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ABSTRACT

] ;Tthh1s work we present and disCUSe a set of theoreticaf preblems in
condensed he%ter and relat1vistic high energy physics which belong to the
c1ess of pnysica11y observable macroscopic phenomena .

After briefly reviewing standard forma1isms used for the theoretical
treatment of such.macroscop1c phenomena proplems #n quantum field theory,
we first consider the semictassical problem of finding the solfton solu-
tion in the adiabat1e approximation of a quasirealistic continuum model
of interacting electron, optical phonon and acousi‘g‘nhonon"fields,
describing the dynamics of the I;near trans-polyacetylene molecule. We 4
- find that acoustic fnteractfon effedts induce and control the dynamies of

the kink which is now constrained. to move aefbss the linear molecular
chain at constant velocity. The so-called caprge fractionalizatien
mechanisn a1sn remains an.observab1e tonsequence of the quasirealistic .
model . |
In a second step, we consider the thermodynfmical problem of under-

standing the thermally 1nenced spontaneous$ supersymmetry breaking of the
relativistic N=3 0'Raifeartaigh modeiQ~ Because this model allows, for
spontaneous supersymmetry breaking a{ zero t?ﬁggrature, it shows a mixed
mechanism of symmetry breaking when temperatd?e 1sfsw1tched'on. We then
1dent1fy_the‘to1dstone zero-energy modes of the model from the infrafgd
structure of the (diagonalized) fermion propagator metrix and show that
while the original zero temperature Goldstone fermion survives temperature

effects, a new Goldstone fermion appears in the channel where mass degen-

é%hcy is removed among supermultiplets and a thermal superpair shows up in

iv
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the remaining mass degenerate channel. Comparison with the Wess-Zumino
model is also made.
Finaﬁy we present an original approath to the computation of the. -
},

critical indices in thermo-field dynamics by making use of the temperature

_ dependent renormalization group. The indices are obtained to the one-loop -

approximation in the context of a wd-theory‘.

N
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CHAPTER 1 ‘ p ¢

. INTRODUCTION

1. The Adag;e?ilig; of the Quantum Field Thcorctic;\ Language

In this work, we shall describe new contributions by the author and

co-workers to the physics and mathematics of macroscopic phenbmena‘

occurring 4n quantum field theoretic systems originating from various
branches of theoretical physics such as condensed matter physics and
high incrgy physicy. . . , -

Ever since its appearance in physics in :hg late t#igties.
quantum field theory (QFT) has shown remarkable adaptability to the
description and modeling of physical processes from all areas. This
powerful quality renders QFT a universal formalism capable of explaining
and predicting phenomena from condensed matter physics, atomic physics *
and nuclear to subnuclear high energy physics.

[f it is clear today, from the accumulated successes over the past
decades, that QFT or)some natural extension (string theories?) is the
correct formalism to describe a large area of physical processes: it has
not always been so in the past.

The first probFém which has been haunting the second quantized
theory of fields was the emergence of infinities. However, the works of

1-7 showed that the formalism can accomodate a

Schwinger and others
consistent theory of removal of infinities known as renormalization

theory. The latter theory has been, since then, extensively elaborated
to include the so-called renormalization group (R(;)ls-:16 which has been
shown to contain non-trivial physical content with respect to the phase

structure (phase transitions, critical phenomena) of physical systens.
1 '

)



o hd .
Therefore QFT enlarged with renormalization theory ts a very powerflu!
formalism 1ndeed Onc can say that renormalization thocry provided the

first test of ad bility of thc OFT !oruliu as well as the first

-

step toward *consi‘toncy (e.g

A second test of adaptability occyrred kome time utcr (around 1955),

with the development of the so-called Matsubara techniquel7'18 to evalu-

. %he mass oquation)

ate statisfical'averagcs. Although quite limited, tﬁc Matsubara method

represents the first(Successfuljattempt to gnify the formalisms of QFT
and statistical mechanics (SM). The imaginary-time formgalism of
Matsubara also exposed for the firss time the deep analogy between QFT
and SM. Although real-time formalisms (complex-time path method) hi'b
been known for soﬁ; time.lg'zz the. complete unification of SM and QFT
can be dated around 1974 with the birth of the so-called thermo-field
dynamics (TFD) formalisp.cohstructed by Umezawa and <:o-workers.23'37

In thts formalism, i€ is redbgnized that statistical averages are equtv-
;T!n;\to vacuum expectation values (VEV) of the corresponding zero-
temperature theory with a doubling of the original number of degrees of
freedom. We shall briefly describe the TFD formalism in chapter [I.

24,27-31

This unified formalism makes contact with several (all) earlier

L
constroctions such as the C -algebra38 and the Kubo-

(KMS) condition39'40 as well as the complex-time path method.

in-Schwinger
19-22
Furthermore it allows a renormalization theory35 compietély analogous to
zero-temperature QFT. However, because temperature enters the renormal-
ization conditions, the corresponding renormalization group (RG)36'37
!y becal;s a two- parameter abelian group. The added parameter now leads to

a'secong set of renormalization group equations (RGE), the solutions of

< .
which play a central role in the theory of phase transitions and critical -



phenomena throdéh the computation of thgcritical exponents. In chapter
V, making use of the RG at finite temperature, we will discugg the
critical behavior of the wd-theory and perform a‘one-1oop’ det/ermipation
of Ahe critical exponents.

-

Although the spontaneous symﬁetry breaking (SSB) mechanism of
symmetr1es (1nter0a1, externa], supersymmetry) q[ temperdture effebtél 24
is still 1n an un- matured state, we shall see in chapter [V how TFD [
© yields a sa fsfactory quantum field theoretic 1nterp:;tat1on of this
statistical mechan1ca1 mechanism.

Also in an embryonic state is the extension of TFD to states of
,matter away from thermodynamical equilibrium. Here we simply mention
that such a forma11sm "has been preposed recent]y55 -62

It is somewhat remarkable that/the unified formalism of QFT and SM
still has adaptive, capability. It is a well known physical fact that
bosonic matter is not constrained by the Pauli exclusion prin;ip]e and
therefore can condense in the Towest available sfaﬁe of tﬂe system at
zero temperature. This phenomenonis called the Bose-Einstein condensation

'
and is a direct result of quantum statistical mechanics. Such a conden-
sation appears in zero-temperature quantum field theory in the form 5f
an order parameter defined és the vacuum expectation value of (bosonic)
.field operators. N
The appearance of an order parameter, which can be promoted to the

status of‘thefmodynamica] variable, is—mgst ;ften associated with auwk\
taneous symmetry bfeaking and phase transitions. When it habpens that
the condensation is 10c§1; tﬁé order parameter may then become spaces

time dependent and one formally enters the domain of extended objects in

QFT. ” :

.
1 - /
s .
. \
N

5



Q111 be presented in chapter II. o,

-

Thé study of extended objects in QFT is a fascinating subject still’
. . /
extremely popular among researchers. Its ear)y developments took place

in the seventies and underwent tremendous aftivity especially because of -

£

the successes of gauge theory in high enqﬁgy physicn. lﬁ1though the
existence of extended objects is stillfbroblematic in high energy exper-
imental physics, it is not in doubt #n condensed matter physics where

solid states physicists have know@/them for a long time. Very good

63'6?,/Perhaps one of the most useful methods

: #

to deal with extended objects;ﬁn cpnoniéé] QFT is the so-called bosop- *
23,26,68-74 '

reviews have been written.
method deve1oped75y Umezawaiand co-workers . Tﬁis method is
intimately related to the physical particle representation of QFT systems
and is therefoﬁe in accordance with the concept of a dynémica] map in
which Heisenberg operators are formally expressed as sums of normal
products of physical fields. The local condensation of a physical field
in the vacuum takes—the shape of a space-time dependent c-number function
obeying the Heisenberg equation for free physical fields. This function
has been ca1)ed the boson function. It can-be,shown from the bason )
transformation theorem26 that-the knowledge of the boson function is
sufficientQto determine the entire extendgd objéft (soliton) structure
which satisfies an Euler-type (classical) fie]d/equation. A description
of the boson transformation method for‘self-interacting‘sca1ar systems

ff the boson function is reqular, i.e. it carries no topological
singularities, then it can be shown that the boson transformation defines

. . .
the vacuum state for which the annihilation operators are eigenoperators .

This construction leads to the well-known coherent states introduced by

- G1auber'7S some time ago. Such states are minimum uncertainty wave



-packets from which classical mechanics (CM)-Can be extracted. ‘e there-
fore arrive at the remarkable result that classical mechanics can be
obtained from the unification of quantum field theory anu statistical
mechanics through the Bose-Einstein condensation phenomenon.

When the boson function is not sing'e-valued however, the topology
of the underlying classical backa . .nd field is no longer trfvial and'
boundary effects can now be treatec consistently. C(lassification of the
"boundaries” or topological singularities is obtained from usual methods
dealing with topological invariants (Chern, Euler, Pontryagin numbers)
on appropriate manifolds. | |
| "Raf;iculafly interesting among systems with topological extended

objects is the case of relativistic fermion-soliton S)lstems.76'99 Such

systems have been extensively studied in any number of dimensions and
have been shown to be the continuous limit of various discrete electron-

79-98 ¢ condensed matter physics in the mean-

phonon interacting”models

field approximation. Relativistic fermion-soliton continuous models can

therefore simulate, to gcceptab1e aéCuracy, the physics of bolymerahin

some special casesYa’The dimerized trang-polyacetylene-molecule is such

a well-known case and Qe shall concentrate on improving the accuracy of

the continuous descriptionAQI‘its dynamics in chapter III.
Fermion-soliton systems are also well-known to exhibit the so-called

fermion number fractionization mechan1’sm76’80'84’98'99

when fermion
number is conserved. A good review of such a mechanism in the,genefal
cése and its ‘relation to topological invariants such as the spectral
asymmefry is given in reference (98).;

When extended objects are static, they in general break translation-

al invariance. Canonical quantization in the soliton sector, when

\



certain normalization conditions are satisfied, usually implies the
existence of quantum mechanical position and momentum operator-s:.es'mo'110
Through the so-called c-q transmutation condition, the soliton becomes
quantized as it now carries a position operator. In the no-particle
sector, the vacuum of the Foch space of the theory is then realized as a
quantum mechanical state of the quantum soliton. Furthermore it can be i
shown that in a fermion-quantum soliton system, the fermioﬁic zero-energy
‘mode associated with the fractionization mechanism together with the
quantum mechanical operators of the soliton create a superSymmetEy
algebra at the level 6f the physical opera‘tors.ms'106

The above discussion clearly shows that, through the elaboration and
unification of the QFT 1;nguage with other formalisms, quantum field

theory is an invaluable formalism when dealing with systems exhibiting

macroscopic phenomena.

2. Macroscopic Phenomena as Limits of Quantum Field Theory

[

Macroscopic phenomena can arise in QFT as a result of two 1ndepén-
dent limiting procedures. ///
The'first 1imiting procedure is usually known as the thermodynamic
limit in which both the number of particles of an ensemble (in our“éase
the grand canonical ensemble) and the volume of the\system gd to. infinity
while their ratio N/V remains finite. Because of the great number. of
particles involved, a statistical approach has to be devised and the -
particle-states are no longer pure states bdt rather mixtures character-
ized by macroscopically definedbthermodynamica1 parameters such as
pressure and temperature. In QFT at finite temperature, with SSB,

macroscopically observed phase transitions are non-trivially related_to

), ' N
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\\
the microscopic quantum symmetries. In chapter‘IV we shall analyze in

-
-

ébre detatls a spontaneously broken quantum symmetry (supergymmetfy)~both
atedero and finite temperature and point out’ the corresponding rearrange-
ment mechanisms. The relevant models for such an analysis are the Wess-

11113 all* comparison of

Zumino mode and the N=3 O'Raifeartaigh mod

" results for iéth models will clarify the physics of supersymmetry
breaking by temperature effects. | f

The other 1imfting procedure, the so-called classical mechanical or
in short classical limit, provided room, surprisingly, for controversy.
Historical]y'ip the development ,of quantum.mechahics,'it has béen arqued
from the Wigner—Kramer-8rillouin (WKB) approximation method that the
limit of vanishihg Planck constant (h -0) reduces to the classical
mechanicai case. One'has also grgged that cTassi;a] mechanics can be
obtained in the limit of large quantum numbers (n>>1). A discussion on
such arguments can be found in reference (115). From the Viewpoint of
QFT, however, it is clear that the correct classical limit is obféined
Qhen fhe ggglg of the quantum fluctuations N an with the corresponding
state hn is small, that is an/n<<l. In this way the classical 1im{t is
totally independent of the Planck constant.26’69

As mgntioned earlier, fermion-soliton systems are ideal .cases
exhibiting non-trivial interplay bétween the classical and quantum field
theoretical degrees of freedom. In chapter III, we shall provide an
16provement in the understaqging of the dynamics sf a continuous model
of the one dimensional trans-polyacetylene molecule obtained-from a
discrete model by keeping next to leading order terms in lattice spacing
expansion. Introdué;ng a new computational methgd for finding soliton

95,97

solutions in such models, we will solve the mean field equations



’

. using a?rturbation theory around small lattice spac§ng (Qfoustic phonon
effects) and will indicate the modifications to the fermion numﬁér
- fractionization mechanism. 2697

In the next chapter, we will summarize thé\formalisms relevant for
both macroscopic limits as a preparation to the gktailed treatments of
the specific problems analyzed in chapters III, IV and V.

In this work, we use natural units setting the Planck constant h
5qnd the speed of light ¢ as well as the Bq&fzmann constant kB to unity.
Since some conventions, such as the metric tensor, differ from chaptgf
to chapter, théy will be specified in the main text at the beginning of

each chapter.

—
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| CHAPTER I1 | .
J S A
MACROSCOFIC PHENOMENA FORMALISMS IN QUANTUM FIELD THEORY
{

i

i

1. The Boson Transformation Method

In this séction we present a calculational method, the boson trans- _.

23,26,68-74 _1ich deals with the problem of finding

formation method,
1rc1as§ical extended object solutions to a given Heisenberg equation for.
boson field operators. This method is particularly well suited for self-
" Wnteri‘ting scalar boson systems, a]thougﬁ it is equally appiicable, in
principle, to any type of system with boson field operators. For simplic-
. Jty, we only consider here self-interacting scalar systems. This method
is also quisg.powerfu1 in finding multi-soliton solutionsl

Let us start for convenience with the following Heisenberg equation

for the real scalar field operator ¢,

3

A(3)e(x) = Fle(x)] (2.1)

where F[¢] is a functional of the field .

A formal solution to (2.1) is the following Yang-Feldman equation,

o(x) = oo(X) + A'Lfa)F[¢(x)] , (2.2)

LY

.o

where the field oo(x) describes the physical free field operator satisfy-
ing the homogeneous differential equation,

A(a)¢o(x) = 0 . (2.3)
Here we put aside the rénorma]ization problem since we will be mainly
concerned with solutions to equation (2.1) in the tree appfoximation.

All fields considered here are thgrefore bare fields.
9
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Iterating the formal Yang-Feldman equation (2.2) gives a solution for.
the Heisenberg field »(x) as a linear combination of normal products of

the physical field ¢y
o(x) = olxs0 ) (2.4)
where one can write in general,
o(x:0 )= ; 1 ddx d4x cx:x x )ie (xy) > (x Y:.{2.9)
)= L1 1" P LI RRRE FORLINC SRERRENE 0 ER v 2

23,26

The above relation is called a dynamic$1 map and must be under-

stood as a weak relation. The Hilbert space of the theory is the usual
Fock space built on §ome vac;um state by the app{ication of the creation
operators for the physical field @O(x). This théory/of ngs?nberg fields
fs then said to be inothe physical particle representaiion.26>w

If one allows the physical scalar boson ¢O(x) to locally Bose conden-
se in the vacuum, then the vacuum expectation value (VEV) of 5 leavnas
the normal state to.enter the domain of extended object'phase. This

condensation is best described by a space-time dependent c-number shift

of the physical field,

s (x)=o (x)+f(x) ‘ (2.6)

o]
where the c-number function f(x) is called the boson function and the
transformation (2.6) called the boson transformation. Therefore,

<0 (x)[0>=F(x)" (2.7)

describes the local condensation of a single particle in the vacudm.
Note that the function V(x) must satisfy the same homogeneous equation as

for ¢-(x),
O -
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A3 fF(x) =0 . (2.8)

The effect of the condensation of physical particles on the Heisen-

berg field ¢(x) is readily seen by re-writing the dynamical map (2.4) as,

of(x) = alxio +f) . (2.9)
C(x;xl...xn)*cf(x;xl...x )= 1 J dyl...dymE(x;xl..fxn;yl...y&

Taking the VEV of the Heisenberg operator +F(x) 1eads to,

<0{¢>\f(x)|0>=cf(x) . (211N

-t

From (2.6) one finally obtajfs,

<0[of(x)|0>= r 1 "I dyl...dymc(x;yl...ym)f(yl)...f(ym) . (2.12)
m=0 m!

The formal solution (2.12) indicates that the classical extended
object described by the VEV of ¢f(x) is completely built from the know-
ledge of the boson function f(x). The extended object is then seen as a
condensation of large numbers of physical particles in the vacuum. In
such a case, quantum fluctuatiohs han are much smaller than the occupa-
tional number hn,

an << 1 (2.13)
n
which indicates that this classical result is tota]]} independent of the

actual value of the Planck constant h.26’69



' v

43,26,70-71

This is thHR so-called boson transformation theorem which stafes

that th~¢ﬁ;;on transformed Heisenberg operator af(x) in (2.9) satisfies

¢

. ' (2.18)

POy
An immediate consequence of the boson transformation theorem (2.14)
is the fact that, denoting by #(x) the VEV (2.11) in the tree approxima-

tion, the classical extended 6bject (2.11) satisfies the following Euler

equation in the tree approximation,

A(3)p(x) = F[AX)) . 7 (2.15)

The above equation together with the expansion of the VEV (2.12) in
terms of the boson function f(x), in the tree approximation, is enough to

determine cgmpletely the solution for #(x),
P(x) = FO)aT T GIFMO] (2.16)

[teration of (2.16) determines the unknown coefficients'é(x;yl...ym)

in equation (2.12), in the tree approximation.

v

As a practical example, let us consider the problem of finding the

well-known single soliton solution of the Sine-Gordon theory in the tree
74 '
approximation. .
The Heisenberg equation of the real scalar field »(x) in 1+1 dimen-

sions for the Sine-Gordon theory is given as,

1 o(X)+gz sin[ o(x)] =0 . : (2.17)



. s : o
e .
Expanding the sine terﬁ. equation (2.17) can be re-written as,
(2%m? )o(x)-g_ xl -1 k+l [ggm] St (2.18)
ks !

The phys1ca1‘f1e1d oo(x) satisfies the following homogeneous equation,

.

~(32+m2)oo(x) =0 . (2.19) '

Allowing for the condensation of physical fields in the vacuum, we
perform the boson transformation (2.6) for which the boson function now
"satisfies,

(2%ml)f(x) = 0 . (2.20)

-
In the tree approximation and according to (2.15), the carresponding
soliten solution #(x) thus built from such a condehsation now satisfies

the following Euler equation,

2,2 3 ® k+1 2k+1
(35+m%) A x)=m (-1) gf(x) . (2.21)
q kfl (2k+17T [ m J
the solution of which is formally written as,
‘ -
Px)=f(x)+(5m8) I md 0 (1 )“*l[m )} 2kl (2.22)
g ®=l T3k+I)? m "

In order to solve equation (2.22) recursively, we now follow the
steps of Oberlechner et a]..74 First, rememberingyihe expansion (2.12)
for the soliton, we expand ¢(x) as,

)= My (2.23)

( n=1

where 7(1) )=f(x) and where the prime indicates that the sum is carried
over odd integers only. This is suggested by the form of the interaction.
Insertion of the expansion (2.23) into both sides of (2.22) yields

the following set of equations for individual orders ?(")(x),



y(n)(X)'(32+ﬂ\2)-lm3 v -1 k"l{a Zk*l T
™ ! >
. 9 k=] + m ‘1'12" 21
110? ""’12k*l'"
(iy) i,) i ) 1
L a (x)ff 2 (x)...9x 2k+1 (] 5 om1 (2.24)

s )

Rescaling the (classical) fields and expressing derivatives in un ‘\//,

of the mass m7 equatign (2.28) is re-written as,

) (n-1)/2 (1) 01,0} 41 )
¢ =%t g [(-13"*1 iz AU AT no 1,
k=1 2k+1)! il,iz...zl ,
il+12+...+12k*1=n )

(2.25)

The rescaled boson function now satisfies,
GAE(x) = 0 . (2.26)

Boosted solutions to (2.26) exist:
f(x) = expX] , (2.27)
where,

(2.28)

X = YXI-BXO*S' y

in which the boost parameters are constrained by special relativity to

the condition, : —-

3l = (2.29)
The operator (az+1)'1 in (2.25) is now well defined,

(3%e1)7 ! explax ]z (=a8+1)"! explax] . (2.30)

Individual orders ?(")'s can now be expressed as monomials of the

boson function,



g e
,9’(")(X) . Anfn(x) ;onl o, ﬁ ‘ (2.31)

—

in which A,el.
Insertion of the latter equation on both sides of (2.25) yields the

(
following recurrence relation for the coefficients An.

(n-1)/2
' A, A, LA yonol
S B iZk*l}

2 k+l
(l-n®™)a = ¢ (-1
N kel [}2E+15! ety 2

.49 ,+..

172

-

‘*i2k»1'"
(2.32)

Such a recurrence relation has been solved .and yields the following

solution for An’

.

(n-1)/2 n-1
A = (-1) 171 i nzl . (2.33)
. n " n [z] |

Remembering equatfons (2.23) and (2.31), the final soliton solution

can be summed up to yield the following closed form,
9’(x) = 4 tan'l exp (x] ) (2.34)

This is the well-known single soliton of the Sine-Gordon equation.
The above technique can also easily accommodate the computafTEB of

N-soliton solutions. In this case the boson function 1s chosen as,

fx

0.x1)

>
n oMz
—

esp X 1 ‘ (2.35)

which also satisfies equation (2.26). Here the X,'s are defined as,

n

.y

Explicit computations for the two-soliton case have been carried out

and the final solution is given as,

X = Ynxl-bnx0+6n ; ri-si =1 } ‘ (2.36)

15
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Plxgon,) = stan’! explXy)vexp(Xy) ' (2.47)
I*. .lp(xl*xz)
in which the constant a 1s defined as, ,!
s x N8 8 ‘//’) (2.38)
Thivp-818 v |

The bpson transformation methbd has also been used to derive other

well-known solutions such as the single soliton solution of the xa{theor$73

N
As a final comment before ending this section, when the boson

function is Fourier transformable, the boson transformation is equivalent

to a c-number shift of the annihilation operators for the physical field

and therefore induces the so-called coherent states introduced some time

75.

ago by Glauber.” When the boson function is not Fourier transformable,

however, topological objects may occur in any number of dimensions. One

s
should also note that whgn the boson function is not required to be

single-valued everywhere, one enters the study of extended objects carry-
26,68-69,71,115

e

ing topological singutarities in higher dimensions.

-
3

2. Thermo-Field Dynamics

L]

"

In this sect16n we will briefly review a most elegant and most
convenient formalism deéling with the statistical average of Heisenberg N
operators in the physical particle representation, the so-called thermo-

field dynamics (TFD) forma1ism23'37 driginally proposed by Leplae,

Mancini and Umezawa’> in 1978, followed by Takahashi and Umezawa’? in
1975,

The main idea beh¥nd this formalism is to fiqd a way to express
statistical averages as Qacuum expectqtion values (VEV's). Once we

d
obtain the representation of the "thermal vacuum", all the mathematical

apparatus of quantum field theory at zero temperature will be readily
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available to the study.of dynamical problems at finite temperature. These
include the usual Feynman diagrams technique, the spectfal representation

for Heisenberg operators, the reducg%on and Lehmann-Symanzik-Zimmerman

26,117-120

(LSZ) formulae, so important in the analysis of dynamical maps

for field operators and the S-matrix, the Ward-Takahashi identities

(WT)ZG’IZI'122 as well as the Nambu-Goldstone theorem?5+123-125, 4 perhaps
1-7,35

most.importantly, renormalization theory and the renormalization

glr'oup.8'16’36'37 Previdus formalisms of QFT at“finite temperature, such

17-1%

as the imaginary time Matsubara method, usually have shortcomings in

one or more of the-above available tpols of analysis.

4

The thermo-field dynamics formalism also makes contact with previous

statistjcal mechanical constructions such as the Kubo-Martin-Schwinger

39-40 28,38

(KMS) condition in the axiomatic C*-algebra, closely related to

23-26,28,34 414 the complex time path method

19-22,29-30

the thermal state condition,

under a specific choice of path in the complex time plane.

The basic problem of TFD is therefore to find a vacuum state [0(3)>

at

such that the VEV of an arbitrary dynamical variable A is formally equiv-

-

Calent to its statistical average, that is, \\\‘
: -1 ‘Bwn .
<0(8)|A|0(8)>=Z "(8)I<n|A|n>e ; (2.39)
— . n .

where g8 is the inverse temperature , Z(3) the~partition function and

in which un'is the eigenvalue of the Hamiltonian H acting on the eigen-

state | n>, )\\\\\ |

H‘n>'a;n'[n> 3 <n|m>:6nm ) | (2.40)

. “
In order ta'rqalize°§dzh a representation for [0(8)>, one must first

‘implement an effective doubling df the number of degrees of freedom of



: s

i

L=

the original zero temperature Foch space described by {2.40). This is
done by introducing unphysical states (denoted by a tilde) into the
original space of states. For this tidide subsystem, we can define a

#miltonian ﬁ’aﬁﬁ states |i> such that,

> = w |R> 3 <l S - (2.41)
The total Fock space is then spanned by the‘dérect prdduct of the

states |n> and [%>. Such an enlargéd state is denoted by }n.%». There-
fore, in TFD, to any operator A, there gxists a corresponding ii]de
conjugate oper .r ° If the thermal vacuum state ,0(2)> is now defined
as follows,

0(8)> = 27%(3) e *“n|n,N> . (2.42)

n ' .
and since tilde and untilde subspaces are independent, that is,
. .
<mi,n{Aln',m'> = <n|Aln'> 8o , (2.43)
\snd, <a,n1k!n',ﬁ'> = <${kl%'> 8 , (2.44)

it is then straightforward to check that equation (2.39) is satisfied.
The thermo-field dynamics formalism is best constructed when use is

made of the following axioms .2328,33-34

Axiom 1 :

At equaT time, for boson {fermion) fields A and @, the following

‘6

(anti-) commutation relation is satisfied,

(78] =0 . | (2.45)

~

18
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Axiom 2 : *

The mapping between the two independent subspages of the theory is
called the tildé‘coﬁjugation.and is defined by the following tilde -
conjugation ru{es, - -

a)  (m8) = K8 | (2.46)
b) (c1A+czB)N = cfX+c§§ , (2.47)
o) (B)t=q@h [/ ., (2.48)
in which c1 and C, are c-numbers.
Axiom 3: . ' -
Axtor 2 )
‘The thermal vacuum is invariant under tilde conjugation, ~
L
j0(g)> = [0(8)> . (2.49):
v
~Axiom 4:
The thermal vacuum satisfies the following thermal state condition,
- Ve .‘ -+ |
A(t,x)|0(8)>=cA"(t-i8/2,x)[0(8)> (2.50)
- V4 -+ ‘
<0(8)|A(t,x)=<0(B)|A (t+ig/2,x)o* , (2.51)
_where |ql=1.
Axiom 5 :

The double tilde conjugation is defined as follows,

\ : |
A=A . v ' (2.52)

<

Note that in general, there is some freedom with the choice of o in

(2.50)-(2.51). The choice of the phase factors has been shown to be

O
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conditioned'by the presence of particle_.number conservation 1aws3.4 For a
Majorana fermion, g=+i. This is due to the fact that no fermion number
can be defined in a theory including Majorana fermions. Note also that

the choice of phase factors affects the double tilde conjugation rule

[(2.52). -The rule (2.52) corresponds to the choice o=1(i) for bosonic

(fermionic) operator A(t,x). T

The thermal state conditions (2.50 -(2.51) have also been shown to
reproduce the so-called Kubo-Martin-Schwinger (KMS) conditions of the
axiomatic C *-algebra,

The tilde conjugation ruleé (2.46)~(2.48) can help us in turn to
determine the Heisenberg equation for the tilde field. From the Heisen-

berg equation, . ¢
ia A(x) = [A(x),p] | : (2.53)
o H

where Pu is the four-momentum generator of space-time translation, we

obtain the corresponding equation for the tilde-field,

o
iauk(x) - {R(x),P] . (2.58)
M 5*
Equations (2.53)-(2.54) imply that the total generator of space-time
translation in TF024’26 is given as,
P zp P (2.55)
u uow .

which in turn implies that the total Lagrangean is obtained in a similar

way, : .

2:2-7 - 4 (2.56)

As we will see shortly, the Feynman rules for the combutation of n-point

functions in TFD are those obtained from the total ngrangean;f.
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The thermal state conditions (2.50)-(2.51) also allow for the'exis-
26,32-33

tence -of two types of annihilation operators. Let the operators

a(t) and a(t) stand for annihilation opera?ors of the‘IO.a> vacuum,. Then

the above thermal state conditions imply the existence.df operators aB(t)
and ge(t) defined as,

a (t) = n¥(-13,) (5¥c+1s/z)-os*(t)1 . (2.57)

G .
and,  3,(t) = n%-1a) Tilt-is2)-"a ()]  (2.58)
such that;

ds(t)|0(8);=38(t)|O(8)>=<0(B)|as(t)=<0(8)Ig;(t)=0 - (2.59)

Introducing the thermal doublet notation A,
Aas{l; pa=1l , - (2.60)

A ya =2
the set of linear Bogoliubov {canonical) transformations (2.57)-(2.58) is

re-written in the compact form,

ag(t) = u'l(-iat)aYaY(t) s a (2.61)

where the Bogoliubov transformaticn matrix U'1 is defined as,

kge
e -0
U e) = n¥(e) [ , (2.62)
-G e%Bs
and normalized as,
W) = 1 : - (2.63)

for fermions and,

21
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U(e)TU(é) =t |, ' (2.64)

for bosons. Note that the matrix t is defined as, .

Tz [1 o] : ' (2.65)

0 -1 o

A\

The normalization n*(e) has been chosen to reproduce the correct statis-

tical distribution for the particle number at thermal equi]ibfium,that s,

()= 1, | | . ~ (2.66)

eBe_o

where o is +1(-1) for bosons (fermions). The inverse of the transforma-

tion (2.61) is obtained as,

a%(t) = U(-iat)aYag(t) . | (2.67)
The transformation (2.67) together with equations (2.62)(2.66)

enable us to systematically obtain éxpressions for the retarded, advanced

and causal propagators at finite temperature. Note that equation (2.67)

can also be written in the form.24

('\,) sl n : .
2 = o6(8) (a; ei6ls) (2.68)

where the generator G(B8) satisfies,

6(8) = a(8) = -C(8) . | (2.69)

* The thermal vacuum can then be obtained in the canoﬁfcal form,24

lo(g)> = e"16(8) 0,55 . (2.70)



23

It is relatively easy to show that equation (2.70) yilelds the
expression (2.42) for |0(8)> by explicit computation of the generator
G(8)-#or bosons or fermions.

The formalism developed s0 far has the great advantage that it
accomodates a perturbation theory completely analogous to the zero temper-
ature theory. In particular, the computatioﬁ of n-point functions in the
Heisenberg representation is performed by the use of the Gell-Mann-Low

formu1a,25+126

% %n ' '
<0(8)|TA1 (xl)...An (xn)|0(8)> o

a a .
L <o(8)[TA  (x)). A M(x,) expli T d*x 2 (x)1le(8)>

<o(8)|T exp[f_z d4xq?l(x)]l0(6)>

(2.71)

where the rhs is in .the interactidn representation with in;eracting total
Lagrangean d?l' The state [¢(8)> is the (free) thermal v;cuum in>the
interaction representation. The re1;tion (2.71) supplemented with Wick's
theorem for time ordered products yield the Feynman rules of the theory.
The rules are similar to the ones obtained at zero temperature except for

the fact that vertex diagrams now carry a thermal index which should be

summed over and that, since the vacuum state is the thermal state |¢(8)>,

S(t),

ge(t) defined in (2.57)-(2.58) and their hermitean conjugates, instead cof

the normal ordering prescription épp]ies to the therma] operators a

the annihilation and creation operators of the zero temperature féory .
This in turn 1mb1ies that internal (or external) lines now represent
finite temperatu}e causal propagators. The perturbafion theory given by
(2.71) has also been shown to be completely analogous to the complex time

or,path ordering '‘method of,ﬁil]slg under a sujtable choice of the complex
3 <
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time integration contour. Finite temperature causal propagators appearing
as internal (external) lines in the pertuqﬂ:tive expansion have the £0110ow-

img matrix form in TFD,

6%8(x,y) = <a(8)|To%(x)e Bly)|o(3)>

- Jd“p-e‘p" 6*8(p) : (2.72)
s _——I | )
(2n)
in which, -
6*8(p) = | deog(x,B) [Uglp )t U (p,) 1°8, (2.73)
B B O——_——H-—gB 0
o & ' Po~
for bosons and,
- - )
6®8(p) = | dxopleup) [ UL(py)_ 1 uzl(p )28, (2.74)
F FrT0 - F 0
o p0-<+1r6 .
fof fermions with positive definite spectral functions oB(<.B) ahd oF(<.5)

\
B.F(po) have been

for bosons and fermions respectively. The matrices U
defined through (2.62)~(2.66).

As a comment, one may add that functional methods have been construct-
ed in the context of TFD for the computétion of n-point functions as well

31,127

oo,
as for the effective potential at finite temperature. Path intefed)

quantization is also poss:ale in TFD and the usual integration measure

must now be enlarged tc - *re summation over unphysical tilde
fields. 9750552 -

Since renormalizats , . the renormalization group at finite
temperature will be preg‘ , ) ’ detail in chapter V in connection with
the computation of th““éxponenté of a ‘wd-theory, we dc not

discuss them here.



Finally, we mention that an extension of the TFD formalism to non-
equilibrium processa.-s!:""'62 is in an early stage of development at the

present time.

25



CHAPTER I11

CLASSICAL PHENOMENA: SOLITON DYNAMICS IN POLYMER MODELS

1. General Considerations

In this chapter, we first discuss briefly a class of one dimensional

79-83,98,128-129

bolymer models and compare them to corresponding models

76-78,84,90,98 ~

in high-energy physics. We then specialize to the case of

the quasi>lipear (1+1) -dimensional trans-polyacetylene molecule t-(CH)X

and discuss the physical properties of such a system as well as the

discrete Su-Schrieffer-Heeger (SSH) mode179'82'84'91'98

83,95-98

describing it.

Going to the continuum limit of the SSH model, and keeping

[ 4
next to leading order terms in lattice constant expansion, we obtain a

continuous model for polyacetylene including aéoustic phonon effects?5'97

When such effects are neglected, the Takayama-Lin Liu-Maki (TLM) mode183'

92-33 is recovered.

Next we proceed to find topological (kink) solutions to tﬁe continu-
ous model with acnustic effects. However, as will be seen, 5uch;a model
is rather intractable as far as perturbation theory is concerned. We . are
thus motivated to introduce our quasirea]istic’modd%'g7 which is
believed to yield sensible physical results at least in the adiabatic
approximation where quantum phonon modes and theiL quantum corrections
are ignored. One important feature of_the mean-field theory obtained
from the quasirealistic model, ig the fact that it yields the same

130 45 for the TLM

| Bardeen-Cooper-Schrieffer (BCS) -type gap equation
model, in the homogeneous sector. This therefore enables us to apﬁly
perturbation theory about small acoustic phonon velocity to the quasi-

realistic model for which acoustic effects are freated as perturbations
26
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on the TLM theory. .
83-90,92-95,98 . Lo

After disgbssing briefly some of the solutions
TLM theory in the mean-field approximation, we then concentrate, as
stated earlier, on the problem of finding acoustic phonon corrections to
the single TLM kink solution. To that purpose, we formulate a mathe-
matical method to obtain soliton solutions in fermion-boson systems

95'97), which is very similar to the so-

23,26,68-74

(asymptotic expansion method
called boson transformation method discussed in the previous
chapter and appiicable to self-interacting bo3on systems.

The major finding of this chapter is the fact that acoustic effects
induce and control the dynamics of the so]itop.dt'97 Comparison wi:ﬂ"
the results obtained from numerical treatment qf the discrete SSH mode]
by other authorssz’g] is also made.

Finally we c1ose‘thxs chapter by presenting a se]f—consiszgzt pfoof
of our solutions obtained from the asymptotic expansion method by an

explicit computation of fermion wavefunctions 2296

2. 1+ Dimensional Polymer Models

Linear one-dimensional mo]ecular chains are frequent structures in
polymers. A very popular candidate exhibiting such a structure is the
well known semiconductor trans-polyacetylene which was first studied
some time ago by Su, Schrieffer and Heeger. The low dimension of such
molecules makés them very attractive to theoreticians ﬁkfce computations
become somewhat easier.’

Models of 11near~polymers are usually considered in the tight bind-
ing approximation where the lattice pattern created by the strong

covalent bonds is described by a displacement field with values on the
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lattice points. The electrons participating in weak covalent bonding are

then considered as free to hop from site to site. The resulting mode! is

v

a discrete interacting boson-fermion mode! for which the interaction is
determined by the hopping matrix elements. In a linear approximation,

the interaction is of Yukawa-type. Such a model can accomodate the
98,128-1.9

14

to introduce as many displacement figlds as there are atomic or group
128

description of polyatomic molecules. In that case one needs

species in the chain. A diatomic model has been studied by Kivelson

129

as well as Rice and Mele. Also, a general discussion on the fermion

number in the context of such a model has been given by Niemi and
Semenoff.98
The polyacetylene model is the simplest of the class of models
described above, which is why it has attracted so much attention. In
this case there is only one group specie, the CH-groub. which forms
covalent bonding with neighboring groups involving four valence electrons.
Three of these valence electrons create strong o-type molecular bonds.
}HF remaining fourth electron is a weaK n-electron and is assumed to be
free to move across the molecular chain by hopping from site to site.

Note that in such one dimensional systems, the electron spin degree of

freedom is assumed not to play any role in the dynamics. The monoatomic

Su, Schrieffer and Heeger model is given by the following Lagrangean,79'82’
95-97
L=t Cofiz-u1C + =1 mi5u3%-Ku o -u2-
B T T R TPLE
n ot n? C|— J
\at )
(ctc_ ., +ct.c ) ' 13.1)

¥ ﬁ tn,n+1 nn+l n+l"n .



where C 1s the annihilation bperator of the n-electron at lattice point’
Pt Up fs the displacemept field at . site n, o is the mass of the CH-group,
K 1s the spring constant and u is the electron chemical potential. The

hopping matrix elements t

n,n+l are given in a linear approximftion as,

tn'n+1 ¥ to _. a (Un*l - Un) . o (3.2)

The operators Cn and Up obey the following canonical commutation.

relations (CCR),

G Y S (3.3)
and, oy, 24y 1 =6y (3.4)

The model given by the Lagrangean (3.1) describes a one-dimens#bna]
metal. However, it is known that such a system is unstable against the
creation of an electronic gap ZAO (Peierls gap) at the Eerj surface.
Such an instability creates a Peierls distortion131 of the lattice in
which the bond lengths between CH-groups follow the alternative pattern
of short double bonds and long single bonds. This dimerization of the
chain effectively doubles the size of the unit cé11’;nd creates a charge
density wave (COW) commensurate with twice the original lattice length.
The COW originates from the fact that there is one w-electron per CH-
group. The gap opened at the Fermi surface between the valence and
6oﬁduction bands makes trans-polyacetylene a semiconductor.

Given-the physical chgracteristics of polyacetylene, one may be

Justified to use the so-called adiabatic approximation in the treatment

- \



¢ .. 30

of the model, where quantum phonon modes can be neglected. In t-(CH)l

the Peierls gap is 2Ao = 1.4 eV132

and 1s about ten times as large as the
optical phonon energy. In this approximation, the displacement field un
is treated as a c-number.

As a result of the dimerization, the ground state has a\twofold
degeneracy. The two corresponding phases of the system are lated by
spatial reflexion. They ark the single-double and double-sijngle sequences
of bond pattern. Hoﬁever, a third‘phase can also exist and is the phase
with a topological soliton interpolating between both brevious phases now
coexisting in a stable pattern. Although the soliton mass is finite,
decay of one phase into the other is fgrbidden as an infinite energy
barrier separates ®em. The antisoliton is the configuration interpolat-
ing between the same phases, but interchanged.

In the one soliton sector, however, the SSH model is full of non
tri‘je1 eontent . It can be shown that the interaction between the =-
electron and the single soliton allows for the existence of a normalizable
zéro-energy fermianic mode Such a mode 1s a boued-state of the electron
with the soliton and is therefore s1tuated at the center of the gap
(Fermi surface). Second quantizaticn by expansion in eigenmodes in the

»

single”solitan sector requires the existence of a new ant1commutxng

-

operator , a ,associated with the zero-energy ewgenmode sat1sf}fngso 84,
98-99,105-106
’

la,a"], =1 [a,al, = [a",a"], =0 . (3.5)

Because the number of degrees of freedom associated with the above
operator is unity, the algebra (3.5) implies that it has a two-dimensional

representation. The ground state of the system in the single soliton
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o
séct§f~1s therefoye twice degenerate. S ”ﬁ
To understand what this degeneracy implies physically, one must now
dqscuss the symmetries of the SSH mode1;84’98 The two important symmet-

ries to consider are the phase symmetry {fermion number conservation)
and the charge conjugation symmetry C.

In general, po]yﬁer systems exhibit feEmion number conservation.
Although a fermion pair condensation is resbonsible for the creation of

a mass gap similar to the case of BCS superconductivity where the

133-134 the sftuation

fermionic pair is an e]estron-e]ectnog‘Cooper pair,
in polymer systems is different in the'sense that the fermionic pair is_
ofﬁelectronrhole type. Therefore, contrary to superconductivity, fermion
number is here a good quantum number. Note that a pair condensation
originates from electron-phonon (displacement field) interaction, which
is one way to understand the Peierls instability. A further symmeg;y,
the charge conjugation symmetry, is also sometimes realized. The charge o
conjugation symmetric case is usually obtained when the masses of the
- different group specieg;are identical, as ig the case of trans-polyacet-
y]eﬁe. The di}tomic models earlier mentioned are not in ggnera1 charge
conjugation symmetric.

Fermion number is odd under C or CP. When C is a good symmetry,
fermion number is'glways integer or half-integer. éxplicit computationf
of the fermion nupber in trans-polyacetylene in thh’sing]e soliton sector,
taking into account the existence of fhe zero-energy mode satisfying
(3.5), leads to a twofold degenerate ground state carrying electric

80,84,98-99,105-106 ... ce the

charge t 35 per spin degree of freedom.
soliton carries fractional electric charge; electrical conductivity is

‘enhanced in trans-polyacetylene.
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On an experimental basis gowever, no fractional charge‘has been
seen in tf(CH)x. Ehat this “is so can be understood from the fact that

real electrons have two spin degrees of freedom. In this case the

. operator a in (3.5) carries a spin index. The soliton now has four

deaenerate states, each carrying fractional sptn *%. The possible
charges are zero and ¥ 1. The quantum numbers for (éonpinuum) fermion-
soliton systems with charge cor’ation symmetry have been obtained from
group theoretical consideration® in reference (99). .

In high;energy physics, (1+1) -dimensional models such as the ore

studied by Jackiw and Rebbi’®

(JR) also exhibits topological non trivial
soliton solutions as well as fractional charge.

Taking the continuous limit of the SSH model, Takayama, Lin Liu and
Maki obtained, neglecting higher orders in lattice congtant expansion:;
a relativistic continuum fermion-boson interacting model similar to tﬁ%f
JR model and also allowing for the existence of topological solitons .
with fractional charge.

In the above models, charge conjugation symmetry is a good symmetry.
When it happens that ihis*]atter symmetry ig not realized, fermion

78,98,135 The computation of the fermion

nqusr may become irrational.
number in.such a case is much more involved and requires sophisticated

makhematical treatments such as the use of index theorems on appropriate
98,136-142

_spaces.

In the rest ofa;his chabten, from now on, we concentrate ou; analy-
sis on the dynamics of the polyacetylene molecular system in the oﬁe ~»
soliton sector for which next to leading order terms in lattice constant
expansion have been kept. The model is studied in the continuum limit

and these next to leading order terms, the so-called acoustic effects,
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will be shown to induce and control the soliton dynamics. This is an

improvement on the TLM theory. The complete derivation of the continuum
méde1 from the SSH model will be given in appendix A, The modification
to the continuum model leading to the aﬁqjytica11y solvable quasfrealis-

tic.model will also be indicated in the next subsection.
2.1 - The Continuum Polyacetylene Lagrangean Model

| The continuum model for the trans-po]yacety1ene molecule was first'
obtained by Takayama, Lin Liu and Maki (TLM) in early 1980. However
this model fails to consider acoustic phonon effects since it totally
negtects higher order terms in lattice constant expansion. In appendix
A, however, we present a complete dérivation of the continuum polyacet-
ylene Lagrangean from the discrete Su-Schrieffer-Heeger (SSH) model
(3.1)..»Acoustic effects are now considered by keepind-fhe previously
neglected terms up to second order in lattice constant. The'result is

a continuum (1+1)Ldimen§iona1 model with Lagrangean density described
as.95'97

Z o« yTia - w o+ iveas Jur 1 82 - vo(ae)?
3t Fax 5[ [3';] )
o .2 2 2 2.2 +
) + 116" + v (30" -m¢ + gy T,0¢
g ’z[ {a] ] !

« + gv2 < wfr v - 3w+r pl3g + wfr azw + azw 0]
3I— — 3| 1
- ax X ax U

¢ The Fermi velocity Ve

phonon mass m and the electron-phonon coupling g are obtained in terms of

the accustic phonon velocity v, the optical

the electron hopping amplitude tos the electron chemical potential .,

¢
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the mass of the lattice atom o, the electron-phonon coupling x,  the

sBring constant K and the lattice constant a of the discrete SSH mode)

in the following way,

vg = Zato; v2 = (K/o)az; m2 = 4K/o; g ¥ 44 Ya/0 | (3{;&

The fields ¥,& and ¢ describe two-components electron fields,
acoustic phonon and optical phonon fields respectively while the -
matricés are the usual classical generators of SU(2} in the fundipental
representation. It is straightftrward'tq see that neglecting higher
order terms in acoustic phgnon velocity expansion (lattice constant
expansion in the discrete model), one recovérs the Yukawa-type TLM
theory of interacting optical phonon and quasielectron fields. Note
that wh')ustic_ effécts are so neg]ecteg_, the Lagrangean (3..6) takes
a relativi®®ic form and that the TLM theory is consequently Lorentz
invariant in the homogeneous sector. When the optical phonon is allowed
to Bose-condense in the’vacuum, and if we restrict ourselves to the
homogeneous sector, the TLM theory is known to generate a gap AO(Peiérls
gap) on both sides of the Fermi surface thereby creating an effective
mass for the quasielectrons. The resu]ting gap equation of the TLM
model is very similar to the BCS gap equation of ;uperconductivity.
Since it can be shown that the ground state enérgy E(ao) has two minima
Corresponding.to the étates tAo, the polyacetylen% molecule appears in

two phases, as shown in figure 1. When the condensate becomes space-

-time dependent, both phases may then coexist with an interpolating

soliton squeezed between them. This situation is also shown in figure 1.

The configuration is physically stable for topological reasons. It was



83 using a one-parameter variational

first shdwn by Takayaﬁa et al.
technique, that the'sdlution of the field equations (Bogoliubov-de
Gennes equations) obtaiﬁed froT the Lagrangean (3.6) in the mean-field
approximation while neglecting acoustic effects, is exact and coincides
with the so-called kink solutioﬁ of the A¢4- theory§5-90.92-94 The
crucial property'of the kink is, of course, that one should recover

the ﬁomogenedus theory at spatial infinity(x+t=),

‘When one considers acoustic effects, however, the model becomes
much more complicated. A]ready in the homogeneous sector, a derivation
of the gap~equatio; from the cbmp]ete Lagrangean (3.6) efhibits a dévia-
tion from the BCS-type equation of the TLM approximationt Furthermore
acoustic effects increase the 'degree of divergence of the gap equation
becﬁhse of deriVativeg in the optical phonon-electron coupling. fhese
deviations are proportional to the square of the acoustic phonon veloc-
ify. Because the vz-order derivative coupling term between electrons
and optical phonons modifies the homogeneous theory, ittherefore pro- -
hibits the use of perturba;ion theory for small v2 around the one-
solifon sector of the TLM ;heory in the pcoblem of computing acoustic
effects on the TLM kink.

Assuming that the déviation from the BCS gap equation due to

acoustic effects can be neglected, we modify the Lagrangean (3.6) in a

somewhat ad hoc mannerge'97 by replacing the optical phonon-electron

derivative coupling term with the following effective interaction,

_ 2
ZCOFY‘. - Xglz

(bepv) 3 (3.8)
m |

3
X Ix

)
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To justify the correction (3.8), we note that integrating by parts
the optical phonon-electron derivative interaction appearing in (3.6),
we obtain the form (3.8) with A= -1 together with a term which modifies
the BCS-type gap equation. Neglecting the latter, we introduce the
dimensionless constant A in order torcorrect roughly the change of
effective coupling caused by the term ignored. The correction (3.8) is .
the only one which respects both the total degree of derivative of the
original interaction term as well és the BCS-type condition imposed on
the gap equation. The model for which the interactioﬁ (3.8) replaces
the rea]}one will be called quasirea]istic; Such é'model. in the follow-
ing sections of thi§ chapter,-will be shown to be analytically solvable.
Note that the parameter X of the quasirealistic model remains unknown
and has to be Ehosen so as to fit experimental (or‘numericgi) data .
However, the correction (3.8) is not expected to yield a reaiistic
description beyond the mean-field or adiabatic approximation where
quantum phonon modes become important.

The field equations obtainéd from thebbare Lagrahgean (3.6) together

with the modification (3.8) are written as follows,

Suorivprgd ) g fledy 2 ) en

[is
‘3t 3x

2 2
’ +
[-33 - vzgi - m2]® = -e (1 - Liz 33 ] (v zq%) . (3.10)
e
3t Ix" m2 axz
2 2.2 o2t .2 2.+ )
and, =30 4+ wvTyt £ = -igvoorw T3ty - 3T,y . (3.11)
o v LT SRS R .
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Writing the vacuum expectation value for the acoustic and optical phonon

fields as,

.

e lxt) . | (3.12)

.<0| g|0>

'and, <0|¢|0> (Ao/g) o(x,t) , (3.13)
where ZAo is the Peierls gap,the set of equations (3.9)~(3.11), when
neglecting the boson excitation modes as well as their gquantum corrections,

leads to the following mean-field equations,

) . ~ 2 2
(13 -w *dvprgd 7 v =pf-1 +Av 3 )08 e7y
SR G 1

+ 1‘912 {<§>" + 2<6>'3 ]641‘3] v . (3.14)
2 . IxX
m _ 1
[éﬁ ﬁvza_z +m2]AO¢ = (1 -X_vzf ]<0|w+rlw|0> ,  (3.15)
ax2 3x2 2 m2 3x2
0 1 g 1
and, -2 +vBl e = -ig? < [wfrg_zazw - oo,
s 2 2 2 2
X ax m 3x X
0 1 1 21

where (xo.xl) stands for (t,x) and x denotes from now on space-time

dependency in‘general. Note that the norma1ization’Ao/g in equation

<
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(3.13) is chosen to satisfy |¢|~1 at spatial dnfinfiy. Furthermore,the
soliton is assumed to be topological, that is at any given time, it inter-
polates between the two degenerate ground states :Ao. This is the case
when ¢(0.x1) = -o(O.-xl) in which the soliton center is taken at the
origin at initial time.

The set of coupled equations (3.14)~(3.16) is highly non-1linear.. To
obtain a solution for the space-time-dependent order parameters s and:
<g> in (3.15)-(3.16), we first compute explicitly the fermion two-point
functions appearing as source terms on the right-hand side (rhs) of these
equations by solving equation (3.14) in the way of a Schwinger-Dyson
expansion. Because such an expansion is non-local, 1local source terms
can be obtained from a suitable 1imiting procedure. This is the so-
called point splitting method.

The quasi-electron two-point function is defined as,
. +
1Ga8(x,y) z <0|Twa(x)w8(y)[0> ) (3.17)

Since the source terms are given as,

L
+ | + ' ‘
<0y r1w|0> = tr rI<0|w (x)w(x)|Q> . (3.18)
anc, <0|[W+T3§32 - 33i+r3w]|0> = tr 'rj'<0|[w+ {331] -f?zuL] v 10>,
Ix Ix ‘ 3x2 (axz
1 1 1 1~
(3.19)

one can rewrite them in terms of the two-point function (3.17) as follows,

<0t ()W(x)]0> = Tim -iG(x,y) = -iG(x.x) . (3.20)
| ok |
Syo>x0)
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. 2 .
and, 0| [w*[ﬁ] - [3_21’] v]110> = lim -i{a_zz - 2] 60e)
axf axf y=x wy Ay

(y0>x0{
(3.21)
Now since the order parameters are assumed to bé topological, we
need only consider Ralf the space coordinate, say the positive intezva],
because the other half is obtained by mere reflexion about the soliton
center. Restricting ourselves from now on to the positive interval start-

ing at the soliton center and choosing the * phase as the asymptotic

homogeneous theory (x1*+w), one defines on this interval,
d = ¢o-1 . . (3.22)

Defining also,

// . S(x,y) = rlG(x,y) ’ \ (3.23)
and, O(x,y) : r3G(x.y) . (3.24)
the mean-field equations (3.14)~(3.16) are re-written as, ’

. 5 2 j
(i3 -wu + iVFI33_ + Aorl ] v = - [[1 - v3 ) A érl
axo ax1 2. 2 °
m ax1
-iglz {<£>" + 2<g>’§- ] 1;3]1, .
mZ ax1
(3.25)
[EE + v2 EE. + m2 ]AO 8 = -i(1 -'51233 ] tr S(x,x) - gz Ao .
2 2..2 2
3xg ax] ;7 m°ax)

9
(3.26)
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and, [-_3_2_ + vz_a_z ](5) 2 ‘9!2 1im 32 - 32 ] tr D(x‘y) . (327)

8x2 sz

0 1 m

Now the equation .(3.25) yields the following Schwinger-Dyson expan-

sion for the two-point function of the quasi-electron field,

6(12) = G (12)

G (11")z(1')6_(1'2)
6, (11')z(1)6_(1'2")x(2' )6 (2'2)
G, (111)x(1")6 (172" )r(2')6 (2'3")z(3" )6 (3'2)

- L. ' (3.28)

+

where G(12) stands for G(x,y) and primed integers stand for internal space-

time coordinates being integrated over. The self-energy I is given as,

z(x;ax) = 4, [1 - xvz _E ] 41y
7;2 axf
- .2 \
-igv [ <g>" + 2<g> 3_ ] T4 . (3.29)
m2 axl

The "free" propagator G (x,y) in (3.28) satisfies the following

relation,

13 =-u + ivFr33_ + Aorl ]Go(x,y) =
axl

(o]
-
> |
o

and is obtained explicitly as,

G (x,y) = _1 szp e TPxy) g (Pgepy) (3.31)



4]

where, Go(poopl) = (Po - U) - AOYI + VFp1T3 . (3.32)
[(pg - )% - E5) + L

The fermion energy Ep has been defined as,
2 22 2
E z val + A 1 (3.33)

Making use of the identities,

2

3 slxx) = 0 (3.34)
= >
axl
, 2 2 ,
and, 1im [ - 3 } 0 (x,y) = o , (3.39)
yX 2 2 °
axl 3y1 .

and upon defining,

-
Glxsy) = Glx,y) - G (xwy) (3.36)
-
the set of equations (3.26) and (3.27) fQi'tﬁe order parameters of the
VJI

model can be cast into the following forms, .

{ gf + vzgf + m2] 8, 3 = =i ( 1 -

2
3x0 axl

- {mz 8, +itr So(x,x)] , (3.37)
9
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and, [-ﬁ + Vzﬁ ]<€> = -glz 11m[_3_2 - _3_2.) tr '_;,(X,y) . (338)
axg axf nd Y=x axf 3yf

Equations (3.37) and (3.38) together with the expansion given by (3.28) -
(3.29) for the two-point function of the quasi-electron constitute a set
of mixed equations for the optical and acoustic phonon order parameters.
We shall show later how to solve such equations by making use of perturba-
tion theory for small acoustic phonon velocity. But even %in the context
of perturbation theory, one must ?ecognize that individua! orders in the
perturbation expansion will bé given by highly non-linear equations for
which a practi§a1 method for finding analytical solutions will be needed.
In the case of self-interacting scalar models such as the sine-Gordon

eqtiat1'tm74 or the Wa-theoryn

, we already know how to solve the corre-
sponding’s}qsiica1 Euler equation in the tree apﬁ‘bximation by the use of
the so-called boson transformation method where the physical field
condensate builds up the ehtire soliton structure. For fermion-scalar }
models such'as our quasirealistic polyacetyiene model, a somewhat differ-
ent, although closely related approach must be used. In the following .

subsection, we introduce such a method, the asymptotic éxpansion method,

by computing explivcitly the kink solution of the TLM model.
2.2 -The Asymptotic Expansion Method and the TLM Soliton

In this subsection, we present a practical description of the so-
called asymptotic expansion hethod by computing explicitly the single kink
solution of the TLM model.

The TLM theory can be recovered in the context of ouf quasirealistic
model by simply taking the limit of'vanishing acoustic phonon veloc%ty v

95

and restricting ourselves to static cases. In this approximation,”™ only

42
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the optical phonon order parameter survives and the equations (3.28).»'
(3.29) and (3.37) now becoﬁé,
—T :
s(11) = - 50(11')2(1')11-50('1‘1)
+ So(ll')z(l')rlso(l'Z')z(Z')rlso(2'1)

-t L, . (3.39)
in which,
Hxp)ry = 8 b)) | (3.40)
and,
‘ .2 A 3x,) = -i tr é(x WXy ) -[ gz A 4T tr S (xy.x,)). (3.41)
;7 0" 71 1°71 92 2 o 17717

As we pointed out earlier, Takayama et a1.83 first showed that the
single kink solution of the above equations coincides with the one df the
\94-theory. They used a variational approach assuming that the soliton
had the same form as the one fﬂ'l.hek‘»d-theory. With this assumption, a
seT!b‘onsistency of their analysis was shown for a certain value of the
vari;tiona1 parameter by minimizing the soliten energy under the assumed
shape. Then,making explicit use of the variational solution, they comput-
ed the electron wavefunctions and substituted them in the source terms of
the original ‘equation (3.41) for the kink. The results showed that (3.41)
was satisfied thereby implying th;t the variational solution is indeed

exact. In a later section, we shall also follow this fermion wavefunctions

. computational approach in order to check our soliton solutions in the
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contekt of the quasirealistic model 1nc1ud'4ng acoustic effec‘ts'. : 5\ {
As is well known, the TLM model contains other types of soHtonw('} .::t,
solutionsgo %4 although these are not topological oxtondcd structuvoi; ; ;f ¥

Campbell and Bishop first rea112ed that the TLM model coincides wit‘
previously well-known and much studied model, the’so ca11ed,N-g.Gnoss~
Neveu que1.90 Their analysis of the solutions to the TLM model, such as
the kink and the polaron state, was therefore carried out by comparison
with the previously known solutions of the Gross-Neveu model. The question
asking how far the Yukawa-type TLM model is simidar to the \04-theory was.,

answered, on the other hand, by Rella et a]..gd

who showed that a set of
solutions for the stat1c‘optical pKonoa order parameter a(x) can be ‘-

classified by the following equation parametrized by.the real numbel..i“
. o . N lé‘. )

- n [3°"‘1)]2]= 0 .- (3.42)
5(x) ‘

Bxl

The solution for which 20 yields the kink solution since quﬁtion (3.42)
with n=0 coincides with the static Euler equation of the \94-theory. A
solution with n=3/2 yéelds the polaron solution. Other values of n
correspond to the various sofuiions of the model. The tatter authors also
presented an integral‘form for solutions of equation (3.42) witb,grbitrary
n. The topological kink solution is however of more physical interest to
us since it leads to the so-called charge fractiomalization mechaniéﬁ.

| In this section, as in the rest of this chapter, we concentrate our
studies on the topo]ogical1y{non-triv1a1 kink\ solution for which the

asymptotic expansion scheme is particularly well-suited.

)

S
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The boundary and asymptotic conditions for a static topological kink

L
solution to equation (3.41) are respectively, ’
. L
¢(x1) = -¢(-x1) , | J (3.43)
\ ‘:/
and, é(xl) v K exp(-Mxl) ; (xl*+°) - < (3.44)

~
\ 4

The constants K and M are t: be determined self-consistently through the
calculation, Our cohputationa1 technique is called an asymptotic expan-
sion because, as we shall see, the soliton w1l be expressed as a power

series of the asymptotic form (3.44). When dealing with self-interacting

4

scalar theories such as A9 -theory, the entire soliton profile can also bé

computed, through the boson transformation method, as a power series of

the so-called boson function which is obtained from a c-humber_sp&ce-time

dependent shift of the physical (asymptotic) boson fie]d.'?}hé'bosop pE K

function satisfies the same homogeneous equation as the free scalaf'field SENEE
- operator does. % |
In our case, however, the combined system (3.39)%(3.41) is anintegral

‘rather than a differential sz;tem of equatfons. Looking for a corfespond-

R

ing differentia1;ﬂquation for the soliton, 1etuus;jnffoduce-the differen—

v .‘ | «34;'.1“
tial operator xo(-ia) and A(-1apﬂ through the folltowing relations,' e
. - . ,al.:_‘: . . a
A (-ia) e TRX o xR L L (3.45)
Q [¢] . M
- ,}S;« -y
®
and, W
, )
k) = A (k) , ’ (3.46)
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where,

. 2 1
‘)o(k) 1 Jd p So(potpl)so(po'korpl'kl) . (3.47)

(2r)

Now since equatioﬁ§ (3.39)-(3.40), when using the Fourier representa-

tion and integrating over internal time coordinates, lead to the following
-

expansion,

- . )
S(xpax)) = -1 szle pdqlso(popl)so(poql)e‘(pl a,)(x z})aoé(zl)
’ (217) < o

: |
*( 1)4 sz1d"1fd Pda; 82,5, (PgPy )54 (Pgay )5, (Rt )
2m

) ei(pl-ql)(x1°21)*‘(ql'”l)(x1'w1)az¢(zl)¢(w1)

-~

&

_ ) _
- 1 : [dzldwldyljd pdqldzldslso(popl)So(poql)So(pozl)So(posl) )
(2n)

R T R A S R RIS ER TR P

+ - .. , (3.48)
| -
and since the linear term in$ in the latter expansion is given by
A(-ial)Aoé(xl), it is then possible to re-write the combined system.

(3:39)N(3.41) in the following differential form,

. _ e | N ta 2 _;o :
Do(-1al)§p¢(xl) =i tr SOLxl,xL) + g2éo ‘+ F[XI,QJ. »  (3.49)
‘T‘},_ I "fﬁja ‘ %i.»»~

N
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" where we defined,

itr 2 (-13,) - gf , o

g2

r

47

(3.50)

Flxs )= itr{ _1 szldledzpdqldllso(gopl)so(poql)So(po y)

(2n)

)

. ei(pl-ql)(xl-zl)”(q1"‘1)("1‘"1)A2¢(zl)¢(w1

] d 2
(‘l‘s J zldwldled pdq,de,ds,S (pyp;)S (
2n)

One then solves equation (3.49) as,

ol (s 2,
Ao¢(x1) =D o(-131) itr So(xl,x1)+ Ton + Aof(xl)
g

v 07 -1a)) FIxgse] o

where f(xl) satisfies the homogeneous equation,

Qz%%-ial) f(xl) =0

(3.52)

(3.53)



-

Again, 071(-13;) in (3.52) is defined as,

. Co-ikx _ -1 -ikx
-131) e z Do (kl) e . B (3.54)

-1
Do (

L]

From the asymptotic condition (3.44), one finds immediately,

: - To™y
flx) =k e ™1, ' (3.55)
and, ml A =-=itr S (x,,x,) ' (3.56)
’ —2 o] (o] 1’ 1 ) e )
g

Equation (3.55) is an exponeptjal]y damping solution with mass scale
M indicéting how fast the soh’ton‘K‘ution apprbaches the order parameter
of the homogeneous theory at spatial infin{ty, while equation. (3.56)"is
nothing th the BCS-type gap equation of the ILM model. The function
f(xl), theiefore, plays the same role as the boson function of the boson
transformation method. The mass pafameter M in (3.55) is determined from ]}.

thelequation,
0 (M) = 0 . | (3.57)

To understand even more how the asymptotic expansion scheme and the
, <
boson transformation technique are very closely related, one should note

that, if we define,

D(K) =i tr A (k) - m° | (3.58)
0 [o] _2 e
9

-t e
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which becomes D (k;) for kg, = 0; then equation (3.10) fon the optical

phonon field with v=0 indicates that the equation,

2, 2 ]
kg + 90_(k) =0 _ (3.59)

* yields the energy spectrum u?(kl) of the optical phonon field in the homo-

geneous sector of the TLM model. Shifting the field by the time- independent

c-number function f(xl) (boson transformation) shows that equatiom (3.53)

. . .}
is equivalent to, »

F(-i3)f(x,) =0 , (3.60)
oy 1 1 .
f
In self-interacting scalar theories such as the sine-Gordon or X¢4-theory,
the energy spectrum takes the relativistic form,

-
7

| -kl e M (3.61)
) \

The condition (3.60) also aﬁﬁﬁies to such theories and become$, |

(ai - M)F(x) =0, (3.62)

which yields an exponentially damping solution for the boson function
f(xl), as in the TLM model. The asymptotic expansion is then equivalent
to the boson transformation method applieg to the optical phonon field in
the homogeneous sector.

Eduation (3.52) can now be solved iteratively as an expansion in
terms of powers of the boson function. Remembering the gap equation (3.56)

as well as (3.51), equation (3.52) can now be re-written up to third

&
order as,



. : 2 -1
Aoé(xl) = Aof(xl) +itr{ 1 szldw1 Id pdqldl1 Do (

pl'll)
) . (2m)

. so(popl)so(poql)so(pozl)ei(p;‘ql)(xl'zl)*i( 11 (xg-wy,2 “F(2)) flw,)

2 -1
+ 2 szldwlfd pda,de,D (pl-zl)So(popl)so(pogl)so(poil)
(2n)
$(py-ay) (xy=27 )41 (qy-2 | ) (X -u0) 2.
x g ‘F17H1/YV 1A R RS RATS RS RN f(z,)[ i [dz dw, |d“pdq,dZ D ll
| o' V21 pavil 11 1
2n

x 50(5061)so(ﬁoal)so(aoil)ei(p1'q1)(xl'21)fi(ql'il)(xl'wl)aif(il)f(&l)]

2 1
-1 j dzldwldled pdq,ds,ds,D_ (pl-sl)So(pgzzxso(poql)50(9011)50(0051)
(2m) |
w et (Prap) ez ilagmt 0wy )il s Doy 3o e iy,

+.o0 ) ' IR (3.63)

L 4
where dots stand for higher powers of the boson function f. A convenienfv

form for the boson function is the following rotated expression into the

complex plane,

= Ke . . (3164)

with,
8 = iM . : (3.65)

The function f(x,) is rotated back to the real axis at the end of the,

!
calculation. This method is a computational trick enabling us to treat

f(xl) as an external leq in the Feynman diagrams appearing in the expansion

(3.63) for the soliton.

A
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- Y
As a first step toward the actual solution, one must evaluate explic-

itly the differential operator Do(-ial) at some finite momentum. Taking

the trace of equation (3.47) at k;*0, one obtains for A(kq ),

Lt ( 2)2 [a%otipg w12 a2 - Boy(pr- k)T 4 (3.66)
' 2n

[(pg~ #)%- E5100pg- )2 €L ]

:where we made use of the propagator (3.32)-(3.33). Integrating over Py

equation (3.66) becomes,

A
tr x(k ) = L_Z J Ql'f [E2 + AZ fz-‘pl(pl' kl)]
(217 -A p -k)(Ep-\EP‘k)
L3 2 2 2
S e - vepyle- k) 1Y ()

+ -
28 (B B (Epm Eply)

where A is a high-momentum cut-off. After some manipulations one finds,

itr X(kl) = _l_ [- ka§+4A sinh 1 1’+ sinh 15_3} (3.68)
VF v k

The second term in (3.68) is 1ogarithmic divergent. However, let us

compute explicitly the gap equation (3.56) as,

o= -itr S (xgax)) = 2 j d%p 1 ., (3.69)
2 2171 = 7
q Ao (2n) [(po- w)- Eg]

which leads to,

nle 1 sinh’l(igﬁ] : : (3.70)

Therefore, from the definition (3.50) for D (kl) as well as equations

(3.68) and (3.70), one gets the finite result,



0 (k) = Wk f+4a2 sinh-l[kal] . .3
nvzk AJ
R F1
Remembering equation (3.57) for the mass parameter M, the explicit form
(3.71) for D(}kl) leads to, ' + |
23 +4A =0 - Mo=20 : (3.72)
VF

Wishing now to compute the coefficients up to third order in the
asymptotic expansion (3.63) for the soliton, we define the operators

B,(-13) (n=1,2,3) as follows, - |

. 2 ) f 2 -1
B,(-13,)f % (x,) = i tr |dz,dw jd pdq,de.0 “(p,-2.)S (p.p,)
. ’ . 1(py-ay ) (x -z, )+i(q,-2.) (x,-w,)
; so(poql)so(poal)e 17717174 17717717 f(21)f(wl) . (3.73)
. 3 h 2 -1
' 82(—131)f (xl) z 2181(28) tr[dzldwljd pdqldsleO (plnll)s,(pOpl)
— .
(2n)

1 tr sz dw dyu dzpdqldildle 1(p1°51)5-(p0p1)
5 :
(27)

€S (gay )5, (9ot )5, (s det (P10 (xp -2y i lag -ty Nl mw D eily sy gy

« f(zl)f(wl)f(yl) o, (3.75)

"’¢

where, .. —ikx ;
, 8n(-1:1) e = B (kl) e ) (3.76)

Inserting the expression (3.64) for the boson function into the

relations (3.73)3.75) and integrating over spatial coordinates yields,
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81(28) = D;I(ZB) itr szpso(popi)So(popl-s)so(popl-zs) y
(2m)™ (3.77)
B,(38) * 281(28)0;1(36)'1 tr fdzpso(popl)So(popl-e)so(p0p1-38) ,

PRV
. (2n) (3.78)

and, 4

-1 . 2
B4(38) = D "(38) i tr Id pSO(popl)SO(popl-s)so(popl-ZB)So(pop1-38) .

PPN
(2m) (3.79)

A lengthy calculation yields the following expressions,

PR Y av SN Y. ,
81(28) = BAOD0 (28) 4A0+4vF8 Sinh-l[iifl , (3.80)
, (ZVFB)Z ZWVEB A 8
8,(38) = 180_1(38) [ 1/a2+9v2s? sinh‘1[3VF5]
~ m.reve B %,
mv-{38)
F .
-/A2+v282 sinh'l[st] ] (3.81)
o F E—A
o]
and,
B,(38) = 64827071 (38) /al+vZe? sinh'l(igf] . (3.82)
nvg(38)s °

From the expansion (3.63) as well as the definitions (3.74)and (3.75),

the complete coefficient of f3 is given by Bé defined as,
82(38) z 82(38) - 83(36) . (3.83)

Inserting (3.81) and (3.82) into (3.83) yields,

Q



By(38) = 1807'(38) [ 1/40%49y2s2 simn? 3VF8]

-3 2 24

va(3B) °

-/A§+v§32[ 1+ 4A§ ] sinh'l[iffl ] . (3.84)
a

Remembering the mass shell identity (3.72), equation (3.84) simplifies as,

\ IS | 7 2.2 “1/3v.8
B (38) 907°(38) /48+9vga® sinh (ZAF ] . (3.85)

nv§(38)3 0

Finally, inserting the exp;ession (3.71) for D (kl) into (3.80) and
o]

(3.85), and making use of equations (3.65) and (3.72), we get the follow-

ing coefficients,

81(28) = 1 R (3.86)
24 .
o Fa
“and, By(38) = 1 (3.87)
4A2
c
The expression (3.63) now reads as,

-

1)'-- []

+ ASB'(38)f3(X .
(3.88)

a,8(x)) = s_f(x)) + 2% (28)F%(x ,

0 0 1

1)

which becomes, when inserting (3.86)-(3.87) as well as (3.55) and (3.72),
!

3(xp) = X e (28o/VEIxy gy (2 gm(8a Jvpdxy (3 oo (60 F)xl

L . (3.89)

Upon the following re-definition of the parameter K,

K o= -2 elB/Vel = (3.90)
where il is some positive undetermined position parameter (the soliton
center), & becomes now a function of xl-il and the coefficients b of the

expansion (3.89) are defined as,
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b, =2(-D7 5 (n=1,2,3) . (3.91)

/7
Remembering the equation (3.22) and assuming:that the relation (3.919

remains valid for all n, the static soliton solution of the TLM model is

therefore given as,

-1)" -n(ZAO/vF)(xl-il)

o(xl-xl) =] + @(xl-xl) =1 +‘n£1 e
(3.92)
Now since,
tanh é = 1+21 (-1)"% " ; (z>0) , (3.93)
n=1
then,
o(x,-%;) = tanh Zo(x X)) . (3.94)
v
F

One readily checks that the boundary condition (3.43) is satisfied
for the specific choice i1=0

The drawback of the asymptotic expansion method is, of course, the
increasingly tedious algebra as we go to higher orders. In the case of
the TLM model, the solution (3.94) can be obtained by more straightforward
techniques since the model is relatively simple. The purpose of this
subsection was therefore pedagogical. When acoustic phonon effects will
be taken into account in the next section with respect to the full quasi-
realistic model for polyacetylene, the asymptotic expansion method,
although leading to very lengthy algebra, will become an invaluable tool
in the discovery of ana1ytica1 solutions. Since the computation of high-
er order terms is prohibitive, the knowledge of the first few orders will

be sufficient to determinemaggeneral expression for the coefficients of
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the expansion. A self-consistemcy Check o*’ihe solution will then be

needed. Such a proof will rely on the explicit computation of the ferm1on

wavefunctions in the 1nhomogen‘b‘s m our quas1rea11st1c theory.

3. Acoustic Effects and The Asymptotic Expansion Scheme

As we showed in the previous section, a completely rea1ist1c'continu-
um model of the trans-polyacetylene molecule including acoustic phoron
interaction effects can be obtained from the discretg SSH Lagrangean model
by keeping ‘terms up to second order of the molecular lattice sp;Eing while
going to the cortirium limit (see appeﬁdix A). The limit of vanishiag

lattice spacing r acoustic phonon velogity in the terminology of the

continuum model) ylelds the we11 kn model .

In this section, we are mainly. inte ed in the acoustic phonon’
interactton effects on the dynamics and profile of the TLM kink solution.
Note that other kinds of corrections to the TLM model, such as quantum

92-93

corrections, have also been evaluated. When acoustic effects are

taken into account, however, the homogeneous theo}y itself deviates from

the corresponding homogeneous sector of the TLM model by increasing tgz

_ degreé of divergence of the gap equation. This is due to the existence
—

of derivatives in the optical phonon-quasielectron interaction. The

deviatfons are proportional to the square of the acoustic phonon velocity.

An analysis of such a realistic continuum model is therefore very challeng

ing. We made, however, a preliminary study of this realistic model in the

inhomogeneous sector and, although no analytical form for the single kink

solution was obtained, it was found that a static kink yields inconsisten-

cy. The only solution, assuming its existence, must be time-dependent.

.This preliminary analysis also showed that the soliton motion may be more

g
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.

complicated theiya,simple uniform tmanslation and that oscf11i}ory behavior
may be Bresent. Such a non-linear dynamics seems to be in accordance with

the results obtained recently from numerical computations applied to the
SSH modeldby Bishop et al.gl It was already shown by Su and Schrieffer 82

that tﬁe propagation velocity of the single soliton was of the same order

1.91 further

3

found an approximate maximum soliton speed of about 2.7 v. In high kinetic

of @agnitude as the acoustic phonon velocity and Bishop et a

regions, ebove a threshold of 0.1 Ao , the latter authors found that when

a soliton-antisoliton pair isicreated. uniform transiation is not observed
for the separating solitons moving away from each other. An oscillatory
tail develops between them and the result is a localized neutral oscillatory

persistent breather. . °

o

As explained inm thg previsus section however, acoustic effects can

be successfully ana]ysz“in RiL, contex f the girealistic model for the

A..

w‘e Py “‘*‘,;

trans- ponecety]ene mlpcylef‘ ,tg‘Sug mgdeﬁ tﬂekgap:ec@tmn is the same as
[ s§1c phdqah electron

erefore acoust1c

the BCS- type glp ‘bqugfon,cof tha%ﬂ ..-Qg1 a;"

e i1 1
couphng@g .Same as the ofe in be «rey 1@

R ¥
effects wheﬂ‘treateﬂ ge#tqrbat1veﬂy,_mod1fy the&sﬁaﬂe‘and the dynam1cs of

\'K Ry .;Q +!

thé MQan1j1er approxfma‘q;i* Our perturbative analysis

i
Vida

the TLM solit :

of the quasir a,#f ic mode! fs go1n9 to show‘that, although acoustic effects

only Sl1ghtlﬁlﬂﬁﬁky the shape of the TLM soliton, the single kink becomes

y

time- dependeq$ Qﬁ:§7 . THAs smtuat1on may be ‘understood by recalling that, the

yﬁi

and that the?

Lagrangean ( 4§th the modification (3 8) is not Lorentz invariant

'ﬁguum model 1t}descr1bes has been obtained from tne SSH

£
model for gh;

: ’,ﬁ@
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The time dependency of oar solution coinciqdes with that’of 3 constant
uniform motion 6f the soliton in the lattice rofcrince system. The
velocity of the kink is controlled by that of the acoustic phonon. We
find further that the acoustic phonon soliton, which 1is a companion'
excitation to the optical phonon order parameter, is also moving with the
same velocity as the one for the optical phonon soliton. The existence
of this companion soliton is not surprising when one fntuitively realizes
that ;he original kink deforms the displacement field (the acoustic phonon
field ) and induces lattice deformations around it.

The computation of aco.ustic phonon effects pr‘;;;ﬂj as fol]ovs. We

[§) )

first apply perturbation theory to the meangfaeld eﬁa tions (3.374)-(3.38)

s

and the expansion (3.28)-(3.29) for the quas tron two-point‘ Function.

#

+ as expansions about the square of the acoustic phonon velocity (vz) since
2

The order pdrameters of the qua;irea1istic mbde1iare assumed to be expressed
the additional coupling in the interaction.is p}oportiogklk to v At
eachiorder of the expansion, a set of differentjal equatio;;‘?k obtained
and solved by means of the asymptotic expansion method. Each order of the
perturbation expansion is therefore displayed as a power series of the
asymptotic form (the boson functton) of the unperfurbed.part of the soliton
(the TLM kink). [In this computation, however, we restrict ourselves to
first order acoustic effects. ‘

Perturbative modifispf?;::’::.soliton systems, however, r{ise the

. ? .
serious question of the proper choice for the unperturbed state. In the

»

context of the quasirealistic model, as discussed above, we expect nontrivial

dynamics to show up-as a result of acoustic effects. A natural choice for
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a time-depehdent unperturbed state is the boosted TLM kink because the
_TLM model is Lorentzlfnvariapt. This imb??%s, in turn, that spece end)time
~ coordinat®always abpear in a‘special linear combination called a general-
ized coordina’ﬁ;s 96-97 Self—consisteney ot{the perturbative expansion then

determines the o]itoh velocity. Our ca1cu1atidn is going to show that the
\
1atter velocity is proport1qna1 to the acoust1c phonon velocity and that

its actua1¢va1ue is g1ven as a function of the X -parameter of the effective
derivative coupling of optfca] phonon and quasielectron of our quasirealstic

‘mbdels

C -

- ,
The existence of the special configuration X in the class of soliton

sydtems treated perturbati‘vel_v {s not restricted to our model. Other
\ . . 4

systems,m~3'147 such as the modified sine-Gordon equation146 which is

—
used to model the Josephson junction, also have a special configuration X,
although it needs not be linear in space and time as is the case for our .

+  model. In the modified sine-Gordon model, however, the perturbational

1RteractifaJJissiﬁates energy, while in our case the acoustic phonon inter-

-

action does not vio]ate energy conservation. The determination of a suitapde

« X is therefore closely related to the problem of choosing the unperturbed

fid "iate for the perturbative ca1culnt1ons The exp11c1t choice for X is

determined by the phys1ca1 properties of the: system and 1ater cheg¢ked
_se]f consviyeagﬁy in the computations. The boosted like form for our non-

dissipative system w11l‘be shown to yield a self-consistent solution.
» g ‘ '
"3.1 -Sel%ﬁbnsistent Perturbation Theory
“ \’\ 3 = ) AY
. ) Before proceeding to solve the combined equations (3.28)- (3 29) and
/(3;31)-(3.38) by the use of perturbation theory, we wish to re-write equation

(3.37) as,
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. ¥ S R .
m2Ao® + igztr S{x,x) = v {13 \;i tr S(x,x) -2 13 5} 33_3\5 ’
& 2 2
¥ m" o 3xy Xy Ix
' v
(3.95)

in which use was made of the gap, equation (3.56). The hyperbolic tangent
profile corresb%nds to the static solution of (3.95) with v =0.. Equation
(3.95) then reduces to equation (3.41). A time-dependentAsolution to (3.41)
is obtained'from the static one by a Lorentz boost since_the equation with

v=0 can be considered as a static situation of a Lorentz invariant Systeﬁ

with fermions obeying a Dirac-type equation in (1+1) dimensions. This

suggests that a reasonable choice for the unperturbed state willbe given by the

boostedaJLM solution and the perturba?ion by the right-hand side g:hs) of
equation (3.95) including the apparently v%independent time derixative
"anomalous" term. This choice implies ihat,the Tatt;;i’dme derj?ative term
is of order O(vz); 5uggésting that the sotiton velocity is proportional tp
the acoustic phonon velocity. As Yi]1 be pointed out later in this sub-

section, static solutions for finite % yield inconsistency..

Defining the boosted configuration5(genera]ized coordinate),

vy 1 - v i -
X = M [ _%91] [y £ veo1%g = X1 (3.96)
Ve _ ,
where M is same as (3.72) and Veoy 1S the soliton velocity given by,
. = A 7
Vo1 F TV , 4 ‘ (3.97)

we now assume the following expansions,

= 2
) . 3 ".,?o+v(bl+"‘~ , | (3.98)
* s .
P N go+v2£1 + , (fg)
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and,

( $o= I VI ‘o , ‘ R (3.100)

where explicit Epa e-time 'dependency appears in the configuration (3.96).
. a | , -

Note that the dimensionless constant o in (3197) will be determined later

self-consistently. The expansions (3}98) "~ (3.100) enabte us to expand ,

+} y “‘ ) \
6xay) = 600y v e M xy) ¢ | (3.101)

The dots stand for higher order terms in the acoustic‘phonon velocity
expansion., Inseri?ng the expansions (3.98)-(3.100) into equation (3.29)
for the self-energy yields the following relaticnships (to first arder in

perturbation theory),

- I,=o T8 Ty (3.102)

By = 8,78 - A8, Ty 85 RigTy [52 * ze;%; )
N 2 S ]
Y

Inserting in turn(3.102) and (3.103) into (3.28) and making use of (3:101)

yields,
¥ 62y - - 6, (11')2_(1')6_(1'2),
e £ 6 (11)z (116 (1'2)z (2')6 (2'2)
Q Q 70 0 [o] ) v
: 6,(11)z_(1)6_(1'2")z_(2')6_(2'3' )z (3')6 (3'2)
¥ , ' , : ‘ (3.104)
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and,
Y
é(l)(lz) = _Go(lll) zl(ll) 60(1'2) o+ 60(11.) Zo(ll)Go(llz.)“:l(fz.) Goz
B + (119 1, (1 6_(1'2) £ (2) 6 (2'2)
"Go(ll') Zo(la)Go(llzl) 20(2')G°(2'3'~)2’1('3')G°(3'2)
Y ?

-6, (115 (1) 6,(12")8, (2 6,(2'3" )5 _(¥) 6 (3'2)

-6 (11)z, (1) 6 (172" )z.o(z") 00(2'3');:0(3') 6,(3'2)

- L. . . (3.105)

The field equations (3.37)-(3.38) then become, finally,

3
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2, 2(0) | R
a g (x) = -ig” tr s (x,x) (3.106)
o% i_f .
A0¢1(x) = -igg tr é(l) (x,x)
m
e
. CoBera B vy a0, (3.107)
‘ ;z{a(vxo)2 ;‘?J
and,'; é? ) .
+ 2 2 1 2 .2 (0)
g (x) =-q (3% -3 “F Mm (35 3% ) tr O3V (x,y){3.108)
° ﬁ7 {axi a(vxo)zj y=x [axi ;;?]
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for the optical and acoustic phonon order parameters respegfiyely. Note
that the "anomalous" term in (3.95) has led to the appearanéé of v-dependent
time derivative operators in (3.107) and (3.108). When the solitgn velocity
1; given by (3.97), however, any v-dependence will disappear. |
The time;dependent solution to (3.106) is nothing but the unpe;turbed
boosted TLM kink profile obtained from (3.94) as, S
ab.a tanh ; -1, | ‘ (3.109)

»

where X is the generalized coordinate (3.96). In order to solve the combined

N

system of equations (3.102) ~ (3.108), one now makes use of the asymptotic

expansion method described in the previous section. Expanding 35084 and &

as,
3,00 = £ b 00 5 X0 | ~ (3.110)
el g
00 = £ a f(x) 5% o0 _ (3.111)
and, ) n=0 ’
® ﬁ, .
() = 1 c ) 5 x0 (3.112)
n=0
in which the boson function f(X) is given as, )
fx) = et | O (3.113)

we can obtain explicit solutions through the determination of the coeffi-
cients an and cn. The coefficients bn for the unperturbedlpart have

already been determined in the last section. They were obtained as,

&
*

b 20" s ()™ (3.114)
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- oW
Since the expansions (3.110)~(3.112) are defined on}y’for positive X,
the complete solutions for the entire range of X will be jz;erﬁbned from
topological considerations at the end of the computation.’

\gain, a
convenient expression for the boson function is the.following complax.dérm.

f(x) = ke” KX = gelkXpmTkgXg | (3.115)
where, ’
g =_8 _=sr0(i)., . (3.116)
l-ozv2 | ‘
i
and, kg = f'ovk1'= ¥ ove + 0(v2) ; B “(3.117)

in which we made explicit use of equation (3.97) for the soliton velocity -

and where,

sziM , (3.118)

and, K

"
3
x

he)
X
>

(3.119)

As previously discussed, this method is a computational trick enabling
us to treat the boson function as an external leg with momentum 3 in the
Feynman diagrams. - ~

- e

We can now proceed to solve equations (3.107) and (3.108) for the

order parameters by 1nsert1on of the expansions (3.110)~(3.112). Since £,

Wears ex|

muﬂ% firs

mff‘-) -

attempt1ng

' in the perturbed part (3.103) for the self-energy, one
.Ab ) )

L he coeff1c1ents c, of the expans1on (3.112) before

S r‘
8 &

1hd the perturbat1on °l for tihe optical phonon order

_parameter. BT 0

A} 0
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Making use of equations (3.24), (3.102), (3.104) as well as the expan-

o

sfon (3.110) for ®,» one finds explicitly,

K0)(12) - - O,(11")7,7, 0,(12) Ca b F(1')4a b, F2(1")+a b, (1 )

+ D(ll Yt (1'2')rr

' 22 (AW R \‘
173 0 (2 2) Lolbif(1f(2) -

173
wdbb, (1) F (242 (1)f(2) Th. )

- 0,11 )yry (12 ey 023y B(32) Lo 2231 F(2)F (314 )
ke (3.120)

v

Evaluation for the rhs of (3.108) when making use of (3.120) gives an

expansion in powers of f which determines through (3.112) each coefficient

h and therefore the qo order parameter. In the following, we compute Ch
up to n=2 and find a generic form by extrapolatian. To that purpose, in
the same spirit as for the computation of the TLM soliton in the.previous

section, w! dsfine the following differential operators,

11(3)fn(x) z [32 - 32 ] L yim [33_ - 33_]
7 N
axi a(vxo) y=x axi ay%
Cw
Cxtr (3.121)
and, ’
R AOOE
“da o . D
N J_;fftrf ¢%2d2w 0} ¢r) SNOPY: O Y, . (3.122)
. -
g, . < o
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where, as usual,

)e-inkx

=1, (nk . (3.123)

Going to the Fourier representation (3.31) and making use of the form .

(3.115) for the boson function, equations (3.121)-(3.122) become,

N IdZZ dedeQ’F-ip(x-z)-iq(z-y)-inkz

xtr O (pgpy)ryty O (qp9y) (3.124)

and,
Iz(a)fz(x) G (32 - 32 ] Lim [32 -3¢ ]
. o6 (2 o2y (T2 T2
(2n)° “3x 3(vx,) ax yy
1 0 14‘ 1
« szzdzw Jd2pd2qd22.e-ip(x;z)-iq(z-w)-ii(w-y)-ik(z*w)‘-f
. x tr Do(popl)rlr3 Do(qoql)rlr3 go(%oll) . (3.129)
. Taking derivatives and limits in the displayed orde} as well as

L 4
integrating over internal coordinates, equations (3.124)-(3.125) yield,

Il(nk).; (1-02) -1 1 trJ dzp(2p1-nk1) Co(popl)rlr3
8 nk1(2n)
% 0,(Pg=nkgsPy-nky) (3.126)
'and,
2, -1 2 ,
1(26) = (1) ! tr[d P(py-ky) O (pgpy) 1y ¥
, - kl(Zn) , .

* Q(PgkgePy=kq)T T304 (py-2kypq-2k ) s (3.127)

Rl
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Because of the v-dependency of k, and k; through (3.116)-(3.117),
the above expressions give higher-order corrections to the soliton shape.
Neglecting such v-dependent terms at this stage, equations (3.126) and
(3.127) are evaluated in the static limit, that is, |

k1+3 H k »0 . (3.128)

One must be careful, however, to perform any time derivative before

taking this limit. Such a prescription leads to,

I,(ng) = -ZVFAO(I-oZ)'1 szp (2p1-n3)2 ’ (3.129)
nB(Zn)T‘ ( )(p0 o- HS)
and, 2 -1 2 2,,,2 2 '
12(28) = 2V ( ) Id p( 1- [p0+3A ’VFPI(PI-ZB)] , (3.130)
. 8(2:) (po ET)(pg z 8)(pO - 25)

3
~

where (3.32) has been used and the trace taken. Integrating and making

use of the identity (3.72) as well as the gap equation (3.70), finally

yield , .
2 2.-1 .
Il(ne) %[s%z] (1-0&& “ . (3.131
and,
. L(28) = 1 [s-mz](l-oz)'1 . (3.1{':)
— U 2

While integrating qgréurface term denoted by S (S=1/nv ) has appeared It
originates from uﬁé’%1gh momentum cut-off regularization scheme and is
shown to van1ig 5? a Su1tab1e symmetrization procedure. Such surface
terms will bgtdeliberately kept in the remaining part of this‘subsection
as well as the following one s1nce they will help discover the structure
of the computation when we attyck tﬁﬁ‘ﬂ#oblem of finding the optical

phonon soliton in closed form.
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Remembering the expansion (3.120) one easily finds the following

expressions for the coefficients c, (n=0,1,2), ~ T
cq = undetermined ’ (3.133)
¢, * g_ztaoblll(e)] , - (3139
and, m ‘ ! -~
_ ' 2,2
c, = %[Aob211{23)+aobllz(2e)] : (3.135)
o \
Inserting (3.131)-(3.132), one gets, R
298 e 2 _2y-1
¢ __Q_LSm_)(lo I T (3.136)
. m g
and,’ i ~r
¢, = 9% [S-[nz] (1-0%)"! b, (3.137)
nl g'Z
which suggests that, in general, P
c =9 [S-sz (1-a2) 1y n>1 . (3.138)
n > U= " '
m 9

This result, together with 'the expansions (3.110) and (3.112), implies -

that. A (
g (x) = 98, [S-mZJ ( _02)-1 3,(X) + constant . (3.139)
m g9

-<A complete proof for this solution will be given in the next section
when we present a self-consistent computation involving quasielectron’
wavefunctions.

‘ -Having determined 5, We can now attack the more difficult problem
of finding the perturbation‘b1 in a closed form. As a first step toward
the solution , one wishes to find a differential equation for .the perturba-
tion similar to equation (3.49) for the unperturbed state. To that purpose

(1)

we write the following expansion for S '(x,x),



s(U(11) = -5,01)5_(1'1)(a,8,(1')+9(11)}-5 (11
| A
+s (11')s_(1'2')5_(2'1) (a2 [s_(1' )8 (2" %0y (1')g (2') ]
+o Lo (1')w(2")+v(1")s (2

+s (11')[a o (115 (1'2')(a(2')]O (2"1)

11')[a(1")]o, (112" ) fa_

D (1) 1o (1)

)

éo(Z')]SO(Z 1

»

-5 (11')s (1'2')s (2'3')S (3'1) (s [o 3§2'13,(3') +o (1')gq(2")g (3")
+ol(1')¢o( a (3") ]+A [@ O(2')v(3')
+¢°(1‘)v(2')¢0(3')+v(1')¢0(2')00(3')]}

-§°(11') hoao(l')ISO(I'Z')[Aoao(Z')]s°(2'3')[Q(3')J :%(3 1)

- (1) (s (135 (12 ) Tak2')] 0 (2'3)[a 5 (3]s (31

-5 (11'){a(1')] g (1'2')0a s _(2)]s_(2'3')[s 3 _(3')]s (3'1)

+- (3.140)

where,

o(x) = -84 , (3.141)
m2

and,

Q(x;a) = -ig [e* + 2¢ 3 (3.142)
%[o )
In (3.140), use has been made of (3.23), (3.24), (3.102), (3.103) and

(3.105). Defining the following differential operators,

69



and,

where,
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0,(2)8,8,(1) = ftr s (11)5_(1'1)[8,8,(1") ] - gzaoo1(1) ,(3.143)
9
0,(2)a 8, (1) = -itr S _(11')s_(1'1)[9(1")]
A [ (1) (1) + 85(1) , : (3.148) 7
2 ° 27 .
g .oV
D,(3)g (1) = -itr s_(11') la(1")] 0,(1'1) , (3.145)
D, (3) e-inkx 0, (nk) gtinkx (3.146)

and inserting equation (3.140) into (3.107) for $,» one gets the follow-

ing differential equation,

Do(a)Aoal(l) = Dl(a)Aoa

(1) + Dy(3) g (1) + itr{s_(11')s (1'2')s_(2'1)

o} o ¢}

< (0208, (100 (2 )+ (18 (2) Tea L8 (1)9(2" )40 (1")s_(2')])

+

+

- L.

So(ll'

50(11'

a(1)1o (12" ) (s 8 (2')1s (2'1)

So(11)0a 8 (1077 (1'2")(a(2')]D (2'1)

s, (111)s_(1721)s_(2'3")s_(3'1) (o) ¢O(1')¢O(2')¢1g§1:'~\
]

+8,(10)8,(2)8_(3")+8,(1")0_(2°T¥8 (3"

0
+ a2l (18 (273" )+s_(1')9(2")8_(3")
+ 9(11)8_(2)8_(3)])

0

Ma o (135, (112408 s (2')35_(2'3)[a(3)]C,(3'1)
s, (1) [ 3 (1)1s_(1'2")[a(2')]0,(2'3)[a 8_(3)]5_(3'1)
5, (11)0a(1)10 (12 )(a 3 (2)]s €23 )(a 8 _(3')]s (3'1)

} i (3.147)

In the static 1imit, the oper%tor Do(a) is obtained from equation

(3.71).

Nne should be careful, when rotating back to the real axis,
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) .
however, to choode the proper Shgécp forE!Ee latter expression. As will
be shown in later computations, iﬂfs problem is of no concern to us since
D (3) will disappear altogether throughout the determination of the
coefficients of the asymptotic expansion for the perturbatiqn 8- The
operator Dl(a) is now easily obtained. Making use of (3.l&d)-2s well as

L
the following rules for derivatives of the boign function,

£ (x) = ik fMx) (3.148)
" (x) = -nzkff"(x) . (3.149)
) and, o '

- q .

f(x) = -nzkfczvzf"(x) , | © $3.150)
- ‘;}
equation (3.144) yields,
Dl(nk)e'f"kx = -nzki { ix tr So(xz)so(zx) e~ 1nkz R
mi . 1‘. ,
eml [(1a)red e ™y (3.151) ". » . .

. .

.

Remembering equation (3.143) for DU(a). equation (3.151) leads to, in

the static limit,
L 4

[mz [(22+1)40% ]+ XDO(nB)} . (3.152)
padbe

- —

2.2
Dl(ne) . WA

X

Now making use of (3.142) as well as (3.148)~(3.150), equation

(3.145) for Dz(a) yields,
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D,(nk) e -inkx g tr S _(x2) (n kf 2ink 3 _ ] 0 (2x)e”'Mk2 ., (3.153)
2 37y 2°
L ’ .

Going to the Fourier représ&nt’tion and integrating over internal

coordinates yields ,

_ nk,g r2 . .
Dz(nk) = ( ; ) J d p(zpl-nkl)tr§o(p0pl)ao(po-nkopl-nkl).(3.154)
2n)"m

Explicitly, equation (3.154) is re-written as, in the static limit,

‘ : 2
D,(n8) = -2m 89 |42, (291'"3) (3.155)
2 2 2 2"
Comparison with expressions (3.129) and (3.131) finally yields,
D,(ng) = ~4n2,9 (snf ) (3.156)
T2 2 ¢
va 9

Having obtained the explicit expressions (5.71),(3.152) and (3.156) for

the differential operators Do(a),Dl(a) and Dz(a) respectively at given
external momentum, we are now ready to calculate the remaining coefficients
a, by inserting the asymptotic expansions (3.110)~(3.112) into both sides
‘of the gquat%on (3.147) fou @1. The def@rmihation.of the an-coeffici nts

- proceeds by comparing on both sides of,the.dattér eqd?tioniﬁqua1 pqye s of
the boson function f(x). The a -coefficients ar‘hen oStained in terms
of the known coefficients a _q as well as b and Ch given by equations
(3.114) and (3.138) respectively. Linear f- tenﬂsln the equation (3.147)
will yield a constraint determining the’soliton velocity o. Such a céQf
straint will also appear in higher order terms so as to render the s

perturbative analysis of this section self-consistent. In‘the pext sub-
s . A

section, we therefore apply the ASymp;otfc expansion method to solve

.



“h
> ) ~ ‘

(3.147) for thé perturbation 4, . ‘Cemputa/tions” will be restricted to

< thifd order and an aT?gori,thm will be devé1oped putting the complete
Tuti nto an elegant closed form. .
so“u p“ g‘r | ..
3.2-A Closed Form for Soliton Solutions o {
. Insert'ﬁqg the asymptotic expansions (3.110)n(3.112) into .the differ-
ential equation (3'.147) for tHe perturbétion yields, up to the//inear f-terms, ’
: Yo . . ) .
- ao =‘ 0 ‘ 3 » ‘ -~ (3'157') L)
and. ’ ' - | u :
' DO(B)Aqal = 0,(8)s,by*D,(B)c; . (3.158)
q - ' e : . \ &. < .
~Since the left-hand side (1hs) of %3.358) contains DO(B) which satis-
fies the on-shell condition (3.57),,t thetefore vanishes while leaving
_ ‘the coefficient a; undetermined. Insertion of (3.114) and (3 138) for the
4. : ‘ N
> coefficients b1 and ¢y as well as (3.152) and (3.156) into (3 158) yiélds
the foHomng condition on the soliton velocity, "«
’ 2 [(2r+1) +02] %[‘s-m ¥ (-0 )4 0 . (3.159)
v =S .
. s
Settmg the surface term to zero, th(c0nd1t1on(3 159) 1s re-written as,
Lo +¢)\c2-2)\ R (3.160)
v which is solved easily as,97 3 ' ‘
« oy {‘(x2+p Y, %0 ' ‘ .
i ‘ o - ) . ) s
2 2ean) o5 sz L . © . (3.161)
7 . - : o
The cond‘ition (3.159) Will re- appear in h1gher orders "f the aSymptcmc .

expansion 1n such a" way as to render the perturbatwe an%xs sel f-

. consfstent As is oBvious from (3. 161),1t is easy to see h perturbatwn "
s
theory developed around the static TLM so1\\1(,-on 1eads to 1ncons1stency for
1 X ,fimte va]uc d‘*’ L. This is the fif'b for which g = 0 an&’ ‘ .
4 : - *

~ l‘ O e
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such a case yields no solution to (3.160) for non-Vanishi;g A.
Goiny now to the computation of the second order coefficient a8, ih
the asymptotic expans1on we find, by equat1ng second powers oﬂ the bosdh

funct1on on bath sides of equat1on (3.147), the following relationghip,

D (2808 ,a,F2(1) = - Dy(28)0 pziz(g)+o (ZB)cz_fz(l) B

. L&
b}

+itrs (115 (1'2')s (2" 1)f(1'#’& )72A b1a1+2A2x(32/m2)b§}

-i_‘ngbl?l{itrso(}l")so(l'z') [-.82-1;21'8%27)[]0(2‘1)1‘(1')f(2')

cites (1) (ehrie o (2s (2 DFaNH2)Y L (3.162)
- al" > w

-

where 3/31" anJ 3/32' mean thg space derivatives with respect to internal
&
- “Mrdmates 1 agﬂ 2' respectively¥ Note that The above equation is

*4
evaluated in the static limit and that we made use of (3.141), (3. 142) as A

* we11 as (3. 148)«?3 152) in its der1vat1on .

P
4 \'let us now define the following differential operators, . 4
A(3)F4(1) = it (110)S (1'2')s @'1)FIF(2') ,  (3.163)°
- Y Al(a)fz(l) z itr‘slo(ll')s (1'2' ){ 8 +21sa J G, (1 2‘) (2 l)f(l)f(z "y
. . FYl
' N . . L Y3.168)
7 and Lo . . T ! w
' C * Lo ' . . q" . L.
L A s itrs (11 )[-s 2182 )0,(12)s (2 DRI F(2N
o ' . - RN €§e P _
. S ) ' . ‘j‘ “h" ﬁzx | K::t . « (3.165)
b : > o ' B “\3~ c"' —";q v " o ) ;;% . :
. - i - ‘ ) ¢ : ‘
re 'y"' 'f.’ ;‘\L- o '
T ¥ . ;
‘ "~ - 3‘ LN
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where again we defined,

-

Ai(a)fz(l) . Ai(Ze)fz(l) . : (3.166)

.

Making use of the Fourier representation for the two-p&int function and
" integrating over internal coordinates as usual, we can get the following

expressions from (3.163)+(3.165),
A, (28) = 81(28)00(28) , : | (3.167)

Ayl28) = -8 tr[6%5(2p,-38)5, (hgpy )5 gpy 80T, (3gP;-28)
o (2n) :
. : (3.168)
and, g ) C\\
A,(28) = -i8 fd p(2p,-8 )S o(PoPy )8 (popl-s)so(popl-ZB) _ ////
(2m)° 3 (3.109)

A
'\

where B (28) was ohtained in equation (3 86). Since A (3) and AZ( )
appear in the linear combination Al(a)+A (a) in equation (3.162), taking .

the trace and Tubming up (3.168) and (3.169) give explititly,

A (28)+A,(28) = -Biv, J l[potpl 2i3(p1-s)]+(p1 [3‘52"’12*1("1'23’?,;

2t 2 2 2
, (2n)° | (pg- Ep) )(bo b- 28)
. o R R )
Carrying out the integration yields, after tedious algebra,
. .-
A (28)+A,(28) = -4iA6[bo(ZBQ + ['& - nl ]] . (3:171)
—2L° x

v
| F
Insertion of the Ai(ZB)'s.(i=0,1',2) into equation (3.162) leads to .

the following re]agﬁdn among.ihqfcoeffiﬁ'ents as, bi\and Ci s

/“/ > . ’ ) -
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’

o g

2 |
168, Pnﬂ.[(zx+1)+02]-+xoo(2e)] 8. b
vem 2 '
- 8a?

7:'; [S-m2 ] c2+A°[a‘1;1-_3_%:_§ﬁ]0;(28) )
-%%E;-blcl[oo(uyr[s_%;}] | . | ‘ (.3.172)

. Plugging the explicit expressions fortbi and <, finally yields,

4

/Do(?B)Aoazt

nd

L

2
D (23)a2 f;f?[jm; [(22+1)40%] ;2; s-

ven' |
. o 168 2 o 2 (1-0
;E;? [x i? [S E?] 1

Remembering equation (3.159) for the soliton velocity, one determines

)

m
d

’

z

P 4

the coefficient az as,

= 80-2 ’ | 7
ay:= 0- 3, , | ‘ (3’.1\ 2

wheré one. has defined, ' T ~

— > .
- QEZAa 2

5 [ x-i; [s-m? (1-02)‘1] . | ‘ ! (3;tz§)

vem q .

. < ’ . . )
Qo shed more light on\the solution for ML, one obviously needs a

-

- computation of'the third order coefficient a,. The following calculation

\

indeed shows that a3 is obtained as a 1ineaﬁ'combinat1on of ay and Q. \\
Equating third powers of the boson function on both sides of the
&/
d1fferentia1 equation (3 147) for the perturbation °1’ one gets the

relationship (note ‘that b,c,* ch)’ !‘ggi'

16

)'l] -2a,} 0_(28) . (3.173)

!

2 ean
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Dd(?s)‘Aoasf:i(H'Dl(3é)A°b3f3(1)+02(38)c3f3(1.)+1tr {

+ 5 (1115 (12')s (2" 1)IF2(11 ) F(2)+#(11) F2(2")]

o [Ai‘albz“zbz)*ﬂ gé;f b,b,)
"
- 19 = I 2 [} [
‘z [s,(11")s (1'2! )[ 8 +213%F] g (2'1)f°(1)f(2")
‘ m ' . >
' l ' 2 3 ' [} 2 ]
‘ +5 (1 )Sq(l 2') [-48 +4xe%2_r.}uo(2 Df(1e5 (2
. A *
. +5 (11) [-43244is$ )0,(1°2")s (2'1)F2(1")F(2")
o 31'1’ -0 o . . . .
W & * - - iI'lF |
. o | } . o S
4 Tl (11&% 8 +2183 (1-2')so(z-uf('l*)fz(z')] . .
- hw | '
‘ s'(11')s (1'2')s (2'3¢)s (3'1)f(1')f(2 )E(3" )[ 383 (v2a xﬁzbi ]
B o] o) 0 0 & s [ 1 1 ‘T]
: oo m

+ i_ﬁ Aibfclf(l )F(2* )f(3 [s (11')s (1 2! 5,!3 )[ B *2‘813_,][10(3-"1')
a -

2
m . X
. ’ £ ? | ) | ‘

+ 5,115 (102" [-°B'+,2’?§ JO; (21305 (3 s

)

77

ol
e |

h . v }6_ -

s, (11') { B +z1quT] 0, (1'2")s (2'3)s (3'DY 17, (3. 176)
] / o

.
) A W : ’

in which we use!’%ﬁain (3.141)-(3;142) and-13.148)w(3.152). ‘The above « ..

relationship is a]&gheva1uated,iﬂ the‘§tatic limit. In order to obtaiq"
T oo \

an equation for ay from (3.176), one negds now to define the following 4

. differential operators for which the boson funttion is andeigenvector;
- ) .

. ’ 3
3 4 :
e
- - e N
- . _ . N
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| 30y ke r 2 | 2
3 (2)F3(1) = qtrs (11)s (1'2')s_(2'1)[F3(1 ) e(2)+£(1)¢2(21)),
- (3.177)
3,()83(1) = qers (110 (1'2)s_(23%)s_(3'1)F(1)F(2)8(3)
) '(3.178)

L (a)f (1) = dtr(s (11')s (1'2')s (2'3") (- 24218y ] 0 {3'1)
- EX A

11 )50(1;2')[-B?+2i827_'r] Do(z'#?)\'s‘;‘("a.l)l |

s 1) (621 ) 0,125, (230 (3'1) )
p 9

« £(1')F(2')F(3") ,  (3.179)

. t [ ] ] 2 . ] 2 1 { ]
itr{ s°(11 )So(l 2 )[-e +213%T] DO(Z 1)F(1")f(2 )/

YL

»

‘ ‘.,»s (11! )(“Z’Bip] D°(1‘2')S°(2'1)f('1')1’2;')} . (3.180)

9 .
R
., and, ~ -, } .
o #6530 = tr (s (1195 (1'2')[-432+4iea )o (2'1)£(1')¢2(2")
o o Szl o :
) L
-/ +s (11') (.-4324,41'33 ] O(1'2)s (2 1)1 F(2') ) . - (3.181)
/ o} Err )O [o 20 .
Again we defined, . [
I = 0 (na) ", . (3.182)
-~ and, T | / . ‘- T Lo L e,
)" = Lhe)e" T A e)

-
in the static limit. Solving (3.177) and (3.178), one bbtains the follow-

ing relationships for J1 Sndfqz,} , N
: ‘ . o ° .* A%

18
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J (38) = 82‘93’ D (3ek A . (3.184)
B,128) °
e A -
and, ' , ‘ ,,,{ : , v :
J2(3B) = 83(38) 00(38) a s v . & (3. 185)

where B,, B,, B, and D_are given by equatggns (3.80), €3.81), (3 82) and '

- 2y
(3.71) respectively. Further si@p]ificat s ymd“

008) = 1 L2, () - (/3N(28) o g, (‘3.15@5*
A T i ,’?? . }
° .

Jy(38) = .%71\_ D, (28) - o (3.87)
o )
(A

.
A

Going now to the Fourier representation and carrying ouf differentia-

»

' ' L]
tions and jntegratiw er internal coordinates, equations (3,},79)*»(3 181)

{
following relations in the stat1c limit,
’ {

for the Li's Weld

N

LA38) = -i8 trfdzp{ (Zpl-s)so(popl)do(popl-s)so(popl-ZB)

"' ° (Zﬂ) ‘ 3 «

A Shere) e g g

J' . . ! ’
+ (2P1'38)S°(-Popl)5 (POPI'TB)D (DOP1'28)$ (%p1'38) N

"1’?3)50("091) o(PoP&B)S, (poph-a”(poplde)} .

- 8 (3.188) ¥
¢ -

(» L (38) = 1:0)2 trjd p{ (Zp; s)s o(PgP1)0, (pgPe- )so(pop1-3e)
. v ) B " .

+ (Zpl SB)S (p0p1)§ (Dopl -28)0 (Popl 33) } ‘(3'1893

u» ‘
L'(Be) = -418 tr Id p{ (p1 -8)S (popl)D tpopl 28)S°(pdp1-38)
. (Zﬂ) .
! . + (pl-za)so(popl)SO(POPIPB)DQ(DOPI-:iB) 3 . (13-190).’

"y
f

LN .
v "T@

*y

b

£
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’(3.175). 1t be

. . . 80 .
- “ . )
Exp11c1t‘qu|&§3&}on of the above results yields fimally, after very

tedious algebr&f . . ¢
| b, (38). = 271 [ (11/3) 0 (28) - D (38) ] . (3.191)

" v .

SRy ; F

and,’ -

~N

Ly(38)4L,(38) = -1218_ [ D,(38) - D_(28) + [S-gz]] . (3.92)
g

F

<

Ingertion af the expressions (3.186), (3 187), (3. 191)‘and (3. lsz)w Y
for she- 4% § and L . & as weTT“aS’tﬁe~ré\ations‘QBvQSQY'and (3 156) for

D1 and 02 into equat1on (3 176) for a3 gives the following.

D (38) = 3683 1, [(2 +1)+a%] + D _(38)] b - 3
J\38)a aq __2% [ﬂ 2\ )+a AD_ 8)] 3 - o .,‘. :‘T
vem™ L g BN
2.3 e L
-lngo[S-m]z(l- ) ls, % Ry
‘ B aybyraghy)-2%0b, b, 01720, (35)- (1300, (20K W
. ’ vem : .
2.3 y N '
- 12 “obyby - mi)(to JNCACREXCON L
N vZn 9" : 9 |
3 b or .2 4xal 3 e ‘
. + %5 [ bla, - meob’ ] D (20) A
52 [ 19] 4:2;7 1 ] o ‘ \ o
: 2 3 o ! | |
Y. Aobf(s-m:](1-02)’1[%}00(28)-00(38)] (a9
o Jvem g .

in which,we used reldtions (3.138)-(3.139). The abovg equation for 3,

en use is made of equations (3.114), (3.174) and
/

4
,I.a

e <



y 27 ’ .o
D (38)a, = ~7%8, [ m? [(2+1)+0d] -g2 (s-m)) 2(1-02)7! ‘
° ’ sz.m2 [g f,?[ ;2] , ] '
2
+ (%,- 3 -g? (s-m? (126271 7) 0 (38) . (3.194)
o £ 4 [ ]

The first term on the rhs ‘o‘f (3.194) is nothing but the condition (3.159)
.for the soliton velocity. It *refor“anishes. * ‘gird order y
coefficient a3 is therefore determined as, s

2, 32y - 240 o ,, -'&.’ ‘ (3.195)
with Q given by (3.175).
| The rgsu]tS‘(3.174)(and (3.195) for theAébeffﬁlﬂents‘az and 2, of
the asymptotic expansion for the perturbation °1 seem ;o indicate ;hat

the generic form for the coefficients a, can be written as,

- . > : ,
a, AnQ Bna1 i n2l (3.196)
\
The following solutions, ’ .
Bn‘s -1)" n-l,\.’. | ’ ’v (3.197)
and, : : ' Ny
A0, SN " T o (3.198)

are consistent with (3.174) and (3.195). Finding the sequence {An} is
less trivial. In ofder.to discover the‘correcg sequence, we need to
>

inspect the structure of as well as that of the steps (3.172) and

. * N $ B -
(3.193) in-the computation for 2, and a,. The key quantity is the sur-

face term S which always shou!'up as powérs of the expression (S-mzlgz).

l 4
From (3.173). and (3.194) it is easy to recognize that*he caicylation of
. : ) .

a ts displayed in the following characteristic form,

81
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2.2
0 (ne)a, = 2" % [ £q.(3.159) 1b_
vEm2 N
‘ :
I; E AnQ- Bnal ]Do(nB) ; n=1,2,3 , (3.199)
® ¥
which is a mere resta&enent of (3. 196) since equatiin (3.159) for the
soliton velocity gives no contribution: The coefficient 4n e%pearing
in the first term of (3.199) orlg1nates from the explicit'form (3.152) =
. for Dl(ne). In an earlier stage of the calculation, equations (3.172)
-
and (3.193) indicate that equation (3.199) takes the- form, *
.\,
42,2 ~\
D (ng)a = & 2[(2A+1)+02] . dndg. - ) ¢
° N TTT | T2 _ ‘1*7 2 '
va g v#m
’ % 4 ..
) .
Ao [ 8 1 [ ](1 o ) D (nB)'
mzv2 N
4
D g
2| "2 .
, v g — -
N ot Db(ns) . 3 .n=1,2,3
- (3.200)

*Thé coefficients of the first two terms in the above expression are
obtained from (3.152) and (3.156) for D (nB) and D (n8) respectively. The

th1rd term is a linear comb1nation of linear and quadratic forms for

(S-m /9 ) with ,coefficients 6(1) and 6(2). It originatés from computations

4
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involving Eo' The remaining term is denoted by Y, and plays no role in

our‘ana1ysis. Insertion of (3.138) for <, into (3.200) yields,

2
- 2 2 2
| Do(nB)an = 4 { 4n [mz[(2x+1)+o ]]bn
. ;E;z A
i o 2 22,, 2
-4n [ g° (S -m)%(1-0%)77] b
" 2 2 ‘ n .
L J m \ g
-5'(‘1)';22 'S - EZJ (1_02)-1* Do(nB)
D% 2 h
\ -m \ g o
. <+
SO (5wt )
m g e ~)’
o SR 1y Dglns) ‘ D remel,2,3 . (3.201)

v

. ﬁ;q-.u;» R3S Angy e

Lo EY

Since the factor (S-mz/gz) appears linearly in theiexpression (3.179

+

for Q, comparison between (3.201) and the form (3.199) identifies A, as,

, ' -
(1) - %
A, =% s ine1,2,3 1 (3.202)

~» y ‘
A

4 ¢ ’
Now since the same factor (Somz/gz) !%pqars quadratically in‘the

. cYndition (3.159) for the soliton velocity, a%ain comparison between

(§.201) and (3.199) yields, B, PN
L - .
L= , L . ~
6£2) = (4n2-4n) b, 3 n=1,2,3 . . (3.203)
From the criti%alébservation,
6'(‘1) . 5£2) s L3 (3.204)
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we finally obtain the following form for A, by comparing (3.202) and

A
(3.203), : DA v
A, = an(n-1)b ; on=1,2,3 . 13.205)
Insertion of (3.114) for bn gives,
A, = (-1)" 4n(n-1) ; n=1,2,3 . | (3.206)

R

which agrees with earlier results. tpon the'assumption that the generi¢

forms (3.197) and (3.206) for Bn and An remain valﬂd'for all n, equation

(3.196) for the coeff{cignts a  now becomes, | S A

7 | S :

a, = (-1)" [n(n-10 - nay] 5 md . {3.207)

~Remembering the expansign (3.111).61(x) is now determined as,
w ‘

3, (X)" < 4Q I (D" n(n-1) 8™
n=1

(-1)" » e " S X0 . . (3.208)
Now since,

tanh X =1+ 2t

7 n=1

and, sech X = 2 ¢
2

L 4
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" ( cg
one can show that, o \*@}f,h N
| 1 —~
sech’x 4 -4 I (-1)"ned X>0 (3.211)
n=l s
and, | 1 - . . I
sech’X [tanh X - 1] = -4 I (-1)™n(n-1)e™ ;  x>0.(3.213)
K ? n=1

*

Insertion of the latter results ‘into the expansion (3.208) for the

pertﬁrbatioh;@l finally gives, ‘ -

] g 2 .2 vy
& (X) = a, sech ; Q sech % [tanh ; =e1] 3 o ,(3.m3)
@, T .

with X given by (3.96)-(3.97) in@@ich the velocity O is constrained by

equation (3.161). . i .
Remempering the definition (3.2?) as well as the perturbation

expansions (3.98) and (3.99) for the optical and acoustic phonon solitons

on the posftive X interval, the solution (3.213) and (3.139) yteld,

- o »
] WX) = tanh X + v2[ (a;+Q) sech? X - Q sech’ X tanh X 1,(3.214)
2 ! 7 72
Yy <
. . ,} \
Gaeoand, L N »
ST - Ag5(X) = R tgnh X ¢+ constant -, - (3.285) ., .
bo. Y '2‘ ' . AR ’,“‘ .
where, setting the surface term to zer6, Q and R are given :§§:27£;>
2 ~
Q= 2% [a+(1-0?)1 : - (3.216)
=% )

) \
s ¢ m .
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and, (9 - . ; .
R = -8 (128! ‘ ’ 83.217)
g (
Kssuming the following topological property for ¢(X) at any finitg
tim' ' ,‘ \ , ,‘
d(+=) = ~g(-m) = 1 : " (3.218)

r

«

‘as well as a simflar relation for the acoustic phonon order paramete®
‘with proper normalization, one should have,for the same time, the foHow-

ing condition at the soliton center,

¢(0) = <¢>(0) = 0 .o o (3.239)

- These boundary conditions imply that the constant appearing in thﬁ
expression (5.215) for <£> should vanish and that the cothant 3 1nvf
(3.214) is now determined as, | - . ’

. : |
a; = -4Q

- - -~
-

o~ = . ’ h ) ’ > )
There#dre, for all X, one gets the final result, - 4////
: A ) ‘ .

oXx) = [l - VZQ sech? % ] tanh % T ’ (;.221)

. d ) ) s

| and' . ) .{ E. .
o . . . M s

<g>(X) = R tanh % L ' ) ‘ \ (3.252)

- P . A
‘where dots stand for higher érden terms -in acégstfc phonon velocity

' 4

perturbative expansion. = - = - Co

4



Qur-results therefore suggegt that, although the modi%ication to the
*optical phonon soliton shape due to acoustic effects is small, acouétic
effects induce the motion. of the soliton acrosé the molecular ‘chain. Ffor
the allowed range of * given by equation (3.161), the motion is that of a
uniform translation. On an experimental basis, this implies that, far
froﬁ impurities‘where pinning eff?cts may be neglected, the solitoﬁxtr;n&.
lation should be observable, if aéoustic effects could be observed.
Furthermore, because the motion is uniform, the fermionic zerv-energy
mode at the Fermi surface survives in the frame moving with the so1it$a.
‘Therefore the so-called charge fractiomalization mechanism»is still “
operative, at least in the context of our quasiréé]iétic model .

Note thatlé value +=-4.22 for the effective phonon-quasielectron’
coupling yields the maximum soliton velocity VS;1:2'7V obtained by.Bishop
et a1,91 from numerical integration of the discrete SSH model. For
positive A, the acoustic phonon veloc1ty v plays the role of a spoed of
light since the soliton velocity can never be greater than v. The region
-24<0 may well correspond to a forbidden kinetic zone for constant
translational motion.

Although we sycceedea, in this section,in finding closed fo%m analytic
solutions to our quasirealistic model for trans-polyacetylene th;;ugh '
self-consistent perturbation theory and the asymptotic expansion methpd,
use of algorithms and extrapolations were needed because of the increas-
ingly ferocious algebra encountered when going to highe;-order computa-
tions jn the asymptotic expansion. ‘ |

In the next section, we will present a self-consistent proof of the
results obtained in this section by cﬁmputing explicitly theﬁquasielec- ;

tron wavefunctions assuming that our soliton solutions are valid.
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Inserting back the latter wavefunctions into the field equations for the

solitons will show that the results are indeed exact. We also compute
the corrections, due to agpustic effects, to the zero-energy fermionic

mode of the TLM model.

4, Self-Consistent Proof for Soliton'So1utions

N

In the last section, we shcwed how to solve anaﬁytica11y the quasi-

realistic model for the polyacetylene molecule which includes acoustic

L]

phonon interaction effects by use of a self-consistent perturbation theory
for " small acoustic phonon velocity and thg asymptotic expansion method.

The results for soliton solutions are summarizgd as follows,

o(X) = ¢ (X) - Vi (X) % ..., (3.223)

L

and

<g>(X) = £ (X) ; ces , ' (3.224)

o) i
~ for the optical and acoustic phonon order parameters respectively in

which space and time coordinates always appear in the special configura-

tion X (generalized coordinate) defined as,

1

x = 28 1 (X, ty X _-X) . (3.225)

- 1""s01 0
Fo(1-ve . /ve)t
sol’ ' F

and restricted by the following condition on the soliton velocity,

25 2 ‘(x2+2nLs - A ; 220

v . i(x2+2x)li - ) : Ag=2 . (3.226)

88
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Vi

The solutions for 00, 01 and 50 have been obtained explicitly as,

' 5o(X) - tanh X a | H (3.227)
Toy) = 0 seen? X tanh X = qlegeg) ' ((ﬁé}a)

and 4
fl) = By | (3.229)

in which the constants Q.and R are given as,

2

Q= D (1-02)71] , (3.230)
and, |
R = -8 (1-5)0 . ' (3.231)
9

Although the configuration X given by (3.225) has the form o; a
boosted coérdinate. Lorentz invariance is broken by acoustic effects
because of the constraint (3.226) for‘the'ﬁoliton velocity which chooses
a preferred frame moving uniformly with respect to the reference frame at
whic‘h the 1att1‘ce"}‘\'ts are at rest.

In this section; we propose to'present a sg]f—consistent proof for
themabove soliton solutions by explicit computation of the fermion wave-
functions.96 To this purpose, the form of the relevant set of field
equations most easily manageable is given by equations (3.14), (3.15) and
(3.16). The strategy of our proof‘consists then in obtaining the quasi-.

electron wavefunctions ffom the mean-field equation (3.14) by assuming

S) from the St‘fﬁ the validity of the solutions given by (3.223)~(3.231).
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Having obtained an expression fo} the latter wavefunctions to correct
order in pgfpurbation theory for small acoustic phonon velocity v, we
then insert them back into the rhscof equations (3.15)-(3.16) for the

. optical and acoustic phonon solitons, thereby checking the exactness of
', the original assumption. In this way, we are led to a relativedy simple

and quite elegant self-consistent proof.

4.1 -Computation of the_Quasie]ectron Wavefunctions

- .

In order to bring our proof to success, one first has to apply
perturbation theory to the set of mean-field equations (3.14)~(3.16) as
is nafura]Iy suggested by (3.223) and (3.224). This, of course, requires
a cofresponding perturbative expansion of the quasielectron‘fie1ds for

small acoustic phonon velocity. In our perturbative analysis, as in the

90

previous section, some care is reqdired when expanding the electron fields.

The- difficulty here is that equation (3.14) for the electron holds in
the framé which is at rest with respect to the lattice points. Since our
soliton solutions (3.223)~(3.231) indicate that_t;e unperturbed state is
the Lorentz invariant part obtained in the boosted, frame, the unperturbed
quasielectron fields must thén transform as spinors under Lorentz trans-
formation to the boosted‘frame. However{ equation (3.14) is not Lorentg
invariant. We therefore implement a Lorentz boost on the full equation

(3.14) and then extract the invariant part as the unperturbed state. This

procedure yields a consistent perturbation exp;nsion of the quasielectron’

fields in the boosted frame. Implementing the above procedure, let us
multipfy equation (3.14) by the 2x2 matrix 13 and re-write it as (to v2-

order),



9
[ir, 2% 48,0, (X) Julxgex,) = vz[%olxx) + Mg a2y (x)
2 ' L .
+ 1v,9 %6 (X) + 23g(X) 3 ]w(x xq) 4 £3.232)
14, [(—% o =" o1/ 0 1S
L o SRR C RN

in which we used expansion (3.223)-(3.224) and where we switched to thé

convention,

x, (vfxO'xl)A~ . | s (3.233)

Also we defined. -

vF(tl,rlr3) —_— ‘ (3.234)

in which the y-matrices satisfy the usual Clifford algebra,

r

{Yu.Yv} = 2g (3.235)

ne ’

a

-

and where diag guvisgiven by (1,-1). In the remainder of this section,
the convention (3.233) will always be implied. The generalized coordinate

(3.225) is now re-written-as,

X = 28, 1 [y ¢ (vl /v - %1 (3.236)

v ¢ 4.0
Fooll- vggr/vels

Note that the chemical potential u has beén ?et equal to zero in ﬂ:232).
This is merely a redefinition for the zero pofnt of the,energy.
Boosted coordinates X, are obtained from the rest-frame coordinates

(3.233) by the following Lorentz transformation, \\//
J

3



+ v "
xu ALI xv [} ' - (3.'237)
where,
AV =[coshe sinhe ] ¢ . (3.238)
¥ sfnhe coshe

o being the boost parameter. It fs related to the soliton velocity

through the following relations,

coshe = 1 . ‘ (3.239)
(l-vszﬂ/vrz) % : ! '

i
and,
sinhe = Vso1/Vf (3.240)

——
(l'vsol/vF) %‘ -

It is easy to see that the generalized coordjnéte X is related to the

boosted coordinate X, as follows,

1 -
. 4
X = 280 (Xy-R3) - - (3.241)
v .
F . -
| : y C
where, _ I </ ; —_—
Xl = coshe X, , ) (3.242)

in which the initial time io has been set eqdal to zero.

We now define, ’ ‘ ‘

e

W(xgux,) sy (KgeXy) - (3.243)

where the Lorentz transformation matrix S is related to the Lorentz boost

- matrix (3.238) by the following basic relation,

92
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-1 -1, v : ‘
SY, 8 = (A )u Y, - N - (3.244)
- From tﬁ; relations (3.234) and (3.238) we obtain explicitly, - a3
: - e o G
/cosh 8 + ' ! ‘ ’
g | 7cosh® +sinhe ‘ -, (3.245)
0 vcoshe + sinhe \
. \ : o X
and, \\
- - /cosh 6 - sinh 6 |
1. [ os sieh s 0 : (3.246)
0 ~ Ycosh® - sinhe ,
These matrices enjoy the following properties,
+ - : |
STxs g SThaevygSyy | (3.247)

, \

From the equations (3.239)-(3.2‘0) for the boost\as well as the

constraint (3.226) imposed on the so}iton ve?ocity. one edsily shows that,

S=1+0(v) |, _ ) | (3.248)
e
and, .
AUV = Gu“ + 0(v) . (3.249)

—

We are now ready to re-write equation (3.232) for the quasielectron
fields in the frajf moving with the soliton. Inserting equations (3.24}L
(3.243), (3.244) s well as the approximations (3.248)-(3.249) into  ~
"‘

(3.232), one obtains the following field equation,

2 2

[ir,0%+a 8, (X)) JulXgax)) =

8,9 (x ) + Mg 3 ¢, (Xy)
1 —, 0 1
) ' m aXl
+ 1Yl_s [a EO X ) + Zaio(x ) d ] W(Xo 1) *+...
2 o X
n’ aX1 % 1

N o (3.250)
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where the dots stdnd for higher order terms in acoustic phonon velocity

and in which we defined,. | /

(3.251)

v

.250) is Lorentz invariant and therefore the

s
breakdown of this invariance is of order v2,

\
The 1hs of e

We are now Jjustified in expanding w(XO,Xl) perturbatively,

E .
Y '
w(xo,xl) T wo(xo,xl) + v wl(xo.xl) + ... . (3.252)

: 4
Insertion of the latter expansion into (3.250) yields separate

equations for wo and wl,

/[iruD“ + oo (X)) Ju (XguX) = 0 , (3.253)
and, . {ir 0¥ + a6 (X)) ]wl(x X;) = [AO¢I(X1) - su(x)
m
. \ .
+ig v g(Xy) * 25 (X7)8 Yl (X5, X, ).
izllol 01H13]001
. : | (3.254)

Making use of (3.234), the above equations are finally re-written as

follows,
v )
Tved  +ivetad + 4 ¢ (X )ty Jw _(XnqeX ) =0 , (3.255)
B R 171 1% oty
o 1
and, [WF%i ‘?TvFr3%Y +.0 (X)7] v (XgeXy) = F 16, (X))
o\*\ 1 .
* TN en X))+ igrgpen(X)) ¢ 2sg(xl)3_]}wo(x0.xl) .(3.256)
7 7 — ! |
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Obviously, prior to solving (3.256). for the perturbation wl.bn( 008§
first determine the unperturbed spinor wavefunctions v, satisfying the
field equation (3.255). Such wavefunctions have been computed some time
3go and a detailed review of these computations can be found in references
(92) and (93) .

Looking for stationary solutions to equation (3'255)'," write,

fo1low1ng'Nakahara.92

1 0(xy)
viXgeXy) = |5 -iw X \ 3.257
-la “{V(xl)] i Ve ) (3.267),

where the functions U and V are expanded as,

0(x)) = 0,(x;) + vzﬂl(xl) .o, (3.258)

and,

V(X)) = Vo(x)) + vZVI(xl) . (3.259)

o]

in accordance with (3.252). Equation (3.255) now yields coupled differ-

ential equations for ﬁo and ¥,

wl +iv 0"+ 20V = 0 . (3.260)
0 F o 00 0
and, —
WV - dv V' +a 60 = 0 (3.261)
0 Fo 00 0
Defining,

t.z0fdv=70 4, f(l) = (0, 2 1V,) + vz(ul + 191).(3.252)

+

s

equations (3.260)-(3.261) translate into the fol]qwing.



u?£°) . 1vr?£°)': 1A°0°?:°) .0 . | (3.263)

Equatfons (3.263), after some iin1pu1atlons. can be written as the follow

ing uncoupled second order differential equations,

-

A (0", (.2 Azozzv 80! )?(0) . | (3.264)

Upon a suitable change of variables, the latter equation is recognized as
the associated Legendre differential equation. The unperturbed spinor
wavefunctions are then obtained as associated Legendre polynomials.

Further defining,

0= uelk | (3.265)

Vs velkl " (3.266)
and

RIT

foefe 1 (3.267)

equations (3.264) have been shown to yield the following unperturbed

scattered wavefupctions,

(), - A [ “\*VFk]"iAoZo] . (3.268)
T ey Wy |
and, .
(v) =M [“ [y -vek1® icﬁo] v (3.269)
k 7 Wy Wy

v
9

where the GQ{lion energy is given as,

15? 2.2,,2 o

W L 34" k 1"A (3.270)
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Besidesscattered solutions, there is also a zero-energy noi:)bound
L
. [

state obtained as,
1 4

[) 2
(0g)g = +104)g * %‘/;!F/l KA (3.2m) <

Note that the normalization factor Ak' which we leave undetermired, can

be obtained from orthonormalization of the eigenfuncsions f(g) of (3.264).

Rl

i -
The normalization of the bound state (3.271) is obtained from,

jdx1 () (e 0wy . (3.212)
-Since (f(e))B vanishes, the zero-energy mode therefore turns out to be a

Majorana Spinor (charge selffconjugate). Having determined the‘unper-
turbed spinor wavefunctioﬁ.s we now turn to the problem y‘solving the
perturbation satisfying equation (3.25611 This turns out to be a
relatively easy task. Inserting (3.257), (3.258), (3.259) as well as
taking into account the definitions (3.265)~(3.267), equation (3.256) for

the perturbation yields the following coupled differential equations for

U1 and V

l’

\ ) -/
(m-ka)Ul¢ivFUi+A:®:V1 = 60(01*ifz}vf + ig (52421kg;)uc+ Zigg:di-‘
' m2 m2 . ;? )

713.273)

| AN
and, (wrvk)Vy-tveViss o Uy = Ao[al*:jg]uo - 12 (e+21ke )V - pigelV!
K m? e
)
A (3.274)

K
in which the subscript k or B, accordfng to whether one deals with scat-
\&tered wavefunctions with momentum K or bound states, have been omitted
for notational convenience. Note that the rhs of (3.273)-(3.274) anty

completely known and act as source terms. The lhs for the perturbation
: P
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Lod

u1 and Vl,is same as equations (3.260)-(3,261) for the unparturbed wave-
functions U, and V. We therefore axpcct‘thc appearance of a hamogengous
term Nnear in U_and V  in the final ’xprJ;sions for U; and V,. The
coefficient of such a 1inear term should be determined from an ortho-
gonality condition between the unperturbed and perturbed wavefunctions
f‘o) and f(l) rospcctivcly |
) First dwtlllng upon the problem of finding scattered so]utions to
(3.273)-(3.274), one realizes that the latter equations are nothing but
polynomials in ’o when we make use of the following properties foroo.
. - v: (l-o ) & ey = -23% (.o-.i) . ) (3.275) \
VF
as well as the expressions (3.228)-(3. 229) for ¢ and ¢, and also
oquations (3.268)-(3.269) for unperturbed scattered wavefunctions
Assuming that the perturbations'(ul)k and (V,), are also given as

polynomials {ne_, one easily finds from power-counting arguments that

they can be at most third degree po1ynon1§ls. Therefore one writes,

Py

() = ;5 [(ao)k+(al)kooo(a2)kof +(a3)k¢3 1 . (3.276)
and, -
(V) = A [(bg) +(by)ie +(b,) 0% +(ba)ie® ] . (3.277)
17k YaE 0’k 1'k% ‘2K 3'k%,

Again making use of the properties (3.275), insertion of the above
polynomials into (3.273) and (3.274) reduces the problem to a simple
algebraic determination of the coefficients ai's and bi's. Straight-

forward algebra yfelds the following so1ut]ons.

t

(Uy)y = (U )6 + Ak[%oﬂ‘ [1(& vEk) o= (ugt3vek )o2-31a00] ](3 .218)

vim© &, Zwk 2wy

A}
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mml,(vn (v),.ﬂp;ﬂ[uur”‘”“‘”'”’“‘jugﬁ)-
S LI
N\ \ N

Y
“’ .
As “expected, a homogenegus term has appesred and the’coefficient & -
_ } ' _
must be evaluated from an orthogonality condition between unperturbed and
) [ 4
perturbed wavefunctions. Carrying out such an orthogonality condition
determines ¢ as,
g = 98B (3.280)
‘
vs.n2 ,
. 3
FinaJly, turning to the computation of the perturbation to the zero-
mode bound state (3.271), we not}ce the following properties, .
Y e L O
(Uo)B I N (Uo)s ' . . {3.281)
v
F
and, ' « .0 ‘
(Vg oo (V)g . (3.282)
v ‘
F -
. \ N
which are easily obtained from (3.275). Because of the latter relations, \
one recognizes that the set of equations (3.273)-(3,274), when applied to
o~y
the bound state problem with w=0, suggests thag the ratio of perturbed
and unperturbed parts for the fermion wavefuncfifons is again a pplynomial
fn ¢ .. Power-counting arguments show that it is at most a second degree
polynomial in ¢, - Therefore one writes,
' 2 - |
(U))g = (ag*ago +ane) (U ) (3.283)
" and, . v </\j
. 2 N \\)/
(Vy)g (bofbloowzoo)(vo)a . (3.%‘34} N
L e
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Insertion of the above expansioh,btogether with (3.281)-(3.282),
ihto the differential equations (3.273) and (3.274) with w=0 finally

yields, / ' ‘ N

=a. (i=0,1,2) ; (3,285)

1 -
B al = () 1 az = -3A09R . (3-286)

R i . ’ 'OV'Z:ITIZ
\]
The remaining ao-coefficient plays a role similar to 6§ in the

computation for the'scattered wavefunctions. It is obtained as;

- L9R ' : (3.287
=3 o -287)
vem /' .

\

when implementing the following orthogonality condition,

* _jdxl (ff°))8(ff”)B = 0 ) \ (3.288)

- "
.

N

Having determined the perturbations (3.278) and (3.279) for scat-

. P
[

(3.16) for the optical and acoustic phonon solitons are satisfied for ‘the
set of solutions (3.223)v(3.231) by insertion of the former wavefunctions
into the source terms of the latter equations for the solitons. This is

done in the next subsection.

4.2 -Verification of Sofiton Solutions

Turning to the optical and acodstic phonon equations (3.15)-(3.16), we

!
now.insert the perturbation expansions (3.223), (3.224) and (3.252) into

“
\

N~

tered wavefunctions, we are now ready to check that equations (3.15) and .

100
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them. Remembering (3;243) for Lorent? .transformation on spinors as well
as the properties (3.247) for the Lorqﬁfz tranformation matrix S, equa-
, /
tions .(3.15)-(3.16) lead to, -/
2, _ try !
mz 8,0,(X)) = <01w0(§0.xl)r1wo(xo.xl)|0> > (3.289)
g.. 'v'
2 2 & . ]
U, TR pg ) - m ety .
a(.\ZFXO) 3)-(01.- g / g ”, ) .
070 ¥ “ -
<05 (XgaXy dryuy (XgaXy) + wy (Xgaky drqug(XgaXy ) 10>
2 t
"L e 0fv (XgaX)rqw (XgXp)0> (3.290)
m- 9x : .
- 1
and,
2 . 2 o ‘ - 4+ -1+ -1.2
[-av 2 * 3——2] Eo(xl) - -19-2 <0| [WO(XO’XI)(S ) T3s a—zwo(XO’lxl)
3(7Fx0) ax] m 3xy
2 ¢+ -1t -1 ’ )
32 W (XX )(ST7) Ty wo(xo,xl)} 0 - (3.290)
3x]

-

' Equation (3.289) is. the unperturbed ébqsted TLM equation for the
optical phonon soliton. Carrying out the time-derivative operations in
(3.290) and (3.291) and inserting (3.289) into the rhs of (3.290) while

remembering the approximations (3.248) and (3.249), equations (3.290) and

.

(3.291) are re-written as,

2 " - + "
(1-0%)gn (X)) = -132 <0[v (XgsX ) 1qu2(Xg,X() 0> + c.c., (3.292)
m
and,

(A+1+o2)f% o0 (X)) - mzao¢l(x1) - <0|wZ(xo,X1)rlwl(xo.Xl)|0> ve.c.,
. 2 L 4 ] .
g . g | ¢ (3.293)
L ]



’ '
v

102
where the primes indicate space-derivatives with respect tokxl.

Inserting equation {3.257) into the rhs of equations (3.289), (3.292)
and (3.293) while remembering the relations (3.268) - (3.259) and (3.265) -
(3.266) and summing over the momenta yields the following relations,

2 . . L 2
m 8¢, T (v (v + (VD (U, ; (3.294)
9

 for the unperturbed TLM soliton,

2 " o A * " * "
(1-a%)e; - i, 0,0 003), - ), ]

- [(u;):(uo)k»- (v;):(vo)k] yoo, (3.295)

for the acoustic phonon soliton and,

FUDV), V(U] . (3.296)

for the perturbation to the TLM soliton. Making use of the unperturbed
fermion wavefunctions (3.268)-(3.269) as well as (3.%70), equation (3.294)

for the unperturbed TLM soliton gives the following,

EZ 00, T o8 T ko . ' - (3.297)
: -k w
.9 . k

- :
= - Ak . : (3.298)



Again, use of the same unperturbed fermion wavefunctions (3.268)-
(3.269) together with (3.270) enables us to re-write equation (3.295) for
the acoustic phonon order parameter in the following way,

2
Ay

2 " = " B
(1-0%)e? 32A°¢o i _a (3.299)
m k

Use of the gap equation (3.298) together with the form (3.229) for £
[o]

determines the constant R as,

R = :fb (l-c2 -1

: | ; (2.300)
. . _ i

which readily agrees with the result (3.231) obtained from the asymptotic

expansion method.

©

Finally, let us check the most critical pért. that is the solution
. #
(3.228) for the perturbation to the TLM kink. From the explicit forms

(3.268)-(3.269) as well as (3.278)-(3.279) for the fermion wavefunctions,

103 .

one gets the fo1lowfng‘re1ationship, ////

* * -

((uo)k(vl)g # VU (U V) (), (u),)

A [[gAOR] [ZAOJ(2¢3-®O) - Zﬁe?oé] , (3.301)
VFI‘_I'I2 w_k wk
where use was made of (3.270). Insertion of the above relation into the

rhs of equation (3.296) for the perturbation 01 with 6 given by (3.280),

and again making use of the gap equation (3.298) finally yield,

2 2, 2 .3
b ¢y = 4353 (oo-¢o) . (3.302)

Joger -
7

(A+1+g
20

o |3
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g

Inserting (3.228), (3.230), (3.231) as well as the relation (3.275)
into (3.302) leads us to the following condition for the soliton velocity,

A +1+02. (105 a0 - . (3.303)

e

~The physical roots of the above equation are easily obtained as, : 

2 ‘(x3+2x)k - A i A0

g =

:(x2+2x)5 - A ; k"z. o (3.304)
which readily agrees with the constraint (3.226) obtained from the
asymptd&ic expansion method. This completes our proof. |

4 Tht.stt of solutions (3.223)1(3.231) therefore satisfies the mean-
field equations (3.14)v{3.16) if and only if the solitons are time-
dependent and‘constrained to move uﬁiformly across tﬁexljnear molecular
chain with the velocity controlled by the acoustic,phonon\QéTecjty and
specified by equation (3.304). Nofe that in the above cpmputatioﬁﬁ,

only scattered fermion wavefunctions contribute in shaping the solitons.

~ Furthermore, in the boosted frame moving with the solitons, the zero-

energy mode bound state survives acoustic effects and consequently the
so-called charge fractionalization mechanism remains an observable in the
context of the gquasirealistic model. If the completely realistic model

admits more complicated time-dependency, as suggested by recent numerical

91

calculations™ on the SSH modelt\such_é mechanism is expected to break

down.
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CHAPTER IV

THERMODYNAMICAL PHENOMENAT' THERMALLY INDUCED SUPERSYMMETRY BREAKING

1. General Considerations

In this chapter, we intend to discuss a second aspect of macroscopic

phenomena arising in quantum systems through the study of the spontaneous

symmetry breaking {SSB) of quéntum symmetries by temperature effectsﬁl-sa '

Although we discuss on general grounds :the SSB of internal and externa’|53'54

(space-time) symmetries, we will concentrate on the particd1ar case-of
supersymmétr_y“'52 (SUSY) by first reviewing briefly the Wess-Zumino

mode149'51’11}'113 (WZ) and then by giving a more detailed analysis of

152,114 111-113

the 0'Raifeartaigh mode (ORF). While the WZ model is the

§upersymmetfic theory of interacting one-component scalar superfields,

1114

the ORF mode is a.more‘general (extended) supersymmetric theory of

interacting multiscomponents scalar suﬁerfields.'
In-section 2, we difbuss'whaf%ﬁéﬁpbhs;%dlﬁhe:§3)dstone theorem at finite

temperature for the Lorentz sypmetry{aﬁ& xﬁe ﬁlgsﬁlu;ino supersymmetric

model.r Section 3 will be devoted to the‘aﬁaljs;s of the N=3 0'Rai feartaigh

model for which supersymmetry is a1re5dy spontaneously broken at zero

temperature and which exhibits a mixed mechanism of symmetry breaking

when temperature effects are switched on. In each case we discuss the

LN

Goldstone mode phase structure and identikasuch (zero-energy) modes for
éoth the frée and interacting theories. )
In section 3, .though we do not go into a detailed-calculation of
the Ward-Takahashi identities of the ORF model, we speculate on the
physic$1 spectrum through the computation of the fermion propagator

matrix obtained in the infrared region. The results are compared with
105
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the corresponding physical spectrum of the WZ modé} in the Goldstone phase.
"Because of the added internal degree§ of freedom, the ORF model has richer
.symmetry content and will be~sh9wn to allow for dif%erént phases to coexist?2
In this chapter, we adopt the conJention of Wess and Zumino for which
the y-matrices are taken in the real Majorana representation, (yo)zt(ysfx:L

and the metric chosen as 900"911"1'

© 2. Review of Thermally Induced Symmetry Breaking

N

When one wants to answer the question asking what happens to the

symmetries of a system when it is brought into contact with a thermal
reservoir, one first has to specify the computational formalism for calcu-

et

lating statistical averages. Here and for the rest of this chapter, the

23-37

elegant thermo-field dynamics (TFD) formalism will be used. The main

advantage of the TFD formalism is its deep resemblance with ordinary QFT
at zero temperature. fémperature comes in the theor}iby,making a canon-
ical (Bogoliubov) transformation on a zero temperature system with twice
the original number of degrees of freedom. The "second field" or tilde
quield is an unphysical ghost-like particle wilh negative energy. This
**tyermal hole" consequently never appearg’as an external line in the
expres;ions for_N-pgint functions. The above Bogoliubov transformation
is in turn used to define the thermal vacuum of the theory. Expectation
values of Zero temperature field operitors. making use of the thermal
vacuum; are then shown to be equivalent to usual statistical averages.
Because temperature dependentAvAcuum expectation values replace the trace
operation, the TFD formalism therefore al]ow§ for a7f1e1d theoretic
interpretation of any spontaneous symmetry breaking by temperature effects.

w

This is then the ideal formalism to elucidate the Nambu-Goldstone phase

26,123-125 structure of a given system at finite temperature.

\
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At zero'temperiture. a given symmetry is said to be spontaneously
broken 1f the vacuum does not carry the symmetry of the Heisenberg \fields.
Gi#en a conserved charge Q, which repre;Ents the generator(s) of the
symmetry transformation, as well as the corresponding current J"(x). the

usual condition for SSB is written as,

Qlo>¢0 . o (4.1)

A general expression for the dyhamica] map of the charge Q is the
following expansion in terms of physical particles creation and anaihila-

tion operators,

[

- * 'f < 1, ) . - .
Q = ;(cibi+cibi)+ L CijO§%y * eee . (4.2)
v iJ
where thetellipses stand for higher orders in normal produc f physical

field operators. The ai(+)'s are annihilation.(creatioﬁ7 operators of

the physical particles of the theory while the bi(*)'s operators are the
corré?ppnding aqnihi]ation (creation) operators of the Goidstone particles.
Ip‘the anma] phase, the ci's vanish and the dynamical map of Q‘;tarts at
the biiinear term. However, if the condition (4.1) is satisfied, the
linear term of (4.2) cannot vanish. The corresponding dynamical map of

\
the current J* can be written as,

a——

Pl s edha) ¢, | (4.3)

Current conservation a“Ju=0 requires that the Goldstone particle b(x) be

massless. Note that the bi11Pear term does not give any contribution to

(4.1). |
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"- When temperature is switched on, however, the situation is drastically
changed since the.dilinear term u:cj fatls to annihflate the temperatures

dependent vacuum. In fact we now have,
afa, 0(8)> = tanh 083) atST|0(8)~ # o0 (4.4)
SR ek R 8 iJ ' ! )
for bosons and,
aIuj|0(¢)> = -tan eéj) aI&}IO(B)> F 0 . : (4.5)

for fermions. In the above expressions we defined eé’) and eéi) as\

sinn?-el!) = 1 ;sinfel!) = 1 . (4.6)
. eBwi-g eB¥141
N\
The pa1r’a13;.appear1ng in equations (4.4)-(4.5) isTraltled a thermal
pair249'54 In the center of mass frame at rest, this is a zero energy -

mode since u: is a particle with positive energy Wy while 3; represents
a hole with negative energy -wj'-wi. The fact that the multiplets are

mass degenerate is the condition for the coefficients €4 not to vanish

<

in the dynamical map26 (4.2).
In the finite temperature theory, however, the total generator for

the symmetry under consideratiod is the following charge.za'26

Q=Q-3 . , (4.7)
where a is the tilde conjugate of Q. Therefore the condition (4.1) for

SSB 1s now replaced by,
Q |o(8)> # 0 (4.8)
at finite temperature. We are now ready to cohsider the possible cases

(frég and interacting theories) where a given symmetry is thermally

broken.

>

.‘i} | ) ‘\\\\\\\--\
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A first examp1e is a free theory with global internal symm.tries.
ro temperature, the condition (4.1) is never realized for a free
At finite temperature, however, under special circumstances,

:

thiﬁg' d1tion (4 8) can be realized even though no linear term shows up

‘d map for the genera’t‘?r. That this is so is due to the
{7 &K fhefmal pairs 0:3; with zero energy. On the other hand .
because the symmetry generator is bosonic, it is easy to show from
relations such as (4.4{ and (4.5) that, although both Q and 5 fail to
" annihilate the vacuum fo(g)>, theymgive the ssme contributions which »

-

eventually cancel each other when one dpnsiders the total .generator Q.
= .

‘Therefore, for internal symmetries, since the symmetry generators are ~

always bosonic, thermally inducgd spontaneous symmetry breaking does not
occur {n the free case. No linear term appears in the dynamical map of
the generators. The above cancellation occurs for bosonic generators
because individual members of a thermal pair obey the same statistics.s3
When interaction is switched on, however, the situation becomes
quite different. In the interacting case, the formation of a temperature
dependent gap (order parameter) ﬁay then remove the mass degeneracy among
multiplets and the usﬁa] Goldstone boson is then needed for the reafrange~
ment mechanism. No zero-eneré} mode thermal pair exists in this case
and the theory is quite similar to the §SB at zero.temperature.
Going back to the free theory, a notable exception to the rule of

no SSB for bosonic generators is the case of the Lorentz symmetry. Again,

at finite temperature, the total generator of Lorentz boost is given as,

=L -L . (4.9)

uv v uv



»

It can be .shown, as rqgcntly discussed by Umezawa et a1.53

through
the counusltor of fuv with the canonical energy-momentum tensor Tuv

that the following components for [uv obey the non-vanishing condition
for, SSB,

£°‘|0(s)> F0 ; ie1,2,3 . (4.10)

That this is so may be traced back to the fact that Loi carries
explicit t and «x depéndency.

{ , =tT , - J 3 x T (x) . : (4.11)
- of of 1 00

Because the explicit Xy inside the’spgce integration acts as a
momentum derivative a/aﬁ,. it can be shown by making use of spectral
representations that the contributions from thermal pairs in this case
fail to cancel, thereby producing the result (4.10). The existence of
the zero-energy mode thermal pairs also accounts for the non-violation
of the Ward-Takahashi identities (WT) for the broken Lorentz symmetry.

_ They therefore play the rdle of Goldstone-type zero-energy modes. These,
however, are not particle modes. It has also been argued that the same
mechanism survives in the interacting case since the multiplets likely
carry the same energy.

We now consider the problem of thermally induced symmetry breaking
for which the symmetry generators are of fermionic type. Examplies of
such symmetries are given by the Becchi-Rouvet-Stora (BRS) symmetry148
for quantum gauge theories and the graded Poincaré symmetry or super-
swlnetrylu'u4 of high-energy physics. Thermally induced supersymmetry'

4] 42-48

breaking was first studied by Das and Kaku. Other authors also -

contributed, making use of different formalisms such as the so-called

42-42

graded-trace operations and the imaginary time'Hatsubaratechniqﬁgf47

110
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‘Here we concentr:te on the case of supersymmetric theories involving
scalar supérfields only, that {s scalar boson and Majorana fermion
component fields. The simplest of such theories is the one-cod!333h§
scalar superfield Wess-Zumino (ﬁZ) model.

In the augiIiary field formulation of the WZ model, in which super-
symmetric tfa;sformations take a simple linear form, tﬁe finite temper-

ature Lagrangean is given as.49°51‘111'113 ,

j ’x‘z » (4.12)
where,

X = .1(s MZ1(s B)2-13aue1r2e162
VAT T e S

. m(FA+GB-%$W){%é[F(A2-82)+ZGA8-1@(A-YSB)WJ _

v
-~

N

R LRI IS B (4.13)

The supermultiplet (A,B,v,F,G) contains a scalar A-component field, a
pseudoscalar B-field, a Majorana fermion y and the scalar and pseudo-
scalar auxiliary fields F and G. In the above L;grangean, m is the mass
of the supermultiplet, g is the coupling constant and Z 1s the super-
multiplet wave function renormalization factor. Note that all fields and
parameters appearing in (4.13) are the renormalized ones.

The generator of SUSY transformations is the following fermionic
charge,

Q:=0Q-0- Jd3x[J°(x> - Yo, (4.18)
where the current J*(x) is defined as, ]

IUx) s[#(A-v°B) - (F+v°6) Jv'y




1
Making use of the following thermal doublet notation,

4

1 |* 5 eA.B,u.F.G . (4
H .
as well as,
Rﬂ -
Q® = . . (4.
4

" the Lagrangean density (4.13) is invariant, up to a four-divergence,

under the following set of transformations.

[Q%.A%) = 1:%68 . . (4.
(5]« 119858 | (a
(0%, FB]_ = 1:%85° . .
(%68 = 18,558, . (4
and,  [Q°.30), =eBL-(A%- B0 )0 0E%] (4
where, Tad . [é -?] B (4

Three important WT identities can also be obtained,
a:<0(e)|TJ““(x)68(y)|0(s)>-<o(e)|r°(x)|o(e)>6°86(4)(x-y)x4
2,<0(8) | Ta™ (x)A%(y)¥"(2) |0(8)>

. 1<0(B)lT*B(X)3+(Z)l0(8)>r°86(4)(;-Y)
- <0(8) |TL-3A%(x)+F2(x)JAB(y) |0(B)>62 s ) (xe)  , (4
and, 3::0k8)ITJ°"(x)F8(y)EY(z)|0(B)> )

« -108%6"4) (x-y) 1<0(8) | T¥O(x)37(2) |0(8) >

-<0(31|T£-1A°(x)+r°ix)1r°(y)|o(a)>s°75“)(x-z) . (4

.16)

17)

18)

.19)

20)

.21)

.22)

.23)

.24)

.25)

.26)
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Allowing for the condensation of the A" and F° fields in the therma!
vacuum, one re-writes the latter fields as, ‘//’) |

A

A e v+ - ) ' (4.27) .

and,
FRafep® L (4.28)

where the conditions,

N\ ) v
<0(8)|A'®|0(8)>=<0(8)[F'®|0(8)>=0 . (4.29)

e

yield self-consistent equations for the vacuum expectation values (VEV)

vand f. A substitution of equations (4v2f;’;;b\é4.28) into the

Lagrangean (4.13) yields the following.f;
. '\ 2 2,00 £12 02
Z 3 [0,A%(3 B) 4 18ay-F**-6°)
+ (meqv)[F'A'+GB-1 §v] +1gf(A'2.8%) ~
H ? :
+ 190F" (A*2-82)+2GA"B-13(A'-v3B)v] 3
2 T .

+ [Zf+mveisgv?] Fre(megy)fA' (4.30)

Ext?acting unperturbed\;éopagators %or A,B and y-fields from the

bilinear terms:of the Lagfangean (4.30), one realizes that the mass

- degeneracy among these fields has been effectively removed. The mass
spectrum is shown to be (m+gv)ztgf for boson fields and (m+gv)2 for
fermion fields. ;It is clear that the VEV of the auxiliary F-field alone
is responsible for the removal of the mass.degeneracy. SUSY is then
spontaneously broken, for the 1{teract1ng theory. MNote that the order
parameter f vanishes at zero temperature implying that there is no SSB
of SUSY at zero teﬁpcratdre. SUSY is indeed a very difficult symmetry

+ to break at zero temperature and to obtain $SSB one has to introduce



explicit computations show that the toop expansion is no

expansion,

///’\\ 114
theories with higher number of component-fields, such as the O'Raiféartaigh
114 '

mode]l discqssed in thp next-section.

Although the WT re]atiﬁn (4.24) is satisfied

consisten

with the relations (4.25)-(4.26). That this is so can be understood from

thg fact that'unperturbed propagators obtained from the Lagrangean (4.30)

Ag]ready exhibit the mass shifts. Since the mass shifts, obtained from

the se]f-cdnsis;ent equatio;s (4.29) are already of one-loop order, it is
clear that some af the WT identiti;s are not satisfied by a na{ve loop
fxpansion: A proper pertufpationvexpansion, the so-called modified loop
51 has been devised to remedy this situafipn. An analysis of
the WT fdentities (4.24)~(4.26) has then shown that a massless fermion
pble appears in & channel which is the linear combination Aw+c1w and that

a massive fermionipole appears in the channel w+c2Aw. The toefficients

¢y and ¢, vanish in the limit of no intedaction. The former massless

fermion pole {séﬁhterpreted as the Goldstone fermion responsible for the
rearrangement of the SSB of SUSY at finite .temperature. At zero tempera-
ture, of course, such a pole disappears.

In the 1imit of vanishing coupling constant (free theory) however,
_glihoﬂ@h the VEV's v and f vanish, {t can be shown that the SSB condition
(4.8) still holds. This phenomenon can be traced back to the existence
of thermal paixkg similar té those. occurring in (4.4) and (4.5). However,
since the gen;t:::F‘of SUSY is of fermionic type, each memper of the pair
obeyslaffferent statistics. Such pairs are called thermal superpairs?g—sz
Because %n.the free theory sypgrmultiplets are mass degéneréte, thermal

superpairs are zero-energy modes in the center of mass frame at rest,

that is ®B(I,w(t))'$F(°I"U(I)) or ¢F(Irw(t))$s( -I,-w(l)) ’ Wheré'the



~

. 3 4

suffixes B and F stand for boson and fermion respectively. Because

individﬂal members of thermal superpairs obey different statistics, their
. A,

contributioqﬁ from Q and Q fail to cancel contrary to the case where the

symmetry genérators are bosonic; SUSY is therefore spontaneously broken

|
in the free theory at finite temperature. Note that thermal superpairs

115

are necessary in order for the WT identities (4.24)~(4.26)to be satisfied.

There, they appear as §- function singularities at zero energy. They .
therefore play the role of Goldstone modes for the free theory. These
are n~' pa-*icle modes however.

“ P superpairs creation can be interpreted as a single-particle

reactic. i1n which the fields change statistics as well as tilde character.

The existence of such zero-energy modes in the free theory can also help

" us identify the nature of the Goldstone fermion which appears in the
.inter;cting case. Since we know that a massive pole surviQes in the v
channel of the interacting theory, it is therefore impossible to charac-
terize the Goldstone fermion of the interacting theory as an elementary
particle obtained from the original massive elementary fermion for which
the bare mass is totally compensated by the ma§s shift. It has therefore
been arqgued that the maés]ess pole in the channel Aw+c1w is a bound state
of more elementary excitations whose binding energy vanishes at the limit

51,53 Such elementary excitations are thermal super-

. 0f no interaction.
pairs for which the binding energy compensates the mass difference caused
by tﬁe fnteraction.
:In_order to understand the interplay between the SSB meéhanisms at
zero and finite temperature in supersymmetric theories, one must considef

more complicated models than the WZ model. To that purpose, the

O'Raifeartaigh model seems appropriate.
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In the fo116wing section, we concentrate on the g&ydy of thermally
induced supersymmetry’breaking by presenting an analysis of an extended .
SUSY model, the 0'Raifeartaigh model, which allows for SSB of SUSV*ady
at zero temperaturé. We then identify the Goldstone mo@e phase strQﬁture
of this mixed SSB mechanism by explicit computation of the\inverse fermion

propagator. Both the interacting and the free theory are considered.

3. The N=3 0'Raifeartaigh Model

In the previous section, we briefly reviewed the theory of thermally

induced broken supersymmetry in the context of the simple one-component

1.49'51 We saw that in order to

stalar superfield Wess-Zumino mode
catisfy the Ward-Takahashi identities for the interacting System, a
massless Goldstone-type partic1e mode must apbear in the linear combina- .
tion of ‘the e1ement$ry‘fermion‘Green's function and the channel of the
fermion-scalar boson compogite of the mbde].

Since the removal of mass degeneracy between sUpermu1tip1ets By
temperature effects occyrs only beyond the tree approximation and there-
fore only for the interacting case, it was argued that the Goldstone
fermion is a bound state of thermal supefpairs which dissociate in the
limit of vanishing coupling @onstant. The mass difference must therefore
account for the binding energy of the thermal superpair's bound state
when interaction is switched on. When interaction fs switched off, the
Goldstone particle disappears and the zero energy thermal superpair mode

takes over the role of a Goldstone mode for the free theory, as required

from the Ward-Takahashi identities. Because of this most probable

. mechanism, the physical spectrum for both the free and interacting phases
§ r

is quite different. -
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We ﬁow extend the previous analysis to the case of the N-components
“scalar superfield model, which is known as the O'Raifearfhigh model .
The main motivation for the study of hidher compoﬁ%nts supersymmetric
models, early in the deve1opmént of SUSY, came from the fact that super-
§ymmetry Is not an easy symmetry to break at, zero temperature, as oﬁposed

to the case of internal symmetries. O'Raifearta'igh,l14

in the mid-
seventies, however, ﬁucceeded in presenting a set of necessary (but not
;ufficient) conditions for which CP-invariant N-components 1nferact1ng'
scaiar superfields modeT§ may allow for SSB of supersymmetry. He showed
that models for which N<3, such as the Wess-Zumino model, can never
exhibit SSB 6f Susy at zero temperature. He also presented an explicit
N=3 model whi:h allows for SSB of SUSY. This is the model we will now be
interestéﬂ in since it is the simplest one allowing for supersymmetry
‘breaking at zero temperature.

The main ihtérest of the model in the finite temperature context, is
that it allows for a mixed mechanism of éupersymmetry breaking: the 2ero
temperature and the thermally induced SS8 of SUSY. The interplay between
two a priori independent mechanisms is by itself an interesting problem.
ks we shall see, both mechanisms effectively operate independently of one
another and some competition may occur according to which effecf (z;ro or
finite temperature mass shift) is predominant in the removal of mass
degeneracy among supermultiplets. The main feature of our solution of
the N=3 0'Raifeartaigh model is the fact that two Go]dsfone fermions are
now required for the symmetry rearrangement mechanism at finite‘tempera-
ture. More generally, our solution for the interacting case has the

following features:>2 ' | ’



(1) The Goldstone fermion responsible for the rearrangement of
the SSB of SUSY at T=0 appears fn;ghe 0-0 channel of the fermion propaga-
tor matrix and survives at T#0. :. o \\

(2) The mass degeneracy'among supermultiplets is removed only
in the 1=A~channel a§ T=0. ‘ u

(B)Q At T#bvhnd after re-diagonalization of the fermion
propagator matrix, a further temperature-dependent mass 3hift appeérs in
the 1-1 channel only, thereby stjli 1éaving the,0-0 and 2-2 channels mass

degenerate.

~

(4) As a consehuence of (3), a Goldstone fermion particle mode
similar to the one observed in the Wess-Zumino model appears in the massk
shifted channel and a thermal ‘superpair mode shows up in the remaining-
degenera = 82 channel. .

Note that the T=0 Goldstdne fe;mion appears in a channel orihogona1

to the mass shifted channel (tiansversal Goldstone fermion), in agreement
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with the Goldstone theorem, while the T#0 WZ-type Goldstone fermion appears

. o
in the mass-shifted channel itself (longitudinal Goldstone fermion).
In the following subsections, we present a detailed analysis of the

N=3 0'Raifeartaigh model at finite temperature.
2.1 - The Lagrangean Model

At zero temperature, the Lagrangean density of the N-components

0'Raifeartaigh model is more generally written as,sz’114

' °{ =°(’o +_‘{m h{g +°{x +‘{z +“(c : (4"31’)

-

where,
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- 2 2 .= 2,0 2 '
6f: : -%(auAC) .%(aupc)l'%wc’wc+%Fc +«%Gc ' (4.32)
o -%acmca(vo)wa+mca(vo)[ AyFe*ByGe
(0) . |
+ %.fc 9eapl APp-8,8, 1 o {4.39)
g : %gcab[ -i@c(Aa_YSBa)¢b+(AaAb-saab)rc+zGcAaBb 1., (a4
a!*.= %fc [ FC+mca(v0)Aa ]+Ac(v0)rc ’ (4.35)

= _ . u . U - - - ‘
at; z %szab[ (3 a,)(2 A )+(3 B,)(3"B,)+1% du, Fafb 6,6, ]

v o1 fa(o)Fb , ' (4.36)

b
and,

&

(0) (0) ' '
. %fc [ fo+2 (vg) ) (4.37)

In the above expressions, the A and B-fields represent renormalized

-scalar and pseudoscalar fields while F and G represent renormalized

N

auxiliary scalar and pseudoscalar fields respectively. The fields v
°

stand for renormalized Majorana fermions. Note that the "internal

symmetry" indices run from 0 to N-1 and are being summed over when

(0)

repeated. The parameters Va and fa(o) are defined as the zero temper-
ature order parameters of unshifted renormalized Aé and F; - fields
respectively. Because the Lagrangean described by equations (4.31)v °

(4.37) exhibits the shifts, one has obviously,
<0|A [0>=<0|F_|0>=0 , (4.38)
a 2 : . , :
if one writes unshifted fields as,

A'=A +v
a a

(0) . F'=F +f (0) ] - (4.39)
a a a a ‘

The mass matrix and'"tadpo1e constants" appearing in the Lagrangean

(4.31)~(4.37) are the shifted parameters mcatvo) and Ac(vo), since the
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Lagrangean is written in terms of shifted fields. They are defined in

térms of the unmshifted Mea and Ac parameters as well as the coupling

constant 9cab and A-fields vacuum gxpectation values va(o) as,
mca(vo) = Mca*9cab'b " (4'49)
and :
’ =y (0) -, (0), (0)
Aelvg) = AgMmeavy +%gcabva b - (4.41)

The reason why only the A #nd F-fields need be shifted in this model
is the fact that the unshifted Lagrangean is invariant under a®rotation

5G anes. We therefore have always the freedom to

in the A-y°B and F-y
re-define the fields in such a way thdt shifts occur only as in equation
(4.39).

Note that the parameters and fields have been renormalized according

to, | |
By = Lhe, 5 (6=ABLF6W) (4.42)
s = Lilad®a - (8.3
Scab ZEEZ;:Zgégdef. J //// ’ (4.44)
" oLy (4.45)

c caa
where the overbars identify bare parameters and fields. One also has the
obvious relation,

- . v
b * Z:cng . \ (4.46)

4

From the massaferms (4.33) of the Lagrangean, it is apparent that a

non-vanishing value for fc(o) implies a removal of mass degeneracy among
supermu1t1p1ets,t§eﬁgby'sﬁontaneous1y breaking subersymmetry.

At zero temperature, the condition for SSB of SUSY can be written és,



‘c("o)"o. - . Y o (4.47)

\

14 Showed that, in the-tree approxima-

For the N=3 theory, 0'Raifeartaigh

tion, the choice,

: 0 0 S ’
L =[g my P ] R -{g] , (4.48)
00 -m2
together with, : -
. F00 09 . 0 mlm
Joab * L Omym b9 T Lm0 0 ;
172 1om m) | 124Am 0 0
F 0 mmZT U]
9 =_ g m 00 ) ' (4.49)
2ab m1+m2 bm2:0 0 )

where m;lﬁ?ﬁz , yié]ds a consistent theofy of'SSB of SUSY at zero témpera-
ture. Equation (4.48), however, indicates that fermions have negative.
mass in the 2-2 channel. This difficuity is resolved by making the
following redefinition: w2+-q5w2. It is then easily shown that the free
propagator in the 2-2 channel carries positive mass. What ha}(Ueeq
changed, however. is the intrinsic parity of the wz-f1e1ds. The intrinsic
parity of the o . components remains +i while. the parity of the )
component after ~sformation has become -i. Note that the

intrinsic parit nd B -fields is +1 and -1 respectively.
K] : b

model at finite temperature, one might expect
further temperatu gt t shifts of the order parameters since thermal

effects are likeﬁy to shift the effective potential. As emphasized in

-previous sections as well as previous chapters of this work, the thermo-

field dynamics formalism of QFT at finite temperature seems to us the

desjred and most practical (as well as elegant) formalism in dealing with

121
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statistical averages of both the normal as well as the spontaneously
broken symmetry phases of any quantum field theoretical system. Since
thermal averages of time-ordered operator products ‘can be written in the

following path integral form,
<0(8)|T(...)|0(8)>= J[dAdBdwdFdexdﬁ'd'u\:'d?dt](...)exp[ijd"xi(x)] . (4.50)

the Feynman rules are obtained from the total Lagrangeanag for the fields
and their tilde conjugates. Note that dy does not appear in the path
integral measure. This is so since ¥ is a Majorana spinor and,therefore,
v and ¥ are not fndependent. If we further supplement the a&ction with
boundary terms (Feynman is-prescription) specifying the thermal and
causal nature of the unperturbed propagators about which one wishes to do

perturbatijon theory, then the total Lagrangean can be written as follows,

Z2 +2 +2, (4.51)

KFF | 1o 1y

° [Aa aFa a] [ _1] [[éab(D+iT6)+fcgcab] mab(vq [TUB 0_ ] K
0 UB mab(v) Sab 0 TUB F

| F

where,

aS

[BagaGaaa] [ _1][[6ab(u*1ré) f gcab] MapkY ] r'él 0-
0 UB mab(v) 5.b 0 <

N

3 Bghyd U Loy (aetre)omy (v)) u;l[;b] . (4.52)



21 % LocaplFAhy 88,0126, 8,015, (A 178 )y,
. Pt S A
'%gcab[?c(kakb'gagb)+2zcka§b+1wa(kc'Y ac)wb]

+[fc+xc(v)]'(rc-“rc) + fcmca(v)ma-ka) . (4.53)

and, ‘fz z -%azab[(auAa)(a“Ab)+(aua°)(a“eb)+1aaawb-rarb-cacgs\

+%62ab[(3uka)(ayks)+(aﬁ§a)(au§b)'{aa;$b'rarb'aaab]

+ czcafa(Fc-?c)- . (4.54)
In equations, (4.51)+(4.54), an overall c-number term similar to (4.37)

has been dropped. The factor & appearing in causal propagators is

infinitesimal and positive. Also, the following definitions hold,

(0), ((8)

Ve B v H Ve ‘; fc = f. c . (4.55)
mca(v) - mca ¥ gC'bvb 0 ; (4.5?)
. . ~
and, Xt(V) At MaVa t R Ycap¥a's : : (4.57)

The quantities vée) and fﬁe) in equation (4.55) represent the tempera-
ture-dependent shifts of the order parameters corresponding to the A and
F- fields respectively, while equations #4.56) and (4.57) are the obvious
generaiization of equations (4.40) and (4.41) to the finite temperature
case. The thermal Bogoliubov transformation matrices UB(I-iat|) and
UF(I-iat[) are given in appendix B.

As it is, the above theory at finite temperature 1s‘very complicated.

We shall see in the following subsection that in order to do perturbation

theory in practical scomputations, a tedious task of suitable
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o
dlagonalizations must first be carried out as temperature effects render

the mass matrix (4.56) non-diagonal.
3.2 - Perturbation Theory

In order to avoid computational difficulties as well as securing a
simple spectral representation for the asymptotic (physical) states, it
is most convenient to implement perturbatton theory about a diagonal
unperturbed theory: To do so requires suitable s1m11ar{fy transformations
which implement a consistent diagonalizStion of the unperturbed total
Lagrangean density (4.52). If one remembers the.O'Raifeartaigh's choice
(4.48) and (4.49) for the unshifted parameters of flp broken symmetry
N=3 model, then it is easy to see that the (symmetric) fermion ma;;>matrix
mca(v) given By equation (4.56) is not diagonal. The first step toward
the solution consists then in choosing the a;ymptotic fermion basis in
which the mass matrix is diagonal. Explicitly, equation (4.56) takes the

following form,

i 0 9 (m1v1+mv2) 9 (mvlﬁnzvz)-
. m,+m m,+m
mca(v) = 1772 172
. ml[l* Vo ] mgvy
e . -m,[1- 90 ]
. o[ )
m,+m, ] (4.58)

« \

-\,
Implementing the following similarity traﬂ&?ormation.

m(v) -+ S'lm(v)S o, (4.59)

+ one obtains the following diagonal mass matrix,

m' (v) =0 0 O . (4.50)

ca
0 M 0

0 0 °H2
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where the positive definite masses "1 and nz are given as,

2 2 :
My o= ’°*/ m *.__9.__ 1Y1NTLY,) . (4.61)
m, +m
2 172
in which .
¢
20 = my-My+gvy . - (4.62)

The transformation matrix S appearfng in equation (4.59) is defined as,

o Po "0} ° (4.63)

S =zTu
“1 71 M
Y2 P2 M2,
where, .
up = m(ml*mz)/No vy e ;gﬁz(ﬁlvldﬁzvz)mo , (4.64)
2 1 -
Po = 9(Vm v P MV )ING Py = ﬁil(mzle)/Nl »  (4.65)
2 2 1
no = 'g(mlvl*ﬁ'ZVZ)/NZ ’ nl = 1m1(m2:"2)/N2 [} (4.66)
2 2 1
in which,
T2 2
Ng = (m1+1n2) MM, (4.67)
and, ,
2 _ .
N] = (mlﬂnz)(Mlmz)M1 . ) (4.68)
2 2

-

The transformation matrix (4.63) can now be used to define the new
boson basis although diagonalization is not guaranteed in the boson
sector. This global change of basis in the theory further implies

coupling constant transformations as well as transformations for all

—~—
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other parameters of the Lagrangesn. Adopting the convention that vrfuc;

now indicate parameters or fields in this new basis and defining the mass

shifts as,

=

by ® b Te "byy P (4.69)

one can obtain explicitly the following equation$ for bab as well as the

non-vanishing values of the totally symmetric coupling constant 9abc®

)
! :‘ M N ] = . ' = .
9011 90[,;1 + 9922 90]? v 9912 9 ¢ .
2 1 ]
~
] ' M ] M g
911 * 39, / 1 3 9559 = -39 2 i
M, N
gilz” 9 (ZMZ-Ml) ;MZ' ' giZZ ® ‘QI(ZMI-MZ) Hl s
. M2 ML+N2 | Ml M1+M2
1Y
. (4.70)
where one has defined, ‘
N 2 A
g TaMm ;g =9 vy ) (4.71)
M, +4, mym, (W),

]

.

= . = H ' " . - 1 ' .
%0 =2 bo1 * 9 /ﬁlfl*gofz + Bop 90f1*90‘/géfz ’
‘ A

2

' (2M M ) (ZM -M, ) .
bio = 95f4*9 e
127 9™ f / 2
M2~ M +H ﬁ 1+ﬂ2
My o [ (ZM -M ) M
b,, = g 1 f.+3g 1 fi+g 1 f,
- 1 OJMZ O e 1 HZ o, G |
. . (2M-M,) , |
b2 * 9 /2 o9y h} 2 / f1-39 / £, . (4.72)
1 2/%

and,

ﬁ
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n»
Note that in terms of primed parameters and fields, the Lagrangean

density described by (4.51)(4.54) assumes the same general form. \
In this new basis, one obtains directly from the unperturbed part
(4.52) of the Lagrangean the following inverse (A,F) and (B,G)-boson
. L

propagator matrix,

01 0 *bgy O
\ , [0 1 0o 0 0 0
T 8ap)(d)= by 0 Oebyy My by, 0 . (4.73)

(86) 0o 0 M 1 0 0
tp,, 07 ¢ 0 Db,

L0 O 0 0 -M

2
14

2

~while *the fermion propagator matrix elements are determined completely as,

Sgo(P) = -1BEg(p) 5 Sy (p) = (~ipwm)E (p) (4.74)
22 - 2 1
.where,
| Eolp) ® UF(lpol)[-pzﬂ'réliu;l(lpol) T (4.75)
“and, - o e ..‘,."\.
£,(p) = U(lpg ) [ -p2 RS AT (PR I (4.76)
2 2

The sign of the ma;s term in Szz(p) is positive since it is the
propagator obtained after the transformation Wé“ﬂ5Wé.

As opposed to the fermion case (4.74)~(4.76), where'thi propaga£0r
matrix i; diagonal, the boson propagator matrix (4.73) is not yet in a
bloc-diagonal form suitable for perturbation theory. This is so since 1t

contains non-vanishing by, -terms (a#b).

—
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V)
In;théisame basis, the interacting part (4.53) of the Lag?angean o

reads explicitly as,

Z <2 -4 . - (4.77)
I %1 I
where, 7 2 2 o ’
[ = %gOII[FO(Al-Bl)+ZGOAlBl+2F1(AOAl-BoBl)+2G1(AOBI+A180)
) _

- 5 - 5 - 5
‘1W1(A0'Y BO)W1‘1 WO(AI‘Y Bl)w1’1 WI(AI‘*Y BI)WOJ ‘

L 22
*1302 [Fq g 85 14205Rg8p* 2F,Aghy~8,8,)+25, Ayl *hyty)

272 21072 7270

fi@Z(AO—vsBo)wz-iwo(Bz+v5A2)w2-iwz(aé+Y5A2)wo]

' 7
f%gOIZ[ ZFO(AIAZ-BIBZ)+ZGO(A182+A281)+2F1(A0A2-BOBZ)

+2G1(A082+A280)

: . 5 . 5
A BI+A180)-1$0(A2-7 Bz)w1-1W1(A2-Y Bz)wO

+2F2(A0A1-B B )+2G2( 0

01

- 5 - 5 . 5 . 5
-1¢O(31+Y ﬁl)wz"w2(31+Y Ap V=10 (B Ao)q2:1m2(eofv Ao)wl]

L]

2. 2 - 5
*%9111[ FrlAy-81)+26)A B -10, (A)-17B))v; ]

) y— 2 2
' +%9112£ 2F) (A1A,-8, 841725 (A8, +A,81 )+, (A -B])+26,A,B)

- 5 - 5 .- 5
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2,2
, f%g122LF1(A2-82)+261A282+2F2(AlAz-8182)+262(A182+A281)

2 2)

- 5
f%gzzz[Fz(Azfaz +26,A,8,+19,(A,=¥"B,)v,]

2272

+( f0+A0)F0+(’1)F1+( 1‘2“2)!“zlerflAl-szzA2 . (4.78)
in which primes have been omitted for rapidity.
To pursue further a perturbative analysis of the model, we clearly
need to diagonalize the bosdn inverse propagator matrix (3.73).-
: \

- Before doing go, howeyer, we point out that a significant and self-

consistent simplification of the mode]xbccurs if the fo11owingfge1ations
£,

g

are valid,
| m1 =m, =m H v0 =0 ;
voEvy =, 4 f1 = -f2 . - (4.79)
As will be shown in the next subsection, a consistent set of
"gap" equations i§‘obtained when th!‘congtraints (4.79) are implemented on
the model. This in turn implies that the solution (4.79) is a minimum of

the effective potential. Making practical use of the set of equations

(4.61), (4.70), (4.71) and (4.72) yields the following simplifications,

2 f M; = mé o+ 2082, — . _ (4.80)

“ %022 " %127 %.

911 % 922 A 9 5 91z T "9z Ao ©(4.81)
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where, )
9 *4Mm 9 ’9& (4.82)
M JoN
Also one has,
b sbl_1 = b22 = b12 ; b01 = b02 =0 . (4.83)
where,
b = g5fg * vZg,f1 . (4.88)

The above simplifications enable us in turn, to diagonalize the
propagator matrix (4.73) by making an orthogonal transformation into the

1-2 plane. Defining the following orthogonal transformation matrix, /

"z o . g
‘pe1 |0 22 O 0 : . (4.85
V7 o L1 0 1.0

c 1 o0 -1
: 1 0 -1 0
L% o1 0 1)
a bloc~diagonalization of (4.73) is performed,
. b o . 7
-1 oy o-1 -1 0 0 ., (4.86)
A(AF)(a) RA(AF)(a)R 0 1
(86) (86) o 0:2b M o
M 1
O M
| 0 O M 1)

Inversion of (4.86) finally yields the set of unperturbed boson
propagators. Remembering the i&-prescription of the unperturbed

Lagrangean (4.52), they are obtained explicitly as,

A(M)oo(p) = -iUB(Ipol)I T ]UB(IpOI) ;
’ P -1t§

Y

130



131

. . . -
A(AF)OO(p) =0 ; 4(FF)00(p) -p A(M)Oo(p) , (4.87)
8 (p) = -1ug(ip,l) T Ug(lpgl) 5 -
(AA) 8''Fo —1"8''Fo
1 [p2+(M2 20)- 1:5] |
A(AF)ll(p) = 'MA(AA)ll(p) ’ (FF) (p)*: (p ﬁA(AA) (p) ’
(4.88)
T () e iU (p ) (1o,1)
(AA) p) = "UB po [ T }UB pol ’
22 p M fiT(S \
] . -

22

| : (4.89)
Note that the {B,G) propagators are readily obtained from the above

Jations by changing the sign of the mgsi shift b-term. Clearly, the

>‘nova1 of mass degeneracy among supermultiplets occurs only in the 1-1

channel.
Taking into account the simplifications (4.79)»(4.84) as well as the

transformation (4.86) on boson field operators, the interadtion J

Lagrangean (4.78) can be re-written in the much shorter form,

Z, - gO[F (al.p" 1)+ZGDA B} +2F 5 (AjA; - soe )+265 (A (] *A}BY) ]

'f-s'f)qe A1B;+2F 5 (A1

1418 )+zc (AB +A.B

*+9; [Fy(A

1 2 2 1) ]

3 TR 5 [ ) ' 1el ' i | ' '; ' '
-1?[%(/\0-7 Bo)wl-w.z(AO-YSBO)w2+w1(BO+Y5A0)wzth(edwsAo)wl
+J’Z ‘I(Ac SB)) |+/§'|(A|_ 58';\‘*’ 2 -I(BO+ SA')W.

YolMY F1i¥g ‘“11*120 YolP1™ A1ivp
3 +2 @é(BiwsAi)wb]

-1 SLLH{((2A14A))-v” (2818))wi sl (281-A5)-v*(281-83) ) v;
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] ] 5 ) |A'| ] 5 [l ]
+ w1(82+v Az)w2+w2(82+v Az)wll
+ (f6+x6)r342(fi+xi)Fiﬁ?MfiAi ) (4.90)

The one-loop counterterms (4.54) in the primed basis are in turn written
'expficjtly as,
. ~

2, - ;3‘-'5? , ’ N (4.91)

4 z

where,

Z . o7 12,02 pi12_p12_ il
7. %azoo[(aqu) +(au80) Fo =65 1

2525, 18 A7) (3¥A3)+ (3 By) (3VB3)-FoFi-Gi61]

2 (02 02 002 29
)©-F1 -6 %F5%-65°]

. ] "DZ |'2 l2 ]
-%6211[(auA1) +(au81) +(auA2) +(auB2

2 ..2,.,2

! '2 l2‘ 02 l2l [ ' lz"
r%ézlz[(auAl) -(auAZ) +(au31) -(auaz) +F17-F574617-6, ]

- = V3 [} =y [ Yo fa! 5l.l5 t
%szaawazwa %5201[(w03w1+w15w0) (wozv Vot¥oY on)]

-i62! (93 5w'+$' saw')

5 1291 Y ¥ VoY AV

+[6260f6+26261fi][F6+/E%%Fi] ) (4.92)
Note that in the Lagrangean (4.90)~(4.92), the parameters fes *é and

6Z;b have been defined as,

LI -1 N
foo= 5 f, , (4.93)
[ ’ - '1 .
SERUIE Scaxa(v) , . (4.94)
: ' A -1 .
and, 82, (s czs]ab . (4.95)
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in which the matrix S is given by equations (4.63)~(4.66) and Gzab is
given as, | " N

/

N

100 (4.96)
011
01 1

-~

That 6Zab has the matrix structure (4.96) will be shown in subsection
3.4 in which one computes explicitly the fermion self-energy. Equations

(4.93)~(4.95) yield explicitly,

fq = mf,-2qvf. ; f1 = f) = gvfoemf, , - (4.97)
0 O FL 1° "2 g— 0g 1 |
' 2 2,..23
Ag = mho-giv® 5 Ar = -x) = v(gh+m gtV (4.98)
0§ w 1 2§ v
and, .
§2' = 6Z[m mqv -mqv = 62! (4.99)
ab L. -ngy ‘ ba (4
M M M
(m2+3g%v2)  (mP+g%v?)
M2 M2
(m2+3gzv22
L M o F

The Feynman rules obtained from (4.90) and (4.92) are shown in figure 2.
In the next subsection, we derive the self-consistent (gap) equations of

our broken symmetry model at finite temperature. [
3.3 - The Self-Consistent fquations

* In this subsection we derive the set of self-consistent equations
for our model to one-toop approximation in perturbation theory.
Minimizing the effective potential at the points <0(e)|AaIO(B)>

, and <0(B)|Fa|0(8)> in field parameter space, one easily obtains the
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o

foI]owing set of self-consistent equations,

A,
g — + -----{W\?A,F1 + ----ﬁA F, + -----"M"?a,e, + -----f“q? B,G, ..
| ! not e Nz | =

(4. 100)
FO 1 FO 27N 1 FO I*‘\‘ ~ FO
N e R & E ""‘"“"(\ ) A1A1 + E "*“""(\ J 8181 + m‘@ = 0 ’
’ (4.101)
and,
F F . F . F '
1 1 1 VS 1 ~ 1
| - (4.102)

Explicitly, equation (4.100) yields, .

[gvfyemf,] = ig_f(_;)g tr 1577()455(p)]
2

2 4 11 11 11

-_g_"_VI(;? [A | 11() (AF) 2(9) (86)11() (BG) (p)] ’
(4.103)

where equations (4.82) and (4.97) have been used. Equafﬁon (4.101)

together with (4.102) give the following results, ~
f1 = -mv C . (4.104)
and, (fota+gy )+f §2 = -1g _g [A (5)-al (p)] , (4.105)
7] M)u (38)11
in which (4.97)a(4.99) have also been used. Inserting (4.104) into s

(4.103) yields a solution for fo.
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fo = mi+g Jd3p ([pPeMis2b17% L pluwlop 1h
- g M (21!)3 [ eB/DZ"’MZ+2b_1] E#B p M -2b_

1)

+2l plam? 1% 1 N 2 b (4.106)
Y44 YWY+ -
[P 11 [ 807 ) : ‘
Note that the shift 2b is computed from equations (3.54) and (3.67) as,

2b = gfy . (6.107)

As will be shown in the next subsection, the wave-function renormali-

zation factor, when making use of dimensional regularization, is given as,

-g® r(20/2) = _-g% 1 (0-4) . (4.108)

& ent 22m? (a)

Y

Note that the above result is obtained when a zero temperature
renormalization scheme is &ddopted. Inserting the result (4.108) into
(4.105) and making use of the fact that,

f(()o) -m (4.109)
‘ o

as one easily shows from (4.106), the gap equation (4.105) yields in the

mla

zero temperature limit.

— 2 '
x+gv(o) = -m2 ; (v(o)#o) . (4.110)

9

Equation;(4.110), which shows that divergence cancellation occurs, is
nothing but the statement (4.47) for the condition of SSB of "SUSY. It
indicates that the order parameter of the F-field is responsible for the
symmetry breaking, also consistent with the fact that it creates the

shifts removing mass degeneracy amongxsupermultip1ets..
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Summarizing, equations (4.104)~(4.107) yield complete solutions for
fo. f1 and v as functions of temperature and the tadpole parameter A.
We now turn to the analysis of the analytic structure of the fermion

7

propagator matrix in the infrared region.
3.4 - The Fermion Propagator Matrix

In this subsection we propose to showthe existence of interesting
Goldstone mode structures in the infrared region of the fermion propagator
matrix. We now proceed to compute the complete inverse fermién propagator
matrix to one-loop approximation by making use of the spectral representa-
tion for Green's funétions at finite temperature. Useful product rules
for spectral representations are given in appendix B.

The inverse fermion propagator if written as,

6 p) = s7Np) - 2(p) .\' (4.111)
where I{p) is the one-loop renormalized fermion self-energy matrix and
.S(p) stands for the unperturbed fermion Green's functiogamatrix, the
elements of which are given by (4.74)~(4.76). The Feyvk diagrams
céntributing to the computation of the self-energy matrix elaments ar;
shown in figure 3. Given the rules in figure 2, one obtains (D4},

(p+k)+A?§B) (p+k)]

08 2

(2n) 1

aB 5 aB ‘
x[sll('k)*Y Sll ] < 6‘Moo(p) ’ (4112)

133(p) = 135(p) - géj(d :D{ [ahn) o () *8{ 58 (*F)]
2n

<533 (-K)+ 3B (-k)v°] + 2a{an) | (P#)S50(~K)*4 5 1<p+k>yssgg<-k>y51 )
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21!

+ [A(AA)2 (p+k)+A(BB) (p+k)][s; K+ SHE K] ) - 6 (P . (4.113)
22

*

for diagonal matrix elements and,

XS?(p) = 2?g(p) = 2/§goglj(d : [A(AA)l (p+k)S ( k)
2

) A(Be)ll(p+k)Y553§('k)Y5] - ugy(p) , (4.118)

, (4.115)

]
<
™~
o
~n
—
—
it
1
1
~
o
——
he)
N”
<
y
(2]
o
—
-
o
A

'
1
—
nN
——
he)
e
<
]
]
<
[ ae]
n
—

(p+k)SHa(-K)

(p) =_ggj % Z[A(AA)
( 11

Zﬂ).
5
1(p+k)Y Soo( -k)y™]

"R #4158y P -AISTHT

(ptk)+afggy (p*K)]

22

-

+ gi[(d kD{ [A ")

21) 22

IS0 S0 ] ) - Vs, () L (4.116)

for off-diagbna1 elements. The counterterms are represented by 6wab(p).
Passing over to the spectral representation of propagators for real
four-momentum simplifies much the computation of the self-energy matrix

elements. Let us defineé the spectral representations as,

S(p) = UF(DO)§(D)U;1(pO) , (4.1;?}-
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together with, Yo

a(p) u Ug(pg)alp)uglng) | | ~ (4.118)
where, -

$(p)e [ dra(eafio) 1 (-te-thro) (4.119)

e pO-K+f16

and, -

alp)=it J deo(x,Pio) 1 ) (4.120)

e po-x*hd )

Note that in the above relations, one has,

alx,pip) = 1 [G(K-wp(o)) - 6(K+wp(o))] , (4.121)
w5 (o
and, . .
w (o) = /p2+p . : (4.122)

When one makes explicit use of the product rules for spectral
representations given in apq‘pdix B, a factorization of thermal >
Bogoliuon transformation matrices similar to (4.117) and (4.118) for
free propagators, also holds for !he‘se1f-energy. One can therefore

PO

define. ! [ "\l f

t(p) = UF(po)i(p)U'Fl(Bg ) (4.123)

The complete propagator (4.111) is therefore factorizable as in (4.117)

. L )
and one can write,

¢ lp) = sTp)-E(p) (4.124)

as the inverse propagator suitable for our infrared behavior analysis.

Let us make now the following definitions,



ko +oo ’ wo +oo ’ (4.125)
1 1
1 1
+ : -
where,
odz0 i ol=ml oz mlaan (4.126)
1
Also we have,
,/
.
FL(pgiE sl =F O (ppsE,0)+F (O (piELe) (4.127)
where,
FEO (pguEou) = el : (4.128)
[(Do*iréw)?‘(wﬂﬁq)rl
and, .
P Mgt s gl . Mgt
[(pg+ite) -(wq-Eq) 1 [lpy*ite) -(wq+Eq) ]
) (4.129)
in which the functions f(w,E) and ?(w,E) aré given as,
flw ,E ) = 1 + 1 . (4.130)
q°q 2
w BE
e 4.1 e 9
and,
flo E)= 1 - 1 (4.131)
9 9q Bw 8E

With the help

of the above relations (4.125)+(4.131), the matrix

elements of the self-energy, in the limit of vénishing three-momentum

(p+0),can be written as (D+4),

139
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A

500(90-3)'4%} L (18, [F+("o‘“’1'“’-)+ Fu(pgivy e, ] |

{2w)"° “ o Y%

w
\
4

- bugg(pg) (4.132)

£11(pge0)=T,p(pg.0)=-gf Jd°=1k (14)

(2n)""

x [2F+(903W1owo) + F’(pO;WO'w-) + F*( po;woow*)]

Uo W ‘ U+

- 292 fdo-lk { (1po) [F+(po;“lgwl) + F+(p0;wl'w-) + F+(po;w1vwf) ]
(2") - .wl w w

- +

M [F_(po;wl.w-) ) F*(po;wl.w_) . F_(po;wl.w+) + F+(Po;w1.w#) }'éwll(pox
Wl w wl w 22

+

(4.133)
for diagonal elements and, »

501(p0'6)=_/29091 di-lk {(1¢0) [F+(Do;w1,w_)‘ R F+(Po;wl.w*)]

10 (2m)" " w_ w,
<
.$ + M [F_(Do;ul.w_) - F+(p0;“’1 ,w_) _ F_(po;wl,w+) N F+(p0;w1’w+)] }-dwOI(po),
g - "1 “ 4 10
(4.134)
A £oz(posa) = ‘izo(pooa) YS "iOI (PO.O) . (4.135)

and,

- YSEZl(pO'a) = 'ilé(pofa) YS = 'Qg J?D-lk (iﬁo)
2n)" "

x [F+(905wo.w_) + F+(p0;wo»w+) + 2F+(p0;wl'w0) ]

U- _w+ k wo

’

(BN
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. R
for off-diagonal elements, The counterterms matrix ethﬁznts 6u.b(p) are
given as, ‘ ' .
L - ) .o . ' .

.

5 ' R S ] .

where the GZ;b matrix has yet to be determined. In order tg evaluate the
counterterms, a set of fenormalization conditions must now be ﬂﬁgosed.

Using a zero temperature renormalizatiorgscheme, the ren|I|.1izqt10
. . ° 48‘.

conditions are written as, P S
. . ! »
”é;tla(’o) = -0, S,p ° o (4.138)
pO-O T=0
> T=0
and, 3
~-1 .
3 G (p ) b '6 » (4.139) 4‘1
ab ''’0 ab
b 0| |
- Po
Tgo’ —
where, | . =
0o ¥0 oy = [ (4.140)
2

It is easy to show that the condition (4.138) is automatically
satisfied since the self-energy does:not give any contribution at T=0 and
poxo to the one-loop correction. Taking the derivatives of the self-
energy matrix elements (4.lgg)~(4.136) with respect to ip, at the point

po-O and T=0 yields the following relation,

[



. 2 D 1 -1 ' : :
3 z' (pa) q° k gl S 100]S
b'"0 .
1B, ° l i [4 D-1 7372 | 011} |
0 Po 0 ) (2n) (k +M ) 011 T=0
T=0 .
- 82 ab ' (4.141)
In the above relation, the prime superscript for the self-energy
means- the following, ‘ K
LatP) =z (p) 1y (p) = Ig(p) 5
20(p) = I (P> & Tio(p) = Iy, (p)y’ ~ (4.142)
02'F) = tpolPly » LqalP) = mRpiRly
Making use of the renormalization condition (4.139), equation (4.141)
gives directly, ‘ f N | .
, S I .. "Jvff'.' .
748 ﬂf 1 Cstpoo)s) s
, 01 1 =
. ‘. *
' (4 143)
This relation Just1f1és the q?tr1x structure (4.96) and identifies -
62 in (4.96) aan(4.99) as, ..
7 Z % Ly (0»4) o -»(4 144)
. § = - Ty ’ . i . ey . o
2(21)¢ (4-D) | ,. '

in accordance with our claim ( 3108) Nhen temperature is switched on,
AR

the one-]ooitcounterterms §1' are given exp11c1t1y as in equation (4.99)

ab
with %E?as in (4 144). In this way, all dxvergences appearing from

»

1nterna1 momentum integration in the'eipressjons (4.132)~(4.136) for the

self-energy are exactly cancelled by the counterterms at finite tempéra-
¢ . > i
ture. The fact that wavefunction renormalization is enough to make the




thgory finite at zero temperature‘is a general feature of supersymmetric
theories. After divergence cancellations, the contributions to the self-
energy originate enly from t@e temperature parts F#(B) defined by the
relations (4.129)~(4.131). |
Reméhbering (4.124) and computing explicitly (4.132)~(4.136), the

inverse fermion propagator matrix in the limit p0+0 tékes the following

’

form,
tim 6 p,0) =f0 -t o7 . (4.145)
pa+0
0 -T 'MY"'tO ioYs ~
-YSF Ysto -MY+IO
where,
s 2
vsl-zgljd3k'[_1_[1]+%[*1]+_§_{1]]
b 3 Bw &8 - Bw Bw
(2n) w_ e -1)¢ w, \e +--1 wy e 1+1
(4.146)
r=3 M(v-1) (4.147)
2 9,
and, '

(4.148)
Equation (4.148) is an infrared singluar contribution from the therma]
superpair Zero-energy mode. It originates in the.sé1f-energy ﬁﬁom
diagrams involving integration over products pf fermion and boson lines
sharing the same mass shel] Tbese d1agrams aqtfjndjcated by a star in
figure 3. Such 1nfrared s1nga1ar1{\fs ¢how up-in the self-energy Matrfx

[ 2
elements because some degéneracy still remains in the unperturbed 2-2 -

‘channel. Also the fact.that the inverse propagator (4.145) still has

143

e
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non vanishing off-diagonal elements in the infrared region is due to our
perturbative calculation which has mixed fermtfn (as well as boson)
channe1s‘among each others. To obtain information on the part1c1especyrum
in the infrared regién, one has to re-diagbna]ize the inverse propagator

(4.145). To this ehd, we define the fo1lowing‘transformation matrices,

r:1 [/ 0o o0 , (4.149)
2 0 1 5
0 -y -l
and, ‘ ) _
T:1 vZ 0 0] =9 - (4.150)
V2 0 1 _Ys o :
0 40 -1
Therefore,
el -1l = [ o o , . (a.151)
. 0 0 (MY)YS
\ 2y (M) 2t

in which. the thermal superpair singularity appears in diagonal elements

only. Further diagonalization finally yields,

Tim G'l(po,ﬁ) R 0 0 0 . (4.152)
Pg*0 0o 0 0
0 0 210
4

The above result clearly shows that two Goldstone fermion particle
' mpd§§=now appear in the fermion prqpaéator.matrix. The mode appearing in
ng the 0-0 channel 1is thg oFiginal Goldstone fermion already existing at
'zero temperature while the one showing up ih the 1-1 channel i¥ the new

Goldstone fermion associated with the SSB of SUSY by temperature effects.

- v

) . L oe
: | &
(SRS i
o+
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., As in'the NZ-mode1, this massless particle mode shows up in the same
channel where mass degengracy is removed among supermultip]ets:7 One
therefore has a mixed hechanism of SUSY rearrangement at finite tempera-
‘ture. Also, one notices that tbe therﬁa] superﬁair zero-energy m;Be
singu]arity appears in the 2-2 mass-degenerate channel.

To give more support to the above calculation and its. interpretation,
jt woulg-be an 1ntgresting problem to check that this mixed mechanism also
satisfies the Ward-Takahashi identigies for SUSY at finite températuré.
Higher loop corrections may also give further suppoét to the analytic
structure (4.152). \

. : ,

Summarizing é]l' b revious calculations, we succeeded in finding a
solution to the N=3 0'Raifeartaigh model at finite temperature -for which
a mixed mechanism of rearrangement of the supersyﬁmetry breaking occurs.

., Such a squt%on can be shown to bé a minimum of the effective potential
through the c$1cu1ation of the self-consistent equations for the various
order parameters of the theory. Through the study of the analyt%c struc-
ture of the inverse fermion propagator matrix, our main result is the fact
that a Go]dstoné fermion particle mode’shows up in the channel exhibiting
removal of mass'degeneracy among supermultiplets. On the other hand, a
" thermal superpair zero-energy mode shows up in the mass‘degenerate chénnel
while the Goldstone fermion alreddy/existing ‘at zero temperature in the
model, survives temperature effects. One can therefore argue that for
higher number of supermultiplets (N>3), one should find that at least two
Goldstone fermions appear 'in’the fermion propagator matrix.'
When we take the limit of vanishing interaction (g#bc*b)’ maturally

all channels become now independent of one another and one has in fact

three independent free WZ-models. The internal symmetry index is then a
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dymmy ndex 2nd although SUSY is still broken by temperature effects, no
Go)détone particle shquld appear. Instead, thermal superpairs now take
over the role of Goldstone particles, as is required from the Ward-
Takahashi idenfities ;t finite temperature for the free WZ-theory.

Note that for the general model with N-component supermultiplets,
it msY be an interesting problem to understand from a graup theoretic
viewoint, the 1nterp1a} between the.SSB of SUSY and of internal symmetries
which May be pres;;; in a given situation, IHtefna] symmetries are much

eagigr to break than SUSY.



CHAPTER Vv

\

CRITICAL PHENOMENA: COMPUTATION OF THE CRITICAL EXPONENTS

1. General Considerations ‘ , <;\ >
i’ .7

In the last few years, 1egg than a decade after its conception in
25

-

the landmark paper by Takahashi and Umezawa.Z'4 and also Matsumoto,
thérmo-field d}namics has been developed to a remarkable point. With the
formulation of perturbation and renormalization theory35 within the frame-
work of TFD, it is now automatic to compute finite temperature quantities
in a véry clear and completely analogous way to corresponding calculations
~ at zero temperature. That this is so is due to the fact that Statistica1
averages are formally equivalent to vgéuum expectation values of field ’
operators for which the vacuum state Earries the thermal ®information.

| Accomodating the TFD formalism with renormalization theory'has led
to the recognition that the renormalization points need not be constrained
to zero temperature. In fact one can express renormalized parameters at.
a given temperature in terms of corresponding parameters defined through
the renormalization conditions at another temperature. This property
leads us inevitably to the renormalization gr‘oup.36'37 Because of the
added thermal degree of freedom, the renormalization group in the context
of TFD is a'two-pérameter abelian group.

Making use of the TFD renormalization group,'a detadled analysis of
various asymptotic behaviors has already been carried out in references
(36) and (37). Fdrthermore, the theory of critical behavior has also
been treated in the ‘latter references above as well as below the critical

4

temperature Tc' An advantage of the RG in TFD with respect to critical
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bghavior is the fact that scaling in the critical region appears naturally
in the formalism. '_

A]thoughrsuch a formalism offers incomparable clarity and transpar-
ency, very few explicit mode)-dependent calculations have been carried out
until now. While the authors of references.(1§9) and (150) have been
; concentratiﬁg on the asymptotic behavior of the runnihg (effective) mass

.
and coupling constant parameters of an O(N)xO(N) and 0(N)-x¢4(

N=1) model
:espective1y. the aythors of reference (151) have made a similar study of
the Ow-wa theor&'in the 1imit of large N. The resu]ts‘seem to indicate
that fhe temperature behavior in the asymptotic regions as obtained from
explicit computation of the RG-coefficients may be different from the
naive expectation of>the femperature dependency of the renormalized

parametersl49'151 or from other computational techniques.lso’152

To
shed more 1ight on these calculations, higher loop considerations may be
needed. .

In this chapter we wish to present an origjna1 apprpach153 to the
critical behavior of the single component x¢4-theory above TC by explicit-
1y computing the (finite temperature) RG-coefficients up to the one-Toop
approximation. We also obtain the infrared (zero mass limit) behavior'
(to cne-loop order).of these coefficients.. From the RG-invariant defini-
.tion of the critical temperature for static quantities as well as ihe
above infrared behavior of the RG-coefficients, it_wi]] be ﬁoésibje to
extract the critical béhavior of the running mas's and coupling constant
as they approach Tc from above. We also obtain a one-loop determination
of the mass critical index carrying the information on how fast the mass
attenuates while approaching_TC, as well as two other indices. The

results are shown to agree with earlier Computations,154-159 |



In this chapggr, the metric tensor is chosen as goo--gii-l.‘

*

2. The Renormalization Group in A¢4-theory

The bare x¢4 Lagrangean density at finite temperature is given as,

. M 1,; 2y -1
2 =Zd-2 = 1e°Tup (O-irsn)eug 1°%5-
£ = ,

where ¢, and A are the bare hermitean scalar field,

149

1
)

153

Cu_l_ ¢04 .I. (5-1)
4!

bare mass and bare

coupling constant respective1y. The matrix Uge(|iat|) is the Bogdliubov

transformation matrix_indicating that the unperturbed propagator is the

thermally rotated propagater. One has also,

and, -

%8 [1 0 ] S
0 -1

"

The Lagrangean (5.1) can be re-written in terms

parameters and fields as well as counterterms in the

-

(5.2)

(5.3)

of renormalized

following way,

i - '-]24 ?al[uél( U'ird*’mz)TUél]asf,e ‘5(1_49'_¢04
s afPetlal Gf) Pty 3 a7t ), (5.0)
where,
& SR & SR YR 2 sl =2l w2m ], (5.5)
"and, »
62:2-1 ; 61, :2;-1 (5.6)

The Feynman rules obtained from (5.4) are given

renormal +zed parameters as well as wave function and

in figure 4. The -~

coupling constant
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renormalization factors appearing in the Lagrangean (5.4) have‘been

obtained from the so-called‘To-renorma1izat10n scheme. In this scheme,

-

the renormalization conditions imposed on relevant renormalized proper

vertex functions are g%ven as,36'153
11 , ’
Re 1 F(z) (k;Tsg,m;x,T ) =-.<2-m2 . (5.7)
° k=k(x)
T=T,
11 .
3 Re i ré?) (k;T;9,m;x, — =- , (5.8)
T=T
o

and, (41111 o

Re i T, (ki3T39, mie,T ) =q , (5.9)
R Ky =k (c)

T T
0

in which k(x) means k0=0 and |f|2=<2. From the scaling of the renormal-
ization point (x.To) to (sx,tTo) we obtain new renormalized parameters
9(s,t) and m(s,t) where g(1,1)=g and m(1,1)=m. Using equations relating
the bare proper vertex functions to the renormalized ones at different
renormalization points, one obtains directly the following renormalization
group equation,

réN)(k;T;g.m;x.To)=o(s,t) -N/2 (N)(k T;g9(s,t),m (s,t);SK.tTO) ,
(5.10)

where,
O(S|t) = ]1m Z(g(s’t)tm(syt))St,tTo;A) , (5.11)
Ao ﬂg.m;x.fo A )

A being a high momentum cut-off. Obviously o(1,1)=1.
Differentiating (5.10)-(5.11) with respect to s and t, one gets the

following set of rénormalization group Lie differential equations,
R :
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2 (N)
k3 +83 +0om3 - Ny [ '(k;T;gmu,T )=s0 (5.12)
[ o sag S ;;? s] R 0
N and, ' )
. 2 (N)
To _+83 +0m3 - Ny | LV (k;Tyg,mx,T )=0 , (5.13)
[ oéT tag t — t] R 0
0 am
where,

d_ i B,ztd gls,t) o, (5.14)
ds s=t=1 dt s=t=1
0zs d ml . 2
¢35 d mi(s,t) v 9zt d m(s,t) » (5.15)
m2 S s=t=1 7 dt s=t=] °
and,
ysls dln o(S,t)l » veilt din o(s,t) . (5.16)
2 S s=t=1 2 dt sat=1

Equations (5.14)x(é.16) are the so-called renormalization group coeffi-

4
cients. These coefficients are renonﬁa]ization scheme-dependent.

In terms of scaled quantities, the renormalization scheme (5.7)n
(5.9) can be written as,

11
o(s,t)Re i réZ) (kitT 5g.mac,T ) =% 2m(s,t),(5.17)
° ° lk=k(sx)

-

(2)11

(k;tT ;g.ﬂﬂK.T ) =-1
a—»Z R ° ° Ik=k(s«

, (5.18)
)
and,

1111
o(S,t)Z Re i (4)

=q(s,t).(5.19)
k1=ki(sx)

The above set of renormalization conditions enables us to compute

explicitly the RG-coefficients. Differentiating (5.17)~(5.19) with
respect to s and t at the point s=t=1 yields,



2
oy * 2v, {1»52} . (5,20)
i ,
/ 1111 ‘
B, = Agys+"3"i(‘) 3 Re i r;(z“ (ki;tTo;g..m;x.To)]
s ok, kg ()
‘t=1
(5.21)
<
and,
2 (2)!
Gt 3 ZYt 14" | = 1 [ta_Re i I'R (k;tT ;q9,m;x,7 )]
2] 2Ll ° ° =k (x)
' m m t=1
I\
(5.22)
, (4)1111( )
g = 49Y + t-a_ Re i T k. tT ;gam;‘sT J
t t [at‘ R i'ho 0 ]Iki=k1‘('<)
t=1
(5.23)

Note that Yg and v, are obtained directly from (5.18). The latter RG-
coefficients are functions of g, m, x and To. The equations for running
parameters are obtained by making use of the scaled quantities g(s,t),

m(s,t), Sx and tTO Therefore one has,

sdq(s,t =’BS(g(s,t),m(s,t);sx,tTo) , (5.24)
S

san’(s,t) = 0_(g(s,t),m(s,t)sse,tT Jmi(s,t) (5.25)
S

and,

tdq(s,t) = 8, (q(s,t),m(s,t);sx,tT ) (5.26)

tdngs,tz = et(g(s,t),m(s,t);sk,tTo)mz(s,t) . (5.27)
dt

We also mention that momentum and temperature asymptotic behavior

can be analyasdymost easily whenuse of the concept of dimensionality is

152

‘made . A scaling transformation on equation (5.10) yields the following,
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ré“)(k;Tw;x.mo"o(s.t)'wrén)(%;{-;s(st).!éﬁ);%‘-;gf) '
- r (5.28)
where DN(E4-N) is the dimensionality of réN). The ;tudy of various
asymptotic behaviors making use of {5.28) can be found in reference (36) .
Now, in order to obtain information on thé behavior of quantities
such as the effeétive mass near the critical poimt, a more convenient
renormalization scheme has to be chosen. Furthermore, the temper;ture

renormalization point is best chosen when measured from the critical.

tempera-ure Tc. For computational convenience, the renormalization
36,153

-

conditions (5.17)~(5.19) ow modified as follows,

o(s,t) Re ir(?) = -mi(s,t) . (5.29)

R +tTo;g,m;x,Tc+T°)

k=0
(2)11
p(s,t) 3_Re irg (kiT_+tT ;9,m;c,T +T ) = -1 ,» (5.30)
c "o c o
aEZ k=0
and,
? (4)1111
p(s,t) Re irg (ki;Tc*To;g.m_;x.Tc*rTo) = g(s,t) , (5.31)
ki’O
P)

where g and m retain their previous meaning.

In the latter scheme, it is easy to recognize that the renormaltza-

I3 - . I3 /
tion group coefficients with respect to the momentum scale sx vanish,
that is y_=0_=8_=0. The fact that g_ is identically zero also insures us
S S S~ s
4
that one sits at a fixed point of the running coupling constant in
momentum space. As a result, the "wave-function renormalization factor"
p as well as the running mass and coupling constant are uniquely dependent
~

upon the temperature scale t measured from above the critical point Tc'

Therefore, in this scheme, the only non-trivial RG-coefficients are now

obtained as,

%

j 2
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v*1td_In olt) . ‘ (5.32)
Zdt ts] “
| ()1,
9 "2y, 1 [t_a_ Re i r.®" (0; rnr 19amin T 4T )J , (5.33)
2Lt t=1
m
and. D
-~ ‘ (4)1111 \ ; X
Bt-4gyt+ [t%E Re i Tp (O;TgtTo;g,m KT+ °)]’t=1 » ('5.34)
]
where, >
(t)=- [3 Re i r(z)ll(k-T +tT ;g,m;«,T +T ) -1 (5.3%)
o [Tz ‘R e o’go » Ky c o ] k=0 ’ .
3

In the following section, we compute the coefficients Yy Ot and 8t

to the one loop approximation by making practical use of equations (5.32)

~(5. 35). e also gbtain the infrared (zero mass 1imit) behavior of these

coefﬁcven@whmh,m]] be found; use%{ when computing the critical

= i‘c ~ Y

1ndices qf ;hg tMo?y,. ?

& M
I % ",’
- 8o

e Qx !n arﬂe?'to gomnﬂte the f?n1f5“ﬁeﬂpﬁr&tune renorma11zat1on group

-, .',09

co ffi 1ents. one f1rst needs toﬁé&t&an exp11c1t expressions for the

boson prOpagatOr and the .four- p01nt proper vertex function as

d from the relatlons (5 32)~(5.35). The one-loop diagrams con-

kY

|3
2 .1
) (ks T +tT 5 3G ,.:,T +T ) k2 m--Lo (k;Tc+tTo;g,m;x,Tc+To),
(5.36)
& 11 4 11, .. 2,42.m2)
s =TI (kT +tT sg,mik,T 4T )= g (d AT (p)i[ -6 +(k"-m®)8Z ],
R“C'OV'COZFLf‘Tg
| ; L (5.37)

3

L4 N . 1

! S N e
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. ,
irid) (ki;Tc+tTo;g.m;‘,TC+T°)-g+{§? jd‘ oM (p)

(2n) ™

11 ‘ 11 11 .
x 4 (p-kl-k2)+A (p-kl-k3)+A (p'kl'ka)] o LTS (5.38)

In the above formulae, the unperturbed propagator a{p) is given as, -

OB [ allpgl)__x UB(IDOI)]°B=AO(p)+AB(p) . (5.39)
p ~-m +idt {'\ 4
where, ﬂtg A HBIDOI
a (p)z 1 ;A (p)' Q# g e , (5.40)
° Py~ +ité ‘sﬁlpol s {

p !!..p(a -1) e 1

» in which the inverﬁs temperature 8 is taker as,

_ -1 )
‘ B =,(Tc*tTo) , : \\\ (5.41)
and where, N )
.. ' i ',
W2z 2md . (5.42p
p e I

A Making use of the renormalization conditions (5.29)~(5.31) at the

point t=1, one obtains for the one-loop temperature-dependent counrterterms,

s21) g ’ . (5.43)
2(}/ 4 4
51 Re i [d'p , (5.44)
? j(Zw) .‘
and, )
52,1 2 .3 g ke | jdag St e) (5.45)
(2n) )/ >

where the overbars indicate that the propagators are obtajned at the

inverse temperature so Yiven by,
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) -1 '
80 = (T'c+To') g\ , (5.46)
o Insertion of the counterterms (5.43)(5.45) into equations (5.36)~ .
) , . ;
"~ (5.38) yields,
\\\ (211 ,’ 2 4 11, <11
Re irR - (O;Tc+tT 3g,myx, T +7 ) = -m"-g Re i{d p [a " (p)-2""(p)],
_ . Oy ¢ o 4
(27)
' (5.47)
’ ()l :
® ARe iTp (k;Tc+tTo;g,m;x,Tc+To) = -1 (5.48)
+2 : k=0
ok .
and, - -
Re ir(a)llll(o-r #tT 5g.mix,T +T ) = g +3g%Re i[d’p [
R ‘ ve 0?7 sl fod J_L4
- ' (2m)
) ) 11 11 =11 -11
<6 (p)a(p)-2a " (p)a (p)] - (5.49)
Defining, . .
_ .4 11
9 . Il(s) = Re 1Jd p 4A (p) . , (5.50)
(2n)
and, : Ll
~ o b 11,011
- Ly(8) = Re,]fg-a‘aA (p)a™"(p) , (5.51)
v “(2n) - )
one obtains explicitly, ’
. . » «— - 2 ] ’A - - | . ?
V»\\\ | 1,(8) = 2 fg d92r1 %»«, : 1 } : . (5.52)
Dam® plf (ePep-) |
and, 3 ¢ ) = :
1,(8) = - J p-dp [ 1 + 1 1+ 1 1 } . (5.53)
2 -
- 2] o3 T3, Buw 2, Bw 2
2 (2n) Zmp wp(e p-1) wp(e P-1)
Making use of the formula,
| T Bw eBwp |
ta ] = 0 p° , (5.54)
Wt | (eBup) (T_+t7 ) (eB9p-1)2



-

)
. u . (Tc+tTJ

; in which o has been re-defined as,

P B
1 as, . '
o [_eefp 1 o eBup  Bup(e™Pen) 0o
-3t [ (eBwp_l)Z ] (TC+tT°)2(eB‘"P-1)2[ (eBmp_l) ]
s and passing Qve; to the dimensionless variabies,
XZ8p ; A=zgm 05 = xan? , (5.56)

the RG-coefficients (5.32)~(5.34), upon insertfon of (5.52)-(5.53) into

equations (5.47)~(5.49), are finally obtained as (to one-loop order),

w=0 | : (5.57)
o, = (g/Ae) T j.xzdx e%x , , (5.58)
. (1T ) (2n)? (exe1)?
\ : »
d ’ ‘
and, ) @ N
s, =-3¢° __To J Cdx 1 e%x(e%1) . (5.59)
2 (TA+T) (2m)% %% (e%%-1)3 . )

The above coefficients have been evaluated at the point t=1 and are
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P

functions of T , g"and 4. In order to discover the behavior of the theory -

near the critical point, one needs expressions for rescaled t-dependent

A Y

quantities. It is straightforward to re-write the t-dependent coefficients

from (5.57)~(5.59). The results are,

o ._q (5.60)

(69" tTo szdx e’x , (5.61)
s2(e)(T 1)) (22 (e7X1)2

9

vo(a(t),a(t),t)

0, (g(t),a(t) 1)

t) tT, szdx 1 e%%(e%%+1) , (5.62)

and,  8,(g(t),a(t),t) = -3¢

(21)° Ox  (e%%-1)°

o Q

r

(5.63)
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¢ (4
¢an further define exponents n and v as,
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-Equations (5.60)~(5.62) are the desired relations for the study of
the critical behavior of the theory. \

Sihce we expect the dimensionless rqﬁning mass a(t) ta vanish at the
critical point, we are then interested in th; ihfrared behavior of the

]atter coefficients. Evaluation of the integrals appearing in (5.61) and

(5.6%) finally yields the following results,

Y 11 S -
et(g(t).A.(t).t) = g(t) Tg_ pots0 (5.64)
1247 (t) c - s )
and, '
o . T : .
8, (g(t),a(t),t) = - (t t-0 (5.65)
e T6walt T" :
assuming thaf, 4 ‘ &
A(t) = Aot" sots0 7 ovel . o - (5.66)

In the next sect1on we will determine the 1ndex v as well as other

' ind1ces describ1ng the critical- behiy1or of the present model from the

" infrared behavior of the RG-coefficients (5.64)-(5.65).

‘ ‘ : C s RS
4. Computation of the Critical Exponents

“
Following the approach of reference (36) , we define the renormaliza-

tion group invariant critical temperature in the following way,

A

A S

Re i Ih

)11

@
—

70T sg(t) ()T T ) =0, (5.67)

which gives the critita] temperature Tc as a function of,g(t), m(t) and

tTo. ‘35

Also, in addition to the mass crifica] index v defined in (5.66), we
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)1 . . g
Re 1™ (KiTosg(t),m(e) s, T +tT = k|70 5 k=0 ., (5.68)
‘ ' A ¢
and, ! A r(2)11 ’ y ‘ ‘\»?{ . )
Re i1 (0iTsg(t),m(t)sk,TootT ) |T-T |75 1T = "(5.69),

Making use of the renormalization group equation (5.28) enPiched
with dimensionality, ana)lysis of the 1ow-mémentum behavior of Iﬁg) at the
gritical,temperature'together with similar analysis of the temperature

behavior near Tc for static quantities has shown that the fo110§§:;‘
!

scaling law is satisfied,36

v(2-n) = v , : ’ v (5.70) - =

&

provided that the following identifications are made,

nEvp/er (5.71)
and, i
: Y = o;”- % i (5.72)
in which, . - ' '
2v = 0y, ' | (5.73)
and, v )
g F limy, (g(t),a(t),t) 5 of = Vim o (g(t),a(t),t) . (5.74)

t+0 t-0 :

v

It should be emphasized that scaling appears as a natural consequence
of the finite temperature RG in the TFD formalism. ;;
In order to obtain the ﬁhmerical values of the latter critical

exponents for the X¢4mode1, one can use the definition (5.67) for the

critical temperature to derive a self-consistent equation relating m(t),

-

(2)

g(t) and T Rememberfng e&uation (5.47) for R~ ’» equation (5.67) now

leads to the following relation,
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| G

P
0

1 - 1 s (5.75)

L

Bw B .w
(e p-l) (e,C p-l)

nl(t) = g(t)

in which,
\ .

B, = 1/Tc . (5.76)

Re-writing the tempekéturé distribution factors as a Taylor expansion

about the critical temperature Tc’ one gets,

© g
2%(t) = g(t) tTo I P e X +o(td) . (5.77)
» T 2 o .
C (2'") (e X-1)2‘
where we defined again,
xz8.p ; at)=smt) ; o T Bou, . (5.78)

For small t, the definitions (5.78) become identical to (5.56).
Explicit evaluation of the integral (5.77) in the infrared limit

o
g, X finally yields &the self-consistent equation,

1=gt) o t0 . ¢ ' (5.79)
1222(t) ¢

Insertion of the self-consistent equation (A.79) into the expression

(5.64) for 0, near the critical point identify e; as,
@;’ = 1 . ' \ (5.80)

One also gets y;\yrivia11y from (5.60),

* =
Yy 0 (5.81)

The critical exponen?s (5.71)m(5.73){ to the one-loop appfoximatibn,

are therefore completely determined as,

b}



vel 3 =1 3 n=0 . Ao a A - (5.82)

The knowledge of the critical indwces (5 821 can now be used to-

obtain the behavior of the coupling constant g(t) near the cr1t1ca1 point.

Such a behavior is best analyzed by making use of.the Bt function in the
infrared 1imit obtained in (5.65). Insertion of {5.66) and (5.82) into

the expression (5.65) for Bt near the critical temperature, we get,

B (g(t),t) = -3 2(4 T_ot’i ; te0 . (5.83)
GnAo TC a

Upon the change of variable,

d(t) = t% 4 g | (5.84)

as well as the definition, - . -

CBlg(rn)) = B (9(Tin),r)

, ) (5.85)

T ’ '

the differential equation for the running coupling constant g(t;») can

now be written as,
dg(;1) = 2 B(g(t;0)) | (5.86)
dr _

for which we assumed the following boundary condition,
Tim g(; xH';g . (5.87)
0 .

Note that B(g) has no explicit t-dependence which makes it particularly

sy to integrate. Integration of (5.86) yields,
glt;2)
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Differentiating (5.88) with respect to ) gives, ‘o

1 dgft;x) - 1 =0 , (5.89)

B{g(t;2)) ) B()) o N
or, LR
13 -8()3a Jgltsx) =0 , o (5.90)
? ot EY) ’ .
whe‘g.
\// B()) = -3)‘2 Ig . (5.91)
- IEon Tc

The solution to (5.90) is now readily obtained as,

g(tsx) = _ B i t+0 (5.92)

where use was made of equation (5.84). From the self-consistent equation

r

(5.79), on the other hand, we get,

3 2 7T ) ’
o g(0;x) = 1287 ¢ , (5.93)
o —
T
which determines \. Therefore, _ '
g(t) = 1202 T¢ [1{’;‘3 t‘?] 1t o (5.94)
°F 2m

)

Finally we mention that the exponents (5.82) obtained here are in
complete agreement with the so-called e-expansion met:hodl‘r";’lsa'159 in
the one-loop approgl ’i‘“x“~,we11 as Qﬁﬁﬁ other techm‘ques.lss'157 The
method pfeSen%Ed' f ‘};r can élso be genera11zed in principle,

. ®to higher VQQQ afl] | 7; where it can be compared to more accurate
"apgtimateslsg of the’cdeff1cients "t
. .‘ R 5O
- - ‘ o » ’
- ST TN ‘
N . ey : » e

NN . - LT ’ ~$



CHAPTER VI
SUMMARY

In this work we presented and discussed the contributions of the
author and co-workers to the phyﬁics of macroscoﬁic phenomena in quantum
field theoretical systems. These c¢ontributions are clearly classified
into two important and often connected classes of macroscopic phenomena:
the class of extended objects (classical) phenoméha and the c]asé of
thermodynamical phenomena in quantum systems. .

After briefly revfewing in chapter Il the formalisms used in thig
work in connection with the problems at hand, we attacked jn chapter 11
the difficult problem of solving analytically the dynamics ofa physica11y_
re]evant_one-dimensional fermion-soliton system with monomial aqd deriva-
tive interactions. Making use of a self-consistent perturbaéién theory
as well as the so-called asymptotic expansion method, we sh&wqd how parts
of the derivative coupling induce and control the dynamiés Of:tﬁe soliton
which is noQ constrained to'propagate at fixed ve1ocify. wé also succeed-
ed in solving the soliton shape in closed fokm. The above solufiop has

been obtained in the context of a quasirealistic continuum model of the
L 4

trans-polyacetylene molecule in which optical and acoustic phonon ipter-
action effects are considered simultaneously. Such a system h&s been

Y

'attﬁécting much attention in recent years because it allows for_exotic
pheﬁ;mena such as charge or spin fractionization. .
Iﬁ chapter IV, we investigated the Goldstone phase structufe @? ‘
supgrsymmetric.systems for which thermal®effects have been resbons!b1e
for "spontaneous supersymmetry breaking. After briefly r9viewiﬁg the;

physics’%f the single scalar superfield Wess-Zumino model,

R

hich can be

7 1A
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broken only at finite temperature for both the free and interacting
cases, we thér; gave a detailed analysis to the N=3 scalar superfield '
0'Raifeartaigh model which allows for supersymmetry Bfeaking both at zero
and finite temperature, thereby displaying a mixed mechanism of super-
vsymmetry breaking. Because thg 0'Raifeartaigh modé1 has richer symmetry .
content due to the added degrees of freedom, the Goldstone phase at ffﬁite
temperature allows for the coexistence of different types of Nambu-
Goldstone zero-energy modes. In mass degenerate channels, such mode; are
the so-called thermal superpairs while Goldstone fermion particle mades
appear in channels where mass degeneracy is removed aﬁong supermultiplets.
Such modes coexist with' the originaI Goldstone fermion of the zero temper- .
ature broken symmetryAphase. . , g
Finally, in thapter V, we reviewea renormalization thecry and the
renormalization group in the context of thermo-field dyhamics and present-
ed a one-loop computation of the renormalization group coefficients
together with a diiggiéioﬁ;of the critical behavior aﬁd a one-loop
'computation of thelcriifha1 exponents of the A¢4—theory at ﬁinige
temperatdre. | .
The problems treafed in this work of course form a very small subset
of tqggﬁnnensely larger set of all macroscopic phenomena encountered in
a11/ﬁﬁa€%hes of physicsﬂ Although soliton physics enjoys great popular-
Ay -
ity'?n condensed matter physics, it is still problematic in high-energy
Qgiysics. Unless its importance is further clarified in this latter
:branch of physics the attention of theoreticians is 1ikefy to drift
.increasingly ;owa:d Ehgacﬁgss of macroscopic phenomena involving statis-

tical mechanical concepts. The study of the onset of chaos as well as

the transition to the glass phase of matter are some examples of physical
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problems with great promises. Note that the study of glass systems

already overlaps with the domain of topological extended objects.



"

Figqfell. Phases of the dimerized trans-polyacetylene

molecule.
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Figure 2./ Feynman rules of the N=3

at finite temperature.
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"Figure 3. One-loqp fefmion sel f-energy diagrams of the N=3

O'Raifeartaigh model at finite temperature.
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"~ APPENDIX A
4 DERIVATION OF THE CONTINUUM POLYACETYLENE MODEL- FROM THE SSH MODEL

[p'this appendix we derive formally the continuum model (3.6) for
the polyacetylene molecule, in¢luding acbusiic phonon effects. from the
discrete SSH model (3.1)ﬁto\ordgr v2 in acoustic phonon ve1ocity.95'97

1

_The SSH}modé] is given as, in the Lagrangean formalist,

L =

g

b= I g}

¢t ria - )
N _aT ' Gn

e

+ 11
n?
et + ~ \
* f\ th.n+l (c.ncn+1+cn+1cn) , 1 (A.1)
A , N

-

where Cn and C; repfe@ent the annihilation and creation operators of .the

A}

- n-electron at the Iaétice site r_and u_ is the displacement field of

n n
the lattice r . These operators satisfy the following commutation
relations, ' 4
tq | ‘ |
y [Cn.Cm 1, = Sam ‘ o (A.2)
and, -— -

) o
[.u"'a-:m ]_ ,m . L (A.3)

In the above expressions, p is the mass qf the CH-group, K is the

4

spring constant for the undimerized lattice, u is the electron chemical

potential and tn is the hopping matrix obtained in a linear approx-

s+l
imation as,

st - ] o A.4

thonel T Yo alupy-up) . ,( )
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where to is the hopping amplitude and o the electron-phonon couplingi
In order _to pass to-the continuum description, we now introduce

Fourier transforms for operators A at the lattice- site r 1n the follow-

\

.- : Voo
A[k] (N '*"nA ,
‘,“'

in which a denotes the lattice constant of the model and the momentum k

ing way,

. (A.5)

‘fs. 1imited to the First Brillouin zone. The inverse transform is given

as, “n/a R .
- 2 J'dk e'krmalk] . " (A.6)°
Zn -n/a ° /
If we now ma}g use of the following formulae,
a I exp(ikrn) = ¢ §(k+2nN/a) ' (A.7)
TN : N .
ands o n/a .
. a_ f dk_exp[ik(rn-rm)] = 8m ' (A.8)
2n _
. _“/a ) . . L.

1 :
one can re-write the SSH Langrangean (A.1) in the following form,

-

g Jdk ct[k] i3 -u+2tycos(ka)] K]
ot
jdq ! [oa u [q]_u[q] - [1-cos(qa)]u’ [q]um]

I

se R Jokdq (CTlk+alclklulade ¥ (e'®-1)4nc. ), . (A.9)-

Dividing the Brillouin zone into half, we now define two fields
wl[k] and oz[k] for the ebectron as well as the acoustic phonon field

- . €[q] and optical phonon field ¢[q] in the following-way,

—
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/.

vkl = Cleon/2a) & -n2ackenjea (A.10)
ot wsz] = -iC[k-n/Za] p fﬂ/2l<k<ﬂ/2a\\ 'y . - (A.11)
elq] = ulq) .3 -=-w/2a<q<w/2a ' \\\FA.IZ) 1
and, \ ) . ' :
- ¢[q] = u[q+n/§] S -w/2a<q<n/;a . ; ;A 13)

In terms of the f1e1ds (A lo)x(A 13) the Lagrangean (A 9) is then

re-written as,

L = [k [13 ~u=-2t.si (k k
I . ] at H os n 3)13] W[ ]

+1 qu [ 03 £'[q)2_telq) - 2K[1- cos(qﬂ)le [qlc[q]
27 at at _

.

03 ¢'[q1a 3 o[q] - 2K[1+cos(qa) o [qJelq] ]
it T

. R

tofx [akda -ie‘ka(é“i‘-l>\q*[gfq]13w[$]e[q]
. | o \
+ie' (e!941)y" (keq)r vlKIola] -

+he. ) : _ (A.19)

_In the above Lagrangean. the T matr1ces are the generators of Su(2) in

~ the fundamental representation and the w(k] frel{ has been defined as,

wlk]

[t;%:§}* I | .; (A.15)

-

The range of the momentum integrations has been specified in (A.10)

~(A-13).

-/
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Defining fields ir configuration spacg as follows,

W) = Idk e“"‘w[k] - - . (A.16)
/2_“ :
| 1gx ' :
&lx) = "O-J!S_ e V&l . . \ (A.17)
2n | , .
and, o | _
o(x) = /o'Jgg_ A Co (A.18) .

‘" 'we can obtain the continuum hode] by expanding the Lagrangean (A.14)
in powers of a small 1;tt1ce»constaﬁt a and by inserting the relations
(Afls)w(A.le).f The resulting Lagrangéan density is non-local in the P
sense that it contains higher spatial derivative coupling terms %s we go

v ‘ N B
higher in lattice constant expansion. Restricting ourselves to order
s

az, the Lagrangean density is the same as in equation (3.6),

-
o{ = Wf[i_a___"-"”v’:f 3‘ ]4; + 1 [:3_5_]2- vz[a_E_]Z]
X ax 2 |[ax ax : ‘
0 1 70 1 &
+1 [(20 2 v (a0 1% - me?Y + gw+r1wo
2 (3% axy S I R

axl 3)(1

* ﬂig{ -5[w T33¥I §1r§W] a;r)+[w 1133%+3_¥_ &:éé }.,(A.19)

l

\ #
in which Ve denotes the Fermi velocity, v is th% acoustic phonon velocity,

m is the optical phonon mass and g is the electron-phonon cbup]ing con-

stant. - They are given in terms of the parameters of the discrete model as, //

-

= 2aty v2 = (x/0)al s mé =v8K/p ; g = 8av3T5 . (A.20)



. o . 190
. This model is the‘complete1y realistic'continuud model fgr polyacety-

. A A ] )
lene when acoustic effects are taken into consideration. In the 1imit

vz*O, the Lagrangean density (A:19) reduces to the well-known TLM model.
N\ et e ) )
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’ APPENDIX B -

~ PRODUCT RULES FOR SPECTRAL REPRESENTATIONS IN TFD

In this appendix, we present useful product rules for ’éectra]

26,52 1pree cases may oceur in the

4

on of ‘the one-loop self-energy diagrams of fermion-boson systems:

- )

i det of two ee may be of fefmion-boson\%ype. boson-
' K v . .
boson or fermion-fermio . $ote that the conventions we follow hegf

will be given by the ones chosen in chapter IV.

roprtiqntations in the context of TFD.

In TFD, the spectral representatiors for boson and férmion propagators
. N

are written respectively as,

2*8(p) = -1 [Ua(lpol) ; UB(IPOI)]“B |
p +MB-i16 ’ J
<1 [ degateg BiMg) fugle)__t_ugle)]® L (8)
) 19V%1°P 7 [ B' 1 P T 8“1 ]
and,
s*6(p) = (-ipMy) et Ipp1)_ple) u;lupon]““
p +MF-116
- - N -1 ‘ aB
= de,o(x,, BiMc) (~if - iF+M ) [U-(k,)) 1 UZM(x )} .
\ .I 20\ %2:P3 0 2 F [ Fy2 P F %2
. (B.2)
where the Bogoliubov matrices UB(xl)'and UF(<2) are given as,
)Bx B
. Ugley) = 1t [e 11 ] : (8.3)
(ee‘l—l); 1 81 ‘
ﬂ v
and, ;’ _ e55‘2 y |
UF(KZ) - 1, _ . (8.4)
v(ee"?+l)5 -1 @'18x2
~ e
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. N
The latter matrices satisfy the fo]lowi%g relations, N .
UgtUg = T 3 U =Up . . (8.5)
- ) X _—
"Also, we .defined in (8.1)-(8.2), -
“ ’ ‘ '.. -
5, BiM) = 1 [8lk-u )-8(x+w )] 3 ol z 322 . (8.6)
%y P e e -
P \
A product rule for fermion-boson propagators can be obtained as,
dk af . -1 ag
0 [Ug(xy) T . Ug{x,) Uc,) . 1 Uz (x,)
J?*_[Blﬁ'fp-:ﬂréa 1 sz-r#ifGF 2
. 0°r0""1 g 0 "2
a Jd""ra("“"l"‘z) [UF(") ! U'-’l(")ru ' (B.7)
- DO-K# 8
where we defined, ' i ¢
oFB(K;Kl,KZ) z é(x-xlﬂrz)[ 8.‘l + Bxl } . (B.8)
e 1-1 e" 241
" When 50 is real in equation (B.7), it follows from the identity,
{ »--
1 = P -iwré(po;x) . ‘ '(8.9)

Pg-x DR Po-X

that UF(K) can be replaced by UF(pO) in the rhs of the product rule.

When this happens} UF(pO) ¢an then be factorizéd outside the integration,

a property which makes product rules convegient computational tools. |
We close this appendix by writing explicitly the rules for boson-

boson products as well as fermion-fermion products:

dk aB ' a8
dkg Tug (k. ) ; U(K-)} [u(:) T u(-<)]
J 2n [ B1 Ko#Pg-%q*iTs Bl B2 kg-%p+1t8 B2

1 [axogg(xie xy) [Ua“’p - TGUBM]“ , (8.10)
o 0 .
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lﬂd. ‘ N - e
. A
dk -1 ag 8a
0 Juele) 1 uzliey) (e)) 1 UXe)
I, [rlhp_“mr 1] [“r g P
o*Po-1* 0"%2
s Idro (kikq0k9) [Ugl) * U (:)]BGTGGTBB \. (8.11)
R FF 1'%2 [ B ‘ m 8
v N\
in which we defined, oy )
Gpa K3k aK,y) = 6(kokq+c )‘[ 1 - § ] , (8.12)
BB' 12 172
’ eB1t] B2
and,
‘ OFF(‘;‘I'KZ) z G(K'Kl"‘lz)[ 1 - 1 1 . (8.13)
: eB< 141 eB%241 .



