in a bottom-up fashion” [47].

A drawback of decision-tree models is overfitting [48]. Overfitting happens

when a model memorizes the categorization of a training set instead of learning

general rules. In this case, the categorization of the training set will be very

accurate while the categorization of unknown documents will be “unknown.”

The symbolic models are capable of partitioning the training set into a number

of classes which are “much larger than the number of actual classes” [43]. This

guarantees good results on the training set. However, it is hard to predict how

the model will react to a new sample. This issue can be alleviated through

feature selection, but that increases the complexity of these models.

28

Support vector machine(SVM)

The SVM is possibly the most successful text categorization model [49]. The

SVM is based on the structural risk minimization principle from computational

learning theory [50]. The principle is to find a hypothesis h with the lowest

true error. The true error of h is the probability that h makes an error on the

new/unknown sample. An upper bound can be used to connect the true error

of h with the error of h in the training set and the complexity of H (measured

by VC-Dimension), a hypothesis space containing h [50]. That is, the SVM

model finds the hypothesis h by minimizing the bound on the true error and

controlling the complexity.

The SVM was first introduced into text categorization by Joachims [49], who

used the SVM as a learning text classifier, and showed that SVM outperformed

several other popular classifiers, such as C4.5 and the Nave Bayesian. He

pointed out important advantages of the SVM in text categorization:

1. There is no need for feature selection because SVM uses overfitting pro-

tection.

2. The SVM is suited to text categorization because document vectors are

normally sparse [51].

Others who applied SVM to the text categorization were Drucker et al. [52],

Dumais et al. [53], Dumais and Chen [54], Taira and Haruno [55], Klinkenbert

and Joachims [56], Masuyama and Nakagawa [57], and Fu et al. [58].

2.2 Related work

Concept-based models are regarded as a new and promising way to retrieve

information from the Web. Unlike the keyword-based systems, where keyword

lists are used to describe the contents of documents, concept-based systems

employ concepts to describe their contents of documents.

2.2.1 Defining concepts with text categorization classi-

fiers

The most intuitive way to build concept-based information retrieval systems is

by utilizing predictive models in text categorization (classifiers) [4]. Classifiers

obtain knowledge of each category from precategorized documents (training

sets) and store it in the model. The knowledge is either readable by humans

29

(like rules in rule-based systems) or not readable by humans (like structures

of a neutral network). When confronted with a new document, the trained

classifier decides if the document belongs or does not belong to the category

through the knowledge it has gained from the training set. To summarize

the classification process: the precategorized documents in the training set

represent a set of concepts, the training process defines the concepts and feeds

the concepts and their definitions to the classifier, and the trained classifier can

then identifies the concepts in Web documents. Classifiers provide additional

knowledge for information retrieval.

In [59], decision trees were used to train genre classifiers for Web documents,

where each genre was a concept to be identified. The experiments were based

on 1539 manually labelled Web documents and 502 selected genre features.

With the help of classifiers, the document-retrieving results in [59] obtained

average of 17% better precision and 1.6% better accuracy. The authors argued

that classification by genre would be a useful addition to search engines.

In [60], text categorization models, like the naive Bayes model, a specialized

AdaBoost algorithm, and the SVM, were applied to classify medical papers

in the areas of etiology, prognosis, diagnosis, and treatment. SVM performed

the best among all the learning methods. The conclusion was that it was pos-

sible to retrieve high-quality, content-specific articles using machine learning

methods.

Anagnostopoulous et al. [61] presented a framework to combine a SVM model

with a search engine to classify documents into different categories. Instead

of considering the contents of whole documents, the framework accessed doc-

uments through the inverted index of a large scale search engine. Then the

authors constructed of short queries via selection and weighting of terms. The

goal was to build the best short query that characterizes a document class in

a large search engines. Surprisingly, they showed that in their experimental

set-up the best 10-terms query achieved 90% of the accuracy of the best SVM

classifier (14000 terms). When documents were indexed and described by 10

terms, the effectiveness and efficiency increase when retrieving.

Choi and Peng [62] stated that automatic classification of Web pages is an

effective way to organize the vast amount of information on the Internet and

to assist in retrieving relevant information from the Internet, but the authors

addressed the issue that manual classification can hardly “keep up with the

growth of the web.” Based on that limitation, they built an automatic clas-

sification system that could dynamically add new categories. Their system

started from a predefined category tree. Their single-path search algorithm,

which was based on breadth-first search, decided whether or not a document

30

belonged to a category based on how well the document feature vector matched

a category feature vector. The algorithm also decided if a new category was

needed or not needed. The idea is interesting, but in a real Web application,

the number of categories could be too huge to process.

In general, the goal of utilizing classifiers in information retrieval models is

to provide more knowledge when retrieving relevant Web documents. The

knowledge of each category, which can be, for example, genres or topics, is the

definition of concepts. This knowledge is added to the classifiers through the

training datasets, and saved in the classifiers. With the embedded knowledge,

trained classifiers are able to identify concepts in new documents, that is, they

can classify documents into categories. However, the requirement of training

sets hinders the application of these methods because most of the classifiers

require a total reconstruction for every tiny change that occurs.

2.2.2 Defining concepts in concept structures

However, too much human-labor is required to set categories, build training

sets, update models, etc. Considering the number of and the speed of change in

Web documents, this burden can only get heavier. Moreover, limited categories

(concepts) cannot satisfy unlimited requirements (queries). No matter how

many categories the system provides to users, they will not feel it is enough.

And as more categories are offered, finding the one of interest will become

harder. Constructing a background concept structure as a knowledge base to

define concepts is a more affordable approach.

Synonym thesauri

Synonym thesauri defines keywords in queries through expanding them with

their synonyms. Anick [63] proposed a system that automatically generates an

extended condition: “a boolean expression is composed by ORing each query

term with any stored synonyms and then ANDing these clusters together.”

That is, the whole query was ORed together. Each OR term was composed

of synonyms from an online thesaurus. This method increases the chance that

the useful information will be in the retrieved documents, but it increases

the number of the retrieved documents as well. Moreover, since many terms

have multiple synonyms with different meanings, an extension with the right

synonyms is also an issue.

31

Conceptual taxonomy

Conceptual taxonomy is applied as a hierarchical organization of concepts.

Each concept in aconceptual taxonomy connects both its superconcepts and

its subconcepts. Therefore, it provides a topological structure for efficient

conceptual search and retrieval. In a project by Sun Microsystems, a concep-

tual indexing technique was proposed to automatically generate conceptual

taxonomies [64].

Ontology

Ontologies are models of a domain or a problem that can be used to pro-

vide formal semantics (meanings, concept-based information) to any sort of

information, such as databases, Web documents, etc.

A commonly accepted definition of ontology is “an ontology is an explicit

and formal specification of a conceptualization of a domain of interest” [24].

In general, an ontology is a representation of a set of concepts and relations

between those concepts in a domain.

Examples of existing ontologies are:

WordNet is an English lexical ontology built at Princeton University,

which includes explanations of the terms and relations between terms

(synonyms, antonyms, etc.) [65]. As the most popular linguistic on-

tology, WordNet is used by many researchers. Normally it is used to

expand queries with semantically related terms.

Voorhees expanded queries with lexical semantic relations in WordNet

[66]. Gong et al. utilized WordNet to expand queries in three dimensions

including hypernym, hyponymy, and synonym relations [67]. However,

the systems applying WordNet suffered from word sense disambiguation

(WSD) because of polysemy2. Baziz et al. proposed an approach to

identify important concepts with two criteria, co-occurrence and seman-

tic relatedness, to eliminate WSD in WordNet [68]. Kolte also proposed

an approach to handle WSD based on an unsupervised approach to de-

termine the domain that keywords belong to [69]. Kim et al. transformed

WordNet into a matrix, where each term is a vector. The authors then

applied singular value decomposition (SVD) to reduce the size of matrix,

which helped to relieve the WSD [70]. However, researchers reported

difficulties in applying linguistic-based ontologies to non-linguistic appli-

cations [71].

2Polysemy means more than one words with the same meanings

32

SENSUS is a natural language-based ontology developed by the Nat-

ural Language Group at Information Sciences Institute (ISI) [72]. It is

an extension and reorganization of WordNet.

In an OntoSeek [71] project, Guarino et al. utilized SENSUS ontology

for concept-based retrieval from online yellow pages and product cata-

logs. The authors linked conceptual graphs, which were transferred from

queries, to the SENSUS ontology by using lexical conceptual graphs.

Gene Ontology is composed of three structured controlled vocabular-

ies describing gene products with their associated biological processes,

cellular components and molecular functions [73].

Spasic et al. designed an information retrieval system, KiPar, to fa-

cilitate access to the literature relevant to kinetic modelling of a given

metabolic pathway in yeast [74]. Instead of free-text descriptions, the

input accepted by the system was identifiers used in gene ontology. The

back-end ontology expanded the identifiers of the query with specific

knowledge about the identifiers. For example, if the name of a specific

enzyme was input, the known information about (i) the compounds act-

ing as substrates/products of the reaction catalysed, and (ii) the genes

encoding that enzyme could be retrieved. In this way, the query con-

tained extra knowledge to retrieve documents. Finally, documents were

retrieved by applying SQL queries over the local database.

Based on different ways to identify concepts from texts and their aggregations,

we divide concept-based approaches to ontology into four major solutions.

Solution 1: Regular expressions, rules, and ontology

In this type of approaches, regular expressions are used to identify concepts

from texts. Several predefined rules are then used to aggregate the identifica-

tions of single concepts.

Regular expression can be regarded as a straightforward way to implement nat-

ural language processing. A regular expression is “a string containing a com-

bination of normal characters and special meta-characters or meta-sequences”

[75] that provides a concise and flexible representation of texts.

Embley proposed the use of information extraction ontologies, which were

formalized over regular expressions [76]. For example, the regular expression

“(call|phone)+ a bunch of numbers or hyphens” is used to recognize phone

numbers. With regular expressions defined and stored in ontologies, words

and phrases in documents can be related to concepts in the ontology. In the

phrase “Call 999-999-9999” the number has meaning as a phone number. In

an example in [76], with a rule that automobile advertisements must contains

33

textual expressions like “car has year,” “car has make,” and “car has price,”

the text “97 CHEVY Cavalier, Red, 5 spd, only 7,000 miles on her. Previous

owner heart broken! Asking only $11,995. #1415 JERRY SEINER MIDVALE,

Call 566-3800 or 566-3888” can be recognized as a car ad.

Muller et al. constructed an ontology-based information retrieval and extrac-

tion system for biological literature, which is called Textpresso [77]. In Text-

presso, biological concepts (e.g., gene, allele, cell or cell group, phenotype, etc.)

were presented in regular expressions. For example, a gene was represented

as regular expression “[A-Za-z][a-z][a-z]-\d”, which matched a term with three

letters ([A-Za-z][a-z][a-z]), a dash (-), and a sequence of digits (\d). With this

format, the phrase “let-60” could be recognized as a gene. Relations between

two biological concepts (e.g., association, regulation) and descriptions of one

concept (e.g., biological process) were also used in the ontology. The retrieval

process in Textpresso was based on concepts and relations/descriptions defined

in an ontology. In an example given in the paper, a researcher interested in

facts about genetic regulation of cells used concepts “gene”, “regulation”, and

“cell or cell group” to retrieve documents.

Solution 2: Natural language processing (NLP) with ontology

The previous solution can be regarded as a simplified natural language pro-

cessing (NLP) approach. Informally, NLP aims to solve problems by making

computers understand and process human language. There are two types of

approach in NLP: deep approach and shallow approach. Deep and shallow rep-

resent the degrees of expected understanding. As Styltsvig stated, “Deep ap-

proaches presume access to a comprehensive body of world knowledge. These

approaches are not very successful in practice, mainly because access to such

a body of knowledge does not exist, except in very limited domains” [78].

Shallow NLP techniques normally rely on simple rules to do analysis. To our

knowledge, shallow NLP techniques are usually integrated with ontologies to

fulfill concept-based information retrieval.

The most essential part in NLP is part-of-speech (POS) tagging. In nature

language, words are used in grammatical roles such as nouns, adjectives, prepo-

sitions, verbs, and so on. These categories are called POS. POS tagging is the

process of automatically labelling words in the texts with their POS.

Cimiano et al. prsented the LexOnto model consisting of a domain ontology

and a corresponding ontology for associating lexical information to entities of

the given domain ontology [79]. The lexicon ontology contained three different

POS: verbs, nouns and adjectives. It was built on a subcategorization frame

(linguistic predicate-argument structure) and relations, which represents prop-

erties or joins between properties defined in the domain ontology.

34

Several examples of subcategorization frames are: Transitive Frame, which

represents a transitive verb (like wash) with the arguments subject and object;

Intransitive PP Frame, which represents an intransitive verb with a preposi-

tional complement as argument (like wait for); Transitive PP Frame, which

represents a transitive verb with an additional prepositional complement (e.g.

bring X to Y); Noun PP Frame, which represents a noun with a prepositional

complement (e.g. capital of) and so on.

For each (instantiated) subcategorization frame, there is a relation in the lex-

icon ontology representing how it is connected to a property in the domain

ontology. Thus, the properties of the domain ontology can be identified after

recognizing the subcategorization frame through NLP analysis of the texts.

Morneau et al. proposed SeseiOnto using NLP to identify concepts from texts

[80]. Compared with the LexOnto model, this approach involved more shallow

NLP. First of all, SeseiOnto removed articles and prepositions from NLP-based

user queries (sentences) by through tagging. The remaining words in the

queries were matched to the concepts in the ontology. Based on pre-defined

transformation rules, the concept-based queries were converted into concept

graphs (CG) [81]. An example of transformation rules is “when a noun (A)

is the subject of a verb (B) at active voice in a sentence, it should then be

converted to a CG stating that a concept of type A is the agent of a concept

of type B.” A similar process was applied to documents transferring them into

CGs at the same time.

Let us assume there are two CGs: one is the CG of the query (CG1), the

other is the CG of a document (CG2). From CG1 and CG2, the common

generalization Γ, which contains the information shared by CG1 and CG2, is

extracted. The projection of Γ in CG1,represented as
∏

ΓCG1
, is also generated.

The projection process is the reciprocal of the generalization process. The

subgraph of
∏

ΓCG1
is Ω(

∏
ΓCG1

).

The relevance of CG1 and CG2 is decided by the conceptual similarity and

the relational similarity they define.

Concept similarity sc is:

sc =
N|c∈Γ|

N|c∈CG1|

where N|c∈Γ| is the number of concepts of Γ; N|c∈CG1| is the number of concepts

of CG1.

Relational similarity is calculated by:

35

sr =

∑
r∈Γ weight(r)∑

r∈Ω(
∏

ΓCG1
) weight(r)

where weight(r) represents the weight of a relation r. In SeseiOnto, the weights

of relations are fixed, and are set empirically by studying a number of graphs.

The relevance score of CG1 and CG2 is calculated by:

ss(CG1, CG2) = 0.5 × sc + 0.5 × sc × sr

Utilizing NLP and an ontology may be the most intuitive application to ac-

complish concept-based systems. However, the discussions on how much NLP

should be involved never stops. In LexiOnto [79], NLP exists in the en-

tire process; while in SeseiOnto [80], NLP handles conversion from texts to

concept-based structures. Though the NLP techniques allow computer agents

to recognize concepts from texts, their complexity cannot be ignored.

Solution 3: vector space and ontology

This type of solution is the most popular. In general, the ontology is utilized

to expand the query, and vector space approach is used to evaluate similarity.

Vallet et al. proposd an ontology based information retrieval system applying

a vector-space model to retrieve relevant documents [82]. After terms and

concepts were connected through ontology-driven weighted annotations on the

documents, a classic vector-space model was utilized to evaluate the relevance

between documents and queries. The weights were based on the frequency of

occurrence of the instances in each document. The structure of the system

was very reasonable, however since the ontology as the knowledge base had

a hierarchical structure and the query did not have (in a classical vector-

space model, a query is a vector), it was difficult to take full advantage of the

knowledge in the ontology.

Similarly, Dridi et al proposed an ontology-based framework for semantic in-

formation retrieval [83] that used a vector-space model to evaluate similarities.

With annotation based on GATE [84] as an information extraction module,

metadata for documents were generated. The metadata were extracted con-

cepts from the document text. Based on the term weighting technique cf · idf
(concept frequency - inverted document frequency), which is similar to tf · idf ,

concepts in the documents were recognized and indexed. When retrieving rel-

evant documents, concepts in queries were identified with the definition in the

ontology, and documents were retrieved with the matched concepts.

The knowledge and information management (KIM) platform was proposed

by Kiryakov et al. [85]. It focused on the automatic population of the ontol-

36

ogy and the annotation of documents. KIM included a simplistic upper-level

ontology that started with some basic philosophic distinctions and moved to

the most popular entity types (people, companies, cities, etc.), thus providing

many of the inter-domain common sense concepts and allowing easy domain-

specific extensions. The semantic annotation, which contained references to

classes in the ontology, was achieved. Based on the annotations, keyword-

based indexing and retrieval was performed.

Castells et al. [86] presented a complete concept-based information retrieval

model. The authors tried to complement KIM [85] with a ranking algorithm.

In their model, first a set of root ontology classes were constructed from three

main base classes: DomainConcept, Topic, and Document. Documents were

annotated with concept instances in the ontology. The annotation process was

similar to the one in KIM [85]. The annotations were weighted based on an

adaption of the tf · idf scheme(section 2.1.1), and the ranking is then achieved

through computing similarity values between queries and documents through

the classic vector-space approach (section 2.1.1).

In [87], Tomassen et al. presented an ontology-driven system WebOdIR, where

each concept was extended by associating it with a vector of key-phrases de-

scribing the concept. The system started from ranking concepts in the ontology

according to ontology relevance. It then generated a query for each concept

based on relations with other concepts. After submitting the queries to the

underlying search engine, a set of documents for each concept was retrieved

and then clustered. For each cluster, a set of candidate terms were extracted.

After comparing the candidate terms for each cluster of the concept to the can-

didate terms for neighbouring concepts, the candidate terms with the highest

similarity were chosen and used for the final assembly of the feature vector

of the concept. Tomassen et al. argued that the altered ontology was more

advanced and helped expand users’ queries for an in-depth understanding of

their needs.

Solskinnsbakk et al. stated that it is not “a straightforward task” to use

knowledge in the ontology for information retrieval purposes. To solve this

problem the authors proposed definitions of the ontology profile, which was a

semantic extension of an ontology where each ontology concept was given a

description in terms of a vector of weighted keywords. The ontology profile

was constructed based on a document collection covering the same domain as

the ontology. Instead of just putting synonymous to the concept, they picked

terms based on statistics and added them to ontology profiles; they calculated

terms weights by the tf · idf scheme. Then the ontology profiles could be used

to expand queries to retrieve relevant documents.

37

Solution 4: Latent semantic indexing and ontology

Latent semantic indexing (LSI) is similar to the vector space approach that

presents documents/queries in the manner of vectors. LSI is applied to handle

two severe problems in keyword-based searching: synonymy (more than one

word with the same meaning) and polysemy (one word having more than one

meaning). Deerwester et al. [88] discussed this method.

Like vector space approaches, LSI relies on a term-document matrix in which

each column represents a document and each row lists frequencies of a term

in different documents. LSI uses the linear algebra technique singular value

decomposition (SVD) to reduce the dimensions of the term-document matrix

and approximate the most important part of the original matrix. Let us as-

sume there is an m×n term-document matrix A (m terms and n documents).

Based on SVD, A is decomposed into the product of three matrices,

Amn = TmrSrrD
T
rn

where T is an orthogonal matrix (T T × T = I), called left singular matrix; S

is a diagonal matrix of positive singular values in decreasing order; D is also

an orthogonal matrix (DT × D = I), called a right singular matrix. Please

note that T is an m by r matrix of term vectors, where r is the rank of A3; S

is an r by r matrix; and D is an r by n matrix of document vectors. For the

purpose of efficiency, only the first k largest singular values are kept while the

remaining ones are set to zero. Âmn represents the lower rank approximation

of Amn,

Amn ≈ Âmn = TmkSkkD
T
kn

A document or a query vector d can be projected to the LSI document vector,

d∗ = d1mTmkS
(− 1)kk. Therefore, the similarity of a query and a document

can be calculated by the inner product of these two vectors.

Because LSI reduces the ranks of the term document matrix from r to k by

examining the whole document collection, documents that have many terms in

common are regarded as semantically close. The first k largest singular values

can be considered as k concepts in the document collection.

Snasel et al. mapped LSI concepts to Wordnet [89]. Wordnet provides syn-

onyms to expand queries: this improves recall through sacrificing precision,

because it increased the number of keywords. LSI helps to retrieve the most

relevant k terms/concepts from term matrix Tmk. The authors argued that

the expansion of these k terms instead of all keywords balanced the conflicts

between precision and recall.

3The rank of a matrix is the number of its unique dimensions.

38

Chapter 3

Term importance retrieving
scheme

In a concept-based information system, both queries and documents are re-

garded as lists of concepts, though they are expressed directly by concrete

terms. That is, abstract concepts are defined by concrete terms. For exam-

ple, a concept Player David Beckham is described by his first name “David,”

last name “Beckham,” etc. With these concrete terms, computer agents can

possibly identify the concept Player David Beckham from texts.

However, terms have unique importance in defining a concept. Regarding

Player David Beckham, if we compare the term “David,” with the term “Beck-

ham,” intuitively the latter one (the player’s last name) is more important in

identifying the concept than the former one (the player’s first name).

The most popular approach to obtain importance is through tf · idf or its

variations (section 2.1.1), however, they are not suitable for concept defining;

they are designed to calculate a value of term importance for discriminating

between documents, but are not useful when the term importance value is

treated as a measure of term contribution to the concept definition. In [90],

Soucy also argues that a tf · idf type of term weighting schema is appropri-

ate for information retrieval (keyword-based systems), but not good for text

categorization (concept-based systems), because it does not “leverage the in-

formation implicitly contained in the categorization task.” tf · idf schemes

assign the same importance to a term without taking into consideration the

concept or category to which this term belongs. This causes a problem when

tf · idf is applied to concept-based techniques.

In order to estimate the importance of values of different terms we have de-

signed, we created a special scheme called adaptive assignment of term im-

portance – AATI. The AATI scheme estimates the importance of terms with

39

term m

term 1

term 2

term 3

Concept 1

Concept n

Concept 2

Web Document i

(a) TWs contributions to PV

Web Document n
term j

Concept (n−1)

Concept 3

Concept 2

Concept 3

Concept 1

Concept n

Web Document 1

(b) PVs contributions to TW

Figure 3.1: Interactions between TW and PV

respect to their levels of contribution toward the defined concept.

3.1 Adaptive assignment of term importance

(AATI)

3.1.1 Concept description

The AATI retrieves term importance values in a self-adaptive manner. That

is, the AATI keeps updating the importance of terms based on a stream of

“unkown” Web documents. It accomplishes this with interactions between

two values: term importance (TW) and page values (PV). The two values

are connected by concept value (CV). The CV of a concept in a document

represents the amount of information related to the concept in the document.

Let us assume the concept k is defined by Nk terms, cki (CV of the concept

k) in document i can be calculated as:

cki =
Nk∑
j=1

tj · fij (3.1)

where tj is the TW of term j and fij is the frequency of term j in document

i. If term j is not in document i, fij = 0.

PV, i.e., the page value of a document, is calculated based on the sum of the

CVs (Eq 3.1) in it. That is, the PV of a document can be calculated using the

TWs of terms presented in the document.

The TWs of terms are updated based on the PVs of documents. This is

especially important for Web applications – new documents lead to the up-to-

date modification of TWs.

40

In summary, on the one hand, TWs contribute to CVs and in turn to PVs

(Fig. 3.1a). On the other hand, PVs update TWs (Fig. 3.1b).

The AATI starts with randomly initialized TWs of terms. Since we define that

the sum of TWs is always equal to one (normalization), the AATI actually

modifies the distribution of TWs based on their contributions to PVs. Every

time the AATI “reads” a document, it first calculates the PV of the document

based on the TWs of terms in the document, and then it uses the PV to update

the TWs.

Because the number of Web documents is unlimited, we have to prove that it

is possible to obtain TW values. In the next section, we provide the detailed

mathematical definitions of TW and PV, and prove theoretically that TWs

exist.

3.1.2 AATI: relations between TW and PV

For any concept, there are always two sets of terms: related terms and un-

related terms. The related term set contains terms that represent a given

category, called a target concept; while the unrelated term set contains terms

that do not contribute to the target concept. Let us assume there are two sets,

T ′ = {t′1, t′2, t′3, ..., t′n′}
and

T ′′ = {t′′n′+1, t
′′
n′+2, t

′′
n′+3, ..., t

′′
n}

where each element t′i in the set T ′ represents the TW of term i that is related

to the target concept, and each element t′′i′ in the set T ′′ represents the TW

of term i′ that is unrelated to the target concept. Hence, a new n-element

set T combines T ′ and T ′′, where T = {T ′, T ′′} = {t′1, t′2, ..., t′n′, t′′n′+1, ..., t
′′
n} =

{t1, t2, t3, ..., tn}. Set T contains TWs of all the terms contained in Web doc-

uments. At the same time, a set P = {p1, p2, p3, ..., pm} represents PVs of m

Web documents, where each element pi in the set P represents the PV of the

ith document. Thus, an equation to calculate the PV of the document i is:

pi = γ ·
Nc

i∑
k=1

cki

Nk

= γ ·
n∑

j=1

αij tj (3.2)

where cki is the CV defined in Eq.(3.1); Nk is the number of concept k in all

documents; n is the number of elements in the set T ; αij represents a relation

between pi and tj ; and γ is a normalization constant that adjusts the relative

41

values between pi and tj (the relative values between pi and tj should be of

the same order of magnitude because pi is updated by tj and vice versa).

The value of αij is obtained in the following way:

αij =
fij

Nj

(3.3)

where fij is the frequency of term j in document i. If term j is not in the

document i, fij = 0. Nj is the number of term j in all documents.

Therefore, we can represent Eq. (3.2) as:

P = γ · A · T = γ · ([[A′][A′′]]·
[
[T ′]

[T ′′]

]
) (3.4)

where P is an m × 1 vector; A is an m × n matrix; T is a n × 1 vector; A′ is

an m′ × n′ matrix; A′′ is a m × (n − n′)1; T ′ is a n′ × 1 and T ′′ is a n′′ × 1,

and m is the number of Web documents, n is the total number of terms, n′

is the number of terms of the target category, and n′′ is the number of terms

that do not belong to the target category.

On the other hand, TWs are calculated using PVs:




t′j = δ ·∑m
i=1 βjipi

t′′j = 0
(3.5)

where m represents the number of Web documents; βji represents a relation

between pi and tj ; and δ is the constant parameter with a meaning similar to

γ in Eq. (3.2). t′j represents the TW of a term that is related to the target

category; while t′′j represents the TW of a term that is not related to the target

category.

βji in Eq. (3.5) is defined as:

βji =
fij

N ′
i

(3.6)

where N ′
i is the number of terms in the document i. If term j is not present

in the page i, fij is zero. Therefore, Eq. (3.5) can be shown as:

1A number of terms that do not belong to the target category will be represented by
n′′ = n − n′.

42

T =

[
T ′

T ′′

]
= δ · B · P = δ ·

[
[B′]

[B′′]

]
·P

= δ ·





B′







0

.

.

0







· P
(3.7)

where B is a n × m matrix, B′ is a n′ × m matrix, and B′′ is a n′′ × m zero

matrix.

Combining Eq. (3.4) and (3.7) results in

T =

[
T ′

T ′′

]
=




t′1
.

.

t′n′

t′′n′+1

.

.

t′′n




=




t′1
.

.

t′n′

0

.

.

0




= δ · B · A · T = δ · C · T (3.8)

where C = B · A.

3.1.3 AATI: the solution and its properties

The solution of Eq. (3.8) is set T .

Proposition 1 Given Eq. (3.8), the conditions that one solution T exists

are

1. C ′ is a positive n′ × n′ matrix; and

2. The eigenvalue of matrix C ′ is 1.

Proof Since C ′ is a positive n′ × n′ matrix, then based on the Perron-

Frobenius theorem [91], C ′ has a unique right eigenvector X = {x1, x2, ..., xn′}
if
∑n′

i=1 xi = 1. Therefore

λc ·X = C′ ·X (3.9)

43

where λc is the eigenvalue of C ′.

Due to the second condition, i.e., λc = 1, after comparing Eqs.(3.8) and (3.9),

X as the right eigenvector of matrix C ′ is the solution of Eq. (3.8). Besides, if∑n
i=1 xi = 1, it is unique. Q.E.D.

In conclusion, T in Eq. (3.8) exists when C ′ is a positive n′ × n′ matrix with

the eigenvalue.

Proposition 2 The matrix C ′ in Eq. (3.8) is a positive n′ × n′ matrix and

its eigenvalue is equal to 1.

Proof C ′ is a positive n′ × n′ matrix, so let us focus on its eigenvalue.

Based on Eq. (3.8), we have:

δ · C = δ · B · A = δ






B′ · A′







0 . . . 0

. 0 . . .

. . 0 . .

. . .0 .

0 . . . 0




0

.

.

0




=
δ

γ






γ ·C′







0 . . . 0

. 0 . . .

. . 0 . .

. . .0 .

0 . . . 0




0

.

.

0




(3.10)

Here
C = B · A
C′ = B′ · A′ (3.11)

where C is an n × n matrix, and C ′ is an n′ × n′ matrix.

44

Based on Eqs. (3.2), (3.3) and (3.4), αij is the element of row i and column j

in the m′ × n′ matrix A′, thus the sum of each column in the matrix A′ is:

m′∑
i=1

αij =
m′∑
i=1

fij

Nj
=


m′∑

i=1

fij


 /Nj = 1 (3.12)

Based on Eqs. (3.5), (3.6) and (3.7), βji is the element of row j and column i

in n′ × m′ matrix B′, thus the sum of each column in the matrix B′ is:

n′∑
j=1

βji =
n′∑

j=1

fij

N ′
i

=


 n′∑

j=1

fij


 /N ′

i = 1 (3.13)

The n′ × m′ matrix B′ is represented by an n′ × 1 vector B′ = [b1, b2, ..., bn′]t,

and each element bi is the ith row vector in the matrix B′, which is a 1 × m′

vector, i.e., bi = [βi1, βi2, ..., βim′]. At the same time, m′ × n′ matrix A′ is

represented by an 1× n′ vector A′ = [a1, a2, ..., an′], and each element ai is the

ith column vector, which is an m′ × 1 vector, i.e., ai = [αi1, αi2, ..., αim′]t. So

we represent Eq. (3.11) in a new form:

C′ = B′ · A′ =




b1

b2

...

bn′


 · [a1 a2 ... an′]

=




b1a1 b1a2 ... b1an′

b2a1 b2an′

...

bn′−1a1 bn′−1an′

bn′a1 bn′a2 ... bn′an′




(3.14)

Therefore, the sum of elements in column i of C ′ is:

n′∑
i=1

biaj = (
n′∑

i=1

bi) · aj (3.15)

where bi is an 1 × m′ vector, and the sum of the elements of each column in

B′ is 1, therefore
n′∑

i=1

bi = I (3.16)

where I is the 1 × m′ vector [1 1 ... 1]. From Eqs. (3.15) and (3.16), we have:

n′∑
i=1

biaj = [1 1 ... 1] · aj =
m′∑
k=1

αkj = 1 (3.17)

45

so the sum of the each column in the matrix C ′ is also 1. Then we have:

e · C′ = e (3.18)

where e is the 1 × n′ vector [1, 1, ..., 1], therefore

e · (C′ − I) = 0 (3.19)

⇒ det(I −C′) = 0 (3.20)

where I is the identity matrix. Thus, we have proved that the eigenvalue of

C ′ is 1, that is T ′ exists and T exists. Q.E.D.

In conclusion, because TW set T is the right eigenvector of matrix C as

denoted in Eq. (3.9), theoretically the AATI scheme is correct.

3.2 Validation of the AATI scheme

The AATI scheme which assigns term importance, is a crucial part of our

research. In the following sections, a number of experiments were designed

and deployed to validate the AATI scheme.

The experiments are divided into two groups:

• The first group of experiments illustrates the nature of the AATI. It

shows the AATI’s ability to continuously update TW values of the terms

based on the upcoming stream of documents. The results are presented

in section 3.2.3.

• The second group of experiments compares the AATI with the support

vector machine (SVM) (secion 2.1.5) when the two methods are applied

to categorize documents. Though the AATI is not designed for catego-

rization, it can be adapted for this purpose. We assume that soccer is

the target category and concepts identified in a document are pieces of

evidence supporting a decision whether a document belongs or does not

belong to the target (soccer) category. The SVM is probably one of the

most popular text categorization (TC) techniques (section 2.1.5). It was

introduced by Thorsten Joachims [49], and compared with other classi-

fiers, such as k-NN (a k-nearest neighbours classifier), C4.5 (a decision

tree based classifier) and Naive Bayes based classifiers. SVM is the best

of these techniques according to many researchers[92, 93, 94, 95] .

46

The AATI scheme is designed to interact with ontologies (Sections 4.2), which

provides AATI a list of concepts, a list of terms, and their relations. An

ontology is included in the experiments in this chapter (see section 3.2.4).

3.2.1 Evaluation metrics

Four metrics are applied to evaluate results of classification experiments: pre-

cision, recall, F-Measure, and accuracy. F-Measure combines precision and

recall. The definitions of precision, recall, F-Measure, and accuracy are:

Pprecision =
Nrelevant ∩ Nretrieved

Nretrieved

Precall =
Nrelevant ∩ Nretrieved

Nrelevant

PF−Measure =
2 · Pprecision · Precall

Pprecision + Precall

Paccuracy =
Nretrieved

Nrelevant

(3.21)

where Nrelevant is the number of relevant Web documents, and Nretrieved is the

number of Web documents that are retrieved.

The metric Paccuracy is a representative measure evaluating the performance

of any classification algorithm. This measure provides good evaluation of

a classifier when the distribution of data among categories is balanced. In

our experiments, the datasets contained no more than 20% of the soccer-

relevant Web documents, and up to 80% of the non-soccer Web documents.

If we did not use any classification algorithm but just recognized all Web

documents as non-soccer ones, we obtained an accuracy of about 80%, which

was meaningless. Therefore, we also used other metrics – precision, recall,

and their combination F-Measure – in order to provide a more comprehensive

comparison of classification methods.

3.2.2 Datasets

Three collections of Web documents were used in the experiments. The docu-

ments were crawled from three news websites: BBC2, CNN3, and CBC4. The

documents collected from those websites were already labelled by editors of

those news agencies. In total, 9135 Web documents were collected from BBC,

2http://www.bbc.co.uk, crawled in June 2007.
3http://www.cnn.com, crawled in June 2007.
4http://www.cbc.ca, crawled in August 2009.

47

907 from CNN, and 6041 from CBC. Different types of document are included

in the obtained documents: text documents, files for formating, scripts (which

are usually short), etc. We filtered the Web documents and discarded all

documents with size less than 10 kilobytes. The prepared datasets for the

experiments were:

• Documents from the BBC website were split into two sets–training and

testing. The testing dataset – BBCSetTS – contained 7535 web docu-

ments: 6059 non-soccer, and 1476 soccer documents; the training dataset

– BBCSetTR – contained 1600 web documents: 1280 non-soccer, and 320

soccer ones ;

• There were 907 documents from the CNN website – CNNSet – 802

non-soccer and 105 soccer documents 5;

• Documents from the CBC website were divided into two sets: a testing

dataset – CBCSetTS – 4841 web documents, including 4328 non-soccer

and 513 soccer documents, and a training dataset – CBCSetTR – 1200

web documents, 1075 non-soccer, and 125 soccer ones.

In the experiments, we used BBCSetTR, CNNSet, and CBCSetTR to con-

struct three (for each dataset) SVM models and three AATI models. Those

models were validated using different testing datasets.

3.2.3 Basic experiments

The AATI updates TW every time it reads a new Web document. The changes

in the TW values of two different terms “pass” and “midfielder” are shown

in Fig. 3.2. It is assumed that the first three hundred Web documents are

needed for term weights to gain a discrimination power. The term values after

the first three hundred Web documents were 0.004 and 0.002 for “pass” and

“midfielder” respectively. However, the value of the term “midfielder”, which

was more important for the soccer category, increased to 0.014, while the value

of “pass” dropped to almost zero.

The continuous updates of TWs are “controlled” by upcoming documents. If

the contents of Web documents change, the TWs change too. A good illus-

tration of that process is a change in the TW value of the term “Manchester

United,” shown in Fig. 3.3. This term represents a name of a famous soccer

club in England. Initially, the upcoming Web documents were collected from

5Due to its small size, the CNNSet dataset was not split into training and testing; the
whole set was used to build models.

48

Figure 3.2: Changing of the two different TW s

49

the BBC website (from England), therefore the TW of this term was rising.

However, after page 1000 the source of Web documents changed and the up-

coming documents were collected from the CNN site (from USA), where the

term “Manchester United” was less popular. This decrease in popularity of

the term “Manchester United” translated into a drop of its TW value. The

change in TW is easy to recognize in Fig. 3.3 – the dotted line represents what

the TW of the term would be if the upcoming stream of Web documents were

still from the BBC website.

TW values depend on the frequencies of terms in the Web documents. As

shown in Fig. 3.3, the TW of the term “Manchester United” which occurs

42 times in 1000 BBC Web documents initially increases, and then decreases

when the term does not occur in the next 600 Web documents from the CNN

website.

In general, TW values of terms which do not occur frequently in the documents

are small. On the other hand, a high frequency of a given term does not guar-

antee a high TW value. For example, the top three terms with the highest

TW values obtained from the BBCSetTR were “Arsenal” (TW: 0.023), “Mi-

lan”(TW: 0.021), and “Liverpool”(TW:0.019), which occurred 183 times, 369

times, and 950 times, respectively, while the top three terms with the highest

frequencies – “Cup” (1301 times), “Home”(1186 times) and “International”

(1021 times) – had TW values of 0.008, 0.002, 0.003, respectively. In general,

if a term does not occur frequently, it is regarded as a non-important term,

and it will be assigned a low TW value by the AATI. At the same time, if a

term occurs very often, it may not obtain a high TW value unless it occurs

constantly in documents with high PV values.

3.2.4 Classification experiments

We classified Web documents in the soccer category with the following as-

sumptions.

1. For AATI based classification:

(a) The ontology defines the category soccer.

(b) A document is recognized as belonging to the soccer category when

the sum of concept values (Eq. 3.1) for this document exceeds a

preset PageV alueThreshold. The value of PageV alueThreshold

is manually set based on the results obtained during the training

phrase. Its value is set in a way that the values of precision and

recall are balanced.

50

Figure 3.3: TW change of term “Manchester United”

2. For SVM based classification:

(a) The terms taken from the ontology are used as input features for the

SVM. There are more than four hundred terms (486 exactly), such

as “referee,” “dribbling,” “Ronaldo,” “AC Milan,” and so on. Using

all words in documents as input features for SVM models seems

ideal but it leads to a computational burden. Many researchers

utilize feature selection approaches to reduce the number of input

features [49]. Here, we used all terms in the ontology as input

features. We did so, because the ontology is a knowledge base that

represents human knowledge about the category soccer, and the

comparison of SVM and AATI built models is fair when the same

set of input features/terms is used in both models.

(b) The trained SVM model decides which category (soccer or non-

soccer) a document belongs to.

3.2.5 AATI training phase

The general training process for a classifier built using AATI is illustrated

in Fig. 3.4, where the training was performed using the BBCSetTR (1600

Web documents). The figure shows values of the PF−Measure calculated after

evaluation of each upcoming document from the training set. We can say that

the results represent cumulative PF−Measure values, and the experiment was

51

0 200 400 600 800 1000 1200 1400 1600

Web pages

0%

10%

20%

30%

40%

50%

60%

70%

80%

F
M

ea
su

re

Figure 3.4: F-Measure for a training phase of AATI-based classifier

repeated ten times. In the first 600-700 documents the classifier was in its

learning phase. Fig. 3.4 confirms that the values of PF−Measure stabilized after

about 700-800 documents, and became similar for all ten runs.

3.2.6 Comparison with SVM

Our comparison of SVM and AATI models included the following three exper-

iments:

• AATI and SVM models were trained using the BBCSetTR dataset. This

process was repeated ten times – a ten-fold cross validation technique

– and the results were presented as the mean value and its standard

deviation. The testing phase was performed with BBCSetTS, CNNSet

and CBCSetTR+TS (the entire CBC set). The results are shown in

Table 3.1.

• The AATI and SVM models were trained with the CNNSet. The train-

ing was done only once, since the number of Web documents from the

CNN site was very small. After the models were trained, their testing

was performed with the BBCSetTR+TS (the entire BBC set) and the

CBCSetTR+TS (the entire CBC set). The results are shown in Table 3.2.

• AATI and SVM models were trained using the CBCSetTR. The experi-

52

ment was repeated five times – a five-fold cross validation technique – and

results were presented as the mean value and its standard deviation. The

experiment – its testing phase – is performed with CBCSetTS, CNNSet

and BBCSetTR+TS (the entire BBC set). The results are shown in Ta-

ble 3.3.

The experiments presented here were designed in a way that the testing phase

was as realistic as possible, mimicking a possible utilization of a text classifi-

cation system on the Web. The models were tested using datasets containing

Web documents from a number of different websites. The frequencies of some

terms varied among documents from different sites because of different inter-

ests of readers and levels of popularity. For example, involving the category

soccer, the ratios between soccer vs non-soccer documents varied among all

three datasets. Also, the documents were collected at different times – the web

pages from BBC and CNN were downloaded in 2007, while from CBC in 2009.

We assume such variety makes the comparison more comprehensive. Since

F −Measure is the combination of the precision and recall (section 3.2.1), it

was our primary measure to evaluate SVM and AATI. Accuracy is not suited

as the major metric because the number of soccer documents is much fewer

than non-soccer documents.

Tables 3.1, 3.2, and 3.3 contain results obtained during the testing phase for

SVM and AATI models. The first rows of Tables 3.1 and 3.3 contain results

obtained for testing sets (subscript TS) created using documents crawled from

the same sites as the documents used for building the training sets (subscript

TR). That is, the BBCSetTS was used to obtain results presented in the first

row of Table 3.1, and the CBCSetTS was used to obtain results presented in

the first row of the Table 3.3. The results shown in the first row of Table 3.2 are

for the CNNSet6. The results presented in the second and third rows of each

table represent performances of the models when tested against documents

crawled from different websites. For example, in Table 3.1 which represents

performances of the model built using the BBCSetTR dataset, the results in

the second row are for the CNNSet dataset and results in the third row are

for the CBCSetTS+TR dataset.

At the first glance, the results for SVM models in the first rows of Tables 3.1,

3.2, and 3.3 are good. The values of PF−Measure are close to or even over 90%.

This proves that SVM performed very well when documents from the same

website were used for testing and training. However, when documents from

different websites were used, the PF−Measure values dropped dramatically for

6As mentioned earlier, due to the small size of the CNNSet dataset we did not split it
into two sets. The results presented in the first row are for the training date set.

53

Table 3.1: Results for SVM and AATI models trained with BBCSetTR

Type PPrecision PRecall PF−Measure PAccuracy

BBCSetTS:
SVM 83.04∓ 3.40% 90.14∓ 2.16% 86.43∓ 2.59% 94.34∓ 1.14%
AATI 68.83∓ 4.20% 68.43∓ 3.77% 68.61∓ 3.83% 87.76∓ 1.56%
CNNSet:
SVM 91.37% 41.61% 57.18% 92.75%
AATI 89.88% 76.19% 82.47% 96.25%
CBCSetTR+TS:
SVM 49.09% 60.21% 54.08% 89.24%
AATI 66.49% 77.44% 71.55% 93.49%

Table 3.2: Results for SVM and AATI models trained with CNNSet

Type PPrecision PRecall PF−Measure PAccuracy

CNNSet:
SVM 89.16% 88.42% 88.79% 97.46%
AATI 83.80% 83.81% 83.81% 96.25%
BBCSetTR+TS:
SVM 55.57% 40.69% 46.98% 81.96%
AATI 65.90% 66.40% 66.15% 86.62%
CBCSetTR+TS:
SVM 33.96% 78.00% 47.32% 81.64%
AATI 41.48% 88.72% 56.53% 85.58%

Table 3.3: Results for SVM and AATI models trained with CBCSetTR

Type PPrecision PRecall PF−Measure PAccuracy

CBCSetTS:
SVM 98.72∓ 0.59% 97.28∓ 0.61% 97.99∓ 0.44% 99.57∓ 0.61%
AATI 76.80∓ 2.98% 80.37∓ 0.43% 78.05∓ 1.37% 94.94∓ 0.37%
BBCSetTR+TS:
SVM 74.70% 11.80% 20.38% 81.87%
AATI 63.91% 21.73% 34.43% 82.19%
CNNSet:
SVM 95.00% 15.70% 27.00% 90.18%
AATI 92.86% 49.52% 64.60% 93.71%

54

Table 3.4: Results for AATI model trained using CBCSetTR at first, and
“updated” with BBCSetTR

Type PPrecision PRecall PF−Measure PAccuracy

BBCSetTS:
AATI 55.78% 55.81% 55.79% 82.67%
CBCSetTS:
AATI 73.32% 80.90% 76.92% 94.86%
CNNSet:
AATI 91.42% 70.07% 79.34% 95.71%

SVM (the last two rows of each table). It is likely that the SVM model suf-

fered from overfitting. The AATI model performed much better in such cases.

Compared with SVM models, AATI based classification led to higher values of

PF−Measure when performed against “unseen” and “different” datasets. AATI

generated models performed better in all those cases, the differences ranging

from a maximum of 37.6%, to a minimum of 9.21%.

The results in Table 3.1 show a better performance for both SVM and AATI

models than the results in Tables 3.2 and 3.3. This may be because the

training set from the BBC website (BBCSetTR) was the largest one. An

interesting conclusion can be drawn from Table 3.3. The documents from

the CBC website are quite new (crawled in 2009) compared to the documents

downloaded from BBC and CNN sites (crawled in 2007). It seems both models

are sensitive to changes in popularity of terms over time: the testing results in

the second and third rows of Table 3.3 are worse than the results in the second

and third rows of Tables 3.1 and 3.2. This demonstrates an undesirable feature

of conventional classification models – they have to be retrained to “follow”

the changes in the popularity of terms used in Web documents.

Since the AATI does not need a special training phrase, it is suitable as a web-

based application. In its original design, the AATI would allow for updating

TW values. To illustrate this behavior, one more set of experiments was

performed. The AATI model built using the CBCSetTR was “exposed” to

Web documents from the BBCSetTR and the TW values were updated. The

results in Table 3.4 represent an improvement in the performance of this model

for the BBCSetTR+TS and CNNSet datasets compared to the results shown

in Table 3.3. The PF−Measure value for the BBCSetTS increased to 55.79%,

compared to 34.43% for the model built using CBCSetTR. However, the

value is smaller when compared with the value obtained for the AATI model

built using only BBCSetTR. Similarly, the PF−Measure value for the CCNSet

55

increased from 64.60% to 79.34%. For the CBCSetTS we observed a slight

decrease in the performance; the PF−Measure value was 76.92% for the new

model, and 78.05% for the previous model (Table 3.3). At the same time,

the value is better than for the model built using BBCSetTR – 71.55%. The

differences are attributed to changes in TW values caused by the BBCSetTR.

3.2.7 Conclusion

The fact that the AATI was able to update TWs with “unknown” Web docu-

ments makes it suitable for Web-based applications. In the basic experiments

(section 3.2.3), the AATI displayed its ability to alter the TWs of the term

“midfielder” and term “pass” using upcoming Web documents. Moreover,

the experiment involving the term “Manchester United” showed how its TW

changed with different sets of Web documents. The basic experiments demon-

strated the nature of AATI.

The classification experiments were designed and applied like classic experi-

ments to verify text categorization models. This was not a satisfactory way

to employ AATI because it was not designed for categorization. The AATI

was designed to obtain TWs (term weight, section 3.1) for deciding whether

a document belongs to a category or not through its PV (page value, sec-

tion 3.1). The PV of a document is the sum of related CVs (concept values,

section 3.1), which represents how much information of the related concepts

is in the document. The PV is a reasonable definition to satisfy the mathe-

matical requirements that the TW (the importance of terms, section 3.1) set

exists, but it is not an optimized measure to assign documents to different

categories.

For example, let us assume there are two documents d1 and d2: in d1 there

is one related term repeating n times; in d2, there are m different related

terms (attached to m different concepts), and every term is present once. n

is much larger than m. The PV of d1 is equal to the CV of the concept that

the term is attached to, and the CV is the TW of the term times n. The

PV of d2 is the sum of the m CVs (the number of the concepts that the m

terms are attached to), and every CV is equal to the TW of one term. Since

n is much larger than m, the PV of d1 tends to be larger than the PV of

d2. However, as a value to indicate categories, this result may cause problems

because TWs but not PVs are the solutions of the AATI. Therefore, applying

AATI on categorization may not appropriate. That is, the experiments on the

HOTIR-based system (Chapter 6) is more reasonable than the classification

experiments (section 3.2.4), as the former utilizes TWs and the latter uses

56

PVs.

However, the classification experiments can directly check the results of the

AATI based on the assumption that reasonable PVs are generated by properly

assigned TWs. We did not expect the AATI to perform better than the SVM,

which is one of the best models for text categorization. A reasonable result

was acceptable and the experimental results are encouraging.

Though the SVM showed its advantage in categorization, the AATI proved its

advantage in adaptability. The SVM performed better when the news pages

used for training and testing were obtained from the same website. When the

Web documents for training and testing were from different sites, the AATI

generated better results than the SVM. The two outstanding features of the

AATI were : (1) the Web documents in the training set of the AATI did not

need to be categorized; and (2) training of the AATI was easily stopped and

started. These two factors dramatically reduce the involved human-labor and

help to make the knowledge (TW set) obtained by the AATI up-to-date. In

the next chapter, we introduce how deploy ATTI into HOTIR.

57

Chapter 4

Hybrid ontology-based textual
informaton retrieval (HOTIR):
Methodology

In this chapter, we introduce a hybrid ontology-based textual information re-

trieval framework called HOTIR. In section 4.1 three components of HOTIR

are introduced: KMgmt (knowledge management), QryProc (query process-

ing), and Eval (evaluation). KMgmt, described in section 4.2, works with a

knowledge base to provide extra definitions of concepts. QryProc translates

normal keyword-based queries into HofC-based queries, and expands them

with knowledge in the knowledge base. The functions and responsibilities of

QryProc are explained in section 4.3. Eval, described in section 4.4, evalu-

ates the relevance of queries and documents. Section 4.5 is a summary of this

chapter.

4.1 Overview of HOTIR

HOTIR is a concept-based information retrieval framework. Fig. 4.1 displays

a sketch of the procedures in HOTIR:

• Firstly, a conventional query (keyword-based) is translated into a concept-

based query. In a concept-based system, a query is a list of concepts

instead of keywords. Because concepts are abstract, their definitions are

needed in the query. The definition of the concept in HOTIR includes:

(1) terms that describe the concepts and their importance; (2) related

concepts that describe the primary concept and their importance; (3)

relations between terms and concepts. Computer agents in HOTIR can

58

Knowledge
enrichment

Expanded query

Query processing

Conventional query

Ranking

Unranked documents

Concept−based query

Ranked documents

Figure 4.1: The basic procedures in HOTIR

identify the concepts in Web documents from definitions in the query.

• Second, the concept-based query is expanded by extracting knowledge

from the knowledge base. Queries are from users and we can not ex-

pect all users are experts to provide enough definitions of the concepts.

The expanded query contains more information (if it is available in the

knowledge base) that is helpful to retrieve relevant documents.

• Finally, documents are ranked according to the satisfied concepts of the

HofC in them. To a concept defined only by terms (no subconcepts),

satisfaction of the concept is decided by the presence of those terms in

the document. To a concept defined by a list of terms and subconcepts,

satisfaction of the concept is decided by the presence of those terms and

the satisfactions of its subconcepts. In the end, the satisfaction of a

query is decided by the satisfactions of concepts defined in it.

HOTIR successfully solves three difficulties in utilizing concept matching to

rank documents:

• How is the knowledge base constructed? A knowledge base is a source

of supplementary knowledge to enrich queries. A concept is defined

by terms (including their importance), related-concepts (including their

importance) and their relations. A simple example is shown in Fig 4.2,

the concept Soccer Player is defined by its related-concept Player Drogba

and Player Terry. Concept Player Drogba is defined by three terms

59

Soccer Player

Player Drogba Player Terry

First Name: Didier

Last Name: Drogba

Position:Forward

First Name: John

Last Name: Terry

Position:Midfielder

Figure 4.2: Concepts and terms

“Didier” (value of attribute First Name), “Drogba” (value of attribute

Last Name) and “Forward” (value of attribute Position). Since it is

not reasonable to expect that a user to provide enough terms to create

knowledgeable queries, subconcepts and their importance to the primary

concept are added to the queries by the knowledge base as a necessary

component in HOTIR 1. The definitions of different concepts are stored in

the knowledge base, which can be used to enrich definitions of queries as

supplementary knowledge. The knowledge base here is constructed based

on an ontology (section 2.1.2) and the new self-adaptive AATI scheme.

The former provides lists of terms, concepts, and their relations, and the

latter assigns importance to terms, which in turn assigns importance to

concepts.

• How are queries built in a concept-based manner? A concept-based sys-

tem requires concept-based queries. Users generally provide keyword-

based queries composed of a few keywords. HOTIR translates keyword-

based queries into organized concepts from definitions in a knowledge

base, which are in the form of hierarchy of concepts (HofC) (section

2.1.4). Because both the HofC and the knowledge base contain hier-

archies, it is easy to expand queries with the definitions of terms and

concepts in the knowledge base.

• How can documents be ranked? The knowledge base provides extra

definitions for the target concepts and the HofC contains hierarchies of

concepts and related subconcepts. In general, the satisfaction of a HofC

by a document is an aggregation of satisfactions of concepts defined

in the query. And the satisfaction of a concept is an aggregation of

satisfactions of terms and subconcepts. A term or a identified subconcept

in the document is treated as a piece of information that satisfies a

1Concepts related to the primary concepts of the query are called subconcepts (or
superconcepts) in the queries. See section 4.3.1 for details.

60

Ontology

Web docs

Building ModOnt

Updating ModOnt

ModOnt

Component KMgmt

Figure 4.3: Component KMgmt component in HOTIR system

concept in the HofC. Ordered weighted averaging (OWA) operators are

applied (section 2.1.3) to aggregate multiple pieces of information and

rank documents according to their relevance to a query.

4.2 Knowledge management (KMgmt) com-

ponent

In HOTIR, KMgmt manages the knowledge base for query expansion. In

concept-based models, documents are lists of concepts rather than lists of

terms. Because documents are expressed directly through concrete texts in-

stead of abstract concepts, the process of recognizing relevant documents is

based on the identification of concepts in the documents that have definitions

in the query. That is, concepts cannot be identified until they are defined.

The knowledge base, therefore, stores definitions of concepts. Concept defini-

tions are composed of two parts:

1) Concept definitions include lists of related-concepts, terms and their re-

lations. An ontology, a specification of a conceptualization, is a good

choice to provide this type of information.

2) Concept definitions also include the importance of concepts and terms.

The importance of a term/concept represents a level of contribution of

this term/concept toward the defined concept. The importance value of

a concept is calculated based on the importance values of all terms and

61

concepts attached to it. Human experts can list related concepts/terms

to explain one concept, but they can hardly assign numbers to represent

their importance. For example, let us assume Soccer Player as a primary

concept to be defined. Though an expert can find terms and related-

concepts to define this primary concept, like the name of the player, the

team he plays for, the position he plays, and so on, it will be difficult

for the expert to assign importance values to these terms and concepts.

Computers use mathematical relations to do this job.

As shown in Fig. 4.3, there are two basic modules (presented in ellipses) in

KMgmt, which builds a modified ontology (ModOnt) from an existed ontology

and updates the ModOnt, respectively. ModOnt is a new concept proposed in

this work; It is the knowledge base for HOTIR (see section 4.2.3 for more de-

tails). The ModOnt is generated using input from any native ontologies. The

process of updating the ModOnt is accomplished by the new self-adaptive

scheme, AATI (Adaptive Assignment of Term Importance), which assigns im-

portance to terms/concepts in the ModOnt, then updates it.

4.2.1 Ontology and modified ontology (ModOnt)

Ontology

In an ontology, a class is described with properties. There are two types of

property: datatype property, and object property (section 2.1.2). In such a

case, a concrete piece of information that is called an individual is an instance

of a class – it is created by assigning values to class properties.

Figure 4.4 shows a simple ontology that includes three classes: Soccer, Soc-

cer Player, Soccer Club; and four individuals: Player Drogba, Player Terry,

Club Chelsea, Club FC Barcelona. Two individuals of the class Soccer Player

are Player Drogba and Player Terry. They are described by three datatype

properties and one object property. The three datatype properties are First

Name, Last Name and Position. The object property is InClub. It means that

Soccer Player is described by three literal values (terms), which are the values

of the datatype properties, and one individual, which is the value of an object

property.

Individual Player Drogba is defined by the term “Didier” as the value of a

datatype property First Name, by the term “Drogba” as the value of datatype

property Last Name, by the term “Forward” as the value of datatype property

Position, and by individual Club Chelsea as the value of the object property

InClub. Similarly, individual Player Terry is described by “John” as First

62

Soccer Player

HasPlayer

InClub

HasPlayer

InClub

Name:FC Barcelona

Location: Barcelona

Stadium:Camp nou

Soccer Club

Soccer

Club FC BarcelonaPlayer Drogba Player Terry Club Chelsea

First Name: Didier

Last Name: Drogba

Position:Forward

First Name: John

Last Name: Terry

Position:Midfielder

Name: Chelsea

Location: London

Stadium:Stamford

Figure 4.4: A simple ontology

Name, “Terry” as Last Name, “Midfielder” as Position, and individual Club

Chelsea as the value of InClub.

Individuals of the class Soccer Club (Club Chelsea and Club FC Barcelona)

are also described by three datatype properties and an object property. The

three datatype properties listed are Name, Location, and Stadium. The object

property is HasPlayer, which is the inverse property2 of the object property

InClub. The values of the datatype properties and the object property for

individuals Club Chelsea and Club FC Barcelona are shown in Fig. 4.4.

Modified ontology (ModOnt)

A native ontology was not a suitable knowledge base for HOTIR, because:

1. A HofC contains only concepts, while an ontology contains both classes

and individuals. Thus it was difficult in HOTIR to expand HofC-based

queries with the help of a knowledge base that was in the format of an

ontology.

2. An ontology does not natively contain importance (represented by vec-

tor M), and linguistic quantifiers (represented by Q) which are nec-

essary for OWA operators to rank documents for HofC-based queries

(section 2.1.3).

2If an object property o1 points object A from object B, and another object o2 points B
from A, o1 and o2 are regarded as inverse properties.

63

In the classic definition of ontology, classes are different from individuals be-

cause classes are abstract and individuals are concrete. That is, class defines

properties that have no concrete value; while individuals are described by a

list of values of properties.

However, the concepts in the HofC are defined as a combination of classes and

individuals in the ontology (section 4.3.1). That is, the concept in the HofC

has definitions of attributes and, possibly, concrete values of the attributes.

The difference between an ontology and a HofC lies in their respective re-

sponsibilities. Unlike an ontology that is designed to store a large amount

of organized knowledge, a HofC represents a list of specific information for

retrieval of relevant documents. If a class in an ontology has no individuals,

i.e., no concrete values to describe it, it can be filled up later by others. But it

is not reasonable that a HofC should contain a concept that has no concrete

value to define it in a query. Such a concept is useless because there is no way

to identify it in documents.

Therefore, in the knowledge base in HOTIR, all classes and individuals in

the ontology were translated into concepts in the ModOnt. The definition of

concept in the ModOnt is the same as that in the HofC, which guarantees the

smooth expansion of queries by KMgmt.

The following formats and operations pertain to this thesis:

• Concepts are used in the HofC and the ModOnt; classes and individuals

are used in the ontology;

• Attributes are used in the HofC and the ModOnt; properties are used in

ontology;

• The values of datatype attributes in the HofC and the ModOnt are called

terms, which can be recognized directly from Web documents.

• OWA operators are applied to implement aggregations of HofCs; OWA

operators require M (importance) and Q (linguistic quantifiers)3.

The steps performed to build the ModOnt were:

1. All classes and individuals are translated into concepts;

2. A default value of Q is added to each concept; the default Q is most ;

3. The default value of M is set as zero for each concept and term.

The ModOnt is the knowledge base in KMgmt, which is updated by the AATI

and can be used to expand queries in HofC formats.

3Details about M and Q are in section 2.1.3 and section 2.1.4

64

4.2.2 AATI scheme for term importance

ModOnt is a model of the domain, that is, it presents concepts, terms, and

their relations in the domain. The AATI scheme integrated with the ModOnt,

provides importance values of the terms and concepts in the ModOnt.

In chapter 3, the AATI was theoretically studied and then validated through

experiments. In the KMgmt component, the AATI scheme was implemented

based on power iteration [96], which is used to find eigenvectors (T in Eq. (3.8)

) of a matrix (C in Eq. (3.8)) in linear algebra. The main steps of AATI

implementation were as follows:

1. Translate an ontology into a ModOnt;

2. Take a new Web document;

3. Parse the document and annotate terms from the ModOnt in the docu-

ment;

4. For each term do one of the following:

(a) if TW is not zero (it means the term has already appeared in

documents), take this as its new TW;

(b) if TW is zero (the term has not been found in any documents),

randomly generate a number between 0 and 1, and assign it as its

TW;

5. Calculate the PV of this Web document, based on Eq. (3.4);

6. Update the TWs of those terms found in this Web document using

Eq. (3.7);

7. Normalize TWs across all terms (make the sum of TWs equal to 1);

8. If there are no more Web documents, STOP ; otherwise go back to step

2.

In the KMgmt, the AATI continuously updates TWs with the upcoming Web

documents. Intuitively, we can say that the PV is high when terms occurring

in a document have high TWs (Eq. (3.4)). At the same time, we can state

that the TW of a term is high when the PVs of documents that contain the

term are high (Eq. (3.7)).

65

Page Retriever

Database

DB manager

Local repositoryURL analyzer

Figure 4.5: Modules in the crawler

4.2.3 Other computer agents in component KMgmt

Web crawler

Web crawler, also called Web robot and Web spider, is a computer agent that

automatically retrieves Web documents. We developed our own Web crawler

based on Python4.

As shown in Fig. 4.5, the database stores information such as the uniform

resource locater (URL –the unique “address” of a Web document), retrieving

status, priority, local path of the downloaded document, etc. At the same

time, the local repository saves retrieved documents. The working procedures

of the crawler are:

1. A few URLs (seeding URLs) are entered into the database.

2. Page retriever obtains URLs from the Database through DB manager to

download documents. After the Web documents are downloaded to the

Local repository, Page retriever returns downloading information such

as retrieving status, local paths,etc. to DB manager, which is then used

to update the saved information in the Database.

3. URL analyzer sends requests to DB manager for the local paths of down-

loaded documents in the Database. With the local paths returned by

DB manager, URL analyzer gets the documents from the Local repos-

itory and analyzes links in the documents. The link analysis includes

extracting links (URLs of other Web documents) in the Web documents

and setting priorities. The URLs and their priorities are sent back to the

Database through DB manager for downloading. Priorities of URLs are

4Python is a programming language. See its official website at: http://www.python.org/
for more details.

66

calculated based on the rules we set, which are defined by the crawling

purpose. For example, if the crawler is expected to retrieve documents

only from a specific domain, the URLs from the domain are assigned a

priority value of 1.0; while the URLs from other domains are assigned

0.0. Thus URLs from other domains will not be used to download Web

documents by Page retriever.

Steps 2 and 3 are repeated until there are no URLs available for downloading.

Except for the seeding URLs, Page retriever retrieves Web documents with

the URLs extracted by URL analyzer. On the other hand, URL analyzer

extracts URLs from Web documents downloaded by Page retriever. In this

way, the Web crawler we built can automatically retrieve a large number of

Web documents from a couple of seeding URLs.

Annotation

We have developed a Java annotation module based on the UIMA (Unstruc-

tured Information Management Architecture) library created by IBM [97],

which adds extra information to the texts of Web documents.

In HOTIR, annotation is the basis for computer agents to identify concepts.

Terms, which are literal values of the datatype attributes in the ModOnt,

can be used to identify concepts in texts. Computer agents can locate terms

that are organized in the ModOnt from texts in documents, and add extra

information to them. The information added to a term can include its position

(begin, end) in a document, the concept it belongs to, and the attribute it

belongs to. Annotation in HOTIR connects the ModOnt with documents: the

frequency of a term presented in a document decides how well the document

satisfies the concept, to which the term is attached in the ModOnt.

Fig.4.6 shows how a document is annotated. For example, the term “Chelsea”

in the ModOnt is the value of attribute Name of concept Club Chelsea. The

annotation module finds that this term is present twice in the document. So,

for the ModOnt and the annotation module, a string “Chelsea,” which to

most computer agents is meaningless (nothing but a binary string), has its

own semantics/meaning: it is the name of a soccer club.

67

Soccer Player

HasPlayer

InClub

HasPlayer

InClub

Name:FC Barcelona

Location: Barcelona

Stadium:Camp nou

Soccer Club

Soccer

Club FC BarcelonaPlayer Drogba Player Terry Club Chelsea

First Name: Didier

Last Name: Drogba

Position:Forward

First Name: John

Last Name: Terry

Position:Midfielder

Name: Chelsea

Location: London

Stadium:Stamford Bridge

Figure 4.6: An example of annotation in a document

68

Preprocessing

Enriched HofC

Basic HofC

Clean query

Input query

Building HofC

Enriching HofC

Component QryProc

ModOnt

Component KMgmt

Figure 4.7: Component QryProc in HOTIR

4.3 The Query processing (QryProc) compo-

nent

The second component in HOTIR, the QryProc, contains three modules which

preprocess users’ conventional keyword-based queries, build HofCs from con-

ventional queries, and expand the HofCs with knowledge from the ModOnt.

The preprocessing module removes stop words and stems words from queries.

Stop words include articles such as “the” and “a” and prepositions such as

“in” and “from.” The stemming process removes suffixes and prefixes reducing

words to their stems. For example, the term “extended” can be stemmed to

“extend.”

The module to build HofC-based queries translates keyword-based queries into

concept-based queries as explained in section 4.3.2. Another module retrieves

knowledge from the ModOnt to complete the definitions of concepts in the

basic HofC, which helps identify them in Web documents later. The details

are presented in section 4.3.2.

69

4.3.1 HofC as query representation

A query is a statement representing the interest of a user. The user provides

keywords that describe objects that the user desires to be retrieved from an

information repository. Depending on the applied IR techniques, documents

are ranked based on the presence of query keywords in each document. The

keywords in the queries are represented as a flat structure, that is, there is no

indication that the keywords are related to each other, or that some keywords

depend on others. This is a simplification suitable for automatic processing but

it is not a realistic representation of a human-like way of finding relevant text.

For a human, all keywords are interconnected. They constitute a network

of words representing concepts. The activation of a single word or concept

initiates activations of related concepts, and finding those related concepts

leads to the selection of documents.

In HOTIR, a query is represented by a single HofC – a tree-like structure built

of concepts (vertices) and terms5 (terminal vertices/leaves) (section 2.1.4).

The structured form of a query, that resembles a network of words and con-

cepts, provides us with a more intuitive way of expressing things we are looking

for. A document that satisfies an HofC-based query is relevant to this query.

An aggregation of satisfactions is performed at each vertex of HofC using

OWA, and associated with the linguistic quantifier Q, and the vector M of

importance values.

As presented in section 2.1.3, a linguistic quantifier Q associated with a con-

cept is used at the time of the aggregation of satisfactions of terms and other

concepts (subconcepts) related to the primary concept. The possible quanti-

fiers are some, most, and so on. The notion of linguistic quantifiers plays an

important role in representing different ways of combining satisfactions.

A vector M (section 2.1.3) represents the importance of each term and concept

that is taken into consideration during an aggregation process. Not all terms

and concepts contribute uniformly to the activation of the primary concept.

Some definitions of the HofC, as used to express a query in HOTIR, are clarified

in the following sections.

Root concept (RC) in HofC

A concept-based query contains concepts and terms to be identified in doc-

uments. Our goal was to find out if a given document contained terms used

5Literal values of datatype attributes, as defined in section 2.1.4, are replaced here with
terms.

70

RC

concept1

(a) One
Keyword

RC

Concept1 Concept2 Concept3

(b) Multiple Keywords

RC

Concept1

Concept2 Concept3

(c) Structured Keywords

Figure 4.8: Examples of Applying Root Concept(RC)

to describe concepts in an HofC-based query. This translated into a process

of estimating a level of activation (or satisfaction) of the HofC. In order to

simplify this process, a special concept, called Root Concept (RC), was auto-

matically added to each HofC-based query. In this case, the activation of the

HofC is equivalent to the activation of the top level concept of HofC.

Some possible structures of HofC-based queries are presented in Fig 4.8. In

Fig. 4.8a, a query contains one single concept; in Fig. 4.8b, a query contains

multiple concepts in a flat structure; and in Fig. 4.8c, a query contains a few

structured concepts. Activation of the HofCs was simplified to the activation

of a single root concept (RC), regardless the complexity of HofCs.

Concept versus individual and class

An HofC is a hierarchical structure built with concepts and attributes. An

ontology is built with classes. Each class has zero or more properties that

define its features. A concrete instance of a class is called an individual.

A closer look at the meaning of these terms leads to the conclusion that both

HofCs and ontologies are built with similar components. HofC concepts have

their equivalents in ontology classes. The concept in a HofC has attributes

that can be treated as properties of classes. However, there is a small dif-

ference here. For a HofC, concept attributes represent concrete information

that defines a particular concept. Class properties are just definitions of types

of properties. Concrete information – values assigned to properties – are in-

stances of concrete classes (individuals). An individual of a given class is an

entity that contains values assigned to the properties of this class.

In general, we translate both class and individual in ontologies as concept in

HofCs. Every concept in the HofC can be described by attributes with real

71

values. That is, the difference between individual and class has been fuzzied

in the HofC.

Subconcept (Superconcept) versus related-concept

ModOnts are built from ontologies. To make query expansion smooth, the

concept in the ModOnt and the concept in the HofC have the same definition.

However, connected concepts are called related-concepts in the ModOnt, and

called subconcepts (superconcepts) in the HofC. The difference is decided by

their responsibility: ModOnts are knowledge bases; while HofCs are query

expressions.

• The connections in ModOnts, like the connections in ontologies, repre-

sent different meanings. For example, let us assume there is a ModOnt

based on the ontology shown in Fig. 4.4. The connection between the

concept Player Drogba and the concept Soccer Player is different from

the connection between the concept Player Drogba and the concept Club

Chelsea. The former connection means “is-a” or “has-a.” That is, Player

Drogba is-a Soccer Player or Soccer Player has-a Player Drogba. The lat-

ter connection means “InClub” or “HasPlayer”. That is, Player Drogba

InClub Club Chelsea or Club Chelsea HasPlayer Player Drogba.

• The connections in HofCs only represent relative levels in the hierarchy

structure, that is, one concept is a subconcept (superconcept) of another

concept. HofCs are built to represent queries where subconcepts con-

tribute to defining their related superconcepts. The connection may be

meaningless, because a user can connect any concepts to express his/her

interests. For example, let us assume the knowledge in the ontology

shown in Fig. 4.4 are correct. A user can create his/her own HofC which

has player Player Drogba as the superconcept, and Club FC Barcelona

as the subcocnept if he/she assumes that Player Drogba will transfer to

Club FC Barcelona and he/she wants to check if there is any rumour

about it. In this case, the satisfaction of Club FC Barcelona contributes

to the satisfaction of Player Drogba, and in turn to the satisfaction of

the whole HofC, though it seems the connection should not exist.

In general, subconcepts (superconcepts) are used to describe two connected

concepts in the HofC; while the term related-concepts is used to describe two

connected concepts in the ModOnt.

72

Connections in the HofC

Though connections in the HofC only represent layers, we define three types

of connections to describe different situations:

1. TypeI connection: connects concepts that are parts of users’ queries.

That is, the concepts provided directly by users are related to each other

through a typeI connection. It is the strongest type of connections.

2. TypeII connection: connects concepts defined in the domain ontology.

TypeII connections are “is-a” and “has-a” relations. The first step to

expand a HofC-based query is based on this type of connection (sec-

tion 4.3.2).

3. TypeIII connection: also connects concepts defined in an ontology.

TypeIII connections represent all different types of relations except “is-

a” or “has-a” relation. This is the weakest connection.

4.3.2 Building and expanding HofC

The process of identifying concepts in a document depends on the ability to

determine if HofC concepts can be inferred based on the texts of the document.

This depends on the contents of the query HofC itself – the more terms and

concepts used to build the HofC, the higher the chance of proper evaluation of

the relevance of a document. We do not expect users to provide comprehensive

concept-based queries containing a large number of terms and concepts. The

model accepts conventional keyword-based queries and automatically trans-

lates them into HofC-based queries. That is, the terms are translated into

concepts with specific hierarchies. Hierarchical information represents how

those concepts are related to each other, which helps to define a more flexible

representation for users to express their needs.

First, each keyword in a query is regarded as a concept and connected with

a typeI connection, which is called basic HofC in HOTIR. The keywords play

as names of the concepts, and are used to retrieve knowledge of equivalent

concepts in the ModOnt. The knowledge includes subconcepts, attributes,

linguistic quantifiers (Q), and importance vectors (M). The expansion steps

are:

1. Search the ModOnt for the equivalent concept of each keyword:

(a) If the name of a concept in the ModOnt is the same as the keyword,

it is called an equivalent concept of the keyword.

73

(b) If no concept is found; then check if there is a concept in which

a literal value of a datatype attribute (a term) matches the key-

word. If there is, the concept is called an equivalent concept of the

keyword.

(c) If no concept is found, there is no equivalent concept of the keyword

in the ModOnt.

2. Each concept in the basic HofC for which an equivalent concept in the

ModOnt is found is represented as the primary concept below:

(a) Copy all related-concepts of the equivalent concepts from the Mod-

Ont as subconcepts to the primary concept, and connect them to

the primary concept with typeII connections.

(b) Copy all datatype attributes (of all copied related-concepts) directly

to the corresponding subconcepts with their values as attributes.

(c) For object attributes: all connected concepts are copied and bound

as concepts to the primary concept through typeIII connection.

If no equivalent concept is found in the ModOnt, a string-type attribute

“NAME” is added to the concepts built from the keywords. The value of

this attribute is the keyword itself. In this way, all concepts in the HofC are

created, and ready for evaluation.

A HofC-based query includes concepts and hierarchies. Identification of a con-

cept from the ModOnt through a keyword is based on finding the matched key-

word in the names of concepts or in the literal values of attributes of concepts

in the knowledge base. Once an equivalent concept is found, all knowledge

regarding it in the ModOnt belongs to the knowledge of the query.

It is also possible that a user provides other linguistic quantifiers Q that are

different from the default one in the ModOnt. Different linguistic quantifiers

mean different ways of aggregation (see section 2.1.3), which provides advanced

flexibility.

4.4 Evaluation (Eval) component

Component Eval accepts expanded HofC-based queries (output from QryProc),

identifies concepts of those queries from documents, aggregates the identifica-

tions and generates rankings of documents, as shown in Fig. 4.9.

A HofC-based query contains not only concepts themselves but also their def-

initions, so that those concepts can be identified from the texts of documents.

74

Web document repositoryEnriched HofC

Evaluating

Ranked Web Documents

Component
QryProc

Component Eval

Figure 4.9: Component Eval in HOTIR system

75

The definitions in the HofC, also known as the knowledge of concepts, include

subconcepts, terms, their importance, and their relations.

The evaluation of relevance in Eval is mapped as the “activation” of the HofC

based on OWA (section 2.1.3). The more the HofC is activated, the higher the

document is ranked.

4.4.1 Satisfaction, importance and aggregation weights

Before explaining how Eval works, three regularly used terms: satisfaction,

importance, and aggregation weights, are defined here:

• Satisfaction represents how well a criterion in the HofC is satisfied by

the text from a document. A criterion can be an attribute, a concept

or even a complete HofC. The satisfaction of the root concept (RC)

(section 4.3.1) is the satisfaction of the whole HofC.

• Importance represents how important a criterion is. With the AATI

scheme in KMgmt, each entity (terms and concepts) includes a measure

of importance in the ModOnt.

• Aggregation weight is the weight of a criterion calculated by the OWA

operator (section 2.1.3). Aggregation weight depends not only on the

importance of the criterion but also on the linguistic quantifier. In sec-

tion 4.4.2, use of the linguistic quantifier and its importance in calculat-

ing aggregation weights is explained.

4.4.2 Linguistic quantifier

The concept of linguistic quantifiers was introduced by Zadeh [27] in the early

1980s. Some examples are all, most, at least half and about one third. To

formally represent those quantifiers, Zadeh suggested using a fuzzy subset

Q(r) as a linguistic expression corresponding to a quantifier that indicates the

degree to satisfy the concept for any proportion r ∈ [0, 1].

Yager [28] used the linguistic expression Q(r) to obtain a weighting vector

W associated with an OWA aggregation. These quantifiers were then able to

guide aggregation procedures by verbally expressed concepts in a description

independent dimension.

In HOTIR, two linguistic quantifiers were modelled:

• Q(r) = r represents the linguistic quantifier some, Fig. 4.10a. The equa-

tion means that the aggregation weight of a criterion depends only on its

76

(a) some (b) most

Figure 4.10: Linguistic quantifiers

importance value. That is, the relations between concepts do not change

their aggregation weights.

• Q(r) = r2 represents linguistic quantifier most, Fig. 4.10b. Using this

equation, the aggregation weight of a criterion tends to be large when it

is less satisfied (more details are in section 2.1.3).

4.4.3 Aggregation of satisfactions of datatype attributes

in a single concept

A criterion in a single concept can be a datatype attribute, an object attribute,

or a subconcept. The simplest situation is a single concept containing only

datatype attributes.

The literal values of datatype attributes are called terms in HOTIR. The

presence (more precisely, frequencies) of a term or terms in a Web document

to be rated decides how well the criterion (datatype attribute) is satisfied.

Mathematically, the satisfaction of a term si is:

si = e
− 1

freqi (4.1)

where freqi is the frequency of the term in the document.

The reasons for using Eq. 4.1 are:

1. It is a monotonically increasing function, so when its frequency increases,

the satisfaction increases.

77

2. The function becomes “flatter” with increasing values of the argument,

so if a given term occurs many times in a document, its satisfaction does

not overshadow the satisfactions of other terms.

Each criterion has an assigned value of importance. Assuming there are n

different datatype attributes in a single concept C, the importance vector M

contains n elements, where each element represents the importance of a crite-

rion. The satisfaction vector S also contains n elements, where each element

is the satisfaction of a criterion by a document. Then the ordered satisfaction

vector S ′ (Eq. 2.2) is generated by S, in which s′j is the jth largest of all sat-

isfactions s1, s2, ..., sn. Furthermore, we assume µj denotes the importance

weight associated with the attribute that has the jth largest value. Thus if

s3 is the largest value, then s′1 = s3 and µ1 = m3. Based on this, the OWA

weighing vector W is obtained by Q(r) in Eq. 4.2,

wj = Q(
Xj

T
) − Q(

Xj−1

T
) (4.2)

where Xj =
∑j

k=1 µk and T = Xn =
∑n

k=1 µk. That is, Xj is the sum of

the importance of the jth most satisfied arguments, and T is the sum of all

importance.

So we have the satisfaction of concept Sc,

Sc =
n∑

k=1

wk · s′k (4.3)

4.4.4 Aggregation of satisfactions of datatype attributes
and concepts

As mentioned, a criterion can be a datatype attribute, object attribute or

subconcept. The satisfaction of the object attribute, or subconcept is the

satisfactions of concepts. The calculation of the satisfaction of a criterion

based on terms (datatype attribute) and the calculation of the satisfaction of

a criterion based on concepts (object attributes or sub-concepts) is different.

The calculation of the satisfaction of a criterion based on terms is quite simple,

as shown in Eq. 4.1, while the calculation of the satisfaction of a criterion based

on concepts includes more complicated aggregation. When a concept contains

criteria based on both terms and concepts, we aggregate separately the criteria

based on terms and the criteria based on concepts, then aggregate these two

aggregations.

78

M_A Q_A

ConceptA

ConceptD
M_D Q_D

M_C Q_C

ConceptC

M_B Q_B

ConceptB

TermC1 TermC2

TermD1 TermD2

TermB1

TermA1

Figure 4.11: An HofC-based query

4.4.5 Satisfaction of HofC

Activation of the HofC is propagated upward as is the process to calculate sat-

isfaction of the HofC. That is, calculation of the satisfaction of the HofC starts

from the concepts in the lowest level and ends with the concepts in the high-

est level. The presence of terms (for example, TermD1, T ermD2, T ermC1,

and TermC2) (Fig. 4.11) in a document contributes to the satisfaction of the

corresponding concepts (ConceptD and ConceptC, respectively) (Fig. 4.11).

The aggregation of the satisfactions of those concepts and other terms con-

tributes to the satisfaction of the higher-level concepts (for example, TermB1

and ConceptD lead to activation of ConceptB) (Fig. 4.11). The process is

repeated till the satisfaction of the concept on the top level is calculated.

The structure of HofC determines which terms and concepts contribute to the

satisfactions of which concepts – satisfaction of a single concept is calculated

based on the satisfactions of all terms and concepts that are attached (from the

bottom) to it. The aggregation of satisfactions is performed at each concept

of HofC using OWA (Eq. 4.3).

In the next chapter, examples are presented to explain how Web documents

are ranked with HofC-based queries in HOTIR.

4.5 Summary

Fig. 4.12 presents an overview of HOTIR. Query coordinator and knowledge

base coordinator are two modules in the implementation level that are in

charge of communications between modules inside and outside the respective

agent.

79

Component EvalRanked Web Documents

Web document repository

Preprocessing

Enriched HofC

Basic HofC

Clean query

Input query

Building HofC

Enriching HofC

Web Docs

Query coordinator KB coordinator

Evaluating

Building ModOnt

Updating ModOnt

Ontology

ModOnt

Component QryProc Component KMgmt

Figure 4.12: HOTIR overview

80

Component KMgmt builds and manages the ModOnt, the knowledge base in

HOTIR, which is built from an ontology. The importance of terms or concepts

in the ModOnt are obtained by the AATI scheme, as shown in Fig. 4.12.

The Web Docs in KMgmt represent a sample of Web documents in the Web

document repository in component Eval. They are “unknown” to the AATI

before they are annotated. That is, there is no need for human experts to work

on the documents to generate such knowledge as contained concepts, categories

they belong to and so on. HOTIR can automatically generate the collection

of Web Docs by picking up some percentage, say 10%, of the ranked Web

documents to update the knowledge base. Therefore, the process of updating

the ModOnt module runs by itself and does not stop. This is an outstanding

advantage of HOTIR because no extra human labor is needed to build sample

Web documents and the knowledge in the ModOnt can be kept up to date.

Component QryProc translates basic queries into HofC-based queries. QryProc

enriches HofC-based queries with knowledge stored in the ModOnt. HofC-

based queries provide lists of concepts to be identified and their definitions.

The definitions of concepts, also known as the knowledge of concepts, include

subconcepts, terms, their importance and their relations. As the output of

QryProc, expanded HofC-based queries can be utilized for evaluation.

Component Eval ranks documents. Because the HofC stores hierarchies, the

ranking process is not simple. Web documents are semantically annotated

first. The annotated terms are pieces of information that satisfy concepts

from the HofC. OWA is integrated with the HofC to evaluate the satisfactions

of queries by texts in documents. This process is mapped as the aggregation

of the activations of the concepts from the HofC.

HOTIR successfully implements concept-based information retrieval. In HOTIR,

a term, as a piece of atom information, is not a binary string, but is related

to a concept that is a meaningful entity defined in the ModOnt or in a HofC.

That is, it has semantics. The search accomplished by HOTIR is based on

its semantics instead of its presence. The main techniques in HOTIR, such as

an ontology-based knowledge base (ModOnt), an AATI scheme, a HofC query

format, and OWA operators for aggregation, are applied for this purpose.

• An ontology provides a specification of a conceptualization. That is, it

provides lists of concepts, terms and their relations in a domain.

• An AATI scheme assigns importance to terms and in turn to concepts

in the ModOnt by “blindly” reading Web documents.

• Queries in HOTIR are organized into concepts in hierarchical structures

(HofC).

81

• OWA operators calculate the rankings of Web documents. OWA op-

erators aggregate the satisfactions of concepts in a HofC to evaluate

the satisfaction of the whole HofC. The HofC accepts different linguistic

quantifiers that make HOTIR flexible in defining concepts and represent-

ing different user interests.

82

Chapter 5

HOTIR: Case study

In this chapter cases are presented to illustrate how documents are ranked with

HofC-based queries in HOTIR. Two documents Doc.1 and Doc.2, two queries

Query.A (Fig. 5.1) and Query.B (Fig. 5.2), and two linguistic quantifiers most

(Q(r) = r2) and some (Q(r) = r), are utilized (section 2.1.3). The frequencies

of terms in Doc.1 and Doc.2 are listed in Table 5.1. Roughly, Doc.1 contains

more information about Concept Chelsea and Doc.2 contains more information

about Player Drogba and Player Terry.

5.1 Building and expanding HofC-based query

Both query A and Query B are created from the keywords shown in Fig. 5.3

and Fig. 5.4. Query A is built from the keyword “Chelsea”. The keyword

“Chelsea” itself is a piece of meaningless text for the machine. However, as

soon as HOTIR accepts this binary string, KMgmt tries to figure out the

concept embedded in this keyword. It finds the concept Club Chelsea in the

Player Terry
M_4 Q_4

Player Drogba
M_3 Q_3

M_5 Q_5

Club Chelsea

RC
M_1 Q_1

Figure 5.1: Query A.

83

Player Terry
M_4 Q_4

Player Drogba
M_3 Q_3

RC
M_1 Q_1

M_5 Q_5

Club Chelsea

Figure 5.2: Query B.

Table 5.1: Term frequencies in documents

Doc.1 Doc.2
Concept Chelsea
Name:Chelsea 6 0
Location:London 2 1
Stadium:Stamford 2 1
Concept Player Drogba
First Name:Didier 0 2
Last Name:Drogba 1 2
Position:Forward 0 1
Concept Player Terry
First Name:John 0 2
Last Name:Terry 1 3
Position:Midfielder 0 0

ModOnt because the term “Chelsea” is the value of its attribute Name. Then

definitions of the concept in the knowledge base are added into the query

including the values of its datatype attributes such as “London” (attribute

Location) and “Stamford”(attribute Stadium), and the values of the object

attribute HasPlayer associated with the two concepts: concept Player Drogba

and Player Terry. The connection between concept Club Chelsea and con-

cept Player Drogba and the connection between concept Club Chelsea and

concept Player Terry are all TypeIII connections (see section 4.3.1 for more

details). For simplicity, in this chapter we treat TypeI, TypeII and TypeIII

connections equally in calculation.

Similarly, Query B is built from keywords “Drogba,” “Terry,” and “ Chelsea,”

based on which three concepts in the ModOnt that are retrieved to build a

HofC-based query. Since there is no indication about their relations, compo-

84

M
_1

R
C

Q
_1

N
am

e:
FC

 B
ar

ce
lo

na

L
oc

at
io

n:
 B

ar
ce

lo
na

St
ad

iu
m

:C
am

p
no

u

M
_5

Q
_5

M
_4

Q
_4

M
_6

Q
_6

Q
_2

M
_2

So
oc

er
 C

lu
b

M
Q

So
oc

er

C
lu

b
FC

 B
ar

ce
lo

na

M
_3

Q
_3

So
oc

er
 P

la
ye

r
M

_1
Q

_1

Pl
ay

er
 D

ro
gb

a
Pl

ay
er

 T
er

ry
C

lu
b

C
he

ls
ea

Fi
rs

t N
am

e:
 D

id
ie

r

L
as

t N
am

e:
 D

ro
gb

a

Po
si

tio
n:

Fo
rw

ar
d

Fi
rs

t N
am

e:
 J

oh
n

L
as

t N
am

e:
 T

er
ry

Po
si

tio
n:

Fo
rw

ar
d

K
ey

w
or

d−
ba

se
d

qu
er

y
K

no
w

le
dg

e
ba

se
H

of
C
−

ba
se

d
qu

er
y

C
he

ls
ea

In
C

lu
b

H
as

P
la

ye
r

In
C

lu
b

H
as

P
la

ye
r

M
_5

Q
_5

C
lu

b
C

he
ls

ea

Pl
ay

er
 D

ro
gb

a
M

_3
Q

_3
M

_2
Q

_2

Pl
ay

er
 T

er
ry

L
oc

at
io

n:
 L

on
do

n

N
am

e:
 C

he
ls

ea

St
ad

iu
m

:S
ta

m
fo

rd

Figure 5.3: Constructing Query A

85

H
as

Pl
ay

er

In
C

lu
b

H
as

Pl
ay

er

In
C

lu
b

N
am

e:
FC

 B
ar

ce
lo

na

L
oc

at
io

n:
 B

ar
ce

lo
na

St
ad

iu
m

:C
am

p
no

u

M
_5

Q
_5

M
_4

Q
_4

M
_6

Q
_6

Q
_2

M
_2

So
oc

er
 C

lu
b

M
Q

So
oc

er

C
lu

b
FC

 B
ar

ce
lo

na

M
_3

Q
_3

So
oc

er
 P

la
ye

r
M

_1
Q

_1

Pl
ay

er
 D

ro
gb

a
Pl

ay
er

 T
er

ry
C

lu
b

C
he

ls
ea

Fi
rs

t N
am

e:
 D

id
ie

r

L
as

t N
am

e:
 D

ro
gb

a

Po
si

tio
n:

Fo
rw

ar
d

Fi
rs

t N
am

e:
 J

oh
n

L
as

t N
am

e:
 T

er
ry

Po
si

tio
n:

Fo
rw

ar
d

K
ey

w
or

d−
ba

se
d

qu
er

y
K

no
w

le
dg

e
ba

se

D
ro

gb
a

T
er

ry
 C

he
ls

ea

H
of

C
−

ba
se

d
qu

er
y

Pl
ay

er
 D

ro
gb

a

M
_3

Q
_3

R
C

M
_1

Q
_1

M
_5

Q
_5

C
lu

b
C

he
ls

ea
Pl

ay
er

 T
er

ry

M
_4

Q
_4

N
am

e:
 C

he
ls

ea

L
oc

at
io

n:
 L

on
do

n

St
ad

iu
m

:S
ta

m
fo

rd

Figure 5.4: Constructing Query B

86

nent QryProc places the three concepts in a flat (equal level) structure. Query

B is created as shown in Fig. 5.4. The connections in this query are TypeI.

5.2 Importance of terms in KMgmt

Let us assume the importance (TW) of terms in the ModOnt assigned by the

AATI are displayed in the table below:

Concept Player Drogba
Term Didier Drogba Forward
Importance 0.06 0.11 0.02
Concept Player Terry
Term John Terry Midfielder
Importance 0.03 0.07 0.06
Concept Club Chelsea
Term Chelsea London Stamford
Importance 0.15 0.02 0.08

5.3 Evaluation by component Eval

In this section, there are 4 cases using the linguistic quantifiers most and

some: case queryA(most), case queryA(some), case queryB(most), and case

queryB(some). Cases queryA(most) and case queryA(some) utilize Query A;

cases queryB(most) and case queryB(some) utilize Query B. Table 5.2 shows

the design.

Table 5.2: Case study design

Cases Query Linguistic Quantifier
Case queryA(most) Query A most
Case queryA(some) Query A some
Case queryB(most) Query B most
Case queryB(some) Query B some

5.3.1 Case queryA(most)

Query A, shown in Fig. 5.3, is generated from the keyword “Chelsea.” It

is composed of three concepts, which are Club Chelsea, Player Drogba, and

Player Terry, as shown in Fig. 5.1. The linguistic quantifier in this case is

most.

87

Player Terry
M_4 Q_4

Player Drogba
M_3 Q_3

M_5 Q_5

Club Chelsea

RC
M_1 Q_1 St

am
fo

rd

L
on

do
n

C
he

ls
ea

Didier

Forward

John Terry

Midfielder

1

5

3

Drogba

2

4

Figure 5.5: Query A in case with queryA(some) and case with queryA(some)

Case queryA(most) for Doc.1

Fig. 5.5 displays the aggregation orders in both cases: queryA(most) and

queryA(some). The ellipses in the figure denote the aggregation processes; the

numbers in the ellipses are the orders of the processes. As shown in Fig. 5.5,

satisfactions of the concepts Player Drogba and Player Terry are calculated

firstly. As subconcepts of the concept Club Chelsea, their satisfactions are

aggregated. Then satisfactions of the terms in concept Club Chelsea are cal-

culated and aggregate with the satisfactions of the aggregated subconcepts,

which is the satisfaction of the whole HofC.

Player Drogba has no subconcept, so its satisfaction is decided by attached

terms. The term satisfaction is calculated based on Eq. (4.1). We calculate

the ordered satisfactions of the terms in Player Drogba:

Concept Player Drogba satisfaction importance
term: Drogba 0.3679 0.11
term: Didier 0 0.06
term: Forward 0 0.02

88

Because the linguistic quantifier is most, which is defined by Q(r) = r2. For

the concept Player Drogba, the sum of the importance of all attached terms

is 0.11 + 0.06 + 0.02 = 0.19. Based on OWA, the weights of its criteria/terms

are:

term Drogba:

wtDrogba = Q(
0.11

0.19
) − Q(

0

0.19
) = 0.3352

term Didier:

wtDidier = Q(
0.17

0.19
) − Q(

0.11

0.19
) = 0.4654

term Forward:

wtForward = Q(
0.19

0.19
) − Q(

0.17

0.19
) = 0.1994

To Doc.1, concept Player Drogba has its satisfaction as:

scDrogba = 0.3352 × 0.3679 + 0.4654 × 0 + 0.1994 × 0

= 0.1233
(5.1)

Then we calculate the ordered satisfactions of the terms in concept Player

Terry :

Concept Player Terry satisfaction importance
term: Terry 0.3679 0.07
term: John 0 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in concept Player Terry is

0.07 + 0.03 + 0.06 = 0.16. Based on OWA, the weights of its criteria/terms

are calculated:

term Terry:

wtT erry = Q(
0.07

0.16
) − Q(

0

0.16
) = 0.1914

term John:

wtJohn = Q(
0.10

0.16
) − Q(

0.07

0.16
) = 0.1992

89

term Forward:

wtForward = Q(
0.16

0.16
) − Q(

0.10

0.16
) = 0.6094

To Doc.1, the concept Player Terry has its satisfaction as:

scTerry = 0.1914 × 0.3679 + 0.1992 × 0 + 0.6094 × 0

= 0.0704
(5.2)

Defined by the structure of a HofC-based query, satisfaction of the concept

Club Chelsea is obtained by aggregating the satisfactions of its subconcepts

(concept Player Drogba and concept Player Terry) and terms(“Chelsea,” “Lon-

don,” and “Stamford”). Because the methods to calculate the satisfaction of

subconcepts and terms are different, we calculate the satisfactions separately

first and then combine them. The details are as follows.

The ordered satisfactions of sub-concepts in concept Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
concept: Drogba 0.1233 0.19 0.2947
concept: Terry 0.0704 0.16 0.7053

Satisfaction of the combination of sub-concepts in concept Club Chelsea is:

s′cChelsea = 0.1233 × 0.2947 + 0.0704 × 0.7053

= 0.0860
(5.3)

The ordered satisfactions of the terms in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.8465 0.15 0.3600
term: London 0.6065 0.02 0.1024
term: Stamford 0.6065 0.08 0.5376

Satisfaction of the combination of the terms in Club Chelsea is:

s”cChelsea = 0.8465 × 0.3600 + 0.6065 × 0.1024 + 0.6065 × 0.5376

= 0.6929
(5.4)

Satisfaction of Club Chelsea is calculated by the combination of subconcepts

s′cChelsea and terms s”cChelsea as:

90

Concept Club Chelsea satisfaction importance weights
comb. of terms 0.6929 0.25 0.1736
comb. of sub-concepts 0.0860 0.35 0.8264

Finally, when applied to Doc.1, satisfaction of the HofC-based query is the

same as satisfaction of concept Club Chelsea:

scChelsea = 0.6929 × 0.1736 + 0.0860 × 0.8264

= 0.1914
(5.5)

Case queryA(some) for Doc.2

As presented in Table 5.1, there are more information related to Player Drogba

and Player Terry in Doc.2. Similar to the calculations in the previous case,

we calculate the ordered satisfactions of the terms for concept: Player Drogba:

Concept Player Drogba satisfaction importance
term: Drogba 0.6065 0.11
term: Didier 0.6065 0.06
term: Forward 0.3679 0.02

Because the linguistic quantifier is most, which is defined by Q(r) = r2. For

the concept Player Drogba, the sum of the importance of all attached terms

is 0.11 + 0.06 + 0.02 = 0.19. Based on OWA, the weights of its criteria/terms

are:

term Drogba:

wtDrogba = Q(
0.11

0.19
) − Q(

0

0.19
) = 0.3352

term Didier:

wtDidier = Q(
0.17

0.19
) − Q(

0.11

0.19
) = 0.4654

term Forward:

wtForward = Q(
0.19

0.19
) − Q(

0.17

0.19
) = 0.1994

To Doc.2, concept Player Drogba has its satisfaction as:

91

scDrogba = 0.3352 × 0.6065 + 0.4654 × 0.6065 + 0.1994 × 0.3679

= 0.5589
(5.6)

Then we calculate the ordered satisfactions of the terms in Player Terry :

Concept Player Terry satisfaction importance
term: Terry 0.7165 0.07
term: John 0.6065 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in concept Player Terry is

0.07 + 0.03 + 0.06 = 0.16. Based on OWA, the weights of its criteria/terms

are:

term Terry:

wtT erry = Q(
0.07

0.16
) − Q(

0

0.16
) = 0.1914

term John:

wtJohn = Q(
0.10

0.16
) − Q(

0.07

0.16
) = 0.1992

term Forward:

wtForward = Q(
0.16

0.16
) − Q(

0.10

0.16
) = 0.6094

To Doc.2, concept Terry has its satisfaction as:

scTerry = 0.1914 × 0.7165 + 0.1992 × 0.6065 + 0.6094 × 0

= 0.2580
(5.7)

Defined by the structure of HofC-based query, satisfaction of the concept Club

Chelsea is obtained by aggregating the satisfactions of its subconcepts (concept

Drogba and concept Terry) and terms(“Chelsea”,“London” and “Stamford”).

The ordered satisfactions of subconcepts in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
concept: Drogba 0.5589 0.19 0.2947
concept: Terry 0.2580 0.16 0.7053

92

Satisfaction of the combination of subconcepts in Club Chelsea is:

s′cChelsea = 0.5589 × 0.2947 + 0.2580 × 0.7053

= 0.3467
(5.8)

The ordered satisfactions of the terms in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.3679 0.15 0.3600
term: Stamford 0.3679 0.08 0.4864
term: London 0 0.02 0.1536

Satisfaction of the combination of the terms in Club Chelsea is:

s”cChelsea = 0.3679 × 0.3600 + 0.3679 × 0.4864 + 0 × 0.1536

= 0.3114
(5.9)

Satisfaction of the concept Club Chelsea is calculated by the combination of

the satisfactions of its subconcepts s′cChelsea and terms s”cChelsea as:

Concept Player Chelsea satisfaction importance weights
comb. of subconcepts 0.3467 0.35 0.3403
comb. of terms 0.3114 0.25 0.6597

Finally, when applied to Doc.2, the satisfaction of the query is the same with

the satisfaction of the Club Chelsea:

scChelsea = 0.3467 × 0.3403 + 0.3114 × 0.6579

= 0.3234
(5.10)

5.3.2 Case queryA(some)

We keep using Query A in case queryA(some). However, another linguistic

quantifier, some, is utilized.

Case queryA(some) for Doc.1

First, we calculate the ordered satisfaction of the terms in Player Drogba:

Concept Player Drogba satisfaction importance
term: Drogba 0.3679 0.11
term: Didier 0 0.06
term: Forward 0 0.02

93

Because the linguistic quantifier is some, which is defined by Q(r) = r. For

concept Drogba, the sum of the importance of all attached terms is 0.11+0.06+

0.02 = 0.19. Based on OWA, the weights of its criteria are:

term Drogba:

wtDrogba = Q(
0.11

0.19
) − Q(

0

0.19
) = 0.5789

term Didier:

wtDidier = Q(
0.17

0.19
) − Q(

0.11

0.19
) = 0.3158

term Forward:

wtForward = Q(
0.19

0.19
) − Q(

0.17

0.19
) = 0.1053

so for Doc.1, concept Drogba has its satisfaction as:

scDrogba = 0.5789 × 0.3679 + 0.3158 × 0 + 0.1994 × 0

= 0.2130
(5.11)

Then we calculate the ordered satisfactions of the terms in Player Terry as:

Concept Player Terry satisfaction importance
term: Terry 0.3679 0.07
term: John 0 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in concept Terry is 0.07 +

0.03 + 0.06 = 0.16. Based on OWA, the weights of its criteria/terms are:

term Terry:

wtT erry = Q(
0.07

0.16
) − Q(

0

0.16
) = 0.4375

term John:

wtJohn = Q(
0.10

0.16
) − Q(

0.07

0.16
) = 0.1875

term Forward:

94

wtForward = Q(
0.16

0.16
) − Q(

0.10

0.16
) = 0.3750

so for Doc.1, concept Terry has its satisfaction:

scTerry = 0.4375 × 0.3679 + 0.1875 × 0 + 0.3750 × 0

= 0.1610
(5.12)

Defined by the structure of HofC-based query, the satisfaction of concept

Chelsea is obtained by aggregating those of its sub-concepts (concept Drogba

and concept Terry) and terms(“Chelsea”,“London” and “Stamford”).

The ordered satisfactions of sub-concepts in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
concept: Drogba 0.2130 0.19 0.5429
concept: Terry 0.1610 0.16 0.4571

The satisfaction of the combination of sub-concepts in Club Chelsea is:

s′cChelsea = 0.5429 × 0.2130 + 0.4571 × 0.1610

= 0.1892
(5.13)

The ordered satisfactions of the terms in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.8465 0.15 0.6000
term: London 0.6065 0.02 0.0800
term: Stamford 0.6065 0.08 0.3200

The satisfaction of the combination of the terms in Club Chelsea is:

s”cChelsea = 0.8465 × 0.6000 + 0.6065 × 0.0800 + 0.6065 × 0.3200

= 0.7505
(5.14)

The satisfaction of Club Chelsea is calculated by the combination of sub-

concepts s′cChelsea and terms s”cChelsea as:

Concept Player Chelsea satisfaction importance weights
comb. of terms 0.7505 0.25 0.4167
comb. of sub-concepts 0.1892 0.35 0.5833

95

Finally, when applied to Doc.1, the satisfaction of the HofC-based query is the

same with the satisfaction of Club Chelsea:

scChelsea = 0.4167 × 0.7505 + 0.5833 × 0.1892

= 0.4231
(5.15)

Case queryA(some) for Doc.2

With linguistic quantifier some, we calculate satisfaction based on Doc.2.

The ordered satisfactions of the terms in Player Drogba are:

Concept Player Drogba satisfaction importance
term: Drogba 0.6065 0.11
term: Didier 0.6065 0.06
term: Forward 0.3679 0.02

Because the linguistic quantifier is most, which is defined by Q(r) = r2. For

concept Drogba, the sum of the importance of all attached terms is 0.11+0.06+

0.02 = 0.19. Based on OWA, the weights of its criteria/terms are:

term Drogba:

wtDrogba = Q(
0.11

0.19
) − Q(

0

0.19
) = 0.5790

term Didier:

wtDidier = Q(
0.17

0.19
) − Q(

0.11

0.19
) = 0.3158

term Forward:

wtForward = Q(
0.19

0.19
) − Q(

0.17

0.19
) = 0.1053

so for Doc.1, concept Drogba has its satisfaction as:

scDrogba = 0.5790 × 0.6065 + 0.3158 × 0.6065 + 0.1053 × 0.3679

= 0.5814
(5.16)

Then we calculate the ordered satisfactions of the terms in Player Terry as:

96

Concept Player Terry satisfaction importance
term: Terry 0.7165 0.07
term: John 0.6065 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in concept Terry is 0.07 +

0.03 + 0.06 = 0.16. Based on OWA, the weights of its criteria/terms are:

term Terry:

wtT erry = Q(
0.07

0.16
) − Q(

0

0.16
) = 0.4375

term John:

wtJohn = Q(
0.10

0.16
) − Q(

0.07

0.16
) = 0.1875

term Forward:

wtForward = Q(
0.16

0.16
) − Q(

0.10

0.16
) = 0.3750

To Doc.1, concept Terry has its satisfaction as:

scTerry = 0.4375 × 0.7165 + 0.1875 × 0.6065 + 0.3750 × 0

= 0.4272
(5.17)

Defined by the structure of HofC-based query, the satisfaction of concept

Chelsea is obtained by aggregating the satisfactions of its sub-concepts (con-

cept Drogba and concept Terry) and terms(“Chelsea”,“London” and “Stam-

ford”).

The ordered satisfactions of sub-concepts in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
concept: Drogba 0.5814 0.19 0.5429
concept: Terry 0.4272 0.16 0.4571

The satisfaction of the combination of sub-concepts in Club Chelsea is:

s′cChelsea = 0.5429 × 0.5814 + 0.4571 × 0.4272

= 0.5109
(5.18)

The ordered satisfactions of the terms in Club Chelsea are:

97

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.3679 0.15 0.6000
term: Stamford 0.3679 0.08 0.3200
term: London 0 0.02 0.0800

The satisfaction of the combination of the terms in Club Chelsea is:

s”cChelsea = 0.6000 × 0.3679 + 0.3200 × 0.3679 + 0.0800 × 0

= 0.3385
(5.19)

The satisfaction of Club Chelsea is calculated by the combination of subconcept

s′cChelsea and term s”cChelsea as:

Concept Player Chelsea satisfaction importance weights
comb. of sub-concepts 0.5109 0.35 0.5833
comb. of terms 0.3385 0.25 0.4167

Finally, when applied to Doc.2, satisfaction of queryA(some) is the same with

satisfaction of Club Chelsea:

scChelsea = 0.5833 × 0.5109 + 0.4167 × 0.3385

= 0.4390
(5.20)

5.3.3 Case queryB(most)

If a query “Chelsea Drogba Terry” is provided, a new HofC-based query can

be created shown in Fig. 5.2.

Fig. 5.6 displays the aggregation order of Query B in cases queryB(most) and

queryB(some). The ellipses in the figure denote the aggregation processes; the

numbers in the ellipses are the orders of the processes. As shown in Fig 5.6,

the three single concepts (concepts Player Drogba, Player Terry, and Club

Chelsea) are processed first. The satisfaction of the three separated concepts

are aggregated as the satisfaction of the whole HofC.

In this experiment, we calculate satisfactions on the same two documents

(Doc.1 and Doc.2) with linguistic quantifier most.

Case queryB(most) for Doc.1

As shown in Fig. 5.2, satisfaction of the RC is calculated based on its three

subconcepts: Club Chelsea, Player Drogba, and Player Terry. Therefore, we

calculate the ordered satisfaction of the terms in Player Drogba as:

98

Player Drogba
M_3 Q_3

Player Terry
M_4 Q_4 M_5 Q_5

Club Chelsea

Didier Drogba

Forward

Chelsea

Stamford

London

John Terry

Midfielder

RC
M_1 Q_1

1

2

3

4

Figure 5.6: Query B in case with queryB(most) and case with queryB(some)

Concept Player Drogba satisfaction importance
term: Drogba 0.3679 0.11
term: Didier 0 0.06
term: Forward 0 0.02

Because the linguistic quantifier is most, which is defined by Q(r) = r2. For

concept Drogba, the sum of the importance of all attached terms is 0.11+0.06+

0.02 = 0.19. Based on OWA, the weights of its criteria/terms are:

term Drogba:

wtDrogba = Q(
0.11

0.19
) − Q(

0

0.19
) = 0.3352

term Didier:

wtDidier = Q(
0.17

0.19
) − Q(

0.11

0.19
) = 0.4654

term Forward:

wtForward = Q(
0.19

0.19
) − Q(

0.17

0.19
) = 0.1994

For Doc.1, Player Drogba has its satisfaction as:

99

scDrogba = 0.3352 × 0.3679 + 0.4654 × 0 + 0.1994 × 0

= 0.1233
(5.21)

Then we calculate the ordered satisfactions of the terms in Player Terry as:

Concept Player Terry satisfaction importance
term: Terry 0.3679 0.07
term: John 0 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in Player Terry is 0.07 +

0.03 + 0.06 = 0.16. Based on OWA, the weights of its criteria/terms are:

term Terry:

wtT erry = Q(
0.07

0.16
) − Q(

0

0.16
) = 0.1914

term John:

wtJohn = Q(
0.10

0.16
) − Q(

0.07

0.16
) = 0.1992

term Forward:

wtForward = Q(
0.16

0.16
) − Q(

0.10

0.16
) = 0.6094

For Doc.1, concept Terry has its satisfaction as:

scTerry = 0.1914 × 0.3679 + 0.1992 × 0 + 0.6094 × 0

= 0.0704
(5.22)

Then, the ordered satisfactions of the terms in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.8465 0.15 0.3600
term: London 0.6065 0.02 0.1024
term: Stamford 0.6065 0.08 0.5376

Satisfaction of the combination of the terms in Club Chelsea are:

s”cChelsea = 0.8465 × 0.3600 + 0.6065 × 0.1024 + 0.6065 × 0.5376

= 0.6929
(5.23)

100

RC satisfaction importance weights
concept:Chelsea 0.6929 0.25 0.1736
concept:Drogba 0.1233 0.19 0.3642
concept:Terry 0.0704 0.16 0.4622

Therefore, the satisfaction of the RC, which equals to the satisfaction of

queryB(most), is:

scRC = 0.1736 × 0.6929 + 0.3642 × 0.1233 + 0.4622 × 0.0704

= 0.1977
(5.24)

Case queryB(most) for Doc.2

Similarly, when the new query is applied to Doc.2, the ordered satisfaction of

the terms in Player Drogba are:

Concept Player Drogba satisfaction importance
term: Drogba 0.6065 0.11
term: Didier 0.6065 0.06
term: Forward 0.3679 0.02

Because the linguistic quantifier is most, which is defined by Q(r) = r2. For

the concept Player Drogba, the sum of the importance of all attached terms

is 0.11 + 0.06 + 0.02 = 0.19. Based on OWA, the weights of its criteria/terms

are:

term Drogba:

wtDrogba = Q(
0.11

0.19
) − Q(

0

0.19
) = 0.3352

term Didier:

wtDidier = Q(
0.17

0.19
) − Q(

0.11

0.19
) = 0.4654

term Forward:

wtForward = Q(
0.19

0.19
) − Q(

0.17

0.19
) = 0.1994

To Doc.2, Player Drogba has its satisfaction as:

101

scDrogba = 0.3352 × 0.6065 + 0.4654 × 0.6065 + 0.1994 × 0.3679

= 0.5589
(5.25)

We calculate the ordered satisfactions of the terms in Player Terry as:

Concept Player Terry satisfaction importance
term: Terry 0.7165 0.07
term: John 0.6065 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in Player Terry is 0.07 +

0.03 + 0.06 = 0.16. Based on OWA, the weights of its criteria/terms are:

term Terry:

wtT erry = Q(
0.07

0.16
) − Q(

0

0.16
) = 0.1914

term John:

wtJohn = Q(
0.10

0.16
) − Q(

0.07

0.16
) = 0.1992

term Forward:

wtForward = Q(
0.16

0.16
) − Q(

0.10

0.16
) = 0.6094

so for Doc.2, Player Terry has its satisfaction as:

scTerry = 0.1914 × 0.7165 + 0.1992 × 0.6065 + 0.6094 × 0

= 0.2580
(5.26)

The ordered satisfactions of the terms in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.3679 0.15 0.3600
term: Stamford 0.3679 0.08 0.4864
term: London 0 0.02 0.1536

Satisfaction of the combination of the terms in Club Chelsea is:

s”cChelsea = 0.3679 × 0.3600 + 0.3679 × 0.4864 + 0 × 0.1536

= 0.3114
(5.27)

The ordered satisfactions of the three concepts are:

102

RC satisfaction importance weights
concept:Drogba 0.5589 0.19 0.1003
concept:Chelsea 0.3114 0.35 0.4375
concept:Terry 0.2580 0.16 0.4622

Therefore, the satisfaction of the RC, that is, the satisfaction of queryB(most),

is:

scRC = 0.1003 × 0.5589 + 0.4375 × 0.3114 + 0.4622 × 0.2580

= 0.3115
(5.28)

5.3.4 Case queryB(some)

In this case, Query B (Fig. 5.2) and linguistic quantifier some are utilized.

Case queryB(some) for Doc.1

First, we calculate the ordered satisfaction of the terms in Player Drogba as:

Concept Player Drogba satisfaction importance
term: Drogba 0.3679 0.11
term: Didier 0 0.06
term: Forward 0 0.02

Because the linguistic quantifier is some, which is defined by Q(r) = r. For

Player Drogba, the sum of the importance of all attached terms is 0.11+0.06+

0.02 = 0.19. Based on OWA, the weights of its criteria/terms are:

term Drogba:

wtDrogba = Q(
0.11

0.19
) − Q(

0

0.19
) = 0.5789

term Didier:

wtDidier = Q(
0.17

0.19
) − Q(

0.11

0.19
) = 0.3158

term Forward:

wtForward = Q(
0.19

0.19
) − Q(

0.17

0.19
) = 0.1053

To Doc.1, concept Drogba has its satisfaction as:

103

scDrogba = 0.5789 × 0.3679 + 0.3158 × 0 + 0.1994 × 0

= 0.2130
(5.29)

We calculate the ordered satisfactions of the terms in Player Terry :

Concept Player Terry satisfaction importance
term: Terry 0.3679 0.07
term: John 0 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in Player Terry is 0.07 +

0.03 + 0.06 = 0.16. Based on OWA, the weights of its criteria/terms are:

term Terry:

wtT erry = Q(
0.07

0.16
) − Q(

0

0.16
) = 0.4375

term John:

wtJohn = Q(
0.10

0.16
) − Q(

0.07

0.16
) = 0.1875

term Forward:

wtForward = Q(
0.16

0.16
) − Q(

0.10

0.16
) = 0.3750

To Doc.1, concept Terry has its satisfaction as:

scTerry = 0.4375 × 0.3679 + 0.1875 × 0 + 0.3750 × 0

= 0.1610
(5.30)

The ordered satisfactions of the terms in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.8465 0.15 0.6000
term: London 0.6065 0.02 0.0800
term: Stamford 0.6065 0.08 0.3200

The satisfaction of the combination of the terms in Club Chelsea is:

s”cChelsea = 0.8465 × 0.6000 + 0.6065 × 0.0800 + 0.6065 × 0.3200

= 0.7505
(5.31)

104

The ordered satisfactions of the three concepts are:

RC satisfaction importance weights
concept:Chelsea 0.7505 0.35 0.4167
concept:Drogba 0.2130 0.19 0.3167
concept:Terry 0.1610 0.16 0.2667

Therefore, the satisfaction of the RC, which is the satisfaction of queryB(some),

is:

scRC = 0.4167 × 0.7505 + 0.3167 × 0.2130 + 0.2667 × 0.1610

= 0.4231
(5.32)

Case queryB(some) for Doc.2

Similarly, when Query B is applied to Doc.2, the ordered satisfaction of the

terms in Player Drogba are:

Concept Player Drogba satisfaction importance
term: Drogba 0.6065 0.11
term: Didier 0.6065 0.06
term: Forward 0.3679 0.02

Because the linguistic quantifier is most, which is defined by Q(r) = r2. For

Player Drogba, the sum of the importance of all attached terms is 0.11+0.06+

0.02 = 0.19. Based on OWA, the weights of its criteria/terms are:

term Drogba:

wtDrogba = Q(
0.11

0.19
) − Q(

0

0.19
) = 0.5790

term Didier:

wtDidier = Q(
0.17

0.19
) − Q(

0.11

0.19
) = 0.3158

term Forward:

wtForward = Q(
0.19

0.19
) − Q(

0.17

0.19
) = 0.1053

To Doc.1, concept Drogba has its satisfaction as:

105

scDrogba = 0.5790 × 0.6065 + 0.3158 × 0.6065 + 0.1053 × 0.3679

= 0.5814
(5.33)

We calculate the ordered satisfactions of the terms for Player Terry as:

Concept Player Terry satisfaction importance
term: Terry 0.7165 0.07
term: John 0.6065 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in Player Terry is 0.07 +

0.03 + 0.06 = 0.16. Based on OWA, the weights of its criteria/terms are:

term Terry:

wtT erry = Q(
0.07

0.16
) − Q(

0

0.16
) = 0.4375

term John:

wtJohn = Q(
0.10

0.16
) − Q(

0.07

0.16
) = 0.1875

term Forward:

wtForward = Q(
0.16

0.16
) − Q(

0.10

0.16
) = 0.3750

To Doc.2, concept Terry has its satisfaction as:

scTerry = 0.4375 × 0.7165 + 0.1875 × 0.6065 + 0.3750 × 0

= 0.4272
(5.34)

The ordered satisfactions of the terms in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.3679 0.15 0.6000
term: Stamford 0.3679 0.08 0.3200
term: London 0 0.02 0.0800

Satisfaction of the combination of the terms in Club Chelsea is:

s”cChelsea = 0.6000 × 0.3679 + 0.3200 × 0.3679 + 0.0800 × 0

= 0.3385
(5.35)

The ordered satisfactions of the three concepts are:

106

RC satisfaction importance weights
concept:Drogba 0.5814 0.19 0.3167
concept:Chelsea 0.4272 0.35 0.4167
concept:Terry 0.3385 0.16 0.2667

Therefore, the satisfaction of the RC, which is also the satisfaction of queryB(some),

is:

scRC = 0.3167 × 0.5814 + 0.4167 × 0.4272 + 0.2667 × 0.3385

= 0.4524
(5.36)

5.4 Conclusion

The results of the cases are listed in Table 5.3.

Table 5.3: The results of cases

Case Query Linguistic Quantifier Doc.1 Doc.2
Case with queryA(most) Query A most 0.1914 0.3234
Case with queryA(some) Query A some 0.4231 0.4391
Case with queryB(most) Query B most 0.1977 0.3115
Case with queryB(some) Query B some 0.4231 0.4391

In both Doc.1 and Doc.2, there are 12 pieces of information (sum of the fre-

quencies of terms) to satisfy three aimed concepts (Table 5.1). In Doc.1, 10 of

12 are directly related to Club Chelsea. In Doc.2, 10 of 12 are directly related

to Player Drogba and Player Terry. In all of the results, the scores of Doc.2

are greater than the scores of Doc.1. This is mainly because different pieces

of information have different importance (section 5.2). Moreover, the scores

of the documents differ with different hierarchical structures or with different

linguistic quantifiers.

In cases queryA(some) and queryB(some), where the linguistic quantifier some

is applied, the satisfaction of Query A is equal to the satisfaction of Query B

when the same document is evaluated. That is, with the linguistic quantifier

some, the hierarchical structures do not affect the calculation of satisfactions.

This is because some is defined by Q(r) = r (Fig. 4.10a), which means the

aggregation weight of a criterion is decided by its importance value directly.

That is, with the linguistic quantifier some, the order of aggregation is not

considered in calculation.

For information aggregated by the linguistic quantifier most (defined by Q(r) =

r2,Fig. 4.10b) order is crucial. For example, if there are two pieces of infor-

mation (i1 and i2) with importance imp1 = 0.2 and imp2 = 0.3, respectively,

107

and the order of the aggregation is i1 then i2, with most their weights are:

wgt1 = (0.2/0.5)2 = 0.16 and wgt2 = 1 − (0.2/0.5)2 = 0.84, respectively.

That is, i2 obtains larger aggregation weight than i1. If the order of the

aggregation is i2 then i1, their weights are: wgt′2 = (0.3/0.5)2 = 0.36 and

wgt′1 = 1 − (0.3/0.5)2 = 0.64, respectively. That is, i1 obtains larger aggre-

gation weight than i2. Thus with most, the order of aggregation is important

in calculation. Moreover, because the aggregation of pieces of information

is in an order from most satisfied to less satisfied, the less satisfied piece of

information tends to have larger weights.

The difference in satisfactions between Doc.1 and Doc.2 with the linguistic

quantifier some is much smaller than that with the linguistic quantifier most.

For Query A, when the linguistic quantifier changes from some to most, the

difference in satisfactions between Doc.1 and Doc.2 changes from 0.4391 −
0.4231 = 0.0160 to 0.3234−0.1914 = 0.1315. For Query B, when the linguistic

quantifier changes from some to most, the difference in satisfaction between

Doc.1 and Doc.2 changes from 0.4391− 0.4231 = 0.0160 to 0.3115− 0.1977 =

0.1138. This is because satisfaction with most is affected by hierarchies while

satisfaction with some is not.

The case studies are good examples of how HOTIR, especially component Eval,

ranks documents. Moreover, the detailed calculations illustrate the effects

of the linguistic quantifiers some and most in HOTIR. In the next chapter,

the designed experiments examine the performance of HOTIR with some and

most.

108

Chapter 6

HOTIR: Evaluation

6.1 Overview

We set up two different series of experiments, metrics-based (MetricsExp)

and human-based (HumanExp), to perform a thorough examination of the

HOTIR system. The experiments were designed in a standard information

retrieval way, that is, Web documents were retrieved and ranked with HOTIR

according to how well they satisfied a query. The two series of experiments

shared the same five conventional queries, while the Metrics-based experiment

had one more special query which covered all the concepts in the knowledge

base.

The experiments were performed on real-world Web documents. The targeted

domain was soccer, i.e., all queries used in the experiments were related to

soccer. The experiments are described below:

• MetricsExp: performed on a local Web repository, where Web documents

were crawled from the BBC web site1. The details are described in

section 6.3.

• HumanExp: designed to compare HOTIR with Google2. This set of

experiments involved rankings by human beings. Section 6.4 describes

HumanExp.

1http://www.bbc.co.uk, crawled in September 2009.
2http://www.google.com.

109

6.2 Required knowledge base

Queries in HOTIR were expanded with supplementary knowledge in the do-

main of interest to build a knowledge base. As soccer was the domain of

interest, we constructed a soccer ontology. The linguistic quantifier Q and

term importance values M were added to the knowledge base by KMgmt (sec-

tion 4.2) so the aggregation can be conducted during experiments. Q was

linguistic quantifier most or some (section 4.4.2). The value of M was ob-

tained by the proposed AATI scheme (section 4.2). The soccer ontology was

modified by adding Q and M to the ontology. The modified ontology (Mod-

Ont) (section 4.2) was the knowledge base in HOTIR.

The ModOnt contained vocabulary in the domain soccer. In it there were

concepts such as Soccer Player, Soccer Club, Soccer Events, etc. Each concept

was defined by a number of related-concepts or/and terms (literal values of

datatype attributes). For example, the concept Soccer Player was defined by

related-concepts such as Player Drogba, Player Terry,Player Messi, and so on.

The concept Soccer Club was related to FC Barcelona, Chelsea, AC Milan, and

so on. The concept Player Terry (representing the famous soccer player John

Terry) was defined by terms “Terry” (last name), “John” (first name), etc. and

related concepts Chelsea (soccer teams he plays for), England (nationality),

etc.

6.3 MetricsExp setup

6.3.1 Dataset

There were two datasets in MetricsExp. One was used by the AATI to obtain

weights for knowledge in ModOnt (see Web docs in KMgmt, Fig. 4.12), the

other was to be ranked by the HOTIR-based system (see “Web document

repository” of Eval, Fig. 4.12). Web documents were crawled from the BBC

News website, where documents were labelled by editors of the BBC News. We

knew which documents were relevant to soccer (they were stored in the BBC

website “football” folder), and which documents were not relevant. Around

10% of the web documents were picked up for updating by the AATI, the rest

were put into web document repository for ranking. In total, the first dataset

contained 2554 Web documents, where 276 documents were relevant to soccer,

and 2278 web documents were non-relevant ones; the second dataset contained

22957 ones, where 2348 documents were relevant to soccer, and 20609 were

non-relevant ones to soccer.

110

Since different queries were applied, it was necessary to identify documents

relevant to them. In this thesis, all queries were related to soccer, so the

documents relevant to the queries were subsets of soccer-related documents.

To identify the document set for a specific query, the query was expanded

with knowledge in the knowledge base. Because the expansion may include

some general terms, it is necessary to manually delete them. A Java script was

developed to parse all soccer-relevant documents and find the terms matching

those in the cleaned expanded-query. Through this process, the number of

related-documents were narrowed down, and it was possible for human to

decide whether or not a document was relevant to the query.

6.3.2 Procedure

After KMgmt was ready, the experiments were performed. There were four

different approaches to rank documents with each query. The queries and

ranking mechanisms were modified accordingly:

Naive keyword approach (NaiveKW) This approach performed a naive

keyword-matching technique. To make results comparable, queries were

expanded with knowledge in the ModOnt. The scores of documents

(which were used to rank them) were decided by the sum of the frequen-

cies of the keywords in the documents. The score of a document was

calculated by:

rj =
nq∑
i=1

fdjti

where rj is the score of document dj; nq is the number of different terms

in query q; fdjti is the frequency of term ti in document dj. If term ti
does not occur in the document, fdjti=0. Documents with higher scores

are with higher rankings.

Vector space approach (VectorSpace) This approach utilized the classic

vector space technique. That is, both queries and documents were pre-

sented by vectors. The weights of elements in the vectors were defined

by the term frequencies and TWs (obtained by our AATI scheme). The

ranking of a document was decided by the inner product (section 2.1.1)

between the vector of a query and the vector of a document. The inner

product is expressed as,

Ij = q · dj =
k∑

i=1

wqti · wdjti

111

where Ij is the value of the inner product of query q and document dj;

k is the number of different terms, that is, the number of dimensions;

wqti is the term weight of term ti in the query; wdjti is the term weight

of term ti in the document dj. The document with larger inner product

value obtained higher rankings.

HOTIR-based approach with some (HOTIR(some)) In this approach, the

linguistic quantifier some was used to aggregate pieces of information

(section 4.4.2). Because of the definition of some in OWA, the aggre-

gation process ignores hierarchies (see details in Chapter 5). That is,

HOTIR(some) can be regarded as a HOTIR approach without hierar-

chy.

HOTIR-based approach with most (HOTIR(most)) In this approach the

linguistic quantifier most was used to aggregate pieces of information

(section 4.4.2).

6.3.3 Evaluation methodology

The results of MetricsExp are presented based on the TopN scheme, which

has been widely used to evaluate Web-based information retrieval systems

[68, 82, 98]. Kobayashi et al in [99] stated that for web-based application,

“there is little hope of actually measuring the recall rate, ..., pages retrieved in

the top 10 or 20 ranked documents (rather than all relevant pages)” are more

important to information retrieval systems. After all, most people do not have

the patience to read all relevant documents from the Web. The TopN scheme

is focused on the documents with top n rankings. For example, if n is 10, the

precision of the top 10 documents is calculated.

The receiver operating characteristic (ROC) curve was also used to illustrate

the performances of HOTIR. The ROC curver is somewhat equivalent to the

precision-recall (PR) curve3. In [100], Davis and GoadRich stated that “for

any dataset, the ROC curve and PR curve for a given algorithm contain the

same points. This equivalence leads to the surprising theorem that a curve

dominates in ROC space if and only if it dominates in PR space.” Moreover,

compared with the TopN scheme, the ROC curve provides a complete analysis

on the whole ranking list in the repository. Though not all users are interested

on a complete analysis (most users care more about the top N documents

returned from a query), the ROC curve provides a good way to study HOTIR.

Because in our experiments both the actual outcome and the predicted out-

come are soccer or non-soccer, the four outcome can be expressed in a 2 × 2

3In precision-recall curve, the Y axis represents precision and the X axis represent recall.

112

Table 6.1: Confusion matrix

Actual
Soccer Non-soccer

Predicted
Soccer True Positive(TP) False Positive(FP)

Non-soccer False Negative(FN) True Negative(TN)

matrix, which is called confusion matrix in Table 6.1.

In the ROC curve, the Y axis represents the True Positive Rate or TPR; and

the X axis represents the False Positive Rate or FPR. Based on the confusion

matrix, the definitions of TPR and FPR are:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

(6.1)

A perfect system will generate an ROC curve that goes straight upward until

all of the relevant documents are encountered, then straight to the right for

the remaining documents. A random system will produce a straight line from

the origin to the upper right corner.

6.4 HumanExp setup

6.4.1 Objective

Herlocker et al. in [101] stated, “relevance is more inherently subjective.” Hu-

manExp involved humans, allowing us to make a human-oriented examination

of our technique. The experiment was designed to compare results obtained

from Google with results obtained from HOTIR. HumanExp provided an ex-

ample of how our approach could be used as a value added service for existing

keyword-based search engines like Google.

HOTIR performed with the linguistic quantifier most (HOTIR(most)) and the

linguistic quantifier some (HOTIR(some)). As discussed in section 5.4, aggre-

gations with some ignore hierarchies. The comparison of these two approaches

was interesting as it showed the importance of hierarchal structure.

113

6.4.2 Procedure

For the purpose of HumanExp, a Java script utilizing Google API was devel-

oped. This script retrieved documents through URLs returned from Google

with provided queries. The retrieved documents constituted a repository for a

query, and the rankings of documents by Google were saved as well4. HOTIR

ranked the documents according to its own principles and we compared the

HOTIR and Google rankings.

Five soccer fans were participants in HumanExp. Soccer fans were selected

to ensure participants had good background knowledge of the domain being

tested. Participants, thereafter called human experts, were asked to score each

document from 0 to 5 according to a given query. The meanings of the score

numbers were:

1 – WORST – the document is not relevant; it contains no information

regarding the query;

2 – BAD – the document is not very relevant, but it contains a little

information;

3 – HARD TO SAY – the document is somewhat relevant; it contains

some information;

4 – GOOD – the document is relevant; it contains quite a bit of infor-

mation;

5 – GREAT – the document is strongly relevant; it contains a lot of

information;

0 – ERROR – the document is not there or can not be be opened.

The arithmetic mean of user scores of a document was called its combined

score, and the combined score decided the document’s ranking. The rankings

of documents scored by the human experts were compared with the rankings

generated by Google and the two rankings generated by HOTIR.

The experiments employed the following steps for each query:

1. Using Java script, a repository consisting of up to 64 Web documents

was created;

2. The rankings by Google of these documents were retrieved and stored;

3. Documents from the repository were ranked with HOTIR(some) and

HOTIR(most);

4According to the limit of the Google API, there are 64 URLs for each query, i.e. 64 web
documents, we can retrieve.

114

4. Documents from the repository were ranked by human experts;

5. Document rankings from Google, HOTIR(some), HOTIR(most), and

human experts were compared.

6.4.3 Evaluation methodology

The methods of evaluation were different in MetricsExp and HumanExp. In

HumanExp because here we focused on the orders of the returned documents;

while in MetricsExp, we determined whether the retrieved documents were

relevant. A normalized distance-based performance measure (NDPM) was

used to evaluate HOTIR. NDPM was first proposed by Yao [102] theoretically,

and is commonly used to compare two different rankings [101, 103, 104, 105].

NDPM is defined in Eq. 6.2.

NDPM =
2C− + Cu

2Ci
(6.2)

Let us assume there are two rankings: one is a system ranking (in our case,

Google or HOTIR(some) or HOTIR(most)); the other one is a user ranking

(Human experts). C− is the number of contradictory pairs between the system

ranking and the user ranking. When the system says that document 1 is

preferred to document 2, but the user ranking says the opposite, we call them

(document 1 and document 2) as a contradictory pair. Cu is the number of

compatible pairs. When the user says document 1 has a higher ranking than

document 2, while the system ranks document 1 and document 2 at equal

levels, we call document 1 and document 2 a compatible pair. Ci is the total

number of preferred pairs in the user’s ranking. A preferred pair of documents

means that, of two documents, one is rated higher than the other.

6.5 Experiment results

6.5.1 Query A

MetricsExp Query A was “John Terry’s teammates in Chelsea.” John

Terry is a soccer player in the Chelsea club. This query was designed to

retrieve Web documents containing information about other soccer players in

the Chelsea club. In all methods (NaiveKW, VectorSpace, HOTIR(some),

HOTIR(most)), the query was expanded by knowledge in the ModOnt. The

expanded query included extra information about the other players in the

Chelsea club, such as players’ names, positions, etc. The local repository was

115

Figure 6.1: Top 250 web documents with Query A

applied, in which there were 22957 Web documents. The number of relevant

Web documents was 173, and the number of non-relevant Web documents was

22957 − 173 = 22784.

Fig. 6.1 shows how different approaches performed by presenting precisions

in the top 250 Web documents. Precision is defined as the percent of the

relevant documents in the retrieved set. The X axis represents the precision

in the retrieved documents, and the Y axis represents the number of retrieved

Web documents. The performance of the each approach was evaluated by

calculating precisions in its top-ranked documents. For each approach we

calculated precisions in the top 25, 50, 75, 100, 125, 150, 175, 200, 225 and

250 documents.

As shown in Fig. 6.1, HOTIR(some) and HOTIR(most) were much better at

retrieving documents relevant to the query than NaiveKW and VectorSpace.

In the top 25 Web documents retrieved by HOTIR(most), 100% (all 25) of

them were relevant documents; for documents retrieved by HOTIR(some),

96%(24) were relevant; while for documents retrieved by both VectorSpace

and NaiveKW, 28% (7) are relevant ones. A similar situation was found in the

top 50, top 100, and top 150 documents. From the top 175 documents onward,

HOTIR(some) began to perform better than HOTIR(most). In the top 175

116

Figure 6.2: ROC curve based with Query A

documents ranked by HOTIR(some), 110 were relevant; while in the top 175

documents ranked by HOTIR(most), 107 web documents were relevant.

The ROC curve in Fig. 6.2 represents an overview of the rankings of the

documents in the whole repository. Although as a Web-based information

retrieval tool, the ROC curve may be not as important as the TopN figure, we

present it here as an extra results to strengthen our analysis.

In Fig. 6.2, the Y axis represents the percent of retrieved relevant documents

over all relevant documents, that is called TPR; and the X axis represents the

percent of retrieved non-relevant documents over all non-relevant documents,

that is the called FPR (See detailed definitions of TPR and FPR in Eq. 6.1).

The interesting part in Fig. 6.2 is though HOTIR(some) and HOTIR(most)

are better than NaiveKW and VectorSpace in retrieving the first 86.13% (149)

relevant documents out of all relevant documents, they take more non-relevant

documents to retrieve the rest 13.87% relevant ones. This is a tradeoff between

higher precision and higher recall, or between more specific and more general.

As we mentioned, precision is the percent of relevant documents in the re-

trieved ones, and recall is the percent of the retrieved relevant documents in

all relevant documents. Since both HOTIR(some) and HOTIR(most) focus

more on meanings expressed in users’ queries than do NaiveKW and Vec-

117

(a) Google results (b) HOTIR(some)

(c) HOTIR(most)

Figure 6.3: Rankings in HumanExp with Query A

torSpace, they retrieved documents with more specific requirements; that is,

HOTIR(some) and HOTIR(most) performed with higher precision than recall.

HumanExp Fig. 6.3 includes three scatter plots displaying the rankings of

the documents generated by Google, HOTIR(some), and HOTIR(most). In

the plots, the Web documents are sorted by rankings from human experts in

ascending order on the X axes. The Y axes represent the rankings of documents

from Google or HOTIR(some) or HOTIR(most). For example, a point (x,y) in

Fig. 6.3a represents one document that has a ranking of x by human experts

and a ranking y by Google. The dotted line in the figure represents ideal

rankings, which are generated from rankings by human experts.

NDPM measures the performances of the approaches in HumanExp with

Query A. Unlike the plots in Fig. 6.3, the NDPM (section 6.4.3) measure

118

Table 6.2: Summary of HumanExp with Query A

Number of web documents 44
Total preferred pairs 865
Google Results
NDPM 0.408
Contradictory pairs (Google) 353
compatible pairs (Google) 0
HOTIR(some)
NDPM 0.417
Contradictory pairs (HOTIR) 361
compatible pairs (HOTIR) 0
HOTIR(most)
NDPM 0.386
Contradictory pairs (HOTIR) 334
compatible pairs (HOTIR) 0

is a results of the comparing two rankings. A high value of NDPM means the

two rankings are far apart; a low value of NDPM means there is not much

difference between two rankings. Because we set human-based ranking as the

ideal system, non-human rankings with lower NDPM values were desirable.

The results are summarized in Table 6.2. Because the Web documents that

human experts failed to open were removed from the repository, there were 44

documents left for Query A. The number of preferred pairs was 865, which is

defined to calculate NDPM (Ci in Eq. 6.2, section 6.4.3). The contradictory

pairs and the compatible pairs are defined in section 6.4.3. NDPM is defined

by Eq.(6.2).

The results in Table 6.2 indicate that HOTIR(most) (NDPM = 0.386) was

the most successful approach of the three approaches tested; Google (NDPM

= 0.408) performed better than HOTIR(some) (NDPM = 0.417).

In the daily life of using search engines, the searching results listed on the first

page are the most important to most users. Because in Google the default

number of results per page is 10, the top 10 returned documents of the three

approaches and their scores by human experts are presented in Table 6.3. In

each row of the table, there are:

• Rank in System category: ranking of a document by Google, HOTIR(some),

or HOTIR(most);

• Usr1 – Usr5 in User Score category: scores of a document by the five

human experts;

119

• Combined in User Score category: the arithmetic mean of the scores of

a document by the five human experts; this number is regarded as the

ideal score of the document;

• Rank in User category: ranking of a document by human experts; the

rankings is based on the combined score of the document.

The arithmetic mean Avg. of the Combined score of the top 10 documents

obtained in each approach appears at the bottom of each table. Higher Avg

values indicate better performance of the system on the top 10 documents.

The average scores for the top 10 documents were: Google 2.86, HOTIR(some)

2.94, and HOTIR(most) 3.02 (Table 6.3,). Thus, in the top 10 documents,

HOTIR(most) performed better than HOTIR(some), which performed better

than Google.

6.5.2 Query B

MetricsExp Query B was “Chelsea”, which was designed to retrieve in-

formation about the famous soccer club Chelsea. In all methods (NaiveKW,

VectorSpace, HOTIR(some), HOTIR(most)), the query was expanded by the

knowledge in the ModOnt. The expanded query included extra information

such as location of the team, stadium of the team, players of the team, etc.

The local repository of 22957 Web documents was applied. The number of

relevant documents was 185, and the number of non-relevant documents was

22957 − 185 = 22772.

HOTIR(some) and HOTIR(most) performed much better than NaiveKW and

VectorSpace as shown in Fig. 6.4. From the top 25 to the top 250 Web

documents, the precision of HOTIR(most) was 95% to 54%, the precision

of HOTIR(some) was 92% to 55%, the precision of NaiveKW was from 28%

to 36%, and the precision of VectorSpace was from 28% to 34%. Before the

top 125 Web documents, the performance of HOTIR(most) was better than

that of HOTIR(some); while after the top 125 Web documents, HOTIR(some)

performed better than HOTIR(most). The performance difference between

HOTIR(some) and HOTIR(most) was small. For example, in the top ranked

25 documents: of those retrieved by HOTIR(most), 96% (24) were relevant; of

those retrieved by HOTIR(some), 92% (23) were relevant. In the top ranked

150 web documents: of those retrieved by HOTIR(most), around 71% (107)

were relevant; in those by HOTIR(some), 74% (111) are relevant.

The results in Fig. 6.5 show that HOTIR(some) was the best one of the

four approaches. The performance of HOTIR(most) with Query B was sim-

120

Table 6.3: Top 10 documents by the three approaches with Query A

Top 10 documents ranked by Google
System User score User

Rank Usr.1 Usr.2 Usr.3 Usr.4 Usr.5 Combined Rank
1 2 2 2 3 2 2.2 26
2 2 2 5 4 4 3.4 6
3 1 1 1 2 2 1.4 44
4 3 3 4 5 4 3.8 2
5 2 2 3 3 3 2.6 17
6 3 2 2 4 4 3.0 11
7 4 3 4 4 3 3.6 3
8 2 2 4 5 2 3.0 11
9 2 1 4 4 1 2.4 20
10 2 1 4 5 4 3.2 9

Avg.:2.86

Top 10 documents ranked by HOTIR(some)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 4 3 4 4 3 3.6 3
2 2 2 5 4 4 3.4 6
3 3 3 4 5 3 3.6 3
4 1 2 4 4 3 2.8 16
5 2 2 3 3 3 2.6 17
6 1 1 1 2 2 1.4 44
7 2 3 4 4 3 3.0 11
8 3 2 4 3 4 3.2 9
9 1 2 4 1 2 2.0 31
10 3 3 4 5 4 3.8 2

Avg.:2.94

Top 10 documents ranked by HOTIR(most)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 4 4 4 3 3 3.6 3
2 3 2 2 3 3 2.6 17
3 1 2 4 1 2 2 31
4 5 5 2 5 5 4.4 1
5 2 2 4 4 3 3 11
6 3 2 2 4 4 3 11
7 4 3 4 4 3 3.6 3
8 3 3 4 5 3 3.6 3
9 1 1 2 2 2 1.6 39
10 1 2 4 4 3 2.8 16

Avg.:3.02

121

Figure 6.4: Top 250 web documents with Query B

Figure 6.5: ROC curve with Query B

122

(a) Google results (b) HOTIR(some)

(c) HOTIR(most)

Figure 6.6: Rankings in HumanExp with Query B

ilar to its performance with Query A: HOTIR(most) performed as well as

HOTIR(some) and much better than NaiveKW and VectorSpace; then the pre-

cision of HOTIR(most) dropped and could not keep up with that of HOTIR(some).

Before 85.96% relevant documents were retrieved, HOTIR(most) performed

better than VectorSpace and NaiveKW. After that NaiveKW performed bet-

ter in retrieving the rest of the relevant documents than VectorSpace and

HOTIR(most).

HumanExp Three scatter plots Fig. 6.6a, Fig. 6.6b and Fig. 6.6c compare

the document rankings by human experts with document rankings by Google,

HOTIR(some), and HOTIR(most), respectively.

The results of HumanExp with Query B are presented in Table 6.4. There were

51 valid Web documents in the repository. The total number of preferred pairs

123

Table 6.4: Summary of HumanExp with Query B

Number of web documents 51
Total preferred pairs 1202
Google Results
NDPM 0.527
Contradictory pairs (Google) 633
compatible pairs (Google) 0
HOTIR(some)
NDPM 0.369
Contradictory pairs (HOTIR) 437
compatible pairs (HOTIR) 12
HOTIR(most)
NDPM 0.366
Contradictory pairs (HOTIR) 434
compatible pairs (HOTIR) 12

was 1202. The NDPM values for Google, HOTIR(some), and HOTIR(most)

were 0.527, 0.369, and 0.366, respectively. The contradictory pairs of Google,

HOTIR(some), and HOTIR(most) were 633, 437, and 434, respectively. The

compatible pairs of Google, HOTIR(some), and HOTIR(most) were 0, 12,

and 12, respectively. HOTIR(some) and HOTIR(most) performed better than

Google when system rankings were compared with rankings by human ex-

perts in this experiment. HOTIR(most) performed only slightly better than

HOTIR(some). It seems that with Query B the information hierarchy did not

make much difference.

The average scores for the top 10 documents were: Google 2.64, HOTIR(some)

3.04, and HOTIR(most) 3.32 (Table 6.5). Therefore, in the first 10 returned

documents, HOTIR(most) performed better than HOTIR(some) which per-

formed better than Google.

6.5.3 Query C

MetricsExp Query C was “famous soccer players”. It was designed to re-

trieve information about famous soccer players. In all methods (NaiveKW,

VectorSpace, HOTIR(some), HOTIR(most)), the query was expanded by the

knowledge in the ModOnt. The expanded query included information about

famous soccer players, such as their names, clubs they play in, etc. The

local repository of 22957 documents was applied. The number of relevant

documents was 473, and the number of non-relevant web documents was

124

Table 6.5: Top 10 documents by three approaches with Query B in HumanExp

Top 10 documents ranked by Google
System User score User

Rank Usr.1 Usr.2 Usr.3 Usr.4 Usr.5 Combined Rank
1 5 3 5 2 5 4.0 3
2 5 3 5 2 5 4.0 3
3 5 5 2 5 1 3.6 9
4 1 2 3 3 1 2 3.2
5 1 4 2 3 1 2.2 30
6 1 4 3 1 4 2.6 23
7 3 1 1 1 1 1.4 47
8 1 2 3 2 2 2.0 32
9 1 3 2 1 3 2.0 32
10 3 3 3 1 3 2.6 23

Avg.:2.64

Top 10 documents ranked by HOTIR(some)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 1 2 3 2 2 2.0 32
2 4 4 4 5 4 4.2 1
3 3 4 3 5 4 3.8 5
4 3 3 4 4 2 3.2 14
5 3 4 1 4 3 3.0 18
6 5 3 5 2 5 4.0 3
7 1 2 2 2 2 1.8 38
8 3 3 4 1 4 3.0 18
9 3 4 3 4 3 3.4 11
10 1 3 2 1 3 2.0 32

Avg.:3.04

Top 10 documents ranked by HOTIR(most)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 1 2 3 2 2 2.0 32
2 4 4 4 5 4 4.2 1
3 3 4 3 5 4 3.8 5
4 5 3 5 2 5 4.0 3
5 3 4 1 4 3 3.0 18
6 4 4 4 4 3 3.8 5
7 3 3 4 4 2 3.2 14
7 1 2 2 2 2 1.8 38
9 3 4 4 5 2 3.6 9
10 3 4 4 5 3 3.8 5

Avg.:3.32

125

Figure 6.7: Top 250 web documents with Query C

22957 − 473 = 22484.

NaiveKW performed the worst of the four IR systems tested with Query C

(Fig. 6.7). Although NaiveKW had the same number of relevant documents (15

out of 25) as VectorSpace in the top 25 web documents, in the rest VectorSpace

had higher precision. HOTIR(some) and HOTIR(most) performed better than

both NaiveKW and VectorSpace, and it was difficult to determine which of

HOTIR(some) and HOTIR(most) performed the best. Before the top 125

documents (top 25, top 50, and top 100), HOTIR(most) had higher precision.

As shown in Fig. 6.7, the precision of HOTIR(most) was 100% precision in

the top 25 (25 out of 25), 96% in the top 50 (48 out of 50), 97% in the top

75 (73 out of 75), and 94% in the top 100 (94 out of 100). The precision of

HOTIR(some) was 100% in the top 25 (23 out of 25), 96% in the top 50 (48

out of 50), 97% in the top 75 (73 out of 75) and 92% in the top 100 (92 out of

100). However, after the top 100 documents, HOTIR(some) performed better

than HOTIR(most).

An analysis of Fig. 6.8 leads to a similar conclusion: HOTIR(some) performed

better than HOTIR(most) because more relevant documents were collected

for the same amount of documents retrieved according to the rankings by

HOTIR(some). The only advantage of HOTIR(most) was that there are more

126

Figure 6.8: ROC curve with Query C

relevant documents in the top 100 documents it retrieved. VectorSpace had

the highest recall. VectorSpace performed better after around 78% of the

relevant documents were retrieved, but it was not as good as HOTIR(some)

and HOTIR(most) before that point.

HumanExp Three scatter plots are shown in Fig. 6.9 displaying the compar-

ison of the rankings by human experts and the rankings by Google, HOTIR(some)

and HOTIR(most).

The results of HumanExp with Query C are presented in Table 6.6. There

were 41 valid documents in the repository. The total number of the pre-

ferred pairs was 792. The NDPM values for Google, HOTIR(some), and

HOTIR(most) were 0.374, 0.307, and 0.320, respectively. The contradictory

pairs of Google, HOTIR(some), and HOTIR(most) were 296, 243, and 253, re-

spectively. The compatible pairs of Google, HOTIR(some), and HOTIR(most)

were 0, 1, and 1, respectively. Both HOTIR(some) and HOTIR(most) per-

formed better than Google in this experiment; HOTIR(some) performed better

than HOTIR(most).

As shown in Table 6.7, the average score for the top 10 documents were:

Google 3.48, HOTIR(some) 3.34, and HOTIR(most) 3.30. Therefore, Google

127

(a) Google results (b) HOTIR(some)

(c) HOTIR(most)

Figure 6.9: Rankings in HumanExp with Query C

128

Table 6.6: Summary of HumanExp with Query C

Number of web documents 41
Total preferred pairs 792
Google Results
NDPM 0.374
Contradictory pairs (Google) 296
compatible pairs (Google) 0
HOTIR(some)
NDPM 0.307
Contradictory pairs (HOTIR) 243
compatible pairs (HOTIR) 1
HOTIR(most)
NDPM 0.320
Contradictory pairs (HOTIR) 253
compatible pairs (HOTIR) 1

performed better than HOTIR(some), and HOTIR(some) performed better

than HOTIR(most).

6.5.4 Query D

MetricsExp Query D was defined as “Manchester > Ronaldo”. Manchester

is where the soccer club Manchester United is located. Ronaldo is now a

player in another club (Real Madrid), but he previously played for Manchester

United. Because the knowledge base did not contain the knowledge that these

two concepts (Manchester and Ronaldo) are related, while user knew it, this

query showed that knowledge from a user and knowledge from the knowledge

base can be combined in HOTIR. “>” is a new defined operator in HOTIR

that connects two objects and means the latter object supports the former

object; that is, the concept defined by the right-side keyword is a subconcept

of the concept defined by the left-side keyword. This query was designed to

retrieve information about club Manchester United and player Ronaldo. Player

Ronaldo helped define club Manchester United. In all methods (NaiveKW,

VectorSpace, HOTIR(some), HOTIR(most)), the query was expanded by the

knowledge in knowledge base ModOnt.

The local repository of 22957 Web documents was applied. The number of rel-

evant Web documents was 169 and the number of non-relevant Web documents

was 22957 − 169 = 22788.

HOTIR(some) performed the best of the four IR systems tested in this ex-

129

Table 6.7: Top 10 documents by three approaches with Query C in HumanExp

Top 10 documents ranked by Google
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 5 5 5 5 5 5.0 1
2 5 4 5 5 5 4.8 2
3 4 3 5 4 5 4.2 3
4 4 3 4 2 3 3.2 14
5 1 3 2 5 1 2.8 17
6 3 2 3 3 2 2.6 20
7 3 3 5 5 3 3.8 9
8 1 1 1 3 1 1.4 34
9 4 4 5 4 4 4.2 3
10 3 2 3 4 2 2.8 17

Avg.:3.48

Top 10 documents ranked by HOTIR(some)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 5 5 5 5 5 5.0 1
2 3 2 3 4 2 2.8 17
3 3 4 4 5 3 3.8 9
4 5 4 5 5 5 4.8 2
5 1 1 2 4 1 1.8 28
6 1 2 4 2 4 2.6 20
7 1 2 4 2 4 2.6 20
8 4 3 4 2 3 3.2 14
9 3 2 3 3 2 2.6 20
10 4 4 5 4 4 4.2 3

Avg.:3.34

Top 10 documents ranked by HOTIR(most)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 5 5 5 5 5 5.0 1
2 1 2 4 2 4 2.6 20
3 1 2 4 2 4 2.6 20
4 4 4 5 4 4 4.2 3
5 3 2 3 4 2 2.8 17
6 3 4 4 5 3 3.8 9
7 5 4 5 5 5 4.8 2
8 4 3 4 2 3 3.2 14
9 1 1 2 4 1 1.8 28
10 2 1 3 4 1 2.2 25

Avg.:3.30

130

Figure 6.10: Top 250 web documents with Query D

periment (Fig. 6.10). In the top 25 Web documents in HOTIR(some) and

HOTIR(most), 100% (25 out of 25) of them were relevant, and in the top

50, 94% (47 out of 50) were relevant. After 50 Web documents were retrieved,

HOTIR(some) performed better than HOTIR(most). In the top 75 documents

retrieved, 88% (66 out of 75) of the documents by HOTIR(some) were rele-

vant and around 85% (64 out of 75) of the documents by HOTIR(most) were

relevant. In the top 100 Web documents retrieved, 80% (80 out of 100) of

the documents by HOTIR(some) were relevant and 78% (78 out of 100) of

the documents by HOTIR(most) were relevant. NaiveKW and VectorSpace

did not perform as well as HOTIR(some) or HOTIR(most). In NaiveKW and

VectorSpace, the average precision was around 20%, while in HOTIR(some)

and HOTIR(most), it was 47% to 100%.

Fig. 6.11 presents an overview of the performance of four approaches over the

whole repository. Before around 80% of the relevant documents were retrieved,

HOTIR(some) and HOTIR(most) performed much better than NaiveKW and

VectorSpace. After 80% of the relevant documents were retrieved, it is difficult

to see in the figure which one, HOTIR(some) or HOTIR(most), performed bet-

ter. After 80% of the relevant documents were retrieved, both NaiveKW and

VectorSpace performed better than HOTIR(some) and HOTIR(most). Be-

tween NaiveKW and VectorSpace, VectorSpace performed better than NaiveKW

131

Figure 6.11: ROC curve with Query D

before 95.27% of the relevant documents were retrieved; after 95.27% of the rel-

evant documents were retrieved, NaiveKW performed better than VectorSpace

in retrieving the rest of the relevant documents.

HumanExp In Fig. 6.12 three scatter plots compare document rankings by

human experts with the document rankings by Google, HOTIR(some) and

HOTIR(most).

The results of HumanExp with Query D are presented in Table 6.8. There

were 47 valid documents in the repository. The total number of preferred pairs

was 970. The NDPM values for Google, HOTIR(some), and HOTIR(most)

were 0.375, 0.365, and 0.356, respectively. The contradictory pairs of Google,

HOTIR(some), and HOTIR(most) were 364, 354, and 345, respectively. The

compatible pairs of Google, HOTIR(some), and HOTIR(most) were 0, 0, and

0, respectively. In summary, HOTIR(some) and HOTIR(most) performed

better than Google and HOTIR(most) performed better than HOTIR(some)

As shown in Table 6.9, the average scores for the top 10 documents were:

Google 2.48, HOTIR(some) 2.62, and HOTIR(most) 3.16. Therefore, in the

first 10 returned documents, HOTIR(most) performed better than HOTIR(some),

and HOTIR(some) performed better than Google.

132

(a) Google results (b) HOTIR(some)

(c) HOTIR(most)

Figure 6.12: Rankings in HumanExp with Query D

133

Table 6.8: Summary of HumanExp with Query D

Number of web documents 47
Total preferred pairs 970
Google Results
NDPM 0.375
Contradictory pairs (Google) 364
compatible pairs (Google) 0
HOTIR(some)
NDPM 0.365
Contradictory pairs (HOTIR) 354
compatible pairs (HOTIR) 0
HOTIR(most)
NDPM 0.356
Contradictory pairs (HOTIR) 345
compatible pairs (HOTIR) 0

6.5.5 Query E

MetricsExp Query E was defined as “Owen > Rooney”. Micheal Owen

and Wayne Rooney, are soccer players in England. Although there was no

direct relation between them in the knowledge base, a user could provide a

query that connects them. Query E presented a user’s interest in both players.

However, because Rooney was a subobject of Owen in the query, Rooney was

included in the definition of Owen.

The semantics of Query E depended on the linguistic quantifier used. If a

linguistic quantifier that ignores hierarchical structures, like some, was utilized,

Query E represented an information requirement regarding Owen or Rooney.

If a linguistic quantifier that does not ignore hierarchical structures, like most,

was utilized, Rooney in Query E, as a new requirement, was added to define

object Owen. That is, the satisfaction of Rooney contributed to the satisfaction

of Owen, and the satisfaction of Owen was the final criterion to retrieve web

documents.

The local repository of 22957 Web documents was applied. The number of

relevant Web documents was 144, and the number of non-relevant Web docu-

ments was 22957 − 144 = 22813.

HOTIR(most) gave the best performance of the four IR approaches (Fig. 6.13)

except for the retrieval of the top 25 documents, where HOTIR(some) per-

formed a bit better. Both HOTIR(some) and HOTIR(most) performed better

than VectorSpace and NaiveKW.

134

Table 6.9: Top 10 documents by three approaches with Query D in HumanExp

Top 10 documents ranked by Google
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 1 1 2 3 2 1.8 36
2 2 2 2 2 2 2.0 30
3 3 2 4 4 3 3.2 4
4 2 1 3 2 2 2.0 30
5 3 2 4 4 3 3.2 4
6 2 1 1 1 1 1.2 46
7 3 2 4 4 3 3.2 4
8 2 1 4 2 2 2.2 27
9 3 2 4 4 3 3.2 4
10 2 1 4 4 2 2.6 23

Avg.:2.46

Top 10 documents ranked by HOTIR(some)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 2 2 4 5 3 3.2 4
2 3 2 4 4 2 3.0 15
3 2 1 5 4 2 2.8 17
4 3 2 4 4 3 3.2 4
5 2 2 5 4 3 3.2 4
6 2 1 2 2 2 1.8 36
7 1 1 3 2 2 1.8 36
8 3 2 4 4 3 3.2 4
9 1 1 2 2 2 1.6 42
10 2 2 3 3 2 2.4 26

Avg.:2.62

Top 10 documents ranked by HOTIR(most)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 3 2 4 4 3 3.2 14
2 4 4 5 5 4 4.4 1
3 2 1 5 4 2 2.8 17
4 2 2 4 5 3 3.2 4
5 3 2 4 4 2 3.0 15
6 2 2 3 3 2 2.4 26
7 2 2 5 4 3 3.2 4
8 5 3 2 2 2 2.8 17
9 3 2 4 4 3 3.2 4
10 3 2 5 4 3 3.4 3

Avg.:3.16

135

Figure 6.13: Top 250 web documents with Query E

Figure 6.14: ROC curve with Query E

136

(a) Google results (b) HOTIR(some)

(c) HOTIR(most)

Figure 6.15: Rankings in HumanExp with Query E

Fig. 6.14 presents an overview of the four approaches over the whole repos-

itory. Before around 85% relevant documents were retrieved, HOTIR(most)

was the best approach. After that point, VectorSpace performed the best.

However, just before all relevant documents (around 97% to 100%) were re-

trieved, HOTIR(most) returned to give the best performance. HOTIR(some)

was the second best approach before 75% of the relevant documents were re-

trieved. In the end, HOTIR(most) retrieved all relevant documents firstly, Vec-

torSpace was the second one, NaiveKW was the third one and HOTIR(some)

was the last one.

HumanExp Fig. 6.15 includes three scatter plots that compare rankings of

the documents by human experts with rankings by Google, HOTIR(some) and

HOTIR(most).

137

Table 6.10: Summary of HumanExp with Query E

Number of web documents 44
Total preferred pairs 879
Google Results
NDPM 0.484
Contradictory pairs (Google) 425
compatible pairs (Google) 0
HOTIR(some)
NDPM 0.266
Contradictory pairs (HOTIR) 234
compatible pairs (HOTIR) 0
HOTIR(most)
NDPM 0.234
Contradictory pairs (HOTIR) 206
compatible pairs (HOTIR) 0

The results of HumanExp with Query E are presented in Table 6.10. There

were 44 valid Web documents in the repository. The total number of preferred

pairs was 879. The NDPM values of Google, HOTIR(some) and HOTIR(most)

were 0.484, 0.266, and 0.234, respectively. The contradictory pairs of Google,

HOTIR(some), and HOTIR(most) were 425, 234, and 206, respectively. The

compatible pairs of Google, HOTIR(some) and HOTIR(most) were 0, 0, and 0,

respectively. In summary, HOTIR(some) and HOTIR(most) performed better

than Google; HOTIR(most) performed better than HOTIR(some).

As shown in Table 6.11, the average score for the top 10 documents were:

Google 2.08, HOTIR(some) 2.78, and HOTIR(most) 3.04. Therefore, in the

first 10 returned documents, HOTIR(most) performed better than HOTIR(some),

and HOTIR(some) performed better than Google.

6.5.6 Query F

Query F was a special query that contained all the knowledge of soccer in the

knowledge base. That is, Query F included all concepts, their attributes, and

their relations. Query F was only tested in MetricsExp.

The local repository of 22957 Web documents was applied. The number of

relevant Web documents was 2348 and the number of non-relevant Web doc-

uments was 20609.

Fig. 6.16 shows how the four different approaches performed by presenting the

138

Table 6.11: Top 10 documents by the approaches with Query E in HumanExp

Top 10 documents ranked by Google
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 1 1 1 1 1 1.0 35
2 1 1 1 1 1 1.0 35
3 4 4 4 5 4 4.2 1
4 3 3 4 4 2 3.2 8
5 1 1 2 2 1 1.4 31
6 1 1 1 1 1 1.0 35
7 1 1 1 2 1 1.2 34
8 3 3 3 4 2 3.0 11
9 3 4 4 5 3 3.8 5
10 1 1 1 1 1 1.0 35

Avg.:2.08

Top 10 documents ranked by HOTIR(some)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 3 4 5 5 3 4.0 3
2 3 3 4 4 1 3.0 11
3 2 2 2 2 2 2.0 24
4 2 2 2 3 1 2.0 24
5 3 3 2 5 1 2.8 14
6 3 4 4 5 3 3.8 5
7 2 2 1 4 1 2.0 24
8 3 3 4 4 2 3.2 8
9 1 2 1 4 2 2.0 24
10 2 3 3 5 2 3.0 11

Avg.:2.78

Top 10 documents ranked by HOTIR(most)
System User score User

Rank Usr1 Usr2 Usr3 Usr4 Usr5 Combined Rank
1 2 2 2 2 2 2.0 24
2 3 3 2 5 1 2.8 14
3 4 4 4 5 4 4.2 1
4 3 4 5 5 3 4.0 3
5 3 4 4 5 3 3.8 5
6 2 2 2 3 2 2.2 20
7 3 3 3 4 3 3.2 8
8 3 3 4 4 2 3.2 8
9 2 2 3 3 1 2.2 20
10 2 3 3 4 2 2.8 14

Avg.:3.04

139

Figure 6.16: Top 500 documents with Query F

precision of relevant Web documents in the top 500 Web documents. Here we

considered the top 500 documents instead of the top 250 documents because

of the increasing number of the relevant Web documents. In the experiment

with Query F, we calculated precisions for each approach in the top 50, 100,

150, 200, 250, 300, 350, 400, 450 and 500 documents.

As shown in Fig. 6.16, HOTIR(most) and HOTIR(some) performed better

than NaiveKW and VectorSpace. Intuitively, HOTIR(most) performed the

best; HOTIR(some) performed the second best; VectorSpace performed better

than NaiveKW but worse than HOTIR(some).

In Fig. 6.17, it can be seen that NaiveKW was not as successful at information

retrieval for Query F as the other three approaches. The performances of

VectorSpace, HOTIR(some), and HOTIR(most) are close to each other in

Fig. 6.17, but HOTIR(some) appears to have given the best performance of

these three approaches, while VectorSpace gave the worst.

140

Figure 6.17: ROC curve with Query F

6.6 Conclusions

To examine HOTIR, we designed two series of experiments and applied six

queries, five conventional ones (Query A, Query B, Query C, Query D, and

Query E) and one special query (Query F).

The first series of experiments, MetricsExp, was based on a large local reposi-

tory of the crawled Web documents. For each query, Web documents were

first labelled as relevant or non-relevant. Then four different approaches

(NaiveKW, VectorSpace, HOTIR(some), and HOTIR(most)) (section 6.3.2)

were applied to score the documents by evaluating their relevance to a query.

The results were presented in TopN figures and ROC curves (section 6.3.3).

The second series of experiments, HumanExp, included rankings of human

experts. For each query, the returned documents by Google were crawled.

Human experts then scored every document by evaluating its relevance to the

query. The scores ranged from 1 (most non-relevant) to 5 (most relevant)5.

The arithmetic mean of the scores (from human experts) was regarded as the

ideal score of the document. HOTIR generated two scores by using linguistic

quantifier some and most. In summary, a document had four rankings: one

5Besides, 0 means cannot open or not exist.

141

from human experts, one from Google, and two from HOTIR. The evaluation

was mainly based on the NDPM measure (section 6.4.3).

From the results of the experiments, we drew several conclusions as described

below.

1. HOTIR performed better compared to other information retrieval ap-

proaches.

– In MetricsExp, the two HOTIR-based approaches, HOTIR(some)

and HOTIR(most), outperformed two classical information retrieval

approaches (NaiveKW and VectorSpace) on all 6 queries in the

TopN figures. That is, if a user checked the returned first 250

(Query A-E) or 500 (Query F) documents, those returned by HO-

TIR(some) and HOTIR(most) would be found to be more relevant

to the query. After studying ROC curves, we concluded that for

all five conventional queries, HOTIR(some) and HOTIR(most) ob-

tained better performance in retrieving around 80% or more of the

relevant documents. NaiveKW and VectorSpace performed better

in retrieving the last 10% - 20% of the relevant documents, this was

reasonable because HOTIR(some) and HOTIR(most) were designed

to better represent users’ needs; that is, they expressed more spe-

cific meaning to a given query. This specificity sacrificed retrieval

of some generally relevant objects. We deem this trade-off to be

acceptable because precision is more important than recall consid-

ering the huge amount of Web documents available.

– In HumanExp, two measures were used to compare HOTIR(some)

and HOTIR(most) with Google, currently the most successful search

engine. The first measure was NDPM (section 6.4.3). All ranked

documents were used to calculate NDPM values. HOTIR(some)

and HOTIR(most) outperformed Google with four out of five con-

ventional queries6: Query B, Query C, Query D, and Query E.

With Query A, HOTIR(most) performed better than Google, and

HOTIR(some) performed worse than Google. The second measure

was a comparison of arithmetic means of the scores of the top 10

documents by each approach. The scores were given by human ex-

perts, and each approach got its own top 10 document list. The

average scores for the top 10 documents represented the satisfac-

tion of the human experts for the top 10 documents. The results

indicated that HOTIR(some) and HOTIR(most) performed better

6The special query, Query F, was not applied in HumanExp.

142

than Google with four out of five queries: Query A, Query B, Query

D, and Query E; while with Query C, Google performed better than

HOTIR(some) and HOTIR(most).

2. A comparison between HOTIR(some) and HOTIR(most) with respect to

information retrieval was also interesting. As we discussed in section 5.4,

linguistic quantifier provides instructions on how pieces of information

are aggregated. With linguistic quantifier some, HOTIR ignores hier-

archy information when aggregating. With linguistic quantifier most,

HOTIR utilizes hierarchy information. Moreover, when most is used, a

piece of less satisfied information tends to be more important in aggre-

gation, because of the way most is modelled (section 5.4). Generally,

though the HOTIR approaches with linguistic quantifier some and most

(HOTIR(some) and HOTIR(most)) beat their competitors (NaiveKW

and VectorSpace in MetricsExp and Google in HumanExp), and their

(HOTIR(some) and HOTIR(most)) performances were about equal:

– In MetricsExp, roughly speaking, according to the TopN figures

(Fig 6.1, Fig. 6.4, Fig. 6.7, Fig. 6.10, Fig. 6.13, and Fig. 6.16),

HOTIR(most) performed better with Query A, Query B, and Query

E; HOTIR(some) performed better with Query D. It was hard to

tell which one was better with Query C and Query F. According to

the ROC curves (Fig 6.2, Fig. 6.5, Fig. 6.8, Fig. 6.11, Fig. 6.14 and

Fig. 6.17), HOTIR(most) performed better with Query E; HOTIR-

(some) performed better with Query B, Query C and Query D. It

was hard to tell which one was better with Query A and Query F.

In summary, a better performance of HOTIR(most) (than that of

HOTIR(some)) in a TopN figure showed that HOTIR(most) was

better at retrieving “very relevant” documents; while a better per-

formance of HOTIR(some) (than that of HOTIR(most)) in an ROC

curve shows that HOTIR(some) was better at retrieving “generally

relevant” documents. We assumed that because the aggregation in-

structed by most is more specific than the aggregation instructed by

some; the former was not as good as the latter when it was applied

to binary categorization; while it was better at ranking systems.

– The results of HumanExp supports our assumption (the aggrega-

tion instructed by most is more specific than the aggregation in-

structed by some; the former was not as good as the latter when it

was applied to binary categorization; while it was better at rank-

ing systems.). HOTIRS(most) showed better performance than

HOTIR(some), obtaining smaller NDPM values with Query A, Qu-

ery B, Query D and Query E (four out of five conventional queries)

143

(see Table 6.2, Table 6.4, Table 6.8, and Table 6.10). With Query C,

HOTIR(some) performed better than HOTIR(most) as evidenced

by a smaller NDPM value (Table 6.6). HOTIR(most) had a higher

arithmetic mean score for the top 10 documents retrieved than

HOTIR(some), with Query A, Query B, Query D, and Query E

(four out of five conventional queries) (see Table 6.3, Table 6.5, Ta-

ble 6.9, and Table 6.11). With Query C, HOTIR(some) had a larger

arithmetic mean than HOTIR(most) (Table 6.7).

In summary, we compared HOTIR with several other classic information re-

trieval approaches, and studied the performances of HOTIR with the linguistic

quantifiers some and most. As a concept-based approach, HOTIR proved its

ability to retrieve and rank Web documents.

144

Chapter 7

Conclusion and futurework

7.1 Conclusion

HOTIR, a new concept-based information retrieval framework for Web doc-

uments, is introduced in this thesis. It accepts conventional keyword-based

queries, translates them into concepts, and organizes them into a hierarchy

(HofC). HOTIR then enriches the definitions of the concepts with knowledge

in a modified ontology (ModOnt), identifies equivalent concepts in Web docu-

ments, aggregates document concepts, and ranks the documents according to

their relevance to the query.

The identification of concepts in Web documents can be explained as the pro-

cess of discovering the meanings of texts in them. In order to make computers

utilize the meanings of texts, HOTIR is comprised of several parts to make

information retrieval more intelligent.

The knowledge base in HOTIR, called ModOnt, was built from an ontology. In

the ModOnt concepts are defined by related concepts, terms, their importance

values and by the relations between these concepts and terms. In the process

of building concept-based queries from keyword-based queries, the knowledge

base provides extra definitions of the concepts in queries. The vocabulary

(terms and concepts) related to a domain and the relations between the terms

and concepts in the vocabulary are manually stored in the ontology. The on-

tology is a collection of concepts and interconcept relations. Each concept

is defined using a set of related-concepts and terms. However, since every

concept or term contributes differently to the concept it defines, without im-

portance information it is not possible to identify concepts in documents. A

new AATI (adaptive assignment of term importance) scheme was proposed to

assign importance weights to concepts and terms through reading “unknown”

145

Web documents. “Unknown” means there is no need for humans to read the

documents and interpret their meanings to add extra knowledge for the AATI.

Examples of extra knowledge are: topics of the documents, categories the doc-

uments belong to, concepts mentioned in the documents. The AATI scheme

dramatically saves human labor. Integration of the ontology and the AATI

scheme provides the knowledge base for HOTIR.

Queries inside HOTIR are in the form of a hierarchy of concepts (HofC). The

HofC includes concept definitions that can be enriched with knowledge in the

knowledge base, where hierarchies also exist. The organization of information

– concepts, terms and their relations – into hierarchies allows knowledge to

move through HOTIR smoothly. The application of hierarchies increases the

complexity of calculation but improves the accuracy and efficiency of informa-

tion retrieval.

Evaluation of how well a document matches a query is mapped as activation

of the HofC-based query by information in the document. Ordered weighted

averaging (OWA) operators are utilized to implement evaluation. The acti-

vation performs in a “bottom-up” manner. That is, it starts from the lowest

level of the HofC, and the activation of the sublevel nodes contributes to the

activation of the superlevel nodes. The activation level of the top level con-

cept, the root concept (RC) (section 4.3.1), represents how well the document

satisfies the HofC.

We have contributed to the information retrieval field by constructing a com-

plete concept-based information retrieval framework, HOTIR. The process of

information retrieval – query presentation, query expansion, knowledge base

management, and evaluation of documents that match the query – can be ab-

stracted as the definitions and identifications of concepts in the framework. In

HOTIR, both definitions and identifications utilize hierarchical information:

• ModOnt, the ontology-based knowledge base provides supplementary

knowledge to define concepts in user queries. ModOnt is based on an

ontology.

• AATI scheme assigns importance to terms and concepts; it updates the

ModOnt.

• Concepts, terms and their relations are organized into hierarchies (HofC)

as queries. A query connects the user with computer agents in informa-

tion retrieval: a query is a formal statement of a user’s information

need, and is the basis for computer agents to retrieve documents from

the WWW. In every HofC-based query, concepts and their definitions

are in a hierarchical structure.

146

• Documents are ranked according to how well they satisfy a query. Sat-

isfaction is mapped as the activation of an HofC by documents. The ac-

tivation is bottom-up, and is calculated using ordered weight averaging

(OWA) operators. Normally, a concept is defined by several subconcepts

and terms organized in a HofC. The activation of the HofC is the process

of aggregation of the satisfactions of subconcepts and terms. Linguistic

quantifiers introduced in OWA operators can be integrated with hierar-

chies in the HofC to satisfy more flexible information requirements.

The experiments in chapter 6 were designed to validate HOTIR. They compare

HOTIR-based approaches with different linguistic quantifiers, and with other

popular information retrieval approaches. Case studies presented in chapter 5

showed how a HOTIR-based approach was affected by the use of the linguistic

quantifiers some and most. Mathematical definitions of these linguistic quan-

tifiers indicate that most utilizes hierarchical structures in queries and some

ignores them. We found that if one document was applied to two queries which

contained the same set of concepts but with different hierarchical structures,

the document tended to have different scores for satisfying the two queries

when the linguistic quantifier most was used, and the documents got equal

scores for satisfying the two queries when the linguistic quantifier some was

used. Generally, where documents were preset only as relevant or non-relevant,

the use of some in HOTIR was a better choice than other approaches (includ-

ing HOTIR with most). Where documents were ranked by human experts,

HOTIR with most showed better performance than other methods (including

HOTIR with some). These results convinced us that hierarchical information

helps to express queries more precisely. By ignoring hierarchical information,

HOTIR utilizing the linguistic quantifier some was a more general information

retrieval tool than HOTIR utilizing most. A general IR tool is a better option

if the aimed documents are binary categorized (e.g., relevant or non-relevant).

In our experiments, HOTIR utilizing most took hierarchical information into

consideration, making it a more specific IR tool than HOTIR utilizing some;

the linguistic quantifier most showed its power when the evaluation was made

by comparing rankings.

Ideas, and even techniques, in HOTIR can be adapted easily by other intel-

ligent systems to realize Semantic Web (section 2.1.2), where computers can

accomplish more complicated jobs through utilizing the meanings of the con-

tents of Web documents. HOTIR provides a complete set of processes for

computer agents to identify aimed concepts from texts. For everyday life, re-

trieving Web documents through search engines is a common beginning for

many projects: papers may be needed for a background study; financial news

147

can be accessed to build an investment plan; reviews of a product may be

required before shopping; and so on. Similarly, the identification of concepts

from texts by computer agents is the basis of many different applications.

7.2 Future work

Several areas of future research are presented as:

• User interface (UI): A more sophisticated UI will help a HofC-based

query better express users’ interests. Queries connect users and com-

puter agents. A query is a formal statement of a user’s information

needs. HOTIR uses information presented in the query to retrieve doc-

uments. One of the reasons for applying a HofC to represent queries is

that it is able to contain more information – a set of concepts in hierar-

chical organization is more meaningful to a computer agent than a set

of unordered concepts. However, in the current HOTIR-based system,

users’ keyword-based queries are inputs to QryProc which do not have

complicated hierarchical structures. HofC-based queries that are built

from these queries do not have complicated hierarchical structures either.

Although the starting keyword-based query can use a new operator “>”

to construct some simple relations (the concept defined by the right-side

keyword is a subconcept of the concept defined by the left-side keyword,

see section 6.5), and HofC-based queries can obtain hierarchical informa-

tion from the knowledge base (ModOnt), it is still far from what HofC

can do. The development of a UI that accepts more special operators

and on which a graphical user interface (GUI) can be built. With a GUI,

users could freely choose concepts of interest and organize these concepts

in a way that would point the search in the desired direction.

• Natural language possessing (NLP): NLP [106] can help computer agents

utilize the meanings of unstructured data. NLP systems attempt to

translate human language into representations that computer agents can

manipulate. Introducing ideas/techniques of NLP into HOTIR would

be helpful. Currently in HOTIR, the prepossessing module in QryProc

(section 4.7) removes stop words and stems words in queries entered by

users. The application of NLP modules to QryProc would provide more

intelligent preprocessing.

• Query expansion: Finding and applying supplementary knowledge from

a knowledge base is worth further study. In HOTIR, the keywords in-

put by users are used to retrieve “equivalent” concepts in the ModOnt.

148

We use a somewhat naive approach to find concepts in the ModOnt: if a

keyword matches the name of a concept or matches a literal value (term)

of a datatype attribute of a concept, the concept is recognized as “equiv-

alent” to one of the keywords. After finding “equivalent” concepts, we

take it for granted that the concept is equal to what the keyword repre-

sents, so all definitions of the concept in the ModOnt are added to the

query. However, the corresponding concept may not be an “equivalent”

concept but merely a “related” concept. Therefore, not all definitions

of the concept in the ModOnt should be added to the query; a selective

filter is needed here.

• Linguistic quantifier: In the thesis, two linguistic quantifiers, some and

most, were implemented and studied in HOTIR. Like hierarchies, lin-

guistic quantifiers provide possibilities for the improvement of informa-

tion retrieval. Linguistic quantifiers instruct the aggregation process. In

some special scenarios (purposes, popularity of the aimed concepts, etc.),

some linguistic quantifiers are more productive than others. There are

several other linguistic quantifiers that could be tested in HOTIR for

their ability to improve the aggregation process.

149

Bibliography

[1] M. J. Pierre. Practical issues for automated categorization of web pages.

In Proceedings of ECDL 2000 Workshop on the Semantic Web. 2000.

[2] Wikipedia. Web crawler, Oct 2008. URL http://en.wikipedia.org/

wiki/Web_crawler.

[3] P. E. Black. Inverted index, Oct 2008. URL http://www.nist.gov/

dads/HTML/invertedIndex.html.

[4] H.M.Haav and T.-L. Lubi. A survery of concept-based information re-

trieval tools on the web. In Proceedings of 5th East-European confer-

ence ADBIS, volume 2, pages 29–41. Springer Berlin, Vilnius, Lithuania,

2001.

[5] J. A. Gulla, P. G. Auran, and K. M. Risvik. Linguistics in large-scale web

search. In Book:Natural Language Processing and Information Systems,

2553:218–222, 2002.

[6] A. Spink, D. Wolfram, M. B. J. Jansen, and T. Saracevic. Searching the

web: the public and their queries. Journal of the American Society for

Information Science and Technology, 52(3):226–234, 2001.

[7] T. Berners-Lee and M. Fischetti. Weaving the Web. Harper San Fran-

cisco, 1999.

[8] D. Harman. User-friendly systems instead of user-friendly front-ends.

Journal of the American Society for Information Science, 43(2):164–174,

1992.

[9] G. Salton. Automatic text processing: The transformation, analysis and

retrieval of information. Addison-Wesley, Reading, MA, 1989.

[10] G. Salton, E. Fox, and H. Wu. Extended boolean information retrieval.

Communications of the ACM, 26(11):1022–1036, 1983.

150

[11] Wikipedia. Tf-idf, Sept. 2008. URL http://en.wikipedia.org/wiki/

Tf-idf.

[12] M. Lan and C.-L. Tan. A comprehensive comparative study on term

weighting schemes for text categorization with support vector machines.

In Proceedings of International World Wide Web Conference, pages

1032–1033. ACM Press, New York, NY, 2005.

[13] E. Mantanes, I. Diaz, J. Ranilla, E. Combarro, and J. Fernandez. Scoring

and selecting terms for text categorization. IEEE Intelligent Systems,

pages 40–47, 2005.

[14] G. Salton and C. Buckley. Term-weighting approaches in automatic text

retrieval. Information precessing management, 24(5):512–523, 1988.

[15] Wikipedia. Euclidean distance, Sept. 2008. URL http://en.

wikipedia.org/wiki/Euclidean_distance.

[16] E. Greengrass. Information retrieval: a survery, Sept. 2008. URL

http://clgiles.ist.psu.edu/IST441/materials/texts/IR.

report.120600.book.pdf.

[17] M. Damashek. Gauging similarity with n-grams: Language-independent

categorization of text. Science, 267:843–848, 1995.

[18] S. E. Robertson and K. Sparck Jones. Relevance weighting of search

terms. Journal of the American Society for Information Science,

27(3):129–146, 1976.

[19] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to infomation

retrieval. Cambridge University Press, New York, NY, 2008.

[20] G. Antoniou and F. van Harmelen. A Semantic Web Primer(2nd Edi-

tion). The MIT Press, Cambridge, Massachusetts, London, England,

2008.

[21] L. A. Cunningham. Language, deals and standards: The future of xml

contracts, Feb. 2007. URL http://ssrn.com/abstract=900616.

[22] B. McBride. Rdf primer, Aug. 2008. URL http://www.w3.org/TR/

REC-rdf-syntax.

[23] Wikipedia. Xml, Aug. 2008. URL http://en.wikipedia.org/wiki/

XML.

151

[24] T. E. Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5:199–220, 1993.

[25] O. Dridi. Ontology-based information retrieval: Overview and new

proposition. In Proceedings of second international conference on Re-

search Challenges in Information Science, 2008. RCIS 2008., pages 421–

426. IEEE, Marrakech, June 2008.

[26] R. Yager. On ordered weighted averaging aggregation operators in multi-

criteria decision making. IEEE Transactions on Systems, Man and Cy-

bernetics, 18:183–190, 1988.

[27] L. Zadeh. A computational approach to fuzzy quantifiers in natural

language. Computers and Mathematics with Applications, 9:149–184,

1983.

[28] R. Yager. Families of owa operators. Fuzzy Sets and Systems, 59:125–

148, 1993.

[29] R. Yager. A hierarchical document retrieval language. Information Re-

trieval, 3:357–377, 2000.

[30] M. Maron. Automatic indexing: An experimental inquiry. Journal of

the ACM, 8:404–417, 1961.

[31] N. Fuhr. Models for retrieval with probabilistic indexing. Information

Processing and Management, 25(1):55–72, 1989.

[32] D. Lewis. An evaluation of phrasal and clustered representations on a

text categorization task. In Proceedings of SIGIR-92, 15th ACM In-

ternational Conference on Research and Development in Information

Retrieval, pages 37–50. Copenhagen, Denmark, 1992.

[33] D. Lewis and M. Ringuette. Comparison of two learning algorithms for

text categorization. In Proceedings of the Third Annual Symposium on

Document Analysis and Information Retrieal(SDAIR’94), pages 81–93.

ACM, USA, Las Vegas, USA, 1994.

[34] D. Lewis. Naive(bayes) at forty: The independence assumption in infor-

mation retrieval. In Proceedings of ECML-98, 10th European Conference

on Machine Learning, pages 5–15. Chemnitz, Germany, 1998.

[35] W. B. Croft. Boolean queries and term dependencies in probabilistic re-

trieval models. Journal of the American Society for Information Science,

37(2):71–77, 1986.

152

[36] L. S. Larkey and W. B. Croft. Combining classifiers in text categoriza-

tion. In 19th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 289–297. ACM, USA,

Zurich, Switzerland, 1996.

[37] W. S. Cooper. Some inconsistencies and misidenfified modeling assump-

tion in probabilistic information retrieval. ACM Transactions on Infor-

mation Systems, 13(1):100–111, 1995.

[38] C. Apte, F. Damerau, and S. M. Weiss. Automated learning of decision

rules for text categorization. ACM Transactions on Information Systems

(TOIS), 12(3):233–251, 1994.

[39] S. Weiss and N. Indurkhya. Optimized rule induction. IEEE Expert,

8(6):61–69, 1993.

[40] I. Moulinier and J. Ganascia. Applying an existing machine learn-

ing algorithm to text categorization. In S.Wermter, E. Riloff, and

G. Schaler, editors, Proceeding of Connectionist, Statistical, and Sym-

bolic Approaches to Learning for Natural Language Processing, pages

343–354. Springer Verlag, Heidelberg,Germany, 1996.

[41] H. Li and K. Yamanishi. Text classification using esc-based stochas-

tic decision lists. In Proceedings of CIKM-99, 8th ACM International

Conference on Information and Knowledge Management, pages 122–130.

Kansas City, MO., 1999.

[42] W. Cohen and Y. Singer. Context sensitive learning methods for text

categorization. ACM Trans. Information System, 17(2):141–173, 1999.

[43] S. R. Safavian and D. Landgrebe. A survey of decision tree clas-

sifier methodology. IEEE Trans. on Systems,Man and Cybernetics.,

21(3):660–674, 1991.

[44] J. Quinlan. Induction of decision trees. Machine learning, 1:81–106,

1986.

[45] J. Quinlan. C4.5:programs for machine learning. Machine learning,

16(3):235–240, 1993.

[46] rulequest. Data mining tools see5 and c5.0, Oct 2008. URL http:

//www.rulequest.com/see5-info.html.

[47] F. Sebastiani. Machine learning in automated text categorization. ACM

Computing Surveys(CSUR), 34(1):1–47, 2002.

153

[48] Wikipedia. Overfitting, Oct. 2008. URL http://en.wikipedia.org/

wiki/Overfitting.

[49] T. Joachims. Text categorization with support vector machine:learning

with many relevant features. In Proceedings of ECML-98, 10th European

Conference on Machine learning, pages 137–142. Chemnitz, Germany,

1998.

[50] N. Vapnik. The nature of statistical learning theory. Springer New York,

New York, 1995.

[51] J. Kivinen, M. Warmuth, and P. Auer. The perceptron algorithm vs

winnow: Linear vs. logarithmic mistake bounds when few input variables

are relevant. In In Conference on Computational Learning Theory. 1995.

[52] H. Drucker, V. Vapnik, and D. Wu. Automatic text categorization and

its applications to text retrieval. IEEE Trans. Neutral Netw, 10(5):1048–

1054, 1999.

[53] S. T. DUMAIS, J. PLATT, D. HECKERMAN, and M. SAHAMI. Induc-

tive learning algorithms and representations for text categorization. In

In Proceedings of CIKM-98, 7th ACM International Conference on In-

formation and Knowledge Management, pages 148–155. Bethesda, MD,

1998.

[54] S. Dumais and H. Chen. Hierarchical classification of web content.

In In Proceedings of SIGIR-00, 23rd ACM International Conference

on Research and Development in Information Retrieval, pages 256–263.

Athens, Greece, 2000.

[55] H. Taira and M. Haruno. Feature selection in svm text categorization.

In In Proceedings of AAAI-99, 16th Conference of the American Asso-

ciation for Artificial Intelligence, pages 480–486. Orlando, FL, 1999.

[56] R. Klinkenberg and T. Joachims. Detecting concept drift with support

vector machines. In In Proceedings of ICML-00, 17th International Con-

ference on Machine Learning, pages 487–494. Stanford, CA, 2000.

[57] T. Masuyama and H. Nakagawa. Two step pos selection for svm based

text categorization. IEICE Transactions on Information and Systems,

E87-D:373–379, 2004.

[58] P. Fu, D. Zhang, Z. Ma, and H. Dong. Svm-based semantic text cate-

gorization for large scale web information organization. In Proceedings

154

of Second International Symposium on Neural Networks, pages 931–936.

Springer Verlag, Chongqing, China, 2005.

[59] V. Vidulin, M. Lustrek, and M. Gams. Training a genre classifier for

automatic classification of web pages. Journal of Computing and Infor-

mation Technology, 15(4):305–311, 2007.

[60] Y. Aphinyanaphongs, I. Tsamardinos, A. Statnikov, D. Hardin, and

C. F. Aliferis. Text categorization models for high-quality article re-

trieval in internal medicine. Journal of the American Medical Informa-

tion Association, 12(2):207–216, 2005.

[61] A. Anagnostopoulos, A. Broder, and K. Punera. Effective and efficient

classification on a search-engine modeling. Knowledge and information

systems, 16(2):129–154, 2008.

[62] B. Choi and X. Peng. Dynamic and hierarchical classification of web

pages. Online Information Review, 28(2):139–147, 2004.

[63] P. Anick. Adapting a full-text information retrieval system to the com-

puter troubleshooting domain. In Proceedings of the 17th Annual In-

ternational ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 349–358. 1994.

[64] W. A. Woods. Conceptual indexing: a better way to organize knowledge,

1997. URL http://research.sun.com/techrep/1997/abstract-61.

html.

[65] G. A. Miller. Wordnet: a lexical database for english. Communications

of the ACM, 38(11):39–41, 1995.

[66] E. M. Voorhees. Query expansion using lexical-semantic relations. In

In: Proceedings of the 17th Annual ACM SIGIR conference on research

and development in information retrieval, pages 61–69. Springer-Verlag

New York, Inc., New York, NY, USA, 1994.

[67] Z. Gong, C. Cheang, and L. H. U. Web query expansion by wordnet.

Lecture notes in computer science, 3588:166–175, 2005.

[68] M. Baziz, M. Boughanem, N. Aussenac-Gilles, and C. Chrisment. Se-

mantic cores for representing documents in ir. In in: Proc. of 2005

ACM Symposium on Applied Computing, pages 1011–1017. Santa Fe,

New Mexico, 2005.

155

[69] S. Kolte and S. Bhirud. Word sense disambiguation using word-

net domains. In Emerging Trends in Engineering and Technology,

2008. ICETET ’08. First International Conference on, pages 1187–1191.

IEEE, Nagpur, Maharashtra, July 2008.

[70] Y.-B. Kim and Y.-S. Kim. Latent semantic kernels for wordnet: Trans-

forming a tree-like structure into a matrix. In Advanced Language Pro-

cessing and Web Information Technology, 2008. ALPIT ’08. Interna-

tional Conference on, pages 76–80. IEEE, Dalian Liaoning, July 2008.

[71] N. Guarino, C. Masolo, and G. Vetere. Ontoseek: Content-based access

to the web. IEEE Intelligent Systems, 14, issue 3:70–80, 1999.

[72] K. Knight and R. Whitney. Ontology creation and use: Sen-

sus, 1997. URL http://www.isi.edu/natural-language/resources/

sensus.html.

[73] S. E. Lewis. Gene ontology: looking backwards and forwards. Genome

Biology, 6(1):103, 2005.

[74] I. Spasic, E. Simeonidis, H. L. Messiha, N. W. Paton, and D. B. Kell.

Kipar, a tool for systematic information retrieval regarding parameters

for kinetic modelling of yeast metabolic pathways. BIOINFORMATICS,

25(11):1404–1411, 2009.

[75] T. Stubblebine. Regular Expression Pocket Reference. O’Reilly Media,

Sebastopol, California, 2003.

[76] D. Embley. Towards semantic understanding - an approach based on

information extraction ontologies. In In: Proceedings of the Fifteenth

Australasian Database Conference (ADC2004), pages 3–12. Australian

Computer Society, Inc. Darlinghurst, Australia, Dunedin, New Zealand,

2004.

[77] H.-M. Muller, E. E. Kenny, and P. W. Sternberg. Textpresso: An

ontology-based information retrieval and extraction system for biolog-

ical literature. PLoS Biology, 2(11):1984–1998, 2004.

[78] H. B. Styltsvig. Roskilde University.

[79] P. Cimiano, P. Haase, M. Herold, M. Mantel, and P. Buitelaar. Lexonto:

A model for ontology lexicons for ontology-based nlp. In In: Proceedings

of the OntoLex (From Text to Knowledge: The Lexicon/Ontology Inter-

face) workshop at ISWC07 (International Semantic Web Conference).

Busan, South-Korea, 2007.

156

[80] M. Morneau, G. W. Mineau, and D. Corbett. Lexonto: A model for

ontology lexicons for ontology-based nlp. In In: Proceedings of the 2006

IEEE/WIC/ACM International Conference on Web Intelligence.

[81] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Com-

putational Foundations. Brooks Cole Publishing Co., Pacific Grove, CA,

2000.

[82] D. Vallet, M. Fernandez, and P. Castells. An ontology-based information

retrieval model. In In: Proceedings of 2nd European Semantic Web

Conference, ESWC 2005, pages 455–470. Springer Berlin, Grete, Greece,

June 2005.

[83] O. Dridi and M. B. Ahmed. Building an ontology-based framework for

semantic information retrieval: application to breast cancer. In Infor-

mation and Communication Technologies: From Theory to Applications,

2008. ICTTA 2008. 3rd International Conference on, volume 2, pages

1–6. April 2008.

[84] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, C. Ursu,

M. Dimitrov, M. Dowman, N. Aswani, I. Roberts, Y. Li, A. Shafirin,

and A. Funk. Developing language processing components with gate,

April 2009. URL http://gate.ac.uk/sale/tao/index.html.

[85] J. Mayfield and T. Finin. Semantic annotation, indexing, and retrieval.

Web Semantics: Science, Services and Agents on the World Wide Web,

2(1):49–79, 2004.

[86] P. Castells, M. Fernandez, and D. Vallet. An adaptation of the vector-

space model for ontology-based information retrieval. IEEE Transactions

on Knowledge and Data Engineering, 19(2):261–272, 2007.

[87] S. L. Tomassen. Searching with document space adapted ontologies. In

Book:Emerging Technologies and Information Systems for the Knowledge

Society, 5288:513–522, 2008.

[88] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and

R. Harshman. Indexing by latent semantic analysis. Journal of the

American Society for Information Science, 41(6):391–407, 1990.

[89] V. Snasel, P. Moravec, and J. Pokomy. Wordnet ontology based model

for web retrieval. In In: Proceedings of the International Workshop on

Challenges in Web Information Retrieval and Integration. April 2005.

157

[90] P. Soucy. Beyond tfidf weighting for text categorization in the vector

space model. In In Proceedings of the Proceedings of the 19th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 2005), pages

1130–1136. Edinburgh, Scotland, 2005.

[91] Wikipedia. Perron-frobenius theorem, Nov 2008. URL http://en.

wikipedia.org/wiki/Perron-Frobenius_theorem.

[92] Y. Yang and X. Liu. A re-examination of text categorization methods. In

Proceedings of the 22nd annual international ACM SIGIR conference on

Research and development in information retrieval, pages 42–49. ACM,

Berkeley, California, 1999.

[93] A. Sun, E.-P. Lim, and W.-K. Ng. Performance measurement framework

for hierarchical text classification. Journal of the American Society for

Information Science and Technology, 54:1014–1028, September 2003.

[94] B. Goertzel and J. Venuto. Accurate svm text classification for highly

skewed data using threshold tuning and query-expansion-based feature

selection. In Proceedings of IEEE International Conference on Neural

Networks, pages 1220–1225. Vancouver, BC, Canada, 2006.

[95] A. C. Tantug and G. Eryigit. Performance analysis of naive bayes clas-

sification, support vector machines and neural networks for spam cate-

gorization. Advances in Soft Computing, 34:495–504, 2006.

[96] Wikipedia. Power iteration, May 2008. URL http://en.wikipedia.

org/wiki/Power_method.

[97] D. Ferrucci and A. Lally. Uima: an architectural approach to unstruc-

tured information processing in the corporate research environment. Nat-

ural Language Engineering, 10(3-4):327–348, 2004.

[98] Y.-C. Chang and S.-M. Chen;. A new query reweighting method for

document retrieval based on genetic algorithms. IEEE Transactions on

Evoluationary Computation, 10(5):617–622, 2006.

[99] M. Kobayashi and K. Takeda. Information retrieval on the web. ACM

Computing Surveys, 32:144–173, 2000.

[100] J. Davis and M. Goadrich. The relationship between precision-recall

and roc curves. In In: Proceedings of the 23rd international conference

on Machine learning, pages 233–240. ACM New York, NY, USA, Pitts-

burgh, Pennsylvania, USA, 2006.

158

[101] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluat-

ing collaborative filtering recommender systems. ACM Transactions on

Information Systems, 22(1):5–53, 2004.

[102] Y. Yao. Measuring retrieval effectiveness based on user preference of

documents. Journal of the American Society for Information Science,

46:133–145, 1995.

[103] M. Balabanovic and Y. Shoham. Fab: content-based, collaborative rec-

ommendation. Communications of the ACM, 40(3):66–72, 1997.

[104] T. Joachims. Optimizing search engines using clickthrough data. In

Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, volume 1, pages 133 – 142. ACM

New York, Alberta, Canada, 2002.

[105] H. Wu, H. Lu, and S. Ma. Multilevel Relevance Judgment, Loss Function,

and Performance Measure in Image Retrieval in Image and Video Re-

trieval, volume Volume 2728/2003 of Lecture notes in computer science.

Springer Berlin, January 2003.

[106] C. D. Manning and H. Schutze. Foundations of Statistical Natural Lan-

guage Processing. MIT Press, 1999.

159

