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Abstract

One of the most important goals of computer graphics is the reliable display of
synthesized images. This thesis addresses the problem of image display on computer
graphics hardware with a limited set of simultaneous colours.

The main emphasis of this work is colour image quantization. Quantization 1is
the process of representing an image with a small number of well selected colours.
The thesis gives a detailed survey of previous image quantization techniques. The
existing algorithms are divided into two classes — pre- and post-clustering. Merits
of both approaches are discussed. In addition this document presents optimization
techniques for the nearest neighboﬁr search. These methods may be used to speed
up the iteration process of the post-clustering aigorithms.

A new colour quantization approacl: is presented — the local K-means algorithm.
It is an iterative post-clustering technique that approximates an optimal palette using
multiple subsects of image pixels. The local K-means procedure is compared with
previous quantization methods. The new algorithm is able to generate a high quality
palette significantly faster than other quantization techniques. The application of
the local K-means algorithm to quantization of multiple images in windows systems
is addressed. The algorithm takes intc account previously allocated colours in the

shared colour map, thus the quantization accuracy may be improved.
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Chapter 1

Introduction.

Visual information is extremely important in our perception of the world. This is
why computing applications are becoming more and more visual. Modern software
incorporates various forms of imagery. Jmage input devices are able to accurately dig-
itize real world scenes, photographs, works of art, etc. Computer graphics researchers
have developed highly photo-realistic image synthesis techniques. Such rendering al-
gorithms are based on methods for the faithful representation of geometric objects,
and mathematical models of the physical behavior of light. Unfortunately, the effort
in image acquisition and synthesis may be lost due to the limitations of the display
hardware.

Alain Fournier said “Computer Graphics is computer science you can see ” [Fou94].
The objective of this work is to make wvisible the already generated imnage information.
In particular, the goal of this research is to display faithfully full colour images using
relatively scarce resources of output devices.

The complete solution of the image display problem is far beyond the scope of
this thesis. This work is targeted to the reproduction of images on hardware with a

limited set of simultaneous colours, mainly frame buffer displays.



1.1 Frame buffer displays

The images are often acquired or synthesized using a 24 bit representation of colour
values. Such a representation allows more than 16 million different colours. This is
sufficient for most applications since a typical image of a real scene contains only
a few hundred thousand distinct colours. In order to be displayed the image needs
to be stored in the frame buffer. Unfortunately the 24 bit representation requires a
substantial amount of video memory. Commonly used low cost hardware solves the
problem by the reduction of the simultaneous colours. The colours displayable at one
time constitute the “palette”. The frame buffer stores not the original 24-bit values
of image pixels but the index of the corresponding colour in the palette. Thus each
pixel is represented by 4 or 8 bits — an index into 16 or 256 colours in the palettes.

Clearly, for the best image display the palette needs to be carefully chosen. The
mapping of the original image to the selected palette must ensure the least possible
distortion. These issues constitute the problem of colour reduction. Thus, the palette
selection and colour mapping problems are the main topic of this thesis.

Even though 24-bit graphics hardware is becoming more common, colour reduc-
tion maintains its practical value. It lessens space requirements for storage of image

data and reduces transmission bandwidth requirements in multimedia applications.

1.2 The scope of this thesis

The objective of research in colour reduction is to minimize the perceived distortion
in the resulting image. It is often the case that the quality of the colour reduc-
tion procedure is judged by the appearance of the image on hard:ware devices with
different colour capabilities. In order to be successful the reduction proceduse must
account for the specifics of the target output hardware. Therefore the issues of colour
reproduction should be considered.

The colour reproduction problem has been studied in the cases when an image is

to be displayed by hardware of different media: printer, computer monitor, etc. The

te



goal is 1o mindmizc the difference in various representations of the same image.
The author suggests that a full scale colour reduction should be “wrapped’ by

the pre- and post-processing operations that allow faithful colour reproduction:

1. Preprocessing.

{a) Representation of the image in device independent form.
(b) Device-to-device gamut mapping.

(c) De-saturation and Over-saturation corrections.

(d) Gamma correction.

(e) Representation of the image in device dependent form.

2. Colour quantization.

(a) Selection of colour palette

(b) Mapping of the original image into the new palette

3. Conversion of the image into the colour space of the output device

1.2.1 Pre- and post-processing

The pre-processing step is needed to accommodate the differences in physical prop-
erties of the image acquisition process and the output device. The pre-processing is
also needed when the objective of the colour reduction is to minimize the difference
between the image displayed on the full colour monitor and the 4 or 8 bit frame
buffer.

Even though the monitors share similar technology they may use different phos-
phors to represent primary colours. Moreover, the optical properties of the device
are not constant in time. The phosphors fade with use. These differences lead to
different sets of reproducible colours. Therefore it is very likely that the same image
will appear to be distorted when displayed on two different monitors.

The details of the pre-processing steps can be found in colour reproduction liter-
ature ([SCB88], [Hal89], [Yul67]). In this thesis the experiments were carried out on

24 bit colour hardware. The original and the modified images are displayed on the



same monitor and reproduced on the same printer. Therefore the gamut mapping,
tone, and saturation corrections were not required.

The only pre-processing that may be needed is the image wemver=' o+ into device
independent colour space. The advantages of the CIE uniform spaces «ill be explored
further in the thesis. Thus the post-processing is a conversion of the image into

monitor’s RGB space. The methods of this conversion are described in [FvDFI90]
(pp. 584-594).

1.2.2 Quantization

Colour quantization is an important step in the colour reduction process. One of the

possible definitions is found in [Hec82]:

Quantization is the process of assigning representation values to ranges
of input values ...

Colour image quantization is the process of selecting a set of colours to

represent the colour gamut of an image, and computing the mapping from
colour space to representative colours.

Colour quantization is a lossy image compression operation. Other approaches
to image compression are developed by the signal processing community. The main
emphasis of their research is to achieve high compression rates while maintaining
minimum distortion. The image palettes usually do not change. The colour quanti-
zation is targeted to the specifics of the frame buffers. Thus the build-in hardware
lookup tables can be used for fast display.

The approaches to colour reduction problem differ in the palette selection strategy.
The palette entries can be fixed for all the displayed images. This technique is often
used in applications when the entire image is not available — preview to a ray-tracer,
World Wide Web browsers, etc. Dithering methods are often applied in this case.

The other approach is to select a different palette for each displayed image. Such
an algorithm takes into account the statistical distribution of colours in the input

image. The thesis is focussed on this class of quantization methods.



1.3 The “road map”

The current work is a study of the colour reduction — the colour quantization prob-
lem. The mathematical formulation of this problem is given in Chapter 2. The goal
of quantization research is to find the best possible palette and to map the colours
of the original image to the selected colours.

This document presents a survey of palette selection schemes developed in the
last twenty years. The author describes the new local K-means algorithm. This
method favorably compares with previous techniques in accuracy, speed and resource
requirements.

This research also deals with fast colour mapping. Several methods of optimiza-
tion are proposed. Special attention is paid to the minimization of quantization

artifacts.



Chapter 2

Formulation of the Problem.

In this chapter we formulate the colour quantization problem. The objective of
colour reduction is defined mathematically in terms of the quantization error. Colour

mapping techniques are presented along with a brief overview of the early approaches

to palette selection.

2.1 Quantization is an optimization problem.

Let ¢; be a 3-dimensional vector in one of the colour spaces (CIE Lu*v*, HSV, RGB,
etc.). The set C = {ci,i = 1,2... N} is the set of all colours in the full colour
image I. A quantized image T is represented by a set of K colours C = {5,j =
1,2...K},K < N. The quantization process is therefore a mapping: ¢ : C — C
that substitutes each original colour by a colour from the palette.

The goal of quantization is to make the perceived difference between the original
image and its quantized representation as small as possible. Hence the colour map-
ping should substitute every colour of the original image I by the closest colour from

the set C. Therefore the quantization operator is commonly expressed as follows:

glc)=¢ck: d(c,T)= mi%d(c,ig‘) (2.1)
5e€

7
where d(c;, c;) is a perceptually meaningful colour distance between colours ¢; and c;.

The definition of such a metric is a challenge in itself. The current results show that in

6



the case of the CIE Lu"v™ space, the Euclidean distance can reasonably approximate
the perceived difference of colours. Thus for the future discussion we will assume
that the Euclidean norm is used for the colour mapping operator.

The objective of colour quantization research is to find the best possible palette.
Let £ be a measure of image distortion for a palette C. We define an optimal palette
to be a set of colours C~ that best approximates the original image. In other words

the optimal palette minimizes the given norm E:

£z < &z (2.2)

Thus the colour quantization can be viewed as an approximation problem or a
vector quantization problem.

On the other hand, the optimal quantization can be formulated as an optimal
space partitioning. The quantization process defines a set of clusters in the colour
space. We say that colours of the original image mapped into the same palette entry

in the output image belong to the same cluster:

cE€ESk: qlc)=7Cx (2.3)

The collection of these clusters represent the Voronoi tessellation of the colour
space. The partitioning is said to be optimal if the following measure is minimized

[Wu92a]:
K
£(51,52...5) =33 lle — =l (2.4)

k=1 cESg

The K clustering problem is known to be NP-complete for variable K ([Bru77},
[GIWS82], [Wu92a]). Consequently, any practical solution of such a large scale opti-
mization problem will necessarily be heuristic and approximate. It is worth noting
that in practice the globally optimal solution is usually not necessary (fWPW90],
[FO89]). The nearly optimal partitioning is often sufficient for a good image display.



2.2 Quantization errors

Human vision is an extremely complicated and not yet fully understood process. It
is very difficult to formulate a definite solution to image quantization in terms of
perceived image quality. In fact, there is no good objective criterion available for
measuring the perceived image similarity.

At least two typical artifacts are often visible as a result of quantization:

e the colour shift, the loss of colour variety and contrast;

e artificial contouring in the smooth areas of the image.

In this thesis the merits of quantization algorithms are evaluated on the basis of these

two artifacts. This section presents mathematical measures of quantization accuracy.

2.2.1 Measures of Colour Approximation

The fidelity of colour approximation is often the only measure of quantization dis-
tortion. In fact the optimal partitioning is defined only as the most accurate repre-
sentation of colours.

In the quantization literature it is common to use image dependent distortion
measures [Hec82, WPW90, Wu92a]. Let an image I be an array of M pixels (z,y),

then c(z,y) is the colour of each image pixel. The average quantization distortion per

pixel can be defined as follows:

£= 2 3 lewn = alea)l (2.5)

(z.y)el
Even though the average distortion measure € can give a reasonable estimate of

a perceived image difference, it can also be very misleading (see [WPW90]). Colours
of the original image are often non-uniformly distributed in the colour space. Thus
significant image information is carried by some distinct but “rare” colours (e.g.
specular highlights). If a quantization algorithm approximates the more popular

colours, the average distortion might be small, but the “rare” colours of the original

will be lost.

(o]



In this thesis the approximation accuracy is evaluated by a combination of distor-
tion measures. In addition to the quantization error £ we define the average colour

distortion:

1 N
e= =3l — g(ell (2.6)

i=1

and the standard deviation of distortion per pixel:

_ /z(z.y)el(”c(r'y) — g(cE )l — €)?
M-1 )

(2.7)

Small values of ¢ gvarantee that a quantization process accurately represents
colours of the original image. However the human visual system is not able to de-
termine the absolute value of a colour. It is more sensitive to colour variations. A
quantization algorithm that produces small values of o introduces almost equal colour
distortion to every pixel. Therefore the minimization of the standard deviation of
distortion, o, helps us to preserve variations of colours in the quantized image.

It should be noted that these error measures have a significant limitation. The
colour context is important in our colour interpretation. Despite the fact that &, e,
and o are image dependent measures, they treat each pixel independently. Spatial
correlation among colours is not taken into account. Balasubramanian and Allebach
in [BA91] attempted to account for the colour centext by a pre-quantization step.
Unfortunately the technique does not provide a mathematical tool that is useful in

the quantization process.

2.2.2 Context-dependent colour mapping

Even though the main research in quantization is to find a good palette, the mapping
of the original image to this palette is also important. As it was stated before, the
current quantization methods are not able to account for colour context. Fortunately
it is possible to overcome this limitation by the use of the contexi-dependent colour
mapping — dithering. This technique is able to reduce the artificial contouring.
The nature of this artifact is explained by Figure 2.1. The colours ¢; and ¢; belong

to two different Voronoi regions. The colour mapping {2.1) assigns corresponding
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Figure 2.1: The nature of artificial contouring in quantization.
The colour mapping increases the original contrast ||c; — ¢;|| to ||&i —
Sli-

pixels to & and &. Thus in the displayed image the original contrast liei — ¢l is
increased to ||&; — Gll.

Dithering methods are based on the spatial integration that our eyes periorm. If
we view a very small area from a sufficiently large distance, our eves average the
detail. An image region with a combinration of pixels of different colours may appear
to be uniformly shaded.

Most dithering algorithms are developed for tone reproduction in printing [U1i37].
The error diffusion techniques can be easily adapted to quantization colour mapping.
The Floyd and Steinberg approach [FS75] is one of the most commonly used algo-
rithms. The quantization error ||c— g(c)|| is spread over the weighted neighbourhood
(Figure 2.2). Hence the context dependent colour mapping operation for pixel ¢4

can be defined by the equation:

q(m.y)(c) = q(c+ €@y) (2.3)
where ¢(z,y) is the accumulated error in the (z,y) neighbourhood; ¢(c) is the previously
defined context-independent mapping (2.1).

The shortcomings of the Flo;'d-Steinberg approach appear as correlated artifacts,
directional hysteresis etc. A detailed discussion of these artifacts and the possible

solutions are discussed by Ulichney (see [Uli87], Chapter 8)

10



Figure 2.2: Error propagation in the Floyd-Steinberg algorithm

In the case of fixed palettes with uniformly distributed colours other dithering
algorithms may be applicable. In particular it is advantageous to use less computa-
tionally expensive ordered dispersed dithering ([U1i87], Chapter 6).

The application of context-dependent colour mapping is demonstrated by Figure
2.3. The test image “Lenna” is quantized using the same palette with 30 uniformly
distributed colours. The use of dithering resulted in improvement of the perceived
colour approximation and reduction of artificial contouring. Unfortunately distortion

measures that are able to account for dithering effects have yet to be developed.

2.3 Approaches to colour quantization

As it is seen from the previous sections colour quantization is a hard problem. The
lack of the objective criteria of quantization accuracy makes it difficult to formulate
the task analytically. Hence, the thesis presents quantization techniques that are
highly heuristic and approximate. This section outlines the early approaches to the
colour reduction problem.

Unlike multi-dimensional vector quantization, quantization on one parameter is a
well studied problem. An optimal partitioning can be found by dynamic programming
[Bru65]. The complexity of these methods for N-level input is O(N2K). The early
colour quantization methods [Hec80] employed these techniques to quantize each
colour channel independently. Such an approach is not able to account for the multi-

dimensional nature of colour.

Stevens et. al. [SLP83] coded three-dimensional colour information by a one-

11
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Original image.

"

| Floyd-Steinberg error diffusion Ordered dispersed dithering

Figure 2.3: Application of dithering to quantization.

The context-independent colour mapping significantly distorts the
original image. The colour mapping with dithering results in reduc-
tion of artificial banding and improves the perceived colour approx-
imation. However, dithering may introduce directional artifacts.
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Figure 2.4: Peano scan encoding of the colour space preserves neigh-
bourhood relationship between colours. Colours ¢; and ci are close
in the colour space and along the space filling path. However the
inequality |lc: — ¢;|| < llei — ek} is true in the colour space but false
along the Peano scan.

dimensional parameter. This parameter represents the distance from the colour to
the origin along the Peano scan. The quantization is performed on this distance. The
method relies on the fact that a chosen fractal curve is able to preserve nei ghbourhood
relationship between colours. That is, two colours ¢; and ¢ that are close along the
Peano scan are also close in the colour space. (Figure 2.4). However the inverse
statement is not valid. The colours ¢; and ¢; are far apart along the space filling
curve, but are close in the colour space. Thus the relative distances are not preserved
by this encoding. The inequality |lc: — ¢;|| < |lei — ekl is true in the colour space
but false along the Peano scan. Thus the resulting one-dimensional quantization is
optimal for the chosen encoding but fails in the multi-dimensional space.

The early quantization algorithms showed that methods of one-dimensional quan-
tization cannot be easily adapted to colour reduction problem. The multi-dimensional
nature of colour is important to preserve. The complexity of the optimal partitioning
problem forces us to find an approximate solution.

The popularity algorithm [Hec80] presents a somewhat simplistic approach to the

problem in the 3-dimensional colour space. The assumption was made that a good

13



colour map should contain the most frequent image colours. The histogram of the
image pixels is sorted using a selection sort until /' most “popular” colours are
selected. The computation complexity of this approach is O(N K) where N is the
number of colours in the histogram. The algorithm may work for some images but
fails for those with uneven colour distribution. The method neglects colours in sparse
regions of the space (see [Hec82]).

The rest of this thesis deals with quantization techniques that are designed to
minimize one of the quantization errors defined in the previous section. We will
distinguish two approaches in the algorithm design: pre- or post-clustering [Dek94].
The pre-clustering methods partition the space into regions relying on the precom-
puted statistics of the colour distribution. The palette is chosen as centers of the
generated regions. Post-clustering algorithms find representative colours first. These
algorithms start with some initial approximation of the palette. This palette is iter-
atively improved based on multiple sample sets of the image pixels. The following
chapters analyze merits of both approaches. The new local K-means algorithm is a

post-clustering scheme. This algorithm is meant to overcome some limitations of the

previous methods that follow this approach.

2.4 Algorithm evaluation methodology

This research compares a new technique with implementations of the quantization
algorithms found in public domain image processing software: median-cut [Pos91},
variance-based [Tho90], octree [Cri92], and SOM [Dek94]. These implementations
work in RGB colour space. For a fair comparison we also used RGB space. Note, that
even though quantization in perception-based spaces can give a better visual result,
it does not change the relative correspondence of numerical values of quantization
accuracy. Therefore, algorithms that produce small distortions in RGB space are

expected to perform as well in Lu*v* or HSV spaces.

14



2.4.1 Visualization of quantization errors

For our quantization tests we have chosen a set of 24-bit images that represent various
image sources: scanned photographs, computer rendered scenes, and digitized works
of art.

The chosen test images are meant to represent the two discussed quantization
artifacts (Figure 2.5). The image “Kiss” has a nonuniform distribution of colours.
There are few pixels of red, green and blue in this mainly golden painting. Such
colour diversity makes the image hard to quantize to a small palette. The relatively
“rare” colours are often missing in the generated palettes. Thus the image “Kiss”
demonstrates the loss of colour information and contrast.

The “Pool balls” computer rendering has large uniformly shaded areas. The
artificial contouring is apparent even when this image is quantized to a 256 colour
palette.

Due to the limited printing technology the quantization results are rather difficult
to evaluate using hard copies of the test images. The artifacts may be visible on
the computer monitor but indistinguishable in print. We have chosen to use the
quantization error visualization technique proposed by Fiume et. al. in [FO89]. In
this thesis gray scale images represent the difference between the original and the
quantized colour images. The intensity of each pixel is computed as the Euclidean
distance of the colour distortion: ||¢(z.y) — @(C(z)ll- Therefore the brightest areas in
these images correspond to the highest quantization errors.

It is clear that such a visualization technique is rather limited as it does not
provide information about colour contrast. However, this methodology is suitable for

the discussion of error distribution in the quantized images.
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Computer synthesized image “Pool balls”

Figure 2.5: The test images.



Chapter 3

Pre-clustering

Pre-clustering approaches are based on the formulation of the quantization problem
as an optimal space partitioning, where the colour space is split into a set of regions.
The goal of this division is to classify similar colours into the same cluster. Wu in
[Wu92a] demonstrated that this objective follows from the definition of the optimal
partitioning. Once a suitable set of clusters is generated the colour map is chosen as
centroids of the resulting regions.

This chapter describes the pre-clustering algorithms used in computer graphics.
These methods differ in the heuristic strategies of the space partitioning. We will
analyze the influence of the different approaches on the quality of the quantized

images.

3.1 Median cut

The objective of the median cut algorithm [Hec82] is to partition a colour space
into clusters with equal number of pixels. Thus each entry of the synthesized colour
map will represent equal number of pixels of the original image. The colour space is
repeatedly subdivided into a set of rectangular boxes by planes parallel to the space
axis.

Prior to the partitioning step the histogram of image colours is built. In order

to be efficient the number of distinct colours is reduced. This is achieved by colour
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Figure 3.1: The first 3 steps of the median cut algorithm. This

technique attempts to partition the space into colour regions with
equal number of pixels.

resolution reduction. Heckbert suggesis that 5 bits per colour channel is sufficient in
most cases.

The algorithm starts with one box that encloses colours of all pixels in the input
image. The maximum and minimum values along each axis are found. The colours
are sorted along the axis with the longest edge. The box is split at the median point
by a plane perpendicular to this edge

Thus the nurnber of pixels in the resulted sub-boxes is approximately equal (Figure
3.1). The operation is recursively applied to the new partition. The process stops
when the needed number of clusters is achieved. The palette is generated from the
centroids of colours in each box.

The median cut approach is able to produce good colour maps for images with
approximately equal distribution of colours in the space. However, artificial contour-
ing appears in the smoothly shaded areas of the image “Pool balls”. Unfortunately,
the algorithm approximates more frequent colours at the expensc of the distinct
rare colours. Thus images with uneven colour distribution may look significantly
distorted. (Figure 3.2).

Joy et. al. [JX93] suggested that the primary weakness of the median-cut method
is the decision to split the most popular box. The flaw of this approach is that the box



“Pool balls”

Figure 3.2: Guantization errors: median cut method.
The more popular colours are well represented at the expense of
other less frequent colours. Thus the image “Kiss” exhibits strong

colour shift. The artificial banding is apparent in the image “Pool
balls”.
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Figure 3.3: The first 3 steps of the variance based algorithm. The
method splits the box with the largest colour disparity. The split-

ting plane is chosen to minimize variance of colours in the resulting
regions.

with the largest pixel count may have little colour disparity (small variance). Leaving
less popular but larger boxes unsplit causes higher quantization errors. Moreover the
objective of the space partitioning — each palette entry represents equal number of

pixels — does not allow the median cut to take into account less frequent colours.

3.2 Variance-based algorithm.

Wan et. al. [WPW90] attempted to improve the performance of the pre-clustering
scheme and proposed a new objective for space partitioning. Optimal quantization
is possible if the variance of pixel values is minimal in each resulting cluster.

The variance based method [WPW90] follows a scheme similar to the median
cut. At each step the box with the largest weighted variance of colours is selected.
The weight of the box is the number of pixels it encloses. To choose the partition
plane, the distribution of colours along each of three axis is computed. The optimal
threshold is obtained for each of the projected distributions. The weighted sum of
projected variances is computed for the three pairs of the possible partitions. The
partition plane is chosen to be perpendicular to the axis with the smallest sum and

to pass through the optimal threshold.
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“Pool balls”

Figure 3.4: Quantization errors: variance based method.

The algorithm attempts to minimize variance with in each colour
cluster. This approach leads to more even colour approximation
than the median cut. The colour shift and banding in the test
images are less evident.
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The subdivision continues until the needed number of boxes is created. As before,
the mean colour of the box becomes an entry in the palette. Figure 3.3 demonstrztes
that the variance based algorithm is able to split the boxes in such a way that colours
are well grouped. Thus the colour disparity within each cluster is small. Unlike
the median cut partitioning, the variance based method creates boxes of different
sizes. The close colours tend to end up in the same box. This results in the better
approximation of less popular colours. Therefore, the colour approximation is more
uniform than that of the median cut algorithm. The images of quantization errors

(Figure 3.4) have less bright areas than the corresponding median cut images (Figure
3.2).

3.3 Center cut

The center cut algorithm is a simplified approach to variance minimization within
colour regions. Joy et. al. [JX93] assumed that the box with the longest edge has the
highest variance. The proposed center cut algorithm splits this box in half with the
partition plane perpendicular to the longest edge . This center cut method produces

palettes similar to the variance based method significantly faster.

3.4 Octree

Heckbert [Hec82] points out that the strucvure formed by recursive partitioning of the
presented algorithms is nearly identical tc k-d trees. The octree algorithm [GP88],
[CFM93], [Cri92] explores this idea further.

The entire colour space is treated as a hierarchy of octants. Each colour of the
input image is placed into the leaf of the constructed tree. The “pruning” starts
with the longest “branch”. Neighbouring leaves are recursively substituted by their
parents. The process stops when the number of leaves is equal to the required size
of the palette. Thus the leaves become the entries of the colour map (Figure 3.5).

The octree algorithm is similar to the previous methods as each leaf is a box in the
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Figure 3.5: One level of the octree partitioning. Similar colours may
end up in different clusters.

colour space. We classify this method as a pre-clustering approach since it partitions
the space prior to the palette selection.

The representation of the colour space by an octree allows memory efficient im-
plementation of the quantizer. The colour resolution reduction and histogramming of
image pixels is avoided. Hence, the octree method is significantly faster than the other
techniques. The distinct colours are likely to be in different octree leaves. Therefore,
the quantization results are somewhat similar to the variance based method (Figure
3.6, “Kiss”). However, the algorithm does not guarantee that relatively close colours
are placed into the same box. The octree quantization may introduce strong banding
artifacts. In the merging process the volume of the box grows by a factor of eight.
This often creates imbalanced partitioning and leads to uneven colour gradations in
the smooth areas of the quantized images (Figure 3.6, “Pool Balls”). Moreover the

size of the palette for octree quantization is always a multiple of eight.

3.5 Principal axis splitting quantization.

The algorithms described above have a common flaw. The partitioning is performed
by the orthogonal planes even though in general colour image data sets are not

distributed orthogonally. It is advantageous to account for the principal azis of the
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Pool balls

Figure 3.6: Quantization errors: octree method.

The quantization results are similar to the variance based method.
The strong banding is due to the fact that close colours may end up
in the separate octree leaves.
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colour distribution. This axis represents the direction of the maximum variance.

Wu [Wu92b] used a cutting half-plane normal to the principal axis of a data
set. The cluster is thus split in the locally optimal manner. The position of the
plane is chosen to minimize the quantization distortion. The inertial cut method
is the only implementation of the principal axis partitioning technique available to
the author. This method splits the region in the center of mass. This approach
allows us to reduce the computation cost. The inertial cut is able to generate a high
quality palette for the test image “Pool balls”. In particular the artificial banding
is practically invisible in the quantized image. Unfortunately the algorithm fails
to approximate rare colours in the image “Kiss”. Figure 3.7 presents quantization
results for the inertial cut algorithm.

Even though the principal axis approach improves the colour reduction it has a
serious limitation. The intermediate clusters are bipartitioned one at a time inde-
pendently from each other. As a result the quantization process is not able to take
into account interrelationships between neighbouring regions.

Wu [Wu92a] studied the principal multilevel quantization algorithm. The motiva-
tion of this scheme relies on *he fact that the colour distribution in the natural scene
is not isotropic in the colour zpz.ce. The values are more spread out in the luminance
direction (L component of the CIE Lu*v*). It was observed that the first partitions
created by the previous algorithm had almost parallel sides. The objective was to
optimize these first cuts by simultaneous planes perpendicular to the principal axis.
The position of these planes is determined by a dynamic programming technique
similar to the one used for one-dimenzional quantization (Figure 3.8).

The experiments in [Wu92a] showed the advantage of the multilevel quantization.
The partitioning was better adapted to the statistics of the input image. Wu ¢laims
that “on average, the mean-square quantization error of the new algorithm is five
times smaller than that of the traditional algorithms”. The improvement in the colour
approximation comes at the high computation cost: quantization takes ‘“less than

three minutes on a Personal IRIS workstation” [Wu92a].
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Figure 3.7: Quantization errors: inertial cut method.

The algorithm is able to avoid artificial banding in the image “Pool
balls”. Even though the inertial cut generates low quantization dis-
tortion per pixel the distinct small regions of the image “Kiss” are
poorly approximated. (bright areas of the error images: grass, low-
ers).
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Figure 3.8: Principal multilevel space partitioning.

The first step splits the space by multiple planes perpendicular to
the principal axis. The simultaneous split allows optimization of the
multiple cuts. The second step partitions the resulted region with

the largest variance.

3.6 Wrapup

A survey of pre-clustering algorithms was presented in this chapter. These techniques
subdivide the colour space into clusters according to the distribution of colours in the
input image. The centroids of the resulting regions form the quantization palette.
The objective of this space partitioning is to place sirpilar colours into the same clus-
ter. Taking into account that the quantization problem is NP complete [Wu92a], the
described techniques offer an approximate solution. These methods share a similar
recursive partitioning scheme. The algorithms differ in the splitting criteria and the
direction of the cut.

These pre-clustering quantization methods are popular in computer graphics ap-
plications ([Pos91], [Tho90], [Cri92]). They are able to generate reasonable colour
maps at a moderate computation cost. However this ease of computation often
compromises the quantization accuracy. In order to be efficient the pre-clustering
algorithms choose to reduce the colour resolution of the input image.

The minimization process of these recursive schemes is tied to the created regions

of the space. However the closest palette entry for some colours may be different
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Figure 3.9: Voronoi regions of the median cut partitioning.
Colours depicted by gray on this diagram will be mapped to a dif-
ferent palette cntry then the center of their partitioning region.

from the center of their cluster. Hence colours belonging to the same cluster in the
space partitioning may be mapped to different palette entries in the quantized image

(Figure 3.9). Thus the space partitioning may be optimal in respect to the generated

clusters and produce high quantization errors.



Chapter 4

Post-clustering algorithms

This chapter is devoted to the post-clustering quantization approaches. These tech-
niques offer a direct solution of the vector quantization problem. The algorithms
that follow this approach start with some initial palette and iteratively improve it
to minimize the quantization error. Unlike the pre-clustering schemes, these tech-
niques do not require computation of various statistical parameters of the image. The
adaptation process attempts to approximate the density function of the colours us-
ing multiple samples of the input. These algorithms have been applied to statistical
analysis, data coding, signal processing and pattern recognition [LBGS80], [Gra84],
[Fri93b], [MG93], [KKL90]. Until recently these schemes were considered to be too

computationally expensive for colour quantization.

4.1 XK-means algorithm

K-means algorithm [LBG80] is a post-clustering technique that is widely used in
image coding and pattern recognition. A sequence of iterations starts with some
initial set 0. At each iteration, ¢, all data points ¢ € C are assigned to one of the
clusters S,(:) . The cluster membership is defined by the closest center from the set
—C—(t). The centroid of all points ¢ € S,(f) becomes a new center of the cluster e+,

_ 1<
) = 23 (il € 5. (4.1)

i=1
The algorithm is known to converge to a local minimum.
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Figure 4.1: K-means adaptation scheme.
All data points are assigned to clusters defined by the closest center

(black dots). The centroids of the resulted clusters become the new
centers (gray dots).

The K-means algorithm was used to quantize images in [WPW90]. For the test
images it produced smaller average errors E than the median cut and variance based

pre-clustering algorithms. Unfortunately, high cost of computation makes K-means

impractical for image quantization.

4.2 Kohonen self-organizing maps.

A self-organizing map {SOM) was introduced by Kohonen [KKL90] as a solution to
a general vector quantization problem. The SOM is a neural network that imposes
a one or two-dimensional topological structure over a set of clusters in a higher
dimensional space. Dekker in [Dek94] studied the use of the one-dimensional self-
organizing map for image quantization. The initial palette is set to equally spaced
gray scale values. The input colours are obtained by multiple sampling of the image
with large step sizes. The closest colour oY) of the palette is adjusted to better
comply with the input c!Y). The adaptation process is controlled by the adaptation

parameter 0 < a, < 1. This parameter is exponentially decreasing with time thus
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Figure 4.2: SOM adaptation scheme

the iteration process converges to a stable set of clusters.

The network is considered to be elastic. That is the 2r topological neighbours are
updated together with the center &®. The parameter r is the radius of elasticity
that decreases with time. The elasticity coefficient py j) ensures that only entries in
the r-neighbourhood are updated. Since the updated neighbourhood often overlap
the values of & tend to be smoothed.

To summarize the SOM adaptation process is presented on Figure 4.2 and defined

mathematically by the following equation:
G = 5 + aupes () - ), (4.2)

In order to ensure a fair representation of colour regions by the palette C Desieno
(see [HN90] p. 69) proposed the use of a special bias value. The bias factor increases
for less frequently chosen vectors. Thus a colour that was chosen many times before
has a lower probability to be chosen later.

Figure 4.3 presents the results of the SOM quantizétion of the image “Pool balls”.
The quantized image does not contain strong contouring artifacts. The technique fa-
vorably compares with octree, median cut and variance based pre-clustering schemes.
Unfortunately the SOM quantization is significantly slower than other algorithms
(SOM requires 48 sec. verses 2-3 sec. for the tested pre-clustering methods). Dekker

proposed to use only a part of the image as an input data to generate the palette.
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Quantization errors for image “Pool balls”

Figure 4.3: SOM quantization test.
The colours of the original image are well represented by the selected

palette. The artificial contouring is avoided.
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Initialize the temperature: T = Tg
while (T > T1)
accepts = rejects = 0
while ( not at equilibrium : (accepts < Mazgccepts)(rejects < Maz,cjects)
perturb one of the palette entries
compute the change in the global quantization error AFE
if (AE <0)
accept the new palette
accepts = accepts + 1
else
choose random € [0, 1]
if (random < e~2E/T)
accept the new palette
accepts = accepts + 1
else
rejects = rejects + 1
Reduce the temperature: T =Tk

Figure 4.4: Simv:»ted annealing quantization

This approach speeds up the palette selection but reduces quantization accuracy.

4.3 Simulated annealing

A number of probabilistic techniques were developed to solve large scale optimization
problems. One of these techniques is simulated annealing. This method is based on
the analogy from the statistical thermodynamics. Simulating annealing mimics the
process of crystallization of a liquid under low temperatures. The cooling sched-
ule ensures that crystallization occurs at the lowest possible energy level. This is
achieved if the temperature decreases slowly in a sequence of discrete steps. Thus
the equilibrium is reached at each temperature level.

Fiume et. al. [FO89] applied simulated annealing to colour image quantization.
In this case, the energy to minimize is the global quantization error. The initial
temperature is computed from the initial approximation of the palette. The overall

scheme of the annealing algorithm is presented on Figure 4.4



This technique was applied to improve colour maps generated by one of the pre-
clustering methods [FO89]. The distributed version of the annealing algorithm was
used. In the course of experiments it was found that this probabilistic scheme was
able to reduce the global quantization error. However, the improvement was possible
only after thousands of iterations (several hours on the Sun 3/280). Besides the
slow convergence rate it was noted that “it is difficult to devise scientific ways of

determining good values for parameters ” in the cooling schedule. The authors found

acceptable values by trial and error.

4.4 Motivation for the future research

The post-clustering methods share a common iterative scheme. That is the colour
map is iteratively adapted to minimize the global quantization error. The adaptation
terminates when the needed approximation accuracy is reached. The author believes
that the iterative nature of post-clustering techniques might be appealing in many
computer graphics applications. Computation time or quantization accuracy could
be adapted depending on the application requirements.

Unlike many pre-clustering methods, the post-clustering algorithms tend to min-
imize the global error by simultaneous minimization of all partitions. Thus, the
quantization error is distributed more evenly for all colours of the image ([Wu92a),
[FO89)).

As it was noted before the existing post-clustering methods appear to be too slow
for practical use in computer graphics. Hence, the objective of this research is to
derive a fast algorithm that follows the post-clustering scheme.

Further chapters describe the original results presented by the author in [Ver95)
and [VB95].



Chapter 5

Fast nearest neighbour search.

The performance of a quantization method greatly relies on the speed of the nearest
neighbour search. This search is the basis of the colour mapping operation. Moreover,
the described post-clustering techniques use the nearest neighbour to determine ths
optimal palette.

In order to speed up the search Freidman et. al. proposed the use of k-d trees
[FBF77). It was proven that the complexity of this search is O(MlogK). In his
software Poskanzer implements the colour mapping using a hash table (see [Pos91}}).
Heckbert in [Hec82] described the locally sorted search. The colour space is divided
into a set of cubical cells that contain a list of palette entries. The representative
colour is inserted into the list if it is the nearest neighbour of one of the points in
the cell. These lists are sorted by the distance from the cell. The sorting allows
terminating the search for the closest colour before the entire list is examined. On
average, {i. - .oposed technique is 23 times faster than exhaustive search.

Unfortunaiely many algorithms developed for fixed colour maps cannot be used
in the framework of iterative post-clustering procedures. Positions of representative
colours T; are constantly changing, therefore a k-d tree or a hash table must be
recomputed after every iteration.

Hodgson [Hod88] proposed several speed up techniques for the minimum dis-
tance classifier: the partial sum test, sorting the cluster centers, calculation of the

nearest neighbour for each center. In this chapter we discuss applications of these
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optimization approaches to colour quantization. In addition the author proposes to
compute classification in respect to the L, norm. This inexpensive approximation to

the Euclidean metric is presented in the following section.

5.1 L,-norm

Previously we have defined the colour mapping and minimal distance classification
in terms of the Euclidean metric. Unfortunately this metric is computationally ex-
pensive. Many implementations of colour quantization algorithms substitute the
Euclidean L, norm by the less expensive L; norm ([Dek94], [Pos91}, [Tho90]). How-
ever the nearest colour determined by L; norm may not be the nearest colour in L,
norm.

Chaudhuri et. al. [CCW92] proposed the L, norm as an approximation of the

Euclidean metric. For a vector £ € R™ the L, norm is defined as a combination of

the L, and L., metrics:

lzlle = (1— a)“f"l + afizlleo
= (1—-a)) |z + amax |z:l- (5.1)

=1
The choice of the a = 1/2 simplifies the norm calculations. In this case o = 1—a,
thus the multiplication can be avoided in the search of the nearest colour. The author
found that the application of the L,=;/2 norm significantly speeds up the colour

mapping (Table 5.1). Moreover the resulting misclassifications do not noticeably

influence the quality of the output image.

5.2 Optimization techniques

This section describes search optimization techniques proposed by Hodgson in [Hod88].

These methods are possible to apply in the framework of the post-clustering algo-

rithms when the palette entries are changing with iterations.
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Table 5.1: Application of the La=1/2 to the colour mapping.

The Lq=1/2 takes only 24% of the time to compute the L, norm.
However the L,=,/2 based colour mapping is similar to the Euclidean
mapping. The less expensive L, metric introduces high average
distortion per pixel £ due to a large number of misclassifications

(11%).
[Norm [ Time | £ | Wrong neighbour |
L, 11.9 sec. | 5.56 11%
L, 59.9 sec. | 5.46
Lo=12 || 14.7 sec. 5.47 4%

5.2.1 Calculation of the partial sum

It is often the case that a partial calculation of the distance is sufficient to rule out
the current palette entry as the closest colour to the input ¢. The norm calculation is
abandoned if the current partial sum X, exceeds the current minimal distance Xnin.

Consider the situation on Figure 5.1. Let the current minimal distance be Ymin =
llc — &7]|. The partial sum — the distance in horizontal coordinate — for T3 exceeds
the Tmin. Therefore the complete calculation of the norm is not necessary for this

colour. The colour 77 is the closest palette entry to the current input.

5.2.2 Sorting on one coordinate

Sorting eliminates a number of centers from the search for the closest palette entry.

Suppose that the palette colours are sorted according to their projections on the
horizontal axis (Figure 5.2). The projection of ¢ is the closest to the projection of
the input c on the chosen axis, thus the search starts with é;. The current minimal
distance is Smin = |lc — €ill. The search needs to examine only the entries with
projections within Emin from the input. These colours are visited in alternating order
from the left, and from the right of the input — @3, @, ¢z, €1. Since ||&G3 — || < Xmin
the &3 is the new closest entry. The horizontal projection ¢; is outside of the current

minimal distance radius. Therefore ¢z and all the other entries to the left of it are
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Fis-.re 5.1: The application of the partial sum criteria.
If :he Tain = |lc — @}l is the current minimal distance, than the
complete calculation of the sum is not necessary for <.

eliminated from the search.

5.2.3 Nearest neighbour distauce (NND)

The nearest neighbour criteria is another optimization technique that allows us to
terminate the search without examining the entire palette.

The nearest neighbour is found for all the palette entries, and half of this distance
is stored. Let us suppose that & is currently the closest entry to the input ¢ (Figure
5.3). The entry ¢; is the nearest neighbour of the entry 3. Since the input cis in the

sphere of radius 1||ez — ]|, then the search can terminate. The other palette entries

cannot be closer to ¢ than Cs.

5.2.4 Experiments in colour mapping

The effectiveness of the described search optimization techniques is studied in ap-

plication to colour mapping. A 512x400 image was quantized to 16 and 256 colour

palettes. Computation times can be found in Table 5.2.
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Figure 5.2: Sorting by one coordinate.

The entries which projections are outside of the current minimal
distance are eliminated from the search. Thus ¢; and ¢ are not
considered.
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Figure 5.3: The application of the nearest neighbour criteria.

The & is the nearest neighbour of ¢3. The %||E§ — &3|| exceeds the
distance between & and the input. Thus other palette entries cannot
be closer to ¢ than €3. The search terminates zn1d &3 is the closest
palette entry to c.



Table 5.2: Performance of the colour mapping optimization tech-

niques. The optimized colour mapping is comparable to the & — d
tree search.

Algorithm Execution time
16 colours | 256 colours |
Direct search 1.74 25.51
> 145 19.44
3", and sorting 0.89 2.93
Y., sorting and NND 0.76 2.76
k-d trees 1.41 2.65

The implementation of all optimization criteria resulted in 10 fold speed up of
the colour mapping operation. The performance of the & — d tree search is given as
a reference. Even though this search has a logarithmic complexity the advantages of
this algorithm are superseded by the required overhead.

Thus according to the experiments the performance of our colour mapping algo-

rithm is comparable to k-d tree method.
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Chapter 6

Local K-means for colour

quantization.

The advantages of the post-clustering quantization techniques motivated the devel-
opment of the local K-means algorithm. The main goal of this research was to
investigate optimization techniques that would result in an efficient post-clustering
approach to colour quantization.

This chapter describes the proposed local K-means algorithm. This technique is
applied to a number of test images. The quantization examples and error statistics

are presented to illustrate both the speed and accuracy of the proposed method.

6.1 The local K-means algorithm

The local K-means algorithm is an iterative adaptation process, similar to the other
post-clustering methods. The algorithm starts with the initial palette. Multiple
samples of image pixels are used to adapt the colour approximation. This section
describes three aspects of the local K-means algorithm: the adaptation process, the

choice of the initial palette, the image sampling technique.
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6.1.1 The adaptation procedure.

Let ¢ be an input colour on the iteration step ¢. Suppose that the palette entry Al
is the closest to the input c{*). The local K-means algorithm adapts the colour o
to better approximate the input. The parameter a, guarantees the convergence of
the iteration process. Thus the adaptation procedure of the local K-means algorithm

can be expressed by the following equation:

_— (t) _ ==(0) P
St = G+ el =) j=h (6.1)
G\ otherwisc

The local K-means is similar to gradient quantization techniques used in gray scale
image coding [Mat92], [MC92]. Also, the local K-means algorithm can be considered
a special case of a self-organizing map. Unlike the Kohonen network, the adaptation
step of the LKM process updates only the closest colour. This approach eliminates
the need to maintain the topological map — the neural network of the palette entries.
The modification results in a speed up of the iteration process.

The local updates of the local K-means procedure are advantageous for quan-
tization of images with uneven colour distribution. Suppose the colour ¢¥ is the
only representative for a small group of distinct image colours. It is likely that its
topological neighbours 'c'ﬂ, are a significant distance from the current input ¢t
The SOM algorithm will erroneously update these distant palette entries. Thus the

overall quantization accuracy may decrease.

6.1.2 The adaptation parameter

The adaptation parameter 0 < a; < 1 (6.1) ensures the convergence of the iteration

process. Kohonen in [Koh91] suggested that the parameter o, should satisfy the

following conditions:

Zat = 00, Zatz < 00 (6.2)
t=0

t=0



We have chosen to follow the approach proposed by Dekker in [Dek94]. He sug-
gests the use of a, = ¢7%%%. Even though this adaptation parameter does not satisfy
the above conditions, it performs well for colour quantization. The number of exper-
iments in [Dek94] show that the proposed a; reduces a number of iterations needed
to find a good palette.

It is important to point out that a different choice of ; may result in a different
final palette. We found that it is advantageous to choose the adaptation parameter to
be dependent on the number of pixels M in the image. The current implementation
of the local K-means algorithm uses an a, of the form:

\ M-

Q= Q& a =
M

where & is a number between 15 and 25. The speed of the adaptation will increase

(6.3)

with larger 6. A “very fast” adaptation may lead to the reductior of quantization

accuracy. Therefore the user can tailor the quantization process to the specifics of

the current application.

6.1.3 The choice of the initial palette.

The final result of the adaptation process is greatly influenced by the selection of the
initial palette. A number of techniques have been developed to lessen this dependence
[KKL90], [PBT93}, [Fri93b]. Unfortunately the proposed methods are computation-
ally expensive and may not be suitable for fast colour quantization.

All the entries of the initial approximation C© should be chosen inside the pos-
sible range of the input values. The vector quantization literature suggests several
approaches. If the range of the input values is known the initial set C® can be a
sequence of equally spaced values within this range. Thus, Dekker in [Dek94] ini-
tializes the palette to gray scale values. Linde et. al. [LBG80] proposed to generate
the *“initial guess by splitting”. The set C© of K values is chosen incrementally
b, recursive quantizing the data to K/2 clusters and perturbing their centers. We

have studied a computationally inexpensive procedure similar to the the K-means
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approach. The first K colours of the random image sample are inserted into the
initial palette. Such a procedure guarantees that that all the values of the C1® are
inside the image gamut.

For an equal approximation of all colours in the image it is important that every
distinct small colour cluster be represented by a separate palette entry. We found
that this can be obtained if the colours of the initial palette are well separated. In
the current implementation of the algorithm a new colour is added into the palette

if its distance from the already inserted entries exceeds a specified threshold.

6.1.4 Input data.

The data for the adaptation procedure is a sequence of input sets. These sets are
constructed by sampling the image in decreasing step sizes: 1009, 757, 499, 421, 307,
239, 197.... We have chosen these step sizes to be prime numbers, thus the input sets
do not intersect too much. The iteration process stops when changes to the palette
T over a complete image scan become small. In our experience the union of input
sets does not include more than 10% of all image points.

Even though this algorithm examines only a portion of the input image, it is able
to generate good approximating palettes. This result may be explained by the fact
that colours of a typical image are clustered in the colour space. Therefore, it is
enough to use a few colours from the cluster to approximate all its members. Since
similar colours are often close to each other on the image surface, we hope that our
input sets contain representatives for most clusters.

The local K-means algorithm allows the user to tailor the adaptation process to
the image. For example, the user can specify critical areas of the image that need
high approximation accuracy. The pixels from this critical area will be frequently

included into the input sets. Thus a better approximation of colours in this area is

expected.



Table 6.1: Quantization errors: image “Kiss”, 16 colours.

| Method TMax| € | € [ o |
Median cut 161 ] 31.01 20.77 | 14.71
Variance based || 146 | 25.4 | 17.63 | 11.57
Octree 132 | 26.4 | 19.41 | 13.65
Inertial Cut 133 | 26.2 | 17.74 | 11.49
Local K-means || 106 | 20.8 | 26.65 | 9.30

6.2 Quantization results.

The local K-means algorithm is compared to other quantization techniques. We stud-
ied the approximation accuracy of the method in respect to two common quantization

artifacts: the loss of colour information and the artificial banding.

6.2.1 Loss of colour information.

The reduction of the colour contrast and shift in the image hues are more appurent in
quantization to a small number of colours (e.g. 16). These artifacts were examined
by quantizing the digitized painting by Gustav Klimt “Kiss”. We have computed
the measures of quantization distortion for all tested algorithms. (Table 6.1). The
numerical values of the average distortion per colour € and deviation of distortion per
pixel o are the smallest for the local K-means method. Therefore this algorithm is
able to approximate all the colours equally well. This observation is supported by the
quantization errc - images (Figure 6.1). The local K-means palette selection results in
equal distribution of quantization errors. However, the uniform colour approximation
leads to the higher average distortion per pixel .

Figure 6.2 demonstrates that local K-means procedure seem to reproduce the
full chromatic range of the original image. High values of € are apparent in the
overall slight shift of image hues. Even though the quantized image produced by
the median-cut method corresponds to a small £ it looks significantly distorted.

Some fine details of the image have disappeared: blue flowers on the woman’s head,
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Inertial cut Local K-means

Figure 6.1: The quantization error images for 16 colour palettes of
image “Kiss”. The local K-means palette selection results in equal
distribution of quantization errors. The uniform colour approxima-
tion leads to higher average distortion per pixel €.
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Inertial cut Local K-means

Figure 6.2: “Kiss™: quantization to 16 colours.

The local K-means palette selection results in the smallest average dis-
tortion per colour ¢ and the highest average distortion per pixel €. Such
approximation better preserves the original image contrast. The smallest
& was produced by the inertial cut quantization. However some distict
rare colours are significantly distorted (e.g. green grass, yellow flowers).
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Table 6.2: Quantization errors: image “Pool Balls”, 256 colours.

[—Method it MaxJ e | & | UJ

Median cut 92 1831439249
Variance based 45 | 6.6 |4.27 1 1.72
Octree 61 6.4 12.07 | 2.16
Inertial Cut 43 16.0]1.33 | 2.05
Kohonen SOM 95 {7.9]1.74 | 2.87
Local K-means || 105 | 7.4 | 2.01 | 2.59

yellow spots on her dress, etc. The variance-based, octree and inertial cut algorithms
were able to preserve most of these details, though the original colour contrast was
greatly reduced. The subjective evaluation of quantization results shows that viewers
are more sensitive to the change in the colour variation. Hence the local K-means

quantization is often prefered over other techniques.

6.2.2 Artificial contouring.

The loss of colour information is not very apparent when images are quantized to
large palettes. Unfortunately the images with large uniformly shaded areas are prone
to artificial banding (or contouring).

A computer synthesized image “Pool balls” was quantized to 256 colours. All
the tested algorithms were able to preserve the original colour contrast. Tl «r.oritan
cut, octree and variance based methods introduced significant banding. " i.cal K-
means was able to avoid this artifact. The smallest values of the gi:#ntiz- 101 errors
in Table 6.2 correspond to the inertial cut technique. Though the image produced by
this method does not noticeably differ from the results of local K-means and SOM
algorithms.

The statistical measures of quantization distortion in this case do not reflect the
perceived results. The minimization of these parameters does not guarantee that
the contouring will be avoided. Even though the statistical measures for octree and

local K-means are similar, the later technique does not introduce the bending artifact



Octree

Local K-means

Figure 6.3: The quantization error images for 256 colour palettes
of image “Pool Balls”. The local K-means algorithm does not in-
troduce noticeable artificial contouring. The statistical measures of
quantization errors for local K-means and octree methods are simi-
lar. The banding is apparent for the octree technique.
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(Figure 6.3). The context dependent measures of image distortion are needed for a

more reliable control of image distortion.

6.2.3 Compromises

Our visual system is well trained to recognize human faces. We are able to distinguish
small variations of colour and shape of eyes, lips, etc. Therefore accurate quantization
of images with human faces is very important. Thus quantization to a small palette is
especially challenging. The question arises: “What is more important in minimization
of the perceivable quantization distortion: accurate colours or smooth shading ¢”
The portrait of the Hong Kong actress Anita Yuen (Figure 6.4) is chosen for this
discussion. The quantization errors for palette with 32 colours are presented in Table
6.3.

The smallest average distortion per pixel £ was produced by the inertial cut
quantization. The palette generated by local K-means algorithm introduced the
smallest average distortion per colour € and the smallest variation in quantization
accuracy o. The corresponding imagus are presented in Figure 6.5. The difference
in colour approximation accuracy is visible on the lips of the actress (“red” for local
K-means and “brown” for inertial cut quantization). However the penalty for good
colour approximation is slightly increased artificial banding in smoothly shaded areas.

The author believes that for quantization to a small palette it is important to
preserve the original colour gamut of the image and approximate all colours equally
well. The artificial borders may be reduced by the error diffusion techniques. Figure
6.6 demonstrates that Floyd-Steinberg dithering eliminates the contouring artifact.
However dithering is not able to compensate for poor colour approximation of the
inertial cut method (the lips remain “brown”).

Thus we can conclude that small colour distortion is often favorable over apparent

artificial contouring.

50



Figure 6.4: A digitized photograph of Hong Kong actress Anita
Yuen Wing Yee

fable 6.3: Quantization errors: the Anita Yuen portrait, 32 colours

[ Method TMax]| ¢ | £ | o |

Median cut 82 12291 10.48 | 8.04
Variance based 66 18.4 | 8.96 | 5.64
Octree 58 | 14.7 | 9.41 | 5.62
Inertial Cut 79 15.3 | 8.31 |5.40
Local K-means 73 12.5 | 10.75 | 4.20




Inertial cut quantization

The algorithm produces the smallest
average distortion per pixel £. However,
the non-uniform colour approximation
results in the noticeable colour shift (i.e.
lips)

Local K-mecans

The algorithm produces the smallest
average distortion per colour <.
Unfortunately, the price for a good
colour approximation is the increased
artificial banding.

Figure 6.5: Quantization to 32 colours (the portrait of Anita Yuen)



The fragment of the original image

Inertial cut quantization Local K-means
The dithering method is not able to The artificial banding is reduced by the
compensate poor colour approximation error diffusion technique.

(the lips remain ‘brown™).

Figure 6.6: Quantization to 32 colours with Floyd - Steinberg error
diffusion



Table 6.4: Execution time in seconds for colour map selection

Algorithm “Kiss” “Pool Balls”
612,096 pixels | 195,330 pixels
No. of colours: 16 1 256 16 I 256

Median-cut 4.64 4.93 1.2 1.57
Octree 2.04 3.67 0.65 0.90
Kohonen SOM 101.81 32.27
Local K-means | 0.65 1.74 0.20 0.38

6.3 Performance optimization.

The design goal of the local K-means algorithm is to find a fast post-clustering
quantizer. The adaptation process updates the closest palette entry to the current
input. Thus, the search of the nearest neighbour is the bottleneck of this algorithm.
We studied the application of the optimization techniques described in Chapter 5.

The tests demonstrated that palette sorting allows us to eliminate a large number
of colours from the search. Even though the palette entries change, the adaptation
process does not greatly rearrange the sorted order. It is likely that the need to
resort decreases with time as the adaptation parameter o, decreases. The current
implementation of the local K-means method sorts the palette ai the start of a new
image sample. The size of the sample sets increase in time. Therefore the sorting is
performed less frequently.

Overall the local K-means algorithm is able to select a colour map significantly
faster than the other methods (Table 6.4). The dependence of the algorithm perfor-
mance on the problem size is tested using the “Lenna” image. Figure 6.7(a) presents
computation time requiered to quantize several scaled versions of this test image.
Time for quantization to 16, 32, 64, 128, and 256 colour palettes are presented for
the 512x400 version of the “Lenna” image by the graph in Figure 6.7(b). These
graphs demonstrate that the execution time of the local K-means scheme is linear in

respect to the image and palette size.
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a) Dependence of the execution time
on the size of the image
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b) Dependence of the execution time
on the output palette size

Figure 6.7: Complexity analysis
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6.4 Wrapup

The quantization results show that the local K-means algorithm is a suitable ap-
proach to colour quantization. This research was focused on the tailoring of the
post-clustering technique to the specifics of the quantization problem. The speed
and accuracy of the algorithm were also studied.

The local K-means scheme is able to find good quality palettes. The advantages
of the method are more apparent in the case of quantization to a small number of
colours. The proposed technique attempts to equally approximate all colours of the
image. This property is most important for images with uneven colour distribution.

The local K-means algorithm is significantly faster than the other tested meth-

ods. This performance was made by the application of different search optimization

techniques.



Chapter 7

Multiple Image Quantization with

Local K-means Algorithm.

Previous chapters of this thesis dealt with palette selection algorithms for the best
display of one image. With the growing popularity of windowing systems the display
of multiple images is required. Graphics applications in such systems must share
display resources. In particular the colour map is shared between a number of simul-
taneously displayed images and windows’ borders, icons, etc. This chapter explores
the colour quantization problem in windowing systems. T he local K-means algorithm

can be adapted to account for previously allocated colours in the shared palette.

7.1 Colour quantization of multiple images

In order to approximate an image the ##vious quantization algorithms select a re-
diced colour set C. This set can contaiir any element of the chosen colour space with-
out any restriction. However simultaneous display of multiple images requires that
the chosen palette C be shared by the windowing system and the images. Therefore
palette selection within the windowing system is a special instance of the quantization
problem.

Let us assume that Cs is the current shared palette with Kgs colours. In order

to display a new image I the palette C; with K; colours is chosen. Unfortunately
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quantization to a small number of colours may significantly distort the appearance of
the displayed image. The colour approximation may be improved if the shared palette
is also used. Thus we can assume that the image is quantized to K colours, where
K = |CsUCy|. Since the sets C; and Cs are chosen independently their intersection
may not be empty, therefore in general K # Ks + K;. Moreover, it is likely that
the image specific palette C; contains colours similar to those previously allocated
in the shared palette. Thus the image approximation by the palette C =CsuC;
is not very effective. This research attempts to answer the question: How can a
quantization algorithm account for the previously allocated colours ?
We define the following “windows quantization problem™:

Complement a predefined set Cs of Ks colours with additional K; elements

such that the resulting set C is optimal for quantization of image I.
The author believes that pre-clustering algorithms are not suitable for efficient palette
selection within a windowing system. A recursive subdivision is not able to account
for the allocated colours in the shared palette. The following section describes a

modified local K-means algorithm that is appropriate for multiple image quantization.

7.2 Modified local K-means quantization

The goal of this research is to account for the shared colour map Cs in the local
K-means adaptation process. The algorithm attempts to find the optimal approxi-
mating palette C with X entries by adjusting “image specific” Ky = K — Ks colours.

The K colours of the shared palette are inserted into the initial set CP. The initial
values of the “image specific” palette entries are chosen by sampling the image. As
it was previously discussed in scction 6.1.3, the new entry is inserted into the initial
colour set if it is a specified distarce apart from other palette entries. Thus the

palette entries are well separated.

The iteration ¢t adapts only the “image specific” C}t) subset of the current palette

C® to improve image approximation. The entries of the shared palette Cs are used



Table 7.1: Quantization errors for local K-means algorithm applied
in windowing systems, image “Kiss”

[ Colour set [ No. of colours | Max | ¢ |1 € [ o |

Local K-means
Cr 32 85 |17.8117.8|6.52
CruCs 104 72 152 | 17.0 | 6.02
Windows local K-means
C | 104 ﬂ 72 {14.0 | 15.1 | 5.52

in the adaptation process but remain unchanged. Thus for an input c(? the modified
local K-means procedure is expressed as follows:

&0 4oV —5W) j=kATeC;

Gt = { (7.1)

where o, is the adaptation parameter described in section 6.1.2. The algorithm

A otherwise

terminates when changes of the palette entries become small. All the colours in the
new common palette will take equal part in the approximation of the original image,

as if there was no restriction of the windowing system.

7.3 Experiments with quantization for windows

systems

The experiments described in this section are meant to illustrate the use of the mod-
ified local K-means quantization in the windowing system. These tests are intended
to simulate commonly used techniques in colour allocation and mapping (e.g. Mosaic
for X Windows).

It was assummed that the windowing system is able to display K = 256 simul-
taneous colours and reserves for its own use Kg = 8 cells. A simulated windows
application generates a small palette with 32 colours for each displayed image. These
small palettes are added to the shared colour map of the windowing system, thus

decreasing a number of free cells by 32.
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In the course of the experiment three images were used. Table 7.1 presents the
approximation errors for the third quantized image. At first the original local K-
means algorithm was used. The image specific palettes are combined with the system
palette into the global shared map, thus for the third test image C; contained Ky = 32
and the shared map Cs — 72 entries. Even though the original local K-means selected
the palette C; independently from the shared map, the colour approximation was
improved when the test image is quantized to the palette C;UCs (first rows in Table
7.1).

On the second step of this experiment the modified local K-means technique was
applied to the same image sequence. 32 colour image palettes are chosen taking
into account the current shared colour map. Table 7.1 demonstrates the improved
colour approximation of the original image. Unfortunately the advantages of the
modified local K-means procedure are not evident when the corresponding images

are reproduced by the available printer.

7.4 Discussion

This chapter discusses the specifics of the windows quantization problem. The local
K-means can be adapted to account for previously allocated colours. Therefore, the
colour approximation may be improved. Moreover the entries of the global palette
are well separated in the colour space, hence a large number of images can be ap-
proximated. .

The tests of the modified local K-means technique were intended to imitate the
colour allocation strategy of the current Windows application — The “image specific
palettes” C; are of the same size. However the quantization accuracy is likely to
increase if the shared palette is large. Thus to increase the number of simultaneously
displayed images with the same quantization accuracy the size of C| should decrease.
The size of the image specific palette sufficient for the specified quantization accuracy
can be computed in a similar fashion as proposed by Fritzke in [Fri93b] and [Fri93a).

The new palette entries are created depending on the current quantization error.
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Conclusion

Thi . "w:5is presents the image quantization problem and discusses various approaches
+i +4i- ctive colour reduction. This document includes a detailed survey of previous
colour quantization techniques. The merits of these algorithms are analyzed with
respect to the common quantization artifacts: the loss of colour information and
artificial contouring. The computation efficiency is also considered.

Previously developed pre-clustering methods attempt to find an optimal space
partitioning on the basis of the statistical distribution of colours in the image. These
algorithms are highly heuristic but allow fast selection of a reasonable palette. Even
though the iterative post-clustering methods generate more accurate approximations,
they are considered computationally expensive for practical use in colour quantiza-
tion.

The main contribution of this work is the development of a new efficient post-
clustering algorithm known as local K-means. This method selects good quality
colour maps significantly faster than previous pre-clustering schemes. This speed
up was partly due to the implementation of nearest neighbour search optimization
techniques. The advantages of the local K-means algorithm are more evident for
quantization to a small number of colours. The selected palettes seemed to reproduce
the chromatic range of the image and preserve the original colour variance.

The local K-means algorithm can be tailored to the specific application. A mod-
ification of the original technique to quantization within a windowing system is pre-
sented. The proposed approach is able to account for the system’s shared colour map

so display of multiple images is improved.
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